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Abstract 

Interface & support hardware for CMOS image sensors using 
minimum hardware and low bandwidth radio transmission 

Andrew A. Murray 
September 1997 

This work investigates the interface between a video sensor and a low bandwidth 
radio transmitter. In the context of a low-cost low-power radio video link, it outlines 
a hardware minimal solution. 

To solve the bandwidth conflict between the low power radio links and even a 
modest image sequence quality, a broad range of digital coding techniques are 
evaluated. Aspects of the coding methods, other than the compression ratios they 
offer and the ability to implement them using minimal hardware, are considered. 
Particular emphasis is placed on how vulnerable they leave the coded data to 
corruption through transmission errors. 

Through software simulation, implementations of the most promising compression 
technique (colour quantisation with error diffusion) is further investigated. 
Particular emphasis is placed on implementation of the software algorithms using 
architectures close to those of the simplest hardware implementations. 

Colour quantisation with error diffusion is pursued further in the hardware 
implementation of two algorithms in the form of a field-programmable gate-array 
(FPGA). The successful implementation of the architectUre demonstrates its 
suitability to hardware implementation. Results from the FPGA offer subjective 
analysis of the algorithms output at higher frame rate. 

A framework that was developed to allow comprehensive subjective testing of 
image processing algorithms is described, and results, although statistically 
insignificant, are given. 

In evaluating the importance of colour quantisation with error diffusion, amongst 
other compression and coding techniques, this work concludes that where 
hardware is at a premium and strict viewing requirements can be met, there are 
applications where it can be applied profitably, offering results comparable with 
much more complicated solutions. 
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chaptr one 

Introduction 

This thesis investigates obstacles to the implementation of a low-cost radio video 

link. It considers the interface and support hardware between a CMOS image sensor 

and a low bandwidth radio transmitter. Successful implementation of this will 

enable the production of radio video link with significantly lower production and 

operating costs than any currently available. 

Implementation is brought nearer through the development of digital coding 

hardware, designed to marry a minimal moving-image specification to the likely 

bandwidths available from a low-cost and low-bandwidth radio link. The result is a 

hardware minimal solution suitable for integration with the image sensor. 

Chapter outline 

This chapter sets the work in context in terms of both the technologies involved and 

potential avenues for realising these aims. It begins by defining the term 'radio 

video link'. A consideration of current implementations reveals two opportunities 

for improvement: 

the use of a low bandwidth/low power radio link. 

further integration of the system. 

Integration of the RF transmitter is shown to be problematic and yield little actual 

benefit. Instead, the design of a coder which can be integrated on the same die as 

the image sensor is the most pragmatic route to achieving these ends. 

1.1 



- chapter one Introduction - 

What is a radio video link? 

A definition 

A video link is a means by which images can be transmitted, permitting the 

observation of a scene by a distant viewer. This could also be a literal definition of 

the word 'television'. However, television relays both scenes that are remote either 

in space or time, whereas video links tend to deal only with live pictures (i.e. the 

linking of spatially remote places). Where live images are not required, it is normally 

more cost-effective to record them local to the camera - except under circumstances 

where the camera is inaccessible or access undesirable (e.g. in a hazardous 

environment). 

A further distinction from television is that video links need not conform to 

television standards. Such standards (PAL, NTSC etc.) govern high level factors of 

the images (such as frame rate and image resolution) as well as the actual electrical 

format of the video signal itself. Conformance to standards allows the simple use of 

other equipment compatible with that standard. In some situations, however, 

problems such as limited bandwidth have forced the use of non-standard image 

formats. This necessitates the use of specialised, and possibly more complicated, 

image capture and display hardware. The freedom from conformance to standards 

allows tailoring of the video signal to meet the needs of the applications and the 

abilities of the available technologies. In breaking away from traditional video 

standards, there has been an emergence of many incompatible systems. Some 

standardisation in video conferencing has been brought about through the 

widespread adoption of the common intermediate format (CIF) and smaller 

'quarter-CIF (QCIF) format. These were devised in parallel with the H.261 video 

coding standard [ccirr 90]. 

Use of a radio link to make the connection between camera and observation site 

gives a radio video link. Although linked in terms of communication, the camera 

and observer in a radio video link are not mechanically tethered. The freedom from 

physical connection allows the use of links in situations where they would 
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- chapter one Introduction - 

otherwise be impractical (say, where one may move relative to the other, or one is in 

a sealed environment). It also allows temporary installations to be set up quickly, 

and offers more freedom when systems need to adjust to suit changing positional 

needs. There are, however, also disadvantages. The initial cost of a radio linked 

system tends to be higher than a cabled one (although in some situations the 

reduced cabling costs of a radio system can offset the increased initial hardware 

costs - up to half of the installation costs of a close circuit television system can be in 

its cabling). Another disadvantage is the expense of transmission bandwidth when 

using a radio link. Unlike a cabled connection, where there is no real restriction on 

the bandwidth of baseband video, there is a firm relationship between the cost of a 

radio link and the signal bandwidth it supports. Other potential problems include 

radio interference, and the complications of radio transmission regulations and 

licensing. 

History of video link applications 

Vision is one of the most highly developed of the human senses. Research has 

indicated that non-verbal communication (facial expression, bodily posture and 

gesturing) constitutes a large part of communication during face-to-face encounters 

[ATKINSON eta! 87]. This implies that when communicating through verbal means 

alone, such as by telephone or mobile radio, we are somewhat disadvantaged and 

that communication using a video link could be beneficial. Indeed video links could 

be put to profitable use wherever the visual observation of a remote site would be 

advantageous. 

Why, when visual communication using video links is technically possible, do we so 

often make do with poorer means of communication? The reasons are manifold. As 

with many communication technologies, its widespread benefits cannot be realised 

without a significant installed base of compatible systems. Why buy a video phone 

when no-one else has one? There are also problems with the social acceptance of the 

technology: a commonly expressed fear is that without the visual anonymity of 

voice-only communication, people consider they would feel more vulnerable in 

some situations. These are, however, only generalisations and exceptions do occur. 
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Applications exist in consumer electronics, such as door-entry phones, baby 

monitors and surveillance, where installed base and the social acceptance problems 

do not apply. 

Historically, the expense of the equipment involved has limited their employment 

to commercial 'high return' applications such as surveillance in the security industry 

and to relay pictures from 'outside broadcasts' or long-distance interviews in 

television production. With the advent of the camcorder, however, video equipment 

is becoming available a at more reasonable cost. Together with developments in the 

telecommunication industry, this has led to more frequent use of video links in the 

form of video phones and video-conferencing facilities. Although some low cost 

video-conferencing systems have recently become available 1, the cost of purchasing 

and operating these systems remains prohibitively expensive for many applications, 

restricting them to being the toys of the rich consumer and the tools of the wealthy 

business person. 

More economic realisation 
One of the major remaining obstacles to the widespread adoption of video links 

must be a lack of available equipment at a low enough cost for the consumer to 

perceive that it is worthwhile. With a view to realising a radio video link more 

economically, common implementations are introduced below and possible areas 

for cost reduction explored. The basic architecture of a radio video link is first 

examined. 

General architecture 

The basic architecture of a radio video link is shown schematically in Figure 1.1 

below. With image data flowing from left to right, each block in the schematic 

represents a distinct processing task. These tasks are: sensing of the image 

These include: Creative Labs Sharevision 3000, BT Relate 2000 Videophone, Vivitar Motion Picture Phone, and 

Creative Labs Webcam. 
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information, control of the sensor array to produce a single, time-varying video 

signal, radio frequency (RF) modulation, RF demodulation, and image display. 

E array 

-[ 
 

co 01 
 IrIagin 	standard array 	 data 

- 

for 

 

video transmitter 

figure 1.1 A block diagram of the classic analogue radio video fink architecture. The darker 
background highlights the portion of the transmitter end of the link that is commonly 
implemented using a video camera. 	 - 

Although this architecture is common to nearly all systems, it can be implemented in 

many different ways. Conventionally, implementations have concentrated on 

transmitting video in the format of a full television-standard signal (e.g. NTSC or 

PAL). This is achieved using a standard video camera as the image source and 

transmitting its analogue output signal using a high bandwidth radio transmitter 

(baseband video signal bandwidth is approx. 4 MHz). Such systems produce high 

quality video and because they use a standard video format they are convenient for 

use with other standard pieces of video equipment. However, the high camera and 

radio costs and the licensing requirements of these systems make them expensive. In 

addition, the high bandwidth they use limits the density with which they can be 

operated without interference. 

Tailoring features of the video format (such as image resolution and update rate) to 

suit the needs of a particular application limits the general application of the system 

and the convenience with which it can be used with standard pieces of video 

equipment. However, if the tailoring process reduces the bandwidth required to 

transmit the signal, then savings can be made both in radio hardware costs and the 

amount of power required for the transmission. In addition to the crude reduction 

of bandwidth through lowering image resolution and update rate, compression 

techniques can be used to lower the raw image bandwidth, although at some cost in 

image processing. The often sophisticated techniques of lossless compression may 

prove to be prohibitively expensive, however, it may be possible to employ lossy 

algorithms to achieve savings in bandwidth without necessarily losing significant 

perceived image quality. 
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The use of a specialised video format with low bandwidth is an approach shared by 

some of the video phone systems based around modem connections that have 

appeared recently (see 1)• 
 These systems use either dedicated hardware or are 

designed to interface with a personal computer (PC). They use specialised (and 

often proprietary) video formats to achieve the required image quality over the 

relatively low bandwidth of the modem connections (typically between 9600 and 

33000 baud). As these systems achieve the low bandwidth through the use of 

sophisticated compression algorithms executed on digital signal processors or 

microprocessors their systems costs are high. To remain low cost, the 

implementation of a radio video link using low bandwidth would have to achieve 

the lower bandwidth through hardware-minimal means, rather than employing 

complex compression algorithms. 

A second approach that is likely to bring cost savings is the integration of the radio 

video link hardware. Integrated circuits (ICs) specifically designed for an application 

can often be tailored to make them cheaper than using a combination of standard 

parts. In addition to the production of dedicated ICs, it is likely that the costs of 

manufacture could also be lowered by implementing many of the functional parts 

that would normally be fabricated on separate ICs (if not separate PCBs) on the 

same die. The use of application specific ICs to achieve cost savings must, however, 

be justified by high volumes as the costs of the design and prototyping process are 

significant. 

Two areas that could offer reductions in price, size and power consumption are: the 

use of lower power, lower bandwidth radio links (through systems tailoring and 

compression/coding) and the further integration of the system by combining parts 

on a single IC. 

Thesis objective 
This thesis tackles the problem of implementing a radio video link at low cost. It 

continues previous work that resulted in the development of a entirely integrated 

monochrome video camera [RENSHAW & DENYER eta! 90]. It concentrates on the cost 
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reduction of the sensor end of the link, with the aim of designing an integrated 

solution. The work centres around the definition of the interface between sensor 

and transmitter that is required in order to deliver a radio video link using a much 

lower bandwidth than is common. The ultimate aim is to arrive at a simple solution 

that is both low power and can be integrated on the same die as the video sensor. 

Unlike the problem of integrating the video camera, which had well defined goals, 

the design of the sensor/transmitter interface requires identification of the exact role 

of the interface. 

The work concentrates on investigating the integrated, tailored approach, outlined 

above, attempting to achieve the cost savings both through integration of the 

circuits and the use of a low bandwidth and low power radio link. A detailed 

introduction to these two problems is given below. 

Cheaper radio options 
Employing a low power and low bandwidth radio link was cited above as a means 

of decreasing the cost of the radio video link hardware. The reduced initial costs can 

be achieved through a combination of using very simple RF circuits, the use of low 

bandwidth components and components that need not handle large amounts of 

power. Low power transmission also implies low power consumption and thus low 

running costs. All these advantages are in keeping with the size, power and 

economic aims of this project. Low power and low bandwidth can also be 

considered a more 'responsible' solution; bandwidth is a scarce resource that is 

under increasing pressure and low power reduces the potential for causing 

interference to other users of the same part of the electromagnetic spectrum. 

Cost and power consumption are not the only considerations, however, when 

designing or choosing a radio link. Many other factors distinguish radio links and 

have a bearing on their suitability to particular applications. Unfortunately, low 

power and low bandwidth have consequences on some of these factors, especially 

some features of link performance. Low power transmission is inherently more 
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susceptible to radio interference. Low bandwidth offers low rates of data 

transmission. 

Below, the likely communication requirements of the radio video link are identified. 

Through the introduction of some of the other important factors involved in 

selecting a link technology, and a review of a few of the low power radio options 

available in the UK, the consequences of going down the low power and bandwidth 

route are explored. The requirements of the radio video link and the abilities of the 

cheaper link options are compared, emphasising the implications on the remainder 

of the video link system. 

Communication requirements of the radio video link system 

In the radio video link application, the basic requirement of the radio link is to 

communicate image data from the camera to the observation site. Other uses could 

include communication from the observation site to control the camera. Assuming a 

system in which the transmitter end of the link autonomously sends image data to 

the observation site, a one-way (or simplex) link is all that is required. 

The bandwidth of the raw image sequence is dependent on its spatial resolution, 

colour depth and frame rate. These factors are dependent on the particular needs of 

a link. 

The primary applications driving this research are low-cost video links for consumer 

markets (such as the toy market). An ideal image quality would be something 

similar to a PAL video signal. The image would be something of the order of 512x512 

pixels, and would be updated 25 times per second. Unfortunately this equates to 

over 6 million pixels per second, a rate unsustainable by the sort of link considered 

here. Due to this high implied data rate, it is unlikely that consumer links will be 

high-fidelity for some time to come. 

For the purposes of this investigation, a benchmark minimum image-quality 

specification has been set. The frame rate minimum is set at 10 frames per second 

(fps), as lip-sync (the ability to correlate the movement of someone's lips with the 

sound of their speech) is generally considered to be impossible to achieve below 10 
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to 15 fps. The image size minimum has been set at 64x64 pixels. This is much lower 

than ideal, but sufficient to convey a fairly detailed face or a simple scene. The pixels 

specification is 6 bits per pixel (bpp), monochrome. The use of a monochrome image 

ties in with the intended image sensor, and 6 bpp gives a greyscale resolution that 

approximates the limit of the human visual system viewing a CRT [Russ 951. This 

specification implies a raw data rate of 240 kbit/s, which is roughly the capacity of 

3.75 standard ISDN2 lines (64 kbit/s each), but is two orders of magnitude less than 

that of raw broadcast-quality digital video [POYNTON 96]. 

Image quality will also be affected by any errors introduced in the 

transmission/reception process. Many meters are available for the objective 

measurement of distortion (such as bit-error rate). However, as correlation between 

these criteria and perceived image quality is low, no strict specification was defined. 

Like bandwidth, the range of the system is dependent on the particular application, 

however it is unlikely that it would be less than lOOm. If such a short link was 

necessary, a cable solution would probably be more economical. For the purposes of 

the investigation, a minimum range of lOOm will be set. 

Radio link technologies 

A large number of features distinguish radio links. These include their frequency of 

operation, the RF bandwidth they use, the modulation techniques employed, the 

output power of the transmitters, the component technologies used and particular 

details of the RF circuits employed. These features affect the link in terms of its 

range, the available data bandwidth, the likely levels of distortion and the costs of 

both implementation and operation. These factors therefore have a direct impact on 

which applications different radio links are suitable for. 

In practice, the options open to the link designer are not as free as the long list of 

seemingly independent factors above might suggest. This is due to restrictions 

imposed by the regulation of radio transmission. Organised use of the 

electromagnetic spectrum is required to minimise interference, allowing successful 

simultaneous radio communication by numerous parties. The majority of this 
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organisation is imposed through government legislation which divides the 

spectrum into discrete frequency bands and stipulates factors such as who can 

transmit in each band, what types of data can be transmitted, which modulation 

techniques can be employed and what limits there are on transmitted power (e.g. 

[RA 89; RA 92]). 

With the advent of the mobile phone and other internationally widespread radio 

systems, significant advances towards standardisation have been made across many 

radio bands in past years. However, government regulation in many frequency 

bands still varies from country to country. Different regulations make the 

development costs of systems in some bands more significant as the application of 

the technology (and thus the potential volume) is more limited. 

The choice of radio-link hardware is thus dependent on a combination of the 

features required of the link (range, bandwidth etc.) and what it is permitted to use 

under the local government regulations. 

Before a brief summary of regulations of some of the UK radio bands that may be 

suitable for the radio video link, two important fundamental aspects of the radio 

link (the modulation technique and whether data is transmitted in analogue or 

digital form) are discussed below. 

Modulation techniques 

The modulation  techniques used in radio communication are classified according, 

both to the type of carrier signal used and the method by which the carrier is 

modified by the data. The carrier can either be a continuous signal (commonly a sine 

wave) or a train of pulses. Modulation can be achieved by modifying the amplitude 

of the carrier (amplitude modulation, AM), its phase (phase modulation, PM) or its 

instantaneous frequency (frequency modulation, FM). In practice, many modulators 

employ a combination of these basic techniques. 

2 Modulation is the process by which the signal that is to be transmitted is used to modify a high frequency 'carrier' 

signal in order that it can be communicated at radio frequency. This is the essence of radio transmission. 
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In its simplest form, continuous wave AM is the least complex modulation 

technique to implement. It is, however, wasteful of both power and bandwidth. 

Single side-band can be used to halve the bandwidth (and thus the transmitted 

power) and wasted power can be reduced further by suppressing the carrier signal, 

but these techniques require more complicated circuits. Wideband FM offers 

comparable power efficiency to single side-band AM yet uses relatively simple 

circuits. It also exhibits improved noise rejection as its demodulation is not 

dependent on the amplitude of the received signal. Pulsed carrier schemes offer 

even better noise suppression, however, they incur more circuit complexity[sMn'H 86; 

KRALISS 80]. 

As in many mobile applications [SMITH 86], FM is probably most suited to the radio 

video link due to the relatively simple circuits required, its power efficiency and its 

resilience to noise. 

Data format 

Most modulation techniques permit the transmission of either analogue or digital 

data, although many implementations of the techniques are more suited to one in 

particular. Consideration as to which format should be used in the transmission of 

the image information of the video link is given below. 

Nearly all physical phenomenon that we want to measure are themselves analogue 

(in that they are continuously variable over some range). An analogue 

representation is thus a natural way to describe them. Pixel information is no 

exception. Conversion to a digital representation requires hardware and introduces 

sampling errors or 'quantisation' noise. Despite this, two key advantages of 

transmitting data in a digital form make it more suitable for many applications. The 

first advantage is the inherent noise immunity that digital data has over analogue. 

This is important in the radio video link application as the low power of the link will 

make it susceptible to interference (and thus distortion). The second, and more 

compelling, reason in the case of the radio video link is that the vast majority of the 

techniques available for both improving noise immunity and offering data 

compression are digital coding techniques - thus requiring that the data be in a 
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digital form both prior to and after transmission (for coding and decoding). In 

addition to the sheer proliferation of digital coding techniques, they are also 

convenient in this application as the logic required to implement them can easily be 

fabricated using the same standard CMOS technology as the image sensor. 

A further advantage of digital transmission in terms of the desire for a low power 

radio video link system is that very efficient power amplifiers can be fabricated for 

digital transmission [SMITH 86]. 

Possible UK frequency bands 

Transmission of digital data using continuous wave FM has been shown to be the 

most suitable solution for the radio video link in terms of technology. Attention now 

switches to a practical solution. For a system to be implemented there must exist a 

radio band that allows the transmission of image data using continuous wave FM at 

a convenient bandwidth. Possible frequency bands available under UK legislation 

are considered below. 

Obvious candidates are the license exempt bands. These radio bands are specifically 

designed for the transmission of low power, low bandwidth data. They are 'license 

exempt' in that although circuit designs require to be licensed, individual radio units 

need not. MPT1336 and MPT1340 are two such bands in the UK [RA 89; RA; 921. Their 

relaxed regulation allows the use of inexpensive RF components. However, the 

same degree of regulation also makes users of these bands prone interference from 

other systems. 

Unfortunately the bandwidths permitted for telemetry 3  within the current license 

exempt bands is typically around 10 KHz. Using simple FM modulation, this 

translates to a data bandwidth of approx. 10 Kbits/s - far below the 250 Kbits/s 

implied by the radio video link specification outlined earlier. Another factor that 

3 'Telemetry' (as defined in Radiocommumcations Agency regulations) is the use of telecommunication for 

automatically indicating or recording measurements at distance from the measuring instrument ERA 87]. 
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prohibits their use is that the license exempt bands are not intended for continuous 

transmission. 

A telemetry band at 2.4 GHz has recently been opened up in the UK, intended for 

spread-spectrum communication [PIcKI-ioLTz eta! 82; TSLII & CLARKSON 941. This band does 

not suffer from the bandwidth limitation of the license exempt bands (it will support 

data rates in excess of I Mbit/s). However, the complexity of spread-spectrum 

transmission makes both the initial costs and running costs of the hardware 

expensive. 	 - 

It is believed that other radio bands are being released for telemetry in the UK. 

Existing pressure on the spectrum means, however, that the bandwidth of any such 

new bands will be unlikely to be more than 100 - 150 KI-Iz. (This is with the 

exception of bands at around 2.3-5 GHz - however transmission at these 

frequencies suffers interference from microwave ovens, problems of multi-path 

transmission and fading.) If bands of around 125 KHz bandwidth are opened up 

they would offer transmitted data rates of approx. 125 Kbits/s using FM modulation. 

This is still lower than the 250 Kbits/s of the radio video link specification, however 

only by a factor of around 2:1. 

Summary 

There are advantages to the radio video link application in using a low power, low 

bandwidth radio link, namely: savings in initial component costs and in the running 

costs. However, there is a conflict between the desire for low bandwidth and the 

desire to communicate a relatively high bandwidth signal, such as is represented by 

the minimum video link image specification outlined earlier. 

If a low bandwidth link is to be used, then reduction in the bandwidth of the image 

data will be necessary to address this mismatch. This can be achieved either by 

reduction in the minimum image specification or by employing compression 

techniques to remove some of the redundancy in the image data. As the image 

specification is already tight, it was decided to use compression rather than lower 

the specification further. Many techniques exist specifically for the systematic 
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removal of redundancy, producing 'compressed' data sequences. The degree of 

compression required by the mismatch between image specification and likely 

available bandwidth (around 2:1) is relatively low and could be achieved by many 

common compression techniques. If the compression is to be realised without 

compromising the low power and cost design goals of the system, a compression 

technique that is very cheap to implement will have to be found. 

Integration 
Integration is a common method of reducing costs used in the electronics industry. 

In high volume, the production costs of integrated circuits (ICs) are far lower than 

their discrete counterparts 4. Power consumption also tends to be less as integrated 

circuits have lower internal circuit drive requirements. Systems built from ICs also 

tend to be smaller and lighter. Design and prototyping are the only areas of high 

cost, hence the requirement for high volume if unit cost benefits are to be realised. 

Possibilities for realising cost, size and power benefits through integration of the 

constituent parts of the transmitter end of the radio video link are considered below. 

Integrating the video transmitter 

Conventionally, the hardware at the transmission end of a radio video link is 

constructed from a number of ICs and many discrete components. These normally 

populate more than one PCB which are often housed in separate enclosures. One 

reason for this style of construction is the marrying of quite separate technologies 

(video and radio), where the various components are typically constructed by 

different manufacturers. 

As more specialised systems develop this situation is changing (e.g. [STERN et al 95]). 

Several of the system components of the video transmitter have already been 

Ever-increasing integration on a single die does not guarantee costs savings. With large circuit areas die yield can 

become a problem (SZE 881. 

1.14 



- chapter one Introduction - 

integrated further. The entire circuitry of a video sensor has been integrated onto a 

single CMOS IC [RENSHAW & DENYER eta! 90; MENDIS eta! 93; ACKLAND & DICKINSON 961 so there 

is no longer a need to use a separate standard CCD imager and support ICs. 

Integrated digital signal coders for transmission, including a complete spread 

spectrum transmitter [cHIEN eta! 94], have also been demonstrated. 

In a conventional implementation of a video transmitter, each of the constituent 

parts of the system (shown earlier in Figure 1.1) would be realised using one or 

more separate integrated circuits often on different PCBs. Adding of a digital 

compression stage to the system leads to a sensor-transmitter architecture, such as 

that shown in Figure 1.2. Again, using conventional components this would be 

implemented using separate devices for each functional block shown. 

array 	 - 

idpartA AD 	1 	
(()flcr 	 OdUtOicoder 

formattIng 	L 	 - 	 - - 

memory 

video transmitter 	 - _______ 	coder 

Figure  1.2 A block diagram of the constituent parts of a radio video transmitter that employs 
compression (an expansion of the transmitter side of Figure 1. 1, the start of the 
receiver is shown shaded). This architecture differs from that in Figure 1.1 in that the RF 
transmitter has been divided into a general channel coder and separate modulator, and 
in the addition of a digital data compression engine. Addition of the compression 
engine would typically require the addition of the ADC to digitise the analogue video 
signal and also provision of a significant amount of memory for use during the 
compression operation. Again, each of the parts of this system would conventionally be 
implemented using at least one separate iC, possibly on different PCB5. 

The ultimate integrated solution would be to construct the whole of this sensor-

transmitter system on one IC. Integration of an entire system permits the tuning of 

its components to meet only the needs of that particular system. Component 

interfaces that would normally be generalised for use in various systems can be 

pared down to leave only that required for the individual application. For example, 

in the radio video transmitter the picture information need never exist as a standard 

composite video signal - saving both on signal formatting and decoding hardware. 

Creating a one-chip video transmitter would require integration of a version of the 

existing CMOS imager with a specialised data coder and an RF modulator. 

Manufacture of a data coder on the die of the imager should not pose a problem as 
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the imager is fabricated on a standard CMOS. Interfacing of the coder to the data 

stream of the camera will require inclusion of an on-chip analogue-to-digital 

converter (ADC). The manufacture of ADCs with sufficient performance has already 

been demonstrated on a standard CMOS process [CHEN eta! 90; ACKL4ND & DICKINSON 961. 

Problems stemming from the inclusion of a digital coder on the same die as the 

sensor and ADC are only likely to occur if the coder is either particularly large or 

power hungry. Large coder size could lead to a die size that may imply yield 

problems. High power consumption could lead to problems of cross-talk through 

power supplies, or problems of high sensor dark current due to heat generated by 

the coder (a component of imager dark current is dependent on device 

temperature). Integration of the RF modulator is likely to be more problematic than 

the coder. Two areas in particular complicate its integration with the rest of the 

system. These are, firstly, the differing fabrication needs of some of the likely 

components involved and potential noise problems between the power output 

stage, and secondly, the delicate image sensor array. These two areas are expanded 

upon below. 

RF circuit integration problems 

If the whole of a circuit is to be integrated on the same die then it must be possible 

to produce all the components of the circuit using the same fabrication process (and 

produce them at the required quality). Unfortunately, some components such as 

those that operate at very high speeds, those that require a very low noise 

environment and those whose operation relies on unusual electrical effects 5, have 

radically different construction needs. Some are impossible to create on particular 

standard fabrication processes, others are difficult to produce reliably. Conflicts can 

sometimes be overcome through the re-design of circuits so that they only use 

components that' are available on a single fabrication process. Another alternative is 

to permit fabrication of unusual structures by adding processing steps to an 

otherwise normal fabrication process. Any movement away from a normal 

That is electric effects unusual to normal IC fabrication processes. 
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fabrication process (such as standard CMOS), however, incurs initial set-up costs 

and makes manufacture of the design less portable between fabrication facilities. 

Some of the components used in the simplest RF transmitter circuits make them 

prone to these problems. Simple transmitters typically exploit the properties of 

components that cannot be fabricated using a standard CMOS process - such as 

SAW resonators and very high-speed transistors [NIETR0J9O]. Although the 

adaptation of these circuits may be possible (through the construction of non-

standard components using what would normally be considered to be parasitics of a 

standard process) it is outwith the scope of this thesis. 

Integration of high speed transistors with logic can be achieved using a fabrication 

process such as BiCMOS. There are typically only a few high speed transistors used 

in the simple transmitter circuits, however, the economic advantage of integrating 

them with the logic through the use of a BiCMOS process is questionable. BiCMOS 

processes tend to be significantly more expensive than CMOS. 

The second fundamental problem in integrating the radio transmitter along with the 

rest of the transmitter end of the radio video link is that there is an inherent conflict 

between the needs of the imager and the job of the radio transmitter. One is a 

delicate sensor and the other an intentional radiator of energy. Although ultimately 

they are concerned with quite separate parts of the electromagnetic spectrum 

(visible light and VHF radio) a degree of cross-talk between the underlying 

electronics is inevitable. This problem could be alleviated to an extent through the 

maximum physical separation of the two circuits on the die, the isolation of their 

power supplies and possibly keeping the final power output stage of the transmitter 

off the chip. These measures, however, may not solve this problem completely. 

Summary 

Integration can offer benefits in terms of manufacturing costs, power consumption 

and system size. However, integration of all circuits is not simple and problems such 

as cross-talk can result. 
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The practicality of integrating the simple RF circuits considered for this application 

(e.g. [NIETR0J 90]) using current fabrication processes is questionable, and the cost 

benefits doubtful. Integration of the image sensor, ADC and data coder that 

represent the remainder of the transmitter end of a radio video link is however, 

eminently possible. The hardware architecture of a video transmitter with such an 

integrated imager/ADC/coder is shown in Figure 1.3. 
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Fijluj-e 1.3 Schematic representation of the video transmitter hardware with an Integrated image,, 
ADC and dedicated coder. 

Conclusions & thesis structure 
To realise a radio video link at lower cost, this thesis investigates the practicality of a 

low power, low bandwidth, integrated implementation. It concentrates on 

identifying the necessary features of a coder required to marry the minimum image 

specification to a radio link with between half and a quarter of the necessary 

bandwidth to transmit the raw signal, and with the design of such a coder. 

Development of the coder was chosen as, after the success of the integrated video 

sensor, it is the next step towards a completely integrated radio video transmitter. 

Successful integration of the coder was deemed to be more likely and bring about 

more cost savings than attempts to integrate the radio transmitter. In offering a 

successful implementation of a particular hardware-minimal coder solution, the 

investigation shows that a minimal hardware approach is viable. In addition to 

application in a radio video link, the work on image data coding is equally 

applicable to any application where image data is to be reliably communicated using 

minimal hardware. 
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Thesis Structure 

The remainder of the thesis begins with chapter two which gives an introduction to 

the general subject of data coding prior to transmission. Particular reference is made 

to compression techniques and considerations of the vulnerability of data to 

transmission errors. This chapter ends with a review of existing compression and 

coding techniques. The most promising of the techniques presented in the review is 

then further investigated in chapter three. The detailed hardware implications of its 

approach are explored and particular implementations tested through software 

simulation. 

Chapter four documents the implementation of two of these algorithms in the form 

of a field programmable gate-array. The implementation serves to prove the validity 

of the hardware minimal approach and allows evaluation of the output of the 

algorithms at higher frame rates than were permitted by the software simulation. 

More in-depth subjective analysis of the algorithms is considered in chapter five. 

This takes the form of a programme of subjective tests. The work is concluded in 

chapter six. The success of the hardware minimal interface is evaluated and 

suggestions are made for future work (including some radical alternatives to the 

approaches adopted here). 



cha 1 ter 	2. 

Compression""  and Coding 

In chapter one coding was outlined as a potential solution to the mismatch between 

the raw data bandwidth required by the video link and the low capacities of cheaper 

radio links. The coding hardware was shown as a discrete block positioned in the 

digital data path between sensor and transmitter, as shown in Figure 2.1. 
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Figure 2.1 The position of the coding hardware within the architecture of the video transmitter 
half of the radio video link. 

Compression is not the only purpose of pre-transmission coding techniques. This 

chapter introduces all the considerations when preparing a data stream for 

transmission. 

The chapter begins by introducing pre-transmission coding, outlining its basic 

purposes. The importance of these objectives in the case of the radio video link is 

considered. Existing error protection and image compression techniques are 

reviewed with a view to selecting suitable candidates for use in the radio video link. 

The modest compression requirements of the application mean that the implied 

hardware costs of each compression approach and the error vulnerability of the 

code it produces are the main criteria for selection. Conclusions are drawn as to 
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which particular coding techniques may be suitable for the radio video link 

application. 

Coding theory. 
Techniques of data coding are often employed before data are transmitted. This 

section introduces the purpose of these techniques. As such, a fairly abstract view of 

data communication is taken, with different aspects of coding explained with 

reference to a general communication system that is concerned with the 

transmission of messages. 

The introduction is arranged according to the objectives that pre-transmission 

coding can address. These are: transmission efficiency (compression), 

communication reliability, simplicity of reception and privacy. Some coding 

techniques address many of these issues, others concentrate on one in particular. All 

the issues, and thus the techniques, are concerned with the description of the 

original data set (the source data) during transmission and to some extent are 

therefore interdependent. 

Compression coding 

The efficiency with which messages can be transmitted (transmission efficiency) is 

directly dependent on the amount of data that needs to be transmitted in order to 

communicate the message, given the code that is used to describe it. The object of 

compression is to reduce the amount of data that is required to describe the message 

by using a code that describes it efficiently - thus permitting communication of the 

message at lower cost. In addition to its use in improving transmission efficiency, 

compression is often used to improve storage efficiency. This application is not 

considered here. 
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With most types of data, the form of coding that is generally used to represent it 

involves much redundancy'. In addition to the efficiency of its coded size, factors 

such as the ease of the coding and decoding operations and the manipulation of the 

coded data have also to be considered. It is only when the costs of communication 

or storage of the coded form of data become significant that particularly efficient 

coding schemes tend to be considered. 

Image data is a good example of a type of data that is commonly coded with much 

redundancy. Its standard raw format is a raster scan of picture elements (or pixels). 

Each element is either described to the capabilities of the display device, or with 

reference to a limited 'palette' of colours. Although this raw form is convenient in 

many applications (as it relates directly to the hardware architectures of many 

imaging and display technologies) it tends to lead to much redundancy. The use of 

colour 'paletting' is a form of compression. It is typically employed to reduce the 

amount of memory required in display hardware. 

Many compression algorithms exist that are general to all types of data, requiring no 

prior knowledge of the data that is to be compressed. Some of these rely on 

exploiting forms of redundancy that are common to most types of data and encode 

the data on a casual basis, others can achieve higher coding efficiency by optimising 

the form of the code to suit the particular data of each message. The latter, 'adaptive' 

schemes are more expensive to implement, however, as they must analyse the data 

set prior to encoding. 

In contrast to this general approach, there exist many compression techniques that 

are designed to exploit characteristic mathematical structures that are found in 

particular types of data. Such algorithms can achieve high compression ratios 

without necessarily employing the amount of data analysis used by the general 

adaptive schemes described above. Their success, however, is limited to use on data 

sets that exhibit the characteristic structure that they have been designed to exploit. 

In this context the term redundancy is used to describe features of the coded message that bear no new information 

in relation to communication of the message. 
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With the increased use of digital images, a combination of the high costs of storing 

and transmitting digital images in their raw format, the needs of applications (such 

as video conferencing) and the availability of digital coding hardware (e.g. DSPs), 

much research has been carried out into coding techniques particular to image data 

that offer compression. As a result, there now exist many specialised image 

compression algorithms. Some are further specialised by being tailored to image 

data from sources with particular characteristic features (used in the compression of 

data from sources such as weather satellites). 

In common with all compression techniques, image compression techniques are 

based both on alternative methods of coding data and on techniques which 

irreversibly discard some of the source information. Techniques that achieve 

compression only through the use of coding processes that are fully reversible are 

termed error-free or lossless, those that do not preserve the original image data 

perfectly are termed lossy. This is an important distinction as, although lossy 

techniques offer much higher compression ratios, they are not always suitable for 

use in applications where images need to be carefully scrutinised or relied upon for 

legal evidence. 

The benefits of compression do not come without cost. Both compression and 

decompression of data take time, they employ hardware and use power. In 

addition, where the techniques used are not fully reversible, a loss in perceived 

image quality may be incurred. Unlike the other costs, the measurement of losses in 

perceived image quality is non-trivial, by definition it is not a quantity that can be 

directly measured by some objective means. This subject is investigated further in 

chapter five. 

Selection and design of compression algorithms for a specific imaging application 

therefore involves consideration of which type of algorithm might suit the nature of 

the image source, what degree of compression the application requires, the 

resources available to perform the compression and whether any losses in image 

fidelity can be tolerated. 
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Error protection coding 

The inherent noise in any practical transmission channel means that in any 

transmission system there will be a certain level of errors in the communication of 

data. The vulnerability of a coded message to corruption through errors in its 

communication is therefore an important consideration. 

Transmission errors, by definition, affect the integrity of the coded message that is 

communicated. How these errors in the coded form of the message affect the 

decoded message is dependent on the coding scheme used. Thus it is the coding 

scheme that controls the ultimate effect of transmission errors. This property is an 

important aspect of its design. 

There are three distinct approaches to lessening the effect of transmission errors. 

The first is to code so as to allow the presence of errors to be detected, the second is 

to code so as to allow correction of a level of errors and the third is neither to 

attempt detection or correction of errors, but to code the message so as to minimise 

the effect that any errors have in the perception of the decoded message. The first two 

approaches involve dedicated coding, and are general to all types of data as they are 

concerned merely with the integrity of the coded message and not with its content. 

The third approach can also be implemented using a dedicated coding stage. 

However, as most coding schemes affect the vulnerability of the messages they 

describe, the third method can be achieved as a consequence of a coding method 

whose primary aim is not for error protection (or through minor modification of 

such a coding stage). As some understanding of the effect of different errors in the 

content of the message must be understood before attempting to minimise the effect 

of errors in its coded form, the third approach is dependent on the particular data 

type. 

Features of the application may determine which protection approaches are 

suitable. These include the tolerance of the application to a level of errors or missing 

data and the ability of the receiver to request the re-transmission of corrupted data. 

In general there is a conflict between the aims of coding for compression and those 

of error protection. Where compression centres around the removal of redundant 
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data, error protection is concerned with the use of redundancy for protection. The 

increased significance that each element of a compressed data set has in conveying 

the original message often makes it more vulnerable to transmission errors than the 

message was in its raw form. Achieving a high compression ratio at the expense of 

making the coded data exceptionally vulnerable to corruption may be pointless if 

the characteristics of the transmission channel dictate a subsequent level of coding 

for error protection that much of the transmission efficiency gain is lost. 

Compression is often considered in isolation from susceptibility of the data to errors. 

However, the interdependence between compression and error protection means 

that where data is to be both compressed and transmitted the vulnerability of the 

data to transmission errors must be considered at the compression stage if a balance 

between these two goals is to be achieved. 

Although the ultimate aims of compression and protection may conflict there are 

some techniques used in compression that produce data that is more resilient to the 

effects of errors. These include transforms of data into alternative data spaces in 

order to facilitate quantisation. Described in this alternative form, each element of 

the original message is dependent to a small extent on many of the elements of the 

coded message. The effect of any error in the transmission of the coded message is 

thus distributed thinly over a large part of the decoded message [PRATT 69]. 

