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Abstract 

In Schizosaccharomyces pombe (fission yeast), centromeric DNA is packaged in 

heterochromatin domains that are important for normal centromere function. Heterochromatin 

acts as a platform to establish tight physical cohesion between sister chromatids which is important 

for their efficient segregation during anaphase. The assembly of this structure is known to require 

specific chromatin modifying factors as well as components of the RNA interference (RNAi) 

machinery. 

Transcription from the centromeric outer repeats triggers Dcrl to produce siRNAs which are loaded 

into Agol in the RITS complex. RITS then localizes to centromeric outer repeat DNA and recruits 

histone H3 lysine 9 methylatiori, thus promoting the formation of heterochromatin. RNAi is also 

involved in establishing heterochromatin domains at the silent mating type loci and sub-telomeric 

regions. 

Fission yeast RNAi was proposed to act in regulating gene expression. It was suggested that 

RNAi targeted Long Terminal Repeats (LTR5) for heterochromatin silencing and in the process 

affected the transcription levels of nearby genes. This model was disproven since no evidence was 

found for RNAi activity against LTR5 or any indication of the presence of heterochromatin overlying 

these sequences. Expression levels of genes supposedly targeted by this mechanism where not 

sensitive to loss of RNAi or to heterochromatin instability. 

There is strong evidence suggesting that RNAi acts co-transcriptionally in order to promote 

heterochromatin formation. Thus, it is possible that RITS activity is interlinked with transcription-

related processes such as cleavage/poly-adenYlation, transcription termination and RNA turnover 

by the exosome complex. In order to investigate this hypothesis, the integrity of RNAi and 

heterochromatin was assayed in mutants for factors that are involved in all three pathways. 

Mutations on dhpl (termination), pfs2 (cleavage and polyadenylation) dis3 and rrp6 (exosome) had 

negligible effects on RNAi activity and heterochromatin-mediated silencing with only the exosome 

showing some involvement in the downstream degradation of centromeric transcripts. 

Conventional RNAi enforces post-transcriptional repression by targeting mRNA molecules 

for degradation. This is mediated by the endonuclease activity of Argonaute ("slicing"). Although 

the key residues for this activity are conserved between human Ago2 and S. pombe Agol, the 

importance of this "slicing" activity to heterochromatin assembly was not clear. Mutations were 

made in putative catalytic residues on the endogenous agol gene in order to address this question. 

These mutations severely affect the activity of RNAi in fission yeast and destabilize the 

heterochromatin structure at centromeres. Consequently, centromere function is affected and 

chromosome segregation is deficient. Agol localization to the centromeres is impaired in these 

mutants and cannot nucleate heterochromatin nucleation though siRNA production is not fully 

abolished. Thus, Agol slicing activity is crucial for sustainable RNAi and its role in heterochromatin 

integrity. 
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CHAPTER 1 

INTRODUCTION 

1.1. CHROMATIN 

The genetic information encoded in the DNA sequences of eukaryotic cells is stored in a 

specialised structure called the chromosome. This entity is essentially a very long stretch of double 

stranded DNA that is packaged into a small, compact macromolecule that can be efficiently handled 

and segregated during cell division. Illustrating the degree of DNA packaging attained in 

chromosomes, the roughly 2 meters of DNA that a typical human cell contains are packaged into 46 

chromosomes that fit a nucleus whose diameter does not exceed 6 urn. This feat is accomplished 

by packaging the DNA strand with a scaffold of histone proteins which together is called chromatin. 

The histone genes are some of the most well conserved genes within eukarya and so are the basic 

principles of chromatin organization. Chromatin is highly dynamic and its structure can react 

according to the different biological processes in activity in the cell, such as gene expression, DNA 

replication, cell division or DNA damage and repair. 

1.2. CHROMATIN STRUCTURE 

The basic structural unit of chromatin is the nucleosome, in which 146 bp of DNA is coiled 

around an octamer of core histone proteins (with 2 of each histone: H2A, H213, H3 and H4). The 

periodic arrangement of the nucleosomes along a DNA strand with a small stretch of linker DNA in 

between nucleosomes constitutes the first level of packaging and it is usually referred to as the 10 

nm fibre or the "beads on a string" structure. Chromatin can be found in this form over DNA 

regions which are heavily transcribed by RNA polymerases or bound to by multiple DNA-binding 

proteins. The next level of chromatin is the 30 nm fibre (Kornberg and Lorch 1999; Hayes and 

Hansen 2001). The 30 nm fibre is a more compact and rigid structure due to a closer arrangement 

of the successive nucleosomes in a solenoid or spiral with the nucleosomes facing outward and 

with the linker DNA in the centre. In many eukaryotes, the 30 nm fibre is associated with the 

presence of the histone Hi that binds the linker DNA between nucleosomes. The "linker" histone 
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Hi is not absolutely required for higher order chromatin organisation since structures similar to the 

30 nm fibre can also be found on chromosomes of lower eukaryotes despite the absence of histone 

Hi in these organisms (Robinson and Rhodes 2006). The 30 nm fibre is found covering vast regions 

of the chromosome arms that are rich in protein-coding genes. 

Chromatin can assume other higher order organizations depending on the region of the 

chromosome and the life cycle of the cell. Chromatin fibres can form wide loops that allow distant 

regions on the same chromosome or on different ones to come together in the same region of the 

nucleus (Dernburg, Broman et al. 1996; Heliot, Kaplan et al. 1997; Dekker, Rippe et al. 2002; Mahy, 

Perry et al. 2002; Chambeyron and Bickmore 2004). These regions may have common active 

processes such as transcription, splicing and ribosome biosynthesis that share common 

components which may drive these chromatin regions to come closer in space in order to optimise 

efficiency of each process. During cell division (mitosis and meiosis), the degree of chromatin 

compaction reaches its highest level. In prophase, chromosomes are further condensed around a 

protein scaffold that contains elements such as condensins (Harvey, Krien et al. 2002; Belmont 

2006). The size of chromosomes is reduced to a minimum and become very rigid, thus occupying a 

smaller physical space and avoiding DNA strand entanglements. Consequently, the chromosomes 

can be efficiently aligned at the spindle midzone during metaphase and quickly segregated during 

anaphase. Upon cytokinesis in telophase, chromosomes decondense and assume other 

organisation orders. 

The mechanisms that govern the transitions between the different organisation levels of 

chromatin have been the focus of intensive research. The interest lies in that chromatin structure is 

clearly connected to the activity of underlying DNA or the functional state of the chromosome. In 

fact, chromatin can govern or at least influence most if not all of these functions (Kornberg and 

Lorch 1999). Chromatin researchers have found that there are particular signatures associated with 

each chromatin organisation state. In addition to the core histones (H2A, H2B, H3 and H4) there are 

other histone variants that possess the highly conserved histone fold motif but have other features 

that differ from the core histones. In fact, these variants can replace core histones in the 

nucleosome octamer and this has implications into the function and structure of chromatin. 

Replacement of core histones by these histone variants, such as histone H3 by H3.3 or CENP-A, H2A 

by H2A.X or H2A.Z confers a mark that distinguishes the underlying nucleosomes from normal 

chromatin. This is reflected on the proteins which can associate with this distinct chromatin and 
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also the particular structural features it can acquire (Sullivan, Hechenberger et al. 1994; un, Cai et 

al. 2005). 

Chromatin organization controls the accessibility to underlying DNA. Nucleosome density 

and position have an impact on many processes that require access to elements within the DNA 

sequence (Knezetic and Luse 1986; Lorch, LaPointe et al. 1987; Han and Grunstein 1988). A set of 

ATP-dependent enzymes called chromatin remodelers can alter the arrangement of nucleosomes 

from the chromatin fibres, destabilise nucleosomes or influence the higher order structural 

arrangement of chromatin by introducing superhelical torsion on the underlying DNA (Becker and 

Horz 2002). ATP-dependent chromatin remodelers can be divided into three families: Swi2/Snf2, 

ISWI and Mi-2/NuRD. They are found in both lower and higher eukaryotes (with the exception of 

Mi-2 members which are only known in humans and Xenopus Iaevii) where they play crucial roles in 

controlling gene expression, accessibility to DNA replication, and response to DNA damage (Sif 

2004). Chromatin remodelers work concertedly with enzymes that modify key residues of core 

histones within the nucleosomes. 

1.3. CHROMATIN MODIFICATIONS 

A vast repertoire of post-translational modifications of core histone proteins has been 

described in recent years. Most of these modifications are found on the N-terminal tails of the core 

histone proteins which are physically accessible from outside the nucleosome. Specific residues in 

these tails can be the target of modifications such as acetylation, methylation, phosphorylation, 

ubiquitylation, sumoylation, ADP ribosylation, deimination and proline isomerisation (Kouzarides 

2007). 

A large proportion of known chromatin modification was found to be associated with 

specific biological processes and/or particular chromatin states. The enzymes responsible for these 

modifications can target specific residues within the histone tail of a particular histone within the 

nucleosome. Hence, it was proposed that these post-translational modifications constitute the 

basis of a "histone code", an epigenetic layer of information that is responsible for controlling the 

chromatin structure and influence its activity (Strahl and Allis 2000; Jenuwein and Allis 2001). The 

functional context of nucleosomes becomes imprinted in the form of modifications "written" by 

specific modifying enzymes. In turn, this code is interpreted by specific proteins that either bind to 
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the modified nucleosomes or whose association to particular residues in the N-terminal tail 

becomes blocked by such modifications. Each set of histone modifications results in an apparatus of 

differentially associated proteins. Thereby, the histone modification code is "read" and used to 

determine the organization of that distinct chromatin domain and the activity of the underlying 

DNA. Histone acetylation, methylation and phosphorylation are the most common and best 

characterized chromatin modifications. 

Histone acetylation 

Acetylation is one of the most widespread modifications in the genome and has been 

detected at multiple residues on all four core histones, several histone variants such as H2A.Z, H3.3 

and CENP-A (human). Acetylation is a reversible histone modification since the activity of histone 

acetyltransferases (HATs) can be counteracted by histone deacetylases (HDACs) (Grunstein 1997). 

Acetylated lysines on histone tails are known to be the recognized by proteins containing 

bromodomain motifs such as Bdflp (yeast), Brd2 and Brd4 (mammals) (Ornaghi, Ballarlo et al. 

1999; Dey, Chitsaz et al. 2003; Ladurner, Inouye et al. 2003; Matangkasombut and Buratowski 

2003; Kanno, Kanno et at. 2004). Bromodomain-containing proteins are numerous in all eukaryotic 

genomes and are involved in diverse biological processes such as transcription, DNA replication and 

DNA damage repair (Chen, Tini et al. 2001). Histone H3K8 and K16 acetylation levels respond to 

nearby DNA double-stranded breaks (Downs, Allard et al. 2004; Jazayeri, McAinsh et at. 2004). 

Similarly, nucleotide excision repair of DNA pyrimidine dimers caused by UV radiation is known to 

involve H3K9 and/or K14 acetylation by Gcn5 in budding yeast (Teng 2002 ; Vu PNAS 2005). 

Acetylation is a mark associated with active chromatin since many HATs participate in 

transcriptional co-activator complexes and support transcription events by RNA polymerases 

(Brownell, Zhou et al. 1996; Mizzen, Yang et al. 1996; Sterner and Berger 2000; Roth, Denu et al. 

2001). Some of these factors include the human ACTR co-activator, TFIID transcriptional initiator 

(Mizzen, Yang et al. 1996; Chen, Lin et al. 1997), the budding yeast SAGA and elongator complexes 

that facilitate RNA polymerase II transcription (Grant, Duggan et al. 1997; Otero, Fellows et al. 

1999). It has been proposed that extensive histone acetylation modifies the net charge of 

nucleosomes, which could loosen inter- or intranucleosomal DNA-histone interactions (Kornberg 

and Lorch 1999). This hypothesis is supported by the observation that acetylated histones are 

easier to displace from chromatin both in vivo and in vitro (Ito, Ikehara et al. 2000; Reinke and Horz 
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2003; Zhao, Herrera-Diaz et al. 2005; Chandy, Gutierrez et al. 2006; Hassan, Awad et al. 2006). 

Hence, histone acetylation can facilitate the passage of RNA polymerases along a chromatin 

template. In contrast, de-acetylated nucleosomes are linked to reduced transcriptional activity in 

fungi and metazoa alike (Braunstein, Rose et al. 1993; Grunstein 1997). 

Histone phosphorylation 

Phosphorylation is a highly dynamic histone modification that responds to processes such 

as mitotic chromosome condensation, transcription and DNA repair. Histone phosphorylation is 

controlled by specific kinases and phosphatases that can modify serine and threonine residues on 

the histone tails. This modification is recognized by proteins of the 14-3-3 family of phosphor-

binding factors, most which are involved in signalling transduction and many other cellular 

pathways (Chen and Wagner 1994). 

Histone H3T3 phosphorylation by the Haspin kinase occurs during mitosis and is involved in 

control of sister chromatid cohesion that is required for normal chromosome alignment during 

metaphase in metazoa (Dai, Sultan et al. 2005; Dai, Sullivan et al. 2006). In plants, histone H3T11 

phosphorylation is involved in chromosome condensation during mitosis and meiosis (Houben, 

Demidov et al. 2005). 

In animal cells, phosphorylation of histone H3S1O is performed by the MSK kinase to 

facilitate transcription activation of immediate-early genes such as c-myc, c-fos and c-jun when cells 

recover from quiescence (Mahadevan, Willis et al. 1991; Chadee, Hendzel et al. 1999; Thomson, 

Clayton et al. 1999; Soloaga, Thomson et al. 2003). This same modification is promoted by the Fyn 

kinase in response to DNA damage (He, Cho et al. 2005). Recently, it was discovered that H3S1O 

phosphorylation promotes de-repression of silent chromatin upon entry into mitosis (Fischle, Tseng 

et al. 2005; Hirota, Lipp et al. 2005). Phosphorylation of H2A in yeast and H2AX in other eukaryotes 

is linked to an initial response at sites of DNA damage. H2A/H2AX phosphorylation is required to 

recruit the 1N080 chromatin remodeler (SWI/SNF family) and the NuA4 HAT complex to sites of 

DNA double-stranded breaks to participate in the repair of DNA double strand breaks (Downs, 

Allard et al. 2004; Morrison, Highland et al. 2004; van Attikum, Fritsch et al. 2004). 

Histone methylation 



Methylation is an important histone modification for determining changes in chromatin 

structure. Methylation has been documented for lysine and arginine residues in both histories H3 

and H4. A single arginine residue on a histone tail can be methylated up to two times while a lysine 

can present up to three methyl groups. This suggests that different numbers of methyl groups on a 

histone residue can convey different signals or degrees of signal strength. The enzymes responsible 

for histone lysine methylation are the family of SET domain-containing methyltransferases such as 

SET1, G9a, Su(var)3-9 and C1r4 (Rea, Elsenhaber et al. 2000; Lachner and Jenuwein 2002). This 

modification can be bound to by proteins containing any of several specialized domains such as the 

chromodomain, Tudor, PHD and MBT domains (Lachner, O'Carroll et al. 2001; Huyen, Zgheib et al. 

2004; Kim, Daniel et al. 2006; Pena, Davrazou et al. 2006; Shi, Hong et al. 2006; Wysocka, Swigut et 

al. 2006). 

The functional roles of histone methylation are diverse. Methylation of histone arginines 

and histone H3 lysines 4, 36 and 79 are marks that accompany active gene transcription. In budding 

yeast, Seti-mediated H3K4me3 is associated with the initiating form of RNA polymerase II at the 5' 

end of genes. Conversely, Set2 deposits H3K36 tri-methylation (H3K36me3) at the 3'end of protein-

coding genes with elongating RNA polymerase II where it acts synergistically with the Rpd35 

deacetylase to suppress cryptic transcriptional initiation sites (Carrozza, Li et al. 2005; Joshi and 

Struhl 2005; Keogh, Kurdistani et al. 2005). Methylation on histone H3K9, K27 and histone H4K20 

are involved in repressing gene transcription and assembling heterochromatin (for more details see 

page 10). Methylated H3K9 is a binding site for the chromodomain protein HP1 (heterochromatin 

protein 1) (Bannister, Zegerman et al. 2001; Lachner, O'Carroll et al. 2001). HP1 binding to a 

chromatin region is coupled to strong transcriptional repression (Eissenberg, James et al. 1990; 

Eissenberg, Morris et al. 1992). H3K27 methylation accompanies the binding of Polycomb-family 

proteins to chromatin and their involvement in regulating developmental genes such as the 

homeotic genes in both plants and animals as well as X-chromosome inactivation in mammals (Cao, 

Wang et al. 2002; Czermin, Melfi et al. 2002; Kuzmichev, Nishioka et al. 2002; Muller, Hart et al. 

2002; Hernandez-Munoz, Lund et al. 2005; Schwartz and Pirrotta 2007). 

Unlike other transient modifications, such as phosphorylation and acetylation, methylation 

is regarded as a more stable modification, particularly tri-methylation (Martens, O'Sullivan R et al. 

2005). Historically, it was considered that arginine and lysine methylation represented permanent 

modifications given their observed low rate of cellular turnover. In recent years, it has been shown 

that histone methylation can be reversed in vivo through histone demethylases which can act on 
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both methylated arginine and lysine residues. In 2004, it was discovered that histone H3 and H4 

arginine methylation was antagonized by peptidylarginine deaminases (PADs) that catalize the 

conversion of methylated arginine to citrulline (Cuthbert, Daujat et al. 2004; Wang, Wysocka et al. 

2004). LSD1 was the first histone lysine-specific demethylase to be characterized, which was found 

to be specific to methylated H3K4 and K9 (Shi, Lan et al. 2004). LSD1 was the first of a newly-

discovered class of SWIRM domain-containing enzymes that can reverse histone methylation 

through a flavin-dependent oxidative mechanism. LSD proteins are involved in controlling gene 

expression, particularly in developmental programmes and cell fate. LSD1 is essential for viability of 

mouse embryos and is part of both transcriptional repressor and activator complexes which serve 

multiple roles in cell differentiation (Saleque, Kim et al. 2007; Wang, Scully et al. 2007). One of the 

three LSD1 homologues in A. thaliana, FLD (flowering locus D) has a role in timing of flowering 

development (He, Michaels et al. 2003). In C. elegans, the LSD1 homologue SPR-5 has been 

implicated in blocking the expression of HOP-1, a factor involved in the Notch signalling pathway 

specifically in the neural development (Eimer, Lakowski et al. 2002; Jarriault and Greenwald 2002). 

In Schizosaccharomyces pombe (fission yeast), Lsdi/Swmi regulates the spreading of 

heterochromatin domains (H3K9 methylation) and is important to control expression levels of a 

subset of genes (Lan, Zaratiegui et al. 2007; Opel, Lando et al. 2007). 

The mechanism of demethylation employed by LSD1-related enzymes is limited in that they 

can remove methyl groups from mono- and di-methylated lysines only and cannot process tn-

methylated lysines. Jumonji C domain-containing proteins, such as JMJD1 to 3 (mammals), Lid (fruit 

fly), Jhdl (budding yeast) and Jmj2 (fission yeast), are Fe(II) and a-ketoglutarate-dependent 

dioxygenases which remove the methyl groups from tri-methylated lysines on histone tails 

(Trewick, McLaughlin et al. 2005; Tsukada, Fang et al. 2006). Like LSD1-related proteins, Jumonji C 

(JmjC) domain proteins are found in large numbers widespread in different eukaryotic organisms, 

from yeast to animals and plants. Since the discovery of the histone demethylase activity of human 

JHDM1, similar findings have been made for other JmjC proteins in budding yeast (Rphi, Jhd2p), 

fission yeast (Jmj2), fruit fly (Lid) and mammals (RBP2, JHDM3A, JMJD6, PLU-1) (Klose, Yamane et 

al. 2006; Chang, Chen et al. 2007; Huarte, Lan et al. 2007; Klose, Gardner et al. 2007; Lee, Zhang et 

al. 2007; Liang, Klose et al. 2007; Yamane, Tateishi et al. 2007). JMJD6 has the peculiarity of being a 

JmjC-containing arginine demethylase (Chang, Chen et al. 2007). It is likely that the number of 

known histone demethylases will continue to increase since many more JmjC domain proteins 

remain to be characterized (Trewick, McLaughlin et al. 2005). Like in the case of LSD proteins, the 
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biological role of each of these JmjC enzymes depends on their target residues. While some have 

activity towards specific residues that are linked to gene repression, (H3K4: Lid, Jmj2, RBP2, Jhd2p, 

PLU-1; H3K36: Rphl, JHDM1), some can demethylate residues involved in both gene activation and 

repression and thus have a dual role in controlling gene expression (e.g. JHDM3A). In higher 

eukaryotes, JmjC proteins, like LSD proteins, are associated with developmental programmes (Lee, 

Zhang et al. 2007). In humans, both types of demethylase enzymes have been connected to 

endocrine regulation and different aspects of human disease, such as cancer and neurological 

disorders (Shi, Wang et al. 2007). 

DNA methylation 

Histones are not the only chromatin components that can be modified. DNA methylation is 

one of the most well described epigenetic modifications that can be found in all biological 

kingdoms. Up to this date, only budding yeast (Saccharomyces cerevIsiae) and the nematode 

Caenorhabd it is elegans are known to be devoid of DNA methylation. DNA methylation occurs at the 

C-5 or N-4 positions of cytosine and at the N-6 position of adenine and is catalyzed by enzymes 

known as DNA methyltransferases (MTases). In higher eukaryotes, only C-5 cytosine methylation is 

found. In bacteria, DNA adenine methylation is involved in control of gene expression in the context 

of cellular regulatory events, including those involved in bacterial virulence (Low, Weyand et al. 

2001). DNA cytosine methylation together with methylation-sensitive restriction endonucleases 

(such as HpaII and NotI) constitutes part of the host restriction system that defends the bacteria 

against infection by bacteriophages (Low, Weyand et al. 2001). DNA methylation is imparted to 

bacterial DNA which protects it against the action of endogenous methyl-sensitive restriction 

endonucleases. Any invading DNA, either from plasmid or bacteriophage, is unmethylated and thus 

vulnerable to the restriction endonucleases. 

Filamentous fungi also employ DNA cytosine methylation to suppress invading DNA 

elements. Neurospora crassa monitors DNA for repetitive content and methylates any repeated 

DNA sequences for subsequent directed mutagenesis by a process known as RIP (Repeat Induced 

Point Mutagenesis) (Selker, Cambareri et al. 1987; Cambareri, Jensen et al. 1989). A similar 

mechanism called MIP (Methylation Induced Premeiotically) is applied by Ascobolus immersus to 

mark repetitive DNA (Rhounim, Rossignol et al. 1992). In both fungi, 5-methyl-cytosine is a potent 

inhibitor of transcriptional elongation (Barry, Faugeron et al. 1993; Rountree and Selker 1997). Both 



processes are believed to have evolved to deal with invasive multi-copy DNA sequences such as 

transposon and viral DNA. This functionality is present in plants, where DNA methylation plays a 

key role in controlling the proliferation of retrotransposable elements (Amedeo, Habu et al. 2000; 

Miura, Yonebayashi et al. 2001; Singer, Yordan et al. 2001). Large chromatin domains enriched in 

DNA methylation and histone H3K9 methylation can be found covering DNA regions that contain 

large numbers of transposable elements (Lippman, May et at. 2003; Lippman, Gendrel et al. 2004). 

DNA methylation across a promoter region in plants effectively blocks transcription initiation but 

unlike in filamentous fungi, it cannot shut down transcriptional elongation. 

The genomic DNA in mammals is extensively methylated but it does not bear the sequence 

specificity that plant genomes display. Whereas in plants cytosine methylation can be found in 

multiple nucleotide contexts such as CpG, CpNpG and CpNpN, methylation in mammals is mainly 

occurs in the CpG (symmetrical) context. Despite this, mammalian cytosine methylation is found 

widespread across the genome, marking 70-80% of all CpG dinucleotides in the case of human 

somatic cells (Ehrlich, Gama-Sosa et al. 1982). The exceptions are particular regions of GC-rich DNA 

called "CpG islands" that are found residing in the vicinity of gene promoters (Bird 1987). These 

regions are differentially methylated and can serve as regulatory elements for gene transcription 

through the activity of Methyl-CpG binding domain proteins (MBD5) (Lewis, Meehan et al. 1992; 

Nan, Meehan et al. 1993). MBDs such as MeCP2 and MBD2 are associated with histone 

deacetylases and chromatin remodeler complexes that promote gene repression (Jones, Veenstra 

et al. 1998; Nan, Ng et al. 1998; Zhang, Ng et al. 1999). DNA methylation in mammals is tightly 

connected to developmental programmes of gene expression and is required for embryonic 

viability in vertebrates (Li, Bestor et at. 1992; Okano, Bell et al. 1999). DNA methylation is also 

required for silencing the inactive X chromosome in somatic cells (Sado, Fenner et al. 2000). The 

appearance of de novo DNA methylation on promoters of tumour suppressor genes is often found 

associated with carcinogenesis (Momparler 2003). 

In higher eukaryotes, DNA is methylated by the action of DNA methyltransferases (DMT5) 

which can be classified into two groups. Maintenance DMTs such as DNMT1 (humans), MET1 and 

CMT3 (both from plants) copy the methylation patterns onto newly synthesized DNA during 

replication and thus perpetuates this epigenetic pattern (Yen, Vertino et al. 1992; Ronemus, 

Galbiati et al. 1996; Bartee, Malagnac et at. 2001; Lindroth, Cao et al. 2001). Members of the de 

novo class of methyltransferases such as DNMT3a, DNMT3b (humans) and DRM2 (plants) are 

responsible for methylating novel genomic sequences such as developmental genes or repeats 



(Okano, Bell et al. 1999; Cao and Jacobsen 2002). Removal of DNA methylation patterns can occur 

passively throughout multiple cell divisions simply by inhibiting the maintenance class of 

methyltransferases, as in the case of post-zygotic loss of methylation on maternal chromosome in 

mammals (Howell, Bestor et al. 2001). In vertebrates, there is strong evidence pointing to active 

DNA demethylation events in early embryonic development although there is considerable 

controversy regarding the involved proteins and possible mechanisms. In plants, active 

demethylation is required for expression of imprinted genes in the endosperm. In Arabidopsis 

thaliana (thale cress), this process is catalyzed by the DNA glyoxylase/lyase DEMETER (DME) that 

promotes base excision of 5'-methylated nucleotides (Gehring, Huh et al. 2006). The DME-like 

proteins ROS1, DML2 and DML3 use the same mechanistic principle but have a broader role as 

general silencing antagonists that protect endogenous genes from deleterious DNA methylation 

(Penterman, Uzawa et al. 2007; Penterman, Zilberman et al. 2007). 

Chromatin modifications and the code hypothesis 

Each of the chromatin modifications described here is accompanied by both "writing", 

"reading" and "erasing" mechanisms. The modifications are interpreted by a set of specialized 

proteins that contribute to affect the chromatin structure or control the activity of specific 

pathways on the underlying DNA. Thus the histone code hypothesis is supported by this collection 

of evidence. The nature of such a code is the matter of intense debate due to the sheer number of 

different modifications and their association with distinct chromatin functional states. Marks such 

as H3K9 methylation and consequent binding of HP1 are generally associated with repressive 

chromatin but recently they were observed to occur within coding regions of heavily transcribed 

genes (Vakoc, Mandat et al. 2005). Similar observations were made regarding histone H31<36 

acetylation, which generally favours transcription but if targeted to promoter sites can have the 

opposite effect (Strahi, Grant et al. 2002; Landry, Sutton et al. 2003). Examples like these forced 

researchers to reassess the "histone code" hypothesis as a broader premise that emphasizes the 

relevance of histone modifications to the functional state of the underlying chromatin but with an 

element of uncertainty regarding the nature of the actual "code". It is now understood that the role 

of a particular histone modification is determined by the type and position of the modified residue 

but is also highly dependent on the functional context of the underlying DNA, cell cycle stage and 

other chromatin modifications that accompany it (Kouzarides 2007; Li, Carey et al. 2007). 
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1.4. HETEROCHROMATIN 

The chromatin arrangement in interphase chromosomes can be broadly classified into two 

main categories. Euchromatin is the most widespread form that encompasses all normally "active" 

or decondensed forms of chromatin. It contains most of the protein coding genes and other actively 

transcribed elements in the DNA and thus makes up the largest part of the chromosomes arms. 

These euchromatic regions are interspersed by domains of a distinct form of chromatin called 

heterochromatin that remains highly condensed in interphase. The largest concentration of 

heterochromatin is on the DNA regions surrounding the centromeres (peri-centromeres) and 

adjacent to telomeres. Whilst euchromatin provides a more open scaffold that allows access to 

DNA in order for processes such transcription to occur, heterochromatin is a dense, more rigid 

structure that provides less accessibility to underlying DNA (Allshire, Nimmo et al. 1995; Henikoff 

2000; Richards and Elgin 2002; Maison and Almouzni 2004). These characteristics are important for 

its role in preserving the structural integrity of chromosome ends and its contribution to 

centromeric function. One of the characteristics of heterochromatin is that it exerts a strong 

repressive influence on gene expression, hence its general denomination of "silent chromatin" 

(Alishire, Nimmo et al. 1995; Henikoff 2000; Richards and Elgin 2002). Genes localized inside a 

domain of heterochromatin are silenced whilst genes positioned in the vicinity are subject to a 

variable repressive influence on their expression - an effect first described in D. melanogaster as 

position effect variegation (PEV) (Muller 1930; Schultz 1936; Spradling and Karpen 1990). This 

classic epigenetic phenomenon is believed to originate from the dynamics of heterochromatin 

assembly along chromatin fibres. Thus, heterochromatin can regulate gene expression and this is a 

property that is exploited by many eukaryotic organisms for controlling developmental genes and 

transposable elements (Cavalli 2002; Fisher and Merkenschlager 2002). One of the most significant 

examples of this function lies in the dosage compensation mechanism in female mammals though 

which one of the two X chromosomes is entirely inactivated in order to preserve X-linked gene 

dosage. Coating of the inactive X chromosome with the Xist RNA is accompanied by the recruitment 

of dense H31<9 methylation over the entire chromosome which then enforces transcriptional 

silencing of all its genes (Heard, Rougeulle et al. 2001). Heterochromatin contributes to 

chromosome integrity by protecting DNA regions against events such as recombination, 
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transposition of mobile DNA elements or other more drastic chromosome rearrangements (Grewal 

and Klar 1997; Henikoff 2000; Peng and Karpen 2007). In addition, heterochromatin can act as a 

scaffold for the assembly of specialized protein machineries, such as the centromeric cohesion 

which is responsible for physically tethering the centromeres of sister chromatids up until 

separation in the onset of anaphase (Bernard, Maure et al. 2001; Nonaka, Kitajima et al. 2002). 

Heterochromatin-linked modifications 

Euchromatin and heterochromatin are distinct not only in structural aspects but also in the 

repertoire of associated histone post-translational modifications. Nucleosomes in euchromatic 

domains present extensive acetylation of histone H3 and H4 (Figure 1-1). Histone acetylation 

accompanies newly-synthesized and assembled nucleosomes during replication but euchromatic 

nucleosomes are particularly enriched in this modification due to the activity of histone 

acetyltransferases (HATs) linked to the transcription machinery (Grunstein 1997). HATs such as 

Gcn5, CREB-binding protein (CBP) and p300 are co-activators that co-localise with numerous 

transcription factors to promoter regions and acetylate key nucleosomes (Ogryzko, Schiltz et al. 

1996; Grant, Duggan et al. 1997; Roth, Denu et al. 2001). Complexes such as the Elongator complex 

acetylate histones in nearby nucleosomes during a transcription event to facilitate the passage of 

an actively transcribing RNA polymerase II complex along a chromatin template (Otero, Fellows et 

al. 1999). It has been suggested that histone acetylation contributes to relax chromatin structure by 

neutralizing the charge of nucleosomes and consequently weaken interactions between 

nucleosomes or between histones and the DNA backbone (Kornberg and Lorch 1999). Acetylation 

also allows for higher accessibility to DNA by transcription factors and efficiency in displacing 

nucleosomes during transcription. Transcription is also responsible for attracting histone H3 K4 

methylation mediated by the methyltransferase SEll to coding regions of highly transcribed genes. 

In contrast, nucleosomes in heterochromatin domains are generally hypoacetylated by virtue of 

specialized HDACs (Moazed 2001) (Figure 1-1). In budding yeast (Saccharomyces cerevisiae), the SIR 

genes (silent information regulator) encode proteins that promote formation of silent chromatin at 

telomeres, rDNA and mating type locus through histone deacetylation Sir2 is a NAD-dependent 

histone deacetylase that removes acetyl groups from nucleosomes in order to allow for Sir3 and 

Sir4 to bind and enact transcriptional silencing (lmai, Armstrong et al. 2000; Gasser and Cockell 

2001; Carmen, Milne et al. 2002; Hoppe, Tan fly et al. 2002). Different types of HDAC5 are also 
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Active chromatin 

ARTjTAiSTGcjAPRKQLATKAARKSAPATGGVKKIRL...i..RA 
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SjGg3 3L 3GLHRKVLRDNQGITKPAIRRLK ... RTLYGFGS 
358 12 16 	 H4 

Silent chromatin 

ARTKQTASTGGKAPRKQLATKAARiSAPATGGVKKPKRL .... K. RA 
27 
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Methyl group 
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Figure 1-1: Histone tail modifications and chromatin states. 
Histone H3 and H4 modification patterns found to be associated with transcriptionally active 

and silent chromatin in various organisms. 
Basic representation of euchromatin and heterochromatin states. Euchromatic nucleosomes 

are acetylated and packaged in a more relaxed configuration that permits transcription. The 

acetylated (in blue) N-terminal tails provide a binding site for bromodomain-containing proteins. 

In comparison, the nucleosomes heterochromatin are more condensed and transcriptionaly. The 

histone tails are hypoacetylated and methylated (in red) to which heterochromatin protein 1. 

(H P1) is bound. 
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essential in promoting heterochromatin in fission yeast, plants and metazoa (Ekwall, Olsson et al. 

1997; Grewal, Bonaduce et al. 1998; Olsson, Ekwall et al. 1998; Olsson, Silverstein et al. 1999; 

Sekinger and Gross 2001; Shankaranarayana, Motamedi et al. 2003). In addition, heterochromatin 

in these organisms presents high levels of histone H3K9 methylation (H3K9me2 and H3K9me3) 

(Figure 1-1). SET domain histone methyltransferases such as Su(var)3-9, its mammalian homolog 

Suv39h1, Clr4 39  from fission yeast and KYP from A. thaliana are responsible for this 

modification in their respective organisms (Rea, Eisenhaber et al. 2000; Czermin, Schotta et al. 

2001; Nakayama, Rice et al. 2001; Jackson, Lindroth et al. 2002). Heterochromatin in fission yeast 

and mammals is enriched in chromodomain proteins such as Su(var)2-5 in Drosophila melanogaster 

(fruit fly), HP1 in mammals and its fission yeast homolog Swi6' that are key effectors of this 

chromatin structure (Eissenberg, James et al. 1990; Eissenberg, Morris et al. 1992; Ekwall, Javerzat 

et al. 1995). In plants, it is unclear which protein is the main H3K9methyl-binding heterochromatin 

protein. The only HP1 homolog known so far in Arabidopsis thaliana (thale cress) and Solanum 

lycopersicum (tomato), LHP1 (LIKE HP1) or TLF2 (Terminal Flower 2), is a Polycomb-related protein 

that also possesses sequence similarity to the chromodomain and chromo shadow domain from 

metazoan HP1 (Gaudin, Libault et al. 2001; Kotake, Takada et al. 2003; Zemach, Li et al. 2006). Even 

though some initial data suggested that this protein localized to regions in the periphery of 

centromeres and could bind H3K9me in vitro, a more detailed analysis showed that TLF2 

preferentially localized to H3K27me3 domains mainly in euchromatic regions. Thus, it is unclear at 

this stage if plants have an equivalent of metazoan HP1 and fission yeast Swi6" associated with 

heterochromatin. Heterochromatin domains also contain high levels of H4K20 methylation 

although this is only observed in plants, D. melanogaster and mammals. In addition to histone 

modifications, heterochromatin in plants displays extensive DNA CpNpG methylation while in 

metazoa heterochromatic DNA is also fully methylated (CpG). Thus, heterochromatin domains in 

each eukaryotic organism possess a distinct signature consisting of chromatin modifications and 

associated proteins that contrast with euchromatic features. 

Even though heterochromatin can be established over varied DNA loci, there is a clear 

preference for the type of DNA sequences that attract the assembly of this particular chromatin 

state. Heterochromatin is frequently found overlying genomic regions that contain repetitive DNA. 

This trend is common to fungal, plants and metazoan genomes and represents a clear preference of 

all the diverse pathways that control heterochromatin formation for this type of genomic elements 

in a manner that is functionally conserved throughout eukaryotic organisms (Ye and Signer 1996; 

14 



Grewal and KIar 1997; Henikoff 2000; Gvozdev, Aravin et al. 2003; Martienssen 2003; Saveliev, 

Everett et al. 2003; Sun, Haynes et al. 2004; Martens, O'Sullivan et al. 2005). 

I.S. SILENCING OF REPETITIVE DNA 

Repetitive DNA is ubiquitous in eukaryotic genomes, where it constitutes a substantial part 

of all genomic DNA, from 8% in fungi to 40-50% of mammalian genomes and up to 80% in some 

plant species (e.g. whisk fern - Psilotum nudum). Repetitive DNA can be composed of short units 

with only a few nucleotides to several kilobases long elements that are repeated either organized in 

arrays or scattered throughout the genome. The rDNA clusters are a common example of several 

megabase-long arrays with more than 100 copies of rDNA genes with several kilobases each 

arranged in tandem. Major and minor satellite repeats are examples of classes of repetitive DNA 

with shorter repeat units (120-300 bp) that forms several megabase-long arrays at mouse 

centromeres (Karpen and Allshire 1997). Invariably, most of these sequences can be found 

associated with either heterochromatin or some other form of silent chromatin. 

With the exceptions of the rDNA arrays, centromeres and telomeres, the function of a large 

part of the repetitive content found in eukaryotic genomes is not clear. It seems that for the most 

part these sequences have originated from the cumulative action of transposable elements (TE5) 

and retroviruses during evolution. Transposable elements are mobile genetic elements that 

colonise a host genome where they can survive and proliferate (Curcio and Derbyshire 2003). TE5 

are commonly divided into type I (RNA transposons or retrotransposons) and type II (DNA 

transposons) (Figure 1-2). The transposition process of retrotransposons requires the expression of 

a full-length RNA intermediate from which a cDNA copy is synthesised, using an endogenously 

encoded reverse transcriptase, for subsequent insertion. LTR-retrotransposons, such as the Ty 

elements in S. cerevisiae, lAP (Intracisternal A-Particle) and ERV (Endogenous Retrovirus) elements 

in vertebrates, are characterized by two flanking tandemly oriented long terminal repeats (LTR5) 

which accumulate transcription initiation and termination functions with primer binding regions for 

reverse transcription. Non-LTR retrotransposons, such as the LINE (Long Interspersed Nuclear 

Element) and SINE (Short Interspersed Nuclear Element) families of elements, rely on an internal 

promoter rather than flanking repeats to drive transcription events. DNA transposons, such as P, 

Ac, Tc, Mariner and other elements employing a DDE type transposase use terminal inverted 
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LTR retrotransposon 

I 	LTR '> I 	Gag 	I I PR  I 	RT 	I 	IN 	I I LTR 

LINE 

SINE 

DNA transposon 

Transposase 

hR 	 TIR 

Figure 1-2: Typical organization of the different classes of TEs. 

A TE insertion is commonly found flanked by target-site direct repeats (TSD5) of various sizes (red bars). With 
the exception of SINEs, the TE body (light blue) contain open reading frames for the several endogenously 
encoded proteins such as Gag, PR (protease), RT (reverse transcriptase), IN (integrase), RB (RNA binder), EN 

(endonuclease) and transposase. 
LTR retrotransposons (Type I) derive their name from the two long terminal repeats (LTR— yellow arrow 

boxes). Transcription of the RNA intermediate (wavy line) is controlled by promoter and terminator elements 

present in the LTRs. 
Both SINEs and LINEs commonly posses a 3' poly-A tail (green box). A LINE encodes an RNA chaperone (RB), 

reverse transcriptase (RT) and endonuclease activity (E) under the control of a RNA polymerase II promoter. 
SINEs rely on the protein machinery expressed by LINEs in order to transpose. These elements highly 

abundant in mammalian genomes contain an internal RNA polymerase Ill promoter and often also 

transcriptional enhancers. 
The terminal inverted repeats (TIR - blue arrow boxes) of a DNA transposon (Type II) serve as transposase 

binding sites. This family TEs highly abundant in plants, flies and nematodes contains a single open reading 

frame that encodes a transposase. 
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repeats (TIR) as recognition sites for this protein during the transposition process. Transposition of 

a type I element is generally described as a "copy-out, paste-in" or "copy-out, copy-in" process 

through which these TEs can progressively populate a genome in high numbers. Most type II TEs 

relocate from one locus to another using a "cut-out, paste-in" approach but some can also move by 

a variation of this mechanism called replicative transposition, through which a new copy of the TE is 

inserted at a new chromosomal location, leaving the original one intact. 

Excessive TE activity may pose a fitness problem for the host. TEs can be powerful genome 

de-stabilisers for a variety of reasons. Transposition events frequently induce positional mutations 

at the insertion and vacation sites and extensive TE activity can lead to dramatic chromosomal 

rearrangements (Lim and Simmons 1994). In addition, TEs are known to distort gene expression 

patterns and to cause disruption or shuffling of coding sequences (Morgan, Sutherland et al. 1999; 

Maside, Bartolome et al. 2002; Washita, Osada et al. 2003; Han, Szak et al. 2004). Particularly in 

bacteria, their mobility between genomes allows for horizontal gene transfer which contributes for 

an increase in the effective gene pool (Frost, Leplae et al. 2005). For these reasons, TEs, despite 

their parasitic nature, are now recognized as important drivers of evolution of genes and genomes 

alike (Lim and Simmons 1994; Lev-Maor, Sorek et al. 2003). Secondly, proliferation of TEs is a major 

contributor to the large increase in genome size seen between species. TEs and retroviruses contain 

various forms of repeat sequences, which can serve as positional cues and binding sites for many of 

the components involved in the transposition process (Curcio and Derbyshire 2003). Very 

frequently, these repeats remain as evidence of a former transposition event or the remnants of 

degraded transposable elements and they can quickly accumulate in the span of a few generations 

(Yoder 1990; Curcio and Derbyshire 2003). For example, in Zea mays, more than 70% of total 

genomic DNA is made of TEs or related sequences (Meyers, Tingey et al. 2001). Whilst their 

purpose intrigued early molecular biologists, the notion that they constitute redundant genomic 

debris quickly gained support as no biological function could be associated with these sequences. It 

also became clear that TEs and viral sequences acted in their own interests (Doolittle and Sapienza 

1980; Orgel and Crick 1980) which suggested that genomic repeat content arises from the activity 

of these elements regardless of any useful purpose to the host. 

Mechanisms that silence TEs may then have evolved as a means to control the rate of 

genome evolution and improve the host's fitness by stabilizing both gene pool and genome size. 

The outcome of the activity of these homology-based pathways can manifest as post-

transcriptional silencing, transcriptional silencing, site-directed mutagenesis or DNA elimination. 
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Heterochromatin is preferentially formed over repetitive sequences in plants and animals 

(Martienssen and Colot 2001; Smith, Shu et al. 2007). The packaging of TEs into silent chromatin 

represses their expression and blocks their ability to transpose. In A. thaliana, TEs are targeted 

precisely for DNA cytosine and histone H3K9 methylation mechanisms that lead to the formation of 

silent chromatin overlying these elements in such a way that does not spread to adjacent DNA 

regions (Lippman, Gendrel et al. 2004). Metazoan transposable elements are similarly engulfed in 

heterochromatin but, unlike plants, heterochromatin domains in animal chromosomes are more 

dynamic and can engulf adjacent regions in a stochastic manner, leading to position-effect 

variegation (PEV) of nearby genes (Muller 1930). Curiously, it is known from studies in D. 

melanogaster that PEV can be reproduced ectopically on an artificial tandem array of several copies 

of a white gene inside transposable P-elements (Dorer and Henikoff 1994). This PEV-like 

phenomenon is sensitive to suppressor of variegation mutants such as Su(var)205 which is a 

mutation in HP1 in D. melanogaster. Subsequent studies further established that the silencing 

phenomenon observed on these artificial repeat arrays is due to heterochromatin assembly 

(Martin-Morris, Csink et al. 1997; Fanti, Dorer et al. 1998). Similar observations were made in 

Nicotiana tabacum (tobacco plant) and A. thaliana with the insertion of an array with multiple drug 

resistance genes (Matzke, Primig et al. 1989; Assaad, Tucker et al. 1993). The presence of multiple 

gene copies in the same locus coincided with a reduction in mRNA levels and increased DNA 

methylation. Both bodies of evidence underlie a general chromatin silencing model that focuses on 

repetitive DNA. However, the process of recognizing repetitive DNA is still a matter of intense 

debate since it seems to be the combinatorial result of multiple mechanisms acting separately 

(Matzke and Matzke 1995). 

The cellular response against repetitive DNA is not restricted to arrays of repetitive 

sequences but also extends to repeated sequences that are scattered throughout the genome. This 

latter phenomenon is called "co-supression" and refers to studies made in petunia plants in which 

the introduction of multiple of copies of an overexpressing flavonoid transgenes (CHS and DFR) into 

the genome were shown not to result in intensified colour in most of the transformant plants as 

expected (Napoli, Lemieux et al. 1990; van der Krol, Mur et al. 1990). Instead, the increase the 

number of transgene copies led to the suppression of the endogenous DFR and CHS gene and the 

resulting petunia flowers were white or displayed white sectoring. This phenotype is reversible and 

the flowers can regress to wild-type colour provided that the gene copy number is decreased. 

Whilst PEV in D. melanogaster is the manifestation of a local repressive influence (cis), this 
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mechanism of transgene silencing acts in trans since it can downregulate multiple genes in several 

independent genetic loci simultaneously. At the same time, similar phenomena were being 

described in numerous plants species, the filamentous fungus Neurospora crassa and the 

nematode Caenorhabditis elegans (Cogoni, Irelan et al. 1996; Gaudet, VanderElst et al. 1996). It 

has since become clear that that the phenomenon of co-suppression is common to many 

eukaryotic organisms and is the result of several mechanisms acting against multi-copy DNA species 

in the genome. Namely, it was shown that co-suppression in plants could be enforced in both at the 

level of chromatin by DNA methylation (transcriptional gene silencing, TGS) (Van Blokland, Van der 

Geest et al. 1994) and at the level of mRNA stability (post-transcriptional gene silencing, PTGS) (Van 

Blokland, Van der Geest et al. 1994; Matzke and Matzke 1995). Whilst it was obviously dependent 

on sequence homology and copy number, the molecular identity of the trigger for transgene 

silencing was unclear and several mechanisms were suggested, including homology-based DNA-

DNA interactions that could lead to a chromatin-based repression. Eventually, it was revealed that a 

similar mechanism to transgene silencing could be directed by RNA (Metzlaff, O'Dell et al. 1997). 

Research conducted in parallel in N. crassa, C. elegans, Chiamydomonas reinhardtii and A. thaliana 

pointed to the involvement of RNA-associated factors in the mechanism of transgene silencing 

(Wassenegger and Pelissier 1998; Cogoni and Macmo 1999; Cogoni and Macmo 1999; Dalmay, 

Hamilton et al. 2000; Wu-Scharf, Jeong et al. 2000). Introduction of dsRNA homologous to a 

reporter gene or expression of an antisense construct was shown to induce reporter silencing (Fire, 

Xu et al. 1998; Ngo, Tschudi et al. 1998; Waterhouse, Graham et al. 1998; Jensen, Gassama et al. 

1999). The resulting method of silencing depends on the homology region: PTGS is enforced when 

the coding region is targeted and TGS is established when the homology lies in the promoter area, 

leading to DNA methylation at the promoter (Wassenegger, Heimes et al. 1994; Jones, Hamilton et 

al. 1999; Mette, Aufsatz et al. 2000). 

Research on mechanisms behind transgene silencing continued to converge and eventually 

led to the discovery of an RNA-based mechanism that underlies several of these phenomena of 

repetitive DNA repression. Research conducted in C. elegans on the metazoan counterpart of this 

mechanism led to the description of the molecular details of what is now labelled as "RNA 

interference" (Fire, Xu et al. 1998). The insights gathered from that work and subsequent 

biochemical analyses of the functioning principle behind RNA interference unveiled an ancient 

pathway present in numerous eukaryotic organisms. 
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1.6. RNA SILENCING 

"RNA interference" is the term ascribed to a post-transcriptional silencing mechanism first 

described in Caenorhabditis eleqans (Fire, Xu et al. 1998; Ketting, Haverkamp et al. 1999). The basic 

machinery responsible for this phenomenon is identical in PTGS and TGS mechanisms discovered in 

plants (post-transcriptional and transcriptional gene silencing - PTGS and TGS - (Matzke, Primig et 

al. 1989; Napoli, Lemieux et al. 1990; van der Krol, Mur et al. 1990; Metzlaff, O'Dell et al. 1997), 

filamentous fungi (quelling) (Cogoni, Irelan et al. 1996) and in numerous other species. These 

closely related silencing phenomena are jointly referred to as "RNA silencing". 

In all its manifestations, RNA silencing relies on 21-28 nt small RNA molecules to induce 

repression in a sequence specific manner (Hamilton and Baulcombe 1999; Hammond, Bernstein et 

al. 2000; Zamore, Tuschl et al. 2000; Elbashir, Harborth et al. 2001; Elbashir, Lendeckel et al. 2001; 

Elbashir, Martinez et al. 2001; Schwarz, Hutvagner et al. 2002). The pathway also employs the 

activity of three major components: Dicer, Argonaute and RNA-dependent RNA polymerase (RdRP) 

(Bohmert, Camus et al. 1998; Cogoni and Macmo 1999; Tabara, Sarkissian et al. 1999; Bernstein, 

Caudy et al. 2001). The small RNA molecules, called small interfering RNAs (siRNAs), are generated 

from double-stranded precursor RNA5 by the DEAD helicase/RNase-like Ill enzymes such as Dicer 

through cleavage into small duplexes (Bernstein, Caudy et al. 2001). These are then unwound and 

loaded into a multi-protein complex named RISC (for RNA-induced Silencing Complex) containing a 

PAZ/PIWI domain protein (or Argonaute) and several other additional factors (Hammond, Bernstein 

et al. 2000; Zamore, Tuschl et al. 2000). The interaction of the siRNA-loaded RISC targets a 

complementary sequence to the siRNA on which to exert repression (Figure 1-3). 

The Argonaute family of proteins plays a central role in all the manifestations of RNA 

silencing found in both lower and higher eukaryotes. Argonautes can be found in all the different 

eukaryotic kingdoms as well as in Archaea and Eubacteria. Within RISC and related complexes, 

these proteins containing PAZ and PIWI domains are responsible for holding the small RNA 

molecule and overseeing its interaction with a target RNA (Hammond, Bernstein et al. 2000). Both 

the PAZ and PIWI domains can directly interact with RNA molecules regardless of their sequence. 

The PAZ domain binds to the 5' end of the siRNA molecule probably to facilitate the siRNA loading 

process (Song, Liu et al. 2003). The PIWI domain forms a specialized cleft where most of the siRNA 
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Figure 1-3: Basic mechanism of RNA silencing and its different forms of repression (from Almeida and Alishire 

2005) 
The pathway is triggered by double stranded RNA complementary RNA molecules or a single RNA hairpin or 

stem loop. DsRNA is processed by Dicer, into small duplex RNAs (21-28 nt). The RNA-dependent RNA 

polymerase (RdRP) generates more dsRNA from target or "aberrant" RNA. 

The small RNAs are loaded into Argonaute in RISC (RNA-induced Silencing Complex). RISC uses the small RNA 

to a target RNA with high specificityto enforce silencing. 

Argonaute can promote the degradation of the target RNA. This method is predominant in RNA interference 

and gene regulation by microRNAs. 

Binding of Argonaute loaded with a microRNA to the 3' end of an mRNA can block its translation by the 

ribosome. E. Argonaute complexes can recruit chromatin modifiers such as histone deacetylases (HDAC5), 

histone methyltransferases (HMT5) and de novo DNA methyltransferases (DMT5) to repress transcription on 

target DNA loci. 
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molecule resides and meets the opposite strand of the target molecule (Parker, Roe et al. 2004; 

Song, Smith et al. 2004). It also contains an RNase H-like fold that confers endonucleolytic activity 

to some members of the Argonaute family. This nuclease activity is called "slicing" and can manifest 

itself as a precise nick on the target strand within a siRNA-mRNA duplex (Hammond, Bernstein et at. 

