
hardware for
CMOS image sensors using

minimum hardware and low
bandwidth radio transmission

Andrew Murray

Doctor of Philosophy

DEPARTMENT of ELECTRICAL ENGINEERING

The University of Edinburgh

September 1997

V1
0~

Abstract

Interface & support hardware for CMOS image sensors using
minimum hardware and low bandwidth radio transmission

Andrew A. Murray
September 1997

This work investigates the interface between a video sensor and a low bandwidth
radio transmitter. In the context of a low-cost low-power radio video link, it outlines
a hardware minimal solution.

To solve the bandwidth conflict between the low power radio links and even a
modest image sequence quality, a broad range of digital coding techniques are
evaluated. Aspects of the coding methods, other than the compression ratios they
offer and the ability to implement them using minimal hardware, are considered.
Particular emphasis is placed on how vulnerable they leave the coded data to
corruption through transmission errors.

Through software simulation, implementations of the most promising compression
technique (colour quantisation with error diffusion) is further investigated.
Particular emphasis is placed on implementation of the software algorithms using
architectures close to those of the simplest hardware implementations.

Colour quantisation with error diffusion is pursued further in the hardware
implementation of two algorithms in the form of a field-programmable gate-array
(FPGA). The successful implementation of the architectUre demonstrates its
suitability to hardware implementation. Results from the FPGA offer subjective
analysis of the algorithms output at higher frame rate.

A framework that was developed to allow comprehensive subjective testing of
image processing algorithms is described, and results, although statistically
insignificant, are given.

In evaluating the importance of colour quantisation with error diffusion, amongst
other compression and coding techniques, this work concludes that where
hardware is at a premium and strict viewing requirements can be met, there are
applications where it can be applied profitably, offering results comparable with
much more complicated solutions.

Declaration
This work, presented for the degree of Doctor of Philosophy, conforms to the
University of Edinburgh's current research degree regulations. It has been
composed by me and unless indicated otherwise, the work presented here is
original and my own.

Where material has been drawn from the work of others it is duly acknowledged in
the text, and the appropriate reference details listed at the end of this work.

Acknowledgements
My thanks go to:

David Renshaw, my first supervisor, without whose continuous support I would
never have finished this work. Thanks also to Peter Denyer, both my initial second
supervisor and also my industrial supervisor, and Brian Flynn who kindly took over
the role of second supervisor.

VLSI VISION Limited for sponsoring me for the first three years, for giving me
office space during the majority of my work and for providing me with printing
facilities.

EPSRC for funding.

At VISION: Roger Montieth (PC Card driver), Ed Duncan (FPGA & imputer), Martin
Turner (imputer), Robert Stevenson (PCB layout), Stewart Smith, JED Hurwitz and
Graham Townsend for their continued support, especially for putting up with me
during the writing up process.

My contemporaries in the Department of Electrical Engineering: Geoff Jackson,
Lynne Munro, Ann Duncan and Andy Myles and also Mike Smart, Drew Holmes,
Robin Woodburn and Emma Braithwaite for keeping me sane throughout the years.

Vida the librarian at the Robertson Library and Dot Laing from Electrical
Engineering Stores.

My parents Barbara and Stuart Murray for 'hosting' and acquiring many of the
subjects used in the subjective tests and also for proof reading.

All who kindly 'volunteered' to rank images for the subjective tests.

Sarah Davis for proof-reading.

Kirsty Mackinnon for her support during some long PhD years.

Victoria Ball for proof reading and all her help over the last few months.

My brother Malcolm for proof-reading beyond the call of duty, advice on the
subjective test strategy and much appreciated help both in the logistics executing
the tests and in the printing of this thesis.

Finally, thanks to my two examiners, Peter Ivey and John Hannah, for their time,
constructive comments and suggestions.

Table of Contents

Abstract ,

Declaration 	 .11

Acknowledgements ... ill

Tableof Contents ... iv

Listof Figures .. Ix

Listof Tables...

- chapter one Introduction -
Chapteroutline .. 1.1

Whatis a radio video link? ... 1.2

A definition1.2

History of video link applications .. 1.3

Moreeconomic realisation.. 1.4

Generalarchitecture 	... 1.4

Thesisobjective ... 1.6

Cheaperradio options.. 1.7

Communication requirements of the radio video link system ... 1.8

Radiolink technologies ... 1.9
Modulationtechniques... 1.10
Dataformat... 111
PossibleUK frequency bands ... 1.12

Summary... 1.13

Integration ... 1.14

lnterating the video transmitter .. 1.14

RF circuit integration problems ... 1.16

Summary... 1.17

Conclusions & thesis structure.. 1.18

ThesisStructure ... 1.19

Iv

- chapter two Compression and coding -
Codingtheory ... 2.2

Compressioncoding ...2.2

Errorprotection coding ...2.5

Codingfor ease of reception ..2.6
Bit-timing recovery .. 2.7

Crypticcoding ...2.8

Requirements of the radio video link .. 2.8

Review of error protection techniques ... 2.9

Systematic error detection and/or correction coding ...2.9

Paritycodes... 2.9

Hammingcodes... 2.10

Convolutioncodes.. 2.11

Redundancy In the coded source data... 2.11

Incomplete removal of redundancy... 2.11
Over-description.. 2.12

Techniquesof damage limitation ... 2.12

Transmission of frequency domain data... 2.13

Useof fixed-length codewords.. 2.13

Re-arrangement of spatial data... 2.14
Summary ... 2.14

Review of image compression techniques .. 2.14

Entropycoding techniques .. 2.15
Huffman and Shannon-Fano codes ... 2.15
Ziv-Lempel coding ... 2.16

Arithmeticcoding.. 2.17

Suitability of entropy coding.. 2.17

Predictivecoding techniques .. 2.17

Run-length encoding.. 2.18

Differentialpredictive coding... 2.19
Suitability of predictive techniques .. 2.19

Transformcoding techniques.. 2.20

Suitability of transform coding... 2.21

Sub-sampling techniques ... 2.22
Frequencysub-sampling.. 2.22
Colourquantisation ... 2.23
Vectorquantisation ... 2.24

Conclusions ...2.24

- chapter three Algorithm Design and Evaluation -
Thecoding approach

.. 3.2

V

Colour space quantisation with error diffusion ...3.2

Spatialdithering background .. 3.4

Particular dithering applications .. 3.5

Alternative dithering algorithms... 3.6

Errordiffusion .. 3.8

Historyof error diffusion... 3.9

Errordiffusion mechanics... 3.9

The importance of viewing conditions ... 3.10

Summary .. 3.10

Considerations for minimal hardware ... 3.10

Algorithm simulation environment ... 3.11

Designoverview ... 3.12

Thecoding functions ... 3.14

Analyticalfunctions
... 3.15

Tailoringof the algorithm .. 3.15

Quantiserdesign .. 3.16

Implementationoptions.. 3.17

Adaptivequantisation... 3.18

Relevance to the error diffuser in a video transmitter.. 3.20

Increased dynamic range problem .. 3.22

Summary .. 3.24

Diffusionfilter design .. 3.25

Processingorder... 3.25

Filtersize.. 3.27

Filterweights.. 3.29

Summary .. 3.29

The'simple' fluter.. 3.30

Improvementon 'simple .. 3.38

The'perturb' fliter.. 3.39

The'safe perturb 	1' filter.. 344

The'safe perturb 2'filter .. 3.51

Summary .. 3.53

Conclusions ... 354

- chapter four Hardware Implementation -
Introduction ...4.1

Implementationtechnology ... 4.2

Processorimplementation ... 4.3

Processorarchitecture .. 43

Processorlogic design
.. 47

Prescalers.. 4.7

VI

DitTusei 	 4.8
Quantisers 	 • 4.8
Rescalers 	 . 4.9
The'simple' processor ... 4.10
The 'safe perturb 1' processor ... 4.10

Testsystem architecture.. 4.11

Summaiy ... 4.15

The slave FPGA system architecture ... 4.15

The stand alone FPGA system architecture
.. 4.16

FPGAdesign philosophy... 4.17

InternalFPGA architecture .. 4.18

Theprocessors .. 4.19
Resolution ... 4.20

Thecontrol 	logic .. 4.21
Overallcontrol .. .

... 4.22
Low-level processor control ... 4.23
Imputer RAM address generation ... 4.23

Auxiliary parameter setup ... 4.24
FIFO management ... 4.24

Simulationresults.. 4.24

Commentson the tools .. 4.24
Extracted layout tinting limit information .. 4.24
Versioncontrol .. 4.25

Problems exposed by back-annotation .. 4.25

Hardwaretests .. 4.25

Testsystem ... 4.26

Testprocedures ... 4.27
Initial proof of test system integrity ... 4.27
Checking algorithm implementation ... 4.27
Livevideo input and display ... 4.28

Results ... 4.28
'Safe perturb 1' failure .. 4.28
Perceiveddisplay linearity ... 4.29
Processorspeed... 4.30

Images ... 4.30

Conclusions... 4.35

- chapter five Subjective Testing -

Assessingimage quality.. 5.1

Subjective measures of image quality
... 5.2

Simpleobjective meters ... 53

A

The human visual system 	 53

Objective meters based on models of the human visual system.. 5.4

Spatialand temporal filtering .. 55

Multi-channel processing ... 5.5

Correctionfor non-linearity ... 5.5

Contextmasking .. 55

Using objective meters with error diffusion.. 5.7

Hypotheses.. 5.8

Experimentdesign ... 59

Processedvs. unprocessed... 5.9

Algorithmcomparisons .. 510

Stillimage sorts ... 510

SourceImages.. 5.10

Measures employed to reduce false results ... 5.11

Testsoftware .. 512

Results.. 5.14

Algorithmcomparison tests... 5.14

Stillimage sorting tests .. 5.15

Processedvs. un-processed 5.17

Discussion& conclusions... 5.18

- chapter six Discussion and Conclusions -
Critical review and future work... 6.2

Dismissed options for diffusion ... 6.2

Hardwareminimisation .. 6.3

Alternativearchitectures... 6.4

Pixel level error manipulation 6.4

Contextdependent pixels ... 6.6

Conclusions... 6.6

References... R.1

Appendix one: Simulation software source code .. Al .1

Appendix two: PINK FPGA schematics ... A2.1

Appendix three: Imputer FPGA firmware .. A3.l

Appendix four: Subjective test software .. A4.l

viii

List of Figures

Figure 1.1 classic analogue radio video link architecture 	 . 1.5

Figure 1.2 constituent parts of a radio video transmitter that employs compression 1.15

Figure 1.3 the video transmitter hardware with an integrated imager, ADC and dedicated
coder. ... 1.18

Figure 2.1 the position of the coding hardware within the architecture of the video
transmitter half of the radio video link . .. 2.1

Figure 3.1 examples of false contouring.. 3.3

Figure 3.2 examples of manual shading.. 3.5

Figure 3.3 examples of common dithering techniques... 3.6

Figure 3.4aflow chart representation of the main simulation loop... 3.12

Figure 3.5 data flow within the simulation software.. 3.13

Figure 3.6 the DOS graphics display . .. 3.14

Figure 3.7 general quantiser with diffuser architecture .. 3.16

Figure 3.8 schematic implementations of quantisers using architectures classically associated
with analogue to digital conversion .. 3.17

Figure 3.9 a comparison of uniform and adaptive quantisatlon .. 3.19

Figure 3.10 the position of the pre-scaler operation.. 3.24

Figure 3 . 11 un-quantised pixels... 3.30

Figure 3.12 a schematic of the 'simple' diffusion filter... 3.31

Figure 3.13 examples of the 'simple' filter output (lena).. 3.33

Figure 3.14 examples of the 'simple' filter output (salesman frame 0) .. 3.34

Figure 3.15 comparison of simple and floyd-steinberg (salesman frame 0) 3.36

Figure 3.loadiagram of the 'perturb' diffusion filter ... 3.39

Figure 3.17 comparison of the results of the simple and perturb diffusion filters (lena)......... 3.41

Figure 3.18 comparison of the results of the 'simple and 'perturb diffusion filters (salesman
frame 0)..3.42

Figure 3.19 sections of diffusion pattern from lena reduced to 2 bpp ... 3.43

Figure 3.20 comparison of the results of the 'perturb' and 'safe perturb 1' diffusion filters
(salesman frame 0)... 3.46

Figure 3.21 comparison of the results of the 'perturb' and 'safe perturb 1' diffusion filters
(greyscale ramp)... 3.47

Figure 3.22 comparison of the results of the 'safe perturb 1' and 'simple' diffusion filters
(greyscale ramp) . .. 349

Figure 3.23 diffusion patterns produced when reducing lena to 2 bpp ... 3.50

Figure 3.24 comparison of the results of the 'safe perturb 2' and 'safe perturb 1' diffusion filters
(greyscale ramp)... 3.52

Ix

Figure 4.1 data flow within the error diffusion algorithms ... 4.4

Figure 4.2 architecture of a pipelined processor .. 4.5

Figure 4.3 hardware implementation of the prescaler .. 4.8

Figure 4.4 the 'simple' error diffusion processor pipeline .
... 4.10

Figure 4.5 the 'safe perturb 1' error diffusion processor pipeline ... 4.11

Figure 4.6 the proposed radio video link architecture ... 4.12

Figure 4.7 the imputer architecture .. 4.13

Figure 4.8 the Imputer-slave PINK2 FPGA system architecture
... 4.16

Figure 4.9 the stand-alone FPGA system architecture .. 4.17

Figure 4.10 high level Internal FPGA architecture .. 4.19

Figure 4.11 data flow through the pipelined image processors .. 4.20

Figure 4.12 schematic representation of the FPGA control logic and address generator
............ 4.21

Figure 4.13 the PINK FPGA test set -up .. 4.26

Figure 4.14 correction of the perceived linearity of the test system monitor
................................ 4.30

Figure 4.15 a comparison of the output of the 'simple' and 'truncate' processors 4.32

Figure 4.16 a horizontal grey ramp processed using the 'simple' processor 4.33

Figure 4.17 comparison of the output of the hardware 'simple' processor with that of Its
softwarecounterpart .. 4.34

Figure 5.1 	the three test sequences ... 5.11

Figure 5.2 the window of the subjective test application during display of a set of still
images

.. 5.12

Figure 5.3 the window of the subjective test application during display of a moving image
sequence ... 5.13

Figure 5.4 results of the 3 bpp still Image sorting test .. 5.16

Figure 5.5 results of the 4 bpp still Image sorting test .. 5.16

List of Tables

Table 5.1 results of the algorithm comparison tests at 2 bpp
.. 5.14

Table 5.2 results of the algorithm comparison tests at 3 bpp .. 5.14

Table 5.3 results of the algorithm comparison tests at 4 bpp .. 5.14

Table 5.4 results from the processed vs. Unprocessed sequence comparisons 5.17

x

chaptr one

Introduction

This thesis investigates obstacles to the implementation of a low-cost radio video

link. It considers the interface and support hardware between a CMOS image sensor

and a low bandwidth radio transmitter. Successful implementation of this will

enable the production of radio video link with significantly lower production and

operating costs than any currently available.

Implementation is brought nearer through the development of digital coding

hardware, designed to marry a minimal moving-image specification to the likely

bandwidths available from a low-cost and low-bandwidth radio link. The result is a

hardware minimal solution suitable for integration with the image sensor.

Chapter outline

This chapter sets the work in context in terms of both the technologies involved and

potential avenues for realising these aims. It begins by defining the term 'radio

video link'. A consideration of current implementations reveals two opportunities

for improvement:

the use of a low bandwidth/low power radio link.

further integration of the system.

Integration of the RF transmitter is shown to be problematic and yield little actual

benefit. Instead, the design of a coder which can be integrated on the same die as

the image sensor is the most pragmatic route to achieving these ends.

1.1

- chapter one Introduction -

What is a radio video link?

A definition

A video link is a means by which images can be transmitted, permitting the

observation of a scene by a distant viewer. This could also be a literal definition of

the word 'television'. However, television relays both scenes that are remote either

in space or time, whereas video links tend to deal only with live pictures (i.e. the

linking of spatially remote places). Where live images are not required, it is normally

more cost-effective to record them local to the camera - except under circumstances

where the camera is inaccessible or access undesirable (e.g. in a hazardous

environment).

A further distinction from television is that video links need not conform to

television standards. Such standards (PAL, NTSC etc.) govern high level factors of

the images (such as frame rate and image resolution) as well as the actual electrical

format of the video signal itself. Conformance to standards allows the simple use of

other equipment compatible with that standard. In some situations, however,

problems such as limited bandwidth have forced the use of non-standard image

formats. This necessitates the use of specialised, and possibly more complicated,

image capture and display hardware. The freedom from conformance to standards

allows tailoring of the video signal to meet the needs of the applications and the

abilities of the available technologies. In breaking away from traditional video

standards, there has been an emergence of many incompatible systems. Some

standardisation in video conferencing has been brought about through the

widespread adoption of the common intermediate format (CIF) and smaller

'quarter-CIF (QCIF) format. These were devised in parallel with the H.261 video

coding standard [ccirr 90].

Use of a radio link to make the connection between camera and observation site

gives a radio video link. Although linked in terms of communication, the camera

and observer in a radio video link are not mechanically tethered. The freedom from

physical connection allows the use of links in situations where they would

1.2

- chapter one Introduction -

otherwise be impractical (say, where one may move relative to the other, or one is in

a sealed environment). It also allows temporary installations to be set up quickly,

and offers more freedom when systems need to adjust to suit changing positional

needs. There are, however, also disadvantages. The initial cost of a radio linked

system tends to be higher than a cabled one (although in some situations the

reduced cabling costs of a radio system can offset the increased initial hardware

costs - up to half of the installation costs of a close circuit television system can be in

its cabling). Another disadvantage is the expense of transmission bandwidth when

using a radio link. Unlike a cabled connection, where there is no real restriction on

the bandwidth of baseband video, there is a firm relationship between the cost of a

radio link and the signal bandwidth it supports. Other potential problems include

radio interference, and the complications of radio transmission regulations and

licensing.

History of video link applications

Vision is one of the most highly developed of the human senses. Research has

indicated that non-verbal communication (facial expression, bodily posture and

gesturing) constitutes a large part of communication during face-to-face encounters

[ATKINSON eta! 87]. This implies that when communicating through verbal means

alone, such as by telephone or mobile radio, we are somewhat disadvantaged and

that communication using a video link could be beneficial. Indeed video links could

be put to profitable use wherever the visual observation of a remote site would be

advantageous.

Why, when visual communication using video links is technically possible, do we so

often make do with poorer means of communication? The reasons are manifold. As

with many communication technologies, its widespread benefits cannot be realised

without a significant installed base of compatible systems. Why buy a video phone

when no-one else has one? There are also problems with the social acceptance of the

technology: a commonly expressed fear is that without the visual anonymity of

voice-only communication, people consider they would feel more vulnerable in

some situations. These are, however, only generalisations and exceptions do occur.

1.3

- chapter one Introduction -

Applications exist in consumer electronics, such as door-entry phones, baby

monitors and surveillance, where installed base and the social acceptance problems

do not apply.

Historically, the expense of the equipment involved has limited their employment

to commercial 'high return' applications such as surveillance in the security industry

and to relay pictures from 'outside broadcasts' or long-distance interviews in

television production. With the advent of the camcorder, however, video equipment

is becoming available a at more reasonable cost. Together with developments in the

telecommunication industry, this has led to more frequent use of video links in the

form of video phones and video-conferencing facilities. Although some low cost

video-conferencing systems have recently become available 1, the cost of purchasing

and operating these systems remains prohibitively expensive for many applications,

restricting them to being the toys of the rich consumer and the tools of the wealthy

business person.

More economic realisation
One of the major remaining obstacles to the widespread adoption of video links

must be a lack of available equipment at a low enough cost for the consumer to

perceive that it is worthwhile. With a view to realising a radio video link more

economically, common implementations are introduced below and possible areas

for cost reduction explored. The basic architecture of a radio video link is first

examined.

General architecture

The basic architecture of a radio video link is shown schematically in Figure 1.1

below. With image data flowing from left to right, each block in the schematic

represents a distinct processing task. These tasks are: sensing of the image

These include: Creative Labs Sharevision 3000, BT Relate 2000 Videophone, Vivitar Motion Picture Phone, and

Creative Labs Webcam.

1.4

- chapter one Introduction -

information, control of the sensor array to produce a single, time-varying video

signal, radio frequency (RF) modulation, RF demodulation, and image display.

E array

-[

co 01
 IrIagin 	standard array 	 data

-

for

video transmitter

figure 1.1 A block diagram of the classic analogue radio video fink architecture. The darker
background highlights the portion of the transmitter end of the link that is commonly
implemented using a video camera. 	 -

Although this architecture is common to nearly all systems, it can be implemented in

many different ways. Conventionally, implementations have concentrated on

transmitting video in the format of a full television-standard signal (e.g. NTSC or

PAL). This is achieved using a standard video camera as the image source and

transmitting its analogue output signal using a high bandwidth radio transmitter

(baseband video signal bandwidth is approx. 4 MHz). Such systems produce high

quality video and because they use a standard video format they are convenient for

use with other standard pieces of video equipment. However, the high camera and

radio costs and the licensing requirements of these systems make them expensive. In

addition, the high bandwidth they use limits the density with which they can be

operated without interference.

Tailoring features of the video format (such as image resolution and update rate) to

suit the needs of a particular application limits the general application of the system

and the convenience with which it can be used with standard pieces of video

equipment. However, if the tailoring process reduces the bandwidth required to

transmit the signal, then savings can be made both in radio hardware costs and the

amount of power required for the transmission. In addition to the crude reduction

of bandwidth through lowering image resolution and update rate, compression

techniques can be used to lower the raw image bandwidth, although at some cost in

image processing. The often sophisticated techniques of lossless compression may

prove to be prohibitively expensive, however, it may be possible to employ lossy

algorithms to achieve savings in bandwidth without necessarily losing significant

perceived image quality.

1.5

- chapter one Introduction -

The use of a specialised video format with low bandwidth is an approach shared by

some of the video phone systems based around modem connections that have

appeared recently (see 1)•
 These systems use either dedicated hardware or are

designed to interface with a personal computer (PC). They use specialised (and

often proprietary) video formats to achieve the required image quality over the

relatively low bandwidth of the modem connections (typically between 9600 and

33000 baud). As these systems achieve the low bandwidth through the use of

sophisticated compression algorithms executed on digital signal processors or

microprocessors their systems costs are high. To remain low cost, the

implementation of a radio video link using low bandwidth would have to achieve

the lower bandwidth through hardware-minimal means, rather than employing

complex compression algorithms.

A second approach that is likely to bring cost savings is the integration of the radio

video link hardware. Integrated circuits (ICs) specifically designed for an application

can often be tailored to make them cheaper than using a combination of standard

parts. In addition to the production of dedicated ICs, it is likely that the costs of

manufacture could also be lowered by implementing many of the functional parts

that would normally be fabricated on separate ICs (if not separate PCBs) on the

same die. The use of application specific ICs to achieve cost savings must, however,

be justified by high volumes as the costs of the design and prototyping process are

significant.

Two areas that could offer reductions in price, size and power consumption are: the

use of lower power, lower bandwidth radio links (through systems tailoring and

compression/coding) and the further integration of the system by combining parts

on a single IC.

Thesis objective
This thesis tackles the problem of implementing a radio video link at low cost. It

continues previous work that resulted in the development of a entirely integrated

monochrome video camera [RENSHAW & DENYER eta! 90]. It concentrates on the cost

1.6

- chapter one Introduction -

reduction of the sensor end of the link, with the aim of designing an integrated

solution. The work centres around the definition of the interface between sensor

and transmitter that is required in order to deliver a radio video link using a much

lower bandwidth than is common. The ultimate aim is to arrive at a simple solution

that is both low power and can be integrated on the same die as the video sensor.

Unlike the problem of integrating the video camera, which had well defined goals,

the design of the sensor/transmitter interface requires identification of the exact role

of the interface.

The work concentrates on investigating the integrated, tailored approach, outlined

above, attempting to achieve the cost savings both through integration of the

circuits and the use of a low bandwidth and low power radio link. A detailed

introduction to these two problems is given below.

Cheaper radio options
Employing a low power and low bandwidth radio link was cited above as a means

of decreasing the cost of the radio video link hardware. The reduced initial costs can

be achieved through a combination of using very simple RF circuits, the use of low

bandwidth components and components that need not handle large amounts of

power. Low power transmission also implies low power consumption and thus low

running costs. All these advantages are in keeping with the size, power and

economic aims of this project. Low power and low bandwidth can also be

considered a more 'responsible' solution; bandwidth is a scarce resource that is

under increasing pressure and low power reduces the potential for causing

interference to other users of the same part of the electromagnetic spectrum.

Cost and power consumption are not the only considerations, however, when

designing or choosing a radio link. Many other factors distinguish radio links and

have a bearing on their suitability to particular applications. Unfortunately, low

power and low bandwidth have consequences on some of these factors, especially

some features of link performance. Low power transmission is inherently more

1.7

- chapter one Introduction -

susceptible to radio interference. Low bandwidth offers low rates of data

transmission.

Below, the likely communication requirements of the radio video link are identified.

Through the introduction of some of the other important factors involved in

selecting a link technology, and a review of a few of the low power radio options

available in the UK, the consequences of going down the low power and bandwidth

route are explored. The requirements of the radio video link and the abilities of the

cheaper link options are compared, emphasising the implications on the remainder

of the video link system.

Communication requirements of the radio video link system

In the radio video link application, the basic requirement of the radio link is to

communicate image data from the camera to the observation site. Other uses could

include communication from the observation site to control the camera. Assuming a

system in which the transmitter end of the link autonomously sends image data to

the observation site, a one-way (or simplex) link is all that is required.

The bandwidth of the raw image sequence is dependent on its spatial resolution,

colour depth and frame rate. These factors are dependent on the particular needs of

a link.

The primary applications driving this research are low-cost video links for consumer

markets (such as the toy market). An ideal image quality would be something

similar to a PAL video signal. The image would be something of the order of 512x512

pixels, and would be updated 25 times per second. Unfortunately this equates to

over 6 million pixels per second, a rate unsustainable by the sort of link considered

here. Due to this high implied data rate, it is unlikely that consumer links will be

high-fidelity for some time to come.

For the purposes of this investigation, a benchmark minimum image-quality

specification has been set. The frame rate minimum is set at 10 frames per second

(fps), as lip-sync (the ability to correlate the movement of someone's lips with the

sound of their speech) is generally considered to be impossible to achieve below 10

1.8

- chapter one Introduction -

to 15 fps. The image size minimum has been set at 64x64 pixels. This is much lower

than ideal, but sufficient to convey a fairly detailed face or a simple scene. The pixels

specification is 6 bits per pixel (bpp), monochrome. The use of a monochrome image

ties in with the intended image sensor, and 6 bpp gives a greyscale resolution that

approximates the limit of the human visual system viewing a CRT [Russ 951. This

specification implies a raw data rate of 240 kbit/s, which is roughly the capacity of

3.75 standard ISDN2 lines (64 kbit/s each), but is two orders of magnitude less than

that of raw broadcast-quality digital video [POYNTON 96].

Image quality will also be affected by any errors introduced in the

transmission/reception process. Many meters are available for the objective

measurement of distortion (such as bit-error rate). However, as correlation between

these criteria and perceived image quality is low, no strict specification was defined.

Like bandwidth, the range of the system is dependent on the particular application,

however it is unlikely that it would be less than lOOm. If such a short link was

necessary, a cable solution would probably be more economical. For the purposes of

the investigation, a minimum range of lOOm will be set.

Radio link technologies

A large number of features distinguish radio links. These include their frequency of

operation, the RF bandwidth they use, the modulation techniques employed, the

output power of the transmitters, the component technologies used and particular

details of the RF circuits employed. These features affect the link in terms of its

range, the available data bandwidth, the likely levels of distortion and the costs of

both implementation and operation. These factors therefore have a direct impact on

which applications different radio links are suitable for.

In practice, the options open to the link designer are not as free as the long list of

seemingly independent factors above might suggest. This is due to restrictions

imposed by the regulation of radio transmission. Organised use of the

electromagnetic spectrum is required to minimise interference, allowing successful

simultaneous radio communication by numerous parties. The majority of this

1.9

- chapter one Introduction -

organisation is imposed through government legislation which divides the

spectrum into discrete frequency bands and stipulates factors such as who can

transmit in each band, what types of data can be transmitted, which modulation

techniques can be employed and what limits there are on transmitted power (e.g.

[RA 89; RA 92]).

With the advent of the mobile phone and other internationally widespread radio

systems, significant advances towards standardisation have been made across many

radio bands in past years. However, government regulation in many frequency

bands still varies from country to country. Different regulations make the

development costs of systems in some bands more significant as the application of

the technology (and thus the potential volume) is more limited.

The choice of radio-link hardware is thus dependent on a combination of the

features required of the link (range, bandwidth etc.) and what it is permitted to use

under the local government regulations.

Before a brief summary of regulations of some of the UK radio bands that may be

suitable for the radio video link, two important fundamental aspects of the radio

link (the modulation technique and whether data is transmitted in analogue or

digital form) are discussed below.

Modulation techniques

The modulation techniques used in radio communication are classified according,

both to the type of carrier signal used and the method by which the carrier is

modified by the data. The carrier can either be a continuous signal (commonly a sine

wave) or a train of pulses. Modulation can be achieved by modifying the amplitude

of the carrier (amplitude modulation, AM), its phase (phase modulation, PM) or its

instantaneous frequency (frequency modulation, FM). In practice, many modulators

employ a combination of these basic techniques.

2 Modulation is the process by which the signal that is to be transmitted is used to modify a high frequency 'carrier'

signal in order that it can be communicated at radio frequency. This is the essence of radio transmission.

1.10

- chapter one Introduction -

In its simplest form, continuous wave AM is the least complex modulation

technique to implement. It is, however, wasteful of both power and bandwidth.

Single side-band can be used to halve the bandwidth (and thus the transmitted

power) and wasted power can be reduced further by suppressing the carrier signal,

but these techniques require more complicated circuits. Wideband FM offers

comparable power efficiency to single side-band AM yet uses relatively simple

circuits. It also exhibits improved noise rejection as its demodulation is not

dependent on the amplitude of the received signal. Pulsed carrier schemes offer

even better noise suppression, however, they incur more circuit complexity[sMn'H 86;

KRALISS 80].

As in many mobile applications [SMITH 86], FM is probably most suited to the radio

video link due to the relatively simple circuits required, its power efficiency and its

resilience to noise.

Data format

Most modulation techniques permit the transmission of either analogue or digital

data, although many implementations of the techniques are more suited to one in

particular. Consideration as to which format should be used in the transmission of

the image information of the video link is given below.

Nearly all physical phenomenon that we want to measure are themselves analogue

(in that they are continuously variable over some range). An analogue

representation is thus a natural way to describe them. Pixel information is no

exception. Conversion to a digital representation requires hardware and introduces

sampling errors or 'quantisation' noise. Despite this, two key advantages of

transmitting data in a digital form make it more suitable for many applications. The

first advantage is the inherent noise immunity that digital data has over analogue.

This is important in the radio video link application as the low power of the link will

make it susceptible to interference (and thus distortion). The second, and more

compelling, reason in the case of the radio video link is that the vast majority of the

techniques available for both improving noise immunity and offering data

compression are digital coding techniques - thus requiring that the data be in a

1.11

- chapter one Introduction -

digital form both prior to and after transmission (for coding and decoding). In

addition to the sheer proliferation of digital coding techniques, they are also

convenient in this application as the logic required to implement them can easily be

fabricated using the same standard CMOS technology as the image sensor.

A further advantage of digital transmission in terms of the desire for a low power

radio video link system is that very efficient power amplifiers can be fabricated for

digital transmission [SMITH 86].

Possible UK frequency bands

Transmission of digital data using continuous wave FM has been shown to be the

most suitable solution for the radio video link in terms of technology. Attention now

switches to a practical solution. For a system to be implemented there must exist a

radio band that allows the transmission of image data using continuous wave FM at

a convenient bandwidth. Possible frequency bands available under UK legislation

are considered below.

Obvious candidates are the license exempt bands. These radio bands are specifically

designed for the transmission of low power, low bandwidth data. They are 'license

exempt' in that although circuit designs require to be licensed, individual radio units

need not. MPT1336 and MPT1340 are two such bands in the UK [RA 89; RA; 921. Their

relaxed regulation allows the use of inexpensive RF components. However, the

same degree of regulation also makes users of these bands prone interference from

other systems.

Unfortunately the bandwidths permitted for telemetry 3 within the current license

exempt bands is typically around 10 KHz. Using simple FM modulation, this

translates to a data bandwidth of approx. 10 Kbits/s - far below the 250 Kbits/s

implied by the radio video link specification outlined earlier. Another factor that

3 'Telemetry' (as defined in Radiocommumcations Agency regulations) is the use of telecommunication for

automatically indicating or recording measurements at distance from the measuring instrument ERA 87].

1.12

- chapter one Introduction -

prohibits their use is that the license exempt bands are not intended for continuous

transmission.

A telemetry band at 2.4 GHz has recently been opened up in the UK, intended for

spread-spectrum communication [PIcKI-ioLTz eta! 82; TSLII & CLARKSON 941. This band does

not suffer from the bandwidth limitation of the license exempt bands (it will support

data rates in excess of I Mbit/s). However, the complexity of spread-spectrum

transmission makes both the initial costs and running costs of the hardware

expensive. 	 -

It is believed that other radio bands are being released for telemetry in the UK.

Existing pressure on the spectrum means, however, that the bandwidth of any such

new bands will be unlikely to be more than 100 - 150 KI-Iz. (This is with the

exception of bands at around 2.3-5 GHz - however transmission at these

frequencies suffers interference from microwave ovens, problems of multi-path

transmission and fading.) If bands of around 125 KHz bandwidth are opened up

they would offer transmitted data rates of approx. 125 Kbits/s using FM modulation.

This is still lower than the 250 Kbits/s of the radio video link specification, however

only by a factor of around 2:1.

Summary

There are advantages to the radio video link application in using a low power, low

bandwidth radio link, namely: savings in initial component costs and in the running

costs. However, there is a conflict between the desire for low bandwidth and the

desire to communicate a relatively high bandwidth signal, such as is represented by

the minimum video link image specification outlined earlier.

If a low bandwidth link is to be used, then reduction in the bandwidth of the image

data will be necessary to address this mismatch. This can be achieved either by

reduction in the minimum image specification or by employing compression

techniques to remove some of the redundancy in the image data. As the image

specification is already tight, it was decided to use compression rather than lower

the specification further. Many techniques exist specifically for the systematic

1.13

- chapter one Introduction -

removal of redundancy, producing 'compressed' data sequences. The degree of

compression required by the mismatch between image specification and likely

available bandwidth (around 2:1) is relatively low and could be achieved by many

common compression techniques. If the compression is to be realised without

compromising the low power and cost design goals of the system, a compression

technique that is very cheap to implement will have to be found.

Integration
Integration is a common method of reducing costs used in the electronics industry.

In high volume, the production costs of integrated circuits (ICs) are far lower than

their discrete counterparts 4. Power consumption also tends to be less as integrated

circuits have lower internal circuit drive requirements. Systems built from ICs also

tend to be smaller and lighter. Design and prototyping are the only areas of high

cost, hence the requirement for high volume if unit cost benefits are to be realised.

Possibilities for realising cost, size and power benefits through integration of the

constituent parts of the transmitter end of the radio video link are considered below.

Integrating the video transmitter

Conventionally, the hardware at the transmission end of a radio video link is

constructed from a number of ICs and many discrete components. These normally

populate more than one PCB which are often housed in separate enclosures. One

reason for this style of construction is the marrying of quite separate technologies

(video and radio), where the various components are typically constructed by

different manufacturers.

As more specialised systems develop this situation is changing (e.g. [STERN et al 95]).

Several of the system components of the video transmitter have already been

Ever-increasing integration on a single die does not guarantee costs savings. With large circuit areas die yield can

become a problem (SZE 881.

1.14

- chapter one Introduction -

integrated further. The entire circuitry of a video sensor has been integrated onto a

single CMOS IC [RENSHAW & DENYER eta! 90; MENDIS eta! 93; ACKLAND & DICKINSON 961 so there

is no longer a need to use a separate standard CCD imager and support ICs.

Integrated digital signal coders for transmission, including a complete spread

spectrum transmitter [cHIEN eta! 94], have also been demonstrated.

In a conventional implementation of a video transmitter, each of the constituent

parts of the system (shown earlier in Figure 1.1) would be realised using one or

more separate integrated circuits often on different PCBs. Adding of a digital

compression stage to the system leads to a sensor-transmitter architecture, such as

that shown in Figure 1.2. Again, using conventional components this would be

implemented using separate devices for each functional block shown.

array 	 -

idpartA AD 	1 	
(()flcr 	 OdUtOicoder

formattIng 	L 	 - 	 - -

memory

video transmitter 	 - _______ 	coder

Figure 1.2 A block diagram of the constituent parts of a radio video transmitter that employs
compression (an expansion of the transmitter side of Figure 1. 1, the start of the
receiver is shown shaded). This architecture differs from that in Figure 1.1 in that the RF
transmitter has been divided into a general channel coder and separate modulator, and
in the addition of a digital data compression engine. Addition of the compression
engine would typically require the addition of the ADC to digitise the analogue video
signal and also provision of a significant amount of memory for use during the
compression operation. Again, each of the parts of this system would conventionally be
implemented using at least one separate iC, possibly on different PCB5.

The ultimate integrated solution would be to construct the whole of this sensor-

transmitter system on one IC. Integration of an entire system permits the tuning of

its components to meet only the needs of that particular system. Component

interfaces that would normally be generalised for use in various systems can be

pared down to leave only that required for the individual application. For example,

in the radio video transmitter the picture information need never exist as a standard

composite video signal - saving both on signal formatting and decoding hardware.

Creating a one-chip video transmitter would require integration of a version of the

existing CMOS imager with a specialised data coder and an RF modulator.

Manufacture of a data coder on the die of the imager should not pose a problem as

1.15

- chapter one Introduction -

the imager is fabricated on a standard CMOS. Interfacing of the coder to the data

stream of the camera will require inclusion of an on-chip analogue-to-digital

converter (ADC). The manufacture of ADCs with sufficient performance has already

been demonstrated on a standard CMOS process [CHEN eta! 90; ACKL4ND & DICKINSON 961.

Problems stemming from the inclusion of a digital coder on the same die as the

sensor and ADC are only likely to occur if the coder is either particularly large or

power hungry. Large coder size could lead to a die size that may imply yield

problems. High power consumption could lead to problems of cross-talk through

power supplies, or problems of high sensor dark current due to heat generated by

the coder (a component of imager dark current is dependent on device

temperature). Integration of the RF modulator is likely to be more problematic than

the coder. Two areas in particular complicate its integration with the rest of the

system. These are, firstly, the differing fabrication needs of some of the likely

components involved and potential noise problems between the power output

stage, and secondly, the delicate image sensor array. These two areas are expanded

upon below.

RF circuit integration problems

If the whole of a circuit is to be integrated on the same die then it must be possible

to produce all the components of the circuit using the same fabrication process (and

produce them at the required quality). Unfortunately, some components such as

those that operate at very high speeds, those that require a very low noise

environment and those whose operation relies on unusual electrical effects 5, have

radically different construction needs. Some are impossible to create on particular

standard fabrication processes, others are difficult to produce reliably. Conflicts can

sometimes be overcome through the re-design of circuits so that they only use

components that' are available on a single fabrication process. Another alternative is

to permit fabrication of unusual structures by adding processing steps to an

otherwise normal fabrication process. Any movement away from a normal

That is electric effects unusual to normal IC fabrication processes.

1.16

- chapter one Introduction -

fabrication process (such as standard CMOS), however, incurs initial set-up costs

and makes manufacture of the design less portable between fabrication facilities.

Some of the components used in the simplest RF transmitter circuits make them

prone to these problems. Simple transmitters typically exploit the properties of

components that cannot be fabricated using a standard CMOS process - such as

SAW resonators and very high-speed transistors [NIETR0J9O]. Although the

adaptation of these circuits may be possible (through the construction of non-

standard components using what would normally be considered to be parasitics of a

standard process) it is outwith the scope of this thesis.

Integration of high speed transistors with logic can be achieved using a fabrication

process such as BiCMOS. There are typically only a few high speed transistors used

in the simple transmitter circuits, however, the economic advantage of integrating

them with the logic through the use of a BiCMOS process is questionable. BiCMOS

processes tend to be significantly more expensive than CMOS.

The second fundamental problem in integrating the radio transmitter along with the

rest of the transmitter end of the radio video link is that there is an inherent conflict

between the needs of the imager and the job of the radio transmitter. One is a

delicate sensor and the other an intentional radiator of energy. Although ultimately

they are concerned with quite separate parts of the electromagnetic spectrum

(visible light and VHF radio) a degree of cross-talk between the underlying

electronics is inevitable. This problem could be alleviated to an extent through the

maximum physical separation of the two circuits on the die, the isolation of their

power supplies and possibly keeping the final power output stage of the transmitter

off the chip. These measures, however, may not solve this problem completely.

Summary

Integration can offer benefits in terms of manufacturing costs, power consumption

and system size. However, integration of all circuits is not simple and problems such

as cross-talk can result.

1.17

- chapter one Introduction -

The practicality of integrating the simple RF circuits considered for this application

(e.g. [NIETR0J 90]) using current fabrication processes is questionable, and the cost

benefits doubtful. Integration of the image sensor, ADC and data coder that

represent the remainder of the transmitter end of a radio video link is however,

eminently possible. The hardware architecture of a video transmitter with such an

integrated imager/ADC/coder is shown in Figure 1.3.

- 	

"Ii 	
ii.!tiIator 	 -.

arra~

.
.:- 	 ..e 	.

'.I I(1) tran smitte r 	 ri

Fijluj-e 1.3 Schematic representation of the video transmitter hardware with an Integrated image,,
ADC and dedicated coder.

Conclusions & thesis structure
To realise a radio video link at lower cost, this thesis investigates the practicality of a

low power, low bandwidth, integrated implementation. It concentrates on

identifying the necessary features of a coder required to marry the minimum image

specification to a radio link with between half and a quarter of the necessary

bandwidth to transmit the raw signal, and with the design of such a coder.

Development of the coder was chosen as, after the success of the integrated video

sensor, it is the next step towards a completely integrated radio video transmitter.

Successful integration of the coder was deemed to be more likely and bring about

more cost savings than attempts to integrate the radio transmitter. In offering a

successful implementation of a particular hardware-minimal coder solution, the

investigation shows that a minimal hardware approach is viable. In addition to

application in a radio video link, the work on image data coding is equally

applicable to any application where image data is to be reliably communicated using

minimal hardware.