It is important to note that any error protection scheme can only offer a finite level 

of protection, and therefore that there will always be a trade-off between the level of 

protection and the cost of the scheme. The costs of dedicated coding to provide error 

protection come both in increased computation (hardware, power and time) and 

reduction in storage and transmission efficiencies. 

Coding for ease of reception 

The ease with which a transmitted message is received, and thus the complexity of 

the necessary receiver circuit, is affected by certain factors of the data coding used. 

As discussed above, the use of any compression and/or error protection coding has 

consequences in terms of the hardware necessary for decoding. Aside from these 

direct implications, there are other factors of the data sequence that affect the 
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simplicity of the receiver. In particular, aspects of the code govern the methods 

available to the receiver to recover the necessary timing information required to 

sample the data sequence in order to recover the data successfully. This factor is 

considered below. 

Bit-timing recovery 

When communicating with a remote device there is no common system clock with 

which the timing of individual bits in the data stream can be established. The 

remote device must decide when it. should sample the received signal in order to 

reliably recover the 'bits' of the data sequence using features of the signal itself. 

There are two systems commonly employed to govern sample timing. They differ in 

complexity of the synchronisation with the data sequence and are called synchronous 

and asynchronous modes of transmission. With asynchronous transmission 

individual transmitted characters are preceded by start symbols and followed by 

stop symbols. The receiver assumes a symbol transmission frequency and, using a 

local clock, times sampling points with reference to an edge within the start symbol. 

As all samples are made with reference to the start symbol, errors in the accuracy of 

the timing limit this mode of transmission to relatively short symbol sequences (e.g. 

eight). In synchronous reception the point at which the received signal is sampled is 

controlled by a local oscillator which is kept synchronised to the frequency and 

phase of the data sequence itself. This is accomplished through the use of either 

digital or analogue phase-locked loops (PLLs) to synchronise to edges within the 

data sequence. Dedicated characters are often used at the start of data sequences in 

order to ensure that word/character boundaries are correctly interpreted. 

Asynchronous transmission is simpler to implement as it does not require the same 

degree of synchronisation. The requirement for frequent synchronising symbols 

limits the efficiency with which it can be used to transmit data. This mode tends to 

be used primarily in situations where the data is transmitted at random intervals. In 

application where the data rate is more predictable or communication at a high 

bandwidth is required the efficiency of synchronous transmission is generally 

favoured [HALSALL 88]. 
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Although coding for ease of reception has cost implications in terms of transmission 

efficiency, it is generally independent of other compression and error protection 

considerations. 

Cryptic coding 

The use of obscure or complicated coding can offer the data a degree of privacy by 

making it difficult for a third party to understand the transmitted message without 

some prior knowledge of the code. This use of coding is generally termed 

encryption and is often associated with the world of espionage. With the increase in 

electronic communications its use as a method of combating fraud is becoming 

common (in areas such as mobile telephone buffing and financial transactions). 

As system security is not a high priority for the radio video link application, the 

encryption aspects of coding will not be considered further. 

Requirements of the radio video link 
Given the mismatch between the bandwidth implied by the minimum specification 

and that of likely cheap radio links, compression is probably the most important of 

the four aspects of coding outlined above for the radio video link. Both the tolerance 

of the coded data to errors and the ease with which the data can be received are also 

important and will therefore also have to be considered. 

The drive for a hardware-minimal radio video system is likely to be the main 

restricting factor in the choice of coding techniques. In addition to favouring 

techniques that are computationally simple, the minimal hardware approach also 

favours those that use the least memory. 

Ease of reception will require some dedicated coding prior to transmission. 

Synchronous transmission is suggested by the nature of the communication 

(continuous transmission of a relatively high-bandwidth stream of data). The 

addition of sync and framing characters will be required immediately prior to 

transmission and need not significantly affect transmission efficiency. The needs of 
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compression and error protection can therefore be considered independently from 

the ease of reception coding needs. 

The radio video link is an application concerned with the transmission of images to 

be viewed by human observers. As such, a degree of data fidelity loss through the 

use of lossy compression techniques can be tolerated. As image details are unlikely 

to be scrutinised, the application may well afford the use of techniques that lead to a 

perceivable degree of image degradation. 

Before compression techniques are reviewed, techniques for reducing the 

vulnerability of the coded messages to transmission errors are now considered. 

Review of error protection techniques 
It was stated earlier that the types of data coding used to describe a message 

determine how it is affected by errors in its transmission. This section considers 

various approaches to intentionally reducing the vulnerability of a coded message to 

corruption by transmission errors. 	- 

The techniques are divided into three groups: those that protect data through the 

systematic inclusion of redundancy, those that offer protection through more casual 

use of redundancy, and techniques that limit the damage caused by any one error. 

Systematic error detection and/or correction coding 

The effect of randomly occurring transmission errors can be tackled by employing 

redundancy in the transmitted form of the message. Careful use of redundancy can 

reduce the significance of individual symbols, thus making the potential loss of any 

symbol less critical. Techniques for the systematic inclusion of redundancy to allow a 

certain level of error detection and/or correction are considered below. 

Parity codes 

Parity coding guarantees that all blocks of transmitted data fulfil some statistical 

criteria (typically an even number of is in a word of binary code) [J-ivvttviING 80; YOUNG 
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94]. Checking for the same condition in the received data allows the detection of 

some transmission errors. Among methods of error detection and correction codes, 

parity is by far the most commonly used. 

The simplest parity code ensures an odd or even number Of is in a block of binary 

code, coding all blocks independently. This allows the detection of any odd number 

of 'bit errors' within each block, however the check is fooled by any even number of 

errors in a block. The efficiency of the protection this code offers can be traded 

against transmission efficiency by varying the size of the coded block. Parity coding 

is simple to implement either by limiting the set of possible codewords to a subset 

that satisfy the parity condition, or more normally, the calculation and insertion of 

parity 'bits' just prior to transmission. 

The simple parity check described above can be extended by involving each data bit 

in more than one parity check. The extension to involve each bit in two checks leads 

to what are known as rectangular and triangular parity codes (due to the conceptual 

way in which the data bits are arranged for checking). The inclusion of each data bit 

in two parity checks, offers the ability of detecting a higher level of errors (it requires 

four errors in a specific pattern of bit locations to completely fool a rectangular parity 

error detection check) and allows individual errors to be corrected as their position 

can be pinpointed. 

Cyclic codes are a special subset of parity codes. They are intended to detect the 

presence of any error in a large amount of data. The most common implementation 

[WILLIAM S 93] is designed for relatively fast hardware execution. Unfortunately, the 

detection that an error has occurred in a large set of data is of limited use in the 

radio video link application. As its communication is one-way, it cannot request re-

transmission, and as the error is not pinpointed no attempt can be made even to 

disguise it. 

Hamming codes 

Another approach to coding that permits error correction is the use of Hamming 

codes [HAMMING 80]. These are algebraic self-correcting codes, again aimed primarily 

at combating the effects of random errors. Use of hamming codes is simple to 
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implement both in terms of coder and decoder, however, the penalties in 

transmission efficiency are high (use of a Hamming single-bit code to protect 

individual ASCII characters drops transmission efficiency by 36% [HALSALL 88]). 

Convolution codes 

Another method that employs redundancy to protect data against noise is the use of 

convolution codes. The use of long enough code symbols allows a convolver to be 

successfully used as a decoder even when much of the symbol has been corrupted 

by interference. The encoder transmits the same fixed long sequence for every '1' in 

the data set, and the logical opposite of that sequence for every V. Convolving this 

transmitted sequence at the receiver with the same long fixed sequence produces 

large positive outputs for the 'l's and large negative outputs for the '0's. Noise 

added in the transmission channel that is sufficiently random in nature (i.e. 

uncorrelated to the data source) produces no net output from the correlator. 

This type of coding is typically employed where there is no other option as the 

penalties in either transmission time or bandwidth are high. However, sufficiently 

long code symbols allow the recovery of data from signals that are significantly 

below the noise floor (such as transmissions from space probes). A second beneficial 

property of convolution codes is the implicit bit-timing that is built into the coded 

sequence. 

Redundancy in the coded source data 

As an alternative to the systematic use of redundancy, other techniques can be used 

to include it. These techniques are based on the 'over-description' of the message 

and although they are less efficient than systematic methods they are less expensive 

to implement. 

Incomplete removal of redundancy 

Any coding method that leaves some redundancy within the coded data, such that 

parts of the coded image have some independence from each other, offers each of 

these parts some protection from errors in the other. Such redundancy can be 
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achieved through many different means - often dependent on the other coding 

methods used. Examples include: algebraic compression methods that limit the 

scope of their search for redundancy, schemes that compress images using the 

independent compression of sub-images, and those that compress the images in a 

sequence independently. Schemes with adaptive codebooks often periodically re-

transmit entries in the codebook that have not changed (in case their previous 

transmission had been corrupted) - this is another example. 

Like systematic inclusion of redundancy these more casual schemes incur cost 

penalties in transmission efficiency. A possible benefit, however, is that if the 

redundancy is kept from the original source data by making a compression coder 

less efficient that coder can often be implemented more economically. 

Over-description 

Sending more source data than is necessary to communicate the message is another 

form of redundancy that can offer a tolerance to errors. In terms of image 

communication this can relate to the use of higher resolution or frame rate than is 

absolutely necessary for the application. When errors are encountered this approach 

relies on the recipient of the data being able to distinguish between the signal and 

the noise. 

If over-descriptive source data is already available then it can be obtained without 

cost. The coding and transmission costs, however, increase linearly with the amount 

of redundancy as the redundant data must be compressed without reference to the 

'minimal' data or the redundancy is lost. An advantage of such a scheme is that if 

the error rate during transmission is low then the communicated image will be more 

detailed. This is especially attractive in a system where the detail of the 'minimal' 

image specification is low. 

Techniques of damage limitation 

The final class of error protection techniques considered here is concerned with 

minimising the effect of transmission errors, aimed both at the effects of errors in 
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single transmitted symbols or the situation where several neighbouring symbols are 

lost (burst errors). 

Transmission of frequency domain data 

In terms of the effects of errors on reconstructed images, transmission of image data 

in the frequency domain is often considered more error tolerant than in the spatial 

domain [PRATT 691. The reason for this is that the effect of each individual 

transmission error is not concentrated on one small area. Rather it is spread over a 

large number of pixels, each pixel being formed from a weighted sum of many 

frequency domain terms. This type of error is generally considered less 

objectionable. 

When using compression techniques that employ transformations to the frequency 

domain this form of damage limitation comes as a handy bi-product of the 

compression process. To include the transformations (two transformations are 

required, the second to transform back to the spatial domain at the receiving end) 

purely for the reasons of damage limitation is expensive in terms of hardware. In the 

case of the radio video link under consideration, this cost is prohibitive. 

Use of fixed-length codewords 

Any code that uses variable-length codewords to describe a data set leaves the data 

vulnerable to transmission errors if that code does not also allow for their detection 

and correction. The problem with variable length codes is that the codeword 

boundaries (implicit with fixed length symbols) must be inferred from the data 

during reception. If a transmission error causes misinterpretation of received data 

such that a codeword is mistaken for one of a different length, all codeword 

boundaries are then lost until the system is actively re-synchronised. 

Unless error protection techniques are employed in the video link the use of coding 

techniques that result in the transmission of variable length codewords should be 

avoided. 

2.13 



- chapter two Compression and Coding - 

Re-arrangement of spatial data 

Another technique with the aim of spreading the effects of errors, is the re-

arrangement of spatial image data prior to its transmission. This technique can 

spread the effect of burst errors amongst pixels in a wide area rather than amongst 

those in a close group. This prevents any one area of the image from being 

completely destroyed. This technique can be extended into the time domain by 

mixing the data from several frames before transmission (e.g. MPEG, see [ARAVIND eta! 

93]). 

The costs of these techniques are increased memory requirements and a short time 

delay in transmission while data is buffered (increased latency). It is unlikely that 

they can offer sufficient benefit for the cost in memory to be worthwhile in the case 

of the radio video link. 

Summary 

Coding techniques exclusively for error protection are generally expensive in terms 

of transmission efficiency. The few that are not are instead expensive in terms of the 

computation and memory required. 

For the video link, this means that image compression and coding to protect the 

data from errors can only be considered in isolation if the compression coding can 

save enough bandwidth that the system can afford the loss in efficiency caused by a 

separate error protection coder. Otherwise the two aspects will haveto be dealt with 

together - achieving a balance in the one coder between the transmission efficiency 

and the susceptibility of the code it produces to corruption. 

Review of image compression techniques 
This section reviews current image compression techniques, with a view to their use 

in the radio video link application. The techniques are organised into groups 

according to the primary method they use to achieve compression. As, in practice, 

many commonly implemented compression algorithms are hybrids that employ 

more than one coding technique, these groups may seem a little artificial. However, 
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the segregation serves to group the individual techniques into categories that have 

similar implications in terms of the radio link application. 

There are two fundamental approaches that yield compression: code data more 

efficiently, or throw some of it away. All compression techniques are based on these 

two approaches, although many different coding and reduction algorithms are 

employed. There are three techniques of efficient coding that are currently 

prevalent. These are entropy coding, predictive coding and transform coding. The 

review is split into four groups: techniques that use these three types of coding and 

a section on schemes that discard data. 

Entropy coding techniques 

By examining the statistics of a data set it is possible to devise efficient coding 

schemes particular to it. These techniques are based on the entropy  of the data set or 

data source as defined by Shannon [SHANNON & WEAVER 63] and are not particular to 

image data. 

Huffman and Shannon-Fano codes 

The basis for all entropy codes is that symbols in a data set generally occur with 

unequal frequency. In Huffman [HUFFMAN 52] and Shannon-Fano coding [FwvIMmJG 80] 

shorl Output symbols are assigned to frequently occurring input symbols and long 

output symbols to rare input symbols. If the frequencies with which the input 

symbols occur are sufficiently unequal then translation of the data to such a variable 

length code leads to a more efficient description. 

The process of coding involves three steps: ranking of input symbol probabilities, 

assigning output symbols to the input symbols (devising the code) then actually 

encoding the data. In Huffman coding input symbols are organised into a binary 

tree structure based on their probabilities. Output symbols are then allocated 

2 Entropy is the quantity used in information theory as a measure of information content (cf. entropy in 

thermodynamics). 
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according to the positions of the input symbols on the tree. Shannon-Fano coding is 

identical except in the way that the symbols are allocated. 

Huffman encoding always produces an optimal solution to the problem of mapping 

the input symbols to the possible output symbols (the way symbols are allocated in 

Shannon-Fano coding means that it is often slightly sub-optimal) [GAILLY 95]. For the 

coded output message to be truly optimal, however, the product of all output 

symbol probabilities and their length should be equal. The discrete steps in binary 

output symbol lengths mean that this is rarely the case. 

Use of a code with variable length symbols incurs a cost which is often overlooked 

For variable length symbols to be interpreted without ambiguity, all symbols must 

be unique in that the start of a each must not be able to be mistaken for the whole of 

a shorter code (i.e. if a single '1' is defined as the smallest code symbol, all other 

symbols must start with '0', precluding a single '0' from itself being a symbol (unless 

only two symbols are required)). Fixed length codes, or block codes, do not suffer 

from this problem as their symbol boundaries are implicit. 

An overhead of all adaptive coding systems is the communication to the decoder of 

the code itself. At low message lengths this can become a significant proportion of 

the entire transmission. The process of communicating Huffman codebooks is often 

reduced by transmitting the output symbol lengths alone. Given assumptions about 

the way the coder created the code, the decoder can then rebuild the entire set of 

output symbols. 

Vv-Lempel coding 

Another approach to lossless coding was proposed by Ziv and Lempel and involves 

a process of building up a dictionary of frequent symbol strings such that the input 

symbol sequence can be described by reference to part of the dictionary wherever 

possible. The best known implementation is probably that devised by Welsh, known 

as LZW [WELSH 84]. 

Unlike Huffman where the encoding process is hugely recursive, Ziv-Lempel 

algorithms execute the coding process whilst analysing the symbol and inter-symbol 

probabilities of the input sequence. As such, the memory requirements are much 
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lower, and importantly this is achieved without significant cost in compression 

efficiency [Zn' & LEMPEL 77]. In addition, through management of the dictionary size, 

the scheme lends itself to balancing efficiency against resources. 

Arithmetic coding 

The restriction on efficiency of discrete output symbol length suffered by Huffman 

and Ziv-Lempel coders is overcome in 'arithmetic coding'. Arithmetic coding tackles 

the problem of representing an entire input set of symbols using an interval of real 

numbers between 0 and 1 [GONZALEZ & WOODS 92; ARAVIND et al 93]. As additional input 

symbols are encoded the size of the interval is reduced according to the probability 

of that symbol occurring. Arithmetic coders can be implemented using assumed 

fixed sets of input symbol probabilities or more generally by analysing symbol 

probabilities prior to encoding or adapting them during the encoding process itself. 

Suitability of entropy coding 

Entropy coding techniques typically offer image compression at ratios of around 2:1, 

although, as they are lossless, the ratio is heavily dependent on the image content. 

The costs involved, however, are high. Gathering and sorting of the statistics is 

expensive in terms both of computation and memory, and when image sizes are 

small, the costs of any codebook communication should not be overlooked. A 

further problem of all these codes is their use of variable -length codewords. As 

mentioned earlier such coded data is particularly vulnerable to transmission errors - 

the corruption of a single bit of a codeword can lose the synchronisation of all of the 

following codeword boundaries. 

Predictive coding techniques 

Predictive coding is an extension of the general statistical approach taken in 

entropy coding that can be used profitably when coding the data of a Markov 
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process  (such as natural image data) [JAmI 811.  Predictive codes achieve compression 

by exploiting likely structure within the data set. If that structure can be accurately 

predicted, the level of uncertainty in the source data is effectively lower. 

Whereas statistical methods analyse the data set itself, predictive coding relies on 

statistical characteristics of the source itself. Such an approach can be successful if 

the information source is stochastic (its symbols occur according to probabilities). 

Thus the coding scheme can be based on the probabilities of symbol occurrence 

from the source rather than the actual symbol frequencies in each particular data set. 

This approach is closer to that described by Shannon and leads to encoders that are 

specific to the data .source rather than any data set from it. 

Predictive coders do not require the expense of gathering probability statistics on-

the-fly, but their successful use is restricted to data that display the characteristic 

features of the source assumed during the system design. In image compression, 

predictive compression is normally designed to exploit redundancy between 

neighbouring pixels. 

Run-length encoding 

Run-length encoding (RLE) could be considered one of the simplest predictive 

encoders [HAMMING 80]. It is used to encode series of data, making the assumption 

that the next data symbol will be the same as the last. When it is not, the system 

encodes how long the last assumption remained true, and which symbol came next. 

Run-length coding can successfully be used in image processing, especially when 

communicating images as a series of bit-planes. It has very low implementation 

costs, but with natural image data it generally achieves a fairly low degree of 

compression (less than 2:1). 

Markov Processes are a subset of stochastic processes whose symbol probabilities are affected by previously chosen 

symbols. 

2.18 



- chapter two Compression and Coding - 

Differential predictive coding 

A more complicated but generally more successful approach with image data is 

taken in differential predictive coding [JAmI 811. Here only the errors in the output of 

the predictor are transmitted to the receiver. By limiting the data used to make the 

predictions to that which has already been encoded, an identical predictor at the 

decoder can be used to reconstruct the original data set using that error data alone. 

This system is generally referred to as DPCM (differential pulse code modulation - 

c.f. PCM). 

In image compression, interpolation-between and/or extrapolation-from the values 

of neighbouring pixels are generally used to make the predictions. Successful 

compression is achieved when predictions are accurate enough that the error data 

has lower dynamic range than the source pixel data and can thus be encoded using 

less bits per pixel. A fixed size of error term is normally used and if any errors are too 

large to be coded then the complete pixel is sent (preceded by an escape sequence to 

prevent the pixel from being misinterpreted as error data). The size of the error term 

is typically set to allow a compression ratio of the order of 2:1 if compression is 

successful. 

Suitability of predictive techniques 

Predictive coding is attractive in that it can be achieved using relatively low 

hardware costs. A small two-dimensional predictor can be implemented using a few 

additions, binary divisions and enough memory to store just over one line of pixels. 

Problems can occur, however, with the use of predictive coding on image sequences 

(as in the video link application). Where prediction accuracy is not sufficiently high 

and the implementation is to be lossless, then either the communication system 

must be built to cope with the possible increase in data rate caused by the 

transmission of the escape codes, or frames must be dropped. In addition, the 

receiver must be able either to 'cope with a variable frame rate or to buffer data in 

order to re-display an old frame when a frame has been dropped. Predictive 

schemes could alternatively be implemented as a lossy compressor, guaranteeing a 

compression ratio of say 2:1. This approach would require careful management of 
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the situations where prediction error data had to be quantised, both so that the 

visibility of the quantisation errors is minimised and that they do not propagate 

further into the image via the predictor. 

Successful predictive coding achieves compression by reducing inter-pixel 

redundancy. Unfortunately, if compression has been successful, each pixel 

reconstruction then relies on data from many previous pixels' reconstructions. This 

open-loop nature makes the compressed data vulnerable to even very low error 

rates and therefore unsuitable for transmission via a realistic channel unless the 

transmission is preceded by some error protection coding. 

A partial solution to this problem is to limit the dependence of predictions to within 

a local area of image data. This restricts the effect of any transmission errors to 

within the area of data in which they occur. The protection of data through such 

isolation comes at a cost in achievable compression ratio, however, as, when blocks 

are encoded independently, inter-area redundancies can no longer be removed. 

Transform coding techniques 

A radical alternative to standard coding techniques is to describe images (or sub-

images) as transformations of other images. This approach, known as transform 

coding, uses transformations or mappings consisting of translations, rotations, 

scalings and 'warping functions' to describe the route from one pixel array to that 

desired. Although the transform of complete images has advantages in terms of 

distortion [sErrz & LANG 90], images are often described using a number of combined 

smaller transformed arrays (or sub-blocks) to reduce the amount of computation 

(both during compression and decompression). Where source images are 

dynamically partitioned into sub-arrays, information about how to recombine the 

them spatially must also be transmitted. 

Transform coding itself is not, generally aimed at achieving compression. The 

strength of the alternative codes lies in their ability to present data in ways in which 

it can be simply quantised in order to approximate images efficiently. As such they 

are employed almost exclusively in lossy approaches. 
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The most prevalent transform coding technique employed is the discrete cosine 

transform (DCT) that transforms from spatial to frequency domains and vice versa. 

This transform is at the heart of many hybrid compression techniques such as the 

JPEG image compression standard. The wavelet transform [PRESS 921 is another that 

transforms data into an orthogonal space. It decomposes the source into a series of 

sinc-like functions, which when quantised and re-transformed are intended to lead 

to less objectionable errors than if the DCT had been used. 

Compression methods that employ other forms of transform coding include: block 

transform coding which uses a codebook of general array primitives and affine 

transforms to encode images (that are first divided into 'sub-blocks'), motion 

compensation which uses parts of historic images as the array primitives (thus 

achieving compression by re-using the old data) and fractal compression which uses 

contractive transforms which when applied iteratively will tend towards a stable 

image [JAcQuIN 92]. Fractal compression is particularly attractive due to its 

independence from resolution and aspect ratio and the fast decoding speeds it 

offers. Although fractal techniques can offer compression ratios in excess of 100:1 the 

coding process is highly non-linear and very computationally expensive and, as 

such, cannot be performed in real-time [Fox 941. 

Suitability of transform coding 

As mentioned previously, data transformed into orthogonal spaces that lend 

themselves to the inconspicuous use of quantisation tends also to be well protected 

from the effects of random transmission errors especially when used with a low 

compression ratio [PRATr69]. This favours the use of such transforms when 

transmitting the compressed data. The use of block-based and motion compensation 

transforms can make data more prone to corruption especially when used -at high 

compression ratios. Fractal coding suffers similarly, however its iterative nature has 

the advantage that the effects of transmission errors die away over time [HURD 921. 

Unfortunately all transform coding techniques are computational intensive. For 

example, the 2-dimensional DCT transformation of an 8x8 pixel block requires 1024 

multiplication and addition operations [YATES & TVEY 95]. In addition to the large 
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amount of computation, most require buffering of the input image and significant 

memory during execution. This complexity means that they cannot be employed 

whilst satisfying the hardware minimal requirement of the radio video link.. 

Sub-sampling techniques 

Probably the least elegant technical approach to lossy image compression is the 

discarding of some of the source data to obtain a smaller but cruder representation 

of the message. 

Discarding data can be performed mathematically by quantising or truncating 

components of the data set. Quantisation tends to be more common than 

truncation, as it can be implemented whilst preserving the dynamic range of the 

original data set, however both techniques are used. In image compression, sub-

sampling can theoretically be performed on spatial, colour, temporal and frequency 

components of the data, however output spatial resolution and frame rate are often 

fixed (as is the case in this application) leaving only the components of colour and 

frequency as candidates. 

Quantising can be performed blindly on the data, or with some consideration of its 

effect on the perception of the image. The ideal approach would be to remove the 

data that has least importance in conveying the image to human observers. Design 

of such techniques can be made on an ad hoc basis and their evaluation based purely 

on subjective viewing of images. A more scientific approach to both the design and 

evaluation of all lossy image compression techniques can be taken with some 

understanding of the human visual system. 

Frequency sub-sampling 

A common form of image compression is to transform image into the frequency 

domain then either quantise data coefficients or simply discard small ones. 

Although computation costs can be reduced by processing images as a series of 

smaller sub-images, the transforms involved (such as the DCT that was already 

ruled out above) are too expensive for use in the radio video link. 
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Colour quanusauon 

Colour quantisation is a form of compression that is used in even the most basic of 

digital image formats. Indeed it is used in all digital image formats other than so 

called 'true colour'. This proliferation is for two reasons: the enormous amount of 

redundancy in the colour information of digital images (especially simple graphics) 

and the compatibility of displaying data that is compressed in colour format using 

the hardware architecture of all but the most expensive digital image display 

systems4 . 

Opinions differ as to the ultimate colour resolution of the human visual system 

[STOFFEL & MORELAND 81; BLINN 921, however, it is generally considered that under 

normal conditions a grey scale resolution of 6 bpp or 7 bpp (i.e. 64 or 128 grey levels) 

is sufficient to represent a smooth grey colour space on a cathode-ray tube (CRT) 

display [Russ 95]. The standard greyscale resolution used in greyscale image storage 

and manipulation is 8 bpp. This is probably due to its convenience when using 

computer platforms that operate with 8, 16 and 32-bit words. In most applications 

there is therefore potential for at least a reduction in colour resolution by an eighth 

without a perceivable loss in image quality. 

With quantisation, errors in the absolute value of individual pixels will always occur. 

The most obvious and objectionable problem occurs, however, when there are too 

few quantisation levels in an area of the colour space where a smooth gradient in 

the source image needs to be represented. The result of this is that discrete steps 

between the areas of different palette colours become visible, these are often 

misinterpreted as contours in the image, this is the problem of false contouring. 

The use of non-uniform quantisation steps and adaptive quantisation steps that 

attempt to optimise themselves for the current image data can serve to alleviate this 

problem, but there is always potential for it to occur if the number of quantisation 

steps is severely limited. 

This architecture is based around the use of a hardware 'frame buffer' to store complete display images. Instead of 

storing the colour of each pixel to the resolution of the ouput device, frame buffer size is reduced by storing 

references to a subset of the display device gamut in the form of a look-up table (or palette) [HECKBERT 821. 
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An alternative method of tackling the problem of false contouring is the use of 

dithering (or halftoning) techniques. These techniques simulate the appearance of 

the missing intermediate shades by dithering the available shades and exploiting 

spatial integrating properties of the human visual system. 

The drawbacks of halftoning techniques come both in their implementation costs 

and in the high frequency noise they add. (The satisfaction of strict viewing 

conditions can alleviate the patterning problems of the high frequency noise - 

indeed a high enough resolution can make it imperceptible.) 

One particular dithering technique stands out as being suitable for use in this 

application. This is both because of the ease of its hardware implementation in and 

its effectiveness at solving the false contouring problem. This technique is Error 

Diffusion, and was first presented by Floyd & Steinberg in 1975 [FLOYD & STEINBERG 751. 

It is arguably the simplest of the many dithering techniques that exist and, amongst 

those which are adaptive, it is the most popular [uLIcHNEY88]. 

Vector quantisauon 

An alternative to quantisation of the scalar value of individual pixels is the 

quantisation of groups of pixels - a process referred to as vector quantisation (VQ) 

[NASRABADI& KING 88; COSMAN 931. Images are broken down in sets of sub-images (input 

vectors) which are then represented by the closest reproduction vectors from a code 

book. Decoding vector quantised images is relatively simple as it is a lookup 

operation; regenerating the image from its coded form and the original codebook. 

Coding is more computationally intensive as it involves the task of searching 

through the codebook for the best fit vector. This task is often reduced through the 

use of incomplete searches. A common implementation of this is the use of carefully 

arranged codebooks that use a tree-like structure to organise similar vectors. 

Conclusions 
Three aspects of coding are relevant to the radio video link: compression, 

vulnerability to errors and coding for ease of reception. 
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Coding methods dedicated to error protection are expensive in terms of either 

implementation cost or transmission efficiency. Their implementation in the radio 

video link application conflicts with the aim of producing a sensor-transmitter 

interface with a minimum of hardware. 

A compression technique was sought which could satisfy the following criteria. It 

had to achieve the desired compression ratio (c. 2:1), require only minimal hardware 

and yet not produce compressed code so vulnerable to errors that a dedicated error 

protection stage is required within the coder. 

Colour space quantisation with error diffusion satisfies these requirements. The use 

of error diffusion in image compression is novel, as it was originally developed to 

allow the display of continuous tone images on a binary output device. 
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Algorithm Design d Evaluation 

Chapter two has shown that colour quantisation with error diffusion is the data 

coding approach most suited to the radio video link application. This chapter 

explores the hardware implementation of algorithms based on this approach. After 

examining the techniques involved, the general hardware architectures that are 

required to implement algorithms are considered. Implementations of the 

algorithms are then tailored in an attempt to reach an optimum balance between 

compression and the costs in image quality, hardware complexity and increased 

vulnerability of the data to transmission errors. 

The evaluation of proposed hardware implementations is achieved through a 

combination of objective and subjective evaluations of software simulations. A 

structured simulation environment has been developed to facilitate software 

implementation of the hardware-based algorithms. Within the software 

environment, image processing can be performed on sample images using the 

software algorithms. Processed image display and the output of some simple metrics 

allow a degree of both subjective and objective evaluation. 

In order to put the work into context some background information about the 

history of halftoning is presented (with particular reference to error diffusion). 

General factors of algorithms that are likely to affect implementation costs are 

emphasised and the software simulation environment introduced before details of 

particular algorithms are considered. Conclusions are drawn as to which algorithms 

are most suitable for use in the coder of the video link. 
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The coding approach 
Colour space quantisation with error diffusion is deemed suitable for the radio video 

link as it offers modest compression with minimal hardware. This is achievable 

through two key factors: the data can be processed in an order close to the raster 

scan order of the input (thus minimising buffering) and can be executed using 

relatively simple computation. Unfortunately, quantisation with error diffusion 

suffers from the visibility of the error diffusion patterning. There is a trade off 

between the complexity of the diffusion scheme and the sophistication (thus 

visibility) of the masking. 

The problems of using colour space quantisation alone are discussed below. The use 

of spatial dithering is then introduced as a solution to these problems. The 

motivation behind selecting error diffusion (one of many dithering techniques) for 

use in the radio video link is then explained. A brief history of the development of 

error diffusion algorithms is given and the details of error diffusion processing 

introduced. 

Colour space quanhisation with error diffusion 

Colour space quantisation is the use of a cruder description for the colour of each 

image pixel. Although the technique can be applied to any image data, only 

greyscale data is considered here as this is the colour space of the video transmitter 

application. 

Simple independent quantisation of the grey level of each pixel in an image yields 

compression. By treating pixels independently, it exploits few of the redundancies 

that can be found in image data. There is, however, one key advantage in this lack 

of sophistication in that after compression, pixels remain independent in their 

description. This limits the extent of damage caused by errors in communication of 

the image data. 

The disadvantages of quantisation become apparent when the colour space 

resolution is so low that it is possible to distinguish between adjacent shades. This 
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can lead to some image detail being lost and other detail being amplified. This 

problem is generally referred to as 'false contouring'. Areas of image which have 

slow, smooth changes in grey level (before quantisation) end up being represented 

by a series of flat regions that meet at obvious steps - the 'contours'. 

False contouring is exhibited in Figure 3.1 below. At the lower resolutions edges or 

'contours' appear in areas of nearly flat grey where there is insufficient greyscale 

resolution to represent smoothly transitions between perceptible shades. 

Agure 3. 1 E.tamples of false contouring - the ç'rescaJe resolution of the images decreases from left 
to right (6, 4, 3 & 2 bpp), Increasingly obvious contouring is exhibited as a result. 

The perception of false contouring depends on a vast range of factors, including the 

vision of the observer, the distance between the observer and the display, the spatial 

resolution, contrast and size of the display, and the illumination of the display 

surroundings. In addition, the visibility of contouring can be masked by large 

amounts of detail in the image and the addition of a small amount of noise prior to 

quantisation [GOODALL 511,[ROBERTS 62]. 

There is therefore no single greyscale resolution at which contouring becomes 

apparent to all observers under all viewing conditions. Attempts have been made to 

determine the limits at which contouring cannot be distinguished. Research has 

shown that some greyscale images require sampling at more than 256 levels of grey 

if contouring is not to occur [STOFFEL & MORELAND 81]. However, as stated earlier in 

chapter two, it is generally accepted that, under most circumstances, human 

observers can only distinguish between around 26  or 2 shades of grey when viewed 

on a CRT [Russ 951. This maximum degree of greyscale resolution indicates that 

sampling, storing and display of greyscale pixel values using 7 bits is adequate to 

meet the needs of the human visual system. At this resolution it should not be 
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possible for false contouring to occur as transitions between neighbouring greys 

should be imperceptible. 

Achieving the compression ratio required to marry the minimum image 

specification with the capabilities of the cheaper radio links outlined in chapter one 

through quantisation alone requires quantisation to a maximum of 4 bits/pixel (bpp). 

This is unsatisfactory as false contouring is evident at this resolution under most 

viewing conditions. Error diffusion, a form of spatial dithering, is a technique that 

can be used to alleviate the problems of low resolution quantisation. 

Spatial dithering background 

The display of continuous tone images using insufficient colour resolution is not an 

uncommon problem. The communication of most continuous tone imagery has to 

overcome this barrier'. Consequently, the subject has been explored by numerous 

parties interested in image display including artists, illustrators and printers and has 

recently received attention from the image processing research world [LILICHNEY 871. 

The solution is to use spatial patterns of the available shades to create the illusion of 

missing intermediate shades. Artists create these patterns manually, often 

combining clues about the texture of the subject into the shading patterns. Two 

examples of these manual techniques are shown in Figure 3.2. 

In order to automate the creation of such patterns processing techniques (known as 

spatial dithering or haiftoning algorithms) have been developed. Examples of the 

output of some of these techniques are shown later in Figure 3.3. 

Two exceptions are the use of photographs and dye sublimation printing. 
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Figure 3.2 Examples of manual shading, (a) an illustration of Thomas Paine [SUMMERS 951 and (b) a 
sect/on of 'St//I Life intb a Street' IEScHER 371 

The success of these shading and dithering techniques relies on the spatial 

integrating properties of the human visual system. There are two main contributing 

factors. Firstly, the spatial resolution of the human eye is finite, if this resolution is 

sufficiently exceeded by the dither pattern  then results indistinguishable from a 

continuous tone image can be produced. Secondly, even when the resolution is low 

enough that individual pixels of the dither pattern can be resolved, features of the 

human visual system mean that a sensation of smooth colour can still be perceived 

[MULLIGAN 93; CHAU 90]. 

Particular dithering applications 

Most dithering techniques are aimed at rendering continuous tone greyscale images 

using bi-level output devices (e.g. printing with black ink on white paper). 

However, the concept of dithering to produce intermediate shades is equally 

applicable to any situation where the colour resolution of the display device is less 

than that of the image to be displayed. As such, the concept of dithering, and many 

of its techniques, have been applied in other situations including the printing of full 

2  Based on the physiology of the human eye, there is a limit to the spatial resolution of the human visual system. 

This limit has been estimated to be at approximately 128 cycles per degree subtended [SAKRISON 771, although by 

50 cycles per degree the response is almost zero ICHAU 901. 
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colour images using cyan, yellow, magenta and black ink (known as process colour) 

and attempts to display continuous tone imagery using modest colour palettes in 

computer displays [HECKBERT 82]. 

Use of dithering with colour space quantisation in the video link application is 

slightly unusual in that the output device itself is not the limiting factor. Rather, it is 

the intermediate form used to represent the image data that is limited in resolution 

(in order to lower its bandwidth). Yet the problem remains one of having 

insufficient colour space resolution to display continuous tone imagery. 

Alternative dithering aloorithn,s 

A number of dithering algorithms have been developed. They differ both in the 

ways they can be implemented and in the style of pattern they produce. The 

techniques are generally classified according to two features: whether they operate 

on the data using fixed or adaptive techniques (fixed techniques correspond to 

ordered dithers), and whether the output pattern they produce is made up of 

dispersed or clustered dots. A brief introduction to the more common dithering 

algorithms is given below, more exhaustive surveys and detailed explanations can 

be found in [ULICI-INEY 871 and [JARV!S ILIDICE & NINKE 761. 

Figure 3.3 Examples of common dithering techniques: The first Image, (a), shows the 8 bpp 
original, the rest are sub-sampled and dithered versions that have been magnified to show 
the dither patterns dearly -. Image (b) was produced using a clustered-dot ordered dither, 
(c) an irregular dispersed-dot dither (Floyd-Steinberg error diffusion), and (d) a dispersed-
dot ordered dither. 

3  A this figure is intended to demonstrate dither patterns, a filter was used to blur the dither images. This is 

intended to compensate for the fact the images are shown at approx. 100 dpi but with the size of dither pattern used 

they would normally be printed at 600 dpi. Like the original, the blurred images have also been rendered by the 

rateriser of the printer driver (which uses a clustered-dot ordered dither with an output resolution of 600 dpi). 
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Figure 3.3 shows examples of the output of three of the most commonly used 

algorithms. Both (b) and (d) were produced by ordered dithering, a process also 

referred to as both haiftoning and screening. All ordered dithers produce an 

inherently structured output. The pattern and scale of the structure is dependent on 

the size and pattern of the halftone cell used. Clustered-ordered dithering, (seen in 

Figure 3.3(b)), where the printed dots are clustered together, is the technique most 

commonly used in publishing. This prevalence is mainly due to features of the most 

commonly employed printing technologies (such as offset lithography and laser 

printing). The mechanics of the processes mean that printed dots below a certain 

size cannot be produced, however, above this fundamental size the size of each 

printed dot can normally be controlled with a high degree of precision. These 

capabilities lend themselves to the reproduction of clustered-dot output. The spatial 

resolution of the technologies (anywhere between 300 to 2400 dpi) means that at 

normal viewing distances the spatial frequency of the structured patterning 

produced by ordered dithers is sufficiently high not to be distracting. 