2000; Zamore, Tuschl et al. 2000; Lingel and Izaurralde 2004). This means that the minimal RISC 

activity resides in Argonaute's ability to perform the roles of mediator and effector in small RNA-

mediated silencing (Liu, Carmell et al. 2004; Baumberger and Baulcombe 2005; Miyoshi, Tsukumo 

et at. 2005; Rivas, Tolia et al. 2005) (Figure 1-3C). 

RdRP (for RNA-dependent RNA polymerase) amplifies the RNA silencing response by 

producing complementary strands of an single-stranded RNA molecule, giving rise to more dsRNA 

and subsequently more siRNAs (Cogoni and Macmo 1999; Dalmay, Hamilton et at. 2000; Mourrain, 

Beclin et al. 2000; Smardon, Spoerke et at. 2000; Sijen, Fleenor et al. 2001). RdRP can perform this 

function in several different ways. SiRNAs can be used as primers for homing in on specific 

transcripts, thus enabling RdRP to provide positive feedback of existing siRNA signal (Lipardi, Wei et 

al. 2001; Nykanen, Haley et at. 2001). More recently, it has been proposed that recruitment of RdRP 

by RISC to an RNA molecule is enough to engage the RdRP in making short complementary 

transcripts in an unprimed manner (Sijen, Steiner et al. 2007). RdRP has been observed to also act 

in a primer-independent matter upon single-stranded transcripts that bear an hypothetical 

"aberrant" characteristic - this is particularly relevant in the context of antiviral defence in plants as 

it is believed that plant RdRPs contribute to the RNA silencing response against invading viral RNAs 

(Wassenegger and Pélissier 1998; Mourrain, Beclin et al. 2000; Xie, Fan et al. 2001; Makeyev and 

Bamford 2002). Although it is a key component of the RNA silencing pathway in plants, nematodes 

and fungi, no orthologs of RdRP have been identified in insects or vertebrates, despite evidence of 

its biochemical activity from D. melanogaster extracts (Palauqul, Elmayan et at. 1997; Lipardi, Wei 

et al. 2001; Vaistij, Jones et al. 2002). 

RISC and related complexes also include multiple additional factors which can be species 

specific or relate to a single derivative of RNA silencing. The D. melanogaster proteins FXR (Fragile 

X-related protein), VIG (vasa iritronic gene) and Tudor-SN (Tudor-streptococcal nuclease domain) 

are constituents of RISC and have known orthologs in several other organisms (Fagard, Boutet et al. 
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2000; Hammond, Bernstein et al. 2000; Caudy, Myers et al. 2002; Hannon 2002). TRBP (human 

immunodeficiency virus transactivating response RNA-binding protein) is a component of human 

RISC that is implicated in maturation and loading of siRNAs onto Argonaute (Chendrimada, Gregory 

et al. 2005; Haase, iaskiewicz et al. 2005). The same function is performed in C. elegans by RDE-4 

(Tabara, Yigit et al. 2002) and in D. melanogaster by R2D2 and Loquacious (Liu, Rand et al. 2003; 

Forstemann, Tomari et al. 2005; Saito, Ishizuka et al. 2005). RISC and derivatives often contain GW 

repeat proteins such as human GW182, Arabidopsis NRPD1b, C. elegans AIN-]. and S. pombe Tas3 

(Verdel, Jia et al. 2004; Ding, Spencer et al. 2005; Pontier, Yahubyan et al. 2005; Rehwinkel, Behm-

Ansmant et al. 2005; Pontes, Li et al. 2006; El-Shami, Pontier et al. 2007). Whilst these proteins may 

share common functionalities that assist Argonaute in its activity, it is likely that they reflect the 

specialization of the Argonaute-containing complexes on the various forms of RNA silencing. 

There are three distinct methods by which small RNA-driven repression can occur. 

Conventional RNA interference results in cleavage of homologous mRNA molecules at the sIRNA 

binding site by means of the endonuclease ("slicing") activity of Argonaute (Song, Smith et al. 2004) 

(Figure 1-3C). The activity of RISC is coupled to other mechanisms responsible for RNA turnover. 

More specifically, RISC localises to cytoplasmic GW/P bodies (Ding, Spencer et al. 2005; Jakymiw, 

Lian et al. 2005; Liu, Rivas et al. 2005; Liu, Valencia-Sanchez et al. 2005; Meister, Landthaler et al. 

2005; Sen and Blau 2005). In these specialised sites for mRNA storage and turnover, the sliced 

mRNAs are degraded by a combination of 5'-3' exonuclease XRN2 and the 3'-5' exonuclease 

"exosome" complex (Orban and Izaurralde 2005; Eulalio, Behm-Ansmant et al. 2007). Slicing 

provides a form of circumventing the mRNA's natural protection against exonuclease degradation, 

namely the 5' end M7  cap and 3' poly(A) tail. Argonautes can also trigger mRNA turnover by 

recruiting de-adenylating and decapping enzymes to the mRNA at GW/P bodies, leading to its 

degradation even in the absence of slicing (Behm-Ansmant, Rehwinkel et al. 2006; Giraldez, 

Mishima et al. 2006; Wu, Fan et al. 2006). 

In addition to mRNA turnover, short RNAs can drive RISC-like complexes to inhibit 

translation of homologous mRNAs, effectively causing repression without affecting their stability 

(Figure 1-3D). This silencing method was first observed in the mechanism of microRNA (mIRNA) 

regulation (Reinhart, Slack et al. 2000). MicroRNAs are a particular class of small RNA molecules 

found in multi-cellular eukaryotes that precisely regulate expression timing of a large number of 

genes, particularly those involved in cellular differentiation and developmental processes (Ambros, 
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Lee et al. 2003; Ambros 2004; Dugas and Bartel 2004; John, Enright et al. 2004). MicroRNAs are 

produced from specialized genetic elements that when transcribed originate stem loop RNAs which 

are recognized by a specialized machinery involving Dicer but is otherwise independent of 

RNAi/PTGS (Grishok, Pasquinelli et al. 2001; Lau, Lim et al. 2001; Lee and Ambros 2001). This 

processing mechanism leads to the precise release of a short RNA molecule identical to an siRNA 

that is loaded into a specialised form of RISC called the miRNP (microRNA protein complex) that 

contains specific Argonaute proteins (Mourelatos, Dostie et al. 2002). In plants, miRNAs target the 

coding region of genes and enforce post-transcriptional repression mostly by mRNA slicing in a 

manner similar to RNAi/PTGS. However the majority of known miRNAs in metazoa blocks the 

translation of mRNA targets by binding to conserved sites on their 3' untranslated regions. This is 

due to the fact that metazoan miRNAs are often imperfect matches with their targets (Reinhart, 

Slack et al. 2000). Consequently, miRNA-mRNA pairings contain mismatches or bubbles which can 

interfere with efficient mRNA slicing. Recently, it was suggested that C. elegans Ago2 enforces 

miRNA-mediated translational inhibition by binding to the M7  cap of mRNAs through a newly 

identified motif and in the process precluding the recruitment of eIF4E, an essential translation 

initiation factor (Kiriakidou, Tan et al. 2007). In humans, miRNP is bound to eIF6, a conserved 60S 

ribosome-associated factor that is known to prevent the assembly of the 80S translationally 

competent ribosome (Chendrimada, Finn et al. 2007). This factor may be involved in effecting 

miRNP-mediated translational arrest, as it was shown that the depletion of elF6 allowed the 

translation of several miRNA targets in both human and C. elegans. 

Transcriptional Gene Silencing 

The third form of repression performed by RISC-like complexes involves directing chromatin 

and DNA modifications upon complementary DNA loci (Figure 1-3E). This form of siRNA-mediated 

repression was initially noticed in plants where, together with PTGS, participates in a co-

suppression response that is involved in defence against viral invasion (Wassenegger, Heimes et al. 

1994; Metzlaff, O'Dell et al. 1997). Further analyses demonstrated that the same small RNA-based 

mechanism behind PIGS could induce chromatin modifications over a DNA locus when prompted 

by the introduction of complementary double-stranded RNA (Mette, Aufsatz et al. 2000). These 

chromatin modifications include dense DNA cytosine methylation that is coupled with 
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transcriptional silencing, particularly if the introduced RNA is targeting promoter regions (Jones, 

Hamilton et al. 1999). The same basic machinery, namely small RNAs, Dicer-like and Argonaute 

genes, is required for this phenomenon, which illustrates the direct link with RNA silencing 

(Lippman, May et al. 2003). However, upon removal of dsRNA stimulus, the chromatin 

modifications are found to be stable in subsequent generations (Jones, Ratcliff et al. 2001). 

Silencing by TGS is more stable since it relies on a set of epigenetic marks that possess additional 

conservation mechanisms, such as the mammalian Dnmtl and plant MET1 maintenance DNA 

methyltransferases (Bestor, Laudano et al. 1988; Finnegan, Brettell et al. 1993). Therefore, RNA 

silencing through TGS has the potential to stably imprint gene repression, which suggests that it 

may participate in gene regulation events during development and/or cell differentiation. On the 

other hand, its capacity to direct the assembly of stable chromatin brings up the possibility that 

RNA silencing may be involved in the origin of constitutive heterochromatin domains, such as the 

centromere and telomeres. 

In fission yeast, the RNA interference pathway does contribute to the formation and 

stability of constitutive heterochromatin domains at centromeres, mating type locus and 

subtelomeric chromatin. In this organism, the core RNA silencing components, Argonaute, Dicer 

and RdRP, are present in single copy and react to non-coding transcripts originating from repetitive 

DNA at these loci by producing complementary sIRNAs (Reinhart and Bartel 2002). Disrupti9n of the 

RNA silencing pathway not only stabilizes these non-coding transcripts but also leads to a reversion 

of the heterochromatin state that affects all of the constitutive heterochromatin domains to 

different extents (Volpe, Kidner et al. 2002). In the absence of RNAi, repression of genes placed at 

heterochromatin domains is alleviated and heterochromatin signatures such as histone H3K9 di-

methylation and Swi6 HP1  binding are reduced, particularly at centromeres. In addition, it has been 

shown that fission yeast RNAi also targets TE-related repetitive DNA for establishment of 

heterochromatin, leading to transcriptional repression of both TE-related sequences and of genes 

located in the vicinity (Schramke and Allshire 2003). These observations suggest that TGS in fission 

yeast has a role in regulation of gene expression. 

Does siRNA-directed heterochromatin nucleation occur in other organisms apart from 

plants and fission yeast? There is considerable evidence suggesting a link between RNA silencing 

and chromatin modifications in metazoa. However, until now no mechanism for heterochromatin 

nucleation directed by small RNAs has been clearly described in these organisms. Most of the 
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collected evidence refers to specific a branch of the Argonaute protein family, the PIWI proteins. 

Recent developments have unveiled further connections between these proteins and chromatin 

modifications in ciliates and metazoa. 

Members of the Argonaute family can be classified into two groups according to sequence 

similarity to either A. thaliana AGO1 or PIWI from D. melanogaster (Seto, Kingston et al. 2007). The 

former group includes all plant Argonautes, S. pombe Agol and most Argonautes that participate in 

siRNA- and miRNA-mediated silencing in other organisms. The PIWI proteins are predominantly 

found in ciliates, flies and vertebrates. PIWI proteins are associated with a particular class of small 

RNAs called piRNAs (for piwi-associated RNAs) which are longer than normal siRNAs (24-27 

nucleotides as opposed to 21-22) and much less abundant than other classes of small RNAs, such as 

siRNAs and miRNAs (Aravin, Gaidatzis et al. 2006; Girard, Sachidanandam et al. 2006; Grivna, Beyret 

et al. 2006; Lau, Seto et al. 2006; Saito, Nishida et al. 2006; Vagin, Sigova et al. 2006). The activity of 

PIWI proteins and piRNAs appears to be closely connected to both invasive DNA and chromatin 

modifications. The mechanism of DNA elimination employed by the ciliate Tetrahymena termophila 

is one of the most well characterised examples of such activity (Mochizuki and Gorovsky 2004). 

Tetrahymena possesses two distinct nuclei, the diploid micronucleus and the polyploid, 

transcriptionally active macronucleus. During micronuclei conjugation, the development of the new 

macronucleus is accompanied by a maturation process characterized by extensive DNA elimination. 

Roughly 15% of the original DNA content is epigenetically programmed for deletion by histone 

H3K9 methylation (Taverna, Coyne et al. 2002). The recognition of these internally eliminated 

sequences (IES) is linked to Twilp, a PIWI protein, and "28nt small RNA molecules (Mochizuki, Fine 

et al. 2002). It was demonstrated that these small RNAs constitute the basis of a scanning system 

for micronuclear sequences unrepresented in the old macronucleus that programs these for 

elimination from the developmental macronucleus (Mochizuki and Gorovsky 2004; Mochizuki and 

Gorovsky 2004; Mochizuki and Gorovsky 2005). 

In animals, PIWI proteins play crucial roles in pre-meiotic cells and are essential for 

germline maintenance (Cox, Chao et al. 1998; Carmell, Xuan et al. 2002; Cheng, He et al. 2002; 

Kuramochi-Miyagawa, Kimura et al. 2004; Carmell, Girard et al. 2007). In D. melanogaster, a large 

percentage of these piRNAs are specific to repetitive DNA, TEs and heterochromatin regions 

(Brennecke, Aravin et al. 2007). Null mutations on PIWI genes such as aubergine and piwi lead to 

increased expression of TEs, which supports the notion that this class of proteins is primarily 
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devoted to controlling TE proliferation (Brennecke, Aravin et al. 2007). TE5 are particularly active 

during meiosis and their activity if uncontrolled may lead to meiotic collapse due to chromosome 

loss (Bourc'his and Bestor 2004). This provides an explanation for why PIWI proteins are required 

for the viability of germ cells. Whereas PIWI have a clear role in post-transcriptional repression of 

these elements, piwi mutants also have a mild effect on the localisation patterns of 

heterochromatin proteins la and lb (HP1a and HP1b) (Pal-Bhadra, Leibovitch et al. 2004). It was 

recently reported that PIWI binds to HP1a and co-localise at some heterochromatic loci (Brower-

bland, Findley et al. 2007). Mutations within the domain within the PIWI protein that is 

responsible for this interaction abolishes silencing of a marker gene inserted in peri-centromeric 

heterochromatin and cannot rescue the loss of viability of a null piwi homozygote. There is also a 

described link between PIWI proteins and Polycomb family proteins in the co-suppression of 

multiple copies of w-Adh reporter genes (Pal-Bhadra, Bhadra et al. 1997; Pal-Bhadra, Bhadra et al. 

2002). In mammals, mutations in Miwi2 and Mili proteins lead to loss of DNA methylation over TEs 

such as Ll (LINE-1) elements and subsequent increase TE expression (Aravin, Sachidanandam et al. 

2007; Carmell, Girard et al. 2007). Given that the cell types in which PIWI proteins have a stronger 

presence undergo extensive epigenetic reprogramming, it has been suggested that PIWI and 

piRNAs contribute to this process. However, the mechanism of such involvement is still unclear 

and, for the moment, the association of this aspect of RNA silencing with chromatin modifications 

remains circumstantial. 

A separate line of evidence suggests that Dicer is necessary for the correct function of 

centromeres in vertebrate cells (Fukagawa, Nogami et al. 2004). The requirement of Dicer for 

centromeric function may be linked to the stability of heterochromatin over pericentric repeat 

arrays, which in mouse embryonic stem cells was also shown to be Dicer-dependent 

(Kanellopoulou, Muljo et al. 2005). Furthermore, two recent studies demonstrated that siRNAs can 

direct site-specific DNA methylation in human cells (Morris, Chan et al. 2004), which serves as a 

proof of principle that RNA silencing can enforce transcriptional silencing in a similar fashion to 

plants but provides no insights into possible endogenous targets of siRNA-mediated transcriptional 

silencing in metazoa. Nevertheless, it is likely that RNA silencing maintains a semblance of its 

involvement in chromatin silencing found in plants and S. pombe and may still be linked to 

pericentric repeats and centromere function in a similar fashion. 
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1.7. THE CENTROMERE 

Although repeats are widespread genomic features, they are found in higher numbers 

concentrated in specific regions of the chromosome. Arguably the largest of these regions is the 

centromere, where it was demonstrated that repetitive DNA plays an important role in its function. 

Centromeres are crucial for the assembly of the kinetochore, the machinery that attaches 

chromatids to the mitotic spindle (Cleveland, Mao et al. 2003). This multi-protein complex is 

responsible for organizing chromosomes on the metaphase plate and ensuring proper chromosome 

segregation during the cell cycle. The function of the centromere is crucial for the accurate passage 

of identical copies of genomic DNA to newly formed cells during division. If this process is 

disturbed, defective chromosome segregation ensues and may lead to unequal separation of 

chromosomes (aneuploidy) which is associated with some human diseases (Nicolaidis and Petersen 

1998; Sen 2000). 

The centromere itself is a cytologically visible feature of the chromosome that is distinct 

both at the level of DNA sequence and portfolio of associated proteins. Cytologically, it defines the 

primary constriction visible on condensed chromosomes (Flemming 1880). Centromeric chromatin 

is rich in specific proteins such as the histone H3 variant CENP-A, that defines the kinetochore 

assembly site (Van Hooser, Ouspenski et al. 2001), and factors like CENP-B proteins that associate 

with repeat DNA and contribute to the structure of pericentric chromatin (Masumoto, Masukata et 

al. 1989; Pluta, Mackay et al. 1995; Nakagawa, Lee et al. 2002). The kinetochore protein complex 

assembles at centromeres and provides physical attachment of the chromosome to the mitotic 

spindle. The underlying functional principle of centromeres is both essential and conserved 

throughout eukaryotes. Nevertheless, centromeres are found in a surprising variety in sizes, 

sequence and other structural features throughout eukaryotic organisms (Figure 1-4). 

The simplest known centromeres are found in Saccharomyces cerevisiae (budding yeast) 

whose minimal centromeric sequence occupies only 125 bp (Cottarel, Shero et al. 1989; 

Cheeseman, Drubin et al. 2002) (Figure 1-4A). These well characterized centromeres contains 3 

conserved regions (CDE I, II and Ill) that define the site of kinetochore attachment within a 220-

250bp DNA segment that is protected from nuclease cleavage and is contained within a highly 

organized array of nucleosomes (Clarke 1998; Cleveland, Mao et al. 2003). The CDE elements are 
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common to all S. cerevisiae 16 centromeres. CDEI is a short sequence (8 bp) that serves as binding 

site for centromere binding factor 1, or Cbflp (Mellor, Jiang et al. 1990). CDEII is an 78 bp AT-rich 

sequence that acts as a spacer between CDEI and CDEIII. As the only essential element of this 

centromere, CDEIII is an 80 bp AT-rich sequence that marks the deposition site for a single 

nucleosome containing Cse4p, the budding yeast CENP-A homolog. This "point centromere" 

precisely determines the site of kinetochore assembly and is required for faithful chromosome 

transmission. The core centromere, containing the three CDE elements, is flanked by DNA regions 

which are hyper-sensitive to DNAse I digestion whilst the core sequence itself is impervious to 

endonucleases provided that a functional kinetochore is in place (Saunders, Yeh et al. 1990). Even 

though the budding yeast centromere differs from other eukaryotes in terms of relying heavily on 

cis-acting sequences, the overlying kinetochore machinery is still very similar. The CBF3 complex, 

with its components NdclOp, Cep3p, Ctfl3p, Skplp and Sgtlp, assembles over CDEIII and forms 

much of the inner kinetochore (Kitagawa, Masumoto et al. 1995; Kaplan, Hyman et al. 1997). A 

group of three other centromeric proteins, Ctf19p, Mcm21p and Okplp, link the CBF3 complex with 

the remaining centromeric components, such as Cbflp, Mif2 and Cse4p (Ortiz, Stemmann et al. 

1999). Mif2 is distant homolog of the conserved kinetochore protein CENP-C (centromere protein 

C) that also binds to these centromeres (Meluh and Koshland 1997). Birip is part of the 

Cut17/Survivin family of chromosomal passenger proteins associated with Aurora kinase activity 

that binds to NdclO at the inner kinetochore (Yoon and Carbon 1999). In turn, the Aurora kinase 

homolog IpIlp interacts with Slil5p, the homolog of the passenger protein INCENP. Iplip and SlilSp 

localize together to centromeres and were shown to also bind microtubules in vitro (Kang, 

Cheeseman et al. 2001). Proteins associated with the Spindle Pole Body, namely Ndc8Op, Nuf2p, 

Spc24p and Spc25, were also shown to bind centromeres in vivo (Wigge and Kilmartin 2001). All 

these proteins are present in fission yeast while Ndc80 and Nuf2 are known to have homologs in 

humans. In addition, 51k19, Mtwl and Dami provide additional links between the centromere and 

the mitotic spindle by binding to both the kinetochore and spindle microtubules (Jones, He et al. 

2001). In contrast with S. cerevisiae, centromeres from other organisms such as fission yeast, plants 

and metazoa tend to consist of much larger regions of AT-rich and characteristically low complexity 

DNA. Furthermore, the identity and function of centromeres in those organisms is less restricted to 

cis-acting DNA elements when compared to budding yeast. The only characterized centromere in 

Drosophila melanogaster was found in the mini chromosome Dp1187 that derives from the X 
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Figure 1-4: Examples of known centromeres. 

The 125bp-long minimal centromere in budding yeast is composed by the CDE I, II and III boxes. The S. 

cerevisiae homolog of CENP-A Cse4 is found in the nucleosomes overlapping the CDE Il box (in blue). 

In S. pombe, the kinetochore assembles over the central domain, which consists of a non-repetitive central 

core (blue box) surrounded by the innermost repeats (imr; yellow box arrows). The outer repeats (otr; red and 

green box arrows) flank the central domain and are bound in heterochromatin. 

The only defined centromere in fruit flies belongs to the minichromosome Dp1187. It consists of two arrays 

of 5bp repeats (blue and green boxes) interrupted by TEs (yellow lines). CidCENPA is found over this core region 

which is surrounded by other repetitive DNA bound in heterochromatic (in red). 

The human centromere consists of multiple tandem arrays (blue box arrows) of 120bp a-satellite repeats 

(red triangles). It is surrounded by extensive arrays of pericentric repeats bound in heterochromatin (red line). 

Assembly of the kinetochore occurs over a portion of the alphoid arrays. 
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chromosome (Figure 1-4C). Its core sequence is defined by a 220 Kb region made up of two arrays 

of 5 bp-long satellite repeats and several transposable elements that is surrounded by other 

repetitive DNA (Murphy and Karpen 1995; Sun, Wahistrom et al. 1997). The AATAT and AAGAG 

satellites that comprise most of this centromeric DNA are also found elsewhere in the fruit fly 

genome, albeit in regions not associated with centromere function (Sun, Wahlstrom et al. 1997). 

Thus, it is unlikely that these repeats are sufficient to promote kinetochore assembly. The AAGAG 

block is thought to include the sites for kinetochore binding since the presence of these satellites is 

essential for centromere function. In contrast, deletions of AATAT repeats only have a mild effect 

on centromere activity, suggesting that these sequence act in more of a supportive role (Murphy 

and Karpen 1995). CENP-A°  occurs in these centromeres in a discontinuous fashion, forming small 

domains which are intercalated with nucleosomes containing canonical historie H3. The three-

dimensional organization of this stretch of staggered chromatin joins CENPACId and H3 regions into 

two separate higher order domains that may have distinct functional properties (Blower, Sullivan et 

al. 2002). 

The chromosomes of animals such as Caenorhabditis elegans and plants like Luzula nivea 

are distinct in that they are holocentric which means that they do not present a primary 

constriction. Instead of forming at one locus, the kinetochores are assembled diffusedly throughout 

the entire length of the chromosome (Maddox, Oegema et al. 2004). Consequently, spindle 

microtubules are attached to the chromosomes at multiple sites along the chromosome arms. Very 

little is known of the DNA sequences over which these diffuse centromeres function or of the 

mechanisms that control deposition of CENP-A. Unlike the majority of organisms, C. elegans does 

not 	require CENP-A HCP to efficiently segregate chromosomes during meiosis and thus can 

assemble kinetochores in a more flexible fashion that does not require binding to specialized 

nucleosomes (Monen, Maddox et al. 2005). Thus, holocentric chromosomes may have evolved out 

of the requirement of a domain with special DNA sequences and nucleosomes for assembling a 

functional kinetochore. 

Mammalian centromeres cover vast regions of DNA and are considerably longer than fruit 

fly centromeres. Mouse (Mus musculus) kinetochores assemble over uninterrupted tandem arrays 

of major (234 bp long) and minor (120 bp long) satellite repeats that can contain approximately 

2500 copies. Similarly, the core region of human centromeres is composed of repeat arrays in 

which the basic unit is a 171 bp-long element called a-satellite. These are organized in high order 
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arrays of tandem a-satellite that can span a region from 100 Kb to several megabases (Figure 1-4D). 

Interspersed LINEs and Alu repeats are also found within the aiphoid arrays and on surrounding 

pericentric regions, together with other types of satellite repeats (Willard 1998). Like in D. 

melanogaster, the human centromere is not fully occupied by CENP-A nucleosomes. These are 

organized into domains interspersed by histone H3 nucleosomes and only occupy between half to 

two thirds of the entire centromere (Warburton, Cooke et al. 1997; Blower, Sullivan et al. 2002; 

Lam, Boivin et al. 2006). The a-satellites are only found in primates and contain 17 bp long motifs 

that serve as recognition sites for the DNA binding centromeric protein B (CENP-B) (Masumoto, 

Masukata et al. 1989).This protein is thought to play a role in higher order structure of centromeric 

chromatin . Aiphoid repeat arrays containing CENP-B binding motifs appear to be sufficient to 

determine centromere identity since it recruits the assembly of a functional kinetochore within a 

human artificial chromosome (HAC) when it is introduced into the cells as naked DNA (Ohzeki, 

Nakano et al. 2002). 

Centromeres in plants share the same underlying organization principle with metazoan 

centromeres. Their activity is dependent on the CENP-A homolog CENH3 and they assemble over 

vast arrays of 180 bp repeats (Murata, Ogura et al. 1994; Round, Flowers et al. 1997; Copenhaver, 

Nickel et al. 1999; Heslop-Harrison, Murata et al. 1999). The size of the repeat arrays at plant 

centromeres is highly variable such as in Oryza sativa (rice) where centromeric arrays vary between 

60 kb to 1.9 Mb in different chromosomes (Ananiev, Phillips et al. 1998; Cheng, Dong et al. 2002; 

un, Melo et al. 2004; Kato, Lamb et al. 2004). These arrays are also associated with rDNA repeat 

arrays and numerous TE, which are known to possess heterochromatin (Cheng, Dong et al. 2002). 

Similarly to other organisms, the plant centromeric repeat arrays recruit deposition of CENH3CENPA 

(Nagaki, Cheng et al. 2004; Nagaki and Murata 2005). 

In most of the cases portrayed above, the issue of centromere identity is not 

straightforward. Although the function of centromeres is conserved in all eukaryotic cells, the 

sequence composition and arrangement of centromeres are surprisingly variable, even between 

chromosomes of the same organism (Karpen and Allshire 1997). In the case of the human 

centromere, a large proportion of the alphoid arrays are redundant for kinetochore assembly and 

normal segregation (Wevrick, Earnshaw et al. 1990; Yang, Pendon et al. 2000). For instance, the 

fusion of human chromosomes 13 and 14 generates di-centric chromosomes in which one of the 

centromeres is active and the other is disabled. Within a cell population, both centromeres can be 
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found associated with a functional kinetochore, pointing towards a mechanism of centromere 

activation/inactivation that is stochastic and not strictly enforced by the presence of centromeric 

repeats. Whilst it is clear that centromeres are associated with repetitive DNA elements, 

centromere activity is not rigorously linked to these sequences. The complete removal of the entire 

native centromere from a chromosome may lead to the assembly of a functional kinetochore over 

a region that does not contain any centromeric sequences. These "neocentromeres" are known to 

occur in D. melanogaster and H. sapiens (Depinet, Zackowski et al. 1997; du Sart, Cancilla et al. 

1997; Warburton and Cooke 1997; Williams, Murphy et al. 1998; Lo, Craig et al. 2001; Maggert and 

Karpen 2001). Neocentromeres have been reported to form over DNA loci displaying arrays of 

tandem arrays of AT-rich repetitive sequences, similar in characteristics to centromeric repeats, 

thus suggesting a link between the rare event of neocentromere formation and chromosomal 

regions that display similar features to centromeric DNA (du Sart, Cancilla et al. 1997). Despite the 

lack of underlying centromeric DNA, neocentromeres are faithfully propagated in subsequent 

divisions (Murphy and Karpen 1995; du Sart, Cancilla et al. 1997). Altogether, this evidence suggests 

that the identity of a centromere in higher eukaryotes is facilitated but not exclusively defined by 

primary DNA sequences like in S. cerevisiae. Instead, the centromere appears to rely on a particular 

epigenetic signature (Choo 1997; Karpen and Allshire 1997; Warburton and Kipling 1997). 

Even though the sequence of centromeres is distinct between organisms and even between 

chromosomes within the same cell, the overlying organization of centromeric chromatin shares 

similar characteristics amongst most of the known centromeres. These underlying characteristics 

are epigenetic in the form of particular context of chromatin modifications that are propagated 

alongside functioning centromeres. With the exception of budding yeast and holocentric 

chromosomes, centromeric chromatin is comprised of a core region of nucleosomes containing the 

histone variant CENP-A. This observation is also valid in the case of kinetochores assembled over 

non-centromeric sequences such as the neocentromeres. Given that a form of CENP-A is present in 

all these organisms, it appears that specialized nucleosomes are essential for the efficient assembly 

of the kinetochore complex. Moreover, core centromeres are almost invariably found adjacent to 

domains of heterochromatin enriched in histone H3K9 and DNA methylation (Choo 2001). This is 

certainly true for centromeres in fission yeast, D. melanogaster, plant and mammalian 

centromeres. In fission yeast, a minimal centromere must contain at least a portion of repeat DNA 

that attracts heterochromatin together with a central region that elicits CENP-A deposition (Baum, 
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Ngan et al. 1994; Takahashi, Chen et al. 2000; Kniola, O'Toole et al. 2001). In this organism, 

centromeric heterochromatin is known to be required for establishment of cohesion at 

centromeres between sister chromatids, which in turn is important for faithful chromosome 

separation (Bernard, Maure et al. 2001; Nonaka, Kitajima et al. 2002). The centromere from 

Dp1187 in D. melanogaster requires an additional 200 kb on either side of the 220 kb core region in 

order to be fully stable (Murphy and Karpen 1995). These adjacent regions covered in 

heterochromatin were suggested to act as support and to establish centromeric cohesion. Human 

artificial chromosomes contain only alphoid DNA but centromeric heterochromatin is known to 

form over these sequences adjacently to CENP-A domains (Nakashima, Nakano et al. 2005). In 

addition, CENP-B protein also localises to centromeric heterochromatin which is also a widespread 

feature of centromeres among eukaryotes (Pluta, Mackay et al. 1995). CENP-B is thought to 

promote heterochromatin formation and to enforce a higher order structure to underlying 

chromatin by dimerizing and pulling together bound DNA (Kitagawa, Masumoto et al. 1995). It has 

been suggested that CENP-B bears some similarity with transposase from TEs (Smit and Riggs 

1996). While this claim is debatable, it suggests a TE-related origin for specialized centromeric 

repeats such as the human a-satellite and the fission yeast outer repeats. However, mice deprived 

of CENP-B are viable and do not display any obvious defects in chromosome segregation (Hudson, 

Fowler et al. 1998; Kapoor, Montes de Oca Luna et al. 1998). Furthermore, stable human 

neocentromeres such as mardel (10) form over regions that don't contain a-satellite repeats and 

lack CENP-B, suggesting that while CENP-B may contribute to kinetochore assembly, its role is not 

essential (du Sart, Cancilla et al. 1997; Saffery, Irvine et al. 2000). However, it does not rule out the 

possibility of pre-existing heterochromatin at the sites of neo-centromere formation, in which case 

that particular chromatin structure may be involved in its establishment. The presence of 

heterochromatin may also act as a stabilizer for the central CENP-A domain. In the case of the 

minimal centromere of S. cerevisiae, both the assembled kinetochore and the precise nucleosome 

disposition pattern can be disrupted by promoting transcription through the centromere (Hill and 

Bloom 1987). The process of transcription may temporarily abolish the protein-DNA interactions at 

the centromere and also modify the chromatin locally though the remodelling activity of the FACT 

complex or histone acetylation by the Elongator complex (Otero, Fellows et al. 1999; Mason and 

Struhl 2003). Hence, flanking heterochromatin domains may serve to protect the central core 

region of the centromere from incoming transcription events and thus preserve the distinct 

chromatin arrangement and plethora of chromatin-bound kinetochore proteins at centromeres. 
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1.8. FISSION YEAST CENTROMERES 

The centromere of Schizosaccharomyces pombe (fission yeast) is one of the simplest and 

best characterized (40-100 kb) yet it bears similarity to the larger centromeres of multicellular 

eukaryotes (Kniola, O'Toole et al. 2001). It is composed mostly of repetitive DNA divided into the 

"outer repeats" (otr) and the "inner-most repeats" (imr) with an unconserved central core region. 

The central core is occupied by nucleosomes bearing the histone H3 variant Cnp1C 	upon which 

the kinetochore is assembled. The flanking outer repeats are engulfed in silent chromatin whose 

nucleosomes bear extensive H3K9 methylation. This methylation is the product of the histone 

methyltransferase Clr4Su 39  through a complex set of pathways that also involves RNA silencing. 

Thus, the fission yeast centromere bears the same basic chromatin layout observed in centromeres 

from higher eukaryotes and provides a valuable model with which to study the influence of 

epigenetic mechanisms in centromere establishment and function (Pidoux and Allshire 2004). 

All three centromeres of fission yeast are based mostly on common DNA elements but still 

present individual diverging characteristics (Figure 1-5). The centromere from chromosome I (ceni) 

is the smallest one with only 45 kb while cen2 is 65 kb-long and cen3 reaches 110 kb in size. All 

centromeres possess a 4-7 Kb central core (cnt) region composed mostly of non-repetitive AT-rich 

DNA but the actual sequence is diverges between chromosomes. Central cores 1 and 3 share a 3.3 

kb long region called "TM" that is 99% identical. Central core 2 has a smaller 1.5kb region that is 

only 48% identical to TM (Wood, Gwilliam et al. 2002). All three central cores are surrounded by 

two convergent imr repeats which are identical between the two copies of each centromere but 

completely distinct between centromeres. The "outer repeats" (otr) are composed of two basic 

repetitive units dg and dh (also called K and L repeats) with a short spacer sequence. The relative 

orientation of the dg + dh pair is different between ceni (divergent) cen2 and 3 (tandem). Within 

each centromere, the sequence composition of dg and dh copies is virtually identical but show 

some divergence between centromeres. The dg sequences are 97% identical between all three 

centromeres but dh sequences only share 48% identity. Centromere 1 is the only one to present a 

symmetrical disposition of outer repeats. Centromere 2 possesses two pairs of dg + dh at the left 

arm and one at the right arm. Centromere 3 is the most asymmetrical, with 9 dg + dh pairs on the 

35 



left arm and 4 on the right arm. The different number of outer repeat pairs of each of the three 

centromeres accounts for most of the size differences. In addition, all three centromeres are 

flanked by IRC sequences that have been recently shown to perform as chromatin boundaries 

(Noma, Cam et al. 2006). 

With the exception of the right arm of ceni, these boundary areas are associated with tRNA 

genes in various numbers. The imr repeats also contain functioning tRNA genes. Recently, these 

tRNA genes together with other RNA polymerase Ill-related motifs in the flanking IR sequences 

were shown to enforce chromatin boundaries that isolate the centromere from surrounding 

chromatin and the central domain from the outer repeats. These boundary elements appear to be 

important for maintaining both the organization of epigenetic characteristics within the centromere 

and its function in chromosome segregation (Noma, Cam et al. 2006; Scott, Merrett et at. 2006; 

Scott, White et at. 2007). 

The number of outer repeats each centromere presents is highly variable, suggesting that 

the outer repeats are less important for centromere function. In fact, the central domain is 

essential for centromere function but it is not sufficient to recruit a functional kinetochore. Instead, 

studies in the synthesis of artificial mini-chromosomes have made clear that a minimally functional 

fission yeast centromere requires both the central domain and an adjacent fragment of outer 

repeats (Clarke, Amstutz et at. 1986; Niwa, Matsumoto et al. 1986; Chikashige, Kinoshita et al. 

1989; Hahnenberger, Baum et al. 1989; Niwa, Matsumoto et at. 1989; Matsumoto, Murakami et al. 

1990; Hahnenberger, Carbon et at. 1991). Even though the CENP-A containing central domain is the 

functional assembly site for the kinetochore, the identity of the centromere in fission yeast is also 

defined by the outer repeats. 

Epigenetic features of fission yeast centromeres 

There are several lines of evidence demonstrating that fission yeast centromeres are 

epigenetically regulated. The placement of genes in close vicinity to heterochromatin domains in 

animal cells causes their expression to become negatively affected to a variable extent. This 

phenomenon is termed Position Effect Variegation (PEV) and was first described in D. melanogaster 

(Muller 1930). In this study, a white reporter gene was placed either in the vicinity or within a 
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Figure 1-5: Organization of fission yeast centromeres. 

In fission yeast, all three centromeres share the same basic structure. It comprises a non-repetitive central 

core (cnt) surrounded by the innermost repeats (imr). All three central cores are distinct but cntl and cnt3 

are homologous in a region called TM (checkered box). The imr are completely distinct between 

centromeres but within each centromere the pair is identical. The central core together with most of the imr 

forms the central domain, where Cnp1 	and the kinetochore assembles. The central domain is 

surrounded by arrays of dg (filled arrows) and dh (hatched arrows) which constitute the outer repeats (otr). 

The sequences of dg and dh are highly conserved in all three centromeres bu the number of dg + dh pairs 

found on the left and right arms vary between centromeres. The outer repeats are packaged in 

heterochromatin. The solid vertical lines represent multiple tRNA genes that serve as chromatin boundaries 

between the two distinct chromatin environments within the centromere. 
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domain of heterochromatin. This lead to the formation of flies whose composite eyes displayed a 

mosaic of red and white colour patches. The reason behind this phenotype lies in the stochastic 

variegation of white gene expression between different eye cells. Since then, it has been 

established that PEV is an inherent property of metazoan heterochromatin (Wreggett, Hill et al. 

1994; Aagaard, Laible et al. 1999; Heard, Rougeulle et al. 2001). Similarly, expression of reporter 

genes introduced at the centromeric outer repeats in fission yeast is also negatively affected. For 

instance, the introduction of the ade6+ marker gene into the central core causes cells to assume an 

ade- phenotype and in consequence to accumulate a red coloured metabolite (Allshire, Javerzat et 

al. 1994). This change is propagated through cell divisions even though no genetic change has 

occurred to the ade6+ gene. However, a percentage of the colonies can also display the normal 

white colour, white sectors in red background or intermediate shades of pink. This indicates that 

repression of the ade6+ gene at the outer repeats can be lifted in a stochastic manner. Similar 

studies demonstrated that the repressive effect is stronger at the outer repeats and that it varied 

depending on site of marker gene insertion within the outer repeats: weaker when the insertion 

was closer to the periphery of the centromere and stronger when it was buried deeper into the otr 

(Allshire, Javerzat et al. 1994; Allshire, Nimmo et al. 1995). This phenomenon is akin to PEV and 

strongly suggested that the outer repeats are coated with heterochromatin. 

The second line of evidence supporting epigenetic regulation at centromeres derives from 

studies on the behaviour of centromeric marker gene insertions in the presence of the drug 

Tricostatin A (TSA), which is a known inhibitor of histone deacetylases (HDAC5) (Ekwall, Olsson et al. 

1997). In the presence of TSA, centromeric nucleosomes acquire a heritable increase in histone 

acetylation levels over centromeric chromatin. Coupled with this, silencing of marker genes at 

centromeres is alleviated and centromere function becomes crippled. Cells displaying alleviated 

silencing divide slowly and have a high rate of chromosome loss. This centromeric state is stable 

and is propagated through subsequent cell divisions even in the absence of TSA. However, after a 

number of generations, a fraction of the cells at each cell cycle is able to regain centromeric 

silencing and normal centromere function. Thus, the changes at centromeres caused by TSA 

treatment appear to be epigenetic. Given that hypoacetylation of histones H3 and H4 is a known 

hallmark of heterochromatin (Jeppesen and Turner 1993; Belyaev, Keohane et al. 1996), this 

evidence suggests that heterochromatin forms at fission yeast centromeres and that this fact is 

important for regulating the function of centromeres. In addition, several studies demonstrated 
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that mutants that affect silencing of marker genes at the centromere are often coupled to impaired 

centromere function (Allshire, Nimmo et al. 1995; Ekwall, Javerzat et al. 1995; Ekwall, Nimmo et al. 

1996; Ekwall, Cranston et al. 1999; Pidoux, Richardson et al. 2003). This means that transcriptional 

silencing can be used as readout of centromeric integrity and that the function of the centromere is 

inherently linked to the epigenetic state of its chromatin. 

The third line of evidence comes from observing the behaviour of fission yeast mini-

chromosomes containing a minimal form of the centromere (Steiner and Clarke 1994). When 

transformed as naked DNA, the stability of the constructs relies on the establishment of a 

functional kinetochore, which appears to be a stochastic event. Transformation of such a construct 

(Nbg) into S. pombe gives rise to instances where cells retain it as a mini-chromosome and cells that 

lose it if plasmid selection is relaxed. Careful analyses of Nbg retrieved from both populations of 

cell showed that that no mutations, rearrangements or integration into the genome had occurred. 

Even when Nbg did not become stable, forcing the cells to retain it by selection can lead to a 

stabilization event in further cell divisions. Conversely, even when the kinetochore is already 

established mini-chromosomes may still be lost further on. The stability of these constructs within 

the cells appears to be a matter of probability and not of primary DNA sequence composition, 

suggesting that the formation of a functional kinetochore may rely on establishing a specific 

chromatin context that favours this process. Hence, this supports the hypothesis that centromere 

identity has epigenetic properties. 

The central domain and associated factors 

Within the fission yeast centromere, the Cnp1 1  domain occupies the entire cnt region 

and overlaps with the most of the imr (Takahashi, Chen et al. 2000) (Figure 1-6). Micrococcal 

nuclease digestion analysis of the central domain shows that the disposition of these nucleosomes 

is not periodic as in most other parts of the chromosomes. Instead of producing a ladder pattern 

reflecting the staggered disposition of nucleosomes along the DNA fibre, the central domain 

pattern is smeared (Polizzi and Clarke 1991; Takahashi, Murakami et al. 1992). In contrast, the 

pattern of the chromatin overlying the outer repeats is regular, much the same as in other areas of 

the chromosome outside the centromere (Castillo, Mellone et al. 2007). The smeared pattern is 

linked to the presence of functional Cnplc 
-A in the cells since depletion of this protein using the 
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cnpl-1 allele causes a reversion of the nucleosomal pattern to a regular one (Takahashi, Chen et at. 

2000). At the same time, cells experience severe chromosome segregation defects with consequent 

aneuploidy and cell death. Mutations in factors involved in Cnpl deposition, such Mis6 and Sim4, 

also disrupt the particular nucleosomal pattern at the central core (Saitoh, Takahashi et at. 1997; 

Pidoux, Richardson et al. 2003). Thus, it was suggested that the CENP-A containing nucleosomes 

confer a specialized structure or spatial organization to the central domain chromatin that accounts 

for the unusual micrococcal nuclease digestion pattern. It is also possible that this pattern is a 

consequence of the presence of kinetochore proteins bound to the central domain in active 

centromeres. 

Assembly of a functional kinetochore disrupts transcription of marker genes inserted in the 

central domain. Thus, transcriptional repression can be used as readout of the functional status of 

kinetochore. Indeed, this property was used as the basis of a genetic screen for factors involved in 

kinetochore stability. The Sim (Silencing In the Middle of the centromere) screen yielded Cnpl 

itself and Sim4, a coiled coil domain protein that is required for Cnpl 1 	deposition (Pidoux, 

Richardson et at. 2003). Sim4 is part of a 13-subunit complex comprised of Sim4, Mis6, Mis15, 

Mis17, Ma12, Dadi, and Ftpl to 7 (Liu, McLeod et at. 2005). The Sim4 complex binds directly to the 

central domain and is believed to serve as a platform for the transient DASH complex at the 

kinetochore during mitosis (Liu, McLeod et at. 2005). Ma12, Mis6 and Mis12 were previously 

isolated as kinetochore factors in mini-chromosome loss screens (Takahashi, Yamada et at. 1994; 

Fleig, Sen-Gupta et al. 1996) Takahashi 1996). In additition to sim4 and cnpl, mutations in maI2 and 

mis6 also alleviate marker gene silencing at the central core. 

Mutants of these four genes together with the GATA-like factor ams2 all cause a shift of the 

smeared micrococcal nuclease digestion pattern to a regular ladder typical of normal chromatin 

(Saitoh, Takahashi et at. 1997; Goshima, Saitoh et al. 1999; Jin, Pidoux et al. 2002; Chen, Saitoh et 

at. 2003; Pidoux, Richardson et at. 2003). 

Deposition of Cnpl 	is linked to the functional state of the centromere but the 

mechanisms that control this process are still unclear (Marschall and Clarke 1995). Mis6 has been 

implicated as a loading factor since mis6 mutant cells were shown to fail to incorporate newly 

synthesized GFP-Cnpl 	at the centromeres (Takahashi, Chen et at. 2000). This role appears not 

to be conserved by the budding yeast homolog Ctf3 since it is not required for loading of Cse4p 
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Figure 1-6: The two distinct chromatin domainsin of the fission yeast centromeres (adapted from Pidoux 

and Allshire 2005) 

The nucleosomes overlying the outer repeat DNA (left) are hypoacetylated and enriched in H3K9 

methylation (heterochromatin) while at the central domain Cnpl 	is replacing histone H3. Together with 

these distinct chromatin domainsare associated with a distinct set of factors. On the central domain, a series 

of protein complexes and the transcription factor (Ams2) function synergistically to load of Cnpl 	in the 

nucleosomes. Chromatin remodelling is also required for maintaining silencing at the central core. The 

kinetochore large protein complex is assembled over the central domain chromatin and is responsible for 

attachment to the spindle microtubules and for chromosome segregation.On the left in red boxes are the 

factors involved in establishment and maintenance of heterochromatin, namely chromodomain proteins 

(Chromo), components of the RNA interfence pathway (RNAi), histone methyltransferases (HMT), histone 

deacetylases (HDACs), ubiquitin E3 ligase (E3) and CENP-B proteins. Heterochromatin has functional 

implication for loading of cohesins at the centromere (orange box). SHREC stands for Snf2/Hdac-containing 

Repressor Complex, RITS is the RNA-induced Initiation of Transcriptional Silencing complex and RDRC is the 

RNA-Dependent RNA polymerase Complex. 
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(Measday, Halley et al. 2002). Initial studies of the vertebrate Mis6 homologue CENP-I and a Sim4 

related protein CENP-H suggested that neither were essential for association of CENP-A to 

centromeres (Nishihashi, Haraguchi et al. 2002). More recently, it was shown that in chicken DT40 

cells, the CENP-H + CENP-I complex is required for the efficient deposition of CENP-A at 

centromeres. In vertebrates, CENP-H and CENP-I are present in a complex that contains 11 

identified proteins (CENP-K to CENP-R, CENP-50, CENP-H and CENP-I) Mutant analysis of several of 

these factors shows that their function is required for faithful chromosome segregation. Some of 

the defects observed in CENP-H-1 complex component mutants include arrest of cell cycle 

progression, failure to align chromosomes at the metaphase plate and mitotic spindle formation 

abnormalities. The same mutants showed impaired loading of newly-synthesized CENP-A-GFP at 

centromeres. CENP-K has weak similarity to Sim4 while CENP-L is a distantly related to Ftal, 

suggesting that the vertebrate CENPH-I complex is a functional homologue of the S. pombe Sim4 

complex. 

The Mis16-Mis18 complex is also required for Cnpl'' 	deposition at fission yeast 

centromeres (Hayashi, Fujita et al. 2004). Mis16 has two homologues in humans, RbAp46 and 

RbAp48 (human retinoblastoma binding proteins) whose depletion causes a disruption in CENP-A 

localization to centromeres (Hayashi, Fujita et al. 2004). In vitro studies have shown that D. 

melanogaster RbAp48 can assemble CENPAD chromatin but so far no in vivo studies have 

validated these observations. Both the fission yeastand human complexes were implicated histone 

deacetylation activity. Mis16 and Mis18 are required for maintaining low levels of histone H3 and 

H4 acetylation at the central domain, which has been suggested as a pre-requisite for Cnpl 

deposition (Hayashi, Fujita et al. 2004). 

Ams2 is a GATA-like transcription factor that is also a factor involved in Cnpl'1  loading at 

centromeres (Chen, Saitoh et al. 2003). Unlike other factors involved in this process, ams2+ is not 

an essential gene and it appears to regulate Cnpl 	loading in a Mis12-independent manner. 

Ams2 controls the expression of histone genes in G1-S phase, which led to the suggestion that it 

has an impact in the timing of expression of histone genes required for Cnpl' deposition during 

replication (Takahashi, Takayama et al. 2005; Takayama and Takahashi 2007). It is known that 

Cnp1 1  can be loaded at centromeres in G2 phase, which provides a possible explanation for 

why ams2- cells are viable (Takahashi, Takayama et al. 2005). Ams2 shows peak association with 

chromatin during mitotic S phase and binds to centromere GATA-core sequences (Chen, Saitoh et 
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al. 2003), which may reflect a similar modus operandi to budding yeast Spt4p. Spt4p is also 

transcription factor which has been shown to be critical for restricting the localization of Cse4p 

at S. cerevisiae centromeres (Crotti and Basrai 2004). 

It appears that the process of CENP-A loading is the result of the contribution of several 

converging mechanisms that have been preserved to various extents in other eukaryotic organisms. 

The conciliating feature of CENP-A loading is that it is associated with a functional kinetochore. 

While the machinery involved in the loading process may differ between species, it has been 

suggested that CENP-A loading is driven by the mechanical tension caused by the attachment of 

this structure to the mitotic spindle that "marks" the centromere for CENP-A deposition (Mellone 

and Allshire 2003). 

Outer repeats and heterochromatin proteins 

As previously mentioned, the outer repeats at the centromeres are coated in 

heterochromatin which represses transcription of inserted marker genes (Figure 1-6). This property 

was used to screen for factors that are involved in the establishment and maintenance of this 

particular structure and to study the impact of heterochromatin disruption in the process of 

chromosome segregation. The screen unveiled Clr4 (cryptic loci regulator 4), Riki and Swi6 

(trans-acting switch locus 6) as factors involved in maintaining silencing at the outer repeats 

(Allshire, Nimmo et al. 1995). Originally, these factors were first revealed in analyses of the mat2 

and mat3 silent mating type loci, where heterochromatin is also formed (Ekwall and Ruusala 1994; 

Lorentz, Ostermann et al. 1994). In addition, cells bearing mutations on one of these three genes 

suffer from chromosome segregation defects (Allshire, Nimmo et al. 1995). While in late anaphase, 

mutant cells often display chromatids that were delayed in migrating to the poles of the mitotic 

spindle with the remaining chromatids. The phenotype is described as "lagging chromosomes" and 

is characteristic of cells defective in centromeric cohesion (Ekwall, Nimmo et al. 1996; Bernard, 

Maure et al. 2001). The same cells also present a significantly higher rate of mini-chromosome loss 

(Allshire, Nimmo et al. 1995). The silencing phenotypes of the three mutants also present 

important differences. The alleviated silencing phenotypes of cIr4 and riki are stronger than that of 

swi6 (Allshire, Nimmo et al. 1995). In addition, all three mutants also affect the remaining two 

constitutive heterochromatin loci in fission yeast: the telomeres and the silent mating type loci 
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mat2 and mat3 (Ekwall and Ruusala 1994; Lorentz, Ostermann et al. 1994; Allshire, Nimmo et al. 

1995). In addition to C1r4, Riki and Swi6, subsequent studies have identified a number of additional 

factors that contribute to maintain the heterochromatin over centromeric outer repeats. 