1.18

- chapter one Introduction -

Thesis Structure

The remainder of the thesis begins with chapter two which gives an introduction to

the general subject of data coding prior to transmission. Particular reference is made

to compression techniques and considerations of the vulnerability of data to

transmission errors. This chapter ends with a review of existing compression and

coding techniques. The most promising of the techniques presented in the review is

then further investigated in chapter three. The detailed hardware implications of its

approach are explored and particular implementations tested through software

simulation.

Chapter four documents the implementation of two of these algorithms in the form

of a field programmable gate-array. The implementation serves to prove the validity

of the hardware minimal approach and allows evaluation of the output of the

algorithms at higher frame rates than were permitted by the software simulation.

More in-depth subjective analysis of the algorithms is considered in chapter five.

This takes the form of a programme of subjective tests. The work is concluded in

chapter six. The success of the hardware minimal interface is evaluated and

suggestions are made for future work (including some radical alternatives to the

approaches adopted here).

cha 1 ter 	2.

Compression"" and Coding

In chapter one coding was outlined as a potential solution to the mismatch between

the raw data bandwidth required by the video link and the low capacities of cheaper

radio links. The coding hardware was shown as a discrete block positioned in the

digital data path between sensor and transmitter, as shown in Figure 2.1.

IMi 	
coder

ideo transmitter

H
N

Figure 2.1 The position of the coding hardware within the architecture of the video transmitter
half of the radio video link.

Compression is not the only purpose of pre-transmission coding techniques. This

chapter introduces all the considerations when preparing a data stream for

transmission.

The chapter begins by introducing pre-transmission coding, outlining its basic

purposes. The importance of these objectives in the case of the radio video link is

considered. Existing error protection and image compression techniques are

reviewed with a view to selecting suitable candidates for use in the radio video link.

The modest compression requirements of the application mean that the implied

hardware costs of each compression approach and the error vulnerability of the

code it produces are the main criteria for selection. Conclusions are drawn as to

2.1

- chapter two Compression and Coding -

which particular coding techniques may be suitable for the radio video link

application.

Coding theory.
Techniques of data coding are often employed before data are transmitted. This

section introduces the purpose of these techniques. As such, a fairly abstract view of

data communication is taken, with different aspects of coding explained with

reference to a general communication system that is concerned with the

transmission of messages.

The introduction is arranged according to the objectives that pre-transmission

coding can address. These are: transmission efficiency (compression),

communication reliability, simplicity of reception and privacy. Some coding

techniques address many of these issues, others concentrate on one in particular. All

the issues, and thus the techniques, are concerned with the description of the

original data set (the source data) during transmission and to some extent are

therefore interdependent.

Compression coding

The efficiency with which messages can be transmitted (transmission efficiency) is

directly dependent on the amount of data that needs to be transmitted in order to

communicate the message, given the code that is used to describe it. The object of

compression is to reduce the amount of data that is required to describe the message

by using a code that describes it efficiently - thus permitting communication of the

message at lower cost. In addition to its use in improving transmission efficiency,

compression is often used to improve storage efficiency. This application is not

considered here.

2.2

- chapter two Compression and Coding -

With most types of data, the form of coding that is generally used to represent it

involves much redundancy'. In addition to the efficiency of its coded size, factors

such as the ease of the coding and decoding operations and the manipulation of the

coded data have also to be considered. It is only when the costs of communication

or storage of the coded form of data become significant that particularly efficient

coding schemes tend to be considered.

Image data is a good example of a type of data that is commonly coded with much

redundancy. Its standard raw format is a raster scan of picture elements (or pixels).

Each element is either described to the capabilities of the display device, or with

reference to a limited 'palette' of colours. Although this raw form is convenient in

many applications (as it relates directly to the hardware architectures of many

imaging and display technologies) it tends to lead to much redundancy. The use of

colour 'paletting' is a form of compression. It is typically employed to reduce the

amount of memory required in display hardware.

Many compression algorithms exist that are general to all types of data, requiring no

prior knowledge of the data that is to be compressed. Some of these rely on

exploiting forms of redundancy that are common to most types of data and encode

the data on a casual basis, others can achieve higher coding efficiency by optimising

the form of the code to suit the particular data of each message. The latter, 'adaptive'

schemes are more expensive to implement, however, as they must analyse the data

set prior to encoding.

In contrast to this general approach, there exist many compression techniques that

are designed to exploit characteristic mathematical structures that are found in

particular types of data. Such algorithms can achieve high compression ratios

without necessarily employing the amount of data analysis used by the general

adaptive schemes described above. Their success, however, is limited to use on data

sets that exhibit the characteristic structure that they have been designed to exploit.

In this context the term redundancy is used to describe features of the coded message that bear no new information

in relation to communication of the message.

2.3

- chapter two Compression and Coding -

With the increased use of digital images, a combination of the high costs of storing

and transmitting digital images in their raw format, the needs of applications (such

as video conferencing) and the availability of digital coding hardware (e.g. DSPs),

much research has been carried out into coding techniques particular to image data

that offer compression. As a result, there now exist many specialised image

compression algorithms. Some are further specialised by being tailored to image

data from sources with particular characteristic features (used in the compression of

data from sources such as weather satellites).

In common with all compression techniques, image compression techniques are

based both on alternative methods of coding data and on techniques which

irreversibly discard some of the source information. Techniques that achieve

compression only through the use of coding processes that are fully reversible are

termed error-free or lossless, those that do not preserve the original image data

perfectly are termed lossy. This is an important distinction as, although lossy

techniques offer much higher compression ratios, they are not always suitable for

use in applications where images need to be carefully scrutinised or relied upon for

legal evidence.

The benefits of compression do not come without cost. Both compression and

decompression of data take time, they employ hardware and use power. In

addition, where the techniques used are not fully reversible, a loss in perceived

image quality may be incurred. Unlike the other costs, the measurement of losses in

perceived image quality is non-trivial, by definition it is not a quantity that can be

directly measured by some objective means. This subject is investigated further in

chapter five.

Selection and design of compression algorithms for a specific imaging application

therefore involves consideration of which type of algorithm might suit the nature of

the image source, what degree of compression the application requires, the

resources available to perform the compression and whether any losses in image

fidelity can be tolerated.

2.4

- chapter two Compression and Coding -

Error protection coding

The inherent noise in any practical transmission channel means that in any

transmission system there will be a certain level of errors in the communication of

data. The vulnerability of a coded message to corruption through errors in its

communication is therefore an important consideration.

Transmission errors, by definition, affect the integrity of the coded message that is

communicated. How these errors in the coded form of the message affect the

decoded message is dependent on the coding scheme used. Thus it is the coding

scheme that controls the ultimate effect of transmission errors. This property is an

important aspect of its design.

There are three distinct approaches to lessening the effect of transmission errors.

The first is to code so as to allow the presence of errors to be detected, the second is

to code so as to allow correction of a level of errors and the third is neither to

attempt detection or correction of errors, but to code the message so as to minimise

the effect that any errors have in the perception of the decoded message. The first two

approaches involve dedicated coding, and are general to all types of data as they are

concerned merely with the integrity of the coded message and not with its content.

The third approach can also be implemented using a dedicated coding stage.

However, as most coding schemes affect the vulnerability of the messages they

describe, the third method can be achieved as a consequence of a coding method

whose primary aim is not for error protection (or through minor modification of

such a coding stage). As some understanding of the effect of different errors in the

content of the message must be understood before attempting to minimise the effect

of errors in its coded form, the third approach is dependent on the particular data

type.

Features of the application may determine which protection approaches are

suitable. These include the tolerance of the application to a level of errors or missing

data and the ability of the receiver to request the re-transmission of corrupted data.

In general there is a conflict between the aims of coding for compression and those

of error protection. Where compression centres around the removal of redundant

2.5

- chapter two Compression and Coding -

data, error protection is concerned with the use of redundancy for protection. The

increased significance that each element of a compressed data set has in conveying

the original message often makes it more vulnerable to transmission errors than the

message was in its raw form. Achieving a high compression ratio at the expense of

making the coded data exceptionally vulnerable to corruption may be pointless if

the characteristics of the transmission channel dictate a subsequent level of coding

for error protection that much of the transmission efficiency gain is lost.

Compression is often considered in isolation from susceptibility of the data to errors.

However, the interdependence between compression and error protection means

that where data is to be both compressed and transmitted the vulnerability of the

data to transmission errors must be considered at the compression stage if a balance

between these two goals is to be achieved.

Although the ultimate aims of compression and protection may conflict there are

some techniques used in compression that produce data that is more resilient to the

effects of errors. These include transforms of data into alternative data spaces in

order to facilitate quantisation. Described in this alternative form, each element of

the original message is dependent to a small extent on many of the elements of the

coded message. The effect of any error in the transmission of the coded message is

thus distributed thinly over a large part of the decoded message [PRATT 69].

It is important to note that any error protection scheme can only offer a finite level

of protection, and therefore that there will always be a trade-off between the level of

protection and the cost of the scheme. The costs of dedicated coding to provide error

protection come both in increased computation (hardware, power and time) and

reduction in storage and transmission efficiencies.

Coding for ease of reception

The ease with which a transmitted message is received, and thus the complexity of

the necessary receiver circuit, is affected by certain factors of the data coding used.

As discussed above, the use of any compression and/or error protection coding has

consequences in terms of the hardware necessary for decoding. Aside from these

direct implications, there are other factors of the data sequence that affect the

2.6

- chapter two Compression and Coding -

simplicity of the receiver. In particular, aspects of the code govern the methods

available to the receiver to recover the necessary timing information required to

sample the data sequence in order to recover the data successfully. This factor is

considered below.

Bit-timing recovery

When communicating with a remote device there is no common system clock with

which the timing of individual bits in the data stream can be established. The

remote device must decide when it. should sample the received signal in order to

reliably recover the 'bits' of the data sequence using features of the signal itself.

There are two systems commonly employed to govern sample timing. They differ in

complexity of the synchronisation with the data sequence and are called synchronous

and asynchronous modes of transmission. With asynchronous transmission

individual transmitted characters are preceded by start symbols and followed by

stop symbols. The receiver assumes a symbol transmission frequency and, using a

local clock, times sampling points with reference to an edge within the start symbol.

As all samples are made with reference to the start symbol, errors in the accuracy of

the timing limit this mode of transmission to relatively short symbol sequences (e.g.

eight). In synchronous reception the point at which the received signal is sampled is

controlled by a local oscillator which is kept synchronised to the frequency and

phase of the data sequence itself. This is accomplished through the use of either

digital or analogue phase-locked loops (PLLs) to synchronise to edges within the

data sequence. Dedicated characters are often used at the start of data sequences in

order to ensure that word/character boundaries are correctly interpreted.

Asynchronous transmission is simpler to implement as it does not require the same

degree of synchronisation. The requirement for frequent synchronising symbols

limits the efficiency with which it can be used to transmit data. This mode tends to

be used primarily in situations where the data is transmitted at random intervals. In

application where the data rate is more predictable or communication at a high

bandwidth is required the efficiency of synchronous transmission is generally

favoured [HALSALL 88].

2.7

- chapter two Compression and Coding -

Although coding for ease of reception has cost implications in terms of transmission

efficiency, it is generally independent of other compression and error protection

considerations.

Cryptic coding

The use of obscure or complicated coding can offer the data a degree of privacy by

making it difficult for a third party to understand the transmitted message without

some prior knowledge of the code. This use of coding is generally termed

encryption and is often associated with the world of espionage. With the increase in

electronic communications its use as a method of combating fraud is becoming

common (in areas such as mobile telephone buffing and financial transactions).

As system security is not a high priority for the radio video link application, the

encryption aspects of coding will not be considered further.

Requirements of the radio video link
Given the mismatch between the bandwidth implied by the minimum specification

and that of likely cheap radio links, compression is probably the most important of

the four aspects of coding outlined above for the radio video link. Both the tolerance

of the coded data to errors and the ease with which the data can be received are also

important and will therefore also have to be considered.

The drive for a hardware-minimal radio video system is likely to be the main

restricting factor in the choice of coding techniques. In addition to favouring

techniques that are computationally simple, the minimal hardware approach also

favours those that use the least memory.

Ease of reception will require some dedicated coding prior to transmission.

Synchronous transmission is suggested by the nature of the communication

(continuous transmission of a relatively high-bandwidth stream of data). The

addition of sync and framing characters will be required immediately prior to

transmission and need not significantly affect transmission efficiency. The needs of

2.8

- chapter two Compression and Coding -

compression and error protection can therefore be considered independently from

the ease of reception coding needs.

The radio video link is an application concerned with the transmission of images to

be viewed by human observers. As such, a degree of data fidelity loss through the

use of lossy compression techniques can be tolerated. As image details are unlikely

to be scrutinised, the application may well afford the use of techniques that lead to a

perceivable degree of image degradation.

Before compression techniques are reviewed, techniques for reducing the

vulnerability of the coded messages to transmission errors are now considered.

Review of error protection techniques
It was stated earlier that the types of data coding used to describe a message

determine how it is affected by errors in its transmission. This section considers

various approaches to intentionally reducing the vulnerability of a coded message to

corruption by transmission errors. 	-

The techniques are divided into three groups: those that protect data through the

systematic inclusion of redundancy, those that offer protection through more casual

use of redundancy, and techniques that limit the damage caused by any one error.

Systematic error detection and/or correction coding

The effect of randomly occurring transmission errors can be tackled by employing

redundancy in the transmitted form of the message. Careful use of redundancy can

reduce the significance of individual symbols, thus making the potential loss of any

symbol less critical. Techniques for the systematic inclusion of redundancy to allow a

certain level of error detection and/or correction are considered below.

Parity codes

Parity coding guarantees that all blocks of transmitted data fulfil some statistical

criteria (typically an even number of is in a word of binary code) [J-ivvttviING 80; YOUNG

2.9

- chapter two Compression and Coding -

94]. Checking for the same condition in the received data allows the detection of

some transmission errors. Among methods of error detection and correction codes,

parity is by far the most commonly used.

The simplest parity code ensures an odd or even number Of is in a block of binary

code, coding all blocks independently. This allows the detection of any odd number

of 'bit errors' within each block, however the check is fooled by any even number of

errors in a block. The efficiency of the protection this code offers can be traded

against transmission efficiency by varying the size of the coded block. Parity coding

is simple to implement either by limiting the set of possible codewords to a subset

that satisfy the parity condition, or more normally, the calculation and insertion of

parity 'bits' just prior to transmission.

The simple parity check described above can be extended by involving each data bit

in more than one parity check. The extension to involve each bit in two checks leads

to what are known as rectangular and triangular parity codes (due to the conceptual

way in which the data bits are arranged for checking). The inclusion of each data bit

in two parity checks, offers the ability of detecting a higher level of errors (it requires

four errors in a specific pattern of bit locations to completely fool a rectangular parity

error detection check) and allows individual errors to be corrected as their position

can be pinpointed.

Cyclic codes are a special subset of parity codes. They are intended to detect the

presence of any error in a large amount of data. The most common implementation

[WILLIAM S 93] is designed for relatively fast hardware execution. Unfortunately, the

detection that an error has occurred in a large set of data is of limited use in the

radio video link application. As its communication is one-way, it cannot request re-

transmission, and as the error is not pinpointed no attempt can be made even to

disguise it.

Hamming codes

Another approach to coding that permits error correction is the use of Hamming

codes [HAMMING 80]. These are algebraic self-correcting codes, again aimed primarily

at combating the effects of random errors. Use of hamming codes is simple to

2.10

- chapter two Compression and Coding -

implement both in terms of coder and decoder, however, the penalties in

transmission efficiency are high (use of a Hamming single-bit code to protect

individual ASCII characters drops transmission efficiency by 36% [HALSALL 88]).

Convolution codes

Another method that employs redundancy to protect data against noise is the use of

convolution codes. The use of long enough code symbols allows a convolver to be

successfully used as a decoder even when much of the symbol has been corrupted

by interference. The encoder transmits the same fixed long sequence for every '1' in

the data set, and the logical opposite of that sequence for every V. Convolving this

transmitted sequence at the receiver with the same long fixed sequence produces

large positive outputs for the 'l's and large negative outputs for the '0's. Noise

added in the transmission channel that is sufficiently random in nature (i.e.

uncorrelated to the data source) produces no net output from the correlator.

This type of coding is typically employed where there is no other option as the

penalties in either transmission time or bandwidth are high. However, sufficiently

long code symbols allow the recovery of data from signals that are significantly

below the noise floor (such as transmissions from space probes). A second beneficial

property of convolution codes is the implicit bit-timing that is built into the coded

sequence.

Redundancy in the coded source data

As an alternative to the systematic use of redundancy, other techniques can be used

to include it. These techniques are based on the 'over-description' of the message

and although they are less efficient than systematic methods they are less expensive

to implement.

Incomplete removal of redundancy

Any coding method that leaves some redundancy within the coded data, such that

parts of the coded image have some independence from each other, offers each of

these parts some protection from errors in the other. Such redundancy can be

2.11

- chapter two Compression and Coding -

achieved through many different means - often dependent on the other coding

methods used. Examples include: algebraic compression methods that limit the

scope of their search for redundancy, schemes that compress images using the

independent compression of sub-images, and those that compress the images in a

sequence independently. Schemes with adaptive codebooks often periodically re-

transmit entries in the codebook that have not changed (in case their previous

transmission had been corrupted) - this is another example.

Like systematic inclusion of redundancy these more casual schemes incur cost

penalties in transmission efficiency. A possible benefit, however, is that if the

redundancy is kept from the original source data by making a compression coder

less efficient that coder can often be implemented more economically.

Over-description

Sending more source data than is necessary to communicate the message is another

form of redundancy that can offer a tolerance to errors. In terms of image

communication this can relate to the use of higher resolution or frame rate than is

absolutely necessary for the application. When errors are encountered this approach

relies on the recipient of the data being able to distinguish between the signal and

the noise.

If over-descriptive source data is already available then it can be obtained without

cost. The coding and transmission costs, however, increase linearly with the amount

of redundancy as the redundant data must be compressed without reference to the

'minimal' data or the redundancy is lost. An advantage of such a scheme is that if

the error rate during transmission is low then the communicated image will be more

detailed. This is especially attractive in a system where the detail of the 'minimal'

image specification is low.

Techniques of damage limitation

The final class of error protection techniques considered here is concerned with

minimising the effect of transmission errors, aimed both at the effects of errors in

2.12

- chapter two Compression and Coding -

single transmitted symbols or the situation where several neighbouring symbols are

lost (burst errors).

Transmission of frequency domain data

In terms of the effects of errors on reconstructed images, transmission of image data

in the frequency domain is often considered more error tolerant than in the spatial

domain [PRATT 691. The reason for this is that the effect of each individual

transmission error is not concentrated on one small area. Rather it is spread over a

large number of pixels, each pixel being formed from a weighted sum of many

frequency domain terms. This type of error is generally considered less

objectionable.

When using compression techniques that employ transformations to the frequency

domain this form of damage limitation comes as a handy bi-product of the

compression process. To include the transformations (two transformations are

required, the second to transform back to the spatial domain at the receiving end)

purely for the reasons of damage limitation is expensive in terms of hardware. In the

case of the radio video link under consideration, this cost is prohibitive.

Use of fixed-length codewords

Any code that uses variable-length codewords to describe a data set leaves the data

vulnerable to transmission errors if that code does not also allow for their detection

and correction. The problem with variable length codes is that the codeword

boundaries (implicit with fixed length symbols) must be inferred from the data

during reception. If a transmission error causes misinterpretation of received data

such that a codeword is mistaken for one of a different length, all codeword

boundaries are then lost until the system is actively re-synchronised.

Unless error protection techniques are employed in the video link the use of coding

techniques that result in the transmission of variable length codewords should be

avoided.

2.13

- chapter two Compression and Coding -

Re-arrangement of spatial data

Another technique with the aim of spreading the effects of errors, is the re-

arrangement of spatial image data prior to its transmission. This technique can

spread the effect of burst errors amongst pixels in a wide area rather than amongst

those in a close group. This prevents any one area of the image from being

completely destroyed. This technique can be extended into the time domain by

mixing the data from several frames before transmission (e.g. MPEG, see [ARAVIND eta!

93]).

The costs of these techniques are increased memory requirements and a short time

delay in transmission while data is buffered (increased latency). It is unlikely that

they can offer sufficient benefit for the cost in memory to be worthwhile in the case

of the radio video link.

Summary

Coding techniques exclusively for error protection are generally expensive in terms

of transmission efficiency. The few that are not are instead expensive in terms of the

computation and memory required.

For the video link, this means that image compression and coding to protect the

data from errors can only be considered in isolation if the compression coding can

save enough bandwidth that the system can afford the loss in efficiency caused by a

separate error protection coder. Otherwise the two aspects will haveto be dealt with

together - achieving a balance in the one coder between the transmission efficiency

and the susceptibility of the code it produces to corruption.

Review of image compression techniques
This section reviews current image compression techniques, with a view to their use

in the radio video link application. The techniques are organised into groups

according to the primary method they use to achieve compression. As, in practice,

many commonly implemented compression algorithms are hybrids that employ

more than one coding technique, these groups may seem a little artificial. However,

2.14

- chapter two Compression and Coding -

the segregation serves to group the individual techniques into categories that have

similar implications in terms of the radio link application.

There are two fundamental approaches that yield compression: code data more

efficiently, or throw some of it away. All compression techniques are based on these

two approaches, although many different coding and reduction algorithms are

employed. There are three techniques of efficient coding that are currently

prevalent. These are entropy coding, predictive coding and transform coding. The

review is split into four groups: techniques that use these three types of coding and

a section on schemes that discard data.

Entropy coding techniques

By examining the statistics of a data set it is possible to devise efficient coding

schemes particular to it. These techniques are based on the entropy of the data set or

data source as defined by Shannon [SHANNON & WEAVER 63] and are not particular to

image data.

Huffman and Shannon-Fano codes

The basis for all entropy codes is that symbols in a data set generally occur with

unequal frequency. In Huffman [HUFFMAN 52] and Shannon-Fano coding [FwvIMmJG 80]

shorl Output symbols are assigned to frequently occurring input symbols and long

output symbols to rare input symbols. If the frequencies with which the input

symbols occur are sufficiently unequal then translation of the data to such a variable

length code leads to a more efficient description.

The process of coding involves three steps: ranking of input symbol probabilities,

assigning output symbols to the input symbols (devising the code) then actually

encoding the data. In Huffman coding input symbols are organised into a binary

tree structure based on their probabilities. Output symbols are then allocated

2 Entropy is the quantity used in information theory as a measure of information content (cf. entropy in

thermodynamics).

2.15

- chapter two Compression and Coding -

according to the positions of the input symbols on the tree. Shannon-Fano coding is

identical except in the way that the symbols are allocated.

Huffman encoding always produces an optimal solution to the problem of mapping

the input symbols to the possible output symbols (the way symbols are allocated in

Shannon-Fano coding means that it is often slightly sub-optimal) [GAILLY 95]. For the

coded output message to be truly optimal, however, the product of all output

symbol probabilities and their length should be equal. The discrete steps in binary

output symbol lengths mean that this is rarely the case.

Use of a code with variable length symbols incurs a cost which is often overlooked

For variable length symbols to be interpreted without ambiguity, all symbols must

be unique in that the start of a each must not be able to be mistaken for the whole of

a shorter code (i.e. if a single '1' is defined as the smallest code symbol, all other

symbols must start with '0', precluding a single '0' from itself being a symbol (unless

only two symbols are required)). Fixed length codes, or block codes, do not suffer

from this problem as their symbol boundaries are implicit.

An overhead of all adaptive coding systems is the communication to the decoder of

the code itself. At low message lengths this can become a significant proportion of

the entire transmission. The process of communicating Huffman codebooks is often

reduced by transmitting the output symbol lengths alone. Given assumptions about

the way the coder created the code, the decoder can then rebuild the entire set of

output symbols.

Vv-Lempel coding

Another approach to lossless coding was proposed by Ziv and Lempel and involves

a process of building up a dictionary of frequent symbol strings such that the input

symbol sequence can be described by reference to part of the dictionary wherever

possible. The best known implementation is probably that devised by Welsh, known

as LZW [WELSH 84].

Unlike Huffman where the encoding process is hugely recursive, Ziv-Lempel

algorithms execute the coding process whilst analysing the symbol and inter-symbol

probabilities of the input sequence. As such, the memory requirements are much

2.16

- chapter two Compression and Coding -

lower, and importantly this is achieved without significant cost in compression

efficiency [Zn' & LEMPEL 77]. In addition, through management of the dictionary size,

the scheme lends itself to balancing efficiency against resources.

Arithmetic coding

The restriction on efficiency of discrete output symbol length suffered by Huffman

and Ziv-Lempel coders is overcome in 'arithmetic coding'. Arithmetic coding tackles

the problem of representing an entire input set of symbols using an interval of real

numbers between 0 and 1 [GONZALEZ & WOODS 92; ARAVIND et al 93]. As additional input

symbols are encoded the size of the interval is reduced according to the probability

of that symbol occurring. Arithmetic coders can be implemented using assumed

fixed sets of input symbol probabilities or more generally by analysing symbol

probabilities prior to encoding or adapting them during the encoding process itself.

Suitability of entropy coding

Entropy coding techniques typically offer image compression at ratios of around 2:1,

although, as they are lossless, the ratio is heavily dependent on the image content.

The costs involved, however, are high. Gathering and sorting of the statistics is

expensive in terms both of computation and memory, and when image sizes are

small, the costs of any codebook communication should not be overlooked. A

further problem of all these codes is their use of variable -length codewords. As

mentioned earlier such coded data is particularly vulnerable to transmission errors -

the corruption of a single bit of a codeword can lose the synchronisation of all of the

following codeword boundaries.

Predictive coding techniques

Predictive coding is an extension of the general statistical approach taken in

entropy coding that can be used profitably when coding the data of a Markov

2.17

- chapter two Compression and Coding -

process (such as natural image data) [JAmI 811. Predictive codes achieve compression

by exploiting likely structure within the data set. If that structure can be accurately

predicted, the level of uncertainty in the source data is effectively lower.

Whereas statistical methods analyse the data set itself, predictive coding relies on

statistical characteristics of the source itself. Such an approach can be successful if

the information source is stochastic (its symbols occur according to probabilities).

Thus the coding scheme can be based on the probabilities of symbol occurrence

from the source rather than the actual symbol frequencies in each particular data set.

This approach is closer to that described by Shannon and leads to encoders that are

specific to the data .source rather than any data set from it.

Predictive coders do not require the expense of gathering probability statistics on-

the-fly, but their successful use is restricted to data that display the characteristic

features of the source assumed during the system design. In image compression,

predictive compression is normally designed to exploit redundancy between

neighbouring pixels.

Run-length encoding

Run-length encoding (RLE) could be considered one of the simplest predictive

encoders [HAMMING 80]. It is used to encode series of data, making the assumption

that the next data symbol will be the same as the last. When it is not, the system

encodes how long the last assumption remained true, and which symbol came next.

Run-length coding can successfully be used in image processing, especially when

communicating images as a series of bit-planes. It has very low implementation

costs, but with natural image data it generally achieves a fairly low degree of

compression (less than 2:1).

Markov Processes are a subset of stochastic processes whose symbol probabilities are affected by previously chosen

symbols.

2.18

- chapter two Compression and Coding -

Differential predictive coding

A more complicated but generally more successful approach with image data is

taken in differential predictive coding [JAmI 811. Here only the errors in the output of

the predictor are transmitted to the receiver. By limiting the data used to make the

predictions to that which has already been encoded, an identical predictor at the

decoder can be used to reconstruct the original data set using that error data alone.

This system is generally referred to as DPCM (differential pulse code modulation -

c.f. PCM).

In image compression, interpolation-between and/or extrapolation-from the values

of neighbouring pixels are generally used to make the predictions. Successful

compression is achieved when predictions are accurate enough that the error data

has lower dynamic range than the source pixel data and can thus be encoded using

less bits per pixel. A fixed size of error term is normally used and if any errors are too

large to be coded then the complete pixel is sent (preceded by an escape sequence to

prevent the pixel from being misinterpreted as error data). The size of the error term

is typically set to allow a compression ratio of the order of 2:1 if compression is

successful.

Suitability of predictive techniques

Predictive coding is attractive in that it can be achieved using relatively low

hardware costs. A small two-dimensional predictor can be implemented using a few

additions, binary divisions and enough memory to store just over one line of pixels.

Problems can occur, however, with the use of predictive coding on image sequences

(as in the video link application). Where prediction accuracy is not sufficiently high

and the implementation is to be lossless, then either the communication system

must be built to cope with the possible increase in data rate caused by the

transmission of the escape codes, or frames must be dropped. In addition, the

receiver must be able either to 'cope with a variable frame rate or to buffer data in

order to re-display an old frame when a frame has been dropped. Predictive

schemes could alternatively be implemented as a lossy compressor, guaranteeing a

compression ratio of say 2:1. This approach would require careful management of

2.19

- chapter two Compression and Coding -

the situations where prediction error data had to be quantised, both so that the

visibility of the quantisation errors is minimised and that they do not propagate

further into the image via the predictor.

Successful predictive coding achieves compression by reducing inter-pixel

redundancy. Unfortunately, if compression has been successful, each pixel

reconstruction then relies on data from many previous pixels' reconstructions. This

open-loop nature makes the compressed data vulnerable to even very low error

rates and therefore unsuitable for transmission via a realistic channel unless the

transmission is preceded by some error protection coding.

A partial solution to this problem is to limit the dependence of predictions to within

a local area of image data. This restricts the effect of any transmission errors to

within the area of data in which they occur. The protection of data through such

isolation comes at a cost in achievable compression ratio, however, as, when blocks

are encoded independently, inter-area redundancies can no longer be removed.

Transform coding techniques

A radical alternative to standard coding techniques is to describe images (or sub-

images) as transformations of other images. This approach, known as transform

coding, uses transformations or mappings consisting of translations, rotations,

scalings and 'warping functions' to describe the route from one pixel array to that

desired. Although the transform of complete images has advantages in terms of

distortion [sErrz & LANG 90], images are often described using a number of combined

smaller transformed arrays (or sub-blocks) to reduce the amount of computation

(both during compression and decompression). Where source images are

dynamically partitioned into sub-arrays, information about how to recombine the

them spatially must also be transmitted.

Transform coding itself is not, generally aimed at achieving compression. The

strength of the alternative codes lies in their ability to present data in ways in which

it can be simply quantised in order to approximate images efficiently. As such they

are employed almost exclusively in lossy approaches.

2.20

- chapter two Compression and Coding -

The most prevalent transform coding technique employed is the discrete cosine

transform (DCT) that transforms from spatial to frequency domains and vice versa.

This transform is at the heart of many hybrid compression techniques such as the

JPEG image compression standard. The wavelet transform [PRESS 921 is another that

transforms data into an orthogonal space. It decomposes the source into a series of

sinc-like functions, which when quantised and re-transformed are intended to lead

to less objectionable errors than if the DCT had been used.

Compression methods that employ other forms of transform coding include: block

transform coding which uses a codebook of general array primitives and affine

transforms to encode images (that are first divided into 'sub-blocks'), motion

compensation which uses parts of historic images as the array primitives (thus

achieving compression by re-using the old data) and fractal compression which uses

contractive transforms which when applied iteratively will tend towards a stable

image [JAcQuIN 92]. Fractal compression is particularly attractive due to its

independence from resolution and aspect ratio and the fast decoding speeds it

offers. Although fractal techniques can offer compression ratios in excess of 100:1 the

coding process is highly non-linear and very computationally expensive and, as

such, cannot be performed in real-time [Fox 941.

Suitability of transform coding

As mentioned previously, data transformed into orthogonal spaces that lend

themselves to the inconspicuous use of quantisation tends also to be well protected

from the effects of random transmission errors especially when used with a low

compression ratio [PRATr69]. This favours the use of such transforms when

transmitting the compressed data. The use of block-based and motion compensation

transforms can make data more prone to corruption especially when used -at high

compression ratios. Fractal coding suffers similarly, however its iterative nature has

the advantage that the effects of transmission errors die away over time [HURD 921.

Unfortunately all transform coding techniques are computational intensive. For

example, the 2-dimensional DCT transformation of an 8x8 pixel block requires 1024

multiplication and addition operations [YATES & TVEY 95]. In addition to the large

2.21

- chapter two Compression and Coding -

amount of computation, most require buffering of the input image and significant

memory during execution. This complexity means that they cannot be employed

whilst satisfying the hardware minimal requirement of the radio video link..

Sub-sampling techniques

Probably the least elegant technical approach to lossy image compression is the

discarding of some of the source data to obtain a smaller but cruder representation

of the message.

Discarding data can be performed mathematically by quantising or truncating

components of the data set. Quantisation tends to be more common than

truncation, as it can be implemented whilst preserving the dynamic range of the

original data set, however both techniques are used. In image compression, sub-

sampling can theoretically be performed on spatial, colour, temporal and frequency

components of the data, however output spatial resolution and frame rate are often

fixed (as is the case in this application) leaving only the components of colour and

frequency as candidates.

Quantising can be performed blindly on the data, or with some consideration of its

effect on the perception of the image. The ideal approach would be to remove the

data that has least importance in conveying the image to human observers. Design

of such techniques can be made on an ad hoc basis and their evaluation based purely

on subjective viewing of images. A more scientific approach to both the design and

evaluation of all lossy image compression techniques can be taken with some

understanding of the human visual system.

Frequency sub-sampling

A common form of image compression is to transform image into the frequency

domain then either quantise data coefficients or simply discard small ones.

Although computation costs can be reduced by processing images as a series of

smaller sub-images, the transforms involved (such as the DCT that was already

ruled out above) are too expensive for use in the radio video link.

2.22

- chapter two Compression and Coding -

Colour quanusauon

Colour quantisation is a form of compression that is used in even the most basic of

digital image formats. Indeed it is used in all digital image formats other than so

called 'true colour'. This proliferation is for two reasons: the enormous amount of

redundancy in the colour information of digital images (especially simple graphics)

and the compatibility of displaying data that is compressed in colour format using

the hardware architecture of all but the most expensive digital image display

systems4 .

Opinions differ as to the ultimate colour resolution of the human visual system

[STOFFEL & MORELAND 81; BLINN 921, however, it is generally considered that under

normal conditions a grey scale resolution of 6 bpp or 7 bpp (i.e. 64 or 128 grey levels)

is sufficient to represent a smooth grey colour space on a cathode-ray tube (CRT)

display [Russ 95]. The standard greyscale resolution used in greyscale image storage

and manipulation is 8 bpp. This is probably due to its convenience when using

computer platforms that operate with 8, 16 and 32-bit words. In most applications

there is therefore potential for at least a reduction in colour resolution by an eighth

without a perceivable loss in image quality.

With quantisation, errors in the absolute value of individual pixels will always occur.

The most obvious and objectionable problem occurs, however, when there are too

few quantisation levels in an area of the colour space where a smooth gradient in

the source image needs to be represented. The result of this is that discrete steps

between the areas of different palette colours become visible, these are often

misinterpreted as contours in the image, this is the problem of false contouring.

The use of non-uniform quantisation steps and adaptive quantisation steps that

attempt to optimise themselves for the current image data can serve to alleviate this

problem, but there is always potential for it to occur if the number of quantisation

steps is severely limited.

This architecture is based around the use of a hardware 'frame buffer' to store complete display images. Instead of

storing the colour of each pixel to the resolution of the ouput device, frame buffer size is reduced by storing

references to a subset of the display device gamut in the form of a look-up table (or palette) [HECKBERT 821.

2.23

- chapter two Compression and Coding -

An alternative method of tackling the problem of false contouring is the use of

dithering (or halftoning) techniques. These techniques simulate the appearance of

the missing intermediate shades by dithering the available shades and exploiting

spatial integrating properties of the human visual system.

The drawbacks of halftoning techniques come both in their implementation costs

and in the high frequency noise they add. (The satisfaction of strict viewing

conditions can alleviate the patterning problems of the high frequency noise -

indeed a high enough resolution can make it imperceptible.)

One particular dithering technique stands out as being suitable for use in this

application. This is both because of the ease of its hardware implementation in and

its effectiveness at solving the false contouring problem. This technique is Error

Diffusion, and was first presented by Floyd & Steinberg in 1975 [FLOYD & STEINBERG 751.

It is arguably the simplest of the many dithering techniques that exist and, amongst

those which are adaptive, it is the most popular [uLIcHNEY88].

Vector quantisauon

An alternative to quantisation of the scalar value of individual pixels is the

quantisation of groups of pixels - a process referred to as vector quantisation (VQ)

[NASRABADI& KING 88; COSMAN 931. Images are broken down in sets of sub-images (input

vectors) which are then represented by the closest reproduction vectors from a code

book. Decoding vector quantised images is relatively simple as it is a lookup

operation; regenerating the image from its coded form and the original codebook.

Coding is more computationally intensive as it involves the task of searching

through the codebook for the best fit vector. This task is often reduced through the

use of incomplete searches. A common implementation of this is the use of carefully

arranged codebooks that use a tree-like structure to organise similar vectors.

Conclusions
Three aspects of coding are relevant to the radio video link: compression,

vulnerability to errors and coding for ease of reception.

2.24

- chapter two Compression and Coding -

Coding methods dedicated to error protection are expensive in terms of either

implementation cost or transmission efficiency. Their implementation in the radio

video link application conflicts with the aim of producing a sensor-transmitter

interface with a minimum of hardware.

A compression technique was sought which could satisfy the following criteria. It

had to achieve the desired compression ratio (c. 2:1), require only minimal hardware

and yet not produce compressed code so vulnerable to errors that a dedicated error

protection stage is required within the coder.

Colour space quantisation with error diffusion satisfies these requirements. The use

of error diffusion in image compression is novel, as it was originally developed to

allow the display of continuous tone images on a binary output device.

2.25

c h a p t e
	r e e

Algorithm Design d Evaluation

Chapter two has shown that colour quantisation with error diffusion is the data

coding approach most suited to the radio video link application. This chapter

explores the hardware implementation of algorithms based on this approach. After

examining the techniques involved, the general hardware architectures that are

required to implement algorithms are considered. Implementations of the

algorithms are then tailored in an attempt to reach an optimum balance between

compression and the costs in image quality, hardware complexity and increased

vulnerability of the data to transmission errors.

The evaluation of proposed hardware implementations is achieved through a

combination of objective and subjective evaluations of software simulations. A

structured simulation environment has been developed to facilitate software

implementation of the hardware-based algorithms. Within the software

environment, image processing can be performed on sample images using the

software algorithms. Processed image display and the output of some simple metrics

allow a degree of both subjective and objective evaluation.

In order to put the work into context some background information about the

history of halftoning is presented (with particular reference to error diffusion).

General factors of algorithms that are likely to affect implementation costs are

emphasised and the software simulation environment introduced before details of

particular algorithms are considered. Conclusions are drawn as to which algorithms

are most suitable for use in the coder of the video link.

3.1

- chapter three Algorithm Design and [valuation -

The coding approach
Colour space quantisation with error diffusion is deemed suitable for the radio video

link as it offers modest compression with minimal hardware. This is achievable

through two key factors: the data can be processed in an order close to the raster

scan order of the input (thus minimising buffering) and can be executed using

relatively simple computation. Unfortunately, quantisation with error diffusion

suffers from the visibility of the error diffusion patterning. There is a trade off

between the complexity of the diffusion scheme and the sophistication (thus

visibility) of the masking.

The problems of using colour space quantisation alone are discussed below. The use

of spatial dithering is then introduced as a solution to these problems. The

motivation behind selecting error diffusion (one of many dithering techniques) for

use in the radio video link is then explained. A brief history of the development of

error diffusion algorithms is given and the details of error diffusion processing

introduced.

Colour space quanhisation with error diffusion

Colour space quantisation is the use of a cruder description for the colour of each

image pixel. Although the technique can be applied to any image data, only

greyscale data is considered here as this is the colour space of the video transmitter

application.

Simple independent quantisation of the grey level of each pixel in an image yields

compression. By treating pixels independently, it exploits few of the redundancies

that can be found in image data. There is, however, one key advantage in this lack

of sophistication in that after compression, pixels remain independent in their

description. This limits the extent of damage caused by errors in communication of

the image data.

The disadvantages of quantisation become apparent when the colour space

resolution is so low that it is possible to distinguish between adjacent shades. This

3.2

- chapter three Algorithm Design and (valuation -

can lead to some image detail being lost and other detail being amplified. This

problem is generally referred to as 'false contouring'. Areas of image which have

slow, smooth changes in grey level (before quantisation) end up being represented

by a series of flat regions that meet at obvious steps - the 'contours'.

False contouring is exhibited in Figure 3.1 below. At the lower resolutions edges or

'contours' appear in areas of nearly flat grey where there is insufficient greyscale

resolution to represent smoothly transitions between perceptible shades.

Agure 3. 1 E.tamples of false contouring - the ç'rescaJe resolution of the images decreases from left
to right (6, 4, 3 & 2 bpp), Increasingly obvious contouring is exhibited as a result.

The perception of false contouring depends on a vast range of factors, including the

vision of the observer, the distance between the observer and the display, the spatial

resolution, contrast and size of the display, and the illumination of the display

surroundings. In addition, the visibility of contouring can be masked by large

amounts of detail in the image and the addition of a small amount of noise prior to

quantisation [GOODALL 511,[ROBERTS 62].

There is therefore no single greyscale resolution at which contouring becomes

apparent to all observers under all viewing conditions. Attempts have been made to

determine the limits at which contouring cannot be distinguished. Research has

shown that some greyscale images require sampling at more than 256 levels of grey

if contouring is not to occur [STOFFEL & MORELAND 81]. However, as stated earlier in

chapter two, it is generally accepted that, under most circumstances, human

observers can only distinguish between around 26 or 2 shades of grey when viewed

on a CRT [Russ 951. This maximum degree of greyscale resolution indicates that

sampling, storing and display of greyscale pixel values using 7 bits is adequate to

meet the needs of the human visual system. At this resolution it should not be

3.3

- chapter three Algorithm Design and [valuation -

possible for false contouring to occur as transitions between neighbouring greys

should be imperceptible.

Achieving the compression ratio required to marry the minimum image

specification with the capabilities of the cheaper radio links outlined in chapter one

through quantisation alone requires quantisation to a maximum of 4 bits/pixel (bpp).

This is unsatisfactory as false contouring is evident at this resolution under most

viewing conditions. Error diffusion, a form of spatial dithering, is a technique that

can be used to alleviate the problems of low resolution quantisation.

