
Why solutions can be hard to find
A featural theory of cost for a local search algorithm on

random satisfiability instances

Josh Singer

Ph.D.

University of Edinburgh
2001

Abstract

The local search algorithm WSat is one of the most successful algorithms for solving
the archetypal NP-complete problem of satisfiability (SAT). It is notably effective at
solving Random-3-SAT instances near the so-called 'satisfiability threshold', which
are thought to be universally hard. However, WSat still shows a peak in search
cost near the threshold and large variations in cost over different instances. Why
are solutions to the threshold instances so hard to find using WSat? What features
characterise threshold instances which make them difficult for WSat to solve?

We make a number of significant contributions to the analysis of WSat on these
high-cost random instances, using the recently-introduced concept of the backbone
of a SAT instance. The backbone is the set of literals which are implicates of an
instance. We find that the number of solutions predicts the cost well for small-backbone
instances but is much less relevant for the large-backbone instances which appear near
the threshold and dominate in the overconstrained region. We undertake a detailed
study of the behaviour of the algorithm during search and uncover some interesting
patterns. These patterns lead us to introduce a measure of the backbone fragility of
an instance, which indicates how persistent the backbone is as clauses are removed.
We propose that high-cost random instances for WSat are those with large backbones
which are also backbone-fragile. We suggest that the decay in cost for WSat beyond
the satisfiability threshold, which has perplexed a number of researchers, is due to the
decreasing backbone fragility. Our hypothesis makes three correct predictions. First,
that a measure of the backbone robustness of an instance (the opposite to backbone
fragility) is negatively correlated with the WSat cost when other factors are controlled
for. Second, that backbone-minimal instances (which are 3-SAT instances altered so
as to be more backbone-fragile) are unusually hard for WSat. Third, that the clauses
most often unsatisfied during search are those whose deletion has the most effect on
the backbone.

Our analysis of WSat on random-3-SAT threshold instances can be seen as a featural
theory of WSat cost, predicting features of cost behaviour from structural features of
SAT instances. In this thesis, we also present some initial studies which investigate
whether the scope of this featural theory can be broadened to other kinds of random
SAT instance. random-2+p-SAT interpolates between the polynomial-time problem
Random-2-SAT when p = 0 and Random-3-SAT when p = 1. At some value
p ~ pq ~ 0.41, a dramatic change in the structural nature of instances is predicted by
statistical mechanics methods, which may imply the appearance of backbone fragile
instances. We tested NovELTY+, a recent variant of WSat, on random- 2 +p-SAT
and find some evidence that growth of its median cost changes from polynomial to
superpolynomial between p = 0.3 and p = 0.5. We also find evidence that it is the
onset of backbone fragility which is the cause of this change in cost scaling: typical
instances at p — 0.5 are more backbone-fragile than their counterparts at p — 0.3.
Not-All-Equal (NAE) 3-SAT is a variant of the SAT problem which is similar
to it in most respects. However, for NAE 3-SAT instances no implicate literals are
possible. Hence the backbone for NAE 3-SAT must be redefined. We show that under
a redefinition of the backbone, the pattern of factors influencing WSat cost at the
NAE Random-3-SAT threshold is much the same as in Random-3-SAT, including
the role of backbone fragility.

ii

Acknowledgements

First of all many thanks are due to my two encouraging supervisors. Alan Smaill has
supervised this work as principal supervisor, through thick and thin, since October
1997. Ian Gent of St. Andrews University has very kindly acted as second supervisor
for the second half of my time at Edinburgh. Thanks to EPSRC for funding me through
studentship 97305799.

I have also had a lot of support from the Apes cross-university research group of which
I have been a member and would like to thank them very much for the many discussions
on this work as it has developed and for the encouraging and open atmosphere within
the group. In particular Toby Walsh and Pat Prosser have contributed a lot of useful
comments. Thanks are also due to Joe Culberson for valuable discussions about Not-

All-Equal 3-SAT during and after his visit to Scotland. Also thanks to Adam
Beacham for contributing to this discussion.

I would like to extend thanks to my erstwhile office-mate Andrew Tuson of City Uni¬
versity for a lot of discussion, feedback and ideas especially in the early stages and for
inviting me to City for a month-long research visit there in June 1999. I would like
to thank for their feedback and encouragement the anonymous reviewers of a rejected
submission to the Journal of Automated Reasoning, of the article in the Journal of Ar¬
tificial Intelligence Research and of the paper in ECAI-2000. Also, thanks are due to
Holger Hoos for useful feedback over email and when we met at ECAI and to Thomas
Stiitzle and Edward Tsang for their feedback while we were at ECAI. Thanks to Allen
van Gelder for making his MODOC system available and to Steve Prestwich for some

interesting suggestions about non-random backbone fragile instances. Thanks to fel¬
low Ph.D student Ben Curry for encouragement and feedback and to Rachel Steven
for encouragement and proofreading.

Finally, thanks to my two examiners Chris Williams (internal) and Barbara Smith
(external) for a very thorough and constructive examination of the thesis.

iii

Declaration

I hereby declare that I composed this thesis entirely myself and that it describes
own research.

iv

Contents

Abstract ii

Acknowledgements iii

Declaration iv

List of Figures 1

1 Introduction 1

2 Satisfiability and Local Search 6

2.1 Propositional satisfiability 6

2.2 The hardness of satisfiability 9

2.2.1 What are hard instances and why should we study them? 9

2.2.2 Stochastic SAT instance generation methods 9

2.2.3 The random-&-SAT generation method 11

2.2.4 The threshold phenomenon in random-&-SAT 11

2.2.5 The hardness of Random-A;-SAT threshold instances 12

2.3 Local search for satisfiability 14

2.3.1 Pseudocode preliminaries 14

2.3.2 What is local search? 14

2.3.3 Why use local search? 17

2.3.4 GSat 17

2.3.5 WSat 17

2.3.6 WSat/SKC 19

v

2.3.7 WSat/Novelty 20

2.3.8 Achieving probabilistic approximate completeness 20

2.4 Understanding local search cost 22

2.4.1 The two phases of GSat's search 23

2.4.2 Local optima and how to avoid them 24

2.4.3 Local search cost growth 26

2.4.4 The cost peak and instance structure 27

2.5 The Davis-Putnam-Logemann-Loveland (DPLL)
procedure 29

2.5.1 DPLL preliminaries 29

2.5.2 DPLL and its variants 32

2.6 Summary 37

3 Local Search on Random-3-SAT 38

3.1 Introduction 38

3.2 Experimental methods 39

3.2.1 Determining the number of solutions 40

3.2.2 Determining backbone size 40

3.2.3 "Controlling" backbone size 41

3.2.4 Determining Hamming distance to nearest solution 43

3.2.5 Details of instances analysed 44

3.2.6 Measurement of cost for WSat/SKC 44

3.3 Cost behaviour in the threshold region 45

3.3.1 The cost peak for WSat/SKC 45

3.3.2 Confirmation of the existence of the cost peak 47

3.3.3 Cost for WSat/SKC when backbone size is controlled 47

3.3.4 The effect of the number of solutions 49

3.3.5 Summary 54

3.4 Search behaviour in the threshold region 55

3.4.1 Measurements of search behaviour:
The length and effectiveness of the hill-climbing phase 56

3.4.2 The relation between instance properties and search behaviour . 58

vi

3.4.3 The relation between search behaviour and cost 60

3.5 Summary 62

3.6 Discussion 64

4 The Backbone Fragility Hypothesis 69

4.1 Introduction 69

4.2 What is backbone fragility? 70

4.2.1 Motivation 70

4.2.2 Measuring backbone robustness using robustness trials 74

4.2.3 The change in backbone robustness as m/n is varied 75

4.3 A correct prediction about cost variance 77

4.3.1 Correlation data 77

4.3.2 Rank correlation coefficient 80

4.3.3 Confidence intervals for the correlation 80

4.4 Assessment of the predictability of WSat/SKC cost 80

4.4.1 Methods 81

4.4.2 Summary statistics for multiple regression prediction functions . 83

4.5 A correct prediction about very backbone-fragile instances 89

4.5.1 Backbone-minimal sub-instances 90

4.5.2 Data on very backbone-fragile instances 91

4.6 A correct prediction about search behaviour 95

4.6.1 Testing the search behaviour prediction 95

4.6.2 Can search behaviour be explained further using backbone ro¬
bustness? 98

4.7 Related work 104

4.8 Summary 107

5 Local Search on Random-2+p-SAT 109

5.1 Introduction 109

5.2 RANDOM-2+p-SAT instances Ill

5.3 Experimental conditions 112

5.4 WSat/Novelty+ on Random-2+p-SAT 115

vii

5.4.1 0 < p < 0.3: Typical cost appears to be a low polynomial 116

5.4.2 p = 0.4: Inconclusive results 117

5.4.3 0.5 <p < 1: Typical cost appears superpolynomial 119

5.5 Structure and cost in random-2+p-SAT 120

5.6 Summary 125

6 Local Search on Not-all-equal 3-SAT 127

6.1 Introduction: When implicate literals are impossible 127

6.2 Not-All-Equal 3-SAT 128

6.2.1 The "double clause" encoding of Not-All-Equal 3-SAT . . . 129

6.2.2 Implicates and the backbone in Not-All-Equal 3-SAT 130

6.2.3 Determining the backbone in Not-All-Equal SAT 132

6.3 WSat/SKC on Not-all-equal Random-3-SAT 135

6.3.1 The satisfiability threshold in Not-all-equal Random-3-SAT 135

6.3.2 The evolution of backbone size in Not-all-equal Random-3-
SAT 136

6.3.3 Tuning the noise parameter 138

6.3.4 Cost with backbone size controlled 139

6.4 Explaining cost behaviour in NAE Random-3-SAT 141

6.4.1 Cost and the number of solutions 141

6.4.2 Cost and backbone fragility in NAE Random-3-SAT 142

6.5 Summary 147

7 Conclusions and Further Work 148

7.1 The contribution of the thesis 148

7.1.1 A speculative account of WSat behaviour 148

7.1.2 The backbone fragility theory of WSat cost 150

7.2 Extending knowledge about hard instances 152

7.2.1 A cross-algorithm explanation of hard instances 153

7.2.2 Non-random artificially backbone-fragile instances 154

7.2.3 A rival explanation of the cost peak 156

7.3 Exploiting knowledge about backbone-fragility 157

viii

7.3.1 Intelligent initialisation 157

7.3.2 Adding implicates to reduce backbone fragility 158

7.4 Epilogue 159

Bibliography 160

A Bootstrap Methods 166

A.l Bootstrap method for testing whether two medians are equal 166

A.2 Bootstrap estimation of confidence intervals for
correlation coefficients 167

B The Relationship Between BMSs and MUSs 168

ix

List of Figures

2.1 The Random-A:-SAT generation method 11

2.2 Sub-procedures used in definitions of local search algorithms 15

2.3 Local-Search, the basic architecture shared by local search SAT al¬
gorithms 15

2.4 Local-Search-with-restart, the local search SAT algorithm archi¬
tecture incorporating a restart mechanism 16

2.5 Select-VARIABLE-GSat: the greedy variable selection strategy 17

2.6 The architecture for Select-variable-* which is shared by WSat vari¬
ants 18

2.7 The SKC strategy for selecting a variable from a clause 19

2.8 The Novelty strategy for selecting a variable from a clause 21

2.9 The Novelty-1" strategy for selecting a variable from a clause 22

2.10 The evolution of the backbone size distribution as m/n is varied (n =

100) 30

2.11 The DPLL procedure for solving the SAT decision problem 33

2.12 The DPLL-SOLUTION procedure for returning a solution to a SAT in¬
stance if one exists 34

2.13 The DPLL-traverse-all-SOLUTIONS procedure for traversing all so¬
lutions of a SAT instance 36

3.1 The determine-backbone procedure 42

3.2 The cost peak for WSat as m/n is varied 46

3.3 The effect of varying m/n on cost while backbone size is controlled. The
length of the bars is the interquartile range (25th - 75th percentiles). . . 49

3.4 Scatter plot of the number of solutions against cost with backbone size
controlled at O.ln (top) 0.5n (middle) and 0.9n (bottom) (m/n = 4.29). 52

x

3.5 Number of solutions with m/n varied and backbone size controlled at
O.ln. The length of the bars is the interquartile range (25th - 75th
percentiles) 54

3.6 Number of solutions with m/n varied and backbone size controlled at
0.5n. The length of the bars is the interquartile range (25th - 75th
percentiles) 55

3.7 Number of solutions with m/n varied and backbone size controlled at
0.9n. The length of the bars is the interquartile range (25th - 75th
percentiles) 56

3.8 The relationship between m/n and hci while backbone size is controlled. 59

3.9 The relationship between m/n and hci when backbone size is controlled.
The length of the bars is the interquartile range (25th - 75th percentiles). 59

3.10 The correlation between hci and cost when backbone size is controlled
at O.ln (top), 0.5n (middle) and 0.9n (bottom) (m/n = 4.29) 61

3.11 Conceptual interpretation of results from Chapter 3 65

4.1 The Robustness-trial procedure 74

4.2 Median estimated tbbr through the satisfiability transition, with back¬
bone size controlled at O.ln (top) 0.5n (middle) and 0.9n (bottom). The
bars show the interquartile range (25th - 75th percentiles) to give an
indication of the spread of values 76

4.3 Scatter plot of estimated tbbr versus cost with n = 100, m/n = 4.29 and
backbone size controlled at O.ln, 0.5n and 0.9n 78

4.4 The Find-Random-MUS procedure, from Gent and Walsh (1996). ... 91

4.5 The effect of the three clause removal procedures on the median mrl
of satisfiable Random-3-SAT instances at m/n = 4.29. Note that
the reduce-backbone procedure data stops at mr = 40, at which
point all instances had empty backbones. The length of the bars is the
interquartile range (25th - 75th percentiles) 94

4.6 Scatter plot of unsatisfaction frequency against backbone contribution
for the clauses of the cost median of 5000 instances, m/n = 4.29, n = 100. 98

4.7 The Fixed-start-robustness-trial procedure 99

4.8 The relationship between unsatisfaction frequency and conditional tbbr
for the 10th, 20th and 30th cost percentiles 101

4.9 The relationship between unsatisfaction frequency and conditional tbbr
for the 40th, 50th and 60th cost percentiles 102

4.10 The relationship between unsatisfaction frequency and conditional tbbr
for the 70th, 80th and 90th cost percentiles 103

xi

5.1 Dependence of median mrl and mean total flips on noise for p = 0,
n = 50 115

5.2 Typical cost for WSat/Novelty+ on R.andom-2+p-SAT 118

5.3 Typical cost for WSat/Novelty+ on Random-2+p-SAT, log-log scale,118

5.4 Typical cost for WSat/Novelty+ on random-2+p-SAT, log scale. . 119

5.5 Average backbone size in random-2+p-SAT relative to n, p = 0.3,0.5. 121

5.6 Median backbone size in RANDOM-2+p-SAT relative to n, p — 0.3,0.5. 121

5.7 Distribution of backbone sizes in Random-2 +p-SAT relative to n for
p = 0.3,0.5 123

5.8 The effect on mean backbone size of removing clauses from cost-typical
satisfiable threshold instances, n — 1000 124

5.9 The effect on mean backbone size of removing clauses from all satisfiable
threshold instances n — 1000 125

6.1 Equality and disequality relations between variables in an NAE SAT
instance 133

6.2 The Determine-NAE-backbone procedure 134

6.3 Probability of NAE satisfiability, n = 100 136

6.4 Backbone size distribution in NAE Random-3-SAT, n = 100, m = 195. 137

6.5 Backbone size distribution in NAE Random-3-SAT, n = 100, m = 205. 137

6.6 Backbone size distribution in NAE Random-3-SAT, n = 100, m — 215. 138

6.7 Dependence of WSat/SKC cost on the noise parameter setting for
double clause encodings of NAE satisfiable threshold NAE RANDOM-3-
SAT instances 139

6.8 Dependence of WSat/SKC cost (median mrt) on m/n for instances
with backbone size controlled at different values. The instances are dou¬
ble clause 3-SAT encodings of the backbone controlled NAE Random-
3-SAT instances. The length of the bars is the interquartile range (25th
- 75th percentiles) 141

6.9 Log-log scatter plots of number of solutions against cost for NAE Random-
3-SAT threshold (m/n = 2.05) instances with backbone size controlled
at O.ln (top) 0.5n (middle) and 0.9n (bottom) 143

6.10 Plot of median ffrbbf as m/n is varied for NAE Random-3-SAT in¬
stances with backbone size controlled at O.ln, 0.5n and 0.9n 145

6.11 Scatter plot of ffrbbf against log of WSat/SKC cost for NAE Random-
3-SAT threshold (m/n — 2.05) instances with backbone size controlled
at O.ln (top) 0.5n (middle) and 0.9n (bottom) 146

Xll

Chapter 1

Introduction

In Artificial Intelligence (AI) combinatorial search is a major theme. It is often neces¬

sary to configure an agent's environment so as to achieve some goal. Typically, certain

combinations of elementary configurations are impossible or undesirable because of
restrictions imposed by the nature of the goal. Therefore a search of the space of

configurations is necessary to find a configuration which satisfies the goal.

In this thesis a problem is an abstract, though unambiguous definition of a task to

be solved. The problem description specifies the form the input will take and what

properties the output should have. A problem instance is a concrete instantiation

of the problem i.e. a particular piece of input in the form specified in the problem

description. For combinatorial search problems, a solution to a problem instance is a

particular configuration which satisfies the goal.

This thesis concerns the study of certain existing algorithms developed by AI re¬

searchers to find solutions to instances of a simple combinatorial search problem: satis¬

fiability. Satisfiability is interesting because of its generality: many tasks of interest can

be naturally encoded as instances of satisfiability. It is also in a sense representative

of the difficult NP-complete class of problems.

There are various generation methods by which instances of satisfiability can be cre¬

ated. Some recent research has focused on stochastic generation methods. These are

procedures (often extremely simple) for creating instances randomly. Using stochastic

generation methods, the experimenter sets some parameters governing the overall size
and shape of the instance to be generated but then the details of the instance are set

1

CHAPTER 1. INTRODUCTION 2

randomly.

Stochastic generation methods have been devised and investigated for both satisfiabil¬

ity and a number of other important combinatorial problems. Stochastic generation
methods have exhibited some interesting behaviour. Under a given set of parame¬

ter settings, some properties of instances may occur more or less frequently. It is

interesting to study the distribution of instance properties under different parameter

settings. Suppose some of the parameters are held constant but one of them, the con¬

trol parameter, is varied. For some cases, it has been shown that as this parameter

is varied the frequency of instances which have solutions changes rapidly from all to

none. This change in the frequency of instances with solutions is known as a threshold

phenomenon. The sudden change is said to occur in the threshold region of the control

parameter's range.

A fascinating further discovery was that in many problems, the frequency of instances

which are difficult to solve is higher in the threshold region than elsewhere in the control

parameter range. While some algorithms can quickly solve instances from the non-

threshold region, none has yet been found which can efficiently deal with the threshold
instances. As a consequence of this, it has been conjectured that in the satisfiability

problem the instances from the threshold region are inherently hard in the typical case.

This is taken to mean (given P ^ NP) that no algorithm can exist which typically finds
solutions to instances from this region with a reasonable amount of computational
effort. In summary, whereas the NP-completeness of a problem demonstrates that

there must be some instances where solutions are hard to find, the discovery of the

threshold phenomenon actually locates these instances.

One type of algorithm which experiences these difficulties in the threshold region but
which performs well away from the threshold is the local search class of algorithms.

These techniques, which share a particular common architecture, are the algorithms
studied in this thesis.

The aim of this thesis is this: to extend our knowledge of what characteristics of
threshold region instances, absent in non-threshold instances, cause the performance
of local search to degrade. In other words, to answer the question Why are threshold

CHAPTER 1. INTRODUCTION 3

instances hardest for local search? Another objective is to elucidate the mechanism

by which the characteristics of the threshold instances cause the poor performance of
local search.

The thesis relies exclusively on empirical methods. Cohen (1995) proposes that empir¬
ical work in AI should lead to featural theories concerning the behaviour of AI systems.

These are not formal mathematical theories. They are statements which characterise

the behaviour of an AI system given the features of its architecture and of the task

that is to be performed. Featural theories are obtained by careful observation of the

combinations of features which coincide with a particular kind of behaviour. This leads

to a predictive featural theory of the form:

If an AI system's architecture/task has features F\,..., Fi then its behaviour
will have features Gi,... ,G{.

A featural theory may optionally have an explanatory clause giving the mechanism by

which the behavioural features are produced by the combination of architecture and

task features. This is an explanatory featural theory.

The aim stated above will therefore be satisfied by way of a featural theory: an

evidence-based statement of which properties are responsible for the hardness of thresh¬

old instances.

What is the significance of this project in the broader field of research into search

algorithms? If the threshold region is as inherently and as universally hard as is con¬

jectured, then the poor performance of local search is not merely a failing of the local
search architecture. Rather, the properties of the threshold region are responsible.

Hence, by understanding the threshold region and how its properties affect the opera¬

tion of local search algorithms, we can move towards understanding why solutions can

be hard to find in more general terms.

We now outline the structure of the thesis to show how the featural theory will be

developed.

• Chapter 2, Satisfiability and Local Search, gives the key elements of background

knowledge, definitions and accomplishments of previous work which are required

CHAPTER 1. INTRODUCTION 4

for the rest of the thesis. Topics such as the threshold region and the architecture
of local search algorithms are covered in detail here.

• In Chapter 3, Local Search on Random-3-SAT, we analyse in detail the be¬
haviour of the local search algorithm WSat/SKC on threshold instances of the
Random-3-SAT generation method. We confirm some patterns of behaviour

which have been revealed by past research. We also discover a number of other

patterns, leading to a richer characterisation of WSat/SKC behaviour in the
threshold region. In particular we investigate in detail the relationship between

performance and certain other instance properties (the backbone and the num¬

ber of solutions) which have been studied in isolation before. We also undertake
a "microscopic" study of the internal state of the algorithm during search on

threshold instances. By the end of Chapter 3 we have a detailed picture of the

performance and internal state behaviour of WSat/SKC on threshold instances.

However, some key behavioural patterns remain unexplained.

• The aim of Chapter 4, The Backbone Fragility Hypothesis, is to explain these

unexplained patterns. We introduce a new property of SAT instances - backbone

fragility. We then propose a hypothesis, based on this property, which endeavours

to account for the unexplained behaviour of WSat/SKC. In the remainder of

Chapter 4 we test experimentally a number of predictions of the hypothesis, with

positive results. We therefore have a consistent and relatively complete account

of why the performance of WSat/SKC degrades in the threshold region but is

good elsewhere. The featural theory predicts detailed features of WSat/SKC
behaviour on threshold Random-3-SAT instances.

According to Cohen, the utility of a featural theory is extended if its scope (i.e. the

range of possible AI systems and tasks which it covers) is broadened. While Chapters
3 and 4 form the heart of the thesis, Chapters 5 and 6 contain more preliminary

and peripheral results in which we investigate broadening the scope of the theory to

encompass different kinds of instances.

• In Chapter 5, Local Search on R.andom-2+p-SAT, we look at the behaviour of
a WSAT variant on threshold instances of the Random-2 +p-SAT generation

CHAPTER 1. INTRODUCTION 5

method. This generation method allows interpolation between the Random-2-

SAT problem, where the threshold region is not hard and Random-3-SAT which
contains a threshold region which is conjecturally universally hard. We report

initial experiments which are evidence that a hard threshold for local search

emerges during the interpolation between Random-2-SAT and Random-3-SAT
and that this is because of the emergence of backbone fragility.

• In Chapter 6, Local Search on Not-All-Equal 3-SAT, we extend our theory

to a combinatorial search problem which, though identical to SAT in most re¬

spects, has one key difference. A central concept in the featural theory is that

of the backbone, which is a property of instances. In Not-All-Equal 3-SAT

the backbone is fundamentally different in nature from the backbone in SAT.
We show that a number of results, including the key predictions relating perfor¬
mance and backbone fragility, carry over to the behaviour of WSat/SKC in the

threshold region of Not-All-Equal Random-3-SAT.

• In Chapter 7, Conclusions and Further Work, we summarise the featural theory
which has been developed. We conclude with a number of suggestions for both

extending the theory and exploiting it.

Chapter 2

Satisfiability and Local Search

In this chapter the aim is to familiarise the reader with the concepts which are used in

the rest of the thesis. Section 2.1 defines the satisfiability problem and various related

concepts. Section 2.2 discusses the study of hard instances of the satisfiability problem,

particularly highlighting the RANDOM-A;-SAT stochastic generation method. Section
2.3 introduces local search: an algorithmic paradigm used to solve the satisfiability

problem. This section also gives details of certain important variants of local search

which we and other authors have analysed. Section 2.4 focuses on some particular cases

of previous work which aimed at understanding the operation of local search procedures
on RANDoM- A;- SAT instances and which were a bedrock on which our central ideas

were then constructed. Section 2.5 reviews the Davis-Putnam-Logemann-Loveland

algorithm for satisfiability which is used extensively for the calculation of instance

properties in subsequent chapters. A brief summary is given in Section 2.6.

2.1 Propositional satisfiability

The logic variant important to this thesis is propositional logic. Formulas of proposi¬
tional logic are written using a set of propositional variables V and logical connectives

-i, A, V and —», known respectively as negation, conjunction, disjunction and implica¬
tion. We will use the letters x, y and z, possibly subscripted, for variables. The syntax

of propositional logic formulas is as follows:

• Any propositional variable in V is a formula.

6

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH 7

• Where A is a formula, ->A is a formula.

• Where A and B are formulas, A A B, A V B and A —> B are formulas.

In addition to these symbols, parentheses will be used to resolve syntactic ambiguity
where necessary. In this thesis, as with much of the work on the computational aspects

of propositional logic, we will be wholly concerned with clausal formulas, which we now

define.

A literal is a propositional variable x where x € V or the negation of one: ->x where
x 6 V. I, possibly subscripted, will be used for literals. Let I1.I2, ■ ■ ■ ,h be literals. A

^-clause, or clause of length k with literals h,h, ■ • •, h is the formula l\ V^V.. NR. The

letter c, possibly subscripted, will range over clauses. A clausal formula with m clauses

ci, C2,..., cm is the formula ci A C2 A ... A cm. The letter C, possibly subscripted, will

range over clausal formulas. Arbitrary formulas of propositional logic may be converted

into equivalent clausal formulas by a series of rewriting operations. Although the details

of these operations are not relevant here, this is one important property of the clausal

form.

Generally, the semantics of a logic governs the meaning of sentences with respect to

a domain : the portion of the world in which we are interested. The object which

gives a sentence its meaning is an interpretation. In propositional logic we make a

minimal ontological commitment about the domain. We simply insist that there are

propositions in the domain and that each of these is either true or false. Therefore,

in propositional logic, an interpretation T is simply a truth assignment mapping V to

the set of truth values {true, false}. Hence T{x) denotes the truth value which the
variable x is mapped to under T. Given an interpretation, the truth value of a formula

is calculated recursively on its syntactic structure using the standard truth tables for

the connectives.

A truth assignment which makes the formula true is a solution to the formula1. If all

possible truth assignments for a formula are solutions, the formula is valid. If there

exist any solutions to a formula then it is satisfiable. If every truth assignment gives the
value false for the formula (i.e. there are no solutions) then the formula is unsatisfiable.

1 Elsewhere such a truth assignment is called a model or a satisfying assignment.

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH 8

A clause of a clausal formula C is satisfied under a truth assignment T if at least one

literal evaluates to true and unsatisfied otherwise. Note that a truth assignment T is
a solution to a clausal formula C iff all clauses of C are satisfied under T-

SAT refers to the decision problem of satisfiability: given a clausal formula C as input,
decide whether there exists any solution to C. Hence a SAT instance is a clausal

formula. &-SAT is the special case of SAT where the clauses of the input formula are

of length at most k. A more useful but in important ways an equivalent problem to

these decision problems is that of finding a solution if there is one. In this thesis we

focus on algorithms for finding solutions.

The use of SAT algorithms is now routine in several different areas of AI. These include

finite mathematics (Slaney et al. 1995; Zhang et al. 1996), planning (Kautz and Selman

1992, 1996), electronic design automation (Guerra e Silva et al. 1999) and network

design and routing (Kautz et al. 1997). The general approach is as follows:

1. Encode the various constraints from the problem domain as a propositional for¬

mula A, such that A is satisfiable if the task is solvable and so that a solution to

A encodes a solution to the task.

2. Convert A into an equivalent clausal formula C.

3. Use a generic SAT procedure which operates on clausal formulas to find a solution
to C or prove its unsatisfiability.

4. If a solution to C was found, construct a solution to the task from it.

This simple methodology (the SAT-encoding approach) has been found to be quite
effective in practice, often competitive with domain-specific methods e.g. Kautz and
Selman (1996). Due to the NP-completeness of SAT, any instance of a problem in NP
can be encoded as a SAT instance and this is often although certainly not always a

reasonable approach.

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH

2.2 The hardness of satisfiability

9

In this section we motivate the study of the "hard instances" predicted by NP-complete-

ness theory and review work on stochastic instance generation methods for SAT.

2.2.1 What are hard instances and why should we study them?

The research question of this thesis is : Why can solutions to SAT instances be hard to

find for local search algorithms? We now discuss hard instances of the SAT problem.

The NP-completeness of SAT implies (assuming P NP) that there can be no de¬
terministic polynomial-time decision procedure. Alternatively, the implication is that

any decision procedure must take superpolynomial time in the worst case. In principle

we could collect these worst cases together in a class of their own. So, for any algo¬

rithm, there must be a subset of all SAT instances, containing some instances of every

size, such that the best run time of the algorithm on instances from the subset grows

superpolynomially with the size of the instances. This subset can be termed a "hard

class of instances" of the algorithm.