Swi6 

Swi6 is a protein that presents a chromodomain that is 48% identical to the same motif 

present in D. melanogaster HP1 (heterochromatin protein 1) (Lorentz, Ostermann et al. 1994). Of 

proteins bearing chromodomain such as HP1 and Polycomb, Swi6 resembles HP1 more closely by 

also sharing the chromo-shadow domain, a protein-protein interaction motif that is involved in 

homodimerisation (Cowieson, Partridge et al. 2000). Swi6 1  binds to chromatin at centromeres and 

at a number of other loci (Ekwall, Javerzat et al. 1995). Localization of this protein relies on the 

presence of Clr4 39  and Riki. (Ekwall, Nimmo et al. 1996). Like HP1, the chromodomain of 

Swi6" is known to bind nucleosomes which present di and tri-methylated H3K9, a mark of 

heterochromatin (Bannister, Zegerman et al. 2001; Nakayama, Rice et al. 2001). In the absence of 

Swi6, centromeric function is affected. Null mutants display lagging chromosomes in late anaphase 

and increased chromosome loss rate (Allshire, Nimmo et al. 1995; Ekwall, iaverzat et al. 1995). In 

addition, swiG mutant cells are sensitive to thiabendazole (TBZ), a microtubule-destabilizing drug 

(Ekwall, Nimmo et al. 1996). There is genetic evidence linking swi6 with nda3 (a-tubulin; synthetic 

sick), the mitotic spindle checkpoint factor bubi, the cohesin subunits rad2l and psc3 and the 

exosome component dis3 (all synthetic lethal) (Bernard, Hardwick et al. 1998; Bernard, Maure et al. 

2001; Nonaka, Kitajima et al. 2002; Murakami, Goto et al. 2007). 

C1r4 complex 

Chromatin overlying the centromeric outer repeats is enriched in histone H3 K9 di- and tn-

methyl, both marks of heterochromatin. C1r4 is the fission yeast homolog of D. melanogaster 

Su(var)3-9 that is responsible for this modification. Like Swi6, it contains a chromodomain that 

allows it to bind H3K9me. In addition, it contains the SET domain that has been implicated in the 

histone lysine methyltransferase activity (Rea, Eisenhaber et al. 2000). The SET domain deposits 

methyl groups on histone H3K9 and thus provides a binding site for Swi6 '  and other 
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chromodomain proteins. Clr4Su( 39  is responsible for H3K9 methylation in all constitutive 

heterochromatin loci in fission yeast (centromeres, sub-telomeric regions and silent mating type 

loci). In the absence of C1r4, Swi6HP1 localization to these loci is lost. Clr4SU139 is found in large 

multimeric complex that includes Riki, Rafi, Raf2 and Pcu4/Cu14 (Hong, Villen et at. 2005; Horn, 

Bastie et at. 2005; Li, Goto et al. 2005; Thon, Hansen et al. 2005). 

Riki is a known Clr4Su(var)3-9 interactor that it is essential for fission yeast heterochromatin 

(Ekwall and Ruusala 1994; Nakayama, Rice et al. 2001). Riki is a WD propeller protein that also 

bears a CPSF-A domain, a motif that is found in the DNA damage response factor DD131, the human 

spliceosome factor SAP130 and CPSF1 (Neuwald and Poleksic 2000; Brand, Moggs et al. 2001; 

Tuzon, Borgstrom et al. 2004). The CPSF-A motif derives its name from the first protein that was 

identified with it, namely the large subunit of the mRNA cleavage and poly-adenylation factor 

CPSF1 which plays a crucial role in the later stages of RNA polymerase II transcription and mRNA 

maturation (Murthy and Manley 1995; Brand, Moggs et at. 2001). Despite this information, the 

activity of Riki is still unknown. It is believed to act as protein interaction hub for the remaining C1r4 

complex components but these implications in DNA damage responses and transcription haven't 

yet been explored. 

Rafi and Raf2 are two components that were identified in three separate mass 

spectrometry studies. The multiply named Rafi (Riki associated factor 1)/Dosi (delocalization of 

Swi6 1)/Cmcl/C1r8 is a previously known heterochromatin factor that contains four WD repeat 

motifs (Horn, Bastie et at. 2005; Li, Goto et at. 2005; Thon, Hansen et al. 2005). This protein has no 

strong sequence homologues outside fission yeast but it has been suggested as a possible 

functional homolog of the human DDB2 protein, again a DNA-binding factor involved in DNA 

damage response. Raf2, also known as Dos2, Cmc2 and C1r7, also has no close homologs in other 

species (Hong, Villen et at. 2005; Horn, Bastie et at. 2005; Li, Goto et at. 2005; Thon, Hansen et at. 

2005). It has no discernable protein domains apart from a putative zinc-finger-like motif (Horn, 

Bastie et al. 2005; Thon, Hansen et al. 2005). Riki and Raf2 were found in a complex with 

Pcu4/Cu14, a cullin-dependent E3 ubiquitin ligase that is required for heterochromatin formation 

(Hong, Villen et al. 2005; Horn, Bastie et al. 2005). The contribution of this E3 ubiquitin ligase 

activity to heterochromatin assembly is unclear. DDB1 is an adapter protein that is required for 

ubiquitytation by Cullin 4A in response to the signalosome and DNA damage (Groisman, 

Polanowska et al. 2003). It is possible that Riki may also perform as an adapter in directing 

45 



Pcu4/Cu14 E3 ligase to a specific substrate to promote heterochromatin assembly. In vitro activity 

assays suggest that histone H2B is a substrate for Cul4-mediated ubiquitylation (Horn, Bastie et al. 

2005). H2B ubiquitylation has been recently shown to promote efficient transcriptional elongation 

through chromatin and to have ties with DNA damage response (Sung, Prakash et al. 1988; Laribee, 

Fuchs et al. 2007; Tanny, Erdjument-Bromage et al. 2007). Thus, the connection between this 

histone modification and heterochromatin is not obvious but it is still possible that Cu14 may have 

preference for other substrates in vivo. 

Histone deacetylases 

The appearance of H31<9 methylation is preceded by histone deacetylation. To this end, three 

histone deacetylases (HDACs) are known to function in S. pombe in promoting silent chromatin at 

the outer repeats and other constitutive heterochromatin loci. Outer repeat nucleosomes are 

underacetylated in multiple residues in both histone H3 (K9, K14, K18, K23 and K27) and histone H4 

(KS, K8, K12 and K16). This HDAC activity is absolutely crucial for transcriptional silencing in these 

heterochromatin domains(Ekwall, Olsson et al. 1997; Mellone, Ball et al. 2003). The C1r3, C1r6 and 

Sir2 HDAC proteins are all involved in maintaining transcriptional silencing over heterochromatin-

bound repetetitive DNA at centromeres (Grewal, Bonaduce et al. 1998; Bjerling, Silverstein et al. 

2002; Shankaranarayana, Motamedi et al. 2003). C1r3 deacetylates H3K14 while Sir2, a homolog of 

the NAD-dependent HDACs Sir2p from budding yeast, is specific for acetylated H3K9 

(Shankaranarayana, Motamedi et al. 2003). C1r6 appears to be more promiscuous and is able to 

remove acetyl groups from several lysine residues in the tails of both histones H3 and H4 (Bjerling, 

Silverstein et al. 2002). 

The activity of these three HDACs influences heterochromatin establishment but the impact of 

the loss of each of these HDACs varies depending on the heterochromatin locus. Together with 

CIrl, C1r2 and Miti, C1r3 forms the SHREC (Snf2/Hdac-containing Repressor Complex) which 

participates in transcriptional silencing at the centromeric outer repeats, telomeres, silent mating 

type loci and rDNA loci (Sugiyama, Cam et al. 2007). Miti has a PHD motif and SNF2 helicase 

domains which are involved in the ATP-dependent chromatin remodelling activity described for 

SHREC. Unlike its budding yeast homolog Snf2p that is part of the SWI-SNF global transcriptional 
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activator, the chromatin remodelling activity of SHREC is required for its role in transcriptional 

silencing (Cote, Quinn et al. 1994; Henry, Campbell et al. 1994; Sugiyama, Cam et al. 2007). 

C1r6 is a member of the class I HDACs that also include budding yeast Rdp3p and human HDAC1 

to 3 (Grewal, Bonaduce et al. 1998). C1r6 is found in complex with two different sets of interactors 

which contain different proteins homologous to budding yeast Sin3p, a partner protein to Rpd3p 

(Kadosh and Struhl 1998; Nakayama, Xiao et al. 2003; Nicolas, Yamada et al. 2007). The C1r6 

complex I, composed of C1r6, Prwl, Pstl and Sds3, preferentially de-acetylates histones at 

promoter-containing intergenetic regions, thus repressing a specific set of genes and repetitive 

sequences (Nicolas, Yamada et al. 2007). Complex I plays an essential role in the cell while cells 

depleted of components of the complex II are viable. The presence of the Sin3p-like protein Pstl is 

essential for cell viability but Pst2, a member of complex II, is not (Nicolas, Yamada et al. 2007). 

Complex I is also responsible for preventing de-repression of donor mating type genes, thus 

preventing haploid meiosis from occurring (Nicolas, Yamada et al. 2007). The ING-family protein 

Png2 can bind to complex I, forming complex I' which appears to be involved in DNA damage 

response (Nicolas, Yamada et al. 2007). Complex II, composed of C1r6, Prwl, A1p13, Cphl and Cph2, 

is responsible for de-acetylating nucleosomes over coding regions, thereby preventing spurious 

transcription initiation within the genes that might lead to the production of truncated mRNA5 or 

anti-sense transcripts (Nicolas, Yamada et al. 2007). Similarly to complex I', defects in complex II 

also affect the capacity of the cells to deal with DNA damage. Both Clr6 complexes I and II intervene 

at the centromeric outer repeats to enforce transcriptional silencing on both strands of DNA 

(Nicolas, Yamada et al. 2007). 

The activity of the Sir2, the fission yeast member of the Sir2p-SirT1 ("sirtuins") family of NAD(+)-

dependent histone deacetylases, has been shown in vitro to be specific for H3K9 and H4K16 

residues (Shankaranarayana, Motamedi et al. 2003). The deacetylase activity of this protein family 

is induced by increased levels of NAD(+), the oxidated form of the co-enzyme NAD, which can occur 

as consequence of nutrient starvation (Tanner, Landry et al. 2000; Armstrong, Kaeberlein et al. 

2002; Shankaranarayana, Motamedi et al. 2003). In vivo, Sir2 is essential for silencing at the 

telomeres and mating type locus (Shankaranarayana, Motamedi et al. 2003). Loss of Sir2 has an 

impact on transcriptional silencing at centromeric outer repats and rDNA arrays but to a much 

lower extent than other loci. (Shankaranarayana, Motamedi et al. 2003) More specifically, in sir2Ll 

centromeric silencing is lost at the imr but it is only weakly affected over the outer repeats, 
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suggesting that C1r3 and C1r6 might be the most predominant centromeric HDACs while Sir2 is 

mostly recruited to telomeres and mating type loci. 

Chpl and Chp2 

In adittion to Swi6' and C1r4, two other chromodomain proteins Chpl and Chp2 bind to 

heterochromatic regions and are required for the stability of its chromatin structure (Halverson, 

Gutkin et al. 2000; Partridge, Borgstrom et at. 2000; Thon and Verhein-Hansen 2000; Sadaie, lida et 

al. 2004). Like Swi6, Chpl can bind to H3K9me2 via its chromodomain (Partridge, Scott et at. 2002). 

Unlike Chp2 and Swi6 '  ('30 kiloDaltons), Chpl is a much longer protein (100 KDa) that contains 

an RRM (RNA recognition motif) and a largely uncharacterized C terminus (Petrie, Wuitschick et at. 

2005). Like Swi6, Chpl forms multiple (up to 5) independent foci within the cell nucleus (Sadaie, 

lida et at. 2004; Petrie, Wuitschick et at. 2005). This reflects the participation of Chpl in the 

establishment of heterochromatin at centromeres, telomeres and silent mating type loci (Sadaie, 

lida et at. 2004). Chpl is particularly relevant in forming and maintaining heterochromatin domains 

over the centromeric outer repeats, where it is involved in RNA interference-mediated 

heterochromatin assembly (Verdel, Jia et at. 2004). Chpl, together with Agol (Argonaute) and Tas3, 

forms the RITS complex (RNA-induced transcriptional silencing) that is responsible for directing 

C1r4-mediated H3K9 methylation over the outer repeats in a mechanism that is dependent on Dcrl 

(Dicer) and centromere specific siRNAs (Verde[, Jia et at. 2004). Chpl also localizes to other 

constitutive heterochromatin domains, such as mating type locus and telomeres, even though its 

presence is not as required to maintain H3K9me2 and transcriptional silencing as at the centromere 

(Sadaie, lida et al. 2004). Although Chpl is redundant in maintenance of heterochromatin at the 

two latter loci, it is essential to efficiently establish de novo heterochromatin at these loci in a 

situation where H3K9me becomes totally depleted (Sadaie, lida et al. 2004). 

Chp2 is much closer to Swi6 
HPI  in terms of size and by the fact that it contains a 

chromoshadow domain (Halverson, Gutkin et at. 2000). Loss of Chp2 has a moderate impact in 

transcriptional silencing at centromeres, silent mating type loci and rDNA clusters (Thon and 

Verhein-Hansen 2000). Like Swi6, Chp2 is an integral part of heterochromatin structure and is 

required in order to maintain H3K9me2 at centromeres, particularly the residual levels observed in 

chplzl or other RNA1 mutants (Sadaie, lida et at. 2004). It is also involved in recruiting the HDAC C1r3 
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to the mating type loci, possibly reflecting its involvement in a heterochromatin maintenance 

pathway. 

CENP-B homologues 

Fission yeast has three homologs of the human CENP-B protein that binds centromeric a-

satellite repeats (Masumoto, Masukata et al. 1989; Murakami, Huberman et al. 1996; Lee, 

Huberman et al. 1997; Baum and Clarke 2000; Nakagawa, Lee et al. 2002). Loss of Abpl, Cbhl or 

Cbh2 has only a small impact on centromeric H3K9me2 levels and on transcriptional silencing but 

the phenotype is enhanced in double mutants, suggesting that the function of these proteins may 

be partially redundant (Irelan, Gutkin et al. 2001; Nakagawa, Lee et al. 2002). In fact, Abpl and 

Cbhl appear to be more relevant for centromere function than Cbh2. It has been confirmed that 

Abpl physically associates with outer repeat DNA although its binding motif is unknown (Lee, 

Huberman et al. 1997; Nakagawa, Lee et al. 2002). It has been proposed that Abpl and Cbhl may 

function as cis-acting heterochromatin nucleating factors at the outer repeats in a similar fashion to 

how Atfl and Pcrl proteins act at the mating type locus (Nakagawa, Lee et al. 2002). Despite their 

role in heterochromatin, these proteins are likely to present other cellular roles since Abpl binds to 

autonomous replicating sequence (ARS) elements and is also required for meiosis to be carried out 

(Murakami, Huberman et al. 1996). 

Other heterochromatin factors 

In addition to the proteins described in this section, there is a group of additional factors 

which are involved in heterochromatin formation and stability but whose mechanisms of action or 

purpose are unclear. Two of these proteins are Hipi and Slm9 which, together with Hip3, form a 

complex that is related to the metazoan HIRA complex and the budding yeast HIR histone gene 

regulator (Sherwood, Tsang et al. 1993; Spector and Osley 1993; Blackwell, Martin et al. 2004; 

Greenall, Williams et al. 2006). In fact, all three fission yeast genes are required for establishing 

repressive chromatin at centromeres and mating type loci. HIRA is involved in nucleosome 

deposition independently of DNA replication but at this time it is unclear how this activity 

contributes to heterochromatin structure (Tagami, Ray-Gallet et al. 2004). Epel is a 
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heterochromatin stability factor and one of the 6 fission yeast members of the "jumonji" family of 

proteins (Ayoub, Noma et al. 2003; Trewick, McLaughlin et at. 2005). Epel localizes to the boundary 

areas of heterochromatin domains and so has been proposed to act as a chromatin boundary and 

anti-silencing factor (Zofall and Grewal 2006). This hypothesis has been disputed given that 

heterochromatin domains appear to expand and contract when Epel is overexpressed (Trewick, 

Minc et at. 2007). Another recent study shows a correlation in genome-wide expression levels 

between epel+ overexpressing cells and cIr6-1 null mutant cells (Hansen, Burns et al. 2005; Isaac, 

Walfridsson et al. 2007). This suggests that Epel functions at the level of histone deacetylation and 

thus affects both constitutive heterochromatin and gene repression by HDACs (Isaac, Walfridsson 

et at. 2007). The jumonji C (jmjC) domain is associated with Fe(II) and a-ketoglutarate dependent 

oxidative catalytic activity that is employed in DNA repair and histone demethylation (Trewick, 

Henshaw et al. 2002). It was recently demonstrated that jmjC containing proteins can remove all 

methyl groups of histone H3K36 and H3K9 in metazoan (Klose, Yamane et al. 2006; Chang, Chen et 

al. 2007; Huarte, Lan et at. 2007; Klose, Gardner et al. 2007; Lee, Zhang et al. 2007; Liang, Klose et 

al. 2007; Yamane, Tateishi et al. 2007). Epel was similarly proposed to act as a histone H3K9 

demethylase that antagonizes heterochromatin but this activity has not yet been demonstrated 

(Trewick, McLaughlin et at. 2005). 

Role of heterochromatin at centromeres 

The heterochromatin domains formed over the centromeric outer repeats are not essential 

for kinetochrore-related centromere function. Reflecting this, many of the factors involved in 

forming and stabilizing centromeric heterochromatin are not essential for life. In fact, basic 

kinetochore function is maintained in the absence of Clr4t)39 or Swi6. However, 

heterochromatin domains play a part in centromere function during cell cycle. 

Inter chomosome cohesion is established during S phase and is a crucial event for both 

mitosis and meiosis. It is required for maintain the sister chromatids or homologous chromosomes 

physically associated through the duration of prophase and metaphase, when kinetochores are 

attached to opposite poles of the spindle and metaphase alignment is achieved. In budding yeast 

mitosis, cohesion is supported by the cohesin subunits Smclp and Smc3p that, together with 

Scclp/kleisin, were proposed to form a ring that holds the two chromatin fibres together 
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(Uhlmann, Lottspeich et at. 1999; Haering, Lowe et al. 2002). Upon triggering of anaphase, the 

APC/C (anaphase promoting complex/cyclosome) activates the protease separase that opens the 

cohesin rings by cleaving Rad2l/Scclp, thus allowing the movement of chromosomes to the spindle 

poles (Uhlmann, Lottspeich et at. 1999; Uhlmann, Wernic et at. 2000). Cohesion is established 

throughout the entire chromosome arms and also at centromeres. The latter is particularly 

important for meiosis II because it holds the sister chromatids together between anaphase I and 

anaphase II which otherwise could not occur. Cohesion is established during S phase but, in 

addition, centromeric cohesion requires heterochromatin (Bernard, Maure et al. 2001; Nonaka, 

Kitajima et al. 2002). More specifically, deposition of Rad2lsccl  and Psc3 3  was shown to require 

the presence of Swi6 1  and Clr45 r)3-9 (Bernard, Maure et al. 2001; Nonaka, Kitajima et al. 2002). 

Cells lacking Swi6' have defective centromeric cohesion but are rescued by arm cohesion which is 

established independently. Nevertheless, swi6 null cells display premature sister centromere 

separation and have high incidence of lagging chromosomes in late anaphase. 

As discussed previously, it is long known that the presence of outer repeat DNA is essential 

for the stability of mini-chromosomes in S. pombe (Clarke, Amstutz et al. 1986; Niwa, Matsumoto et 

at. 1986; Chikashige, Kinoshita et al. 1989; Hahnenberger, Baum et at. 1989; Niwa, Matsumoto et at. 

1989; Matsumoto, Murakami et al. 1990; Hahnenberger, Carbon et at. 1991; Steiner and Clarke 

1994). One of the proposed models for this requirement was that the heterochromatin-based 

cohesion established over mini-chromosomes was essential to maintain the two sister mini-

chromatids together since arm cohesion was less intense due to reduced size of mini-

chromosomes. Another possibility is that heterochromatin may be somehow involved in facilitating 

Cnpl 	deposition. In S. pombe, it is known that heterochromatin can be established over a 1.5 

kb fragment of outer repeat DNA placed ectopically in the genome and that it can silence marker 

genes inserted in its vicinity (Partridge, Scott et al. 2002). A very recent study demonstrated the 

connection between heterochromatin, deposition of Cnpl 	and mini-chromosome stability 

(Folco, Pidoux et al. 2008). It was observed that on stable mini-chromosomes, histone H3K9me2 is 

deposited over the outer repeat DNA present while Cnpl 	is found over the adjacent central 

core region. However, the establishment of the Cnpl 	domain on the mini-chromosome when 

it is introduced into the cell requires the presence of C1r4 	
r)3-9 and several other factors that 

participate in heterochromatin assembly (Folco, Pidoux et at. 2008). Once the Cnpl 	domain is 

established on the mini-chromosome, C1r4 
ar)3-9 is no longer required to maintain it. This situation 



mimics the fact that CnplCJ 	domains at endogenous centromeres are unaffected by 

heterochromatin mutants. Even though centromeric heterochromatin and central domain 

chromatin represent distinct and independent domains, they collaborate in defining a functional 

centromere. 

1.9. RNA INTERFERENCE AND HETEROCHROMATIN IN FISSION YEAST 

The first evidence hinting to the involvement of RNAi in silencing at the outer repeats was 

the discovery of homologous siRNAs (Reinhart and Bartel 2002). In fission yeast, the main 

components of the RNAi machinery - Argonaute, Dicer and RdRP - are present in single copy. 

Following the first discovery of centromere-specific siRNAs in S. pombe, subsequent studies showed 

that disruption of any of the three main RNAi components does lead to defects in chromosome 

segregation, lagging chromosomes and higher rate of chromosome loss that arise from defective 

sister chromatid cohesion (Volpe, Kidner et al. 2002; Hall, Noma et al. 2003; Volpe, Schramke et al. 

2003). Transcripts corresponding to centromeric outer repeats accumulate in these mutants, which 

suggest that RNAi is involved in silencing their expression (Volpe, Kidner et al. 2002). In fact, 

centromeric heterochromatin is abrogated in agolLt, dcr1L and rdp1L, preventing the 

establishment of pericentric cohesion (Hall, Noma et al. 2003; Volpe, Schramke et al. 2003). RNAi 

mutants have no impact in central core silencing, which shows that the activity of RNAi at 

centromeres is restricted to the outer repeat domains. 

Heterochromatin marks are affected in RNAi mutants, particularly at centromeres. 

H3K9me2 levels over marker gene insertions at the otr are totally depleted and Swi6' binding is 

also lost. The effect of RNAi mutants is not as dramatic over native otr sequences, where a 

modicum of H3K9me2 and Swi6" binding is still detectable. Nevertheless, this crippled 

heterochromatin is unable to maintain transcriptional silencing or to support effective centromeric 

cohesion. On other loci, the loss of RNAi has less of an impact. A repetitive sequence residing in the 

mat2/3 mating type locus (cenH) which bears homology to centromeric outer repeats is subject to a 

similar process of RNAi-dependent chromatin nucleation (Hall, Shan karanarayana et al. 2002). 

Nevertheless, the silent mating type loci are able to retain heterochromatin marks and 

transcriptional silencing in the absence of RNAi (Hall, Shankaranarayana et al. 2002). In fact, 
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nucleation of heterochromatin over this region is supported by an independent, cis-acting 

mechanism involving the ATF/CREB-like factors Atfl and Pcrl that recruit Clr3 directly (Jia, Noma et 

al. 2004; Kim, Choi et al. 2004; Yamada, Fischle et al. 2005). In circumstances where mating type 

loci heterochromatin is lost, the presence of RNAi contributes to efficient re-establishment of this 

heterochromatin domain. The telomere-linked helicase gene (tihi) also bears two repetitive 

insertions which are homologous to outer repeats and is enriched in histone H3K9 methylation 

(Hansen, Ibarra et at. 2006). Methylation is lost and transcript levels of tihi increase in RNAi 

mutants, indicating that this same pathway is recruited to silence this gene and establish sub-

telomeric heterochromatin (Hansen, Ibarra et al. 2006). In contrast to centromeres, telomeric 

heterochromatin is mostly refractory to RNAi mutations since the telomere-linked proteins Tazi 

and Ccql promote histone deacetylation and heterochromatin formation independently of RNAi 

(Cooper, Nimmo et al. 1997; Cooper, Watanabe et al. 1998; Nimmo, Pidoux et at. 1998; Kanoh and 

Ishikawa 2001; Hall, Noma et al. 2003; Sadaie, Naito et al. 2003; Sugiyama, Cam et al. 2007). 

The current model for RNAi activity at centromeres suggests that assembly of centromeric 

heterochromatin is triggered by transcription of the outer repeats, which occurs naturally in wild-

type cells (Figure 1-7). Centromeric transcripts are produced by RNA polymerase II from both 

strands of dg and dh repeats and form dsRNA molecules which are subsequently recognized and 

processed by Dcrl (Dicer) (Djupedal, Portoso et at. 2005; Kato, Goto et al. 2005). The main effector 

complex of fission yeast RNA interference is termed RITS (RNA-induced Initiation of Transcriptional 

Silencing). It contains the Argonaute protein Agol, the GW repeat protein Tas3 and the 

chromodomain protein Chpl (Verdel, Jia et al. 2004; Partridge, DeBeauchamp et at. 2007; Till, 

Lejeune et al. 2007). Thus, the composition of RITS illustrates the connection of this RNA-based 

mechanism to chromatin in fission yeast. Agol is loaded with centromeric siRNAs that allow it to 

target the RITS complex to the centromeric otr (Noma, Sugiyama et at. 2004; Verdel, Jia et al. 2004). 

The localization of RITS elicits histone H3K9 methylation on overlying nucleosomes by the SET-

domain methyltransferase Clr45 " 39. These modified nucleosomes are bound by Swi6 
HPI  which in 

turn enforces transcriptional silencing, thus forming heterochromatin and allowing centromeric 

cohesion to establish (Bernard, Maure et al. 2001; Nonaka, Kitajima et al. 2002). 
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RITS functions co-transcriptionally and in cis 

Recent analysis of RITS activity strongly favours a model in which RITS binds to a nascent otr 

transcript by means of siRNA complementarity (Partridge, DeBeauchamp et al. 2007) (Figure 1-7). 

In turn, the localization of RITS to the target RNA molecule attracts the RDRC (RNA-dependent RNA 

polymerase complex) (Motamedi, Verdel et al. 2004; Sugiyama, Cam et al. 2005). RDRC contains the 

RNA-dependent RNA polymerase Rdpl, the helicase Hrrl and the Trf4p-related RNA poly(A) 

polymerase Cid12 (Motamedi, Verdel et al. 2004). RdRP proteins participate in RNA silencing by 

generating a complementary strand to a target RNA molecule, thus generating more dsRNA for 

siRNA production by Dcrl to amplify the RNA silencing response (Sijen, Fleenor et al. 2001). 

Similarly, RDRC is thought to serve as positive feedback to fission yeast RNAi by a similar 

mechanism to promote RITS-mediated heterochromatin formation. The localization of both RITS 

and RDRC to otr loci is sensitive to RNase treatment, suggesting that RNA molecules act as a 

platform for their recruitment (Motamedi, Verdel et al. 2004). In addition to this evidence, a 

genetic screen for factors involved in silencing unveiled rpb2-m203, a mutant in the second largest 

subunit of RNA polymerase II that affects transcriptional silencing at centromeric outer repeats but 

does not affect the expression of any heterochromatin-related factors (Kato, Goto et al. 2005). 

Furthermore, it has been reported that Agol co-immunoprecipitates with RNA polymerase II 

(Schramke, Sheedy et al. 2005; Schramke, Sheedy et al. 2005). This co-transcriptional action of RITS 

bears close resemblance to the functional connection in A. thaliana between AG04, an Argonaute 

protein primarily involved in TGS, and RNA polymerase IV, a plant-specific DNA-dependent RNA 

polymerase (Herr, Jensen et al. 2005; Onodera, Haag et al. 2005). RNA polymerase IV (RNA Pol lVa) 

is required for producing RNAs that originate the AG04-specific siRNAs (Herr, Jensen et al. 2005; 

Onodera, Haag et al. 2005; Pontier, Yahubyan et al. 2005; Pontes, Li et al. 2006). In addition, a 

distinct isoform of RNA pol IV holocomplex (RNA Pol IVb) interacts with AG04 and is important for 

enforcing TGS (Pontier, Yahubyan et al. 2005; El-Shami, Pontier et al. 2007). Hence, it appears that 

the functional principle behind TGS is a crosstalk between Argonaute proteins and transcription 

machinery that enforces silencing at the chromatin level. 

RNAi-mediated heterochromatin formation functions in a closed mechanistic loop in fission 

yeast. Deposition of histone H3K9me2 is largely assumed to be the product of RNAi activity but it is 

also the modification that allows Chpl to bind to histone H3 tail with high affinity (Hall, 
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Figure 1-7: RNAi and heterochromatin assembly in S. pombe. 

Centromeric transcripts originating from the outer repeats dg and dh form dsRNA which is then processed 

by Dcrl. The activity of RNA polymerase II is responsible for the presence of centromeric RNA but the RNA-

dependent RNA polymerase complex (RDRC) also contributes to the formation of this double-stranded 

template. The resulting siRNAs are loaded into the RNA1 effector complex in S. pombe called RITS (RNA-

induced Initiation of Transcriptional Silencing) containing Agol, Chpl and Tas3, which then homes in on the 

chromatin locus. 

Recent evidence suggests that target recognition at the outer repeats is mediated by RNA-RNA interaction 

between the loaded siRNA and a nascent RNA polymerase II (RNAPII) transcript. RITS interacts with RNA pol 

II and recruits the Clr4 histone methyltransferase complex to methylate lysine 9 of histone H3 (H3K9me2) on 

surrounding nucleosomes. The chromodomain of Chpl is known to recognize this methylation mark and may 

contribute to tether the complex to this chromatin region. 

Upon H31<9 methylation, binding of Swi6' ensues and promotes heterochromatin assembly by 

dimerization and/or recruitment of C1r45u(var)3-9 to methylate surrounding nucleosomes. The cohesin subunits 

Psc3 and Rad21 are recruited to the Swi6Ml  scaffold thus establishing physical cohesion between sister 

chromatids. 
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Shankaranarayana et at. 2002; Partridge, Scott et al. 2002; Volpe, Kidner et al. 2002). The activity of 

the methyltransferase Clr4Suni39  is not only essential for modifying histones but also to maintain 

RNAi activity (Noma, Sugiyama et al. 2004). The levels of centromeric siRNAs are severely depleted 

in the absence of cIr4+, suggesting that H3K9me2 or the activity of Clr4Su(var)39 is required for some 

functional feedback that allows cells to sustain RNAi activity. Thus, it was proposed that RNAi-

mediated heterochromatin functions in cis, meaning that H3K9me2 allows RITS to bind to 

chromatin and control transcription locally (Noma, Sugiyama et at. 2004). RDRC is then recruited 

locally to promote siRNA amplification and re-inforce RITS activity (Motamedi, Verdel et at. 2004; 

Sugiyama, Cam et al. 2005). The consequent recruitment of C1r4-mediated H31<9methylation re-

enforces the heterochromatin state. This model proposes that RNAi acts to support a 

heterochromatin nucleation mechanism that might be involved in expanding and stabilizing 

heterochromatin domains. However, it does not provide an explanation for the initial H3K9 

methylation event that allows Chpl binding and suggests that RNAi cannot function in trans 

(Grewal and Jia 2007). The latter point is controversial since, up to date, no cis-acting primary 

nucleation mechanisms have been clearly described for centromeric outer repeats. The matter is 

still unclear, much because fission yeast RNAi does not respond to experimental stimulation with 

artificial constructs as well as its counterpart in plants and metazoa. Despite the considerable 

genetic evidence linking fission yeast RNA interference with Clr4 ar)3-9 methyltransferase, there 

are currently no known protein-protein interactions or common components between the Clr4 

complex and RITS or RDRC. The link between Clr4 39  and HDACs such as C1r3 is more evident but 

there are also no known molecular links between any of the heterochromatic HDACs (Clr3, Clr6 and 

Sir2) with RNAi (Yamada, Fischle et al. 2005). Thus, the actual mechanism by which RITS induces 

Clr4 39 to methylate histone H3K9 to form heterochromatin is still unknown. 

Transcription is required to promote silencing - the paradox 

There are two models that provide alternative explanations for the paradoxal requirement 

of transcription for establishment of silent heterochromatin. The first one is based on the 

description of a mutation in rpb7, one of the subunits of the RNA polymerase II complex. The rpb7-

1 mutant was isolated as part of a screen for suppressor of position effect at centromeres (or "csp" 

mutants) (Ekwall, Cranston et al. 1999; Djupedal, Portoso et al. 2005). The rpb7 mutant affects RNAi 
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activity at the outer repeats upstream of Dcrl, at the level of production of centromeric transcripts 

(Djupedal, Portoso et at. 2005). This mutation, that modifies a residue (G150D) in the RNA-binding 

domain of Rpb7, was shown to affect the firing of an otr-specific promoter that is partially 

responsible for generating transcripts for centromeric s1RNA production (Djupedal, Portoso et al. 

2005). Interestingly, the rpb7-1 mutant does not appear to affect general mRNA levels or RNA pol II 

competence in transcriptional elongation or termination (Djupedal, Portoso et at. 2005). Thus it was 

proposed that Rpb7 is a specialized RNA polymerase II component that participates in promoting 

transcription from promoters residing in a heterochromatic context in a form that is distinct from 

general mRNA expression. This model is supported by the characterization of plant RNA polymerase 

IV which is similarly responsible for producing transcripts involved in TGS of 5S rDNA gene clusters 

and AtSN1 retroelements (Herr, Jensen et al. 2005; Onodera, Haag et at. 2005). 

An alternative model proposes that transcription and establishment of fully silent 

centromeric heterochromatin are two temporally separated events in the fission yeast cell cycle. In 

wild-type cells otr transcripts can be faintly detected (Volpe, Kidner et al. 2002). However, based on 

literature it is not possible to attribute the source of this amount of otr RNA - whether it is due to 

tow-level of transcription in all cells or stronger transcription in a few cells within a much larger 

population. In fact, most of the published molecular analyses on the various aspects of RNAi 

function, centromeric transcription and chromatin modifications were performed on cultures of un-

synchronized cells, which contain a mixture of cells in Gi, G2, S and M. Hence, it is possible that 

accumulation of otr transcripts occurs naturally on a narrow window of time during the cell cycle, 

after which heterochromatin is re-established and otr RNA is degraded. The condensed structure of 

the heterochromatic domains must be resolved in early S phase in order for replication of 

centromeric DNA to occur (Kim, Dubey et at. 2003). During DNA replication, segregation of old and 

newly-synthesized histone octamers occurs randomly, which effectively should result in an 

attenuation of H3K9me2 signal over the outer repeats (Jackson and Chalkley 1985). consequently, 

transcriptional silencing may be relaxed in the stages following replication and re-activation of RNA 

polymerase II. Hypothetically, this would result in a peak of otr transcript production, to which Dcrl 

would respond by generating siRNAs. Consequently, RITS would be recruited to the otr and 

reinforce H3K9me2 by recruiting Clr42)39.  RITS bearing siRNAs from previous iterations would 

also contribute to this outcome. Transcription from the otr would then cease as the consequence of 

heterochromatin being fully established in time for mitosis. Unless the behavior of RNAi is analyzed 
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on a cell cycle basis, such a mechanistic detail would not be evident. In fact, a recent publication 

addresses this issue at centromeres throughout the replication stage of the cell cycle of fission 

yeast (Chen, Zhang et al. 2008). Chen et al. describe that in S phase there is a brief period where 

centromeric repeats are preferentially transcribed by RNA polymerase II. This brief burst of 

transcription is linked with siRNA production and the recruitment of RNAi components and 

heterochromatin factors to the centromere (Chen, Zhang et al. 2008). Thus, these observations 

strongly support the model of a cyclic renewal of RNAi induction and recruitment of silencing 

factors to the centromere occurring at a particular stage of the cell cycle. 

Interspersed repeats and gene silencing in fission yeast 

Fission yeast is equipped with a form of RNA silencing that contributes to promote 

formation of heterochromatin, which in turn has a role in centromere identity and function in cell 

division (Volpe, Kidner et al. 2002; Hall, Noma et al. 2003; Volpe, Schramke et al. 2003). 

Heterochromatin assembly directed by RNAi is also important for controlling mating type switching, 

the main cellular differentiation process in fission yeast (Hall, Shankaranarayana et al. 2002). RNAi 

is also recruited to the rDNA arrays, which coincidently are also engulfed in heterochromatin, but to 

what purpose is still unclear (Cam, Sugiyama et al. 2005). Nevertheless, RNAi appears to act against 

repetitive DNA as other forms of RNA silencing do in many other systems. The novel functions 

assumed by this pathway in fission yeast may represent subversions of its original purpose of 

genome surveillance against repetitive DNA. 

The genomic load of repetitive DNA in S. pombe is not limited to the aforementioned loci. 

The genome of fission yeast is populated by relatively small numbers of interspersed repeats that 

are derived from TE5, more specifically LTR retrotransposons (Bowen, Jordan et al. 2003). At the 

time when the research work described in this thesis began, previous work in our lab had proposed 

that interspersed LTR repeats are also targets for RNAi-mediated heterochromatin assembly 

(Schramke and Allshire 2003). It is critical to mention that the conclusions from this 

aforementioned work have since been retracted (Allshire 2005). They are mentioned in this thesis 

solely as a reference for the study described in Chapter 3. 
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S. pombe LTRs (Long Terminal Repeats) are 358 bp-long functional components of a class of 

TEs known as retrotransposons and they are also found in retroviruses. In the case of fission yeast, 

there are 275 LTRs scattered in the genome that derived from TEs of the Til and Tf2 families 

(Bowen, Jordan et al. 2003). LTRs were shown to be transcribed in both strands and respond to 

RNAi mutants similarly to centromeric transcripts. LTRs also displayed enriched levels of H31<9 

methylation and bound Swi6 
HP1  in an RNAi and C1r4-dependent manner (Schramke and Allshire 

2003). 

LTR repression appears to influence expression of nearby genes. So far, 7 meiotic genes 

have been found to become upregulated in RNAi and heterochromatin mutants (Schramke and 

Allshire 2003). This influence on gene expression is also abolished once the nearby LTR repeat is 

deleted. The repressive effect is sensitive to the distance between the gene promoter and the LTR 

as no genes whose promoters are more than 10 kb away from an LTR were reported to be affected 

(Schramke and Allshire 2003). This phenomenon is highly reminiscent of PEV and it is likely to be 

caused that heterochromatin assembled over LTRs spreading and engulfing nearby genes. These 

findings are highly interesting since they suggest the existence of solo-repeat-based chromatin 

silencing mechanism that can widely employed to regulate gene expression on a lower eukaryote. 

The potential number of genes targeted for regulation by this mechanism is high since there are an 

estimated 800 genes located within 10 kb of a solo LTR. 

The conclusions mentioned in the two paragraphs above have since been restracted As 

mentioned previously, the genomes of vertebrates, particularly mammals, are populated by 

hundreds of thousands of repeats scattered throughout the genome. Large numbers of these 

repeats are characterized by extensive histone de-acetylation, and display H3K9 di-methylation and 

DNA methylation, among other marks (Kondo and Issa 2003; Martens, O'Sullivan R et al. 2005). The 

chromatin modifications associated with TEs and related interspersed LTRs display a dynamic 

behaviour throughout differentiation stages of embryonic stem cells. There is also evidence 

supporting the activity of RNA interference against some of these sequences as part of a TE 

repression process that is active in mouse pre-implantation embryos(Svoboda, Stein et al. 2004). 

Coincidently, it is also during these stages of embryonic development and cell differentiation that 

significant epigenetic reprogramming occurs in the mammalian genome. In light of this, it is 

possible that a process of solo repeat-mediated gene repression, similar to LTR-mediated silencing 

in S. pombe, may occur in metazoa. Therefore, characterizing the mechanism of LTR silencing in S. 
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pombe could provide insights into solo repeat function and attain knowledge on the function of 

interspersed repetitive elements that may prove to be relevant for the genomes of higher 

eukaryotes. 

1.10. SUMMARY AND AIMS 

The epigenetic processes that control chromatin structure and the activity of underlying 

DNA respond to the presence of repetitive DNA. The connection between repetitive DNA and 

heterochromatin has functional consequences in chromosomal structure, centromere function, cell 

differentiation, viral defence and regulation of gene expression in a large range of eukaryotic 

organisms. Some of the mechanisms involved employ short RNA molecules and a conserved set of 

proteins (Argonautes, Dicer and RdRP) to recognize and direct specialized modification machinery 

to target DNA loci in order to alter the structural and functional parameters of the overlying 

chromatin. The same basic pathway is present in the unicellular eukaryote S. pombe in a minimal 

form that has been revealed to perform several key functions that have counterparts in higher 

eukaryotic organisms. Metazoa and plants are often equipped with several Dicers (2 in D. 

melanogaster and 4 in plants) and multiple Argonautes (4 in D. melanogaster, 8 in H. sapiens and 

24 in C. elegans) that reflect the different specializations of RNA silencing but make molecular and 

genetic analysis difficult due to redundancy. In comparison, fission yeast is a genetically tractable 

system that contains only one copy of each of the three key RNA silencing genes, thus allowing for 

comprehensive and informative studies of the RNAi-mediated chromatin modification mechanism. 

The work presented in this thesis focuses on exploring the mechanism and functional 

implications of RNA interference in fission yeast. The involvement of RNAi in LTR repression and 

gene silencing was investigated in order to confirm the existence of a gene regulatory mechanism 

based on this phenomenon and to further determine the extent of targeted genes in order to 

establish the functional impact of this mechanism on the biology of this organism. I monitored 

expression of genes nearby LTRs in wild-type and mutant backgrounds in order to determine if and 

which are under the control of RNAi and heterochromatin. RNAi activity towards LTR5 was assayed 

as well as chromatin modifications over LTR loci. The observations collected throughout this study 
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challenge the report that gene expression is affected by a solo LTR-mediated regulation mechanism 

or that LTR themselves are targeted by RNAi or heterochromatin assembly. 

A considerable part of the project was aimed at unravelling aspects of the mechanism by 

which RITS directs transcriptional silencing and heterochromatin assembly. One of the analysed 

aspects was the possible relationships between RNAi and other co-transcriptional processes, 

namely RNA polymerase II transcription termination, mRNA cleavage and polyadenylation. The 

integration of RNAi with RNA turnover by the exosome complex was also investigated. The 

connections between these different pathways was analysed in light of RNAi activity and its 

function at the centromere. For this purpose, I conducted transcriptional silencing and RNAi activity 

analyses on mutants for the cleavage and poly-adenylation factor pfs2, the rRNA maturation and 

transcription termination factor dhpl and exosome components dis3 and rrp6. I concluded that 

neither cleavage & poly-adenylation nor transcription termination play a crucial role in RNAi-

mediated heterochromatin formation. On the other hand, RNA degradation by the exosome 

appears to be involved in transcriptional silencing and to process centromeric transcripts, although 

the mechanistic details of this involvement are not clear. 

Even though there is considerable evidence supporting the model that RITS acts co-

transcriptionally, very little is known of the mechanism by which RITS enforces TGS and recruits 

chromatin modifications. I focused on Agol and investigated the functional relevance of its putative 

RNA slicing activity in TGS and heterochromatin assembly. For this purpose, I introduced point 

mutations predicted to abolish slicing activity in the agol gene and analysed their effect in 

transcriptional silencing, RNAi activity and on the behaviour of RITS components. The results show 

that slicing is crucial for RNAi activity and consequently for siRNA-directed assembly of 

heterochromatin. Instead of representing a form of effecting siRNA-mediated repression, RNA 

slicing is an essential property of Agol without which it cannot perform any of its roles in the fission 

yeast RNAi pathway. 
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CHAPTER 2 
MATERIALS AND METHODS 

2.1. GENERAL SOLUTIONS AND MEDIA 

PBS (1 litre): 	 10 g NaCl 

0.25 g KCI 

1.43 g Na2HPO4  

0.25 g KH2PO4  

Autoclaved 

TE: 	 1mMEDTA 

10 mM Tris-HCI, pH 8 

Autoclaved 

20X TBE (1. litre): 	Iris base 216 g 

Boric acid 110 g 

80 ml 0.5 M EDTA, pH8 

Fission Yeast Media 

All solutions were made up to the final volume with distilled H20. All the following solutions 

were sterilized by autoclaving, unless otherwise stated. 

PMG agar (1 litre): 	3 g Pthallic Acid 

2.2 g Di-sodium orthophosphate 

3.75 g Glutamic acid 

20 g D-Glucose anhydrous (Fisher Scientific) 

1.0 ml 1000x Vitamins 

0.1 ml 10.000x Minerals 

20 ml 50x Salts 

20 g Agar (OXOID) 
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PMG liquid (1 litre): 	3 g Pthallic Acid 

2.2 g Di-sodium orthophosphate 

3.75 g Glutamic acid 

20 g D-Glucose anhydrous (Fisher Scientific) 

1 ml 1000x Vitamins 

0.1 ml 10.000x Minerals 

20 ml 50x Salts 

YES agar (1 litre): 	5 g Yeast Extract (DIFCO) 

(no adenine) 	 30 g D-Glucose anhydrous (Fisher Scientific) 

0.2 g Arginine 

0.2 g Histidine 

0.2 g Leucine 

0.2 g Lysine 

0.2 g Uracil 

20 g Agar (OXOID) 

YES liquid (1 litre): 	5 g Yeast Extract (DIFCO) 

30 g D-Glucose anhydrous (Fisher Scientific) 

0.2 g Adenine 

0.2gArginine 

0.2 g Histidine 

0.2 g Leucine 

0.2 g Lysine 

0.2 g Uracil 

50x Salts: 	 53.5 g Magnesium Chloride.6H20 

1 g Calcium Chloride.61-120 

50 g Potassium Chloride 

2 g Di-Sodium Sulphate 
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1000x vitamins: 	0.5 g Pantothenic Acid 

(100 ml) 	 1 g Nicotinic Acid 

1 g Inositol 

1 mg Biotin 

(Filter sterilized) 

10.000x minerals: 	5 g Boric Acid 

4 g MnSO4  

4 g ZnSO4  

2 g FeCl2.6H20 

1.6 g Molybdic Acid 

1 g KI 

0.4 g CuSO4.5H20 

(Filter sterilized) 

Supplement stocks: 	50x Adenine 5g/l 

lOOx Arginine log/I 

lOOx Histidine lOg/I 

lOOx Leucine log/I 

lOOx Uracil log/I (dissolved by adding NaOH) 

Malt Extract plates: 20 g/l agar 

30 g/I malt extract (OXOID) 

250 mg/I Adenine 

250 mg/I Arginine 

250 mg/I Histidine 

250 mg/I Leucine 

250 mg/I Uracil 

5-FOA plates: 	PMG or YES-agar 

lg/I 5-FOA (Melford Laboratories) 

(added to melted agar below 60°C) 
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TBZ plates: 	 YES-agar 

TBZ (stock 10 mg/ml in DMSO) to 10 .ig/ml or 20 ig/ml added to melted 

agar below 60°C 

Phloxin B plates: 	PMG or YES-agar 

2.5 ig/ml Phloxin B 

2.2. FISSION YEAST PROTOCOLS 

MEDIA AND GROWTH 

Haploid strains of S. pombe grow at the following generation times. 

Medium 	 Temperature 2C 	 Generation time 

Yeast extract (rich) 	 25 3h 

28 2h4omin 

32 2h 10mm 

36 2h 

minimal 	 25 4h 

28 3h 

32 2h2Omin 

For mutant strains the generation times may be longer. The time required for the cell population to 

double in size can be calculated more precisely using the following equation: 

T= Iog(2t2t1) 

log () 
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T is the generation time from the table above while y is cells/ml at time t2 and x is cells/ml at time 

ti. 

Temperature sensitive strains were grown at 25°C and 36°C was the restrictive 

temperature. Cold-sensitive strains were grown at 36°C and the restrictive temperature was 18°C. 

Some of the experiments were conducted at semi-restrictive temperature which was 32°C. 

Liquid cultures 

For physiological experiments, it is important that cultures are maintained in mid-

exponential phase between 2 x 106  and 1 x 107celIs/ml. To generate cultures in mid-exponential 

growth, a fresh colony or overnight patch of a strain of known genotype was inoculated in 10 ml of 

YES (or minimal medium if the strain carried a plasmid with an auxotrophic marker) and incubated 

during the night at the appropriate temperature for the culture to reach early stationary phase. The 

next day, this pre-cultured was used to inoculate a larger culture, taking into consideration the 

generation times. 

The size of the culture flask was selected according to the required volume of culture: 

Culture volume 
	 Size of culture flask 

uptolOmi 	 - 	 25m1 

upto5oml 	 100 MI 

uptolOOmi 	 200m1 

up to 125 ml 	 250 ml 

upto25oml 	 500 m 

upto500ml 	 1000 MI 

uptol000ml 	 2000m1 

The media used for growing S. pombe are described below. YES liquid or solid medium 

prepared with agar was used whenever possible for vegetative growth. 



Temperature/cold sensitivity 

Temperature sensitive (ts) and cold sensitive (cs) were checked by replica plating onto YES 

plates containing phioxin B and incubated at the restrictive temperature. Phloxin B is a dye that 

permeates the cell membrane of fission yeast cells but is actively pumped out. Sick or dead cells fail 

to do so and become stained by accumulating Phioxin B. 

Cell counting 

The density of fission yeast cell cultures was analysed using a Coulter Counter Zi (Beckman 

Coulter). This device has the advantage that samples can be taken quickly during an experiment 

and the processed at leisure. The device plots a histogram of the cell volume within the population 

of counted cells, which can be used to assay the growth state of the cells as well as detect bacterial 

contamination 

Alternatively, the haemocytometer was used. The haemocytometer is a specialized 

microscope slide in which 2 grids have been engraved in a central region that is 0.1 mm lower than 

the rest of the slide. Each grid comprises 25 large squares, each containing 16 smaller squares. A 

coverslip is applied to the slide and 10 uI of cell culture is pipette under the coverslip. Multiplying 

the total number of cells in the 25 large squares by 
104  yields the number of cells/ml. 

Auxotrophy 

The auxotrophic markers most commonly used in S. pombe required adenine, arginine, 

histidine, leucine, lysine and uracil. Cells were grown in the presence of 100 mg/L (4 ml of 10 mg/ml 

stock solution per 400 ml medium). To test for auxotrophy in a certain strain, cells were spread on a 

medium plate to obtain single colonies after growth. Then the colonies were replica plated onto 

minimal medium containing or not the appropriate supplement. The plates were grown for 1-2 

days and then examined for growth under the different conditions. 

Serial dilution assay 
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To assess the growth of various mutant strains on different media or at different temperatures, 

cells from a fresh plate were resuspended in sterile dH20 and diluted 10 fold in a 96-well microtiter 

plate. Cells were then spotted onto appropriate media using sterilized metal 'hedgehog' and plates 

were incubated at the desired temperature for a minimum of 3 days. 

2.3. MOLECULAR GENETICS 

Transformation 

A minimum of 50ml of culture grown to a density of 1 x 
107  cells/ml in YES (5 x 108  cells) was 

required for each transformation. Cells were collected from culture by spinning at 3200 rpm for 5 

minutes at 20°C. 

Lithium acetate 

Cells were washed once in 10 ml 0.1 M LiOAc pH 4.95 and then resuspended in 10 ml 0.1 M 

LiOAc pH 4.95 and incubated at 32°C for 30 minutes. Cells were then resuspended at 109/ml in 

0-1 M LiOAc pH 4.95. 150 ltl of cell suspension was mixed with 1 lig DNA and 370 i.il of PEG 

3350 (50% solution dissolved in TE ph8) and then incubated for a further 30 minutes at 32°C. 

Subsequently, cells were heat-shocked at 42°C for 20 minutes and then resuspended in 

selective liquid media for at least 3 hours before plated on appropriate selective media. 

Electroporation 

Cells were washed three times with 10 ml of ice-cold 1.2 M sorbitol solution. After the final 

wash, the cells were resuspended at 109/ml. 200 .il of cell suspension was mixed with 100 ng of 

plasmid or 10 ig of linearized DNA in a chilled transformation cuvette. Cuvette was placed in 

slot of electroporator (Biorad) and was pulsed briefly with the settings 1.5 kV, 200 ohms and 25 

l.tF. 500 lfl of ice-cold 1.2 M sorbitol was added to the cuvette and mixed gently. The resulting 

suspension was spread onto 12 plates of appropriate media. Transformants appeared after 3-4 

days of growth at 32°C. When transforming DNA fragments intended to integrate into the 

genome by homology recombination, 5-10 lig of fragment DNA was co-transformed with 10 ng 
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of LE(J2 plasmid to minimize background. Cells were selected on —LEU plates before replica 

plating onto media selecting for the inserted DNA. 

Genetic crosses 

Crosses were carried out on nitrogen starved malt extract (ME) or pombe minimal medium 

(PMG). To cross two strains, a loopful of a freshly grown h+ strain and a loopful of freshly grown h-

strain were mixed together on a plate. The cross was then incubated at 25°C (or 36°C if one of the 

strains was cold-sensitive) to allow conjugation. Fully formed ascii containing four spores are visible 

after 2-3 days of incubation at 25°C. 