Spatial dithering background

The display of continuous tone images using insufficient colour resolution is not an

uncommon problem. The communication of most continuous tone imagery has to

overcome this barrier'. Consequently, the subject has been explored by numerous

parties interested in image display including artists, illustrators and printers and has

recently received attention from the image processing research world [LILICHNEY 871.

The solution is to use spatial patterns of the available shades to create the illusion of

missing intermediate shades. Artists create these patterns manually, often

combining clues about the texture of the subject into the shading patterns. Two

examples of these manual techniques are shown in Figure 3.2.

In order to automate the creation of such patterns processing techniques (known as

spatial dithering or haiftoning algorithms) have been developed. Examples of the

output of some of these techniques are shown later in Figure 3.3.

Two exceptions are the use of photographs and dye sublimation printing.

3.4

(d) Ib)

- chapter three Algorithm Design and Evaluation -

Figure 3.2 Examples of manual shading, (a) an illustration of Thomas Paine [SUMMERS 951 and (b) a
sect/on of 'St//I Life intb a Street' IEScHER 371

The success of these shading and dithering techniques relies on the spatial

integrating properties of the human visual system. There are two main contributing

factors. Firstly, the spatial resolution of the human eye is finite, if this resolution is

sufficiently exceeded by the dither pattern then results indistinguishable from a

continuous tone image can be produced. Secondly, even when the resolution is low

enough that individual pixels of the dither pattern can be resolved, features of the

human visual system mean that a sensation of smooth colour can still be perceived

[MULLIGAN 93; CHAU 90].

Particular dithering applications

Most dithering techniques are aimed at rendering continuous tone greyscale images

using bi-level output devices (e.g. printing with black ink on white paper).

However, the concept of dithering to produce intermediate shades is equally

applicable to any situation where the colour resolution of the display device is less

than that of the image to be displayed. As such, the concept of dithering, and many

of its techniques, have been applied in other situations including the printing of full

2 Based on the physiology of the human eye, there is a limit to the spatial resolution of the human visual system.

This limit has been estimated to be at approximately 128 cycles per degree subtended [SAKRISON 771, although by

50 cycles per degree the response is almost zero ICHAU 901.

3.5

(a) (b) (CI 	 (d)

,.....
•.4••. •

- chapter three Algorithm Design and Evaluation -

colour images using cyan, yellow, magenta and black ink (known as process colour)

and attempts to display continuous tone imagery using modest colour palettes in

computer displays [HECKBERT 82].

Use of dithering with colour space quantisation in the video link application is

slightly unusual in that the output device itself is not the limiting factor. Rather, it is

the intermediate form used to represent the image data that is limited in resolution

(in order to lower its bandwidth). Yet the problem remains one of having

insufficient colour space resolution to display continuous tone imagery.

Alternative dithering aloorithn,s

A number of dithering algorithms have been developed. They differ both in the

ways they can be implemented and in the style of pattern they produce. The

techniques are generally classified according to two features: whether they operate

on the data using fixed or adaptive techniques (fixed techniques correspond to

ordered dithers), and whether the output pattern they produce is made up of

dispersed or clustered dots. A brief introduction to the more common dithering

algorithms is given below, more exhaustive surveys and detailed explanations can

be found in [ULICI-INEY 871 and [JARV!S ILIDICE & NINKE 761.

Figure 3.3 Examples of common dithering techniques: The first Image, (a), shows the 8 bpp
original, the rest are sub-sampled and dithered versions that have been magnified to show
the dither patterns dearly -. Image (b) was produced using a clustered-dot ordered dither,
(c) an irregular dispersed-dot dither (Floyd-Steinberg error diffusion), and (d) a dispersed-
dot ordered dither.

3 A this figure is intended to demonstrate dither patterns, a filter was used to blur the dither images. This is

intended to compensate for the fact the images are shown at approx. 100 dpi but with the size of dither pattern used

they would normally be printed at 600 dpi. Like the original, the blurred images have also been rendered by the

rateriser of the printer driver (which uses a clustered-dot ordered dither with an output resolution of 600 dpi).

3.6

- chapter three Algorithm Design and Evaluation -

Figure 3.3 shows examples of the output of three of the most commonly used

algorithms. Both (b) and (d) were produced by ordered dithering, a process also

referred to as both haiftoning and screening. All ordered dithers produce an

inherently structured output. The pattern and scale of the structure is dependent on

the size and pattern of the halftone cell used. Clustered-ordered dithering, (seen in

Figure 3.3(b)), where the printed dots are clustered together, is the technique most

commonly used in publishing. This prevalence is mainly due to features of the most

commonly employed printing technologies (such as offset lithography and laser

printing). The mechanics of the processes mean that printed dots below a certain

size cannot be produced, however, above this fundamental size the size of each

printed dot can normally be controlled with a high degree of precision. These

capabilities lend themselves to the reproduction of clustered-dot output. The spatial

resolution of the technologies (anywhere between 300 to 2400 dpi) means that at

normal viewing distances the spatial frequency of the structured patterning

produced by ordered dithers is sufficiently high not to be distracting.

Dispersed dithers, that produce output like the example shown in Figure 3.3(c) and

(d), tend to be used with hard copy or display devices with low spatial resolutions,

where pixels are non-overlapping and of fixed size (such as fax machines and the

graphics displays used with computers). Irregular dithering techniques are designed

to produce output with less obvious structure than ordered methods - often

described as being able to simulate higher colour resolution without sacrificing

spatial resolution [CHEN 92]. Although clustered irregular dithers have been

developed [KNUTH 87], irregular dithers are much more commonly implemented as

dispersed dithers as they tend to be employed where low spatial resolution allows

dither patterning in the output to be resolved.

In addition to the different dither patterns that the various algorithms produce,

differences in the way the image pixels need to be processed affect the architectures

that can be used to implement the algorithms. The main factor that differentiates the

possible implementations is whether an algorithm is ordered or irregular. In ordered

dithers the processing of each pixel is essentially independent. This means that

during execution of the algorithm any number of the pixels can be processed in

3.7

- chapter three Algorithm Design and [valuation -

parallel, thus allowing a trade off between the speed of processing and the amount

of hardware employed. In contrast, irregular dithers are adaptive neighbourhood

processes. This means that the behaviour at each pixel can be affected by the value

of neighbouring pixels, thus making the algorithms inherently serial.

The factors that affect how suitable different forms of dithering are to a particular

application therefore include the suitability of the type of dither pattern produced

(both in terms of the capabilities of the output device, and the significance of the

pattern to the observer) and also the complication of the processing and any

differences in possible implementation architectures.

Error diffusion

Chapter two suggests that error diffusion (a form of irregular dispersed dithering) is

the most suitable dithering technique to be used in the transmitter of the video link

application in order to alleviate the problems of employing colour space

quantisation.

The low spatial resolution of the video transmitter images and the use of a non-

overlapping pixel graphics display both point to the adoption of a dispersed dither.

Error diffusion was chosen as, amongst dithering algorithms, error diffusion is

considered to offer good detail rendition [STOFFEL & MORELAND 81 1. In most

circumstances it produces dithering patterns with an attractively low-structure

content [ULICHNEY 88]. It is not, however, without problems. The process causes an

inherent spatial shift in image energy. Combined with the serial nature of common

implementations this leads to slight movement of details such as edges. A second

problem it shares in common with many neighbourhood dithers is that there is no

lower limit to the frequency content of the patterning it produces [STOFFEL &

MORELAND 811. Despite these problems error diffusion is generally considered to give

the best results at low spatial resolution and is the most popular neighbourhood

dithering algorithm [ULICHNEY 881.

Although normally used with still images, the order of pixel processing in typical

implementations of error diffusion is particularly suited to the raster, scan order of

video data. Applying the algorithm to image sequences introduces a temporal

3.8

- chapter three Algorithm Design and Evaluation -

element to the dither patterning. Studies into the intentional use of dither patterns

that change with time in the display of still images have shown promising results

[MULLIGAN 93], however, it was not known exactly how the addition of a temporal

element to an algorithm intended for spatial diffusion would affect the degree to

which the dither patterning it produces would distract the observer. The

appearance of high or low temporal frequency content in the patterning could

either serve to mask it or make it more obvious.

History of error diffusion

Error diffusion was first proposed in 1975 as a method of rendering greyscale images

using bi-level output devices [FLOYD & STEINBERG 75]. More generally, it can be

regarded as a way of minimising the visible effects of any image data quantisation.

The seminal work has also been attributed to Schroeder [STOFFEL & MORELAND 81;

SCHROEDER 69].

Many alternative diffusion algorithms have been proposed since. Some have

advocated the use of quite different diffusion schemes [KNUTH 87] and the use of

alternative rasters [WI7TEN & NEAL 82; VELHO & GOMES 91]. Alternative diffusion filters that

trade off aspects of the diffusion patterning against each other and against

computational expense have also been proposed (e.g. [JARvISIUDICE &NINKE 761).

Ulichney reported on the success of a perturbed version of Floyd & Steinberg's filter

[ULICHNEY 88]. He describes the dither patterns produced as having the characteristics

of 'blue noise'. Part of his work was later criticised by Bernard who suggested

relaxing the 'dc constraint' normally imposed in error diffusion to improve the

frequency content of the diffusion pattern [BERNARD 92]. An ordered dither with the

same blue noise property has also been suggested [MITSA 921.

Error diffusion mechanics

Error diffusion is a process of error feedback that ensures that neighbouring

quantisation errors tend to cancel. Individual quantisation errors are divided up and

added to (or diffused over) a number of as-yet unquantised pixels, thus influencing

future output in a way so as to cancel the current error. Errors are shared out

3.9

- chapter three Algorithm Design and Evaluation -

amongst the as yet unquantised pixels according to a set of weights generally

referred to as the diffusion filter. Error diffusion can be considered as a process that

shifts quantisation noise from lower to higher spatial frequencies.

The importance of viewing conditions

As mentioned above, in common with all methods of dithering, the masking of the

higher frequency noise produced by error diffusion and thus the 'illusion' of

missing shades relies on assumptions about the frequency characteristics of the

human visual system. The degree to which the illusion succeeds is dependent on

viewing conditions. The most important of these are the perceived linearity of the

display system and the perceived pixel size. Error energy is generally diffused

assuming a linear data space, thus any non-linearity in the display mechanism

affects the success of the error cancellation process. Perceived pixel size affects the

visibility of the dither patterning, due to both the finite spatial resolution of the

human visual system and the nature of its sensitivity to different spatial frequencies

[PEARSON 751.

Summary

Error diffusion is suitable for use in the radio video link because, even at low spatial

resolutions, it is successful at masking the problems of greyscale quantisation. The

use of a haiftoning algorithm for compression is novel as their normal application is

in the rendering of still images for bi-level output. The ability of the video link to

support the bandwidth of a modest greyscale, together with the fact that it transmits

moving images, permits the use of less sophisticated diffusion algorithms.

Considerations for minimal hardware

The minimal hardware requirement of this project gives rise to two major areas of

concern when evaluating the implementation of the algorithms. Firstly, the

complexity of the computation and control logic required. And secondly, the

3.10

- chapter three Algorithm Design and Evaluation -

amount of memory required both to implement the algorithm and to marry the

resulting coder to the remainder of the system.

The complexity of the algorithm will obviously have a direct influence over the

amount of computational hardware required. In particular the use of divisions and

multiplications should be avoided (unless by powers of two). The exploitation of

significant parallelism is unlikely to be of benefit unless processing data in parallel

reduces the buffering needs of integrating the coder into the overall system.

The amount of memory that is required by the coder is dependent on two factors:

any general data buffering required to manage the order and speed with which data

is moved in and out of the coder and any requirements of the algorithm for

temporary storage of partial results. The amount of general buffering at the input

and output of the coder depends on how far the order of processing required by the

coder differs from that of the raster sequence produced by the video sensor. Using a

raster processing order for the diffusion processors would obviously minimise this

requirement. The use of memory for partial results is dependent on the complexity

of the algorithm. In terms of the error diffusion algorithms, the number of pixel

cycles over which any partial result will need to be stored (and therefore the

number that need to be stored over any one pixel cycle) will depend on the size of

the diffusion filter.

A simple algorithm that processes data in a conventional raster scan order is

therefore desirable.

Algorithm simulation environment
To meet the testing and evaluation needs of the design and evaluation process a

software simulation environment has been developed. Within this environment

coding schemes can be applied to live video input, standard test sequences or test

still images. In addition to displaying both the source images and the results (for

subjective comparison) a number of simple analytical tools have been included.

These tools both aid further subjective analysis of the results and offer some simple

objective meters. The tools can be used to check that the implementation of the

3.11

- chapter three Algorithm Design and Evaluation -

algorithm is bug free, that the algorithm performs as expected and to allow

comparison of alternative algorithms. The tools comprise: differencing between

source and processed images, squared differencing, differencing on

blurred/softened images, calculation of grey level frequency histograms and

calculation of mean grey level.

Live video input is achieved using a video sensor and a PCMCIA frame grabber.

Test images can be read in from disk. To enable the direct comparison of algorithms,

up to three types of processing and analysis can be performed on the same source

with the results displayed simultaneously.

Design overview

To simulate the effect of the coding algorithms there are four main tasks required of

the software:

• obtaining source images

• application of coding and analytical algorithms

• image display

• servicing user input

A flow chart of the main loop of the simulation software is shown in Figure 3.4.

Whilst running, the software continually executes this loop.

ørab
iriace

start)IS

 pro ces s I 	 \ES
selected? 	 No. 	1111a ~je

NO

NO 	
end

Figure 3.4 A flow chart representation of the main simulation loop

The different image processing and display routines have been written and are

called using a modular architecture that allows the simple inclusion of further

processing functions and analytical tools as they are developed.

3.12

- chapter three Algorithm Design and [valuation -

Image data is held in memory in a set of 2-dimensional arrays. This set of arrays (the

frame store) is central to the flow of image data around the program. This flow is

shown schematically in Figure 3.5. Access to the frame store is the only feature that

the image capture, image processing and image display parts of the software share.

771

rtii (rabn

	

code 	 analyt L'

r hard spIay 	 .dpIay

Dde functions
frame
store

disk 	\ Cole 	 code 	 _ofhj

- -.. --.---- 	 -- — -

'".' 	 -

soft ~ am

Figure 3.5 A schematic of the data flow within the simulation software.

Source images are obtained either live from a video sensor (connected through a PC

Card (PCMCIA) frame grabber) or loaded from file. All processing and analysis is

then performed in the frame store and from there the images are transferred to

display memory.

Up to three algorithms can run concurrently together with one analytical tool per

algorithm. This triple replication explains the layout of the graphical display which

is shown in Figure 3.6. Each of the vertical columns contains a processed output

window, an analysis window and a status window (top to bottom), details of the

currently selected image source and of file activity are given in the panel on the left.

3.13

- chapter three Algorithm Design and [valuation -

figure 3.6 The DOS graphics display.

Images can be saved to the hard disk either as binary files (the format used for

input) or as ASCII files. Grey level frequency histograms can also be saved as ASCII

files.

The coding functions

The various image coding algorithms are implemented in software as discrete

functions. Each can be switched in and out as required. All of the coding functions

access the image data using pointers that are moved through the image data in

raster scan order, thus emulating the on-the-fly access that the hardware

implementations would have. Limiting access in this way means that any buffering

overheads of the algorithm are immediately obvious. On initiation, each coder

function is passed pointers to the memory location of the first pixel of the source

image and the memory location where the first pixel of the processed image should

be written. Additional parameters (such as desired output pixel depth) are passed as

required.

Although the information content of the image data is reduced during processing by

the coding functions, the software stops short of arranging the data to produce truly

compressed output. This step was seen as an unnecessary complication as the

software was intended purely for evaluation of algorithms and not to be used for

3.14

- chapter three Algorithm Design and Evaluation -

compression itself. Each coded frame occupies the same amount of memory as the

original, however, the number of different grey levels always corresponds to the

current resolution (in terms of bits per pixel).

Analytical functions

The analytical functions in the software include the ability to display the grey level

histogram of a processed image, along with the image mean. This meter gives

instant clarification of which grey levels are used in the output, confirming the

output resolution, whether pre-scaling is being employed and with adaptive

algorithms how the adaptation is changing. The display of the mean level is a

convenient indicator of errors in algorithm implementations (as few of them should

alter the image mean significantly). A log scale is used for the histogram display to

cope with the wide dynamic range (0 to 65535 displayed using 256 steps). Another of

the meters is the ability to generate a difference image (the pixel-by-pixel difference

between source and processed images). This shows where the processing errors are

most significant. Where errors are small enough, squared difference can also be

employed. A smoothed difference image can be generated to display the difference

between error diffusion output and the source without this being dominated by the

pattern produced by the error diffusion pattern. This calculates the difference

between versions of source and processed image that have been smoothed using a 5

by 5 smoothing filter.

Tailoring of the algorithm
The general architecture of quantisation with error diffusion is shown schematically

in Figure 3.7. It consists of two functional blocks: the quantiser and the diffuser. Data

enters the system at the diffuser, where past quantisation errors are added. It then

passes out through the quantiser. A feedback path supplies the diffuser with the

error from each quantisation.

3.15

- chapter three Algorithm Design and Evaluation -

Figure 3.7 A schematic of the general quanilse, with diffuser architecture. The system blocks that
would neighbour the diffusing quantiser are shown in grey.

This general data flow is common to all implementations of error diffusion. The

exact behaviour of the diffuser and quantiser are, however, dependent on details

particular to the implementation. These can be altered to trade off issues of

complexity, cost and performance.

As well as proving the overall validity of error diffusion as an approach, this section

considers decisions about design flexibility. The flexibility issues can be broken into

two: those concerning the quantiser and those relating to the filter used in the error

diffuser. These are discussed in that order below.

Quantiser design

The job of a quantiser is to approximate an input signal, producing an output that

describes the input more crudely but can either be represented more efficiently, or

in the case of analogue-to-digital conversion, more robustly. Whether quantising to

convert a signal from analogue to digital or simply to reduce the number of bits used

to represent a digital one, the process is executed by comparing the input to a

number of threshold levels and assigning it an output value depending on the

results of these comparisons.

In the error diffusion system the quantiser is required to reduce the precision used

to describe the greyscale of each pixel. The input to the quantiser is therefore a

digital signal. Alternative quantiser implementations differ in terms of simple factors

such as their speed of operation, their complexity, and also in more subtle features

of operation such as preserving the dc component of the input signal. Before going

on to consider their relevance to the error diffusion system, the merits of alternative

implementations are introduced and discussed below.

3.16

- chapter three Algorithm Design and Evaluation -

Implementation options

Hardware architectures used for analogue-to-digital converters can also be used to

implement digital quantisers. The most applicable of these architectures are flash and

single-slope (for analogue-to-digital versions see [HoRowrrz & HILL 90]). Schematics of

the computational hardware required to implement these architectures are shown

in Figure 3.8.

r comparator
array smOte N threshold

Input

el
ut

subtractor

quantlsatlon
thresholds result

encoding quantised latch
loIc pixel

output

control

pixel
ul IJUt ._bJ

I counter
quantlsed

pixel output

(a) (b)

Figure 3.8 Schematic implementations of quantisers using architectures classically assodated with
analogue to digital conversion; (a) flash, and (b) single-slope.

The single-slope quantiser requires a full subtracter, the flash simply requires a set of

comparators (which can be implemented using combinatorial logic equivalent to

that used to generate the MSB of a hardware subtracter) and some simple

combinatorial logic to combine the resulting comparisons.

Many of the pros and cons of these implementations stay true to their analogue

counterparts. The flash architecture is expensive in terms of computational

hardware (a quantiser with an output resolution of n bits requires (2"-1)

comparators), however the processing is simple to control and fast. It consists of one

set of parallel comparisons followed by combination of the results. The single-slope

converter uses less hardware (only one subtracter), however, the control logic is

more complicated and, as the processing comprises a succession of subtraction

operations, the conversion time is at best proportional to the output resolution.

In addition to these general architectures it is possible to achieve quantisation of a

digital signal by far more hardware-minimal means. This approach uses a simple

binary truncation operation where the output is simply the input signal after the

3.17

- chapter three Algorithm Design and Evaluation -

least significant bits have been discarded. This operation can be realised without any

hardware and thus incurs no computational delay.

The limitation of using binary truncation is that there can be no flexibility in the

position of the quantisation thresholds. They are fixed and must be at regular binary

intervals. In contrast, the thresholds of the flash converter are arbitrary and can be

changed on-the-fly. The single-slope architecture can be programmed to use

different steps for each subtraction (e.g. by presenting different thresholds to the

subtracter using a multiplexer).

There are two key benefits of having flexibility in threshold position. The first is that

the use of unevenly spaced thresholds can be used to combine the process of

quantisation with the application of a scaling function (such as gamma correction) at

no extra cost. The second is the use of a technique known as adaptive quantisation.

This is only possible if the thresholds are programmable. A brief introduction to

adaptive quantisation is given below.

Adaptive quantisation

Also referred to as 'tailored quantisation', adaptive quantisation is a variation on

standard quantisation where the position of the quantisation thresholds are varied

on the basis of some statistics of the current data set. Threshold positions are altered

such that some error metric is reduced. Its application in greyscale quantisation

generally centres around moving thresholds so that they are more closely spaced in

the most densely used parts of the colour space, so reducing a metric such as MSE.

The technique is particularly successful when the population density of the

greyscale is far from flat. Quantisation of such a data set using fixed levels could

result in many output 'bins' not being used and others containing

disproportionately high numbers of image pixels. Examples of the quantisation of

such an image (together with greyscale frequency histograms of the resulting

images) are shown using both uniform and adaptive thresholds in Figure 3.9.

3.18

CD
0

v 0.

0.0

-"RON

(a)

10

ii ii

(D

CD
0

D 0.
CD

0.0

- chapter three Algorithm Design and Evaluation -

0 	63 	127 	191 	255 	 0 	63 	127 	191 	255
greyscale value 	 greyscale value

(d) 	 (e)

Figure 3.9 A comparison of uniform and adaptive quantisatlon; the 8bpp original image, (b) Is
shown in the centre of two versions that have been quantised to 2 bpp, the image to the
left 	was created using uniform quantisation, the image on the right, (ci, using an
adaptive quantisation scheme. Below in (d) and (e) the sparse greyscale frequency
histograms of the quantised images are shown. These are both superimposed on the much
more detailed histogram of the original image (b). The histogram of (a) is shown in (d), and
that of (c) in (e).

A form of adaptive quantisation is implemented as part of the software simulation,

the optimised results in Figure 3.9 come from this work. The algorithm used is

essentially a one-dimensional implementation of Heckbert's median-cut algorithm

[HECKBERT82]. This represents only one example of optimisation, however, it shares

the same three processing steps required of any algorithm: gathering statistics,

calculating thresholds that, based on the statistics, minimise some error metric, then

calculating representative output colours to be used when decoding the output. In

the implemented algorithm this translates to gathering a full grey-level histogram,

then, by making one pass through the histogram, defining threshold levels

wherever the number of pixels between the last defined threshold and the current

position within the histogram reach the average number of pixels per output code.

3.19

- chapter three Algorithm Design and [valuation -

The representative output colour for each code is then calculated as the mean of all

pixels represented by that code.

Relevance to the error diffuser in a video transmitter

In order to determine whether, in the context of the video transmitter application,

the added functionality offered by the more complicated quantiser architectures

justifies their hardware expense, it is necessary to consider the relevance of either

applying a scaling function or using adaptive quantisation together with error

diffusion.

The most likely scaling function that would be applied to the image data prior to

quantisation is to correct for non-linearity. This is directly relevant to error diffusion,

as its success relies on the perceived linearity of the output data space (in order that

the linear diffusion of pixel energy creates combinations of pixels that approximate

the intended intermediate shade accurately). Non-linearities both in the sensor or

display system can affect this. The ability to apply a non-linear scaling function prior

to quantisation could be used to apply a combination of functions to correct for both

display system non-linearity (often referred to as gamma correction) and to cancel

non-lineanties in the sensor or digitisation system. Two factors, however, make the

benefits of such correction either expensive or doubtful.

The first is the near-linearity of the proposed image sensor and ADC combination.

Without calibration of individual units, any function to correct this distortion would

have little effect. Calibration would itself be an expensive step during production. It

would mean that the correction function would have to be programmable, making it

more expensive to implement.

The second factor is the dependence of perceived display linearity on many factors

other than the linearity of the display itself 5. Successful application of the correct

It is important that it is the perceived linearity of the display luminance that is considered as human perception of

brightness is non-linear - Weber's Law [PEARSON 751

5 Factors such as ambient light level and the shade of the surround of a display affect perceived linearity [PEARSON

75].

3.20

- chapter three Algorithm Design and Evaluation -

gamma function to make the display appear linear would therefore necessitate the

careful control over viewing conditions (restricting the application). In addition to

the practicalities of correcting for non-linearity, such a level of sophistication does

not equate with the level of image fidelity implied by the remainder of the system

(c.f. the image specification).

A stumbling block to the use of adaptive quantisation in the video transmitter

application is its expense in terms both of computation and memory. Even with the

simplest of error metrics, threshold optimisation is itself both non-trivial and

requires a significant amount of memory. In the median-cut example compilation of

the greylevel histogram for the 64 pixel square, 6 bpp minimum image specification

image alone requires 256 Kbytes. At a cost in the precision of the optimisation, this

memory requirement could be reduced by relaxing the accuracy of the statistics.

However, even crude reduction both in sampling frequency (to say one in every 4

pixels) and grey-level resolution (to consider only the top 4 bits) still requires a

significant amount of memory (16 Kbytes). A further overhead is that the palette of

representative colours used to decode the quantiser output must be communicated

to the receiver if the image data is to be interpreted correctly.

Iteration is one way to minimise the computation complexity of adaptive

quantisation for use in application such as the video transmitter application. Instead

of calculating an optimum set of thresholds for each frame, a small number of

adjustments would be made per iteration, say the movement of one threshold every

frame. This vastly reduces the size of the optimisation calculation per frame. An

option for reducing memory costs is offered by simple statistical metrics (such as

Heckberts) which permit gathering of statistics after quantisation where the data

resolution is lower. Even with these compromises, however, some statistics still need

to be gathered, some degree of threshold calculation has to be performed and at

least one representative output code needs to be calculated and communicated to

the decoder for each threshold move.

In terms of performance, Heckbert's median-cut optimisation works well when the

image gamut is much smaller than the colour space. It falls down, however, in

sparse areas of the colour space where input colours are lost which are deemed

3.21

- chapter three Algorithm Design and Evaluation -

statistically insignificant but define image details that are important to object

recognition (such as spectral reflections). This problem is exacerbated at the low

output resolutions considered in this application where the level of colour use that

defines statistical significance is high. The problem here is that the error metric does

not represent all factors of what is regarded as optimum quantisation by a human

observer, a failing recognised by Heckbert himself.

Error diffusion can go some way to solving this problem as it can approximate

missing intermediate shades. However, the requirements of error diffusion further

complicate the optimisation problem, as for it to be successful, it is not the distance

from each input code to the nearest output code that matters, but some combination

of the distances from each input code to both the nearest codes below and above. In

addition, in an error diffusion system, the input to the quantiser is not the raw pixel

stream, but the pixel after diffusion. Thus it is the statistics of this modified data set

that are important, not simply those of the raw data. Definition of a metric that can

be used in optimising thresholds to satisfy a human observer after error diffusion is

a problem that requires further research.

In summary, the benefits of applying a non-linear scaling function prior to

quantisation are slight, and the advantage of allowing adaptive quantisation is ruled

out by the high cost of its implementation. In addition, without the definition of a

more suitable error metric, the benefits of using adaptive quantisation with error

diffusion at very low output resolution are questionable. In the context of an error

diffusion system and the video transmitter application, the inflexibility of the binary

truncation quantiser is therefore not an issue. In fact, there is a further benefit of the

binary truncator in an error diffusion system in that the quantisation error term (that

needs to be generated for feedback to the diffuser (see Figure 3.7)) is available at no

cost. It is simply the least significant bits of the input - those that do not form part of

the quantised output.

Increased dynamic range problem

During the software simulation, an additional complication of the behaviour

expected of a quantiser in error diffusion was discovered. The problem is that if the

3.22

- chapter three Algorithm Design and (valuation -

raw pixel stream input to the diffusion system has a dynamic range that is a round

power of 2 then the range of the input signal to the quantiser is not. This has

ramifications upon the suitability of the binary truncating quantiser. Its fixed

thresholds are only evenly spaced throughout the input range if that range is a

round power of 2.

The difference between the dynamic ranges of the input pixel stream and the input

to the quantiser is due to the summing action of the diffuser. The range of the input

to the quantiser is in fact equal to that of the raw pixel input signal plus the

magnitude of the largest possible error that is fed back from the quantiser. The

magnitude of the largest possible error is determined by the spacing of the quantiser

thresholds.

Given the ability to set arbitrary thresholds, the problem could be solved by

increasing the dynamic range of the quantiser and spacing the thresholds

accordingly. The use of arbitrary thresholds implies a cost in hardware

implementation, however, as outlined above. The only way to allow the use of the

binary truncator is to ensure that the input signal to the quantiser has a dynamic

range that is a round power of 2. There are two ways this can be done: clip the input

to the quantiser or apply digital attenuation to the input signal such that its

resulting dynamic range plus that of the largest error is a round power of 2.

Clipping at the quantiser input is a relatively cheap option to implement in

hardware as it translates to the logical OR-ing of all the bits of the diffuser output

with a carry-flag from the diffusion sum. Use of a clip would, however, lead to a

non-linear distortion as pixel energy is only lost in bright areas of images. Where the

output greyscale resolution is relatively high (above 5 bpp) it may be hard to spot

the distortion, as the loss is such a small component of the full dynamic range. As

the resolution drops, however, it becomes increasingly significant.

The second option suggested above is to digitally apply attenuation to scale the

input signal. Initially this sounds like an expensive option to implement as division

is typically an expensive hardware operation. However, it turns out that all the

divisions that are required can be performed using a binary shift and subtract

operation. This solution can therefore be performed using a single subtracter. This

3.23

- chapter three Algorithm Design and Evaluation -

means that the binary truncation quantiser can still be employed at lower cost than

the more sophisticated quantisers.

As the scaling operation is performed before entering the actual error diffusion

system it is referred to in the remainder of the thesis as pre-scaling. Figure 3.10

shows the position of the prescaler in the rest of the error diffusion system.

pixel stream 	

In'

plel

OU

P scaler

quIOn 1plel
error 	

Ied

Figure 3.10 The position of the pie-scaler operation with respect to the error diffuser. (lilt were
placed after the diffuser, error terms would pass through the scaler twIce and would thus
be reduced in significance.)

The dependence of the increase in dynamic range upon the spacing of the

quantisation thresholds has another implication on the use of adaptive quantisation

with error diffusion. If such a system is to be implemented without the non-linear

problem of clipping the quantiser input, either the quantiser will have to be

designed to cope with an input of nearly twice the dynamic range as the raw pixel

data or some limitations will have to be imposed on the spacing of the thresholds so

as to guarantee a lower signal range.

Summary

The sophistication of the thresholds that a quantiser can use determines both the

possible quantising action it can offer and the ways in which it can be implemented

in hardware.

In selecting the type of quantiser to be used in the error diffusion algorithms, both

the different behaviours the alternative architectures offer and the costs of their

hardware implementations are considered.

After discounting the requirement for adaptive quantisation or application of a non-

linear scaling function in the radio video link application, a binary truncation

behaviour is chosen for the quantiser as it satisfies the requirements of the error

diffusion algorithms and it allows both the quantisation operation and error-term

calculation to be implemented without hardware expense.

3.24

- chapter three Algorithm Design and Evaluation -

The variable output resolution of the test system makes the inclusion of a variable

prescaler stage necessary to maintain the dynamic range of the quantiser input

constant at a round power of 2. In a fixed resolution application, set-up of the ADC

could be used to ensure the correct input signal dynamic range instead.

Diffusion filter design

The diffusion filter is critical to the nature of the patterning that an error diffusion

system produces. The measure of a filter's success is the degree to which it can

produce a dither pattern that achieves the illusion of continuous tone output, under

all input conditions, without masking image detail. As error diffusion tends to be

used in conditions where the individual image pixels can be resolved it is

particularly important that the diffusion patterning itself should have as little

'interesting' structure as possible, so as not to distract the observer from the detail of

image.

Diffusion filters vary in the number of filter elements they contain (their size), the

spatial arrangement of the elements (their shape), the way the quantisation errors

are divided amongst the filter elements and in the order that the data is presented to

the filter. These flexibilities relate to design decisions that trade off performance

factors against each other and against the filter implementation costs. Processing

order, filter size, filter shape and filter weight flexibilities are considered below.

Processing order

The fact that error diffusion is a neighbourhood process (and therefore inherently

sequential in nature) places constraints upon the shape of the diffusion filter. For a

pixel location to be a valid candidate for a filter element it must be as yet

unquantised. Thus, the raster order in which the data is processed partly defines the

filter shape.

6 I contrast to a point process, neighbouring pixels are not processed independently in a neighbourhood process.

3.25

- chapter three Algorithm Design and Evaluation -

Processing in conventional progressive raster order is generally favoured as this

mimics the order in which image data is normally acquired, stored and otherwise

manipulated (thus minimising buffering/re-ordering). The spatial polarity of the

conventional raster does, however, have the unfortunate consequence of forcing a

directional structure on the diffusion process. This has two results; a tendency for

directional qualities to appear in the diffusion patterning produced and a shift of

image detail in the directions that the raster progresses. This second phenomenon is

often referred to as phase error [STOFFEL & MORELAND 811.

These directional problems can be alleviated through the use of alternative rasters.

The drawback of using a non-standard processing order is incompatibility with any

conventional raster components of the system. Re-ordering the pixels implies

buffering. The further the alternative raster deviates from the conventional order

used by other parts of the system, the higher the buffering overhead.

A common alternative processing order is the serpentine raster. The order that

image lines are processed in a serpentine raster is the same as a conventional

progressive raster. Within successive lines, however, pixel processing alternates

between left-to-right and right-to-left. Serpentine raster is generally used to mask

horizontal bias, but it suffers from the same vertical bias as the conventional raster.

The use of more radical rasters has also been investigated, in particular, the use of a

special class of fractal functions known as 'space-filling curves' which have a

localised pseudo-random behaviour [WITTEN & NEAL 82; VELHO & GOMES 91]. Space-filling

curves can be used to remove most of the visibly directional quantities introduced

by the raster, however the introduction of a random element.to the processing

generates low frequency noise in the diffusion output. Unlike diffusion with a more

conventional raster, this noise cannot be 'tuned out' by altering the diffusion filter

because the raster order lacks the deterministic qualities necessary.

Other attempts to escape from the restrictions of the raster order include the use of

iterative diffusion functions [MULLIGAN &AHUMADA 92]. These typically make several

passes over the input data set, allowing them to use arbitrary filter element

positions. Iterative diffusion permits tuning of the filter to perform in a certain

3.26

- chapter three Algorithm Design and Evaluation -

manner. The disadvantages are the increased amount of processing necessary and

the very high memory overheads.

The implied memory overheads of alternative serial processing orders and iterative

processing make these options unattractive for use in the radio video link

application. Serial processing of the data in a conventional raster scan order carries

no such overhead, however, there is a cost as it forces a directional bias on the

diffusion ability of the filter.

Filter size

The size of a diffusion filter affects both the possible diffusion patterns it can

generate and the amount of hardware that is required to implement it. As each filter

element implies both computational hardware and error storage, the distance

between elements (with respect to the order of the incoming data stream)

determines the amount of memory required to store errors (from when they are

generated to when they are diffused). Thus the two factors of size that influence the

amount of hardware required are the number of filter elements and how they are

arranged spatially. These factors are also largely responsible for affecting the

possible diffusion patterns produced by the filter. The most important of these

features are the success of the filter in minimising the area over which errors cancel

and the degree to which the patterns they produce contain a potentially distracting

structure.

In general, four element filters (such as that of Floyd and Steinberg) are used.

However, larger filters have been proposed in attempts to alleviate patterning

problems (in particular the 12 element filter of Jarvis et al. [JARvIs JUDICE & NINKE 76]).

The larger the filter the more sophisticated the options for diffusion patterns,

however, the further apart the elements the more the error energy is spread from its

source. Energy being spread predominantly in one direction is undesirable, it leads

to a phenomenon referred to as phase shift - where sharp details such as edges tend

to move in one direction within the image [STOFFEL & MORELAND 81].

Extension of error diffusion from the normal 2-dimensional spatial diffusion into 3

dimensions is possible by including a temporal component. This can be achieved by

3.27

- chapter three Algorithm Design and Evaluation -

using a 3-dimensional filter that propagates errors not only to adjacent pixels in the

same frame, but also to pixels into future frames. Mulligan proposed the use of

spatio-temporal diffusion filters for the display of static images using dynamic

displays [MULLIGAN 931. He reported advantages of increased greyscale resolution

(through increased averaging) and improved perceptual segregation of picture and

noise due to their separation in different temporal bands. Temporal dithering

exploits the insensitivity of the human visual system to high frequency temporal

patterns in much the same way that spatial dithering exploits high spatial frequency

pattern insensitivity. Research has shown marked similarities between the spatial

and temporal contrast sensitivity functions of the human visual system [ROBSON 66;

PEARSON 751.

When used on image sequences there is an incidental temporal component to the

diffusion pattern produced by even a 2 dimensional filter. This is caused by the

accidental animation of the diffusion pattern by even the smallest image changes or

by any noise in the image data. Unfortunately the controlled use of temporal

diffusion through the use of a temporal filter requires buffering the errors from an

entire frame of image data. This overhead is too large for the radio video link

application, thus temporal filters have to be ruled out.

Very small diffusion filters are generally discounted because they are unable to

produce sufficiently sophisticated patterning. Floyd and Steinberg themselves

argued that a four element filter was the smallest that could be used to produce

'good' results. This conclusion is supported by Ulichney who reports the failings of

smaller filters [ULICHNEY 88].

However, these findings may not be strictly applicable to the video transmitter

application. In common with most published work on the subject, Floyd &

Steinberg and Ulichney were concerned with the rendering of still images using bi-

level output devices. In contrast, in the radio video link, the problem is of rendering

moving images using a limited greyscale. The low hardware implications of small

filters makes them attractive in the video transmitter application, thus a small filter

should be used if the type of patterning it produces can be tolerated when used to

reduce the moving data to a modest greyscale.

3.28

- chapter three Algorithm Design and Evaluation -

Filter weights

A further factor that affects both diffusion patterning and filter implementation costs

is the fractions that are used to divide up errors amongst the filter elements. These

fractions are generally termed the weights.

The complication of the hardware generation of the error fractions depends upon

the choice of weights. One way of saving hardware is to restrict weight choice to

powers of two, allowing all necessary multiplication to be performed using bit-wise

shifts.

The introduction of a random element to diffusion processing can be used to break

up unwanted structure. One that is relatively cheap to implement in hardware is

the perturbation of the filter weights. Ulichney attributes the idea of using

perturbed weight sets to Schreiber and the first demonstration of it to Woo [ULICHNEY

88]. Perturbation must be used carefully, however, as it can lead to low frequency

noise from the perturbing signal becoming apparent in the filter output.

Summary

Several features of the diffusion filter can be altered to trade off different

performance aspects and performance versus hardware implementation costs.

The desire for a hardware-minimal implementation of the radio video link favours

the use of conventional raster scan 'processing, with as small a diffusion filter as

possible. The memory cost of a temporal diffusion filter precludes its use. To

simplify computation, where possible, filter weights should be kept to powers of

two.

Using a conventional raster processing order imposes a severe horizontal and

vertical bias on the action of the diffusion filter. In other applications where this bias

is intolerable the horizontal component can be alleviated by using a serpentine

raster without an excessive penalty in memory.

The use of a small diffusion filter is desirable in terms of patterning hysteresis and

preservation of edges as well as its minimal hardware implications. The danger of a

small filter is the limits this imposes on the patterning sophistication. Incorporation

3.29

- chapter three Algorithm Design and [valuation -

of a random element into the diffusion filter may alleviate problems of structured

patterning at lower cost than increased filter size. Random perturbation should,

however, be used carefully so as not to introduce too much low frequency noise to

the patterning which can also be distracting. The proposed modest colour resolution

of the radio video link should make filters smaller than those generally used for bi-

level output acceptable.

Even though an explicit temporal filter is too expensive, an element of 'incidental'

temporal diffusion should result from the proposed pipeline architecture used in

any application where there are slight inter-frame image changes or even the

presence of a small amount of noise in the image data. Whether the incidental

temporal changes that occur serve to mask the diffusion patterning or distract the

observer from the image data is considered later in chapter five.

Using the criteria defined above, four filters ('simple', 'perturb', 'safe perturb 1' and

'safe perturb 2') are considered below for use in the coder of the video transmitter.

The 'simple' filter

The first filter considered is the simplest possible to implement in hardware. The

filter, referred to here as simple, consists of one fixed element and thus requires only

one adder. As there is only one filter element there is no need to divide up each

diffusion error thus there is no need for multiplication hardware to compute error

components.

= already processed pixel

I 	
= unprocessed pixel

filter orhln
1:-n nn r

Figure 3.11 The four an-quanrised pixels adjacent to the filter origin in raster scan processing
(labelled a' to 'd').

The four pixels marked 'a' to 'd' in Figure 3.11 are the un-quantised pixels adjacent

to the filter origin when using a raster scan. In terms of being candidates for error

diffusion all four pixels are very similar, as they don't differ greatly in spatial

distance from the origin, if used as the sole element of a diffusion filter all would

3.30

- chapter three Algorithm Design and [valuation -

lead to very similar and very directional diffusion patterns (the actual direction of

the directional bias would be the only difference). They do, however, differ in their

distance from the filter origin in terms of the raster scan pixel order. This affects the

hardware implementation of the filter as the distance between the filter origin and

an element defines over how many pixel cycles each quantisation error must be

stored before it is diffused to that element. This distance therefore defines how

much error storage memory is required. Pixel 'a' in Figure 3.11, the closest to the

origin, was chosen for the simple filter to give the most minimal implementation

possible. The simple filter is shown schematically in Figure 3.12.

Wad
.1

• 	1

Fi1ure 3.12 A schematic of the 'simple diffusion filter. '.'denotes the posi/on of the pixel being
quantised (the 'filler on 1in'), and 'a' is the destination for the whole of the
corresponding quantisation error - i.e. the sole element of the diffusion filler.