It is now a standard research technique to investigate hard instances for different

algorithm classes. Cook & Mitchell, introducing their survey article of this area (Cook
and Mitchell 1997) describe the motivation for this kind of research:

"the hard inputs for a class of algorithms characterize the limitations of

those algorithms, and point up where additional research is needed."

Underlying the work presented in this thesis is the idea that the nature of hard instances

for current algorithms and the mechanisms by which current algorithms are caused to

fail on hard instances should be understood before substantial improvements to the

algorithms can be made.

2.2.2 Stochastic SAT instance generation methods

There are special cases of the SAT problem which are in P: the best known are 2-SAT
and Horn-SAT (where each clause has at most one negation). In these cases, by using

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH 10

an appropriate algorithm, hard instances never occur. However, it is often the case

that our task cannot be encoded as an instance of one of these special cases and so the

possibility of hard instances is a reality.

The NP-completeness of SAT is a worst case analysis. We may be interested in whether

the instances generated by a particular method will cause problems for our algorithm.
The NP-completeness may not be a practical problem in SAT applications unless a

hard class of instances for our algorithm (as defined above) forms a significant part of
the class of instances generated by our instance generation method. There are two ways

this could happen. The mean cost to run the algorithm on the instances could grow

superpolynomially with n. In this case we say the class is "hard in the average case".
Another possibility is that the median cost could be superpolynomial. In this case

we say the class is "hard in the typical case". Whether or not an instance generation
method is hard in the average or typical case is relative to a particular algorithm.

Researchers have looked at the cost to solve randomly generated SAT instances. These

instances can be generated in different ways. According to experiments, some random

generation methods give a class of instances which are hard in the average or typical

case for an algorithm, while others give classes of instances which are not hard. This

is of theoretical and practical interest. The theoretical interest arises because gener¬

ating instances in some ways can lead to instances which appear to be hard in the

average/typical case for many algorithms. Other generation methods result in easy

instances. This helps shed light on what properties cause the cost to be high. The

practical interest is as an unlimited source of test inputs for comparing algorithms. In

fact the use of these hard random instances for evaluating SAT algorithms is now rou¬

tine and has been used to identify several techniques which were later used successfully

on practical AI tasks.

Early work generating random instances used stochastic generation methods which
were later proven by Franco and Paull (1983) not to be hard in the average case. More

recent experimental work (Cheeseman et al. 1991; Mitchell et al. 1992; Selman et al.

1996) identified the much more interesting Random-A:-SAT generation method, which
is the subject of the remainder of this section.

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH 11

procedure Random-£;-SAT(w, m)
V := a set of n propositional variable symbols {aq,..., xn}
for i = 1 to m

Select k distinct variables yi,... ,yk at random from V
for j = 1 to k

with probability ^
lj := ->yj

otherwise

h := Vj
end with

end for

Ci . — l\ V . . . V
end for

return c\ A ... A cm

Figure 2.1: The Random-a:-SAT generation method.

2.2.3 The Random-A;-SAT generation method

Random-A;-SAT instances are generated using two parameters, the number of vari¬

ables n and the number of clauses m. Pseudocode2 for the procedure defining the
Random-A;-SAT generation method is given in Figure 2.1.

We have a set of n variable symbols V. To generate an instance, each clause is inde¬

pendently chosen by selecting as its literals a subset of k distinct variables from V.

Each such subset has equal probability of selection. We then independently negate

each literal in the clause with probability Note that there is no guarantee that all

variables are mentioned in the instance or that it will not contain duplicate clauses.

Most work has studied Random-3-SAT, since 3 is the smallest value of k for which

A;-SAT is NP-complete (Cook 1971).

2.2.4 The threshold phenomenon in Random-A;-SAT

Random-AnSAT is often analysed by fixing n and varying the ratio m/n, the control

parameter. The probability of generating a satisfiable instance then depends on the
2 One non-standard control flow feature added to the standard pseudocode in this thesis is with

probability p ... otherwise ... end with to allow stochastic non-determinism, which is a feature
of many of the relevant computational procedures.

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH 12

value of clauses to variables m/n. At low values of m/n (from 0 to around 4 for k = 3,
n — 100 for example) a satisfiable instance is almost certain to be generated. This

region of the control parameter's range is known as the underconstrained region. Then,
over a region known as the threshold region (from about 4 to 5 for k = 3, n = 100) the

probability of satisfiability falls sharply to almost zero. The point at which 50% of the

instances are satisfiable is often used as a marker of the location of the threshold region.

Thereafter, for higher values of m/n, in the overconstrained region, an unsatisfiable
instance is almost certain to be generated. Crawford & Auton carried out an extensive

experimental analysis of this phenomenon in Random-3-SAT (Crawford and Auton

1996). The threshold region narrows in terms of m/n as n is increased. The location
of the threshold region appears to converge to a constant value for m/n of about 4.25
for Random-3-SAT. It is unknown analytically whether the location of the threshold

region converges to a constant in the asymptotic limit and if so, what the value of the

constant is. The threshold region appears to be very difficult to analyse. However,

certain analytic results have been possible. The asymptotic location of the threshold

region has been bounded by constants: Achlioptas and Sorkin (2000) have now shown
a strict lower bound of 3.26 while Dubois et al. (2000) have very recently shown a strict

upper bound of 4.506. Friedgut (1999) has also recently shown that the threshold is

indeed sharp: the width of the threshold region narrows to nothing in terms of m/n
as n tends to infinity. Friedgut's result allows for the location to vary with n (within
the bounds) but it is widely conjectured to converge to a constant.

2.2.5 The hardness of RANDOM-&-SAT threshold instances

The threshold phenomenon relates directly to the hardness of the instance generation

method. Early experimental work by Mitchell et al. (1992) examined the average

search cost for the DPLL3 decision procedure (Davis and Putnam 1960; Davis et al.

1962), on Random-3-SAT instances. Mitchell et al. found that solving these instances
with DPLL is easiest in the average case in the underconstrained region. Interestingly,

the average cost to solve then rises as m/n is increased and peaks very near to the
3 Although often referred to as the DP (Davis-Putnam) procedure, the algorithm incorporates tech¬

niques due to both Davis and Putnam (1960) and to Davis, Logemann & Loveland (Davis et al.
1962) and so we refer to it as DPLL. This algorithm is reviewed in detail in Section 2.5.

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH 13

point of 50% probability of satisfiability. Thereafter the average cost decays again as

we move into the overconstrained region. A similar pattern was found in the cost of
two substantially different decision procedures by Larrabee and Tsuji (1992). Cook
and Mitchell (1997) conjecture that the peak will occur for all reasonable decision

procedures. Due to the cost peak, Random- A;- S AT instances from the threshold region
are often the object of study. Hence the term "threshold Random-A-SAT" will refer

to the Random-A-SAT method with m/n set such that the probability of generating
a satisfiable instance is as close to 50% as can be. Threshold Random-A-SAT has just

one parameter n which is proportional to the number of clauses in the formula since

at the threshold m/n is 0(1).

There have also been some rigorous results concerning this pattern of hardness. Frieze
and Suen's lower bound (Frieze and Suen 1996) on the threshold location for RANDOM¬
S'SAT was shown by exhibiting an algorithm which with probability approaching 1

as n —> oo returns a solution in polynomial time when m/n < 3.003. Hence there is
an algorithm for which solution finding in this region is provably easy in the typical

case. Solving satisfiable Random-3-SAT problems is also provably easy if we move far

enough into the overconstrained region. Gent (1998), for example, gave a simple linear
time algorithm which, in all but an exponentially small proportion of cases returns a

solution to satisfiable instances when m/n is fi(log n). Since the transition occurs when

m/n is 0(1) this refers to the overconstrained region, where satisfiable instances are

vanishingly rare. Unsatisfiable instances from the threshold region are provably hard in
the average case for any procedure based on the resolution inference system. This was

demonstrated by Chvatal and Szemeredi (1988) based on the exponential minimum

length of resolution proofs. Beame et al. (1998) prove lower and upper bounds on the

lengths of resolution proofs of unsatisfiable Random-3-SAT, including a proof that
once there are n2/ log n clauses, there is an algorithm which can almost certainly find
an unsatisfiability proof in polynomial time. This confirms the eventual disappearance
of hard unsatisfiable instances as m/n is increased.

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH

2.3 Local search for satisfiability

14

An algorithm is complete if it is guaranteed to solve any problem instance (by returning
a solution or proving none exists). The fact that simple SAT generation methods such
as Random-3-SAT are apparently universally hard has motivated researchers to relax

their insistence that algorithms must be complete. Instead, in an attempt to find

algorithms which were more efficient on the hard instances, incomplete algorithms,
which do not carry the guarantee, have been investigated.

Local search describes a particular class of (typically) incomplete algorithms. In this
section we review the motivation for and the details of these algorithms, while post¬

poning their analysis until Section 2.4 of this chapter. We give details only of the local
search algorithms of direct relevance to this thesis.

2.3.1 Pseudocode preliminaries

Certain sub-procedures which will be useful in the discussion of the algorithms are

defined in Figure 2.2. We also adopt the convention that sub-procedures terminated

with an asterisk (Select-VARIABLE-* for example) can be instantiated in different

ways, allowing a family of variant algorithms. The different possible instantiations

will be denoted by replacing the asterisk with different labels, for example SELECT-

VARIABLE-GSat will refer to the GSat instantiation for SELECT-VARIABLE-*.

2.3.2 What is local search?

Figure 2.3 describes the most basic architecture shared by local search algorithms for

satisfiability.

The search begins by selecting an initial truth assignment. This can be done in various

ways according to the instantiation of Select-truth-assignment-*. In all the local
search variants discussed in this chapter Select-truth-assignment-* is instantiated

by Select-truth-assignment-random.

The technique proceeds by selecting one of the variables and reversing its truth value
in the assignment T. This step is called a flip and is generally considered to be the

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH 15

select-truth-assignment-*(c) returns a truth assignment to the variables men¬
tioned in the formula C.

Select-truth-assignment-random(C) returns a truth assignment to the variables
mentioned in the formula C. Each variable is mapped to true with probability
1/2 and false otherwise.

Select-variable-*(T, C) returns a variable mentioned in the formula C.

Flip(T, v) returns a truth assignment which is equal to T except that in the returned
truth assignment, v is mapped to the opposite truth value to T(v).

SOLUTION(T, C) returns true if T is a solution to C, false otherwise.

Satisfied-CLAUSES(T, C) returns the sub-formula of C consisting of the clauses
which are satisfied under truth assignment T.

Unsatisfied-clauses(T, C) returns the sub-formula consisting of the clauses of C
which are unsatisfied under truth assignment T.

Select-clause-at-random(A) returns a clause from the formula A with equal prob¬
ability of each.

S elect-variable-from-clause- * (c, T, C) returns one of the variables which ap¬
pears in the clause c.

Select-variable-at-random(5) returns one of the variables in the set S at random,
with equal probability of each.

AD B returns the formula consisting of the clauses which appear in both formula A
and formula B.

|A| returns the number of clauses in the formula A.

Figure 2.2: Sub-procedures used in definitions of local search algorithms.

procedure Local-Search(C, Max-flips)
T := Select-truth-assignment-*(C)
for j — 1 to Max-flips

v := Select-variable-*(T, C)
T := Flip(T, v)
if Solution(7~, C)

return T
end if

end for

return "no solution found"

Figure 2.3: Local-Search, the basic architecture shared by local search SAT algo¬
rithms.

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH 16

procedure l0cal-search-with-restart(c, Max.tries, Max.flips)
for i = 1 to Max.tries

LocaLsearch.output := Local-Search(C, Max.flips)
if SOL\JTlON(LocaLsearch.output, C)

return LocaLsearch.output
end if

end for

return "no solution found"

Figure 2.4: Local-Search-with-restart, the local search SAT algorithm architec¬
ture incorporating a restart mechanism.

basic unit of cost for the algorithm. If T becomes a solution, we return it, otherwise we

iterate, making more flips until a solution is found or some maximum number of flips is

reached, in which case we abandon the search. The method used to select the variable

at each point can also vary from algorithm to algorithm according to the instantiation

of Select-variable-*.

In the early local search algorithms, on certain instances it was found that the search

could become trapped such that T would never become a solution. The early algo¬

rithms avoided this by incorporating a restart mechanism. Pseudocode for local search

with restart is given in Figure 2.4.

Local-Search-with-restart calls Local-Search as a sub-procedure. Each call

to Local-Search is called a try and is limited in length to Max.flips. At most

Max.tries tries are made. If any one of these finds a solution, it is returned.

If, for Select-truth-assignment-*, we use some procedure which successively enu¬

merates all possible truth assignments, Local-Search-with-restart is guaranteed

to find a solution or (if 2" tries fail) show that no solution exists. Such complete local
search variants were investigated by Gent and Walsh (1993b). However, in most cases

(and for all instantiations of local search relevant to this thesis) we use select-truth-
assignment-random. Another example of a complete local search procedure is Fill

due to Morris (1993) but this is mainly of theoretical interest as its space requirements
are unfeasible. So, typically, local search is incomplete both because it cannot typically
show unsatisfiability and because on satisfiable inputs it is not typically guaranteed to

find a solution after a bounded number of steps.

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH 17

procedure Select-variable-GSat(T, C)
V the set of variables appearing in C
for each variable x G V

Score[x] := | Satisfied-clauses (Flip (T, x), C) \
end for

Possible-moves := the set of variables x € V such that Score[x\ is maximal
v := select-variable-at-random(Fossi6/e_mones)
return v

Figure 2.5: SELECT-VARIABLE-GSat: the greedy variable selection strategy.

2.3.3 Why use local search?

Why sacrifice the guarantees given by completeness? The benefits of local search

for satisfiability were discovered relatively recently by Selman et al. (1992) and inde¬

pendently by Gu (1992). They found that local search procedures were able to find
solutions to certain large instances, including some from threshold Random-3-SAT,
which good complete methods failed to solve within a reasonable time. Therefore in

any system where completeness may be sacrificed, local search procedures have an im¬

portant role to play and this is why they have generated so much interest in recent

years.

2.3.4 GSAT

GSat, the local search procedure introduced by Selman et al. (Selman et al. 1992) was

for some time the baseline algorithm and has been the subject of much investigation.

GSat stands for greedy SAT algorithm, which refers to its instantiation of Select-

variable-*, given in Figure 2.5.

Select-VARIABLE-GSat returns the variable which when flipped will result in the

greatest increase (or smallest decrease) in | satisfied-clauses (7~, C)\. In the case of
more than one variable having this property, the variable to flip is picked randomly.

2.3.5 WSAT

One property of GSat and similar variants is that they consider all variables before

choosing one to flip. By reducing the number of variables considered, the calculations

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH 18

procedure Select-variable-WSat(T, C)
A := Unsatisfied-clauses(T, C)
c := Select-clause-at-random(A)
v := Select-variable-from-clause-*(c, T, C)
return v

Figure 2.6: The architecture for Select-variable-* which is shared by WSat vari¬
ants.

required to evaluate each flip can be reduced, so that more flips can be made in a

given time, allowing the possibility of a successful search in less time. One possibility

is to consider only those variables which occur in unsatisfied clauses under the current

assignment. After flipping one of these variables, at least one clause must go from

being unsatisfied to being satisfied and so flips are thought to be in a sense directed
towards repairing the flaws in the current assignment (Selman et al. 1994; Gent and
Walsh 1995).

A Local-Search variant using this approach proposed by Papadimitriou (Papadim-
itriou 1991, 1994) was called "the random walk algorithm". In Papadimitriou's random
walk algorithm, the method used to select the variable to be flipped was a two stage

process, first selecting at random an unsatisfied clause and then a variable mentioned
in that clause. This two stage approach to Select-variable-* was adopted by Sel¬
man et al. and named the WSat architecture (the W stands for walk). Pseudocode for
Select-variable-WSat is given in Figure 2.6. In Papadimitriou's random walk algo¬
rithm Select-varlable-from-clause-*(c, T, C) returned a variable at random from

those appearing in the clause c but generally in the WSat family this sub-procedure

may be instantiated in different ways.

Selman et al. used what was later called the SKC strategy (referring to the three authors

Selman, Kautz and Cohen) for Select-variable-from-clause-*. Some preliminary

experiments (Selman et al. 1994) with WSat/SKC (the WSat architecture with the
SKC variable selection strategy described below) indicated that the WSat approach
could be significantly faster (in run time terms) than GSat variants and so later
research has tended to concentrate on the WSat family.

Research has yielded some variable selection strategies for WSat which form the pow-

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH 19

procedure Select-variable-from-clause-SKC(c, T, C)
Clausejvars := the set of variables appearing in c
for each variable x £ Clausejvars

Broken^clauses \—

Satisfied-clauses(T, C) n Unsatisfied-clauses(Flip (T, x), C)
Breaks[x\ \Broken-clauses\

end for

Breaklessjvars := the set of variables v £ Clausejvars such that Breaks[v] = 0
if Breaklessjvars is not empty

return Select-variable-AT-RANDOM(BreaklessJvars)
else

with probability noise
return select-variable-at-random(Clausejvars)

otherwise
Breakminjuars := the set of variables v £ Clausejvars

such that Breaks[v] is minimal
return Select-variable-at-random(f?reafcmm_uars)

end with
end if

Figure 2.7: The SKC strategy for selecting a variable from a clause.

erful local search variants which will we will study in this thesis. We now give details

of these variants: WSat/SKC, WSat/Novelty and WSat/Novelty+.

2.3.6 WSat/SKC

The strategy Select-variable-from-clause-SKC which was first used by Selman
et al. (1994) (the details were later given by Parkes and Walser (1996)) is presented in

Figure 2.7.

The strategy is based on choosing a variable which minimises damage to the set of
satisfied clauses. A clause which becomes unsatisfied due to a flip is said to be broken

by the flip. If a variable appearing in c (the selected unsatisfied clause) can be flipped
without breaking any satisfied clauses, one such variable is chosen. If there is no such

variable, the behaviour is randomised between two strategies. It may select a variable
from c which minimises the number of broken clauses or it may ignore this heuristic

and make a purely random walk move, selecting a variable appearing in c at random.
The SKC strategy has an additional parameter noise (0 < noise < 1) governing the

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH

frequency of the random walk moves.

20

2.3.7 WSat/Novelty

The local search variants discussed above are memory-free: each move takes no account

of previous moves or previous assignments visited. It is thought that this property may

sometimes cause local search algorithms to revisit non-solution assignments repeatedly.
Gent and Walsh (1993b) showed that HSat, a variant of GSat which incorporated
a simple memory mechanism outperformed its memory-free predecessor on a number
of SAT instance classes including satisfiable threshold Random-3-SAT. Various other

authors have also suggested local search algorithms with memory features (Selman
and Kautz 1993b; Morris 1993; Prank 1996b; Mazure et al. 1997) and these generally

compare favourably with their memory-free counterparts.

Novelty is a quite recent WSat variant. Its instantiation of Select-variable-

from-clause-* incorporates a simple memory mechanism. It is due to McAllester

et al. (1997). The procedure is given in Figure 2.8. The basic selection criterion is

to increase the number of satisfied clauses, without re-flipping the same variable in a

row too often4. McAllester et al. found that WSat/Novelty outperformed a number
of other WSat variants including WSat/SKC on large threshold Random-3-SAT
instances.

2.3.8 Achieving probabilistic approximate completeness

If for a local search variant L there exists a satisfiable clausal formula such that if the

initial assignment is set to a particular truth assignment, L will never find a solution
without restarting, we say that L is essentially incomplete. If on the other hand when
L is run on any satisfiable instance, beginning at any initial assignment the probability
of L finding a solution tends to 1 as Max-flips tends to infinity, we say that L is

probabilistically approximately complete (PAC). These terms are due to Hoos (1999a).
Culberson and Gent (1999a) proved that WSat/SKC is PAC for the 2-SAT case.

4 McAllester et al. did not specify how to break ties between variables with equal Score when neither
variable had been flipped in the current try. In our implementation we broke ties randomly in this
situation, but for clarity's sake we have omitted this detail from the pseudocode.

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH 21

procedure Select-variable-from-clause-Novelty(c, T, C)
Clausejvars := the set of variables appearing in c
for each variable x G Clausejvars

Score[x] := |Satisfied-clauses(Flip(7~, x), C)\
end for

Variable-ranking := a list of the variables of c sorted by decreasing Score[x],
breaking ties by placing the least recently flipped variable
first in the list

if the first variable of Variable-ranking is not the most recently flipped variable
return the first variable of Variable-ranking

else

with probability noise
return the second variable of Variable-ranking

otherwise

return the first variable of Variable-ranking
end with

end if

Figure 2.8: The Novelty strategy for selecting a variable from a clause.

Hoos (1998) observed that his data suggested WSat/SKC could be PAC. In every

one of our experiments with WSat/SKC on satisfiable instances a solution was found
without restart, which is further evidence (though not proof) that WSat is PAC.

Hoos (1998, 1999a) proved that certain WSat variants including Novelty are essen¬

tially incomplete. Furthermore, Hoos found that some Novelty tries on Random-3-

SAT instances failed to find a solution after a very large number of flips. So, although

Novelty is an efficient WSat strategy for RANDOM-3-SAT instances, often finding

a solution in much fewer flips than other variants, there are some tries where it fails

to find a solution within a very long time, possibly due to its essential incompleteness.

Hoos (1999a) proposed a simple remedy to this problem: the addition of pure random
walk with a small probability. The Novelty-1" strategy (the + indicates the addition
of pure random walk) is given in Figure 2.9. The strategy has a parameter wp, which
Hoos set to 0.01. This governs the probability of a random walk flip occurring. Note
that Novelty-1- acts exactly like Novelty except that every so often it takes a pure

random walk flip. Modifying any WSat variant in this way guarantees probabilis-

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH 22

procedure Select-variable-from-clause-novelty+(c, T, C)
with probability wp

Clausejvars := the set of variables appearing in c
return select-variable-at-random(Clause-vars)

otherwise
return Select-variable-from-clause-Novelty(c, T, C)

end with

Figure 2.9: The Novelty"1" strategy for selecting a variable from a clause.

tic approximate completeness5. Hoos (1998) demonstrated that Novelty"1" did not

have the incompleteness problems of Novelty, making it one of the best local search

algorithms for this class to date.

Implementation note

All local search runs reported in this thesis were made using our own C implementations

of WSat/SKC and WSat/Novelty+.

2.4 Understanding local search cost

We now review a number of recent previous studies whose results are relevant to our

research area. We focus particularly on empirical studies of the behaviour of GSat and

WSat variants on Random-3-SAT instances. The discussion of some other studies

of this type which are more closely related are postponed until later chapters so as to

show more clearly the relationship between them and the thesis work.

Since local search is unable to show unsatisfiability, it is usually only run on satisfiable

instances. Commonly, the method used is to generate Random-3-SAT instances and
filter out the unsatisfiable instances using a complete procedure. We will refer to

instances generated in this way as satisfiable Random-3-SAT.
5 Observe that for any clause c currently unsatisfied under T, there must be a variable x appearing in

c such that for some solution Tsoi, Taoi(x) is the inverse truth value to T{x), since c must be satisfied
under Tsoi • By repeatedly flipping the variable with this property T will become a solution. Hence
any WSat strategy which has a non-zero probability of flipping each variable in each unsatisfied
clause is PAC.

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH

2.4.1 The two phases of GSat's search

23

Note that GSat as described above allows sideways moves: flips which do not change
the number of satisfied clauses. Where possible, GSat will make such a move if no

upward move (one which strictly increases the number of satisfied clauses) is possi¬
ble. Selman et al. (1992) found early on that the sideways moves were in fact crucial
to GSat's success: if tries are abandoned when no upward moves are possible the

performance degrades significantly.

Gent and Walsh (1993b) used a similar methodology: they varied other features of
GSat and found some interesting effects. Gent & Walsh found that greediness was

not important. For example a variant CSat (cautious SAT algorithm) is similar to

GSat except that if there are upward moves, it simply selects one at random from all

possible upward moves. This is in contrast with GSat which greedily maximises the

increase in the number of satisfied clauses. If there are no upward moves, but there are

sideways moves it selects one of these, otherwise it selects a downward move (decreasing
the number of satisfied clauses) at random. CSat and GSat performed similarly on

a range of problem instances including satisfiable threshold Random-3-SAT. So, the

variable selected does not need to be the one which increases the number of satisfied

clauses the most. However, some kind of hill-climbing is required for a successful

algorithm. Gent and Walsh also examined ISat (indifferent SAT algorithm), which

does not distinguish between sideways and upward moves: it selects a non-downward
move at random from those available if there are any and a downward move otherwise.

ISat did not perform well in comparison to GSat and CSat, demonstrating that

hill-climbing (the distinction between upwards and sideways moves) is important.

These observations are consistent with a two-phase model of GSat's search behaviour

on satisfiable threshold random-3-SAT- observed and discussed both by Selman and

Kautz (1993a) and by Gent and Walsh (1993b), who also analysed this model in detail.
Initially, there is a very rapid hill-climbing phase, where the proportion of satisfied
clauses climbs from around 87.5% (under the initial random assignment, 7 out of 8 of all
clauses will be satisfied on average) to nearly 100%. From here onwards the proportion
of satisfied clauses climbs only very slowly. This is the plateau phase, so-called because

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH 24

during most of this phase, only sideways moves are possible, with upwards moves

becoming increasingly infrequent. When they do occur, upward moves almost always
increase the number of satisfied clauses by only one. In threshold Random-3-SAT
several authors report that the plateau phase is much longer than the hill-climbing
phase and constitutes most of the search e.g. Gent and Walsh (1993a).

The existence of the two phases suggests that incorporating some kind of hill-climbing
is necessary so that the plateau phase is reached and so that during the plateau phase,

possible upward moves are exploited when they arise. Sideways moves are necessary

to allow exploration during the plateau phase. Greediness is not important because it

can only reduce the length of the hill-climbing phase which only constitutes a small

part of the search.

2.4.2 Local optima and how to avoid them

There exist SAT instances such that there is a set of assignments S where for each

assignment T € S there are no upward moves from T, but such that there are sideways
moves to other members of S. Such a set of assignments is a local optimum6. Moreover,

as Prank et al. found, local optima occur quite frequently in Random-3-SAT when the

number of unsatisfied clauses is low (Frank et al. 1997). A simple consequence of the

hill-climbing features of GSat and CSat is that any try which visits a local optimum

containing more than one assignment will never succeed in finding a solution. Selman
et al. recognised this, which is what led them to propose the restart mechanism for
GSat discussed in Section 2.3.2.

Other techniques have been proposed to avoid the problem of local optima: for ex¬

ample random noise and random walk (Selman et al. 1994), tabu lists (Mazure et al.

1997; McAllester et al. 1997) and clause weights (Morris 1993; Selman and Kautz

1993b; Prank 1996a). Each of these variants make what would be considered by GSat
downward moves under certain conditions and thus are in principle able to avoid being

trapped, at least by traps of this kind.
6 The term local optimum here is intended to correspond to a local minimum as defined formally by

Prank et al. (1997). In other contexts the term local optimum has been used to denote a different
concept e.g. a single assignment whose function value is strictly better than its neighbours but worse
than the global optimum.

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH 25

The re-randomisation of the truth assignment using the restart mechanism limits the
search steps wasted when the algorithm is trapped in a local optimum. This way, the

probability of finding a solution then approaches 1 as the number of tries approaches

infinity. The question which then arises is when to restart the search or equivalently,
how to set the Max-flips parameter.

Both Gent and Walsh (1993b, 1995) and Parkes and Walser (1996) investigated the
effect of varying the Max-flips parameter in local search variants employing the restart

technique. In all cases the measure of cost was the number of flips (totalled over

possibly multiple tries) to solve satisfiable threshold Random-3-SAT instances (setting
Max-tries infinite). They looked at various local search variants. For the more greedy

algorithms such as GSat and a greedy WSat variant, the effect on the cost was as

follows: for low values of Max-flips the cost is very high. As Max-flips is increased
there is a broad cost minimum after which cost begins to climb again, apparently

linearly. However, for the variants which are not strictly greedy and also employ some

other mechanism promoting occasional downward moves (including WSat/SKC) the

dependence of the cost on the value of Max-flips is somewhat different as follows. For

low values of Max-flips the cost is very high. As Max-flips is increased, the cost

falls to a certain level, and then stabilises. As long as Max-flips is high enough, the
cost is insensitive to the Max-flips setting.

Hoos and Stiitzle (1998) found that many variants which are not strictly greedy and
also employ a mechanism promoting occasional downward moves have another prop¬

erty of interest. Suppose several tries of such a local search algorithm L are run on a

large instance from the Random-3-SAT threshold region. The number of flips taken
for L to find a solution is known as the run length. Hoos & Stiitzle observed that for

these algorithms the distribution of the run length is consistent with an exponential
distribution. Amongst other implications, along with the insensitivity of the algo¬
rithms to the setting of the Max-flips parameter, this result implies that the restart

mechanism is not worthwhile in the presence of such other search control mechanisms.

If the algorithm is PAC and run lengths are distributed exponentially, it is as good
to run a single long try to completion than to randomly restart at any point. Since
we use algorithms with these properties, in this thesis we do not employ the random

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH

restart mechanism.

26

2.4.3 Local search cost growth

The interest in local search stems from its apparent superiority in terms of cost growth
over complete procedures such as DPLL, especially on threshold Random-3-SAT in¬

stances. In this section we focus on work relating to this aspect of local search : how
the cost to find a solution grows with the instance size n.

Some analytic worst case results are known for GSat and CSat. Hirsch (2000), by

exhibiting a hard instance which trapped the algorithms on all but an exponentially
small fraction of initial assignments, proved a lower bound on the worst case of the

expected run time on 3-SAT formulas of fi(20 0817n). Hirsch also proved an upper

bound of 2^ <k~v,d+\)™ on |}ie expected run time of CSat on k-SAT formulas where

each of the variables occurs at most d times.