. 	Random spore analysis 

All crosses performed for this thesis were processed by random spore analysis. A 2-3 day 

old cross was checked for the presence of ascii by light microscopy. A loopful of mating mixture 

was resuspended in 300 ld of 1 in 100 dilution of glusulase and incubated at 32°C overnight or 

at room temperature for 2 days. Glusulase is a crude snail gut enzyme that breaks down the 

vegetative cells and the wall of the ascus. Between 200 - 1000 spores were then plated on YES 

agar or selective media at appropriate temperature until colonies are formed. 

2.4. DNA AND RNA PROTOCOLS 

Preparation of genomic DNA 

5 ml of stationary phase culture was pelleted at maximum speed in a benchtop centrifuge. 

The pellet was resuspended in 250 ml SP1 buffer containing 0.4 mg/ml Zymolyase 100-T and 

incubated at 37°C for 1 hour. Spheroplasted cells were pelleted at 8,000 rpm in a eppendorf 

centrifuge for 15 seconds. The pellet was resuspended in 500 p1 TE and 50 p1 10% SIDS was added, 

followed by vortexing and the addition of 165 ltl 5 M KOAc. Samples were incubated on ice for 30 

minutes and spun in a microfuge for 10 minutres. The supernatant was then added to 750 p1 

isopropanol and placed in dry ice for 10 minutes. Samples were spun for 10 minutes in a microfuge 

and the pellet was allowed to dry. Pellet was then resuspended in 300 p1  TE containing 10 .1g/ml 

RNase and incubated for 1 h and 30 minutes at 37°C. DNA was then extracted by 



phenol/chloroform and precipitated with 3 volumes of ethanol and 1/10 volume of 3 M NaOAc. 

Genomic DNA was then resuspended in 20 lil TE. 

Rapid preparation of genomic DNA (SPZ) 

A small amount of cells was picked from a fresh plat using a sterile cocktail stick and were 

resuspended in a microfuge tube containing 20 lil of SPZ buffer + 0.5 1A Zymolyase 100-1 (10 

mg/ml). After mixing, tubes were incubated at 37°C for 20 minutes. 200 jil of sterile dH20 was then 

added, the tubes were vortexed and 2 pi of the mixture was used in a 20 p1 PCR reaction. 

SPZ buffer: 1.2 M sorbitol, 100 mM sodium phosphate pH 7.4, 2.5 mg/ml Zymolyase 100-T. Stored 

at 20°C. 

Preparation of total RNA 

A 10 ml culture of cells was grown in YES or appropriate media to a density of up to 1 x 107  

cells/mi. Cultures were pelleted by centrifugation, washed with TE and transferred to microfuge 

tubes prior to being resuspended in 300 p1 RNA extraction buffer. 300 p1 of acid-washed glass beads 

(Sigma) were added followed by 300 lil phenol/chloroform 4:1 pH 4.7 (Sigma). The microfuge tubes 

were shaken at high speed on a multi-head vortexer for 30 minutes at 4°C to lyse the cells, followed 

by centrifugation at 10,000 rpm at 4°C for 5 minutes and removal of supernatant. The supernatant 

was extracted with phenol/chloroform and then with chloroform. The RNA was precipitated with 3 

volumes of ice-cold ethanol and centrifuged at 10,000 rpm for 20 minutes at 4°C. The pellet was air-

dried and resuspended in 25 p1 dH20 or 50% formamide (freshly prepared, Sigma). 50% formamide 

preserves the integrity of the RNA but is not suitable for enzymatic procedures, such as cDNA 

synthesis by reverse transcriptase. The concentration of each sample of RNA was determined by 

spectrophotomery analysis on a Nanodrop ND-1000 (Thermo Fisher Scientific). 

RNA extraction buffer: 50 mM Tris-HCI pH 7.5, 10 mM EDTA, 100 mM NaCl, 1% SDS. 

Reverse transcriptase PCR (RT-PCR) 

70 



S 

For RT-PCR 1 p.g of each sample of RNA was aliquoted into a microfuge tube. The samples 

were mixed with dH20 to a final volume of 8 p.1, boiled for 5 minutes at 95°C and allowed to cool 

down at room temperature for a few seconds. This step favours the breakage of RNA-DNA hybrids 

that are shielded from DNase digestion. 1 1.11 of DNase I (Invitrogen) and 1 p.1 of DNase buffer were 

added and the reaction was allowed to occur at 25°C for 1 hour. Once completed, the reaction was 

stopped with 1 p.1 25mM EDTA followed by incubation at 65°C for 10 minutes. The DNase digestion 

was confirmed at this stage by using 1 p.fl on a PCR reaction. Once completed, 1 p.g of otigo dT17  or 

other specific oligo was added to the samples along with dH20 to a final volume of 24 p.!. The 

samples were allowed to anneal for 10 minutes at 70°C and then placed on ice. Samples were 

collected by brief centrifugation at 4°C and returned to ice before adding 12 p.1 5x Superscript II First 

Strand buffer (Invitrogen), 2 p.1 2.5 mM dNTPs and 1 p.1 0.1 M DTI. The samples were then split into 

two 19 p.1 aliquots and incubated for 5 minutes at 42°C. 1 p.1 Superscript II reverse transcriptase was 

added to one of each of the pair of tubes (marked +RT). The tubes were then incubated at 42°C for 

50 minutes and then 70°C for 15 minutes until they were returned to ice. 1 p.1 of the final cDNA was 

assayed in a 20 p.1 PCR reaction to measure transcript levels. 

Real time PCR (qPCR) 

Real time PCR reactions were carried out using a customized PCR mixture containing AmpliTaq 

Gold polymerase (Applied Biosystems), SYBR Green I (Molecular probes), dNTPs (Roche Applied 

Sciences) and a variety of stabilizers and PCR enhancers. The mixture and PCR conditions were 

tested and optimized with a variety of cDNA and ChIP samples until it performed adequately when 

compared to commercial reagents. 

. Primers 

Primer oligos were designed for all the analysed genes and DNA loci using Beacon Designer 

6 (Premier Biosoft). The software selected primer sequences in the basis of best annealing 

parameters (Tm 50°C or higher), product size (between 75 and 200 bp), no sequence homology 

in target area (BLAST analysis), low secondary structure and both self- and cross-annealing 

properties (AG > -3.0 Kcal/mol). 

. 	Reaction set up 
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The reactions were carried out in 25 pd volumes, with 12.5 p.1 of PCR mixture and 12.5 p.1 

comprised of 4 pmol of each primer oligo, 2 p.1 of sample (diluted cDNA or ChIP DNA) and dH20. 

The reactions were carried out in 96-well optical PCR plates (Eurogentec) sealed with optical 

film (ABI Prism) in a Biorad iCycler PCR machine. 

PCR programme 

The PCR programme consisted of an initial 10 minute long denaturation step at 95°C 

followed by 40 iterations of the following cycle: 15 seconds at 95°C, 30 seconds at 50°C, 30 

seconds at 72°C. This programme was followed by a melt curve analysis in order to visualize 

possible amplification of primer dimers. 

Standard curve 

Each pair of primer oligos was assayed by serial dilution analysis, in which a series of 10 fold 

dilution of a ChIP total DNA extract was amplified in triplicate. The average cycle threshold (Ct) 

was calculated for each dilution step and the standard amplification curve was derived by the 

iCycler software. These analyses provided the PCR efficiency rate for each primer pair that was 

later used in the quantifications: 

—1 

E= lOm 

E is the PCR efficiency value and m and the slope of the standard curve. 

Quantification methods 

The quantifications were made by two methods. The first was quantification relative to 

standard DNA (in arbitrary units) and was applied to Chromatin IP samples. The undiluted 

standard used for serial dilution was set to "1" and all the samples were quantified in function 

of it. The internal ratios of target gene versus control gene in each sample were then compared 

between IP and Total samples to yield the the final enrichment values. The second method was 

the Pfaffl relative quantification model (Pfaff[ 2001) 

Etarget (Ct 
control—Ct mutant) 

Ratio = 
Ereference (Ct 

control—Ct mutant) 
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Etarget is the PCR efficiency value for the oligos targeting the analysed gene while Ereference is 

the same value for the reference gene. Ct is the mean threshold cycle for each set of triplicate 

reactions performed on either control (e.g. wild-type) or mutant strain sample. 

Reagents 

Custom qPCR reagent (for 5m1): 1385 1.11 dH20, 1000 lil AmpliTaq Gold buffer (lOx), 1000 ld 

M902 (25 mM), 80 iii dNTPs (25 mM each), 25 lil SYBR Green I (1:100), 10 l Fluorescein (10 

liM), 800 41 DMSO, 600 p.1 50% Glycerol, 50 p.1 10% Tween 20, 50 p.1 AmpliTaq Gold (5U/ul). 

The solution was mixed well before adding the enzyme. I made separate aliquots (600 tl) 

and keep at -20°C. Filter tips and freshly autoclaved water were used. Dedicated stocks were 

kept for all components of the mixture that were renewed frequently. Diluted SYBR Green I is 

unstable and its degradation product is a strong PCR inhibitor. Fresh dilutions of SYBR Green I in 

DMSO or TE ph 7.5 were prepared and stored at 4°C for a maximum of two weeks. 

Preparation of small RNA 

This protocol is basically a scaled up version of the previous one. A 50 ml culture of cells 

was grown in YES or appropriate media to a density of up to 1 x10
7 cells/mi. Cultures were pelleted 

by centrifugation, washed with TE and transferred to microfuge tubes prior to being resuspended in 

500 0 RNA extraction buffer. 500 p.1 of acid-washed glass beads (Sigma) were added followed by in 

500 p.1 phenol/chloroform 4:1 pH 4.7 (Sigma). The microfuge tubes were shaken at high speed on a 

multi-head vortexer for 45 minutes at 4°C to lyse the cells, followed by centrifugation at 10,000 rpm 

at 4°C for 8 minutes and removal of supernatant. The supernatant was extracted with 

phenol/chloroform and then with chloroform. PEG8000 and NaCl were added to the supernatant 

up to 10% and 0.5M final concentration respectively and incubated on ice for 30 minutes. This 

caused the precipitation of the large rRNA, mRNA and genomic DNA molecules from the 

supernatant, leaving the smaller RNA5 in solution. The supernatant containing only the small RNA5 

was precipitated by adding 3 volumes of ice-cold ethanol and incubating at -20°C for a minimum of 

3 hours. The PEG-precipitated fractions were recovered by washing with 70% ethanol and 

resuspending in 25 p.1 dH20 or 50% formamide. These are suitable for northern analysis and RT-PCR. 

The small RNA fractions are recovered by adding 1 p.1 of glycogen (20 mg/ml, Roche Applied 
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Science) and spinning at 10,000 rpm for 30 minutes at 4°C. The resulting pellets were washed once 

with 80% ethanol and spun again at 10,000 rpm for 15 minutes at 4°C. After careful removal of the 

supernatant, the pellet was air dried for 15 minutes and resuspended in 25 ld 50% formamide. The 

concentration of each sample of RNA was determined by spectrophotomery analysis on a 

Nanodrop ND-1000 (Thermo Fisher Scientific). Small aliquots of the large and small RNA fractions 

were loaded side by side and migrated on a standard, non-denaturing agarose mini-gel. Both large 

rRNA bands should appear in the large fraction lanes and not in the small RNA fraction. The only 

visible band in the small RNA lanes, consisted of 5S, 5.8S rRNAs and tRNAs, should migrate near the 

100 bp DNA marker. 

Samples were stored at -80°C. 

RNA extraction buffer: 50 mM Tris-HCI pH 7.5, 10 mM EDTA, 100 mM NaCl, 1% SDS. 

Northern analysis 

Large RNA analysis 

o 	Formaldehyde gel electrophoresis (Sambrook and Russell 2006) 

This method was used for large RNA analyses described in chapters 3 and 4. 

Samples of 10 ltg of total or large RNA were diluted in 3 volumes of sample loading 

buffer, vortexed and denatured for 10 minutes at 65°C before cooling on ice for 5-10 

minutes. Samples were loaded on a 1% agarose-formaldehyde gel that had been cast 

and set in the fume hood. The gel was run at 80 V for a total of 4 hours. When the 

bromophenol blue dye had migrated to approximately 2 cm from the bottom of the gel, 

the run was stopped and the gel photographed under UV next to a fluorescent ruler. 

Running buffer: lx HEPES ph 7.8 

Sample loading buffer (for 1 ml): 100 ltl lOx HEPES pH 7.8, 500 il formamide, 160 uI 

37% formaldehyde, 170 uI  50% glycerol, 5 ui ethidium bromide (10 mg/ml), 65 uI  dH20. 
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Glyoxal/DMSO gel electrophoresis (Sambrook and Russell 2006) 

This method was used for large RNA analyses described in chapter 5. 

Samples of 10 lig of total or large RNA were diluted in 5 volumes (minimum) of 

glyoxal reaction mixture, incubated at 55°C for one hour and then chilled for 10 

minutes on ice until ready to use. 1-2 p1 of RNA loading buffer was added to the 

samples before loading onto the gel. The gel was run at 80 V for approximately 4 hours, 

until the dye front was 2 cm from the end of the gel. After running, the gel was 

photographed under UV next to a fluorescent ruler. 

This method of RNA electrophoresis is more prone to RNA degradation by RNase 

contamination. Before casting the gel, all the required equipment was thoroughly 

washed with hot water and detergent, rinsed with 3% hydrogen peroxide, rinsed 

several times with ddH20 and finally rinsed with 70% ethanol before air drying. 

Running buffer: lx BPTE electrophoresis buffer 

Glyoxal reagent mixture (for 10 ml): 6 ml of DMSO, 2 ml of deionized glyoxal, 1.2 ml of 

lOx BPTE electrophoresis buffer, 0.6 ml of 80% glycerol, 0.2 ml of ethidium bromide (10 

mg/ml). The mixture was separated into 500 Iil aliquots and stored at -70°C. Aliquots 

were not used more than once. 

lOx BPTE electrophoresis buffer: 100 mM PIPES, 300 mM Bis-Tris, 10 mM EDTA. Final 

pH was approximately 6.5. 

Transfer 

The gel was soaked in 5 volumes of 2x SSC for 20 minutes. In the meantime, the 

membrane (Hybond NX, GE Healthcare) was pre-conditioned by first soaking briefly in 

dH20 and then in lOx SSC for 10 minutes. Inside a tray filled with 20x SSC solution, the 

following stack was assembled: a large gel tray upside-down, 3 large pieces of pre-

soaked 3MM paper touching the 20x SSC solution to serve as wick, 3 gel-sized pieces of 

pre-soaked 3MM, the gel upside down, the membrane, 3 membrane-sized pieces of 

pre-soaked 3MM, a large stack of paper towels, a glass or hard plastic plate and finally 
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a weight of approximately 500 g. Care was taken while assembly the stack so that no air 

bubbles were trapped. The membrane was carefully laid on top of the gel and was not 

moved or adjusted afterwards due to contact transfer. The stack was insulated on all 

four sides of the gel with cling film to prevent the solution from bypassing the gel and 

short-cutting to the stack. The transfer was left for a minimum of 16 hours. After 

disassembly, the position of the gel was marked on the membrane with a pencil. The 

membrane was dried under a hood and cross linked twice using an Autocrosslink 

Stratalinker (1200 joules/cm3). Both the transferred gel and membrane were 

photographed under UV to confirm the transfer and obtain a loading control from the 

membrane. After this, the membrane was stored at room temperature until required. 

20x SSC: Dissolve 175.3 g of NaCl and 88.2 g of tn-sodium citrate in 800 ml of H20. 

Adjust the pH to 7.0 with a few drops of a 14 N solution of Nd. Adjust the volume to 1 

litre with H20 and autoclave. 

o Hybridization 

The membrane was re-soaked in 2x SSC and then placed in a hybridization bottle. In 

the case of glyoxal/DMSO treated RNA, the membrane was first incubated in TE pH 8 

for 15 minutes and then washed with 2x SSC. Once re-soaked, the membrane was pre-

hybridized in 25 ml of modified Church-Gilbert buffer at 65°C in a roller oven for one 

hour. While the pre-hybridization was ongoing, the radiolabelled probed was prepared. 

Radiolabelled probes were prepared by the random priming method using the High 

Prime labelling kit (Roche Applied Science). 25ng of template DNA were added to H2O 

to a total volume of 11 Ifl, denatured at 95°C for 10 minutes and then quickly chilled on 

ice for 5 to 10 minutes. 4 il of High Prime reaction mixture were added to the 

denatured DNA along with 5 Itl of 50 liCi [a32P] dCTP (GE Healthcare). The reaction was 

quickly mixed, spun down and incubate at 37°C for 45 minutes. The reaction was 

stopped by adding 30 ill of 25 mM EDTA and incubating at 65°C for 2 minutes. The 

unincorporated nucleotides were removed using a Sephadex G25 microcentrifuge 

column (Microspin G25, GE healthcare). To estimate the incorporation rate, 1 1,11 

samples are taken before and after running the probe through the column. These are 
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mixed with 49 il H20 and the whole volume is placed in a counter vial with 10 ml of 

scintillation fluid and allowed to settle. The vials are counted in a scintillation counter 

using the 32P programme for a minimum of 2 minutes. The estimated incorporation rate 

is calculated by the ratio of the counts per minute (cpm) of the probe after clearing the 

column over the same before the column. Probes with less than 15% are discarded. The 

probe was denatured at 95°C for 10 minutes and then cooled down quickly on ice. The 

probe was quickly mixed with 1 ml of pre-warmed hybridization buffer and transferred 

to enough volume of hybridization buffer. Rapid mixing is required to prevent the 

labelled DNA from reanneling, which would cause the hybridization to fail. The final 

probe concentration used was 1 x 106  cpm/ml of hybridization buffer. 

Once the pre-hybridization of the membrane was completed, the solution was 

exchanged by the probe and left incubating overnight at 65°C. Once the hybridization 

was completed, the membrane was washed as follows: rinsed briefly with 25 ml 2x SSC; 

washed twice with 25 ml of 2x SSC, 1% SDS for 5 minutes; washed twice with 25 ml of 

0.5x SSC, 0.1% SDS for 10 minutes. The membrane was rinsed with 2x SSC to wash off 

the SDS, wrapped in plastic sleeve or Saran wrap and placed in a cassette with a 

Storage Phosphoscreen (GE Healthcare) for a minimum of 4 hours. After exposure, the 

phosphoscreen was scanned on a Storm phosphorimager (GE Healthcare). 

Hybridization buffer (modified Church-Gilbert buffer): 0.5 M sodium phosphate pH 7.2, 

7% SDS, 10mM EDTA. 

. 	Small RNA analysis 

o 	Mini denaturing PAGE and electrotransfer 

This method was used for small RNA analyses described in chapters 3 and 4. 

Electrophoresis on 17.5% polyacrylamide 7M urea gel was performed on mini-

protein gel apparatus (Hoefer) with 1.5mm comb and spacers. To prepare 30 ml of gel 

solution (enough for 2 gels), 12.6 g of urea (Gibco-BRL) was dissolved in 13.1 ml of 40% 

acrylamide:bisacrylamide 19:1 (Severn Biotech Ltd.) and 1.5 ml of lOx TBE while at 

37°C. Once the solution was cooled, 15 ml of the gel solution was mixed with 240 pi of 
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10% ammonium persulfate (freshly prepared) and 11 p1 TEMED. The solution was 

thoroughly mixed and poured into the gel apparatus. Once polymerized, the gel was set 

up with 0.5x TBE running buffer. The gel was pre-run for at least 30 minutes at 80 V. 

Prior to sample loading, the wells were thoroughly washed with a syringe and fresh 

0.5x TBE. 

Samples of at least 20 lig of small RNA were mixed with sample buffer, denatured 

at 95°C for 5 minutes and left on ice until loading. Once the samples were loaded using 

duckbill tips, the gel was run at 80 V until the dye front reached the bottom of the gel. 

The gel apparatus was disassembled and the gel was stained in 0.5x TBE containing 1 

ig/mi ethidium bromide for 10 minutes. Subsequently, it was washed in fresh 0.5x TBE 

and then photographed in a UV transilluminator (Kodak). 

The gel was transferred onto membrane using a Biorad wet electroblotting 

apparatus. The gel was equilibrated briefly in 0.5x TBE and then assembled in a blotting 

cassette. From the cathode (-) to the anode (+), the stack was thus assembled: soaked 

sponge, 3 pre-soaked gel-sized pieces of 3MM, pre-equilibrated gel, pre-soaked 

membrane (Hybond NX), 3 pre-soaked gel-sized pieces of 3MM, soaked sponge. The 

transfer was left at 100 V, 400 mA, 10 W for an hour at 4°C. 

4x RNA sample buffer: 5 mM EDTA, 0.03% bromophenol blue, 50% glycerol, 50 mM 

Tris-CI pH 7.7. 

o 	Large denaturing PAGE and transfer 

This method was used for small RNA analyses described in chapter 5. 

The gel was prepared with the large Hoefer SE600 Ruby apparatus, using 1.5 mm 

comb and spacers. This gel system allows for better resolution that the previous 

system. The 8% polycacrilamide-urea gel was prepared with Sequagel sequencing gel 

solutions (National Diagnostics). For 50 ml (1 gel), 16 ml of Sequagel concentrate were 

mixed with 29 ml of diluent and 5 ml of lOx TBE 7.5 M urea. To polymerize, 400 il of 

10% ammonium persulfate (freshly prepared) were added together with 20 p1 TEMED. 

The mixture was poured into the apparatus and the gel was allowed to polymerize for 
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30 minutes or longer. Once it was ready, the gel was set in the electrophoresis tank 

with lx TBE. The wells were washed with fresh running buffer using a syringe and then 

the gel was pre-run at 150 V for 30 minutes. 

Samples of at least 20 pg small RNA were mixed with equal volume of 2x FIDE 

loading buffer, denatured at 65°C for 15 minutes and placed on ice until loading. 

Loading was performed with duck bill tips once the wells had been washed for a second 

time. The gel was run at 300 V for 2-3 hours until the dye front is 2 cm from the 

bottom. Once finished, the apparatus was disassembled and the gel cut with a scalpel 

above the xylene cyanol band. The top portion of the gel was stained in lx TBE 1 ig/ml 

ethidium bromide for 10 minutes, destained in fresh lx TBE for 20 minutes and 

photographed under the UV. The 5S, 5.8S rRNA5 and tRNAs are visible in this section of 

the gel and provide a loading control. The bottom part of the gel contains all the RNA 

molecules with sizes below approximately 80 nt. 

Prior to transfer, the bottom part of the gel is soaked in 10 mM sodium phosphate 

buffer ph 7 for 10 minutes and then washed in 20x SSC for another 10 minutes. In the 

meantime, a membrane fragment (Hybond NX, GE Healthcare) cut to the size of the gel 

was pre-conditioned by first soaking briefly in dH20 and then in lOx SSC for 10 minutes. 

Inside a tray filled with 20x SSC solution, the following stack was assembled: a large gel 

tray upside-down, 3 large pieces of pre-soaked 3MM paper touching the 20x SSC 

solution to serve as wick, 3 gel-sized pieces of pre-soaked 3MM, the gel upside down, 

the membrane, 3 membrane-sized pieces of pre-soaked 3MM, a large stack of paper 

towels, a glass or hard plastic plate and finally a weight of approximately 500 g. Care 

was taken while assembly the stack so that no air bubbles were trapped. The 

membrane was carefully laid on top of the gel and was not moved or adjusted 

afterwards due to contact transfer. The stack was insulated on all four sides of the gel 

with cling film to prevent the solution from bypassing the gel and short-cutting to the 

stack. The transfer was left for a minimum of 16 hours. In the end, only a few paper 

towels are soaked due to reduced permeability of the polyacrylamide gel. After 

disassembly, the position of the gel was marked on the membrane with a pencil. The 

membrane was dried under a hood and cross linked twice using an Autocrosslink 
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Stratalinker (1200 joules/cm3). After this, the membrane was stored at room 

temperature until required. 

2x FDE sample buffer (for 10 ml): 10 ml deionised formamide, 200 pi 0.5M EDTA pH 8, 

10 mg xylene cyanol, 10 mg bromophenol blue. 

20x SSC (for 11): Dissolve 175.3 g of sodium chloride and 88.2 g of sodium citrate in 800 

ml of H20. Adjust the pH to 7.0 with a few drops of a 14 N solution of HCI. Adjust the 

volume to 1 litre with H20 and autoclave. 

o Hybridization 

The membrane was re-soaked in 2x SSC and then placed in a hybridization bottle 

where it was pre-hybridized in 25 ml of modified Church-Gilbert buffer at 42°C for one 

hour. While the pre-hybridization was ongoing, the radiolabelled probed was prepared. 

Random-primed radiolabelled DNA probes were employed for siRNA detection. The 

procedure used in preparation of these probes was identical to the one for northern 

analysis of large RNAs (see above). In addition, a radiolabelled DNA oligo was used as 

loading control probe (snoR58). These were prepared using a T4 polynucleotidyl kinase 

(PNK) end-labelling kit (Roche Applied Sciences). Briefly, 0.4 pi of DNA oligonucleotide 

(10 iM) was mixed with 1 il T4 PNK buffer (lOx), 6.6 iil of H20, 1 ld of PNK and 1 il of 

50 iiCi [y32P] ATP. The reaction was incubated at 37°C for 45 minutes and then added 

to the probe mixture. 

Once the pre-hybridization of the membrane was completed, the solution was 

exchanged by the probe and left incubating overnight at 42°C. Once the hybridization 

was completed, the membrane was washed at 50°C at least twice with 25 ml 2x SSC, 

0.2% SDS. The membrane was rinsed with 2x SSC to wash off the SDS, wrapped in 

plastic sleeve or Saran wrap and placed in a cassette with a Storage Phosphoscreen (GE 

Healthcare) for a minimum of 4 hours. After exposure, the phosphoscreen was scanned 

on a Storm phosphorimager (GE Healthcare). 

Hybridization buffer: PerfectHyb (Sigma) or modified Church-Gilbert buffer: 0.5 M 

sodium phosphate pH 7.2, 7% SDS, 10mM EDTA. 
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2.5. PROTEIN TECHNIQUES 

Total protein extraction from fission yeast 

A 10 ml cuture was grown to log phase in YES or minimal medium and cells were harvested 

by spinning in a benchtop centrifuge at 3000 rpm for 2 minutes. Pellet was resuspended in 1 ml 

PEMS and transferred to a microfuge tube. Pellet was then resuspended at 108  cells/ml in PEMS 

containing 0.4 mg/ml Zymolyase 100-T and incubated at 37°C for 20 minutes. Spheroplasted cells 

were then washed in PEMS and resuspended in 5 x io cells per 100 .il 2x sample buffer (containing 

freshly added PMSF). Samples were vortexed vigorously and boiled for 5 minutes at 95°C on a heat 

block. Samples were spun briefly to pellet cellular debris before loading on gel (10 il / 5 x 106  cells 

per lane) or freezing at -20°C. 

2x sample buffer: 2% SDS, 50 mM Tris-CI pH 6.8, 2 mM EDTA, 10% glycerol, 0.03% bromophenol 

blue, 2% 3-mercaptoethanol. 

Alternative protein extraction method 

Depending on the protein, the above protocol may result in excessive degradation. The 

following method is less aggressive and yields protein extracts of higher quality. 

A 50 ml cuture was grown to log phase in YES or minimal medium and cells were harvested 

by spinning in a benchtop centrifuge at 3000 rpm for 2 minutes. The cells were washed with ice 

cold PBS and spun again at 3000 rpm for 2 minutes. Most of the PBS was removed while the 

remainder was used to ressusperid the cells and move them to a fresh tube. The PBS wash was 

repeated, the cells resuspended in PBS and then frozen in liquid nitrogen by dropping slowly the 

cell suspension using a pipette or syringe. The frozen pellets can be kept at -80°C. 

A mortar and pestle were was put in an ice bucket full of dry ice and pre-chilled with liquid 

nitrogen before adding the cell pellets. The pellets were manually ground in the presence of liquid 

nitrogen for 20 minutes. The lysis rate was checked under the microscope until it was above an 

estimated 50% lysis. The powder was then resuspended in 250 uI 2x sample buffer and incubated 

for 10 minutes at room temperature. Samples were spun briefly to pellet cellular debris before 

loading on gel (5 to 10 uI)  or freezing at -20°C. 
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2x sample buffer: 2% SIDS, 50 mM Tris-CI pH 6.8, 2 mM EDTA, 10% glycerol, 0.03% bromophenol 

blue, 2% 3-mercaptoethanol. 

SDS-PAGE (Laemmli 1970) 

Proteins were separated on 1 mm thick discontinuous SDS-PAGE (sodium dodecyl suphate-

polyacrylamide gel electrophoresis) with the Hoefer minigel apparatus. The percentage of 

polyacrylamide in the resolving gel was selected to allow optimum separation of proteins within the 

size range required. 

Resolving gel (for 10 ml): 

8%: 2.7 ml 30% acrylamide/bis-acrylamide mix (Sigma). 4.55 ml dH20, 2.5 ml 1.5 M Tris-CI pH 8.8, 

100 lil 10% SIDS, 100 .11 10% ammonium persulphate (freshly prepared), 10 .11 TEMED. 

10%: 3.3 ml 30% acrylamide/bis-acrylamide mix (Sigma), 3.25 ml dH20, 2.5 ml 1.5 M Tris-CI pH 8.8, 

100 il 10% SIDS, 100 jil 10% ammonium persulphate (freshly prepared), 10 ltl TEMED. 

12%: 4 ml 30% acrylamide/bis-acrylamide mix (Sigma), 3.25 ml dH20, 2.5 ml 1.5 M Tris-CI pH 8.8, 

100 lil 10% SIDS, 100 i.il 10% ammonium persulphate (freshly prepared), 10 il TEMED. 

Stacking gel (for 10 ml. 2m1 per gel): 

5%: 1.7 ml 30% acrylamide/bis-acrylamide mix (Sigma), 6.95 ml dH20, 1.25 ml 1.5 M Tris-CI pH 8.8, 

0.1 ml 10% SIDS, 1 ld 10% ammonium persulphate (freshly prepared), 10 ld TEMED. 

The ammonium persulfate and TEMED were added only before pouring. The resolving gel 

was poured first, followed by 2 ml of the stacking gel into which the comb was inserted. Gels were 

run in lx SIDS running buffer at 180V for approximately 40 minutes. Gels were stained using 

SimplyBlue SafeStain (Invitrogen) to reveal protein according to manufacturer's instructions. 

5x SIDS running buffer (for 11): 30 g Tris base, 144 g glycine, 5 g SIDS. 
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Western analysis 

Proteins were transferred on Protran nitrocellulose (Schleicher & Schuell) using a Hoefer 

semi-dry electroblotter. The membrane floated on dH20, soaked in blotting buffer and then placed 

on top of 6 pieces of 3MM paper of the size of the gel. The SIDS gel was placed on top of the 

membrane followed by 6 more pieces of 3MM paper soaked in blotting buffer. As each layer was 

added, bubbles were rolled out using a glass tube. Transfer was carried out at the constant 

amperage of 65 mA for 2 hours. The membrane was washed in dH20, followed by staining with 

Ponceau S solution (Sigma) to verify protein transfer. The membrane was washed with PBS 

followed by incubation in blocking buffer for 1 hour at room temperature with agitation. The 

membrane was then placed in a sealed bag and incubated with the primary antibody of interest in 

blocking buffer overnight at 4°C with agitation. The membrane was washed three times each for 10 

minutes in PBS 0.1% Tween 20 and then incubated with the appropriate HRP-conjugated secondary 

antibody of interest in blocking buffer for 1 hour at room temperature with agitation. The blot was 

washed again three times in PBS 0.1% Tween 20, each for 10 minutes, followed by a final quick 

wash in PBS. Proteins were revealed using the Enhanced Chem i-Luminescence kit (GE Healthcare) 

following the manufacturer's instructions. The blot was exposed to Kodak BioMax Light film for 10 

seconds up to 1 hour. 

Blotting buffer: 20 ml 5x SDS running buffer, 60 ml dH20, 20 ml methanol 

Blocking buffer: PBS with 5% Marvel dried non-fat milk, 0.1% Tween 20 

Chromatin immunoprecipitation (ChIP) 

Zymolyase method 

This protocol was employed for all ChIPs performed for this thesis with the exception of 

H3K9me2 ChIPs. 

50 ml of exponentially growing cells (5 x 106  cells/ml; 2.5 x 108  cells per ChIP) were fixed for 

5 to 30 minutes (depending on protein to be ChlP'd and temperature of culture) with 3% 

paraformaldehyde freshly prepared in YES ( + 10 N NaOH to neutralize). Fixation was stopped 

by the addition of 2.5 M glycine (20x) to cultures for 5 minutes at room temperature with 

agitation. Cells were then washed twice in 20 ml of ice-cold PBS, resuspendend in 1 ml PEMS 
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and transferred to a microfuge tube. Pellet was then resuspended at 108  cells/ml in PEMS 

containing 0.4 mg/ml Zymolyase 100-T and incubated at 37°C for 20 to 30 minutes. Cells were 

then washed twice in PEMS (pellets may be frozen at -20°C in "one ChIP" size aliquots at this 

point). Pellet was then resuspended in 300 i.tl of lysis buffer containing protease inhibitor 

cocktail (lOOx Sigma) and 2 mM PMSF. Lysates were then sonicated using a water bath 

sonicator for 4 x 5 minutes. This should result in shearing the chromatin to approximately 500 - 

1000 bp. After sonication, lysate was adjusted to a total volume of 400 1.11. Tubes were spun for 

5 minutes at 13,000 rpm at 4°C, supernatant was removed to new tube and spun for 15 

minutes at 13,000 at 4°C to remove debris. Cleared lysate was pre-cleared by adding 25 tl of 

Protein A or Protein G agarose beads (Roche Applied Sciences) and were incubated with gentle 

rocking for 1-2 hours at 4°C. Protein A/G agarose was washed 3 times in lysis buffer and made 

into a 50:50 (v/v) suspension of beads in lysis buffer. Protein A agarose was used for rabbit 

antibodies and Protein G agarose was used for mouse antibodies and monoclonals. After pre-

clearing, beads were spun at 8,000 rpm for 2 minutes at 4°C and supernatant was transferred 

to a new tube using a duckbilled pipette tip (Sorenson BioScience Inc.). 40 pi of this pre-cleared 

lysate was frozen as 'crude input' sample. The appropriate amount of antibody was added to 

the remaining lysate for 4 hours to overnight at 4°C. 

Beads were then spun at 8,000 rpm and washed for 10 minutes at 4°C with rocking with 1 

ml of each of the following buffers: lysis buffer, lysis buffer with 500 mM NaCl, wash buffer, TE 

pH 8. After the washes, 250 ill TES was added to the beads while 210 1.11 TES was added to the 

'crude input' sample and all tubes were incubated at 65°C between 6 hours and overnight to 

reverse the cross-linking. 30 Iil of 10 mg/ml Proteinase K (Roche Applied Sciences) and 450 pi 

TE were then added and tubes were incubated at 37°C for 2 hours. Samples were then 

phenol/chloroform and chloroform extracted and DNA was precipitated with 1/10 volume 3 M 

NaOAc pH 5.5, 2.5 volumes of ice-cold ethanol and 1.5 11 of 10 mg/ml glycogen was added to 

facilitate precipitation. Samples were mixed thoroughly by vortexing and incubated on dry ice 

for 1 hour. DNA was recovered by centrifugation at 4°C for 30 minutes at maximum speed. The 

pellet was dried under the fume hood for 15 to 20 minutes. ChIP (IP) DNA was resuspended in 

30 p.1 and crude input DNA (Total) in 300 p.1 TE. 2 p.1 of DNA were used in 20 p.1 PCR reactions 

with appropriate multiplex primer sets with added Mg2 . 
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PEM: 100 mM PIPES, pH 6.9, 1mM EDTA, 1 mM MgSO4  

PEMS: 100 mM PIPES pH 6.9, 1 mM EDTA, 1 mM MgSO4, 1.2 M sorbitol 

Lysis buffer: 50 mM HEPES-KOH pH 7.5, 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% 

sodium deoxycholate (w/v) 

Wash buffer: 10 mM Tris-CI pH 8, 0.25 M L1CI, 0.5% NP-40, 0.5% (w/v) sodium deoxycholate, 1 

mM EDTA 

TE: 10 mM Iris-Cl pH8, 1 mM EDTA 

TES: 50 mM Tris-CI pH 8, 10 mM EDTA, 1% SDS 

. 	Beadbeater method 

For anti-H3K9me2 ChIP (mAb 5.1.1, a gift from Takeshi Urano), the zymolyase ChIP protocol 

was modified as following. Cells were fixed 1% formaldehyde for 15 minutes (2.5 x 108  cells per 

ChIP). On washes with PBS, cell were transferred to a round-bottomed screw-capped tube. 

After the addition of lysis buffer, 500 p.1 of acid-treated glass beads (Sigma) were added and 

cells were bead-beaten on ice twice for 2 minutes in a Mini BeadBeater (Biospec). To isolate the 

supernatant from the cellular debris, the bottom of the screw-capped tube was pierced with a 

hot needle and placed inside a 15 ml falcon tube containing a microfuge tube for collection. The 

tubes were centrifuged at low speed (1000 rpm) for 1 minute and the lysate was collected in a 

fresh microfuge tube. Samples were then sonicated 3 times for 5 minutes (30 seconds max 

sonication, 30 seconds rest) in ice-cold water bath on a Bioruptor sonicator (Wolf Laboratories). 

li.il of H3K9me2 antibody and 25 il of pre-washed Protein G agarose beads were subsequently 

added to each sample and left at 4°C overnight with slow rotation. The remainder of the 

procedure (washes, de-crosslinki ng, DNA purification) followed the standard zymolyase 

protocol. 

Analysis 

Most of ChIP DNA samples described in this thesis were analysed by multiplex PCR using 

the following programme: 94°C for 4 minutes; 30 cycles of 94°C for 30 seconds, 55°C for 30 

seconds and 72°C for 1 minute; 72°C for 5 minutes. In the experiment from Figure 3-6, using 

LTR specific oligos, the programme conditions were similar with the exception of a lower 

annealing temperature (50°C instead of 550C). In the experiment from Figure 5-, the 
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programme comprised a shorter extension step of 72°C for 30 seconds and 35 cycles instead. 

Part of the ChIP analysis described in Chapter 3 was carried out by qPCR (see above). 

FLAG Immunoprecipitation (IP) 

This procedure was followed to perform FLAG IP mentioned in Chapter 5. It was adapted by 

Alexander Kagansky from the standard FLAG IP protocol from Mike Tyers' lab. 

Special care was taken in that: all steps either on ice or at 4°C; lysates were not allowed to 

warm up under any circumstance, all tubes and rotors pre-cooled were pre-cooled so that no steps 

resulted in sample heating; the lysates were kept concentrated, on the order of 50 mg/ml. 

A large culture of cells was prepared in 1 litre of 4x YES up to a cell density of 1.2 x 108 

cells/mi. At this density the cells are still in exponential growth phase (Sharon White). Cells were 

collected by centrifugation at 4,000 rpm for 15 minutes at 4°C on a Beckman Avanti-J centrifuge 

using the JLA-10.500 rotor (Beckman Coulter). The cells were washed three times in ice-cold PBS 

with a total volume of 2 litres, all the times followed by centrifugation for 4,000 rpm at 15 minutes. 

At the last wash, the cells were moved to a 50 ml falcon tube, spun down at 3,000 rpm for 10 

minutes at 4°C on a tabletop centrifuge and resuspended in approximately 1/4  volume of lysis buffer 

containing protease inhibitors. This cell suspension was snap frozen by dripping into liquid nitrogen. 

The cell pellets were collected and stored at -80°C. 

For the lysis procedure, the cell pellets were ground on a Retsch mortar grinder with liquid 

nitrogen for 30 minutes. The lysis efficiency was confirmed to be above 50% by analysing the cell 

powder in a light microscope. The powder was collected and stored at -80°C until used 

For each IP, 5 g of cell powder were used. The powder was allowed to warm up to -20°C for 

30 minutes and then mixed with 10 ml of pre-chilled lysis buffer containing protease inihibitors. The 

suspension was allowed to dissolve for 30 minutes at 4°C under vigorous rotation. The lysate was 

cleared of cellular debris by centrifucation at 3,000g for 5 minutes at 4°C. The supernatant was 

carefully decanted to a pre-chilled ultra-centrifuge tube and loaded onto a pre-cooled 70 Ti rotor. 

The supernatant was centrifuged at 17,000 rpm for 30 minutes at 4°C under vacuum in a Beckman 



Optima preparative ultracentrifuge (Beckman Coulter). Once completed, the lysate was carefully 

removed by pipetting the clear liquid between the lipidic phase and the pellet. 

In the meantime, monoclonal anti-FLAG M2 antibody (Sigma) was pre-coupled to Protein G 

Dynabeads (Invitrogen). For each sample, 4 iii of bead slurry was washed three times with ice cold 

PBS in a microfuge tube. Beads were washed by pipetting the suspension several times followed by 

magnetic trapping of the beads for 1 minute. Beads were resuspended in 0.5 ml of PBS and mixed 

with 8 p.1 of antibody and allowed to couple for 30 minutes at 4°C with rotation. The beads were 

washed twice with PBS and once with lysis buffer. The slurry was finally resuspended with 10 i.tl 

lysis buffer. 

10 p.1 of pre-coupled anti-FLAG Dynabeads were added to the lysate and left incubating at 

4°C for 1 hour. Beads were centrifuged briefly at low speed and collected with a 50 mL MagnaBot 

(Promega). Subsequently, the beads were resuspended in 500 p.1 fresh lysis buffer with inhibitors 

and moved to a microfuge tube. Tubes were placed in a microfuge MagnaBot (Promega) and the 

beads collected magnetically for 30 seconds. The solution was replaced 1 ml fresh lysis buffer with 

inhibitors and allowed to resuspend the beads by pipetting up and down 10 times. This wash was 

repeated 3 times in a similar fashion. 

For western analysis, beads were cleared of unspecific elution with 50 1.11 200 p.g/ml HA 

peptide in PBS for 20 minutes, followed by elution with 50 p.1 of FLAG peptide 20 p.g/ml in PBS for 

20 minutes and a second elution with 50 p.1 200 p.g/ml FLAG peptide. Both FLAG elutions were 

pooled and 10 p.1 was mixed with 2X Sample buffer and loaded onto an SIDS-PAGE (see above). 

For mass spectrometry analysis, the beads were resuspended in 0.5 ml lysis buffer with 

2mM MgCL2 but without EDTA. 2 p.1(500 units) of benzonase (Novagen) were added to each 

sample, followed by incubation at 4°C under rotation for 15 minutes. Beads were magnetized, 

transferred to a fresh microfuge tube and then washed twice with 1 ml fresh lysis buffer. Beads 

were then resuspended in 0.5 ml BD buffer, transferred to a fresh tube and washed again with BD 

buffer. Beads were again magnetized and resuspended on 5 p.1 Tris-HCI pH 8.0, making sure all 

beads were collected at the bottom of the tube. 2.5 p.1 trypsin solution was added and the tube 

sealed with parafilm, followed by overnight incubation at 37°C with 14000 rpm agitation 

(Eppendorf Thermomixer). On the following day, beads were re-magnetized and the supernatant 

was carefully separated to a fresh tube. The supernatant was mixed with another 2.5 p.1 trypsin 
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solution and incubated overnight at 37°C without rotation. The sample was again magnetized and 

moved to a new tube, followed by the addition of 50 il 0.1% Trifluoroacetic acid (in water) to 

acidify the peptides. The samples were then filtered with an RP tip and injected into a LTQ Orbitrap 

LC/MS hybrid mass spectrometer (ThermoElectron) coupled to a Nano-HPLC (Agilent, 1200) for 

peptide analysis (Juri Rappsilber). The peptide masses were cross-related to a predicted peptide 

library for S. pombe and identified using the software Mascot. 

Lysis buffer:50 mM Hepes-NaOH pH 7.5, 150 mM NaCl, 5 mM EDTA, 0.1% NP-40. Just before used 

the following was added: 5mM DTI, lx EDTA-free protease inhibitors cocktail (Roche), lx yeast 

protease inhibitors cocktail (Sigma), 0.2mM PMSF, 0.2mM benzamidine. 

Trypsin solution: 100 ng/il trypsin powder resuspended in 20mM Tris-HCI pH 8.0. 

Buffer BD: 20mM Tris-HCI pH 8.0, 150 mM NaCl, 2mM CaCl2. 

2.6. MICROSCOPY 

Immunostaining 

General protocol 

20 ml of a cell culture was grown to a concentration of 5 x 106  cells/mi. Cells were fixed by 

the addition of 3.7% paraformaldehyde dissolved in culture medium (a lOx stock was dissolved 

at 65°C and cooled down to room temperature) and the culture was shaken at room 

temperature for the appropriate time. Cells were spun in a benchtop centrifuge at 18°C, 

washed once with 10 ml PEM, transferred to a microfuge tube and washed twice with PEMS. 

Cells were then incubated at 37°C for 90 minutes in PEMS containing 1 mg/ml Zymolyase 100-T 

(ICN) at a concentration of 108  cells/ml. After washing in 1 ml PEMS, cells were resuspended in 

1 ml PEMS containing 1% Triton X-100 and incubated on the bench for 5 minutes. Cells were 

then washed once with PEM, resuspended in 500 ld PEMBAL and incubated on a rotating wheel 

for 1 hour at room temperature. Aliquots of cells were then taken to be incubated with the 



appropriate dilution of primary antibody in 100 Id PEMBAL overnight at 4°C on a rotating 

wheel. 

After incubation with primary antibody, cells were washed three times with 1 ml PEMBAL 

incubating for at least 30 minutes for each wash. The required secondary antibody (Molecular 

Probes Alexa anti-mouse, anti-sheep or anti-rabbit) conjugated to the desired fluorescent 

probe (Alexa Fluor 488 or 594) were added at the concentration of 1:1000 in 100 Ill PEMBAL. 

Tubes were wrapped in foil and incubated for 4 hours at room temperature with rotation or 

overnight at 4°C, Cells were washed once for 30 minutes in PEMBAL and incubated for 5 

minutes in PEM + 0.1% sodium azide containing 1 mg/ml DAPI (stock 500x stored at -20°C). 

Cells were finally spun and resuspended in 20 III PEM + 0.1 % sodium azide. 2 pi of cells were 

spread in a thin layer on a poly-L-lysine coated glass slide and allowed to dry. 1 drop of 

mounting medium VectaShield (Vector Laboratories Inc.) was then applied to the slide and a 

coverslip was gently lowered at an angle over the slide to minimize the formation of air 

bubbles. The coverslips were sealed with transparent nail varnish and observed using an 

Axioplan 2 IE fluorescence microscope (Carl Zeiss Microlmaging Inc.) equipped with Chroma 

83000 and 86000 filter sets, Prior ProScan filter wheel (Prior Scientific) and Photometrics 

CoolSnapHQ CCD camera (Roper Scientific). Image acquisition was controlled using Metamorph 

software (Universal Imaging Corp.). 

PEM: 100 mM PIPES, pH 6.9, 1mM EDTA, 1 mM MgSO4  

PEMS: 100 mM PIPES pH 6.9, 1 mM EDTA, 1 mM MgSO4, 1.2 M sorbitol 

PEMBAL: 100 mM PIPES, pH 6.9, 1mM EDTA, 1 mM MgSO4, 1% BSA (Sigma), 0.1% sodium azide, 

100 mM lysine hydrochloride (BDH) 

. 	Forma ldehyde-glutaraldehyde method for staining microtubules 

For immunolabelling of microtubules, the above protocol was modified as follows. 

Cells fixed with 3.7% freshly prepared paraformaldehyde, followed by the addition of 

0.0625% glutaraldehyde one minute later for a total of 10 minutes at room temperature. Cells 

were washed, spheroplasted and permeabilised with 1% Triton X-100 as described above. Free 
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aldehyde groups resulting from the glutaraldehyde fixation were then reduced by washing the 

cells three times for 10 minutes with 2 mg/ml sodium borohydride in PEM. Sodium borohydride 

solution was prepared immediately before use. Cells were then washed three times in PEM 

(care was taken as the pellet was light and difficult to precipitate at this point) and blocked with 

PEMBAL as described above. Aliquots of cells were then resuspended in 100 ld PEMBAL 

containing TAT anti-a-tubulin mouse monoclonal antibody at dilution 1:15 and incubated 

overnight at 4°C with rotation. 

2.7. BACTERIAL METHODS 

Escherichia co/i DH5ct and TOP10 bacterial cells were used for all the cloning performed in 

this thesis. Cells were grown at 37°C in LB medium, solid or liquid, supplemented with 30 -Lg/ml 

ampicilin for plasmid selection. Liquid cultures were grown at 37°C with 225 rpm agitation. 

Bacterial media 

LB (per litre): 10 g Bacto-peptone, 5 g Yeast extract, 10 g NaCl. Autoclaved 

Antibiotics and concentration used in plates: ampicilin 30 tg/ml, carbenicilin 50 kg/ml, 

chloramphenicol 20 jig/ml. 

Transformation of competent cells 

Subcloning efficiency DH5ct or One Shot TOP10 chemically competent cells were 

transformed according to manufacturer's instructions (Invitrogen). Briefly, a frozen aliquot of 

competent cells was thawed on ice for 10 minutes. 50-100 jil of cells were added to up to 5 jil of 

ligation mixture or 10 ng of plasmid DNA and incubated on ice for 30 minutes. Cells were heat 

shocked for 30 seconds at 37°C (DH5ct) or at 42°C (TOP10) and then placed on ice for 2 minutes. 

1000 jil of LB (DI-15a) or 250 jil of S.O.C. medium was added to the cells and the tubes placed at 
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37°C for 1 hour at 225 rpm agitation. The cells were then spun down briefly on a microfuge at max 

speed for 30 seconds and resuspended in 200 p1 of medium. 50 Ill and 150 p1 of cells were spread 

on pre-warmed LB-agar plates containing the appropriate antibiotic required for plasmid selection 

using sterile glass beads. Plates were incubated at 37°C until colonies appeared but not exceeding 

16 hours. 

Plasmid construction 

Restriction enzymes were obtained from New England Biolabs and were used in the 

reaction buffer supplied by the manufacturer. Fragments were amplified using Platinum Pfx 

Polymerase (Invitrogen). Digestions were carried at 37°C for 2-4 hours, unless otherwise specified 

by the manufacturer. Digested fragments were purified from agarose gel using the QlAquick gel 

extraction kit (Qiagen), according to the instructions of the manufacturer. Ligations were carried 

out using T4 DNA ligase (Roche) in the supplied buffer overnight at 18°C. 

Plasmid preps 

2-3 ml bacterial cultures were grown overnight from a single colony in liquid LB containing 

antibiotic. Plasmids were isolated using the QlAquick Plasmid Mini Kit (Qiagen) following the 

manufacturer's instructions. For larger scales, 25 ml cultures were inoculated with freshly grown 

pre-culture and grown overnight. Plasmids were then isolated using the QlAquick Plasmid Midi kit 

(Qiagen) following the instructions of the manufacturer. 