As well as being the cheapest to implement, this is arguably the crudest error

diffusion filter possible. Ulichney includes single-element filters in a review of error-

diffusion filters purely to point that they "fail in a big way" [ULICHNEY 88]. He was,

however, considering them for use with bi-level output devices (i.e. 1 bpp), here

they are being considered for up to 4 bpp. The action of the simple filter is similar to

'error-feedback' rounding techniques. These are used in high quality image

processing when the high precision results of pixel manipulation are reduced in

precision for recording and display. In contrast to the bi-level case, however, 'error-

feedback' is concerned with conversion typically from 32 or 16 bpp to 16 or 8 [JACK

93]. Use of the simple filter for the modest compression required by the radio video

link represents an application somewhere between these two examples.

The source code for the software implementation of the simple filter used in the

simulation software is given in Listing 1. The function (Quantise_Dif fuse) 5 designed

to quantise to any output resolution lower than the input 8 bpp. The quantisation

and error calculation are implemented using 'bit-wise' AND operations. This

method facilitates variation of the output resolution through alteration of the two

3.31

- chapter three Algorithm Design and Evaluation -

masks used in the AND operations. A trap to prevent pixel roll-over 7 is

implemented by the IF statement.

bE 6E 	fE)

dword pixel, end of frame- (dword) (FRAME ROWS'FRANE COLS)
byte sum=O; /* temporary quantisation error storage
byte sum mask = (byte) (Oxff>bits)
byte pixel mask = (byte) (Oxff<c (8-bits)

for(pixel-O; pixelsend of frame; pixel++)
if (pSrc < pixel —mask) sum = (byte)) *pSrc++ + (sum & sum mask));
else sum = *PSrc++;
*pDest++ = (byte) (sum & pixel -mask) ;

ListIng 1 	function Qua.ntlse_Dlffuse() from quantise.c (see appendix one for lu/i listing).

Two sets of example output from simple are shown in Figure 3.13 and Figure 3.14

below. The two source images (lena and salesman) display the effectiveness of the

algorithm in areas of both high and low spatial frequency. With the exception of the

feather, most of lena is low frequency. It contains large areas of smoothly changing

colour such as the shoulder and the reflection in the mirror. The salesman image

does not contain rtany areas of smooth colour, but has far more areas of high

frequency content. Subjective examination of these still images indicates that if the

output resolution is kept relatively high (3 or 4 bpp - the top halves of Figure 3.13

and Figure 3.14) the output of this filter is clearly better than that of a truncating

quantiser and only marginally worse than the raw data itself. These resolutions

represent compression ratios of 2:1 and 2.66:1. The images in the lower halves of the

figures show the results of processing to the lowest integer colour resolutions (1 and

2 bpp). At these resolutions, the output of the simple filter still conveys more

information about the detail of the image than the truncated images, however, the

presence of the diffusion pattern becomes obvious. At 1 bpp a wood grain-like

structure within the pattern is certainly apparent (and arguably quite objectionable).

Processing to the output resolutions of 1 and 2 bpp represents compression ratios of

8:1 and 4:1, respectively.

7 Roll-over is a term used to describe the corruption of a pixel value through either overflow or underflow during its

manipulation (e.g. if a pixel, described using 8 bits, which initially has a value of 254, has 10 added to it the result will

be 8 if rollover is not prevented).

3.32

- chapter three Algorithm Design and [valuation -

4bp

Ii

3bp1

I

2bpj 	,

1 bpp

P

IL

4c
__

`~ Ale
In in cdred
	

iiipiocessed 	 .,iiiip/e

FIgure 3.13 Examples of the 'simple filler output (lena), shown together with the un-processed
image and the image after a truncating quantisation of the pixel values to the same pixel
precision as the simple filter for comparison. The un-processed image (8 bpp) Is shown in
the centre of each horizontal triplet, the images on the rig/it hand side have been
processed with the simpie' diffusion filler, and the left hand side have been quantised by
truncation. The greyscale resolutions of the processed Images range from 4 bpp In the top
line to 1 bop In the bottom line.

3.33

L

truncated unprocessed simple

V -

a ..

•
--

4b;',

3 bp

..,..-. 	 .

2 bp/

1 bpj

- chapter three Algorithm Design and [valuation -

FIgure 3.14 Examples of the simple' filler output (salesman frame 0), shown together with the un-
processed image and the image after a truncating quailtisatlon of the pixel values to the
same pixel precision as the simple filter for comparison. The un-processed image (8 bpp) is
shown in the centre of each horizontal triplet, the images on the right hand side have been
processed with the simple' diffusion filter, and the left hand side have been quantised by
truncation. The greyscale resolutions of the processed Images range from 4 bpp In the top
line to 1 bpp in the bottom fine.

3.34

- chapter three Algorithm Design and Evaluation -

Both Figure 3.13 and Figure 3.14 compare static results from the simple filter and the

truncating quantiser. These conditions do not directly reflect those of the video

transmitter as its image data would be changing at a rate of at least 10 fps.

Unfortunately, display of moving images is not possible here. The simulation

software, however, permits the processing and display of both live video and short

sequences at up to approx. 4 frames per second in addition to the processing and

display of stills. For convenience, live video input was used for most of the moving

image tests. This minimised the amount of disk space and disc access required. As

expected the effect that the use of moving images had on the success/visibility of the

diffusion pattern was largely dependent on image content and output resolution. In

areas of images where there was much high frequency content animation of the

diffusion pattern served to mask its presence, however, in flatter regions of images

the pattern didn't change sufficiently frame to frame to hide its structure. The lower

the resolution the less the animation masked the pattern.

The lack of sophistication in the pattern produced by simple is evident when

compared with the performance of Floyd and Steinberg's filter at I bpp. Figure 3.15

offers such comparison plus comparisons at higher greyscale resolutions. The

images diffused with Floyd & Steinberg's filter were produced using a variable

resolution implementation of the filter (as given in Listing 2). In the 1 bpp image

from simple the low frequency structure and directional hysteresis combine to create

a wood-grain like pattern. The 1 bpp image processed by the floyd-steinberg filter

shows little of this same type of structure except for some directional hysteresis in

the darkest flat areas of the image such as the left-hand side of the chair and

between the salesman's left arm and his body. As the output resolution is increased,

however, the difference between the output of the two filters drops off rapidly. At 4

bpp these static results become difficult to distinguish.

3.35

4bp;

3 bpj

-

2 bp,

1 bf)jr

--

- chapter three Algorithm Design and Evaluation -

. 	 .•. 	
• 	:.

Simple 	 IIUyd-,kI/iL1(f,.)

Figure 3.15 Comparison of simple and floyd-steinberg (salesman frame 0). The images on the left
hand side have been processed with the'simple' diffusion fifter, and those on the right
hand side with a variable resolution implementation of Floyd & Steinberg's filter. The
grey-scale resolutions of the processed images range from 4 bpp In the top line to 1 bpp in
the bottom line.

3.36

- chapter three Algorithm Design and Evaluation -

Ulichney's dismissal of the simple filter when used at a 1 bpp and the success of it

demonstrated here at 3 and 4 bpp shows that a minimal increase in greyscale

resolution is significant to the acceptability of the filter output. This emphasises the

difference between filter considerations for applications with bi-level output and

those with even a modest greyscale.

mt Quantise_FloydS(byte *pSrc, byte *pDest, byte bits

unsigned short fifo_index, fifolen = frame cols+l;
short fifo(FRAMECOLS+l) threholds]641
long SpreadPixel, QuantError;
byte Quantisedpixel, coloursl641;
dword pixel, end of frame = frame rowe*frame cola;
dword a limit = end of frame - 1, blimit = a limit - frame cols;
byte num_thresholds= (byte)pow)2,bits) , threshold;

/ create the array of thresholds and corresponding array of colours */
for(threshold=O; thresholdenurn thresholds; threshold++(

thresholds[threshold] = (short) (2B5*(2*threshold_l()/(2*(num thresholds-U)
colours (threshold) = (threshold*255) / (flue thresholds-i)

for(fifoindex=O; fifoindexefifolen; fifoindex++)
[f fifoifoindex)=O; 1* intialise the spreading array */

fifo_index=O, /* - probably not necessary as the fifo buffer is circular */

for(pixel=O; pixelsend_of_frame; pixel++) 	 /* process image /

/ calculate the spread pixel, guantised version and error /
SpreadPixel = ((((long)*pSrc*+)<<4) 	fifo[(fifoindex++)%fifolen](s>4;
threshold = num thresholds-i;
while (SpreadPixel<thresholds [threshold)) threshold--;
QuantisedPixel = colours [threshold]
QuantError = Spreadpixel - (long)QuantisedPixel;

*pDest++ = Quantisedpixel; / store the results (errors*16)*/
if (pixel<a limit)

fifo[fifoindex 9 fifolen[+= QuantError*7; / filter element A */
if)pixel<b limit)

fifo[(fifoindex+framecols)%fifolen) = QuaritError; 1* B */

fifo[(fifoindex*framecols-l)fifolen[+= QuantError*5 ; 1* C *1
fifo](fifoindex*framecols-2)lfifolen[+= QuantError*3; / D */

return TRUE;

LIsting 2 	The function Quantise_FIoydS() from quant/se.c (see appendix one for lull listing).

The simple filter works, in that neighbouring pixel errors in the output it produces

tend to cancel. At the lowest integer resolutions there is, however, a large amount of

visible structure introduced. The visibility of this structure is sometimes masked by

image movement, but not necessarily - in some cases it could be argued that it is

actually enhanced. Representing one extreme of the cost/complexity trade-off, it is

quite likely that simple does not offer the optimum balance for the video transmitter

application. How much more complicated does a filter have to get in order to

become sophisticated enough to produce significantly more attractive patterning?

To answer this question three improvements on simple are explored below.

3.37

- chapter three Algorithm Design and Evaluation -

Improvement on 'simple'

A combination of three factors are responsible for the 'wood grain-like' structure in

the output of the simple filter. These are that the filter is one-dimensional, that it is

purely deterministic and that the data is being presented to it in a conventional

raster scan order. Change of any one of these factors could potentially improve the

resulting diffusion pattern. The cost of each option is considered below.

Keeping the raster processing order, the operation of the filter can only be made

two-dimensional by expansion of the filter to include an element on another image

line. The closest remaining candidates are pixels b, c and d in Figure 3.11. Allowing

the filter to spread error energy in two directions should remove the severe

directional bias that the single element filter suffers, however, the hardware cost of

adding an element on another line is high. As mentioned above, increased filter size

implies hardware costs in terms of error term calculation, diffusion and storage.

Assuming that simple binary weights are used (e.g. 1/z or ¼), the largest expense

incurred in increasing the simple filter to two elements would be in error term

storage, as errors would need to be stored for a complete image line.

Use of an unconventional raster order would alter the diffusion pattern of simple.

Although the filter would still spread all errors to the next pixel, that pixel would no

longer always be to the right of the filter origin. Processing pixels in the diffusion

system using an order that differs from the rest of the video link system would

require memory and control to re-order the data both as it entered the diffusion

system and on its exit. The amount of memory and logic required to manage the re-

ordering is dependent on how far the new processing order deviates from the

conventional raster. The serpentine raster is probably the order that offers the lowest

additional cost. Its use requires one line memory for each conversion and minimal

logic (the largest part of which would be a line length counter). Use of the

serpentine raster with simple would cause errors to be diffused to the left and right

on alternate lines - one-dimensional diffusion with an alternating directional bias.

Although this would help to alleviate the direction hysteresis, it would not stop the

appearance of the vertical wood-grain pattern.

3.38

- chapter three Algorithm Design and Evaluation -

Introduction of a random element to perturb either the shape of the diffusion filter

or the weights used can reduce the deterministic nature of the diffusion pattern

produced. Although the introduction of noise can be used profitably to break up the

deterministic patterns, care has to be taken that the low-frequency content

introduced by the perturbing signal does not itself become distracting.

In terms of hardware cost, introduction of serpentine raster order is the most

expensive of the three options. Its expense, together with an anticipation of little

effect and reports of its limited success when used to alleviate inter-line structure in

bi-level output diffusion [WITFEN & NEAL 821 meant that the use of a serpentine raster

was not explored. The costs of either a perturbed single element filter or a purely

deterministic two dimensional filter are approximately the same. Reports of the

successful application of perturbed diffusion filters in bi-level quantisation [LILICHNEY

88] led to investigation of the perturbed filter route.

The 'perturb' filter

Like simple, the perturb filter spreads the whole of each quantisation error onto a

single unquantised pixel. Instead of always spreading it onto the pixel to the right of

the filter origin, however, this filter is equally likely to spread it onto the pixel below

(i.e. either pixel a or b in Figure 3.16). The choice of which pixel to spread onto is

made at random.

_ -
UL Li

L

Figure 3.16 A diagram of the 'perturb ' diffusion fl/fe,: 'denotes the position of the filter origin
and 'a' and 'b' the two possible filler elements.

When deciding on the location of the second element of the filter, three positions

immediately adjacent to the filter origin remain as valid element candidates (pixel b

in Figure 3.16 and the pixels to the immediate left and right of b). The distance

between the three candidates and the origin is almost identical, thus in terms of

implementation cost all three are roughly the same. Pixel b was chosen as it results

in a filter that is balanced in its degree of horizontal and vertical diffusion.

3.39

- chapter three Algorithm Design and Evaluation -

The section of source code for the random decision between candidate elements in

the perturb filter is given in Listing 3.

void Quantise RandDifiuse) byte -pOriginal, byte pDest, byte bits

dword pixel—index, end_of frame- (dword) (frame rowsframe cole)
dword most of frame- (end of frame-i), last line- (end of frame-frame cola);
mt candidate below;
byte error mask- (byte) (Oxffsbits) pixel_mask= (byte) (Oxff<< (8-bits)) dummy;

byte *pRaster=pDest, pSpreadee=pDest, error=O;

Array_CopyFrame(pOriginal, pDest);

for(pixel_index=O; pixel_indexmost_of_frame; pixel_index++, pRaster++) {
error = (byte) (*pRaster & error mask);
*pRaster 	(byte))pRaster & pixel —mask);

/ choose the 'spreadee' from the two candidates */
candidate below = ((rand()>6) & OxOl);
if (candidate below==FALSE) pSpreadee)pRaster 	1)
else

if (pixel index<last line) pSpreadee =)pRaster 	frame cols);
else pSpreadee = &dummy;

if) pSpreadee 	pixel mask
*pspreadee = (byte) (*pSpreadee + error)

pRaster = (byte))*pRaster & pixel_mask)

Listing 3 	The function Quaiitlse_RandDIffuse() from quantlse.c (see appendix one for full IistIn).

In terms of hardware, implementation of perturb differs from that of simple in the

addition of storage for a line of error data, provision for two additions per pixel and

the addition of a pseudo-random number generator. The software implementation

takes advantage of random access to the pixel data instead of using a buffer for the

error data, and it uses a C library function (rand) rather than a discretely coded

pseudo-random number generator.

Results of the perturb filter are shown in Figure 3.17 and Figure 3.18 alongside those

of simple. A significant difference can be seen between the dithering patterns at all

resolutions below 4 bpp.

3.40

- chapter three Algorithm Design and Evaluation -

!!flJ

-

3 bp, !q4 (I(I I
;:-

2 bpj

4 S A h

/ b '# 	

. 	
..,"

1 1

44
jAJ 1LJfV

Figure 3.17 Comparison of the results of the simple' and 'pe#urb' diffusion filters (lend). The
Images on the left have been processed with the 'simple' filler, those on right the with
'perturb' Greyscale resolutions range from 4 bpp in the top fine to 1 bpp at the bottom.

4 bpi?

3.41

4 bp,

3bp,

IT

..-

2 bP1 	

PTMV

y

1 bp

- chapter three Algorithm Design and [valuation -

:'.:.

peituib

F/&lu,e 3.18 Comparison of the results of the 'simple' and 'perturb' diffusion filters (salesman frame
0).

3.42

(a) 'floyd-steinberg' (b) cImp/e'

4

(c) 'perturb'

- chapter three Algorithm Design and Evaluation -

As expected the patterning produced by perturb has less visible structure and a more

'noise-like' quality than that produced by simple. Unfortunately, the reduction in

structure has not led to the desired reduction in visibility of the diffusion pattern.

Closer scrutiny of the diffusion patterns by considering difference images (processed

image minus source image) gives some insight into the problem. Consider the

sections of the diffusion pattern produced when reducing lena to 2 bpp using floyd-

steinberg, perturb and simple shown in Figure 3.19.

Figure 3.19 SectIons of diffusion pattern from lena reduced to 2 bpp using (a) 'floyd-stelnberg (b)
'simp/e and (C) 'perturb. These are cropped sections of images that were generated by
subtracting the source Image from each processed image and biasing the results around
mid-grey-

In Figure 3.19 (b) the wood-grain problem of simple is evident. This is the problem

that the perturb filter was designed to combat. Little of this vertical structure can be

seen in the pattern produced by perturb (c), thus the introduction of the perturbing

element has served to alleviate the wood-grain pattern. This success in removing the

wood-grain pattern, however, has not translated to reduced overall pattern

visibility. This is due to the complication of a new problem associated with the

diffusion pattern produced by perturb. Comparison of the grey levels in the three

images of Figure 3.19 shows that the pattern produced by the perturb filter has a

much higher magnitude than the others. It is this magnitude that gives the pattern

its visibility.

An increase in diffusion pattern magnitude was not anticipated as a side effect of the

perturb filter, no mention of such a problem with reference to perturbed error

diffusion had been found in the literature. Careful analysis of perturb filter output

and consideration of the behaviour of the filter in areas where problems were

3.43

- chapter three Algorithm Design and Evaluation -

observed revealed the mechanism that was giving rise to the unexpected scale of the

noise. With simple, the error diffused to any pixel could not exceed the largest step

between the quantisation steps used by the quantiser. Indeed, this is true of any

deterministic filter as long as the sum of the error components is 100%. In the case of

perturb, however, the total amount of error energy added to a pixel can exceed the

largest quantisation step if the errors from two quantisations are added to it. If the

sum of the two errors is greater than the next quantisation step, and the pixel that

they are added to was already close to the next quantisation threshold, the resulting

pixel may end up two quantised output shades higher than some of its neighbours.

The increased inter-pixel contrast that stems from these 'double diffusions' explains

the magnitude of the pattern observed in the output of perturb.

The problem does not occur in the 1 bpp case as there is only one quantisation

threshold and two output shades. Where double diffusions occur that result in the

addition of a large amount of energy in this case, much of the energy is simply

diffused further away. This difference in behaviour above 1 bpp may explain why

mention of this effect was not found in the literature.

The 'safe perturb 1' filter

A solution to the problems of perturb was sought. The resulting filter, safe perturb 1,

does not make the choice between filter candidates at random. The extra-bright

pixels in perturb's output occurred when two errors were added to one pixel and

both the additions caused the value of the unquantised pixel to cross quantisation

thresholds. Constraining the freedom with which the filter can make candidate

choices in such a way that it only chooses candidates that have not already crossed a

quantisation threshold (as the result of a previous diffusion) prevents this 'double

significant diffusion' problem from occurring. In the case of the two candidates used

in perturb, diffusions can only have previously happened to the pixel to the right of

the filter origin. Thus the pixel below the origin can always be diffused to without it

crossing two quantisation thresholds when using uniform quantisation steps. This is

the behaviour exhibited by safe perturb 1. Source code for the portion of the

3.44

- chapter three Algorithm Design and Evaluation -

simulation function used for safe perturb 1 that differs from that used for perturb is

given in Listing 4.

void QuantiseSafeRandDjffusel) byte *pQriginal, byte *pDest. byte *pTemp, byte bite

[code removed]

for(index=O; indexamost_of frame; index-+, pRaster++, spreading=TRu)
error = (byte) (*pRaster & error—Mask); 1 impending quantisation error *1
*pRaster = (byte) (*pRaster & pixel mask); 7* quantise the pixel *7

candidate below = ((rand)>>6) & OxOl); 	7* initial random Choice /
if (candidate below==FAL$E) pSpreadee = (pRaster + 1);
else

if (index.zlast line) pSpreadee = (pRaster + frame cols)
else spreading = FALSE;

if ((pSpreadee-*flaggap)==TRUE)
if)index=last line) pSpreadee =)pRaster + frame_cole);
else spreading = FALSE;

if)(spreading==TRUE) && (pSpreadee < pixel_mask))
old _bit =)byte))*pSpreadee & flag mask)
•pSpreadee = (byte))pSpreadee + error)
if ((*p$preadee&flag mask) =old bit) *(pspreadee+flag gap) = TRUE;

[code removed]

Listing 4 	Part of the function Quantise_SafeRandDlffusel() from quantlse.c (see appendix one for
lu/I listing).

In terms of hardware, implementation of safe perturb 1 differs from that of perturb in

the added requirement for a 'significant diffusion' flagging system. A Boolean flag

needs to be generated indicating whether each pixel has undergone significant

diffusion when it was the pixel below the filter origin. The error steering logic that

controls where error components are diffused needs to be altered to take this flag as

an input. In addition, instead of just storing a line of pixel errors (as was possible

with perturb), the result of the diffusions of error energy from above must be

computed a line before those from the left. These partial results are stored for the

whole line as the flag from the first diffusion must be calculated before the

destination of the quantisation error from the pixel above is decided.

Results of diffusion using the safe perturb 1 filter are shown together with the same

images produced using perturb in Figure 3.20 and Figure 3.21. A greyscale ramp is

used as the source image in Figure 3.21 to highlight the differences between the two

algorithms.

3.45

4 bp,

5*.

ibp;

2bp

1 bp1

- chapter three Algorithm Design and [valuation -

perturb 	 safe perturb 1

Figure 320 Comparison of the results of the 'perturb and 'safe perturb 1' dIffusion filters
(salesman frame 0).

3.46

1 bpp

- chapter three Algorithm Design and Evaluation -

OEM

3 bpp

perturb 	 safe perturb 1
Figure 3.21 ComparIson of the results of the 'perturb' and cafe perturb 1' diffusion filters

(1reysca/e ramp).

3.47

- chapter three Algorithm Design and (valuation -

In both Figure 3.20 and Figure 3.21 the more limited nature of safe perturb l's

random behaviour can be seen to reduce the visibility of its diffusion pattern in

comparison to that of perturb. In particular, higher perceived contrast in the

greyscale ramps diffused using safe perturb 1 demonstrates a higher perceived image

dynamic range due to the lower magnitude of its diffusion patterning.

The results of safe perturb 1 are compared with those of simple in Figure 3.22. At 3 bpp

and 4 bpp little difference between the output of the two algorithms can be spotted

without close scrutiny. At 2 bpp a difference between the patterns produced is

evident, but the degree to which the patterns are visible is similar. When compared

to the comparison of the results of simple and perturb at 2 bpp (see Figure 3.18), this

demonstrates some improvement gained in introducing the safe diffusion scheme of

safe perturb 1.

3.48

4 bp,

3 bp,

2 bpi,

- chapter three Algorithm Design and Evaluation -

. 	 ,

sife perturb /
	

5n-nple

Figure 3.22 Comparison of the results of the 'safe en'urb 1' and 'simple' diffusion filters
(salesman frame 0).

3.49

1

- chapter three Algorithm Design and Evaluation -

The modifications to the perturb filter do not, however, solve all its problems. Now

that the increase in magnitude has been eliminated another problem is evident. The

problem is clearest in the greyscale ramps of Figure 3.21 where thin bright

horizontal false contours can be seen. The contouring is different from that normally

associated with quantisation. Contours are normally due to abrupt changes between

areas of uniform tone where the value of the pixels in the original image cross the

thresholds used in the quantiser. Those produced by safe perturb I are due to an

abundance of bright pixels in these areas.

Little of the contouring problem is evident in the diffused salesman images in Figure

3.20. This is due to the large amount of high frequency content in the original

salesman image. It would, however, be apparent in the results of processing any

images that contained areas of slow greyscale gradient that cross a quantiser

threshold. Sections of difference images highlighting the diffusion patterns

produced when reducing lena to 2 bpp are shown in Figure 3.23 demonstrating the

appearance of the contours in a real image.

(a) perturb (b) safe perturb 1

Figure 3.23 Sections of diffusion patterns produced when reducing lena to 2 bpp using (a) the
'perturb' filter, and (b) 'safe perturb 1'.

Consideration of the action of safe perturb I as it passed over areas where the original

pixels were around one of the quantiser thresholds highlights a factor of the

algorithm that contributes to the contours. If, during its first pass through the

diffusion filter, an error is added to a pixel whose initial value was just below the

threshold, that diffusion is nearly always significant. This can lead to a situation

where many of the flags in an area are set. When the filter then passed over this area

again on its next line of processing it is forced into diffusing errors downwards

3.50

- chapter three Algorithm Design and Evaluation -

where, if the area is relatively flat, many of the pixels may again be close to the same

threshold.

The 'safe perturb 2' filter

An attempt was made to alleviate the contouring problem of safe perturb 1 resulting

in a further filter named safe perturb 2. Instead of always diffusing downwards when

the candidate to the right of the filter origin has already had a significant diffusion,

this filter makes a random choice between diffusing the error to the pixel below, or

discarding the error completely.

The modification has little impact on the hardware implementation of the filter,

other than minimal changes to the error steering logic. It is unlikely that these

changes would make it any more expensive to implement than safe perturb 1.

Results of diffusion using the safe perturb 2 filter on the vertical greyscale ramp are

shown together with those produced using safe perturb 1 in Figure 3.24.

3.51

2 bpp

- 	
UL

1 bp

- chapter three Algorithm Design and Evaluation -

4 bpp

3 bpp

safe perturb 2 	 safe perturb 1

Figure 3.24 Comparison of the results of the 'safe perturb 2' and safe perturb 1' diffusIon filters
(1,eysca/e ramp).

3.52

- chapter three Algorithm Design and [valuation -

Compared to that of safe perturb 1, the results of safe perturb 2 show a only a small

improvement in the false contours. A loss in overall image brightness (due to

discarding the error energy) is, however, quite apparent in some areas (e.g. the

bottom of the greyscale ramps).

Sumina,y

This section has considered a selection of different filters: simple, perturb, safe perturb

1 and safe perturb 2. These custom filters are considerably smaller than the multi-

element filters (such as floyd-steinberg) normally used in image processing

applications. The performance of the filters has been compared at a range of

greyscale resolutions. All the filters perform at least as well as the raw truncator.

At the higher greyscale resolutions simple offers similar performance to that of floyd-

steinberg. Yet it is much smaller and does not require the dividing up of the error

term. These higher resolutions represent the likely pixel depth used in the video

link application. Incorporating the simple filter into the application would allow

video compression to be achieved at very low cost.

The perturb filter achieved poorer results than was expected. It produced a pattern

with a particularly high magnitude, that proved to be highly distracting. As it is

significantly more complicated to implement than simple, there is no advantage to be

gained from its use.

Subsequent modifications to the perturb filter (selectively inhibiting the random

element) resulted in the improved safe perturb 1 filter. These changes reduce the

magnitude of the noise pattern, leading to a performance comparable to that of

simple. In areas of scenes exhibiting smooth changes in grey level safe perturb 1 can

offer superior performance. Movement of its noise-like pattern is often less

distracting than that of simple's "wood-grain". This is especially true at low

resolutions. Whether this improvement is perceived to be significant (and thus

justify the extra cost involved in implementing safe perturb 1) is explored in the

subjective testing of chapter five.

Safe perturb 2 was developed as an attempt to alleviate contouring effects sometimes

present in the output from safe perturb 1. It achieved only limited success, reducing,

3.53

- chapter three Algorithm Design and Evaluation -

but not eliminating the contours. More importantly, it had the unwanted effect of

reducing overall image contrast (due to the discarding of error energy). Because of

this added problem, it was not considered further.

Conclusions
The aim of this chapter was to design and evaluate the implementation of error

diffusion algorithms for use in the coder section of the video link application.

Several features of the quantiser's behaviour and attributes of the diffusion filter

have been identified as components that can be altered in order to balance various

aspects of behaviour and the system cost.

Flexible quantiser architectures were considered, however insufficient benefit could

be found to justify their high implementation cost. Instead, a simple binary

truncating quantisation is employed. The main advantage of this technique is that it

can be realised without any hardware.

Single element diffusion filters were used in the software simulation. These are

much simpler than the multi-element filters generally employed in error diffusion.

Their use in the radio video link application can be justified by the relatively high

greyscale resolution and the fact that it processes moving images rather than stills.

At greyscale resolutions of 3 bpp and 4 bpp a purely deterministic filter (simple) has

been shown to offer results similar to those from the much more complicated filter

of Floyd & Steinberg. At lower resolutions, however, the limitations of the filter are

apparent: a clear wood-grain like structure in the diffusion pattern.

Attempts were made to break up the deterministic qualities of simple by introducing

a random element. Although the initial results were disappointingly noisy, selective

inhibition of the random element alleviates this problem.

Reducing the resolution of the final image to 3 bpp, (the level required to achieve

the desired 2:1 compression) results in a loss in image quality with all the filters. The

two which incur the least penalty in quality are simple and safe perturb 1.

3.54

- chapter three Algorithm Design and Evaluation -

The software versions suggest that only a minimum of hardware is needed to

implement the algorithms. This is tested via actual hardware implementation of

these two algorithms in the next chapter.

Chapter five explores the validity of the hypotheses concerning the relative qualities

of each diffusion filter's output developed in this chapter.

3.55

chap
	

four

Hardware LI]nplementation

This chapter catalogues the hardware implementation of the two error diffusion

algorithms identified in chapter three as being the most suitable for use in the radio

video application. They are implemented in hardware in the form of a Field

Programmable Gate-Array (FPGA). System level design is discussed, highlighting

the architectural issues involved in designing a system in which the algorithm

hardware could both be used and tested. Attention is drawn to the compromises

that were made in using the chosen architecture (the imputer). This is followed by

consideration of the FPGA design itself: explaining the design philosophy, the

architecture of the FPGA design and details given of how the internal architecture is

affected by the architecture of the overall system.

Introduction
Hardware implementations of error diffusions algorithms are pursued for two

reasons: to allow the evaluation of their output at frame rates higher than is possible

in the software simulations and to prove the hardware suitability of their

architecture. The two algorithms implemented are simple and safe perturb 1. Simple

represents a lowest-cost error diffusion algorithm. Safe perturb 1 is slightly more

sophisticated, but also significantly more expensive to implement.

In addition to the design of the algorithmic processing hardware itself, several other

design tasks are posed by successfully implementing the algorithms in a usable and

4.1

- chapter four Hardware Implementation -

testable hardware form. In particular, decisions need to be made regarding the

choice of implementation technology (ASIC, FPGA or discrete logic) and the test

system architecture. The technology chosen is field programmable gate array

(FPGA). The design of the processors is tailored to operate primarily as a slave-

processor in a small image-processing computer architecture called the 'imputer'

[vELMcoTr94]. One of the processors (safe perturb 1) is designed to operate with a

fixed output resolution of 4 bpp, the other (simple) can be operated with output

resolutions of 1, 2, 3 or 4 bpp.

The reasons for selecting this particular solution and its subsequent design and

testing are the subject of this chapter. System level issues are considered first,

including the choice of implementation technology, the architecture used for the

processor design and the overall test system architecture. This is followed by a

presentation of details of the internal FPGA architecture and its low-level hardware

design.

Implementation technology
Both the processors and control logic are purely digital thus there are several

options open when considering how to actually produce the hardware

implementation. These options include the full design of a digital ASIC, use of a

mask-programmable gate-array part, the programming of an FPGA or constructing

the entire circuit from discrete logic ICs (e.g. 74 series).

The complexity of the design (the final design is equivalent to approx. 7000 gates)

means that implementation in discrete parts would be a lengthy task, difficult to

revise or replicate. An integrated solution is therefore sought. A desire for rapid

turnaround time and the insensitivity of the prototype system to unit cost leads to

the decision to use an FPGA as opposed to fabricating an ASIC or designing a mask

for a mask-programmed gate-array.

A combination of software tools (schematic capture, behavioural simulation, and

design place & route tools) and the FPGA programmer offer a complete path from

design entry to the production of working parts. With these, design revisions can be

11 W

- chapter four Hardware Implementation -

entered schematically, simulated and a new device produced within a single

working day.

If the design is ever to go into volume manufacture, cost reduction of the design is

possible through migration of the design from FPGA to mask programmed device.

Processor implementation
The two algorithms are implemented as individual processor modules within the

FPGA. The design of the processor hardware is discussed in this and the following

sections. Before considering the implementation of logic to perform each of the

computational tasks required in the processors, the overall architecture of the

processors is considered.

Processor architecture

The software written to perform error diffusion during the algorithm development

stage describes the execution of the algorithms using purely serial computation on a

Von Neumann machine [GLASSER & DOBBERPUHL 85]. In terms of the system

architecture, these implementations are limited in speed. This is due to both the use

of a single arithmetic logic unit (ALU) for all computation and the need to control

the execution of the algorithm using a serial combination of fetch-execute cycles.

Although this architecture limits performance, its generality is advantageous during

the algorithmic development stage where it permits alteration of the algorithm

through changes to the controlling software alone. No such generality is required in

the implementation of specialised hardware to execute fixed algorithms. This

permits the use of architectures more suited to the computation and data flow

involved. In addition, the amount of hardware can be tailored according to design

goals, trading off factors such as execution speed against power consumption and

implementation cost.

The high level data flow required in the two error diffusion algorithms

implemented is shown schematically in Figure 4.1 below.

4.3

- chapter four Hardware Implementation -

d 	 il Imel nrifl 	 1,

prescaler 	
I1]ii 	

diffuser 	
i•I 	

quaritis 	
J;I I 	

rescaler

qiUI 	 qrtId p 	1
erilir

Figure 4.1 Data flow within the error diffusion algorithms.

With the exception of the error feedback, the flow of data in the algorithm is

essentially serial. The schematic describes the separate computational tasks of the

algorithms and the order in which order they are performed. As such, they also

describe the basic architecture of a dedicated hardware implementation of each

algorithm. The functional blocks of the schematic are thus equivalent to

computational logic and the connectivity shown between the blocks equivalent to

signal routing.

In addition to the details of the computation involved in the algorithms many other

factors influence the architecture of the processors. These factors include the design

goals of the system and limitations of the implementation technology. The speed at

which the processors have to operate turns out to be a key influence in the choice of

architecture for the processors.

The video sensor intended for use with the hardware processors outputs video at 50

frames per second. Each frame contains 312 x 287 pixels. If the processors can be

implemented so as to process a 256 x 256 pixel portion of every frame coming off the

sensor they will be able to output a sequence far in excess of the minimum image

specification outlined in chapter one. (Four times both the horizontal and vertical

resolutions and five times the frame rate). Although this implies an output image

sequence bandwidth much higher than intended for the video radio link (3 Mbps

even at 1 bpp) it would also allow evaluation of the algorithms for use in other

applications. This is the speed target used when evaluating the processor

architecture and translates to a pixel rate of approx. 3 MHz (i.e. 300 ns per pixel,

ignoring frame overheads).

The mainly serial data flow of the algorithms would permit the near exclusive use of

combinatorial logic. The only exception is when implementing the memory required

in the feedback paths. This would use the least hardware, but the complexity of the

4.4

- chapter four Hardware Implementation -

logic required is too great to meet the speed target. This can be shown in the

following consideration of the computational tasks of a processor implementing the

simple algorithm. To process each pixel it must first scale it down, then add a stored

error to it, quantise the sum and rescale the result. Ignoring routing inefficiency,

FPGA gate delays (approx. 20 ns) limits all critical paths in combinatorial logic to less

than 15 gates (if the result is to settle within the specified 300 ns). As implementation

of a single full adder itself has a critical path of 16 gates, the computation of the

simple algorithm could not be performed within the 300 ns target. Purely

combinatorial architectures are therefore ruled out.

Although a single purely combinatorial circuit cannot operate fast enough, more

than one such circuit could be operated in parallel in order to achieve the required

speed. However, the size (and thus cost) of the hardware grows linearly with the

addition of each new unit. A more hardware-conservative approach is to break the

combinatorial logic into sections that can be implemented in a shorter time,

arranging the sections so that they can be used in parallel. Whilst running the

hardware in parallel does not cut down the time required to process each pixel, it

allows the processing of several pixels to be overlapped. This overlap yields an

increase in pixel throughput.

The processing architecture described above is that of a pipelined processor. The

whole processor is divided up into individual serial steps of processing. These are

implemented by separate pieces of combinatorial hardware, connected via private

buses through latches (see Figure 4.2 below). These pipeline latches control the flow of

data along the pipeline and are typically clocked using two or more phases

(preventing race hazards). Feedback paths can easily be implemented by creating

loops in the pipeline.

ornlnatorLJ H a
	1!0J latchJ

Figure 4.2 The segmented architecture of a p/peiinedpivcessor sections of combinatorial logic
are separated bypipelined latches.

4.5

- chapter four Hardware Implementation -

To ensure an efficient implementation using a pipelined processor a processing task

must satisfy two conditions:

• it must be able to be divided into sub-tasks that take roughly the same amount of

time to execute, and

• the degree to which the processing of data in the pipeline depends on the

outcome of the processing of other data within the pipeline must be carefully

limited.

The degree to which the first condition is satisfied governs how much of the

processing can be overlapped. It thus determines to what extent the architecture can

speed up the repeated execution of the task. The second criterion relates to how

efficiently the problem can be implemented. If there are dependencies in the

processing (the result of a calculation from one part of the pipeline affecting how

processing earlier on in the pipeline should be performed) the pipeline may have to

be branched early on. The sections should run in parallel until it can be determined

which branch should feed data into the output path of the processor (the other

results being discarded). If there are many such dependencies, implementation

becomes expensive as the amount of hardware grows exponentially with the

number of processing options.

The diffusion algorithms satisfy both conditions. It will be shown later that they can

be broken down into chunks even enough that the processing can be sufficiently

overlapped (achieving the 300 ns pixel cycle). The fixed nature of the algorithms

satisfies the second condition (processing dependencies are limited such that any

intermediate data need only be stored for a short time).

There is a compromise in the use of a simple continuously operated pipeline

architecture in conjunction with data in a conventional raster. As a raster stream of

image data contains spatial discontinuities a pipeined diffuser will spread error

energy across these line and field boundaries in the image. Fortunately, the extent of

this problem in the case of the simple and safe perturb 1 algorithms is limited by their

simplicity. The first pixel of each line in the output of the simple processor will be

4.6

- chapter four Hardware Implementation -

influenced by the last pixel of the line before. In the output of the safe perturb 1

processor the problem will extend to the top line of each field.

No distracting edge contamination of this sort was noticed in the still images

produced during software simulation. However, the speed of the hardware

processors (which it is hoped will mask the noise element of the diffusion) may

make any correlation between opposite edges more apparent (and thus

objectionable). Interestingly, images produced during the simulations demonstrate

how edge contamination can help to break up the particularly deterministic

patterning that would otherwise be found at the beginning of lines in very flat areas

of an image.

Processor logic design

Designing the processor hardware requires identification of the various processing

steps of the algorithm, designing logic to implement these and partitioning the

design into parts that will form the individual sections of the processor pipeline. The

design is partitioned so that all pipeline sections have propagation delays less than

150 ns. This permits using both edges of a 300 ns period, 50% duty cycle, square

wave to clock the pipeline (giving a pixel rate through the processor equivalent to

300 ns - satisfying the speed requirement outlined earlier).

The design of the two processors is discussed below. Full schematics of the

processors' implementations can be found in appendix two. Before considering the

complete processor circuits, implementation of their constituent parts (the

prescalers, diffusers, quantisers and rescalers) is first explained.

Prescalers

The prescalers are required to ensure that the pixel stream that enters the diffuser is

always a certain level lower than the maximum size possible (given the number of

bits used to represent it). The amount by which it must be lower is dependent on

the maximum error that can be fed back from the quantiser and is therefore

determined by the output resolution of the processor.

4.7

- chapter four Hardware Implementation -

Assuming that the input data is full scale and that a linear function is to be applied

the action required of the prescaler logic is to linearly reduce the input pixel signal

amplitude. Although this is essentially a division, the divisor is fixed for a given

system output resolution and all output resolutions require divisors of the form

2'Y(2-1) which can be rearranged as a binary shift-subtract operation. In dedicated

hardware the binary shift can be implemented via signal routing and a subtracter

can be implemented using an adder and 2's complement arithmetic. This

arrangement is shown in Figure 4.3 below.

prlscdi(r 	 -
ri[70] 	 rI 7:01 j 	 pre ,,c,d edI7 01

fast
full

rv 	 2s 	2_1I 7W 	adder

	

COffl[)leFTl(7flt 	 —4--

	

flcfl&rdIui 	 - 	 I

Figure 4.3 Hardware Implementation of the prescafer. The bus labels indicate their width. (The
bus width shown at the input to the 25 complementgenerator leads to the correct
scaling for a processor with a 4-bit output resolution.)

The scaling implemented by this circuit is not perfect as the portion of the input

pixel discarded during the binary shift leads to an error in the division (unless all

discarded bits are zero). This non-linearity could be avoided by not discarding the

bits, using a wider adder and increasing the number of bits used to represent the

prescaled output. Such a level of accuracy is not deemed important enough to

warrant this increased expense in the implementation of the prescaler and the

consequence it would have on the expense of the remainder of the processors.

Diffusers

The action required of the diffusers is simply to add an error term to a pixel. 8-bit

full adders are used for this task.

Quan Users

Possible quantiser behaviours were considered in chapter three. It was concluded

that the behaviour of a truncation operation is sufficiently sophisticated for the

4.8

- chapter four Hardware Implementation -

needs of the video link. This solution is purely combinatorial and in fact can be

implemented using signal routing alone.

Unlike some of the more sophisticated quantisers considered in chapter three

(which would have dictated the used of temporary latching of results and/or the

dynamic presentation of different quantisation thresholds) implementation of the

truncating quantiser does not impact on the overall processor architecture.

With this quantiser, calculation of the quantisation error term is also trivial. This too

can be implemented with routing alone.

Rescalers

Used in a radio video link, the data from the output of the quantiser would be sent

via the radio transmitter to the receiver. The data would then be interpreted by the

receiver for display. Before display it is likely that the data would have to be

translated (if only to make best use of the dynamic range). For example, in a system

using a 2 bpp compressed data stream and an 8 bpp greyscale display, 11 2 the

brightest code of the data stream would be translated to 1111 1111 2 (or 255 0). For

systems with integer bpp compressed and display pixels, all such translations can be

made by using the bits of the compressed pixel as the most significant bits of the

display pixel, then filling out the lower bits by replicating the compressed pixel. In

the same example as above 10 2 becomes 1010 10102, 01 2 becomes 0101 0101 2 and 002

0000 00002 . This conversion is slightly non-linear where the width of the

compressed pixel is not a factor of the display pixel. This is the action of the rescaler.