To our knowledge the only analytic average-case result of applying local search algo¬
rithms to random instances of 3-SAT is that of Koutsoupias & Papadimitriou (Kout-

soupias and Papadimitriou 1992). However, their proof applies to a variant which does
not make sideways moves, running on satisfiable instances with Q(n2) clauses. Such

instances must be in the overconstrained region, where satisfiable instances are vanish-

ingly rare, since the threshold occurs when the number of clauses is O(n). This result
is not therefore applicable to algorithms which do make the important sideways moves

when run on instances from the threshold region.

Knowledge of the behaviour of local search cost growth comes mainly from experimental
work. On threshold Random-3-SAT, average cost for DPLL variants (averaged over

both satisfiable and unsatisfiable instances) appears to scale as a simple exponential

(Crawford and Auton 1996; Gent et al. 1997). For local search algorithms, Gent et al.

(1997) observed that average GSat cost growth on satisfiable threshold Random-
3-SAT was consistent with a polynomial (at most quartic) in the underconstrained

region. Parkes and Walser (1996) studied larger instances in the threshold region and
found that WSat/SKC average cost growth was not consistent with any function of
the form anb, but that certain functions which were superpolynomial but which grew

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH 27

more slowly than a simple exponential, did fit the data.

It is important to stress that when comparing empirical cost scaling of local and com¬

plete search techniques, the local search case is derived only from satisfiable instances,
whereas the complete search case is also based on unsatisfiable instances.

2.4.4 The cost peak and instance structure

As with complete procedures, there is a peak in the cost for local search procedures to

solve the instances from the threshold region using several instance generation meth¬
ods for constraint-like problems. Clark et al. (1996) showed a peak in the median and
other percentiles for GSat cost on Random-3-SAT at n — 100, with m/n varying
from 4.2 to 4.6. Both Clark et al. Hogg and Williams (1994) also found analogous

easy-hard-easy patterns using different local search algorithms on other constraint sat¬

isfaction problems. If we increase m/n from 0 and measure the average cost for local
search to solve all satisfiable instances, as we move through the underconstrained re¬

gion, the average cost increases. In the threshold region, the cost peaks, and in the
overconstrained region, the cost decreases again. As well as the apparent efficiency of
local search techniques on these instances, this cost peak phenomenon has also of been
of interest to researchers and is the main object of study in this thesis. As mentioned

in Section 2.2.5 the threshold region is thought to be hard for any reasonable complete

algorithm: apparently it is the hardest for the local search class.

Some research on the causes of the cost peak seen in the threshold region has focused

on the nature of threshold instances. We now review work which identifies certain

structural patterns in the nature of Random-3-SAT instances which are related to
instance hardness. Chapters 3 and 4 of this thesis can be seen as extending this work.

Implicates and backbones

Definition A clause c is an implicate of a formula C iff C —> c is a valid formula. This
means that the clause c is an implicate when its truth follows from assuming the

truth of C. □

In the context of search for solutions to satisfiable formulas, understanding implicates

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH 28

is important. This is because all implicates of a formula C are true under any solution
to C. Therefore a search procedure which searches a region of truth assignments

under which an implicate is false is searching in an unsatisfiable part of the space of

assignments.

Definition The backbone7 of a satisfiable formula C is the set of literals (i.e. clauses
of length 1) which are implicates of C8. □

The backbone may equivalently be thought of as the set of literals which are true

under all solutions. The backbone size (which we will sometimes denote bsize) is the
number of literals in the backbone.

Schrag and Crawford (1996) investigated the evolution of implicates in Random-3-
SAT as m/n is increased. One of their discoveries was the fact that short impli¬
cate clauses (such as literals) only begin to appear near the threshold region. Parkes

(1997) made a detailed experimental study of the evolution of the backbone in sat¬

isfiable Random-3-SAT. Parkes' study demonstrated that in the underconstrained

region, for most instances, only a very small fraction of the variables, if any, appear

in the backbone. However, as m/n is increased, in the threshold region, a subclass
of instances which have large backbones, mentioning around 75-95% of the variables,

rapidly emerges. Interestingly, at no point are instances with medium-sized backbones

particularly numerous; as random clauses are added, the size of the backbone tends

to jump quickly from small to large. Also the fraction of variables mentioned in the

backbones of the emergent large backbone subclass appears to be insensitive to n.

Soon after the control parameter is increased into the overconstrained region these

large-backbone instances account for all but a few of the satisfiable instances. Once

a formula has gained a large backbone, unsatisfiability is likely to follow after the

addition of a few more clauses, since there is then a significant chance that all literals
of an added clause are contradicted by literals in the backbone.

7 Here, our use of the term "backbone" follows Monasson et al. (1999a,b). Although they do not
formally define the backbone, their definition of the backbone fraction is equal to our definition of
backbone size/n for satisfiable instances.

8 Note that some other authors have found it more convenient to define the backbone of satisfiable
instances as the set of negations of implicate literals.

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH 29

In Figure 2.10 we present some experimental data to illustrate this transition from
small-backbone instances in the underconstrained region to large-backbone instances
in the overconstrained region (similar, more extensive data is presented by Parkes

(1997)). Data was collected on satisfiable Random-3-SAT with n = 100 using various
values of m/n near the threshold. These ranged from the point of 90% satisfiability

(4.03) to the point of 20% satisfiability (4.49). The backbone size was calculated for
each of 5000 instances at each point. Figure 2.10 shows the change in frequencies of
different backbone sizes as m/n is varied.

Parkes also showed that in the threshold region, the cost for the local search procedure

WSat/SKC is very strongly influenced by the size of the backbone: the hardest
instances are those with large backbones. Parkes' finding is particularly important in

understanding this thesis. This is because it suggests that the onset of local search
hardness near the threshold region as m/n is increased may be due to the emergence

of large-backbone instances at this point. This is the view of local search on Random-

3-SAT which we will develop in Chapters 3 and 4.

2.5 The Davis-Putnam-Logemann-Loveland (DPLL)
procedure

In this section we review the DPLL algorithm for satisfiability because implementa¬

tions of it are used as components of our system to calculate certain properties of SAT

instances such as the backbone. In Section 2.5.1 we define some concepts related to

the SAT problem which are relevant to this discussion of DPLL and in Section 2.5.2

we cover the details of variants of DPLL which were used.

2.5.1 DPLL preliminaries

Definition A unit clause is a clause of length 1: a clause containing one literal. □

Definition An empty clause is a clause of length 0: a clause containing no literals.
If all literals are removed from a clause, it becomes an empty clause. Empty clauses

evaluate to false under all interpretations. □

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH

m/n = 4.03, 90% satisfiable
300

250

o 200
c
o
5-150

u- 100

m/n = 4.11, 80% satisfiable

20 40 60 80
Backbone size

m/n = 4.18, 70% satisfiable

40 60
Backbone size

m/n = 4.29, 50% satisfiable

40 60
Backbone size

m/n = 4.41, 30% satisfiable

40 60
Backbone size

100

100

100

100

20 40 60
Backbone size

m/n = 4.23, 60% satisfiable

40 60
Backbone size

m/n = 4.35, 40% satisfiable

Backbone size
m/n = 4.49, 20% satisfiable

Backbone size

100

100

100

100

Figure 2.10: The evolution of the backbone size distribution as m/n is varied (n = 100)

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH 31

Definition The negation of a literal is the opposite literal: the negation of x is ~^x and
the negation of -<x is x. □

Definition A tautologous clause is a clause containing some literal and its negation

e.g. rVj/V ->y. Tautologous clauses evaluate to true under all interpretations. □

Definition An empty clausal formula is a clausal formula containing no clauses. If
all clauses are removed from a clausal formula, it becomes an empty formula. Empty

clausal formulas evaluate to true under all interpretations. □

Definition Suppose we have a non-empty clausal formula C free of tautologous clauses
and a literal I where I or its negation appears in C. The simplification of C assuming
I is a clausal formula C' equivalent to C A I. C' is defined as follows: take C, remove

all clauses which contain I and remove the negation of I from all clauses in which it

appears. □

Definition A partial truth assignment to a set of variables V is a partial mapping of

V to {true, false}. This means that if T is a partial truth assignment to V, for some

variable x £ V, T(x) may be undefined. A total truth assignment on the other hand,
must have truth values defined for all variables. □

Definition Suppose 71 and 7-2 are partial truth assignments to V. 7i extends (or is
an extension of) 7} if for all x G V where T\(x) is defined, Tz(x) is also defined and

Ti(x) = 72(x). □

Definition Suppose we have a partial truth assignment T and a literal I such that

the variable x mentioned in I is undefined in T- The extension ofT by I is the partial

truth assignment T' which is equal to T except that if I = x, T'{x) = true; if I = -*x,

T'(x) = false. □

Definition A partial truth assignment Tcyi to the variables of a clausal formula C is
a solution cylinder of C iff all total truth assignments which extend Tcyi are solutions
to C. □

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH

2.5.2 DPLL and its variants

32

We now review the DPLL procedure and some variants which can be used to calculate

instance properties. We also note briefly the implementations of these which were used.
All variants take a clausal formula as input and are recursive. In our presentation we

will assume that the input formula contains no tautologous clauses. These can be
removed as a preprocessing step and if so, do not re-occur in any clausal formula on

which the procedure is called recursively. The procedures are also under-specified in
the sense that the sub-procedure Select-split-literal-* (C) can be instantiated in
different ways: we discuss how this is done in our implementation towards the end of
this section.

DPLL

The most basic procedure DPLL is shown in Figure 2.11. It solves the SAT decision

problem by returning "satisfiable" or "unsatisfiable". If the formula is empty, it must
be satisfiable; if it contains an empty clause, it cannot be. If the formula contains

a unit clause, any solution to the formula must make the literal in that clause true.

Hence we can assume that literal and call DPLL recursively on the simplified C. This
is the unit propagation step. Similarly, if a literal I appears in the formula C, but its

negation does not, then if there is any solution to C, there must be a solution which

makes I true. Again in this case we can assume I is true and call DPLL recursively
on the simplified C. This is the pure deletion step. Finally, if none of the above cases

hold, we resort to searching. We select a literal /, assume it is true and attempt to
show satisfiability under this assumption. If this fails, we attempt to show satisfiability
under the opposite assumption. If both branches render unsatisfiability, the formula
as a whole must be unsatisfiable.

DPLL-solution

This variant DPLL-solution returns a solution cylinder to the input formula if there
is one and "unsatisfiable" otherwise. The solution cylinder can be made into a solu¬

tion by assigning arbitrary truth values to its undefined variables. DPLL-solution

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH

procedure DPLL(C)
if C is empty

return "satisfiable"
end if

if C contains an empty clause
return "unsatisfiable"

end if

;; Unit propagation
if C contains a unit clause I

return DPLL(the simplification of C assuming I)
end if

;; Pure deletion
if C mentions a literal I but not the negation of I

return DPLL(the simplification of C assuming I)
end if

;; Split
I := Select-split-literal-*(C)
if DPLL(the simplification of C assuming I) returns "satisfiable"

return "satisfiable"
else

return DPLL(the simplification of C assuming the negation of I)
end if

Figure 2.11: The DPLL procedure for solving the SAT decision problem.

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH 34

is shown in Figure 2.12. To allow a simpler presentation DPLL-SOLUTION has two

arguments, the formula and a partial truth assignment. The set of defined values of
this second argument represents the set of literals assumed to be true. At the top level
DPLL-SOLUTION is called with the second argument set to the partial truth assign¬
ment which is undefined on all the variables of C. DPLL-SOLUTION is identical to

DPLL except that each time a literal I is assumed to be true, the partial truth assign¬

ment is extended by I. If this sequence of assumptions leads to C being simplified to

an empty formula, the partial assignment must be a solution cylinder.

procedure DPLL-SOLUTION(C, T)
if C is empty

return T
end if
if C contains an empty clause

return "unsatisfiable"
end if

;; Unit propagation
if C contains a unit clause I

T' := T extended by I
return DPLL-SOLUTlON(the simplification of C assuming I, T')

end if

;; Pure deletion
if C mentions a literal I but not the negation of I

T' := T extended by I
return DPLL-SOLUTlON(the simplification of C assuming I, T')

end if

;; Split
I := Select-split-literal-* (C)
T' T extended by I
if DPLL-SOLUTlON(the simplification of C assuming I, T') returns a

partial truth assignment Tsoi
return Tsol

else

T' := T extended by the negation of I
return DPLL-SOLUTlON(the simplification of C assuming the negation of I, T')

end if

Figure 2.12: The DPLL-SOLUTION procedure for returning a solution to a SAT in¬
stance if one exists.

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH

DPLL-traverse-all-solutions

35

In some cases were are interested in properties of all solutions of a formula. DPLL-
traverse-all-solutions is a variant which "traverses" (i.e. visits) all solutions of
the input formula C. That is, for every solution Tsoi of C, DPLL-traverse-all-

solutions calls a sub-procedure traverse-* (C, Tcyi) on some solution cylinder Tcyi
which Tsoi extends. How traverse-* is used (i.e. what property of all solutions
we are interested in) may vary. When DPLL-traverse-all-solutions traverses a

solution cylinder it traverses all solutions which are extensions of that cylinder. DPLL-
traverse-all-solutions traverses each solution to C exactly once.

DPLL-traverse-all-solutions is given in Figure 2.13. Again there are two argu¬

ments, the second initialised as in DPLL-solution. It is similar to DPLL-solution

except for certain features. Firstly, no data is returned - the procedure is run simply
for the side-effects of Traverse-*, whatever these may be. Secondly, the pure deletion

step is not used. Suppose a literal I is a literal which appears in C and that the nega¬

tion of I does not. It does not follow that I must be true in all solution cylinders which

extend the current partial assignment: there may be other solution cylinders where I is

false i.e. where clauses containing I are made true by assigning other variables. If we

use the pure deletion step such solution cylinders would not be traversed. Thirdly, in

the split step we make a recursive call assuming I followed by a recursive call assuming

the negation of I, again to ensure that all solution cylinders are traversed.

Implementation details

When DPLL and DPLL-solution were required, we interfaced our system with a

highly optimised publicly available implementation Ntab (Crawford and Auton 1996).
We also used the MODOC system (van Gelder and Okushi 1999), kindly made available

by Allen van Gelder, for these purposes.

We implemented the DPLL-traverse-all-solutions variant in C using the non-

trie-based data structure suggested by Zhang & Stickel in Section 4 of their report

(Zhang and Stickel 1994). In our implementation we used the Jeroslow-Wang heuristic
for Select-split-literal-* (Jeroslow and Wang 1990; Hooker and Vinay 1995). This

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH 36

procedure DPLL-traverse-all-solutions(C, T)
if C is empty

Traverse-*(C, T)
return

end if
if C contains an empty clause

return

end if

;; Unit propagation
if C contains a unit clause I

T' := T extended by I
DPLL-TRAVERSE-ALL-SOLUTlONs(the simplification of C assuming I, T')

end if

;; Split
I := Select-split-literal-*(C)
T' := T extended by I
DPLL-traverse-all-solutions (the simplification of C assuming I, T')
T' := T extended by the negation of I
DPLL-traverse-all-solutions (the simplification of C assuming the

negation of Z, T')
return

Figure 2.13: The DPLL-TRAVERSE-all-SOLUTIONS procedure for traversing all solu¬
tions of a SAT instance.

CHAPTER 2. SATISFIABILITY AND LOCAL SEARCH 37

selects the literal from all those appearing in the formula based on the number and

lengths of the clauses in which it appears. Literals which appear in many short clauses
are preferred the most.

2.6 Summary

We have reviewed the satisfiability (SAT) problem and the phenomenon of hard ran¬

dom SAT instances which is the object of study in this thesis. Next we detailed the
local search procedures whose performance and behaviour on random SAT we intend

to explain. We also surveyed some previous research which has contributed to the un¬

derstanding of local search behaviour on random SAT. Finally, we reviewed the DPLL

procedure which is used in the following chapters to calculate certain properties of

random SAT instances which are related to the behaviour of local search.

Chapter 3

Local Search on Random-3-SAT

3.1 Introduction

In this and the following chapter we are concerned with explaining the behaviour of
local search on satisfiable instances in the threshold region of the Random-3-SAT

generation method. This chapter "poses the question" by elaborating the behaviour

to be explained, while Chapter 4 attempts to answer it, by proposing and testing a

causal hypothesis.

In our experiments we use just one local search algorithm: WSat/SKC. One objec¬
tion to studying a single algorithm from the local search class is that it may not be

representative: results obtained for the algorithm may not generalise to other members

of the class. While we accept this objection, there is evidence that under certain condi¬

tions, one local search algorithm is actually to a large extent representative of a wider

class. For example Hoos (1998) found a very high correlation between the computa¬

tional costs of solving random instances using pairs of different local search algorithms,

including WSat/SKC. That is, the computational cost of one random SAT instance
for a particular local search algorithm is a good predictor of the computational cost

for another algorithm. This also suggests that there is some algorithm-independent

property of these instances which results in high cost for this class of algorithm.

Ultimately, our goal is to explain how instance properties affect search cost. As will

be seen in this chapter, certain well-known properties can account for much of the cost

behaviour. However, we will also find that some elements of the cost behaviour cannot

38

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 39

be explained in terms of these existing properties. Ideally we would like to extend our

featural theory relating instance properties to cost so as to account for this unexplained
behaviour.

To lay the groundwork for extending our theory, we study the search behaviour of

WSat/SKC i.e. the nature of the assignments visited during search. We will find that

patterns in the search behaviour suggest that certain properties of the algorithm's
search space are responsible for the cost phenomena. Since the search space is induced

by the instance structure, in Chapter 4 we formulate a structural instance property

which we think induces the search space properties responsible for the unexplained

cost phenomena.

In this chapter there are two aims:

1. To obtain a finer description of the behaviour of WSat/SKC cost in the threshold

region, incorporating the roles of backbone size and the number of solutions.

2. To suggest features of the search space underlying the unexplained features of

WSat/SKC cost behaviour by studying the search behaviour of WSat/SKC in
the threshold region.

This chapter uses a number of computational and experimental methods with which

the reader may not be familiar: these are explained in Section 3.2. Aim 1 is covered

by Section 3.3 and Aim 2 in Section 3.4. Finally, Section 3.5 summarises the results of

this chapter and Section 3.6 puts forward our speculative interpretation of these results

which will motivate Chapter 4. Material from this chapter was used in an article in

the Journal of Artificial Intelligence Research (Singer et al. 2000a).

3.2 Experimental methods

In this section we cover various experimental methods which are important to this

and the following chapter. These are concerned with calculating various properties of

clausal formulas.

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT

3.2.1 Determining the number of solutions

40

If we allow for n variables, there are 2n possible truth assignments. For some formula
C it may be that all, some or none of these assignments are solutions (corresponding

respectively to the validity, satisfiability and unsatisfiability of C). The number of

assignments which are solutions is a property of SAT instances which has been quite
well studied in relation to the threshold phenomenon and it is one of the properties of
interest in this chapter.

We have implemented a variant of DPLL-TRAVERSE-ALL-SOLUTIONS which calculates

the number of solutions to a clausal formula. Recall that TRAVERSE-* is called repeat¬

edly with different solution cylinders such that each solution is an extension of exactly
one of these cylinders. If a solution cylinder Tcyi is undefined on nu of the variables of
V, then 2n" solutions are extensions of Tcyi- Our procedure simply sums the number
of solutions which extend each cylinder: the total is the number of solutions of the

formula C.

3.2.2 Determining backbone size

Recall from Chapter 2 that the backbone of C is the set of literals which are implicates

of C. We determine backbone size by establishing which of all the possible literals are

implicates. The procedure is based on three properties of implicate literals:

1. I is an implicate literal of C iff the simplification of C assuming the negation of

I is unsatisfiable.

2. if I is false under some solution of C then I is not an implicate literal of C.

3. if I is an implicate literal of C then C is equivalent to the simplification of C

assuming I.

These properties suggest the procedure DETERMINE-BACKBONE given in Figure 3.1.

Note that under our definition of the backbone (although not that of Monasson et

al), for unsatisfiable instances, the backbone consists of all possible literals, since any

literal is an implicate of a false formula.

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 41

In determine-backbone the variable Possible-backbone represents the set of literals
whose membership of the backbone has not been ruled out. Initially this contains all

possible literals. The first step of the algorithm is to try to find a solution cylinder Tcyi
for C. If this is successful, we can immediately rule out at least half the members of
Possible-backbone by examining whether each of them is false under some extension
of Tcyi (property 2 above). If C is unsatisfiable, we can return immediately the set of
all literals.

The second part of the algorithm tests each member of Possible-backbone for mem¬

bership of the backbone of C. In this part, Ctemp is an instance equivalent to C but
simplified by assuming known backbone literals. For each literal I in Possible-backbone,

we generate an instance Ctest by simplifying Ctemp assuming the negation of I. We
then attempt to find a solution cylinder for Ctest- If this is successful, we know that

I cannot be in the backbone (property 1 above). Also, this solution cylinder must be
a solution cylinder for C and so as in the first part we can use it to eliminate further
members of Possible-backbone. If Ctest is unsatisfiable, we know that I is a backbone

literal and so we can simplify Ctemp assuming I (property 3 above). This simplification
of Ctemp can make future DPLL-solution calls on it much less costly.

After this computation, the remaining members of Possible-backbone must constitute

the backbone of C.

As an extension to this technique, immediately after Possible-backbone is initialised,

we can make one or more calls to a local search algorithm on C. These local search

runs can potentially find several radically different solutions to C. The solutions can

then be used to eliminate many members of Possible-backbone again based on property

2. By eliminating possible members of the backbone, we can reduce the subsequent

number of calls to DPLL-solution. We found that this was particularly useful in the

underconstrained region where small-backbone instances dominate.

3.2.3 "Controlling" backbone size

As discussed in Section 2.4.4, Parkes (1997) found that the backbone size of satisfiable

threshold Random-3-SAT instances is correlated with the local search cost. In this

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 42

procedure DETERMINE-BACKBONE(C)
V := the set of variables of C
Possible-backbone := 0
for each variable x € V

Possible-backbone := Possible-backbone U {x, ->x}
end for

if DPLL-SOLUTIOn(C) returns a solution cylinder Tcyi
for each literal I € Possible-backbone

if there is some extension Tsoi of Tcyi such that I is false under Tsoi
Remove I from Possible-backbone

end if
end for

else

return Possible-backbone
end if

Ctemp ■= C
for each literal I 6 Possible-backbone

Ctest ~ the simplification of Ctemp assuming the negation of I
if DPLL-SOLUTlON(Ctest) returns a solution cylinder Tcyi

Remove I from Possible-backbone
for each literal I' € Possible-backbone

if there is some extension Tsoi of Tcyi such that V is false under Tsoi
Remove I' from Possible-backbone

end if
end for

else

Ctemp := the simplification of Ctemp assuming I
end if

end for
return Possible-backbone

Figure 3.1: The Determine-backbone procedure.

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 43

and the following chapter, our aim will often be to measure the correlation of some other
instance property (say factor F) with the cost. However, F itself may be correlated
with backbone size. Hence to estimate the variance in cost accounted for by the

variance in F rather than backbone size we need to eliminate the variance due to

backbone size. This is done simply by generating samples of instances such that all the
instances in each sample have the same backbone size. By using multiple samples and
a different backbone size in each sample, we can cover a range of backbone sizes. We
then measure the correlation between F and the cost within each sample. In this way

we can gauge the strength of relationship between local search cost and F conditional

on a certain value of backbone size. Importantly the correlation will not be due to F's

correlation with backbone size. We generate samples with a certain backbone size

by generating each instance from satisfiable threshold Random-3-SAT, determining

its backbone size and discarding it unless its backbone is of size nt,ack- We term this

generation process "controlling" backbone size at n\,ack .

3.2.4 Determining Hamming distance to nearest solution

In this section we introduce the concept of Hamming distance to nearest solution which

is used later in this chapter to analyse search behaviour. We also give practical details
of how this can be measured.

Definition Suppose 71 and 71 are two total truth assignments. The Hamming distance

between 71 and 71, denoted M(71,71), is the number of variables which 71 and

71 assign differently. □

Definition Let C be a SAT instance and let T be a total truth assignment to the

variables of C. The Hamming distance to the nearest solution is a function of T

and C denoted hdns(T,C). This is defined as the minimal hd(T,Tsoi) such that

Tsoi) is a solution to C. □

We implemented a variant of DPLL-traverse-all-solutions which, given an as¬

signment T and a satisfiable instance C will calculate hdns(T, C). Recall that Traverse-
* is called repeatedly with different solution cylinders such that each solution is an

extension of exactly one of these cylinders. This variant maintains an upper bound on

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 44

hdns(T, C), denoted MaxJidns. Initially, MaxJidns is set to n. Each time TRAVERSE-*
is called with a solution cylinder Tcyu we calculate the Hamming distance between T
and the nearest solution which extends Tcyi■ This may provide a new upper bound on

hdns(T,C), so MaxJidns is updated accordingly. After TRAVERSE-* is called for the
last time, MaxJidns equals hdns(T, C).

3.2.5 Details of instances analysed

We now describe the principal instances used in this and the following chapter. We
used satisfiable threshold random-3-SAT with set n to 100, which although it is quite

a small instance size, is not trivial yet allows instance properties which are costly to

calculate to be obtained for large numbers of instances.

We are primarily interested in the threshold region of m/n, where the cost peak occurs:

the region near the point at which 50% of the instances are satisfiable. We looked at

the region of m/n where the probability of satisfiability is between 90% and 20%. For
n = 100 this is quite a narrow region of m/n: from 4.03 to 4.49. At each value of m/n
we generated 1000 instances, controlling the backbone size at different values between
O.ln and 0.9n. These instances have been archived in the SATLIB repository run by

Holger Hoos and Thomas Stiitzle (www.informatik.tu-darmstadt.de/AI/SATLIB).

3.2.6 Measurement of cost for WSat/SKC

Following Hoos (1998), we ran the algorithm without a restart mechanism. As dis¬
cussed in Chapter 2, Section 2.4.2, for algorithms such as WSat/SKC which have a

sufficient alternative strategy for escaping local optima, random restarts do not signif¬

icantly improve the overall cost.

In this and the following chapter it will be important to obtain an accurate esti¬

mate of WSat/SKC cost for each instance, so we can correlate instance cost with
other instance properties. Following Hoos (1998), we use the median run length (mrl)
of 1000 WSat/SKC runs on an instance C as our descriptive statistic represent¬

ing WSat/SKC's search cost on C. In a sense this represents a "typical" run of

WSat/SKC on C. Due to the positively skewed, exponential run length distribution

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 45

(Hoos and Stutzle 1998), the mean is more sensitive to the long tail and overestimates
the length of a typical run.

We set noise to 0.55, which Hoos (Hoos 1998) found to be approximately optimal on

Random 3-SAT threshold instances with n — 100.

3.3 Cost behaviour in the threshold region

In this section we first demonstrate the cost peak for WSat/SKC in the threshold

region (Section 3.3.1). We confirm the existence of the cost peak using statistical
methods in Section 3.3.2. Previously, the cost peak in these instances has been demon¬

strated for other local search algorithms such as GSat (Clark et al. 1996). We then

present a more detailed account of the phenomenon, based on backbone size and the

number of solutions. Previous work studied has already studied backbone size in rela¬

tion to cost (Parkes 1997) and the number of solutions in relation to cost (Clark et al.

1996; Hoos and Stutzle 1998). In this section, by using our method of "controlling"
backbone size, we obtain a detailed picture of the cost behaviour in relation to both

backbone size and the number of solutions simultaneously. This allows us to identify
some new results: features of cost behaviour which are not accounted for by these two

instance properties. Section 3.3.3 explores the cost patterns revealed by controlling

backbone size. Section 3.3.4 incorporates the number of solutions into the account.

3.3.1 The cost peak for WSat/SKC

In Figure 3.2 we show the peak in WSat/SKC cost which was mentioned (although
not explicitly demonstrated) by Parkes (1997). At each level of m/n, we generated

5000 satisfiable instances, with m/n ranging from 4.03 to 4.7. We measured mrl for
each of these. Each line in the plot gives a different point in the distribution of mrl,

e.g. the 90th percentile is the mrl of the 500th most costly instance for WSat/SKC.

The peak is slightly above the 50% point (4.29) for the median but appears to shift
down for higher percentiles. A similar pattern was noticed by Hogg & Williams (Hogg
and Williams 1994) in local search cost on random graph colouring instances.

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 46

9000 -

8000

7000

6000 -

5000 -

4000

3000

2000

1000 -

Figure 3.2: The cost peak for WSat as m/n is varied.

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT

3.3.2 Confirmation of the existence of the cost peak

47

In our measurement of cost near the threshold, the differences between our sample
medians for adjacent values of m/n are fairly small. This raises doubt about the
existence of the cost peak: the apparent peak could merely be an artifact of sampling
errors.

The aim in this section is to compare medians for adjacent values of m/n. In each
case we would like to test the null hypothesis that the two medians are equal. We

used a computer-intensive bootstrap method to test this in each case. For details of

this method, please refer to Appendix A. Each test was based on 1000 pseudo-samples.

We were able to reject the null hypothesis that the medians were equal in all cases of

adjacent pairs except between m/n = 4.35 and m/n = 4.41.

For further clarification of the cost peak in this region of m/n, we used the same

bootstrapping method to test for a difference in medians between m/n = 4.29 and

m/n = 4.41 and between m/n = 4.35 and m/n = 4.49. These differences are in doubt
because of the failure to reject the null hypothesis between m/n = 4.35 and m/n =

4.41. Between these additional pairs of values of m/n, the null hypothesis that the
medians were equal was also rejected at the 95% confidence level.

The overall conclusion is to confirm the existence of a peak in median mrl. Assuming

that the true median in this region increases up to a certain value of m/n and then
decreases (rather than for example having a double peak), the data indicates that the

peak value of median mrl occurs between m/n = 4.29 and m/n = 4.49.