Dispersed dithers, that produce output like the example shown in Figure 3.3(c) and 

(d), tend to be used with hard copy or display devices with low spatial resolutions, 

where pixels are non-overlapping and of fixed size (such as fax machines and the 

graphics displays used with computers). Irregular dithering techniques are designed 

to produce output with less obvious structure than ordered methods - often 

described as being able to simulate higher colour resolution without sacrificing 

spatial resolution [CHEN 92]. Although clustered irregular dithers have been 

developed [KNUTH 87], irregular dithers are much more commonly implemented as 

dispersed dithers as they tend to be employed where low spatial resolution allows 

dither patterning in the output to be resolved. 

In addition to the different dither patterns that the various algorithms produce, 

differences in the way the image pixels need to be processed affect the architectures 

that can be used to implement the algorithms. The main factor that differentiates the 

possible implementations is whether an algorithm is ordered or irregular. In ordered 

dithers the processing of each pixel is essentially independent. This means that 

during execution of the algorithm any number of the pixels can be processed in 
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parallel, thus allowing a trade off between the speed of processing and the amount 

of hardware employed. In contrast, irregular dithers are adaptive neighbourhood 

processes. This means that the behaviour at each pixel can be affected by the value 

of neighbouring pixels, thus making the algorithms inherently serial. 

The factors that affect how suitable different forms of dithering are to a particular 

application therefore include the suitability of the type of dither pattern produced 

(both in terms of the capabilities of the output device, and the significance of the 

pattern to the observer) and also the complication of the processing and any 

differences in possible implementation architectures. 

Error diffusion 

Chapter two suggests that error diffusion (a form of irregular dispersed dithering) is 

the most suitable dithering technique to be used in the transmitter of the video link 

application in order to alleviate the problems of employing colour space 

quantisation. 

The low spatial resolution of the video transmitter images and the use of a non-

overlapping pixel graphics display both point to the adoption of a dispersed dither. 

Error diffusion was chosen as, amongst dithering algorithms, error diffusion is 

considered to offer good detail rendition [STOFFEL & MORELAND 81 1. In most 

circumstances it produces dithering patterns with an attractively low-structure 

content [ULICHNEY 88]. It is not, however, without problems. The process causes an 

inherent spatial shift in image energy. Combined with the serial nature of common 

implementations this leads to slight movement of details such as edges. A second 

problem it shares in common with many neighbourhood dithers is that there is no 

lower limit to the frequency content of the patterning it produces [STOFFEL & 

MORELAND 811. Despite these problems error diffusion is generally considered to give 

the best results at low spatial resolution and is the most popular neighbourhood 

dithering algorithm [ULICHNEY 881. 

Although normally used with still images, the order of pixel processing in typical 

implementations of error diffusion is particularly suited to the raster, scan order of 

video data. Applying the algorithm to image sequences introduces a temporal 
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element to the dither patterning. Studies into the intentional use of dither patterns 

that change with time in the display of still images have shown promising results 

[MULLIGAN 93], however, it was not known exactly how the addition of a temporal 

element to an algorithm intended for spatial diffusion would affect the degree to 

which the dither patterning it produces would distract the observer. The 

appearance of high or low temporal frequency content in the patterning could 

either serve to mask it or make it more obvious. 

History of error diffusion 

Error diffusion was first proposed in 1975 as a method of rendering greyscale images 

using bi-level output devices [FLOYD & STEINBERG 75]. More generally, it can be 

regarded as a way of minimising the visible effects of any image data quantisation. 

The seminal work has also been attributed to Schroeder [STOFFEL & MORELAND 81; 

SCHROEDER 69]. 

Many alternative diffusion algorithms have been proposed since. Some have 

advocated the use of quite different diffusion schemes [KNUTH 87] and the use of 

alternative rasters [WI7TEN & NEAL 82; VELHO & GOMES 91]. Alternative diffusion filters that 

trade off aspects of the diffusion patterning against each other and against 

computational expense have also been proposed (e.g. [JARvISIUDICE &NINKE 761). 

Ulichney reported on the success of a perturbed version of Floyd & Steinberg's filter 

[ULICHNEY 88]. He describes the dither patterns produced as having the characteristics 

of 'blue noise'. Part of his work was later criticised by Bernard who suggested 

relaxing the 'dc constraint' normally imposed in error diffusion to improve the 

frequency content of the diffusion pattern [BERNARD 92]. An ordered dither with the 

same blue noise property has also been suggested [MITSA 921. 

Error diffusion mechanics 

Error diffusion is a process of error feedback that ensures that neighbouring 

quantisation errors tend to cancel. Individual quantisation errors are divided up and 

added to (or diffused over) a number of as-yet unquantised pixels, thus influencing 

future output in a way so as to cancel the current error. Errors are shared out 
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amongst the as yet unquantised pixels according to a set of weights generally 

referred to as the diffusion filter. Error diffusion can be considered as a process that 

shifts quantisation noise from lower to higher spatial frequencies. 

The importance of viewing conditions 

As mentioned above, in common with all methods of dithering, the masking of the 

higher frequency noise produced by error diffusion and thus the 'illusion' of 

missing shades relies on assumptions about the frequency characteristics of the 

human visual system. The degree to which the illusion succeeds is dependent on 

viewing conditions. The most important of these are the perceived linearity of the 

display system and the perceived pixel size. Error energy is generally diffused 

assuming a linear data space, thus any non-linearity in the display mechanism 

affects the success of the error cancellation process. Perceived pixel size affects the 

visibility of the dither patterning, due to both the finite spatial resolution of the 

human visual system and the nature of its sensitivity to different spatial frequencies 

[PEARSON 751. 

Summary 

Error diffusion is suitable for use in the radio video link because, even at low spatial 

resolutions, it is successful at masking the problems of greyscale quantisation. The 

use of a haiftoning algorithm for compression is novel as their normal application is 

in the rendering of still images for bi-level output. The ability of the video link to 

support the bandwidth of a modest greyscale, together with the fact that it transmits 

moving images, permits the use of less sophisticated diffusion algorithms. 

Considerations for minimal hardware 

The minimal hardware requirement of this project gives rise to two major areas of 

concern when evaluating the implementation of the algorithms. Firstly, the 

complexity of the computation and control logic required. And secondly, the 
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amount of memory required both to implement the algorithm and to marry the 

resulting coder to the remainder of the system. 

The complexity of the algorithm will obviously have a direct influence over the 

amount of computational hardware required. In particular the use of divisions and 

multiplications should be avoided (unless by powers of two). The exploitation of 

significant parallelism is unlikely to be of benefit unless processing data in parallel 

reduces the buffering needs of integrating the coder into the overall system. 

The amount of memory that is required by the coder is dependent on two factors: 

any general data buffering required to manage the order and speed with which data 

is moved in and out of the coder and any requirements of the algorithm for 

temporary storage of partial results. The amount of general buffering at the input 

and output of the coder depends on how far the order of processing required by the 

coder differs from that of the raster sequence produced by the video sensor. Using a 

raster processing order for the diffusion processors would obviously minimise this 

requirement. The use of memory for partial results is dependent on the complexity 

of the algorithm. In terms of the error diffusion algorithms, the number of pixel 

cycles over which any partial result will need to be stored (and therefore the 

number that need to be stored over any one pixel cycle) will depend on the size of 

the diffusion filter. 

A simple algorithm that processes data in a conventional raster scan order is 

therefore desirable. 

Algorithm simulation environment 
To meet the testing and evaluation needs of the design and evaluation process a 

software simulation environment has been developed. Within this environment 

coding schemes can be applied to live video input, standard test sequences or test 

still images. In addition to displaying both the source images and the results (for 

subjective comparison) a number of simple analytical tools have been included. 

These tools both aid further subjective analysis of the results and offer some simple 

objective meters. The tools can be used to check that the implementation of the 
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algorithm is bug free, that the algorithm performs as expected and to allow 

comparison of alternative algorithms. The tools comprise: differencing between 

source and processed images, squared differencing, differencing on 

blurred/softened images, calculation of grey level frequency histograms and 

calculation of mean grey level. 

Live video input is achieved using a video sensor and a PCMCIA frame grabber. 

Test images can be read in from disk. To enable the direct comparison of algorithms, 

up to three types of processing and analysis can be performed on the same source 

with the results displayed simultaneously. 

Design overview 

To simulate the effect of the coding algorithms there are four main tasks required of 

the software: 

• obtaining source images 

• application of coding and analytical algorithms 

• image display 

• servicing user input 

A flow chart of the main loop of the simulation software is shown in Figure 3.4. 

Whilst running, the software continually executes this loop. 
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Figure 3.4 A flow chart representation of the main simulation loop 

The different image processing and display routines have been written and are 

called using a modular architecture that allows the simple inclusion of further 

processing functions and analytical tools as they are developed. 
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Image data is held in memory in a set of 2-dimensional arrays. This set of arrays (the 

frame store) is central to the flow of image data around the program. This flow is 

shown schematically in Figure 3.5. Access to the frame store is the only feature that 

the image capture, image processing and image display parts of the software share. 
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Figure 3.5 A schematic of the data flow within the simulation software. 

Source images are obtained either live from a video sensor (connected through a PC 

Card (PCMCIA) frame grabber) or loaded from file. All processing and analysis is 

then performed in the frame store and from there the images are transferred to 

display memory. 

Up to three algorithms can run concurrently together with one analytical tool per 

algorithm. This triple replication explains the layout of the graphical display which 

is shown in Figure 3.6. Each of the vertical columns contains a processed output 

window, an analysis window and a status window (top to bottom), details of the 

currently selected image source and of file activity are given in the panel on the left. 
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figure 3.6 The DOS graphics display. 

Images can be saved to the hard disk either as binary files (the format used for 

input) or as ASCII files. Grey level frequency histograms can also be saved as ASCII 

files. 

The coding functions 

The various image coding algorithms are implemented in software as discrete 

functions. Each can be switched in and out as required. All of the coding functions 

access the image data using pointers that are moved through the image data in 

raster scan order, thus emulating the on-the-fly access that the hardware 

implementations would have. Limiting access in this way means that any buffering 

overheads of the algorithm are immediately obvious. On initiation, each coder 

function is passed pointers to the memory location of the first pixel of the source 

image and the memory location where the first pixel of the processed image should 

be written. Additional parameters (such as desired output pixel depth) are passed as 

required. 

Although the information content of the image data is reduced during processing by 

the coding functions, the software stops short of arranging the data to produce truly 

compressed output. This step was seen as an unnecessary complication as the 

software was intended purely for evaluation of algorithms and not to be used for 
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compression itself. Each coded frame occupies the same amount of memory as the 

original, however, the number of different grey levels always corresponds to the 

current resolution (in terms of bits per pixel). 

Analytical functions 

The analytical functions in the software include the ability to display the grey level 

histogram of a processed image, along with the image mean. This meter gives 

instant clarification of which grey levels are used in the output, confirming the 

output resolution, whether pre-scaling is being employed and with adaptive 

algorithms how the adaptation is changing. The display of the mean level is a 

convenient indicator of errors in algorithm implementations (as few of them should 

alter the image mean significantly). A log scale is used for the histogram display to 

cope with the wide dynamic range (0 to 65535 displayed using 256 steps). Another of 

the meters is the ability to generate a difference image (the pixel-by-pixel difference 

between source and processed images). This shows where the processing errors are 

most significant. Where errors are small enough, squared difference can also be 

employed. A smoothed difference image can be generated to display the difference 

between error diffusion output and the source without this being dominated by the 

pattern produced by the error diffusion pattern. This calculates the difference 

between versions of source and processed image that have been smoothed using a 5 

by 5 smoothing filter. 

Tailoring of the algorithm 
The general architecture of quantisation with error diffusion is shown schematically 

in Figure 3.7. It consists of two functional blocks: the quantiser and the diffuser. Data 

enters the system at the diffuser, where past quantisation errors are added. It then 

passes out through the quantiser. A feedback path supplies the diffuser with the 

error from each quantisation. 
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Figure 3.7 A schematic of the general quanilse, with diffuser architecture. The system blocks that 
would neighbour the diffusing quantiser are shown in grey. 

This general data flow is common to all implementations of error diffusion. The 

exact behaviour of the diffuser and quantiser are, however, dependent on details 

particular to the implementation. These can be altered to trade off issues of 

complexity, cost and performance. 

As well as proving the overall validity of error diffusion as an approach, this section 

considers decisions about design flexibility. The flexibility issues can be broken into 

two: those concerning the quantiser and those relating to the filter used in the error 

diffuser. These are discussed in that order below. 

Quantiser design 

The job of a quantiser is to approximate an input signal, producing an output that 

describes the input more crudely but can either be represented more efficiently, or 

in the case of analogue-to-digital conversion, more robustly. Whether quantising to 

convert a signal from analogue to digital or simply to reduce the number of bits used 

to represent a digital one, the process is executed by comparing the input to a 

number of threshold levels and assigning it an output value depending on the 

results of these comparisons. 

In the error diffusion system the quantiser is required to reduce the precision used 

to describe the greyscale of each pixel. The input to the quantiser is therefore a 

digital signal. Alternative quantiser implementations differ in terms of simple factors 

such as their speed of operation, their complexity, and also in more subtle features 

of operation such as preserving the dc component of the input signal. Before going 

on to consider their relevance to the error diffusion system, the merits of alternative 

implementations are introduced and discussed below. 
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Implementation options 

Hardware architectures used for analogue-to-digital converters can also be used to 

implement digital quantisers. The most applicable of these architectures are flash and 

single-slope (for analogue-to-digital versions see [HoRowrrz & HILL 90]). Schematics of 

the computational hardware required to implement these architectures are shown 

in Figure 3.8. 
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Figure 3.8 Schematic implementations of quantisers using architectures classically assodated with 
analogue to digital conversion; (a) flash, and (b) single-slope. 

The single-slope quantiser requires a full subtracter, the flash simply requires a set of 

comparators (which can be implemented using combinatorial logic equivalent to 

that used to generate the MSB of a hardware subtracter) and some simple 

combinatorial logic to combine the resulting comparisons. 

Many of the pros and cons of these implementations stay true to their analogue 

counterparts. The flash architecture is expensive in terms of computational 

hardware (a quantiser with an output resolution of n bits requires (2"-1) 

comparators), however the processing is simple to control and fast. It consists of one 

set of parallel comparisons followed by combination of the results. The single-slope 

converter uses less hardware (only one subtracter), however, the control logic is 

more complicated and, as the processing comprises a succession of subtraction 

operations, the conversion time is at best proportional to the output resolution. 

In addition to these general architectures it is possible to achieve quantisation of a 

digital signal by far more hardware-minimal means. This approach uses a simple 

binary truncation operation where the output is simply the input signal after the 
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least significant bits have been discarded. This operation can be realised without any 

hardware and thus incurs no computational delay. 

The limitation of using binary truncation is that there can be no flexibility in the 

position of the quantisation thresholds. They are fixed and must be at regular binary 

intervals. In contrast, the thresholds of the flash converter are arbitrary and can be 

changed on-the-fly. The single-slope architecture can be programmed to use 

different steps for each subtraction (e.g. by presenting different thresholds to the 

subtracter using a multiplexer). 

There are two key benefits of having flexibility in threshold position. The first is that 

the use of unevenly spaced thresholds can be used to combine the process of 

quantisation with the application of a scaling function (such as gamma correction) at 

no extra cost. The second is the use of a technique known as adaptive quantisation. 

This is only possible if the thresholds are programmable. A brief introduction to 

adaptive quantisation is given below. 

Adaptive quantisation 

Also referred to as 'tailored quantisation', adaptive quantisation is a variation on 

standard quantisation where the position of the quantisation thresholds are varied 

on the basis of some statistics of the current data set. Threshold positions are altered 

such that some error metric is reduced. Its application in greyscale quantisation 

generally centres around moving thresholds so that they are more closely spaced in 

the most densely used parts of the colour space, so reducing a metric such as MSE. 

The technique is particularly successful when the population density of the 

greyscale is far from flat. Quantisation of such a data set using fixed levels could 

result in many output 'bins' not being used and others containing 

disproportionately high numbers of image pixels. Examples of the quantisation of 

such an image (together with greyscale frequency histograms of the resulting 

images) are shown using both uniform and adaptive thresholds in Figure 3.9. 
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0 	63 	127 	191 	255 	 0 	63 	127 	191 	255 
greyscale value 	 greyscale value 
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Figure 3.9 A comparison of uniform and adaptive quantisatlon; the 8bpp original image, (b) Is 
shown in the centre of two versions that have been quantised to 2 bpp, the image to the 
left 	was created using uniform quantisation, the image on the right, (ci, using an 
adaptive quantisation scheme. Below in (d) and (e) the sparse greyscale frequency 
histograms of the quantised images are shown. These are both superimposed on the much 
more detailed histogram of the original image (b). The histogram of (a) is shown in (d), and 
that of (c) in (e). 

A form of adaptive quantisation is implemented as part of the software simulation, 

the optimised results in Figure 3.9 come from this work. The algorithm used is 

essentially a one-dimensional implementation of Heckbert's median-cut algorithm 

[HECKBERT82]. This represents only one example of optimisation, however, it shares 

the same three processing steps required of any algorithm: gathering statistics, 

calculating thresholds that, based on the statistics, minimise some error metric, then 

calculating representative output colours to be used when decoding the output. In 

the implemented algorithm this translates to gathering a full grey-level histogram, 

then, by making one pass through the histogram, defining threshold levels 

wherever the number of pixels between the last defined threshold and the current 

position within the histogram reach the average number of pixels per output code. 
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The representative output colour for each code is then calculated as the mean of all 

pixels represented by that code. 

Relevance to the error diffuser in a video transmitter 

In order to determine whether, in the context of the video transmitter application, 

the added functionality offered by the more complicated quantiser architectures 

justifies their hardware expense, it is necessary to consider the relevance of either 

applying a scaling function or using adaptive quantisation together with error 

diffusion. 

The most likely scaling function that would be applied to the image data prior to 

quantisation is to correct for non-linearity. This is directly relevant to error diffusion, 

as its success relies on the perceived  linearity of the output data space (in order that 

the linear diffusion of pixel energy creates combinations of pixels that approximate 

the intended intermediate shade accurately). Non-linearities both in the sensor or 

display system can affect this. The ability to apply a non-linear scaling function prior 

to quantisation could be used to apply a combination of functions to correct for both 

display system non-linearity (often referred to as gamma correction) and to cancel 

non-lineanties in the sensor or digitisation system. Two factors, however, make the 

benefits of such correction either expensive or doubtful. 

The first is the near-linearity of the proposed image sensor and ADC combination. 

Without calibration of individual units, any function to correct this distortion would 

have little effect. Calibration would itself be an expensive step during production. It 

would mean that the correction function would have to be programmable, making it 

more expensive to implement. 

The second factor is the dependence of perceived display linearity on many factors 

other than the linearity of the display itself 5. Successful application of the correct 

It is important that it is the perceived linearity of the display luminance that is considered as human perception of 

brightness is non-linear - Weber's Law [PEARSON 751 

5 Factors such as ambient light level and the shade of the surround of a display affect perceived linearity [PEARSON 

75]. 
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gamma function to make the display appear linear would therefore necessitate the 

careful control over viewing conditions (restricting the application). In addition to 

the practicalities of correcting for non-linearity, such a level of sophistication does 

not equate with the level of image fidelity implied by the remainder of the system 

(c.f. the image specification). 

A stumbling block to the use of adaptive quantisation in the video transmitter 

application is its expense in terms both of computation and memory. Even with the 

simplest of error metrics, threshold optimisation is itself both non-trivial and 

requires a significant amount of memory. In the median-cut example compilation of 

the greylevel histogram for the 64 pixel square, 6 bpp minimum image specification 

image alone requires 256 Kbytes. At a cost in the precision of the optimisation, this 

memory requirement could be reduced by relaxing the accuracy of the statistics. 

However, even crude reduction both in sampling frequency (to say one in every 4 

pixels) and grey-level resolution (to consider only the top 4 bits) still requires a 

significant amount of memory (16 Kbytes). A further overhead is that the palette of 

representative colours used to decode the quantiser output must be communicated 

to the receiver if the image data is to be interpreted correctly. 

Iteration is one way to minimise the computation complexity of adaptive 

quantisation for use in application such as the video transmitter application. Instead 

of calculating an optimum set of thresholds for each frame, a small number of 

adjustments would be made per iteration, say the movement of one threshold every 

frame. This vastly reduces the size of the optimisation calculation per frame. An 

option for reducing memory costs is offered by simple statistical metrics (such as 

Heckberts) which permit gathering of statistics after quantisation where the data 

resolution is lower. Even with these compromises, however, some statistics still need 

to be gathered, some degree of threshold calculation has to be performed and at 

least one representative output code needs to be calculated and communicated to 

the decoder for each threshold move. 

In terms of performance, Heckbert's median-cut optimisation works well when the 

image gamut is much smaller than the colour space. It falls down, however, in 

sparse areas of the colour space where input colours are lost which are deemed 
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statistically insignificant but define image details that are important to object 

recognition (such as spectral reflections). This problem is exacerbated at the low 

output resolutions considered in this application where the level of colour use that 

defines statistical significance is high. The problem here is that the error metric does 

not represent all factors of what is regarded as optimum quantisation by a human 

observer, a failing recognised by Heckbert himself. 

Error diffusion can go some way to solving this problem as it can approximate 

missing intermediate shades. However, the requirements of error diffusion further 

complicate the optimisation problem, as for it to be successful, it is not the distance 

from each input code to the nearest output code that matters, but some combination 

of the distances from each input code to both the nearest codes below and above. In 

addition, in an error diffusion system, the input to the quantiser is not the raw pixel 

stream, but the pixel after diffusion. Thus it is the statistics of this modified data set 

that are important, not simply those of the raw data. Definition of a metric that can 

be used in optimising thresholds to satisfy a human observer after error diffusion is 

a problem that requires further research. 

In summary, the benefits of applying a non-linear scaling function prior to 

quantisation are slight, and the advantage of allowing adaptive quantisation is ruled 

out by the high cost of its implementation. In addition, without the definition of a 

more suitable error metric, the benefits of using adaptive quantisation with error 

diffusion at very low output resolution are questionable. In the context of an error 

diffusion system and the video transmitter application, the inflexibility of the binary 

truncation quantiser is therefore not an issue. In fact, there is a further benefit of the 

binary truncator in an error diffusion system in that the quantisation error term (that 

needs to be generated for feedback to the diffuser (see Figure 3.7)) is available at no 

cost. It is simply the least significant bits of the input - those that do not form part of 

the quantised output. 

Increased dynamic range problem 

During the software simulation, an additional complication of the behaviour 

expected of a quantiser in error diffusion was discovered. The problem is that if the 
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raw pixel stream input to the diffusion system has a dynamic range that is a round 

power of 2 then the range of the input signal to the quantiser is not. This has 

ramifications upon the suitability of the binary truncating quantiser. Its fixed 

thresholds are only evenly spaced throughout the input range if that range is a 

round power of 2. 

The difference between the dynamic ranges of the input pixel stream and the input 

to the quantiser is due to the summing action of the diffuser. The range of the input 

to the quantiser is in fact equal to that of the raw pixel input signal plus the 

magnitude of the largest possible error that is fed back from the quantiser. The 

magnitude of the largest possible error is determined by the spacing of the quantiser 

thresholds. 

Given the ability to set arbitrary thresholds, the problem could be solved by 

increasing the dynamic range of the quantiser and spacing the thresholds 

accordingly. The use of arbitrary thresholds implies a cost in hardware 

implementation, however, as outlined above. The only way to allow the use of the 

binary truncator is to ensure that the input signal to the quantiser has a dynamic 

range that is a round power of 2. There are two ways this can be done: clip the input 

to the quantiser or apply digital attenuation to the input signal such that its 

resulting dynamic range plus that of the largest error is a round power of 2. 

Clipping at the quantiser input is a relatively cheap option to implement in 

hardware as it translates to the logical OR-ing of all the bits of the diffuser output 

with a carry-flag from the diffusion sum. Use of a clip would, however, lead to a 

non-linear distortion as pixel energy is only lost in bright areas of images. Where the 

output greyscale resolution is relatively high (above 5 bpp) it may be hard to spot 

the distortion, as the loss is such a small component of the full dynamic range. As 

the resolution drops, however, it becomes increasingly significant. 

The second option suggested above is to digitally apply attenuation to scale the 

input signal. Initially this sounds like an expensive option to implement as division 

is typically an expensive hardware operation. However, it turns out that all the 

divisions that are required can be performed using a binary shift and subtract 

operation. This solution can therefore be performed using a single subtracter. This 
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means that the binary truncation quantiser can still be employed at lower cost than 

the more sophisticated quantisers. 

As the scaling operation is performed before entering the actual error diffusion 

system it is referred to in the remainder of the thesis as pre-scaling. Figure 3.10 

shows the position of the prescaler in the rest of the error diffusion system. 
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Figure 3.10 The position of the pie-scaler operation with respect to the error diffuser. (lilt were 
placed after the diffuser, error terms would pass through the scaler twIce and would thus 
be reduced in significance.) 

The dependence of the increase in dynamic range upon the spacing of the 

quantisation thresholds has another implication on the use of adaptive quantisation 

with error diffusion. If such a system is to be implemented without the non-linear 

problem of clipping the quantiser input, either the quantiser will have to be 

designed to cope with an input of nearly twice the dynamic range as the raw pixel 

data or some limitations will have to be imposed on the spacing of the thresholds so 

as to guarantee a lower signal range. 

Summary 

The sophistication of the thresholds that a quantiser can use determines both the 

possible quantising action it can offer and the ways in which it can be implemented 

in hardware. 

In selecting the type of quantiser to be used in the error diffusion algorithms, both 

the different behaviours the alternative architectures offer and the costs of their 

hardware implementations are considered. 

After discounting the requirement for adaptive quantisation or application of a non-

linear scaling function in the radio video link application, a binary truncation 

behaviour is chosen for the quantiser as it satisfies the requirements of the error 

diffusion algorithms and it allows both the quantisation operation and error-term 

calculation to be implemented without hardware expense. 
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The variable output resolution of the test system makes the inclusion of a variable 

prescaler stage necessary to maintain the dynamic range of the quantiser input 

constant at a round power of 2. In a fixed resolution application, set-up of the ADC 

could be used to ensure the correct input signal dynamic range instead. 

Diffusion filter design 

The diffusion filter is critical to the nature of the patterning that an error diffusion 

system produces. The measure of a filter's success is the degree to which it can 

produce a dither pattern that achieves the illusion of continuous tone output, under 

all input conditions, without masking image detail. As error diffusion tends to be 

used in conditions where the individual image pixels can be resolved it is 

particularly important that the diffusion patterning itself should have as little 

'interesting' structure as possible, so as not to distract the observer from the detail of 

image. 

Diffusion filters vary in the number of filter elements they contain (their size), the 

spatial arrangement of the elements (their shape), the way the quantisation errors 

are divided amongst the filter elements and in the order that the data is presented to 

the filter. These flexibilities relate to design decisions that trade off performance 

factors against each other and against the filter implementation costs. Processing 

order, filter size, filter shape and filter weight flexibilities are considered below. 

Processing order 

The fact that error diffusion is a neighbourhood process  (and therefore inherently 

sequential in nature) places constraints upon the shape of the diffusion filter. For a 

pixel location to be a valid candidate for a filter element it must be as yet 

unquantised. Thus, the raster order in which the data is processed partly defines the 

filter shape. 

6  I contrast to a point process, neighbouring pixels are not processed independently in a neighbourhood process. 
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Processing in conventional progressive raster order is generally favoured as this 

mimics the order in which image data is normally acquired, stored and otherwise 

manipulated (thus minimising buffering/re-ordering). The spatial polarity of the 

conventional raster does, however, have the unfortunate consequence of forcing a 

directional structure on the diffusion process. This has two results; a tendency for 

directional qualities to appear in the diffusion patterning produced and a shift of 

image detail in the directions that the raster progresses. This second phenomenon is 

often referred to as phase error [STOFFEL & MORELAND 811. 

These directional problems can be alleviated through the use of alternative rasters. 

The drawback of using a non-standard processing order is incompatibility with any 

conventional raster components of the system. Re-ordering the pixels implies 

buffering. The further the alternative raster deviates from the conventional order 

used by other parts of the system, the higher the buffering overhead. 

A common alternative processing order is the serpentine raster. The order that 

image lines are processed in a serpentine raster is the same as a conventional 

progressive raster. Within successive lines, however, pixel processing alternates 

between left-to-right and right-to-left. Serpentine raster is generally used to mask 

horizontal bias, but it suffers from the same vertical bias as the conventional raster. 

The use of more radical rasters has also been investigated, in particular, the use of a 

special class of fractal functions known as 'space-filling curves' which have a 

localised pseudo-random behaviour [WITTEN & NEAL 82; VELHO & GOMES 91]. Space-filling 

curves can be used to remove most of the visibly directional quantities introduced 

by the raster, however the introduction of a random element.to  the processing 

generates low frequency noise in the diffusion output. Unlike diffusion with a more 

conventional raster, this noise cannot be 'tuned out' by altering the diffusion filter 

because the raster order lacks the deterministic qualities necessary. 

Other attempts to escape from the restrictions of the raster order include the use of 

iterative diffusion functions [MULLIGAN &AHUMADA 92]. These typically make several 

passes over the input data set, allowing them to use arbitrary filter element 

positions. Iterative diffusion permits tuning of the filter to perform in a certain 
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manner. The disadvantages are the increased amount of processing necessary and 

the very high memory overheads. 

The implied memory overheads of alternative serial processing orders and iterative 

processing make these options unattractive for use in the radio video link 

application. Serial processing of the data in a conventional raster scan order carries 

no such overhead, however, there is a cost as it forces a directional bias on the 

diffusion ability of the filter. 

Filter size 

The size of a diffusion filter affects both the possible diffusion patterns it can 

generate and the amount of hardware that is required to implement it. As each filter 

element implies both computational hardware and error storage, the distance 

between elements (with respect to the order of the incoming data stream) 

determines the amount of memory required to store errors (from when they are 

generated to when they are diffused). Thus the two factors of size that influence the 

amount of hardware required are the number of filter elements and how they are 

arranged spatially. These factors are also largely responsible for affecting the 

possible diffusion patterns produced by the filter. The most important of these 

features are the success of the filter in minimising the area over which errors cancel 

and the degree to which the patterns they produce contain a potentially distracting 

structure. 

In general, four element filters (such as that of Floyd and Steinberg) are used. 

However, larger filters have been proposed in attempts to alleviate patterning 

problems (in particular the 12 element filter of Jarvis et al. [JARvIs JUDICE & NINKE 76]). 

The larger the filter the more sophisticated the options for diffusion patterns, 

however, the further apart the elements the more the error energy is spread from its 

source. Energy being spread predominantly in one direction is undesirable, it leads 

to a phenomenon referred to as phase shift - where sharp details such as edges tend 

to move in one direction within the image [STOFFEL & MORELAND 81]. 

Extension of error diffusion from the normal 2-dimensional spatial diffusion into 3 

dimensions is possible by including a temporal component. This can be achieved by 
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using a 3-dimensional filter that propagates errors not only to adjacent pixels in the 

same frame, but also to pixels into future frames. Mulligan proposed the use of 

spatio-temporal diffusion filters for the display of static images using dynamic 

displays [MULLIGAN 931. He reported advantages of increased greyscale resolution 

(through increased averaging) and improved perceptual segregation of picture and 

noise due to their separation in different temporal bands. Temporal dithering 

exploits the insensitivity of the human visual system to high frequency temporal 

patterns in much the same way that spatial dithering exploits high spatial frequency 

pattern insensitivity. Research has shown marked similarities between the spatial 

and temporal contrast sensitivity functions of the human visual system [ROBSON 66; 

PEARSON 751. 

When used on image sequences there is an incidental temporal component to the 

diffusion pattern produced by even a 2 dimensional filter. This is caused by the 

accidental animation of the diffusion pattern by even the smallest image changes or 

by any noise in the image data. Unfortunately the controlled use of temporal 

diffusion through the use of a temporal filter requires buffering the errors from an 

entire frame of image data. This overhead is too large for the radio video link 

application, thus temporal filters have to be ruled out. 

Very small diffusion filters are generally discounted because they are unable to 

produce sufficiently sophisticated patterning. Floyd and Steinberg themselves 

argued that a four element filter was the smallest that could be used to produce 

'good' results. This conclusion is supported by Ulichney who reports the failings of 

smaller filters [ULICHNEY 88]. 

However, these findings may not be strictly applicable to the video transmitter 

application. In common with most published work on the subject, Floyd & 

Steinberg and Ulichney were concerned with the rendering of still images using bi-

level output devices. In contrast, in the radio video link, the problem is of rendering 

moving images using a limited greyscale. The low hardware implications of small 

filters makes them attractive in the video transmitter application, thus a small filter 

should be used if the type of patterning it produces can be tolerated when used to 

reduce the moving data to a modest greyscale. 
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Filter weights 

A further factor that affects both diffusion patterning and filter implementation costs 

is the fractions that are used to divide up errors amongst the filter elements. These 

fractions are generally termed the weights. 

The complication of the hardware generation of the error fractions depends upon 

the choice of weights. One way of saving hardware is to restrict weight choice to 

powers of two, allowing all necessary multiplication to be performed using bit-wise 

shifts. 

The introduction of a random element to diffusion processing can be used to break 

up unwanted structure. One that is relatively cheap to implement in hardware is 

the perturbation of the filter weights. Ulichney attributes the idea of using 

perturbed weight sets to Schreiber and the first demonstration of it to Woo [ULICHNEY 

88]. Perturbation must be used carefully, however, as it can lead to low frequency 

noise from the perturbing signal becoming apparent in the filter output. 

Summary 

Several features of the diffusion filter can be altered to trade off different 

performance aspects and performance versus hardware implementation costs. 

The desire for a hardware-minimal implementation of the radio video link favours 

the use of conventional raster scan 'processing, with as small a diffusion filter as 

possible. The memory cost of a temporal diffusion filter precludes its use. To 

simplify computation, where possible, filter weights should be kept to powers of 

two. 

Using a conventional raster processing order imposes a severe horizontal and 

vertical bias on the action of the diffusion filter. In other applications where this bias 

is intolerable the horizontal component can be alleviated by using a serpentine 

raster without an excessive penalty in memory. 

The use of a small diffusion filter is desirable in terms of patterning hysteresis and 

preservation of edges as well as its minimal hardware implications. The danger of a 

small filter is the limits this imposes on the patterning sophistication. Incorporation 
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of a random element into the diffusion filter may alleviate problems of structured 

patterning at lower cost than increased filter size. Random perturbation should, 

however, be used carefully so as not to introduce too much low frequency noise to 

the patterning which can also be distracting. The proposed modest colour resolution 

of the radio video link should make filters smaller than those generally used for bi-

level output acceptable. 

Even though an explicit temporal filter is too expensive, an element of 'incidental' 

temporal diffusion should result from the proposed pipeline architecture used in 

any application where there are slight inter-frame image changes or even the 

presence of a small amount of noise in the image data. Whether the incidental 

temporal changes that occur serve to mask the diffusion patterning or distract the 

observer from the image data is considered later in chapter five. 

Using the criteria defined above, four filters ('simple', 'perturb', 'safe perturb 1' and 

'safe perturb 2') are considered below for use in the coder of the video transmitter. 

The 'simple' filter 

The first filter considered is the simplest possible to implement in hardware. The 

filter, referred to here as simple, consists of one fixed element and thus requires only 

one adder. As there is only one filter element there is no need to divide up each 

diffusion error thus there is no need for multiplication hardware to compute error 

components. 

= already processed pixel 

I 	
= unprocessed pixel 

filter orhln 
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Figure 3.11 The four an-quanrised pixels adjacent to the filter origin in raster scan processing 
(labelled a' to 'd'). 

The four pixels marked 'a' to 'd' in Figure 3.11 are the un-quantised pixels adjacent 

to the filter origin when using a raster scan. In terms of being candidates for error 

diffusion all four pixels are very similar, as they don't differ greatly in spatial 

distance from the origin, if used as the sole element of a diffusion filter all would 
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lead to very similar and very directional diffusion patterns (the actual direction of 

the directional bias would be the only difference). They do, however, differ in their 

distance from the filter origin in terms of the raster scan pixel order. This affects the 

hardware implementation of the filter as the distance between the filter origin and 

an element defines over how many pixel cycles each quantisation error must be 

stored before it is diffused to that element. This distance therefore defines how 

much error storage memory is required. Pixel 'a' in Figure 3.11, the closest to the 

origin, was chosen for the simple filter to give the most minimal implementation 

possible. The simple filter is shown schematically in Figure 3.12. 
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Fi1ure 3.12 A schematic of the 'simple diffusion filter. '.'denotes the posi/on of the pixel being 
quantised (the 'filler on 1in'), and 'a' is the destination for the whole of the 
corresponding quantisation error - i.e. the sole element of the diffusion filler. 

As well as being the cheapest to implement, this is arguably the crudest error 

diffusion filter possible. Ulichney includes single-element filters in a review of error-

diffusion filters purely to point that they "fail in a big way" [ULICHNEY 88]. He was, 

however, considering them for use with bi-level output devices (i.e. 1 bpp), here 

they are being considered for up to 4 bpp. The action of the simple filter is similar to 

'error-feedback' rounding techniques. These are used in high quality image 

processing when the high precision results of pixel manipulation are reduced in 

precision for recording and display. In contrast to the bi-level case, however, 'error-

feedback' is concerned with conversion typically from 32 or 16 bpp to 16 or 8 [JACK 

93]. Use of the simple filter for the modest compression required by the radio video 

link represents an application somewhere between these two examples. 

The source code for the software implementation of the simple filter used in the 

simulation software is given in Listing 1. The function (Quantise_Dif fuse) 5 designed 

to quantise to any output resolution lower than the input 8 bpp. The quantisation 

and error calculation are implemented using 'bit-wise' AND operations. This 

method facilitates variation of the output resolution through alteration of the two 
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masks used in the AND operations. A trap to prevent pixel roll-over 7  is 

implemented by the IF statement. 

bE 6E 	fE) 

dword pixel, end of frame- (dword) (FRAME ROWS'FRANE COLS) 
byte sum=O; /* temporary quantisation error storage 
byte sum mask = (byte) (Oxff>bits) 
byte pixel mask = (byte) (Oxff<c (8-bits) 

for(pixel-O; pixelsend of frame; pixel++) 
if (pSrc < pixel —mask) sum = (byte)) *pSrc++ + (sum & sum mask)); 
else sum = *PSrc++; 
*pDest++ = (byte) (sum & pixel -mask) ;  

ListIng 1 	function Qua.ntlse_Dlffuse() from quantise.c (see appendix one for lu/i listing). 