To reduce the number of processing steps in the test system the rescalers are

implemented as though they are part of the diffusion processors. This means images

can be processed using a grab-process cycle rather than grab-process-rescale cycle. If

the compressed sequence is required from theseprocessors, the relevant number of

most-significant bits of the rescaled output can be used and the others simply

discarded.

The rescalers can be implemented using signal routing. For the simple processor this

is complicated slightly as its output resolution (on which the nature of the rescaling

4.9

- chapter four Hardware Implementation -

operation is dependent) is variable. The variable behaviour can be implemented by

multiplexing the various possible results.

The 'simple' processor

The simple algorithm adds the error from the current quantisation onto the next

pixel in the raster scan. It consists simply of a pre-scaler, a quantiser, a diffuser and a

rescaler. These are connected together as shown in Figure 4.4. The feedback path

goes directly from the quantiser output to the input of the diffuser (through two

latches). The positions of the latches in Figure 4.4 show how the processing logic is

divided into sections of pipeline.

rresca It , r 	 quafltisrr 	 rescalir

latch h 	 ,t(h 	 I 1I(h 	 latch 	 I Itch

fast 	 last

2s 	- 	adder 	 adder
lat(Ih •* 	 latch -* 	L l atch

ri.
--I

Figure 4.4 The 'simple' error diffusion processor pipeline. The constituent parts of the processor
are shown, separated by the pipeline latches. The feedback path followed by the
quantisation errors can be seen below the diffusing quantiser.

The 'safe perturb 1' processor

The safe perturb 1 processor is similar to simple except that instead of always adding

the quantisation error to the next pixel in the raster scan there is a chance that it will

instead add it to the pixel one line later in the raster scan (i.e. the pixel below rather

than the pixel to the right). The combination of a boolean flag and a bit from a

pseudo-random bit sequence (PRBS) is used to determine in which direction the

current error should be spread. The flag comes from the first adder of the diffuser

and is set if the pixel exiting it has already received a 'significant diffusion' (in this

case, the flag ensures that it doesn't receive another diffusion at the second adder).

The line long separation between the adders of the diffuser corresponds to a section

of pipeline 9-bits wide and 512 latches long (8-bits for the pixel and 1 bit for the flag).

Unfortunately, implementation of this shift register constitutes more gates than are

4.10

- chapter four Hardware Implementation -

contained in the largest FPGA considered for the design. Instead of implementing

this section internally the pipeline has to be broken, the two ends brought out of the

FPGA and connected to either side of a FIFO RAM device. Simultaneously reading

from the FIFO whilst writing to it will simulate a pipeline section. The length of the

section is controlled by loading the FIFO to a certain 'depth' with data before

operating the pipeline. (This FIFO setup stage is referred to as 'pre-loading' in the

remainder of the text.)

The PRBS generator is constructed using a classic shift register with exclusive-or

feedback [PRESS 92]. It creates a sequence that repeats every (2181) bits. In order to

minimise the chance of visible patterning it is clocked asynchronously to the reset of

the safe perturb 1 processor.

A schematic of the hardware implementation of the safe perturb 1 processor is shown

in Figure 4.5. There are three notable differences between it and the simple

processor: the addition of the second adder to the diffuser, the break in the pipeline

where the FIFO device fits in, and the more complicated error feedback path.

dill utr 	 FIFO

- IJ!(I) 	 IdI(Ii 	
H

IJI(h 	 dt(h 	 ~ latch
fast 	A 	 flag 	 A
full 	 W11 	 ful

adder add(r 	 addr error
l(hH Li 	

T'
Llatc h

U

Figure 4.5 The 'safe perturb 1' error diffusion processor pipeline. The constituent parts of the
processor are shown, separated by the pipeline latches.

Test system architecture
Hardware implementation of the algorithmic processors themselves is of little use if

there is not a system in which they can operate and be tested. The objectives of the

hardware implementation are to prove the processor design and to allow the

processing of images at high frame rates. The test system must, therefore, allow both

re-
5ca1cr

4.11

- chapter four Hardware Implementation -

careful monitoring of the processors' operation and allow the processors to

manipulate sequences of video frames at significant speed.

In order to verify that the diffusion processors work correctly (and, therefore, that

the hardware implementation is valid), it is necessary that the input and output data

of the processors can be carefully monitored. Analysis of the input and output data

and comparison with that expected, can quickly determine whether the algorithms

are being executed properly. The ability to load specific data into the system permits

two useful abilities: the use of synthetic input data (thus giving carefully controlled

test conditions that simplify the testing and any necessary debugging) and the

ability to make direct comparison between the hardware and software

implementations by using the same input data. The ability to store input and output

inside the test system for later retrieval is also of value as this allows analysis to be

performed off-line. Another factor
,
 to consider is that the operation of the processors

during the testing should be as close to their intended operation in the radio video

link as possible. The less this is true the more artificial the tests and thus the less

value in the results.

One option for the test system is to implement the entire radio video link system. Its

architecture, which is primarily serial, is shown again in Figure 4.6. Data flows

continuously along dedicated paths from the sensor, through the processing and

radio hardware, ultimately reaching the display.

ADC 	- co de r 	
111 dul iI 	 1 t\i I 	

0~ /monitor

vi deo transnhittr 	 video receiver

Figure 4.6 The proposed radio video link architecture. The diffusion processor would form part
(or all) of the coder block of the transmitter.

By definition, this system would satisfy the requirement to allow operation of the

processors in an environment similar to that of the radio video link. In this pixel

stream architecture the coding processors operate on live image input 'on-the-fly'

and the rest of the system processes and transmits the data with minimal storage.

Unfortunately, the continuous processing, lack of memory and the use of separate

4.12

- chapter four Hardware implementation -

dedicated private data buses, do not lend the architecture to simple testing and

debugging.

The radio video link architecture doesn't offer the degree of testability required thus

another architecture must be implemented for the test system. The monitoring and

flexibility requirements could be met through extension of the radio video link

architecture to include local storage, more general buses and allow more high level

control. In addition to offering a test system, this would also offer an example of a

radio video link system. It would, however, be costly in terms of implementation

time and be a poor example of the intended radio video link - the features that make

the system attractive as a cheap low cost radio video link would be compromised.

The fact that the architecture of the final application is not suitable for use in testing

the processors has an advantage in that it opens up the possibility of adopting the

architecture of an existing test system. This offers savings both in design time and

technical risk. One such system is the 'imputer'. This is a miniature image processing

system based around an 8032 microcontroller, a local CMOS video sensor (an ASIS-

1011), frame grabbing hardware and static RAM [VELLACOTF 94]. The architecture of

the imputer is shown schematically in Figure 4.7.

A 	 A the 	 11,11,1 bus

bus 	 .chur.i5 bus

y

Frame 	RAM
ILL 	Grabbing

FPGA

I ,

\ICIIn

-.

 J Sensor 1

11111)11111 motherboard lilt)1r(i

Figure 4.7 The Imputer architecture

The provision of a bus with access to most of the system features and the ability to

quickly re-program the behaviour of the microcontroller (via firmware) make the

inclusion of a co-processor in an imputer system simple. The two diffusion

processors could be tested in the imputer architecture by designing them embedded

4.13

- chapter four Hardware Implementation -

within a hardware co-processor that would act as a slave to the imputer's

microcontroller.

Unfortunately there are features of the imputer's architecture that compromise

aspects of the diffusion processor operation. Use of the imputer grab logic implies

the use of a common data bus for frame grabbing and diffusion processing. This

prevents the two tasks from being performed in parallel, thus having a direct impact

on image latency and system frame rate. The image latency incurred will be at least

18 ms, as the first pixel cannot even enter the diffusion processor until the end of the

grab of the entire frame. Using the serial grab-process cycle necessary, the system

would only be able to achieve the full 50 fps frame rate of the sensor if the diffusion

processing can be performed in the 3.3 ms of the video frame period not used by the

grab hardware. Even ignoring processor set-up, this translates to a processing time

of under 50 ns per pixel, which is impossible using the 70 ns imputer RAM as each

pixel cycle includes one read and one write to RAM. Grabbing every second frame

of data allows at least 20 ms for processing each frame, i.e. a more reasonable 300 ns

per pixel (approx.) while achieving a system frame rate of 25 fps and minimum

image latency of 40 ms.

An advantage of using a serial grab-diffusion cycle necessary in the imputer

architecture is that the pixel-level timings of the two functions can be independent.

This is an attractive feature during the testing of the FPGA as it can be clocked at a

much slower speed than the sensor without affecting the operation of the rest of the

system.

The imputer co-processor architecture frees the algorithmic processors from some of

the constraints imposed by the 'on-the fly' pixel-stream processing architecture in

which they would normally operate. These include the necessity to process data in

raster scan order (the imputer architecture permits the random access of data).

However, retaining the restriction of only accessing data in raster scan order keeps

the implementation of the computational and control hardware of the algorithmic

processors closer to that of a true pixel stream architecture.

4.14

- chapter four Hardware Implementation -

Summary

Embedding the diffusion processors in an FPGA that can be used as a co-processor

in an imputer system offers the required flexibility of input and output to satisfy the

testing requirements laid out above. There are, however, restrictions imposed by the

implementation - notably the image latency and upper limit on processing speed

imposed by thegrab-process cycle.

In order to implement the processors as a part of an imputer co-processor whilst

retaining the possibility of running the processors in an architecture that would not

suffer from these restrictions, they are implemented using an internal FPGA

architecture and control system. (This can easily be expanded to control a stand-

alone hardware system.) The architectures of the slave and stand-alone systems are

expanded upon below.

The slave FPGA system architecture

As a slave co-processor the 'PINK2 Diffusion FPGA' fits into the imputer architecture

as shown in Figure 4.8. The intention is to implement a control system that offers

the imputer microcontroller (the 8032) the ability to process complete single frames

of video using either of the diffusion processors. The FPGA is required to read the

source image data and write resultant image data to the imputer RAM. Test images

can be either be generated with code executed by the 8032 or downloaded from a

host PC. Live video images can be captured from the local video sensor by the 8032

using its local ADC and 'grab' logic. Live display of the output images can be

arranged through use of an imputer 'video generator' card (also shown in Figure

4.8).

4.15

- chapter four Hardware Implementation -

(041111)1 bus

the 	A 	 A 	 A
data bus

flip ut& 1
bus 	 address bus

V

Frame 	R\M 	 PINK2 	Video
8032 W Grabbing It ______ 	Diffusion I 	Generator

FPGA j
	

FPGA 	 FPGA

V

Video 	ADC 	 FIFC)
Sensor 	1 	 Composite

____ 51(110 (p

itnputer motherboard 	 PINK2I board 	video tenerator board

Figure 4.8 The Imputer-slave PI1V1(2 FPGA system architecture. This shows large the functional
blocks of the system, how they are distributed between impute, PCB5 and their
common connection over the imputer bus.

The stand alone FPGA system architecture

To demonstrate the abilities of the diffusion processors without suffering the limits

on processing speed imposed through the use of the shared data bus in the imputer

architecture, the processors and FPGA control system are designed to operate in a

stand-alone architecture.

Figure 4.9 shows the constituent parts of a stand alone system. The FPGA is required

to control an ADC to provide a constant source of digital video and clock a digital-

to-analogue converter (DAC) to produce the active portion of the video output. The

pipelines of the diffusion processors would be fed directly with data from the ADC

and their output would in turn feed the DAC. An external sync separator IC could

be used to multiplex between the DAC output and a voltage reference to produce

the sync component of the composite video.

4.16

- chapter four Hardware Implementation -

FIFE)

PINK2a
vide o - Diffusion Sensor AD(FPGA

sync
scp_ 	r

Figure 4.9 The stand-alone FPGA system architecture.

L 	 composite
D\C

PIN K2a board

The only external control required over the FPGA in this architecture is to determine

which of the processors it uses and at what resolution. Simple control logic and

some user switches could be used to achieve this.

Such a system would be capable of performing continuous (and parallel) image

capture, processing and display, at 50 fps and with very low image latency.

Although the parts of the FPGA control system common to both imputer and stand-

alone architectures were designed to be usable in both, a stand alone system has not

yet been realised.

FPGA design philosophy
The design and test philosophy adopted for the FPGA is one of strict hierarchical

design and proof of design validity through rigorous simulation. The tools used

(Viewlogic behavioural simulation tools and Actel FPGA layout tools) have proved

reliable in the past, accurately predicting real-life FPGA performance. Considerable

time is spent simulating the circuit behaviour before devices are actually

programmed.

The circuit is designed using an iterative design-simulate-evaluate approach. The

behaviour required of the entire FPGA is broken down into logical tasks and an

overall architecture of large functional blocks devised that will implement this

behaviour. The functional blocks are sub-divided until each is relatively small.

Finally, logic is designed to realise the behaviour required of each block.

- chapter four Hardware Implementation -

The behaviour of each block of logic is first simulated in isolation from the

remainder of the design. Any weaknesses revealed are addressed through the

revision of the logic design and the simulation-verification process repeated. Once a

number of related logic blocks have been successfully tested in isolation they are

combined into larger models and tested together. Not only does this re-testing serve

to 're-prove' the design of the individual blocks, it also reveals any errors in the

lower level specifications made during the hierarchical partitioning process. Any

problems found during simulation require the redesign of the sub-modules, isolated

re-testing, then repetition of the larger tests. This process is iterated until a model of

the entire FPGA is assembled.

During the final stages of simulation parts of the imputer are modelled. This allows

the simulation of both the interaction between microcontroller and FPGA and

secondly, the processing of real image data stored in a RAM model. The only major

part of the system not modelled is the FIFO. This means that although the

individual components of the safe perturb 1 processor are tested, its entire pipeline

cannot be simulated.

Most simulations are conducted using net lists with ideal propagation delays. Once

the design has been placed and routed 'worst-case' delay information is extracted

and back-annotated onto the simulation net list so that 'worst case' device behaviour

can be modelled. It is anticipated that the glitch-free design style used and

successfully simulated operation (with both ideal and worst-case delays) will

guarantee successful operation of a real-life device.

Internal FPGA architecture
Two tasks are required of the FPGA: low-level pixel processing and interaction with

the remainder of the system. The highest level partition in the architecture of the

FPGA logic reflects this division of task, as shown in Figure 4.10.

4.18

- chapter four Hardware Implementation -

	

Iniputer 	I r 	processor

	

data bus 	T 	logic

L..J
control

	

rnputer 	 ______ 	 Iolc 	 Imputer

	

control bus 	 address bus

EPG

Figure 4.10 H1 _Oh level Internal FPGA architecture

Both the diffusion processors are contained within the 'processor logic' block. The

control logic supervises the operation of the processors within the rest of the

imputer system.

The design of the two diffusion processors is discussed at the beginning of this

chapter. The remainder of the FPGA logic design is described below. The

arrangement of the processors is described and their control needs identified. This

allows implementation of a complete internal control system. The low-level design

of the entire PINK2 FPGA is given in the design schematics in appendix two.

The processors

In addition to the implementation of the two error diffusion processors, two further

processors ('raw' and 'truncate') are implemented. These extra processors are

included to facilitate the evaluation of the diffusion processors. The raw processor

allows data to be sent to the imputer systems display without any processing but at

the same rate as is output by the diffusion processors. Truncate implements only a

binary quantiser.

The four pipelined processors are arranged in parallel within the FPGA. This

enables them to share the same input data and a common path for output data. The

arrangement of the processors is shown in Figure 4.11.

4.19

- chapter four Hardware Implementation -

RuSt 	U]

rav
processor

(01e
rdvr

13W p rocessor

I ru n(ato r variable
resolution i Core

rescaler
IluflijO

IIOk truncate processor 0/P
11 	IIIl MUX

culpul d P \ 	lid
ariabIe 'simple variable pHi cOla

L resolution error 	
r resolution

prescaler diffuser rescaler
0 mpi

pfpeii cc 'sImple' d Itfuslon processor
(lock

lised sale perturb fried
prescaler V error rescaler r diffuser

l3 	it tub
plpilin' safe perturb 1' diffusion processor
dick I kr_Il

Figure 4.11 Data flow through the pipe//ned Image processors. This figure shows how
processors are arranged within the FPGA in terms of data flow and outlines the large
functional blocks within them. The processors can be seen to sit in parallel, sharing the
same input data and outputting data to a common latch.

Resolution

During the algorithmic research the software algorithms were written to output data

at resolutions between 1 and 6 bits per pixel. This degree of flexibility is not echoed

in the hardware implementations both because of the difficulty of its

implementation and because resolutions higher than 4 bpp offer a low compression

ratio (1.6:1 and less).

Two of the processors (simple and truncate) are implemented with limited variable

output resolution (1 to 4 bpp). In order to keep the overall size of the design small,

the second error diffusion processor (safe perturb 1) is implemented with a fixed

resolution of 4 bpp. Software simulations show that this resolution would be more

than adequate to achieve good quality images.

To make the two processors variable in resolution their two's complement

generators, quantisers and rescalers all need to be programmable. A 2-bit 'resolution'

bus is used to communicate the resolution currently desired of the processors to the

programmable logic blocks. Most of this programmable behaviour is achieved using

multiplexers to make signal routing dependent on the resolution bus.

WZS]

	

lmruter 	command 	ItSO1UIR)fl nit chad

	

addr
~" 	 latch5 data) IIKC's5 r(schFaIfl

\VF
A 	A

(lorlilliand ci 	rinQ
handshak

111011 11)1

V

aLJ\iIIar\
setu p

setup 	 --

	

handshakes 	 I

	

- 	 0 	- 	 -
' address 	

In it 	 address generator arldw,w,
primer generator 1

bus 	 controls A
address Ceneratur
runnin controls handshakes 	

> plpellned I
process 	cAM controls& pipeline clock,

0 	 controller
,

-

10 k died 	FItS 	
bus

inhibil 15 	
110 Ct itt 	ma

FIFO
nager j4 Fit

	

Fli () adjust commands 	 COtFUIS

- - 	 resolution I

selector 	= resolution Eiis

process
selector 	 p11 -5- 055 bus

- chapter four Hardware Implementation -

The control logic

Operation within the imputer architecture requires the control system to interface

with the microcontroller, operate the processor pipelines and access the imputer

RAM for input and output. Stand alone operation requires synchronisation with the

video sensor and control over ADC and DAC devices.

An architecture of gray code state machines has been devised that delivers all these

control and interface functions. The modular architecture allows re-use of logic

blocks whose functions are common to both imputer and standalone modes of

operation, while maintaining isolation between a mode of operation and logic

blocks that are not required for it. This isolation means that operation in the imputer

architecture is not reliant on the parts of the architecture specific to autonomous

operation. Therefore they do not need to be designed before the rest of the FPGA is

tested in the imputer system.

A schematic representation of the all the control logic modules is given in Figure

4.12. It includes all the state machines, the counter that generates raster address

sequences and all inter-module connections.

Figure 4.12 Schematic representation of the FPGA control logic and address generatot These state
machines make up the control system that runs the pipe/med processors and interfaces
them with the Impute, architecture. The modules are arranged within the schematic in
approximate order of hierarchy from left to right.

4.21

- chapter four Hardware Implementation -

Overall control

Which mode of operation the FPGA adopts (imputer-slave or stand-alone device) is

determined by the sense of an input shortly after power-up. Immediately after

power-up, the FPGA is under the control of a state machine called the monitor. If the

mode input is set to 'autonomous' then the monitor hands over control to the

autonomous controller (which starts running a processor). Otherwise it retains control

and enters an endless loop of waiting for processing commands from the imputer

and acting on them.

Control over the internal processors and external devices in autonomous mode is

relatively simple as the processing is performed continuously. Other than staying in

sync with the video sensor, the processing of each pixel is identical. In imputer-slave

mode control is complicated by three factors: the need to stop processing after a

frame of pixel iterations, having to generate the address rasters and having to set up

all process variables before processing. (In autonomous mode the process and

resolution can be changed asynchronously from the processing.)

A simple processing cycle is followed in the imputer architecture. Valid commands

from the imputer are decoded and stored in the command latch. When the monitor

notices that a process command has been received it leaves its idle state, refreshes

the process and resolution controllers, oversees the priming of the address generator with

initial read and write addresses and then allows the process controller to run one of

the pipelined processors for a full 256x256 frame of image data. The monitor then

stops all activity and returns to its idle state.

In keeping with the nature of the state machine architecture a modular approach is

taken to the control protocol used between the modules. At the start of each

monitor-led processing cycle, the monitor co-ordinates all the processing and lower-

level control logic, in preparation for processing. To keep independence between

the design of the individual modules a handshaking protocol is employed that relies

on signal states rather than absolute edge timing.

The main requirement of the processing preparation stage is that all the logic that

must be prepared is ready before processing begins. When it is time for the pre-

4.22

- chapter four Hardware Implementation -

processing setup, the monitor raises the PREPARE line and keeps it raised until all

relevant low-level machines have answered. The low-level machines answer by

raising their _READY outputs, they do this immediately after they notice the raised

PREPARE flag and only drop them again once PREPARE has been dropped by the

monitor and they have finished their processing cycle. This handshake ensures that

all the relevant low-level machines see the PREPARE flag and that the monitor waits

until all of them are ready before allowing the process controller to start.

Interdependencies between the low-level machines can be allowed for by making

the operation of the dependent machine itself dependent on the _READY flag of the

other. This system is used in the FPGA to make the address primer wait until the

process selector has updated the current process before priming the address

generator with the start address (which is process-dependent).

This handshaking protocol allows a modular approach to be taken to the FPGA

control system. As long as the protocol is observed additions or modifications to any

of the control system can be made without altering the rest of the system.

Low-level processor control

The operation of the pixel processors is controlled by three of the state machines: the

process selector, the resolution selector and the pipelined processor controller.

Synchronised control over the address generator and clocking of the processors is

achieved by the process controller. Which processor and at what resolution it

operates at are determined by the outputs of the process and resolution selectors. To

offer compatibility with the imputer and autonomous architectures the selectors are

implemented as programmable state machines. They have four stable states and can

be forced into any of these using the programming inputs. A simple logic input can

be used to cycle around the four stable states. This allows simpler control in an

autonomous application.

Imputer R1M address generation

The two binary sequences required to address imputer memory in order to access

the image data in raster order are generated by the address generator. The address

4.23

- chapter four Hardware Implementation -

generator is initialised by the address generator primer and clocked during processing

by the pipelined process controller.

Auxiliaiy parameter setup

Control over a number of auxiliary parameters is available to the imputer in

imputer-slave mode via the auxiliary setup machine. These parameters include

internal clock frequency division, inhibition of the PRBS generator, re-preloading of

the FIFO and altering the length of the shift register that the FIFO simulates.

FIFO management

The FIFO manager is a simple state machine the preloading and clocking necessary to

simulate the long section of safe perturb 1 pipeline using the external FIFO.

Simulation results

Comments on the tools

The logic simulation and FPGA layout tools prove powerful in allowing the full

development of a complete FPGA model, including post-layout worst-case timing

delay information. Unfortunately some minor aspects of the tools are problematic.

Extracted layout timing limit information

The timing extraction routines of the layout tool (ALS) cannot provide useful

maximum critical path speed information when all the sequential logic is not

synchronous. This is the case in parts of the FPGA (particularly around the imputer

inputs where, instead of the system clock, an imputer signal is used to clock many

latches). This leads to flagging of hundreds of irrelevant asynchronous hazards. The

sheer volume of these, combined with the obscure node naming conventions,

makes interpretation of the critical path timing analysis information practically

impossible.

4.24

- chapter four Hardware Implementation -

Version control

Little control over schematic and layout files is evident. Without careful control over

file names and locations it is easy to erroneously back-annotate a schematic with the

extracted timing information from a layout generated from a different schematic.

Problems exposed by back-annotation

Simulation using schematics back-annotated with the worst-case delay information

provided by the layout tools exposed only one problem in the design. An oversight

in RAM write cycle timing led to the read/write strobe toggling at the same time as

the address is latched on the FPGA outputs. During the ideal simulations this

satisfies the RAM models timing requirements as both transitions occur

simultaneously. With the addition of realistic delays the address bus takes time to

settle violating RAM setup-and-hold requirements. This can, however, be remedied

by changing the phase of clock used for a single set of latches.

The lack of problems experienced in the move from ideal to worst-case delays

demonstrates that the design methods used are robust The heavily pipe-lined

nature of the processor logic protects it well against potential timing problems. The

use of gray-code state machines and the handshaking protocols of the control logic

prevent glitches and race-hazards.

Hardware tests
Once the FPGA devices were programmed with the PINK design, a series of tests

followed to prove the design. The tests included general operation of the FPGA

within the imputer architecture, exercise of the internal control system and, most

importantly, the operation of the diffusion processors.

The hardware set-up used for the tests, the test procedures and the results are

discussed below.

4.25

- chapter four Hardware Implementation -

Test system

The full test setup comprises an imputer system (including PINK FPGA), a small

video monitor and a host PC. This system is shown in Figure 4.13.

U ------L

M,

- 	. 	 1
I 	 .1

4 	 77a 17
Figure 4. 13 The PINK FPG4 test set-up. The Impute! systin (on/1IrI/nQ the //'G4) the power

supply and monitor can be seen to the left of the PC.

Physical connection of an FPGA to the imputer system requires a printed circuit

board (PCB). An existing imputer PCB design was used. It required minor

modification, but its use saved both design and fabrication time.

To control the use of the FPGA within the imputer system firmware was written to

run on the microcontroller of the imputer. A library of 'C' functions was created that

implements all the control functions offered by the FPGA design. Together with a

menu-based test program, this library was used to perform all the hardware tests.

Full listings of the library functions and test software can be found in appendix

three.

The PC in the test system was used to write and compile the test firmware, for long-

term image storage and as a terminal emulator for interaction with the menu-driven

imputer test program.

4.26

- chapter four Hardware Implementation -

Test procedures

Initial proof of test system integrity

Initial testing of the system FPGA and software was made without live video input

or output and without the video generator in the system. A test image was loaded

into imputer memory from the PC. The test software controls processing of this

image using one of the diffusion processors. The resulting image was then uploaded

to the PC for inspection.

After minor teething troubles with the test software a processed image was

successfully uploaded to the PC. This simple result in itself proved much of the basic

functionality of the system. Three conclusions can be drawn from the fact that

different memory banks are used for the FPGA input image and its output image

(and that a processed image has been successfully uploaded). The microcontroller

has successfully initiated a frame of image processing, the FPGA has successfully run

a complete frame of image data through a processor pipeline and finally, it has

returned control of the imputer bus to the microcontroller.

Checking algorithm implementation

Verification that the processors had been implemented correctly was achieved by

comparing the results of images processed using the processors against results

obtained during the hardware and software simulations. To ease verification, simple

test images were first used. The first images used were linear greyscale ramps (both

vertical and horizontal) followed by more complicated (and thus more realistic) still

images (e.g. lena).

When making detailed analysis of the results from the hardware processors, the

continuous nature of their operation has to be taken into account. The processor

pipelines operate without ever being flushed, thus the exact result of processing

data depends not only on the data and the processor logic, but also on the contents

of the processor's pipeline before the processing began. When scrutinising the

operation of the processors and comparing their results with those from the

simulations, care has to be taken that the contents of the pipeline have been flushed.

4.27

- chapter four Hardware Implementation -

This is possible by applying a reset pulse to the FPGA, which resets all internal

pipeline nodes to zero.

Live video input and display

Once the basic operation of the processors had been investigated the video

generator card was inserted into the system to enable the live display of processor

output.

During testing it was noted that data could not be written into the buffers of the

video generator as fast as had been expected. In order to successfully write each

pixel into the memory the FPGA clock had to be slowed down. The reduction in

speed means that the total time taken to grab and process one image now exceeds

the period of two video frames. Instead of processing every second video frame

from the sensor, the system can only process one in every three. This reduces the

live processed frame rate from 25 fps to approx. 17 fps. A second complication is that

the use of a single image buffer for both diffusion processor output and video

generator input caused tearing of the image on the display. This is due to the two

asynchronous rasters (one each for the PINK FPGA and the video generator)

occasionally crossing in memory. The tear can be avoided by alternating between

two buffers, however, this increases the delay between image capture and processed

image display to 60 ms.

Results

This section discusses the results of the programmed device testing, and some of the

statistics of the final design.

'Safe perturb 1' failure

Problems were encountered when trying to use the safe perturb 1 processor. Three

findings suggest that the most likely source of the problem is in the FIFO interface.

Firstly, interaction with the FIFO is the only feature of the design that was not fully

simulated. Secondly, that the FIFO is the only major difference between the safe

4.28

- chapter four Hardware Implementation -

pertub 1 and simple processors. Finally, the nature of the failure is consistent with

incorrect FIFO clocking.

The problem exhibits itself as a slow scrolling of the output picture from right-to-left

after the processor starts. After it has scrolled once its stops. Using the 'nudge'

feature of the FIFO manager, the image can be scrolled back, however, it drifts over

again. This suggests that the FIFO is interpreting more 'read' than 'write' commands

- thus the simulated section of pipeline gets slowly shorter until it disappears. The

speed of the scroll is consistent with a single extra 'read' command per frame of

image processing (the scroll takes approx. 15 s). This suggests an error when the

processor is either starting or stopping.

Perceived display linearity

Careful scrutiny of uploaded output of the simple processor verified its successful

implementation. Initial comparison of the results of its operation in the live display

mode (17 fps) with that of the software simulation of the same algorithm were,

however, disappointing.

Apart from a higher update rate (which was expected to improve perceived quality)

the main difference in the hardware version is the display. Output from the

software simulations is viewed on a small portion of a 17" PC monitor, the hardware

test system uses a 5" monochrome monitor.

Investigations into the perceived linearity of this 5" monitor show it to be far from

linear. Perceived display linearity is important to the success of error diffusion, as

when errors are arranged to cancel the energy is assumed to add and subtract

linearly.

Attempts to correct for the non-linearity using conventional 'gamma' power

functions were unsuccessful. Investigation of the characteristics of the display

showed its excitation vs. perceived luminance transfer function to be sigmoid in

shape (see the required correction function shown in Figure 4.14). The imputer can

be used to apply a correction function using a look-up table. Unfortunately, this

cannot be performed in real time.

4.29

- chapter four Hardware Implementation -

256

192

128

64
	

ideal
gamma 2.2

__ manual correction

64 	128 	192 	256

Input

Fi 1ure 4.14 Correction of the perceived I/n eari4' of the test system monitor. A successful manually
derived correction function is shown. A gamma correction function (2.2) and y=x are shown
for comparison.

When display linearity was corrected the diffusion images displayed on the 5"

monitor were considerably closer to those seen in the software simulation. This

example of how dependent the algorithms output is on factors such as display

linearity reinforces the importance of control over the viewing conditions to the

successful application of error diffusion.

Processor speed

Most of the testing was performed using a 20 MHz oscillator and the FPGAs internal

clock divider to allow display using the video generator. The FPGA was also tested

running at the full 20 MHz. At 20 MHz, the originally intended operating speed, the

simple processor's operation was verified through transferring processed images to

the PC and comparing them to simulation results.

Using an external clock generator the processor was also seen to operate properly up

to a clock frequency of 27 M1-Jz. At this frequency, the FPGA began to violate the

timing requirements of the 70 ns RAM.

Images

Single frame examples of the processed output from the simple and truncate

processors of the FPGA are shown below. As single, static images these are similar to

4.30

- chapter four Hardware Implementation -

those presented in the software simulation of chapter three, thus only a few

examples are shown. When interpreting the static representations contained in this

thesis, it should be kept in mind that the processors are designed to output a series of

images at a high frame rate. This will affect the appearance of the noise produced by

the simple diffusion processor. At the higher colour resolutions the moving noise is

far less visible than when static. At the lower resolutions, however, it could be

argued that it is more objectionable when moving.

A vertical greyscale ramp (one of the initial test images) is shown processed by the

simple and truncate processors in Figure 4.15 below. This image demonstrates the

success of the simple processor at representing smooth vertical gradients. At the

higher colour resolutions the dithering pattern is not very noticeable, as the

resolution drops the pattern becomes more obvious. The structure in the dithering

noise is a result of the simplicity and deterministic nature of the simple algorithm

used. Even at 4 bpp, distinct banding can be seen in the output of the truncate

processor.

4.31

4 bpp

3 bpp

...

- chapter four Hardware Implementation -

-211

2bpp

1!

1 bpp

simple
	

truncate

Figure 4.15 A comparison of the output of the 'simple' and 'truncate' processors.

4.32

4 bpp 3 bpp

- chapter four Hardware Implementation -

Processing of a horizontal greyscale ramp by the simple processor is shown in Figure

4.16. The dramatic difference in diffusion pattern highlights the directional nature of

the simple algorithm.

In Figure 4.17 a comparison between the results of the hardware and software

implementations of simple is shown. The pictures are almost identical except for

slight differences in the dither pattern. These differences are due to the continuous

nature of the hardware processor. Unlike the software implementation which gives

the same result each time it processes the same data, the output of the hardware

processor varies slightly with every frame (as its output is dependent on the

contents of the pipeline when processing starts).

4.33

- chapter four Hardware Implementation -

¶i4

4bpp

1

3 bpi!

41

NY

5

2bp,

I
I

1Lç 	1

j :

'

T

01

01F

b

'j

/ bp 	 k

*4

A

/?,J/Ul 1411C, processor 	 ,oit are function

Figure 4.17 Comparison of the output of the hardware 'simple' processor with that of Its software
Counterpart.

4.34

- chapter four Hardware Implementation -

Conclusions
This chapter details the implementation of two error diffusion algorithms (simple

and safe perturb 1) in an FPGA. Earlier software simulations suggests that these

algorithms would be suitable for use in the radio video application.

The simple algorithm has been successfully implemented in hardware. As part of an

imputer system it offers processing of images at 17 fps at one of four greyscale

resolutions.

Implementation of the safe perturb 1 algorithm was unsuccessful. This is due to a

problem in the interface with the FIFO device used to simulate a section of the

processor pipeline too large to fit onto the FPGA.

In the output from the simple processor, the high frame rate achievable with the

hardware implementation is seen to alleviate the patterning problems of the

diffusion algorithms at 3 and 4 bpp. At lower colour resolutions, however, the noise

remains clearly structured.

The imputer system proved to be a valuable test bed.

Although the entire FPGA design was equivalent to approx. 7000 gates, less than 7%

of these were attributable to the two diffusion processors. Furthermore, if

implemented as part of the output stage of a digital-output video sensor, the

hardware overhead of the simple processor would be that of a single adder and

latch.

The successful implementation of the simple processor confirms the ability to

implement error diffusion with minimal hardware assumed during software

simulations. This justifies the selection of error diffusion as the compression method

for the radio video application.

Sync information must be added to the pixel data output from the diffusion

processor before it can be transmitted. This could be achieved by time-multiplexing

reserved 'escape codes' with the data. As such, the hardware diffusion processor

represents the core of a possible coder for the sensor-transmitter interface.

4.35

chate F five

Subjective Testing

When evaluating and comparing lossy image compression techniques three factors

must be considered: the degree of compression each technique yields, its complexity

and the resulting loss in image quality.

In chapter three several implementations of compression through quantisation with

error diffusion are explored. Scrutiny of the algorithms concentrates upon the

complexity of their hardware implementation and the limited subjective evaluation

of their effect on image quality at comparable bit rates. The complexity of

implementation and bit rate are easily measured objectively. The effects on image

quality, however, are the subjective views of the author. To truly have confidence in

these conclusions, more substantial examination of the output of the algorithms

involving more observers is required. Such testing is the subject of this chapter.

Assessing image quality
'Image quality' is a term commonly referred to in the literature, but one that lacks a

precise definition. In the context of compression, the term is generally used to refer

to how closely a processed image represents the original. This can be interpreted as

any change in the image data itself, or possibly more importantly, any alteration to

the data that leads to a perceivable change in the image.

5.1

- chapter five Subjective Testing -

The matter is complicated further as it is not only the visibility of distortions that is

important, but also how objectionable they are and how they affect the perceived

image. In some applications the usefulness of an image may be unaffected despite

quite obvious processing artefacts as long as certain key aspects remain unaltered

(such as the ability to reliably determine the absence or presence of some feature).

Indeed some compression techniques that inherently remove random noise could

be considered to improve the image quality in such situations [CoswJ94].

Subjective measures of image quality

A common approach to the measurement of image quality is to present a set of

images to a panel of observers and ask them to rank the images in terms of relative

quality [WALLACE et al 88; COSMAN 94; PRATT 79]. Where image qualities are drastically

different, ranking by an observer is quick and unlikely to be disputed. However,

judging the superior algorithm among those of similar output is not so trivial.

Another problem of such subjective observer tests is that the test conditions vary

among researchers, making direct comparison of results difficult. Some standard test

features have been adopted (such as how to relate how visible or objectionable

errors are to a scale of 1 to 10). As many alternative applications are considered, the

desire for a standard test procedure (allowing simple comparison of results) is seen

to conflict with the researcher's need to mimic the conditions of the intended

application as closely as possible (to increase the accuracy of the test).

The nature of subjective tests opens them up to problems of bias. If for any reason

the background of the observer may influence either their objectivity, or their ability

to detect types of errors (through adaptation) then there will be a danger of observer

bias. There are two schools of thought on observer adaptation, those that believe

observers should be allowed considerable time to become comfortable with the

experiment and consistent in their ranking of quality before any results are taken

[sAI<iIsoN 77] and those that see the adaptation of observers to the test pictures and

the type of errors as a factor that is prone to make them over-critical, especially in

such an artificial situation as the tests where they are being asked to actively search

for errors [WALLACE et al 88].

5.2

- chapter five Subjective Testing -

For the researcher, subjective trials are tedious, time consuming and their very

nature means they are not precisely repeatable. It would be much more convenient

to have an objective meter that is repeatable and quick to compute.

Simple objective meters

Various simple meters of averaged individual pixel error exist. These are generally

computed by calculating the pixel-to-pixel difference between original and

processed images then collapsing this onto a single variable quantity such as the

mean-squared error (MSE), signal-to-noise ratio (SNR) or peak signal-to-noise ratio

(PSNR).

Although these meters can be applied successfully within narrow fields of research,

their accuracy and thus value as general meters is questionable. Examples of the

failings of mean-squared error (by far the most commonly used simple meter)

include both the over-emphasis it places on image modifications that are often

relatively unimportant (such as a small spatial image shift or a small d.c. level

change) and its insensitivity to the corruption of small but possibly important image

features.

For an objective meter to be of use it must reflect the 'perceptual quality' or the

'usefulness' of an image for a particular application. Unfortunately, no meter that is

simple to compute is generally accepted to satisfy this requirement [cosN 941.

The human visual system

A subtle but important point when considering the design and evaluation of image

systems that are to be viewed by people is the effect of the human visual system.

When an image is viewed, the information conveyed to the observer is dependent

not only on the actual image, but also on the way in which it is interpreted. In

reality, factors completely unrelated to the image, such as the experience of the

observer, can have a bearing on this interpretation. Other factors, however, relate to

features of the image and stem from physiological and psychological features of the

human visual system. Such factors are common to all human observers.

5.3

- chapter five Subjective Testing -

Frisby described the problem of seeing as "the problem of building up a symbolic

description of a scene using the information contained in an input visual image"

[FRISBY 79]. The physiological aspects of our visual system determine how the

information from the visual image is presented to our cognitive systems. These

aspects combined with the psychological mechanisms of data abstraction that

construct this 'symbolic description' underlie the interpretation of scenes and thus

also the interpretation of image distortions and other forms of compression error.

Understanding characteristics of the human visual system allows an informed

approach to be taken when considering the effects of distortions in visual image

data on the perception of that image. This necessitates a subjective approach to the

design and evaluation of lossy image compression techniques. To that end, a vast

number of mathematical models of the human visual system have been proposed

[MANOS & SAKRISON 74; HALL & HALL 77; XIE & STOCKMAN 891. The basis for these models

comes from two major sources. The first is data gathered from psychophysical

experiments using human observers. In these; characteristics of the human visual

system such as its sensitivity to stimuli of various spatial frequencies are measured.

The second source is data from the physiological study of the visual systems of,

animals such as cats and monkeys. Results from the experiments are related to the

human visual system on the premise that the vision systems of all vertebrates are

similar. (For comprehensive surveys of this evidence see [MARR 82; HALL & HALL 771.)

Objective meters based on models of the human visual system

Models of the human visual system have been used to offer objective measures of

image quality with varying degrees of success by many researchers working on the

analysis of image compression techniques. The models are generally used to

compute an error metric from the difference between original and processed images

or image sequences. Some of the more popular features of models are introduced

below with consideration of the limitations of their general application.

5.4

- chapter five Subjective Testing -

Spatial and temporal filtering

The sensitivity of the human visual system is dependent on both the spatial and

temporal frequency of a stimulus. Physiological and psychophysical evidence

suggests that the sensitivity can be modelled using simple functions [ROBSON 66;

PEARSON 75 ; CAMPBELL & MAFFEI 74]. It should be noted, however, that the spatial and

temporal responses are not entirely independent [R0B50N 66]. Typically, this

nature is modelled by linearly weighting the significance of data using a measure

of local frequency content.

Multi-channel processing

Evidence exists which supports a multi-channel model of the human visual

system. In this, several quite separate channels (sensitive to different spatial or

temporal frequencies) are used to analyse image information. The supporting

evidence includes the observed ability of people to suppress stimuli of certain

temporal frequencies and the independence with which stimuli of quite different

spatial frequencies can be detected [CIu 90; MULLIGAN 931. Multi-channel behaviour

has been modelled using linear processing in separate channels followed by non-

linear recombination of the results [sAiaISoN 77].

Correction for non-linearity

It has long been known that the human retina has a highly non-linear response

to incident light [PEARSON 75]. Models that attempt to incorporate this feature do so

by using non-linear transfer functions (such as log [REED 92; CHADDA & MENG 93] or

cubic-root [GRANRATH 81]).

Context masking

The visual context of an error has been shown to affect its significance. The less

correlation between local image activity and error, the more obvious it is. This is

often referred to as masking (as errors are effectively masked by image activity).

This feature has been successfully modelled by linear weighting of errors. Use of

a global, purely arithmetic average of image activity and (more successfully) a

5.5

- chapter five Subjective Testing -

local, geometric average have been proposed as weighting functions [LUKAS &

BUDRIKIS 82; REED 92; COSMAN 94; CHADDHA & MENG 93].

To allow the easy comparison of results a single scalar figure of merit is often

realised from the three-dimensional error image created from the model. Non-linear

measures are often employed in this conversion (as in the simple metrics). These

include calculation of mean squared error, other 'li, norms' such as the cubic root of

the sum of cubed errors (1 3) and the maximum error (lw), as well as signal to noise

ratios. There is some theoretical support for the use of non-linear methods. Research

has shown that in subjective tests observers base their ratings on the worst areas of

images (giving any high errors a disproportionate significance) [LuIcs & BUDRIKIS 82].