3.3.3 Cost for WSat/SKC when backbone size is controlled

Both Parkes (1997) and Yokoo (1997) suggest that the local search cost peak shown
for WSat/SKC in Figure 3.2 is a result of two competing factors. For example,
according to Yokoo, as m/n is increased the number of solutions per instance falls
and this causes the onset of high cost. However, the number of solutions continues

to fall in the overconstrained region but the cost decreases again. Yokoo concludes

that there must therefore be a second, competing factor whose effect outweighs that

of the number of solutions in the overconstrained region. The combined effect of the

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 48

two factors causes the peak in cost.

A pattern in WSat/SKC cost on satisfiable threshold Random-3-SAT identified by

Parkes (1997) is our starting point as it is clear evidence for this competing factor

interpretation. Parkes observed that for a given level of backbone size, the average

cost for WSat/SKC in the threshold region is highest below the 50% point and falls
as m/n is increased. By controlling backbone size, we confirm this result and also
extend it.

Figure 3.3 shows this pattern. Backbone size is controlled at O.ln, 0.5n and 0.9n. Each

point in the plot is the median mrl of a sample of 1000 instances and the length of the
bars is the interquartile range (the difference between the 25th and 75th percentiles).

This experiment confirms the pattern found by Parkes. By controlling backbone size,

we obtain large samples of instances of different backbone sizes at different values of

m/n. There is a disadvantage to this approach: as mentioned, due to the scarcity of

instances of certain backbone sizes at certain values of m/n, we had to limit n to 100
so as to produce large samples, whereas Parkes provided results for n = 200. However,

the large sample size allows us to extend Parkes' result in several ways:

• The fall in median mrl is an approximately exponential decay for a range of m/n
near the threshold and for a range of backbone sizes.

• The size of the interquartile range as shown in Figure 3.3 along with the log

scale of the cost axis indicates that the distribution of per-instance cost is also

positively skewed even once backbone size is controlled for. For example at the

point where m/n is 4.11 and backbone size is 0.9n the difference between the
75th percentile and the median is about 4000 whereas between the median and

the 25th percentile it is about half that.

• The spread of cost is large, particularly relative to the effect of the control pa¬

rameter. We do not think that a significant portion of this variance in the cost

among instances is due to sampling errors in our estimates of the cost for each

instance, since each of these is based on a large sample of runs.

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 49

104

103

4 4.05 4.1 4.15 4.2 4.25 4.3 4.35 4.4 4.45 4.5
m/n

Figure 3.3: The effect of varying m/n on cost while backbone size is controlled. The
length of the bars is the interquartile range (25th - 75th percentiles).

3.3.4 The effect of the number of solutions

In this section our aim is to integrate the number of solutions into our account of

the cost peak. We first review previous work relating the number of solutions in

Random-3-SAT to local search cost. We then study the relationship between number

of solutions and cost when backbone size is controlled. One key new result is that the

number of solutions is tightly correlated with cost for small-backbone instances but

less so for instances with larger backbones. Next we report on some evidence that for
small-backbone instances, the number of solutions is increasing in the overconstrained

region, which may (at least partially) account for the fall in cost in that region.

Previous work relating number of solutions to cost

In Random-3-SAT (as in other simple stochastic generation methods of SAT and
related problems) the expected number of solutions (averaged over both satisfiable
and unsatisfiable instances) is straightforward to calculate. For random-3-SAT with

-B- backbone size = 0.9 n

backbone size = 0.5 n

-e- backbone size = 0.1 n

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 50

m and n fixed, it is 2n(|)m, since there are 2" assignments in total and each of the m

clauses is satisfied by | of these.

Hence, as m/n is increased, the expected number of solutions to a formula generated

by RANDOM-3-SAT(n,m) decays exponentially. This provides an intuitive, informal
reason for the onset of high cost for both local and complete search as m/n is increased

through the underconstrained region: as the number of solutions per instance falls,

algorithms are less likely to visit one during search and so search cost is higher. This

explanation can be seen as a causal hypothesis which makes a testable prediction.

Suppose we fix m/n in the underconstrained region, where the search cost is rising. If
at this point there is variation in both search cost and the number of solutions then

the hypothesis predicts that variance in the number of solutions should account for a

measurable amount of variance in the search cost.

Clark et al. (1996) showed that there is variance in the number of solutions in random-

3-SAT and in the search cost (for the local search procedure GSat) and that these
two quantities are indeed correlated. In fact they found a fairly tight linear correlation

between log of the number of solutions and log of the cost. Hence the prediction given

the above hypothesis is supported by the experimental evidence.

Hoos (1998) also studied the relationship between these two quantities, using an im¬

proved methodology and a PAC variant algorithm GWSat. An even tighter correlation
was observed. One other observation by Hoos was that the correlation co-efficient be¬

tween the number of solutions and the cost decreased as m/n was increased. That is,

the number of solutions accounts for less of the variance in cost as we move into the

overconstrained region.

Number of solutions and cost with backbone size controlled

We now study the relationship between the number of solutions and the WSat/SKC
cost with backbone size controlled at different values, hence integrating the study of

the two instance properties. Figure 3.4 shows three log-log plots of the number of
solutions against cost where m/n is 4.29 and backbone size is O.Ira, 0.5ra and 0.9ra. A
linear least squares regression (Isr) fit is superimposed where appropriate. Table 3.1

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 51

m/n Backbone Intercept Gradient r Rank corr.

size of Isr fit of Isr fit

(3 s. f.) (3 s. f.) (3 s. f.) (3 s. f.)
4.03 O.ln 3.90 -0.197 -0.781 -0.773

0.5n 4.14 -0.212 -0.676 -0.670
0.9n 4.21 -0.137 -0.131 -0.137

4.11 O.ln 3.87 -0.199 -0.770 -0.767
0.5n 4.16 -0.230 -0.683 -0.686
0.9n 4.14 -0.134 -0.128 -0.129

4.18 O.ln 3.79 -0.191 -0.766 -0.776

0.5n 4.05 -0.218 -0.693 -0.697
0.9n 4.02 -0.115 -0.116 -0.122

4.23 O.ln 3.78 -0.193 -0.783 -0.787

0.5n 3.99 -0.214 -0.673 -0.687

0.9n 3.99 -0.127 -0.132 -0.133

4.29 O.ln 3.73 -0.191 -0.779 -0.784

0.5n 3.92 -0.208 -0.692 -0.694
0.9n 3.78 -0.0610 -0.0612 -0.0534

4.35 O.ln 3.70 -0.190 -0.801 -0.799

0.5n 3.89 -0.213 -0.687 -0.697

0.9n 3.82 -0.102 -0.104 -0.0903

4.41 O.ln 3.61 -0.178 -0.778 -0.763

0.5n 3.84 -0.209 -0.702 -0.709

0.9n 3.78 -0.112 -0.118 -0.105

4.49 O.ln 3.55 -0.175 -0.797 -0.793

0.5n 3.76 -0.204 -0.695 -0.699

0.9n 3.62 -0.0842 -0.0992 -0.0783

Table 3.1: Data on log-log correlations between number of solutions and WSat/SKC
cost.

gives summary data on the log-log scatter plot for different backbone sizes through
the transition : the gradient and intercept of Isr fits, the product-moment correlation
r and the rank correlation.

The number of solutions is strongly and negatively correlated with the cost for smaller

backbone sizes through the transition and the strength of the relationship is fairly
constant as m/n is varied. We speculate that the strong relationship on these instances
arises because finding an assignment which satisfies the backbone is straightforward
and the main difficulty is encountering a solution once the backbone has been satisfied.
The relative density of solutions in the region satisfying the backbone is then important.

For larger backbone sizes, the number of solutions is less relevant to the cost, indi-

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 52

Figure 3.4: Scatter plot of the number of solutions against cost with backbone size
controlled at O.ln (top) 0.5n (middle) and 0.9n (bottom) (m/n = 4.29).

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 53

cated by the much lower r values. That the number of solutions and the cost are not

strongly related for these instances is unsurprising intuitively, as the large backbone
size implies that the solutions lie in a compact cluster and local search's main difficulty

is finding this cluster (i.e. satisfying the backbone). Therefore we expect that the den¬

sity of solutions within the cluster is not so important. Hoos (1998) observed that the
correlation between number of solutions and local search cost becomes smaller in the

overconstrained region. This can now be explained simply by the fact that the large-
backbone instances dominate in this region and that for these instances, the number
of solutions is less relevant to the cost.

The number of solutions for small-backbone instances

For small-backbone instances (i.e. with backbone size controlled at O.ln), we found
some weak evidence that the number of solutions actually increases with m/n, at least
in the overconstrained region. However we should also point out that this apparent

effect could be a sampling error, given the large spread of values relative to the increase.

Figure 3.5 shows a plot of the median number of solutions of small-backbone (O.ln)
instances based on 1000 instances per point, with bars giving the interquartile range.

At first sight this apparent increase may seem to be a contradiction, since adding
clauses to a particular instance can only decrease the number of solutions. However,

there is no contradiction because controlled-backbone size instances at one level of m/n
are not simply the result of adding clauses to controlled-backbone size instances at a

smaller level of m/n. This possible increase in the number of solutions may help to

explain the fall in cost for small-backbone instances, but it is probably too weak an

effect to account for it in full. No significant change in the number of solutions for

larger-backbone instances was observed as m/n was varied: data for backbone sizes of
0.5n and 0.9n is presented in Figures 3.6 and 3.7 respectively.

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 54

...' 1 1 1 I 1 1 1 1

backbone size = 0.1 n

_____—) -i y """"

-i) (

4 4.05 4.1 4.15 4.2 4.25 4.3 4.35 4.4 4.45 4.5
m/n

Figure 3.5: Number of solutions with m/n varied and backbone size controlled at O.ln.
The length of the bars is the interquartile range (25th - 75th percentiles).

3.3.5 Summary

In this section we presented three sets of experimental results:

1. We demonstrated the peak in cost for WSat/SKC near the satisfiability thresh¬

old.

2. We analysed cost behaviour when backbone size was controlled. This revealed

two particularly interesting patterns:

• An exponential decay in cost against m/n for a wide range of different
backbone sizes.

• A considerable amount of variation in cost for a given backbone size and

value of m/n.

3. We analysed the relation between the number of solutions and the cost at different
values of m/n when backbone size is controlled. This showed that the variance
in cost for small-backbone instances could largely be accounted for by variance in

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 55

105

104

O

<5
JO
E
3
c

103

102
4 4.05 4.1 4.15 4.2 4.25 4.3 4.35 4.4 4.45 4.5

m/n

Figure 3.6: Number of solutions with m/n varied and backbone size controlled at 0.5n.
The length of the bars is the interquartile range (25th - 75th percentiles).

the number of solutions, whereas for large-backbone instances these two factors

were largely unrelated.

3.4 Search behaviour in the threshold region

Our method of controlling backbone size along with studying the number of solutions

has identified two elements of cost behaviour which lack a full explanation.

One aspect of the cost peak which remains to be explained is the decay in cost for

instances when backbone size is controlled, which was observed in Section 3.3. Par¬

ticularly interesting is the decay in cost for large-backbone instances. Since these
dominate in the overconstrained region, understanding this decay will allow us to un¬

derstand the overall decay in local search cost in the overconstrained region. Another

aspect of cost behaviour which is currently unexplained is the large amount of variation

in cost when m/n is fixed and backbone size is controlled at a large size e.g. 0.9n. As
we saw in Section 3.3.4 this variation is not accounted for by differences in the number

I L I I I I J

backbone size = 0.5 n

}
6r

) >—-—
— >

I

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 56

Figure 3.7: Number of solutions with m/n varied and backbone size controlled at 0.9n.
The length of the bars is the interquartile range (25th - 75th percentiles).

of solutions.

In order to identify the mechanisms underlying these two aspects of cost behaviour,

we made a detailed study of WSat/SKC's search behaviour which we report in this
section. The search behaviour comprises the nature of the assignments visited during

search.

Section 3.4.1 discusses the aspects of search behaviour which we will study. In Section

3.4.2 we give experimental results detailing how instance properties (m/n, backbone

size) relate to the search behaviour and in 3.4.3 how the search behaviour relates to

the cost.

3.4.1 Measurements of search behaviour:
The length and effectiveness of the hill-climbing phase

Our study of the search behaviour concentrates on the point during a run when the
behaviour changes from the hill-climbing phase to the plateau-like phase. In particular
we are interested in two aspects of search behaviour which are introduced in this

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 57

section.

• The length of the hill-climbing phase in flips.

• The effectiveness of the hill-climbing phase: how much progress towards solutions

is made in this phase.

Assume that a local search algorithm is PAC1. Let be the number of flips taken to

find the first assignment where at most b clauses are unsatisfied. Assuming the PAC

property, in any given run of unlimited length, fb is well-defined for b > 0. /o is then

equal to the run length.

A particular run of a PAC local search algorithm then consists of a series of assignments

7o, 71,..., 7/0, where 71 is the assignment visited after i flips have been made. Initial
experiments using WSat/SKC on Random-3-SAT threshold instances with n = 100
revealed that an assignment satisfying all but a few clauses is quickly found and that

during the remainder of the search, few clauses (1-10) are unsatisfied. As discussed
in Chapter 2, Section 2.4.2 there is first a hill-climbing phase, where the number of
unsatisfied clauses drops rapidly to a very low level, followed by a long plateau-like

phase in which the number of unsatisfied clauses is low but constantly changing. In

our experiments we used /5 as an arbitrary indicator of the length of the hill-climbing

phase. Unlike for GSat, for WSat/SKC there is no well-defined end point for the

hill-climbing phase, since short bursts of hill-climbing continue to occur for the rest of
the search. We think that using fb as the indicator with any value of b between 1 and

10 would give similar results.

We examined two aspects of the search behaviour. The first is simply fe, the length of

the hill-climbing phase. The second aspect is based on the Hamming distance between
the current assignment and the nearest solution (i.e. hdns(T,C) defined in Section

3.2.4). In particular, we were interested in the value of this quantity at the end of
the bill-climbing phase i.e. hdns(Tf5, C). This represents the ineffectiveness of the hill-
climbing phase in Hamming-distance terms: how little progress was made towards a

solution by hill-climbing.
1 Recall from Section 2.3.8 that although it is unknown analytically whether WSat/SKC is PAC,

experiments suggest this may be so.

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 58

In the following two sections, data is based on Random-3-SAT instances with n = 100

and backbone size controlled at various values between O.ln and 0.9ra. As explained

in Section 3.4.1 hdns(Tfs, C) is the Hamming distance between the first assignment at
which no more than 5 clauses are unsatisfied and the nearest solution.

We looked at summary statistics for /g and hdns(Tf5, C) over a number of runs on

each instance so as to ascertain the general type of search behaviour on the instance.
For each instance we made 1000 runs of WSat/SKC. The hill-climbing length (hcl) is
defined as the median value for fe over the 1000 runs. The hill-climbing ineffectiveness

(hci) is defined as the mean value for hdns(Tfs, C) based on 1000 runs of WSat/SKC.

We studied the typical search behaviour of instances by plotting the median of hcl and
hci in each collection of instances. Hence, in Figure 3.8 each point is the median hcl

of 1000 instances. In Figure 3.9 each point is the median hci of 1000 instances.

3.4.2 The relation between instance properties and search behaviour

This section relates the instance properties m/n and backbone size to the two search
behaviour metrics hcl and hci.

Figure 3.8 shows the effect of varying m/n on hcl when the backbone size is controlled.
The values for hcl (based on /s) are low compared to those for the cost (/o) in Figure

3.3. Also although the cost to find a solution varies considerably from one backbone size
to another, a quasi-solution (7/s) is found almost as quickly on large-backbone as on

small-backbone instances. However, there are some notable aspects of the relationships

between backbone size and m/n and hcl. As might be expected, on the larger backbone

instances, for which overall cost is generally higher, WSat/SKC takes slightly longer
to find a quasi-solution. The relationship between m/n and hcl is unexpected. If
backbone size is controlled at 0.5n or more, as m/n is increased WSat/SKC takes

slightly longer to find a quasi-solution, although simultaneously cost is decreasing as

we have seen in Figure 3.3.

Figure 3.9 shows the relationship between varying m/n and hci when the backbone
size is controlled. In this plot, the bars give the interquartile range. The spread of
values for hci at each point is also small relative to the effect of varying m/n. Again the

backbone size = 0.9 n
backbone size = 0.5 n
backbone size = 0.1 n

-a— backbone size = 0.9 n
-+— backbone size = 0.7 n
-*— backbone size = 0.5 n
-v— backbone size = 0.3 n
-e— backbone size = 0.1 n

CHAPTER 3. LOCAL SEARCH ON RANDOM-3-SAT 59

Figure 3.8: The relationship between m/n and hcl while backbone size is controlled.

■g 30

Figure 3.9: The relationship between m/n and hci when backbone size is controlled.
The length of the bars is the interquartile range (25th - 75th percentiles).

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 60

positive effect of backbone size on hci is as one might expect. Since in large-backbone

instances, solutions are grouped in a less extensive region we expect that assignments
visited during search will be more Hamming-distant from solutions.

With backbone size controlled, as m/n is increased through the satisfiability thresh¬

old, median hci decreases approximately linearly for a wide range of backbone values.

Hence, although a quasi-solution (7/5) is usually quickly found, on the instances of
lower m/n this quasi-solution is considerably Hamming-distant from the nearest solu¬
tion. As m/n is increased, while the backbone size is controlled, this effect is gradually

lessened, so that in the overconstrained region the hill-climbing phase is more effective:

although it is slightly longer (for large-backbone instances), it finds an assignment
which is closer to the nearest solution.

3.4.3 The relation between search behaviour and cost

In this section, we analyse the relationship between the search behaviour metrics hci

and hci and the cost (i.e. mrl) when backbone size is controlled and m/n is fixed. We
found that in this case variance in hci accounts for most of the cost variance. In other

words, differences in the cost of instances can be accounted for by differences in the

effectiveness of the hill-climbing phase. Figure 3.10 shows a semi-log scatter plot of hci

against cost. In this plot the sample contained 1000 instances with m/n set to 4.29

and backbone size controlled at O.ln, 0.5n and 0.9n. A linear Isr fit is superimposed

in each case. The plot suggests hci is linearly related to log of cost.

We found a similar pattern at other values of m/n and with backbone size controlled

at different values. Table 3.2 gives the intercept and gradient for Isr fits and r values

with backbone size controlled at O.ln, 0.5n and 0.9n and m/n varied. Variance in hci
accounts for most of the variance in cost at three widely different backbone sizes and

is consistent through the threshold. The relationship is strongest for small-backbone
instances but the reasons for this are unclear. Possibly, since the search is shorter

on the small-backbone instances, success follows more quickly after and so hci is a

better indicator of the likelihood of finding a solution. In large-backbone instances,

which have a much longer plateau-like phase, more can happen between the end of the

hill-climbing phase and the end of the search. This is a possible reason for the weaker

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 61

Figure 3.10: The correlation between hci and cost when backbone size is controlled at
O.ln (top), 0.5n (middle) and 0.9n (bottom) (m/n = 4.29).

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 62

relationship between hci and cost here. We also found a negative correlation between
hci and cost when both m/n and the backbone size were fixed, although the r values
of this were much lower, so the length of the hill-climbing phase appears to be a less

important factor here.

Figure 3.9 showed that while backbone size is controlled hci falls linearly as m/n is
increased. Can this fall account for the change in cost as m/n is varied? The gradient
of the fall is about —14 i.e. when m/n increases by e, the change in hci is about —14 x e.

Table 3.2 shows that the linear Isr fit which estimates the relationship between hci and

log cost has gradient 0.08. This means that if there are two instances A and B of the

same backbone size and m/n value, and the hci of instance A is larger than the hci
of instance B by e, then the predicted log cost of instance A is 0.08 x e larger than
the predicted log cost of instance B. Suppose we assume that this linear relationship

between hci and log cost continues to hold as m/n is varied (in fact the gradient of the

relationship decreases slightly). Let us also assume that increasing m/n is not affecting
the cost by a means other than by changing hci. Then, combining the gradient of the

change in hci as m/n varies with the gradient of the relationship between hci and log
cost we would expect the line describing log cost as m/n is varied to have gradient
— 14 x 0.08 = —1.12. Compare this with the observed gradients of the change in log

cost (in Figure 3.3) of —0.99, —0.76 and —0.55 (backbone sizes 0.9n, 0.5n and O.ln

respectively).

So for backbone size 0.9n at least, the observed change in cost as m/n varies is not

unlike what one would expect if this change were wholly due to the change in hill-

climbing ineffectiveness (as measured by hci) combined with the linear correlation

between hci and cost.

3.5 Summary

In Section 3.3 we saw that if backbone size is controlled, cost decays exponentially

in the threshold region as m/n is increased. Also we noted a large variation in cost

among instances with the same backbone size and m/n setting. These are the two

cost phenomena of interest. We observed that differences in the number of solutions

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 63

m/n Backbone size Intercept Gradient r

of Isr fit of Isr fit

(3 s. f.) (3 s. f.) (3 s. f.)
4.03 O.Ira 1.05 0.0844 0.945

0.5ra 0.693 0.0925 0.877
0.9ra 0.707 0.0895 0.730

4.11 O.Ira 1.02 0.0868 0.951

0.5ra 0.632 0.0955 0.885
0.9ra 0.816 0.0867 0.720

4.18 O.Ira 1.09 0.0839 0.956

0.5ra 0.809 0.0895 0.880

0.9ra 0.811 0.0864 0.720

4.23 O.Ira 1.13 0.0821 0.958
0.5ra 0.834 0.0887 0.897

0.9ra 0.748 0.0878 0.769

4.29 O.Ira 1.13 0.0826 0.955

0.5ra 1.00 0.0828 0.894
0.9ra 0.838 0.0856 0.758

4.35 O.Ira 1.17 0.0811 0.963
0.5ra 0.984 0.0842 0.900

0.9ra 0.984 0.0808 0.773

4.41 O.Ira 1.20 0.0795 0.957
0.5ra 1.03 0.0830 0.914
0.9ra 1.11 0.0768 0.782

4.49 O.Ira 1.25 0.0777 0.967
0.5ra 1.15 0.0787 0.920
0.9ra 1.19 0.0742 0.809

Table 3.2: Data on correlations between hci and logio mrl with backbone size con¬
trolled.

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 64

account for most of the variation when the backbone size is small, but little if any of
the variation for large-backbone instances.

In Section 3.4 we looked at WSat/SKC's search behaviour so as to suggest a more

immediate cause of the two phenomena of cost behaviour. We found that when back¬

bone size is controlled, for more underconstrained instances, the hill-climbing phase
is short yet ineffective, in that it results in an assignment which is Hamming-distant

from the nearest solution. As m/n is increased, the hill-climbing phase becomes more

effective and (for large-backbone instances) longer. We also found that with backbone
size controlled and m/n fixed, the Hamming distance to the nearest solution at the
end of the hill-climbing phase is strongly and linearly correlated with log of cost, the
correlation being particularly tight for small-backbone instances. The arithmetic of
the relationships suggests that this aspect of search behaviour (the ineffectiveness of
the hill-climbing phase) could account for both phenomena of cost behaviour.

3.6 Discussion

We interpret these search behaviour patterns by putting forward some speculative

hypotheses about the search space structure: the way solutions and quasi-solutions are

laid out in the space of assignments.

Our interpretation of the search behaviour pattern is illustrated by a conceptual dia¬

gram given in Figure 3.11. Recall that quasi-solutions are those total truth assignments
at which a small number of clauses (in this case, between 1 and about 10) are unsat¬

isfied. We propose that differences in search cost for WSat/SKC between instances
of the same large backbone size is dependent on the positions occupied by the quasi-

solutions in the search space.

The boxes A and B are the sets of assignments of two instances. Within each box,

Euclidean distance represents Hamming distance. This kind of diagram is unrealistic in

many ways and is primarily useful as an illustration of intuitions. The darkly shaded

regions are the solutions. Note that A and B have the same set of solutions and
therefore the same backbone size. A and B are large-backbone instances, indicated by

the fact that the solutions are concentrated in one small region (in reality this region

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT

|^| Initial assignment

i j Assignments where many clauses are unsatisfied

[j Quasi-solutions

■ Solutions
► Hill-climbing phase

Plateau search phase

Figure 3.11: Conceptual interpretation of results from Chapter 3.

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 66

would be an exponentially small fraction of the assignment set).

The quasi-solution region is the light shaded area. We think that generally, in sat-

isfiable Random-3-SAT instances, the quasi-solutions form regions such that from a

quasi-solution, one can flip variables and move to a solution, traversing only other quasi-

solutions. The evidence for this is simply that WSat/SKC runs are apparently always
successful (it appears PAC) but also they visit the assignments where more clauses are

unsatisfied very infrequently. Prank, Cheeseman &; Stutz (Frank et al. 1997) also men¬

tioned in their analysis of GSat search spaces that in Random-3-SAT, local minima

where few clauses were unsatisfied can usually be escaped from by unsatisfying just

one clause. However, it is possible that there are quasi-solution regions not connected

to other quasi-solution regions which are not often visited by WSat/SKC. At least
the evidence suggests that the quasi-solutions visited by WSat/SKC are connected
in this way.

We hypothesised that in instances of higher cost this connected quasi-solution area

extends to parts of the search space which are Hamming-distant from solutions. This
situation is represented by instance A (the lightly shaded areas extend some distance
from the solutions). In instances with the same backbone size but lower cost we

hypothesised that the quasi-solution area is less extensive and confined to regions nearer

the solutions (as represented in instance B). We think it is reasonable to suggest that in
the early part of the search WSat/SKC hill-climbs to one of the quasi-solutions nearest

in Hamming distance terms to the initial assignment2. We think that in instances where

the quasi-solution area is extensive, a quasi-solution nearby the initial assignment is

likely to be available. This means the early quasi-solution is found without moving

towards the solutions, resulting in ineffective hill-climbing (a high hci).

In the conceptual diagram a "typical" run of a local search algorithm on each instance

is also shown. In each case the search starts at an initial assignment, the crossed

square. In the conceptual diagram, the initial assignment is the same in each instance.

Search then proceeds through the space of assignments via the hill climbing phase

(the dashed line). Note that we assume that during hill-climbing, search moves fairly
2 This assumption could be tested experimentally but this was not done as part of the thesis work.

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 67

directly towards a nearby quasi-solution area. Hence the location of the current assign¬

ment at the end of this phase depends on the location of the nearest quasi-solution.

Once the quasi-solution region is entered the run is in the plateau phase (the solid

line). Note that search is then confined to the quasi-solution area and is less directed

because of the plateau-like topology. The run ends when a solution is found. Again

the realism of these diagrams is limited: for example the length of the hill-climbing

phase is usually a fraction of that of the plateau-like phase.

According to this interpretation, if the quasi-solution area is extensive as in instance A,

a hill-climbing phase from a random point to a quasi-solution is short, but will be less

effective in moving towards solutions, as is shown by the "typical" run on instance A.

The subsequent search of the quasi-solution area will then be long possibly because of
this initial large distance from the solutions or the extensiveness of the quasi-solution

area in which the solutions lie, or a combination of these factors.

If the quasi-solution area is less extensive as in instance B, the hill-climbing phase

will be longer, but the resulting quasi-solution will be closer to a solution and so the

subsequent plateau search will be less costly.

As mentioned, we think that the extensiveness of the quasi-solution area affects the

effectiveness of the hill-climbing phase. If m/n is varied and backbone size is controlled
at a large value, hill-climbing becomes more effective. We think this is because the

quasi-solution area becomes less extensive.

Why do we think that the quasi-solution area becomes less extensive? Consider a

Random-3-SAT instance with a large backbone. Suppose we add clauses to the

instance at random, but only add each clause if it does not affect the backbone and

does not render the instance unsatisfiable. This is approximately the situation when

we increase m/n whilst controlling the backbone size.

Each of the 2™ assignments has a (possibly empty) set of unsatisfied clauses. The new

clause is violated by 2™-3 assignments - all those which set its three literals false.

The new clause is more likely to contain backbone literals than non-backbone variables

or negations of backbone literals. It cannot contain three negations of backbone literals
as this would cause unsatisfiability. Neither can it contain two negations of backbone

CHAPTER 3. LOCAL SEARCH ON RAND0M-3-SAT 68

literals and a non-backbone variable as this would increase the size of the backbone.

On the other hand, if a new clause contains one or more backbone literals, it cannot

possibly bring unsatisfiability or an increase in backbone size.

Given that the clause is likely to contain backbone literals, it is more likely to be

violated by assignments which violate backbone literals than assignments which do
not. Assignments which are Hamming-distant from the nearest solutions violate many

backbone literals. These assigments are therefore more likely than assignments which
are Hamming-near to the nearest solution to violate the new clause.

The more violated clauses a quasi-solution accumulates as clauses are added, the less it

can be considered a quasi-solution. Hence those quasi-solutions which are Hamming-

distant from the nearest solution are more likely to lose their quasi-solution status

as clauses are added than those which are Hamming-near the nearest solution. This
amounts to a decrease in the extensiveness of the quasi-solution area.

The question which remains is that of what factor determines the extensiveness of the

quasi-solution area and hence the effectiveness of hill-climbing and in turn the overall

cost for WSat/SKC. In Chapter 4 we investigate this unknown factor.

Chapter 4

The Backbone Fragility
Hypothesis

4.1 Introduction

In this chapter we propose that there is a structural property of instances which in¬

duces a search space structure which in turn causes the search behaviour and thus the

unexplained cost pattern which was observed in Chapter 3. Backbone fragility is the

structural property. We propose the following hypothesis, which is the core idea of the

thesis:

Differences in cost amongst certain instances can be accounted for by dif¬

ferences in backbone fragility.

In Section 4.2 we discuss the notion of backbone fragility and relate it to our interpre¬

tation of the search behaviour results from Section 3.6. We also discuss how backbone

fragility may be measured and present some backbone fragility data on the instances

used in Chapter 3.