Two sets of example output from simple are shown in Figure 3.13 and Figure 3.14 

below. The two source images (lena and salesman) display the effectiveness of the 

algorithm in areas of both high and low spatial frequency. With the exception of the 

feather, most of lena is low frequency. It contains large areas of smoothly changing 

colour such as the shoulder and the reflection in the mirror. The salesman image 

does not contain rtany areas of smooth colour, but has far more areas of high 

frequency content. Subjective examination of these still images indicates that if the 

output resolution is kept relatively high (3 or 4 bpp - the top halves of Figure 3.13 

and Figure 3.14) the output of this filter is clearly better than that of a truncating 

quantiser and only marginally worse than the raw data itself. These resolutions 

represent compression ratios of 2:1 and 2.66:1. The images in the lower halves of the 

figures show the results of processing to the lowest integer colour resolutions (1 and 

2 bpp). At these resolutions, the output of the simple filter still conveys more 

information about the detail of the image than the truncated images, however, the 

presence of the diffusion pattern becomes obvious. At 1 bpp a wood grain-like 

structure within the pattern is certainly apparent (and arguably quite objectionable). 

Processing to the output resolutions of 1 and 2 bpp represents compression ratios of 

8:1 and 4:1, respectively. 

7 Roll-over is a term used to describe the corruption of a pixel value through either overflow or underflow during its 

manipulation (e.g. if a pixel, described using 8 bits, which initially has a value of 254, has 10 added to it the result will 

be 8 if rollover is not prevented). 
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FIgure 3.13 Examples of the 'simple filler output (lena), shown together with the un-processed 
image and the image after a truncating quantisation of the pixel values to the same pixel 
precision as the simple filter for comparison. The un-processed image (8 bpp) Is shown in 
the centre of each horizontal triplet, the images on the rig/it hand side have been 
processed with the simpie' diffusion filler, and the left hand side have been quantised by 
truncation. The greyscale resolutions of the processed Images range from 4 bpp In the top 
line to 1 bop In the bottom line. 
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FIgure 3.14 Examples of the simple' filler output (salesman frame 0), shown together with the un-
processed image and the image after a truncating quailtisatlon of the pixel values to the 
same pixel precision as the simple filter for comparison. The un-processed image (8 bpp) is 
shown in the centre of each horizontal triplet, the images on the right hand side have been 
processed with the simple' diffusion filter, and the left hand side have been quantised by 
truncation. The greyscale resolutions of the processed Images range from 4 bpp In the top 
line to 1 bpp in the bottom fine. 
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Both Figure 3.13 and Figure 3.14 compare static results from the simple filter and the 

truncating quantiser. These conditions do not directly reflect those of the video 

transmitter as its image data would be changing at a rate of at least 10 fps. 

Unfortunately, display of moving images is not possible here. The simulation 

software, however, permits the processing and display of both live video and short 

sequences at up to approx. 4 frames per second in addition to the processing and 

display of stills. For convenience, live video input was used for most of the moving 

image tests. This minimised the amount of disk space and disc access required. As 

expected the effect that the use of moving images had on the success/visibility of the 

diffusion pattern was largely dependent on image content and output resolution. In 

areas of images where there was much high frequency content animation of the 

diffusion pattern served to mask its presence, however, in flatter regions of images 

the pattern didn't change sufficiently frame to frame to hide its structure. The lower 

the resolution the less the animation masked the pattern. 

The lack of sophistication in the pattern produced by simple is evident when 

compared with the performance of Floyd and Steinberg's filter at I bpp. Figure 3.15 

offers such comparison plus comparisons at higher greyscale resolutions. The 

images diffused with Floyd & Steinberg's filter were produced using a variable 

resolution implementation of the filter (as given in Listing 2). In the 1 bpp image 

from simple the low frequency structure and directional hysteresis combine to create 

a wood-grain like pattern. The 1 bpp image processed by the floyd-steinberg filter 

shows little of this same type of structure except for some directional hysteresis in 

the darkest flat areas of the image such as the left-hand side of the chair and 

between the salesman's left arm and his body. As the output resolution is increased, 

however, the difference between the output of the two filters drops off rapidly. At 4 

bpp these static results become difficult to distinguish. 
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Figure 3.15 Comparison of simple and floyd-steinberg (salesman frame 0). The images on the left 
hand side have been processed with the'simple' diffusion fifter, and those on the right 
hand side with a variable resolution implementation of Floyd & Steinberg's filter. The 
grey-scale resolutions of the processed images range from 4 bpp In the top line to 1 bpp in 
the bottom line. 
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Ulichney's dismissal of the simple filter when used at a 1 bpp and the success of it 

demonstrated here at 3 and 4 bpp shows that a minimal increase in greyscale 

resolution is significant to the acceptability of the filter output. This emphasises the 

difference between filter considerations for applications with bi-level output and 

those with even a modest greyscale. 

mt Quantise_FloydS( byte *pSrc,  byte  *pDest,  byte bits 

unsigned short fifo_index, fifolen = frame cols+l; 
short fifo(FRAMECOLS+l) threholds]641 
long SpreadPixel, QuantError; 
byte Quantisedpixel, coloursl641; 
dword pixel, end of frame = frame rowe*frame cola; 
dword a limit = end of frame - 1, blimit = a limit - frame cols; 
byte num_thresholds= (byte)pow)2,bits) , threshold; 

/ create the array of thresholds and corresponding array of colours */ 
for(threshold=O; thresholdenurn thresholds; threshold++( 

thresholds[threshold] = (short) (2B5*(2*threshold_l()/(2*(num thresholds-U) 
colours (threshold) = (threshold*255) / (flue thresholds-i) 

for(fifoindex=O; fifoindexefifolen; fifoindex++) 
[f fifoifoindex)=O; 1* intialise the spreading array */ 

fifo_index=O, /* - probably not necessary as the fifo buffer is circular */ 

for(pixel=O; pixelsend_of_frame; pixel++) 	 /* process image / 

/ calculate the spread pixel, guantised version and error / 
SpreadPixel = ( (((long)*pSrc*+)<<4) 	fifo[(fifoindex++)%fifolen](s>4; 
threshold = num thresholds-i; 
while (SpreadPixel<thresholds [threshold)) threshold--; 
QuantisedPixel = colours [threshold] 
QuantError = Spreadpixel - (long)QuantisedPixel; 

*pDest++ = Quantisedpixel; / store the results (errors*16)*/ 
if (pixel<a limit) 

fifo[fifoindex 9 fifolen[ += QuantError*7; / filter element A */ 
if )pixel<b limit) 

fifo[(fifoindex+framecols)%fifolen) = QuaritError; 1* B */ 

fifo[(fifoindex*framecols-l)fifolen[ += QuantError*5 ;  1* C *1 
fifo](fifoindex*framecols-2)lfifolen[ += QuantError*3; / D */ 

return TRUE; 

LIsting 2 	The function Quantise_FIoydS() from quant/se.c (see appendix one for lull listing). 

The simple filter works, in that neighbouring pixel errors in the output it produces 

tend to cancel. At the lowest integer resolutions there is, however, a large amount of 

visible structure introduced. The visibility of this structure is sometimes masked by 

image movement, but not necessarily - in some cases it could be argued that it is 

actually enhanced. Representing one extreme of the cost/complexity trade-off, it is 

quite likely that simple does not offer the optimum balance for the video transmitter 

application. How much more complicated does a filter have to get in order to 

become sophisticated enough to produce significantly more attractive patterning? 

To answer this question three improvements on simple are explored below. 
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Improvement on 'simple' 

A combination of three factors are responsible for the 'wood grain-like' structure in 

the output of the simple filter. These are that the filter is one-dimensional, that it is 

purely deterministic and that the data is being presented to it in a conventional 

raster scan order. Change of any one of these factors could potentially improve the 

resulting diffusion pattern. The cost of each option is considered below. 

Keeping the raster processing order, the operation of the filter can only be made 

two-dimensional by expansion of the filter to include an element on another image 

line. The closest remaining candidates are pixels b, c and d in Figure 3.11. Allowing 

the filter to spread error energy in two directions should remove the severe 

directional bias that the single element filter suffers, however, the hardware cost of 

adding an element on another line is high. As mentioned above, increased filter size 

implies hardware costs in terms of error term calculation, diffusion and storage. 

Assuming that simple binary weights are used (e.g. 1/z  or ¼), the largest expense 

incurred in increasing the simple filter to two elements would be in error term 

storage, as errors would need to be stored for a complete image line. 

Use of an unconventional raster order would alter the diffusion pattern of simple. 

Although the filter would still spread all errors to the next pixel, that pixel would no 

longer always be to the right of the filter origin. Processing pixels in the diffusion 

system using an order that differs from the rest of the video link system would 

require memory and control to re-order the data both as it entered the diffusion 

system and on its exit. The amount of memory and logic required to manage the re-

ordering is dependent on how far the new processing order deviates from the 

conventional raster. The serpentine raster is probably the order that offers the lowest 

additional cost. Its use requires one line memory for each conversion and minimal 

logic (the largest part of which would be a line length counter). Use of the 

serpentine raster with simple would cause errors to be diffused to the left and right 

on alternate lines - one-dimensional diffusion with an alternating directional bias. 

Although this would help to alleviate the direction hysteresis, it would not stop the 

appearance of the vertical wood-grain pattern. 
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Introduction of a random element to perturb either the shape of the diffusion filter 

or the weights used can reduce the deterministic nature of the diffusion pattern 

produced. Although the introduction of noise can be used profitably to break up the 

deterministic patterns, care has to be taken that the low-frequency content 

introduced by the perturbing signal does not itself become distracting. 

In terms of hardware cost, introduction of serpentine raster order is the most 

expensive of the three options. Its expense, together with an anticipation of little 

effect and reports of its limited success when used to alleviate inter-line structure in 

bi-level output diffusion [WITFEN & NEAL 821 meant that the use of a serpentine raster 

was not explored. The costs of either a perturbed single element filter or a purely 

deterministic two dimensional filter are approximately the same. Reports of the 

successful application of perturbed diffusion filters in bi-level quantisation [LILICHNEY 

88] led to investigation of the perturbed filter route. 

The 'perturb' filter 

Like simple, the perturb filter spreads the whole of each quantisation error onto a 

single unquantised pixel. Instead of always spreading it onto the pixel to the right of 

the filter origin, however, this filter is equally likely to spread it onto the pixel below 

(i.e. either pixel a or b in Figure 3.16). The choice of which pixel to spread onto is 

made at random. 

_ - 
UL Li 

L 

Figure 3.16 A diagram of the 'perturb ' diffusion fl/fe,: 'denotes the position of the filter origin 
and 'a' and 'b' the two possible filler elements. 

When deciding on the location of the second element of the filter, three positions 

immediately adjacent to the filter origin remain as valid element candidates (pixel b 

in Figure 3.16 and the pixels to the immediate left and right of b). The distance 

between the three candidates and the origin is almost identical, thus in terms of 

implementation cost all three are roughly the same. Pixel b was chosen as it results 

in a filter that is balanced in its degree of horizontal and vertical diffusion. 
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The section of source code for the random decision between candidate elements in 

the perturb filter is given in Listing 3. 

void Quantise RandDifiuse) byte -pOriginal, byte pDest, byte bits 

dword pixel—index, end_of frame- (dword) (frame rowsframe cole) 
dword most of frame- (end of frame-i), last line- (end of frame-frame cola); 
mt candidate below; 
byte error mask- (byte) (Oxffsbits) pixel_mask= (byte) (Oxff<< (8-bits)) dummy; 

byte *pRaster=pDest, pSpreadee=pDest, error=O; 

Array_CopyFrame( pOriginal, pDest ); 

for(pixel_index=O; pixel_indexmost_of_frame; pixel_index++, pRaster++) { 
error = (byte) (*pRaster & error mask); 
*pRaster 	(byte) )pRaster & pixel —mask); 

/ choose the 'spreadee' from the two candidates */ 
candidate below = ((rand()>6) & OxOl); 
if (candidate below==FALSE) pSpreadee 	)pRaster 	1) 
else 

if (pixel index<last line) pSpreadee = )pRaster 	frame cols);  
else pSpreadee = &dummy; 

if ) pSpreadee 	pixel mask 
*pspreadee = (byte) (*pSpreadee + error) 

pRaster = (byte) )*pRaster & pixel_mask) 

Listing 3 	The function Quaiitlse_RandDIffuse() from quantlse.c (see appendix one for full IistIn). 

In terms of hardware, implementation of perturb differs from that of simple in the 

addition of storage for a line of error data, provision for two additions per pixel and 

the addition of a pseudo-random number generator. The software implementation 

takes advantage of random access to the pixel data instead of using a buffer for the 

error data, and it uses a C library function (rand) rather than a discretely coded 

pseudo-random number generator. 

Results of the perturb filter are shown in Figure 3.17 and Figure 3.18 alongside those 

of simple. A significant difference can be seen between the dithering patterns at all 

resolutions below 4 bpp. 
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Figure 3.17 Comparison of the results of the simple' and 'pe#urb' diffusion filters (lend). The 
Images on the left have been processed with the 'simple' filler, those on right the with 
'perturb' Greyscale resolutions range from 4 bpp in the top fine to 1 bpp at the bottom. 
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F/&lu,e 3.18 Comparison of the results of the 'simple' and 'perturb' diffusion filters (salesman frame 
0). 
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As expected the patterning produced by perturb has less visible structure and a more 

'noise-like' quality than that produced by simple. Unfortunately, the reduction in 

structure has not led to the desired reduction in visibility of the diffusion pattern. 

Closer scrutiny of the diffusion patterns by considering difference images (processed 

image minus source image) gives some insight into the problem. Consider the 

sections of the diffusion pattern produced when reducing lena to 2 bpp using floyd-

steinberg, perturb and simple shown in Figure 3.19. 

Figure 3.19 SectIons of diffusion pattern from lena reduced to 2 bpp using (a) 'floyd-stelnberg (b) 
'simp/e and (C) 'perturb. These are cropped sections of images that were generated by 
subtracting the source Image from each processed image and biasing the results around 
mid-grey- 

In Figure 3.19 (b) the wood-grain problem of simple is evident. This is the problem 

that the perturb filter was designed to combat. Little of this vertical structure can be 

seen in the pattern produced by perturb (c), thus the introduction of the perturbing 

element has served to alleviate the wood-grain pattern. This success in removing the 

wood-grain pattern, however, has not translated to reduced overall pattern 

visibility. This is due to the complication of a new problem associated with the 

diffusion pattern produced by perturb. Comparison of the grey levels in the three 

images of Figure 3.19 shows that the pattern produced by the perturb filter has a 

much higher magnitude than the others. It is this magnitude that gives the pattern 

its visibility. 

An increase in diffusion pattern magnitude was not anticipated as a side effect of the 

perturb filter, no mention of such a problem with reference to perturbed error 

diffusion had been found in the literature. Careful analysis of perturb filter output 

and consideration of the behaviour of the filter in areas where problems were 
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observed revealed the mechanism that was giving rise to the unexpected scale of the 

noise. With simple, the error diffused to any pixel could not exceed the largest step 

between the quantisation steps used by the quantiser. Indeed, this is true of any 

deterministic filter as long as the sum of the error components is 100%. In the case of 

perturb, however, the total amount of error energy added to a pixel can exceed the 

largest quantisation step if the errors from two quantisations are added to it. If the 

sum of the two errors is greater than the next quantisation step, and the pixel that 

they are added to was already close to the next quantisation threshold, the resulting 

pixel may end up two quantised output shades higher than some of its neighbours. 

The increased inter-pixel contrast that stems from these 'double diffusions' explains 

the magnitude of the pattern observed in the output of perturb. 

The problem does not occur in the 1 bpp case as there is only one quantisation 

threshold and two output shades. Where double diffusions occur that result in the 

addition of a large amount of energy in this case, much of the energy is simply 

diffused further away. This difference in behaviour above 1 bpp may explain why 

mention of this effect was not found in the literature. 

The 'safe perturb 1' filter 

A solution to the problems of perturb was sought. The resulting filter, safe perturb 1, 

does not make the choice between filter candidates at random. The extra-bright 

pixels in perturb's output occurred when two errors were added to one pixel and 

both the additions caused the value of the unquantised pixel to cross quantisation 

thresholds. Constraining the freedom with which the filter can make candidate 

choices in such a way that it only chooses candidates that have not already crossed a 

quantisation threshold (as the result of a previous diffusion) prevents this 'double 

significant diffusion' problem from occurring. In the case of the two candidates used 

in perturb, diffusions can only have previously happened to the pixel to the right of 

the filter origin. Thus the pixel below the origin can always be diffused to without it 

crossing two quantisation thresholds when using uniform quantisation steps. This is 

the behaviour exhibited by safe perturb 1. Source code for the portion of the 
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simulation function used for safe perturb 1 that differs from that used for perturb is 

given in Listing 4. 

void QuantiseSafeRandDjffusel) byte *pQriginal, byte *pDest. byte *pTemp, byte bite 

[code removed] 

for(index=O; indexamost_of frame; index-+, pRaster++, spreading=TRu) 
error = (byte) (*pRaster & error—Mask); 1 impending quantisation error *1 
*pRaster = (byte) (*pRaster & pixel mask); 7* quantise the pixel *7 

candidate below = ((rand)>>6) & OxOl); 	7* initial random Choice / 
if (candidate below==FAL$E) pSpreadee = (pRaster + 1); 
else 

if (index.zlast line) pSpreadee = (pRaster + frame cols) 
else spreading = FALSE; 

if ( (pSpreadee-*flaggap)==TRUE) 
if )index=last line) pSpreadee = )pRaster + frame_cole); 
else spreading = FALSE; 

if )(spreading==TRUE) && (pSpreadee < pixel_mask)) 
old _bit = )byte) )*pSpreadee & flag mask) 
•pSpreadee = (byte) )pSpreadee + error) 
if ((*p$preadee&flag mask) =old bit) *(pspreadee+flag gap) = TRUE; 

[code removed] 

Listing 4 	Part of the function Quantise_SafeRandDlffusel() from quantlse.c (see appendix one for 
lu/I listing). 

In terms of hardware, implementation of safe perturb 1 differs from that of perturb in 

the added requirement for a 'significant diffusion' flagging system. A Boolean flag 

needs to be generated indicating whether each pixel has undergone significant 

diffusion when it was the pixel below the filter origin. The error steering logic that 

controls where error components are diffused needs to be altered to take this flag as 

an input. In addition, instead of just storing a line of pixel errors (as was possible 

with perturb), the result of the diffusions of error energy from above must be 

computed a line before those from the left. These partial results are stored for the 

whole line as the flag from the first diffusion must be calculated before the 

destination of the quantisation error from the pixel above is decided. 

Results of diffusion using the safe perturb 1 filter are shown together with the same 

images produced using perturb in Figure 3.20 and Figure 3.21. A greyscale ramp is 

used as the source image in Figure 3.21 to highlight the differences between the two 

algorithms. 
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perturb 	 safe perturb 1 

Figure 320 Comparison of the results of the 'perturb and 'safe perturb 1' dIffusion filters 
(salesman frame 0). 

3.46 



1 bpp 

- chapter three Algorithm Design and Evaluation - 

OEM 

3 bpp 

perturb 	 safe perturb 1 
Figure 3.21 ComparIson of the results of the 'perturb' and cafe perturb 1' diffusion filters 

(1reysca/e ramp). 
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In both Figure 3.20 and Figure 3.21 the more limited nature of safe perturb l's 

random behaviour can be seen to reduce the visibility of its diffusion pattern in 

comparison to that of perturb. In particular, higher perceived contrast in the 

greyscale ramps diffused using safe perturb 1 demonstrates a higher perceived image 

dynamic range due to the lower magnitude of its diffusion patterning. 

The results of safe perturb 1 are compared with those of simple in Figure 3.22. At 3 bpp 

and 4 bpp little difference between the output of the two algorithms can be spotted 

without close scrutiny. At 2 bpp a difference between the patterns produced is 

evident, but the degree to which the patterns are visible is similar. When compared 

to the comparison of the results of simple and perturb at 2 bpp (see Figure 3.18), this 

demonstrates some improvement gained in introducing the safe diffusion scheme of 

safe perturb 1. 
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Figure 3.22 Comparison of the results of the 'safe en'urb 1' and 'simple' diffusion filters 
(salesman frame 0). 
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The modifications to the perturb filter do not, however, solve all its problems. Now 

that the increase in magnitude has been eliminated another problem is evident. The 

problem is clearest in the greyscale ramps of Figure 3.21 where thin bright 

horizontal false contours can be seen. The contouring is different from that normally 

associated with quantisation. Contours are normally due to abrupt changes between 

areas of uniform tone where the value of the pixels in the original image cross the 

thresholds used in the quantiser. Those produced by safe perturb I are due to an 

abundance of bright pixels in these areas. 

Little of the contouring problem is evident in the diffused salesman images in Figure 

3.20. This is due to the large amount of high frequency content in the original 

salesman image. It would, however, be apparent in the results of processing any 

images that contained areas of slow greyscale gradient that cross a quantiser 

threshold. Sections of difference images highlighting the diffusion patterns 

produced when reducing lena to 2 bpp are shown in Figure 3.23 demonstrating the 

appearance of the contours in a real image. 

(a) perturb (b) safe perturb 1 

Figure 3.23 Sections of diffusion patterns produced when reducing lena to 2 bpp using (a) the 
'perturb' filter, and (b) 'safe perturb 1'. 

Consideration of the action of safe perturb I as it passed over areas where the original 

pixels were around one of the quantiser thresholds highlights a factor of the 

algorithm that contributes to the contours. If, during its first pass through the 

diffusion filter, an error is added to a pixel whose initial value was just below the 

threshold, that diffusion is nearly always significant. This can lead to a situation 

where many of the flags in an area are set. When the filter then passed over this area 

again on its next line of processing it is forced into diffusing errors downwards 
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where, if the area is relatively flat, many of the pixels may again be close to the same 

threshold. 

The 'safe perturb 2' filter 

An attempt was made to alleviate the contouring problem of safe perturb 1 resulting 

in a further filter named safe perturb 2. Instead of always diffusing downwards when 

the candidate to the right of the filter origin has already had a significant diffusion, 

this filter makes a random choice between diffusing the error to the pixel below, or 

discarding the error completely. 

The modification has little impact on the hardware implementation of the filter, 

other than minimal changes to the error steering logic. It is unlikely that these 

changes would make it any more expensive to implement than safe perturb 1. 

Results of diffusion using the safe perturb 2 filter on the vertical greyscale ramp are 

shown together with those produced using safe perturb 1 in Figure 3.24. 
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4 bpp 

3 bpp 

safe perturb 2 	 safe perturb 1 

Figure 3.24 Comparison of the results of the 'safe perturb 2' and safe perturb 1' diffusIon filters 
( 1,eysca/e ramp). 

3.52 



- chapter three Algorithm Design and [valuation - 

Compared to that of safe perturb 1, the results of safe perturb 2 show a only a small 

improvement in the false contours. A loss in overall image brightness (due to 

discarding the error energy) is, however, quite apparent in some areas (e.g. the 

bottom of the greyscale ramps). 

Sumina,y 

This section has considered a selection of different filters: simple, perturb, safe perturb 

1 and safe perturb 2. These custom filters are considerably smaller than the multi-

element filters (such as floyd-steinberg) normally used in image processing 

applications. The performance of the filters has been compared at a range of 

greyscale resolutions. All the filters perform at least as well as the raw truncator. 

At the higher greyscale resolutions simple offers similar performance to that of floyd-

steinberg. Yet it is much smaller and does not require the dividing up of the error 

term. These higher resolutions represent the likely pixel depth used in the video 

link application. Incorporating the simple filter into the application would allow 

video compression to be achieved at very low cost. 

The perturb filter achieved poorer results than was expected. It produced a pattern 

with a particularly high magnitude, that proved to be highly distracting. As it is 

significantly more complicated to implement than simple, there is no advantage to be 

gained from its use. 

Subsequent modifications to the perturb filter (selectively inhibiting the random 

element) resulted in the improved safe perturb 1 filter. These changes reduce the 

magnitude of the noise pattern, leading to a performance comparable to that of 

simple. In areas of scenes exhibiting smooth changes in grey level safe perturb 1 can 

offer superior performance. Movement of its noise-like pattern is often less 

distracting than that of simple's "wood-grain". This is especially true at low 

resolutions. Whether this improvement is perceived to be significant (and thus 

justify the extra cost involved in implementing safe perturb 1) is explored in the 

subjective testing of chapter five. 

Safe perturb 2 was developed as an attempt to alleviate contouring effects sometimes 

present in the output from safe perturb 1. It achieved only limited success, reducing, 
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but not eliminating the contours. More importantly, it had the unwanted effect of 

reducing overall image contrast (due to the discarding of error energy). Because of 

this added problem, it was not considered further. 

Conclusions 
The aim of this chapter was to design and evaluate the implementation of error 

diffusion algorithms for use in the coder section of the video link application. 

Several features of the quantiser's behaviour and attributes of the diffusion filter 

have been identified as components that can be altered in order to balance various 

aspects of behaviour and the system cost. 

Flexible quantiser architectures were considered, however insufficient benefit could 

be found to justify their high implementation cost. Instead, a simple binary 

truncating quantisation is employed. The main advantage of this technique is that it 

can be realised without any hardware. 

Single element diffusion filters were used in the software simulation. These are 

much simpler than the multi-element filters generally employed in error diffusion. 

Their use in the radio video link application can be justified by the relatively high 

greyscale resolution and the fact that it processes moving images rather than stills. 

At greyscale resolutions of 3 bpp and 4 bpp a purely deterministic filter (simple) has 

been shown to offer results similar to those from the much more complicated filter 

of Floyd & Steinberg. At lower resolutions, however, the limitations of the filter are 

apparent: a clear wood-grain like structure in the diffusion pattern. 

Attempts were made to break up the deterministic qualities of simple by introducing 

a random element. Although the initial results were disappointingly noisy, selective 

inhibition of the random element alleviates this problem. 

Reducing the resolution of the final image to 3 bpp, (the level required to achieve 

the desired 2:1 compression) results in a loss in image quality with all the filters. The 

two which incur the least penalty in quality are simple and safe perturb 1. 
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The software versions suggest that only a minimum of hardware is needed to 

implement the algorithms. This is tested via actual hardware implementation of 

these two algorithms in the next chapter. 

Chapter five explores the validity of the hypotheses concerning the relative qualities 

of each diffusion filter's output developed in this chapter. 
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Hardware LI]nplementation 

This chapter catalogues the hardware implementation of the two error diffusion 

algorithms identified in chapter three as being the most suitable for use in the radio 

video application. They are implemented in hardware in the form of a Field 

Programmable Gate-Array (FPGA). System level design is discussed, highlighting 

the architectural issues involved in designing a system in which the algorithm 

hardware could both be used and tested. Attention is drawn to the compromises 

that were made in using the chosen architecture (the imputer). This is followed by 

consideration of the FPGA design itself: explaining the design philosophy, the 

architecture of the FPGA design and details given of how the internal architecture is 

affected by the architecture of the overall system. 

Introduction 
Hardware implementations of error diffusions algorithms are pursued for two 

reasons: to allow the evaluation of their output at frame rates higher than is possible 

in the software simulations and to prove the hardware suitability of their 

architecture. The two algorithms implemented are simple and safe perturb 1. Simple 

represents a lowest-cost error diffusion algorithm. Safe perturb 1 is slightly more 

sophisticated, but also significantly more expensive to implement. 

In addition to the design of the algorithmic processing hardware itself, several other 

design tasks are posed by successfully implementing the algorithms in a usable and 
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testable hardware form. In particular, decisions need to be made regarding the 

choice of implementation technology (ASIC, FPGA or discrete logic) and the test 

system architecture. The technology chosen is field programmable gate array 

(FPGA). The design of the processors is tailored to operate primarily as a slave-

processor in a small image-processing computer architecture called the 'imputer' 

[vELMcoTr94]. One of the processors (safe perturb 1) is designed to operate with a 

fixed output resolution of 4 bpp, the other (simple) can be operated with output 

resolutions of 1, 2, 3 or 4 bpp. 

The reasons for selecting this particular solution and its subsequent design and 

testing are the subject of this chapter. System level issues are considered first, 

including the choice of implementation technology, the architecture used for the 

processor design and the overall test system architecture. This is followed by a 

presentation of details of the internal FPGA architecture and its low-level hardware 

design. 

Implementation technology 
Both the processors and control logic are purely digital thus there are several 

options open when considering how to actually produce the hardware 

implementation. These options include the full design of a digital ASIC, use of a 

mask-programmable gate-array part, the programming of an FPGA or constructing 

the entire circuit from discrete logic ICs (e.g. 74 series). 

The complexity of the design (the final design is equivalent to approx. 7000 gates) 

means that implementation in discrete parts would be a lengthy task, difficult to 

revise or replicate. An integrated solution is therefore sought. A desire for rapid 

turnaround time and the insensitivity of the prototype system to unit cost leads to 

the decision to use an FPGA as opposed to fabricating an ASIC or designing a mask 

for a mask-programmed gate-array. 

A combination of software tools (schematic capture, behavioural simulation, and 

design place & route tools) and the FPGA programmer offer a complete path from 

design entry to the production of working parts. With these, design revisions can be 
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entered schematically, simulated and a new device produced within a single 

working day. 

If the design is ever to go into volume manufacture, cost reduction of the design is 

possible through migration of the design from FPGA to mask programmed device. 

Processor implementation 
The two algorithms are implemented as individual processor modules within the 

FPGA. The design of the processor hardware is discussed in this and the following 

sections. Before considering the implementation of logic to perform each of the 

computational tasks required in the processors, the overall architecture of the 

processors is considered. 

Processor architecture 

The software written to perform error diffusion during the algorithm development 

stage describes the execution of the algorithms using purely serial computation on a 

Von Neumann machine [GLASSER & DOBBERPUHL 85]. In terms of the system 

architecture, these implementations are limited in speed. This is due to both the use 

of a single arithmetic logic unit (ALU) for all computation and the need to control 

the execution of the algorithm using a serial combination of fetch-execute cycles. 

Although this architecture limits performance, its generality is advantageous during 

the algorithmic development stage where it permits alteration of the algorithm 

through changes to the controlling software alone. No such generality is required in 

the implementation of specialised hardware to execute fixed algorithms. This 

permits the use of architectures more suited to the computation and data flow 

involved. In addition, the amount of hardware can be tailored according to design 

goals, trading off factors such as execution speed against power consumption and 

implementation cost. 

The high level data flow required in the two error diffusion algorithms 

implemented is shown schematically in Figure 4.1 below. 
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Figure 4.1 Data flow within the error diffusion algorithms. 

With the exception of the error feedback, the flow of data in the algorithm is 

essentially serial. The schematic describes the separate computational tasks of the 

algorithms and the order in which order they are performed. As such, they also 

describe the basic architecture of a dedicated hardware implementation of each 

algorithm. The functional blocks of the schematic are thus equivalent to 

computational logic and the connectivity shown between the blocks equivalent to 

signal routing. 

In addition to the details of the computation involved in the algorithms many other 

factors influence the architecture of the processors. These factors include the design 

goals of the system and limitations of the implementation technology. The speed at 

which the processors have to operate turns out to be a key influence in the choice of 

architecture for the processors. 

The video sensor intended for use with the hardware processors outputs video at 50 

frames per second. Each frame contains 312 x 287 pixels. If the processors can be 

implemented so as to process a 256 x 256 pixel portion of every frame coming off the 

sensor they will be able to output a sequence far in excess of the minimum image 

specification outlined in chapter one. (Four times both the horizontal and vertical 

resolutions and five times the frame rate). Although this implies an output image 

sequence bandwidth much higher than intended for the video radio link (3 Mbps 

even at 1 bpp) it would also allow evaluation of the algorithms for use in other 

applications. This is the speed target used when evaluating the processor 

architecture and translates to a pixel rate of approx. 3 MHz (i.e. 300 ns per pixel, 

ignoring frame overheads). 

The mainly serial data flow of the algorithms would permit the near exclusive use of 

combinatorial logic. The only exception is when implementing the memory required 

in the feedback paths. This would use the least hardware, but the complexity of the 
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logic required is too great to meet the speed target. This can be shown in the 

following consideration of the computational tasks of a processor implementing the 

simple algorithm. To process each pixel it must first scale it down, then add a stored 

error to it, quantise the sum and rescale the result. Ignoring routing inefficiency, 

FPGA gate delays (approx. 20 ns) limits all critical paths in combinatorial logic to less 

than 15 gates (if the result is to settle within the specified 300 ns). As implementation 

of a single full adder itself has a critical path of 16 gates, the computation of the 

simple algorithm could not be performed within the 300 ns target. Purely 

combinatorial architectures are therefore ruled out. 

Although a single purely combinatorial circuit cannot operate fast enough, more 

than one such circuit could be operated in parallel in order to achieve the required 

speed. However, the size (and thus cost) of the hardware grows linearly with the 

addition of each new unit. A more hardware-conservative approach is to break the 

combinatorial logic into sections that can be implemented in a shorter time, 

arranging the sections so that they can be used in parallel. Whilst running the 

hardware in parallel does not cut down the time required to process each pixel, it 

allows the processing of several pixels to be overlapped. This overlap yields an 

increase in pixel throughput. 

The processing architecture described above is that of a pipelined processor. The 

whole processor is divided up into individual serial steps of processing. These are 

implemented by separate pieces of combinatorial hardware, connected via private 

buses through latches (see Figure 4.2 below). These pipeline latches control the flow of 

data along the pipeline and are typically clocked using two or more phases 

(preventing race hazards). Feedback paths can easily be implemented by creating 

loops in the pipeline. 

ornlnatorLJ H a 
	1!0J latchJ 

Figure 4.2 The segmented architecture of a p/peiinedpivcessor sections of combinatorial logic 
are separated bypipelined latches. 
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To ensure an efficient implementation using a pipelined processor a processing task 

must satisfy two conditions: 

• it must be able to be divided into sub-tasks that take roughly the same amount of 

time to execute, and 

• the degree to which the processing of data in the pipeline depends on the 

outcome of the processing of other data within the pipeline must be carefully 

limited. 

The degree to which the first condition is satisfied governs how much of the 

processing can be overlapped. It thus determines to what extent the architecture can 

speed up the repeated execution of the task. The second criterion relates to how 

efficiently the problem can be implemented. If there are dependencies in the 

processing (the result of a calculation from one part of the pipeline affecting how 

processing earlier on in the pipeline should be performed) the pipeline may have to 

be branched early on. The sections should run in parallel until it can be determined 

which branch should feed data into the output path of the processor (the other 

results being discarded). If there are many such dependencies, implementation 

becomes expensive as the amount of hardware grows exponentially with the 

number of processing options. 

The diffusion algorithms satisfy both conditions. It will be shown later that they can 

be broken down into chunks even enough that the processing can be sufficiently 

overlapped (achieving the 300 ns pixel cycle). The fixed nature of the algorithms 

satisfies the second condition (processing dependencies are limited such that any 

intermediate data need only be stored for a short time). 

There is a compromise in the use of a simple continuously operated pipeline 

architecture in conjunction with data in a conventional raster. As a raster stream of 

image data contains spatial discontinuities a pipeined diffuser will spread error 

energy across these line and field boundaries in the image. Fortunately, the extent of 

this problem in the case of the simple and safe perturb 1 algorithms is limited by their 

simplicity. The first pixel of each line in the output of the simple processor will be 
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influenced by the last pixel of the line before. In the output of the safe perturb 1 

processor the problem will extend to the top line of each field. 

No distracting edge contamination of this sort was noticed in the still images 

produced during software simulation. However, the speed of the hardware 

processors (which it is hoped will mask the noise element of the diffusion) may 

make any correlation between opposite edges more apparent (and thus 

objectionable). Interestingly, images produced during the simulations demonstrate 

how edge contamination can help to break up the particularly deterministic 

patterning that would otherwise be found at the beginning of lines in very flat areas 

of an image. 

Processor logic design 

Designing the processor hardware requires identification of the various processing 

steps of the algorithm, designing logic to implement these and partitioning the 

design into parts that will form the individual sections of the processor pipeline. The 

design is partitioned so that all pipeline sections have propagation delays less than 

150 ns. This permits using both edges of a 300 ns period, 50% duty cycle, square 

wave to clock the pipeline (giving a pixel rate through the processor equivalent to 

300 ns - satisfying the speed requirement outlined earlier). 

The design of the two processors is discussed below. Full schematics of the 

processors' implementations can be found in appendix two. Before considering the 

complete processor circuits, implementation of their constituent parts (the 

prescalers, diffusers, quantisers and rescalers) is first explained. 

Prescalers 

The prescalers are required to ensure that the pixel stream that enters the diffuser is 

always a certain level lower than the maximum size possible (given the number of 

bits used to represent it). The amount by which it must be lower is dependent on 

the maximum error that can be fed back from the quantiser and is therefore 

determined by the output resolution of the processor. 
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Assuming that the input data is full scale and that a linear function is to be applied 

the action required of the prescaler logic is to linearly reduce the input pixel signal 

amplitude. Although this is essentially a division, the divisor is fixed for a given 

system output resolution and all output resolutions require divisors of the form 

2'Y(2-1) which can be rearranged as a binary shift-subtract operation. In dedicated 

hardware the binary shift can be implemented via signal routing and a subtracter 

can be implemented using an adder and 2's complement arithmetic. This 

arrangement is shown in Figure 4.3 below. 
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Figure 4.3 Hardware Implementation of the prescafer. The bus labels indicate their width. (The 
bus width shown at the input to the 25 complementgenerator leads to the correct 
scaling for a processor with a 4-bit output resolution.) 

The scaling implemented by this circuit is not perfect as the portion of the input 

pixel discarded during the binary shift leads to an error in the division (unless all 

discarded bits are zero). This non-linearity could be avoided by not discarding the 

bits, using a wider adder and increasing the number of bits used to represent the 

prescaled output. Such a level of accuracy is not deemed important enough to 

warrant this increased expense in the implementation of the prescaler and the 

consequence it would have on the expense of the remainder of the processors. 

Diffusers 

The action required of the diffusers is simply to add an error term to a pixel. 8-bit 

full adders are used for this task. 

Quan Users 

Possible quantiser behaviours were considered in chapter three. It was concluded 

that the behaviour of a truncation operation is sufficiently sophisticated for the 
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needs of the video link. This solution is purely combinatorial and in fact can be 

implemented using signal routing alone. 

Unlike some of the more sophisticated quantisers considered in chapter three 

(which would have dictated the used of temporary latching of results and/or the 

dynamic presentation of different quantisation thresholds) implementation of the 

truncating quantiser does not impact on the overall processor architecture. 

With this quantiser, calculation of the quantisation error term is also trivial. This too 

can be implemented with routing alone. 