2.8. ANTIBODIES USED IN THIS THESIS 

Western analysis: 

Rabbit anti-Bipi (Alison Pidoux) (1:10000) 

Rabbit anti-myc A14 (Santa Cruz Biotechnology) (1:500) 

M5 monoclonal anti-FLAG HRP-conjugated (Sigma) (1:500) 

Anti-rabbit H RP-conjugated (Sigma) (1:10000) 

Anti-mouse H RP-conjugated (Sigma) (1:10000) 

Immunofluorescence 

Sheep anti-Cnp1 	serum (1:500) 

Mouse TAT anti-a-tubulin (lain Hagan) (1:15) 

Rabbit anti-myc A14 (Santa Cruz Biotechnology) (1:50) 

Chromatin IP 

Rabbit anti-myc A14 (Santa Cruz Biotechnology) (1:150) 

Mouse mAb5.1.1 monoclonal anti-H3K9me2 (Takeshi Urano) (1:300) 

Rabbit anti-Swi6 serum (1:30) 

Immunoprecipitation 

M5 monoclonal anti-FLAG (Sigma) (0.8 .ig/ml) 



2.9. PRIMERS USED IN THIS THESIS 

Name 	 Sequence 
	

Description 

3-ade6 

5-otrl-ade6 

fbpl_fwd 

fbpl_rev 

OTR_A 

OTR_B 

agol(mut)_fwd 

agol(mut)_rev 

agol_fus_long_Kani 

R 
agol_fus_Iong_Kan2 

F 

agol_fus_long_Ural 

R 

agol_fus_long_Ura2 

F 

agol_fus_Nat_F 

agol_fus_Nat_R 

agol_NatR_check_fw 

d 
agol_NatR_check_re 

V 

agol_seqforl 

agol_seqfor2 

agol_seqfor3 

agol_seqfor4 

agol_seqfor5 

agol_seqfor6 

agol_seqfor7 

agolseqfor8 

agol_seqfor9 

agol_seqrevl 

agol_seqrevlO 

agol_seqrevll 

agol_seqrev2 

agol_seqrev3 

agol_seqrev4 

agol_seqrev5 

GGCCACCATAGACATAACTG 

CTACTCTTCTCGATGATCCTGTA 

ACTTCAGCTAGGATTCACCTGG 

TGTGACAATGTCAGTGTCG 

CACATCATCGTCGTACTACAT 

GATATCATCTATA1TIAATGACTACT 

ATGTCGTATAAACCAAGCTCAGAAAT 

AGCTTTACGTCCCGGTTAT 

UAGCTCTATCAAGTAAAUGAAAAC 

AAAGATGTGGTATATGTAA 

TTAATTAACCCGGGGATCCGTATTAT 

ACTGAGTAAATCAG 
GTTTAAACGAGCTCGAATTCATATTG 

AAAUAAG 

GCATACATATAGCCAGTGGGTCCM 

CCTTGACATTAATCT 

GGTTATAAACATrGGTGTTGGTCTAT 

CACCAAAATACAATC 
CTGATTTACTCAGTATAATACGGATC 

CCCGGGUAAUM 
AMCTrAATTMATCAATATGMTrC 

GAGCTCGT1TAAAC 
CGAAAGGTATTCGCAAATGTAATAA 

TCG 
GGGAGGTTCAAAATCAATGATTACT 

AC 

AAGACTTATGUGCGTITGC 

GTAAGTrCCTAGAAATCGCA 

CGAAAGCAATCCCAGTTGAT 

ACGACCGAATCAGGGTTTCA 

CGATGCTTCCTATTGAATTCTGTTT 

ACACTCACTTCGTTGGGAAT 

AACAGGTGmCGATrGCU 

CTCACCCCTATCAGTACGAT 

CCACAAC1T1TAC1TCCUA 

TGGGTTAAGTGAATGTCATT 

TGCAAGACAGATACAAAATG 

CTCGTTAGGTAAAGAAATGA 

ATCCATTGATGCUCTGATG 

CCAGGGAGGGGATTTCCATT 

GGGAACGTGAAACAGCCGTA 

ATATGGTTCAGGCGAATTTT 

ChIP PCR primer for otr1R(Sph1):ade6+ 

ChIP PCR primer for otr1R(Sph1):ade6+ 

ChIP PCR primer forfbpl+ 

ChIP PCR primer for fbpl+ 

ChIP PCR primer for otr (dg) 

ChIP PCR primer for otr (dg) 

PCR primer for agol mutagenesis 

PCR primer for agol mutagenesis 

PCR primer for fusion of KanMX4 resistance 

cassette 
PCR primer for fusion of KanMX4 resistance 

cassette 

PCR primer for fusion of agol::ura4+ 

disruption cassette 
PCR primer for fusion of agol::ura4+ 

disruption cassette 
PCR primer for fusion of NatR resistance 

cassette 
PCR primer for fusion of NatR resistance 

cassette 
PCR primer for verifying NatR cassette 

insertion next to agol locus 

PCR primer for verifying NatR cassette 

insertion next to agol locus 

Sequencing primer for a region of agol locus 

Sequencing primer for a region of agol locus 

Sequencing primer for a region of agol locus 

Sequencing primer for a region of agol locus 

Sequencing primer for a region of agol locus 

Sequencing primer for a region of agol locus 

Sequencing primer for a region of agol locus 

Sequencing primer for a region of agol locus 

Sequencing primer for a region of agol locus 

Sequencing primer for a region of agol locus 

Sequencing primer for a region of agol locus 

Sequencing primer for a region of agol locus 

Sequencing primer for a region of agol locus 

Sequencing primer for a region of agol locus 

Sequencing primer for a region of agol locus 

Sequencing primer for a region of agol locus 
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agol_seqrev6 AAATTCCAACGTCCACTAAC Sequencing primer for a region of agol locus 

agol_seqrev7 CCCGTTCTTTACTAATATGC Sequencing primer for a region of agol locus 

agol_seqrev8 AAGTAAAGAATCATTACGCC Sequencing primer for a region of agol locus 

agol_seqrev9 AGATGAI iii GAATAGAGAAT Sequencing primer fora region of agol locus 

ACTCTTATTCTTGGTG GAG CTGT1TA PCR primer for agol mutagenesis 
agolD580A_fwd 

TCACCCTGGGGTT 

AACCCCAGGGTGATAAACAGCTCCA PCR primer for agol mutagenesis 
agolD580A_rev 

CCAAGAATAAGAGT 

CGTATTATCTATTTCCGTGCCGGTAC PCR primer for agol mutagenesis 
agolD651A_fwd 

CTCGGAAGGACM 
TTGTCCTrCCGAGGTACCGGCACGG PCR primer for agol mutagenesis 

agolD651A_rev 
AAATAGATAATACG 

TCACGTTCCCAACCTCGTGCTCAAGA PCR primer for agol mutagenesis 
agolH617A_fwd 

AGTGATTGAAGGA 

TCCUCAATCACTrCTTGAGCACGAG PCR primer for agol mutagenesis 
agolH617A_rev 

G1TGGGAACGTGA 
PCR primer for fusion of KanMX4 cassette for 

agolKanl_fwd TGAATACAATGTAAATTCACAA 
agol locus 

CCGCTCGAGTATTATACTGAGTAAAT PCR primer for fusion of KanMX4 cassette for 
agolKanl_rev 

CAG agol locus 

TGCTCTAGAATATTGA1TJAATTAAG PCR primer for fusion of KanMX4 cassette for 
agolKan2_fwd 

ITT agol locus 
PCR primer for fusion of KanMX4 cassette for 

agolKan2_rev GAATATTAATCTGGCAACTT 
agol locus 

PCR primer for fusion of agol::ura4+ 
agolUra_1_fwd CTGAACAGGTTGGTAATGCT 

disruption cassette 

CCGCTCGAGTCCAACCTTGACATTAA PCR primer for fusion of agol::ura4+ 
agolUra_1_rev 

TCT disruption cassette 

TGCTCTAGAGTCTATCACCAAAATAC PCR primer for fusion of agol::ura4+ 
agolUra_2_fwd 

AATC disruption cassette 
PCR primer for fusion of agol::ura4+ 

agolUra_2_rev ATTTCGTCGTGCAAAACCGT 
disruption cassette 

qActl_fwd GGTUCGCTGGAGATGATG qPCR primer for acti 

qActl_rev ATACCACGCTTGCTTTGAG qPCR primer for acti 

qCntlfwd CAGACAATCGCATGGTACTATC qPCR primer for cntl (central core 1) 

qCntl_rev AGGTGAAGCGTAAGTGAGTG qPCR primer for cntl (central core 1) 

qDgl_fwd AATTGTGGTGGTGTGGTAATAC qPCR primer for otri (dg) 

qDgl_rev GGGTTCATCGTTTCCATTCAG qPCR primer for otri (dg) 

qDhl_fwd CTACGCTTGATTTGAGGAAGG qPCR primer for otri (dh) 

qDhl_rev AAAGTATGAGTCGCAGAAGTG qPCR primer for otri (dh) 

qlmrl_fwd CTAATGCGGAGTAAGGCTMTC qPCR primer for imrl 

qlmrl_rev TGGACAGAATGGATGGATATTG qPCR primer for imrl 

qSPAC56F8.17c_fwd TCATTGTCCAGGATCAGCTATG qPCR primer for SPAC56F8.17c ORE 

qSPAC56F8.17c_rev TGGTCTTCTCTCGTAAAACAGG qPCR primer for SPAC56F8.17c ORF 

qSPAC56F8.14c_fwd ATCITGGCAGTACCGAGTG qPCR primer for SPAC56F8.14c ORF 

qSPAC56F8.14c_rev TCTTGTTGACCATCGGCC qPCR primer for SPAC56F8.14c ORF 

qSPAC26H5.11_fwd CGCCGCCCAAAGAGTTCC qPCR primer for SPAC261-15.11 ORF 

qSPAC26H5.11_rev ATGCACAACATCGCCATTTAGC qPCR primer for SPAC261-15.11 ORF 
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GGAAGACGATGATGGCGAGAAG 

GTGGGGAGCGG1TrGGYrAATC 

GCGTGGATCTTTCGAGTTGAC 

CGCTGAGTCGGATTAAGTGATG 

TGTTTCGGCGTCCAAATTGG 

GGGATACAATGCCGTAAAGACC 

GCCGCMGTACGAGGATATG 

GTCTCTTCACCCATAGCGG 

CTGTGGTTTGGTGTATGACTTG 

GTGGAGAACGATGCGGAAG 

GCUCCGAAATCGCTTCTTC 

TGTTGGTGTAAGGAGCMGG 

AACATGATTCGGGATCTGCTG 

GGCTCCTTGGGTTCCTCAG 

CTACTCTrCTCGATGATCCTG 

GTAGTACGACGATGATGTGTTTTC 

ACTACGTTGCGTATCACTAT 

AGAACTGCGGTGAGTUTCC 

CTATGCTCAGTTGCTACTTAT 

GTAGAATTTAGTGTAAGCTACGC 

CTCTTCAATCATAC1TCACTGTFC 

GCGTAGCGmGGATGTAAG 

CCATTATACTCTCCTG1TGAC 

ATCGTACATTGAATCCGTTAG 

GGCTGGCCTGTTGAACAAGTCTGGA 

CGTCTGTGAGGGGAGCGTTT 

GATGTGAGAACTGTATCCTAGCAAG 

rrp6_check_fwd GAACTAATCATAAATAATTGC1TT 

GCATGCATrCTCAA1TrCTTCTrATAG 
rrp6_check_rev 

cenfwd GAAAACACATCGTTGTCTTCAGAG 

cen_rev CGTCTTGTAGCTGCATGTGAA 

L71 AGACTGTTGTTGAGTGCTGTG 

L72 ATTTGCCTGTTGTACAI iii 1GC 

MM TACGTTCAGTAGACGTAGTG 

MP ACGGTAGTCATCGGTCTTCC 

MT1 AGAAGAGAGAGTAGUGAAG 

DE151 GACTGTTGTTGAGTGCTGTG 

DE169 CGCAATTAATGTGAGTTAGC 

qPCR primer for SPAC26H5.07c ORF 

qPCR primer for SPAC26H5.07c ORF 

qPCR primer for SPAC26H5.12 ORF 

qPCR primer for SPAC26H5.12 ORF 

qPCR primer for SPAC26H5.13c ORE 

qPCR primer for SPAC26H5.13c ORE 

qPCR primer for SPAC26H5.10c (tif5l) ORE 

qPCR primer for SPAC26H5.10c (tif5l) ORE 

qPCR primer for SPAC26H5.09c ORE 

qPCR primer for SPAC26H5.09c ORE 

qPCR primer for SPAC26H5.08c ORE 

qPCR primer for SPAC26H5.08c ORE 

qPCR primer for meu6 

qPCR primer for meu6 

PCR primer for otr (dg) probe for northern 

analysis 
PCR primer for otr (dg) probe for northern 

analysis 
PCR primer for LTR a and 13  subclade 

consensus 
PCR primer for LTR a and 13 subclade 

consensus 
PCR primer for LTR in SPAC30D11 locus 

PCR primer for LTR in SPAC30D11 locus 

ChIP PCR primer for right of LTR in SPAC26H5 

ChIP PCR primer for right of LTR in SPAC26H5 

ChIP PCR primer for left of LTR in SPAC26H5 

ChIP PCR primer for left of LTR in SPAC26H5 

Bioneer primer for KanMX4 insertion (3 end) 

Bioneer primer for KanMX4 insertion (5 end) 

Bioneer primer to check for KanMX4 insertion 

(5 end rev further into kanmx4) 

SPZ PCR primer for verifying rrp6LI in Bioneer 

strain 
SPZ PCR primer for verifying rrp6LI in Bioneer 

strain 

PCR primer for otr (dh) 

PCR primer for otr (dh) 

ChIP PCR primer for otr (dg) 

ChIP PCR primer for otr (dg) 

SPZ PCR primer for determining mating type 

SPZ PCR primer for determining mating type 

SPZ PCR primer for determining mating type 

ChIP PCR primer for pH-cc2 (Diego Eolco) 

ChIP PCR primer for pH-cc2 (Diego Folco) 

qSPAC26H5.07c_fwd 

qSPAC26H5.07c_rev 

qSPAC26H5.12_fwd 

qSPAC26H5.12_rev 

qSPAC26H5.13c_fwd 

qSPAC26H5.13c_rev 

qSPAC26H5.lOc_fwd 

qSPAC26H5.lOc_rev 

qSPAC26H5.09c_fwd 

qSPAC26H5.09c fwd 

qSPAC26H5.08c_fwd 

qSPAC26HS.08c_rev 

qmeu6_fwd 

qmeu6_rev 

Ingela_oligol 

lngela_oligo2 

LTR_probe_fwd 

LTR_probe_rev 

LTR-30D11.02—fwd 

LTR-30D11.02—rev 

c26H5+Ofwd 

c26H5+0_rev 

c26H5-0_fwd 

c26H5-0_rev 

CPC3 

CPN1 

CPN1O 

95 



2.10. S. pombe STRAINS USED IN THIS THESIS 

FY# 	Relevant genotype 

340 	h- ade6-210 Ieul-32 ura4-DS/E TM-ura4+::R.int 

872 	h? cIr4-S5 ade6-210Ieul-32? ura4-DS/E TMI-ura4+::Rint 

972 	h+ wild-type fission yeast 

1082 	h? swi6:thisl+ ade6-210 hisi -1 02 leul-32 ura4-DS/E TM-ura4+::Rint 

1180 	h+ ade6-210 leul-32 ura4-D18 otrlR(Sphl):ade6+ 

1181 	h- ade6-210 leul-32 ura4-018 otrlR(Sphl):ade6-i- 

1645 	h+ ade6-210 arg3-D4 his3-D1 leul-32 ura4-D18 

1646 	h- ade6-210 arg3-D4 his3-D1 leul-32 ura4-D18 

3132 	h- clr4::LEU2+ ade6-DN/N Ieul-32 ura4-D18 otrlR(Sph)::ade6+ 

3190 	h+ ade6-DN/N leul-32 ura4-D18 hisi -101 arg3-D4 otrlR(Sphl):ade6+ 

3191 	h- ade6-DN/N leul-32 ura4 -018 hisi-101 arg3-D4 otrlR(Sphl):ade6+ 

3746 	h? ade6-DN/N Ieul-32 ura4D18 his3-D1 arg3-D4 

3747 	h? ade6-DN/N leul-32 ura4D18 his3-D1 arg3-D4 

4132 	h- ade6-210 ar93D his3D leul-32 ura4DS/E 

4133 	h+ ade6-210 arg3D his3D leul-32 ura4DS/E 

4835 	h- ade6-210 leul-32 ura4-DS/E his3-D1 arg3-D4 TM-ura4+::Rint 

5021 	h+ chpl-myc-LEU2+ ura4-DS/E his3-D1 arg3-D4 leul-32 

5023 	h- chpl-myc-LEU2+ ura4-DS/E his3-D1 arg3-04 leul-32 

6215 	h- agol::kanR ade6-210 ura4-DS/E 

6218 	h- dcrl::kanR ade6-210 ura4-DS/E 

6222 	h- rdpl::kanR ade6-210 ura4DS/E 

6519 	h- dis3-54 leul-32? =ALP344 

7093 	h- ade6-M210 leul-32 pfs2-3169 bubl+- GFP-kanR 

7125 	h- pfs2-11 ade6-M210 Ch16 ura4-D18 his7 

7127 	h- ade6-M216 ura4-D18 leul dhpl-1(ura4-i-) 

8059 	h+ agol::ura4+ ade6-210 leul-32 ura4 -018 otrlR(Sphl):ade6+ 

8061 	h+ agol-H617A ade6-210 leul-32 ura4-D18 otr1R(Sphl):ade6+ 

8196 	h+ agol-D580A ade6-210 Ieul-32 ura4-D18 otrlR(Sphl):ade6+ 

8197 	h+ agol-D651A ade6-210 leul-32 ura4-D18 otrlR(Sphl):ade6+ 

10376 	h- chp1-3xFLAG-KanR ade6-216 

11540 	
h- dcrl::kanR his3-D3 arg3-04 ura3-D18 ade6-210 his3-D1 arg3-D4 TM- 

ura4::Rint 

11541 	h? pfs2-11 ade6-DN/N ura4-D18 his3-D1 arg3-D4 

11542 	h? dhpl-1 ade6-DN/N his3-D1 arg3-D4 

11543 	h? dhpl-1 ade6-DN/N ura4? his3-D1 

11544 	h? dhpl-1 ade6-DN/N ura4? his3-D1 arg3-D4 
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11545 	h? pfs2 -3169 ade6-DN/N ura4? his3-D1 

11546 	h?pfs2-3169 cide6-DN/N ura4? arg3-D4 

11547 	h? dhpl-1 otrlR(Sphl)::ade6+ ade6-DN/N hisi? his3? arg3-D4 

11548 	h? dhpl-1 otrlR(Sphl)::ade6+ ade6-DN/N hisi? his3? arg3-D4 

11549 	h? dhpl-1 otrlR(Sphl)::ade6+ ade6-DN/N hisi? his3? arg3-D4 

11550 	h? dhpl-1 otrlR(Sphl)::ade6+ ade6-DN/N hisi? his3? arg3-D4 

11551 	h? dhpl-1 otrlR(SphI)::ade6+ ade6-DN/N hisi? his3? arg3-D4 

11552 	h? dhpl-1 otrlR(Sphl)::ade6+ ade6-DN/N hisi? his3? arg3-D4 

11553 	h? rrp6::kanR ade6-DN/N ura4-D18 Ieul-32 his3-D1 arg3-D4 

11555 	h? rrp6::kanR otrlR(Sphl)::ade6+ ade6-DN/N hisi? his3? arg3-D4 

11556 	h? rrp6::kanR otrlR(Sphl)::ade6+ ade6-DN/N hisi? his3? arg3-D4 

11557 	h? rrp6::kanR otrlR(Sphl)::ade6+ ade6-DN/N hisi ? his3? arg3-D4 

11558 	h+ natR-3xmyc-agol-i- ade6-210 Ieul-32 ura4-D18 otrlR(Sphl):ade6+ 

11559 	h+ natR-3xmyc-agol::ura4+ ade6-210 leul-32 ura4-D18 otrlR(Sphl):ade6+ 

11560 	h-i- natR-3xmyc-agol-D580A ade6-210 leul-32 ura4-D18 otrlR(Sphl):ade6+ 

11561 	h+ natR-3xmyc-agol-D580A ade6-210 Ieul-32 ura4-D18 otrlR(Sphl):ade6+ 

11562 	h-i- natR-3xmyc-agol-H617A ade6-210 leul-32 ura4-D18 otrlR(Sphl):ade6+ 

11563 	h+ natR-3xmyc-agol-H617A ade6-210 Ieul-32 ura4-D18 otrlR(Sphl):ade6+ 

11564 	h-i- natR-3xmyc-agol-D651A ade6-210 Ieul-32 ura4-D18 otrlR(Sphl):ade6+ 

11565 	h+ natR-3xmyc-agol-D651A ade6-210 leul-32 ura4-D18 otrlR(Sphl):ade6+ 

11566 	h? natR-3xmyc-agol-D651A chpl-3xFLAG-KanR ade6-21 0 

11568 	h? agol-D580A ade6-210 !eul-32 ura4- otrlR(Sphl):ade6+ chpl-myc-LEU2+ 

11569 	h? agol-D580A ade6-210 Ieul-32 ura4- otrlR(Sphl):ade6+ chpl-myc-LEU2+ 

11570 	h? agol-D651A ade6-210 Ieul-32 ura4- otrlR(Sphl):ade6+ chpl-myc-LEU2+ 

11571 	h? agol-D651A ade6-210leul-32 ura4- otrlR(Sphl):ade6+ chpl-myc-LEU2+ 

* rrp6,6 strains were derived from crosses of BG-0781 (Bioneer Corporation, Korea) 
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CHAPTER 3 

GENE REGULATION VIA INTERPERSED REPEATS 
BY RNAI-MEDIATED CHROMATIN SILENCING 

3.1. INTRODUCTION 

In the 1950s, Barbara McClintock observed that a new kind of mobile genetic element had 

the property of altering gene function and affecting normal plant development (McClintock 1956). 

These elements turned out to be transposable elements (TEs). Nowadays it is known that TEs can 

affect genes by inserting within their sequence, causing disruption or truncation of protein coding 

sequences (Fedoroff 1989). In addition, TE insertions can have dramatic effects on expression levels 

of surrounding genes by disturbing the transcriptional activity of the affected regions (Morgan, 

Sutherland et al. 1999; Maside, Bartolome et al. 2002; Iwashita, Osada et al. 2003; Han, Szak et al. 

2004). Since these elements are often a target for chromatin silencing in eukaryotes, it is possible 

that some of the observed changes of gene expression associated with TEs could result from 

transposon silencing events involving the formation of silent chromatin over such elements 

(Morgan, Sutherland et at. 1999; Lippman, Gendrel et al. 2004). TEs and related repetitive 

sequences are among the most highly represented classes of genomic elements in eukaryotic 

genomes. Repetitive sequences comprise 8% of fission yeast genome, 38-48% in mammalian 

genomes and up to 80% of total nuclear DNA in maize and many other plant species (SanMiguel, 

Gaut et at. 1998; Venter, Adams et al. 2001; Waterston, Lindblad-Toh et al. 2002; Wood, Gwilliam 

et al. 2002). Whilst a significant fraction of these sequences is found clustered at centromeres and 

telomeres, a large proportion is found interspersed along the chromosome arms in the vicinity of 

protein-coding genes. Considering that interspersed sequences may be targeted by RNA silencing 

and silent chromatin formation, can interspersed repeats regulate gene expression in a form that is 

dependent on RNA and chromatin silencing? 

The fission yeast Schizosaccharomyces pombe serves as simple but tractable experimental 

model in which to study the function of repetitive DNA in gene control. Apart from possessing RNA 

interference and heterochromatin structure akin to higher eukaryotes, its genome contains 
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Full length LTR retrotransposon 

Gag 
	

RT RNaseH II 	IN 

Solo LTR 
D. 	

TE-related sequences 	 COPV number 

Full length Tf2 elements 	 13 

Solo Tf2 LTRs (>200 bp) 	 35 

Degraded LTR 

Full-length Tfl elements 	 0 

 

Solo Tfl LTRs (>200 bp) 	 28 

Related LTRs (>200 bp) 	 111 

Related LTR fragments (<200 bp) 	75 

Total LTRs 	 275 

Figure 3-1: Retrotransposons and LTR sequences in the genome of S. pombe. 

Diagram of the Tfl and Tf2 LTR retrotransposons from fission yeast. These transposable elements (TEs) 

are 5 kb long and are constituted by a single open reading frame that encondes Gag, protease (PR), reverse 

transcriptase, endonuclease (RT RNase H) and integrase (IN). They are flanked by two tandem long terminal 

repeats (LTR) that promote transcription of the TE and participate in the transposition process. 

Solo LTRs are common throughout fission yeast chromosomes and result from deletion of TEs by 

homologous recombination events. Solo LTRs contain the TE promoter and have been reported to be 

transcriptionally active. 

Many of the solo LTR sequences were accumulated from ancient TE invasion events and have since 

become considerably degraded by random mutations throughout evolution. 

Summary of TE related sequences in the genome of fission yeast (FY972) (adapted from Bowen et al 

2003). The genome of fission yeast carries 13 full length Tf2 LTR retrotransposons that are inactive but no 

full length Tfl elements. It possesses a number of Tfl and Tf2 solo LTRs and a large number of related LTRs 

that have originated from other unknown retrotransposons. 
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relatively small numbers of interspersed repeats. Previous work in our lab demonstrated that 

interspersed LTR repeats are also targets for RNAi-mediated heterochromatin assembly (Schramke 

and Allshire 2003). These LTRs (Long Terminal Repeats) are 358 bp-long functional components of a 

class of TEs known as retrotransposons which are also found in retroviruses. Scattered throughout 

the genome are 275 LTRs scattered from TEs of the Tfl and Tf2 families, although only 26 are still 

associated with full length elements (Bowen, Jordan et al. 2003) (Figure 3-1). The vast majority of 

these repeats show obvious signs of degradation and are considered to be remnants of deleted TEs. 

LTRs contain promoters which allow transcription of the full-length TE in the first step of the retro-

transposition process. These full-length transcripts are then primed for reverse transcription and 

the resulting cDNA is integrated at a novel locus through the action of a transposase. Solo LTRs are 

known to maintain promoter activity and indeed LTRs in S. pombe were found to be actively 

transcribing. However, similar to centromeric outer repeats, LTR transcripts were detected for both 

strands at increased levels in RNAi mutants. In fact, it was observed that LTRs display enriched 

levels of both H3K9me2 and Swi6 HP'  but only while RNAi is active and Clr4 39  is present 

(Schramke and Allshire 2003). Thus, it was proposed that RNAi acts on several or all LTRs to bring 

about silent chromatin assembly on LTRs (Schramke and Allshire 2003). 

The most surprising finding about LTR repression was that it influenced the expression of 

nearby genes. While testing for effects of LTR heterochromatin on surrounding genes, 7 out of 11 

meiotic genes were found to have increased transcription levels in the absence of RNAi (ago1 

dcrlLl, rdp1L) or heterochromatin (cIr4-S5 and swi6Ll) (Schramke and Allshire 2003). As with other 

meiotic genes, these 11 genes are normally upregulated only during meiosis, which is triggered by 

nitrogen starvation, leading to sexual differentiation, conjugation and eventually sporulation of a 

zygote. This derepression of meiotic genes during the vegetative cycle was also shown to be 

dependent on the presence of the nearby LTR since disruption with a selectable marker reproduced 

the derepression effect on nearby meiotic genes. The promoters of all 7 affected genes were, at 

most, 6.6 kb away from an LTR while the remaining 4 unaffected genes were positioned further 

away from any neighbouring LTR (at least 10 Kb away). This is reminiscent of a position-based effect 

which, together with the requirement for Swi6 HP1  and Clr4, strongly suggests that repression of 

these 7 genes during the vegetative cycle is caused by heterochromatin spreading laterally from the 

LTR to adjacent regions (Figure 3-2). 

In this chapter I will describe the work I performed in exploring the process of LTR-mediated 

repression. Previously published data provided few clues to the molecular mechanisms ruling this 
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- transcripts 

Figure 3-2: Original model for LTR-mediated gene silencing (Schramke and Allshire, 2003). Transcripts 

from both strands of LTRs (green arrows) are produced and lead to the formation of dsRNA. This is cleaved 

by Dcrl into siRNA molecules that are loaded into Agol inside the RITS (RNA-induced Initiation of 

Transcriptional Silencing) complex. RITS then proceeds to recruit the Clr45 ' 39  methyltransferase to 

deposit H3K9me2 on overlying nucleosomes and recruit the chromodomain protein Swi6 1. This 

establishes a patch of heterochromatin over the LTR sequence that can spread to adjacent regions and 

silence nearby genes. 

101 



process. It was not known how components of RNA silencing, heterochromatin assembly and 

transcription acted together to bind LTRs in silent chromatin and affect the expression levels of 

nearby genes. Thus, this project was primarily aimed at characterizing the molecular basis of LTR-

mediated repression by focusing the analyses on a few selected LTR-gene clusters. My approach 

consisted of studying the behaviour of both repeats and genes at the level of chromatin structure 

and transcription. However, the work that I present here fails to support the original observations 

and even challenges the existence of a phenomenon of LTR repression by RNAi and 

heterochromatin as well as any influence of such a mechanism on the activity of surrounding genes. 

3.2. RESULTS 

3.2.1. LTR-mediated gene repression is not reproducible 

Previous work from our lab analysed the expression behaviour of 11 meiotic genes in 

function of RNAi and the presence of a nearby LTR (Schramke and Allshire 2003). Although 7 genes 

were reported to be repressed by means of RNAi and a neighbouring LTR sequence, the analyses 

did not encompass all the genes surrounding these same LTRs. It also did not provide any 

quantitative measure of the effect on gene expression. My first aim was to reproduce these original 

data and expand their coverage in order to investigate the repressive influence of a few given LTRs 

over all the genes found within a 10 kilobases of the LTR. By accurately measuring the expression 

levels of all genes present on several LTR loci, I hoped to describe the extent of the repressive 

influence of these repeats and derive common aspects of function. If indeed heterochromatin 

spreading was involved then several genes, particularly the ones located closer to the LTR, might be 

expected to display affected expression levels due to PEV. 

For this purpose, a more accurate quantification method than the standard reverse 

transcriptase polymerase chain reaction (RT-PCR) was required to properly characterize known LTR-

sensitive genes in more detail as well as to assay other potentially regulated genes. Therefore I 

used reverse transcriptase quantitative (real time) PCR (RT-qPCR) to measure the transcript levels 

of all the genes in my chosen LTR loci. Using this technique, it is possible to visualize the kinetics of 

the PCR reaction through successive cycles. Rather than deriving the amount of starting template 

from the final product of the reaction, as per standard gel-based RT-PCR, by RT-qPCR it is possible 

to estimate the amount of starting template by comparing amplification curves of test samples 
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Figure 3-3: RT-qPCR analysis conducted in mutant strains for RNA1 and heterochromatin assembly in two 

independent LTR loci. Relative expression ratios versus wild-type normalized to acti are depicted in the bar 

chart as I092-based values. Red lines mark the thresholds for two-fold variation in expression. The diagram 

above the graphs marks the relative position of the genes within each locus. ORF5 marked in green were 

previously shown as LTR-sensitive, in red the LTR-insensitive genes and in orange the ones to which the 

behaviour towards LTR5 is unknown. A. Expression analysis of ORFs of the SPAC261­15 locus in wild-type 

versus dcrLl and swi6li. Entries represent each of the genes analyzed in this locus, SPAC261­15.07 to 11. The 

last entry refers to SPAC26H 5.13, which is located further than tlokb away from the LTR. The LTR-sensitive 

gene meu6 was included as a positive control. B. Similar analysis performed on two genes of the SPAC56F8 

locus, 14c and 17c, which had been reported as LTR-sensitive and —insensitive genes, respectively. 
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against a set of DNA standards. Thus real time PCR data is more accurate because it is less likely to 

be contaminated by differences in reaction efficiency or rate-limited reaction setups. It is also far 

more sensitive since it relies on detection of DNA product bound to the fluorescent dye SYBR Green 

II on the reaction plate rather than gel staining (Bustin 2000; Bustin 2002). 

The initial plan was to monitor a total of four LTR loci encompassing 34 different ORF5 in 

wild type and mutant backgrounds using real time PCR. The reagents used were a customized 

mixture with AmpliTaq Gold, several additives used to lower non-specific amplification and the 

fluorescent dye SYBR Green II to measure the amount of double stranded DNA produced 

throughout PCR cycling. All experiments were conducted in a Biorad iCycler system. Temperature 

gradients were used to determine the optimal annealing temperature of each primer pair. The PCR 

efficiency of each pair was determined using 10-fold serial dilutions of DNA standards (sheared 

genomic DNA) and by regression of the resulting standard curve. While performing these tests, I 

was able to verify that the setup performed adequately as it was capable of distinguishing 2-fold 

differences in starting amounts of template. 

The analysis was conducted on two LTR loci: SPAC261­15 and SPAC56F8. Both loci contain 

what were previously described as LTR-sensitive genes (SPAC26H5.11 and SPAC56F8.14c) whilst 

SPAC56F8 also contains one gene known not to be affected by LTR repression (SPAC56F8.17c) 

(Schramke and Allshire 2003). Total RNA was extracted from cell cultures in log phase and used to 

synthesize cDNA with an oligo-dT primer. All samples were assayed in triplicate using specific 

primers and normalized against levels of acti (actin). The resulting expression ratios were 

calculated using the Pfaffl method for semi-quantitative PCR (Figure 3-3A) (Pfaffl 2001). The 

expression level of SPAC26H5.11 was not affected in swi6Lt and was even reduced rather than 

enhanced in dcrlA. Genes downstream of the LTR show increased transcription in the absence of 

Swi6 H P1  but this tendency is not reproduced in dcrlLL A gene described as LTR-regulated - meu6 - 

showed no difference in expression levels in the absence of Dcrl. The same behaviour was 

observed for another supposedly LTR-regulated gene (SPAC56F8.14c) in a separate experiment 

(Figure 3-313). By semi-quantitative RT-PCR assay, it was possible to detect accumulated 

centromeric transcripts in the strains used in this study, which confirms their defect in RNAi and 

heterochromatin silencing (Figure 3-4) (Volpe, Kidner et al. 2002). Thus, in this assay I was not able 

to detect any significant RNAi or heterochromatin-dependent effects on transcript levels of genes 

adjacent to LTRs. 
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Figure 3-4: RT-PCR analysis for centromeric transcripts in RNAi and heterochromatin mutants. The 

accumulation of transcripts homologous to the outer repeats was measured for each sample by semi-

quantitative PCR using poly(A) cDNA. The control reaction is shown as —RT (no reverse transcriptase). The 

positive control for the PCR reaction was performed with a sample of genomic DNA (gDNA). The amounts of 

otr (dg) transcripts detected for each mutant were first normalized to acti and are depicted here as 

overexpression ratios in comparison with wild type sample (wt). Both RNAi (ago1L and dcr1L) and 

heterochromatin mutants (swi6L and cIr4-S5) visibly accumulate otr transcripts. As previously reported, the 

accumulation of otr RNA in swi6L is less proeminent than in cIr4-S5 and RNAi mutants. 
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3.2.2. Heterochromatin does not establish over LTRs and surrounding genes 

The genes contained in the SPAC26H5 locus were also assayed for the presence of 

heterochromatin. The data obtained here refers to Swi6 HP1  association only which is still sufficient 

to determine whether a particular region is enveloped in heterochromatin or not since Swi6 1  is a 

component of this structure that is essential for silencing underlying genes (Lorentz, Ostermann et 

al. 1994; Nimmo, Cranston et al. 1994). 

Chromatin immunoprecipitation was performed with anti-Swi6 serum and the enrichment 

was evaluated by semi-quantitative PCR using primers for the outer repeats (otr) and fbpl gene as 

an internal control. The degree of enrichment was determined by comparing the relative levels of 

these two DNA species in the immunoprecipitated fraction against the total extract (fig.5A). These 

same samples were assayed by real-time PCR using primers for the "dg" and "dh" outer repeats, 

the inner-most repeats (imr) and the central core (cnt) of the centromere 1, with acti as the 

euchromatic control. The results show that this assay is capable of detecting increased levels of 

Swi6 H11  in the heterochromatic regions of the centromere (Figure 3-5B). It also shows that this 

enrichment of Swi6 HPI  over the centromeric outer repeats requires Dcrl, which illustrates the 

connection between RNAi and the stability of centromeric heterochromatin (Volpe, Schramke et al. 

2003). However, no significant differences in enrichment were found for the genes surrounding the 

LTR in SPAC26H5 (Figure 3-5C). This suggests that, in these conditions, LTR heterochromatin is not 

engulfing surrounding genes. Since the LTR in SPAC26H5 belongs to a subclade of highly 

homologous LTR5, it is not possible to generate primers specific for this particular repeat. However, 

the resolution of chromatin immunoprecipitation is limited by the extent of chromatin shearing, 

which in general, does not go below 500 bp. It is then possible to measure the levels of Swi6 HP" 

protein over the LTR using primers to amplify the sequences regions immediately upstream and 

downstream of the LTR itself. By standard semi-quantitative multiplex PCR, no Swi6 HP1  enrichment 

was detected over the LTR region (Figure 3-6A). Therefore, it is not likely that this LTR is coated in 

heterochromatin. In a separate experiment, the LTR adjacent to the SPAC301)11.02c 

heterochromatin-sensitive gene was tested for enrichment of Swi6' in an attempt to reproduce 

the original observations on LTR heterochromatin (Schramke and Allshire 2003). By multiplex PCR, 

no noticeable enrichment of Swi6" is observable over this sequence (Figure 3-613). This result 

contradicts published results that showed Swi6 	localization to these repeats in wild type in a 

form sensitive to disruption of RNA1 or heterochromatin assembly machinery (Schramke and 

Allshire 2003). 
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Figure 3-5: Swi6HP1  Chromatin IP (ChIP) analysis on SPAC26H5 locus. 

Chromatin IP (ChIP) was perfomed on wild-type, dcr1L and swi6L cells using an antibody against Swi6'. 

Enrichment levels of Swi6H1  over centromeric outer repeats were assayed by multiplex PCR. The values were 

calculated by normalizing to the internal control (fbpl) and then compared the ratios from IP and total or input 

(1) samples. 

The same samples were assayed by real-time PCR (qPCR) using primers for several regions at centromere 1: 

the central core (cnt), inner-most repeats (imr) and both types of outer repeats - dg and dh. Enrichment levels 

are normalized tofbpl+. The region of imr selected for this assay is still within the heterochromatic domain. 

Levels of Swi6" were assayed by a similar method on the open reading frames (ORF5) that surround the 

LTR in the SPAC261­15 locus. No significant enrichment was observed for any of analysed ORFs, including 

SPAC261­15.11 which was reported to be affected by LTR silencing. Similar results were obtained for the LTR-

sensitive meu6+ gene and the outlying ORF SPAC26H5.13. No measurements were made on the LTR sequence 

due its high redundancy and lack of locus-specific primers. Error bars represent standard deviation of replicate 

ratios (n3). 
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Figure 3-6: ChIP analysis of Swi6 1  levels over LTR sequences. 

The amount of Swi6 
HIII  over the LTR belonging to the SPAC261-15 locus was analyzed by multiplex PCR using 

primers that amplify regions directly downstream (3') and upstream (5') of its sequence. The enrichments were 

first normalised internally against fbpl and then calculated IP over input (T). Even though Swi6 
HPI  is readily 

detectable at centromeres (top panel), it is not detectable at sides the LTR (middle and bottom panels). 

Similar experiment using thethered primers to measure enrichment levels over the LTR belonging to the 

SPAC30D11 locus which was previously described as target for RNAi and heterochromatin formation. The LTR 

primers used here are identifical to the ones used in Schramke and Allshire 2003. Swi6" is detected at the 

centromeric otr (top panel) but not over the SPAC30D11 LTR, unlike previously reported. 
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3.2.3. LTR-specific transcripts are not detectable in RNAi mutants 

The observation that LTR transcripts were visible in RNAi mutants but were significantly less 

abundant in wild type conditions provided one of the first clues hinting to an involvement of RNAi 

in LTR silencing and LTR-mediated gene repression. To reproduce this observation, I synthesized 

strand-specific cDNA from total RNA using primers that could recognize multiple LTRs (LTR 

consensus) for reverse transcription (fig 3.7). Subsequently, I performed PCR using the same 

primers to amplify the LTR fragments and resolved the products on an agarose gel stained with 

ethidium bromide. The results suggest that that sense transcripts for LTRs are found in higher 

amounts in RNAi mutants (agolll, dcrlLt, rdp1i) compared with wild type (Figure 3-8A). However 

no conclusion can be drawn from these results since this experiment suffered from difficulties in 

removing contaminating gDNA due to the high copy number of these repeats in spite of several 

adjustments being made. 

The levels of LTR transcripts were also assessed by standard RT-PCR using oligo-d(T) primed 

cDNA. The samples were analyzed for LTR expression levels using primers for the LTR consensus or 

for a single LTR that was originally described as regulated by RNAi and heterochromatin. The results 

are depicted as expression ratios normalized to wild-type expression levels. Expression levels of 

LTRs were not found to be induced in mutants for RNAi and heterochromatin formation (Figure 3-

813). This suggests that the previous result represents a very small increase in LTR expression level 

that is only detected with cDNA primed with specific oligos. An alternative explanation is that LTR 

transcripts do not acquire a poly-(A) tail. Hence, analysis by Northern blot would allow me to detect 

any LTR transcripts regardless of their end modifications. 

Northern blot showed no detectable increase in LTR expression in the absence of RNAi. Samples of 

total RNA from wild type, agolA and dcr1L strains were analysed by Northern blot using probes 

specific for the centromeric outer repeats (dg) and the LTR consensus. Only the ribosomal RNA 

background was observed for the LTR hybridization in all trials of the procedure, with an exception 

of a faint smear running at approximately 4500 nt (Figure 3-9). The relative size of this smear 

suggests that it might represent transcripts from full length Tf2 TE5 (4 kb long) but the low signal 

intensity and extensive smearing suggests that it might be background signal arising from unspecific 

binding of the probe to the membrane. Furthermore the signal is present in all samples in the same 

relative amounts when comparing the first wild-type and the mutant lanes. If indeed this smear 
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Figure 3-7: Phylogenic tree diagram showing the similarity hierarchy of the LTRs (>200bp) in S. pombe 

(Bowen et al. 2003). The depitcted sequences were divided into subclades according to sequence 

conservation. The two major subclades (alpha and beta, red box) contain the highest number of nearly intact 

LTRs in the genome. Primers were designed to amplify a 280bp homologous region common to all these 

sequences in order to obtain higher sensitivity in PCR and northern hybridizations. 
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Figure 3-8: RT-PCR analysis for detecting LTR-specific transcripts. 

Single-stranded RT-PCR using oligos that can recognize multiple LTRs (LTR consensus). Shown are the RI-

PCRs specific to the sense and antisense strands of the LTR with acti as control. Due to the high copy 

number of LTR sequences in the genome (close to 300), I was unable to completely remove all homologous 

DNA from the samples which resulted in significant amounts of contamination visible in the —RI control PCR. 

RT-PCR for poly-adenylated transcripts. Samples were assayed for levels of LTR transcripts using primers 

specific for multiple LTRs (LTR consensus) or a single LTR. The LTR from SPAC30D11 locus analyzed here was 

previously suggested to be silenced through RNAi and heterochromatin. 
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Figure 3-9: Northern analysis for LTR transcripts in 

wild-type and RNAi mutant cells. The two bands 

visible at approximately 3500nt and 1800nt 

correspond to the two larger ribosomal RNA 

molecules and were assumed to be background. The 

black arrow marks were a full length Tf-2 transposon 

transcript was expected to run (400Ont). The panel 

below shows the result of a loading control 

hybridization using an acti specific probe. The 

several visible bands correspond to the three known 

isoforms of the acti mRNA in fission yeast (Mertins 

and Gallwitz, 1987). 
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represents Tf2 TE transcription, its levels are not affected by loss of RNAi. The presence of visible 

bands with the acti probe demonstrated that the hybridization conditions were adequate and that 

the RNA samples were not degraded (Figure 3-9, bottom panel). The multiple bands in the acti 

hybridization represent the 1850, 1650 and 1240 nucleotide long actin mRNA5 found in S. pombe 

(Mertins and Gallwitz 1987). It is possible that these transcripts are found in very low amounts in 

the cells so the amount of RNA used in these blots may have been insufficient. Another possibility is 

that the LTR transcripts are short enough to have migrated out of the agarose gel. The most likely 

explanation is that LTR transcripts are present in very low or even negligible levels in wild-type and 

RNA1 mutant cells, which explains the difficulties in detecting them. However this explanation 

clashes with the original postulate of LTR repression being mediated by RNAi (Schramke and 

Allshire 2003). 

3.2.4. siRNAs from LTR repeats are not detectable 

The conventional method of detecting siRNAs is by Northern blot using a probe whose 

sequence is identical to the siRNA target site. However, a major shortcoming of this technique is its 

reduced sensitivity, making it less adequate to detect small RNAs present in low amounts. In order 

to increase the chances of detecting LTR siRNAs by Northern blot, I opted for a probe that could 

recognize several of these repeats. I designed primers that could amplify a large number of closely 

related LTR5, with preference for the alpha and beta subclades (Figure 3-7) (Bowen, Jordan et al. 

2003). These two subclades together contain a large number of full-length repeats in the total 

population of LTR that bear closer similarity to Tfl and Tf2 LTR5, respectively. For this reason, it is 

likely that the transcriptional activity of the majority of these repeats is still intact, which could be 

crucial for producing dsRNA. The resulting probe is nearly equivalent in sequence to all 86 members 

of these two subclades. Additionally, in a separate hybridization I used a probe specific for a region 

within the centromeric outer repeats known to contain siRNAs, thus providing a positive control for 

the sIRNA detection procedure. 

By using a probe specific to a centromeric outer repeat region numbers of known 

centromeric siRNAs (siRNAs K to H) it was possible to detect by Northern blot small RNAs 

complementary to centromeric outer repeats with sizes in the range expected for siRNAs (Figure 3-

9A and B) (Reinhart and Bartel 2002). As expected, these were only visible in wild type extracts and 

not on samples of ago1L or dcr1L samples (Volpe, Kidner et al. 2002). LTR-specific small RNAs were 
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Figure 3-10: Northern analysis for centromeric and LTR 

small RNAs. 

Samples of <lOOnt RNA from wild-type, ago1/ and 

dcr1L were migrated in parallel with DNA oligos used in 

the PCR reactions for the corresponding probe. The 

signal corresponding to siRNAs can be seen as a smear 

migrating at 23 nt and above. The diagram below 
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probe used in this experiment. 

Similar experiment using an LTR-specific probe. No 

signal was detectable in both wild-type samples, despite 

longer exposure time. 

Loading control in both experiments was ethidium 

bromide staining of tRNAs and rRNAs from the gel. 
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not detected in any of the lanes, suggesting that LTRs are not targeted for siRNA production. As 

shown in the previous section, no signal for LTR was detectable by small RNA Northern blots. 

Furthermore, no LTR signal was detected at higher sizes that those expected for siRNAs which 

argues against the existence of short LTR transcripts at a rate that can be detected by this 

technique. Given that the sensitivity of the assay is questionable, I cannot exclude the possibility 

that LTR siRNA levels are present in wild-type cells in amounts below the threshold detection level 

of this Northern blot protocol. Only by performing RNAse protection assay would be possible to 

properly assess this possibility. However it is safe to say that LTRs are not targeted for siRNA 

production to the same extent as centromeric outer repeats are. 

3.3. DISCUSSION 

The data presented in this report is not sufficient to assess all reasonable hypotheses that 

could explain the contradictory evidence of my analyses with that of Schramke et at. It is sufficient 

to cast reasonable doubts on the existence or the details of the proposed phenomenon of LTR-

mediated silencing. While this work was being conducted, two independent reports were published 

containing evidence that disputed the original description of LTR silencing by RNAi and 

heterochromatin (Cam, Sugiyama et at. 2005; Hansen, Burns et al. 2005). Hansen et al. performed 

genome-wide microarray expression analysis on mutants for RNAi factors agol, dcrl and rdpi, the 

H3K9 methyltransferase cIr4 and histone deacetylases cIr3 and cIr6 as well as c/ri (Hansen, Burns et 

al. 2005). The authors looked for genome elements that were overexpressed in cells depleted of 

RNAi and silencing pathways and found only 18 genes that responded to RNAi ablation with an 

expression induction over at least 1.4 fold. This group of 18 genes are located 10 kb or more away 

from any LTR sequence and do not include the 7 meiotic genes previously suggested to be LTR-

regulated (Schramke and Allshire 2003; Hansen, Burns et al. 2005). In the c/r mutants, the effect on 

genome expression levels is more dramatic, particularly on the c/r31 c1r6zi double mutant cells that 

displayed a total 606 upregulated genes. These include several genes located in the vicinity of Tf2 

transposons and their LTRs. The latter observation is interesting considering that transcript levels 

for the Tf2 transposoris themselves are higher in cIr3zl c1r6zi double HDAC mutant cells. However 

the populations of genes that respond to histone deacetylase mutations do not overlap with the 18 

RNAi-sensitive genes. Meanwhile the effect of RNAi mutants on Tf2 transcription levels is hardly 

detectable. This evidence prompted the authors to conclude that histone deacetylases are involved 
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in regulating expression of genes and transposable elements in a manner that is independent of 

RNAi-independent and H3K9 methylation (Hansen, Burns et al. 2005). 

The second study is also a genome-wide survey of chromatin modifications (H3K9 

methylation and H3K4 methylation) as well as localization of RITS components (Agol and Chpl) and 

Swi6' by ChIP-on-chip (Cam, Sugiyama et al. 2005). In addition, the authors assembled a library of 

sequences from purified S. pombe siRNAs and mapped their targets in the genome. Cam and 

colleagues failed to encounter any significant enrichment of LTR sequences for H3K9me2, Swi6 '  

or any of the RITS components. The authors could not find any matches to LTRs or Tfl/2 

transposable elements in the total 1292 individual siRNA sequences. Expression microarray 

experiments confirmed the observations from Hansen et al. in that the 7 genes supposedly 

regulated by LTRs are not overexpressed in the absence of heterochromatin (cIr4A) (Cam, Sugiyama 

et al. 2005). 

The evidence presented in this chapter, combined with these two independent reports, 

provide considerable arguments against the notion that LTRs are targeted by heterochromatin 

formation in an RNAi-dependent manner and that this has any effect on genes surrounding these 

LTR sequences. Given that the original observations could not be reproduced, the conlusions 

published in Schramke et al. were since retracted (Allshire 2005). 

Even though RNAi and heterochromatin appear not to be involved, TEs and their associated 

LTRs in fission yeast appear to be under the control of a stress-related regulatory pathway that 

comprises inducible transcription factors of the Atf/CREB family and histone deacetylases. However 

this TE transcription regulation mechanism is not novel since it is long known that TEs can be 

induced in stress conditions in other eukaryotes (Pouteau, Huttner et al. 1991; Liu, Chu et al. 1995). 

This phenomenon might either reflect a complex cellular response to stress in which these 

elements play a role or a window of opportunity for TEs to further spread in the host genome (Liu, 

Chu et al. 1995; Grandbastien 1998). In the case of fission yeast this regulation process is clearly 

acting independently of RNA1 and conventional heterochromatin. There is no conclusive evidence 

showing that this phenomenon can affect nearby genes by a spreading mechanism either. In the 

case of wtf (with-Tf) genes, it is not obvious if the promoters of wtf series of genes contain Atfl 

binding sites or if these genes are under the control of LTR promoters themselves (Bowen, Jordan 

et al. 2003). The wtf genes themselves are expressed yet it is unclear what their function consists of 

since they are either pseudo-genes, non-coding genes or encode uncharacterized proteins (Mata, 
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Lyne et al. 2002; Bowen, Jordan et al. 2003). The regulatory interactions between TEs and 

associated wtf genes are a matter of interest and require further detailed studies. 
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CHAPTER 4 

EXPLORING LINKS BETWEEN RNA PROCESSING 

AND RNA INTERFERENCE 

4.1. INTRODUCTION 

It is becoming increasingly clear that RNA silencing does not function in isolation from 

other molecular pathways within the cell. In conventional RNAi, the RISC complex localizes to 

cytoplasmic GW/P bodies in vertebrate cells whenever RNAi is actively degrading a target mRNA 

(Liu, Valencia-Sanchez et al. 2005; Rehwinkel, Behm-Ansmant et al. 2005). These bodies are 

involved in mRNA translational arrest and turnover and the association of RISC with these 

structures points to a connection between RNA silencing and these other RNA mechanisms in the 

cell (Liu, Valencia-Sanchez et al. 2005; Rehwinkel, Behm-Ansmant et al. 2005). It appears that these 

links are conserved in other eukaryotes since a genetic screen conducted in C. elegans for 

additional factors involved in RNAi (Kim, Gabel et al. 2005) identified several genes that are known 

to be involved in RNA processing. In the case of S. pombe, RITS (the effector complex: Agol, Tas3 

and Chpl) is thought to localize to the centromeric outer repeats and to interact with RDRC (RNA-

dependent RNA polymerase complex) via a nascent RNA polymerase II transcript (Motamedi, 

Verdel et at. 2004). Thus, fission yeast RNAi functions within a co-transcriptional context with must 

be coordinated with other molecular events that are linked with RNA polymerase II transcription, 

such as pre-mRNA splicing, 5' end capping and 3' end polyadenylation. This may then explain for 

example why mutations in several splicing factors can affect the ability of the cells to maintain 

silencing of a reporter gene inserted into the centromeric outer repeats (Bayne, Portoso, EkwaII 

and Allshire - unpublished observations). However, it is not clear how pre-mRNA splicing or any 

other RNA processing pathway influences RNAi-mediated chromatin silencing. 

It is possible that the mechanism of RNA silencing overlaps with many other RNA 

metabolism pathways by sharing common components, reaction intermediates or by competing for 

the same resources. For instance, the helicase Hrrl and the poly(A) polymerase Cid12 (RDRC 

components) are essential for RNAi but are also similar to other factors involved in RNA processing 

and turnover (Motamedi, Verdel et at. 2004). While helicases are common in molecular pathways 
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that deal with RNA or DNA, Cid12 is more distinct in that it shares close homology with Trf4p. The 

latter is a member of a family of poly(A) polymerases that forms the TRAMP complex with Air2p 

and Mtr4p and is involved in targeting transcript degradation by the exosome complex in budding 

yeast (LaCava, Houseley et al. 2005; Wyers, Rougemaille et al. 2005). One of the functions of 

TRAMP and the exosome is to degrade "aberrant" transcripts formed by incorrect transcription, 

RNA end processing or folding. In a similar aspect, specific plant RNA-dependent RNA polymerases 

(RdRP) are believed to trigger PTGS (Post-Transcriptional Gene Silencing) of viral RNA by responding 

to an yet-unidentified characteristic of these molecules that distinguishes them from endogenous 

transcripts (Hamilton and Baulcombe 1999; Mourrain, Beclin et al. 2000; Yu, Fan et al. 2003; 

Schwach, Vaistij et al. 2005). The fact that RNAi and TRAMP-mediated degradation by the exosome 

both employ poly(A) polymerases suggests that the two mechanisms share the same functional 

principle for recognizing target RNA and consequently cooperate or compete for the same targets. 