A hypothesis is only of scientific merit if it makes correct predictions. Our hypothesis

makes three correct predictions for which we provide experimental evidence. In Section

4.3 we show that the degree to which an instance is backbone-fragile accounts for some

of the variance in cost when m/n is fixed and the backbone size is controlled. Following
on from this, in Section 4.4 we use multiple regression to determine how much cost

variance can be accounted for using combinations of instance properties. In Section

69

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 70

4.5 we generate instances which are altered so as to be more backbone-fragile. Our

hypothesis correctly predicts that when random-3-SAT instances are altered in this

way, the cost becomes considerably higher. In Section 4.6 we show that the hypothesis

makes a correct prediction relating to the search behaviour. In Section 4.7 we relate

this study to previous research. Finally, Section 4.8 summarises this chapter. Material

from this chapter was used in an article in the Journal of Artificial Intelligence Research

(Singer et al. 2000a).

4.2 What is backbone fragility?

In this section we define backbone fragility and motivate the definition. We also intro¬

duce a metric for calculating backbone fragility and apply this metric to the instances

studied in Chapter 3.

Although backbone fragility can be measured in different ways, the following qualitative

definition should give the general idea of what backbone fragility is.

Definition A SAT instance C with backbone size bsize(C) is backbone-fragile iff the
removal of a small proportion of the clauses of C at random on average results

in an instance C' such that bsize(C') is much smaller than bsize(C). □

Conversely, a SAT instance is termed backbone-robust iff the removal of a small number

clauses at random on average has little effect on the backbone size.

4.2.1 Motivation

Following on from the speculative discussion in Section 3.6 we now motivate our choice

to study backbone fragility as a factor in the etiology of WSat/SKC search cost.

Recall from Chapter 3 the evidence that search cost was largely dependent on the

effectiveness of the hill-climbing phase: how close it moved the current assignment

towards solutions. The hill-climbing phase is ineffective when early on, the search

visits quasi-solutions which are Hamming distant from solutions. In Section 3.6 we

speculated that the attraction of these misleading quasi-solutions may be dependent

on the extensiveness of the quasi-solution area. In this section we motivate backbone

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 71

fragility by explaining how it is related to the likelihood of the hill-climbing phase

being ineffective and how it is related to the extensiveness of the quasi-solution area.

Suppose B is a small sub-bag of the clauses of a satisfiable SAT instance C. Let Qb be

the set of all assignments Tb such that Unsatisfied-CLAUSES(7b, C) is a non-empty

subset of B. So Qb is the set of all the non-solution quasi-solutions where at most

the clauses B are unsatisfied. What structural property of C would cause the quasi-

solutions Qb to be attractive to WSat/SKC? We already know that if the backbone
of a RANDOM-3-SAT instance is small, its solutions are found with little search1. The

solutions to C — B (C — B denotes C with one copy of each member of B removed)
are either solutions to C or members of Qb and not both. In the early part of the

search at least, it is reasonable to assume that the assignments which are attractive

to WSat/SKC in the search space induced by the instance C are approximately the
same assignments which are attractive in the search space induced by C — B, given

that B is small. In this case, the members of Qb (which are solutions of C — B but not

of C) will be attractive in the search space of C when the backbone of C — B is small,

particularly if C's backbone is large, because in this case the finding of a solution to

C — B will happen much earlier in a search on the search space of C than the finding

of a solution to C.

Furthermore for any assignment Tb & Qb, the number of variables which do not appear

in the backbone of C — B is an upper bound on hdns(tb,C). This is because tb is

a solution to C — B and therefore satisfies all the literals in the backbone of C - B.

Since these literals are also in the backbone of C, hdns(tb, C) can only be as large as

the number of variables not in the backbone of C — B.

Therefore a large difference in the backbone size after removing the clauses B allows

hdns(TB,C) to be high. To summarise, if the removal of a certain small sub-bag of
clauses causes the backbone size to be greatly reduced, we can expect that quasi-

solutions where only these clauses are unsatisfied will be attractive to WSat/SKC
and possibly Hamming-distant from the nearest solution. If the removal of the clauses
does not affect the backbone size much, the associated quasi-solutions must be near

solutions (at least in large-backbone instances).
1 A result due to Parkes (1997) - see Section 2.4.4.

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 72

We are interested in quasi-solutions in general rather than those in any particular

Qb■ Suppose a large-backbone instance is backbone-fragile. In other words, removing
a small set of clauses at random on average reduces the backbone considerably. By
extension of the above argument we expect that in general quasi-solutions will be
attractive and that they may extend to regions Hamming-distant from the nearest

solution. If a large-backbone instance is backbone-robust on the other hand, quasi-

solutions must be more concentrated in regions which are less Hamming-distant from
solutions.

Recall from Section 3.5 that differences in the layout of the quasi-solution area may

underlie the differences in cost between large-backbone instances of the same backbone

size. We proposed that if the quasi-solution area extended to regions which were

Hamming-distant from the solutions, the cost would be higher than if the quasi-solution

area was restricted to regions near the solutions. Backbone fragility is related to this

idea, since it (partly) corresponds to how far the quasi-solution area extends to regions
which are Hamming-distant from solutions.

However the correspondence between backbone fragility and the extensiveness of the

quasi-solution area is not exact because smallness of backbone does not exactly corre¬

spond to how widely-distributed (in terms of Hamming distance) the solutions are. An

appropriate measure of how widely-distributed solutions are is the average Hamming

distance between solutions (ahdbs). ahdbs{C) for an instance C is defined as the aver¬

age of hd{TSolii Tsm) over pairs ('Tsoli, Tsoi2) of distinct solutions to C. This would
be one direct measure of how widely-distributed solutions are. However, no research

to date has measured it, presumably because of the prohibitive cost. The question is

then how backbone size is related to this factor.

On the one hand, the number of variables not appearing in the backbone of C is an

upper bound on ahdbs{C). On the other hand, in extreme cases the backbone size is
not necessarily correlated with ahdbs(C). For example, suppose in some SAT instance

the solutions are precisely those assignments where at most one variable is set true2.
Such an instance would have no backbone but the Hamming distance between any

2 For example, a SAT instance with n variables x\,...,xn with a clause -iXi V -ixj for every i ^ j,
i,j € {!,...,n}.

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 73

pair of distinct solutions would be no more than 2. Hence, solutions to this instance

would be narrowly-distributed in terms of Hamming distance. Similarly, backbone

fragility does not correspond exactly to how widely-distributed the quasi-solutions are,

compared to the solutions. Despite this lack of a guarantee of correspondence, since the

counterexample is highly structured we conjecture that on Random-3-SAT instances,

backbone size does indeed approximately represent how widely-distributed solutions

are. This conjecture could at some point be tested but this would again run into

problems of feasibility due to the difficulty of measuring ahdbs.

A factor which corresponds more closely to how widely-distributed the quasi-solutions

are compared to the solutions may be superior to backbone fragility in explaining

differences in cost. The correct predictions shown in this chapter would then be a

result of backbone fragility's correlation with this superior factor. However, we think

that even if this proves to be the case the relative simplicity of backbone fragility and

the relative tractability of measuring it will make it useful in classifying different kinds

of SAT instance.

The idea that backbone fragility is an important factor in explaining the search be¬

haviour pattern is appealing for other reasons. For each implicate literal3 I of C, there

must be a sub-bag of clauses in C whose conjunction implies I. For any given backbone

size, as clauses are added, for any given implicate literal I we expect that the extra

clauses allow alternative combinations of clauses which imply I. Hence after increasing

m/n whilst controlling the backbone size, the random removal of clauses will have less
effect on the backbone since the fact that a literal is implicate depends less on the

presence of particular sub-bags. As clauses are added, we expect that instances will

become less backbone-fragile i.e. more backbone-robust. Given the hypothetical rela¬

tionship between backbone fragility and the search behaviour, this would then explain

qualitatively why the search behaviour changes as it does when m/n is varied and
backbone size is controlled.

3 i.e. member of the backbone - see Section 2.4.4.

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 74

procedure ROBUSTNESS-TRIAL(C)
Current-instance := C
Clauses-removed, 0
Backbonesize := backbone size of C
Current-backbonesize := Backbonesize
while Current-backbonesize > Backbone size/2

Current-instance := Current-instance with one clause removed at random
Clauses-removed Clauses-removed + 1
Current-backbonesize := backbone size of Current-instance

end while

return Clauses-removed

Figure 4.1: The ROBUSTNESS-TRIAL procedure.

4.2.2 Measuring backbone robustness using robustness trials

We now define a measure of the backbone robustness of an instance (the opposite
to backbone fragility) which will allow us to test predictions of the hypothesis. This
measure of backbone robustness, which will be used throughout the rest of this chapter,
is based on robustness trials. These are runs of a stochastic procedure shown in Figure

4.1 which takes a SAT instance and returns an integer.

One robustness trial proceeds as follows. We take the instance C and delete clauses

at random, halting the process when the backbone size is reduced by at least half. At
this point we return as the result the number of deleted clauses.

Definition The trial-based backbone robustness of an instance C (denoted tbbr) is

the mean result of all possible runs of ROBUSTNESS-TRIAL(C), i.e. the average

number of random deletions of clauses which must be made so as to reduce the

backbone size by at least half. □

It is infeasible to compute the results of all possible robustness trials since there are so

many different sequences of clauses which can be removed (ml). Therefore, when mea¬

suring tbbr we estimate it by computing the average of a random sample of robustness
trials on C. We used at least 100 robustness trials on each instance and in order to

ensure a reasonably accurate estimate, we continued to sample more robustness trials
until the standard error was less than 0.05 x the sample mean. In this case the con-

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 75

fidence interval for our estimate of the population mean from the sample mean equals

the sample mean +/— about 10% of the sample mean, under the assumption that the

sample mean is normally distributed. These conditions were used to estimate tbbr in

all experiments reported in this chapter.

With n = 100, using satisfiable instances from near the satisfiability threshold whose

backbone size was controlled at 50, usually less than 250 robustness trials were required

for the estimate to converge in this way. Even then an estimate of tbbr was costly to

compute.

Observe that although tbbr is an appropriate measure of backbone robustness, there are

different possible metrics for backbone fragility/robustness. We found that tbbr gave

the clearest results for this chapter's purposes without an unnecessarily complicated

definition. Other metrics, such as the reduction in backbone size when a random fixed

fraction of clauses is removed, may be more suitable in other contexts.

Since tbbr is defined in terms of the size of the backbone, it is most useful when

comparing instances of equal backbone size and may be less useful when comparing

instances of different backbone sizes.

4.2.3 The change in backbone robustness as m/n is varied

As discussed in Section 4.2.1 we expect that if backbone size is controlled, backbone

robustness increases as m/n is increased.

We found that increasing m/n while controlling backbone size increased the median
estimated tbbr of instances, as expected. Figure 4.2 shows the effect on the median

estimated tbbr of increasing m/n through the tisfiability threshold while n = 100 and
backbone size is controlled. Each point is the median estimated tbbr of 1000 instances.

We note that median estimated tbbr is higher for instances with larger backbones.

We think that this is because on the large-backbone instances, the backbone must be

reduced by a larger number of literals in each robustness trial and that this requires
more clauses to be removed. Another effect is that median estimated tbbr increases with

m/n at a higher rate for large-backbone instances than for small backbone instances.
The reasons for this are unclear.

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 76

backbone size = 0.1 n

Figure 4.2: Median estimated tbbr through the satisfiability transition, with backbone
size controlled at O.ln (top) 0.5n (middle) and 0.9n (bottom). The bars show the
interquartile range (25th - 75th percentiles) to give an indication of the spread of
values.

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS

4.3 A correct prediction about cost variance

77

We now test predictions of the hypothesis detailed in Sections 4.1 and 4.2. The first

prediction, which we test in this section, is that backbone fragility should account for
some of the variance in WSat/SKC cost under certain circumstances.

One may assert that the fall in cost for local search procedures when m/n is, increased

beyond the threshold, as observed for WSat/SKC in Chapter 3, is due to the change
in some other property of instances (say factor F), as for example Yokoo (1997) has.
Such an assertion makes an important and testable prediction: that any variation in F

when m/n is fixed accounts for some of the variation in cost. This prediction follows
because the initial assertion proposes that F causally affects the cost. Therefore if

there is any variation in F at some fixed value of m/n, a correlated variation in cost

must be, in principle, observable.

However there may be other factors whose influence on the cost is so great as to obscure

the effect of F when m/n is fixed. To best reveal the effect of F, if there is any, the
effects of some other factors may have to be controlled for.

Backbone fragility/robustness is our proposed factor F. Our hypothesis predicts that
this factor will be correlated with cost for large backbone instances if m/n is fixed.
The backbone size is another factor which strongly influences the cost. Our result in

this section is that when m/n is fixed and the effects of backbone size are controlled for

(by controlling backbone size), the correlation between backbone fragility/robustness
and cost can be seen quite clearly for large-backbone instances.

Section 4.3.1 presents the data and Sections 4.3.2 and 4.3.3 address the statistical

significance of this data.

4.3.1 Correlation data

Figure 4.3 shows scatter plots of the log cost against estimated tbbr for Random-3-

SAT instances with n = 100, m/n 4.29 and backbone size controlled at O.ln, 0.5n and
0.9n. A linear for fit is superimposed where appropriate. Table 4.1 gives the intercept,

gradient and r values for for fits to corresponding correlation data with backbone size

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 78

controlled at the same three values and with m/n varied through the threshold.

m/n = 4.29, backbone size = 0.1 n

estimated tbbr

m/n = 4.29, backbone size = 0.5 n

estimated tbbr

m/n = 4.29, backbone size = 0.9 n

105

~io4
in

10"
0 10 20 30 40

estimated tbbr

Figure 4.3: Scatter plot of estimated tbbr versus cost with n — 100, m/n — 4.29 and
backbone size controlled at O.ln, 0.5n and 0.9n.

The r values suggest an effect of tbbr on cost for large backbone instances. For smaller
backbone sizes, we speculate that finding the backbone is less of an issue for local search

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 79

m/n bsize Intercept Gradient r r-95% r+95% Rank corr.

of Isr fit of Isr fit coefficient

(3 s. f.) (3 s. f.) cnCO (3 S. f.) (3 S. f.) (3 s. f.)
4.03 O.ln 3.03 -0.0204 -0.193 -0.251 -0.140 -0.193

0.5n 3.71 -0.0370 -0.373 -0.419 -0.324 -0.371

0.9n 4.28 -0.0419 -0.471 -0.517 -0.425 -0.470
4.11 O.ln 2.96 -0.0134 -0.149 -0.209 -0.0873 -0.140

0.5n 3.67 -0.0351 -0.390 -0.436 -0.342 -0.377
0.9n 4.23 -0.0370 -0.454 -0.500 -0.407 -0.466

4.18 O.ln 2.94 -0.0146 -0.175 -0.236 -0.115 -0.166
0.5n 3.61 -0.0302 -0.384 -0.427 -0.339 -0.374

0.9n 4.18 -0.0338 -0.531 -0.569 -0.492 -0.547

4.23 O.ln 2.93 -0.0155 -0.211 -0.266 -0.155 -0.212

0.5n 3.51 -0.0239 -0.364 -0.411 -0.315 -0.344
0.9n 4.13 -0.0312 -0.525 -0.565 -0.482 -0.546

4.29 O.ln 2.88 -0.0136 -0.189 -0.248 -0.130 -0.206

0.5n 3.49 -0.0225 -0.386 -0.435 -0.340 -0.400
0.9n 4.09 -0.0290 -0.533 -0.572 -0.493 -0.547

4.35 O.ln 2.83 -0.0109 -0.167 -0.225 -0.111 -0.172

0.5n 3.43 -0.0199 -0.373 -0.422 -0.324 -0.378
0.9n 3.99 -0.0237 -0.498 -0.539 -0.456 -0.524

4.41 O.ln 2.79 -0.0100 -0.176 -0.232 -0.118 -0.168

0.5n 3.38 -0.0172 -0.345 -0.395 -0.292 -0.358

0.9n 3.93 -0.0211 -0.515 -0.558 -0.469 -0.527

4.49 O.ln 2.72 -0.0073 -0.139 -0.193 -0.0841 -0.136

0.5n 3.35 -0.0170 -0.403 -0.459 -0.352 -0.403

0.9n 3.87 -0.0198 -0.555 -0.595 -0.513 -0.560

Table 4.1: Data on the correlation between estimated tbbr and logio cost with n = 100
and m/n and backbone size controlled at different values.

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 80

and so backbone fragility, which we think hinders the identification of the backbone,

has less of an effect. For the larger backbone sizes, we think the main difficulty for

WSat/SKC is satisfying the backbone; so backbone fragility is then important. How¬

ever, given the somewhat unclear shape of the scatter plots, there are several concerns

about the significance of the observed correlation coefficients, which we now address

using some simple statistical methods.

4.3.2 Rank correlation coefficient

The r coefficient, given above, can be greatly affected by outliers. Therefore the rank

correlation coefficient, which is less affected, was also calculated. The rank correlation

is also given in Table 4.1. We found that in each case the rank correlation coefficient is

not considerably different from the r coefficient. This demonstrates that the observed

r was not greatly affected by outliers.

4.3.3 Confidence intervals for the correlation

Given that there is a relationship between the two variables which is not merely an

artifact of outliers, how accurate is our measurement of r? A bootstrap method can

be used to obtain bounds on a confidence interval for this statistic. Again, the reader

is referred to Appendix A for details of this method. Using this method with 1000

pseudo-samples we obtained lower and upper bounds on the 95% confidence interval

for r, which are also given in Table 4.1 as r-95% and r+95% respectively. The data

implies that with 95% confidence, each of our estimates of r is within about 0.05 of

the true correlation coefficient.

4.4 Assessment of the predictability of WSat/SKC cost

How much variance in cost can we now account for using algorithm-independent in¬

stance properties as predictors? When can knowledge of the instance properties make
a significant difference to the predictability of cost? In this section we assess in more

detail how predictable WSat/SKC cost is based on the three instance properties:

m/n, number of solutions and backbone robustness. First, in Section 4.4.1 we discuss

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 81

the methods which we used and other conventions we adopted. Then in Section 4.4.2

we present data for two scenarios: one where both backbone size and m/n are fixed at

different combinations of values and another where backbone size is fixed, but m/n is
treated as a predictor variable. In each case we comment on interesting aspects of the
statistics.

4.4.1 Methods

In this section we use multiple regression to assess the predictability of one variable from

several other variables. Multiple regression is a generalisation of the linear regression
method used elsewhere in the thesis. Rather than simply finding a 2-dimensional linear

prediction function which minimises the sum of squared residuals, multple regression

finds a linear prediction function of higher dimension which minimises the sum of

squared residuals. It can be used to make quantitative predictions of a variable taking

several variables into account. Linear regression for a single predictor variable is then a

special case. We follow the notational conventions and other methods of Cohen (1995)

(Section 8.6 and appendices 8A.5 and 8A.6). This provides a means of assessing the

performance and analysing the relative contribution of different predictors within the

resulting prediction function.

Here we explain the instances used, how the dependent and predictor variable mea¬

surements were taken and the meaning of the statistics which are presented.

Instances

The instances used in this section are satisfiable, backbone-controlled Random-3-SAT

instances with n — 100 and backbone sizes O.ln, 0.5n and 0.9n. The value of m/n which
was used varies from 4.03 to 4.49. There were 1000 instances for each combination of

backbone size and m/n.

Dependent variable

In this section the dependent variable (the one which is being predicted) is the log of
mrl of WSat/SKC with noise = 0.55. Recall that mrl is the median length of 1000

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS

runs of the algorithm.

82

Predictor variables

The predictor variables are:

• The log of the number of solutions (labeled in tables as Igsolns). We use the log
here because this transformation was found to give a good prediction in Section
3.3.4.

• The estimated tbbr (labeled in tables as etbbr). Estimated tbbr represents back¬
bone robustness, and was calculated for this section using the method given in

Section 4.2.2.

• In the last multiple regression scanario, m/n is also a predictor variable.

Statistics

For each predictor function which we derived, three kinds of statistic are recorded in

the summary tables:

• R? is the fraction of variance in the dependent variable which is explained by

the predictor function. For the single predictor variable case, R? equals r2, the

square of the correlation coefficient.

• For each predictor present in the predictor function, the /3 (or standardised)
coefficient of that predictor is given. Suppose a: is a predictor variable and y is

the dependent variable. The (3X coefficient for a predictor x measures the change

in the prediction of y when x is varied. If x is varied by sx (one standard deviation
of a;) then the predicted y varies by (3X x sy (sy = one standard deviation of y).
The /? coefficients of two predictors within a predictor function can be compared

to assess the relative contribution of the predictors in accounting for y's variance.

For the single predictor variable case, fl equals the correlation coefficent r. See
Cohen (1995) appendix 8A.2 for details of the definition of /3-coefficients.

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 83

• For each predictor present in the predictor function, the F-statistic is calculated

to assess the whether the additional variance in the dependent variable which is

apparently accounted for by the predictor variable is actually significant. This
is as opposed to the null hypothesis which states that the predictor variable ac¬

counts for no additional variance in the dependent variable. To test the null

hypothesis, the obtained F-statistic must be compared with the appropriate F

distribution. For details if how the F-statistic is calculated and used, see Cohen

(1995). Although the F-test assumes a that the underlying population distribu¬

tions are normal, this is less of a serious concern here as sample sizes are large;

at least 1000 (see Cohen (1995) p. 206). In each case the number of denominator

degrees of freedom which was used to calculate the F-statistic for each predictor

was the sample size minus the number of predictors (see Cohen (1995) p. 328
and Section 8A.6).

4.4.2 Summary statistics for multiple regression prediction functions

In the first scenario we fix both backbone size and m/n at different combinations of
values and derive a prediction function for log of mrl based on estimated ttbr and

log of number of solutions. In the second scenario we fix backbone size and then the

predictors are m/n, estimated ttbr and log of number of solutions.

Summary statistics for m/n and backbone size fixed

Tables 4.2, 4.3 and 4.4 give all summary statistics on the derived predictor functions for
backbone size = O.ln, 0.5n and 0.9n respectively. For each backbone size, each value

of m/n is treated separately. For each value of backbone size and m/n, a prediction
function is derived using each possible combination of predictor variables.

In all cases except one, the F-test for each variable rejected at the 99% confidence level
the null hypothesis that the variable accounted for no additional variance. The one

exception was where backbone size = 0.9n, m/n = 4.29 and the only predictor was

the number of solutions. In this case, the null hypothesis could not even be rejected

at the 95% confidence level. In all other cases, even when the fraction of variance was

small, the F-tests judge the variance accounted for to be significant (in the sense that

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 84

it is unlikely to be a sampling error). This is because of the very large sample size.

In the case where backbone size is O.ln, we can see that the number of solutions is the

main factor in the mrl, with variance in the log of the number of solutions accounting
for between 58% and 64% of the variance in log of mrl. The backbone robustness is

a minor factor, only accounting for between 2% and 4% of the variance. With both
variables as predictors, we can account for between 62% and 66% of the variance.

In the case where backbone size is 0.5n, we can see that the number of solutions is the

main factor in the cost, with variance in the log of the number of solutions accounting
for between 45% and 49% of the variance in log of mrl. The backbone robustness is

also a major factor though, accounting for between 12% and 16% of the variance. With

both variables as predictors, we can account for between 57% and 62% of the variance.

In the case where backbone size is 0.9n, we can see that the backbone robustness

is a much greater factor in the cost than the number of solutions. Variance in the
backbone robustness accounts for between 20% and 30% of the variance in log of mrl.

The number of solutions is a very minor factor, only accounting for between 0.4% and

1.7% of the variance. As mentioned, in one case this could just be a result of sampling.

With both variables as predictors, we can account for between 22% and 32% of the

variance.

In all cases of backbone size and m/n, if we compare the fi coefficients of the predictors
when both are used to the fi coeflicents when only one is used, we find that the former

is not much smaller than the latter. This indicates that the variance accounted for

by each predictor is largely not a result of a correlation between the two predictors

themselves.

Summary statistics for backbone size fixed, with m/n as a predictor variable

In this scenario, for each value of backbone size, we aggregated the 8 collections of
1000 instances at different values of m/n into one collection of 8000 instances. We
then treat m/n as a predictor variable. Table 4.5 gives all summary statistics on the
derived predictor functions for different backbone sizes. For each value of backbone size
a prediction function is derived using each possible combination of predictor variables.

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 85

m/n Predictor i?2 Standardised F-statistic
variables (3 s.f.) coefficients (3 s.f) (3 s.f.)

etbbr Igsolns ftetbbr Plgsolns etbbr Igsolns
4.03 X 0.0372 -0.193 n/a 38.6 n/a
4.03 X 0.607 n/a -0.781 n/a 1560
4.03 X X 0.637 -0.164 -0.775 74.0 1650

4.11 X 0.0222 -0.149 n/a 22.7 n/a
4.11 X 0.592 n/a -0.770 n/a 1450
4.11 X X 0.620 -0.166 -0.773 72.7 1570

4.18 X 0.0305 -0.175 n/a 31.4 n/a
4.18 X 0.587 n/a -0.766 n/a 1420

4.18 X X 0.625 -0.195 -0.772 101 1590

4.23 X 0.0444 -0.211 n/a 46.4 n/a
4.23 X 0.613 n/a -0.783 n/a 1580

4.23 X X 0.651 -0.194 -0.779 108 1730

4.29 X 0.0359 -0.189 n/a 37.2 n/a
4.29 X 0.606 n/a -0.779 n/a 1540
4.29 X X 0.631 -0.156 -0.772 65.6 1610

4.35 X 0.0279 -0.167 n/a 28.7 n/a
4.35 X 0.641 n/a -0.801 n/a 1790
4.35 X X 0.662 -0.144 -0.797 61.6 1870

4.41 X 0.0311 -0.176 n/a 32.1 n/a
4.41 X 0.606 n/a -0.778 n/a 1540

4.41 X X 0.635 -0.171 -0.777 80.2 1650

4.49 X 0.0194 -0.139 n/a 19.8 n/a
4.49 X 0.636 n/a -0.797 n/a 1740

4.49 X X 0.657 -0.149 -0.798 61.0 1850

Table 4.2: Statistics for various predictor functions for log mrl, backbone size = O.ln,
n = 100.

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 86

m/n Predictor R2 Standardised F-statistic

variables (3 s.f.) coefficients (3 s.f) (3 s.f.)
etbbr Igsolns ftetbbr ftlgsolns etbbr Igsolns

4.03 X 0.139 -0.373 n/a 162 n/a
4.03 X 0.457 n/a -0.676 n/a 842

4.03 X X 0.590 -0.365 -0.672 325 1100

4.11 X 0.151 -0.390 n/a 178 n/a
4.11 X 0.467 n/a -0.683 n/a 876
4.11 X X 0.601 -0.366 -0.671 335 1120

4.18 X 0.147 -0.384 n/a 173 n/a
4.18 X 0.481 n/a -0.693 n/a 924

4.18 X X 0.613 -0.364 -0.682 341 1200

4.23 X 0.133 -0.364 n/a 153 n/a
4.23 X 0.453 n/a -0.673 n/a 827

4.23 X X 0.579 -0.356 -0.668 300 1060

4.29 X 0.149 -0.386 n/a 175 n/a
4.29 X 0.479 n/a -0.692 n/a 919

4.29 X X 0.617 -0.372 -0.684 361 1220

4.35 X 0.139 -0.373 n/a 162 n/a
4.35 X 0.472 n/a -0.687 n/a 895

4.35 X X 0.608 -0.368 -0.684 346 1190

4.41 X 0.119 -0.345 n/a 135 n/a
4.41 X 0.493 n/a -0.702 n/a 974

4.41 X X 0.614 -0.348 -0.704 314 1280

4.49 X 0.163 -0.403 n/a 194 n/a
4.49 X 0.484 n/a -0.695 n/a 936

4.49 X X 0.623 -0.373 -0.679 367 1220

Table 4.3: Statistics for various predictor functions for log mrl, backbone size
n = 100.

= 0.5n,

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 87

m/n Predictor K2 Standardised .F-statistic
variables (3 s.f.) coefficients (3 s.f) (3 s.f.)

etbbr Igsolns Petbbr Plgsolns etbbr Igsolns
4.03 X 0.222 -0.471 n/a 285 n/a
4.03 X 0.0171 n/a -0.131 n/a 17.4
4.03 X X 0.233 -0.465 -0.104 281 13.9

4.11 X 0.206 -0.454 n/a 259 n/a
4.11 X 0.0162 n/a -0.128 n/a 16.5
4.11 X X 0.220 -0.451 -0.118 260 17.8

4.18 X 0.282 -0.531 n/a 392 n/a
4.18 X 0.0134 n/a -0.116 n/a 13.6

4.18 X X 0.291 -0.527 -0.0987 392 13.7

4.23 X 0.276 -0.525 n/a 381 n/a
4.23 X 0.0173 n/a -0.132 n/a 17.6

4.23 X X 0.287 -0.520 -0.105 377 15.3

4.29 X 0.284 -0.533 n/a 396 n/a
4.29 X 0.00374 n/a -0.0612 n/a 3.76

4.29 X X 0.291 -0.536 -0.0836 404 9.83

4.35 X 0.248 -0.498 n/a 330 n/a
4.35 X 0.0109 n/a -0.104 n/a 11.0

4.35 X X 0.262 -0.502 -0.118 340 18.7

4.41 X 0.265 -0.515 n/a 361 n/a
4.41 X 0.0139 n/a -0.118 n/a 14.1

4.41 X X 0.284 -0.520 -0.137 377 26.2

4.49 X 0.308 -0.555 n/a 445 n/a
4.49 X 0.00984 n/a -0.0992 n/a 9.94

4.49 X X 0.320 -0.557 -0.108 455 17.2

Table 4.4: Statistics for various predictor functions for log mrl, backbone size = 0.9n,
n = 100.