Although many promising results have emerged from the use of mathematical

models of components of the human visual system, no complete model yet exists.

Many of the partial models are limited in their application because of the factors

outlined below:

. Much of the data used for modelling functions (such as spatial frequency

sensitivity) is based on experiments that assume the stimulus is viewed against a

uniform background [PiTr79]. In image compression, the stimuli are

compression artefacts and the background is the source image. Models based on

the experiments with uniform backgrounds are therefore unlikely to be directly

applicable.

• A second problem is that the stimuli used in many psychophysical experiments

differ greatly from those that are important in the compression. Much perception

experimentation is based on random perturbations such as additive white noise

rather than realistic compression artefacts [sAIIsoN 77]. Care should be taken

when applying models derived from these experiments.

• Another assumption often made is that the image quality is fairly high thus errors

are on the verge of being detectable rather than obvious. This again simplifies the

model as only the threshold of perception of stimuli needs to be modelled. In the

case of error diffusion at low bit rates this simplification cannot be made.

5.6

- chapter five Subjective Testing -

The interpretation of modelling results is also limited. Most analysis ultimately relies

on pixel-to-pixel comparisons. No attempt is made to abstract data from the image

or consider changes in semantics caused by errors. The complication of constructing

objective meters that can perform such tasks often leads back to the use of subjective

tests.

Using objective meters with error diffusion

The approach of error diffusion, indeed all haiftoning algorithms, is to minimise

locally averaged error at the expense of instantaneous pixel fidelity. Amongst

compression algorithms, error diffusion faces particular problems in satisfying the

simple objective image quality meters.

Although some of the key features of the human visual system models published

are not applicable to the analysis of error diffusion (especially at the bit-rates and

under the viewing conditions of the radio video link) many of the model features

such as spatio-temporal sensitivity and non-linear luminance response are directly

relevant.

If a mathematical model were to be used to evaluate algorithms for use in the radio

video link there are features extra to the human visual system that could be built in.

In particular these include features of the transmission channel (such as bit-error

rate) and the display mechanism such as limited frequency response (see Kell factor

in [BLINN 94]) and non-linearity. In the interpretation of the results of any error

modelling, a meter such as the radially averaged power spectrum [ULICHNEY 88; MITSA

92] could be profitably used to measure any structural content (indicative of textural

patterning from the error diffusion).

Pressure on time meant that an attempt at objective analysis of the implemented

error diffusion algorithms using models of the human visual system was not

possible. A program of subjective tests was, however, devised. The experimental

design and the hypotheses it seeks to test are outlined below.

5.7

- chapter five Subjective Testing -

Hypotheses
The experiment consists of a set of subjective comparisons of images and image

sequences. These are devised to test the validity of the author's conclusions (drawn

in chapter three) regarding the relative output image quality of the various diffusion

algorithms.

These hypotheses are:

All algorithms introduce a perceivable degree of degradation at 3 bpp.

At 3 bpp and 4 bpp the output of the simple algorithm is comparable to that of

Floyd & Steinberg's filter.

The problems of the perturb algorithm are alleviated to some extent by the

changes made to produce the safe perturb 1 and safe perturb 2 variants. These

changes are significant (and therefore merit the increased implementation

cost).

Amongst the single element filters safe perturb 1 and simple offer the best results

at3bpp.

Setting up an experiment to test these hypotheses provides an ideal opportunity to

explore three other aspects of the perceived quality of the algorithms' output.

The output resolution at which processing becomes apparent

The degree to which the choice of source image affects the success of the

algorithms

The degree to which the success of the algorithms is improved by the use of

image sequences as opposed to stills

An experiment designed to test all these hypotheses is described below.

5.8

- chapter five Subjective Testing -

Experiment design
Comparing every algorithm at every resolution would constitute an enormous

exercise. Instead, the experiment uses a selection of comparisons targeted at testing

the hypotheses set out above. It represents a 'pilot' programme of tests. The results

of which could be used to direct more comprehensive testing of the particular

trends exposed.

Two types of test are used in the experiment: forced-choice between pairs of image

sequences and the sorting of still images in order of perceived quality. In the forced-

choice tests, the subject is presented with pairs of image sequences and asked to

indicate which of the two they judge the better. Detection of a difference between

the sequences is indicated when the amalgamated results show that viewer choice

departs significantly from random (e.g. from 507o). Results of the still image sorting

are used to rank the output of the algorithms.

The experiment comprises three sets of tests. Firstly, a set of forced-choices between

sequence pairs where each has been processed to the same output resolution, but

using different algorithms. Secondly, the forced-choice between sequence-pairs

where one has been processed, the other not. Thirdly, the sorting of sets of six still

images in order of their perceived quality. All six images having been processed

using different algorithms, but to the same resolution.

These tests relate to the hypotheses outlined earlier as follows:

Processed vs. unprocessed

The forced choice tests using processed and unprocessed sequences test the

degree to which processing can be perceived at a particular resolution. The limit

of perception is thought by the author to he around 4 bpp and 5 bpp: the

resolutions used in the tests.

The use of three different image sequences in this test allows the investigation of

the dependency of the results on the source image.

5.9

- chapter five Subjective Testing -

Algorithm comparisons

Forced choice tests between sequences processed to the same resolution (but

using different algorithms) is intended to allow the relative success of the

algorithms to be evaluated. In terms of the original hypotheses, this test explores:

the relative qualities of simple and floyd-steinberg at 3 bpp and 4 bpp; the

significance of any benefit in employing the more complicated perturb

algorithms (rather than perturb itself); whether simple and safe perturb 2 are the

best of the single element filters at 3 bpp.

Still image sorts

Comparing sets of six still images (all processed to the same resolution but using

different algorithms) allows ranking of the perceived effectiveness of all six

algorithms at a particular resolution.

Still images are used both to reduce the length of the whole experiment and to

allow the effect of image movement to be explored. The latter is achieved by

comparing the results from this test with those from the paired image sequence

algorithm comparisons.

In this test all three images are used again in order to further explore the

dependency of the results on the source image.

Source images

Research has shown that the visibility of errors depends on their visual context

[Lui..As & BUDRIKIS 82]. In addition, (in common with nearly all image compression

techniques) the form of errors produced by quantisation with error diffusion

depends on the image content. Thus, the subject matter of the images sequences

used in tests can have an effect on the outcome. To give some spread of subject

matter, three test sequences are used. Two 'head-and-shoulders' sequences (claire

and miss america) and a wider angle office scene (salesman) were obtained from the

USC database (see Figure 5.1 below).

5.10

- chapter five Subjective Testing -

(b)

Figure 5.1 Single frames from the three test sequences used in the subjective tests: (a) 'cIaire (b)
'miss amer/ca and (c) 'salesman ' The sequences were obtained from a database at the
University of Southern California. Los AneIes (ftp://ftp.lpI.rp/. edu1pub/ima 1e/sequence/).

These sequences were selected for use in the tests as they are widely recognised in

the literature and are considered to be representative of sequences likely to be

transmitted in the radio video link application.

Measures employed to reduce false results

Measures were incorporated into the experiment to reduce the possibility of

extraneous factors influencing the results.

It was anticipated that seeing the gross artefacts of the low bit rate images might

make them more noticeable in their higher bit rate counterparts. Similarly, it was

anticipated that observers may become adapted to being able to 'spot' certain classes

of defect more easily after viewing the still images (as the visibility of artefacts was

anticipated to be clearer in the still images).

Presenting all of the forced-choice pairs in decreasing order of resolution could be

used to prevent the first of these sources of adaptation. However, it may introduce

another source of error, in that the observers may come to expect increasing levels of

artefacts, irrespective of the algorithm. Instead, in accordance with guidelines

produced for evaluation of television images [ccIR R. 500-31 in these experiments the

order of the image pairs is randomised.

To prevent the observer adaptation from viewing the still images affecting their

perception of the sequences, all the sequence comparisons are presented first.

5.11

rnr I
Stop PtJY

- chapter five Subjective Testing -

In case the physical location of each image on the screen has any influence, this

factor is also varied by using three different sets of randomised tests.

Test software

A software application has been written which allows the presentation of up to six

still images or image sequences at once (see Figure 5.2 and Figure 5.3). The still

images are presented together, whereas sequences are shown individually to ensure

they are displayed at the highest possible frame rate.

iiati 	 " Prcv'ic Pago 	 Np 	i>

Figure 5.2 The window of the subjective test application during display of a set of
still images.

5.12

- chapter five Subjective Testing -

Run I step I halt j (41 Ii! 	 . . i 	i 	Previous Page I Next Page >>

- 	Psy 	 stcj7I 	Play 	Istop 	_•j 	l'tuy 	stpJ

-- .._....I -s;'— i f4ay 	Stop I 	Play 	I stop

Figure 5.3 The window of the subjective test application during display of a moving Image
sequence. The five image sequences that are not currently playing are left blank rather
than displaying a static image so that subjective analysis of the image sequences Is not
coloured by observation of still frames.

The playing of image sequences is achieved using the repetitive display of pre-

processed bitmaps stored locally on the PCs hard disk. The images are rendered

using a version of the simulation software that allows the batch processing of

images. The number of images involved requires a significant amount of storage'.

This approach, as opposed to on-the-fly computing of the processed images (using

the software implementations of the algorithms) is employed for two reasons.

Firstly, so that the image sequences can be presented at a reasonable frame rate

(roughly 12 fps) and secondly, so that all the sequences are presented at the same

frame rate, independent of the complexity of the algorithm used.

The C source code for the test software can be found in appendix four.

Each of the three sequences was made up of sixty 64k frames, in addition to these unprocessed images each was

also stored after processing with one of the six algorithms, and all algorithms at five different bit rates. All images for

the three different sequences totalled approx. 400 Mb.

5.13

- chapter five Subjective Testing -

Results
The results of the subjectve tests are presented below.

Algorithm comparison tests

Results, comparing the image sequences, are shown in matrices in the three tables

below (Table 5.1, Table 5.2 and Table 5.3). The samples sizes vary from 7 to 23.

Results shown in bold type are statistically significant (given the sample size).

Significance is determined using the 'sign test', with cx=O.05 [ALDER &ROESSLER 72].

floyd- simple 	safe safe perturb truncate
steinberg perturb 1 perturb 2

floyd-steinberg better than - 100%
simple better than 42.9% 87.5% 78.3%

safe perturb I better than - 69.6%
safe perturb 2 better than 57,1% 	30.4% - 87.0% 78.3 0/6

perturb betterthan 12.5% 13.0% - 60.0%
truncate better than 	0.0% 21.7% 21:

.

.1 0/o 40 . 0% -

Table 5.1 Results of the algorithm comparison tests at 2 bpp

floyd- simple 	safe safe perturb truncate
steinberg perturb I perturb 2

floyd-steinberg better than - 87.0% 100.0% 91.3% 95.7%
simple better than 65.2% 73.9%

safe perturb I better than 56.5%
safe perturb 2 better than 34.8. 	43.... - 52.2% 73.9%

perturb better than 8.7% 26.1% 47.8% - 56.5.
taincatebetterthan 4.3% 8.7% 26.1% 43.5 k. -

Table 5.2 Results of the algorithm comparison tests at 3 bpp

floyd- simple 	safe safe perturb truncate
steinberg perturb I perturb 2

floyd-steinberg better than - 43.5% 65.2% 73.9% 47.8%
56.5%. simple better than - 56 3C3 739% 56 5%

safe perturb I better than - 37.5%
safe perturb 2 better than 348% 43.8% 	62.5° - X.516.5% 47.8

perturb better than 26.1% 26.1% 43.5% - 34.8%
truncate better than 52.5% 43.5% 52.2% 65.2% -

Table 5.3 Results of the algorithm comparison tests at 4 bpp

Testing performed at 2 bpp is relatively sparse as this is below the intended

resolution of the radio video link coder (3 or 4 bpp). However, the results gathered

do show the poor performance of the truncator when compared with all but the

5.14

- chapter five Subjective Testing -

perturb algorithm. There are no significant differences between simple and the two

safe perturb algorithms at 2 bpp.

The 3 bpp and 4 bpp results are based on a larger sample size. Examining the figures

for the two resolutions shows a high number of significant results at 3 bpp, fewer

significant differences at 4 bpp. At this higher resolution, the only significant

difference noted by observers is in the poor performance of perturb when compared

with both simple and floyd-steinberg.

The improved ability of observers to discriminate between the different algorithms

at 3 bpp (compared with 4 bpp) implies greater perceivable differences between the

algorithms at this lower resolution. This corroborates the hypothesis that differences

between the output of the algorithms are clear at 3 bpp.

Floyd-steinberg is preferred to the other algorithms at 3 bpp. Table 5.2 shows it to be

significantly better than all other algorithms tested at this resolution. Simple also

performs well, although worse than floyd-steinberg, it is preferred over perturb and

truncate.

Safe perturb 1 is omitted from most of the algorithm comparisons, because its

performance is expected to be very similar to that of safe perturb 2. The validity of

this omission is borne out by the results shown above. No significant difference is

found between safe perturb 1 and safe perturb 2 at any resolution.

Still image sorting tests

The resulting ranks from the still image sorting test are shown in Figure 5.4 and

Figure 5.5 below. High ranking scores indicate images preferred by the observer.

5.15

- chapter five Subjective Testing -

140

120

100

80

60

40

20

0
simple 	floyd-s 	truncate safe pert-I safe pert-2 perturb

Figure 14 Results of the 3 bpp still image sorting test.

At 3 bpp the ranking of the algorithms is distinct. For all three images floyd-steinberg

has the highest rank, simple the second and truncate the lowest. The rankings of the

variants of perturb suggest that the two safe variants are preferred to perturb itself,

aith

140

120

100

80

60

a)

C

40

20

0
simple 	floyd-s 	truncate safe pert-I safe pert-2 perturb

Figure 5.5 Results of the 4 bpp still image sorting test .

The ranking pattern at 4 bpp is not so simple. Again, floyd -steinberg is consistently

highest, followed by simple, but the distinctions between the remaining four are

unclear.

The results of the low rankings achieved by claire at 4 bpp are interesting in that

they indicate a clear incompatibility between claire and truncate. This is likely to be a

5.16

- chapter five Subjective Testing -

result of the almost flat background in the image which will be particularly

susceptible to false contouring. This result supports the research hypothesis that

perceived algorithm success is image dependent.

Processed vs. un-processed

Table 5.4 shows the results from the comparison of processed and unprocessed

images. The figures show the proportion of observers who preferred the processed

images to the unprocessed originals.

claire 	 miss america 	salesman

(count) 	(%) 	(count) 	(%) 	(count) 	(%)

simple 4 bpp
	

3/8 	38% I 	1/2 	50% I 217 	29%

simple 5 bpp

truncate 4 bpp

truncate 5 bpp

perturb 4 bpp

perturb 5 bpp

safe perturb 1 4 bpp

safe perturb 1 5 bpp 3/8

safe perturb 24 bpp 3/7 43% 5/8 	62% 3/8

safe perturb 2 5 bpp 3/4 75% 5/8 	62% 1/8

floyd-steinberg 4 bpp 4/7 57% 0/8 	0% 1/2

floyd-steinberg 5 bpp 318 38% 217 	29% 1/4

Table 5.4 Results from the processed vs. unprocessed sequence comparisons.

The low sample size means that individual comparisons are only statistically

significant if observers preferences are unanimous. The data can, however, be used

to provide a further test of the research hypothesis that perceived algorithm success

is image dependent.

Ranking the individual preference scores for each permutation of image and

algorithm, then calculating a rank total for each of the three image sequences, allows

the calculation of the Kruskal-Wallis H test statistic [iuwsrL & WALLIS 521. The result

corroborates the research hypothesis, showing that there is a significant difference

between the results from the three sequences (at (x=0.05).

1/7 14% 1/4 25% 3/8

2/7 29% 3/8 38 6/6 1/2

1/8 12% 0/8 0% 2/7

ii2 50% 114 25% 4/7

1/4

38%

50%

29%

57%

25%

38%

38%

12%

50%

5.17

- chapter five Subjective Testing -

Discussion & conclusions
This chapter uses a set of subjective tests both to question some of the conclusions of

chapter three and to explore other hypotheses regarding the relative merits of the

diffusion algorithms considered.

From the results of set of subjective tests performed with a modest number of

observers (23) the following conclusions can be drawn:

At a resolution of 3 bpp, observers are able to detect artefacts from all the

algorithms. This is consistent with the opinion of the author expressed in chapter

three.

When comparing the output of Floyd & Steinberg's filter with that of simple, a

significant difference is observed at 3 bpp, but not at 4 bpp. The lack of a

significant difference at 4 bpp supports the hypothesis that the output of the two

algorithms is comparable at this resolution. The significant preference shown by

observers for the output of floyd-steinberg rather than simple at 3 bpp demonstrates

that at this lower resolution a detectable difference exists between the two

algorithms (that of simple is considered to be worse). This latter finding suggests

that the research hypothesis might require modification - the output of the floyd-

steinberg and simple filters may only be comparable at resolutions of 4 bpp (and

above). This conclusion has to remain tentative at this stage because of the nature

of the subjective tests employed. The results indicate that a relative difference

does exist between the simple and floyd-steinberg algorithms at 3 bpp. However,

the ordinal scale of measurement used means that it is not possible to quantify

the magnitude of this difference.

The only significant difference between pertub and the safe perturb variants is

found at 2 bpp (where perturb is considered worse). The lack of a consistent

significant difference at different resolutions suggests that the added hardware

expense of implementing either 'safe' scheme rather than perturb is not justified.

As predicted, simple is found to significantly outperform both the perturb and

truncate filters at a resolution of 3 bpp.

5.18

- chapter five Subjective Testing -

The results of the sequence comparisons suggests that observers show a greater

ability to discriminate between algorithms at 3 bpp than at 4 bpp. This shows that

they are able to discriminate between different algorithms at 3 bpp. The failure to

differentiate between algorithms at the higher resolution can be interpreted in

two ways. It could mean for each algorithm, the degree of image degradation is

so minor that an observer cannot detect it. Alternatively, the even scoring could

be the result of an similar degree degradation from each algorithm, resulting in a

set of 'equally poor' images. From the results of these subjective tests, it is not

possible to determine which of these scenarios is the case. Therefore, the

threshold at which an observer can perceive processing to have occurred remains

unidentified. This is an area which requires further, more targeted testing.

The observer's choice of preferred algorithm is found to depend on the image

sequence used in the test. This is seen in the results of two tests. A statistically

significant difference is found between the image scores in the test which

measures an observers ability to discriminate between processed and

unprocessed sequences. Secondly, examining the graphs of still image rankings

shows considerable inter-image variation (e.g. the results of the truncate algorithm

at 4 bpp). These findings support the hypothesis that perception of algorithm

performance varies according to the composition of the image used.

5.19

c ha p1 te-r six

Discussion 4nd.' Conclusions

This thesis tackles the problem of implementing a radio video link at low cost.

Reducing this cost is important because the purchase and running expense of radio

video link hardware is considered to be an obstacle to its wider application.

Two measures, the use of a low-power/low-bandwidth radio link and the further

integration of the transmitter end of the system, have been identified as ways of

reducing the costs. The objective of the remainder of the thesis was the design of an

interface between sensor and transmitter that offers a degree of compression. This

permits the use of a low bandwidth radio link. The coder design had also to be

suitable for integration on the same die as the image sensor. Given the minimum

image specification assumed and the estimated available radio bandwidth, a

compression ratio of at least 2:1 was required of the coder.

The design of the coder first required the identification of the exact role of the

interface. In addition to compression, two further aspects of pre-transmission coding

(the vulnerability of the coded data to corruption and the ease with which it can be

received) were identified as being important in the radio video link application.

Other than favouring the use of fixed width codewords during compression, coding

for ease of reception can be considered in isolation from the other aspects. Coding

for compression and coding for improved error tolerance are, however, highly

interdependent.

From a review of coding techniques that systematically protect transmitted data

from corruption, their expense (either in bandwidth or implementation) was

6.1

- chapter six Discussion and Conclusions -

deemed prohibitive. Instead, a compression technique was identified that can offer a

modest degree of compression without leaving the data too susceptible to

transmission errors - error diffusion.

In the design of error diffusion system, various features of the quantiser and the

diffusion filter were identified as factors which offer the possibility to trade off

aspects of system performance against cost.

Software simulations explored the relationship between these factors. A range of

potential quantisers were considered. The increased sophistication in performance

associated with the more complex quantisers does not merit their high

implementation costs. A truncating binary quantiser offers sufficiently sophisticated

behaviour for this application. An output resolution of 3 bpp is dictated by the

compression needs of the application. In simulations, single element diffusion filters

perform well at 3 bpp. Their output is comparable to that of the popular error

diffusion algorithm of Floyd & Steinberg.

Critical review and future work
This section combines a critical review of decisions made during the algorithmic

research with suggestions for future work. It reconsiders previously dismissed

options for diffusion and new possibilities that could stem from the adoption of

alternative system architectures.

Dismissed options for diffusion

The evaluation of diffusion filters in chapter three dismissed anything other than

incidental temporal diffusion. Diffusion of error energy over time is a natural

progression from spatial diffusion, as it represents diffusion in an additional

direction from the source of error. The marked similarities in the temporal and

spatial insensitivities of the human visual system [RoBsoN 66] provide a physiological

justification. Temporal diffusion was dismissed because of the implied expense of

error term storage. If an error is to be diffused in the time axis, an entire frame of

error data must be stored. It was dismissed despite the perceived benefits of being

6.2

- chapter six Discussion and Conclusions -

able to keep error energy spatially closer to its origin and the reported success of

temporal diffusion with still images [MULLIGAN 931.

A second option that was dismissed was the processing of data in orders other than

the conventional raster. Use of a more pseudo-random raster or even a serpentine

raster alleviates the directional nature of the diffusion patterns that result from the

use of conventional raster. Like the decision regarding temporal diffusion, use of

more sophisticated raster was also dismissed on the grounds of implied memory.

Hardware minimisation

Throughout the project great emphasis was placed on minimising the amount of

hardware used in the coder. When considered in the wider context of the video

transmitter, this emphasis may have been too high. The final error diffusion system

proposed does offer the required degree of compression whilst preserving an image

quality that is arguably adequate. On reflection, some of the design options ruled

out on the grounds of hardware cost may actually have been affordable and might

have offered improvements in image quality.

This is especially true if the coder is to be implemented in a system that employs an

image sensor that produces video in a standard signal format. This is due to an

incompatibility between the nature of the data within standard video signals and

the desire for maximum transmission efficiency. For the bandwidth of the radio link

to be used efficiently, data must be transmitted as continuously as possible.

Unfortunately, the image data in a standard video signal comes in bursts between

quite long vertical sync periods (over 10% of a standard PAL signal is taken up with

synchronisation information - far more than is required for the synchronous

transmission scheme planned for the radio video link). The buffering problem is

exacerbated if a sub-array of the full sensor output is transmitted.

Even if the buffering problem was avoided by using an image sensor with specially

tailored timing, there remain unavoidable system costs. One example is the logic

incorporated in the sensor itself (ASIS-1011 includes approximately 10,000 gates to

realise array addressing and automatic exposure control).

6.3

- chapter six Discussion and Conclusions -

In the context of the complete video transmitter system it would appear in hindsight

that the hardware budget for the coder could have been slightly more generous.

This may have permitted use of the floyd-steinberg filter instead of simple, or

exploration of avenues such as the use of simple together with a serpentine raster.

This would be consistent with the results from the subjective tests which suggested

that the floyd-steinberg filter would offer an error diffusion scheme with slightly

better performance.

To have changed the general compression approach (e.g. a move to transform

coding rather than error diffusion) or to make substantial changes to the proposed

system (e.g. extension to temporal error diffusion) would, however, still imply

prohibitively high hardware costs.

Alternative architectures

Making quite significant changes to the architecture of the proposed video

transmitter system means that it might be possible to achieve temporal diffusion

and/or provide other benefits. Such changes, considered below, offer opportunities

for future work Particular emphasis is given to the advantages of non-standard

image sensor architectures and eroding the distinction between sensor and coder

that exists in the system.

In an application such as the radio video link, where video data is processed live, it

is possible to use a more radical approach to otherwise expensive problems such as

temporal diffusion and eliminating directional bias within diffusion. Performing

processing within the imaging array itself combines the sensor and processor. Once

the distinction between these two elements is eliminated there are many more

options for the architecture of the combined system. Two examples of array level

processing - pixel-level error manipulation and context dependent pixels - are

considered below.

6.4

- chapter six Discussion and Conclusions -

Pixel level error manipulation

An image sensor operates by regularly sampling the amount of light falling on an

array of pixels. The data sampled from a single pixel can be considered as a time

series. Within a normal sensor, each sample in such a time series is measured

independently. If a system was used where:

pixels could be sampled to a greater degree of accuracy than each individual

sample was communicated, and

it was arranged that the error in the communication of each sample from a pixel

was used to influence the next sample from that pixel,

then temporal diffusion would have been achieved.

Integrating the means to store the error within the pixel structure would eliminate

the requirement for separate storage. Influencing the next sample using the error

would also negate the need for separate hardware to add error and sample terms.

A common way to implement an image sensor is to measure the amount of charge

that has leaked through a light sensitive junction during a known exposure period.

Typically, a pixel circuit is used that contains a capacitive node. The node is forced to

a reset level before the exposure period, isolated from everything except the light

sensitive element during the exposure period and at the end of the exposure period

the amount of charge remaining on the node is sampled.

To apply the previous temporal scheme to such a sensor would require that each

pixel began the exposure cycle, not at the reset level, but at the reset level plus or

minus an amount that compensated for the previous quantisation error. This could

be achieved by writing an error term to the pixel rather than resetting it fully. One

problem with such a scheme would be its incompatibility with correlated double

sampling (a technique commonly used to combat fixed-pattern noise by measuring

each exposed pixel level with reference to its reset level measured immediately

afterwards). A second problem is that unless the sensor is operated in a

continuously exposed manner (unlikely as frame rate is then dependent on

exposure time) the error would need to be stored over the time between each pixel

being read and the start of its next exposure period. This would require

6.5

- chapter six Discussion and Conclusions -

investigation of reliable methods of analogue storage of the error term within the

pixel.

In addition to the possibilities of temporal diffusion, the ability to manipulate error

terms within the pixel array opens up possibilities of sensor-level spatial diffusion.

Error terms could either be diffused to spatial neighbours as pixels samples are

quantised and read out in some form of raster order, or a parallel diffusion stage

could take place after exposure of all pixels. This second option would require a

winner-takes-all approach to the distribution of what would otherwise be the

quantisation errors. Both these options would require significantly more

complicated pixel circuits than used in sensors such as ASIS-1011, however the

benefits may outweigh the costs, especially as device geometries continue to shrink.

Context dependent pixels

Another option that would introduce compression at the pixel level would be to

create a pixel structure whose output was not only dependent on the amount of

incident light falling directly on it, but also on the amounts falling on neighbouring

pixels. Reducing pixel sensitivity when the local neighbourhood is under bright

illumination would allow a 'context-sensitive' output signal to convey an image

with a higher dynamic range than the signal itself. Experimental evidence suggests

similar systems are used in biological visual systems [MARR 921. Such a form of sensing

would essentially remove low frequency components from the image signal (c.f.

differential predictive coding).

Conclusions
Whilst considerable scope remains for future research, the successful

implementation of the simple processor in this thesis confirms that the video

transmitter system coder can be implemented with minimal hardware. Thus, the

objectives defined in chapter one have been met:

1. The role of the interface between sensor and transmitter has been defined.

6.6

- chapter six Discussion and Conclusions -

2. The design of an example coder that realises modest compression at very little

hardware cost has been proven feasible.

The development of a coder that can be easily integrated with a CMOS image sensor

provides a significant step forward in the low cost production of a radio video link.

The extremely small size of the example coder design means that adding it to the

sensor die will not impact on its yield. Furthermore, the cost of the combined

sensor/coder will be little more than that of a sensor alone.

6.7

References

Bryan ACKLAND, Alex DICKINSON, 'Camera on a Chip', 1996 IEEE International
Solid State Circuits Conference (ISSCC96) Technical Digest, San Fransisco, February
1996, pp. 22-23.

Henry L. ALDER, Edward B. ROESSLER, Introduction to probability and statistics, fifth
edition, W.H. Freeman (San Fransisco), ISBN 0-7167-0450-1.

Rangarajan ARAVIND, Glenn L. CASH, Donald L. DUTFWELLER, Hsuenh-Ming
Hang, Barry G. HASKELL, Atui PURl, 'Image and Video Coding Standards', AT&T
Technical Journal, Vol. 72 No. 1 (January/February 1993), pp. 67-88.

R.L. ATKINSON, R.C. ATKINSON, E.E. SMITH, E.R. HILGARD, Introduction to
Psychology, ninth edition, Harcourt Brace Jovanovich, 1987, ISBN 0-15-543682-1.

Thierry M. BERNARD, 'Turning blue sound into blue noise', ICASSP-92, Vol. 3, pp.
197-200.

James F. BLINN, 'The World of Digital Video', IEEE Computer Graphics & Applications,
September 1992, pp. 106-112.

James F. BLINN, 'Quantization Error and Dithering', IEEE Computer Graphics and
Applications, July 1994, pp. 78-82.

Fergus W. CAMPBELL, Lamberto MAFFEI, 'Contrast and Spatial Frequency',
Scientific American, Vol. 231 No. 5, 1974, pp. 106-115.

CCITT, Recomendation H.261 - Video Coding for Audiovisual Services at p x 64 kbits/s,
Geneva, August 1990.

Navin CHADDHA, Teresa H.Y. MENG, 'Psycho-Visual based Distortion Measures
for Monochrome Image and Video Compression', Proc. of 27th Asilomar Conf. on
Signals, Systems, and Computers, Vol. 2, IEEE Computer Society Press, November
1993, pp. 841-845.

W.K. CHAU, S.K.M. WONG, S.J. WAN, 'A Critical Analysis of Dithering Algorithms
for Image Processing, IEEE Region 10 Conf. on Computer and Communication Systems,
September 1990, Hong Kong, pp. 309-312.

Jer-Sen CHEN, 'A Comparative Study of Digital Halftoning Techniques', Proc. of
IEEE 1992 National Aerospace and Electronics Conference NAECON, Vol 3, pp. 1139-
1145.

K. CHEN, M. Afghahi, P.E. Danielsson, C. Svensson, 'PASIC: A Processor-AID
converter-Sensor Integrated Circuit', Proc. 1990 IEEE Int. Symposium od Circuits and
Systems, 1990, Vol. 3, pp. 1705-1708.

Charles CHIEN, Paul YANG, Etan COHEN, Rajeev JAIN, Henry SAMIJELI, 'A 12.7
Mchip/s AU-Digital BPSK Direct Sequence Spread-Spectrum IF Transceiver in 1.2 urn
CMOS', 1994 IEEE International Solid State Circuits Conference (ISSCC94) Technical
Digest, San Fransisco, February 1994, p. 30.

R.1

- References -

Pamela C. COSMAN, Karen L. OEHLER, Eve A. RISKIN, Robert M. GRAY, 'Using
Vector Quantization for Image Processing', Proc. of the IEEE, Vol. 81 No. 9, pp. 1326-
1341.

Pamela C. COSMAN, Robert M. GRAY, Richard A. OLSHEN, 'Evaluating Quality of
Compressed Medical Images: SNR, Subjective Rating, and Diagnostic Accuracy,
Proc. of the IEEE, Vol. 82 No. 6 (June 1994), pp. 919-932.

M.C. ESHER, 'Still Life with a Street', see (for example): Life and Works of Escher,
Parragon (Bristol), 1995, ISBN 0-7525-1175-0, p. 21.

Robert FLOYD, Louis STEINBERG, 'An Adaptive Algorithm for Spatial Grey Scale',
SID mt. Symposium 1975 Digest of Technical Papers, pp. 36-37.

David FOX, 'Maniac Compression', Personal Computer World, Vol. October 1994, pp.
342-345.

J. P. FRISBY, Seeing: Illusion, Brain and Mind, Oxford University Press, 1979, ISBN 0-
19-217672-2, p. 26.

Jean-loup GAILLY, Compression-FAQ,
ftp ://rtfm.mit.edu/pub/usenet/news.answers/compression-faq/part[l-31, 1995.

Lance A. GLASSER, Daniel W. DOBBERPUHL, The Design and Analysis of VLSI
Circuits, Addison-Wesley (Reading, Massachusetts), 1985, ISBN 0-201-12580-3, p. 57.

Rafael C. GONZALEZ, Richard E. WOODS, Digital Image Processing, Addison-
Wesley (Reading, Massachusetts), third edition, 1992, ISBN 0-201-50803-6, pp. 248-
349.

W.M. GOODHALL, 'Television by pulse code modulation', Bell Systems Technical
Journal, Vol. 30, 1951, pp. 33-49.

Douglas J. GRANRATH, 'The Role of Human Visual Models in Image Processing',
Proc. of the IEEE, Vol. 69 No. 5 (May 1981), pp. 552-561.

Charles F. HALL, Ernest L. HALL, 'A Nonlinear Model for the Spatial Charactersitics
of the Human Visual System', IEEE Trans. on Systems, Man, and Cybernetcis, Vol.
SMC-7 No. 3 (March 1977), pp. 161-170.

Fred HALSALL, Data communications, computer networks and OSI., Addison-Wesley
(Wokingham, England), second edition, 1988, ISBN 0-201-18244-0.

R. W. HAMMING, Coding and Information Theory, Prentice-Hall (Englewood Cliffs,
New Jersey), 1980, ISBN 0-13-139139-9.

Paul HECKBERT, 'Color Image Quantisation for Frame Buffer Display', Computer
Graphics, Vol. 16 No. 3 (July 1982), pp. 297-307.

P. HOROWiTZ, W. HILL, The Art of Electronics, second edition, Cambridge
University Press (Cambridge), 1990, pp. 415-416.

David A. HUFFMAN, 'A Method for the Construction of Minimum-Redundancy
Codes', Proc. of the IRE, Vol. 40 September 1952, pp. 1098-1101.

L.P. FItJRD, M.A. GUSTAVUS, M.F. BARNSLEY, 'Fractal Video Compression',
Technical Digest of COMPCON Spring 92, 1992, pp. 41-42.

R.2

- References -

Keith JACK, Video Demystified: a handbook for the digital engineer, Hightext (Solana
Beach,CA), 1993, ISBN 1-878707-09-4, p. 331.

Anil K. JAIN, 'Image Data Compression: A Review', Proc. of the IEEE, Vol. 69 No.3
(March 81), pp. 349-389.

Arnaud E. JACQUThJ, 'Image Coding Based on a Fractal Theory of Iterated
Contractive Image Transformations', IEEE Trans. on Image Processing, Vol. 1 No. 1,
pp. 18-30.

JARVIS, JIJDICE, NINKE, 'A survey of techniques for the display of continuous tone
pictures on bilevel displays', Computer Graphics and Image Processing Proc. 5, 1 March
1976, pp. 13-40.

Shanika KARUNASEKERA, Nick KINGSBURY, 'A Distortion Measure for Blocking
Artifacts in Images Based on Human Visual Sensitivity', IEEE Trans. on Image
Processing,Vol. 4 No. 6 (June 1995), pp. 713-724.

D. KNUTH, 'Digital Halftones by Dot Diffusion', ACM Trans. on Graphics, Vol. 6 No.
4 (October 1987), pp. 245-273.

Herbert L. KRAUSS, Charles W. BOSTIAN, Frederick H. RAAB, Solid State Radio
Engineering, John Wiley & Sons (New York), 1980, ISBN 0-471-03018-X.

W.H. KRUSKAL, W.A. WALLIS, 'Use of ranks in one-crtierion variance analysis',
Journal of the American Statistical Association, No. 47, 1952, pp. 583-621.

Frank X. LUKAS, Zigmantas L. BUDRJKIS, 'Picture Quality Prediction Based on a
Visual Model', IEEE Trans. on Commumincations, Vol. COM-30 No. 7 (July 1982), pp.
1679-92.

James L. MANNOS, David J. SAKRISON, 'The Effects of a Visual Fidelity Criterion
on the Encoding of Images', IEEE Trans. on Information Theory, Vol IT-20 No. 4 (July
1984), pp. 525-536.

D.C. MARR, Vision, W.H. Freeman (San Fransisco, CA), 1982, ISBN 0-7167-1567-8.

S.K. MENDIS, S.E. KEMENY, E.R. FOSSOM, 'A 128*128 CMOS active pixel image
sensor for highly me grated imaging systems', IEDM 1993 Technical Disgest, pp. 583-
586.

Theophano M1TSA, Kevin J. PARKER, 'Digital haiftoning technique using a blue-
noise mask, Journal of the Optical Society of America, Vol. 9 No. 11 (November 1992),
pp. 1920-1929.

J.B. MULLIGAN, A.J. AHUMADA, 'Principled Methods for Color Dithering based on
Models of the Human Visual System', SID mt. Symposium Digest of Technical Papers,
1992, pp. 194-197.

Jeffrey B. MULLIGAN, 'Improving Digital Halftones by Exploiting Visual System
Properties', Proc. of the 27th Asilomer Conf. on Signals Systems and Computers,
November 1993, pp. 961-965.

Nasser M. NASRABADI, Robert A. KING, 'Image Coding Using Vector
Quantisation: A Review', IEEE Trans. on Communications, Vol. 36 No. 8 (August
1988), pp. 957-971.

R.3

- References -

J. NIETROJ, W. ZAPSKY, H. LANG, 'Cost-Attractive, Reliable Remote Controls Use
SAW Resonators', Siemens Components, No. 4, 1990, pp. 142-145.

D. E. PEARSON, Transmission and Display of Pictorial Information, Pentech Press
Limited (London), 1975.

Raymond L. PICKHOLTZ, Donald L. SHILLING, Laurance B. MILSTIEN, 'Theory of
Spread-Spectrum Communications - A Turorial', IEEE Trans. on Communications, Vol
COM-30 No. 5 (May 1982), pp. 855-884.

Charles A. POYNTON, A Technical Intorduction to Digital Video, John Wiley & Sons
(New York), 1996, ISBN 0-471-12253-X.

William K. PRATT, Julius KANE, Harry C. ANDREWS, 'Hadamard Transform Image
Coding', Proc. of the IEEE, Vol. 57 No. 1 (January 1969), pp. 58-70.

William K. PRAU (editor), Image Transmission Techiques, Academic Press (New
York), 1979, ISBN 0-12-014572-3, pp. 73-113.

William H. PRESS, Saul A. TEUKOISKY, Willain T. VEUERLING, Brian P.
FLANNERY, Numerical Recipies in C: The Art of Scientific Computing, 2nd edition,
Cambridge University Press (Cambridge), 1992, ISBN 0-521-43108.

RA (Radiocommunications Agency), MPT 1340 Performance Specification: Transmitter
and Receivers for use in the telemetry, telecommand in-building security equipment operating
in the frequency band 417.90418.10 MHz, revised edition, October 1989.

RA (Radiocommunications Agency), MPT 1336 Performance Specification: Low power
transmitters and receivers for use in the VHF bands 36.61-36.79 MHz and 37.01-37.19
MHz, revised edition, July 1992.

T.R. REED, V.R. ALGAZI, G.E. FORD, I. HUSSMN, 'Perceptually based coding of
monochrome and color still images', Proc. of DCC 92, March 1992, pp. 142-151.

D. RENSHAW, P.B. DENYER, G. WANG, M. LU, "ASIC Image Sensors", Proc. IEEE
ISCAS 90, New Orleans, May 1990, pp. 3038-3041.

L.G. ROBERTS, 'Picture Coding using Pseudeo-Random Noise', IRE Trans. on
Information Theory, Vol IT-8,1962, pp. 145-154.

J. G. ROBSON, 'Spatial and Temporal Contrast-Sensitivity Functions of the Visual
System', Journal of the Optical Society of America, Vol. 56 August 1966, pp. 1141-2.

John C. RUSS, The Image Processing Handbook, 2nd edition, CRC Press (Boca Raton,
Florida), 1995, ISBN 0-8493-2516-1, pp. 21-22.

David J. SAKRISON, 'On the Role of the Observer and a Distortion Measure in
Image Transmission', IEEE Trans. on Communication, Vol. COM-25 No. 11 (November
1977), pp. 1251-1267.

Manfred R. SCI-IROEDER, 'Images from computers', IEEE spectrum, Vol 6 March
1969, pp. 66-78.

Peter SEITZ, Graham K. LANG, 'A Practical Adaptive Image Compression
Technique Using Visual Criteria for Still-Picture Transmission with Electronic Mail',
IEEE Trans. on Communications, Vol. 38 No. 7 (July 1990), pp. 947-949.

R.4

- References -

Claude E. SHANNON, Warren WEAVER, The Mathematical Theory of Communication,
The University of Illinois Press (Urbana, Illinois), 1963, 0-252-72548-4.

Jack SMITH, Modern Communication Circuits, McGraw-Fill (Singapore), 1986, ISBN 0-
07-058730-2, pp. 455-502 (chap. 12).

Mark SOMMERS, illustration of Thomas Paine, WIRED (UK Edition), ISSN 1357-
0978, Vol. 1 No. 1 (April 1995), p. 65.

Jon M. STERN, Peter A. IVEY, Steven P. LARCOMBE, N. John GODDENOUGH, N.
Luke Seed, Andrew J. SHELLY, 'An Ultra Compact, Low-Cost, Complete Image-
Processing System', 1995 IEEE International Solid-State Circuits Conference (ISSCC95)
Technical Digest, San Fransisco, February 1995, pp. 230-231.

J. C. STOFFEL, J. F. MORELAND, 'A survey of Electronic Techniques for Pictorial
Image Reproduction', IEEE Trans. of Communications, Vol COM-29 No. 12 (December
1981), pp. 1898-1925.

S.M. SZE, VLSI Technology, second edition, McGraw-Hill (New York), 1988, ISBN 0-
07-100347, pp. 616-617.

T.S.D. TSUT and T.G. CLARKSON, 'Spread-spectrum communication techniques',
Electronics & Communication Engineering Journal, February 1994, pp. 3-12.

Robert ULICHNEY, Digital Halftoning, MIT Press (Cambridge Massachusetts), 1987,
ISBN 0-262-21009-6.

Robert A. ULICHNEY, 'Dithering with Blue Noise', Proc. of the IEEE, Vol. 76 No. 1
(January 1988), pp. 56-79.

L. VELHO, J.M. GOMES, 'Digital Haiftoning with Space Filling Curves', SIGRAPH
91, Vol. 25 No. 4 (1991), pp. 81-90.

Oliver VELLACOTT, 'CMOS in camera', lEE Review, May 1994, pp. 111-114.