If RNAi is compromised in a mutant for an RNA metabolism factor, this will have an impact 

in centromeric heterochromatin and consequently the cells will display chromosome segregation 

defects could be expected. In fact, several factors involved in different aspects of RNA polymerase II 

transcription termination and 3' end processing are indeed known to be required for proper 

chromosome segregation. One such factor is Pfs2, an essential pre-mRNA cleavage and 

polyadenylation factor that is required to prevent transcriptional read-through in S. pombe (Wang, 

Asakawa et al. 2005). It is also essential for accurate chromosome segregation and entry into S 

phase (Wang, Asakawa et al. 2005). Mutation in pfs2+ leads to chromosome segregation defects 

and activation of the spindle checkpoint, as shown by the accumulation of Bubi and Mad2 foci in 

the nucleus (Wang, Asakawa et al. 2005). Pfs2 is a component of the yeast CPF (cleavage and 

polyadenylation factor) complex that is responsible for pre-m RNA cleavage at the co-transcriptional 

termination site and to promote the 3' end maturation of the pre-mRNA by polyadenylation. One 

of the components of the CPF is Cftl, a homologue of the human CPSF1 factor that binds to the 

AAUAAA conserved sequence in the pre-mRNA (Murthy and Manley 1995; DichtI, Blank et al. 2002). 

Both CPSF1 and Cftl have a conserved motif called CPSF-A that is also found in Riki, a component 

of the Clr4 39  complex that is required for heterochromatin assembly in fission yeast (EkwaII 

and Ruusala 1994; Allshire, Nimmo et al. 1995; Ekwall, Nimmo et at. 1996; Nakayama, Rice et at. 

2001). Thus, it is possible that these two processes are functionally connected. 
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Figure 4-1: Overview of RNA polymerase II transcription termination and pre-mRNA 3' end processing. 

An RNA polymerase II (RNAPII) transcribing through a gene will eventually reach the termination or 

poly(A) site (red box). This site encodes a conserved AAUAAA motif that is recognized by Cftl which 

together with Pfs2 and other factors form the yeast CPF (cleavage and polyadenylation factor) (in red). The 

CPF cleaves the nascent transcript at the AAUAAA motif, which then initiates pre-mRNA 3' end maturation 

and signals RNA Polymerase II to terminate transcription. 

CPF promotes the maturation of the pre-mRNA molecule by recruiting the poly(A) polymerase Papi to 

produce a poly(A) tail on the free 3' end of the pre-mRNA 

After the cleavage event, RNA polymerase II continues to transcribe regardless and must be terminated. 

The Ratip exonuclease (in purple) begins degrading the free 5' end of the RNA strand still attached to the 

polymerase. As it is more processive that elongating RNA polymerase II, Ratip reaches the RNA polymerase 

II and signals it to disengage from the DNA template. 

Highlighted in bold are two factors involved in the two mechanisms, Pfs2 and Dhpl/Ratlp. Mutants of these 

two factors were analysed for possible links of transcription termination and 3' end processing with RNAi 

and heterochromatin formation. 
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Dhpl is also known to be involved in chromosome segregation. Dhpl is the counterpart of 

the S. cerevisiae 5'-3' exonuclease Ratip that is involved in diverse processes such as rRNA 

maturation and transcriptional termination (Henry, Wood et at. 1994; Kim, Krogan et at. 2004) 

(Figure 4-1C). Depletion of this essential protein in S. pombe leads to accumulation of 

polyadenylated transcripts in the nucleus but also causes defects in chromosome segregation 

(Shobuike, Tatebayashi et al. 2001). Previous work in our lab suggested that the dhpl-1 

temperature sensitive mutant has defects in centromeric heterochromatin formation and 

accumulates centromeric transcripts in similar fashion to RNAi mutants such as dcrlll (Douglas 

Robertson - unpublished observations). 

Finally, the cold-sensitive mutant dis3-54 (Defective In Segregation) was isolated in a 

mutagenesis screen for factors involved in mitotic chromosome segregation (Ohkura, Adachi et al. 

1988). Dis3 is actually the homolog of S. cerevisiae Dis3/Rrp44p, an essential subunit of the 3'-5' 

exonuclease complex known as the exosome that is involved in transcript turnover and maturation 

of precursor RNA molecules (Mitchell, Petfalski et al. 1997; Suzuki, Noguchi et al. 2001). In S. 

cerevisiae, Dis3/Rrp44 is involved in directing the activity of the core exosome complex to process 

and degrade multiple RNA substrates in both nucleus and cytoplasm, which has far-reaching 

implications in general RNA metabolism in the eukaryotic cells (Dziembowski, Lorentzen et al. 2007) 

(Figure 4-2). The exosome is important for the quality control of transcription and 3' end processing 

of a large diversity of RNA species, including snRNAs, snoRNAs, rRNAs, tRNAs and mRNA5. In fission 

yeast cells, impaired Dis3 function results in severe defects in sister chromatid separation and 

failure to exit mitosis (Ohkura, Adachi et al. 1988). This phenotype is not directly reminiscent of a 

classic centromeric heterochromatin defect but it is conceivable that the severe phenotype 

includes defects in RNAi-directed heterochromatin formation. 

In this chapter I describe the results obtained from investigating into the possible role of 

Pfs2, Dhpl and Dis3 in processing of non-coding centromeric transcripts and centromeric 

heterochromatin integrity. The results demonstrate that RNA 3' end processing and transcription 

termination pathways do not have a significant influence on the RNAi pathway and on the stability 

of centromeric heterochromatin. Defective RNA termination only results in a subtle defect of 

centromeric silencing. Although the exosome does play a role in degrading centromeric transcripts 

downstream of the RNAi pathway, its direct involvement in silencing and heterochromatin stability 

is unclear. 
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Figure 4-2: Diagram of the nuclear and cytoplasmic forms of the exosome complex (adapted from 

Houseley et al. 2006) 

The exosome (in blue) is found in both nucleus and cytoplasm but the two forms of the exosome complex 

are slightly different in composition and required different targeting machinery. 

In the nucleus, the core exosome is associated with Dis3 and Rrp6 and interacts with the TRAMP (Trf4p 

Airip Mtr4p poly(A) polymerase) complex. TRAMP binds to a defective RNA species, such as a pre-mRNA 

(pictured), misfolded tRNA or rRNA, and begins polyadenylating its 3' end. This facilitates the loading of the 

exosome and initiation of 3' to 5' degradation. TRAMP is thought to interact with both Rrp6 and Dis3 on the 

surface of the nuclear exosome complex. 

Unlike Rrp6, Dis3 is also found on the cytoplasmic form of the exosome complex. Targeting is provided by 

factors such as the Ski complex that recruit the exosome for degrading transcripts in the context of specific 

mRNA downregulation, mRNA turnover, nonsense-mediated and non-stop decay. 

Highlighted in bold are the two exosome components for which mutant strains were analysed in this study, 

Dis3 and Rrp6. 
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4.2. RESULTS 

4.2.1. RNA processing and turnover mutants have subtle defects in heterochromatin integrity 

When the ade6+ gene is inserted with the outer repeats of fission yeast centromeres, the 

gene is silenced by nearby heterochromatin (Ekwall, Cranston et al. 1999). Cells with the ade6-

phenotype accumulate the upstream substrate which when oxidised turns colonies red. Silencing of 

ade6+ causes the cells to be phenotypically ade6- and thus accumulate the red-coloured metabolite 

P-ribosylaminoimidazole in vacuoles when they are grown in medium supplied with low adenine. 

When centromeric heterochromatin is disrupted, expression levels of the ade6+ gene increase and 

the colony colour shifts from red to white to an extent that reflects the magnitude of the silencing 

defect. This provides a valuable assay to determine if a particular mutation affects RNAi and 

heterochromatin integrity at centromeres. 

The RNA processing and turnover mutants assayed in this study are pf52-11, pfs2-3169, 

dis3-54 and dhpl-1. All the assayed mutants are temperature-sensitive with the exception of dis3-

54 which is cold-sensitive. This means that dhpl-1, pfs2-11 and pfs2-11 mutant cells can grow at 

25°C (permissive temperature) but lose the function of these essential proteins when the 

temperature is shifted to 36°C (restrictive temperature) (Shobuike, Tatebayashi et al. 2001; Wang, 

Asakawa et al. 2005). Conversely, the permissive temperature for the dis3-54 mutant is 34°C and 

the restrictive is 20°C (Ohkura, Adachi et al. 1988). The most informative temperature is 32°C which 

can be considered as semi-restrictive to all of these mutants because it allows the mutant cells to 

grow albeit deficiently. 

The four mutants were crossed to create strains containing a copy of the ade6+ gene 

inserted at outer repeats of centromere 1 (otr1R(SphI):ade6+) and an ade6 allele with an internal 

deletion at the endogenous ade6+ locus (ade6-DN/N). They were assayed for centromeric silencing 

defects at a range of temperatures between 18°C and 36°C in a serial dilution assay (Figure 4-3). 

The impact of the temperature on the growth rate of each mutant can be clearly seen here. This 

implies that these cells suffer from a loss of function of the mutated protein that is severe enough 

to affect cell growth when they are incubated at 32°C. The colour of the pfs2-11 and pfs2-3169 

mutant colonies at 32°C and 34°C is dark red similarly to wild-type colonies which indicates that 

centromeric silencing remains normal in these mutants. The colour of dhpl-1 colonies is lighter at 

25°C through 34°C but not at 18°C, suggesting that a slight alleviation of silencing occurs when 
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Figure 4-3: Silencing assay performed on pfs2, dhpl and dis3 mutants. 

All strains are carrying the otr1R(SphI):ade6+ insertion at the centromere and the (top left diagram) while 

the endogenous ade6 locus has an internal deletion (ade6-DN/N). Heterochromatin enforces silencing on 

the centromeric ade6 whichs blocks the adenine biosynthesis pathway. This causes the cells to accumulate a 

red pigment when grown in media with limited adenine. Alleviation of silencing of otr1R(SphI):ade6+ leads 

to loss of this red colour toward the normal white colour, providing a readout for silencing defects (top left 

panel).Fresh cells were plated in 10-fold serial dilution series on YES plates containing limiting adenine. 

Subsequently the plates were left to grow at 5 different temperatures ranging from 18°C to 36°C for 7 days 

(14 days for 180C). The differences in growth are a consequence of the temperature-sensitive or cold-

sensitive phenotypes of each mutant. Any defects in silencing are detected as a colour shift from red (wt - 

normal silencing) to white (cIr4-S5 - no silencing). 
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dhpl-1 cells are compromised. The same can be said for dis3-54 cells, which display lighter colour in 

all temperatures where growth is visible. In sum, the results of the silencing assays suggest that 

dis3-54 and dhpl-1 mutations cause mild defects on transcriptional silencing at the centromeric 

outer repeats. However, this requires confirmation by molecular analysis. 

To further determine if the dhpl-1, pfs2 -3169, pfs2-11 or dis3-54 mutants have any effect 

on RNA1-directed silencing, I monitored levels of centromeric otr transcripts and the corresponding 

siRNAs in all mutants. RNA was harvested from cells grown at semi-restrictive temperature (32°C) 

at which both dhpl-1 and dis3-54 showed slight alleviation of silencing in the serial dilution assays. 

The levels of outer repeat transcripts were first addressed by semi-quantitative RT-PCR using oligo-

d(T)-primed cDNA. Transcript levels were not found to be increased in relation wild-type levels with 

the exception of dis3-54, which displayed increased levels of transcripts (Figure 4-4A). Northern 

analysis was performed on the same samples using a probe specific for the dg outer repeats that 

overlapped the region assayed by RT-PCR (Figure 4-4B). The result confirms that the dhpl-1, pfs2-

11 and pfs2-3169 alleles do not accumulate otr transcripts at a detectable level. In RNA extracted 

from dis3-54 cells, centromeric transcripts were not readily detectable by northern analysis unlike 

for dcrlLl and cIr4 samples. This observation suggests that the increase in centromeric transcripts 

in dis3-54 is mild and may occur by reasons other than defective RNA1 or centromeric 

heterochromatin. 

To further assess the integrity of the RNA1 pathway in these mutants, the presence of 

centromeric siRNAs was also examined by northern analysis (Figure 4-5). Wild-type levels of 

centromeric siRNAs were detected in all mutants, arguing that there is no extensive defect in sIRNA 

production in any of these mutants at semi-permissive temperature. Given that the levels of 

centromeric siRNA levels are maintained by a closed loop of RITS and RDRC acting together with 

Dcrl and CIr4 at the outer repeats it is not likely that the pathway is being significantly affected by 

any of the RNA processing and turnover mutations at semi-permissive temperature. 

4.2.2. RNAi pathway integrity in dhpl-1, pfs2-11 and pfs2-3169 mutants 

The nature of the slight alleviation of silencing detected is different between dhpl-1 and 

dis3-54. While dis3-54 colonies display a lighter homogenous colour, dhpl-1 ones are 

heterogeneous in colour (variegated) (Figure 4-6A). This could be indicative of switching between 

silent and active states of the centromeric ade6+ gene. This is supported by the observation that 
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Figure 4-4: Analysis of otT transcripts on all mutants at semi-permissive temperature. 

RNA was purified from cells grown at 32°C and used to synthesize cDNA using oligo-d(T). Semi-

quantitative PCR was performed using primers for the dg region of the outer repeats and acti as a control. 

Ratios of expression were calculated vs. wt levels. 

Samples of 10 ug of total RNA from control and mutant cells were assayed by northern analysis using a 

dg-specific radiolabelled probe. The three major sizes of transcripts from this region are visible at 

approximately 2500, 1400 and 600 nucleotides. The loading control was 18S rRNA visible on the membrane 

by ethidium bromide staining. 
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Figure 4-5: Levels of centromeric siRNAs on all mutants grown at semi-permissive temperature. 

RNA was extracted from pfs2, dhpl and dis3 mutant cells and the lower molecular weight fraction 

was separated by differential precipitation. The resulting fractions were used run on a 15% 

polyacrylamide gel in the presence of Urea. After transfer the membrane was hybridized with a 

probe that recognizes siRNAs from the dh region of the centromeric outer repeats. Loading 

control was provided by the hybridization of an end-labelled oligo to snoRNA58. 
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the alleviated (white) sectors of the variegating colonies tend to overgrow the red sectors, 

suggesting that the white sectors result from ade6+ phenotype rather than indirect effects 

upstream of ade6. The degree of this variegation was quantified by surveying the colour of a large 

number of single colonies grown at 25°C and 32°C for each mutant. Of all the tested mutants, 

variegation was only found in dhpl-1 colonies particularly at 25°C where it is seen on 29% of all 

colonies analysed (Figure 4-613). At 32°C the percentage of variegating colonies found is only 7% 

(Figure 4-613). 

The stability of the red and white status in dhpl-1 cells was addressed more closely. Several 

colonies grown at 25°C were selected according to colour and plated at 25°C and 32°C and the 

resulting colonies were again categorised according to colour (Figure 4-7A). The purpose was to 

determine the relative stability of the silent and alleviated states by measuring how often white 

colonies would remain white or switch back to red and vice-versa. At 25°C all red colonies retained 

silencing while more than 50% of the white cells maintained their alleviated state. At higher 

temperature, white colonies were less stable and formed more red sectored colonies. At 32°C, the 

proportion of red and white colonies in both populations is similar regardless of the starting state. 

When the same growth assay was performed in liquid culture, subsequent northern analysis 

showed that no increase occurs in otr transcript levels regardless of cell colour (Figure 4-713). Thus 

the dhpl-1 mutation does not significantly affect transcript levels from the outer repeats, unlike 

mutants in RNAi and heterochromatin factors. 

Although the function of mutant Pfs2, Dhpl and Dis3 proteins may be affected at semi-

restrictive temperature in the mutants analyzed here, it is not fully abrogated since the mutant cells 

are still partially viable. It is thus possible that under the conditions used, defects in defects in RNAi 

are too subtle to be detected using the standard assays. Shifting the mutant cell cultures to 

restrictive temperature should further inactivate the mutant proteins and thus may reveal more 

readily detectable RNAi defects. According to published data, cells containing the pfs2-3169 allele 

activate the spindle checkpoint after 4 hours of growth at 36°C (Wang, Asakawa et al. 2005). This is 

indicative of cell cycle checkpoint activation caused by loss of Pfs2 function (Wang, Asakawa et al. 

2005). The much tighter pfs2-11 allele causes cell cycle arrest after only 1 hour of growth at 36°C 

(Wang, Asakawa et al. 2005). In dhpl-1 cells, the mutant protein is degraded to undetectable levels 

after 2 hours of incubation at 36°C. This leads to loss of cell viability at 4 hours (Shobuike, 

Tatebayashi et al. 2001). To study the behaviour of RNAi under these conditions I performed time-

course temperature experiments. Cultures of control cells and all mutants were grown at the 
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Figure 4-6: dhpl-1 colonies display variegated silencing. A. Colony spread plating assay in YES with low 

adenine. While wt and cIr4-S5 colonies display an homogenously red and white colour respectively, dhpl-1 

colonies have sectors with both colours. B. Analysis on frequency of variegation in colony spread assay 

performed at 25°C and 32°C. Colonies were classified into 4 categories according to relative percentage of 

white vs. red colour. The intermediate categories represent the variegated colonies in which one colour 

occupies more than 50% of the colour. In the case of dis3-54, colonies were allowed to grow for an 

additional 7 days in order to develop colour. The colour obtained at 25°C was peach and not white but 

showed no variegation. Total number of analyzed colonies for each mutant is indicated above the respective 

bar graph. 
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Figure 4-7: Analysis on variegated dhpl-1 colonies. A. White and red dhpl-1 were pooled separately, 

plated on YES medium with low adenine and incubated for 5 days at 18°C, 25°C and 32°C. The resulting 

colonies were classified into 4 categories according to colour. The intermediate categories represent 

variegated colonies that show a predominance (>50%) of either red or white colour. B. A similar procedure 

was used to pool white and red dhpl-1 colonies and incubate them in liquid YES medium for 36 hours in 

order to extract RNA. Total RNA samples (10 ig) were obtained and used to perform Northern blot for dg 

transcripts as shown before. Wild-type and cIr4-S5 cells were used as controls. Loading control is provided 

by 185 rRNA stained with ethidium bromide on the membrane. 
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Figure 4-8: Time-course temperature shift experiment performed with dhpl-1 and pfs2- mutant cells with 

cells with wt and c!r4-55 as controls. 

Cell cultures were grown continuously in liquid YES medium at 36°C hours for a total of 8 hours. All 

cultures were kept in exponential growth throughout the experiment. Growth rates for each mutant were 

calculated for each 2 hour period relatively to wild-type and depicted in the graph. 

Samples of each culture were collected after 4 and 8 hours of 36°C incubation to perform RNA extraction 

and northern analysis. The resulting membranes were hybridized to a probe specific to the otr (dg). Loading 

control is provided by ethidium bromide staining of 18S rRNA on the membrane. 
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permissive temperature and then shifted to the restrictive temperature for 2, 4, 6 and hours. Cell 

growth was monitored for every two hour period and RNA was extracted at each time point. The 

levels of centromeric transcripts were then assayed by Northern analysis. I observed that the 

growth rate of dhpl-1 and pfs2 mutants decreases sharply to 50-60% of wild-type rate after 4 hours 

of incubation at 36°C (Figure 4-8A). This behaviour was expected due to the temperature-sensitive 

cell cycle defect described for these mutants. Northern analyses on samples taken after 4 and 8 

hours are shown in Figure 4-813. Even after 8 hours of temperature shift, no centromeric transcripts 

are detectable in samples of both mutants, indicating that RNAi and heterochromatin silencing are 

still intact. These data suggest that the RNA cleavage and polyadenylation factor Pfs2 and the 

transcription termination factor Dhpl do not play any role in the processing of centromeric 

transcripts for RNAi. 

4.2.3. RNAi and the exosome complex 

The exosome mutant dis3-54 was originally described as a leaky allele, which means that 

dis3-54 cells retain significant viability at restrictive conditions (Ohkura, Adachi et al. 1988). This 

occurs despite the fact that dis3+ is an essential gene in fission yeast. In S. cerevisiae, Dis3p/Rrp44p 

is essential for the activity of the exosome complex both in vivo and in vitro (Dziembowski, 

Lorentzen et al. 2007). It is then likely that the Dis3-54 mutant protein does not lose its function 

completely under restrictive conditions. In an assay similar to what was performed above, the 

behaviour of dis3-54 cells in culture during an 8 hour long temperature shift to 18°C matches the 

original description of this mutation (Figure 4-9A). At this temperature, the growth rate of dis3-54 

cells measured for every two hour period remained similar to wild-type until after 6 hours of 

temperature shift. Between 6 and 8 hours, the growth rate of dis3-54 decreased to 62% of the wild-

type rate. The reduced growth is likely to be reflecting the known cell cycle exit defect caused by 

this mutation which indicates that Dis3 function became impaired after 8 hours at 18°C (Ohkura, 

Adachi et al. 1988). Even then no accumulation of centromeric RNA could be observed (Figure 4-

913). However, since the mutant phenotype is leaky one cannot rule out that accumulation of 

transcripts is occurring at these conditions albeit at a level not detectable by Northern analysis. 

Considering that the dis3-54 cannot be used to completely deplete the function of the 

exosome, I turned my attention to another mutation on a component of the exosome-mediated 

RNA degradation pathway. The budding yeast Rrp6p (Ribosomal RNA processing 6) is a non- 
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Figure 4-9: Time-course temperature shift experiment performed with dis3-54 mutant cells with cells with 

wt and cIr4-S5 as controls. 

Log phase cultures grown at 36°C in liquid YES medium were cooled down with ice/water bath and then 

incubated at 18°C hours for a total of 8 hours. All cultures were kept in log phase throughout the 

experiment. Growth rates for each mutant were calculated relatively to wild-type and depicted in the graph. 

Northern blot analysis of RNA collected at the end of the experiment. The resulting membrane was 

hybridized to a probe specific to the otT (dg). Loading control was provided by ethidium bromide staining of 

18S rRNA on the membrane. 
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essential component of the nuclear form of the exosome that is involved in 5.8S ribosomal RNA 3' 

end processing as well as degradation of aberrant poly(A)-mRNAs and 3' extended read-through 

RNAs in the nucleus (Wyers, Rougemaille et at. 2005). Rrp6p only associates with the nuclear form 

of exosome, where it functions with the TRAMP complex to degrade a class of RNA5 called cryptic 

unstable transcripts (CUTs) (Burkard and Butler 2000; van Hoof, Lennertz et at. 2000; Wyers, 

Rougemaille et al. 2005). The function of CUTs in budding yeast is yet unclear but they may share 

some characteristic with the non-coding centromeric otr transcripts from fission yeast. In budding 

yeast, Rrp6p-mediated processing or degradation of transcripts occurs in vicinity of the DNA locus 

where the transcripts were formed (Hilleren, McCarthy et al. 2001). This resembles the situation in 

fission yeast in which RITS localizes to centromeric otr loci in an RNA-dependent manner 

(Motamedi, Verdel et al. 2004). Furthermore TRAMP shares functional characteristics with the 

RDRC complex in the form of the poly(A) polymerases, suggesting that TRAMP-mediated 

degradation and RNAi might be connected processes (Motamedi, Verdel et al. 2004; LaCava, 

Houseley et al. 2005; Wyers, Rougemaille et at. 2005). 

The S. pombe Rrp6 protein is closely similar to budding yeast Rrp6p. The fission yeast rrp6LI 

null mutant is viable but displays slow growth at temperatures below 32°C and temperature 

sensitivity at 36°C (data not shown). This phenotype is very similar to the one observed in budding 

yeast rrp6 null mutant cells, suggesting that the fission yeast Rrp6 is indeed the functional 

counterpart of budding yeast Rrp6p (Briggs, Burkard et al. 1998). To determine if defects of the 

nuclear exosome have an impact on integrity of RNAi and centromeric heterochromatin, RNA was 

extracted from rrp6LI cells and assayed by northern analysis for levels of centromeric outer repeat 

RNA (Figure 4-9C). Transcripts originating from the otr were clearly detected in rrp6L but the 

pattern obtained is distinct from what is observed in RNAi and heterochromatin factor mutants. In 

rrp6tt, the size of the detected otr RNA is less defined (smear) and migrates close to 600 nt. This 

smeared pattern is reminiscent of the poly-adenylated RNA intermediates that budding yeast rrp6L 

cells accumulate which would otherwise be degraded by the exosome (Houseley and Totlervey 

2006). TRAMP marked these transcripts for degradation by polyadenylating their 3' ends, which 

cause them to appear as smears in northern analyses. It is likely then that the smeared band shown 

here corresponds to centromeric transcripts that were targeted for exosome-mediated degradation 

but were stabilized by the absence of Rrp6 protein. 
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Figure 4-10: Centromeric silencing in rrpM mutant. 

Colour-based silencing assay performed on limiting adenine medium with three independent rrp6I3 

clones containing otr1R(SphI):ade6-i-. Colour levels in wild-type and alleviated states are shown by the wt 

and cIr4-S5 controls. 

Northern blot analysis of rrp6L mutant. Cells were grown at 32°C in preparation for RNA extraction. The 

membrane was hybridized to an otr (dg) specific probe. Loading control is provided by ethidium bromide 

staining of 18S rRNA on the membrane. 
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4.3. DISCUSSION 

There are two significant caveats in investigating possible connections between mRNA 3' 

processing, turnover and transcription termination with other pathways using a loss of function or 

mutant approach such as the one described in this chapter. These three processes can have a 

significant impact on global gene expression and consequently affect multiple pathways in the cell. 

Hence any mutation that affects expression of RNAi or heterochromatin factors could have an 

indirect affect on RNAi or centromeric heterochromatin. The biggest challenge of this approach is 

to distinguish genuine functional links from indirect effects. In addition, the fact that most RNA 

processing & turnover processes are essential to the cell presents difficulties in studying them. 

Using temperature-sensitive alleles is not an ideal solution because it is difficult to evaluate their 

extent of the loss of function. Furthermore, because these are hypomorphic alleles the mutant 

proteins may not perform their function within normal parameters even under permissive 

conditions. In light of this, any conclusions drawn from this work must be done so conservatively, 

especially given the subtle silencing phenotypes here described. 

Centromeric silencing assays based on the otr1R(SphI):ade6+ insertion allow to determine 

the impact of a given mutation on silencing at centromeric outer repeats by variations of colony 

colour. Even though this assay is convenient, it has some an important shortcoming. It is possible 

that a mutation in a factor might affect the expression of genes that function in the adenine 

biosynthesis pathway upstream of ade6+. In this situation, the colony colour becomes attenuated 

in a way could be mistaken for affected silencing of otr1R(SphI):ade6+. Given that the mutants 

analysed here are involved in mRNA maturation and stability, it is likely that they may have an 

indirect effect on colony colour. A similar assay could be performed in selective conditions using 

medium completely lacking adenine. Thus, only cells which are phenotypically ade6+ are able to 

grow efficiently in this depleted medium. Mutant cells which possess a defective pathway upstream 

of ade6+ should not grow, thereby discriminating any false positives from the colour assay. 

The results obtained indicate that transcription termination and the exosome give a subtle 

contribution to the normal functioning of RNAi and centromeric silencing. It is clear that functional 

Pfs2 is not required for the integrity of centromeric heterochromatin. The reason behind the 

chromosome segregation defects that arise from mutations in pfs2+ must lie in other aspects of 

centromere function or chromosome structure. Kinetochore assembly and attachment to spindle 

microtubules might be compromised which would explain the appearance of Bubi foci in the nuclei 
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of pfs2 mutant cells, an indication that the spindle checkpoint activation is activated (Bernard, 

Hardwick et al. 1998; Wang, Asakawa et al. 2005). This connection is further strengthened by the 

observation that cell viability is further reduced in pfs2-11 cells when Bubi is absent (Wang, 

Asakawa et al. 2005). However, it is unclear how Pfs2 could participate in the process of 

kinetochore assembly. An alternative explanation may reside in the connection of transcription and 

cohesion distribution along the chromosome arms, in which Pfs2 may be influential (Lengronne, 

Katou et al. 2004; Wang, Asakawa et al. 2005). Lacking decisive evidence, the simplest explanation 

for how pfs2+ mutations may interfere with any of these two processes remains on the effect they 

may have on the level of expression of key factors. 

Although Dhpl and Pfs2 share a role in preventing read-through transcription and 

production of 3' over-extended transcripts, Dhpl differs in that its loss seems to reflect on 

centromeric silencing. The effect is mild, causing only a percentage of cells in the population to lose 

silencing. The loss of silencing seems to be limited to the marker gene inserted in the centromeric 

outer repeats since outer repeat transcript levels do not increase. A proportion of white "active" 

cells can reacquire the silent state upon propagation. This suggests that the silencing defects 

observed are transient and that silencing of the marker gene is re-established even though Dhpl 

function is compromised. Mutant Dhpl protein was previously shown to be severely depleted after 

only a few hours at 36°C (Shobuike, Tatebayashi et al. 2001). Despite this, centromeric silencing is 

not affected to a greater extent at 36°C (Figure 4-4). Furthermore, centromeric silencing can be re-

established itself even at semi-permissive conditions (32°C). Together, this shows that defective 

Dhpl does not impair centromeric RNA1 significantly. The slight defect in marker gene silencing may 

be caused by the incapacity to properly terminate RNA polymerase II transcription of the ade6+ 

gene, which could in some way antagonize heterochromatin from spreading in from the adjacent 

otr sequences. If the reason for the dhpl-1 silencing phenotype is indeed only due to altered 

chromatin dynamics at the centromeric ade6 locus, this would also explain why the system is able 

to resume silencing in subsequent cell divisions. Alternatively, a change in the dosage levels of 

proteins such as Swi6 or C1r4 could explain the difference of heterochromatin dynamics and justify 

the variegation phenotype. It is conceivable that the dhpl-1 mutation may affect expression levels 

of one or more of such key heterochromatin factors which would reflect on a drop in silencing 

efficiency throughout the entire centromere but only having a noticeable effect on the ade6 gene. 

Chromatin immunoprecipitation experiments using antibodies against Swi6 HP1  and H3K9me2 could 

be employed to address this idea. 
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It is highly unlikely that the defective chromosome segregation phenotype of dhpl-1 is 

caused by loss of centromeric heterochromatin. Firstly, the impact of this mutation on centromeric 

silencing is very mild and does not compromise either RNAi or the stability of heterochromatin to a 

significant extent. Secondly, dhpl-1 cells appear to have a defect in sister chromatid separation 

during anaphase which is a distinct phenotype from the one observed when RNAi and/or 

centromeric heterochromatin are abrogated (EkwaH, Javerzat et al. 1995; Shobuike, Tatebayashi et 

al. 2001; Volpe, Schramke et al. 2003). Loss of centromeric heterochromatin leads to defective 

cohesion at the centromeres but this still allows sister chromatids to separate during anaphase. 

Although loss of centromeric heterochromatin leads to non-disjunction and chromosome loss, the 

cause is distinct from dhpl-1. This suggests that dhpl-1 affects a different aspect of the 

chromosome segregation apparatus. 

The exosome complex participates in the process of centromeric silencing but it does not 

appear to be of critical importance. The silencing phenotype of dis3-54 is the strongest of all 

mutants tested but it still only displays a mild alleviation of silencing. Dis3-54 cells exhibit a 

homogenous colour which seems to reflect a stable alleviation of silencing that appears to become 

stronger in more restrictive growth conditions. However, this mutation is known to have a strong 

impact in cell cycle progression and as a consequence dis3-54 cells grow very slowly compared to 

wild-type in semi-restrictive conditions (Ohkura, Adachi et al. 1988). It is therefore difficult to 

conclude from growth assays if the lighter colour of the dis3-54 colonies corresponds to defective 

silencing or subtle changes in the expression of components of the adenine biosynthesis pathway 

upstream of ade6+. The purpose of studying rrp6A was to allow a distinction between effects on 

silencing caused by a defect of nuclear exosome function from the phenotype caused by both 

nuclear and cytoplasmic exosome defects (Dis3). Indeed rrp6A cells do display a defective silencing 

phenotype, suggesting that the exosome is involved in the process of chromatin silencing at the 

nuceleus. These cells also display a clear accumulation of centromeric otr transcripts albeit at a 

distinct pattern, suggesting that these otr transcripts are RNA intermediates that were marked for 

degradation. Rrp6 and the exosome then seem to be involved in turning over centromeric 

transcripts. Since centromeric silencing is partially affected in rrp6.6 and given the presence of otr 

siRNAs in dis3-54, it is likely that the exosome acts downstream of RNAi in processing centromeric 

transcripts. In other words, RNAi could act on nascent otr transcripts to promote heterochromatin 

assembly, followed by exosome-mediated turnover of these transcripts. The efficiency of transcript 

turnover could be relevant for heterochromatin integrity. 
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Since completing these analyses, the exosome has featured in several independent reports 

regarding its connection to RNAi and heterochromatin in fission yeast. It was shown by several 

groups that both Dis3 and Rrp6 are required to turn over transcripts that originate from the otr 

repeats (Irvine, Zaratiegui et al. 2006; Buhler, Haas et al. 2007; Murakami, Goto et al. 2007). This 

seems to correlate with the role of degrading general antisense transcripts that are produced 

throughout the genome suggested for the fission yeast exosome (Nicolas, Yamada et al. 2007). 

Both Dis3 and Rrp6 were also suggested to be involved in heterochromatin formation based on 

data indicating that H3K9 methylation levels become reduced in their absence (Murakami, Goto et 

al. 2007; Nicolas, Yamada et al. 2007). Although this fits with my data showing decreased 

centromeric silencing silencing in dis3-54 and rrp6A the involvement of the exosome in this process 

remains unclear. One possible explanation for this genome-wide H3K9me2 decrease may relate to 

the budding yeast Rrp6p and its recently shown involvement in the control of core histone mRNAs 

(Reis and Campbell 2007). Thus, loss of Rrp6 might lead to overexpression of the core histones, 

which may lead to enhanced nucleosome deposition during S phase and a resulting dilution of 

H3K9me2 levels. Whatever impact the exosome may have on heterochromatin, it seems not to 

disturb the functioning of RNAi since both dis3-54 and rrpGLl cells have normal levels of otr siRNAs 

(Buhler, Haas et al. 2007; Murakami, Goto et al. 2007). In sum, the involvement of exosome in 

RNAi-mediated chromatin silencing seems to occur at the level of transcript turnover downstream 

of the RNAi pathway and heterochromatin formation. Exosome-mediated degradation of 

transcripts at heterochromatin domains may be important for the efficient RNAi-mediated 

nucleation of heterochromatin but not critical for the proposed co-transcriptional RNAi that 

supports continual production of centromeric siRNAs. Further studies are required to fully 

understand the role of the exosome on this complex phenomenon. 
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CHAPTER 5 
SLICING RESIDUES ARE ESSENTIAL FOR AGO1 

FUNCTION IN RNAi AND HETEROCHROMATIN 
ASSEMBLY 

5.1. INTRODUCTION 

In fission yeast, the process of RNAi-mediated heterochromatin formation is centred on 

noncoding RNA molecules that originate from the centromeric outer repeats (Volpe, Kidner et al. 

2002; Motamedi, Verdel et al. 2004; Noma, Sugiyama et al. 2004; Buhler, Verdel et al. 2006). These 

molecules are used as seed for producing siRNAs and act as a platform for recruiting the RNAi 

machinery along with chromatin modifiers required for establishing a stable heterochromatin 

structure (Motamedi, Verdel et al. 2004; Noma, Sugiyama et al. 2004; Partridge, DeBeauchamp et 

al. 2007). Yet these transcripts are barely detectable in wild-type cells and only accumulate when 

RNAi or heterochromatin assembly pathways are disrupted. The accumulation of centromeric otr 

RNAs may be averted by wild-type cells in a number of ways: by preventing transcription initiation, 

blocking transcription elongation or degrading the final RNAs. RNAi prevents transcription initiation 

events at the centromeric outer repeats by promoting histone H3K9 methylation and the assembly 

of heterochromatin at centromeres. In fact, it was recently demonstrated that loss of RNAi and 

heterochromatin leads to increased transcription at the otr (Buhler, Verdel et al. 2006; Nicolas, 

Yamada et al. 2007). In addition, it is possible that RNAi contributes to deplete centromeric otr 

RNAs in another form. It is known that the loss of both Swi6 and Chp2, hence heterochromatin, is 

not sufficient to increase otr transcript accumulation to levels seen in mutants that affect the RNAi 

pathway (Volpe, Kidner et al. 2002; Sadaie, lida et al. 2004). Therefore, RNAi may be acting to 

diminish the amount of otr RNA present in the cell by interfering with elongating RNA polymerase II 

at the otr loci or by actively degrading the resulting RNA. The latter scenario is more likely, given 

that RNAi in other organisms has evolved to silence gene expression by destabilising mRNA 

molecules (Tuschl, Zamore et al. 1999). 

RNA interference is a method of post-transcriptional gene silencing (PTGS) that acts by 

cutting the strand of mRNA molecules selected on the basis of siRNA-mRNA complementarity 
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(Hamilton and Baulcombe 1999; Hammond, Bernstein et al. 2000; Zamore, Tuschl et al. 2000; 

Boutla, Delidakis et al. 2001; Elbashir, Lendeckel et al. 2001). Consequently the level of mRNA 

abundance for a particular gene is severely depleted with only a few molecules reaching the 

ribosomes where translation can occur (Hammond, Bernstein et al. 2000). This is the basis of the 

host defence pathway in which RNAi participates to repress viral or transposon proliferation at a 

post-transcriptional level (Ketting, Haverkamp et al. 1999; Tabara, Sarkissian et al. 1999). It is also 

the principle by which RNAi is employed as an experimental method of knock-down gene 

expression (Elbashir, Harborth et al. 2001). It was made clear since early on that the RNAi effector 

complex RISC was responsible for hastening the target mRNA's demise via a endonucleolytic 

cleavage event (Hammond, Bernstein et al. 2000). RISC cleaves a target RNA at the phosphodiester 

bond between nucleotides 9 and 10 in the siRNA-mRNA duplex (Elbashir, Harborth et al. 2001; 

Elbashir, Martinez et al. 2001; Schwarz, Hutvagner et al. 2002). However, the endonuclease itself 

responsible for this cleavage or "slicing" remained elusive until recently when it was demonstrated 

that it resides in the core of the RISC complex itself - the Argonaute protein (Lingel and Izaurralde 

2004). Argonaute proteins contain a PIWI domain which is responsible for holding the siRNA 

molecule and mediating the interaction with the target RNA5 (Cox, Chao et al. 1998; Parker, Roe et 

al. 2004; Song, Smith et al. 2004). Crystallographic studies on the Argonaute protein from 

Pyrococcusfuriosus and the PIWI protein from Archaeoglobusfulgidus both revealed RNase H-like 

folds within the PIWI domain located close to the cleavage site of the target RNA molecule (Parker, 

Roe et al. 2004; Song, Smith et al. 2004). The residues involved in this fold are conserved 

throughout most of the eukaryotic Argonaute genes and several subsequent reports have proven 

that this domain indeed is responsible for the endonucleolytic activity of the target RNA during 

RNAi/PTGS (Liu, Carmell et al. 2004; Baumberger and Baulcombe 2005; Miyoshi, Tsukumo et al. 

2005). Moreover, it is possible to reconstruct in vitro a minimal RNAi activity using a single 

Argonaute protein that once it is loaded with an siRNA can bind to a target mRNA and slice it. This 

illustrates the importance of slicing by Argonaute proteins for the mechanism of RNAI/PTGS 

(Gregory, Chendrimada et al. 2005; Rivas, Tolia et al. 2005). 

There is an easily recognizable role for silencing by Argonaute in the context of transcript 

knockdown by RNAi or PTGS but the same cannot be said for transcriptional forms of RNA silencing. 

At the time the following work was initiated, it was not known if slicing activity of Argonaute was 

required for siRNA-directed chromatin silencing and if so, what role it would play (Baumberger and 

Baulcombe 2005). The RNase H fold in the PIWI domain of Argonaute proteins contains a motif of 
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H. sapiens AG02 60 

M. musculus Ago2 60 

D. melanogaster Agol 60 

C. elegans ALG-1 60 

S. pombe Agol 61 
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QEIIQ 	MVRELLIFYKS 	KP IRII Y GVS PAYY1LVAF 
QEIIQD MVRELLIQFYKST FKP RI1S PAYYJILVAF 

QEII DL 	RELL 

QEII 	VLL1FT 
FI(PRI Y GVS pAyy1LVAp 
I IPSRII 	SPYY2ILVE 

Figure 5-1: ClustaiW alignment of PIWI domain sequences found in Argonaute proteins from higher to 

lower eukaryotes. The sequences belong to H. sapiens Argonaute 2, Mus musculus Ago2, Agol from D. 

melanogaster, Argonaute-like gene 1 from C. elegans and Agol from S. pombe. In red are marked the three 

highly conserved DDH residues that are important for the endonucleolytic activity of the PIWI domain. The 

three residues marked with * were individually mutated to alanine in S. pombe Agol. Both D580A and 

D651A disrupt the DDH motif and are predicted to abolish slicing activity while H617A is a control mutation. 
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three residues (aspartate-aspartate-histidine, DDH) that is required for slicing activity. This DDH 

motif is present in the PIWI domain of the fission yeast Argonaute protein (Agol), suggesting that 

Agol can slice target molecules (Figure 5-1). This suggests that Agol might contribute to lowering 

outer repeat transcript levels in wild-type cells by means of slicing. Since slicing is an 

endonucleolytic cleavage event, the remaining fragmented RNA strands must be degraded by 

additional nucleases in order for transcript turnover to occur (Orban and Izaurralde 2005). In fact, 

the results obtained in Chapter 4 demonstrate that the exosome is employed to efficiently turn 

over otr transcripts. The exosome is a 3'-5' exoribonuclease that requires a free 3' end in order to 

efficiently degrade a RNA molecule. Normally, the 3' ends of RNA polymerase II transcripts are 

protected by association of protecting proteins to the poly(A) tails (poly(A) binding proteins or 

PABs) and require either a 3' de-protection event or for the strand to be nicked internally to 

generate a new free 3' end (Mitchell and Tollervey 2000). Slicing of an otr transcript would provide 

a free 3' end to which the exosome could latch on to and begin degrading. This provides a model 

for one method in which RNAi might act to lower otr transcript levels: RNAi-mediated turnover of 

centromeric otr transcripts initiated by Agol-mediated slicing leading to exosome-mediated 

degradation. Nevertheless, considering that the nascent otr transcripts may serve as a co-

transcriptional platform from which RNAi can induce heterochromatin nucleation, the purpose of 

their cleavage associated with this same mechanism is not immediately clear. 

In this chapter I describe the work I conducted to examine the role of the putative slicing 

activity of Agol in heterochromatin integrity. I constructed point mutants in key residues of the 

putative catalytic site in Agol. Analysis of these mutants demonstrated that these residues are not 

only required to lower the levels of otr transcripts but are also crucial for the function of the entire 

RNAi pathway. In agol slicing mutants (agol-sm), centromeric heterochromatin is de-stabilized 

leading to loss of silencing and chromosome segregation defects. RNAi is severely compromised in 

these mutants, as levels of centromeric siRNAs are depleted and transcripts accumulate to levels 

similar to those seen in cells lacking RNAi. Localisation of the RITS complex to the centromeres is 

impaired and the cells expressing the mutant agol-sm lose their capacity to establish de novo 

histone H3K9 methylation. The data presented suggests that Agol slicing activity has a fundamental 

role in the mechanism of RNAi in fission yeast. 
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5.2. RESULTS 

5.2.1. Mutations in Agol slicing residues cause loss of silencing and increased TBZ sensitivity 

To create point mutations in agol+, the 1.7 kb long cassette containing the ura4 marker 

gene was first inserted into the agol+ gene within the region encoding its PIWI domain via 

homologous recombination. Homologous recombination was then employed again to replace the 

1.7 kb marker cassette with a PCR product containing the desired mutation, thus reconstructing the 

gene carrying a specific mutation but still under the control of its endogenous promoter. Three 

individual point mutations were generated: aspartate 580 to alanine (D580A), histidine 617 to 

alanine (H617A) and aspartate 651 to alanine (D651A). Both aspartate residues are part of the DDH 

motif which is required for slicing activity while the histidine 617 is an unrelated residue that was 

mutated for control purposes (Figure 5-1). The D580A and D651A mutations are predicted to 

disrupt the ability of Agol to slice, as it was demonstrated for Argonaute proteins in other 

organisms (Liu, Carmel] et al. 2004; Parker, Roe et al. 2004; Baumberger and Baulcombe 2005; 

Miyoshi, Tsukumo et al. 2005). In the course of this chapter, the agol-D580A and agol-D651A 

mutants will be referred to jointly as "agol-sm" (agol slicing mutants). All three point mutations 

were generated at the endogenous agol locus of a wild-type strain and also in a strain in which the 

N terminus of the agol+ gene was tagged with 3xmyc epitopes. This 3xmyc-agol construct is 

expressed under its native promoter and was previously reported as being fully functional (Noma, 

Sugiyama et al. 2004). All the results shown here were performed on strains carrying the 3xmyc 

epitope tag on the N terminus of agol, unless otherwise noted. The majority of the assays 

described here were also performed on untagged strains to verify that the phenotype was not 

being affected by the presence of the N-terminal epitope tag. 

All mutants were constructed in a strain background that include the otr1R(Sph1):ade6+ 

marker gene insertion at the centromere, which is silenced by heterochromatin. Mutations in both 

aspartate residues (D580A and D651A) but not the histidine mutant (agol-H617A - not shown) 

display alleviated silencing of otr1R(Sph1):ade6+ (Figure 5-2A). The extent of the defect is similar to 

the one observed in a complete deletion of the agol gene (agol). The results of silencing assays 

were identical in strains containing a myc-tagged or untagged agol (not shown). Western analysis 

shows that Ago 1D580A  and Ago1D65 A are stably expressed in the cells, showing only a slight reduction 

when compared to wild-type protein levels (Figure 5-213). In addition, both D580A and D651A 

mutants have higher sensitivity to thiabendazole (TBZ), a microtubule destabilizing drug (Figure 5- 
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Figure 5-2: ago10580"  and ago1D65  (agol-sm) mutants are defective in silencing at the centromeric outer 

repeats and have increased sensitivity to thiabendazole. 

A. Colour-based silencing assay using otr1R(SphI):ade6+ silent marker gene (top right panel). Defects in 

silencing of otr1(SphI):ade6+ cause a shift in colony colour from red to white when the cells are grown in the 

presence of limiting adenine (top right panel). The assay was conducted with two independently isolated 

colonies of agolDS8OA  and ago1065  mutants (agol-sm) together with wild-type (silencing) and ago1 (no 

silencing) controls. B. Western analysis of Agol expression in wild-type and agol-sm mutants. The 

membrane was probed with anti-myc antibody and with anti-Bipl antibody, an abundant endoplasmic 

reticulum protein as a loading control. C. Growth-based sensitivity assay performed in the presence of 

Thiabendazole (TBZ), a microtubule destabilizing drug. Mutant strains with chromosome segregation 

defects, such as RNAi mutants, have increased sensitivity to TBZ. 
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2C). Increased TBZ sensitivity is observed in mutants whose centromeric heterochromatin is 

depleted and that suffer resulting chromosome segregation defects during mitosis, such as null 

mutants for RNAi or heterochromatin factors. 

5.2.2. Centromeric heterochromatin is destabilized and cannot be established de novo in agol 

slicing mutants (agol-sm) 

The alleviation of silencing and chromosome segregation phenotypes observed in the two 

agol slicing mutants (agol-sm) strongly suggests that centromeric heterochromatin has been 

compromised. To further investigate this, chromatin immunoprecipitation (ChIP) was performed 

with an antibody specific for histone H3 di-methylated on lysine 9 (H3K9me2). All mutants were 

assayed in duplicate and the level of enrichment was calculated in relation to the total or input 

extract by semi-quantitative PCR. Levels of this modification were assayed over otr1R(SphI):ade6+ 

and on native centromeric otr sequences. H3K9me2 levels over the marker gene were found to be 

totally depleted in agol-sm (D580A and D651A) but not in the control mutant (H617A), thus 

providing an explanation to the alleviation of otrlR(SphI):ade6+ silencing (Figure 5-3A). 

Furthermore, the H3K9me2 levels over the native sequences at the centromeric outer repeats are 

also dramatically reduced in agol-sm but to a lesser extent that the one observed over 

otrlR(SphI):ade6+ (Figure 5-313). A remnant of H3K9me2 at centromeric outer repeats is commonly 

observed in RNAi mutants and has been widely reported (Sadaie, lida et al. 2004; Yamada, Fischle 

et al. 2005). It is unclear whether it is the result of a H3K9 methylation maintenance process or of a 

cis-acting heterochromatin nucleation pathway that is RNAi-independent. 

RNAi is known to be required to establish H3K9me2 over centromeric repeats (Volpe, 

Kidner et al. 2002). Even though the residual H3K9me2 phenomenon is observed in all RNAi 

mutants, a heterochromatin establishment assay was performed using agol-sm and control strains 

to determine if agol-sm cells still retain any capacity to nucleate heterochromatin via RNAi. The 

assay is based on de novo assembly of chromatin structure and heterochromatin nucleation found 

to occur on plasmid DNA containing fragments of centromeric otr sequences. The cells were 

transformed with the plasmid pH-CC2 (Diego Folco) which derives from a previously published mini-

chromosome construct (pSp-cc2-K") (Baum, Ngan et al. 1994). The pH-CC2 plasmid contains a 

fragment of the outer repeats from centromere 1 (dg) placed adjacently to a copy of the central 

core from centromere 2 (cc2) (Figure 5-4A; see Figure 1-5, page 36). Upon transformation into 
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Figure 5-3: Heterochromatin analysis of agol-sm mutant cells. Chromatin immunoprecipitation (ChIP) was 

performed on agol-sm and control cells using an antibody specific to H3K9me2, a histone mark 

characteristic of heterochromatin. 

ChIP enrichment levels were measured by PCR using primers for otr1R(SphI):ade6+ (red arrows) and the 

native centromeric outer repeat sequences (green arrows). 

The samples were analysed by multiplex PCR for H3K9me2 levels at the two genomic regions of interest 

(top panel in red, otr1R(SphI):ade6+; bottom panel in green, native otr) and the euchromatic control gene 

fbpl. The internal ratios versus fpl were compared between ChIP and Total (input) samples to yield an 

enrichment ratio, which reflects the amount of H3K9me2 present over the region of interest. 
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Figure 5-4: Heterochromatin de novo establishment assay. 

A. Wild-type and mutant cells were transformed with a plasmid (pH-CC2) containing a fragment of otr from 

centromere 1 (dg, red box) and the central core from centromere 2 (cnt2, in blue). Chromatin 

immunoprecipitation (ChIP) was performed using anti-H3K9me2 antibody and the samples were analysed 

by multiplex PCR with oligos specific to the junction between the otr fragment and the plasmid backbone 

(red arrows) as well as the euchromatic control gene fbpl. B. The samples were analysed by multiplex PCR 

for H3K9me2 levels in comparison to the endogenousfbpl+ gene. Top panel shows the results obtained for 

the plasmid otr DNA fragment while the bottom panel depicts the results obtained for native otr sequences 

at centromeres. The internal ratios vs. Fbpl+ were compared between IP and Total samples to yield an 

enrichment ratio, which reflects the amount of H3K9me2 deposited on the plasmid otr fragment. The wt* 

samples were obtained from wild-type cells with untagged agol, while wt cells have myc-agol. The 

enrichments of H3K9me2 over plasmid DNA are similar in both sets of samples, showing that the 3xmyc tag 

on Agol does not hinder the capacity of the cells to form heterochromatin over pH-CC2. 
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fission yeast cells as naked DNA, this plasmid becomes a stable mini-chromosome (Baum, Ngan et 

al. 1994; Folco, Pidoux et at. 2008). The chromatin assembled over the plasmid DNA is enriched in 

histone H3K9me2 over the plasmid dg sequence and in CnplCA  over the cc2 sequence (Folco, 

Pidoux et al. 2008). Wild-type, agol-sm and control cells were transformed with pH-CC2 plasmid 

and grown under selective conditions. ChIP was then performed using an antibody specific 

H3K9me2 to measure rates of heterochromatin nucleation over the dg sequence fragment on the 

plasmid DNA (Figure 5-4). The enrichment displayed in all wild-type samples shows that cells are 

able to assemble heterochromatin on the plasmid over the outer repeat fragment. In comparison, 

cells containing agol-sm or agolti mutations display no H3K9me2 enrichment on the plasmid. This 

shows that de novo nucleation of heterochromatin on a centromeric sequence requires Agol 

function. Since agol-sm cells are equally depleted of the capacity to form heterochromatin on the 

plasmid as ago1, the slicing residues must be crucial for this process. 