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 88

In all cases the F-test for each variable rejected at the 99% confidence level the null

hypothesis that the variable accounted for no additional variance. Again the very large

sample size means that the null hypothesis will be rejected even for small values of R2.

Using all three predictors allows us to account for 69% of the variance with backbone

size O.ln, 65% of the variance with backbone size 0.5n and 40% of the variance with

backbone size 0.9n. This is somewhat more than when m/n is fixed.

One interesting point is made by comparing the (irn/n coefficient where m/n is the only
predictor with /3m/n when both other predictors are used. In each case the latter is
much smaller, especially for medium and large backbone instances. This indicates that

in these cases the main way in which m/n affects the dependent variable is via one of
the other predictors.

Back¬ Predictor H2 Standardised F-statistic

bone variables (3 s.f.) coefficients (3 s.f) (3 s.f.)
size m/n etbbr Igsolns fim/n fietbbr Plgsolns m/n etbbr Igsolns
O.ln X 0.163 -0.404 n/a n/a 1560 n/a n/a
O.ln X 0.123 n/a -0.351 n/a n/a 1120 n/a
O.ln X 0.544 n/a n/a -0.738 n/a n/a 9560
O.ln X X 0.187 -0.302 -0.186 n/a 630 239 n/a
O.ln X X 0.673 -0.359 n/a -0.715 3140 n/a 12500

O.ln X X 0.647 n/a -0.320 -0.724 n/a 2320 11900

O.ln X X X 0.695 -0.262 -0.177 -0.714 1260 577 13300

0.5n X 0.146 -0.383 n/a n/a 1370 n/a n/a
0.5n X 0.246 n/a -0.496 n/a n/a 2610 n/a
0.5n X 0.391 n/a n/a -0.626 n/a n/a 5140

0.5n X X 0.259 -0.139 -0.414 n/a 136 1210 n/a
0.5n X X 0.549 -0.397 n/a -0.635 2800 n/a 7140

0.5n X X 0.637 n/a -0.495 -0.625 n/a 5390 8590

0.5n X X X 0.654 -0.162 -0.400 -0.629 394 2410 9120

0.9n X 0.194 -0.441 n/a n/a 1930 n/a n/a
0.9n X 0.382 n/a -0.618 n/a n/a 4930 n/a
0.9n X 0.00445 n/a n/a -0.0667 n/a n/a 35.7

0.9n X X 0.391 -0.121 -0.547 n/a 127 2590 n/a
0.9n X X 0.204 -0.448 n/a -0.0993 2000 n/a 98.5

0.9n X X 0.390 n/a -0.622 -0.0943 n/a 5060 117

0.9n X X X 0.401 -0.128 -0.547 -0.100 145 2640 134

Table 4.5: Statistics for various predictor functions for log mrl for various backbone
sizes, using instances aggregated from accross the satisfiability transition, n = 100.

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 89

4.5 A correct prediction about very backbone-fragile
instances

Our hypothesis proposes that high backbone fragility of instances causes high WSat/SKC
cost for those instances. However, it is plausible that the high backbone fragility is a

by-product of some unmeasured latent factor and that it is not causally related to the
cost. In other words it may be the case that backbone fragility and cost are correlated,
but that differences in cost are not actually due to differences in backbone fragility,
but due to differences in another factor which is correlated with backbone fragility.

To help establish the causal link between backbone fragility and cost, we therefore

created sets of random SAT instances which had higher backbone fragility than usual

Random-3-SAT instances. This is to some degree following the methodological prece¬

dent of Bayardo and Schrag (1996), who created random instances which contained
small unsatisfiable sub-instances but which had few constraints overall. These were

often found to be exceptionally hard for the complete procedure Tableau. Their ex¬

periments thereby helped establish that this feature of instance structure was the cause

of exceptionally high cost for complete procedures.

We cannot easily set backbone fragility directly, since it is not a parameter of the gener¬

ation method. One manipulation experiment which is possible is the use of an instance

generation procedure which results in instances with a higher backbone fragility. Our

hypothesis predicts that instances generated using such a procedure will be harder than

Random-3-SAT instances due to higher backbone fragility. In this section we define
such a procedure and test the prediction. It may be that our procedure is also manip¬

ulating the latent factor, so this experiment does not have the potential to prove the

causal link. However, if the instances with increased backbone fragility are not harder,

then the hypothesis would be falsified. So, since the procedure is specifically designed

to increase backbone fragility, a correct prediction here still lends some credibility to

our hypothesis.

Section 4.5.1 introduces a new concept, that of the backbone-minimal sub-instance

which is important for this experiment. Section 4.5.2 uses this to define our procedure
which increases backbone fragility and presents results.

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS

4.5.1 Backbone-minimal sub-instances

90

Suppose we have a SAT instance C and we remove a clause such that the backbone

is not affected by the removal of the clause. If such clauses are repeatedly removed,

eventually the instance will be such that no clause can be removed without disturbing

the backbone. In this case we have a backbone-minimal sub-instance (BMS) of C. More

formally, we have the following definition:

Definition A SAT instance C' is a BMS of C iff

• C' is a sub-instance of C (i.e. an instance consisting of a sub-bag of the
clauses of C) such that C' has the same backbone as C.

• for each clause c of C' there exists a literal I such that:

1. C' -+ I

2. (C' — {c}) A -iI is satisfiable

i.e. every strict sub-instance of C' has a strictly smaller backbone than the

backbone of C' □

BMSs can be seen as satisfiable analogues of the minimal unsatisfiable sub-instances

(MUSs) of unsatisfiable instances studied by amongst others Culberson and Gent

(1999b) in the context of graph colouring and Gent and Walsh (1996) and Bayardo
and Schrag (1996) in satisfiability. An MUS of an instance C is a sub-instance which is

unsatisfiable, but such that the removal of any one clause from the sub-instance renders

it satisfiable. Just as all unsatisfiable instances must have an MUS, all satisfiable SAT

instances must have a BMS. Having a BMS does not depend on having a non-empty

backbone - if the backbone of the instance is empty, its BMS is the empty sub-instance.

An instance can have more than one BMS. Different BMSs of an instance may share

clauses. One BMS of an instance cannot be a strict sub-instance of another.

Suppose the backbone of a satisfiable instance C is the set of literals {h,h, ■ ■ ■ ,h}-
Let d be the clause ->li V ~>h V ... V ->lk- Then we have the following useful fact:

Theorem C' is a BMS of C iff C1 A d is an MUS of C A d □

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 91

procedure Find-Random-MUS(C)
C' :=C

(ci,..., cm) := a random permutation of the m clauses of C'
for i = 1 to m

C" := C - Ci
if C" is unsatisfiable

C := C"
end if

end for

return C'

Figure 4.4: The Find-Random-MUS procedure, from Gent and Walsh (1996).

A simple proof of the above is given in Appendix B. Due to this fact, methods for

studying MUSs can be applied to the study of BMSs. We can study the BMSs of a

satisfiable instance C by finding the backbone of C and then studying the MUSs of

C Ad: each of these corresponds to a BMS of C since d must be present in every MUS

oi C Ad.

To find a BMS of C we determine the backbone, then find a random MUS of C A d

using the same MUS-finding method as Gent and Walsh (1996) and remove d from the
result. The method is given in Figure 4.4.

4.5.2 Data on very backbone-fragile instances

Once a BMS C' has been established, we can also study the effects of interpolation

between C and C' by removing at random from C some of the clauses which do not

appear in C'. This is equivalent to removing clauses at random such that the backbone

is preserved. Preserve-BACKBONe(C, mr, C') will denote C with mr clauses which
do not appear in the BMS C", removed at random. The resulting instance will have

the same backbone as C.

Just as increasing m/n while controlling the backbone size causes tbbr to increase,

deleting clauses such that the backbone is unaffected causes tbbr to decrease, as one

might expect. This is because by removing clauses, we are reducing for each implicate
literal the number of sub-formulas in the instance which imply that literal.

We used 500 random-3-SAT instances with n — 100 and m/n = 4.29. The in-

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 92

Instances Estimated tbbr (3 s. f.)
10th percentile Median 90th percentile

Preserve-backbone(C, 0, C') 8.58 13.0 20.6

Preserve-backbone(C, 5, C') 7.74 12.0 19.2

Preserve-backbone(C, 10, C') 7.20 11.1 17.4

Preserve-backbone(C, 20, C) 6.07 9.39 14.5

Preserve-backbone(C, 40, C') 4.26 6.49 9.99

Preserve-backbone(C, 80, C') 2.07 2.87 3.99

BMS 1.02 1.06 1.16

Table 4.6: The effect of preserve-backbone on the backbone robustness of satisfiable
Random-3-SAT instances at m/n = 4.29.

stances did not have backbone size controlled. They were simply a set of satisfiable

instances at the random-3-SAT threshold. For each instance we found one BMS

using Find-Random-MUS. The BMSs and the instances from which they were pro¬

duced have been archived in the SATLIB repository run by Holger Hoos and Thomas

Stxitzle (www.informatik.tu-darmstadt.de/AI/SATLIB). We then used PRESERVE-

backbone to interpolate with mr set at various values. Table 4.6 shows the effect of

increasing mr on backbone robustness. The BMSs of the threshold instances are so

backbone-fragile that the removal of just one clause from them is likely to reduce the
backbone by a half or more.

Our hypothesis predicts that as this interpolation from C to C' proceeds, the cost

for local search increases because the backbone robustness decreases. It is conceivable,

although it would be very surprising, that removing any clauses from random instances

near the threshold generally makes their cost for local search increase. If this were the

case, any increase in cost during interpolation towards a BMS could merely be due

to the removal of clauses per se rather than the removal of clauses whilst preserving

the backbone. To control for this possibility we also removed clauses according to

two other procedures. The procedure Random(C, mr) removes mr clauses from C
at random. The procedure Reduce-BACKBONe(C, mr) removes mr clauses such that
each time a clause is removed, the size of the backbone is reduced. The clause to be

removed is chosen randomly from all such clauses. This procedure therefore uses the

opposite removal criterion to PRESERVE-BACKBONE. If the backbone becomes empty,

no further clauses are removed.

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 93

Instances mrl (3 s. f.)
10th percentile Median 90th percentile

Preserve-backbone(C, 0, C') 517 1,450 5,180
Preserve-backbone(C, 5, C') 537 1,520 5,660
Preserve-backbone(C, 10, C') 557 1,610 6,010
Preserve-backbone(C, 20, C') 570 1,800 7,040
Preserve-backbone(C, 40, C') 643 2,300 10,700
Preserve-backbone(C, 80, C') 816 4,150 24,300
BMS 1,560 16,900 136,000

Table 4.7: The effect of Preserve-backbone on cost and cost statistics for BMSs.

Figure 4.5 shows the effect on mrl of applying the three clause removal procedures to

the same set of 500 Random-3-SAT threshold instances. Each line is the median mrl,

plotted on a log scale.

We observe that removing clauses randomly or such that the backbone is strictly

reduced, causes cost to be reduced, so the removal of clauses does not in itself cause

higher cost. The reduce-backbone procedure causes a greater initial fall in cost, as

the backbone size is reduced more quickly than with Random. However, the cost then

stabilises for reduce-backbone because the backbone becomes empty and thereafter

no more clauses are removed.

Removing clauses according to preserve-backbone causes the local search cost to

increase by an amount approximately exponential in the number of clauses removed.

Table 4.7 gives more data on this effect and also cost data for BMSs. The 10th and 90th

percentiles suggest that the interpolation shifts the whole distribution up, not just the

median. The median cost of the BMSs, which are the most backbone-fragile of all the

instances, is more than three times that of the 90th cost percentile of Random-3-SAT

instances.

The BMSs of these instances had between 254 and 318 clauses. The above results

therefore demonstrate the existence of instances in the underconstrained region which
are much harder than the typical instances from near the satisfiability threshold. How¬

ever since these were not obtained by sampling from Random-3-SAT directly, we do

not know how often they occur. As far as we know, they are vanishingly rare and

therefore, in contrast to exceptionally hard instances for complete algorithms, it seems

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 94

10 20 30 40 50
m

Reduce-backbone

Preserve-backbone

Figure 4.5: The effect of the three clause removal procedures on the median mrl of sat-
isfiable Random-3-SAT instances at m/n — 4.29. Note that the Reduce-backbone
procedure data stops at mr = 40, at which point all instances had empty backbones.
The length of the bars is the interquartile range (25th - 75th percentiles).

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 95

unlikely that they affect the mean cost. Also, while Gent and Walsh (1996) showed
that the exceptionally hard instances for complete algorithms are hard for a different
reason from that of threshold instances, BMSs are apparently hard for the same reason

- because they are backbone-fragile.

One useful by-product of this section is a means of generating harder test instances for
local search variants without increasing n. However these instances do require 0{m+n)

complete searches to generate: 0(n) to determine satisfiability and the backbone and

0(m) to reduce to a BMS.

4.6 A correct prediction about search behaviour

Recall that in the discussion of Section 4.2.1 which motivated the backbone fragility

hypothesis, it was suggested that the quasi-solutions in Qb would be attractive if the

backbone of C — B was small. That is to say that the clauses of B are more likely

to equal the set of clauses unsatisfied by the current assignment if the removal of the

clauses of B has a large effect on the backbone. This part of our general model also

makes a prediction about search behaviour:

The clauses most often unsatisfied by WSat/SKC are those whose removal
reduces the backbone size the most.

In Section 4.6.1 we show this prediction to be correct. Following this, we investigate

in Section 4.6.2 the extent to which the backbone's dependence on the presence of a

clause can account for how often the clause is unsatisfied during local search.

4.6.1 Testing the search behaviour prediction

We looked at individual instances which were cost percentiles from a set of 5000

Random-3-SAT instances with n = 100 and m/n = 4.29. Cost was measured by
mrl as in previous sections. For each clause in the instance, we calculated the number

of backbone literals which were no longer implicates if the clause was removed. This is

a simple measure of the backbone contribution (be) of the clause - how much the back¬
bone size depends on the presence of the clause. If a clause's backbone contribution

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 96

is high, it is termed a backbone-critical clause. We made 1000 runs of WSat/SKC
on each instance under the same conditions as in previous sections. During search,
each time the current assignment changed we recorded whether each clause was unsat¬

isfied. The result of averaging the number of times the clause was unsatisfied over all

assignment-changes in all runs gives the unsatisfaction frequency (uf) of that clause.

Although uf is measured over the whole run, one could argue that whether or not a

clause is unsatisfied during the hill-climbing phase is unimportant. However, including
the hill-climbing phase makes little difference to the results because:

1. The hill-climbing phase is so short compared to the rest of the run.

2. At least at the beginning of the hill-climbing phase all clauses have an equal

chance of being unsatisfied, so overall the unsatisfaction frequency at this stage

will be equal.

Figure 4.6 shows a scatter plot of these two quantities for the clauses of the instance

whose cost was the median of 5000 threshold instances. We note from this figure

that the clauses whose presence contributes the most to the backbone are more often

unsatisfied than average during WSat/SKC search.

Table 4.8 confirms this pattern. Each row of the table gives data for one instance.

We selected cost percentiles; individual instances of varying degrees of difficulty. For

example the row labelled '30th' corresponds to the instance whose cost is the 1500th

in rank from the easiest to the most difficult of the 5000 instances, while the 50th

percentile instance is the one used to produce Figure 4.6. The third and fourth columns

give the mean and standard deviation of the unsatisfaction frequency over all clauses
in the instance and the last two columns give the same statistics for the sub-bag of the

clauses which were most backbone-critical (their backbone contribution was in the top

10%).

Table 4.9 shows that the converse effect is also present: the clauses which are most

often unsatisfied (their unsatisfaction frequency is in the top 10%) are more backbone-
critical than average.

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 97

Cost Backbone All clauses Most backbone-

Percentile size critical clauses

uf mean uf std. dev. uf mean uf std. dev.
(3 s. f.) (3 s. f.) (3 s. f.) (3 s. f.)

10th 16 11.3 8.07 20.9 8.87

20th 11 13.1 11.0 30.2 16.9

30th 13 21.0 16.4 41.5 21.1

40th 36 23.0 21.3 56.7 27.5

50th 48 29.6 25.9 72.1 38.8

60th 25 36.3 35.6 96.2 54.3

70th 63 52.4 48.1 120 66.8

80th 70 92.3 87.8 167 150

90th 93 108 127 307 199

Table 4.8: Unsatisfaction frequencies of clauses in different cost percentile instances.

Cost Backbone All clauses Most often
Percentile size unsatisfied clauses

be mean be std. dev. be mean be std. dev.

(3 s. f.) (3 s. f.) (3 s. f.) (3 s. f.)
10th 16 0.592 1.24 2.09 1.85

20th 11 0.485 1.04 1.77 1.96

30th 13 0.396 1.24 1.84 2.45

40th 36 1.81 4.24 8.32 6.46

50th 48 1.06 3.28 6.32 6.60

60th 25 1.38 3.49 7.75 5.78

70th 63 3.39 8.86 14.9 15.8

80th 70 0.695 3.46 2.60 7.86

90th 93 3.07 10.0 17.0 20.6

Table 4.9: Backbone contributions of clauses in different cost percentile instances.

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 98

L 1 1 1

O

<>

O
O
O o

O

J .. O o o rt
.. .t 0,.c

•

. „:.x: O
0 I.. O i } 0.

o 8 ^

8 0
8 6

o

8

v o

o

. . .Q " 'Jo •

9 o

o

i i

0 5 10 15 20 25
backbone contribution

Figure 4.6: Scatter plot of unsatisfaction frequency against backbone contribution for
the clauses of the cost median of 5000 instances, m/n = 4.29, n = 100.

For instances of different costs at the satisfiability threshold, the clauses which are most

likely to be unsatisfied during search have a higher backbone contribution than average.

Conversely, the clauses which have the largest backbone contribution are more likely

to be unsatisfied during search. As well as satisfying the prediction, this experiment

also demonstrates that as well as explaining differences in cost between instances, the

backbone fragility hypothesis can also explain differences in the difficulty of satisfying

particular clauses during search.

4.6.2 Can search behaviour be explained further using backbone ro¬
bustness?

Although a difference in the sample means is apparent in Table 4.9, there are sometimes

particularly large standard deviations in be values for the most frequently unsatisfied
clauses. This is because, as can be seen from Figure 4.6, some clauses are very often

unsatisfied even though removing them on their own does not affect the backbone size
at all.

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 99

procedure Fixed-start-robustness-trial(C, c)
Current-instance := C — c

Clauses-removed := 1

Backbonesize := backbone size of C
Current-backbonesize := backbone size of Current-instance
while Current-backbonesize > Backbone size/2

Current-instance := Current-instance with one clause removed at random

Clauses-removed := Clauses-removed + 1
Current-backbonesize backbone size of Current-instance

end while

return Clauses-removed

Figure 4.7: The Fixed-START-ROBUSTNESS-TRIAL procedure.

One possible explanation for this is that although the removal of each of these clauses

alone does not affect the backbone size, their removal along with other clauses has a

large effect. In other words the true contribution of the clause to the backbone size is

underestimated by be.

In this section we investigate whether a more refined measure of backbone contribution

might provide a more accurate estimate and might therefore be correlated more tightly

with the unsatisfaction frequency.

Conditional tbbr: a more accurate measure of backbone contribution

We wanted to measure more accurately how much each clause contributed to the

overall size of the backbone. If the backbone size is dependent on the presence of a

clause, this could mean either that the removal of the clause on its own will reduce the

backbone or that the removal of the clause will render the instance more backbone-

fragile than it was, or some combination of these. To capture this, we measure the
backbone contribution of a clause by conditional tbbrA. To define this, we use fixed-

start robustness trials as defined in Figure 4.7. These are similar to regular robustness

trials, but the user specifies a clause which is always the first clause removed.

Definition We define the tbbr of an instance C conditional on the clause c, where c

4 In fact, conditional tbbr will be high when the backbone contribution of a clause is low and low when
the backbone contribution is high, so in moving from be to conditional tbbr the metric has "changed
direction".

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 100

is a clause of C. This is the mean result of all possible runs of flxed-start-

robustness-trial(C, c) □

Observe that the conditional tbbr is therefore the tbbr given that every robustness trial
starts with the removal of c. We estimated conditional tbbr by random sampling. For
each clause c on each instance C we conducted at least 100 robustness trials (each

beginning with c) and continued to sample until the standard error was less than 0.05
x the sample mean5. Computing conditional tbbr for every clause of an instance was

computationally costly and was only done for those instances studied in Section 4.6.1.

Results using conditional tbbr

Figures 4.8, 4.9 and 4.10 show semi-log scatter plots showing the relationship between

unsatisfaction frequency and conditional tbbr in each of the nine instances used in

Section 4.6 (each scatter plot represents one instance and each point represents one

clause).

There is a clear relationship between our chosen measure of a clause's contribution

to the backbone and the clause's unsatisfaction frequency. The shape of the scatter

plot appears to be very consistent among instances of widely different costs at the

satisfiability threshold. The common feature is the absence of clauses with both a low

unsatisfaction frequency and a low conditional tbbr. We can therefore safely conclude

that on these instances, any clause whose presence contributes significantly to the

backbone will often be unsatisfied relative to the other clauses.

However, there are also many infrequently-satisfied clauses which contribute little to

the backbone. This pattern is essentially similar to our first measure of backbone

contribution. Therefore, in conclusion, refining the measure of backbone contribution

does not help us explain the variation in satisfaction frequency. These clauses may

be infrequently-satisfied for some other reason not related to the backbone and so

demonstrate the limitations of backbone-based explanations of this aspect of search

behaviour. It is likely that our assumption about which assignments are most of-
5 Therefore the conditions used to measure conditional tbbr were similar here to those used for our

estimates of non-conditional tbbr - see Section 4.2.2.

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 101

10th cost percentile

10 15
conditional tbbr

20th cost percentile

10 15
conditional tbbr

30th cost percentile

20

10 15
conditional tbbr

Figure 4.8: The relationship between unsatisfaction frequency and conditional tbbr for
the 10th, 20th and 30th cost percentiles.

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 102

10
40th cost percentile

C 1f)3CD 10
13
cr
CD

o 102
3
«+—

cc in1cn lU
c
3

! I:::::: I I ::::: I I:::::::::::::::::!:::: I :::! ! ! ! ! :::::::::::

■i I i i 111 i I • i jMi

! j ! j ! : : i ! ! j ! ! iH :

10

10

c mo 10
3
cr
0

lio2
■+—'

o
as

T/j
V-» 4

^ -in1w lU
c
13

1 : 1 r::::::::::: :1

r ::::::::::: Vi

10 15
conditional tbbr

50th cost percentile

20

J: ::::::::::::::: J ::::::::::::::: J :::::::::: r :::: d ::::::::::::::: :l : :

::::::::::: : :l: :::::: :::::: :: ::::::::::::

+ ' H~ . 4-
I :::::::: i !::: I :: i ::::: : : 71: :::::: if: = ::] = : j #"^1® ; ' ■I:::::::::::::;:::::::::::::::::::::::::::: t|t : -flr rlajB

:::::::::::::: j::::::::::::::: j^ ^
; ; * • + • --p +

i :!!:•: • : : : :

fl :::::: i ::::: S ::::::::::::::: S ::::::::::::::::: r :::::::: :

10

10

10 15
conditional tbbr

60th cost percentile

20

I ::::::::::::::: I ::::::: : :::::::::: :l :::::::::::: :

c 1f)30 10 ■ • • • i i i I ! • J : i i • : : • ! : i : • ! ! : i I !:•••! :

0

o 102
o

3

03 -in1(j) ID
c
3

10
10 15
conditional tbbr

Figure 4.9: The relationship between unsatisfaction frequency and conditional tbbr for
the 40th, 50th and 60th cost percentiles.

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 103

10
70th cost percentile

§10=
cr
<D

C -irv2
O 10
o
03

H—

(I)
' .

03 1n1(/) 1U
c

10
10 15
conditional tbbr

80th cost percentile
:::::: i :

20

f: ::: i i -f: i ■: i i !:! i i ::: i : i f : i :• I

10 15
conditional tbbr

90th cost percentile
10 ETTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

10 15
conditional tbbr

Figure 4.10: The relationship between unsatisfaction frequency and conditional tbbr
for the 70th, 80th and 90th cost percentiles.

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 104

ten visited (from the motivating discussion of Section 4.2.1) is only partially correct.

WSat/SKC probably also searches assignments closer to solutions at which differ¬

ent clauses (which have a lower backbone contribution) are unsatisfied. An improved
account of clause satisfaction frequency may therefore have to refine this assumption.

4.7 Related work

This and the preceding chapter have attempted to explain the behaviour of a local

search procedure on satisfiable threshold Random-3-SAT instances. We now relate

our research to some existing literature with similar aims.

Clark et al. (1996) showed that the number of solutions is correlated with search cost

for a number of local search algorithms on random instances of different constraint

problems, including random-3-SAT. The pattern was confirmed by Hoos (1998) using

an improved methodology. Clark et alls work was the first step towards understanding
the variance in cost when the number of constraints is fixed. We have followed their

approach both by looking at the number of solutions and by using linear regression to

estimate strengths of relationships between factors.

Schrag and Crawford (1996) made an early empirical study of the clauses (including

literals) which were implicates of Random-3-SAT instances. Parkes (1997), whose

study is also discussed in Chapter 2, looked in detail at backbone size in Random-3-

SAT and its effect on local search cost. He also linked the position of the cost peak to

that of the satisfiability threshold by the emergence of large-backbone instances which

occurs at that point. Parkes also identified the fall in WSat/SKC cost for instances of
a given backbone size. This was therefore the basis for our study. Parkes conjectured
that the presence of a "failed cluster" may be the cause of high WSat/SKC cost for
some large-backbone random-3-SAT instances. Our hypothesis was partly inspired

by this conjecture. According to this hypothesis, the addition of a single clause could

remove a group of solutions which is Hamming distant from the remaining solutions,

reducing the size of the backbone dramatically. Such a clause would then have a large
backbone contribution. Therefore our explanation for the general high cost of the
threshold region has certain features in common with Parkes' conjecture. In particular

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 105

we agree that it is the presence of clauses with a large backbone contribution which
causes high cost. This is especially demonstrated by our results from Section 4.6.

However, our explanation differs from Parkes' conjecture in that we propose that in

hard instances the quasi-solutions which cause difficulties for WSat/SKC are not

grouped in a single cluster but are widely-distributed in different areas of the search

space.

Frank et al. (1997) studied in detail the topology of the GSat search space induced by
different classes of random SAT instances. Their study discussed the implications of
search space structure for future algorithms, as well as the effects of these structures

on algorithms such as GSat. They also noted that some local search algorithms such

as WSat/SKC may be blind to the structures they studied because they search in
different ways to GSat.

Yokoo (1997) also addressed the question of why there is a cost peak for local search as

m/n is increased. The approach was to analyse the whole search space of small satis-
fiable random instances. While in this study, we have only examined SAT, Yokoo also

showed his results generalised to the colourability problem. Yokoo used a deterministic

hill-climbing algorithm. He studied the number of assignments from which a solution

is reachable (solution-reachable assignments) via the algorithm's deterministic moves,

which largely determines the cost for the algorithm.

We followed Yokoo in looking for a factor competing with the number of solutions

whose effect on cost changes as m/n is increased. The factor which Yokoo proposed
as the cause of the overall fall in cost was the decrease in the number of local minima

- assignments from which no local move decreased the number of unsatisfied clauses.
The decrease in this number was demonstrated as m/n is increased. The decrease was

attributed to the decreasing size of "basins" (interconnected regions of local minima

with the same number of unsatisfied clauses). Yokoo claimed (p. 363) that:

"adding constraints [...] makes the [instance] easier by decreasing the num¬

ber of local minima".

However, we do not think it is clear a priori what the relationship between the number

of local minima and the cost is in a given instance and Yokoo did not study it sufficiently

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 106

for his explanation to be convincing. In contrast with Yokoo, we have studied in detail
the relationship between the backbone fragility of instances and WSat/SKC's cost

on these instances and confirmed it by testing predictions of our hypothesis. Also, we

studied instance properties that related to the logical structure of the clauses rather
than the search space topology which was induced as we think this has more potential
to generalise across algorithms and even to address complexity issues, as we explain
towards the end of this section.

Hoos (1998) also analysed the search spaces of SAT instances in relation to local
search cost by looking at two new measures of the induced objective function which

he defined, including one based on local minima. Although via these measures, Hoos
was not able to account for the Random-3-SAT cost peak, he found that the features

were correlated with cost for some SAT encodings of other problems and has also shown

(Hoos 1999b) that his measures can help distinguish between alternative encodings of
the same search task.

How does the pattern we have uncovered fit in to other work on what makes instances

require a high cost to solve? Gent and Walsh (1996), using random SAT instances6
looked at the probability that an unsatisfiable instance becomes satisfiable if a fixed

number of clauses are removed at random. They found that at the SAT threshold, the

unsatisfiable instances which had the highest computational cost for a DPLL variant

were those which were unsatisfiability-fragile - their unsatisfiability was sensitive to

the random removal of clauses. It may therefore be that the fragility of an instance's

unsatisfiability or backbone size is the cause of high computational cost both in the

context of complete procedures and incomplete local search, which would be an inter¬

esting link between the two algorithm classes. However it should always be noted when

comparing the two classes of algorithm that research on local search has concentrated
on only satisfiable instances, while complete algorithms are run on both satisfiable and

unsatisfiable instances. The theory may also represent a link between the reasons for

hardness in satisfiable and unsatisfiable instances. This link may form the basis of

a possible explanation of the reasons why threshold Random-3-SAT instances may

be universally hard in the average case, as opposed to merely costly for some class of
6 Although Gent and Walsh's instances were not generated by the Random-3-SAT method, they

were generated by a simple stochastic method which exhibits a satisfiability threshold.

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 107

algorithms.