Rescalers 

Used in a radio video link, the data from the output of the quantiser would be sent 

via the radio transmitter to the receiver. The data would then be interpreted by the 

receiver for display. Before display it is likely that the data would have to be 

translated (if only to make best use of the dynamic range). For example, in a system 

using a 2 bpp compressed data stream and an 8 bpp greyscale display, 11 2  the 

brightest code of the data stream would be translated to 1111 1111 2  (or 255 0). For 

systems with integer bpp compressed and display pixels, all such translations can be 

made by using the bits of the compressed pixel as the most significant bits of the 

display pixel, then filling out the lower bits by replicating the compressed pixel. In 

the same example as above 10 2  becomes 1010 10102, 01 2  becomes 0101 0101 2  and 002  

0000 00002 . This conversion is slightly non-linear where the width of the 

compressed pixel is not a factor of the display pixel. This is the action of the rescaler. 

To reduce the number of processing steps in the test system the rescalers are 

implemented as though they are part of the diffusion processors. This means images 

can be processed using a grab-process cycle rather than grab-process-rescale cycle. If 

the compressed sequence is required from theseprocessors, the relevant number of 

most-significant bits of the rescaled output can be used and the others simply 

discarded. 

The rescalers can be implemented using signal routing. For the simple processor this 

is complicated slightly as its output resolution (on which the nature of the rescaling 

4.9 



- chapter four Hardware Implementation - 

operation is dependent) is variable. The variable behaviour can be implemented by 

multiplexing the various possible results. 

The 'simple' processor 

The simple algorithm adds the error from the current quantisation onto the next 

pixel in the raster scan. It consists simply of a pre-scaler, a quantiser, a diffuser and a 

rescaler. These are connected together as shown in Figure 4.4. The feedback path 

goes directly from the quantiser output to the input of the diffuser (through two 

latches). The positions of the latches in Figure 4.4 show how the processing logic is 

divided into sections of pipeline. 

rresca It ,  r 	 quafltisrr 	 rescalir 
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Figure 4.4 The 'simple' error diffusion processor pipeline. The constituent parts of the processor 
are shown, separated by the pipeline latches. The feedback path followed by the 
quantisation errors can be seen below the diffusing quantiser. 

The 'safe perturb 1' processor 

The safe perturb 1 processor is similar to simple except that instead of always adding 

the quantisation error to the next pixel in the raster scan there is a chance that it will 

instead add it to the pixel one line later in the raster scan (i.e. the pixel below rather 

than the pixel to the right). The combination of a boolean flag and a bit from a 

pseudo-random bit sequence (PRBS) is used to determine in which direction the 

current error should be spread. The flag comes from the first adder of the diffuser 

and is set if the pixel exiting it has already received a 'significant diffusion' (in this 

case, the flag ensures that it doesn't receive another diffusion at the second adder). 

The line long separation between the adders of the diffuser corresponds to a section 

of pipeline 9-bits wide and 512 latches long (8-bits for the pixel and 1 bit for the flag). 

Unfortunately, implementation of this shift register constitutes more gates than are 
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contained in the largest FPGA considered for the design. Instead of implementing 

this section internally the pipeline has to be broken, the two ends brought out of the 

FPGA and connected to either side of a FIFO RAM device. Simultaneously reading 

from the FIFO whilst writing to it will simulate a pipeline section. The length of the 

section is controlled by loading the FIFO to a certain 'depth' with data before 

operating the pipeline. (This FIFO setup stage is referred to as 'pre-loading' in the 

remainder of the text.) 

The PRBS generator is constructed using a classic shift register with exclusive-or 

feedback [PRESS 92]. It creates a sequence that repeats every (2181)  bits. In order to 

minimise the chance of visible patterning it is clocked asynchronously to the reset of 

the safe perturb 1 processor. 

A schematic of the hardware implementation of the safe perturb 1 processor is shown 

in Figure 4.5. There are three notable differences between it and the simple 

processor: the addition of the second adder to the diffuser, the break in the pipeline 

where the FIFO device fits in, and the more complicated error feedback path. 
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Figure 4.5 The 'safe perturb 1' error diffusion processor pipeline. The constituent parts of the 
processor are shown, separated by the pipeline latches. 

Test system architecture 
Hardware implementation of the algorithmic processors themselves is of little use if 

there is not a system in which they can operate and be tested. The objectives of the 

hardware implementation are to prove the processor design and to allow the 

processing of images at high frame rates. The test system must, therefore, allow both 

re- 
5ca1cr 
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careful monitoring of the processors' operation and allow the processors to 

manipulate sequences of video frames at significant speed. 

In order to verify that the diffusion processors work correctly (and, therefore, that 

the hardware implementation is valid), it is necessary that the input and output data 

of the processors can be carefully monitored. Analysis of the input and output data 

and comparison with that expected, can quickly determine whether the algorithms 

are being executed properly. The ability to load specific data into the system permits 

two useful abilities: the use of synthetic input data (thus giving carefully controlled 

test conditions that simplify the testing and any necessary debugging) and the 

ability to make direct comparison between the hardware and software 

implementations by using the same input data. The ability to store input and output 

inside the test system for later retrieval is also of value as this allows analysis to be 

performed off-line. Another factor
, 
 to consider is that the operation of the processors 

during the testing should be as close to their intended operation in the radio video 

link as possible. The less this is true the more artificial the tests and thus the less 

value in the results. 

One option for the test system is to implement the entire radio video link system. Its 

architecture, which is primarily serial, is shown again in Figure 4.6. Data flows 

continuously along dedicated paths from the sensor, through the processing and 

radio hardware, ultimately reaching the display. 
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Figure 4.6 The proposed radio video link architecture. The diffusion processor would form part 
(or all) of the coder block of the transmitter. 

By definition, this system would satisfy the requirement to allow operation of the 

processors in an environment similar to that of the radio video link. In this pixel 

stream architecture the coding processors operate on live image input 'on-the-fly' 

and the rest of the system processes and transmits the data with minimal storage. 

Unfortunately, the continuous processing, lack of memory and the use of separate 
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dedicated private data buses, do not lend the architecture to simple testing and 

debugging. 

The radio video link architecture doesn't offer the degree of testability required thus 

another architecture must be implemented for the test system. The monitoring and 

flexibility requirements could be met through extension of the radio video link 

architecture to include local storage, more general buses and allow more high level 

control. In addition to offering a test system, this would also offer an example of a 

radio video link system. It would, however, be costly in terms of implementation 

time and be a poor example of the intended radio video link - the features that make 

the system attractive as a cheap low cost radio video link would be compromised. 

The fact that the architecture of the final application is not suitable for use in testing 

the processors has an advantage in that it opens up the possibility of adopting the 

architecture of an existing test system. This offers savings both in design time and 

technical risk. One such system is the 'imputer'. This is a miniature image processing 

system based around an 8032 microcontroller, a local CMOS video sensor (an ASIS-

1011), frame grabbing hardware and static RAM [VELLACOTF 94]. The architecture of 

the imputer is shown schematically in Figure 4.7. 

A 	 A the 	 11,11,1 bus 

bus 	 .chur.i5 bus 

y 

Frame 	RAM 
ILL 	Grabbing 

FPGA 

I ,  

\ICIIn 

-. 

 J Sensor 1 

11111)11111 motherboard lilt )1r(i 

Figure 4.7 The Imputer architecture 

The provision of a bus with access to most of the system features and the ability to 

quickly re-program the behaviour of the microcontroller (via firmware) make the 

inclusion of a co-processor in an imputer system simple. The two diffusion 

processors could be tested in the imputer architecture by designing them embedded 
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within a hardware co-processor that would act as a slave to the imputer's 

microcontroller. 

Unfortunately there are features of the imputer's architecture that compromise 

aspects of the diffusion processor operation. Use of the imputer grab logic implies 

the use of a common data bus for frame grabbing and diffusion processing. This 

prevents the two tasks from being performed in parallel, thus having a direct impact 

on image latency and system frame rate. The image latency incurred will be at least 

18 ms, as the first pixel cannot even enter the diffusion processor until the end of the 

grab of the entire frame. Using the serial grab-process cycle necessary, the system 

would only be able to achieve the full 50 fps frame rate of the sensor if the diffusion 

processing can be performed in the 3.3 ms of the video frame period not used by the 

grab hardware. Even ignoring processor set-up, this translates to a processing time 

of under 50 ns per pixel, which is impossible using the 70 ns imputer RAM as each 

pixel cycle includes one read and one write to RAM. Grabbing every second frame 

of data allows at least 20 ms for processing each frame, i.e. a more reasonable 300 ns 

per pixel (approx.) while achieving a system frame rate of 25 fps and minimum 

image latency of 40 ms. 

An advantage of using a serial grab-diffusion cycle necessary in the imputer 

architecture is that the pixel-level timings of the two functions can be independent. 

This is an attractive feature during the testing of the FPGA as it can be clocked at a 

much slower speed than the sensor without affecting the operation of the rest of the 

system. 

The imputer co-processor architecture frees the algorithmic processors from some of 

the constraints imposed by the 'on-the fly' pixel-stream processing architecture in 

which they would normally operate. These include the necessity to process data in 

raster scan order (the imputer architecture permits the random access of data). 

However, retaining the restriction of only accessing data in raster scan order keeps 

the implementation of the computational and control hardware of the algorithmic 

processors closer to that of a true pixel stream architecture. 
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Summary 

Embedding the diffusion processors in an FPGA that can be used as a co-processor 

in an imputer system offers the required flexibility of input and output to satisfy the 

testing requirements laid out above. There are, however, restrictions imposed by the 

implementation - notably the image latency and upper limit on processing speed 

imposed by thegrab-process cycle. 

In order to implement the processors as a part of an imputer co-processor whilst 

retaining the possibility of running the processors in an architecture that would not 

suffer from these restrictions, they are implemented using an internal FPGA 

architecture and control system. (This can easily be expanded to control a stand-

alone hardware system.) The architectures of the slave and stand-alone systems are 

expanded upon below. 

The slave FPGA system architecture 

As a slave co-processor the 'PINK2 Diffusion FPGA' fits into the imputer architecture 

as shown in Figure 4.8. The intention is to implement a control system that offers 

the imputer microcontroller (the 8032) the ability to process complete single frames 

of video using either of the diffusion processors. The FPGA is required to read the 

source image data and write resultant image data to the imputer RAM. Test images 

can be either be generated with code executed by the 8032 or downloaded from a 

host PC. Live video images can be captured from the local video sensor by the 8032 

using its local ADC and 'grab' logic. Live display of the output images can be 

arranged through use of an imputer 'video generator' card (also shown in Figure 

4.8). 
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Figure 4.8 The Imputer-slave PI1V1(2 FPGA system architecture. This shows large the functional 
blocks of the system, how they are distributed between impute, PCB5 and their 
common connection over the imputer bus. 

The stand alone FPGA system architecture 

To demonstrate the abilities of the diffusion processors without suffering the limits 

on processing speed imposed through the use of the shared data bus in the imputer 

architecture, the processors and FPGA control system are designed to operate in a 

stand-alone architecture. 

Figure 4.9 shows the constituent parts of a stand alone system. The FPGA is required 

to control an ADC to provide a constant source of digital video and clock a digital-

to-analogue converter (DAC) to produce the active portion of the video output. The 

pipelines of the diffusion processors would be fed directly with data from the ADC 

and their output would in turn feed the DAC. An external sync separator IC could 

be used to multiplex between the DAC output and a voltage reference to produce 

the sync component of the composite video. 
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Figure 4.9 The stand-alone FPGA system architecture. 
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The only external control required over the FPGA in this architecture is to determine 

which of the processors it uses and at what resolution. Simple control logic and 

some user switches could be used to achieve this. 

Such a system would be capable of performing continuous (and parallel) image 

capture, processing and display, at 50 fps and with very low image latency. 

Although the parts of the FPGA control system common to both imputer and stand-

alone architectures were designed to be usable in both, a stand alone system has not 

yet been realised. 

FPGA design philosophy 
The design and test philosophy adopted for the FPGA is one of strict hierarchical 

design and proof of design validity through rigorous simulation. The tools used 

(Viewlogic behavioural simulation tools and Actel FPGA layout tools) have proved 

reliable in the past, accurately predicting real-life FPGA performance. Considerable 

time is spent simulating the circuit behaviour before devices are actually 

programmed. 

The circuit is designed using an iterative design-simulate-evaluate approach. The 

behaviour required of the entire FPGA is broken down into logical tasks and an 

overall architecture of large functional blocks devised that will implement this 

behaviour. The functional blocks are sub-divided until each is relatively small. 

Finally, logic is designed to realise the behaviour required of each block. 
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The behaviour of each block of logic is first simulated in isolation from the 

remainder of the design. Any weaknesses revealed are addressed through the 

revision of the logic design and the simulation-verification process repeated. Once a 

number of related logic blocks have been successfully tested in isolation they are 

combined into larger models and tested together. Not only does this re-testing serve 

to 're-prove' the design of the individual blocks, it also reveals any errors in the 

lower level specifications made during the hierarchical partitioning process. Any 

problems found during simulation require the redesign of the sub-modules, isolated 

re-testing, then repetition of the larger tests. This process is iterated until a model of 

the entire FPGA is assembled. 

During the final stages of simulation parts of the imputer are modelled. This allows 

the simulation of both the interaction between microcontroller and FPGA and 

secondly, the processing of real image data stored in a RAM model. The only major 

part of the system not modelled is the FIFO. This means that although the 

individual components of the safe perturb 1 processor are tested, its entire pipeline 

cannot be simulated. 

Most simulations are conducted using net lists with ideal propagation delays. Once 

the design has been placed and routed 'worst-case' delay information is extracted 

and back-annotated onto the simulation net list so that 'worst case' device behaviour 

can be modelled. It is anticipated that the glitch-free design style used and 

successfully simulated operation (with both ideal and worst-case delays) will 

guarantee successful operation of a real-life device. 

Internal FPGA architecture 
Two tasks are required of the FPGA: low-level pixel processing and interaction with 

the remainder of the system. The highest level partition in the architecture of the 

FPGA logic reflects this division of task, as shown in Figure 4.10. 
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Figure 4.10 H1 _Oh level Internal FPGA architecture 

Both the diffusion processors are contained within the 'processor logic' block. The 

control logic supervises the operation of the processors within the rest of the 

imputer system. 

The design of the two diffusion processors is discussed at the beginning of this 

chapter. The remainder of the FPGA logic design is described below. The 

arrangement of the processors is described and their control needs identified. This 

allows implementation of a complete internal control system. The low-level design 

of the entire PINK2 FPGA is given in the design schematics in appendix two. 

The processors 

In addition to the implementation of the two error diffusion processors, two further 

processors ('raw' and 'truncate') are implemented. These extra processors are 

included to facilitate the evaluation of the diffusion processors. The raw processor 

allows data to be sent to the imputer systems display without any processing but at 

the same rate as is output by the diffusion processors. Truncate implements only a 

binary quantiser. 

The four pipelined processors are arranged in parallel within the FPGA. This 

enables them to share the same input data and a common path for output data. The 

arrangement of the processors is shown in Figure 4.11. 
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Figure 4.11 Data flow through the pipe//ned Image processors. This figure shows how 
processors are arranged within the FPGA in terms of data flow and outlines the large 
functional blocks within them. The processors can be seen to sit in parallel, sharing the 
same input data and outputting data to a common latch. 

Resolution 

During the algorithmic research the software algorithms were written to output data 

at resolutions between 1 and 6 bits per pixel. This degree of flexibility is not echoed 

in the hardware implementations both because of the difficulty of its 

implementation and because resolutions higher than 4 bpp offer a low compression 

ratio (1.6:1 and less). 

Two of the processors (simple and truncate) are implemented with limited variable 

output resolution (1 to 4 bpp). In order to keep the overall size of the design small, 

the second error diffusion processor (safe perturb 1) is implemented with a fixed 

resolution of 4 bpp. Software simulations show that this resolution would be more 

than adequate to achieve good quality images. 

To make the two processors variable in resolution their two's complement 

generators, quantisers and rescalers all need to be programmable. A 2-bit 'resolution' 

bus is used to communicate the resolution currently desired of the processors to the 

programmable logic blocks. Most of this programmable behaviour is achieved using 

multiplexers to make signal routing dependent on the resolution bus. 
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The control logic 

Operation within the imputer architecture requires the control system to interface 

with the microcontroller, operate the processor pipelines and access the imputer 

RAM for input and output. Stand alone operation requires synchronisation with the 

video sensor and control over ADC and DAC devices. 

An architecture of gray code state machines has been devised that delivers all these 

control and interface functions. The modular architecture allows re-use of logic 

blocks whose functions are common to both imputer and standalone modes of 

operation, while maintaining isolation between a mode of operation and logic 

blocks that are not required for it. This isolation means that operation in the imputer 

architecture is not reliant on the parts of the architecture specific to autonomous 

operation. Therefore they do not need to be designed before the rest of the FPGA is 

tested in the imputer system. 

A schematic representation of the all the control logic modules is given in Figure 

4.12. It includes all the state machines, the counter that generates raster address 

sequences and all inter-module connections. 

Figure 4.12 Schematic representation of the FPGA control logic and address generatot These state 
machines make up the control system that runs the pipe/med processors and interfaces 
them with the Impute, architecture. The modules are arranged within the schematic in 
approximate order of hierarchy from left to right. 
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Overall control 

Which mode of operation the FPGA adopts (imputer-slave or stand-alone device) is 

determined by the sense of an input shortly after power-up. Immediately after 

power-up, the FPGA is under the control of a state machine called the monitor. If the 

mode input is set to 'autonomous' then the monitor hands over control to the 

autonomous controller (which starts running a processor). Otherwise it retains control 

and enters an endless loop of waiting for processing commands from the imputer 

and acting on them. 

Control over the internal processors and external devices in autonomous mode is 

relatively simple as the processing is performed continuously. Other than staying in 

sync with the video sensor, the processing of each pixel is identical. In imputer-slave 

mode control is complicated by three factors: the need to stop processing after a 

frame of pixel iterations, having to generate the address rasters and having to set up 

all process variables before processing. (In autonomous mode the process and 

resolution can be changed asynchronously from the processing.) 

A simple processing cycle is followed in the imputer architecture. Valid commands 

from the imputer are decoded and stored in the command latch. When the monitor 

notices that a process command has been received it leaves its idle state, refreshes 

the process and resolution controllers, oversees the priming of the address generator with 

initial read and write addresses and then allows the process controller to run one of 

the pipelined processors for a full 256x256 frame of image data. The monitor then 

stops all activity and returns to its idle state. 

In keeping with the nature of the state machine architecture a modular approach is 

taken to the control protocol used between the modules. At the start of each 

monitor-led processing cycle, the monitor co-ordinates all the processing and lower-

level control logic, in preparation for processing. To keep independence between 

the design of the individual modules a handshaking protocol is employed that relies 

on signal states rather than absolute edge timing. 

The main requirement of the processing preparation stage is that all the logic that 

must be prepared is ready before processing begins. When it is time for the pre- 
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processing setup, the monitor raises the PREPARE line and keeps it raised until all 

relevant low-level machines have answered. The low-level machines answer by 

raising their _READY outputs, they do this immediately after they notice the raised 

PREPARE flag and only drop them again once PREPARE has been dropped by the 

monitor and they have finished their processing cycle. This handshake ensures that 

all the relevant low-level machines see the PREPARE flag and that the monitor waits 

until all of them are ready before allowing the process controller to start. 

Interdependencies between the low-level machines can be allowed for by making 

the operation of the dependent machine itself dependent on the _READY flag of the 

other. This system is used in the FPGA to make the address primer wait until the 

process selector has updated the current process before priming the address 

generator with the start address (which is process-dependent). 

This handshaking protocol allows a modular approach to be taken to the FPGA 

control system. As long as the protocol is observed additions or modifications to any 

of the control system can be made without altering the rest of the system. 

Low-level processor control 

The operation of the pixel processors is controlled by three of the state machines: the 

process selector, the resolution selector and the pipelined processor controller. 

Synchronised control over the address generator and clocking of the processors is 

achieved by the process controller. Which processor and at what resolution it 

operates at are determined by the outputs of the process and resolution selectors. To 

offer compatibility with the imputer and autonomous architectures the selectors are 

implemented as programmable state machines. They have four stable states and can 

be forced into any of these using the programming inputs. A simple logic input can 

be used to cycle around the four stable states. This allows simpler control in an 

autonomous application. 

Imputer R1M address generation 

The two binary sequences required to address imputer memory in order to access 

the image data in raster order are generated by the address generator. The address 

4.23 



- chapter four Hardware Implementation - 

generator is initialised by the address generator primer and clocked during processing 

by the pipelined process controller. 

Auxiliaiy parameter setup 

Control over a number of auxiliary parameters is available to the imputer in 

imputer-slave mode via the auxiliary setup machine. These parameters include 

internal clock frequency division, inhibition of the PRBS generator, re-preloading of 

the FIFO and altering the length of the shift register that the FIFO simulates. 

FIFO management 

The FIFO manager is a simple state machine the preloading and clocking necessary to 

simulate the long section of safe perturb 1 pipeline using the external FIFO. 

Simulation results 

Comments on the tools 

The logic simulation and FPGA layout tools prove powerful in allowing the full 

development of a complete FPGA model, including post-layout worst-case timing 

delay information. Unfortunately some minor aspects of the tools are problematic. 

Extracted layout timing limit information 

The timing extraction routines of the layout tool (ALS) cannot provide useful 

maximum critical path speed information when all the sequential logic is not 

synchronous. This is the case in parts of the FPGA (particularly around the imputer 

inputs where, instead of the system clock, an imputer signal is used to clock many 

latches). This leads to flagging of hundreds of irrelevant asynchronous hazards. The 

sheer volume of these, combined with the obscure node naming conventions, 

makes interpretation of the critical path timing analysis information practically 

impossible. 
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Version control 

Little control over schematic and layout files is evident. Without careful control over 

file names and locations it is easy to erroneously back-annotate a schematic with the 

extracted timing information from a layout generated from a different schematic. 

Problems exposed by back-annotation 

Simulation using schematics back-annotated with the worst-case delay information 

provided by the layout tools exposed only one problem in the design. An oversight 

in RAM write cycle timing led to the read/write strobe toggling at the same time as 

the address is latched on the FPGA outputs. During the ideal simulations this 

satisfies the RAM models timing requirements as both transitions occur 

simultaneously. With the addition of realistic delays the address bus takes time to 

settle violating RAM setup-and-hold requirements. This can, however, be remedied 

by changing the phase of clock used for a single set of latches. 

The lack of problems experienced in the move from ideal to worst-case delays 

demonstrates that the design methods used are robust The heavily pipe-lined 

nature of the processor logic protects it well against potential timing problems. The 

use of gray-code state machines and the handshaking protocols of the control logic 

prevent glitches and race-hazards. 

Hardware tests 
Once the FPGA devices were programmed with the PINK design, a series of tests 

followed to prove the design. The tests included general operation of the FPGA 

within the imputer architecture, exercise of the internal control system and, most 

importantly, the operation of the diffusion processors. 

The hardware set-up used for the tests, the test procedures and the results are 

discussed below. 
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Test system 

The full test setup comprises an imputer system (including PINK FPGA), a small 

video monitor and a host PC. This system is shown in Figure 4.13. 

U ------L 

M,  

- 	. 	 1 
I 	 .1 

4 	 77a 17  
Figure 4. 13 The PINK FPG4 test set-up. The Impute! systin (on/1IrI/nQ the //'G4) the power 

supply and monitor can be seen to the left of the PC. 

Physical connection of an FPGA to the imputer system requires a printed circuit 

board (PCB). An existing imputer PCB design was used. It required minor 

modification, but its use saved both design and fabrication time. 

To control the use of the FPGA within the imputer system firmware was written to 

run on the microcontroller of the imputer. A library of 'C' functions was created that 

implements all the control functions offered by the FPGA design. Together with a 

menu-based test program, this library was used to perform all the hardware tests. 

Full listings of the library functions and test software can be found in appendix 

three. 

The PC in the test system was used to write and compile the test firmware, for long-

term image storage and as a terminal emulator for interaction with the menu-driven 

imputer test program. 
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Test procedures 

Initial proof of test system integrity 

Initial testing of the system FPGA and software was made without live video input 

or output and without the video generator in the system. A test image was loaded 

into imputer memory from the PC. The test software controls processing of this 

image using one of the diffusion processors. The resulting image was then uploaded 

to the PC for inspection. 

After minor teething troubles with the test software a processed image was 

successfully uploaded to the PC. This simple result in itself proved much of the basic 

functionality of the system. Three conclusions can be drawn from the fact that 

different memory banks are used for the FPGA input image and its output image 

(and that a processed image has been successfully uploaded). The microcontroller 

has successfully initiated a frame of image processing, the FPGA has successfully run 

a complete frame of image data through a processor pipeline and finally, it has 

returned control of the imputer bus to the microcontroller. 

Checking algorithm implementation 

Verification that the processors had been implemented correctly was achieved by 

comparing the results of images processed using the processors against results 

obtained during the hardware and software simulations. To ease verification, simple 

test images were first used. The first images used were linear greyscale ramps (both 

vertical and horizontal) followed by more complicated (and thus more realistic) still 

images (e.g. lena). 

When making detailed analysis of the results from the hardware processors, the 

continuous nature of their operation has to be taken into account. The processor 

pipelines operate without ever being flushed, thus the exact result of processing 

data depends not only on the data and the processor logic, but also on the contents 

of the processor's pipeline before the processing began. When scrutinising the 

operation of the processors and comparing their results with those from the 

simulations, care has to be taken that the contents of the pipeline have been flushed. 
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This is possible by applying a reset pulse to the FPGA, which resets all internal 

pipeline nodes to zero. 

Live video input and display 

Once the basic operation of the processors had been investigated the video 

generator card was inserted into the system to enable the live display of processor 

output. 

During testing it was noted that data could not be written into the buffers of the 

video generator as fast as had been expected. In order to successfully write each 

pixel into the memory the FPGA clock had to be slowed down. The reduction in 

speed means that the total time taken to grab and process one image now exceeds 

the period of two video frames. Instead of processing every second video frame 

from the sensor, the system can only process one in every three. This reduces the 

live processed frame rate from 25 fps to approx. 17 fps. A second complication is that 

the use of a single image buffer for both diffusion processor output and video 

generator input caused tearing of the image on the display. This is due to the two 

asynchronous rasters (one each for the PINK FPGA and the video generator) 

occasionally crossing in memory. The tear can be avoided by alternating between 

two buffers, however, this increases the delay between image capture and processed 

image display to 60 ms. 

Results 

This section discusses the results of the programmed device testing, and some of the 

statistics of the final design. 

'Safe perturb 1' failure 

Problems were encountered when trying to use the safe perturb 1 processor. Three 

findings suggest that the most likely source of the problem is in the FIFO interface. 

Firstly, interaction with the FIFO is the only feature of the design that was not fully 

simulated. Secondly, that the FIFO is the only major difference between the safe 
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pertub 1 and simple processors. Finally, the nature of the failure is consistent with 

incorrect FIFO clocking. 

The problem exhibits itself as a slow scrolling of the output picture from right-to-left 

after the processor starts. After it has scrolled once its stops. Using the 'nudge' 

feature of the FIFO manager, the image can be scrolled back, however, it drifts over 

again. This suggests that the FIFO is interpreting more 'read' than 'write' commands 

- thus the simulated section of pipeline gets slowly shorter until it disappears. The 

speed of the scroll is consistent with a single extra 'read' command per frame of 

image processing (the scroll takes approx. 15 s). This suggests an error when the 

processor is either starting or stopping. 

Perceived display linearity 

Careful scrutiny of uploaded output of the simple processor verified its successful 

implementation. Initial comparison of the results of its operation in the live display 

mode (17 fps) with that of the software simulation of the same algorithm were, 

however, disappointing. 

Apart from a higher update rate (which was expected to improve perceived quality) 

the main difference in the hardware version is the display. Output from the 

software simulations is viewed on a small portion of a 17" PC monitor, the hardware 

test system uses a 5" monochrome monitor. 

Investigations into the perceived linearity of this 5" monitor show it to be far from 

linear. Perceived display linearity is important to the success of error diffusion, as 

when errors are arranged to cancel the energy is assumed to add and subtract 

linearly. 

Attempts to correct for the non-linearity using conventional 'gamma' power 

functions were unsuccessful. Investigation of the characteristics of the display 

showed its excitation vs. perceived luminance transfer function to be sigmoid in 

shape (see the required correction function shown in Figure 4.14). The imputer can 

be used to apply a correction function using a look-up table. Unfortunately, this 

cannot be performed in real time. 

4.29 



- chapter four Hardware Implementation - 

256 

192 

128 

64 
	

ideal 
gamma 2.2 

__ manual correction 

64 	128 	192 	256 

Input 

Fi 1ure 4.14 Correction of the perceived I/n eari4' of the test system monitor. A successful manually 
derived correction function is shown. A gamma correction function (2.2) and y=x are shown 
for comparison. 

When display linearity was corrected the diffusion images displayed on the 5" 

monitor were considerably closer to those seen in the software simulation. This 

example of how dependent the algorithms output is on factors such as display 

linearity reinforces the importance of control over the viewing conditions to the 

successful application of error diffusion. 

Processor speed 

Most of the testing was performed using a 20 MHz oscillator and the FPGAs internal 

clock divider to allow display using the video generator. The FPGA was also tested 

running at the full 20 MHz. At 20 MHz, the originally intended operating speed, the 

simple processor's operation was verified through transferring processed images to 

the PC and comparing them to simulation results. 

Using an external clock generator the processor was also seen to operate properly up 

to a clock frequency of 27 M1-Jz. At this frequency, the FPGA began to violate the 

timing requirements of the 70 ns RAM. 

Images 

Single frame examples of the processed output from the simple and truncate 

processors of the FPGA are shown below. As single, static images these are similar to 
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those presented in the software simulation of chapter three, thus only a few 

examples are shown. When interpreting the static representations contained in this 

thesis, it should be kept in mind that the processors are designed to output a series of 

images at a high frame rate. This will affect the appearance of the noise produced by 

the simple diffusion processor. At the higher colour resolutions the moving noise is 

far less visible than when static. At the lower resolutions, however, it could be 

argued that it is more objectionable when moving. 

A vertical greyscale ramp (one of the initial test images) is shown processed by the 

simple and truncate processors in Figure 4.15 below. This image demonstrates the 

success of the simple processor at representing smooth vertical gradients. At the 

higher colour resolutions the dithering pattern is not very noticeable, as the 

resolution drops the pattern becomes more obvious. The structure in the dithering 

noise is a result of the simplicity and deterministic nature of the simple algorithm 

used. Even at 4 bpp, distinct banding can be seen in the output of the truncate 

processor. 
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Figure 4.15 A comparison of the output of the 'simple' and 'truncate' processors. 
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Processing of a horizontal greyscale ramp by the simple processor is shown in Figure 

4.16. The dramatic difference in diffusion pattern highlights the directional nature of 

the simple algorithm. 

In Figure 4.17 a comparison between the results of the hardware and software 

implementations of simple is shown. The pictures are almost identical except for 

slight differences in the dither pattern. These differences are due to the continuous 

nature of the hardware processor. Unlike the software implementation which gives 

the same result each time it processes the same data, the output of the hardware 

processor varies slightly with every frame (as its output is dependent on the 

contents of the pipeline when processing starts). 
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Figure 4.17 Comparison of the output of the hardware 'simple' processor with that of Its software 
Counterpart. 
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Conclusions 
This chapter details the implementation of two error diffusion algorithms (simple 

and safe perturb 1) in an FPGA. Earlier software simulations suggests that these 

algorithms would be suitable for use in the radio video application. 

The simple algorithm has been successfully implemented in hardware. As part of an 

imputer system it offers processing of images at 17 fps at one of four greyscale 

resolutions. 

Implementation of the safe perturb 1 algorithm was unsuccessful. This is due to a 

problem in the interface with the FIFO device used to simulate a section of the 

processor pipeline too large to fit onto the FPGA. 

In the output from the simple processor, the high frame rate achievable with the 

hardware implementation is seen to alleviate the patterning problems of the 

diffusion algorithms at 3 and 4 bpp. At lower colour resolutions, however, the noise 

remains clearly structured. 

The imputer system proved to be a valuable test bed. 

Although the entire FPGA design was equivalent to approx. 7000 gates, less than 7% 

of these were attributable to the two diffusion processors. Furthermore, if 

implemented as part of the output stage of a digital-output video sensor, the 

hardware overhead of the simple processor would be that of a single adder and 

latch. 

The successful implementation of the simple processor confirms the ability to 

implement error diffusion with minimal hardware assumed during software 

simulations. This justifies the selection of error diffusion as the compression method 

for the radio video application. 

Sync information must be added to the pixel data output from the diffusion 

processor before it can be transmitted. This could be achieved by time-multiplexing 

reserved 'escape codes' with the data. As such, the hardware diffusion processor 

represents the core of a possible coder for the sensor-transmitter interface. 
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Subjective Testing 

When evaluating and comparing lossy image compression techniques three factors 

must be considered: the degree of compression each technique yields, its complexity 

and the resulting loss in image quality. 

In chapter three several implementations of compression through quantisation with 

error diffusion are explored. Scrutiny of the algorithms concentrates upon the 

complexity of their hardware implementation and the limited subjective evaluation 

of their effect on image quality at comparable bit rates. The complexity of 

implementation and bit rate are easily measured objectively. The effects on image 

quality, however, are the subjective views of the author. To truly have confidence in 

these conclusions, more substantial examination of the output of the algorithms 

involving more observers is required. Such testing is the subject of this chapter. 

Assessing image quality 
'Image quality' is a term commonly referred to in the literature, but one that lacks a 

precise definition. In the context of compression, the term is generally used to refer 

to how closely a processed image represents the original. This can be interpreted as 

any change in the image data itself, or possibly more importantly, any alteration to 

the data that leads to a perceivable change in the image. 

5.1 



- chapter five Subjective Testing - 

The matter is complicated further as it is not only the visibility of distortions that is 

important, but also how objectionable they are and how they affect the perceived 

image. In some applications the usefulness of an image may be unaffected despite 

quite obvious processing artefacts as long as certain key aspects remain unaltered 

(such as the ability to reliably determine the absence or presence of some feature). 

Indeed some compression techniques that inherently remove random noise could 

be considered to improve the image quality in such situations [CoswJ94]. 

Subjective measures of image quality 

A common approach to the measurement of image quality is to present a set of 

images to a panel of observers and ask them to rank the images in terms of relative 

quality [WALLACE et al 88; COSMAN 94; PRATT 79]. Where image qualities are drastically 

different, ranking by an observer is quick and unlikely to be disputed. However, 

judging the superior algorithm among those of similar output is not so trivial. 

Another problem of such subjective observer tests is that the test conditions vary 

among researchers, making direct comparison of results difficult. Some standard test 

features have been adopted (such as how to relate how visible or objectionable 

errors are to a scale of 1 to 10). As many alternative applications are considered, the 

desire for a standard test procedure (allowing simple comparison of results) is seen 

to conflict with the researcher's need to mimic the conditions of the intended 

application as closely as possible (to increase the accuracy of the test). 

The nature of subjective tests opens them up to problems of bias. If for any reason 

the background of the observer may influence either their objectivity, or their ability 

to detect types of errors (through adaptation) then there will be a danger of observer 

bias. There are two schools of thought on observer adaptation, those that believe 

observers should be allowed considerable time to become comfortable with the 

experiment and consistent in their ranking of quality before any results are taken 

[sAI<iIsoN 77] and those that see the adaptation of observers to the test pictures and 

the type of errors as a factor that is prone to make them over-critical, especially in 

such an artificial situation as the tests where they are being asked to actively search 

for errors [WALLACE et al 88]. 
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For the researcher, subjective trials are tedious, time consuming and their very 

nature means they are not precisely repeatable. It would be much more convenient 

to have an objective meter that is repeatable and quick to compute. 

Simple objective meters 

Various simple meters of averaged individual pixel error exist. These are generally 

computed by calculating the pixel-to-pixel difference between original and 

processed images then collapsing this onto a single variable quantity such as the 

mean-squared error (MSE), signal-to-noise ratio (SNR) or peak signal-to-noise ratio 

(PSNR). 

Although these meters can be applied successfully within narrow fields of research, 

their accuracy and thus value as general meters is questionable. Examples of the 

failings of mean-squared error (by far the most commonly used simple meter) 

include both the over-emphasis it places on image modifications that are often 

relatively unimportant (such as a small spatial image shift or a small d.c. level 

change) and its insensitivity to the corruption of small but possibly important image 

features. 

For an objective meter to be of use it must reflect the 'perceptual quality' or the 

'usefulness' of an image for a particular application. Unfortunately, no meter that is 

simple to compute is generally accepted to satisfy this requirement [cosN 941. 

The human visual system 

A subtle but important point when considering the design and evaluation of image 

systems that are to be viewed by people is the effect of the human visual system. 

When an image is viewed, the information conveyed to the observer is dependent 

not only on the actual image, but also on the way in which it is interpreted. In 

reality, factors completely unrelated to the image, such as the experience of the 

observer, can have a bearing on this interpretation. Other factors, however, relate to 

features of the image and stem from physiological and psychological features of the 

human visual system. Such factors are common to all human observers. 
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Frisby described the problem of seeing as "the problem of building up a symbolic 

description of a scene using the information contained in an input visual image" 

[FRISBY 79]. The physiological aspects of our visual system determine how the 

information from the visual image is presented to our cognitive systems. These 

aspects combined with the psychological mechanisms of data abstraction that 

construct this 'symbolic description' underlie the interpretation of scenes and thus 

also the interpretation of image distortions and other forms of compression error. 

Understanding characteristics of the human visual system allows an informed 

approach to be taken when considering the effects of distortions in visual image 

data on the perception of that image. This necessitates a subjective approach to the 

design and evaluation of lossy image compression techniques. To that end, a vast 

number of mathematical models of the human visual system have been proposed 

[MANOS & SAKRISON 74; HALL & HALL 77; XIE & STOCKMAN 891. The basis for these models 

comes from two major sources. The first is data gathered from psychophysical 

experiments using human observers. In these; characteristics of the human visual 

system such as its sensitivity to stimuli of various spatial frequencies are measured. 

The second source is data from the physiological study of the visual systems of, 

animals such as cats and monkeys. Results from the experiments are related to the 

human visual system on the premise that the vision systems of all vertebrates are 

similar. (For comprehensive surveys of this evidence see [MARR 82; HALL & HALL 771.) 

Objective meters based on models of the human visual system 

Models of the human visual system have been used to offer objective measures of 

image quality with varying degrees of success by many researchers working on the 

analysis of image compression techniques. The models are generally used to 

compute an error metric from the difference between original and processed images 

or image sequences. Some of the more popular features of models are introduced 

below with consideration of the limitations of their general application. 
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Spatial and temporal filtering 

The sensitivity of the human visual system is dependent on both the spatial and 

temporal frequency of a stimulus. Physiological and psychophysical evidence 

suggests that the sensitivity can be modelled using simple functions [ROBSON 66; 

PEARSON 75 ;  CAMPBELL & MAFFEI 74]. It should be noted, however, that the spatial and 

temporal responses are not entirely independent [R0B50N 66]. Typically, this 

nature is modelled by linearly weighting the significance of data using a measure 

of local frequency content. 