5.2.3. Agol slicing mutants have high incidence of lagging chromosomes 

The loss of centromeric heterochromatin explains the increased TBZ sensitivity phenotype 

of agol-sm mutants. Defective heterochromatin leads to loss of sister chromatid cohesion 

specifically at centromeres (Nonaka, Kitajima et al. 2002; Bernard, Drogat et al. 2006). Premature 

separation of sister centromeres in mitosis results in defective chromosome segregation and 

elevated chromosome loss rates (Bernard, Maure et at. 2001; Nonaka, Kitajima et al. 2002). Cells 

without centromeric heterochromatin are still able to progress into anaphase but display 

chromosomes that lag in their movement to the spindle poles (lagging chromosomes) (Ekwall, 

Nimmo et at. 1996). To examine the cause of the observed TBZ sensitivity, agol-sm cells were fixed 

and stained by immunofluorescence using an antibody specific to ct-tubulin to visualise the mitotic 

spindle while DAPI was used to stain DNA. Lagging chromosomes were indeed found to occur 

frequently in agol-sm cells undergoing anaphase (Figure 5-5A). Quantification of the incidence of 

lagging chromosomes in late anaphase spindles shows that the values are significantly higher than 

wild-type cells in agol-sm and very similar to the frequency detected in ago1 (Figure 5-513). 

Together these data show that agol-sm mutations cause a loss of centromeric heterochromatin 

and have an equivalent impact on chromosome segregation as a complete agol deletion (ago1L). 
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Wild type and agol mutant cells were grown 

at 32°C, fixed and immunostained with anti-
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DNA. The cells portrayed here are in late 

anaphase, showing two DAPI masses at 

opposite ends of the microtubule spindle. Both 

agol-sm and ago1L mutants display high 

incidence of cells showing lagging chromosomes 

—DAPI masses whose segregation movement 

was delayed. White bar represents 4 lim. 

Quantification of the cells in late anaphase 

displaying lagging chromosomes. A total of 200 

cells in anaphase were counted for each sample 

and the results are displayed as percentage of 

phenotype incidence over total number of cells 

in anaphase. 

5% 

0% 

150 



5.2.4. RNAi activity is blocked in agol-sm mutants downstream of Dcrl activity 

All the evidence obtained up to this point concerning the agol-sm mutants point to a 

complete loss of Agol function in these mutants. This only implies that mutant Agol-sm protein 

cannot perform its function to a point where it can promote heterochromatin formation. To obtain 

a more detailed image of the state of RNAi activity in agol-sm mutants, northern analyses were 

performed to measure the levels of centromeric otr transcript (Figure 5-6A). Again, agol-sm 

mutant cells accumulate centromeric outer repeat transcripts at the same level as in agoTh. 

Conversely, northern analysis of siRNAs that are raised against the centromeric outer repeats 

shows that agol-sm cells are depleted in centromeric siRNA levels to below one tenth of the wild-

type levels (Figure 5-613). These results show that RNAi is ineffective in agol-sm mutants but do not 

indicate a clear reason to why the pathway is being affected. This is mostly due to the fact that 

fission yeast RNAi functions in a closed positive feedback loop, in which the outcome of its activity 

(heterochromatin) promotes reinforcement of the molecular intermediates (siRNAs) (Noma, 

Sugiyama et al. 2004). The closed loop nature of fission yeast RNAi is clearly illustrated by the loss 

of centromeric siRNAs in cIr4Ll (Noma, Sugiyama et al. 2004). The following series of experiments 

attempt to rule out individual deficiencies within RNAi mechanism in order to ascertain at which 

point the Agol-sm protein introduces a defect. 

Although the process is not as efficient as in higher eukaryotes, fission yeast RNAi can be 

programmed to act on a novel target using an artificial trigger (Sigova, Rhind et al. 2004). This 

trigger is an inverted repeat construct homologous to a target gene that once transcribed folds 

back in a "hairpin" structure producing a stretch of dsRNA that Dcrl can cleave into siRNAs. More 

specifically, a GFP hairpin construct was shown to induce GFP repression in an RNAi-mediated 

fashion (Sigova, Rhind et al. 2004). It was demonstrated that this hairpin construct could lead to the 

production of GFP siRNAs that could reduce the GFP expression levels within a population of cells. I 

used this hairpin construct to investigate whether agol-sm are competent in siRNA production. The 

advantage of this system is that, unlike endogenous siRNAs, GFP siRNA production does not seem 

to be significantly affected by the absence of components of the RDRC (RNA-dependent RNA 

polymerase complex: Rdpl, Hrrl and Cid12) and does not require intact heterochromatin 

(Motamedi, Verdel et al. 2004; Sharon White and Femke Simmer - unpublished observations). 

Most likely this is due to the high level of expression of the GFP hairpin construct since it is 

produced from the strong nmtl promoter (Maundrell 1990; Maundrell 1993). This system provides 

an entry point to the closed loop of RNAi to perfom analysis on RNAi function in agol-sm cells. 
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Figure 5-6: agol-sm mutant cells accumulate centromeric otr transcripts and are depleted in centromeric 

siRNAs. 

A. Northern analysis of centromeric transcripts in cigol-sm compared to wild-type, agol/i and 
0g01H617A• 

Total RNA from all samples was transferred to a membrane and hybridised to a probe specific to the 

centromeric otr (dg). Loading control is provided by Ethidium bromide staining of 18S rRNA on the 

membrane. B. Northern analysis of centromeric siRNA levels in the same strains. Low molecular weight RNA 

samples for each strain were transferred and hybridised to a similar probe used to measure transcript 

levels. In addition, loading control is provided by a snoR58-specific hybridization probe. To illustrate the 

sensitivity of the assay, a lane was loaded with a ten-fold smaller RNA sample from wild-type cells (2 p.g for 

this lane, 20 kg for the others). 
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Figure 5-7: agol-sm mutant cells can generate siRNAs from artificial hairpin dsRNA. 

Diagram depicting Dcrl-dependent GFP siRNA production triggered by a plasmid expressing an artificial 

hairpin RNA containing GFP sequences (pAS.1) (adapted from Sigova et al. 2004). This provides the basis of 

the siRNA production assay to be performed on agol-sm cells. 

Northern analysis of GFP-specific siRNA levels on agol-sm cells with wild-type, agol,6 and dcrlA controls 

in the presence or absence of the pAS.1 hairpin plasmid. Loading control is provided by the hybridisation 

signal of a snoR58-specific probe. Red box marks the regions were the Dcrl-specific GFP signal migrates. The 

smeared GFP signal of larger size is always detected in samples from cells where the hairpin is present and is 

believed to originate from RNAi-independent degradation of hairpin RNA. 
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Cells were transformed with the plasmid containing the GFP hairpin construct (pAS.1) and 

were assayed by northern analyses for the presence of GFP siRNAs (Figure 5-7). A high level of 

smeared hybridization signal at 30-75 nt can be seen in cells expressing the GFP hairpin even in the 

absence of Dcrl (Sharon White, Femke Simmer, my results). This probably results from its high level 

of expression and degradation. However, the hybridization signal is more intense between 20 and 

30 nt which correspond to GFP siRNAs. This GFP signal can be seen in wild-type samples only in the 

presence of the pAS.1 plasmid but it is not detected in dcrlLt, showing that it is a product of Dcrl 

activity. GFP siRNA signal can also be detected in agol-sm samples showing that siRNA production 

by Dcrl is not affected in these mutants. GFP siRNA levels are somewhat lower in agolLt but still 

detectable, demonstrating that Dcrl cleavage of GFP dsRNA can occur in vivo in the absence of 

Agol protein. Hence, it is likely that centromeric siRNA production is not blocked in agol-sm 

mutants and only the downstream amplification dependent on RDRC (RNA-dependent RNA 

polymerase complex) is affected. RDRC-dependent siRNAs make up the bulk of the signal detected 

by Northern blot in wild-type samples as evidenced by the total loss of siRNA signal documented for 

deletions of RDRC components or catalytically dead mutants of the Rdpl RNA dependent RNA 

polymerase) (Motamedi, Verdel et al. 2004; Sugiyama, Cam et al. 2005). Hence agol-sm mutants 

might be affecting RDRC activity in amplifying siRNA signal thus leading to defective RNAi. 

5.2.5. RITS localisation to centromeres is impaired in agol-sm mutants 

All the different aspects of the agol-sm phenotype may be explained by defective 

recruitment of key machinery to outer repeat chromatin. Defective downstream interaction with 

the H3K9 methyltransferase Clr4 
(V)39  and the remaining components of the Clr4 39  complex 

(Rafi, Raf2, Riki, Cu14, may lead to loss of heterochromatin. Consequently this leads to higher 

transcription rate at the centromeric outer repeats and the subsequent accumulation of otr RNA. 

The drop in siRNA levels can be explained by an inability to recruit RDRC to sustain dsRNA 

production. It is possible that RDRC requires a slicing event in order to process a single-stranded 

RNA into a dsRNA substrate that Dcrl can use. However, all these hypotheses are based on the 

assumption that RITS (RNA1 effector complex; Agol, Tas3 and Chpl) is still able to localise to the 

centromeric outer repeats. Regardless of the capacity of Agol to slice, the mutant Agol protein 

should still be able to use an siRNA to bind to a nascent transcript. Hence, Agol-sm should still 

localise to centromeric chromatin. To verify this, I fixed agol-sm cells for immunolocalisation 

analysis using antibodies against Cnp1' 	protein and myc epitope as well as staining DNA with 
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Figure 5-8: Agol localization to centromeres is disrupted in agol-sm mutants. 

Myc-tagged wild-type and mutant agol strains were fixed and stained by indirect immunofluorescence 

using anti-Myc. Centromeres were marked using anti-Cnpl antibody while DNA was stained using DAPI. 

Fluorescence signal intensity was normalized for each channel between all images. White scale bar 

represents 4 pm. 
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DAPI. Cnpl 	is loaded onto chromatin specifically over the central domains of centromeres, 

which makes it a suitable marker to visualise centromeric chromatin by microscopy. In interphase, 

all centromeres are clustered together in the vicinity of the spindle pole body, which causes the 

Cnp1C 	signal to appear as a single dot in the cell nucleus (Funabiki, Hagan et at. 1993; Takahashi, 

Chen et al. 2000). Control and agol-sm cells were imaged by fluorescence microscopy to observe 

the localisation pattern of Agol in wild-type and mutant cells (Figure 5-8). The resulting images 

show that Agol localises mainly to three foci in the nucleus during interphase: the largest focus 

represents the clustered centromere as shown by the Cnpl 	staining and the two remaining 

ones are the telomere clusters in the nuclear periphery (Ekwall, Javerzat et al. 1995; Noma, 

Sugiyama et al. 2004). However this pattern is completely lost in agol-sm mutant cells. Western 

analysis shows that expression of Agol protein in agol-sm mutants occurs in similar levels to wild-

type agol+ expression (Figure 5-213). However, the mutant Agol proteins fail to form nuclear foci. 

Hence, the agol-sm mutations are introducing a defect that prevents Agol from being recruited to 

the centromeric chromatin. 

The RITS complex is composed of Agol, Tas3 and Chpl proteins that co-localise to different 

heterochromatin loci within the cell nucleus (Noma, Sugiyama et at. 2004; Verdel, Jia et al. 2004). 

The localisation pattern of RITS components to centromeres is dependent on RNAi (Verdel, Jia et at. 

2004). However, the localisation of Tas3 and Chpl to other heterochromatic loci, such as the silent 

mating type loci or telomeres, is not dependent on Dcrl or Agol (Petrie, Wuitschick et al. 2005). 

Unlike in the case of the centromeric outer repeats, RNAi does not play a predominant role in the 

deposition of H3K9me2 over these other heterochromatic loci. Consequently, Chpl can bind to 

H3K9me2 at the mating type loci and telomeres even in the absence of functional RNAi (Petrie, 

Wuitschick et al. 2005). In order to investigate the impact of agol-sm mutations on the localisation 

of the Chpl to centromeres, ChIP (chromatin IP) was performed with anti-Chpl antibody in control 

and agol-sm cells. Preliminary results show that levels of Chpl at the centromeric outer repeats 

appear to decrease in agol-sm mutants (Figure 5-9). Chpl levels in agol-sm mutants are reduced 

but not completely abrogated when the signal is compared to cIr4,6. This result is consistent with 

the H3K9me2 ChIP data that shows that agol-sm and ago1L cells retain a remnant of H3K9me2 

over centromeric outer repeats (Figure 5-3). To further investigate the behaviour of Chpl in agol-

sm mutants, immunolocalization analysis was performed using strains carrying untagged agol+ 

along with chpl-13xmyc. The cells were fixed and immunostained with anti-myc antibody to reveal 
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Figure 5-9: Chpl levels are reduced at centromeric outer repeats in agol-sm. Chromatin 

immunoprecipitaion (ChIP) was performed on agol-sm as well as wild-type and cIr4L cells using anti-Chpl 

antibody. Levels of Chpl were determined by multiplex PCR using primers for the centromeric outer 

repeats (otr) and the control gene fbpl. Enrichment ratios were calculated in ChIP versus control reactions 

and are shown below each panel. 
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Figure 5-10: Chpl localization in agol-sm cells. Chpl-13xmyc localisation in wild-type and agol-sm 

(agolD58OA and agol°6514) cells is shown here by indirect immunofluorescence imaging using anti-myc 

antibody. The centromere cluster was marked with anti-cnp1 	antibody and the DNA stained with DAPI. 

The cells were analysed for the presence or absence of a Chpl focus adjacent to the Cnpl "  focus that 

marks the position of the centromeres. Two cells are portrayed for each of the two agol-sm mutant strains 

to illustrate the heterogenous Chpl localization phenotype observed in these mutant cells (normal and 

defective). Fluorescence signal intensity was normalized for each channel between all images. White scale 

bar represents 4 lim. 
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Chpl, anti-Cnpl 	antibody to mark the clustered centromeres and DAPI to stain the DNA 

(Figure 5-10). Wild-type cells display multiple Chpl-13xmyc foci, which correspond to the diverse 

genomic loci which are coated in heterochromatin (centromeres, silent mating type loci and 

telomeres). In comparison, agol-sm cells display a heterogeneous phenotype, with a subpopulation 

of cells displaying normal Chpl localisation at centromeres while others display reduced or 

undetectable amounts of centromeric Chpl. Localisation in the other foci does not appear to be 

affected, which is consistent with the fact that RNAi is mostly redundant in nucleating 

heterochromatic at telomeres and silent mating type loci (Hall, Shankaranarayana et al. 2002; Hall, 

Noma et al. 2003; Jia, Noma et al. 2004). It is difficult to estimate the degree of heterogeneity of 

Chpl localisation in agol-sm cells since it was not extensively analysed. However, my observations 

suggest that a significant portion of the cells within a population are able to maintain Chpl protein 

at the centromeric outer repeats. Given that RNAi mutants display significant amounts of H3K9me2 

remaining at centromeres, it is possible that this signal detected by ChIP originates from a small 

subpopulation of cells that retain H3K9me2 and consequently Chpl at centromeres rather than a 

uniform reduction of H3K9me2 throughout the entire population. 

A possible explanation of the phenotypes observed is that mutation in Agol on D580 and 

D651 (agol-sm) not only inhibit slicer activity but also affect the ability of Agol to form a functional 

RITS complex together with Chpl and Tas3. To verify this, considerable effort was invested in 

purifying the RITS complex from cells using immunoprecipitation techniques. A tag-based approach 

was attempted using Tandem Affinity Purification (TAP) and FLAG immunopurification by placing 

the appropriate tags on Chpl and Tas3 (Puig, Caspary et al. 2001; Verdel and Moazed 2005). 

Despite the existence of several published methods to purify this complex, my efforts have been 

unsuccessful due to high instability of the Chpl protein, which was found to be promptly degraded 

during any of these procedures (my observations). However, one of the procedures used allowed 

the purification of Chpl-FLAG. The resulting sample was subjected to gel-free mass spectrometry 

analysis (LC-MS/MS) in collaboration with Alexander Kagansky and the laboratory of Juri Rappsilber. 

The results obtained reveal that Agol-sm and Tas3 are detected in immunoprecipitates of Chpl-

FLAG (not shown). This suggests that the RITS complex is still intact in agol-sm cells. However, no 

inference could be made on the relative stability of the complex in wild-type and mutant situations 

since this procedure is not quantitative. A similar experiment using relative or absolute quantitative 

MS approaches such as the SILAC method (stable isotope labelling with amino acids in cell culture) 

may allow us to determine if the association dynamics of RITS are affected in agol-sm cells 
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although this approach could still be affected by the inherent instability of Chpl (Ong, Blagoev et al. 

2002). 

5.3. DISCUSSION 

The experiments described in this chapter support the hypothesis that the putative slicing 

domain in S. pombe Agol protein plays a fundamental role in the activity of RNA interference in this 

organism. Mutations predicted to abolish slicing activity lead to a complete loss of RNAi function 

phenotype that is mostly undistinguishable from a complete agol gene deletion or indeed 

mutations in other components of the RNAi-directed chromatin modification pathway. The stability 

of Agol protein is not compromised and preliminary data suggest that its interactions with RITS 

components are not severed. Nevertheless, heterochromatin at centromeres is destabilized in 

agol-sm mutants leading to chromosome segregation defects. The loss of centromeric 

heterochromatin is a consequence of the collapse of RNAi function at centromeres as observed by 

the accumulation of centromeric otr transcripts, loss of centromeric siRNAs and de-localisation of 

components of the RITS complex, with Agol as the most notable one. Thus both agol-sm 

mutations not only affect the integrity of centromeric heterochromatin but also cause a defect in 

the processing of noncoding centromeric RNAs to siRNAs. It appears that the defect is introduced at 

a stage in which RITS is loaded with siRNA and activated prior to localising to centromeric 

chromatin. 

One of the key questions faced while researching these mutants was if fission yeast Agol is 

indeed capable of siRNA-directed endonucleolytic cleavage or "slicing". Previous analyses had 

shown that Argonaute proteins from H. sapiens, A. thaliana and D. me/anogaster can slice an RNA 

molecule in vitro using a complementary s1RNA (Liu, Carmell et al. 2004; Baumberger and 

Baulcombe 2005; Miyoshi, Tsukumo et al. 2005; Rivas, Tolia et al. 2005). In fact, I attempted to 

develop a similar in vitro assay using Agol purified from fission yeast. However, at an early stage of 

this work, two other labs published results that confirm that Agol has slicing activity (Irvine, 

Zaratiegui et al. 2006; Buker, lida et al. 2007). In both cases, recombinant fission yeast Agol was 

shown to cleave a target RNA in an ATP-independent manner using a 5iRNA molecule as a guide. 

Any mutation to Agol's DDH motif, including D580A and D651A (agol-sm), abrogated this 

enzymatic activity. In agreement with the data shown here, both publications describe similar 
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findings regarding the impact that these mutations have on RNAi and centromeric 

heterochromatin. 

There are notable differences between the published studies and the data described here. 

Irvine et at. claim that Agol levels at the outer repeats are not significantly affected in agol-sm 

(Irvine, Zaratiegui et al. 2006). While the silencing assays performed by Irvine et al. use untagged 

agol-sm mutants similar to the ones described in this chapter, Agol chromatin IP was performed 

on cells expressing agol with an hemaglutinin peptide (HA) tag on its C terminus (Ahmet Dehli and 

Greg Hannon) in order to use anti-HA antibody to immunoprecipitate the protein (Irvine, Zaratiegui 

et al. 2006). Observations made in our lab suggest that the construct in question is not fully 

functional since silencing at centromeric outer repeats appeared to be defective in cells expressing 

Agol-HA. Unfortunately, Irvine et al. did not perform centromeric silencing assays on the strains 

carrying the agol-HA construct. Consequently, the authors assumed that Agol was still able to 

localise to centromeres despite the agol-sm mutations. Based on this evidence, the authors 

concluded that slicing activity of Agol is involved in mediating co-transcriptional silencing at the 

centromeric repeats and recruiting chromatin modifications (Irvine, Zaratiegui et al. 2006). 

From my analyses, it appears that Agol slicing activity is required for the RNAi pathway at a 

stage upstream of its co-transcriptional activity at the centromeric outer repeats. The observations 

by Bukher et al. agree with my findings that Agol localization to centromeric chromatin is affected 

in agol-sm mutants (Buker, lida et at. 2007). The latter authors went further and suggested a 

model for the basis of the RNAi defect in agol-sm cells. When an siRNA duplex is loaded onto an 

Argonaute protein, the molecule must be unwound and one of the strands discarded so that 

Argonaute can use the remaining strand to bind to a target RNA molecule (Elbashir, Lendeckel et at. 

2001; Nykanen, Haley et at. 2001). It was previously shown in vitro that slicing activity could 

facilitate this process of siRNA maturation (Matranga, Tomari et al. 2005). Argonaute slicing of the 

discarded strand (passenger) favoured the kinetics of release and allowed for Argonaute loaded 

with single-stranded siRNA to be more readily available for recognizing a target RNA (Matranga, 

Tomari et al. 2005). Buker et al. suggest that fission yeast Agol similarly slices an siRNA passenger 

strand during loading and that in the absence of slicing activity, Agol becomes blocked with a 

duplex siRNA that cannot recognize a target transcript (Buker, lida et at. 2007). The authors present 

supporting evidence for this model in the form of hybridization signal corresponding to duplex 

centromeric siRNAs detected in Agol-sm immunoprecipitated samples. This model offers an 

explanation for why the localisation of Agol to centromeres and other loci in the nucleus is 
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disrupted in the absence of slicing activity, which leads to RNAi collapse and subsequent de-

stabilization of centromeric heterochromatin. 

In spite of this and similar studies, the actual purpose of Agol slicing in the process of RNAi-

mediated heterochromatin formation remains unclear. Even though it has been shown that Agol 

can slice in vitro, there is no strong evidence demonstrating that Agol indeed slices centromeric 

transcripts. An indication of transcript slicing comes from the analysis made by Irvine et al (Irvine, 

Zaratiegui et al. 2006). The authors demonstrate that transcripts that originate from outer repeat 

sequences extend into a marker gene insertion at the centromeric outer repeats. Furthermore, the 

authors observed that such transcripts are only detected if Agol slicing activity is abolished or if the 

exosome component Rrp6 is absent (Irvine, Zaratiegui et al. 2006). The authors conclude that Agol 

slicing must be involved in initiating the degradation of these transcripts and that the exosome is 

involved in mediating their turnover (Irvine, Zaratiegui et at. 2006). However, it is difficult to 

distinguish the effects of Agol slicing from the increased transcription rate caused by toss of 

silencing. Furthermore, outer repeat transcripts have variable sizes, multiple promoters and 

undefined termination sites, making any detailed centromeric transcript analysis exceedingly 

complex. Using the endogenous centromeric sequence might then be inadequate for determining if 

Agol indeed slices target transcripts in vivo. Alternatively, an approach based on a synthetic RNAi 

system might provide clearer results. The artificial GFP hairpin mentioned in this chapter is a 

convenient form of inducing RNAi activity (Sigova, Rhind et al. 2004). A reporter gene, such as a 

fusion of GFP with the ura4 reporter gene, provides a target whose silencing can be monitored by 

fluorescence-based detection methods, western analysis or growth assays in medium depleted of 

uracil (Halim Boukaba and Femke Simmer). More importantly, such a reporter construct has a 

single promoter, terminator and a defined transcript size. In addition to silencing assays, northern 

analysis should allow the detection of any reporter transcript size shifts caused by RNAi activity. If 

Agol slicing of this target transcript indeed occurs, it should be readily detectable either in wild-

type conditions or in TRAMP/exosome mutants such as cid14, rrp6L or dis3-54 that stabilize RNA 

intermediates that have been marked for degradation (Ohkura, Adachi et al. 1988; Briggs, Burkard 

et al. 1998; LaCava, Houseley et al. 2005; Wyers, Rougemaille et al. 2005; Buhter, Haas et al. 2007). 

The detection of products of slicing activity in vivo would confirm that Agol performs this 

enzymatic activity in the course of its mechanism. However, it is not sufficient to determine the 

relevance of slicing for promoting heterochromatin formation. In fact, there is no published 

evidence that specifically indicates whether recruitment-based form of action for RITS or a more 
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active role for Agol involving slicing is the more crucial aspect for nucleating heterochromatin. An 

artificial tether linking the RITS complex directly to DNA might allow the question of whether RITS 

recruitment is sufficient to attract C1r4-mediated H3K9 methylation to be addressed. Such an 

approach has been successfully employed to force the targeting of the RITS complex to an RNA 

species (Buhler, Verdel et al. 2006). This was accomplished by expressing a fusion of Tas3 with the 

?N binding domain together with a modified ura4 gene containing 5 Box-B sites (Buhler, Verdel et 

al. 2006). Consequently, Tas3-N is recruited to ura4-BoxB RNA molecules and the cells produce 

ura4-specific siRNAs, resulting in silencing of the ura4-5xBoxB gene and heterochromatin being 

established over its locus (Buhler, Verdel et al. 2006). The authors claimed that this evidence 

provided proof for co-transcriptional silencing by RITS. However, based on the design of this 

experiment, they cannot rule out that binding of Tas3-2N with ura4-5xBoxB RNA may occur 

elsewhere in the nucleoplasm and not solely at the ura4-5xBoxB locus. Consequently, this may lead 

to s1RNA production, which would trigger RITS to find the ura4-5xBoxB locus and induce silencing. 

The fact that this system requires RDRC components (RNA-dependent RNA polymerase complex) in 

order to silence ura4 further suggests that the production of siRNAs must occur before ura4 

becomes silent, thus supporting the alternative scenario (Buhler, Verdel et al. 2006). 

Whereas an RNA tethering method may not provide a definitive way to target the RITS 

complex to a defined locus, a DNA tethering method may be more effective. In fact, a DNA 

tethering system has been developed in the lab using the DNA-binding domain from Ga14 (GBD) 

and an array of GAL4 upstream activating sequences (UAS) from S. cerevisiae to serve as a biding 

site (Chien, Buck et al. 1993) (Alexander Kagansky and Kirstin Scott). Using this set-up, it was 

possible to induce formation of heterochromatin at an ectopic locus by forcefully recruiting 

to methylate the surrounding histones, leading to a drop in expression levels of adjacent 

marker genes (Kagansky et al., unpublished observations). This system is refractory to the loss of 

RNAi components and seems to rely mostly on factors associated with Clr4 39  activity, such as 

members of the C1r4 complex and histone deacetylases. Potentially, the same tethering system can 

be employed to tether RITS to a DNA region. The question remains whether such a forced 

localization suffices to recruit Clr4-mediated H31<9 methylation and if Agol slicing can influence the 

outcome in any way. 
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CHAPTER 6 
FINAL DISCUSSION 

6.1. THE LINK BETWEEN RNAi AND TRANSCRIPTION 

The involvement of the RNA interference pathway in promoting heterochromatin assembly 

in fission yeast has been made clear but it is still difficult to discern the details of the molecular 

mechanism by which this is achieved. In fission yeast, RNA interference functions in a closed self-

reinforced loop, combining chromatin binding proteins, histone modifiers, RNA polymerases and 

multiple nucleases (Volpe, Kidner et al. 2002; Noma, Sugiyama et al. 2004; Verdel, Jia et al. 2004). 

The outcome of this mechanism is a sustained chromatin environment at the centromeric outer 

repeat DNA that is structurally distinct and transcriptional silent (heterochromatin) (Hall, Noma et 

al. 2003; Volpe, Schramke et al. 2003). However, due to the complexity of the pathway, the order of 

molecular events leading to the formation of heterochromatin via RNAi is unclear. Often, the 

molecular marks of RNAi function rely on the presence of a catalytic activity that is conceptually 

placed downstream in the pathway. For instance, the amount of centromeric siRNAs in the cells is 

sensitive to the presence or absence of the Clr4539  methyltransferase, showing that the 

chromatin outcome of RNAi is important for sustaining its level of activity (Noma, Sugiyama et al. 

2004). RNAi-mediated heterochromatin assembly mechanism in fission yeast is complex but it is 

still the simplest know form of this pathway that can be studied. S. pombe possesses all three core 

RNAi genes in single copy and a form of heterochromatin that resembles the one in higher 

eukaryotes, which provides an opportunity to study and dissect the molecular details of TGS in a 

simpler biological model that allows for robust genetic and biochemical approaches. 

The case for a link between RITS and nascent transcription at centromeres is very 

compelling. It was proposed that RNAi establishes its influence on chromatin through the presence 

of RNA polymerase II and newly made transcripts. The localization of RITS and RDRC to outer repeat 

chromatin supports this hypothesis, especially given that the co-localization of these two 

complexes to the otr is sensitive to RNAse treatment. RNA polymerase II is involved in mediating 

chromatin silencing by RITS because the rpb2-m203 mutant shows defects in transcriptional 

silencing but not in producing otr transcripts or maintaining centromeric siRNAs. The implication is 
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that RNAi-mediated chromatin silencing is required to interact with RNA polymerase II at some 

stage in order to nucleate heterochromatin. 

Evidence from other organisms supports the existence of a connection between Argonaute 

proteins and DNA-dependent RNA polymerases in mediating transcriptional gene silencing (TGS). In 

A. thaliana, RNA polymerase IV plays a key role in TGS along with Argonaute 4 (AG04), DICER-like 

protein 3 (DCL3) and RNA-dependent RNA polymerase 2 (RDR2). RNA polymerase IV exists in two 

isoforms, depending on the associated GW repeat protein, NRPD1a and NRPD1b. The RNA 

polymerase IVa isoform cooperates with DCL3 and RDR2 in the biosynthesis of the longer siRNAs 

(23-24 nt instead of 21-22 nt) that mediate TGS through AG04. In turn, RNA polymerase lVb 

isoform associates with AG04 through the direct interaction between the Argonaute protein and 

NRPD1b. This association is required for siRNA-directed de novo DNA methylation. The only known 

example of siRNA-directed TGS in mammals functions by transfection of siRNAs specific to the 

promoter of a reporter gene (Morris, Chan et al. 2004). This causes the accumulation of 

methylation on CpG dinucleotides, histone H3K9 and K27 and, consequently, silencing of the 

reporter gene. AGO1, the Argonaute protein found to be responsible for this transcriptional 

silencing phenomenon, was found to interact with unphosphorylated RNA polymerase II (Kim, 

Villeneuve et al. 2006). Transcription of the promoter region is required for mediating TGS, 

suggesting that the interaction between AGO1 and RNA polymerase II is functionally relevant for 

TGS (Kim, Villeneuve et al. 2006). In summary, research from three distinct organisms suggest a 

direct connection between RNA silencing and RNA polymerase machinery in mediating siRNA-

directed transcriptional silencing. 

The method by which Argonaute proteins recruit chromatin modifications to establish 

silent chromatin domains is not as clear. In human cells, the artificially introduced siRNAs that 

mediated TGS were shown to be associated with a protein complex containing the de novo 

methyltransferase DNMT3A (Kim, Villeneuve et al. 2006). In turn, DNMT3A is known to interact 

with HDAC1 and Suv39hl (H3K9 methyltransferase), suggesting that AGO1 may recruit these 

chromatin modifiers to promote assembly of heterochromatin (Kim, Villeneuve et al. 2006). 

Although many chromatin modifiers involved in TGS are known in both A. thaliana and S. pombe, 

currently there is no evidence demonstrating a direct interaction between Argonaute proteins and 

chromatin modifying enzymes or suggesting an alternative method of recruitment of 

heterochromatin assembly machinery (Lippman, May et al. 2003). 

In this chapter I will discuss the existing evidence on possible links between RNAi and 

transcription in fission yeast. I will analyse some of the proposed methods by which RITS may signal 
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the assembly of heterochromatin and how Clr4 might be recruited to the DNA loci where RNAi is 

active in light of the results described in this thesis. 

6.1.1. Transcription termination and RNAi in fission yeast 

In fission yeast mutants for RNAi and heterochromatin factors, the levels of RNA 

polymerase II at the centromeric outer repeats increases noticeably. Naturally, this occurs due to 

alleviation of silencing of these DNA domains that leads to higher rate of transcription firing from 

the otr promoters. In addition, it has been suggested that RITS (the effector complex: Agol, Tas3 

and Chpl) could signal transcriptional termination from a centromeric otr RNA template. For that 

effect, RITS should be able to somehow signal RNA polymerase II to disengage. In normal mRNA 

expression, this is performed by the CPF (yeast cleavage and polyadenylation factor complex) that 

recognizes a termination signal in the nascent pre-mRNA, binds to it and cleaves the transcript 

(Shatkin and Manley 2000; Dichtl and Keller 2001). Then, the same complex proceeds to promote 

maturation the 3' end of the newly separated mRNA by recruiting PAP (poly(A) polymerase) and 

PABs (poly(A) binding ,  proteins). Alternatively, cleavage is performed by a ribozyme (C0TC in 

budding yeast) that is encoded in many genes at the termination site (Teixeira, Tahiri-Alaoui et al. 

2004). Once polymerase transcribes through the ribozyme, it folds and cleaves itself, generating 

new 3' and 5' ends. The remaining RNA strand still attached to the RNA polymerase II plays a role in 

terminating transcription. In the "torpedo" model described in budding yeast, the Ratip 5'-3' 

exonuclease engages on the free 5' end and begins its degradation (Kim, Krogan et al. 2004). The 

processing rate of Ratip nuclease is much higher than the elongation rate of RNA polymerase II and 

eventually catches up with the polymerase complex. Ratip then somehow signals RNA polymerase 

II to disengage and transcription is effectively terminated (Kim, Krogan et al. 2004). 

The hypothetical slicing of a nascent transcript by RITS would be a similar event to the 

nascent RNA cleavage that precedes transcription termination. Hence, RNA polymerase II may be 

forcefully disengaged from otr DNA as a consequence of Agol slicing activity. While the "torpedo" 

mechanism hasn't been demonstrated in fission yeast, the dhpl-1 mutant phenotype bears strong 

resemblances to budding yeast rati- phenotype (Shobuike, Tatebayashi et al. 2001). 

Overexpression of Dhpl also rescues the temperature-sensitive phenotype of a ratl-ts mutant, 

suggesting that both proteins share the same function in the cell (Sugano, Shobuike et al. 1994). 

However, as it was shown in Chapter 4, a temperature-sensitive mutation on Dhpl, the fission 

166 



yeast homologue of Ratlp, has only a very mild effect on centromeric silencing. Therefore, 

transcriptional silencing at the centromeric outer repeats does not seem to rely on transcription 

termination by Dhpl. 

Based on the analyses described in Chapter 4 using mutants of factors that are involved in 

transcription termination, it appears that defective termination of RNA polymerase II transcription 

does not present an obstacle for the function of RNAi at centromeres. The only evidence that 

suggest that a transcription termination factor may play a role in heterochromatin integrity comes 

from the analysis of hrplLl (Walfridsson, Bjerling et al. 2005). Hrpl is a fission yeast protein that 

belongs to the CHD-Mi2 family of ATP-dependent chromatin remodelers (un, Yoo et al. 1998; Yoo, 

An et al. 2000). Hrpl was also identified as a fission yeast factor involved in transcription 

termination (Alen, Kent et al. 2002). Its budding yeast homologue Chdlp modifies the positioning of 

nucleosomes at the 3' end of genes in order for RNA polymerase II termination to occur efficiently 

at the poly(A) site (Alen, Kent et al. 2002). In hrp1L cells, silencing at centromeres, including the 

outer repeats, is affected (Walfridsson, Bjerling et al. 2005). Recently, Hrpl was found to be 

associated with the histone deacetylases Clr6 and the histone demethylases Swml and Swm2 (Lan, 

Zaratiegui et al. 2007; Opel, Lando et al. 2007). Hrpl appears to be required to silence a subset of 

genes in euchromatic regions (Opel, Lando et al. 2007). It is possible that Hrpl is required to 

efficiently disengage RNA polymerase II from DNA to allow the establishment of a repressive 

chromatin environment, such as in the case of centromeric outer repeats. Hrpl also has an impact 

in both Cnpl' 	deposition and silencing at the central core, suggesting it seems that Hrpl has a 

general influence in centromeric chromatin and not specifically on heterochromatin assembly. 

Further analyses are required to determine the nature of the influence of Hrpl in transcriptional 

silencing at the centromere. In addition, investigations of the activity of RNA polymerase II found at 

the centromeric outer repeats might provide more definitive answers regarding the hypothetical 

involvement of transcription termination in RNAi in transcriptional silencing at centromeric 

heterochromatin domains. 
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6.1.2. A possible connection between Riki and the CPF complex 

There are very few clues suggesting how the C1r4 complex may be called to intervene at the 

centromeric outer repeats. None of its constituents is known to have strong interactions with RNAi 

components or participate in alternate complexes that may have a functional connection with RNA 

interference. However, there might links between Clr4 and RNAi through the transcription process, 

namely at the stage of mRNA cleavage and polyadenylation. Such link was proposed between the 

C1r4 complex member Riki and the cleavage and polyadenylation factor complex (CPF) (Ekwall and 

Ruusala 1994; Shatkin and Manley 2000; Dichtl and Keller 2001). Riki contains a WD propeller 

domain that is predicted to serve as dedicated protein interaction domain (Neuwald and Poleksic 

2000). In addition, Riki possess the CPSF-A motif that shows homology to the C-terminus region of 

the human cleavage and polyadenylation specifying factor (CPSF1) (Murthy and Manley 1995). In 

yeast, the CPSF1 homologue (Cftl) resides in the CPF complex and is responsible for recognizing the 

AAUAAA polyadenylation signal in the nascent mRNA (Dichtl, Blank et at. 2002). The yeast CPF 

(cleavage and polyadenylation factor) complex combines two roles in mRNA 3' end processing: co-

transcriptional cleavage and polyadenylation (Dichtl and Keller 2001). It was suggested that Riki 

may interact with the CPF complex and hence be recruited to nascent RNAs undergoing cleavage 

and polyadenylation. In Chapter 4 of this thesis, mutants for the CPF component Pfs2 were assayed 

for defects in transcriptional silencing at the outer repeats (Wang, Asakawa et al. 2005). The results 

of the analysis of pfs2-3169 and pfs2-11 demonstrate that the complete function of the CPF 

complex is not a primary requirement for transcriptional silencing at the outer repeats. The 

analyses were performed in restrictive conditions in which the mutant cells were shown to present 

signs of transcriptional read-through, which is accounted by impaired function of the CPF complex 

in transcription termination (Wang, Asakawa et al. 2005). In the conditions used, pfs2 mutant cells 

do not show evidence of defective silencing in the heterochromatin domains at the centromere, 

further suggesting that CPF-mediated transcription termination is not required for silencing or 

maintenance of heterochromatin at the centromeric outer repeats. Given that CPF acts epistatically 

with Dhpl/Ratlp to promote transcription termination, this constitutes further evidence that 

transcription termination machinery is not required for the integrity of heterochromatin at 

centromeres. 

Based on data on pfs2-3169 and pfs2-11 mutants, it is not possible to rule out the 

possibility that the remaining components of the CPF complex can still associate with centromeric 
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outer repeats. If true, this may be sufficient for Riki association with otr transcripts. Further 

analyses are required on mutants for other components of the CPF, such as Cftl, Papi or Dis2, in 

order to definitely establish whether the CPF is anyway relevant to the process of heterochromatin 

assembly (Dichtl and Keller 2001). RNA-immunoprecipitation experiments using tagged CPF 

components could allow to test whether centromeric otr transcripts are recognized and bound by 

the CPF complex. 

6.2. RNA SLICING BY S. pombe Agol 

The precise role of Argonaute proteins in mediating TGS (transcriptional silencing) has not 

yet been fully determined in fission yeast. The endonuclease (slicing) activity of Argonaute proteins 

has been shown to be the key method of effecting silencing in the case of RNA interference in 

animals and PTGS in plants (Liu, Carmell et al. 2004; Baumberger and Baulcombe 2005; Miyoshi, 

Tsukumo et al. 2005). Slicing is not the only method of enforcing repression by Argonaute proteins. 

In miRNA-driven repression, Argonaute proteins are present in the miRNP (microRNA protein 

complex) that can block the translation of the target mRNA (Lee and Ambros 2001; Morris, Chan et 

al. 2004; Chendrimada, Finn et al. 2007; Kiriakidou, Tan et al. 2007). Alternatively, miRNPs localize 

to cytoplasmic P bodies where the target mRNA is decapped and degraded (Behm-Ansmant, 

Rehwinkel et al. 2006; Wu, Fan et al. 2006). For these two possible outcomes orchestrated by 

miRNA-loaded Argonaute complexes, slicing activity is not crucial. In the case of transcriptional 

silencing, chromatin modifying enzymes such as Clr4 
ar)3-9  in fission yeast are responsible for 

promoting the assembly of silent chromatin that blocks transcription (Volpe, Schramke et at. 2003; 

Verdel, Jia et al. 2004). However the method of recruitment of chromatin modifiers to loci where 

TGS occurs is not clear. Until recently, the precise role of Argonaute was equally unclear since 

slicing activity had not been characterized in the context of TGS. 

The results presented in Chapter 5 suggest that Agol slicing is required for RNAi-mediated 

heterochromatin assembly in fission yeast. However, it also shows that slicing is required for 

sustained levels of centromeric siRNAs and for normal localization of Agol to the otr loci. Mutations 

in residues predicted to affect the endonucleolytic activity of Agol (D580A and D651A, referred to 

as agol-sm) were shown to affect localization of both Agol and Chpl to the centromere and to 

cripple the cells in the ability to assemble heterochromatin de novo on a naked template. Based on 
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these data, it is not possible to conclude if Agol slicing of a nascent otr transcript occurs naturally 

and if this has any consequences to the process of heterochromatin assembly. Two separate fission 

yeast studies have confirmed these observations (Irvine, Zaratiegul et at. 2006; Buker, lida et al. 

2007). These contain in vitro evidence that show that Agol is indeed a competent slicer (Irvine, 

Zaratiegui et al. 2006; Buker, lida et at. 2007). In addition, one of the reports proposed that slicing is 

required to activate the siRNAs loaded into Agol before RITS can use them to recognize 

centromeric otr transcripts (Buker, lida et al. 2007). A form of bypassing RITS activation by Agol 

slicing is required in order to determine if slicing contributes to chromatin silencing at a 

downstream stage. 

The role of Argonaute slicing in TGS was also investigated in plants. Similar mutations 

introduced to the ones made in S. pombe Agol were introduced in A. thaliana AG04 (Qi, He et at. 

2006). AG04 is an Argonaute protein involved in TGS in Arabidopsis by directing DNA methylation 

(mostly non-CpG) to targets based on siRNA complementarity (Zilberman, Cao et at. 2003; Chan, 

Zilberman et al. 2004; Xie, Johansen et al. 2004; Zilberman, Cao et al. 2004). Similarly to slicer 

Argonautes in other organisms, AG04 can slice a target in vitro but loses this nuclease activity if 

mutations are introduced in the residues that form the DDH motif (Asp-Asp-His) in the PIWI domain 

(Qi, He et al. 2006). In order to determine the role of slicing in TGS, both wild-type and DDH mutant 

AG04 were introduced in plants in an attempt to rescue a null ago4-1 background mutation. 

Surprisingly, the results showed that AG04 DDH mutants could restore non-CpG methylation to a 

subset of AG04 target loci provided that ago4-1 plants managed to retain complementary siRNAs 

(Qi, He et al. 2006). In other loci for which ago4-1 plants lost both siRNAs and methylation, only 

wild-type AG04 managed to efficiently restore silencing (Qi, He et al. 2006). The most important 

conclusion from this work is that DNA methylation can be directed by an Argonaute protein that is 

incapable of slicing. These observations suggest that Argonaute-mediated slicing of a target RNA is 

not a pre-requisite for recruiting chromatin modifying machinery to DNA loci. This mechanistic 

insight from A. thaliana may constitute a general principle of TGS in eukaryotes, including fission 

yeast. 

What caused the difference in results between the analysis of A. thaliana AG04 and the 

study on S. pombe Agol described in this thesis? A. thaliana differs from S. pombe in that it 

encodes for multiple Argonaute proteins which may cooperate or act redundantly in siRNA 

biosynthesis and TGS (Lippman, May et at. 2003; Qi, He et al. 2006). In the case of loci such as 

AtMul, other A. thaliana Argonaute proteins such as AGO1 may participate in maintaining AtMul 

siRNA levels in the absence of AG04 (Qi, He et at. 2006). In S. pombe cells, where only one 
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Argonaute gene is present, an agol-sm mutation effectively abolishes slicing from the entire 

Argonaute protein molecules in the cell. This implies that transcriptional silencing may be affected 

in agol-sm cells mainly due to the failure of these cells to sustain centromeric siRNA levels. In this 

case, the introduction of a wild-type agol gene in addition to agol-sm could hypothetically restore 

centromeric 5iRNA levels. In these circumstances, outer repeat silencing would be restored but it 

would be interesting to determine if the Agol-sm mutant protein now reacquires function and 

localizes to the outer repeat loci. If so, it would indicate that Agol-sm can perform its role without 

nuclease activity. If the protein still fails to localize, then slicing may still play a role in bringing 

about TGS to centromeric outer repeats. The answer to the question of whether slicing of a nascent 

transcript is required for RNAi-dependent heterochromatin nucleation in fission yeast seems close 

at hand and it is likely that it may be revealed in the near future. 

6.3. FISSION YEAST RNAi AND THE EXOSOME 

Whenever an Argonaute protein slices a target mRNA in order to enforce post-

transcriptional silencing, the remaining RNA strands are degraded by the combined activity of the 

5'-3' exonucleases such as Xml and the 3'-5' exonuclease complex called the exosome (Hsu and 

Stevens 1993; Muhlrad, Decker et al. 1994; Beelman and Parker 1995; Mitchell, Petfalski et al. 

1997; Zhang, Williams et al. 1999). The exosome is a multi-functional complex composed of 9 

exoribonucleases (Rrp40p, Rrp41p, Rrp45p, Rrp46p, Rrp43p, Mtr3p, Rrp42p, Rrp4p, Csl4p) that are 

conserved from Bacteria to yeast and higher eukaryotes. In addition to these 9 core subunits, the 

exosome possesses the RNAse 11-like Dis3/Rrp44p and the nuclear specific Rrp6 subunits that are 

unique to eukaryotes (Mitchell, Petfalski et al. 1997). The exosome complex participates in multiple 

RNA-related processes involving maturation, surveillance and turnover both in the nucleus and 

cytoplasm. Its substrates include rRNA, tRNA or snoRNA precursors, prematurely terminated or 

otherwise aberrant mRNA5 and other RNA species which are marked for degradation (Houseley, 

LaCava et al. 2006). In performing these roles, the exosome is activated and recruited to target RNA 

molecules by supporting proteins, such as Ned8p, Ski factors and the TRAMP complex (Houseley, 

LaCava et al. 2006). In budding yeast, the TRAMP complex is composed of a poly(A) polymerase 

Trf4p or Trf5p, the DExH box helicase Mtr4p and a zinc-knuckle protein Airlp or Air2p (LaCava, 

Houseley et al. 2005; Wyers, Rougemaille et al. 2005). TRAMP facilitates turnover of RNA molecule 

in the nucleus by polyadenylating its 3' end, which in turn makes the RNA a better substrate for the 
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exosome. Trf4p is a homologue of the fission yeast family of Cid proteins (caffeine-induced death) 

that include Cid12, an RNAi component (Wang, Toda et al. 2000; Motamedi, Verdel et al. 2004). The 

putative poly(A) polymerase Cid12 is required for RNAi function and to sustain heterochromatin at 

centromeres (Motamedi, Verdel et al. 2004). The function of Cid12 within the RDRC complex is 

unclear but it has been suggested that its role may be similar to the one of Trf4p in TRAMP - to 

recruit the exosome to centromeric transcripts. 

The results of my investigation on the possible participation of the exosome complex in 

RNAi and heterochromatin assembly are reported in Chapter 4 of this thesis. The stability of 

heterochromatin silencing at the outer repeats was evaluated in fission yeast cells carrying dis3-54 

and rrp6A mutations. Mutation in dis3, the fission yeast homologue of DIS3/RRP44, is predicted to 

affect all forms of the exosome while rrp6A only affects the nuclear form of the exosome complex 

(Ohkura, Adachi et al. 1988; Mitchell, Petfalski et al. 1997; Hilleren, McCarthy et al. 2001). In 

budding yeast, both exosome proteins are required for TRAMP-mediated targeting of RNA for 

degradation (LaCava, Houseley et al. 2005; Wyers, Rougemaille et al. 2005). My results show that 

the exosome is called in to process transcripts that derive from the outer repeat loci. Silencing of 

otr1R(SphI):ade6+ is moderately affected in both dis3-54 and rrp6L, indicating that either 

chromatin silencing is alleviated in these mutants or that the exosome is failing to degrade 

otr1R(SphI):ade6+ transcripts. Other reports have shown that in the two exosome mutants, similar 

increases in transcript levels occur for other heterochromatic loci such as mat2/3 locus and sub-

telomeric tIh2 gene (Buhler, Haas et al. 2007; Nicolas, Yamada et al. 2007). This phenotype is also 

observed in mutants for TRAMP complex, cid14L (the fission yeast counterpart of Trf4p) and mtr4L, 

strongly suggesting that TRAMP is directing the turnover of these RNAs by the exosome (Buhler, 

Haas et al. 2007). 

Does RNAi require the function of TRAMP and the exosome to nucleate heterochromatin? 

Here, the results from TRAMP and exosome mutants diverge greatly. The levels of centromeric 

siRNAs appear not to be affected in rrp6,6 or dis3-54 but are severely depleted in cid14A. Silencing 

of imrlR:ura4+ (ura4+insertion at the centromeric innermost repeats) is attenuated in cid14Lt cells. 

Surprisingly, histone H3K9 methylation and Swi6' levels at centromeres and telomeres in cid14i 

are similar to wild-type levels, arguing that Cid14 has no influence in heterochromatin integrity 

(Buhler, Haas et al. 2007). In comparison, the same heterochromatin marks are stable at 

centromeres in dis3-54 cells but rrp6A cells show a strong decrease in genome-wide levels of 

histone H3K9 methylation (Murakami, Goto et al. 2007; Nicolas, Yamada et al. 2007). Based on this 

evidence, is difficult to determine the nature of the involvement of TRAMP and the exosome in the 
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process of RNAi-mediated heterochromatin formation. Common ground is only found in the 

involvement of all these factors in degrading transcripts that derive from heterochromatic loci, such 

as centromeres, telomeres and mating type locus (Buhler, Haas et al. 2007; Murakami, Goto et al. 

2007; Nicolas, Yamada et al. 2007). At the level of RNAi function, the involvement of exosome and 

TRAMP is less clear. Cid14 appears to favour s1RNA production, possibly by collaborating with Cid12 

in the RDRC (RNA-dependent RNA polymerase complex) in amplifying the amount of centromeric 

siRNAs (Buhler, Haas et al. 2007). In dis3-54 and rrp6L, the hallmarks for RNAi activity are 

unaffected yet silencing is affected in both mutants (Murakami, Goto et al. 2007; my observations, 

Chapter 4) and heterochromatin is destabilized in rrp6 (Nicolas, Yamada et al. 2007). Since RNAi is 

unaffected in exosome mutants, it is unclear how the exosome might be supporting 

heterochromatin. Judging from the genome-wide reduction of H3K9 methylation, it seems that 

rrp6 is exerting a general effect at the chromatin level that is felt even at telomeres and mating 

type locus, where RNAi is less relevant for heterochromatin nucleation (Buhler, Haas et al. 2007; 

Nicolas, Yamada et al. 2007). The possibility of an indirect effect of exosome mutants in key 

chromatin factors has not been ruled out yet and still provides the simplest explanation for these 

phenotypes. Further studies on the role of poly(A) polymerases and exosome subunits chromatin 

structure are required so that their involvement in the processes of RNAi and chromatin silencing 

may become clearer. 

6.4. FISSION YEAST RNAi AND TRANSPOSABLE ELEMENTS 

For the remainder of this chapter, I will discuss the function of RNAi at loci other than the 

constitutive heterochromatin domains (centromere, telemere and silent mating type locus). More 

specifically, it was proposed that RNAi targeted solo LTR (long terminal repeats) sequences for 

silencing and heterochromatin assembly along the chromosome arms. One of the proposed 

biological functions for this phenomenon was to control TE proliferation in the fission yeast 

genome. 

The evidence described in Chapter 3 indicates that fission yeast does not target LTR 

sequences with RNAi or heterochromatin assembly. Nevertheless, Tfl and Tf2 elements are 

controlled by other forms of transcriptional silencing in fission yeast. A recent report demonstrated 

that all three fission yeast class IV (sirtuin) histone deacetylases (Hst2, Hst4 and Sir2) localize to 

DNA loci containing Tf2 retrotransposons (Durand-Dubief, Sinha et al. 2007). Hst4 in particular is 
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required to repress the transcription of full-length Tf2 elements and was also shown to bind solo 

LTRs (Durand-Dubief, Sinha et al. 2007). Hence, histone deacetylation is employed by fission yeast 

to silence transcription from transposable element promoters and prevent their proliferation. 