Gregory WALLACE, Toy VIVIAN, Henning POULSEN, 'Subjective testing results
for still picture compression algorithms for international stadardization' Proc.
GLOBECOM '88, Vol. 2, 1988, pp. 1022-1027.

Terry A. WELSH, 'A Technique for High-Performance Data Compression', Computer,
Vol. 17 No. 6 (June 1984), pp. 8-19.

Ross N. WILLIAMS, A Painless Guide to CRC Error Detection Algorithms,
ftp://ftp.rocksoft/com/dients/rocksoft'papers/crc_v3.txt, 1993.

Ian H. WITFEN, Radford M. NEAL, 'Using Peano Curves for Bilevel Display of
Continuous-Tone Images' IEEE Computer Graphics and Applications, May 1982, pp. 47-
52.

Zhenhua XIE, Thomas G. STOCKMAN, 'Towards the Unification of Threee Visual
Laws and Two Models in Brightness Perception', IEEE Trans. on Systems, Man, and
Cybernetics, Vol. 19 No. 2 (March/April 1989), pp. 379-387.

R.B. YATES, P.A. IVEY, 'Approches to Image Data Compression for Video Coding',
Proc. lEE Colloquium on Low Bit Rate Image Coding, Digest No. 75, lEE (London), 1995,
pp. 10/1-10/5.

R.5

- References -

Paul YOUNG, Electronic Communication Techniques, third edition, Macmillan, 1994,
pp. 534-539.

Jacob ZIV, Abraham LEMPEL, 'A Universal Algorithm for Sequential Data
Compression', IEEE Trans. on Information Theory, Vol 1T-23 No. 3 (May 1977), pp. 337-
343.

R.6

appendix one

Simulation software source code

The most important parts of the simulation software source code are listed below.
The three C files listed are as follows:

• main.c - 	the main function
• simulate.c - called by main() to control the simulation environment.
• quantise.c - contains all the error diffusion based compression functions.

Main.c
This functions sets up the general program environment. Command line flags can
be used to start it in simulate, record, demo or test modes.
/*##################*#***####################*########################t#**

* main.c 	 Andrew Murray July 95

* The program can be started in one of three modes:
simulation mode (the default mode) this is the original version of

* 	the software which performs variable depth quantisation with or
* 	without various types of diffusion, either on images from file or
* 	from live video input (via a 'PC Card camera ,). A limited amount
* 	of block-based DPCM code is also included.

demo mode (envoked using the -d flag) this mode is used to give self-
running demos of different types of diffusion. It was written

* 	primarily for collection of subjective test results.
recording mode (envoked using -r) used for the recording of stills

* 	or sequences, mainly used for creating the demos.

* All the code is written and complied for DOS, using the Microsoft C/C++
* Complier v8.00. The graphics routines use VESA mode lOSh (1024x786 by 256
* colours) and require a graphics card (and driver - eg. univesa.exe) that
* support this mode.

ifinclude <stdio.h>
#include <stdlib.h>
#include <malloc.h>

#include "vvldefs .h"
*include "array.h"
#include "camlib.h"
#include "pcmcia.h"
#include "display.h"
j$include "simulate.h"
#include "demo.h"
#include "record.h"
*include input. h'
#include "test.h

A1.1

- appendix one Simulation software source code -

#include "cmd line.h"

1* mode definitions *1
#define SIMULATE 0
#define DEMO 1
#define RECORD 2
#define TEST 3
#define CMD_LINE 4

ft Forward Declaration of Private Functions *1
mt DealWithCommandLineFlags(mt argc, char *argvfl, mt tpMode >;

/* Global Variable Declarations */
colour _triplet green={ 158, 80, 25 };
colour_triplet grey={ 195, 131, 51 }; 1* new
colour _triplet purple'{ 107, 67, 65);
colour_triplet blue={ 1*147*1218, 1*67*174, 1*25*138 };
colour _triplet on_green={ 223, 89, 84 }, off_green={ 154, 77, 76 };
colour_triplet on—red=(251, 201, 160 }, off_red={ 210, 105, 96 };
colour _triplet dull_red=(210, 169, 137 };
colour_triplet win95grey = { 1, 2, 4 };

byte tgpFrameo, *gpFramel, *gpFrame2; / global pointers to the frame stores*/
mt g_frameo_state=FALSE, g_framel_state=FALSE, g_frame2_state=FALSE, g_ignore=0;
dword frame _rows = FRAME—ROWS, frame_cols=FRAME_COLS; /* the frame dimensions-/
mt g_pcmcia FALSE, g_slot=FALSE, g_bailout = FALSE;
mt g_graphics=FALSE, g_diagnose=FALSE, g_logo = TRUE;
CAMERA camera A; 	It structure containing PCMCIA card details *1
char buffer [80) ; 	 1* temp. character buffer used mainly for sprintf's *1
dword g_histogram[256), gamma_table[256);
float g_gamma=1.4F;
demo_page_details g_page_array[DEMO_MP,X], tempDemo;

/* 	*
* main *

void 	cdecl main (mt argc, char *argv[)

mt mode=SIMULATE, rtn=TRUE, user input=FALSE;

rtn = DealWithCommandLineFlags(argc, argv, &mode);
if (rtn) goto error;

switch (mode)
case SIMULATE:

rtn = SimulateQ;
if (Irtn) goto error;
break;

case DEMO:
rtn = Demo>);
if (!rtn) goto error;
break;

case TEST:
rtn = Test>);
if (!rtn) goto error;
break;

case RECORD:
rtn = Record>);
if (!rtn) goto error;
break;

case CMD_LINE:
rtn = CommandLineMode) argv, argc >;
if (!rtn) goto error;
break;

default:
printf(" main: invalid 'mode' value\n");
goto error;

if (g_frameo_state) _hfree(gpFrameO);
if (g_framel_state) hfree(gpFramel);
if (g_frame2_state) _hfree(gpFrame2)
printf('\n main: ex iting normally :)\n");
exit (0);

error:
if (g_frameo_etate) _hfree(gpFrameo);

A1.2

- appendix one Simulation software source code -

if (g_framel_state) _hfree(gpFramel);
if (g_frame2_state) _hfree(gpFrame2);
printf("\n's', buffer);
printf('\n main: exiting on error :(\n');
exit (0);

1* #########*4(###########(##### *

* Private Function Declarations *
* #####*#flt#################### *1

* NAME: DealWithCommandLineFlags

* PURPOSE: takes action on any command line flag that were given at the
* 	 command line when the program was executed.

mt DealWithCommandLineFlags(mt argc char *argvfl, mt *pMode

char tmp;
mt count;

printf("\n)
if (argc=l){

for (count=l; count<argc; count++){
tsp = argv(count) (0]
if (/*argv(count) (0]*/(tmp == /)11 (tmp ==

tmp = argv(count) (1);
switch (/*argv(count] (l)*/tmp)
case d

printf(° Demo mode envoked\n");
*pMode = DEMO;
break;

case r:
printf(" Recording mode envoked\n');
*pMode = RECORD;
break;

case x':
printf(' Diagnose set TRUE\n");
g_diagnose = TRUE;
g_ignore++;
break;

case 1:
printf(" Logo suppressed :(\n");
g_logo = FALSE;
break;

case t
printf(Il Test mode envoked ... \n");
*pMode = TEST;
break;

case c:
printf(" command line mode envoked .
*pMode = CMD_LINE;
return TRUE;
break;

default:
printf(' %c - unrecognised flag\n", tmp);
goto explain;

else
printf(' ie - unrecognised argument\n, argv[count]);
goto explain;

return TRUE;

explain:
printf('\n Usage: diffuse (options]\n");
printf(' -d envoke Demo mode\n");
printf(' -r envoke Record mode\n);
printf(-x run with Diagnosis");
return FALSE;

1* ########## *
* main.c end *

A1.3

- appendix one Simulation software source code -

* #####*#### •1

Simulate.c
This file contains the umbrella function that controls the flow of processing during
software simulation.

* simulate.c 	 - Andrew Murray February 95

* This is a piece of code that demonstrates all the features of the software
* simulation of compression, quantisation, error diffusion and palette
* optimisation created during my PhD.

* The program can either take input from I.imgl files or live from a PC Card
* Camera PCMCIA card.
*

#include <coio.h>
#include <stdio.h>
#include <graph.h>
#include <math.h>
#include <malloc .h>
#include "vvldefs.h"
#include "sirnulate.h"
#include "display.h"
#include "trio.h"
#include "array.h°
#include "camlib.h°
#include "pcmcia.h
#include 11 input. h'
#include "fileio.h"
#include "quantise.h /* for GenFloydSTest() and Prescale() *1

1* Forward Declarations of Private Functions */
mt SetupSimulateDosGraphics (byte active
void GenerateTestFrame(byte *pFrarne);
mt InterpretKeypress(char letter, byte *pActive byte *pSave win, mt *psave output);
void LoadSequenceO;
void SaveSequence(mt *psave out, byte *psave win);
void ToggleProcess(trio *pTrio, mt requested_process, char *label
void ToggleAnalysis(trio *pTrio, mt requested_analysis, char *label);
mt Simulate ReadWindows ();

1* External Variable Declarations */
extern colour_triplet green, grey, purple, blue, win95grey;
extern colour—triplet on_green, off—green;
extern colour—triplet on_red, off_red, dull_red;
extern byte *gpFrameO, *gpFramel, *gpFrama2; /* global pointers to the frame stores*/
extern mt g_frameo_state, g_framel_state, g_frame2_state;
extern dword frame_rows, frame_cole; / the frame dimensions*/
extern mt g_pcmcia, g_slot, g_bailout, g_diagnose, g_logo;
extern CAMERA camera—A; 	1* structure containing PCMCIA card details */
extern char buffer[80]; 	/ temp. character buffer used mainly for sprintf's */
extern dword g_histogram [256];
extern dword gamma_table [256];
extern float g_gamma;
extern mt g_graphics;

1* Global variable definitions */
XY pcmcia_led = (30, 610), file_led = (30, 626), load—led = (30, 658), g_save_led 	(30, 706);
trio *pTrioarray[3) ; 1* an array of pointers to the trios*/
char gSavenamel131="saved.tst", gLoadname[13]="hamster.img;
mt g_save_analysis=FALSE, g_save_image=FALSE;

I. ############################ *
* public function declarations *
############################/

/
* 	 NAME: Simulate
* PURPOSE: This is the overall simulation function. Once called it will
* 	 perform it goes into a loop of updating images that are 'live'
* and checking for user input.

A1.4

- appendix one Simulation software source code -

mt Simulate()

mt rtn=TRUE, user_input=FALSE; 	/* flags */
byte save _win=O;

_ mt saveoutput=TRUE;
char tmp=x'; /* used for storing keypresses*/
byte i, active_trio=O;
trio left_trio 	Trio Init('left.dat"); 	/ the three trios*/
trio middle—trio 	= Trio Init(middle.dat");
trio right_trio = Trio_Init("right.dat");

printf(°\n Simulate: called. ..\n');

/ set up the frame store *1
gpFrameO = (byte _huge *)halloc((frame_rows*frame_colS), sizeof (byte));
if (gpFrarneO == NULL) printf(" failed to _halloc for frameO\n");
else

printf(" halloc'd frameO okay :)\n");
g_frameO_state=TRUE;

gpFramel = (byte 	huge *)halloc((frame_rows*frame_cols), sizeof(byte));
if (gpFramel == NULL) printf(" failed to _halloc for framel\n");
else

printf(" halloc'd framel okay :)\n");
g_fratnel_state=TRUE;

gpFrame2 = (byte _huge *)halloc((frame rows*frame_C01S), sizeof(byte));
if (gpFrame2 == NULL) printf(failed' to _halloc for frame2\n");
else

printf(" halloc'd frame2 okay :)\n");
g_fratne2_state=TRUE;

if (g_bailout)
sprintf(buffer, " Simulate: error initialising the trios\n");
goto sim_error;

/*## initialise the pointers to the trios
pTrio_array[O] = &left_trio;
pprio_array[l] = &middle_trio;
pTrio_arrayf21 = &right_trio;

g_slot = Pcmcia_SetupCamera(&camera_A);
if (g_slot) g_pcmcia = TRUE;

if (g_diagnose)
printf(" Simulate: Diagnostics... \n')
printf(" Simulate: g_slot=");
if (g_slot) printf("TRUE");
else printf("FLSE")
printf(" and g_pcmcia=");
if (g_pcmcia) printf ("TRUE\n")
else prmntf(FALSE\fl\flb)
for (i=O; i<3; i++) Trio_PrintContents(pTrio_array(i]);
Input_WaitForKey(NULL);

rtn = SetupSimulateDosGraphics (active—trio);
if (Irtn) goto sim_error;

while (Ig_bailout)
while (!user _input)

if (g_slot && g_pctncia) {
Pcmcia_GrabFrame(&camera_A, gpFrameO, 0, 0);

for (i=0; i<3; i++)
if (pTrioarray(i)->live==TRUE) {

Trio_lJpdatelmages (pTrio_array(i));

user_input = Input_CheckForKey(&tmp);

g_bailout = InterpretKeypress(tmp, &active_trio, &save_win, &save_output)
user_input=FALSE;

A1.5

- appendix one Simulation software source code -

Display EndGraphics 0;
return TRUE;

s ia_error:
if (g_graphics) Display_EndGraphics0;
return FALSE;

/*#############################*
* Private Function Declarations *
* ################tfl(########### */

* NAME: SetupSimulateDosGraphics

* PURPOSE: called from within Simulate() to set the graphics mode and
* 	 palette and draw all the window borders.
**

mt SetupSimulateDosGraphics(byte active

byte i;
mt ret;
window temp;
XY logoPos = {34,34};

ret = Display SetupGraphics()
if (!ret)

sprintf(buffer, " Simulate_SetupDosGraphics, graphics mode change failed");
return (FALSE)

Display_CreateGammaPalette C 1
Display_CreateSpreadGreyPalette (C
Display_CreateSpreadGreyGammaPalette(g_gamma);

if (g_logo)
FileloLoadFrame("logo.img", gpFrameo C;
Array_CreateLogo) gpFrameo);
Display_ColourFrame(gpFrameo, logoPos);

GenerateTestFrame (gpFrameo)

for (i=0; i<3; i++)
Display_Window) &(pTrio_array[i] ->image));
Display_Window) &(pTrio_array[i) ->analysis_win));
Display_Window(&(pTrio_array[i] ->status))
Trio_DrawLegends(pTrio_array(i]);
Trio Ref reshLeds(pTrioarray(i]);

Trio_RedrawControlWindow2 (pTrio_array[active], DARK—GREEN);

temp.height = 147; temp.width = 140; temp.org .x = 25; temp.org .y = 595;
temp.title_depth = 18; temp.text = TRUE; temp.title row = 37;
temp.titlecoll 	5; temp.titlecol2 = 19;
sprintf(temp.title, "Input/Output" C; temp.title_colour = DARK—TEXT;
temp.coll 	7; temp.col2 = 19; temp.rowl = 39; temp.row2 	45;
temp.shade = win95grey;

Display_Window(&temp); Display_SetTextWindow(&temp);
Display_GraphicalText("PCMCIA input\n", DARK—TEXT);
Display_GraphicalText("File input\n\n", DARK—TEXT);
Display_GraphicalText("Load image\n\n\n", DARK—TEXT);
Display_GraphicalText("Save image", DARK—TEXT);
Display_Led) pcmcia_led.x, pcmcia_led.y, on_green, off_green, g_pcmcia);
Display_Led(file_led.x, file_led.y, on_green, off_green, FALSE);
Display—Led(load _led.x, load _led.y, on_red, off_red, FALSE);
Display_Led) g_save_led.x, g_save_led.y, on_red, off —red, FALSE C;

return TRUE;

* NAME: GenerateTestFrame
* PURPOSE: Generates a test picture in a plane of the array

void GenerateTestFrame(byte *pFrame

dword index, end_of_f rame= (dword) (FRAME_ROWS*FRAME_COLS);

A1.6

- appendix one Simulation software source code -

for(index=O; indexeend_of_frame; index++)
*pFrame++ = (byte) (index/256)

* 	 NAME: InterpretKeypress

* PURPOSE: takes action on key presses, after a key press has been
* 	 detected this function should be called (passing the key pressed)

mt InterpretKeypress (char letter, byte *pActive, byte *pSa've win, mt *psave output

trio temp_trio=*pTrio_array(*pActiVe];

XY save—id;

switch (letter)
case

if(*pActive>O)
Trio RedrawControlWindow2 (pTrioarray(*pActive), WINGREY);
temp—trio = *pTrioarray(__ (*pActjve))
Trio_RedrawControlWindow2 (pTrio_array[*pActive), DARK —GREEN);

break;
case ' .

if(*pActive<2)
Trio RedrawControlWindow2 (pTrio_array[*pActive], WINGREY);
temp—trio = *pTrioarray[++(*pActive)]

Trio_RedrawControlWindow2 (pTrio_array (*pActive], DARK —GREEN);

break;
case '1'
case '2':
case '3':
case '4':
case '5':
case '6':

temp_trio.bits = (byte) ((byte)letter - 48);
break;

case 'a':
if (temp_trio.live)

temptrio. live=FALSE;
temp_trio. image. title_colour = INACTIVE —TITLE;

Display_WindowTitle(&(temp_trio.image));
temp_trio.analysis_win.title_colour = INACTIVE —TITLE;
Display_WindowTitle(&(temp_trio.analysis_win)

else
temptrio. live=TRUE;
temp_trio. image. title_colour = ACTIVE—TITLE;
Display_WindowTitle (&(temp_trio. image));
temp_trio.analysis_win.title_colour = ACTIVE _TITLE;
Display_Window'ritle(&(temp_trio.analysis_win)

break;
case c: ToggleProcess(&temp_trio, NONE, NONE STRING); 	break;
case 't': ToggleProcess(&temp_trio, TRUNCATE, TRUNCATE_STRING); break;
case i: ToggleProcess(&temp_trio, SIMPLE_DF, SIMPLE _DF_STRING); break;
case 'f': PoggleProcess(&temp_trio, FLOYD_S, FLOYD_S_STRING); break;
case 'r': ToggleProcess(&temp_trio, RANDOM, RANDOM STRING); break;
case 'e': ToggleProcess(&temp_trio, SAPE_1, SAFE_i_STRING); break;
case 'w': ToggleProcess(&temp_trio, SAFE_2, SAFE_2_STRING); break;
case 'y': ToggleProcess(&temp_trio, OPTIMISE, OPTIMISE STRING); break;
case u: ToggleProcess(&temp_trio, OPTIMISE —ED, OPTIMISE—ED—STRING); break;
case h: ToggleAnalysis(&temp_trio, HISTOGRAM, HISTOGRAM STRING); break;
case 'd': ToggleAnalysis(&temp_trio, ERROR, ERROR STRING); 	break;

case '0': ToggieArialysis(&temp_trio, SQR_ERROR, SQR_ERROR_STRING); break;
case 'g': ToggieAnalysis(&temp_trio, DEBUG, DEBUG —STRING); 	break;

case '1: LoadSequenceO; break;
case 'Z':

Display—Led(load _led.x, load _led.y, on_red, off_red, TRUE
FileIO_Load36Ox288PgmFrame ("gsOOO.pgm", gpFrameO, 27);
g_pcmcia = FALSE;
Display—Led(load _led.x, load_led.y, on_red, off_red, FALSE);
Display—Led(pcmcia_led.x, pcmcia_led.y, on_green, off_green, g_pcmcia);
Display_Led(file_ied.x, file_led.y, on_green, off_green, TRUE);
break; 	 -

case 'V': 	 -

- appendix one Simulation software source code -

Display_Led(load_led.x, load_led.y, on_red, off —red, TRUE);
FileIO_Load5l2PgmFrame("peppers.pgm", gpFrameO);
g_pcmcia = FALSE;
Display_Led(load _led.x, load_led.y, on_red, off_red, FALSE);
Display_Led) pcmcia_led.x, pcmcia_led.y, on_green, off —green, g_pcmcia);
Display—Led(file_led.x, file_led.y, on_green, off_green, TRUE);
break;

case 'x'
Display_Led(g_save_led.x, g_save_led.y, on_red, off_red, TRUE);
Array_WriteFrameToTextFile (gpFrameO, "hamster.txt"
Display_Led(gsave_led.x, g_save_led.y, on_red, off_red, FALSE
break;

case 's': SaveSeguence(pSave_output, pSave_win);break;
case ',': FileIO_SavePCXFrame(gpFrameO, °test.pcx"); break;
case

if (temp_trio.save_image) temp_trio.save_image = FALSE;
else temp_trio.save_image = TRUE;
break;

case
if (temp_trio.scale) temp_trio.scale = FALSE;
else temp_trio.scale = TRUE;
break;

case 'p
if (g_pcmcia) g_perncia = FALSE;
else

g_pcmcia = TRUE;
Display—Led(file_led.x, file_led.y, on_green, off_green, FALSE);

Display_Led(pcmcia_led.x, pcmcia_led.y, on_green, off_green, g_pcmcia);
break;

case '
if (g_gamma>O.lF) g_gatrnna -= O.1F;
Display_CreateSpreadGreyGammaPalette(g_gamma);
break;

case ']':
g_gamma += O.1F;
Display_CreateSpreadGreyGammaPalette(g_gamma);
break;

case '9':
jf (*psavewjn>O)

if (*p5ave output)
save_md = pTrio_array[*pSave_win) ->image.org ;
Display_BlankLed((short) (save_ind.x+240), (short) (save_ind.y-l7), WINGREY);
(*p5ave win)
save—id = pTrio_array[*pSave_win] ->image.org ;
Display_Led((short) (save_ind.x+240), (short) (save_ind.y-17), on—red, off_red,

FALSE);

else
save_md = pTrio_array[*pSave_win] ->analysis_win.org;
Display_BlankLed((short) (save_ind.x+240), (short) (save_ind.y-17), WINGREY);
(*pSave win)
save—id = pTrio_array[*pSave_win] ->analysis_win.org;
Display_Led((short) (save ind.x+240(, (short) (save ind.y-l7), on—red, off_red,

FALSE);

break;
case '0':

if (*pSave win<2)
if (*p5ave output)

save_md = pTrio_array[*pSave_win] ->image.org ;
Display BlankLed((short) (save ind.xi-240), (short) (save mnd.y-l7), WINGREY);
(*psave win) ++;
save—id = pTrio_arrayE*pSave_win) ->image.org ;
Display—Led((short) (save_ind.x+240), (short) (save_ind.y-l7), on—red, off_red,

FALSE);

else
save_md = pTrio_arrayE*pSave_wmn) ->analysis_win.org;
Display_BlankLed((short) (save_ind.x+240), (short) (save_ind.y-17), WINGREY);
(*pSave win) ++;
save—id = pTrio_array[*pSave_wmn] ->analysis_win.org;
Display Led) (short) (save_ind.x+240), (short) (save_ind.y-l7), on_red, off_red,

FALSE);

break;

A1.8

- appendix one Simulation software source code -

case '7':
if (*pSave output)

*pSave output = FALSE;
save_md = pTrio_arrayl*pSave_wmn) ->image.org ;
Display_BlankLed((short) (save_ind.x+240), (short) (save_ind.y-17), WINGREY);
save_md = pTrio_array[*pSave_win] ->analysis_win. org;
Display Led((short) (save ind.x-s-240), (short) (save_ind.y-17), on—red, off_red, FALSE);

else{
*pSave output = TRUE;
save_md = pTrio_array[*pSave_win] ->analysis_win. org;
Display BlankLed((short) (save_ind.x+240), (short) (save ind.y-17), WINGREY);
save_md = pTrio_array[*pSave_win) ->image.org ;
Display_Led((short) (save_ind.x+240), (short) (save_ind.y-17), on —red, off_red, FALSE);

break;
case 'k'

Array_CreateGammaTestlmage (gpFrameO
break;

case
case 'q':

sprintf(buffer, " InterpretKeypress: user termination '%c'\n", letter);
return TRUE;
break;

*pTrio array (*pActive) =temp_trio;
Trio _Ref reshLeds(pTrio_array(*pActive));
return FALSE;

/
* 	 NAME: LoadSequence
* PURPOSE: Loads an image from a file, and alters the global variables
* 	 and the LEDs accordingly

void LoadSequence()

mt rtn;
char temp_str[13]="x";

settextwindow(43, 7, 43, 19
settextcolor(MIDGREY TEXT

sprintf(buffer, "%s?', &gLoadname); _outtext(buffer);
rtn = Input _GetFilename(temp_str);
if (!rtn) sprintf(gLoadname, "%s, &tempstr);
sprintf(buffer, "\n's", &gLoadname); _outtext(buffer);
Display_Led(load _led.x, load _led.y, on_red, off_red, TRUE);
rn = FilelOLoadFrame (gLoadname, gpFrameO >;
if (trtn) return;
g_pcmcia = FALSE;
Display_Led(load_led.x, load_led.y, on_red, off_red, FALSE);
Display Led(pcmcia_led.x, pcmcia_led.y, on_green, off —green, g_pcmcia);
Display—Led(file led.x, file_lady, on_green, off_green, TRUE

* 	 NAME: SaveSequence
* PURPOSE: Saves an image to a file, and alters the global variables
* 	 and the Leds accordingly

void SaveSequence(mt *pSave_prcd, byte *p5ave win

mt rtn;
char temp_str[13] ="x";
char ch;

_settextwindow(46, 7, 46, 19
_settextcolor(MIDGREY TEXT);

sprintf(buffer, analysis?"); _outtext(buffer);
Input _WaitForKey(&ch);
if (ch=='y') g_save_analysis=TRUE;
else g_save_image=TRUE;

sprintf(buffer, "%s?", &gSavename); _outtext(buffer);
rtn = Input GetFilename(temp str);
if (rtn) sprintf(gSavename, "*8", &temp_str);

A1.9

- appendix one Simulation software source code -

sprintf(buffer, "\ns", &gSavename); _outtext(buffer);

1* **I
void ToggleProcess(trio *pTrio, mt requested_process, char *label

if (pTrio-'process == requested_process)
pTrio-sprocess = NONE;
sprintf(pTrio->image.title, NONE—STRING);

else
pTrio->process = requested_process;
sprintf(pTrio->image.title, label);

Display_Window'Fitle(&(pTrio->image));

void ToggleAnalysis(trio *pTrio, mt requested —analysis, char *label

if (pTrio->analysis == requested_analysis)
pTrio->analysis = NONE;
sprintf(pTrio->analysis_win.title, " 	 not live

else
pTrio->analysis = requested—analysis;
sprintf(pTrio->analysis_win.title, label >;

Display_WindowTitle(&(pTrio->analysis_win));

1* #######*###### *

* simulate.c end *
##############/

quantise.c
All the quantisation based compression functions are contained in this file.

*

* quantise.c 	 - Andrew Murray February 95

* a library of routines to perform different types of quantisation.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "vvldefs.h"
#include "quantise.h"
#include "array.h"
#include "input.h" 1* debug */
#include "display.h"

/* external declarations */
extern dword frame—rows, frame_cole;
extern mt g_diagnose, g_graphics;

/* ########1*4t##*#####*#####4t## *
* Public Function Declarations *
* #####1############*#*####### */

* 	 NP,1'4E: Quantise_Truncate

* PURPOSE: reduces the pixel depth of the image to the number of 'bits'
* 	 specified. The truncation is performed by ANDing each pixel
* 	 with a mask - leaving the most significant bits in their
* 	 original positions.

void Quantise_Truncate(byte *pSource, byte pDest, byte bits

A1.1O

- appendix one Simulation software source code -

dword pixel, end_of_f rame= (dword) (frame_rows*frame_cols);
byte mask= (byte) (Oxff<< (8-bits));

for(pixel=O; pixel<end_of_frame; pixel++)
*pDest++ = (byte) (*pSource++ & mask);

return;

/
* 	 NAME: Quantise Diffuse
* PURPOSE: reduces the depth of an image, but takes account of the
* 	 truncation errors by adding them onto yet untruncated pixels.
* 	 This is the most simple example of such a scheme, where the
* 	 whole error is added to the next pixel (a trap is included to
* 	 make sure no pixels 'roll-round')

void Quantise_Diffuse(byte *src_ptr, byte *dest_ptr, byte bits

dword pixel, end_of_f rame= (dword) (FRAI4EROWS*FRAMECOLS);
byte sum=O, sum_mask=Oxff, pixel_mask=Oxff;

sum _mask= (byte) (sum_mask>>bits)
pixel—mask= (byte) (pixel_mask<< (8-bits));

for(pixel=O; pixel<end_of_frame; pixel++, src_ptr++, dest_ptr++)

if (*src_ptr < pixel —mask) sum = (byte) (*src_ptr + (sum & sum—mask));
else sum = *src_ptr;
*dest_ptr = (byte) (sum & pixel_mask);

* 	 NAME: QuantiseRandDif fuse
* PURPOSE: the same as QuanitseWithDiffusion except that the location
* 	 where the error of the truncation is 'diffused' to is chosen
* 	 randomly between two equally likely candidates (imeadiately to
* 	 the right or below. A psuedo-random bit sequence generator is
* 	 used to decide on the location. A high bit of the rand() result
* 	 is used as they higher ones tend to be 'more' random!
* 	 (cf. Numerical recipies in C).

void QuantiseRandDiffuse(byte *pOriginal, byte *pOest, byte bits

dword pixel_index, end_of_f rame= (dword) (frame_rows*frame_cols)
dword most of frame=(end_of_frame-l), last_line=(end_of_frame-frame_cols)
mt candidate—below;
byte error_mask=Oxff, pixel_mask=Oxff, dummy;
byte *pRasterpDest, *p5preadeepDest, error=O;

error _mask = (byte) (error_mask>>bits)
pixel—mask = (byte))pixel_mask<<(8-bits));

Array_Copyprame(pOriginal, pDest);

for(pixel_index=O; pixel_index<most_of_frame; pixel_index++, pRaster++)

error = (byte) (*pRaster & error_mask); 	 1* calculate the impending truncation error

*pRaster = (byte) (*pRaster & pixel—mask); 	1* truncate the pixel */

candidate below = ((randO>>6) & OxOl); 1* choose the Ispreadeel from the two candidates /
if (candidate_below==FALSE) pSpreadee = (pRaster + 1);

else
if (pixel_index<last_line) pSpreadee = (pRaster + frame_cols);
else pSpreadee = &dummy;

if (*p5preadee < pixel—mask
*p5preadee = (byte) (*pSpreadee + error);

*pRaster = (byte) (*pRaster & pixel_mask); 	/* quanitse the last pixel without spreading •/

* 	 NAME: QuantiseSafeRandDiffusel
* PURPOSE: the same as the random one except that the candidate locations

A1.1 1

- appendix one Simulation software source code -

* 	 are flagged when they should no longer be added to, this limits
* 	 the accumulated errors where by random lots of errors would
* 	 otherwise have been spread.

void QuantiseSafeRandDiffusel(byte *pOriginal, byte *pDest, byte *pTemp, byte bits

dword pixel—index, end_of_f rame= (dword) (frame_rows*frame_rows);
dword most of frame=(dword) (end_of_frame-i), last line= (end_of_frame-frame_rows);
mt candidate—below, spreading=TRUE;
byte *pRasterpDest, *pspreadeepDest ;
byte error=O;
byte old _bit;
long flag—gap = pTemp-pDest; / the distance between each pixel and it's flag *1
byte flag_mask = (byte) (OxOi<<(8-bits));
byte error_mask = (byte) (Oxff>>bits);
byte pixel—mask = (byte) (Oxff<<(8-bits));
byte *pRand = pTemp ; /* for debug results-/

Array_CopyFrame(pOriginal, pDest); / all the processing is done in the Dest frame store *1
Array BlankFrame(pTemp, FALSE); 1* initialisation of all the flags *1

for(pixel_index=O; pixel_index<most_of_frame; pixel_index++, pRaster++, spreading=TRUE)

error = (byte) (*pRaster & error_mask); 	1* calculate the impending guantisation error

*pRaster = (byte) (*pRaster & pixel_mask) ; 	/* quantise the pixel */

candidate _below = ((rand(>>>6) & OxOl); /* make the initial random 'spreadee' selection */
if (candidate below==FALSE) pSpreadee = (pRaster + 1);
else

if (pixel_index<last_line) pSpreadee = (pRaster + frame cols)
else spreading = FALSE;

if (*(pSpreadee+flaggap)TRiJE(
if (pixel_index<last_line) pSpreadee = (pRaster + frame_cola)
else spreading = FALSE;

if ((spreading==TRIJE) && (*pSpreadee 	pixel—mask))

old_bit = (byte) (*pSpreadee & flag_mask);
*pSpreadee = (byte) (*pSpreadee + error)
if ((*pSpreadee & flag_mask) 	old—bit) *(pspreadee+flag gap) = TRUE;

*pRaster = (byte) (*pRaster & pixel_mask); 	/* quanitse the last pixel without spreading */

* 	 NAME: Quantise_SafeRandDiffuse2
* PURPOSE: the same as SafeRand. .1 except that when a flag is encountered
* 	 spread is abandoned rather than always spreading to the pixel
* 	 below.

void Quantise_SafeRandDiffuse2(byte *psource, byte *pDest, byte *pTemp, byte bits

dword pixel—index, end_of_f rame= (dword) (frame_rows*frame_rows);
dword most_of_f rame=(dword) (end_of_f rame-l), last_line= (end_of_frame-frame_rows)
mt candidate below, spreading=TRtJE;
byte *pRasterpDest, *pSpreadeepDest ;
byte error=O;
byte old _bit;
long flag—gap = pTemp-pDeSt; 1* the distance between each pixel and it's flag */
byte flag_mask = (byte) (OxOl<<(8-bits));
byte error _mask = (byte) (Oxff>>bits)
byte pixel _mask = (byte) (Oxff<< (8-bits)>
byte *pRand pTemp ; /* for debug results */

Array_CopyFrame(pSource, pDest > ; 	 1* all the processing is done in the Dest frame store *1
Array_BlankFrame(pTemp, FALSE >; /* initialisation of all the flags *1

for(pixel_index=O; pixel_indexmost_of_frame; pixel_index++, pRaster++, spreading=TRUE(
error = (byte) (*pRaster & error_mask) ; 	 1* calculate the impending quantisation

error
*pRaster = (byte) (*pRaster & pixel_mask) ; 	1* quantise the pixel *1

candidate _below = ((randO>>6) & OxOl) ; /* make the initial random 'spreadee' selection */
if (candidate_below==FALSE) pSpreadee = (pRaster + 1);

A1.12

- appendix one Simulation software source code -

else
if (pixel indexelast_line) pSpreadee = (pRaster + frame_cola);
else spreading = FALSE; 1* to stop spreading outside the framestore */

if ((spreading==TRUE) && (*pSpreadee < pixel_mask) && (*(pSpreadee+flag_gap)==FALSE))
old—bit = (byte) (*pSpreadee & flag_mask),
*pSpreadee = (byte) (*pSpreadee + error);
if ((*pspreadee & flag_mask) 1= old—bit) *(pSpreadee+flag gap) = TRUE;

if (*(pSpreadee+flag_gap)==FALSE) *pRand++ = GREEN;
else *pRand++ = RED;

	

pRaster = (byte) (pRaster & pixel_mask); 	1 quanitse the last pixel without spreading */

* 	 NAME: Quantise_FloydS
* PURPOSE: A variable depth output implementation of the original error
* 	diffusion algorithm (Floyd-Steinberg). It spreads the guantisation
* 	errors over the four remaining immediate unquantised neighbours,
* 	sharing the error according to the 'diffusion filter' shown below
* 	filter: 	. Awhere A=7/16, 8=1/16, C=5/16, D=3/16
* 	 D C B and 1 . 1 represents the pixel being quantised.
* 	This version is variable in output depth from 1 to 6 bits/pixel.
* History: original written 28th Jan 96, Andrew Murray. (working)

mt Quantise_FloydS(byte *pSrc, byte *pDest, byte bits

unsigned short fifo_index, fifo_len = frame_cols+l;
short fifo[FRAMECOL,S+l]
long SpreadPixel, QuantError;
byte QuantisedPixel;
dword pixel, end_of_frame = frame_rows*frame_cols;
dword a_limit = end—Of—frame - 1, b_limit = a_limit - frame cols;
byte num_thresholds= (byte)pow(2,bits), threshold;
short thresholds [64)
byte colours [64]

/* test validity of 'bits' */
if (bits>6) return FALSE;

/* create the arrya of thresholds and corresponding array of colours */
for(threshold=O; threshold<num thresholds; threshold++)

thresholds [threshold] = (short) (255* (2*threshold_l)) / (2* (num thresholds-i))
colours [threshold] = (threshold*255)/ (num thresholds-i)

1* intialise the spreading array */
for(fifo_index=O; fifoindex<fifo_len; fifo_index++) fifo(fifoindex]=O;
fifo_index=O; 1* - probably not necessary as the fifo buffer is circular */

for(pixel=O; pixei<end_of_frame; pixel++)
/* calculate the spread pixel, quantised version and error *1
SpreadPixel = ((((long)*pSrc++)<<4) + fifo[(fifo_index++)%fifo_len])r.>4;
threshoid=num_thresholds-i;
while (SpreadPixel<thresholds (threshold]) threshold--;
QuantisedPixel=colours [threshold);
QuantError = SpreadPixel - (long)QuantisedPixel;

/* store the results (errors*16)*/
*pDest++ = QuantisedPixei;
if (pixel<a limit)

fifo[fifoindex%fifo_len] += QuantError*7 ; /* filter element A */
if (pixel<b_limit)

fifo[(fifoindex+frame_cols)fifo_len] = QuantError; /* B */
fifo[(fifoindex+framecols-l)%fifo_len] += QuantError*5; 1* C */

fifo[(fifoindex+framecols-2)%fifo_len] += QuantError*3; /* D /

return TRUE;

* 	 NAME: QuantisePrescaleFrame
* 	PURPOSE: used to solve dynamic range problems of the simple truncation
* 	 quantiser used in Quantise_Diffuse, RandDiffuse etc. The
• 	 value of bits passed should be the same as that passed to the
* 	 coding function.
* 	Notes: 1) must be used in conjunction with QuantiseRescaleFrame,

A1.13

- appendix one Simulation software source code -

* 	 which is applied after the quantisation function, prior to
* 	 image display.

void Quantise_PrescaleFrame(byte pSource, byte *pDest, byte bits) 	 -

dword pixel, end_of_f rame=(dword) (frame_cols*frame_rows);
byte subtractant;
byte sub_mask = (byte) (Oxff << (8-bits)) /* ie. 11110000 for 4 bits. 11100000 for 3 etc. *1
byte rep, reps = (byte) ((8/bits)-1); /* the number of complete subtractions */

if ((8%bits) 1=0) reps++; /* if 8 doesn't divide exactly by 'bits' a partial sub is req'd /

Array_CopyFrame (pSource, pDest);

if (bitsl=l)
for (pixel=0; pixeleend_of_frame; pixel++) {

subtractant = (byte) (*pDest & sub—mask);
for (rep=0; rep<reps; rep++) {

subtractant = (byte) (subtractant >> bits);
*pDest = (byte) (*pDest - subtractant);

pDest++;

else{
for (pixel=0; pixel<end_of_frame; pixel++)

*pDest = (byte) (*pDest>>l)
pDest++;

/
* 	 NAME: QuantiseRescaleFrame
* 	PURPOSE: see prescale frame above
* * * * * * * * * **** * * * * ** * * ** * * * * * * * * * ******* ************ **** * *** ** ** * * * * ** * * *** * * *1

void Quantise_RescaleFrame(byte -pImage, byte bits

dword pixel, end_of_f rame= (dword) (frame_cols*frame_rows) ;
byte rescaler;
byte rep, reps = (byte) ((8/bits) -1); /* the number of complete subtractions */

if ((8thits) 1=0) reps++; /* if 8 doesn't divide exactly by 'bits' a partial sub is req'd */

for (pixel=0; pixel<end_of_frame; pixel++)
rescaler = *plmage;
for (rep=O; rep<reps; rep++){

rescaler = (byte) (rescaler >> bits);
*plmage = (byte) (*plmage + rescaler);

plmage++;

/
* 	 NAME: Quantise_RescaleTruncate

void Quantise_RescaleTruncate(byte *psrc, byte *pDest, byte bits

dword pixel, end_of_frame=(dword) (frame_rows*frame_cols)
byte shift = (byte)128/pow(2,bits);

for (pixel=0; pixel<end_of_frame; pixel++)
*pDest++ = *pSrc++ + shift;

return;

/*############## *
* quantise.c end *
*

A1.14

appendix two

PINK FVGA schematics

The full design of the PINK2 FPGA (covered in chapter four) is shown in the design
schematics below.

PINK2 Diffuion POA
Top Lavel Simulation
Sohomatio

- appendix two PINK FPGA schematics -

MTT

ILE

A2.2

- appendix two PINK FPGA schematics -

D

.= 	;.

= D

=

7r
DECODE

:r1IL

iB—J----f-- 	
PINK DiffiOfl POA

- 	 -. 	 -•• 	 4 Stable State.
Prop. State Machine

A2.3

- appendix two PINK FPGA schematics -

77'

I111
PINK Cit ftaoion FPGA 2

Pipelined Process
Controller

A2.4

- appendix two PINK FPGA schematics -

- -

-

Output MWC - 	 -

-

FIFO Preloeder

* FIFO Nudger

----• 	:2S
:--

PINK Diffusion FPGA 2

FIFO Manager

PINK Diffusion FPOA 2

Simple Error
Diffusion Processor

A2.5

- appendix two PINK FPGA schematics -

2

PINK Diffusion FPOA 2

Fast

2. Complement
Genera too

A2.6

- appendix two PINK FPGA schematics -

PINK DiffuiNr FPGA 2

Variable Resolution
Piael Quantiser

1.1

A2.7

- appendix two PINK FPGA schematics -

I 1i4 PXNX Diff,ior FPGA 2

- 	 I

A2.8

- appendix two PINK FPGA schematics -

I .-

PINK DittttsiOfl FPOA 2

ViI1 Rc1UtiOK
PiCe1 'rruneat.r

m

9—
PINK Diffttsion FPOA 2

A2.9

- appendix two PINK FPGA schematics -

-

• 	 PINK Diffaoion PPOA 2

16-b1t co,.ntr

A2.1 0

appendix three

Imputer FPGA firmware

The source files for the imputer firmware used in testing the FPGA are listed below.

The file than contains the menu-driven test program (pinktest.c) is first listed, this is

followed by the files that make up the library of commands that can be used to

initiate processing of images using the FPGA.