Multi-channel processing 

Evidence exists which supports a multi-channel model of the human visual 

system. In this, several quite separate channels (sensitive to different spatial or 

temporal frequencies) are used to analyse image information. The supporting 

evidence includes the observed ability of people to suppress stimuli of certain 

temporal frequencies and the independence with which stimuli of quite different 

spatial frequencies can be detected [CIu 90; MULLIGAN 931. Multi-channel behaviour 

has been modelled using linear processing in separate channels followed by non-

linear recombination of the results [sAiaISoN 77]. 

Correction for non-linearity 

It has long been known that the human retina has a highly non-linear response 

to incident light [PEARSON 75]. Models that attempt to incorporate this feature do so 

by using non-linear transfer functions (such as log [REED 92; CHADDA & MENG 93] or 

cubic-root [GRANRATH 81]). 

Context masking 

The visual context of an error has been shown to affect its significance. The less 

correlation between local image activity and error, the more obvious it is. This is 

often referred to as masking (as errors are effectively masked by image activity). 

This feature has been successfully modelled by linear weighting of errors. Use of 

a global, purely arithmetic average of image activity and (more successfully) a 

5.5 



- chapter five Subjective Testing - 

local, geometric average have been proposed as weighting functions [LUKAS & 

BUDRIKIS 82; REED 92; COSMAN 94; CHADDHA & MENG 93]. 

To allow the easy comparison of results a single scalar figure of merit is often 

realised from the three-dimensional error image created from the model. Non-linear 

measures are often employed in this conversion (as in the simple metrics). These 

include calculation of mean squared error, other 'li, norms' such as the cubic root of 

the sum of cubed errors (1 3) and the maximum error (lw), as well as signal to noise 

ratios. There is some theoretical support for the use of non-linear methods. Research 

has shown that in subjective tests observers base their ratings on the worst areas of 

images (giving any high errors a disproportionate significance) [LuIcs & BUDRIKIS 82]. 

Although many promising results have emerged from the use of mathematical 

models of components of the human visual system, no complete model yet exists. 

Many of the partial models are limited in their application because of the factors 

outlined below: 

. Much of the data used for modelling functions (such as spatial frequency 

sensitivity) is based on experiments that assume the stimulus is viewed against a 

uniform background [PiTr79]. In image compression, the stimuli are 

compression artefacts and the background is the source image. Models based on 

the experiments with uniform backgrounds are therefore unlikely to be directly 

applicable. 

• A second problem is that the stimuli used in many psychophysical experiments 

differ greatly from those that are important in the compression. Much perception 

experimentation is based on random perturbations such as additive white noise 

rather than realistic compression artefacts [sAIIsoN 77]. Care should be taken 

when applying models derived from these experiments. 

• Another assumption often made is that the image quality is fairly high thus errors 

are on the verge of being detectable rather than obvious. This again simplifies the 

model as only the threshold of perception of stimuli needs to be modelled. In the 

case of error diffusion at low bit rates this simplification cannot be made. 
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The interpretation of modelling results is also limited. Most analysis ultimately relies 

on pixel-to-pixel comparisons. No attempt is made to abstract data from the image 

or consider changes in semantics caused by errors. The complication of constructing 

objective meters that can perform such tasks often leads back to the use of subjective 

tests. 

Using objective meters with error diffusion 

The approach of error diffusion, indeed all haiftoning algorithms, is to minimise 

locally averaged error at the expense of instantaneous pixel fidelity. Amongst 

compression algorithms, error diffusion faces particular problems in satisfying the 

simple objective image quality meters. 

Although some of the key features of the human visual system models published 

are not applicable to the analysis of error diffusion (especially at the bit-rates and 

under the viewing conditions of the radio video link) many of the model features 

such as spatio-temporal sensitivity and non-linear luminance response are directly 

relevant. 

If a mathematical model were to be used to evaluate algorithms for use in the radio 

video link there are features extra to the human visual system that could be built in. 

In particular these include features of the transmission channel (such as bit-error 

rate) and the display mechanism such as limited frequency response (see Kell factor 

in [BLINN 94]) and non-linearity. In the interpretation of the results of any error 

modelling, a meter such as the radially averaged power spectrum [ULICHNEY 88; MITSA 

92] could be profitably used to measure any structural content (indicative of textural 

patterning from the error diffusion). 

Pressure on time meant that an attempt at objective analysis of the implemented 

error diffusion algorithms using models of the human visual system was not 

possible. A program of subjective tests was, however, devised. The experimental 

design and the hypotheses it seeks to test are outlined below. 
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Hypotheses 
The experiment consists of a set of subjective comparisons of images and image 

sequences. These are devised to test the validity of the author's conclusions (drawn 

in chapter three) regarding the relative output image quality of the various diffusion 

algorithms. 

These hypotheses are: 

All algorithms introduce a perceivable degree of degradation at 3 bpp. 

At 3 bpp and 4 bpp the output of the simple algorithm is comparable to that of 

Floyd & Steinberg's filter. 

The problems of the perturb algorithm are alleviated to some extent by the 

changes made to produce the safe perturb 1 and safe perturb 2 variants. These 

changes are significant (and therefore merit the increased implementation 

cost). 

Amongst the single element filters safe perturb 1 and simple offer the best results 

at3bpp. 

Setting up an experiment to test these hypotheses provides an ideal opportunity to 

explore three other aspects of the perceived quality of the algorithms' output. 

The output resolution at which processing becomes apparent 

The degree to which the choice of source image affects the success of the 

algorithms 

The degree to which the success of the algorithms is improved by the use of 

image sequences as opposed to stills 

An experiment designed to test all these hypotheses is described below. 
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Experiment design 
Comparing every algorithm at every resolution would constitute an enormous 

exercise. Instead, the experiment uses a selection of comparisons targeted at testing 

the hypotheses set out above. It represents a 'pilot' programme of tests. The results 

of which could be used to direct more comprehensive testing of the particular 

trends exposed. 

Two types of test are used in the experiment: forced-choice between pairs of image 

sequences and the sorting of still images in order of perceived quality. In the forced-

choice tests, the subject is presented with pairs of image sequences and asked to 

indicate which of the two they judge the better. Detection of a difference between 

the sequences is indicated when the amalgamated results show that viewer choice 

departs significantly from random (e.g. from 507o). Results of the still image sorting 

are used to rank the output of the algorithms. 

The experiment comprises three sets of tests. Firstly, a set of forced-choices between 

sequence pairs where each has been processed to the same output resolution, but 

using different algorithms. Secondly, the forced-choice between sequence-pairs 

where one has been processed, the other not. Thirdly, the sorting of sets of six still 

images in order of their perceived quality. All six images having been processed 

using different algorithms, but to the same resolution. 

These tests relate to the hypotheses outlined earlier as follows: 

Processed vs. unprocessed 

The forced choice tests using processed and unprocessed sequences test the 

degree to which processing can be perceived at a particular resolution. The limit 

of perception is thought by the author to he around 4 bpp and 5 bpp: the 

resolutions used in the tests. 

The use of three different image sequences in this test allows the investigation of 

the dependency of the results on the source image. 

5.9 



- chapter five Subjective Testing - 

Algorithm comparisons 

Forced choice tests between sequences processed to the same resolution (but 

using different algorithms) is intended to allow the relative success of the 

algorithms to be evaluated. In terms of the original hypotheses, this test explores: 

the relative qualities of simple and floyd-steinberg at 3 bpp and 4 bpp; the 

significance of any benefit in employing the more complicated perturb 

algorithms (rather than perturb itself); whether simple and safe perturb 2 are the 

best of the single element filters at 3 bpp. 

Still image sorts 

Comparing sets of six still images (all processed to the same resolution but using 

different algorithms) allows ranking of the perceived effectiveness of all six 

algorithms at a particular resolution. 

Still images are used both to reduce the length of the whole experiment and to 

allow the effect of image movement to be explored. The latter is achieved by 

comparing the results from this test with those from the paired image sequence 

algorithm comparisons. 

In this test all three images are used again in order to further explore the 

dependency of the results on the source image. 

Source images 

Research has shown that the visibility of errors depends on their visual context 

[Lui..As & BUDRIKIS 82]. In addition, (in common with nearly all image compression 

techniques) the form of errors produced by quantisation with error diffusion 

depends on the image content. Thus, the subject matter of the images sequences 

used in tests can have an effect on the outcome. To give some spread of subject 

matter, three test sequences are used. Two 'head-and-shoulders' sequences (claire 

and miss america) and a wider angle office scene (salesman) were obtained from the 

USC database (see Figure 5.1 below). 
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(b) 

Figure 5.1 Single frames from the three test sequences used in the subjective tests: (a) 'cIaire (b) 
'miss amer/ca and (c) 'salesman '  The sequences were obtained from a database at the 
University of Southern California. Los AneIes (ftp://ftp.lpI.rp/. edu1pub/ima 1e/sequence/). 

These sequences were selected for use in the tests as they are widely recognised in 

the literature and are considered to be representative of sequences likely to be 

transmitted in the radio video link application. 

Measures employed to reduce false results 

Measures were incorporated into the experiment to reduce the possibility of 

extraneous factors influencing the results. 

It was anticipated that seeing the gross artefacts of the low bit rate images might 

make them more noticeable in their higher bit rate counterparts. Similarly, it was 

anticipated that observers may become adapted to being able to 'spot' certain classes 

of defect more easily after viewing the still images (as the visibility of artefacts was 

anticipated to be clearer in the still images). 

Presenting all of the forced-choice pairs in decreasing order of resolution could be 

used to prevent the first of these sources of adaptation. However, it may introduce 

another source of error, in that the observers may come to expect increasing levels of 

artefacts, irrespective of the algorithm. Instead, in accordance with guidelines 

produced for evaluation of television images [ccIR R. 500-31 in these experiments the 

order of the image pairs is randomised. 

To prevent the observer adaptation from viewing the still images affecting their 

perception of the sequences, all the sequence comparisons are presented first. 
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In case the physical location of each image on the screen has any influence, this 

factor is also varied by using three different sets of randomised tests. 

Test software 

A software application has been written which allows the presentation of up to six 

still images or image sequences at once (see Figure 5.2 and Figure 5.3). The still 

images are presented together, whereas sequences are shown individually to ensure 

they are displayed at the highest possible frame rate. 

iiati 	 " Prcv'ic Pago 	 Np 	i> 

Figure 5.2 The window of the subjective test application during display of a set of 
still images. 
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Figure 5.3 The window of the subjective test application during display of a moving Image 
sequence. The five image sequences that are not currently playing are left blank rather 
than displaying a static image so that subjective analysis of the image sequences Is not 
coloured by observation of still frames. 

The playing of image sequences is achieved using the repetitive display of pre-

processed bitmaps stored locally on the PCs hard disk. The images are rendered 

using a version of the simulation software that allows the batch processing of 

images. The number of images involved requires a significant amount of storage'. 

This approach, as opposed to on-the-fly computing of the processed images (using 

the software implementations of the algorithms) is employed for two reasons. 

Firstly, so that the image sequences can be presented at a reasonable frame rate 

(roughly 12 fps) and secondly, so that all the sequences are presented at the same 

frame rate, independent of the complexity of the algorithm used. 

The C source code for the test software can be found in appendix four. 

Each of the three sequences was made up of sixty 64k frames, in addition to these unprocessed images each was 

also stored after processing with one of the six algorithms, and all algorithms at five different bit rates. All images for 

the three different sequences totalled approx. 400 Mb. 
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Results 
The results of the subjectve tests are presented below. 

Algorithm comparison tests 

Results, comparing the image sequences, are shown in matrices in the three tables 

below (Table 5.1, Table 5.2 and Table 5.3). The samples sizes vary from 7 to 23. 

Results shown in bold type are statistically significant (given the sample size). 

Significance is determined using the 'sign test', with cx=O.05 [ALDER &ROESSLER 72]. 

floyd- simple 	safe safe perturb truncate 
steinberg perturb 1 perturb 2 

floyd-steinberg better than -  100% 
simple better than  42.9% 87.5% 78.3% 

safe perturb I better than - 69.6% 
safe perturb 2 better than 57,1% 	30.4% - 87.0% 78.3 0/6 

perturb betterthan 12.5% 13.0% - 60.0% 
truncate better than 	0.0% 21.7% 21:

.  

.1 0/o 40 . 0% - 

Table 5.1 Results of the algorithm comparison tests at 2 bpp 

floyd- simple 	safe safe perturb truncate 
steinberg perturb I perturb 2 

floyd-steinberg better than - 87.0% 100.0% 91.3% 95.7% 
simple better than  65.2% 73.9%  

safe perturb I better than 56.5% 
safe perturb 2 better than  34.8. 	43.... - 	...........52.2% 73.9% 

perturb better than 8.7% 26.1% 47.8% - 56.5. 
taincatebetterthan 4.3% 8.7% 26.1% 43.5 k. - 

Table 5.2 Results of the algorithm comparison tests at 3 bpp 

floyd- simple 	safe safe perturb truncate 
steinberg perturb I perturb 2 

floyd-steinberg better than - 43.5% 65.2% 73.9% 47.8% 
56.5%.  simple better than  - 56 3C3 739% 56 5% 

safe perturb I better than -  37.5% 
safe perturb 2 better than 348% 43.8% 	62.5° - X.516.5% 47.8 

perturb better than 26.1% 26.1% 43.5% - 34.8% 
truncate better than 52.5% 43.5% 52.2% 65.2% - 

Table 5.3 Results of the algorithm comparison tests at 4 bpp 

Testing performed at 2 bpp is relatively sparse as this is below the intended 

resolution of the radio video link coder (3 or 4 bpp). However, the results gathered 

do show the poor performance of the truncator when compared with all but the 
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perturb algorithm. There are no significant differences between simple and the two 

safe perturb algorithms at 2 bpp. 

The 3 bpp and 4 bpp results are based on a larger sample size. Examining the figures 

for the two resolutions shows a high number of significant results at 3 bpp, fewer 

significant differences at 4 bpp. At this higher resolution, the only significant 

difference noted by observers is in the poor performance of perturb when compared 

with both simple and floyd-steinberg. 

The improved ability of observers to discriminate between the different algorithms 

at 3 bpp (compared with 4 bpp) implies greater perceivable differences between the 

algorithms at this lower resolution. This corroborates the hypothesis that differences 

between the output of the algorithms are clear at 3 bpp. 

Floyd-steinberg is preferred to the other algorithms at 3 bpp. Table 5.2 shows it to be 

significantly better than all other algorithms tested at this resolution. Simple also 

performs well, although worse than floyd-steinberg, it is preferred over perturb and 

truncate. 

Safe perturb 1 is omitted from most of the algorithm comparisons, because its 

performance is expected to be very similar to that of safe perturb 2. The validity of 

this omission is borne out by the results shown above. No significant difference is 

found between safe perturb 1 and safe perturb 2 at any resolution. 

Still image sorting tests 

The resulting ranks from the still image sorting test are shown in Figure 5.4 and 

Figure 5.5 below. High ranking scores indicate images preferred by the observer. 

5.15 



- chapter five Subjective Testing - 

140 

120 

100 

80 

60 

40 

20 

0 
simple 	floyd-s 	truncate safe pert-I safe pert-2 perturb 

Figure 14 Results of the 3 bpp still image sorting test. 

At 3 bpp the ranking of the algorithms is distinct. For all three images floyd-steinberg 

has the highest rank, simple the second and truncate the lowest. The rankings of the 

variants of perturb suggest that the two safe variants are preferred to perturb itself, 

aith 
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simple 	floyd-s 	truncate safe pert-I safe pert-2 perturb 

Figure 5.5 Results of the 4 bpp still image sorting test . 

The ranking pattern at 4 bpp is not so simple. Again, floyd -steinberg is consistently 

highest, followed by simple, but the distinctions between the remaining four are 

unclear. 

The results of the low rankings achieved by claire at 4 bpp are interesting in that 

they indicate a clear incompatibility between claire and truncate. This is likely to be a 
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result of the almost flat background in the image which will be particularly 

susceptible to false contouring. This result supports the research hypothesis that 

perceived algorithm success is image dependent. 

Processed vs. un-processed 

Table 5.4 shows the results from the comparison of processed and unprocessed 

images. The figures show the proportion of observers who preferred the processed 

images to the unprocessed originals. 

claire 	 miss america 	salesman 

(count) 	(%) 	(count) 	(%) 	(count) 	(%) 

simple 4 bpp 
	

3/8 	38% I 	1/2 	50% I 217 	29% 

simple 5 bpp 

truncate 4 bpp 

truncate 5 bpp 

perturb 4 bpp 

perturb 5 bpp 

safe perturb 1 4 bpp 

safe perturb 1 5 bpp 3/8 

safe perturb 24 bpp 3/7 43% 5/8 	62% 3/8 

safe perturb 2 5 bpp 3/4 75% 5/8 	62% 1/8 

floyd-steinberg 4 bpp 4/7 57% 0/8 	0% 1/2 

floyd-steinberg 5 bpp 318 38% 217 	29% 1/4 

Table 5.4 Results from the processed vs. unprocessed sequence comparisons. 

The low sample size means that individual comparisons are only statistically 

significant if observers preferences are unanimous. The data can, however, be used 

to provide a further test of the research hypothesis that perceived algorithm success 

is image dependent. 

Ranking the individual preference scores for each permutation of image and 

algorithm, then calculating a rank total for each of the three image sequences, allows 

the calculation of the Kruskal-Wallis H test statistic [iuwsrL & WALLIS 521. The result 

corroborates the research hypothesis, showing that there is a significant difference 

between the results from the three sequences (at (x=0.05). 

1/7 14% 1/4 25% 3/8 

2/7 29% 3/8 38 6/6 1/2 

1/8 12% 0/8 0% 2/7 

ii2 50% 114 25% 4/7 

1/4 

38% 

50% 

29% 

57% 

25% 

38% 

38% 

12% 

50% 
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Discussion & conclusions 
This chapter uses a set of subjective tests both to question some of the conclusions of 

chapter three and to explore other hypotheses regarding the relative merits of the 

diffusion algorithms considered. 

From the results of set of subjective tests performed with a modest number of 

observers (23) the following conclusions can be drawn: 

At a resolution of 3 bpp, observers are able to detect artefacts from all the 

algorithms. This is consistent with the opinion of the author expressed in chapter 

three. 

When comparing the output of Floyd & Steinberg's filter with that of simple, a 

significant difference is observed at 3 bpp, but not at 4 bpp. The lack of a 

significant difference at 4 bpp supports the hypothesis that the output of the two 

algorithms is comparable at this resolution. The significant preference shown by 

observers for the output of floyd-steinberg rather than simple at 3 bpp demonstrates 

that at this lower resolution a detectable difference exists between the two 

algorithms (that of simple is considered to be worse). This latter finding suggests 

that the research hypothesis might require modification - the output of the floyd-

steinberg and simple filters may only be comparable at resolutions of 4 bpp (and 

above). This conclusion has to remain tentative at this stage because of the nature 

of the subjective tests employed. The results indicate that a relative difference 

does exist between the simple and floyd-steinberg algorithms at 3 bpp. However, 

the ordinal scale of measurement used means that it is not possible to quantify 

the magnitude of this difference. 

The only significant difference between pertub and the safe perturb variants is 

found at 2 bpp (where perturb is considered worse). The lack of a consistent 

significant difference at different resolutions suggests that the added hardware 

expense of implementing either 'safe' scheme rather than perturb is not justified. 

As predicted, simple is found to significantly outperform both the perturb and 

truncate filters at a resolution of 3 bpp. 
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The results of the sequence comparisons suggests that observers show a greater 

ability to discriminate between algorithms at 3 bpp than at 4 bpp. This shows that 

they are able to discriminate between different algorithms at 3 bpp. The failure to 

differentiate between algorithms at the higher resolution can be interpreted in 

two ways. It could mean for each algorithm, the degree of image degradation is 

so minor that an observer cannot detect it. Alternatively, the even scoring could 

be the result of an similar degree degradation from each algorithm, resulting in a 

set of 'equally poor' images. From the results of these subjective tests, it is not 

possible to determine which of these scenarios is the case. Therefore, the 

threshold at which an observer can perceive processing to have occurred remains 

unidentified. This is an area which requires further, more targeted testing. 

The observer's choice of preferred algorithm is found to depend on the image 

sequence used in the test. This is seen in the results of two tests. A statistically 

significant difference is found between the image scores in the test which 

measures an observers ability to discriminate between processed and 

unprocessed sequences. Secondly, examining the graphs of still image rankings 

shows considerable inter-image variation (e.g. the results of the truncate algorithm 

at 4 bpp). These findings support the hypothesis that perception of algorithm 

performance varies according to the composition of the image used. 
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Discussion 4nd.'  Conclusions 

This thesis tackles the problem of implementing a radio video link at low cost. 

Reducing this cost is important because the purchase and running expense of radio 

video link hardware is considered to be an obstacle to its wider application. 

Two measures, the use of a low-power/low-bandwidth radio link and the further 

integration of the transmitter end of the system, have been identified as ways of 

reducing the costs. The objective of the remainder of the thesis was the design of an 

interface between sensor and transmitter that offers a degree of compression. This 

permits the use of a low bandwidth radio link. The coder design had also to be 

suitable for integration on the same die as the image sensor. Given the minimum 

image specification assumed and the estimated available radio bandwidth, a 

compression ratio of at least 2:1 was required of the coder. 

The design of the coder first required the identification of the exact role of the 

interface. In addition to compression, two further aspects of pre-transmission coding 

(the vulnerability of the coded data to corruption and the ease with which it can be 

received) were identified as being important in the radio video link application. 

Other than favouring the use of fixed width codewords during compression, coding 

for ease of reception can be considered in isolation from the other aspects. Coding 

for compression and coding for improved error tolerance are, however, highly 

interdependent. 

From a review of coding techniques that systematically protect transmitted data 

from corruption, their expense (either in bandwidth or implementation) was 

6.1 



- chapter six Discussion and Conclusions - 

deemed prohibitive. Instead, a compression technique was identified that can offer a 

modest degree of compression without leaving the data too susceptible to 

transmission errors - error diffusion. 

In the design of error diffusion system, various features of the quantiser and the 

diffusion filter were identified as factors which offer the possibility to trade off 

aspects of system performance against cost. 

Software simulations explored the relationship between these factors. A range of 

potential quantisers were considered. The increased sophistication in performance 

associated with the more complex quantisers does not merit their high 

implementation costs. A truncating binary quantiser offers sufficiently sophisticated 

behaviour for this application. An output resolution of 3 bpp is dictated by the 

compression needs of the application. In simulations, single element diffusion filters 

perform well at 3 bpp. Their output is comparable to that of the popular error 

diffusion algorithm of Floyd & Steinberg. 

Critical review and future work 
This section combines a critical review of decisions made during the algorithmic 

research with suggestions for future work. It reconsiders previously dismissed 

options for diffusion and new possibilities that could stem from the adoption of 

alternative system architectures. 

Dismissed options for diffusion 

The evaluation of diffusion filters in chapter three dismissed anything other than 

incidental temporal diffusion. Diffusion of error energy over time is a natural 

progression from spatial diffusion, as it represents diffusion in an additional 

direction from the source of error. The marked similarities in the temporal and 

spatial insensitivities of the human visual system [RoBsoN 66] provide a physiological 

justification. Temporal diffusion was dismissed because of the implied expense of 

error term storage. If an error is to be diffused in the time axis, an entire frame of 

error data must be stored. It was dismissed despite the perceived benefits of being 

6.2 



- chapter six Discussion and Conclusions - 

able to keep error energy spatially closer to its origin and the reported success of 

temporal diffusion with still images [MULLIGAN 931. 

A second option that was dismissed was the processing of data in orders other than 

the conventional raster. Use of a more pseudo-random raster or even a serpentine 

raster alleviates the directional nature of the diffusion patterns that result from the 

use of conventional raster. Like the decision regarding temporal diffusion, use of 

more sophisticated raster was also dismissed on the grounds of implied memory. 

Hardware minimisation 

Throughout the project great emphasis was placed on minimising the amount of 

hardware used in the coder. When considered in the wider context of the video 

transmitter, this emphasis may have been too high. The final error diffusion system 

proposed does offer the required degree of compression whilst preserving an image 

quality that is arguably adequate. On reflection, some of the design options ruled 

out on the grounds of hardware cost may actually have been affordable and might 

have offered improvements in image quality. 

This is especially true if the coder is to be implemented in a system that employs an 

image sensor that produces video in a standard signal format. This is due to an 

incompatibility between the nature of the data within standard video signals and 

the desire for maximum transmission efficiency. For the bandwidth of the radio link 

to be used efficiently, data must be transmitted as continuously as possible. 

Unfortunately, the image data in a standard video signal comes in bursts between 

quite long vertical sync periods (over 10% of a standard PAL signal is taken up with 

synchronisation information - far more than is required for the synchronous 

transmission scheme planned for the radio video link). The buffering problem is 

exacerbated if a sub-array of the full sensor output is transmitted. 

Even if the buffering problem was avoided by using an image sensor with specially 

tailored timing, there remain unavoidable system costs. One example is the logic 

incorporated in the sensor itself (ASIS-1011 includes approximately 10,000 gates to 

realise array addressing and automatic exposure control). 
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In the context of the complete video transmitter system it would appear in hindsight 

that the hardware budget for the coder could have been slightly more generous. 

This may have permitted use of the floyd-steinberg filter instead of simple, or 

exploration of avenues such as the use of simple together with a serpentine raster. 

This would be consistent with the results from the subjective tests which suggested 

that the floyd-steinberg filter would offer an error diffusion scheme with slightly 

better performance. 

To have changed the general compression approach (e.g. a move to transform 

coding rather than error diffusion) or to make substantial changes to the proposed 

system (e.g. extension to temporal error diffusion) would, however, still imply 

prohibitively high hardware costs. 

Alternative architectures 

Making quite significant changes to the architecture of the proposed video 

transmitter system means that it might be possible to achieve temporal diffusion 

and/or provide other benefits. Such changes, considered below, offer opportunities 

for future work Particular emphasis is given to the advantages of non-standard 

image sensor architectures and eroding the distinction between sensor and coder 

that exists in the system. 

In an application such as the radio video link, where video data is processed live, it 

is possible to use a more radical approach to otherwise expensive problems such as 

temporal diffusion and eliminating directional bias within diffusion. Performing 

processing within the imaging array itself combines the sensor and processor. Once 

the distinction between these two elements is eliminated there are many more 

options for the architecture of the combined system. Two examples of array level 

processing - pixel-level error manipulation and context dependent pixels - are 

considered below. 
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Pixel level error manipulation 

An image sensor operates by regularly sampling the amount of light falling on an 

array of pixels. The data sampled from a single pixel can be considered as a time 

series. Within a normal sensor, each sample in such a time series is measured 

independently. If a system was used where: 

pixels could be sampled to a greater degree of accuracy than each individual 

sample was communicated, and 

it was arranged that the error in the communication of each sample from a pixel 

was used to influence the next sample from that pixel, 

then temporal diffusion would have been achieved. 

Integrating the means to store the error within the pixel structure would eliminate 

the requirement for separate storage. Influencing the next sample using the error 

would also negate the need for separate hardware to add error and sample terms. 

A common way to implement an image sensor is to measure the amount of charge 

that has leaked through a light sensitive junction during a known exposure period. 

Typically, a pixel circuit is used that contains a capacitive node. The node is forced to 

a reset level before the exposure period, isolated from everything except the light 

sensitive element during the exposure period and at the end of the exposure period 

the amount of charge remaining on the node is sampled. 

To apply the previous temporal scheme to such a sensor would require that each 

pixel began the exposure cycle, not at the reset level, but at the reset level plus or 

minus an amount that compensated for the previous quantisation error. This could 

be achieved by writing an error term to the pixel rather than resetting it fully. One 

problem with such a scheme would be its incompatibility with correlated double 

sampling (a technique commonly used to combat fixed-pattern noise by measuring 

each exposed pixel level with reference to its reset level measured immediately 

afterwards). A second problem is that unless the sensor is operated in a 

continuously exposed manner (unlikely as frame rate is then dependent on 

exposure time) the error would need to be stored over the time between each pixel 

being read and the start of its next exposure period. This would require 
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investigation of reliable methods of analogue storage of the error term within the 

pixel. 

In addition to the possibilities of temporal diffusion, the ability to manipulate error 

terms within the pixel array opens up possibilities of sensor-level spatial diffusion. 

Error terms could either be diffused to spatial neighbours as pixels samples are 

quantised and read out in some form of raster order, or a parallel diffusion stage 

could take place after exposure of all pixels. This second option would require a 

winner-takes-all approach to the distribution of what would otherwise be the 

quantisation errors. Both these options would require significantly more 

complicated pixel circuits than used in sensors such as ASIS-1011, however the 

benefits may outweigh the costs, especially as device geometries continue to shrink. 

Context dependent pixels 

Another option that would introduce compression at the pixel level would be to 

create a pixel structure whose output was not only dependent on the amount of 

incident light falling directly on it, but also on the amounts falling on neighbouring 

pixels. Reducing pixel sensitivity when the local neighbourhood is under bright 

illumination would allow a 'context-sensitive' output signal to convey an image 

with a higher dynamic range than the signal itself. Experimental evidence suggests 

similar systems are used in biological visual systems [MARR 921. Such a form of sensing 

would essentially remove low frequency components from the image signal (c.f. 

differential predictive coding). 

Conclusions 
Whilst considerable scope remains for future research, the successful 

implementation of the simple processor in this thesis confirms that the video 

transmitter system coder can be implemented with minimal hardware. Thus, the 

objectives defined in chapter one have been met: 

1. The role of the interface between sensor and transmitter has been defined. 

6.6 



- chapter six Discussion and Conclusions - 

2. The design of an example coder that realises modest compression at very little 

hardware cost has been proven feasible. 

The development of a coder that can be easily integrated with a CMOS image sensor 

provides a significant step forward in the low cost production of a radio video link. 

The extremely small size of the example coder design means that adding it to the 

sensor die will not impact on its yield. Furthermore, the cost of the combined 

sensor/coder will be little more than that of a sensor alone. 
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appendix one 

Simulation software source code 

The most important parts of the simulation software source code are listed below. 
The three C files listed are as follows: 

• main.c - 	the main function 
• simulate.c - called by main() to control the simulation environment. 
• quantise.c - contains all the error diffusion based compression functions. 

Main.c 
This functions sets up the general program environment. Command line flags can 
be used to start it in simulate, record, demo or test modes. 
/*##################*#***####################*########################t#** 

* main.c 	 Andrew Murray July 95 

* The program can be started in one of three modes: 
simulation mode (the default mode) this is the original version of 

* 	the software which performs variable depth quantisation with or 
* 	without various types of diffusion, either on images from file or 
* 	from live video input (via a 'PC Card camera , ). A limited amount 
* 	of block-based DPCM code is also included. 

demo mode (envoked using the -d flag) this mode is used to give self-
running demos of different types of diffusion. It was written 

* 	primarily for collection of subjective test results. 
recording mode (envoked using -r) used for the recording of stills 

* 	or sequences, mainly used for creating the demos. 

* All the code is written and complied for DOS, using the Microsoft C/C++ 
* Complier v8.00. The graphics routines use VESA mode lOSh (1024x786 by 256 
* colours) and require a graphics card (and driver - eg. univesa.exe) that 
* support this mode. 

ifinclude <stdio.h> 
#include <stdlib.h> 
#include <malloc.h> 

#include "vvldefs .h" 
*include "array.h" 
#include "camlib.h" 
#include "pcmcia.h" 
#include "display.h" 
j$include "simulate.h" 
#include "demo.h" 
#include "record.h" 
*include input. h' 
#include "test.h 
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#include "cmd line.h" 

1* mode definitions *1 
#define SIMULATE 0 
#define DEMO 1 
#define RECORD 2 
#define TEST 3 
#define CMD_LINE 4 

ft Forward Declaration of Private Functions *1 
mt DealWithCommandLineFlags( mt argc, char *argvfl, mt tpMode >; 

/* Global Variable Declarations */ 
colour _triplet green={ 158, 80, 25 }; 
colour_triplet grey={ 195, 131, 51 }; 1* new 
colour _triplet purple'{ 107, 67, 65 ); 
colour_triplet blue={ 1*147*1218, 1*67*174, 1*25*138 }; 
colour _triplet on_green={ 223, 89, 84 }, off_green={ 154, 77, 76 }; 
colour_triplet on—red=( 251, 201, 160 }, off_red={ 210, 105, 96 }; 
colour _triplet dull_red=( 210, 169, 137 }; 
colour_triplet win95grey = { 1, 2, 4 }; 

byte tgpFrameo, *gpFramel,  *gpFrame2; / global pointers to the frame stores*/ 
mt g_frameo_state=FALSE, g_framel_state=FALSE, g_frame2_state=FALSE, g_ignore=0; 
dword frame _rows = FRAME—ROWS, frame_cols=FRAME_COLS; /* the frame dimensions-/ 
mt g_pcmcia FALSE, g_slot=FALSE, g_bailout = FALSE; 
mt g_graphics=FALSE, g_diagnose=FALSE, g_logo = TRUE; 
CAMERA camera A; 	It structure containing PCMCIA card details *1 
char buffer [80) ; 	 1* temp. character buffer used mainly for sprintf's *1 
dword g_histogram[256), gamma_table[256); 
float g_gamma=1.4F; 
demo_page_details g_page_array[DEMO_MP,X],  tempDemo; 

/* 	* 
* main * 

void 	cdecl main ( mt argc, char *argv[) 

mt mode=SIMULATE, rtn=TRUE, user input=FALSE; 

rtn = DealWithCommandLineFlags( argc, argv, &mode ); 
if (rtn) goto error; 

switch (mode) 
case SIMULATE: 

rtn = SimulateQ; 
if (Irtn) goto error; 
break; 

case DEMO: 
rtn = Demo>); 
if (!rtn) goto error; 
break; 

case TEST: 
rtn = Test>); 
if (!rtn) goto error; 
break; 

case RECORD: 
rtn = Record>); 
if (!rtn) goto error; 
break; 

case CMD_LINE: 
rtn = CommandLineMode) argv, argc >; 
if (!rtn) goto error; 
break; 

default: 
printf(" main: invalid 'mode' value\n"); 
goto error; 

if (g_frameo_state) _hfree( gpFrameO ); 
if (g_framel_state) hfree( gpFramel ); 
if (g_frame2_state) _hfree( gpFrame2 ) 
printf('\n main: ex iting normally :)\n"); 
exit (0); 

error: 
if (g_frameo_etate) _hfree( gpFrameo ); 
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if (g_framel_state) _hfree( gpFramel ); 
if (g_frame2_state) _hfree( gpFrame2 ); 
printf("\n's', buffer ); 
printf('\n main: exiting on error :(\n'); 
exit (0); 

1* #########*4(###########(##### * 

* Private Function Declarations * 
* #####*#flt#################### *1 

* NAME: DealWithCommandLineFlags 

* PURPOSE: takes action on any command line flag that were given at the 
* 	 command line when the program was executed. 

mt DealWithCommandLineFlags( mt argc char *argvfl, mt *pMode 

char tmp; 
mt count; 

printf("\n) 
if (argc=l){ 

for (count=l; count<argc; count++){ 
tsp = argv(count) (0] 
if (/*argv(count) (0]*/(tmp == /)11 (tmp == 

tmp = argv(count) (1); 
switch (/*argv(count] (l)*/tmp) 
case d 

printf(° Demo mode envoked\n"); 
*pMode = DEMO; 
break; 

case r: 
printf(" Recording mode envoked\n'); 
*pMode = RECORD; 
break; 

case x': 
printf(' Diagnose set TRUE\n"); 
g_diagnose = TRUE; 
g_ignore++; 
break; 

case 1: 
printf(" Logo suppressed :(\n"); 
g_logo = FALSE; 
break; 

case t 
printf(Il Test mode envoked ... \n"); 
*pMode = TEST; 
break; 

case c: 
printf(" command line mode envoked . 
*pMode = CMD_LINE; 
return TRUE; 
break; 

default: 
printf(' %c - unrecognised flag\n",  tmp); 
goto explain; 

else 
printf(' ie - unrecognised argument\n, argv[count]); 
goto explain; 

return TRUE; 

explain: 
printf('\n Usage: diffuse (options]\n"); 
printf(' -d envoke Demo mode\n"); 
printf(' -r envoke Record mode\n); 
printf( -x run with Diagnosis"); 
return FALSE; 

1* ########## * 
* main.c end * 
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* #####*#### •1 

Simulate.c 
This file contains the umbrella function that controls the flow of processing during 
software simulation. 

* simulate.c 	 - Andrew Murray February 95 

* This is a piece of code that demonstrates all the features of the software 
* simulation of compression, quantisation, error diffusion and palette 
* optimisation created during my PhD. 