Similar observations have been made regarding the role of the C1r6 HDAC complex II in controlling 

transcription of Tf2 transposons and solo LTR5 (Nicolas, Yamada et al. 2007). The HIRA-like proteins 

Hipl and S1m9 have also been implicated in controlling Tf2 transcription (Greenall, Williams et al. 

2006). The HIRA complex functions as a transcriptional co-suppressor and is involved in establishing 

silent chromatin in metazoans and budding yeast (Sherwood, Tsang et al. 1993; Spector and Osley 

1993; Lorain, Quivy et al. 1998; Magnaghi, Roberts et al. 1998). In fission yeast, Hipi and S1m9 are 

important for transcriptional silencing at centromeric outer repeats and mating type region 

(Blackwell, Martin et al. 2004). In S. cerevisiae, the homologous HIR proteins are also required to 

silence expression of the Ty retrotransposons (Qian, Huang et al. 1998). Hence, it is likely that 

fission yeast assembles a form of silent chromatin that represses expression of transposable 

elements. Since neither RNAi nor histone H31K9 methylation appear to be involved, it appears that 

this form of transcriptional silencing is distinct from heterochromatin and resembles the silent 

chromatin found in budding yeast more closely (Grunstein 1997). 

Thus, in fission yeast cells RNA interference is present but appears not to be acting against 

TEs in order to prevent their proliferation. However, this does not imply that fission yeast RNAi is 

unable to act on Tfl/2 TE elements. In wild-type cells, these elements are repressed by chromatin 

silencing mechanisms based on HDACs and chromatin remodelers and so very little Tfl/2 RNA is 

actually made. How would fission yeast RNAi react if transcriptional silencing of Tf2 elements was 

lost? Preliminary results from Elizabeth Bayne in our group working in collaboration with the lab of 

David Baulcombe have provided some insights into the behaviour of S. pombe in such 

circumstances. Large-scale siRNA purification and sequencing analysis was performed on RNA 

samples from wild-type cells and from cells in which the lysine 9 residue on histone H3 has been 

mutated for arginine (K9R) or alanine (K9A) (Mellone, Ball et al. 2003). These strains possess only 

one copy of each of the 4 core histones, meaning that for H3K9A and H3K9R strains all histone H3 

proteins in the cell bear the mutation. In these mutants, H31<9 methylation is effectively abolished 

and transcriptional silencing at the centromeric outer repeats is lost (Mellone, Ball et al. 2003). 

However, the mutations do not cause the total collapse of the RNAi since centromeric siRNAs are 

still detected, albeit in reduced amounts (Sharon White, Elizabeth Bayne - unpublished results). 

From the results of the sequencing analysis, it is clear that K9 mutant cells now produce siRNAs 

targeting Tf2 transposons whereas wild-type cells do not. This indicates that RNAi is triggered by 
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TEs in circumstances where silent chromatin formation is impaired. At the moment, it is not known 

if the Tf2-specific siRNAs target these TEs at a post-transcriptional level, transcriptional level or 

both. Nevertheless, this evidence suggests that fission yeast RNAi can respond to TE over-

expression and most likely prevent their proliferation. It also demonstrates the potential of large 

scale sIRNA sequencing for unravelling new in vivo targets of RNAi in fission yeast. 

6.5. RNAi AND GENE REGULATION IN S. pombe 

In fission yeast, the involvement of RNAi in the process of heterochromatin assembly has 

clear implications in centromere function and contributes to the regulation of mating type 

switching. Unlike in many other organisms when RNA silencing is clearly an important mechanism 

of controlling gene expression, there is very little evidence pointing towards an involvement of 

fission yeast RNAi in the regulation of gene expression. In their genome-wide analysis, Cam et al. 

documented the existence of a number of heterochromatin "islands" scattered along the 

chromosomes arms that overlap with genes (Cam, Sugiyama et al. 2005). The chromatin over these 

"islands" is enriched in H3K9 methylation and Swi6 binding but is also bound by the RITS 

components Chpl and Agol (Cam, Sugiyama et al. 2005). Thus, it is likely that RNAi contributes to 

nucleating these heterochromatin "islands". The set of genes associated with these 

heterochromatin "islands" appear to be upregulated during meiosis but, according to the authors, 

they are not overlapping with the 7 meiotic genes proposed to be regulated via LTR and RNAi-

mediated heterochromatin assembly (Schramke and Allshire 2003; Cam, Sugiyama et al. 2005). 

Further studies should reveal if these genes are purposefully regulated by this mechanism in 

meiosis or another functional context. In published studies on gene expression using RNAi mutants, 

the number of affected genes appears to be relatively small (up to 18 genes) (Cam, Sugiyama et al. 

2005; Hansen, Burns et al. 2005). Comparatively, the set of fission yeast genes upregulated in cIr3Lt, 

cIr6Lt (HDACS) and cIr4 (H3K9 HMT) is considerably larger and divergent from the group of genes 

upregulated on RNAi mutants (Cam, Sugiyama et al. 2005; Hansen, Burns et al. 2005; Wiren, 

Silverstein et al. 2005). Thus, it is likely that transcriptional gene silencing in fission yeast occurs 

primarily through recruitment of SHREC (C1r3 and Miti histone deacetylases and chromatin 

remodeler complex), Clr4 and C1r6 complexes and does not involve RNAi (Hong, Villen et al. 2005; 

Horn, Bastie et al. 2005; Li, Goto et al. 2005; Thon, Hansen et al. 2005; Nicolas, Yamada et al. 2007; 

Sugiyama, Cam et al. 2007). 
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Closely related RNA silencing phenomena such as 
posttranscriptional and transcriptional gene silencing 
(PTGS and TGS), quelling and RNA interference (RNAi) 
represent different forms of a conserved ancestral 
process. The biological relevance of these RNA-directed 
mechanisms of silencing in gene regulation, genome 
defence and chromosomal structure is rapidly being 
unravelled. Here, we review the recent developments in 
the field of RNA silencing in relation to other epigenetic 
phenomena and discuss the significance of this process 
and its targets in the regulation of modern eukaryotic 
genomes. 

Introduction 
RNA silencing is a general term for a particular collection 
of phenomena in which short RNA molecules trigger 
repression of homologous sequences. It is a highly 
conserved pathway, found in a large variety of eukaryotic 
organisms, and its main characteristic is the use of small 
RNA molecules of 21-28 nucleotides that confer high 
specificity to the target sequence. Originally, it was 
described as part of a 'co-suppression' phenomenon in 
plants [1-3] or 'quelling' in Neurospora crassa [4] and was 
later attributed to a posttranscriptional gene silencing 
process (PTGS; see Glossary) occurring in the presence of 
complementary RNA molecules that would bind and form 
double-stranded RNA [5]. A closely related effect described 
in Caenorhabditis elegans as 'RNA interference' (RNAi) 
[6,7] also requires long double-stranded precursor RNAs 
to induce and sustain efficient posttranscriptional repres-
sion of homologous sequences. 

In RNA silencing, double-stranded RNA (produced by 
various mechanisms) enters the 'canonical pathway' after 
cleavage into small (21-28 nt) RNA duplexes by the 
helicaselRNase-like III Dicer [8]. Following unwinding, a 
single-stranded small RNA (small interfering RNA: 
siRNA) becomes part of protein complexes in which 
PAZ/PIWI domain proteins (PPD or Argonaute) are 
central players [9,10] (Figure la,b). These RNA-induced 
silencing complexes (RISC) then target homologous 
mRNAs and exert silencing either by inducing cleavage 
('slicing') or, as in the case of micro-RNA-loaded RISC 
(see below), by also eliciting a block to translation 
(Figure lc,e). RNA-dependent RNA polymerase (RdRP) 
also plays a role in nematodes [11], plants [12,13] and 
fungi [14,15] but is apparently not required or detectable 
in the genomes of flies and vertebrates. RdRP amplifies 
the RNAi/PTGS response by generating more double-
stranded RNA from single-stranded targets that can then 

Corresponding author: Allshire, R.C. (robinaflahire@ed.ac.uk). 
Available online 6 April 2005 

enter and continue to stimulate the RNA silencing path-
way (Figure la). This positive-feedback system is crucial 
in plants and worms to amplify the siRNA signal 
transmitted from cell to cell and to mount a systemic 
form of silencing [16,17]. 

It is now evident that the core machinery required for 
RNA silencing plays crucial roles in cellular processes as 
diverse as regulation of gene expression, protection 
against the proliferation of transposable elements and 
viruses and modifying chromatin structure. While it 
appears that the basic pathway has been conserved, 
specialization has adapted the common RNA silencing 
machinery for these different purposes. This is implied 
both by the diversity of Argonaute proteins found in 
different species, such as C. elegans (more than 20), 
Arabidopsis thaliana (10) [18] and humans (8) [19] and 
also by the distinct phenotypic effects that arise from 
disrupting different Argonaute genes [20,21]. This special-
ization is most obvious in plants, which also encode 
multiple RdRP and Dicer-like proteins that are relevant 
for distinct small RNA pathways [22]. Here, we discuss 
these different pathways and the various levels through 
which small RNAs can influence the activity of the 
genome. 

Regulation of gene expression - microRNAs 
MicroRNA regulation is a clearly specialized branch of the 
RNA silencing pathway that evolved towards gene 
regulation, diverging from conventional RNAi/PTGS. 
MicroRNAs are a specific class of small RNAs that are 
encoded in gene-like elements organized in a character-
istic inverted repeat. When transcribed, microRNA genes 
give rise to stem—looped precursor RNAs from which the 

Glossary 

5-Me-C 5-Methylcytosine 

DNMT DNA de nova methyltransferase 
dsRNA Double-stranded RNA 

HDAC Histone deacetylase 
HMT Histone methyltransferase 

H3K9ac Histone H3 acetylated on lysine 9 
H3K9me2/3 Histone H3 di/tri-methylated on lysine 9 

LTR Long terminal repeat 
PEV Position effect variegation 
PPD PAZ/PIWI domain 
PIGS Posttranscriptional gene silencing 
RdRP RNA-dependent RNA polymerase 

RISC RNA-induced silencing complex 
RITS RNA-induced transcriptional silencing complex 

RNAI ANA interference 
SIRNA Small interfering RNA 

TE Transposable element 
TGS Transcriptional gene silencing 

hR Terminal inverted repeat 
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microRNAs are subsequently processed [23-25]. The 
released miRNAs are incorporated into RISC-like com-
plexes containing a particular subset of Argonaute 
proteins that exert sequence-specific gene repression. 
The presence of these small RNAs was originally found 
to govern the expression timing of specific sets of 
developmental genes in C. elegans [26]. In the past few 
years, the number of genes encoding miRNAs identified in 
various systems has grown enormously, and it is now clear 
that hundreds of miRNAs regulate the expression timing 
of a large, but still underestimated, pool of genes [27,28]. A 
major challenge that remains is the accurate and 
comprehensive identification of all genes regulated by 
microRNAs. To date, miRNAs have not been described in 
simpler unicellular eukaryotes, suggesting that their 

evolution might be intimately linked to gene regulation 
in multicellular organisms. However, RNA-mediated 
silencing is present in both multi- and unicellular 
eukaryotes and performs a variety of other key functions. 

Defence - transposable elements and viruses 
RNA silencing was first recognized by its effect on the 
expression of multicopy transgenes. This curious phenom-
enon was then interpreted as a process of genome defence 
against foreign 'invading' sequences. In fact, it was 
observed in the early 1990s that, in plants, co-suppression 
or PTGS could play a role in defending against viral 
invasion [29]. Known core components of the RNAi 
pathway were found to be required for repressing 
transposable elements (TEs) in several eukaryotes: 
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Figure 1. The different forms of RNA silencing. (a) Double-stranded RNA molecules derived from complementary transcripts or from a stem—loop structure are recognized by 
Dicer (in blue) and cleaved into small RNAs. The RdRP protein (in green) acts in a positive-feedback loop for the siRNA signal by producing complementary strands of the 

target RNA molecule, either by recognition of its 'aberrant' nature or by using small RNAs as primers (61), thus generating more homologous double-stranded ANA for Dicer 
processing. (b) The RISC complex, primed with a small RNA, can exert silencing in a variety offorms. In all cases, the small RNA confers target specificity, whereas the protein 
components within the RISC complex effect, or recruit mediators of, repression. (c) The conventional RNAi, PIGS or quelling pathway is depicted on the left, where the RISC 
complex associates with the target mRNA and employs the RISC 'slicing' activity of Argonaute protein to cleave the transcript (82,83) (d). RISC can also Induce transcriptional 
gene silencing )TGS) by using the siRNA specificity to direct silent chromatin modifications over homologous DNA loci. Target DNA (magenta line) and overlapping histones 
become methylated through the recruitment of DNA do novo methyltransferase )DNMT), histone deacetylase )l-IDAC) and histone methyltransferase )HMT) activities by a 
variant of the RISC complex, which can result in the shutdown of transcription. (c)A typical miRNA-loaded RISC does not affect mRNAturnover but binds to the 3'-UTR of the 

target transcript (blue line) and effectively blocks Its translation by an unknown manner. It has been found recently that specific miRNAs can direct target mRNA cleavage and 
that an siRNA-loaded RISC can also block mRNA translation (see above), which suggests that It Is the nature of the small RNA sequence, rather than the composition of RISC, 
that defines which process occurs [84,85). 
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C. elegans [30,31], Chlamydomonas reinhardtii. [32], 
Drosophila melanogaster [33] and now Mus musculus 
[34]. Since then, reports of small RNAs homologous to TE 
sequences have expanded to a larger variety of organisms 
[35-37], clearly implicating RNA silencing as both a 
conserved and widespread form of regulating transposon 
activity. 

The term 'transposon' or 'transposable element' (TE) 
defines a selfish DNA entity capable of using a genome as 
an ecosystem where it can survive and proliferate. This 
definition can also be applied to a viral DNA sequence 
integrated in the host genome. TEs are powerful genome-
destabilizing factors for a variety of reasons. Transposition 
events frequently induce positional mutations at the 
insertion and excision sites, and extensive TE activity 
favors recombination events that can lead to dramatic 
chromosomal rearrangements [38]. Although TEs are 
believed to contribute significantly to genome evolution, 
uncontrolled TE activity can be potentially detrimental to 
the fitness of the host [39,40]. Therefore, mechanisms that 
silence TEs have evolved to stabilize the genome. 

Transposable elements and heterochromatin 
In general, TEs and related DNA sequences are often 
found in chromatin domains that are transcriptionally 
silent and structurally distinct from the open euchromatic 
regions [41]. These heterochromatic regions have con-
spicuous features, which can include dense methylation of 
DNA (5-methylcytosine; 5-Me-C), hypo-acetylation of 
lysine residues in the N-terminal tails of histories 113 
and 114 and methylation of specific lysine residues such as 
lysine 9 on histone 113 (H3K9me2/3). Some of these 
modifications create binding sites for particular proteins 
that, in general, promote transcriptional repression and 
the formation of silent chromatin or heterochromatin 
[42,431. The packaging of TEs into heterochromatin 
represses their expression and blocks their ability to 
transpose. Hence, the assembly of TEs into this 'silent' 
chromatin is an effective way of inhibiting TE prolifer-
ation that has been employed by many eukaryotes. 
Because this form of regulation based on chromatin 
structure is independent of the primary DNA sequence, 
specialized mechanisms for recognizing these parasitic 
elements must be required to selectively trap them in 
heterochromatin. It is now evident that the formation of 
this heterochromatin is linked to the process of RNA 
silencing. 

RNA silencing reaches chromatin 
The same pathway that acts to repress genes posttran-
scriptionally can enforce modification of homologous 
chromatin in a way that alters its structure and conse-
quently its function. Transcriptional gene silencing (TGS) 
(Figure id) was initially observed in plants and was 
associated with repression of exogenously introduced 
transgenes and viral suppression [44].  Remarkably, the 
presence of dsRNAs homologous to the promoter or the 
coding region in the DNA result in robust silencing that 
persists even after the trigger has been removed [45,46]. 
The TGS response triggered by double-stranded RNAs 
results in the complete transcriptional shutdown of a gene 

and is associated with de novo DNA methylation on the 
homologous DNA sequences. 

TGS indeed appears to be employed to silence/inhibit 
the activity of several classes of TEs in plant genomes. 
Apart from the characteristic Dicer-like, Argonaute and 
small RNAs, the persistence of TE DNA methylation in 
Arabidopsis thaliana requires chromatin-modifying fac-
tors such as histone deacetylases, methyltransferases, 
DNA methyltransferases and SWI2/SNF2-related chro-
matin remodeling components - some of which are also 
required for the persistence of TE siRNAs [37] and for 
PTGS [47]. This underscores the intimate relationship 
between RNA silencing and chromatin regulation in 
plants and their role in repression of TEs [37,48,49]. 

Furthermore, it is becoming increasingly clear that 
TGS is a common form of general RNA silencing rather 
than a particular feature of RNA-mediated silencing in 
plants. Small RNAs are also known to direct chromatin 
modifications in other organisms. For instance, in the 
ciliate Tetrahymena thermophila, small RNAs are used to 
mark particular DNA sequences for elimination from the 
transcriptionally active macronucleus, most of which are 
of a repetitive nature [86,87]. In the fission yeast 
Schizosaccharomyces pombe, it has been clearly demon-
strated that RNA silencing acts to facilitate chromatin 
modifications over repetitive sequences for the purpose of 
TE silencing, as in plants, but also impacts upon basic 
chromosomal functions [15,50,51]. 

Chromosomal function - the fission yeast centromere 
In fission yeast, silent chromatin assembled over the outer 
repeat arrays at the centromeres is required for proper 
chromosome segregation during mitosis. The high density 
of cohesin complexes associated with this silent chromatin 
ensures that sister chromatids are held tightly together at 
centromeres after DNA replication and up until the onset 
of anaphase [52,53]. RNA silencing must play a direct role 
in this process in fission yeast as deletion of any gene 
encoding key RNAi components leads to defects in 
chromosome segregation. In fact, RNAi effector proteins 
are required to establish and maintain this pericentro-
meric heterochromatin and thus prevent premature 
sister-chromatid separation [15]. In addition, RNAi also 
acts to initiate a similar form of silencing at the mating-
type locus in S. pombe [54]. It is thought that transcription 
from both strands of the outer repeats at the centromeres 
(dg-dh/K-L) and the related cenH element from the 
mating-type locus results in homologous dsRNA that 
then enters the RNA silencing pathway, resulting in the 
production of complementary small RNAs. Incorporation 
of these small RNAs into a variant of the RISC complex 
called RITS (RNA-induced transcriptional silencing com-
plex), containing Agol (Argonaute), Chpl (chromodomain 
protein) and Tas3, directs H3K9me2 methylation over 
homologous chromatin [55] (Figure 2). This requires an 
RdRP the action of histone deacetylases and the histone 
methyltransferase C1r4 (SET domain protein, related to 
the mammalian Suv39) that forms a binding site for the 
HP1 (heterochromatin protein 1) ortholog Swi6 and Chpl 
[42]. In turn, binding to H3K9me2 of Swi6 and Chpl 
promotes spreading of the silenced chromatin state as well 
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Figure 2. RNA-mediated heterochromatin formation in fission yeast. (a) The 
RISC-variant flITS compiex with its known components: the ArgonauteiPPD protein 
Agol, the chromodomain protein Chpl and Tas3. (b) HITS attracts C1r4 and an 
unknown HDAC to deacetyiate and methylate histone H3-K9 over target DNA 
(blue line). It is still unclear whether the target recognition process involves 
RNA-DNA interactions between the small RNA and the target DNA or RNA-RNA 
interactions with a nascent transcript. (c) Nucleosomes bearing H3K9me are 
preferentially bound by Swi6IHP1, which promotes the recruitment of hetero-
chromatin proteins, such as the cohesin subunit Rad2l, and allows spreading of the 
heterochromatin domain to upstream and downstream regions. (d) This results in 
the assembly of a patch of heterochromatin that is rich in SwiS/HP1 and Rad2l, as 
well as being transcriptionally silent. 

as allowing the recruitment of the Rad2l cohesin and 
physical cohesion [52]. 

Expression of a synthetic hairpin RNA producing 
dsRNA (a conventional RNAi inducer in many systems) 
taps into this mechanism to promote silencing by directing 
histone H3 K9 methylation and recruitment of Swi6 and  

cohesin over a normally expressed euchromatic locus [50]. 
This demonstrates that the generation of siRNAs from a 
dsRNA precursor is sufficient to target chromatin modi-
fication to a homologous locus and also indicates that the 
primary DNA sequence does not play a role in specificity. 
Thus, the process of RNA-directed transcriptional gene 
silencing provides DNA targeting properties that facili-
tate the placement of histone modifications at specific loci 
for the purpose of TE repression in plants and fungi. 

Repeats attract RNA silencing 
To grasp the biological relevance of RNA-directed chro-
matin modifications, it is important to investigate the 
nature of the DNA sequences that generate the endo-
genous siRNAs that influence chromatin structure. To 
date, all natural targets for RNAi-mediated hetero-
chromatin formation appear to involve TEs or repetitive 
DNA. This suggests that RNA silencing recognizes an 
intrinsic property common to these sequences in the 
context of centromeric function or transposon/viral con-
trol. But what could this defining characteristic be? 

It has been suggested that S. pombe outer centromeric 
repeats, as well as the satellite sequences found around 
metazoan centromeres, resemble or are derived from TE 
sequences. Some centromeric repeats are bound by 
CENP-B proteins, which bear close resemblance to trans-
posases encoded by the pogo superfamily of TEs [561. 
Moreover, regions in the terminal inverted repeat (TIR) 
of the Tigger TE match almost perfectly the DNA bind-
ing motif recognized by CENP-B in human centromeric 
c-satellite repeats [56]. The implication is that perhaps all 
the currently known targets for RNAi-mediated hetero-
chromatin formation are derived from TEs. Thus, in 
S. pombe, RNA silencing might be directed towards 
TE-derived repetitive DNA sequences by default. In this 
case, it appears that the cell has exploited a natural form 
of repeat silencing based on genome defence mechanisms 
(inhibition of transposition) to promote gene silencing. 
This now acts to ensure that specific chromatin structures 
are assembled over the outer repeat regions (flanking the 
kinetochore) at centromeres and the related sequences at 
the mating-type locus, which are now important for 
centromere-specific cohesion and the regulation of cell 
mating type. 

But what triggers an RNA silencing response against 
such sequences? As dsRNA is the general substrate for the 
canonical RNAI pathway, it seems likely that a dsRNA is 
responsible for triggering RNA-mediated heterochromatin 
formation. Invariably, transcriptional activity is coupled 
to the transposition cycle of most TEs. Even isolated 
TE-derived repeats, such as solo LTRs, can remain 
transcriptionally active [571. Since transcription alone is 
not sufficient to render such elements as targets, some 
process must generate a dsRNA substrate. Intuitively, two 
transcription events on opposite strands converging on 
any given sequence could generate complementary tran-
scripts that would combine and form dsRNA (as used in 
various organisms to direct knockdown of gene expres-
sion: Figure 3a). Alternatively, complementary strands 
could be transcribed from different copies residing at 
distinct locations in the genome and subsequent 
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Figure 3. Possible ways by which transposable elements (TEs) and repeat dsRNA are generated. (a) Transcription of a repeat or TE (orange 'arrow box'), either from an 
internal promoter (black arrow( or leaking/originating from flanking sequences (red arrow(, that occur in both sense and antisense strands can generate dsRNA. 
(b) Transcription through an inverted repeat disposition of repeats, such as the TIR repeats within DNA transposons, could give rise to an RNA molecule (in blue) that snaps 

back and adopts a stem-loop or hairpin structure, exposing segments of dsRNA. (c) RdRP recognizes the 'aberrant' nature of a TE/repeattranscript and uses it as a template to 
generate the complementary strand. (d) Transcription through a tandem array of repeats produces a transcript that bears multiple sites for production of complementary 

strands (red arrows) by RdRP (green) using repeat-specific siRNAs (in red) as primers. Extension of the complementary strand over multiple repeats generates a long dsRNA 
molecule that can be cleaved Into higher numbers of repeat-specific siRNAs than in the case of an isolated repeat. 

hybridization would allow the formation of a dsRNA 
substrate. Another simple way of obtaining dsRNA is by 
transcribing an inverted repeat, which produces a tran-
script that can snap back and form a stem—loop or hairpin 
structure (as with endogenous microRNA precursors: 
Figure W. This has been suggested as one source of 
dsRNA specific for C. elegans TciiMariner TEs, which 
bear terminal inverted repeats in their structure [58]. 
Although siRNAs against Tcl/Mariner TIR repeats appear 
to be more abundant, transcripts from both strands of 
these TEs are produced, in the same way as has been 
observed for centromeric repeats and also interspersed 
LTRs in S. pombe [15,50,58]. The presence of siRNAs 
specific to most regions within these TEs in C. elegans 
suggests that full-length TE dsRNAs contribute to the 
induction of RNAI against these TEs. The origin of the 
convergent, read-through and/or complementary tran-
scription events involved in TE dsRNA formation is 
obscure. They might arise from the activity of promoter 
sequences within the repeats, but transcriptional 'leakage' 
from flanking genes and from flanking cryptic promoters 
could contribute to the production of a TE homologous 
dsRNA pool. 

An alternative explanation is that RdRP can in some 
way recognize transcripts coming from TEs or viral 
sources as 'aberrant' or 'foreign' transcripts and use 
them as templates to generate dsRNA [12,59,60] 
(Figure 3c). This idea is supported by the observation 
that the RdRP can produce dsRNA in vitro from a ssRNA 
template in a primer-independent manner [61]. More 
recent work suggests that transcripts lacking a 51  cap are  

targeted by RdRP, although it is still possible that RdRP is 
attracted to other characteristics, such as premature 
termination or absence of polyadenylation, or a combin-
ation of features [62]. In the case of tandem repeat arrays, 
such as those commonly associated with pericentromeric 
regions, it has been suggested that this arrangement 
results in the production of transcripts that serve as more 
efficient RdRP substrates, thus ensuring the stability of 
the assembled heterochromatin over these regions [631 
(Figure 3d). However, RdRP-independent strategies have 
presumably arisen in flies and vertebrates to maintain 
TEs and repeats under the influence of RNA silencing. 

RNA-induced chromatin silencing in metazoans 
SiRNAs act to target histone and/or DNA modifications to 
homologous sequences in plants, ciliates and fission yeast. 
But do noncoding RNAs play a pivotal role in gene 
silencing and chromatin modifications in metazoans? 
Clearly X-inactivation in female mammals requires 
expression of Xist RNA in cis to effect chromatin 
modifications that result in gene silencing [64]. In 
addition, imprinting of paternally derived Ig/2r requires 
expression of the associated Air noncoding RNA [65]. 
Likewise, chromosomal rearrangements that result in 
antisense transcription of the gene encoding a-globin lead 
to DNA methylation of its promoter region and transcrip-
tional silencing [66]. However, there is no evidence linking 
these phenomena to the process of RNA1. Nevertheless, 
several recent reports imply that the RNA pathway can 
mediate both chromatin modifications and gene silencing 
in metazoans. 
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As mentioned above, the placement of a gene close to 
domains of constitutive heterochromatin such as those 
residing at pericentromeric regions leads to variable 
expression (PEV). Unstable repression is thought to be 
due to the stochastic dynamics associated with hetero-
chromatin assembly along chromatin fibres. This classic 
epigenetic effect can be imitated in euchromatic regions in 
fruit flies by arrays of a reporter gene such as mini-white, 
which also display variable expression. The RNAIIPTGS 
pathway affects the formation of silent chromatin over 
these arrays since the piwi, aubergine (both Argonaute 
homologs) and spindle-E (homeless: an RNA helicase) 
mutations alleviate their silencing [67]. The most likely 
explanation is that siRNA derived from mini-white array-
generated dsRNA directs the assembly of heterochromatin 
over the mini-white sequences. It is not known whether 
these same mutations can alleviate silencing of a marker 
embedded in centromeric heterochromatin, but they do 
result in loss of H3K9me2/3 and in the redistribution of 
HP1 from centromeric regions. 

A link between RNAi and TE silencing is also evident in 
Drosophila as siRNAs homologous to TE, satellite and 
microsatellite DNA have been detected [35]. While it is not 
known if these small RNAs exert repression at a 
transcriptional level, it is clear that their cognate 
sequences are normally associated with heterochromatin 
and are subject to RNA silencing in D. melanogaster. 

A recent study suggests that RNA silencing is also 
involved in sister-chromatid cohesion in vertebrates, 
similar to what is observed in S. pombe. A chicken DT40 
cell line containing human chromosome 21 was engineered 
creating a conditional allele allowing Dicer (and thus the 
RNAi pathway) to be turned off [68]. Cells depleted of 
Dicer displayed a mitotic phenotype, with disrupted HP1 
and Rad2 1 localization, premature sister-chromatid 
separation and chromosome mis-segregation [51]. This 
implies that RNA silencing is also involved in the 
formation of pericentric heterochromatin in vertebrate 
cells and that this acts as a platform to promote efficient 
cohesion at centromeres. 

A more direct test of the link between RNAi and 
chromatin modification in metazoans has come from the 
application of siRNAs to human cell lines. One study 
demonstrated that siRNAs homologous to the promoter of 
an integrated GFP reporter construct can induce tran-
scriptional silencing of the gene encoding GFP [691. 
Cytosine methylation at one site within the EF1A 
promoter was shown to increase after transfection of the 
homologous siRNAs. The effect was reversed by treatment 
with inhibitors of DNA methylation and histone deacetyl-
ation. A more comprehensive study conducted by 
Kawasaki et al. [70] underscored the ability of siRNAs to 
induce DNA and chromatin modifications in human MCF7 
and mammary epithelial cells. Both transfection of 
siRNAs or expression of hairpin precursor RNAs homolo-
gous to the promoters of either the E-cadherin or erbB2 
genes resulted in effective gene silencing accompanied by 
DNA methylation and histone H3 K9 methylation. 

To recap, chromatin modifications can be directed by 
small RNAs in fungi, plants and metazoans. The process 
involves components of the RNAi machinery that appear  

to be utilized to provide sequence specificity by homing in 
on targets bearing homology to siRNAs carried by the 
RNAi effector complex. This is related to the process that 
acts on transcripts derived from outer centromeric repeats 
in fission yeast and appears to be a conserved mechanism 
that acts at centromeric regions in vertebrates to 
ensure tight physical cohesion and normal chromosome 
segregation. 

Transposable elements and repeats can influence gene 
regulation 
The action of RNA silencing on centromeric repeat 
transcripts is important in defining structures and 
functions associated with these chromosomal regions. 
However, a large proportion of repetitive sequences are 
not concentrated in pericentromeric regions but are 
scattered throughout the genome. TE insertions are 
known to have dramatic effects on expression levels of 
surrounding genes by disturbing the transcriptional 
activity of the affected regions. Moreover, it now seems 
likely that observed changes of gene expression associated 
with TEs could result from transposon silencing events 
involving the formation of silent chromatin on such 
elements [711. In light of this, it is interesting to re-
evaluate the action of RNA silencing and TEs in terms of 
their consequences for gene activity. 

A clear demonstration of transposon silencing affecting 
gene expression comes from the analyses of retrotrans-
posons containing long terminal repeats (LTRs) in 
S. pombe. Most of the -300 Tf1i2 LTRs are dispersed 
along chromosome arms as solo elements in various states 
of decay. Only a few (26) remain associated with full-
length retrotransposons [72]. In one case, repression of a 
few nearby meiotically regulated genes during vegetative 
growth was shown to be connected to RNA silencing by 
LTR sequences [50]. The mechanism of this repression 
has not been completely unravelled, but LTRs are 
subjected to RNA-mediated chromatin silencing, resulting 
in H3K9me2 methylation and Swi6 association. One 
possibility is that binding of Swi6/HP1 to H3K9me2 
promotes recruitment of additional Swi6/HP1 and chro-
matin modification factors to surrounding histones, which 
stabilizes the silent chromatin domain and also allows it to 
expand laterally and engulf neighboring genes [73-75]. 
Indeed, Swi6 was found to be required for repression of 
these nearby meiotic genes, suggesting that the LTR acts 
as a nucleation site from which silent chromatin spreads 
out and represses nearby genes, in the same way that it 
can spread from a region of a gene targeted by artificially 
induced siRNAs [50]. 

In plants, H3K9me and DNA methylation seem to be 
largely confined to transposon sequences or promoters of 
silenced genes and do not in general engulf neighbouring 
genes [49,63]. However, repression of a few genes in 
Arabidopsis that harbor insertions of repetitive sequences 
was found to be dependent on DDM1 (a SWI2/SNF2 
chromatin remodeling factor required for maintenance of 
DNA methylation and H3K9me over TE sequences) [76]. 

Repeats and silent chromatin modifications are inti-
mately linked in mammalian somatic cells - tandemly 
repeated satellite DNA as well as mobile genetic elements 
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and their DNA remnants are characterized by extensive 
histone deacetylation, H3K9, H3K27 and H4K20 methyl- 
ation as well as 5-Me-C DNA methylation [77,78]. 
RNA-mediated silencing is fully active during early stages 
of embryonic development and cellular differentiation but 
inactive during the later stages of development and in the 
soma. Thus, it remains active during the stages where 
epigenetic reprogramming processes occur, before the 
establishment of cell fate [79]. The presence of Dicer is 
crucial for mouse embryonic viability, but it is also 
involved in repressing LTR-retrotransposons in mouse 
pre-implantation embryos [34,80]. Recent investigations 
of chromatin status over repetitive elements in the mouse 
genome have revealed that the modifications associated 
with TEs and related interspersed LTRs display a 
dynamic behaviour throughout differentiation stages of 
embryonic stem cells [78]. This is in contrast to the 
relatively stable H3K9me3 and H4K20me3 modifications 
associated with pericentromeric repeats. Given that 
RNA-dependent heterochromatin assembly appears to 
occur in vertebrates, it is seems quite likely that RNA 
silencing plays a key role in establishing transcriptional 
repression of these sequences upon determination of cell 
fate [81]. However, it is not clear whether transcriptional 
repression of these sequences plays a role in the process of 
cellular differentiation. 

Concluding remarks 

Noncoding RNA is the central player of an ancient and 
conserved form of silencing. Although the different forms 
of RNA silencing were initially unearthed as seemingly 
distinct phenomena, basic machinery is held in common 
between PTGS, TGS, quelling and RNAi. In addition, 
these same components are conserved in a large variety of 
organisms and thus must have arisen early in eukaryotic 
evolution. Since its discovery several years ago, the 
biological relevance of RNA-directed silencing mechan- 
isms is rapidly becoming clear, and it is already evident in 
distinct processes such as chromosomal structure, genome 
defence and gene regulation. Despite the large body of 
information available on RNA silencing pathways, import- 
ant questions still remain unanswered. Issues such as the 
total number of endogenous targets of siRNAs and 
microRNAs in the genome or the amount of crosstalk 
between the different manifestations of RNA silencing are 
currently being addressed and might yet reveal further 
surprises. 
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so in the wild. The cognitive 
demands for inventing such 
traditions thus appear to be easily 
met, not only by chimpanzees but 
also by other great apes. If 
inventions occur easily, a high rate 
of invention could in principle 
contribute to making the 
distribution of traditions disjunct. 

In practice, however, there is 
a problem with this explanation. 
Chimpanzees are an old species: 
they closely resemble bonobos, 
a morphologically derived sister 
species that split off at least 
1 million years ago [12]. If 
chimpanzees have been inventing 
and passing on traditions even for 
as short a period as 1 million years, 
the distribution of traditions would 
be limited by the rate of invention 
only if the rate of invention were 
vanishingly low-much less than 1 
in every 10,000 years for example. 
The fact that chimpanzees have 
invented traditions while being 
observed by humans suggests that 
every population should have had 
ample opportunity to acquire it. So 
the rate of repeat invention 
appears too high to account for the 
distribution of a series of 
idiosyncratic sets of chimpanzee 
traditions. 

If invention alone cannot explain 
why the unpredictable location of 
traditions, we are forced to think 
about a little-studied topic: 
extinction. The obvious 
explanation for why Kibale 
chimpanzees do not dip for ants, 
Gombe chimpanzees do not 
hand-clasp-groom, or Bossou 
chimpanzees do not use 
leaf-napkins is that, although their 
ancestors did, the tradition died 
out. Why extinctions should 
happen regularly is unclear. 
Long-term studies will be needed 
to test how population bottlenecks, 
alternative fashions, individual 
personalities or other factors might 
promote rates of tradition 
extinction. Understanding the 
extinction of chimpanzee traditions 
holds promise for explaining why 
ape culture has never blossomed 
as it did, critically, for humans. 

Unfortunately the opportunities 
for studying apes are disappearing 
rapidly due to extinction not just of 
traditions, but of whole 
populations. But on the positive 
side, Ebo nut-smashing is only one  

of many recent tool-using 
discoveries that in the 21St century 
include chimpanzee tool-kits in the 
Congo and the first gorilla tools in 
the wild, as well as capuchin 
monkey stone-tool-use in Brazil 
[13-15]. There is still an opportunity 
to learn much aboutthe distribution 
of cultural variants, let alone why 
they are vulnerable to extinction. 

Happily, as Morgan and Abwe 
[7] hint, the process of studying 
populations like Ebo often leads to 
the establishment of a long-term 
research program, one of the most 
effective ways to promote 
conservation. Their discovery thus 
promises to benefit both science 
and conservation. If the new 
tradition proves idiosyncratic Ebo 
will become a site of particular 
interest but whatever is found 
there, the big picture is clear: the 
cultural primatology of central 
Africa is still in its infancy. 
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functions at various chromosomal 
locations, such as centromeres 
and telomeres. In the fission yeast, 
Schizosaccharomyces pombe, 
heterochromatin is formed at 
distinct chromosomal regions: 
centromeres, the mating type 
locus, telomeres and ribosomal 

Molecular Biology: Silencing 
Unlimited 

Heterochromatin domains are essential for normal chromosome 
functions. The Eril ribonuclease is a negative regulator of the RNA 
Interference machinery; recent studies have shown that, In fission yeast 
lacking Eni, heterochromatin formation Is more promiscuous. 
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Figure 1. Heterochromatin formation and spreading are tightly controlled in fission 
yeast. 
(A) Heterochromatin spreading (red arrow) is antagonized by two different known 
processes: boundaries (grey box) containing either tRNA or B-box motifs; the 'anti-
silencer' factor Epel (blue arrow). (B) In the absence of these two processes, hetero-
chromatin is allowed to expand past its normal limits and repress genes in euchromatin 
(in orange). (C) RNA interference is involved in determining the sites of heterochromatin 
formation (nucleation). The RITS complex (in green) containing siRNAs (in red) recog-
nizes a target locus and induces deacetylation and H3K9 methylatlon by HDAC and 
C1r4 (hexagons). Eril antagonizes RNAI activity and limits its ability to nucleate. (1)) In 
the absence of Eril, the ANAl pathway is more active and can Induce heterochromatin 
formation in chromosomal loci which are not typically engulfed in this structure (on 
the right). 
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histone H3 (1­131<9me), which 

sequences which may facilitate 	creates a binding site for 
their assembly into 	 chromo-domain proteins such 
transcriptionally silent chromatin. 	as Swi6 (HP1). 
Several histone modifications 

	
An elegant series of studies has 

and histone binding proteins are 	shown that the heterochromatic 
required to maintain the silent 

	
repeats are transcribed by RNA 

state: the nucleosomes are 	 polymerase 11 and that these 

transcripts themselves are 
processed by Dicer, a component 
of the RNA interference (RNAi) 
machinery, into short-interfering 
(si)RNAs. The production of 
siRNAs is essential for targeting 
the 'RNA-induced initiation of 
transcriptional gene silencing' 
(RITS) complex - composed 
of Agol, Chpl and 
Tas3 - to heterochromatin 
repeats. This in turn leads to the 
recruitment of the histone 
methyltransferase C1r4. The 
consequent methylation of H3 on 
lysine 9 by Clr4 allows binding of 
the chromo-domain proteins 
Swi6 and Chpl, forming 
a nucleation site from which 
heterochromatin can spread 
outwards along the chromatin 
fibre Lii. 

Cells need to restrict 
heterochromatin to specific 
domains in order to avoid 
repression of essential genes. But 
how is the silencing machinery 
targeted solely to specific loci? 
And how is heterochromatin 
contained and prevented from 
spreading into other regions of the 
genome? One possibility is that 
components of heterochromatin 
recognize and bind specific 
sequences within the 
heterochromatic domains that are 
absent in euchromatin. However, 
this does not explain how 
a euchromatic marker gene is 
silenced when it is placed inside 
a block of heterochromatin. 
Another possibility is that specific 
boundary elements are located at 
the borders between 
heterochromatin and euchromatin. 
These elements might act as 
buffers to impede the spreading of 
heterochromatin to neighbouring 
chromatin. A third possibility is 
that specific factors act as 
'anti-silencers'. Such proteins 
might antagonize RNAi-mediated 
heterochromatin assembly at 
particular steps in the pathway. 
The balance between 'silencer' 
and 'anti-silencer' activities might 
ensure the normal distribution of 
heterochromatin and euchromatin 
domains. Perturbations could 
enhance or reduce the formation 
of silent chromatin. 

Several recent papers [2-5] 
report evidence that these last 
two mechanisms operate in 
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S. pombe. Two of the new studies 
[2,3] demonstrate the existence 
of chromatin boundaries 
surrounding heterochromatic loci 
in fission yeast. Transfer (t)RNA 
genes and B-box motifs were 
found to be functional 
components of these boundary 
elements and their activity 
prevents heterochromatin marks 
from oozing out into surrounding 
domains (Figure 1A,B). Other 
analyses suggest that, in addition 
to boundary elements, 'anti-
silencer' factors play an important 
role in the negative regulation of 
heterochromatin. In particular, it 
has been shown that Epel, 
a JmjC domain protein, 
counteracts repressive chromatin 
by facilitating the recruitment of 
RNA polymerase II to 
heterochromatic loci via Swi6 
(Figure 1A,B) [4]. 

As reported recently in Current 
Biology, lida et al. [5] have shown 
that the fission yeast orthologue of 
the Caenorhabditis elegans gene 
Enhancer of RNA Interference I 
(eril) has 'anti-silencer' activity. 
The worm protein ERI-1 was 
initially shown to be a nuclease 
that can degrade siRNAs in vitro, 
and it was suggested that it might 
diminish the pool of active siRNAs 
in the cells [6]. Consistent with this, 
worms lacking ERI-1 display 
enhanced RNAi silencing [6]. lida 
etal. [5] showed that S. pombe Eril 
binds to and degrades 
double-stranded RNA in vitro. 
Mutation of Eril 's catalytic domain 
leads to increased levels of 
centromeric siRNAs which are 
associated with RITS complexes. 
Although cells lacking Eril 
display no change in the levels 
of silent chromatin modification 
over centromeric repeats, H31<9 
methylation and the silencing 
of marker genes inserted in 
these repeats are noticeably 
increased, suggesting that the 
formation of heterochromatin via 
RNAi is enhanced on marker 
genes [5]. 

This role for Eril in opposing 
silencing is reinforced by another 
recent study [7] in which the 
Tas3 component of RITS was 
artificially tethered to ura4 mRNA. 
The ura4 gene of fission yeast 
is located in euchromatin and 
is normally constitutively 

expressed. However, coercing 
the recruitment of RITS to the 
ura4 transcript resulted in 
silencing of ura4 expression in 
a manner that is dependent on 
RNAi, H3K9 methylation and 
Swi6. Thus, diverting the RNAi 
machinery to a transcript can 
trigger 5iRNA synthesis, 
silencing and heterochromatin 
formation on homologous 
chromatin. 

Surprisingly, despite the fact 
that 5iRNA homologous to the ura4 
transcript are found within the 
RITS effector complex, a second 
copy or ura4 at a distinct location 
in the genome is not silenced 
unless the Eril nuclease is also 
absent (Figure 1C,D). In most 
systems the RNAi machinery 
homes in on target RNAs by 
complementarity with the siRNAs 
borne by the RISC effector 
complex. Yet it seems that in 
fission yeast RNAi is constrained, 
so that unlike in other 
organisms it is unable to silence 
identical sequences in the 
genome. The reasons for, and 
mechanism of, this restricted 
form of RNAi are unknown but 
it is clear that Eril contributes 
to it M. 

But how does Eril exert its 
negative influence on RNAi? It has 
been suggested that Eril might 
degrade siRNAs or the 
endogenous non-coding 
transcripts involved in triggering 
RNAi. A different scenario is 
supported by two recent 
publications [8,9] that show that 
Eril is required for RNAi activity 
against several endogenous 
somatic genes in C. elegans. 
These observations suggest that 
Eril 's negative effect on RNAi may 
be a consequence of competition 
for resources of this pathway, as 
Eril stimulates 5iRNA production 
against those genes, which in turn 
diminishes the intensity of RNAi 
response to other stimuli [8,9]. 
Applying the same reasoning to 
fission yeast, it is possible that 
RNAi might have another 
unknown regulatory role in which 
Eril is a central player. Indeed lida 
et al. [5] observed that 
overexpressing Eril is toxic to the 
cells, a fact that cannot be simply 
explained by the loss of 
heterochromatin or RNAI, as none  

of these functions is essential in 
this organism. Although the 
authors suggest that toxicity may 
be due to this unspecific nuclease 
activity affecting the stability of 
other cellular RNAs, high En 
levels might instead cause 
excessive degradation of 
specific target RNAs, which 
in turn would compromise cell 
growth. 

Taken together these new 
reports suggest that different, 
parallel mechanisms restrict 
heterochromatin to specific 
domains. Heterochromatin is not 
essential in fission yeast but we 
expect that an excess of it might 
be deleterious to the cell. 
Surprisingly, loss of Eril or Epel 
has no apparent affect on cell 
viability [3,4]. In a way, this could 
mean that the 'anti-silencers' are 
stemming a trickle rather than 
a flood - the cell's capacity to 
assemble more heterochromatin 
may well be limited due to low 
levels of key proteins such as 
Swi6. On the other hand, the cell 
may possess other undiscovered 
'anti-silencers' that act 
redundantly with Eril. All should 
fall in place once it is clarified 
how the different anti-silencers, 
such as Eril and Epel, together 
with boundary elements 
negatively regulate 
heterochromatin formation and 
whether they cooperate with each 
other. 
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igure 1. Ocean circulation models are being used increasingly to determine popula-
tion connectivity during the pelagic lariat phase of marine fish and invertebrates. 
The models allow for visualization of complex dispersal patterns - in this instance the 
distribution of early stage virtual larvae (yellow dots) and 30-day old late stage virtual 
larvae (red dots) released from historical spawning sites of lane snapper (L.utjanus 
synagns) around Cuba. (Image courtesy of Claire Pans, University of Miami.) 
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The precarious future of coral reefs 
throughout the world's tropical 
oceans has generated 
unprecedented interest in the use 
of marine protected areas (MPAs) 
to conserve these unique habitats 
[1,2]. Occasionally it is possible to 
conserve an entire ecosystem, as 
has recently been proposed for the 
Northwestern Hawaiian Islands, 
but more commonly a number of 
smaller areas are designated for 
varying levels of protection. But 
which areas should be designated 
for MPAs, and where should 
fishing or other extractive activities 
be allowed? Satisfying answers to 

s question has flummoxed 
marine ecologists because it 
depends critically upon some 
knowledge of dispersal distances 
(connectivity) in populations of 
reef organisms (Figure 1). As they 
report in this issue of Current 
Biology, Galindo, Olson and 
Palumbi [3] used an 
oceanographic model to generate 
a larval connectivity matrix among 
almost 100 reef sites in the 
Caribbean region. The matrix was 
then used to estimate gene flow 
among the locations in a simple 
genetic model that incorporated 
life history characteristics of 
reef-building coral. Model 
predictions matched well with 

. 

empirical data on genetic variation 
in Caribbean corals, suggesting 
that the ocean circulation model 
provides a reasonable facsimile of 
realized larval dispersal. 

Biodiversity in the ocean realm, 
as in terrestrial environs, is 
generated and maintained by 
barriers to dispersal. But while it is 
intuitively obvious that mountain 
ranges act to constrict animal 
movements on land, physical 
barriers in the ocean are much 
more difficult for humans to 
discern. A further complication 
arises because dispersal of most 
coral reef fish and invertebrates 
occurs primarily during a relatively 
short pelagic larval phase. Once 
pelagic, larvae are subject to 
diffusion, turbulence and 
advection in oceanic water 
masses that can potentially lead to 
dispersal of hundreds of 
kilometers [4]. But it has proved 
extremely difficult to either 
measure the frequency with which 
long distance movements during 
the larval phase occur, or 
alternatively to identify dispersal 
barriers that may act to isolate 
populations over ecological or 
evolutionary time. Data on 
ecological connectivity is critical, 
however, for spatial management 
of fisheries and the control of 
invasive species, while gene flow 
over evolutionary time scales will 
determine genetic structure and 
patterns of biodiversity in marine 
ecosystems. 

Marine invertebrate and fish 
larvae are notoriously difficult to 
track in the field because they are 
invariably tiny and are quickly 
diluted in vast volumes of water [5]. 
Instead, Galindo et al. [3] tackled 
the problem by following 
particles -'virtual larvae' - in 
Caribbean Sea currents derived 
from the Miami lsopycnal 
Coordinate Ocean Model 
(MICOM). Particles were deemed 

Ocean Ecology: Don't Fence Me in 

New research that combines ocean circulation and genetic models to 
predict population structure of corals will help conservation efforts in 
tropical reef ecosystems. 
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so in the wild. The cognitive 
demands for inventing such 
traditions thus appear to be easily 
met, not only by chimpanzees but 
also by other great apes. If 
inventions occur easily, a high rate 
of invention could in principle 
contribute to making the 
distribution of traditions disjunct. 

In practice, however, there is 
a problem with this explanation. 
Chimpanzees are an old species: 
they closely resemble bonobos, 
a morphologically derived sister 
species that split off at least 
1 million years ago [12]. If 
chimpanzees have been inventing 
and passing on traditions even for 
as short a period as 1 million years, 
the distribution of traditions would 
be limited by the rate of invention 
only if the rate of invention were 
vanishingly low -much less than 1 
in every 10,000 years for example. 
The fact that chimpanzees have 
invented traditions while being 
observed by humans suggests that 
every population should have had 
ample opportunity to acquire it. So 
the rate of repeat invention 
appears too high to account for the 
distribution of a series of 
idiosyncratic sets of chimpanzee 
traditions. 

If invention alone cannot explain 
why the unpredictable location of 
traditions, we are forced to think 
about a little-studied topic: 
extinction. The obvious 
explanation for why Kibale 
chimpanzees do not dip for ants, 
Gombe chimpanzees do not 
hand-clasp-groom, or Bossou 
chimpanzees do not use 
leaf-napkins is that, although their 
ancestors did, the tradition died 
out. Why extinctions should 
happen regularly is unclear. 
Long-term studies will be needed 
to test how population bottlenecks, 
alternative fashions, individual 
personalities or other factors might 
promote rates of tradition 
extinction. Understanding the 
extinction of chimpanzee traditions 
holds promise for explaining why 
ape culture has never blossomed 
as it did, critically, for humans. 

Unfortunately the opportunities 
for studying apes are disappearing 
rapidly due to extinction not just of 
traditions, but of whole 
populations. But on the positive 
side, Ebo nut-smashing is only one  

of many recent tool-using 
discoveries that in the 21St century 
include chimpanzee tool-kits in the 
Congo and the first gorilla tools in 
the wild, as well as capuchin 
monkey stone-tool-use in Brazil 
[13-15]. There is still an opportunity 
to learn much about the distribution 
of cultural variants, let alone why 
they are vulnerable to extinction. 

Happily, as Morgan and Abwe 
[7] hint, the process of studying 
populations like Ebo often leads to 
the establishment of a long-term 
research program, one of the most 
effective ways to promote 
conservation. Their discovery thus 
promises to benefit both science 
and conservation. If the new 
tradition proves idiosyncratic Ebo 
will become a site of particular 
interest but whatever is found 
there, the big picture is clear the 
cultural primatology of central 
Africa is still in its infancy. 
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Heterochromatin is the portion of 
nuclear chromatin that maintains 
a condensed state during the cell 
cycle and that provides specific 
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functions at various chromosomal 
locations, such as centromeres 
and telomeres. In the fission yeast, 
Schizosaccharomyces pombe, 
heterochromatin is formed at 
distinct chromosomal regions: 
centromeres, the mating type 
locus, telomeres and ribosomal 
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Heterochromatin domains are essential for normal chromosome 
functions. The Eril ribonuclease is a negative regulator of the RNA 
interference machinery; recent studies have shown that, in fission yeast 
lacking Eril, heterochromatin formation is more promiscuous. 