4.8 Summary

We now summarise Chapter 4. We hypothesised that differences in backbone fragility
were the cause of two phenomena of cost behaviour observed in Chapter 3. Firstly, the

decay in cost for large backbone instances as m/n is increased. Secondly the variation
in cost for large backbone instances when m/n is fixed. We motivated this hypothesis
and provided a practical method for measuring backbone robustness. We used this to

measure the backbone robustness of the threshold instances studied in Chapter 3.

We were then able to test predictions of the hypothesis that the fall in backbone

fragility is the cause of the overall decay in cost as m/n is increased. We found that
the hypothesis made three correct predictions. Firstly that the degree to which an

instance is backbone-robust is correlated with the cost when the effects of other factors

are controlled for. If we combine backbone fragility with other factors, we can account

for more variance in cost than before. Secondly, that when Random-3-SAT instances

are altered so as to be more backbone-fragile (by removing clauses without disrupting

the backbone) their cost increases. Thirdly, that the clauses most often unsatisfied

during search are those whose deletion has most effect on the backbone.

We now summarise the overall picture which can be determined from this chapter if one

accepts the speculative account from Chapter 3. In the underconstrained region, in¬

stances with small backbones are predominant. In this region, the rapid hill-climbing

phase typically results in an assignment which is close to the nearest solution (and

probably satisfies the backbone). Since finding the small backbone is largely accom¬

plished by hill-climbing, typical cost for WSat/SKC is low in this region and variance

in cost is due to variance in the density of solutions in the region of the search space

where the backbone is satisfied.

In the threshold region, large-backbone instances quickly appear in large quantities.
For large-backbone instances, the main difficulty for local search is to identify the
backbone rather than to find a solution once the backbone has been identified. The

identification of a large backbone may be accomplished by the rapid hill-climbing

CHAPTER 4. THE BACKBONE FRAGILITY HYPOTHESIS 108

phase to a greater or lesser extent. We think that the effectiveness of the hill-climbing

phase is determined by the backbone fragility of the instance. If a large-backbone
instance is backbone-fragile the hill-climbing phase is ineffective and results in an

assignment which is Hamming-distant from the nearest solution (probably implying
that much of the backbone has not been identified). Then a costly plateau search is

required to find a solution. Hence when the rare large-backbone instances do occur in
the underconstrained region, they are extremely costly to solve because of their high

backbone fragility.

If a large-backbone instance is more backbone robust, the rapid hill-climbing phase

is more effective in determining the backbone and the plateau phase is shorter. So
overall the instance is less costly for WSat/SKC to solve. Hence for large-backbone

instances, since backbone robustness increases as m/n is increased, cost decreases. In
the overconstrained region, large backbone instances are dominant and so backbone

fragility becomes the main factor determining cost. Hence cost decreases in this region.

Our hypothesis proposes the following explanation for the cost peak: Typical cost

peaks in the threshold region because of the appearance as m/n increases of many

large-backbone instances which are still moderately backbone-fragile, followed by the

increasing backbone robustness of these instances.

Chapter 5

Local Search on

Random-2+p-SAT

5.1 Introduction

In A:-SAT, the value of k affects the worst-case complexity. For k = 2 there is a worst-

case linear time algorithm (Aspvall et al. 1979) and so 2-SAT and sub-problems such
as Random-2-SAT are not considered hard problems in the typical case. 3-SAT on

the other hand is NP-complete and, as was discussed in Chapter 2, Random-3-SAT

instances near the threshold are apparently hard in the typical as well as the worst

case for a range of substantially different algorithms, leading to the conjecture that

threshold Random-3-SAT instances are universally hard in the typical case.

In this chapter we use the RANDOM-2-t-p-SAT generation method due to Monasson

et al. (1999a). This is related to the RANDOM-fc-SAT problem generator introduced
in Chapter 2. RANDOM-2+p-SAT instances consist of a mixture of 2-clauses and 3-

clauses. The parameter p governs the ratio of 3- to 2-clauses in the instance. By

varying p, we may interpolate between RANDOM-2-SAT (p = 0) and RANDOM-3-SAT

(p = 1).

The underlying notion which motivates the use of the random-2+p-SAT generation
method is this. Given that random-2-SAT is not universally hard in the typical

case and that Random-3-SAT is, then typical case hardness must emerge at some

point between k — 2 and k = 3. By studying the properties of random-2+p-SAT as

p is varied, both via analysis and experiment, we can gain an understanding of why

109

CHAPTER 5. LOCAL SEARCH ON RAND0M-2+P-SAT 110

typical-case hardness emerges. Studies using Random-2 +p-SAT therefore attack the
same question of explaining problem hardness as those which study the Random-3-

SAT threshold: whereas random-3-SAT studies ask why hardness emerges as m/n
is varied, studies of random-2+p-SAT ask why hardness emerges as p is varied.

It is conjectured that some structural properties emerge when p equals a particular
value po (discussed in detail in Section 5.2). Monasson et al. also studied the effect
of varying p on typical (i.e. median) search cost for Tableau, a highly optimised
variant of DPLL. They observed a transition from linear typical case scaling to simple

exponential typical case scaling. Their experimental results were consistent with the

change in cost scaling coinciding with po-

One aim of this chapter is to study the typical cost scaling of local search on Random-

2+p-SAT. This allows a cross-algorithm comparison with Tableau, to see whether

these cost scaling patterns may be algorithm-independent in the RANDOM-2+p-SAT

model. In this chapter we use the WSat/Novelty+ local search algorithm (Hoos

1999a; McAllester et al. 1997). This is a state-of-the-art variant of WSat which

outperforms WSat/SKC on random instances. Our experimental data lends some

credibility to the hypothesis that the typical case complexity of random-2+p-SAT

changes near pq.

We also investigate which emergent structural properties might cause the change in

typical cost for local search as p is varied. The approach we take is to look for structural

properties which distinguish typical instances where p < po from those where p > po

and which could conceivably affect the algorithm's operation.

Section 5.2 gives some further background on Random-2+p-SAT and details of the
test instances which were used. In Section 5.3 we discuss the experimental conditions

under which WSat/Novelty+ was run. Section 5.4 presents experimental scaling
data for the search cost of WSat/Novelty+ on Random-2 +p-SAT. In Section 5.5
we relate the structural properties of Random-2+p-SAT to the behaviour of local

search cost. Finally, Section 5.6 summarises this chapter. Material from this chapter
was published in a paper presented at ECAI-2000 (Singer et al. 2000b).

CHAPTER 5. LOCAL SEARCH ON RAND0M-2+P-SAT

5.2 RANDOM-2+p-SAT instances

ill

This section gives some further background on Random-2+p-SAT and details of the
instance collections which were used in the experimental work of this chapter.

Definition A Random-2+jj-SAT instance consists of (1 — p)m Random-2-SAT 2-
clauses and pm Random-3-SAT 3-clauses. All clauses are generated using the same

set of n variables.□

It is possible to mathematically analyse Random-2-SAT in some detail. For example

the location of the threshold can be predicted. Monasson et al. suggested that the

range over which p varies in random-2+p-SAT may be divided into two qualitatively

different regions delineated by a value pq. The value po is defined such that with

p < po, random-2+p-SAT behaves like Random-2-SAT in the sense that in the

limit as n —> oo the 3-clauses almost surely do not affect the satisfiability of the

formula. This implies that only the 2-clauses are relevant and that the analysis possible
on Random-2-SAT, such as predicting the location of the threshold, can also be

extended to Random-2+p-SAT. With p > po, the 3-clauses become relevant and so

the behaviour of random- 2 +p-sAT is then thought to be more similar to that of

Random-3-SAT.

Monasson et al. (1999a) show that for p < po the Rando m- 2 +p- S AT satisfiability

probability changes continuously in the limit. Bounds of 2/5 (lower) and 0.695 (upper)
have been established for po (Achlioptas et al. 1997). Monasson et al. estimate po

numerically (under certain statistical mechanics assumptions) at about 0.41. For p > po

the change in the satisfiability probability is thought to be discontinuous1.

For Tableau, the observed typical cost scaled linearly for p < 0.4 but, as in Random-

3-SAT, it scaled as a simple exponential for p = 0.6. This is consistent with a change

in typical case complexity due to the change in structure at po ■ If this change in search
cost scaling applies to substantially different algorithms (such as local search) and is not

peculiar to tableau or its algorithm class, this would suggest more strongly that the
structural properties which emerge at po cause the onset of typical-case intractability.

1 See e.g. Achlioptas et al. (1997) for a fuller explanation of of the meaning of (dis)continuous in this
context.

CHAPTER 5. LOCAL SEARCH ON RAND0M-2+P-SAT 112

p (n, m) points at approx. 50 % satisfiability
0.0 (25, 41) (50, 74) (100, 136) (250, 313) (500, 598)

(1000, 1147) (1500, 1690) (2000, 2228)* (3000, 3288)+
0.3 (25, 52) (50, 95) (100, 177) (250, 414) (500, 799)

(1000, 1555)* (1500, 2299)* (2000, 3052)+
0.4 (25, 58) (50, 105) (100, 196) (250, 463) (500, 897)

(750, 1328)* (1000, 1758)* (1500, 2610)t (2000, 3456)*
0.5 (25, 63) (50, 115) (100, 217) (250, 520)

(500, 1015)* (750, 1511)* (1000, 2005)* (1500, 2991)*
1.0 (25, 112) (50, 218) (100, 428) (150, 640)

(200, 853)* (250, 1065)*

Table 5.1: Details of RAND0M-2+p-SAT test instances. Each instance collection
contained 5,000 instances, except those marked * which contained 2,500 and those
marked f, which contained 1,500.

In this study we used instances generated from the Random-2+jj-SAT generation
method using various values of p and n. For each combination of p and n we deter¬
mined the largest value of m for which at least 50 % of the instances were satisfiable.
We generated a large set of satisfiable instances at this point, using both Tableau

(Crawford and Auton 1996) and MODOC (van Gelder and Okushi 1999) as SAT
testers. Table 5.1 gives details of these test instances. Collection sizes were reduced
for larger n so that the computation time required was manageable.

5.3 Experimental conditions

The WSat/Novelty+ algorithm is discussed in detail in Sections 2.3.7 and 2.3.8. In
this section we discuss the experimental conditions which were used to evaluate the

performance of WSat/Novelty+ on the Random-2+p-SAT instances.

Following Hoos (1998), we test the algorithm without a restart mechanism and use the
median run length (mrl) as our measure of per-instance search cost: this represents a

"typical" run of WSat/Novelty+ on the instance. We took the mrl of 100 runs of
the algorithm per instance except on collections marked * where 50 runs per instance
were made and collections marked f where 30 runs were made. Following Monasson

et al. (1999a) we then look at the typical per-instance cost (i.e. median mrl) over the
collection as n is increased. The wp parameter was set to 0.01.

CHAPTER 5. LOCAL SEARCH ON RAND0M-2+P-SAT 113

Parameter optimisation for WSat/Novelty+ on RANDOM-2+p-SAT

The remainder of this section deals with the optimisation of one of the algorithm's

parameters. The algorithm has a noise parameter (0.0 < noise < 1.0). The role of
noise is explained in detail in Chapter 2. To test the algorithm's performance scaling,
this parameter should be optimised if possible. To complicate matters, the optimal

noise setting at 50 % satisfiability depends on p, n and the measure being optimised.

For those instance collections where it was possible, we determined the noise setting

which was optimal to within 0.05, minimising the mean total number of flips to perform
all runs on each instance to completion2. We term this optimisation criterion "Mean

total flips". On three collections (p = 0.3, n — 25, 50,100) 100 runs per instance were

not enough to distinguish a clear noise optimum. This is because of the rare occurrence

within these collections of runs which are occasionally many times longer than typical

runs on typical instances. On these collections we found that if 2,000 runs per instance

were performed a clear noise optimum could be identified.

On certain collections (p = 0.3, n > 1000, p = 0.4, n > 500, p — 0.5, n > 500) it
was not feasible to allow all runs to complete and so instead we imposed a cut-off

run length large enough so as not to affect our measurement of the median mrl. On
these collections, since the cut-off prevented the measurement of Mean total flips, we

used the noise setting which minimised the median mrl (optimal to within 0.05) -

the optimisation criterion is "Median mrf. Data on optimal noise settings is given in

Table 5.2.

One possibility was to use the median mrl as the optimisation criterion for all settings

of p and n, particularly as we will use this measure to study cost scaling. However

this approach also has difficulties: for certain values of p and n the optimal noise value

using this criterion is very low. For example, Figure 5.1 shows the dependence of both
Median mrl and Mean total flips on noise for p — 0, n = 50. Note that the values

of noise which optimise median mrl and mean total flips are very different (0.05 and

0.65 respectively). This is because for these collections, a low-noise (i.e. greedy) search
solves the typical instances slightly more quickly, leading to a lower median. However,

2 So, for example, this is a different optimality criterion from that of McAllester et al. (McAllester
et al. 1997).

CHAPTER 5. LOCAL SEARCH ON RAND0M-2+P-SAT 114

p n Runs per Optimisation Optimal noise
instance criterion to within 0.05

0 25 100 Mean total flips 0.6

50 100 Mean total flips 0.65

100 100 Mean total flips 0.7

250 100 Mean total flips 0.75

500 100 Mean total flips 0.8

1000 100 Mean total flips 0.8

1500 100 Mean total flips 0.85

2000 50 Mean total flips 0.85

3000 30 Mean total flips 0.85

0.3 25 2000 Mean total flips 0.75

50 2000 Mean total flips 0.7

100 2000 Mean total flips 0.85

250 100 Mean total flips 0.75

500 100 Mean total flips 0.6

1000 50 Median mrl 0.8

1500 30 Median mrl 0.8

2000 30 Median mrl 0.8

0.4 25 100 Mean total flips 0.85

50 100 Mean total flips 0.9

100 100 Mean total flips 0.65

250 100 Median mrl 0.75

500 100 Median mrl 0.75

750 50 Median mrl 0.8

1000 50 Median mrl 0.75

1500 30 Median mrl 0.8

2000 30 Median mrl 0.8

0.5 25 100 Mean total flips 0.8

50 100 Mean total flips 0.85

100 100 Mean total flips 0.95
250 100 Mean total flips 0.75

500 50 Median mrl 0.75

750 50 Median mrl 0.75

1000 30 Median mrl 0.75

1500 30 Median mrl 0.7

1.0 25 100 Mean total flips 0.95

50 100 Mean total flips 0.8

100 100 Mean total flips 0.65

150 100 Mean total flips 0.6

200 50 Mean total flips 0.6

250 30 Mean total flips 0.55

Table 5.2: Optimal levels of noise for WSat/Novelty+ on random-2+p-SAT for
p — 0,0.3,0.4,0.5 and 1.0

CHAPTER 5. LOCAL SEARCH ON RAND0M-2+P-SAT 115

this low noise level is very detrimental to the harder instances (presumably because
search becomes trapped due to the greediness) and results in very poor performance
as measured by Mean total flips. Therefore we chose the noise level optimising Mean

total flips where possible. Either way, there was some evidence that the two optimal
noise levels for Median mrl and Mean total flips converge as n is increased and that
the optimum in each case is rather broad, so that small changes do not affect the gross

properties of the overall cost scaling.

Figure 5.1: Dependence of median mrl and mean total flips on noise for p = 0, n = 50.

5.4 WSat/Novelty+ on Random-2+p-SAT

In this section we present results of experimental tests of WSat/Novelty+ on the
instance collections described in Section 5.2.

CHAPTER 5. LOCAL SEARCH ON RAND0M-2+P-SAT 116

p n Median 95th perc. 99th perc. Mean run

mrl (3 s.f.) mrl (3 s.f.) mrl (3 s.f.) length (3 s.f.)
0 25 15 24.5 30 17.8

50 30 49.5 61.5 35.1

100 60 95 115 68.3

250 147 219 255 161
500 294 401 463 311

1000 562 746 862 591
1500 832 1,060 1190 863
2000 1,090 1,350 1,490 1,120
3000 1,590 1,950 2,130 1,630

0.3 25 18 31 43 30.6
50 36 73 138 101

100 82 189 682 297

250 208 801 9,310 3,890
500 464 6,560 54,600 30,400

1000 979 22,300 142,000 -

1500 1,580 54,700 481,000 -

2000 2,290 81,400 > 500,000 -

Table 5.3: Run length statistics for WSat/Novelty+ on Random-2+p-SAT for
p = 0,0.3

5.4.1 0 < p < 0.3: Typical cost appears to be a low polynomial

Some analytic results are known for this class of algorithm when p — 0 (Random-

2-SAT). Papadimitriou (Papadimitriou 1991) showed that for a simple random walk

algorithm also based on flipping variables in an unsatisfied clause, a run length of

0(n2) is sufficient to solve any 2-SAT instance with probability at least For p > 0,

RANDOM-2+p-SAT is NP-complete since any 3-SAT instance may constitute the prn

3-SAT clauses.

Table 5.3 gives experimental data for p = 0 and p = 0.3 on Random-2+p-SAT. As
well as Median mrl, we also give 95th and 99th percentiles of mrl and the mean run

length (for those collections where there was no cut-off). The data for the typical cost

for p = 0,0.3 is consistent with a dependence on n which is 0(nb) with b slightly less
than 1 for p = 0 and slightly more than 1 for p = 0.3.

For p — 0 a slightly sublinear growth is also observed for the 95th and 99th percentiles
and for the mean. This suggests that algorithms of this class may perform well on

CHAPTER 5. LOCAL SEARCH OIV RAND0M-2+P-SAT 117

2-SAT, or that instances requiring superlinear cost of the algorithms occur very rarely
in this generation method. The sublinear scaling may be an artifact of some aspect of
the methodology, for example the decreasing collection size.

For p = 0.3 the higher parts of the cost distribution apparently grow more quickly,

although these high percentiles were not stable enough to infer a growth function.
The more difficult instances appear to become so costly that they affect the growth of
the mean run length. The presence of these instances caused large variances in mean

run length which meant that more runs per instance were required for the smaller n.

Possible ramifications of the superlinear mean are that either the generation method

for 0 < p < 0.3 requires superlinear cost in the average case or that WSat/Novelty+
is a poor choice of algorithm at this level of p if all satisfiable instances are to be solved.
These hard but infrequent instances perhaps represent the hard "worst case" instances

predicted by the NP-completeness of R.andom-2+p-SAT when p > 0.

5.4.2 p = 0.4: Inconclusive results

The case when p — 0.4 is interesting as it is the current best lower bound for pq.

Also, the scaling of the complete algorithm Tableau has been observed to be linear
at this level of p. So, if the change in complexity is bounded below by po we might

expect good (polynomial) performance from WSat/Novelty+ at this point. On the
other hand even if the change in complexity is at po, local search might not be a good

choice of algorithm for random-2+p-SAT, and might yield poor (superpolynomial)

performance irrespective of the complexity of the problem. Figure 5.2 plots the typical

(median) mrl for the different values of p as n is increased. Certainly the median
mrl scales superlinearly at p = 0.4. Unfortunately, our results were inconclusive as

to whether the median cost scales superpolynomially. On a log-log plot of the same

data (Figure 5.3) there is a slight upward curve (suggesting superpolynomial scaling)
between n — 250 and n = 1500, but this does not continue to n = 2000. Only with

larger collection sizes, more runs per instance and a larger range of n will we be able
to observe whether or not the scaling here is superpolynomial.

CHAPTER 5. LOCAL SEARCH ON RAND0M-2+P-SAT 118

Figure 5.2: Typical cost for WSat/Novelty+ on Random-2+p-SAT.

CHAPTER 5. LOCAL SEARCH ON RAND0M-2+P-SAT 119

n

Figure 5.4: Typical cost for WSat/Novelty+ on Random-2+p-SAT, log scale.

5.4.3 0.5 < p < 1: Typical cost appears superpolynomial

The data in Figure 5.2 is consistent with a possible qualitative change in the scaling
nature between p = 0.3 and p = 0.5. The log-log scale (Figure 5.3) reveals a slight

upward curve for p > 0.5 suggesting that the scaling is superpolynomial. For p < 0.3

the typical cost is approximately a straight line (although for p = 0.3 there are some

small deviations on both sides), which confirms the polynomial dependence on n.

Plotting the growth for p > 0.5 on a log scale (Figure 5.4) gives a downward curve

which shows that it is (at least for this range of n) slower than a simple exponential.
This is similar to the experimental average case scaling results found by Parkes and

Walser for the closely related WSat/SKC algorithm (Parkes and Walser 1996). In
these two important respects (superpolynomial and sub-simple-exponential) scaling for

p = 0.5 and 1.0 is similar.

CHAPTER 5. LOCAL SEARCH ON rand0m-2+p-sat

5.5 Structure and cost in Random-2+p-SAT

120

The results from Section 5.4, along with Monasson et al.'s work on Tableau cost scal¬

ing are consistent with the notion that as p is increased, random-2+p-SAT acquires

a property around po which causes the generation method to require superpolynomial

computational cost to solve in the typical case. In this section we focus on the struc¬

tural properties which might distinguish the satisfiable instances at p = 0.3 from those

at p = 0.5. There is a clear difference in cost scaling between these two values of p.

The first structural property we consider in this section is the backbone size as defined

in Section 2.4.4. Monasson et al. (1999a) suggest that the average backbone size

(including in this average the backbone as defined for unsatisfiable instances) changes

discontinuously as m/n is varied in the limit for p > po- Presumably for p < po the

change is continuous, reflecting the continuous change in the satisfiability probability.
If this carries over to the satisfiable phase, the possibly different nature of the backbone

either side of po could be one reason for the differences in local search cost.

We calculated backbone sizes for the p = 0.3 and p = 0.5 collections introduced in

Table 5.1. The average bsize over each collection is plotted against n in Figure 5.5.

The data shows that the mean bsize at p = 0.5 is slightly larger for this range of n

than at p = 0.3. The median bsize over each collection is plotted in Figure 5.6. For

the median, there is no consistent difference between the backbone sizes.

As demonstrated experimentally by Parkes (1997), at p = 1, the distribution of back¬
bone sizes becomes bimodal for large n. As discussed in Section 2.4.4 random-3-SAT

satisfiable threshold instances are a mixture of large backbone instances (with bsize

around 0.9n) and instances with much smaller backbones. Monasson et al. (1999a)
also mention this and in addition report (although without giving data) that for p = 0

(Random-2-SAT) this bimodal pattern does not occur: rather there is a single peak
at a low value of bsize. This suggests that this bimodal feature may be connected to

the computational hardness of the generation methods.

In our backbone size data, evidence of a qualitative difference between the distributions

of bsize for p = 0.3 and p = 0.5 was inconclusive at best. Figure 5.7 gives histograms
of our bsize data with n ranging up to 1500. In each case the backbone sizes have been

CHAPTER 5. LOCAL SEARCH ON RAND0M-2+P-SAT 121

200 400 600 800 1000 1200 1400 1600 1800 2000
n

Average backbone size in RANDOM-2+p-SAT relative to n, p = 0.3,0.5.Figure 5.5:

SP
w
-a

c
aj
03

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

X p = 0.3
— x- - p = 0.5

200 400 600 800 1000 1200 1400 1600 1800 2000
n

Median backbone size in RANDOM-2+p-SAT relative to n, p = 0.3,0.5.Figure 5.6:

CHAPTER 5. LOCAL SEARCH ON RAND0M-2+P-SAT 122

n ^3 II o CO p = 0.5
Median Cost-typical Median Cost-typical

bsize mrl range bsize mrl range

(3 s. f.) (3 s. f.) (3 s. f.) (3 s. f.)
25 15.0 17.0 - 19.0 16.0 19.0 - 21.0

50 24.0 35.0 - 38.0 25.0 43.5 - 48.0
100 38.0 79.0 - 85.5 39.0 109 - 126
250 72.0 198 - 218 73.0 327 - 381
500 108 437 - 491 95.0 936 - 1,190

1000 176 1,110 - 1,340 149 3,870 - 6,160
1500 224 1,460 - 1,720 224 11,600 - 18,900

Table 5.4: Cost-typical instances for p — 0.3,0.5. The collection sizes were made equal
at each level of n. Note that the cost ranges do not overlap except for n = 25 and that
the costs of cost-typical instances are quite narrowly distributed around the median.

divided into 26 bins. Also, the frequencies have been normalised so that a uniform

distribution would have a frequency of 1 for all backbone sizes.

We note that the p = 0.3 distribution (on the left-hand side of the figure) remains

clearly unimodal as n increases. The p = 0.5 distribution (on the right-hand side) is
also unimodal, but becomes skewed, with a small number of medium-sized backbone

instances (bsize around 0.5n) persisting as n increases. It is possible that with larger
n the p = 0.5 distribution will prove to be bimodal, with the medium-sized backbone

instances forming a separate peak. However a bimodal distribution is not evident at

these levels of n and so cannot explain why the p — 0.5 instances are clearly harder in

the typical case as we have seen.

As discussed in Section 2.4.4, bsize is an important factor partly determining the local

search cost of an instance within a collection. However, there is also evidence that

the difference in mean bsize between p = 0.3 and p = 0.5 is not the cause of the

stark difference in typical cost. To establish this we focused on the "cost-typical"

portion of each collection. We ranked each instance in the collection by local search

cost as determined in Section 5.4. The cost-typical portion is the 10 % of the instance

collection whose costs lie in the centre of this ranking. Table 5.4 gives statistics on the
backbone sizes of the cost-typical portion instances at various settings of n and p.

The data suggest that for larger n, where the cost differences are greater, the backbones
of the p = 0.3 cost-typical instances are generally no smaller than those at p = 0.5

CHAPTER 5. LOCAL SEARCH ON RAND0M-2+P-SAT 124

even though they are much less costly. This would imply that backbone size is not the
reason that typical cost grows so much more quickly for p = 0.5.

In Chapters 3 and 4, we showed that a large backbone combined with backbone fragility
was a plausible cause of the high typical local search cost which appears near the

threshold in Random-3-SAT. If, for some stochastic generation method, the backbone
size changes discontinuously (as m/n is varied) we would expect to observe backbone

fragility: the removal of a small number of clauses will cause a finite fraction of im¬

plicate literals to be lost. We studied the effect on the backbone of removing clauses

from instances from the collections p — 0.5, n — 1000 and p = 0.3, n = 1000. We

progressively removed clauses from each instance, calculating the change in backbone
size as they were removed. Although the clauses were removed at random, this was

done so that the ratio of 2- to 3-clauses was preserved as far as possible in each case3.

Figure 5.8: The effect on mean backbone size of removing clauses from cost-typical
satisfiable threshold instances, n = 1000.

Figure 5.8 shows the effect on average backbone size of removing clauses from the cost-

typical instances. The original average backbone size (seen at 0 clauses removed) is very

3 This was done by removing a 3-clause if the current p was above the desired p and a 2-clause
otherwise.

CHAPTER 5. LOCAL SEARCH ON RANDOM-2+P-SAT 125

similar, but as we remove clauses the backbone decays much more sharply at p — 0.5

than at p = 0.3. The p = 0.5 instances are more backbone-fragile. This preliminary
result combined with the work from Chapters 3 and 4 suggests that backbone fragility

may also be the cause of the change in cost scaling between p = 0.3 and p = 0.5. The
same effect was also seen with respect to the number (rather than the proportion) of
clauses removed. An almost identical pattern is seen when data is averaged over all
satisfiable instances rather than just the cost-typical ones (as shown in Figure 5.9).

p = 0.3
p= 0.5

,n
£-O
c
CO
0)

E
0.08

g i i i i i i i i i
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Proportion of clauses removed

Figure 5.9: The effect on mean backbone size of removing clauses from all satisfiable
threshold instances n = 1000.

5.6 Summary

We tested the local search algorithm WSat/Novelty+ at optimal noise levels on

the Random-2 +p-SAT generation method. The experimental data suggested some

significant conclusions. Typical WSat/Novelty+ cost appears to scale as a low poly¬
nomial up to p — 0.3. However, solving all instances using this algorithm appears to be

costly for p > 0. For p = 0.4 the results were inconclusive: the scaling was superlinear,
but we could not determine whether it was superpolynomial. For p = 0.5 typical cost

appears to grow superpolynomially but more slowly than a simple exponential: in this

CHAPTER 5. LOCAL SEARCH ON RAND0M-2+P-SAT 126

sense cost scaling for p — 0.5 is similar to that for p = 1. The apparent cross-algorithm
nature of the change in typical cost scaling from low polynomial to superpolynomial

suggests that some 'hardness property' of instances may become common enough to

affect the median between 0.3 and 0.5. This may be near po which is predicted at

about 0.41.

We also reported on some experiments designed to identify the hardness property. The

average backbone size is larger for p = 0.5 than it is for p — 0.3. However, for cost-

typical instances and sufficiently large n, the backbone size is no smaller for p = 0.3

which suggests that this can be ruled out as the cause of high typical cost. We found

that the cost-typical instances are more backbone-fragile for p = 0.5 than for p = 0.3.

Our results are consistent with the hypothesis that the emergence of backbone fragility

causes the emergence of high typical cost.

Chapter 6

Local Search on

Not-all-equal 3-SAT

6.1 Introduction: When implicate literals are impossible

The evolution of the backbone as can be seen as the accumulation of implicate literals

as constraints are added. Our hypothesis from Chapter 4 proposes that aspects of an

instance's backbone (size and fragility) are important factors determining the difficulty
of instances for WSat.

However, in certain problems, literals are never implicates. For example, this was found

to be true of the underconstrained Random-3-SAT instances studied by Bayardo and

Schrag (1996). Their empirical study found that implicate literals do not emerge until
near the satisfiability transition. One other major reason for the lack of implicate

literals is symmetry in the solution set which arises because of structural regularities
in the instance. For example there has been a considerable amount of work encoding

quasigroup existence problems from finite mathematics into SAT and solving them

using SAT solvers e.g. Slaney et al. (1995); Zhang et al. (1996). These problems
are often such that for a given problem, if there is a solution, then there are other

essentially equivalent solutions to the problem which are obtained by symmetry. In
the usual SAT encodings of these problems, although a proposition may be true in one

solution, there will be another symmetric solution where the proposition is false. Such

propositions and their negations cannot therefore be implicate literals of these SAT
instances.