* The program can either take input from I.imgl files or live from a PC Card 
* Camera PCMCIA card. 
* 

#include <coio.h> 
#include <stdio.h> 
#include <graph.h> 
#include <math.h> 
#include <malloc .h> 
#include "vvldefs.h" 
#include "sirnulate.h" 
#include "display.h" 
#include "trio.h" 
#include "array.h° 
#include "camlib.h° 
#include "pcmcia.h 
#include 11  input. h' 
#include "fileio.h" 
#include "quantise.h /* for GenFloydSTest() and Prescale() *1 

1* Forward Declarations of Private Functions */ 
mt SetupSimulateDosGraphics ( byte active 
void GenerateTestFrame( byte *pFrarne ); 
mt InterpretKeypress(char letter, byte *pActive  byte  *pSave win, mt *psave output ); 
void LoadSequenceO; 
void SaveSequence( mt *psave out, byte *psave win ); 
void ToggleProcess( trio *pTrio, mt requested_process, char *label 
void ToggleAnalysis( trio *pTrio, mt requested_analysis, char *label ); 
mt Simulate ReadWindows ( ); 

1* External Variable Declarations */ 
extern colour_triplet green, grey, purple, blue, win95grey; 
extern colour—triplet on_green, off—green; 
extern colour—triplet on_red, off_red, dull_red; 
extern byte *gpFrameO, *gpFramel, *gpFrama2; /* global pointers to the frame stores*/ 
extern mt g_frameo_state, g_framel_state, g_frame2_state; 
extern dword frame_rows, frame_cole; / the frame dimensions*/ 
extern mt g_pcmcia, g_slot, g_bailout, g_diagnose, g_logo; 
extern CAMERA camera—A; 	1* structure containing PCMCIA card details */ 
extern char buffer[80]; 	/ temp. character buffer used mainly for sprintf's */ 
extern dword g_histogram [256]; 
extern dword gamma_table [256]; 
extern float g_gamma; 
extern mt g_graphics; 

1* Global variable definitions */ 
XY pcmcia_led = (30, 610), file_led = (30, 626), load—led = (30, 658), g_save_led 	(30, 706); 
trio *pTrioarray[3) ; 1* an array of pointers to the trios*/ 
char gSavenamel131="saved.tst", gLoadname[13]="hamster.img; 
mt g_save_analysis=FALSE, g_save_image=FALSE; 

I. ############################ * 
* public function declarations * 
*############################*/ 

/ 
* 	 NAME: Simulate 
* PURPOSE: This is the overall simulation function. Once called it will 
* 	 perform it goes into a loop of updating images that are 'live' 
* and checking for user input. 
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mt Simulate() 

mt rtn=TRUE, user_input=FALSE; 	/* flags */ 
byte save _win=O; 

_ mt saveoutput=TRUE; 
char tmp=x'; /* used for storing keypresses*/ 
byte i, active_trio=O; 
trio left_trio 	Trio Init( 'left.dat" ); 	/ the three trios*/ 
trio middle—trio 	= Trio Init( middle.dat" ); 
trio right_trio = Trio_Init( "right.dat" ); 

printf(°\n Simulate: called. ..\n'); 

/ set up the frame store *1 
gpFrameO = (byte _huge *)halloc( (frame_rows*frame_colS), sizeof (byte) ); 
if (gpFrarneO == NULL) printf(" failed to _halloc for frameO\n"); 
else 

printf(" halloc'd frameO okay :)\n"); 
g_frameO_state=TRUE; 

gpFramel = (byte 	huge *)halloc( (frame_rows*frame_cols), sizeof(byte) ); 
if (gpFramel == NULL) printf(" failed to _halloc for framel\n"); 
else 

printf(" halloc'd framel okay :)\n"); 
g_fratnel_state=TRUE; 

gpFrame2 = (byte _huge *)halloc(  (frame rows*frame_C01S), sizeof(byte) ); 
if (gpFrame2 == NULL) printf( failed' to _halloc for frame2\n"); 
else 

printf(" halloc'd frame2 okay :)\n"); 
g_fratne2_state=TRUE; 

if (g_bailout) 
sprintf( buffer, " Simulate: error initialising the trios\n"); 
goto sim_error; 

/*## initialise the pointers to the trios 
pTrio_array[O] = &left_trio; 
pprio_array[l] = &middle_trio; 
pTrio_arrayf21 = &right_trio; 

g_slot = Pcmcia_SetupCamera( &camera_A ); 
if (g_slot) g_pcmcia = TRUE; 

if (g_diagnose) 
printf(" Simulate: Diagnostics... \n') 
printf(" Simulate: g_slot="); 
if (g_slot) printf("TRUE"); 
else printf("FLSE") 
printf(" and g_pcmcia="); 
if (g_pcmcia) printf ("TRUE\n") 
else prmntf(FALSE\fl\flb) 
for (i=O; i<3; i++) Trio_PrintContents( pTrio_array(i] ); 
Input_WaitForKey( NULL ); 

rtn = SetupSimulateDosGraphics ( active—trio ); 
if (Irtn) goto sim_error; 

while (Ig_bailout) 
while (!user _input) 

if ( g_slot && g_pctncia ) { 
Pcmcia_GrabFrame( &camera_A, gpFrameO, 0, 0 ); 

for (i=0; i<3; i++) 
if (pTrioarray(i)->live==TRUE) { 

Trio_lJpdatelmages ( pTrio_array(i) ); 

user_input = Input_CheckForKey( &tmp ); 

g_bailout = InterpretKeypress( tmp, &active_trio, &save_win, &save_output ) 
user_input=FALSE; 
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Display EndGraphics 0; 
return TRUE; 

s ia_error: 
if (g_graphics) Display_EndGraphics0; 
return FALSE; 

/*#############################* 
* Private Function Declarations * 
* ################tfl(########### */ 

* NAME: SetupSimulateDosGraphics 

* PURPOSE: called from within Simulate() to set the graphics mode and 
* 	 palette and draw all the window borders. 
** 

mt SetupSimulateDosGraphics( byte active 

byte i; 
mt ret; 
window temp; 
XY logoPos = {34,34}; 

ret = Display SetupGraphics() 
if (!ret) 

sprintf( buffer, " Simulate_SetupDosGraphics, graphics mode change failed" ); 
return (FALSE) 

Display_CreateGammaPalette C 1 
Display_CreateSpreadGreyPalette (C 
Display_CreateSpreadGreyGammaPalette( g_gamma ); 

if (g_logo) 
FileloLoadFrame( "logo.img", gpFrameo C; 
Array_CreateLogo) gpFrameo ); 
Display_ColourFrame( gpFrameo, logoPos ); 

GenerateTestFrame ( gpFrameo ) 

for (i=0; i<3; i++) 
Display_Window) &(pTrio_array[i] ->image) ); 
Display_Window) &(pTrio_array[i) ->analysis_win) ); 
Display_Window( &(pTrio_array[i] ->status) ) 
Trio_DrawLegends( pTrio_array(i] ); 
Trio Ref reshLeds( pTrioarray(i] ); 

Trio_RedrawControlWindow2 ( pTrio_array[active], DARK—GREEN ); 

temp.height = 147; temp.width = 140; temp.org .x = 25; temp.org .y = 595; 
temp.title_depth = 18; temp.text = TRUE; temp.title row = 37; 
temp.titlecoll 	5; temp.titlecol2 = 19; 
sprintf( temp.title, "Input/Output" C; temp.title_colour = DARK—TEXT; 
temp.coll 	7; temp.col2 = 19; temp.rowl = 39; temp.row2 	45; 
temp.shade = win95grey; 

Display_Window( &temp ); Display_SetTextWindow( &temp ); 
Display_GraphicalText( "PCMCIA input\n",  DARK—TEXT  ); 
Display_GraphicalText( "File input\n\n",  DARK—TEXT  ); 
Display_GraphicalText( "Load image\n\n\n",  DARK—TEXT  ); 
Display_GraphicalText( "Save image", DARK—TEXT ); 
Display_Led) pcmcia_led.x, pcmcia_led.y, on_green, off_green, g_pcmcia ); 
Display_Led( file_led.x, file_led.y, on_green, off_green, FALSE ); 
Display—Led( load _led.x, load _led.y, on_red, off_red, FALSE ); 
Display_Led) g_save_led.x, g_save_led.y, on_red, off —red, FALSE C; 

return TRUE; 

* NAME: GenerateTestFrame 
* PURPOSE: Generates a test picture in a plane of the array 

void GenerateTestFrame( byte *pFrame 

dword index, end_of_f rame= (dword) (FRAME_ROWS*FRAME_COLS); 
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for( index=O; indexeend_of_frame; index++) 
*pFrame++ = (byte) (index/256) 

* 	 NAME: InterpretKeypress 

* PURPOSE: takes action on key presses, after a key press has been 
* 	 detected this function should be called (passing the key pressed) 

mt InterpretKeypress (char letter, byte *pActive, byte *pSa've win, mt *psave output 

trio temp_trio=*pTrio_array(*pActiVe]; 

XY save—id; 

switch (letter) 
case 

if(*pActive>O) 
Trio RedrawControlWindow2 ( pTrioarray(*pActive), WINGREY ); 
temp—trio = *pTrioarray(__ (*pActjve)) 
Trio_RedrawControlWindow2 ( pTrio_array[*pActive), DARK —GREEN ); 

break; 
case ' . 

if(*pActive<2) 
Trio RedrawControlWindow2 ( pTrio_array[*pActive], WINGREY ); 
temp—trio = *pTrioarray[++(*pActive)] 

Trio_RedrawControlWindow2 ( pTrio_array (*pActive], DARK —GREEN ); 

break; 
case '1' 
case '2': 
case '3': 
case '4': 
case '5': 
case '6': 

temp_trio.bits = (byte) ( (byte)letter - 48 ); 
break; 

case 'a': 
if (temp_trio.live) 

temptrio. live=FALSE; 
temp_trio. image. title_colour = INACTIVE —TITLE; 

Display_WindowTitle( &(temp_trio.image) ); 
temp_trio.analysis_win.title_colour = INACTIVE —TITLE; 
Display_WindowTitle( &(temp_trio.analysis_win) 

else 
temptrio. live=TRUE; 
temp_trio. image. title_colour = ACTIVE—TITLE; 
Display_WindowTitle ( &(temp_trio. image) ); 
temp_trio.analysis_win.title_colour = ACTIVE _TITLE; 
Display_Window'ritle( &(temp_trio.analysis_win) 

break; 
case c: ToggleProcess( &temp_trio, NONE, NONE STRING ); 	break; 
case 't': ToggleProcess( &temp_trio, TRUNCATE, TRUNCATE_STRING ); break; 
case i: ToggleProcess( &temp_trio, SIMPLE_DF, SIMPLE _DF_STRING ); break; 
case 'f': PoggleProcess( &temp_trio, FLOYD_S, FLOYD_S_STRING ); break; 
case 'r': ToggleProcess( &temp_trio, RANDOM, RANDOM STRING ); break; 
case 'e': ToggleProcess( &temp_trio, SAPE_1, SAFE_i_STRING ); break; 
case 'w': ToggleProcess( &temp_trio, SAFE_2, SAFE_2_STRING ); break; 
case 'y': ToggleProcess( &temp_trio, OPTIMISE, OPTIMISE STRING ); break; 
case u: ToggleProcess( &temp_trio, OPTIMISE —ED, OPTIMISE—ED—STRING ); break; 
case h: ToggleAnalysis( &temp_trio, HISTOGRAM, HISTOGRAM STRING ); break; 
case 'd': ToggleAnalysis( &temp_trio, ERROR, ERROR STRING ); 	break; 

case '0': ToggieArialysis( &temp_trio, SQR_ERROR, SQR_ERROR_STRING ); break; 
case 'g': ToggieAnalysis( &temp_trio, DEBUG, DEBUG —STRING ); 	break; 

case '1: LoadSequenceO; break; 
case 'Z': 

Display—Led( load _led.x, load _led.y, on_red, off_red, TRUE 
FileIO_Load36Ox288PgmFrame ( "gsOOO.pgm", gpFrameO, 27 ); 
g_pcmcia = FALSE; 
Display—Led( load _led.x, load_led.y, on_red, off_red, FALSE ); 
Display—Led( pcmcia_led.x, pcmcia_led.y, on_green, off_green, g_pcmcia ); 
Display_Led( file_ied.x, file_led.y, on_green, off_green, TRUE ); 
break; 	 - 

case 'V': 	 - 
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Display_Led( load_led.x, load_led.y, on_red, off —red, TRUE ); 
FileIO_Load5l2PgmFrame( "peppers.pgm", gpFrameO ); 
g_pcmcia = FALSE; 
Display_Led( load _led.x, load_led.y, on_red, off_red, FALSE ); 
Display_Led) pcmcia_led.x, pcmcia_led.y, on_green, off —green, g_pcmcia ); 
Display—Led( file_led.x, file_led.y, on_green, off_green, TRUE ); 
break; 

case 'x' 
Display_Led( g_save_led.x, g_save_led.y, on_red, off_red, TRUE ); 
Array_WriteFrameToTextFile ( gpFrameO, "hamster.txt" 
Display_Led( gsave_led.x, g_save_led.y, on_red, off_red, FALSE 
break; 

case 's': SaveSeguence( pSave_output, pSave_win );break; 
case ',': FileIO_SavePCXFrame( gpFrameO, °test.pcx" ); break; 
case 

if (temp_trio.save_image) temp_trio.save_image = FALSE; 
else temp_trio.save_image = TRUE; 
break; 

case 
if (temp_trio.scale) temp_trio.scale = FALSE; 
else temp_trio.scale = TRUE; 
break; 

case 'p 
if (g_pcmcia) g_perncia = FALSE; 
else 

g_pcmcia = TRUE; 
Display—Led( file_led.x, file_led.y, on_green, off_green, FALSE ); 

Display_Led( pcmcia_led.x, pcmcia_led.y, on_green, off_green, g_pcmcia ); 
break; 

case ' 
if (g_gamma>O.lF) g_gatrnna -= O.1F; 
Display_CreateSpreadGreyGammaPalette( g_gamma ); 
break; 

case ']': 
g_gamma += O.1F; 
Display_CreateSpreadGreyGammaPalette( g_gamma ); 
break; 

case '9': 
jf (*psavewjn>O) 

if (*p5ave  output) 
save_md = pTrio_array[*pSave_win) ->image.org ; 
Display_BlankLed( (short) (save_ind.x+240), (short) (save_ind.y-l7), WINGREY); 
(*p5ave win) 
save—id = pTrio_array[*pSave_win] ->image.org ; 
Display_Led( (short) (save_ind.x+240), (short) (save_ind.y-17), on—red, off_red, 

FALSE); 

else 
save_md = pTrio_array[*pSave_win] ->analysis_win.org; 
Display_BlankLed( (short) (save_ind.x+240), (short) (save_ind.y-17), WINGREY); 
(*pSave win) 
save—id = pTrio_array[*pSave_win] ->analysis_win.org; 
Display_Led( (short) (save ind.x+240(, (short) (save ind.y-l7), on—red, off_red, 

FALSE); 

break; 
case '0': 

if (*pSave  win<2) 
if (*p5ave output) 

save_md = pTrio_array[*pSave_win] ->image.org ; 
Display BlankLed( (short) (save ind.xi-240), (short) (save mnd.y-l7), WINGREY); 
(*psave win) ++; 
save—id = pTrio_arrayE*pSave_win) ->image.org ; 
Display—Led( (short) (save_ind.x+240), (short) (save_ind.y-l7), on—red, off_red, 

FALSE); 

else 
save_md = pTrio_arrayE*pSave_wmn) ->analysis_win.org; 
Display_BlankLed( (short) (save_ind.x+240), (short) (save_ind.y-17), WINGREY); 
(*pSave win) ++; 
save—id = pTrio_array[*pSave_wmn] ->analysis_win.org; 
Display Led) (short) (save_ind.x+240), (short) (save_ind.y-l7), on_red, off_red, 

FALSE); 

break; 
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case '7': 
if (*pSave  output) 

*pSave output = FALSE; 
save_md = pTrio_arrayl*pSave_wmn) ->image.org ; 
Display_BlankLed( (short) (save_ind.x+240), (short) (save_ind.y-17), WINGREY); 
save_md = pTrio_array[*pSave_win] ->analysis_win. org; 
Display Led( (short) (save ind.x-s-240), (short) (save_ind.y-17), on—red, off_red, FALSE); 

else{ 
*pSave output = TRUE; 
save_md = pTrio_array[*pSave_win] ->analysis_win. org; 
Display BlankLed( (short) (save_ind.x+240), (short) (save ind.y-17), WINGREY); 
save_md = pTrio_array[*pSave_win) ->image.org ; 
Display_Led( (short) (save_ind.x+240), (short) (save_ind.y-17), on —red, off_red, FALSE); 

break; 
case 'k' 

Array_CreateGammaTestlmage ( gpFrameO 
break; 

case 
case 'q': 

sprintf( buffer, " InterpretKeypress: user termination '%c'\n", letter); 
return TRUE; 
break; 

*pTrio array  (*pActive) =temp_trio; 
Trio _Ref reshLeds( pTrio_array(*pActive)  ); 
return FALSE; 

/ 
* 	 NAME: LoadSequence 
* PURPOSE: Loads an image from a file, and alters the global variables 
* 	 and the LEDs accordingly 

void LoadSequence() 

mt rtn; 
char temp_str[13]="x"; 

settextwindow( 43, 7, 43, 19 
settextcolor( MIDGREY TEXT 

sprintf( buffer, "%s?', &gLoadname ); _outtext( buffer ); 
rtn = Input _GetFilename( temp_str ); 
if (!rtn) sprintf( gLoadname, "%s, &tempstr ); 
sprintf( buffer, "\n's",  &gLoadname ); _outtext( buffer ); 
Display_Led( load _led.x, load _led.y, on_red, off_red, TRUE ); 
rn = FilelOLoadFrame ( gLoadname, gpFrameO >; 
if (trtn) return; 
g_pcmcia = FALSE; 
Display_Led( load_led.x, load_led.y, on_red, off_red, FALSE ); 
Display Led( pcmcia_led.x, pcmcia_led.y, on_green, off —green, g_pcmcia ); 
Display—Led( file led.x, file_lady, on_green, off_green, TRUE 

* 	 NAME: SaveSequence 
* PURPOSE: Saves an image to a file, and alters the global variables 
* 	 and the Leds accordingly 

void SaveSequence( mt *pSave_prcd, byte  *p5ave  win 

mt rtn; 
char temp_str[13] ="x"; 
char ch; 

_settextwindow( 46, 7, 46, 19 
_settextcolor( MIDGREY TEXT ); 

sprintf( buffer, analysis?" ); _outtext( buffer ); 
Input _WaitForKey( &ch ); 
if (ch=='y') g_save_analysis=TRUE; 
else g_save_image=TRUE; 

sprintf( buffer, "%s?", &gSavename ); _outtext( buffer ); 
rtn = Input GetFilename( temp str ); 
if (rtn) sprintf( gSavename, "*8", &temp_str ); 
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sprintf( buffer, "\ns", &gSavename ); _outtext( buffer ); 

1* ****************************************************************************I 
void ToggleProcess( trio *pTrio, mt requested_process, char *label 

if (pTrio-'process == requested_process) 
pTrio-sprocess = NONE; 
sprintf( pTrio->image.title, NONE—STRING ); 

else 
pTrio->process = requested_process; 
sprintf( pTrio->image.title, label ); 

Display_Window'Fitle( &(pTrio->image) ); 

void ToggleAnalysis( trio *pTrio, mt requested —analysis, char *label 

if (pTrio->analysis == requested_analysis) 
pTrio->analysis = NONE; 
sprintf( pTrio->analysis_win.title, " 	 not live 

else 
pTrio->analysis = requested—analysis; 
sprintf( pTrio->analysis_win.title, label >; 

Display_WindowTitle( &(pTrio->analysis_win) ); 

1* #######*###### * 

* simulate.c end * 
*##############*/ 

quantise.c 
All the quantisation based compression functions are contained in this file. 

* 

* quantise.c 	 - Andrew Murray February 95 

* a library of routines to perform different types of quantisation. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "vvldefs.h" 
#include "quantise.h" 
#include "array.h" 
#include "input.h" 1* debug */ 
#include "display.h" 

/* external declarations */ 
extern dword frame—rows, frame_cole; 
extern mt g_diagnose, g_graphics; 

/* ########1*4t##*#####*#####4t## * 
* Public Function Declarations * 
* #####1############*#*####### */ 

* 	 NP,1'4E: Quantise_Truncate 

* PURPOSE: reduces the pixel depth of the image to the number of 'bits' 
* 	 specified. The truncation is performed by ANDing each pixel 
* 	 with a mask - leaving the most significant bits in their 
* 	 original positions. 

void Quantise_Truncate( byte *pSource,  byte pDest, byte bits 
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dword pixel, end_of_f rame= (dword) (frame_rows*frame_cols); 
byte mask= (byte) (Oxff<< (8-bits)); 

for(pixel=O; pixel<end_of_frame; pixel++) 
*pDest++ = (byte) (*pSource++ & mask); 

return; 

/ 
* 	 NAME: Quantise Diffuse 
* PURPOSE: reduces the depth of an image, but takes account of the 
* 	 truncation errors by adding them onto yet untruncated pixels. 
* 	 This is the most simple example of such a scheme, where the 
* 	 whole error is added to the next pixel (a trap is included to 
* 	 make sure no pixels 'roll-round') 

void Quantise_Diffuse( byte *src_ptr,  byte  *dest_ptr,  byte bits 

dword pixel, end_of_f rame= (dword) (FRAI4EROWS*FRAMECOLS); 
byte sum=O, sum_mask=Oxff, pixel_mask=Oxff; 

sum _mask= (byte) (sum_mask>>bits) 
pixel—mask= (byte) (pixel_mask<< (8-bits)); 

for(pixel=O; pixel<end_of_frame; pixel++, src_ptr++, dest_ptr++) 

if (*src_ptr < pixel —mask) sum = (byte) ( *src_ptr + (sum & sum—mask)); 
else sum = *src_ptr; 
*dest_ptr = (byte) (sum & pixel_mask); 

* 	 NAME: QuantiseRandDif fuse 
* PURPOSE: the same as QuanitseWithDiffusion except that the location 
* 	 where the error of the truncation is 'diffused' to is chosen 
* 	 randomly between two equally likely candidates (imeadiately to 
* 	 the right or below. A psuedo-random bit sequence generator is 
* 	 used to decide on the location. A high bit of the rand() result 
* 	 is used as they higher ones tend to be 'more' random! 
* 	 (cf. Numerical recipies in C). 

void QuantiseRandDiffuse( byte *pOriginal, byte *pOest,  byte bits 

dword pixel_index, end_of_f rame= (dword) (frame_rows*frame_cols) 
dword most of frame=(end_of_frame-l), last_line=(end_of_frame-frame_cols) 
mt candidate—below; 
byte error_mask=Oxff, pixel_mask=Oxff, dummy; 
byte *pRasterpDest, *p5preadeepDest, error=O; 

error _mask = (byte) (error_mask>>bits) 
pixel—mask = (byte) )pixel_mask<<(8-bits)); 

Array_Copyprame( pOriginal, pDest ); 

for(pixel_index=O; pixel_index<most_of_frame; pixel_index++, pRaster++) 

error = (byte) (*pRaster & error_mask); 	 1* calculate the impending truncation error 

*pRaster = (byte) (*pRaster & pixel—mask); 	1* truncate the pixel */ 

candidate below = ((randO>>6) & OxOl); 1* choose the Ispreadeel from the two candidates / 
if (candidate_below==FALSE) pSpreadee = (pRaster + 1); 

else 
if (pixel_index<last_line) pSpreadee = (pRaster + frame_cols); 
else pSpreadee = &dummy; 

if ( *p5preadee < pixel—mask 
*p5preadee = (byte) (*pSpreadee + error); 

*pRaster = (byte) (*pRaster & pixel_mask); 	/* quanitse the last pixel without spreading •/ 

* 	 NAME: QuantiseSafeRandDiffusel 
* PURPOSE: the same as the random one except that the candidate locations 
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* 	 are flagged when they should no longer be added to, this limits 
* 	 the accumulated errors where by random lots of errors would 
* 	 otherwise have been spread. 
******** 

void QuantiseSafeRandDiffusel( byte *pOriginal, byte *pDest,  byte  *pTemp,  byte bits 

dword pixel—index, end_of_f rame= (dword) (frame_rows*frame_rows); 
dword most of frame=(dword) (end_of_frame-i), last line= (end_of_frame-frame_rows); 
mt candidate—below, spreading=TRUE; 
byte *pRasterpDest, *pspreadeepDest ;  
byte error=O; 
byte old _bit; 
long flag—gap = pTemp-pDest; / the distance between each pixel and it's flag *1 
byte flag_mask = (byte) (OxOi<<(8-bits)); 
byte error_mask = (byte) (Oxff>>bits); 
byte pixel—mask = (byte) (Oxff<<(8-bits)); 
byte *pRand = pTemp ; /* for debug results-/ 

Array_CopyFrame( pOriginal, pDest ); / all the processing is done in the Dest frame store *1 
Array BlankFrame( pTemp, FALSE ); 1* initialisation of all the flags *1 

for(pixel_index=O; pixel_index<most_of_frame; pixel_index++, pRaster++, spreading=TRUE) 

error = (byte) (*pRaster & error_mask); 	1* calculate the impending guantisation error 

*pRaster = (byte) (*pRaster & pixel_mask) ; 	/* quantise the pixel */ 

candidate _below = ((rand(>>>6) & OxOl); /* make the initial random 'spreadee' selection */ 
if (candidate below==FALSE) pSpreadee = (pRaster + 1); 
else 

if (pixel_index<last_line) pSpreadee = (pRaster + frame cols) 
else spreading = FALSE; 

if (*(pSpreadee+flaggap)TRiJE( 
if (pixel_index<last_line) pSpreadee = (pRaster + frame_cola) 
else spreading = FALSE; 

if ((spreading==TRIJE) && (*pSpreadee 	pixel—mask)) 

old_bit = (byte) (*pSpreadee & flag_mask); 
*pSpreadee = (byte) (*pSpreadee + error) 
if ( (*pSpreadee & flag_mask) 	old—bit ) *(pspreadee+flag gap) = TRUE; 

*pRaster = (byte) (*pRaster & pixel_mask); 	/* quanitse the last pixel without spreading */ 

* 	 NAME: Quantise_SafeRandDiffuse2 
* PURPOSE: the same as SafeRand. .1 except that when a flag is encountered 
* 	 spread is abandoned rather than always spreading to the pixel 
* 	 below. 

void Quantise_SafeRandDiffuse2( byte *psource,  byte  *pDest,  byte  *pTemp,  byte bits 

dword pixel—index, end_of_f rame= (dword) (frame_rows*frame_rows); 
dword most_of_f rame=(dword) (end_of_f rame-l), last_line= (end_of_frame-frame_rows) 
mt candidate below, spreading=TRtJE; 
byte *pRasterpDest, *pSpreadeepDest ;  
byte error=O; 
byte old _bit; 
long flag—gap = pTemp-pDeSt; 1* the distance between each pixel and it's flag */ 
byte flag_mask = (byte) (OxOl<<(8-bits)); 
byte error _mask = (byte) (Oxff>>bits) 
byte pixel _mask = (byte) (Oxff<< (8-bits)> 
byte *pRand pTemp ; /* for debug results */ 

Array_CopyFrame( pSource, pDest > ; 	 1* all the processing is done in the Dest frame store *1 
Array_BlankFrame( pTemp, FALSE >; /* initialisation of all the flags *1 

for(pixel_index=O; pixel_indexmost_of_frame; pixel_index++, pRaster++, spreading=TRUE( 
error = (byte) (*pRaster & error_mask) ; 	 1* calculate the impending quantisation 

error 
*pRaster = (byte) (*pRaster & pixel_mask) ; 	1* quantise the pixel *1 

candidate _below = ((randO>>6) & OxOl) ; /* make the initial random 'spreadee' selection */ 
if (candidate_below==FALSE) pSpreadee = (pRaster + 1); 
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else 
if (pixel indexelast_line) pSpreadee = (pRaster + frame_cola); 
else spreading = FALSE; 1* to stop spreading outside the framestore */ 

if ((spreading==TRUE) && (*pSpreadee < pixel_mask) && (*(pSpreadee+flag_gap)==FALSE)) 
old—bit = (byte) (*pSpreadee & flag_mask), 
*pSpreadee = (byte) (*pSpreadee + error); 
if ( (*pspreadee & flag_mask) 1= old—bit ) *(pSpreadee+flag gap) = TRUE; 

if (*(pSpreadee+flag_gap)==FALSE) *pRand++ = GREEN; 
else *pRand++ = RED; 

	

*pRaster = (byte) (pRaster & pixel_mask); 	1* quanitse the last pixel without spreading */ 

* 	 NAME: Quantise_FloydS 
* PURPOSE: A variable depth output implementation of the original error 
* 	diffusion algorithm (Floyd-Steinberg). It spreads the guantisation 
* 	errors over the four remaining immediate unquantised neighbours, 
* 	sharing the error according to the 'diffusion filter' shown below 
* 	filter: 	. Awhere A=7/16, 8=1/16, C=5/16, D=3/16 
* 	 D C B and 1 . 1  represents the pixel being quantised. 
* 	This version is variable in output depth from 1 to 6 bits/pixel. 
* History: original written 28th Jan 96, Andrew Murray. (working) 

mt Quantise_FloydS( byte *pSrc,  byte  *pDest,  byte bits 

unsigned short fifo_index, fifo_len = frame_cols+l; 
short fifo[FRAMECOL,S+l] 
long SpreadPixel, QuantError; 
byte QuantisedPixel; 
dword pixel, end_of_frame = frame_rows*frame_cols; 
dword a_limit = end—Of—frame - 1, b_limit = a_limit - frame cols; 
byte num_thresholds= (byte)pow(2,bits), threshold; 
short thresholds [64) 
byte colours [64] 

/* test validity of 'bits' */ 
if (bits>6) return FALSE; 

/* create the arrya of thresholds and corresponding array of colours */ 
for(threshold=O; threshold<num thresholds; threshold++) 

thresholds [threshold] = (short) (255*  (2*threshold_l)) / (2* (num thresholds-i)) 
colours [threshold] = (threshold*255)/ (num thresholds-i) 

1* intialise the spreading array */ 
for(fifo_index=O; fifoindex<fifo_len; fifo_index++) fifo(fifoindex]=O; 
fifo_index=O; 1* - probably not necessary as the fifo buffer is circular */ 

for(pixel=O; pixei<end_of_frame; pixel++) 
/* calculate the spread pixel, quantised version and error *1 
SpreadPixel = ( (((long)*pSrc++)<<4) + fifo[(fifo_index++)%fifo_len] )r.>4; 
threshoid=num_thresholds-i; 
while (SpreadPixel<thresholds (threshold]) threshold--; 
QuantisedPixel=colours [threshold); 
QuantError = SpreadPixel - (long)QuantisedPixel; 

/* store the results (errors*16)*/ 
*pDest++ = QuantisedPixei; 
if (pixel<a limit) 

fifo[fifoindex%fifo_len] += QuantError*7 ;  /* filter element A */ 
if (pixel<b_limit) 

fifo[(fifoindex+frame_cols)fifo_len] = QuantError; /* B */ 
fifo[(fifoindex+framecols-l)%fifo_len] += QuantError*5; 1* C */ 

fifo[(fifoindex+framecols-2)%fifo_len] += QuantError*3; /* D / 

return TRUE; 

* 	 NAME: QuantisePrescaleFrame 
* 	PURPOSE: used to solve dynamic range problems of the simple truncation 
* 	 quantiser used in Quantise_Diffuse, RandDiffuse etc. The 
• 	 value of bits passed should be the same as that passed to the 
* 	 coding function. 
* 	Notes: 1) must be used in conjunction with QuantiseRescaleFrame, 
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* 	 which is applied after the quantisation function, prior to 
* 	 image display. 

void Quantise_PrescaleFrame( byte pSource, byte *pDest,  byte bits ) 	 - 

dword pixel, end_of_f rame=(dword) (frame_cols*frame_rows); 
byte subtractant; 
byte sub_mask = (byte) (Oxff << (8-bits)) /* ie. 11110000 for 4 bits. 11100000 for 3 etc. *1 
byte rep, reps = (byte) ((8/bits)-1); /* the number of complete subtractions */ 

if ((8%bits) 1=0) reps++; /* if 8 doesn't divide exactly by 'bits' a partial sub is req'd / 

Array_CopyFrame ( pSource, pDest ); 

if (bitsl=l) 
for (pixel=0; pixeleend_of_frame; pixel++) { 

subtractant = (byte) (*pDest & sub—mask); 
for (rep=0; rep<reps; rep++) { 

subtractant = (byte) (subtractant >> bits); 
*pDest = (byte) (*pDest - subtractant); 

pDest++; 

else{ 
for (pixel=0; pixel<end_of_frame; pixel++) 

*pDest = (byte) (*pDest>>l) 
pDest++; 

/ 
* 	 NAME: QuantiseRescaleFrame 
* 	PURPOSE: see prescale frame above 
* * * * * * * * * **** * * * * ** * * ** * * * * * * * * * ******* ************ **** * *** ** ** * * * * ** * * *** * * *1 

void Quantise_RescaleFrame( byte -pImage, byte bits 

dword pixel, end_of_f rame= (dword) (frame_cols*frame_rows) ;  
byte rescaler; 
byte rep, reps = (byte) ((8/bits) -1); /* the number of complete subtractions */ 

if ((8thits) 1=0) reps++; /* if 8 doesn't divide exactly by 'bits' a partial sub is req'd */ 

for (pixel=0; pixel<end_of_frame; pixel++) 
rescaler = *plmage; 
for (rep=O; rep<reps; rep++){ 

rescaler = (byte) (rescaler >> bits);  
*plmage = (byte) (*plmage + rescaler); 

plmage++; 

/ 
* 	 NAME: Quantise_RescaleTruncate 

void Quantise_RescaleTruncate( byte *psrc,  byte  *pDest,  byte bits 

dword pixel, end_of_frame=(dword) (frame_rows*frame_cols) 
byte shift = (byte)128/pow(2,bits); 

for (pixel=0; pixel<end_of_frame; pixel++) 
*pDest++ = *pSrc++ + shift; 

return; 

/*############## * 
* quantise.c end * 
* 
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PINK FVGA schematics 

The full design of the PINK2 FPGA (covered in chapter four) is shown in the design 
schematics below. 
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appendix three 

Imputer FPGA firmware 

The source files for the imputer firmware used in testing the FPGA are listed below. 

The file than contains the menu-driven test program (pinktest.c) is first listed, this is 

followed by the files that make up the library of commands that can be used to 

initiate processing of images using the FPGA. 

Pinktest.c 

This functions sets up the general program environment. Command line flags can 

be used to start it in simulate, record, demo or test modes. 

/*########################################################################## * 
• pinktest.c - a menu driven test program for the pink.c library and the 
• PINK Diffusion FPGA 
* ########*###########*########## ####** 	 */ 

#include <stdio.h> 
#include <stdimp.h> 
#include <timer.h> 
#include <imputer .h> 
#include <math.h> 
#include "pink.h 

typedef struct bank_register 

byte vid_gen; 
byte grab; 
byte logo; 
byte test; 
}bank_register; 

1* Private function forward declarations / 
void RunProcessor( byte process, bank —register reg, mt twin ); 
void RunTestlmage( byte process, bank_register reg 
void DisplayMenuO; 
void Displaystatus( byte process, mt logo_flag, mt smooth—flag, bank—register reg 

void ToggleFlag ( mt *pFlag ); 
void GrabFrame( byte dest ); 
void GenerateTestlmage( bank_register reg ); 
void GammaCorrectDisplay( float *pGamma) ;  
void GammaCorrectlmage ( byte bank, float gamma ); 
void RampOnRHSO; 
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void ApplyFixedCOrreCtiOfl( byte bank ); 

I ###fl####(#### * 
* main function * 
* ############# */ 

void main( 

bank_register banks = { Oxl, Oxi, Oxe, OxO }; 
byte current_process = SIMPLE; 
mt quit = FALSE, logo = FALSE, smooth = TRUE; 
char letter; 
mt cycles = 100; 
float gamma=2.2; 

imputer_init(); 

printf('\nPINK FPGA Test/Demo Software\nVersion  2.01  (pinktst3.c)\nCopyright  (c) 
nonsense 1 95\n\n") 

1* initial processing to allow autonomous operation *1 
RunProcessor( current_process, banks 

/* main menu driven processing loop */ 
RunProcessor( current_process, banks, smooth 

while (!quit)( 
if (logo) set—video—bank( 0 ); 
DisplayStatus( current_process, logo, smooth, banks ); 
DisplayMenuO; 
letter = getchar(); 
printf("\n") 
switch (letter) 

case '8': current_process = SIMPLE; break; 
case 'p' : current_process = PERTURB; break; 
case 'r : RunProceasor( current_process, banks, smooth ); 	break; 
case h: RampOnRHSO; 
case 't' : RunTestlmage( current_process, banks ); break; 
case If': GenerateTestlmage( banks ); 	break; 
case '1': ToggleFlag( &logo ); 	break; 
case 'm': ToggleFlag( &smooth ); break; 
case g' : GammaCorrectDisplay( &gamma ) ; break; 
case c : GammaCorrectlmage( 14, gamma ); break; 
case 'a , : ApplyFixedCorrection( 14 ); break; 
case 'q' : quit=TRUE; 	break; 
default: printf("\tUnrecognised input  'c'\n",  letter); 

printf('\n\tbye.\n") 
reset_imputer() 

* 

* Private function declarations * 
* tfl(*###*###*####(############* */ 

void RunProceesor( byte process, bank—register reg, mt toggling 

if (! toggling)(  
set _ video _bank( reg.vid_gen ); 
SetPinkBanks( reg.grab, (reg.vid_gen+14( 
printf("\n\tEntering the processor loop, press the STOP button to exit..."); 
while ( !halt() ){ 

GrabFrame( reg.grab ); 
RunPinkProcessor( process 

else{ 
printf("\n\tEntering the smooth processor loop, press the STOP button to 

exit..."); 
while ( !halt() ){ 
SetPinkBanks( reg.grab, 14 ); 
GrabFrame( reg.grab ); 
RunPinkprocessor( process ) 
set video bank( 0 ); 
SetPinkBanks( reg.grab, 15 ); 
GrabFrame( reg.grab ); 
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RunPinkProcessor( process ); 
set video—bank( 1 ); 

printf(" stopped.\n") 

void RunTestlmage( byte process, bank—register reg 

set _video _bank( 0 ); 
SetPinkBanks( reg.test, 14 ); 
RunPinicProcessor( process 

void RampOnRHS() 

byte row, col; 

set_main_xbank( 14 
for(row=0; 	row<255; row++) 

for(col=0; col<128; col++) 
XBYTE [ (row*256+col+128) ] =row; 

void GenerateTestlmage( bank—register reg 

word pixel=O, row, col; 
char key; 

set_main_xbank( reg.test 

do{ 
printf("\n\tPlease choose test pattern:\n"); 
printf("\t[l] vertical ramp 	(2] 	horizontal ramp 	(3] vertical blocks\n"); 

printf("\twaiting... 
key = getchar(); 
printf("\n") 

)while 	( key!=l' 	&& key!= 1 2' 	&& key!=3' 	); 

printf("\tGenerating test image 	(bank %d), please wait...", (int)reg.test); 
for( row=O; rowe256; row++ 

for( col=0; 	col<256; 	col++ 
switch (key) 

case '1': XBYTE[pixel++] 	= row; break; 
case 	1 2 1 : XBYTE(pixel++] 	= col; break; 
case 	1 3 1 : XBYTE[pixel++] 	= 	(byte) ((row&OxfO) I 	(row>>4)); break; 

printf(" done.\n"); 

void GammaCorrectDisplay( float *pGamma 

char key; 
word row, col, row_pair, col_pair; 
word pixel; 
byte ref resh=TRUE, stop=FLSE; 
byte corrected_grey; 
float inverse_gamma; 

set main_xbank( 14 ); 
set—Video—bank( 0 ); 

printf("\tFilling bank 14 with background pattern..."); 
pixel=0; 
for (row_pair=0; row_pair'64; row_pair++) 

for (col_pair=0; col_pir<128; col_pair++){ 
XBYTE (pixel++) =0; 
XBYTE [pixel++] =0; 
XBYTE (pixel++] =255; 
XBYTE [pixeli-i-] =255; 

for (col_pair=0; col_pair<128; col_pair+i-){ 
XBY'rE(pixel+-I-] =255; 
XBY'I'E (pixel++] =255; 
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XBYTE (pixel++) =0; 
XBYTE [pixel++] =0; 

printf("done.\n"); 

printf('\tPress (>] or [<] to alter gamma, [R] to refresh display and (Q) to 
exit\n") 

do 
if (refresh) 

inverse—gamma = l/(*pGamma) 
corrected_grey = (byte) ( (256*pow(0.5,  inverse_gamma)-l) ); 
for(row=63; row<191; row++) 

for(col=63; cole191; col++) 
XBYTE ( (row*256)  +col] = corrected_grey; 

printf("\tcurrent image corrected with a gamma of W.lf (%d)\n,  *pGamma, 
(int) corrected_grey); 

ref resh=FALSE; 

key = getcharO; 
printf(\n") 
switch (key) 

case I . ' *pGamma += 0.1F; break; 
case ', ': if (*pGamma>0.1F) *pGamma -= 0.1F; break; 
case 'r' : refresh=TRtjE; 	break; 
case 'q' : stop=TRTJE; 	break; 
default: printf('\tunrecognised input '%c'\n', key); 

printf( ° \tnext gamma: %.lf\n",  *pGamma  ); 
)while) !stop 

return; 

void GammaCorrectlmage( byte bank, float gamma 

dword index; 
float inverse—gamma = 1/gamma; 
byte old—grey; 

set main xbank( bank ); 
set—video—bank( bank-14 ); 

printf("\n\tGammacorrectlmage: starting (gamma = %.lf mv = %. lf)\n", gamma, 
inverse_gamma); 

printf("\tGammaCorrectlmage: creating look-up table... 11 ); 
for (index=0; index<256; index++) 