Pinktest.c

This functions sets up the general program environment. Command line flags can

be used to start it in simulate, record, demo or test modes.

/*## *
• pinktest.c - a menu driven test program for the pink.c library and the
• PINK Diffusion FPGA
* ########*###########*########## ####** 	 */

#include <stdio.h>
#include <stdimp.h>
#include <timer.h>
#include <imputer .h>
#include <math.h>
#include "pink.h

typedef struct bank_register

byte vid_gen;
byte grab;
byte logo;
byte test;
}bank_register;

1* Private function forward declarations /
void RunProcessor(byte process, bank —register reg, mt twin);
void RunTestlmage(byte process, bank_register reg
void DisplayMenuO;
void Displaystatus(byte process, mt logo_flag, mt smooth—flag, bank—register reg

void ToggleFlag (mt *pFlag);
void GrabFrame(byte dest);
void GenerateTestlmage(bank_register reg);
void GammaCorrectDisplay(float *pGamma) ;
void GammaCorrectlmage (byte bank, float gamma);
void RampOnRHSO;

A3.1

- appendix three Imputer FPGA firmware -

void ApplyFixedCOrreCtiOfl(byte bank);

I ###fl####(#### *
* main function *
* ############# */

void main(

bank_register banks = { Oxl, Oxi, Oxe, OxO };
byte current_process = SIMPLE;
mt quit = FALSE, logo = FALSE, smooth = TRUE;
char letter;
mt cycles = 100;
float gamma=2.2;

imputer_init();

printf('\nPINK FPGA Test/Demo Software\nVersion 2.01 (pinktst3.c)\nCopyright (c)
nonsense 1 95\n\n")

1* initial processing to allow autonomous operation *1
RunProcessor(current_process, banks

/* main menu driven processing loop */
RunProcessor(current_process, banks, smooth

while (!quit)(
if (logo) set—video—bank(0);
DisplayStatus(current_process, logo, smooth, banks);
DisplayMenuO;
letter = getchar();
printf("\n")
switch (letter)

case '8': current_process = SIMPLE; break;
case 'p' : current_process = PERTURB; break;
case 'r : RunProceasor(current_process, banks, smooth); 	break;
case h: RampOnRHSO;
case 't' : RunTestlmage(current_process, banks); break;
case If': GenerateTestlmage(banks); 	break;
case '1': ToggleFlag(&logo); 	break;
case 'm': ToggleFlag(&smooth); break;
case g' : GammaCorrectDisplay(&gamma) ; break;
case c : GammaCorrectlmage(14, gamma); break;
case 'a , : ApplyFixedCorrection(14); break;
case 'q' : quit=TRUE; 	break;
default: printf("\tUnrecognised input 'c'\n", letter);

printf('\n\tbye.\n")
reset_imputer()

*

* Private function declarations *
* tfl(*###*###*####(############* */

void RunProceesor(byte process, bank—register reg, mt toggling

if (! toggling)(
set _ video _bank(reg.vid_gen);
SetPinkBanks(reg.grab, (reg.vid_gen+14(
printf("\n\tEntering the processor loop, press the STOP button to exit...");
while (!halt()){

GrabFrame(reg.grab);
RunPinkProcessor(process

else{
printf("\n\tEntering the smooth processor loop, press the STOP button to

exit...");
while (!halt()){
SetPinkBanks(reg.grab, 14);
GrabFrame(reg.grab);
RunPinkprocessor(process)
set video bank(0);
SetPinkBanks(reg.grab, 15);
GrabFrame(reg.grab);

A3.2

- appendix three Imputer FPGA firmware -

RunPinkProcessor(process);
set video—bank(1);

printf(" stopped.\n")

void RunTestlmage(byte process, bank—register reg

set _video _bank(0);
SetPinkBanks(reg.test, 14);
RunPinicProcessor(process

void RampOnRHS()

byte row, col;

set_main_xbank(14
for(row=0; 	row<255; row++)

for(col=0; col<128; col++)
XBYTE [(row*256+col+128)] =row;

void GenerateTestlmage(bank—register reg

word pixel=O, row, col;
char key;

set_main_xbank(reg.test

do{
printf("\n\tPlease choose test pattern:\n");
printf("\t[l] vertical ramp 	(2] 	horizontal ramp 	(3] vertical blocks\n");

printf("\twaiting...
key = getchar();
printf("\n")

)while 	(key!=l' 	&& key!= 1 2' 	&& key!=3');

printf("\tGenerating test image 	(bank %d), please wait...", (int)reg.test);
for(row=O; rowe256; row++

for(col=0; 	col<256; 	col++
switch (key)

case '1': XBYTE[pixel++] 	= row; break;
case 	1 2 1 : XBYTE(pixel++] 	= col; break;
case 	1 3 1 : XBYTE[pixel++] 	= 	(byte) ((row&OxfO) I 	(row>>4)); break;

printf(" done.\n");

void GammaCorrectDisplay(float *pGamma

char key;
word row, col, row_pair, col_pair;
word pixel;
byte ref resh=TRUE, stop=FLSE;
byte corrected_grey;
float inverse_gamma;

set main_xbank(14);
set—Video—bank(0);

printf("\tFilling bank 14 with background pattern...");
pixel=0;
for (row_pair=0; row_pair'64; row_pair++)

for (col_pair=0; col_pir<128; col_pair++){
XBYTE (pixel++) =0;
XBYTE [pixel++] =0;
XBYTE (pixel++] =255;
XBYTE [pixeli-i-] =255;

for (col_pair=0; col_pair<128; col_pair+i-){
XBY'rE(pixel+-I-] =255;
XBY'I'E (pixel++] =255;

A3.3

- appendix three Imputer FPGA firmware -

XBYTE (pixel++) =0;
XBYTE [pixel++] =0;

printf("done.\n");

printf('\tPress (>] or [<] to alter gamma, [R] to refresh display and (Q) to
exit\n")

do
if (refresh)

inverse—gamma = l/(*pGamma)
corrected_grey = (byte) ((256*pow(0.5, inverse_gamma)-l));
for(row=63; row<191; row++)

for(col=63; cole191; col++)
XBYTE ((row*256) +col] = corrected_grey;

printf("\tcurrent image corrected with a gamma of W.lf (%d)\n, *pGamma,
(int) corrected_grey);

ref resh=FALSE;

key = getcharO;
printf(\n")
switch (key)

case I . ' *pGamma += 0.1F; break;
case ', ': if (*pGamma>0.1F) *pGamma -= 0.1F; break;
case 'r' : refresh=TRtjE; 	break;
case 'q' : stop=TRTJE; 	break;
default: printf('\tunrecognised input '%c'\n', key);

printf(° \tnext gamma: %.lf\n", *pGamma);
)while) !stop

return;

void GammaCorrectlmage(byte bank, float gamma

dword index;
float inverse—gamma = 1/gamma;
byte old—grey;

set main xbank(bank);
set—video—bank(bank-14);

printf("\n\tGammacorrectlmage: starting (gamma = %.lf mv = %. lf)\n", gamma,
inverse_gamma);

printf("\tGammaCorrectlmage: creating look-up table... 11);
for (index=0; index<256; index++)

XBYTE(index) = (byte)(255*pow(((float)index/255), inverse_gamma) >;

printf (done. \n\tGammaCorrectlmage: correcting image.. .
for (index=256; index<65535; index++){

old_grey = XBYTEfindex];
XBYTE[index] = XBYTE(old_grey];

printf(done.\n")
return;

void ApplyFixedCorrection(byte bank

dword pixel;
word row, col;
byte old—grey;
boolean stop=FALSE;

set main xbank(bank);
set—video—bank(bank-14

printf (° \tApplyFixedcorrection: correcting image. .
for(row=0; row<256; row++)

for(col=0; col<128; col++)
pixel= (row*256) +col;
old_grey = XBYTE(pixel];
switch (old_grey)

case 32: XBYTE[pixel]=0; break;

A3.4

- appendix three Imputer FPGA firmware -

case OxOO: break;
case Oxll: XBYTE(pixel)=56; break;
case 0x22: XBYTE[pixel)=65; break;
case 0x33: XBYTE[pixel]=75; break;
case 0x44: XBYTE[pixel]=85; break;
case 0x55: XBYTE[pixel]=95; break;
case 0x66: XBYTE[pixel)107; break;
case 0x77: XBYTE(pixel)=119; break;
case 0x88: XBYTE[pixel]=132; break;
case 0x99: XBYTE[pixel)=144; break;
case Oxaa: XBYTE[pixel)=156; break;
case Oxbb: XBYTE(pixel)=170; break;
case Oxcc: XBYTE[pixel]=188; break;
case Oxdd: XBYTE[pixel]=208; break;
case Oxee: XBYTE[pixel]=232; break;
case Oxff: break;

default: printf(" error\n\t read '%d' not 4bit/pixel data\n",
(int)old_grey);

printf("done.\n");
return;

void DisplayMenu()

printf("\n\tPress:")
printf("\t[R] Run processor 	[T] run Test image\n");
printf("\t\t[M] toggle switching \n");
printf("\t\t[A) Apply fixed cor.[S] change to Simple [P] change to Perturb\n");
printf("\t\t[F) Fill test bank [L] toggle Logo 	[H] create ramp on RHS\n");
printf("\t\t[G] Test Gammas 	[C] gamma Correct 	[Q) to

Quit\n\twaiting...");

void DisplayStatus(byte process, mt logo_flag, mt smooth—flag, bank—register reg

printf("\n\n\n\tStatus:\tprocess: ")
switch (process)

case PERTURB: printf ("PERTtJRB"); break;
case SIMPLE: printf ('SIMPLE"); break;
default: printf("\n\t\tError - unrecognised process\n');

printf("\t\tBank Switching
switch (smooth _flag)(

case TRUE: printf("On"); break;
case FALSE: printf ("Off"); break;
default: printf("\n\t\tError - invalid smooth flag\n");

printf("\tLogo
switch (logo_flag)

case TRUE: printf('Enabled\n"); break;
case FALSE: printf("Disabled\n"); break;
default: printf("\n\t\tError - invalid logo flag\n");

printf("\t\tVidgen:%x, Grab:x, ', (int)reg.vidgen, (int)reg.grab);
printf("Logo:%x, Test:%x\n", (int)reg.logo, (int)reg.test);

void ToggleFlag(mt *pFlag

if (*pFlag) *pF1agFALSE ;
else *pFlagTRUR;

void GrabFrame(byte dest I

set main xbank(dest);
capture_image (GB_STANDARD);

1* ############## *
* pinktest.c end *

A3.5

- appendix three Imputer FPGA firmware -

* #############t *1

perturb.c

#include <stdio.h>
#include <stdimp.h>
#include "pinkdefs.h"

• NAME: RunPinkPerturbProcessor
• PURPOSE: Used to start the Perturbed Error Diffusion processor.
• NB: Before using either of the internal processors the Address generator
• should be initialised with read and write bank addresses.

void RunPinkPerturbProcessor C)

set main xbank(PINK—BANK); 	It switch to the xbank for PINK PPGA commands *1
STCONF=O; 	/* toggle the mem. map to processors space*/
XBYTE[PERTURB)0; 1* command FPGA to start the PERTURB processor *1
STCONF1; 	/* toggle the mem. map back to 'RAM add. space*/
while (!RUN); 	7* wait for the FPGA to release the 'imp. bus' *1

process.c

#include <stdio.h>
#include <stdimp.h>
#include "pinkdefs .h'

* NAME: RunPinkProcessor
*PURPOSE : Used to start either Error Diffusion processor.
• NB: Before using either of the internal processors the Address generator
• should be initialised with read and write bank addresses.
* * **** * **** * * * ** * * ** * * **** ** * * * *** **** ***** *** * **** ** ****** * * * * * * * * ******** * *1

void RunPinkProcessor(byte process

set—main xbank(PINK—BANK); 	/ switch to the xbank for PINK FPGA commands *1
STCONFO; 	/ toggle the mem. map to 'processors' space*/
XBYTE(process)=O; /* command FPGA to start the SIMPLE processor *1
STCONF1; 	1* toggle the mem. map back to 'RAM' add. space*/
while (!RUN); 	1* wait for the FPGA to release the limp. bus' *1

setbanks.c

#include <stdio.h>
#include <stdimp.h>
#include 'pinkdefs .h"

/
* NAME: SetPinkBanks
*PURPOSE: Used to control which external memory banks (xbanks) the FPGA
• will read from and write to. This command should be used prior
• to using either of the processors. The FPGAs internal address generator
• defaults to xbank 0 for both read and write on power-up or hardware or
• software reset.
* ***** * **** * ** ** * ** * * * ** * * ** * * * * * * * * * ** * * * * ** * *** * * *** * * * * **** ** * * * * * * * ***** *7

void SetPinkBanks(byte source, byte dest

byte combined—banks;

set main xbank(PINK—BANK);
STCONF=0;
combined—banks = (dest<s4) source;
XBYTE C BANK LATCH] =combined—banks;
STCONF1;

A3.6

- appendix three Imputer FPGA firmware -

simplex
t$include <stdio.h>
#include <stdimp.h>
#include "pinicdefs .h'

* NAME: RunPinkSimpleProcessor
PURPOSE: Used to start the Simple Error Diffusion processor.
• NB: Before using either of the internal processors the Address generator
• should be initialised with read and write bank addresses.
* ** *** ** * **** * * * * * * **** * * * * * * * * * * * ********** * *** * * * * * * * * * * * ** ** * * * * * **** *

void RunPinkSimpleProcessor()

set_main_xbank(PINK BANK); 	/* switch to the xbank for PINK FPGA commands *1
STCONF0; 	/* toggle the cern. map to 'processors space*/
XBYTE[SIMPLE 1=0; 1* command FPGA to start the SIMPLE processor *1
STCONF=l; 	1* toggle the cern. map back to 'RAM add. space/
while (!RUN); 	1* wait for the FPGA to release the 'imp. bus,*1

A3.7

appendix four

Subjective test software

The source files for the software used to present the subjective tests (chapter five)
are listed below.

demoOl .h
#ifndef demo
4tdefine demo

// macro definitions
#define ORIGINAL 0
#define PROC1 1
#define PROC2 2
#define PROC3 3
#define PROC4 4
#define PR005 5
*define ORIGINAL 0
#define NONE 6

#define BLACKBOARD—NAME 	"Subjective Test Demo vO.1

typedef struct pos_and_size

mt x;
mt y;
mt width;
mt height;
POSAMD SIZE;

#define DEMO INI FILE "demo.ini"

II state functions
void DoIdleQ;
void Dolnitialiseo)
void DolterateO;
void DoTerminateO;

void SeguencedontrolPanelU; 	// to be removed
void SequencedontrolPaneldloseO; 	II to be removed
void Dummygutton(void);
void TurnPageForwardO; 	II to be removed
void TurnPageBackO; 	// to be removed
void Demo_TurnToPage (mt page);
mt Demo_Globalslnit(char filename, char section);
mt Demo SetupBlackboardO;
void Demo ActivatePlayer) mt new_machine);
mt ReadButtonDetails(char *filename, char -section, POS_AND_SIZE *button);
mt DetermineDemoType()
#endif

A4.1

- appendix four Subjective test software -

demoOl .cpp
/
* 	demoOl.cpp

* 	Description:written to display images for subjective tests of compression
* 	algorithms.
*
* 	History: 	 -09-96 Created

aamu

/* ###fl## *
* includes *
* ######## *1

#include "image.h"

#include "visframe.h"
#include "apheader.h"
#include "controls .h"
#include "demool.h"
#include "player.h"
#include "fileio.h"
#include "graphic.h"
#include <math.h>

1* ##*################## *
* global variable defs *
* #####4t############### */•

PLAYER players (6];
char translation[71]
mt page_number;
mt demo_id;
mt max_pages;
mt looping;
mt verbose;
mt show—details;
mt active_player;
char temp_buffer(30];
mt still_page;
Blackboard 	*blackboard = NULL;
BLACKBOARD—ARRAY BbArray;

/* 4tff##t#############*############### *
* Vision Framework 'state functions *
* ############################*##### •1

* 	 NAME: Dolnitialise
*PURPOSE: 	called by visual framework the first time it executes its loop, *

this function sets up the demo application.
** *** * * *** ** * *** ** *** * * * ** * * ** * ****** *** *** * * ** * **** * * ** *** **** * *** * *** * *** *

void Dolnitialise ()

mt vcr;

VFAppHideO;
VFAppDialogColours(BLACK, RGB(255,255,232));
SetDrawColour (0);
SetBackColour(255);

if (!Demo_Globalslnit("[globals]", "demo.ini"))

VFMessageBox(MB_OKMBICONRXCLAMATION, "Dolnitialise", "Demo_mit
returned FALSE");
Demo_SetupBlackboard 0;

/* construct and intialise sequence players */
for (vcr=0; vcr<6; vcr++){

sprintf(temp_buffer, "[player%i]", vcr);
if (lPlayer_Init(temp _buffer, "demo.ini", &players[vcr]))

VFMessageBox(MB_OKMB_ICONEXCLA14ATION, "Dolnitialise", "Player_mit
returned FALSE");

page_number=0;

A4.2

- appendix four Subjective test software -

active_player=NONE;
Demo_TurnToPage (page—number >;

* 	NAME: Dolterate
*PURPOSE: 	called by visual framework each time it executes its loop,
* 	 except for the first time or if quit has been pressed.
* 	 this function contains the iterative processing cycle of the
* 	 demo app.

void Dolterate()

if (active_player!NONE)
if

(players [active_player] . frame_countersplayers (active_player] .max_frames)
Player_DisplayNextFrame (&players [active_player));
else

if (looping) Player_ResetSequence(
&players (active_player), FALSE);

else
Player_ResetSequence (&players [active_player]

TRUE
active_player = NONE;

* 	 NAME: DoTerminate
*PURPOSE: 	called by visual framework the last time it executes its loop,
* 	 this function tidies up all the demo app. structures

void DoTerminate(>

mt vcr;

for (vcr=O; vcr<G; vcr++)
Player_Destroy(&players(vcr) >;

if (verbose) VFMessageBox(MB_OKIME_ICONINFORMATION, "DoTerminate 0", "players
destroyed");
VFBlackboardDestroy (blackboard, &BbArray);
if (verbose) VFMessageBox(MB_OKMB_ICONINFORMATION, "DoTerminate(> ", "blackboard

destroyed");

* 	 NAME: Doldle
*PURPOSE: 	 the fourth possible VF function - unused in the demo app.

void DoIdle(>

1* *fffl###########*##*########### *
* functions used by buttons.cpp *
* ############################# *7

void SequenceControlPanel ()

/*VpBlackboardshow(sequencebb) ; * 7

void SequenceControlPanelCiose (>

/*VFBlackboardHide (sequencebb) ;

void DummyButton(void

VFMessageBox(MB_OKM8_ICONINFORMATION, "DummyButton", "dummy button pressed");

void TurnPageForward (>

if (page_number<max_pages) Demo_TurnToPage (++page_number >;

A4.3

- appendix four Subjective test software -

else VFMessageBox(MB_OKIMB_ICONEXCLAMATION, BLACKBOARD —NAME, "you are on the last
page");

void TurnPageBack()

if (page_number>O) Demo_TurnToPage(--page_number
else VFMessageBox(MB_OKMB_ICONEXCLAMATION, BLACKBOARD —NAME, "there is no

previous page");

* 	NAME: Globals_Init
PURPOSE: 	Initialises the global variables from the initialisation file.

mt Demo_Globalslnit(char section, char filename

FILE *pFile;

/ read global parameters from the .ini file */
pFile = FileIO_FindlniSection(filename, section);
if (pFile == NULL) return FALSE;
if (!FileIO_ReadlniLineNumber(pFile, "looping", &looping)) goto close;
if (!FilelOReadlniLineNumber(pFile, "verbose", &verbose)) goto close;
if (!FileIO_ReadlniLineNumber(pFile, "max_pages", &max_pages)) goto close;
if (!FileIO_ReadlniLineNumber(pFile, "demo_id", &demo_id)) goto close;
if (!FileIO_ReadlniLineNumber(pFile, "show —details", &show_details)) goto close;
if (tFilelO_ReadlniLineText(pFile, "t", translation)) goto close;
fcloee (pFile)
if (verbose) VFMessageBox(MB_OKIMB_ICONINFORMATION, "Demo_Globalslnit","ended OK");
return TRUE;

close:
VFMessageBox(MB_OKMB_ICONEXCLAMATION, "Demo_Globalslnit","a 'ReadlniLine...'

failed")
fclose (pFile)
return FALSE;

* 	 *

mt Demo SetupBlackboard

FILE *pFile;
POSARD SIZE temp;

/* == construct a controls list 	*1
BbArray.NumElements = NUMBBELEMENTS;
VFBlackboardControlArrayConstruct (&BbArray);

/* == add item onto blackboard == */
ReadButtonDetails("[controls_box)", "demo.ini", &temp);
VFBlackboardAddGroupBox(&DEMOCONTROL, temp.x, temp.y, temp.width, temp.height,

"Demo Controls");
ReadButtonDetails(, [run button]", "demo.ini", &temp);
VFBlackboardAddButton(&RUN, temp.x, temp.y, temp.width, temp.height, "Run");
ReadButtonDetails("[step_button]", "demo.ini", atemp);
VpBlackboardAddButton(&STEP, temp.x, temp.y, temp.width, temp.height, "Step");
ReadButtonDetails("(halt button)", 'demo.ini", &temp);
VFBlackboardAddButton(&HALT, temp.x, temp.y, temp.width, temp.height, "Halt");
ReadButtonDetails("[quit button]", "demo.ini", &temp);
VFBlackboardAddButton(&QUIT, temp.x, temp.y, temp.width, temp.height, "Quit");
ReadButtonDetails("[options—button]", "demo.ini", &temp);
VFBlackboardAddButton(&DEMOOPTIONS, temp.x, temp.y, temp.width, temp.height,

"Options")
ReadButtonDetails("[next—button]", "demo.ini", &temp);
VFBlackboardAddButton(&NEXT, temp.x, temp.y, temp.width, temp.height, "Next Page

>>")
ReadButtonDetails("(previous—button)", "demo.ini", &temp);
VFBlackboardAddButton(&PREVIOUS, temp.x, temp.y, temp.width, temp.height, '<<

Previous Page");
ReadButtonDetails("[play_buttonO]", "demo.ini", &temp);
VFB1ac)thoardAddButton(&PLAYO, temp.x, temp.y, temp.width, temp.height, "Play");
ReadButtonDetails(" [play buttoni]", "demo. mi", &temp);
VFBlackboardAddButton(&PLAY1, temp.x, temp.y, temp.width, temp.height, "Play");
ReadButtonDetails("[play_button2]", "demo.ini", &temp);
VFBlackboardAddButton(&PLAY2, temp.x, temp.y, temp.width, temp.height, "Play");
ReadButtonDetails("[play_button3]", "demo.ini", &temp);

A4.4

- appendix four Subjective test software -

VFBlackboardAddButton(&PLAY3, temp.x, temp.y, temp.width, temp.height, "Play');
ReadButtonDetails("[play_button4]", 'demo.ini", &temp);
VFBlackboardAddButton(&PLAY4, temp.x, temp.y, temp.width, temp.height, "Play');
ReadButtonDetails("[play_buttonS]", "demo.ini", &temp);
VFBlackboardAddButton(&PLAY5, temp.x, temp.y, temp.width, temp.height, "Play");
ReadButtonDetails("[stop_buttonO)", "demo.ini", &temp);
VFBlackboardAddButton(&STOPO, temp.x, temp.y, temp.width, temp.height, "Stop");
ReadButtonDetails("(stop_buttoni)", "demo.ini", &temp);
VFBlackboardAddButton(&STOP1, temp.x, temp.y, temp.width, temp.height, "Stop");
ReadButtonDetails("(stop_button2)", "demo.ini", &temp);
VFBlackhoardAddButton(&STOP2, temp.x, temp.y, temp.width, temp.height, "Stop");
ReadButtonDetails("[stop_button3]", "demo.ini", &temp);
VFBlackboardAddButton(&STOP3, temp.x, temp.y, temp.width, temp.height, "Stop");
ReadButtonDetails(" (stop_button4]", "demo.ini", &temp);
VFBlackboardAddButton(&STOP4, temp.x, temp.y, temp.width, temp.height, "Stop");
ReadButtonDetails("[stop_button5]", "demo.ini", &temp);
VFBlackboardAddButton(&STOP5, temp.x, temp.y, temp.width, temp.height, "Stop");
ReadButtonDetails("[demo id window]", "demo.ini", &temp);
VFBlackboardAddlnt(&DEMOID, temp.x, temp.y, temp.width, temp.height, "demo id."

0, 0, BLACK, RGB(255,255,232));
ReadButtonDetails("(page no. window)", "demo.ini", &temp);
DEMOID.Current.Int = demo id;
VFBlackboardAddlnt(&PAGENUMBER, temp.x, temp.y, temp.width, temp.height, "page

no.", 0, 0, BLACK, RGB(255,255,232));

1* read in the blackboard details and construct *1
pFile = FileIO_FindlniSection("demo.ini", "[blackboard)");
if (pFile == NULL) return FALSE;
if (!FileIO_ReadlniLineNumber(pFile, "x", &temp.x)) goto close;
if (!FileIO_ReadlniLineNumber(pFile, "y", &temp.y)) goto close;
if (!FileIO_ReadlniLineNumber(pFile, "width", &temp.width)) goto close;
if (!FileIO_ReadlniLineNumber(pFile, "height", &temp.height)) goto close;
fclose (pFile)
VFBlackboardConstruct(&blackboard, temp.x, temp.y, temp.width, temp.height,

BLACKBOARD—NAME, &BbArray);

if (verbose) VFMessageBox(MB_OKMB_ICONINFORMATION, "Demo_SetupBlackboard","ended
OK");

return TRUE;

close:
VFMessageBox(MB_OKMB_ICONEXCLAMATION, "Dsmo_SetupBlackboard","a 'ReadlniLine...'

failed")
fclose (pFile)
return FALSE;

/

* * *** * * * **** * * ** * * * * * * ** * * ** **** ********* ** ** ** *** ** * ** ** **** * * * * ****** * * * * *

mt ReadButtonOetails(char *section, char *filename, POS_AND_SIZE *button

FILE *pFile;

pFile = FileIO_FindlniSection(filename, section);
if (pFile == NULL) return FALSE;
if (!FileIO_ReadlniLineNumber(pFile, "x", &button->x)) goto close;
if (!FileIO_ReadlniLineNumber(pFile, "y", &button->y)) goto close;
if (!FileIO_ReadlniLineNumber(pFile, "width", &button->width)) goto close;
if (!FileIO_ReadlniLineNumber(pFile, "height", &button->height)) goto close;
fclose (pFile)
if (verbose)

sprintf(temp_buffer, "read: x=%i, y=%i, width=%i, height=%i\nfrom %s in
es", button->x, button->y, button->width, button->height, section, filename);

VFMessageBox(MB_OKIMB_ICONINFORMATION, "ReadButtonDetails", temp_buffer);

return TRUE;

close:
VFMessageBox(MB_OKIMB_ICONEXCLAMATION, "Reauttoetails","a 'ReadlniLine...'

failed")
fclose (pFile)
return FALSE;

* 	NAME: Demo_ActivatePlayer
*PURPOSE: 	this is the function called when a 'play' button is pressed on

A4.5

- appendix four Subjective test software -

* 	 the demo app. blackboard. If there is a player currently
* 	 displaying a sequence then it stops it (by reseting the
* 	 sequence, it then sets the global variable 'active_player' to
* 	 reflect the new active machine.

void Demo_Activateplayer(mt new_machine

if (active_playerl=NONE) Player_ResetSequence(&players[active_player), TRUE);
active_player = new—machine;

/*################# *
* private functions *
#################/

* 	NAME: Demo_TurnToPage
*PURPOSE: this function loads all the sequence details for a page by
* 	calling . . ._LoadSequence for each player.

void Demo_TurnToPage(mt page

mt machine id;
FILE *pFjle.

1* stop any active player /

if (active_playerl=NONE)
Player_ResetSequence(aplayersEactive_player], TRUE);
active_player = NONE;

1* read still/sequence from .ini file */
sprintf(temp_buffer, "[page U]", page);
pFile = FileIO_FindlniSection(DEMO_INI_FILE, temp_buffer);
if (pFile == NULL)(

VFMessageBox(MB_OKIMB_ICONEXCLAMATION, "Demo_ThrnToPage", "FilelO_FindiniSection
returned NULL");

return;

FileIO_ReadlniLineText(pFile, "page_type", temp_buffer);
if ((stricmp(tempbuffer, "still"))==O) still_page=l;
else still_page=O;
fclose (pFile)

for (machine id=O; machine id<6; machine id++)
sprintf(temp_buffer, "[page%i_playerU)", page, machine—id);
if (!still—Page)

if (!Player_LoadSequence(temp_buffer, "demo.ini",
&players [machine_id]))

VFMessageBox (MB_OK I MB_ICONEXCLAMATION, "Demo_TurnToPage", " Player_LoadSequence
returned FALSE");

if (verbose)
sprintf(temp_buffer, "loaded [page%i_player'*i]", page,

machine—id);
VFMessageBox(MB_OK IMB_ICONINFORMATION,

"Demo_TurnToPage", temp_buffer);
/*sprintf (EbArray.Element (8+machine_id) .Text, "Play%i

(page%i)", machine—id, page);-/

else
pFile = FilelOFindlniSection(DEMO INI FILE, temp_buffer);
if (pFile == NULL)

VFMessageBox (MB_OK I MB_ICONEXCLANATION, "Demo_TurnToPage", " FilelO_FindiniSection
returned NULL")

FileIO_ReadlniLineText(pFile, "still", temp_buffer);
fclose(pFile)
ImageLoadsMP(players [machine_id) .image, temp_buffer);
VFBlackboardlmageShow(blackboard, players (machine_id) .image);

A4.6

- appendix four Subjective test software -

active_player=NONE;
PAGENUMBER.Current.Int = page_number;
VFBlackboardWriteElements (blackboard, &BbArray);

1* ### 'player , related functions ### *

/
* 	NAME: Player_mit
*PURPOSE: 	Initialises a player, by constructing and intialising its
* 	 constituent parts. The details are ,read from an .ini file
*NOTES: 	 returns TRUE unless the load fails in any way.
* 	 the EMP grabber still needs intialised before use.

mt Player_Init(char *section, char *filename, PLAYER *machine

FILE *pFile;
char name [10]
mt x_coord, y_coord;

/* construct grabber, stream and image, and intialise the stream */
VFGrabberConstructBMP(&machine->bmpgrabber 1;
VFlmageStreamConstruct(&machine->bmpstream);
if ((machine->image=ImageConstruct(GS1,256,256))==NULL) DiagnoseError(gerr_flag);
VFlmageStreamlnitialise(machine->bmpstream, machine->bmpgrabber, SOURCE);

/* intialise the image, using data from the .ini file */
pFile = FileIO_FindmniSection(filename, section);
if (pFile == NULL)(

VFMessageBox(MB_OKIMB_ICONEXCLAMATION, "Player_mit", "FilelO_FindmniSection
returned NULL");

return FALSE;

if (!FileIO_ReadlniLineText(pFile, "name", name)) goto close;
if (!FilelOReadlniLineNumber(pFile, "x", &xcoord 1) goto close;
if (!FileIO_ReadlniLineNumber(pFile, "y", &y_coord 1) goto close;
fclose(pFile)

ImageSetName(machine->image, name);
ImageSetLocation(machine->image, x_coord, y_coord); /* ##** change x&y

type ####
ImageSetDisplaySize(machine->image, 256, 256);

return TRUE;

close:
VFMessageBox(MB_OKMB_ICONEXCLAMATION, "Player mit", "a 'ReadlniLine...' failed");
fclose (ppile)
return FALSE;

/
* 	NAME: Player_LoadSequence
*PURPOSE: 	loads all the details necessary to play an image sequence into
* 	 a 'player', then intialises the player's bitmap grabber with
* 	 the file details and displays the blank image.
*NOTES: 	 returns TRUE unless the load fails in any way.
* * **** ** **** * ** * * * * * ** * * ** ** *********** * * * * * * * * * ** * * * ***** * *** * * **** * * *** *** *1

mt Player_LoadSequence(char *section, char *filename, PLAYER *machine

FILE *pFile;

/* read details from .ini file *1
pFile = FileIO_FindlniSection(filename, section);
if (pFile == NULL)(

VFMessageBox(MB_OKIMB_ICONEXCLAMATION, "Player_LoadSequence", "FilelO_FindmniSection
returned NULL");

return FALSE;

if (!FileIO_ReadlniLineText(pFile, "sequence", machine->sequence)) goto close;
if (!FilelOReadlniLineText(pFile, "algorithm", machine->algorithm)) goto close;
if (I FileIO_ReadlniLineNumber(ppile, "colour_resolution", &machine->colour_depth

>) goto close;
if (!FileIO_ReadlniLineNumber(pFile, "start", &machine->start_frame)) goto

close;
if (FileIOReadIniLineNumber(pFile, "length", &machine->max_frames 1) goto

close;

A4.7

- appendix four Subjective test software -

fclose(ppile)

1* create path for image sequence (using sequence, algorithm and resolution */
switch(machine->sequence(o]){

case 	c, sprintf(temp_buffer, "seq\\claire\\"); break;
case 	'd', sprintf(temp_buffer, "eeq\\dummy\\"); break;
case 	'5': eprintf(temp_buffer, "seq\\sman\\"); break;
case 	'ml: sprintf(temp_buffer, "seq\\missa\\"); break;
default: sprintf(temp_buffer, "seq\\"); break;

switch(machine->algorithm(0]) {
case 	'n' : strcat(temp_buffer, "none"); break;
case 	s 	: strcat(temp_buffer, "simp"); break;
case 	't', strcat(tempbuffer, "trnc"); break;
case 	'p': strcat(temp_buffer, "pert"); break;
case 	'1': etrcat(temp_buffer, "safi"); break;
case 	1 2 1 : strcat(temp_buffer, "saf2"); break;
case 	If': strcat(temp_buffer, "flyd"); break;
default, break;

if (machine->algorithm(o]!='d') sprintf(temp_buffer, "%s%i%c", temp_buffer,
machine->colour_depth, '\\');
strcpy(machine->path, temp_buffer);
/* set blank screen to the new constant value */
sprintf(machine->blank_screen, "blank.bmp");
1* create image filename root (from sequence, colour_depth and algorithm) * 1
sprintf (machine->root, "%c%i%c", machine->sequence[0), machine->colour_depth,

machine- >algorithm [0]

Player_Resetsequence(machine, TRUE
return TRUE;

close:
VFMessageBox(MB_OKMBICONEXCLANATION, "Player_LoadSequence", "a 'ReadlniLine...'

failed");
fclose (pFile)
return FALSE;

* NAME: Player_ResetSequence
*PURPOSE: 	displays the player's 'blank' image, resets the grabber and
* 	 the frame counter.

void Player_ResetSequence(PLAYER *machine, mt blank

char image_name [20];
mt process_id; 	 -

if (blank)
if (verbose)

sprintf(temp_buffer, "about to load Ws", machine->blank screen

VFMessageBox(MB_OKMICONINFORMATIoN, "Player_ResetSequence",
temp_buffer

ImageLoadsMP(machine->image, machine->blank screen);

/* draw image title */
if (machine->sequence[o]=='d'){

sprintf(image_name, "\n\n%s", machine—sequence
MoveTo(40, 120);
Display'Text(machine->image, image_name);

else
switch(machine->algorithm(o]

	

case 'n' : 	process_id = machine->colour_depth;
break;

	

case 's' : 	process_id = machine->colour_depth+lo;
break;

	

case 'p : 	process_id = machine->colour_depth+20;
break;

	

case '1': 	process_id = machine->colourdepth+30;
break;

	

case 1 2 1 : 	 process_id = machine->colour_depth+40;
break;

	

case If': 	process_id = machine->colour_depth+so;
break;

A4.8

- appendix four Subjective test software -

case 't' : 	process_id = machine->colour_depth+60;
break;

default: 	process–id = 0; break;

sprintf(image_name, "c\n\n%s", translation[process_id],
machine- >sequence

MoveTo(40, 120);
Display'rext(machine->image, image_name)

if (show _details)(
sprintf(temp_buffer, "\n\n\n%s\ni bits", machine-

>algorithm, machine->colour_depth);
Display'rext(machine->image, temp_buffer >;

VFBlackboardlmageShow(blackboard, machine->image);

VFGrabberinitialiseBMP(machine->bmpgrabber, machine->path, machine->root,
machine- >start_frame, machine- >max_frames);
machine- >frame counter = machine- >start_frame;

/
* 	NAME: Player_DisplayNextFrame
*PURPOSE. 	Displays the next frame of the sequence currently loaded into
* 	 the player's.
* ** **** * * *** * * * * * ** *** ** *** * * * * * ** * ********** ** * *** ** * * ***** * **** *** * ****** * *1
mt Player_DisplayNextFrame(PLAYER *machine

if (!VFlmageStreamGrab(machine->bmpstream, machine->image))
VFMessageBox(MB_OKIMB_ICONEXCLAMATION, "Player_DisplayextFrame","Grab

error")
return FALSE;

VFBlackboardlmageShow(blackboard, machine->image);
machine- >framecounter+i-;
return TRUE;

* 	NAME: Player_Destroy

void Player_Destroy) PLAYER *machine

ImageDestroy(machine—image);
VFGrabberDestroysMP(machine->bmpgrabber);
VFlmageStreamDestroy(machine->bmpstream);

1* (#####*# */

* 	 NAME: FilelO_FindiniSection
*PURPOSE: returns a pointer to the line after the specified header in the
* 	specified ' .ini' file.
*NOTE : this function opens the file that is passed to it, the calling
* 	function is resposible for closing it.

FILE *FileloFindlnigection(char *ppilename, char *psection

FILE *pini file;
mt end = FALSE;
char temp buffer [80]

/*jf (g_diagnose && !g_graphics)
printf(" FilelO_FindiniSection: called... \n");
printf(" FilelOFindlnisection: searchine for '%s' in '%s'\n", pSection,

pFilename);

} *1

pini_file = fopen(pFilename, "r");
if (pini_file==NULL)

sprintf(temp_buffer, "mi file '%s' not found", pFilename);
VFMessageBox(MB_OK IMB_ICONEXCLAMATION, "FilelO_FindlniSection",

temp_buffer);

A4.9

- appendix four Subjective test software -

pini_file = NULL;
return pini file;

/-if (g_diagnose && !g—graphics) printf(" FilelO_FindiniSection: opened file
okay\n') ;*/

while C (send) && (_stricmp(temp_buffer, pSection)!=O)){
if (FilelOReadNextLine(temp_buffer, pini_file)){

/*sprintf(buffer, " FilelO_FindiniSection failed - section 'is

not found\n", pSection) ;*/
end = TRUE;

if (end)
pini_file = NULL;
eprintf(temp_buffer, "couldn't find 'is in %s, pSection, pFilename);
VFMessageBox(MB_OKIMB_ICONEXCLAMATION, "FilelO_FindiniSection',

temp—buffer);

/*else if (g—diagnose &&!g—graphics) printf(" FilelO_FindiniSection: found
it\n"(;*/
return(pini file);

* 	NAME: FilelOReadiniLineNumber
*PURPOSE: checks the name at the start of the line and if its is correct
* 	assigns the mt then returns TRUE, else it returns FALSE.

mt FileIO_ReadlniLineNumber(FILE *pFjle, char *name, mt *pVariable

char temp_line [81] ="";
char sepsE]
char * token;

/*jf (g_diagnose) printf(" ReadlniLine: called... (looking for %s(\n", name) ;*/
if (FileIO_ReadNextLine(temp_line, pFile)) return FALSE;
token = strtok(temp_line, seps);
if C stricmp(token, name)==O){

token = strtok(NULL, seps);
sscanf(token, "'iu", pVariable C;
/*sprintf(temp_line, "read: 'is = %u", name, *pvariable);
VFMessageBox(MB_OKIMB_ICONINFORMATION, "FileIO_ReadlniLineNumber",

temp_line) ;*/
return TRUE;

sprintf(temp—line, "couldn't find 'is'", name);
VFMessageBox(MB_OKJMB_ICONEXCLANATION, "FilelO_ReadiniLineNumber", temp_line);
return FALSE;

* 	NAME: FileIO_ReadlniLineText
*PURPOSE: checks the name at the start of the line and if its is correct
* 	assigns the string then returns TRUE, else it returns FALSE.

mt FileIO_ReadlniLineText(FILE *pFile, char *name, char *dest

char temp_line(81)="";
char sepsi]
char * token;

/if (g_diagnose) printf(" ReadlniLine: called... (looking for %s)\n", name);*/
if (FileIO_ReadNextLine(temp_line, pFile)) return FALSE;
token = strtok(temp_line, seps
if C _stricmp(token, name)==O){

token = strtok(NULL, seps);
sscanf(token, 	dest);
return TRUE;

sprintf(temp_line, "couldn't find %s, name);
VFMessageBox(MB_OKMB_ICONEXCLANATION, "FileIO_ReadlniLineText", temp_line);
return FALSE;

A4.1O

- appendix four Subjective test software -

* 	NAME: 	FilelOReadNextLine
*PURPOSE: reads the next non-empty line of text from a file. The line is
* 	read from whatever file the passed pointer is pointing to, and
* 	from the position of that pointer within the file. If there is another
* 	non-empty line in the file the function copies (minus any carriage
* 	returns) to the passed string and returns FALSE, if there are no more
* 	lines in the file containing text the function returns TRUE.

mt FileIO_ReadNextLine(char *buffer, FILE *pFile

char line(81]=", temp_letter;
mt end of_line=FALSE, found_text=FALSE;
byte bytes_read;

while (rend of line)
bytes _read = (byte)fread(&temp_letter, 1, 1, pFile);
if (bytes_read != 1

strcpy(buffer, line);
/*if (g—diagnose && (!g—graphics)) printf(" FileIO_ReadNextLine:

read line ''*s', returning TRUE\n", line);*/

VFMessageBox(MB_OKMB_ICONEXCLAMATION, "FileIO_ReadNextLine", "found unexpected
EOF");

return TRUE;

else
if (temp_letter 1= 10

sprintf(line, "sc", line, temp_letter >;
found_text=TRUE;

else if (found—text) end—of—line = TRUE;

strcpy(buffer, line
/*jf (g—diagnose && (g_graphics)) printf(" FileIO_ReadNextLine: read line '%s',

returning FALSE\n", line >;*/
return FALSE;

/* ###$#####t$##### *
* end of demool.cpp *
* t######*#*##*#### *1

A4.11