XBYTE(index) = (byte)( 255*pow( ( (float)index/255), inverse_gamma) >; 

printf (done. \n\tGammaCorrectlmage: correcting image.. . 
for (index=256; index<65535; index++){ 

old_grey = XBYTEfindex]; 
XBYTE[index] = XBYTE(old_grey]; 

printf(done.\n") 
return; 

void ApplyFixedCorrection( byte bank 

dword pixel; 
word row, col; 
byte old—grey; 
boolean stop=FALSE; 

set main xbank( bank ); 
set—video—bank( bank-14 

printf ( ° \tApplyFixedcorrection: correcting image. . 
for(row=0; row<256; row++) 

for(col=0; col<128; col++) 
pixel= (row*256) +col; 
old_grey = XBYTE(pixel]; 
switch (old_grey) 

case 32: XBYTE[pixel]=0; break; 
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case OxOO: break; 
case Oxll: XBYTE(pixel)=56; break; 
case 0x22: XBYTE[pixel)=65; break; 
case 0x33: XBYTE[pixel]=75; break; 
case 0x44: XBYTE[pixel]=85; break; 
case 0x55: XBYTE[pixel]=95; break; 
case 0x66: XBYTE[pixel)107; break; 
case 0x77: XBYTE(pixel)=119; break; 
case 0x88: XBYTE[pixel]=132; break; 
case 0x99: XBYTE[pixel)=144; break; 
case Oxaa: XBYTE[pixel)=156; break; 
case Oxbb: XBYTE(pixel)=170; break; 
case Oxcc: XBYTE[pixel]=188; break; 
case Oxdd: XBYTE[pixel]=208; break; 
case Oxee: XBYTE[pixel]=232; break; 
case Oxff: break; 

default: printf(" error\n\t read '%d' not 4bit/pixel data\n", 
(int)old_grey); 

printf("done.\n"); 
return; 

void DisplayMenu() 

printf("\n\tPress:") 
printf( "\t[R] Run processor 	[T] run Test image\n"); 
printf("\t\t[M] toggle switching \n"); 
printf("\t\t[A) Apply fixed cor.[S] change to Simple [P] change to Perturb\n"); 
printf("\t\t[F) Fill test bank [L] toggle Logo 	[H] create ramp on RHS\n"); 
printf("\t\t[G] Test Gammas 	[C] gamma Correct 	[Q) to 

Quit\n\twaiting..."); 

void DisplayStatus( byte process, mt logo_flag, mt smooth—flag, bank—register reg 

printf("\n\n\n\tStatus:\tprocess: ") 
switch (process) 

case PERTURB: printf ("PERTtJRB"); break; 
case SIMPLE: printf ('SIMPLE"); break; 
default: printf("\n\t\tError - unrecognised process\n'); 

printf("\t\tBank Switching 
switch (smooth _flag)(  

case TRUE: printf("On"); break; 
case FALSE: printf ("Off"); break; 
default: printf("\n\t\tError - invalid smooth flag\n"); 

printf("\tLogo 
switch (logo_flag) 

case TRUE: printf('Enabled\n"); break; 
case FALSE: printf("Disabled\n"); break; 
default: printf("\n\t\tError - invalid logo flag\n"); 

printf("\t\tVidgen:%x, Grab:x, ', (int)reg.vidgen, (int)reg.grab); 
printf("Logo:%x, Test:%x\n", (int)reg.logo, (int)reg.test ); 

void ToggleFlag( mt *pFlag 

if (*pFlag) *pF1agFALSE ;  
else *pFlagTRUR; 

void GrabFrame( byte dest I 

set main xbank( dest ); 
capture_image (GB_STANDARD); 

1* ############## * 
* pinktest.c end * 
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* #############t *1 

perturb.c 

#include <stdio.h> 
#include <stdimp.h> 
#include "pinkdefs.h" 

• NAME: RunPinkPerturbProcessor 
• PURPOSE: Used to start the Perturbed Error Diffusion processor. 
• NB: Before using either of the internal processors the Address generator 
• should be initialised with read and write bank addresses. 

void RunPinkPerturbProcessor C) 

set main xbank( PINK—BANK ); 	It switch to the xbank for PINK PPGA commands *1 
STCONF=O; 	/* toggle the mem. map to processors space*/ 
XBYTE[ PERTURB )0; 1* command FPGA to start the PERTURB processor *1 
STCONF1; 	/* toggle the mem. map back to 'RAM add. space*/ 
while (!RUN); 	7* wait for the FPGA to release the 'imp. bus' *1 

process.c 

#include <stdio.h> 
#include <stdimp.h> 
#include "pinkdefs .h' 

* NAME: RunPinkProcessor 
*PURPOSE :  Used to start either Error Diffusion processor. 
• NB: Before using either of the internal processors the Address generator 
• should be initialised with read and write bank addresses. 
* * **** * **** * * * ** * * ** * * **** ** * * * *** **** ***** *** * **** ** ****** * * * * * * * * ******** * *1 

void RunPinkProcessor( byte process 

set—main xbank( PINK—BANK ); 	/ switch to the xbank for PINK FPGA commands *1 
STCONFO; 	/ toggle the mem. map to 'processors' space*/ 
XBYTE( process )=O; /* command FPGA to start the SIMPLE processor *1 
STCONF1; 	1* toggle the mem. map back to 'RAM' add. space*/ 
while (!RUN); 	1* wait for the FPGA to release the limp. bus' *1 

setbanks.c 

#include <stdio.h> 
#include <stdimp.h> 
#include 'pinkdefs .h" 

/ 
* NAME: SetPinkBanks 
*PURPOSE: Used to control which external memory banks (xbanks) the FPGA 
• will read from and write to. This command should be used prior 
• to using either of the processors. The FPGAs internal address generator 
• defaults to xbank 0 for both read and write on power-up or hardware or 
• software reset. 
* ***** * **** * ** ** * ** * * * ** * * ** * * * * * * * * * ** * * * * ** * *** * * *** * * * * **** ** * * * * * * * ***** *7 

void SetPinkBanks( byte source, byte dest 

byte combined—banks; 

set main xbank( PINK—BANK ); 
STCONF=0; 
combined—banks = (dest<s4) source; 
XBYTE C BANK LATCH ] =combined—banks;  
STCONF1; 
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simplex 
t$include <stdio.h> 
#include <stdimp.h> 
#include "pinicdefs .h' 

* NAME: RunPinkSimpleProcessor 
PURPOSE: Used to start the Simple Error Diffusion processor. 
• NB: Before using either of the internal processors the Address generator 
• should be initialised with read and write bank addresses. 
* ** *** ** * **** * * * * * * **** * * * * * * * * * * * ********** * *** * * * * * * * * * * * ** ** * * * * * **** * 

void RunPinkSimpleProcessor() 

set_main_xbank( PINK BANK ); 	/* switch to the xbank for PINK FPGA commands *1 
STCONF0; 	/* toggle the cern. map to 'processors space*/ 
XBYTE[ SIMPLE 1=0; 1* command FPGA to start the SIMPLE processor *1 
STCONF=l; 	1* toggle the cern. map back to 'RAM add. space/ 
while (!RUN); 	1* wait for the FPGA to release the 'imp. bus,*1 
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appendix four 

Subjective test software 

The source files for the software used to present the subjective tests (chapter five) 
are listed below. 

demoOl .h 
#ifndef demo 
4tdefine demo 

// macro definitions 
#define ORIGINAL 0 
#define PROC1 1 
#define PROC2 2 
#define PROC3 3 
#define PROC4 4 
#define PR005 5 
*define ORIGINAL 0 
#define NONE 6 

#define BLACKBOARD—NAME 	"Subjective Test Demo vO.1 

typedef struct pos_and_size 

mt x; 
mt y; 
mt width; 
mt height; 
POSAMD SIZE; 

#define DEMO INI FILE "demo.ini" 

II state functions 
void DoIdleQ; 
void Dolnitialiseo) 
void DolterateO; 
void DoTerminateO; 

void SeguencedontrolPanelU; 	// to be removed 
void SequencedontrolPaneldloseO; 	II to be removed 
void Dummygutton( void ); 
void TurnPageForwardO; 	II to be removed 
void TurnPageBackO; 	// to be removed 
void Demo_TurnToPage ( mt page ); 
mt Demo_Globalslnit( char filename, char section ); 
mt Demo SetupBlackboardO; 
void Demo ActivatePlayer) mt new_machine ); 
mt ReadButtonDetails( char *filename, char -section, POS_AND_SIZE *button ); 
mt DetermineDemoType() 
#endif 
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demoOl .cpp 
/ 
* 	demoOl.cpp 

* 	Description:written to display images for subjective tests of compression 
* 	algorithms. 
* 
* 	History: 	 -09-96 Created 

aamu 

/* ###fl## * 
* includes * 
* ######## *1 

#include "image.h" 

#include "visframe.h" 
#include "apheader.h" 
#include "controls .h" 
#include "demool.h" 
#include "player.h" 
#include "fileio.h" 
#include "graphic.h" 
#include <math.h> 

1* ##*################## * 
* global variable defs * 
* #####4t############### */• 

PLAYER players (6]; 
char translation[71] 
mt page_number; 
mt demo_id; 
mt max_pages; 
mt looping; 
mt verbose; 
mt show—details; 
mt active_player; 
char temp_buffer(30]; 
mt still_page; 
Blackboard 	*blackboard = NULL; 
BLACKBOARD—ARRAY BbArray; 

/* 4tff##t#############*############### * 
* Vision Framework 'state functions * 
* ############################*##### •1 

* 	 NAME: Dolnitialise 
*PURPOSE: 	called by visual framework the first time it executes its loop, * 

this function sets up the demo application. 
** *** * * *** ** * *** ** *** * * * ** * * ** * ****** *** *** * * ** * **** * * ** *** **** * *** * *** * *** * 

void Dolnitialise () 

mt vcr; 

VFAppHideO; 
VFAppDialogColours(BLACK, RGB(255,255,232)); 
SetDrawColour ( 0 ); 
SetBackColour( 255 ); 

if (!Demo_Globalslnit( "[globals]", "demo.ini" )) 

VFMessageBox(MB_OKMBICONRXCLAMATION, "Dolnitialise", "Demo_mit 
returned FALSE"); 
Demo_SetupBlackboard 0; 

/* construct and intialise sequence players */ 
for (vcr=0; vcr<6; vcr++){ 

sprintf( temp_buffer, "[player%i]",  vcr  ); 
if (lPlayer_Init( temp _buffer, "demo.ini", &players[vcr] )) 

VFMessageBox(MB_OKMB_ICONEXCLA14ATION, "Dolnitialise", "Player_mit 
returned FALSE"); 

page_number=0; 
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active_player=NONE; 
Demo_TurnToPage ( page—number >; 

* 	NAME: Dolterate 
*PURPOSE: 	called by visual framework each time it executes its loop, 
* 	 except for the first time or if quit has been pressed. 
* 	 this function contains the iterative processing cycle of the 
* 	 demo app. 
***************** 

void Dolterate() 

if (active_player!NONE) 
if 

(players [active_player] . frame_countersplayers (active_player] .max_frames) 
Player_DisplayNextFrame ( &players [active_player) ); 
else 

if (looping) Player_ResetSequence( 
&players (active_player), FALSE ); 

else 
Player_ResetSequence ( &players [active_player] 

TRUE 
active_player = NONE; 

* 	 NAME: DoTerminate 
*PURPOSE: 	called by visual framework the last time it executes its loop, 
* 	 this function tidies up all the demo app. structures 

void DoTerminate(> 

mt vcr; 

for (vcr=O; vcr<G; vcr++) 
Player_Destroy( &players(vcr) >; 

if (verbose) VFMessageBox(MB_OKIME_ICONINFORMATION, "DoTerminate 0", "players 
destroyed"); 
VFBlackboardDestroy (blackboard, &BbArray); 
if (verbose) VFMessageBox(MB_OKMB_ICONINFORMATION, "DoTerminate(> ", "blackboard 

destroyed"); 

* 	 NAME: Doldle 
*PURPOSE: 	 the fourth possible VF function - unused in the demo app. 

void DoIdle(> 

1* *fffl###########*##*########### * 
* functions used by buttons.cpp * 
* ############################# *7 

void SequenceControlPanel () 

/*VpBlackboardshow(sequencebb) ; * 7 

void SequenceControlPanelCiose (> 

/*VFBlackboardHide (sequencebb) ; 

void DummyButton( void 

VFMessageBox(MB_OKM8_ICONINFORMATION, "DummyButton", "dummy button pressed"); 

void TurnPageForward (> 

if (page_number<max_pages) Demo_TurnToPage ( ++page_number >; 
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else VFMessageBox( MB_OKIMB_ICONEXCLAMATION, BLACKBOARD —NAME, "you are on the last 
page" ); 

void TurnPageBack() 

if (page_number>O) Demo_TurnToPage( --page_number 
else VFMessageBox( MB_OKMB_ICONEXCLAMATION, BLACKBOARD —NAME, "there is no 

previous page" ); 

* 	NAME: Globals_Init 
PURPOSE: 	Initialises the global variables from the initialisation file. 

mt Demo_Globalslnit( char section, char filename 

FILE *pFile; 

/ read global parameters from the .ini file */ 
pFile = FileIO_FindlniSection( filename, section ); 
if (pFile == NULL) return FALSE; 
if (!FileIO_ReadlniLineNumber( pFile, "looping", &looping )) goto close; 
if (!FilelOReadlniLineNumber( pFile, "verbose", &verbose )) goto close; 
if (!FileIO_ReadlniLineNumber( pFile, "max_pages", &max_pages )) goto close; 
if (!FileIO_ReadlniLineNumber( pFile, "demo_id", &demo_id )) goto close; 
if (!FileIO_ReadlniLineNumber( pFile, "show —details", &show_details )) goto close; 
if (tFilelO_ReadlniLineText( pFile, "t", translation )) goto close; 
fcloee (pFile) 
if (verbose) VFMessageBox(MB_OKIMB_ICONINFORMATION, "Demo_Globalslnit","ended OK"); 
return TRUE; 

close: 
VFMessageBox(MB_OKMB_ICONEXCLAMATION, "Demo_Globalslnit","a 'ReadlniLine...' 

failed") 
fclose (pFile) 
return FALSE; 

* 	 * 

mt Demo SetupBlackboard 

FILE *pFile; 
POSARD SIZE temp; 

/* == construct a controls list 	*1 
BbArray.NumElements = NUMBBELEMENTS; 
VFBlackboardControlArrayConstruct (&BbArray); 

/* == add item onto blackboard == */ 
ReadButtonDetails( "[controls_box)", "demo.ini", &temp ); 
VFBlackboardAddGroupBox( &DEMOCONTROL, temp.x, temp.y, temp.width, temp.height, 

"Demo Controls"); 
ReadButtonDetails( , [run button]", "demo.ini", &temp ); 
VFBlackboardAddButton( &RUN, temp.x, temp.y, temp.width, temp.height, "Run"); 
ReadButtonDetails( "[step_button]", "demo.ini", atemp ); 
VpBlackboardAddButton( &STEP, temp.x, temp.y, temp.width, temp.height, "Step"); 
ReadButtonDetails( "(halt button)", 'demo.ini", &temp ); 
VFBlackboardAddButton( &HALT, temp.x, temp.y, temp.width, temp.height, "Halt"); 
ReadButtonDetails( "[quit button]", "demo.ini", &temp ); 
VFBlackboardAddButton( &QUIT, temp.x, temp.y, temp.width, temp.height, "Quit"); 
ReadButtonDetails( "[options—button]", "demo.ini", &temp ); 
VFBlackboardAddButton( &DEMOOPTIONS, temp.x, temp.y, temp.width, temp.height, 

"Options") 
ReadButtonDetails( "[next—button]", "demo.ini", &temp ); 
VFBlackboardAddButton( &NEXT, temp.x, temp.y, temp.width, temp.height, "Next Page 

>>") 
ReadButtonDetails( "(previous—button)", "demo.ini", &temp ); 
VFBlackboardAddButton( &PREVIOUS, temp.x, temp.y, temp.width, temp.height, '<< 

Previous Page"); 
ReadButtonDetails( "[play_buttonO]", "demo.ini", &temp ); 
VFB1ac)thoardAddButton( &PLAYO, temp.x, temp.y, temp.width, temp.height, "Play"); 
ReadButtonDetails( " [play buttoni]", "demo. mi", &temp ); 
VFBlackboardAddButton( &PLAY1, temp.x, temp.y, temp.width, temp.height, "Play"); 
ReadButtonDetails( "[play_button2]", "demo.ini", &temp ); 
VFBlackboardAddButton( &PLAY2, temp.x, temp.y, temp.width, temp.height, "Play"); 
ReadButtonDetails( "[play_button3]",  "demo.ini", &temp ); 
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VFBlackboardAddButton( &PLAY3, temp.x, temp.y, temp.width, temp.height, "Play'); 
ReadButtonDetails( "[play_button4]", 'demo.ini", &temp ); 
VFBlackboardAddButton( &PLAY4, temp.x, temp.y, temp.width, temp.height, "Play'); 
ReadButtonDetails( "[play_buttonS]", "demo.ini", &temp ); 
VFBlackboardAddButton( &PLAY5, temp.x, temp.y, temp.width, temp.height, "Play"); 
ReadButtonDetails( "[stop_buttonO)", "demo.ini", &temp ); 
VFBlackboardAddButton( &STOPO, temp.x, temp.y, temp.width, temp.height, "Stop"); 
ReadButtonDetails( "(stop_buttoni)", "demo.ini", &temp ); 
VFBlackboardAddButton( &STOP1, temp.x, temp.y, temp.width, temp.height, "Stop"); 
ReadButtonDetails( "(stop_button2)", "demo.ini", &temp ); 
VFBlackhoardAddButton( &STOP2, temp.x, temp.y, temp.width, temp.height, "Stop"); 
ReadButtonDetails( "[stop_button3]", "demo.ini", &temp ); 
VFBlackboardAddButton( &STOP3, temp.x, temp.y, temp.width, temp.height, "Stop"); 
ReadButtonDetails( " (stop_button4]", "demo.ini", &temp ); 
VFBlackboardAddButton( &STOP4, temp.x, temp.y, temp.width, temp.height, "Stop"); 
ReadButtonDetails( "[stop_button5]", "demo.ini", &temp ); 
VFBlackboardAddButton( &STOP5, temp.x, temp.y, temp.width, temp.height, "Stop"); 
ReadButtonDetails( "[demo id window]", "demo.ini", &temp ); 
VFBlackboardAddlnt( &DEMOID, temp.x, temp.y, temp.width, temp.height, "demo id." 

0, 0, BLACK, RGB(255,255,232) ); 
ReadButtonDetails( "(page no. window)", "demo.ini", &temp ); 
DEMOID.Current.Int = demo id; 
VFBlackboardAddlnt( &PAGENUMBER, temp.x, temp.y, temp.width, temp.height, "page 

no.", 0, 0, BLACK, RGB(255,255,232)); 

1* read in the blackboard details and construct *1 
pFile = FileIO_FindlniSection( "demo.ini", "[blackboard)" ); 
if (pFile == NULL) return FALSE; 
if (!FileIO_ReadlniLineNumber( pFile, "x", &temp.x )) goto close; 
if (!FileIO_ReadlniLineNumber( pFile, "y", &temp.y )) goto close; 
if (!FileIO_ReadlniLineNumber( pFile, "width", &temp.width )) goto close; 
if (!FileIO_ReadlniLineNumber( pFile, "height", &temp.height )) goto close; 
fclose (pFile) 
VFBlackboardConstruct(&blackboard, temp.x, temp.y, temp.width, temp.height, 

BLACKBOARD—NAME, &BbArray); 

if (verbose) VFMessageBox(MB_OKMB_ICONINFORMATION, "Demo_SetupBlackboard","ended 
OK"); 

return TRUE; 

close: 
VFMessageBox(MB_OKMB_ICONEXCLAMATION, "Dsmo_SetupBlackboard","a 'ReadlniLine...' 

failed") 
fclose (pFile) 
return FALSE; 

/ 

* * *** * * * **** * * ** * * * * * * ** * * ** **** ********* ** ** ** *** ** * ** ** **** * * * * ****** * * * * * 

mt ReadButtonOetails( char *section, char *filename, POS_AND_SIZE *button 

FILE *pFile; 

pFile = FileIO_FindlniSection( filename, section ); 
if (pFile == NULL) return FALSE; 
if (!FileIO_ReadlniLineNumber( pFile, "x", &button->x )) goto close; 
if (!FileIO_ReadlniLineNumber( pFile, "y", &button->y )) goto close; 
if (!FileIO_ReadlniLineNumber( pFile, "width", &button->width )) goto close; 
if (!FileIO_ReadlniLineNumber( pFile, "height", &button->height )) goto close; 
fclose (pFile) 
if (verbose) 

sprintf( temp_buffer, "read: x=%i, y=%i, width=%i, height=%i\nfrom %s in 
es", button->x, button->y, button->width, button->height, section, filename ); 

VFMessageBox(MB_OKIMB_ICONINFORMATION, "ReadButtonDetails", temp_buffer ); 

return TRUE; 

close: 
VFMessageBox(MB_OKIMB_ICONEXCLAMATION, "Reauttoetails","a 'ReadlniLine...' 

failed") 
fclose (pFile) 
return FALSE; 

* 	NAME: Demo_ActivatePlayer 
*PURPOSE: 	this is the function called when a 'play' button is pressed on 
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* 	 the demo app. blackboard. If there is a player currently 
* 	 displaying a sequence then it stops it (by reseting the 
* 	 sequence, it then sets the global variable 'active_player' to 
* 	 reflect the new active machine. 

void Demo_Activateplayer( mt new_machine 

if (active_playerl=NONE) Player_ResetSequence( &players[active_player), TRUE ); 
active_player = new—machine; 

/*################# * 
* private functions * 
*#################*/ 

* 	NAME: Demo_TurnToPage 
*PURPOSE: this function loads all the sequence details for a page by 
* 	calling . . ._LoadSequence for each player. 

void Demo_TurnToPage( mt page 

mt machine id; 
FILE *pFjle. 

1* stop any active player / 

if (active_playerl=NONE) 
Player_ResetSequence( aplayersEactive_player], TRUE ); 
active_player = NONE; 

1* read still/sequence from .ini file */ 
sprintf( temp_buffer, "[page U]", page ); 
pFile = FileIO_FindlniSection( DEMO_INI_FILE, temp_buffer ); 
if (pFile == NULL)(  

VFMessageBox(MB_OKIMB_ICONEXCLAMATION, "Demo_ThrnToPage", "FilelO_FindiniSection 
returned NULL"); 

return; 

FileIO_ReadlniLineText( pFile, "page_type", temp_buffer ); 
if ((stricmp( tempbuffer, "still"))==O) still_page=l; 
else still_page=O; 
fclose (pFile) 

for (machine id=O; machine id<6; machine id++) 
sprintf( temp_buffer, "[page%i_playerU)", page, machine—id ); 
if (!still—Page) 

if (!Player_LoadSequence( temp_buffer, "demo.ini", 
&players [machine_id] )) 

VFMessageBox (MB_OK I MB_ICONEXCLAMATION, "Demo_TurnToPage", " Player_LoadSequence 
returned FALSE"); 

if (verbose) 
sprintf( temp_buffer, "loaded [page%i_player'*i]", page, 

machine—id ); 
VFMessageBox( MB_OK IMB_ICONINFORMATION, 

"Demo_TurnToPage", temp_buffer ); 
/*sprintf ( EbArray.Element (8+machine_id) .Text, "Play%i 

(page%i)", machine—id, page);-/ 

else 
pFile = FilelOFindlniSection( DEMO INI FILE, temp_buffer ); 
if (pFile == NULL) 

VFMessageBox (MB_OK I MB_ICONEXCLANATION, "Demo_TurnToPage", " FilelO_FindiniSection 
returned NULL") 

FileIO_ReadlniLineText( pFile, "still", temp_buffer ); 
fclose(pFile) 
ImageLoadsMP( players [machine_id) .image, temp_buffer ); 
VFBlackboardlmageShow(blackboard, players (machine_id) .image); 
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active_player=NONE; 
PAGENUMBER.Current.Int = page_number; 
VFBlackboardWriteElements (blackboard, &BbArray); 

1* ### 'player ,  related functions ### * 

/ 
* 	NAME: Player_mit 
*PURPOSE: 	Initialises a player, by constructing and intialising its 
* 	 constituent parts. The details are ,read from an .ini file 
*NOTES: 	 returns TRUE unless the load fails in any way. 
* 	 the EMP grabber still needs intialised before use. 

mt Player_Init( char *section,  char  *filename,  PLAYER *machine 

FILE *pFile; 
char name [10] 
mt x_coord, y_coord; 

/* construct grabber, stream and image, and intialise the stream */ 
VFGrabberConstructBMP( &machine->bmpgrabber 1; 
VFlmageStreamConstruct( &machine->bmpstream ); 
if (( machine->image=ImageConstruct(GS1,256,256) )==NULL) DiagnoseError(gerr_flag); 
VFlmageStreamlnitialise( machine->bmpstream, machine->bmpgrabber, SOURCE); 

/* intialise the image, using data from the .ini file */ 
pFile = FileIO_FindmniSection( filename, section ); 
if (pFile == NULL)(  

VFMessageBox(MB_OKIMB_ICONEXCLAMATION, "Player_mit", "FilelO_FindmniSection 
returned NULL"); 

return FALSE; 

if (!FileIO_ReadlniLineText( pFile, "name", name )) goto close; 
if (!FilelOReadlniLineNumber( pFile, "x", &xcoord 1) goto close; 
if (!FileIO_ReadlniLineNumber( pFile, "y", &y_coord 1) goto close; 
fclose(pFile) 

ImageSetName( machine->image, name ); 
ImageSetLocation( machine->image, x_coord, y_coord ); /* ##** change x&y 

type #### 
ImageSetDisplaySize( machine->image, 256, 256 ); 

return TRUE; 

close: 
VFMessageBox(MB_OKMB_ICONEXCLAMATION, "Player mit", "a 'ReadlniLine...' failed"); 
fclose (ppile) 
return FALSE; 

/ 
* 	NAME: Player_LoadSequence 
*PURPOSE: 	loads all the details necessary to play an image sequence into 
* 	 a 'player', then intialises the player's bitmap grabber with 
* 	 the file details and displays the blank image. 
*NOTES: 	 returns TRUE unless the load fails in any way. 
* * **** ** **** * ** * * * * * ** * * ** ** *********** * * * * * * * * * ** * * * ***** * *** * * **** * * *** *** *1 

mt Player_LoadSequence( char *section, char *filename, PLAYER *machine 

FILE *pFile; 

/* read details from .ini file *1 
pFile = FileIO_FindlniSection( filename, section ); 
if (pFile == NULL)(  

VFMessageBox(MB_OKIMB_ICONEXCLAMATION, "Player_LoadSequence", "FilelO_FindmniSection 
returned NULL"); 

return FALSE; 

if (!FileIO_ReadlniLineText( pFile, "sequence", machine->sequence )) goto close; 
if (!FilelOReadlniLineText( pFile, "algorithm", machine->algorithm )) goto close; 
if (I FileIO_ReadlniLineNumber( ppile, "colour_resolution", &machine->colour_depth 

>) goto close; 
if (!FileIO_ReadlniLineNumber( pFile, "start", &machine->start_frame )) goto 

close; 
if (FileIOReadIniLineNumber( pFile, "length", &machine->max_frames 1) goto 

close; 
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fclose(ppile) 

1* create path for image sequence (using sequence, algorithm and resolution */ 
switch( machine->sequence(o] 	){ 

case 	c, sprintf( temp_buffer, "seq\\claire\\" 	); break; 
case 	'd', sprintf( temp_buffer, "eeq\\dummy\\" ); break; 
case 	'5': eprintf( temp_buffer, "seq\\sman\\" 	); break; 
case 	'ml: sprintf( temp_buffer, "seq\\missa\\" 	); break; 
default: sprintf( temp_buffer, "seq\\" 	); break; 

switch( machine->algorithm(0] 	) { 
case 	'n' : strcat( temp_buffer, "none" 	); break; 
case 	s 	: strcat( temp_buffer, "simp" 	); break; 
case 	't', strcat( tempbuffer, "trnc" 	); break; 
case 	'p': strcat( temp_buffer, "pert" 	); break; 
case 	'1': etrcat( temp_buffer, "safi" 	); break; 
case 	1 2 1 : strcat( temp_buffer, "saf2" 	); break; 
case 	If': strcat( temp_buffer, "flyd" 	); break; 
default, break; 

if (machine->algorithm(o]!='d') sprintf( temp_buffer, "%s%i%c", temp_buffer, 
machine->colour_depth, '\\' ); 
strcpy( machine->path, temp_buffer ); 
/* set blank screen to the new constant value */ 
sprintf( machine->blank_screen, "blank.bmp" ); 
1* create image filename root (from sequence, colour_depth and algorithm ) * 1 
sprintf ( machine->root, "%c%i%c", machine->sequence[0), machine->colour_depth, 

machine- >algorithm [0] 

Player_Resetsequence( machine, TRUE 
return TRUE; 

close: 
VFMessageBox(MB_OKMBICONEXCLANATION, "Player_LoadSequence", "a 'ReadlniLine...' 

failed");  
fclose (pFile) 
return FALSE; 

* NAME: Player_ResetSequence 
*PURPOSE: 	displays the player's 'blank' image, resets the grabber and 
* 	 the frame counter. 

void Player_ResetSequence( PLAYER *machine, mt blank 

char image_name [20]; 
mt process_id; 	 - 

if (blank) 
if (verbose) 

sprintf( temp_buffer, "about to load Ws", machine->blank screen 

VFMessageBox(MB_OKMICONINFORMATIoN, "Player_ResetSequence", 
temp_buffer 

ImageLoadsMP( machine->image, machine->blank screen ); 

/* draw image title */ 
if (machine->sequence[o]=='d'){ 

sprintf( image_name, "\n\n%s", machine—sequence 
MoveTo( 40, 120 ); 
Display'Text( machine->image, image_name ); 

else 
switch( machine->algorithm(o] 

	

case 'n' : 	process_id = machine->colour_depth; 
break; 

	

case 's' : 	process_id = machine->colour_depth+lo; 
break; 

	

case 'p : 	process_id = machine->colour_depth+20; 
break; 

	

case '1': 	process_id = machine->colourdepth+30; 
break; 

	

case 1 2 1 : 	 process_id = machine->colour_depth+40; 
break; 

	

case If': 	process_id = machine->colour_depth+so; 
break; 
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case 't' : 	process_id = machine->colour_depth+60; 
break; 

default: 	process–id = 0; break; 

sprintf( image_name, "c\n\n%s",  translation[process_id], 
machine- >sequence 

MoveTo( 40, 120 ); 
Display'rext( machine->image, image_name ) 

if (show _details)( 
sprintf( temp_buffer, "\n\n\n%s\ni bits", machine- 

>algorithm, machine->colour_depth); 
Display'rext( machine->image, temp_buffer >; 

VFBlackboardlmageShow(blackboard, machine->image); 

VFGrabberinitialiseBMP( machine->bmpgrabber, machine->path, machine->root, 
machine- >start_frame, machine- >max_frames); 
machine- >frame counter = machine- >start_frame; 

/ 
* 	NAME: Player_DisplayNextFrame 
*PURPOSE. 	Displays the next frame of the sequence currently loaded into 
* 	 the player's. 
* ** **** * * *** * * * * * ** *** ** *** * * * * * ** * ********** ** * *** ** * * ***** * **** *** * ****** * *1 
mt Player_DisplayNextFrame( PLAYER *machine 

if (!VFlmageStreamGrab(machine->bmpstream, machine->image)) 
VFMessageBox(MB_OKIMB_ICONEXCLAMATION, "Player_DisplayextFrame","Grab 

error") 
return FALSE; 

VFBlackboardlmageShow(blackboard, machine->image); 
machine- >framecounter+i-; 
return TRUE; 

* 	NAME: Player_Destroy 

void Player_Destroy) PLAYER *machine 

ImageDestroy( machine—image ); 
VFGrabberDestroysMP( machine->bmpgrabber ); 
VFlmageStreamDestroy( machine->bmpstream ); 

1* (#####*# */ 

* 	 NAME: FilelO_FindiniSection 
*PURPOSE: returns a pointer to the line after the specified header in the 
* 	specified ' .ini' file. 
*NOTE :  this function opens the file that is passed to it, the calling 
* 	function is resposible for closing it. 
******* 

FILE *FileloFindlnigection( char *ppilename, char *psection 

FILE *pini  file; 
mt end = FALSE; 
char temp buffer [80] 

/*jf (g_diagnose && !g_graphics) 
printf(" FilelO_FindiniSection: called... \n"); 
printf(" FilelOFindlnisection: searchine for '%s' in '%s'\n",  pSection, 

pFilename); 

} *1 

pini_file = fopen( pFilename, "r" ); 
if (pini_file==NULL) 

sprintf( temp_buffer, "mi file '%s' not found", pFilename ); 
VFMessageBox( MB_OK IMB_ICONEXCLAMATION,  "FilelO_FindlniSection", 

temp_buffer ); 
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pini_file = NULL; 
return pini file; 

/-if (g_diagnose && !g—graphics) printf(" FilelO_FindiniSection: opened file 
okay\n') ;*/ 

while C (send) && (_stricmp( temp_buffer, pSection )!=O) ){ 
if (FilelOReadNextLine( temp_buffer, pini_file )){ 

/*sprintf( buffer, " FilelO_FindiniSection failed - section 'is 

not found\n",  pSection ) ;*/ 
end = TRUE; 

if (end) 
pini_file = NULL; 
eprintf( temp_buffer, "couldn't find 'is in %s, pSection, pFilename ); 
VFMessageBox(MB_OKIMB_ICONEXCLAMATION, "FilelO_FindiniSection', 

temp—buffer ); 

/*else if (g—diagnose &&!g—graphics) printf(" FilelO_FindiniSection: found 
it\n"( ;*/ 
return( pini file ); 

* 	NAME: FilelOReadiniLineNumber 
*PURPOSE: checks the name at the start of the line and if its is correct 
* 	assigns the mt then returns TRUE, else it returns FALSE. 

mt FileIO_ReadlniLineNumber( FILE *pFjle,  char *name, mt *pVariable 

char temp_line [81] =""; 
char sepsE]  
char * token; 

/*jf (g_diagnose) printf(" ReadlniLine: called... (looking for %s(\n", name) ;*/ 
if (FileIO_ReadNextLine( temp_line, pFile )) return FALSE; 
token = strtok( temp_line, seps ); 
if C stricmp( token, name)==O ){ 

token = strtok( NULL, seps ); 
sscanf( token, "'iu", pVariable C; 
/*sprintf( temp_line, "read: 'is = %u", name, *pvariable ); 
VFMessageBox(MB_OKIMB_ICONINFORMATION, "FileIO_ReadlniLineNumber", 

temp_line) ;*/ 
return TRUE; 

sprintf( temp—line, "couldn't find 'is'", name ); 
VFMessageBox(MB_OKJMB_ICONEXCLANATION, "FilelO_ReadiniLineNumber", temp_line); 
return FALSE; 

* 	NAME: FileIO_ReadlniLineText 
*PURPOSE: checks the name at the start of the line and if its is correct 
* 	assigns the string then returns TRUE, else it returns FALSE. 

mt FileIO_ReadlniLineText( FILE *pFile,  char  *name,  char  *dest 

char temp_line(81)=""; 
char sepsi] 
char * token; 

/if (g_diagnose) printf(" ReadlniLine: called... (looking for %s)\n", name);*/ 
if (FileIO_ReadNextLine( temp_line, pFile )) return FALSE; 
token = strtok( temp_line, seps 
if C _stricmp( token, name)==O ){ 

token = strtok( NULL, seps ); 
sscanf( token, 	dest ); 
return TRUE; 

sprintf( temp_line, "couldn't find %s, name ); 
VFMessageBox(MB_OKMB_ICONEXCLANATION, "FileIO_ReadlniLineText", temp_line); 
return FALSE; 
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- appendix four Subjective test software - 

* 	NAME: 	FilelOReadNextLine 
*PURPOSE: reads the next non-empty line of text from a file. The line is 
* 	read from whatever file the passed pointer is pointing to, and 
* 	from the position of that pointer within the file. If there is another 
* 	non-empty line in the file the function copies (minus any carriage 
* 	returns) to the passed string and returns FALSE, if there are no more 
* 	lines in the file containing text the function returns TRUE. 

mt FileIO_ReadNextLine( char *buffer, FILE *pFile 

char line(81]=", temp_letter; 
mt end of_line=FALSE, found_text=FALSE; 
byte bytes_read; 

while (rend of line) 
bytes _read = (byte)fread( &temp_letter, 1, 1, pFile ); 
if ( bytes_read != 1 

strcpy( buffer, line ); 
/*if (g—diagnose && (!g—graphics)) printf(" FileIO_ReadNextLine: 

read line ''*s', returning TRUE\n", line );*/ 

VFMessageBox(MB_OKMB_ICONEXCLAMATION, "FileIO_ReadNextLine", "found unexpected 
EOF"); 

return TRUE; 

else 
if ( temp_letter 1= 10 

sprintf( line, "sc", line, temp_letter >; 
found_text=TRUE; 

else if ( found—text ) end—of—line = TRUE; 

strcpy( buffer, line 
/*jf (g—diagnose && (g_graphics)) printf(" FileIO_ReadNextLine: read line '%s', 

returning FALSE\n",  line >;*/ 
return FALSE; 

/* ###$#####t$##### * 
* end of demool.cpp * 
* t######*#*##*#### *1 
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