127

CHAPTER 6. LOCAL SEARCH ON NOT-ALL-EQUAL 3-SAT 128

So, if the backbone cannot include these propositions, how can our hypothesis, which

is based on the backbone, possibly generalise? The approach we take in this chapter is
to broaden the definition of the backbone. Rather than being based simply on literals,
which in certain SAT instance classes cannot be implicates, we allow the backbone to

be based on other kinds of constraints which can be implicates.

In this chapter we generalise our hypothesis to a problem which cannot have impli¬

cate literals. The problem is Not-All-Equal 3-SAT, in which implicate literals are

impossible, but which is otherwise similar in many respects to 3-SAT.

The remainder of this chapter is as follows. In Section 6.2 we introduce the Not-All-

Equal 3-SAT problem and the "double clause" encoding which represents a Not-

All-Equal 3-SAT instance as a 3-SAT instance. We also describe how the backbone

can be defined in the absence of implicate literals. In Section 6.3 we investigate the

behaviour of WSat/SKC on double clause encodings of random Not-All-Equal 3-
SAT instances and note certain patterns. In order to explain this behaviour, in Section

6.4 we formulate an analogous hypothesis to that put forward in Chapter 4. This is

based again on backbone fragility, but this time in terms of the new definition of the

backbone. We then test one important prediction of this hypothesis. Finally, Section

6.5 summarises the chapter.

6.2 Not-All-Equal 3-SAT

In this chapter we study the NP-complete Not-All-Equal (NAE) 3-SAT problem,
which is given by Garey and Johnson (1979) as follows:

Instance A set V of variables and a collection C of clauses over V such that each

clause has exactly 3 literals.

Question Is there a truth assignment for V such that each clause has at least one

true and at least one false literal?

Note that the only difference with 3-SAT is that as well as one true literal, there

must also be one false literal in every clause. Hence, moving from 3-SAT to NAE

CHAPTER 6. LOCAL SEARCH ON NOT-ALL-EQUAL 3-SAT 129

3-SAT we are changing simply the decision question. We will describe a CNF as being
NAE satisfiable if the answer to the NAE 3-SAT decision question is "yes" and NAE

unsatisfiable otherwise. Similarly we will talk of clauses being NAE (un)satisfied under

assignments and assignments NAE satisfying clauses. Assignments which prove an

instance to be NAE satisfiable are NAE solutions of the instance. Two instances are

NAE equivalent when every assignment is an NAE solution of one iff it is an NAE
solution of the other.

Recall from Section 2.4.4 that in SAT an implicate of an instance C is defined as any

clause c such that C -» c is valid. Equivalently, c is an implicate of C when any

assignment which is a solution of C also satisfies c. Similarly we may define NAE

implicates as follows. The clause c is an NAE implicate of the instance C when any

assignment which is an NAE solution of C also NAE satisfies c.

The NAE 3-SAT problem was suggested by Culberson (1999) as a test case for gen¬

eralisation of our hypothesis for the reason that it is similar to 3-SAT except for the

lack of implicate literals.

6.2.1 The "double clause" encoding of Not-All-Equal 3-SAT

We now show how an instance of NAE 3-SAT may be very simply encoded as an

instance of 3-SAT. The aim is to take an arbitrary instance of NAE 3-SAT C and

construct an instance of 3-SAT C' such that C' is satisfiable iff C is NAE satisfiable.

There are different possible encodings, but the double clause encoding has a particularly

useful property that each solution of the encoding C1 is an NAE solution of the NAE
3-SAT instance C.

Suppose C consists of clauses ci,... ,cm. Each clause c, in C is a disjunction of 3

literals In V la V la- Here, neg(l) denotes the negation of literal I as defined in Section
2.5.1. We start with C' as the empty formula. Then for each clause Cj in C we add two

clauses en and c*2 to C': en = In V la V la and ci2 = neg(Zji) V neg(la) V negfe).

For any assignment T, note that Cj is NAE satisfied under T iff both cn and ca are

satisfied under T. It follows not only that C' is satisfiable exactly when C is NAE

satisfiable, but also that T is a solution to C' exactly when T is an NAE solution to

CHAPTER 6. LOCAL SEARCH ON NOT-ALL-EQUAL 3-SAT

C.

130

6.2.2 Implicates and the backbone in Not-All-Equal 3-SAT

Observe that literals (clauses of length 1) can never be NAE satisfied. No matter what
value is assigned to the variable mentioned in the literal, it is never the case that the

literal contains both a true and a false literal. This means that if an instance C is

NAE satisfiable, any literal c cannot be an NAE implicate of C.

However, there are some simple properties which may be implicates of NAE satisfiable

instances, for example 2-clauses. As we shall see, these can be used to define a back¬

bone. This method of generalising the backbone was identified first in graph colouring

by Joe Culberson and Ian Gent (Culberson and Gent 2000).

In NAE SAT, 2-clauses are essentially disequality relations between literals. The mean¬

ing of the clause l\ V l<2 in the NAE SAT context is that the literals l\ and I2 must have

different values. The clause is NAE satisfied precisely by assignments under which l\
takes the opposite value to A The clause l\ V neg^) is the negation of this: it asserts

that l\ and 12 have the same value as it is NAE satisfied precisely when l\ V I2 is NAE

unsatisfied.

As an example of how a 2-clause can be an NAE implicate of an NAE satisfiable

instance, consider the instance of NAE 3-SAT below.

xV y V z

rVj/V-iz

This is a NAE satisfiable instance of NAE 3-SAT. An example NAE solution to this

instance sets x true, y false and z true. The clause x V y (which in the NAE context

asserts that x and y must take opposite truth values) is an NAE implicate of the above
instance. To demonstrate this, we add the negation x V ->y to the formula and show
that this results in NAE unsatisfiability. Adding this clause gives:

xVyV z

x V y V -iz

CHAPTER 6. LOCAL SEARCH ON NOT-ALL-EQUAL 3-SAT

x V ->y

131

This is now NAE unsatisfiable. To see this, observe that due to the third clause, we

must set x and y to the same truth value, t\ say. Let t2 be the opposite truth value. By

the first clause, the three variables must not have the same truth value and so z must

be set to the value opposite to the one given to x and y, so we set 2 to U- But this then

contradicts the second clause which, given that x and y are both set to t\, effectively

requires z also to be set to t\. Since adding x V causes NAE unsatisfiability, the

clause x V y must be an NAE implicate of the original instance.

This example also demonstrates that testing whether a disequality between literals

is an NAE implicate of an NAE SAT instance is straightforward: we add the clause

requiring equality between the literals to the formula and test whether it is then NAE

unsatisfiable.

What is less clear, given the set of NAE implicate disequalities of the instance, is how

to define the backbone size. One possibility is simply the number of possible NAE

implicate disequalities which are actual NAE implicates. This is analogous (although
it is not the only analogy) to the backbone size in SAT, which is the number of possible

implicate literals which are actual implicates. One problem with this is that in NAE

3-SAT, as the set of NAE implicates evolves when clauses are added, many NAE

implicate disequalities appear due to transitivity. For example if l\ V I2 and I2 V I3

are NAE implicates, then l\ V neg^) must also be an NAE implicate by transitivity.

Using this interpretation of backbone size may give us a view of the evolution of the

backbone which is heavily influenced by transitivity.

An alternative which we use was advocated by Culberson and Gent (2000) in the
context of graph colouring. This avoids the effect on the backbone of transitivity.

Suppose the clause l\ V h is an NAE implicate of an NAE 3-SAT instance. This

dictates that l\ and I2 must take different values, or that l\ always equals neg(^)- Given
this NAE implicate, we can eliminate 1% and its negation entirely from the instance.

We replace all occurrences of I2 with neg(Zi) and all occurrences of neg(U) with l\.
The resulting formula must be NAE equivalent to the original and must mention one

fewer variables. We continue eliminating variables in this way according to disequality

CHAPTER 6. LOCAL SEARCH ON NOT-ALL-EQUAL 3-SAT 132

NAE implicates until no more variables can be eliminated. The backbone size is then

defined as the number of variables which can be eliminated because of NAE implicate

disequalities. This is also a valid analogy with the backbone in SAT, which can be
seen as the number of variables which can be eliminated because of implicate literals.

The backbone size ranges from 0 to n — 1 as the last variable can never be eliminated.

The backbone size according to this method is not affected by transitivity. If l\ V U is

an NAE implicate, we must eliminate either l\ and its negation or I2 and its negation.
Either way, the clauses I2 VI3 and l\ V neg(I3) are then NAE equivalent and so it is not

the case that if one of these is an NAE implicate, we also have a third distinct NAE

implicate because of transitivity.

The backbone size defined as the maximal number of variables which can be eliminated

due to NAE implicates is independent of the order in which the variable eliminations

are performed. The NAE implicates are equality and disequality relations between

variables which respect the axioms of equality and disequality given that the instance

is satisfiable. The variables therefore form subsets such that between any two variables

in different subsets, there are no equality or disequality relations. Each subset is divided

into two halves, each variable is constrained to be equal to every variable in the same

half and constrained to be not equal to every variable in the other half. Figure 6.1

illustrates this situation. The nodes are variables and the edges denote equality and

disequality relations as labelled. The dashed lines indicate subsets divided into halves.

We only merge literals whose variables appear in the same subset, so the elimination

procedure stops when each subset contains exactly one variable. Whichever order the

variables are eliminated in, the number eliminated is the same: the total number of

variables minus the number of subsets.

6.2.3 Determining the backbone in Not-All-Equal SAT

We now give some notes on the procedure we developed to determine the backbone of

an NAE SAT instance. As in SAT, the basic idea is to begin with a set of possible

NAE implicates and attempt to confirm or eliminate each of these. There are n(n - 1)

possible disequality NAE implicates, so it is important for the sake of efficiency to

CHAPTER 6. LOCAL SEARCH ON NOT-ALL-EQUAL 3-SAT 133

Figure 6.1: Equality and disequality relations between variables in an NAE SAT in¬
stance.

reduce this where possible when determining the backbone of an NAE SAT instance.

Our method uses two principles to do this:

1. Once a disequality NAE implicate is established, the associated variable elimi¬

nation is carried out immediately and all future searches use instances with this

variable eliminated. All possible NAE implicates which mention the eliminated

variable are disregarded, since these are NAE equivalent to other possible NAE

implicates.

2. If an NAE solution to the instance is found during an attempt to establish an

NAE implicate, this NAE solution may be used to eliminate certain disequality

NAE implicates. For example if the NAE solution makes l\ and U equal, the

possible NAE implicate l\ V I2 may be eliminated.

Pseudocode for the Determine-NAE-BACKBONE algorithm is given in Figure 6.2.

It assumes we have a procedure NAE-solution which takes an NAE instance and

returns a NAE solution cylinder if there is one. In practice, this subroutine runs

DPLL-solution on the double clause encoding of the NAE SAT instance.

CHAPTER 6. LOCAL SEARCH ON NOT-ALL-EQUAL 3-SAT 134

procedure Determine-NAE-BACKBONe(C)
Ctemp = C
V := the set of variables of C
Backbonesize := 0

Possible-NAE-implicates := 0
for each pair of distinct variables (x, y) 6 V x V

Possible-NAE-implicates := Possible-NAE-implicates U {x V y, x V ->y}
end for
while Possible-NAE-implicates ^ 0

Current-NAE.implicate := a member of Possible-NAE-implicates
Remove Current-NAE-implicate from Possible-NAE-implicates
Ctest Ctemp A the negation of Current-NAE-implicate
if NAE-SOLUTlON(CfeS{) returns a solution cylinder Tcyi

for each clause Clause 6 Possible-NAE-implicates
if there is some extension Tsoi of Tcyi such that Clause is

NAE unsatisfied under Tsoi
Remove Clause from Possible-NAE-implicates

end if
end for

else

l\ := first literal of Current-NAE-implicate
I2 := second literal of Current-NAE-implicate
Ctemp Ctemp with 12 substituted by neg(Zi) and neg(/2) substituted by l\
Backbonesize := Backbonesize + 1

end if

end while

return Backbonesize

Figure 6.2: The Determine-NAE-BACKBONE procedure.

CHAPTER 6. LOCAL SEARCH ON not-all-equal 3-sat 135

6.3 WSat/SKC on Not-all-equal Random-3-SAT

The remainder of this chapter attempts to extend our hypothesis about WSat/SKC
cost to the NAE 3-SAT problem. We use Random-3-SAT instances generated ex¬

actly as in previous chapters, but interpreted as instances of NAE 3-SAT. We refer to

these as NAE Random-3-SAT. We tried where possible to reproduce the experimental

conditions which were used in Chapters 3 and 4.

6.3.1 The satisfiability threshold in Not-all-equal Random-3-SAT

Our hypothesis relates to satisfiable random instances at the threshold of satisfiability

and so the first task was to establish the location of the NAE satisfiability threshold.

An upper bound which in other problems has been found to be close to the true

threshold is established by considering the expected number of solutions (Gent et al.

1996).

Assuming that there is an asymptotic threshold in NAE satisfiability, setting the ex¬

pected number of NAE solutions equal to 1 gives an upper bound on the location of
the asymptotic threshold. In NAE 3-SAT each of the m clauses is NAE satisfied by
three quarters of the 2™ assignments so we have:

Expected no. of NAE solutions = 1

(!)So we have 2"(f)m = 1

Re-arranged, this gives:

f = = 2.4096n log2(4)

To experimentally determine the threshold location we set n = 100 and varied ~

between 1 and 3 in steps of 0.01 (i.e. one clause). We used 5000 instances at each

point to give an estimate of the probability of NAE satisfiability. Figure 6.3 shows this
estimate as a function of At this level of n, the whole number of clauses nearest

to the point of 50% NAE satisfiability was 205, where 48.98% of instances were NAE
satisfiable.

CHAPTER 6. LOCAL SEARCH ON NOT-ALL-EQUAL 3-SAT 136

Figure 6.3: Probability of NAE satisfiability, n = 100.

6.3.2 The evolution of backbone size in NOT-ALL-EQUAL RANDOM-3-
SAT

We also needed a detailed picture of how backbone size evolves near the threshold in

Not-all-equal Random-3-SAT, so we conducted some experiments to determine

this. Figures 6.4, 6.5 and 6.6 show the evolution of backbone size as m/n is increased

through the point of 50% solvability (2.05). We set m/n at 1.95, 2.05 and 2.15. We
used 10,000, 50,000 and 50,000 instances respectively. The large backbone sizes at

the higher levels of m/n meant that more variables and possible implicates could be
eliminated and so more data could be collected. The histograms have been normalised
so that a uniform distribution would be level at 1.0.

There are some similarities with the analogous sequence of distributions in Random-

3-SAT (see Figure 2.10) and also differences. Remarkably, in both sequences a mode
of the distribution appears near 0.9n. However, in NAE random-3-SAT this group

of instances is more numerous at the point of 50% solvability, where there are very

few small-backbone instances. In NAE Random-3-SAT, at n = 100, the "leap" in

backbone size occurs at a more underconstrained point relative to the threshold than

in Random-3-SAT. There seems to be no evidence of a weak secondary peak such as

CHAPTER 6. LOCAL SEARCH ON NOT-ALL-EQUAL 3-SAT 137

5 -

4.5 -

4 -

>,3.5-

Backbone size

Figure 6.4: Backbone size distribution in NAE Random-3-SAT, n = 100, m — 195.

5.5 i i i i i i i i i

5 -

4.5 -

4 -

Backbone size

Figure 6.5: Backbone size distribution in NAE Random-3-SAT, n = 100, m = 205.

that observed by Parkes (1997), so that could be peculiar to Random-3-SAT, or it

may only emerge at higher levels of n.

CHAPTER 6. LOCAL SEARCH ON NOT-ALL-EQUAL 3-SAT 138

0 10 20 30 40 50 60 70 80 90 100
Backbone size

Figure 6.6: Backbone size distribution in NAE Random-3-SAT, n = 100, m = 215.

6.3.3 Tuning the noise parameter

Recall that the experiments from Chapters 3 and 4 used a noise setting for WSat/SKC
which was found by Hoos (1998) to be optimal for threshold random-3-S AT instances.

Similarly we used threshold NAE random-3-SAT instances (m/n = 2.05) to opti¬
mise the noise parameter for the NAE 3-SAT problem. We generated double clause

encodings of 5,000 NAE satisfiable instances at the NAE Random-3-SAT threshold

and performed 1,000 runs of WSat/SKC on each of these, at noise levels varying from
0.3 to 0.7 in steps of 0.05. The restart mechanism was not used. A solution was found

in every run.

Figure 6.7 shows the dependence of cost on the noise setting. The solid line is the
mean over all 5,000 instances of the mean run length for each instance and the dashed

line is the median over all 5,000 instances of the mrl for each instance. In both cases

the optimum is at 0.55. Interestingly this is the same as the threshold optimum in

Random-3-SAT, which may indicate a degree of similarity between the WSat/SKC
search spaces induced by the two problems.

CHAPTER 6. LOCAL SEARCH ON NOT-ALL-EQUAL 3-SAT 139

12000

o 6000

10000

8000

Mean mean run length
Median mrl

4000

2000

0.35 0.4 0.45 0.5 0.55
Noise level

0.6 0.65 0.7

Figure 6.7: Dependence of WSat/SKC cost on the noise parameter setting for double
clause encodings of NAE satisfiable threshold NAE Random-3-SAT instances.

6.3.4 Cost with backbone size controlled

For the remainder of this chapter we study NAE Random-3-SAT instances with

backbone size controlled, following our methodology from earlier chapters. The re¬

sults from Section 6.3.2 show that the backbone transition in this problem occurs at a

more underconstrained location than in Random-3-SAT. So, in the overconstrained

region of NAE Random-3-SAT, small-backbone instances are extremely rare. In ad¬

dition, because of the n(n — 1) possible implicates, determining the backbone in NAE
Random-3-SAT is considerably more computationally expensive than in Random-3-

S AT. However we wanted to study the properties of small, medium and large backbone
instances as m/n is varied near the threshold. This made necessary certain compro¬

mises. Firstly we reduced the sample size to 500 instances. Secondly we studied a

region of the control parameter range which is slightly more underconstrained than
that which was studied in random-3-SAT, since we needed a region where a range

of backbone sizes were frequent. Thirdly we studied only 3 values of m/n rather than
the 8 studied in random-3-SAT. Details of the backbone controlled instances used

are given in Table 6.1.

CHAPTER 6. LOCAL SEARCH ON NOT-ALL-EQUAL 3-SAT 140

n m/n Backbone size No. of instances

100 1.94 (90% NAE satisfiable) O.ln 500

0.5n 500

0.9n 500

100 2.00 (70% NAE satisfiable) O.ln 500
0.5n 500

0.9n 500

100 2.05 (50% NAE satisfiable) O.ln 500

0.5n 500

0.9n 500

Table 6.1: Details of backbone controlled NAE 3-SAT instance collections

We collected cost data for the WSat/SKC algorithm on double-clause 3-SAT en¬

codings of the controlled backbone size instances. We used the noise setting of 0.55

established in Section 6.3.3 and 1000 runs per instance, with no restart mechanism. A

solution was found in every run. Our cost measure for each instance was the mrl of
these 1000 runs. Figure 6.8 shows the dependence of median mrl on m/n with the back¬
bone size controlled at different values. The bars at each point give the interquartile

range.

We compare this data with that presented in Figure 3.3 to determine which patterns of
cost behaviour carry over to NAE random-3-SAT. The overall range of cost is similar,

suggesting that the double clause encodings of these NAE Random-3-SAT instances
are neither easier nor harder for WSat/SKC than their Random-3-SAT counterparts.

The data is also consistent with an exponential decay in cost for controlled backbone

size but there are clearly too few points to extrapolate this. We observe a similar

positive effect of backbone size: in this case the effect may be larger as there is a

greater difference between the cost of medium and large backbone sizes.

We observe a large variation in cost for large backbone size instances, but the variation

is not quite so large for small and medium backbone sizes. Overall, the cost patterns

are very similar to those in Random-3-SAT.

CHAPTER 6. LOCAL SEARCH ON NOT-ALL-EQUAL 3-SAT 141

-a— backbone size = 0.9 n
-*— backbone size = 0.5 n
-e— backbone size = 0,1 n

1.92 1.94 1.96 1.98 2 2.02 2.04 2.06 2.08
m/n

Figure 6.8: Dependence of WSat/SKC cost (median mrl) on m/n for instances with
backbone size controlled at different values. The instances are double clause 3-SAT

encodings of the backbone controlled NAE Random-3-SAT instances. The length of
the bars is the interquartile range (25th - 75th percentiles).

6.4 Explaining cost behaviour in NAE Random-3-SAT

Given the similar cost patterns in NAE RANDOM-3-SAT we now consider whether

these can be explained using a similar explanation to that given in Chapters 3 and 4

for Random-3-SAT.

6.4.1 Cost and the number of solutions

Recall that for the random-3-SAT problem we investigated in Chapter 3 the extent

to which the number of solutions accounts for the unexplained variation in cost. The

number of solutions accounted for most of the variation for small backbone instances,

but with increasing backbone size, the number of solutions accounted for less variation.

Here we used our solution-counting software on the double clause 3-SAT encodings of
the NAE SAT instances, since these have the same number of solutions as the NAE SAT

instances themselves. Figure 6.9 shows three log-log plots of the number of solutions

against cost where m/n is 2.05 and backbone size is O.ln, 0.5n and 0.9n. A linear least

CHAPTER 6. LOCAL SEARCH ON NOT-ALL-EQUAL 3-SAT 142

squares regression (Isr) fit is superimposed where appropriate. Summary data on the

log-log correlations for all the instance sets is given in Table 6.2.

m/n Backbone Intercept Gradient r Rank corr.

size of Isr fit of Isr fit coefficient

(3 s. f.) (3 s. f.) (3 s. f.) (3 s. f.)
1.94 10 3.66 -0.149 -0.737 -0.719

50 3.69 -0.117 -0.531 -0.514
90 4.13 -0.100 -0.106 -0.112

2.00 10 3.49 -0.130 -0.700 -0.680

50 3.55 -0.102 -0.465 -0.451

90 3.86 -0.0391 -0.0461 -0.0608

2.05 10 3.44 -0.128 -0.717 -0.693

50 3.45 -0.0949 -0.459 -0.418

90 3.81 -0.0538 -0.0584 -0.0553

Table 6.2: Data on log-log correlations between number of solutions and WSat/SKC
cost for NAE Random-3-SAT backbone controlled instances.

The pattern is the same in important ways to that in RANDOM-3-SAT. The number

of solutions accounts for much of the cost variation for small backbone instances but

much less for large backbone instances. There is no clear change in the r values as

m/n is varied.

6.4.2 Cost and backbone fragility in NAE Random-3-SAT

We now examine the extent to which the variation in cost for large backbone instances

and the decay in cost for backbone controlled instances near the threshold in NAE
Random-3-SAT can be explained in terms of backbone fragility.

Recall that in Chapter 4 we measured backbone robustness in RANDOM-3-SAT using

tbbr. Preliminary experiments with the NAE analogue of the tbbr metric indicated that

establishing this with any accuracy on our NAE 3-SAT instances was too computa¬

tionally expensive to be practical. This is because of the very large number of possible

implicate disequalities in NAE 3-SAT. We therefore switched to an alternate measure

of backbone fragility called fixed fraction removal based backbone fragility (jfrbbf). This
was a feasible compromise, but measurements were still very computationally expen¬

sive.

CHAPTER 6. LOCAL SEARCH ON NOT-ALL-EQUAL 3-SAT 143

m/n = 2.05, backbone size = 0.1 n

number of solutions

m/n = 2.05, backbone size = 0.5 n

number of solutions

Figure 6.9: Log-log scatter plots of number of solutions against cost for NAE Random-
3-SAT threshold (m/n = 2.05) instances with backbone size controlled at O.ln (top)
0.5n (middle) and 0.9n (bottom).

CHAPTER 6. LOCAL SEARCH ON NOT-ALL-EQUAL 3-SAT 144

The ffrbbf metric is calculated as follows. Suppose a fixed fraction of the clauses of an

instance are removed at random. There is a reduction in backbone size (possibly zero)
due to the removal of these clauses. This is because some implicates of the full instance

are not implicates of the reduced instance, ffrbbf is defined as the mean reduction in

backbone size averaged over all possible choices of removed clauses. In all experiments

reported in this chapter we removed 2.5% of the clauses i.e. 5 clauses in our range

of m/n (we rounded to the nearest whole clause). It was not feasible to examine all

possible choices of removed clauses so we estimated ffrbbf by sampling, using the same

statistical methods as those used in Section 4.2.2. We used at least 100 samples on

each instance and in order to ensure a reasonably accurate estimate, we continued to

take more samples until the standard error was less than 0.05 x the sample mean. In

this case our estimate of the population mean from the sample mean is accurate to

within about 10% at the 95% confidence level, under the assumption that the sample

mean is normally distributed.

Figure 6.10 shows the change in median ffrbbf a,s m/n is varied. As expected, controlled
backbone instances instances become less backbone fragile as m/n is increased. This is
one important similarity with the situation in Random 3-SAT. One difference is that

at m/n = 2.00, 2.05 backbone fragility is greater for medium-sized backbone instances
than for large backbone instances. This may be a result of the change from tbbr to

ffrbbf or it may be due to a difference between the two problems.

We now examine the relationship between ffrbbf and cost with backbone size controlled

and m/n fixed. Figure 6.11 shows a scatter plot of ffrbbf against log of WSat/SKC
cost for three backbone sizes at the threshold (m/n = 2.05). Table 6.3 gives summary

data for the correlations in all collections of NAE 3-SAT instances, including rank

correlations and confidence intervals obtained using the bootstrap method as in Section
4.3.3.

A similarity with the random-3-SAT case is that for large backbone instances there
is a moderate correlation with r values around 0.5. Note that the existence of this

correlation is a key correct prediction of the hypothesis that the decay in backbone

fragility underlies the decay in cost. One difference with the Random-3-SAT case

is that there is also a correlation for medium and small backbone instances which is

CHAPTER 6. LOCAL SEARCH ON NOT-ALL-EQUAL 3-SAT 145

m/n

Figure 6.10: Plot of median ffrbbf as m/n is varied for NAE Random-3-SAT instances
with backbone size controlled at O.ln, 0.5n and 0.9n.

possibly stronger than that for large backbone instances. Again, this may be apparent

because of the change in our measure of backbone fragility or it may be a difference
between the two problems.

m/n Backbone Intercept Gradient r J," 9570 r+95% Rank corr.

size of Isr fit of Isr fit coefficient

(3 s. f.) (3 s. f.) (3 s. f.) COCO (3 s. f.) <+-3COCO

1.94 10 2.34 0.0646 0.610 0.552 0.666 0.590
50 2.80 0.0124 0.666 0.614 0.713 0.660

90 3.52 0.0108 0.553 0.490 0.615 0.565

2.00 10 2.42 0.0521 0.538 0.474 0.590 0.532

50 2.80 0.0120 0.671 0.621 0.718 0.665

90 3.54 0.00950 0.440 0.364 0.510 0.447

2.05 10 2.42 0.0510 0.557 0.497 0.615 0.550

50 2.77 0.0129 0.661 0.612 0.706 0.647

90 3.42 0.0139 0.534 0.478 0.595 0.532

Table 6.3: Data on correlations between ffrbbf and log of WSat/SKC cost for NAE
Random-3-SAT backbone controlled instances.

CHAPTER 6. LOCAL SEARCH ON NOT-ALL-EQUAL 3-SAT 146

m/n = 2.05, backbone size = 0.1 n

9... °o.c
o

r°°^
o 9>

?6'£<^e
o g), <3# o'<P"#c

© °

<£)3reS® o....

9....Q
o

bpo

ffrbbf

m/n = 2.05, backbone size = 0.5 n

o

o °-^

o

Wf[8° °o
llsp°

I&
^^:g;c

?° <>
n OP °o Oj

^6°0 0

r^"°

o

ffrbbf

Figure 6.11: Scatter plot of ffrbbf against log of WSat/SKC cost for NAE Random-
3-SAT threshold (m/n = 2.05) instances with backbone size controlled at O.ln (top)
0.5n (middle) and 0.9n (bottom).

CHAPTER 6. LOCAL SEARCH ON NOT-ALL-EQUAL 3-SAT

6.5 Summary

147

In this chapter we have attempted to extend our hypothesis from Chapter 4 about

WSat cost at the satisfiability threshold to a new domain: the Not-All-Equal 3-

SAT problem. The important feature of this problem is that unlike in 3-SAT, instances

of NAE 3-SAT cannot have implicate literals. This forced us to generalise our definition
of the backbone so that it is meaningful in NAE 3-SAT. Using a method based on

that of Culberson and Gent, we gave a revised definition of the backbone which applies

to NAE 3-SAT. The results of our experiments with WSat/SKC on NAE random-
3-SAT showed some key similarities with those on Random-3-SAT from earlier in

the thesis. For backbone controlled instances, cost is highest in the underconstrained

region and decays as m/n is increased If m/n is fixed, there is a large variation in cost

for these instances. We proposed that as in Random-3-SAT, backbone fragility is

the cause of high cost for the harder large backbone instances. This hypothesis makes

a correct prediction, that backbone fragility accounts for a significant portion of cost

variation for large backbone instances with m/n fixed - another similarity with the
random-3-SAT case. Some other results were different from the random-3-SAT

case. These may have resulted from the different measure of backbone fragility which

was used, or they may be due to a genuine difference between the two problems.

Chapter 7

Conclusions and Further Work

In this last chapter we summarise the implications of the research work presented in

the thesis and give suggestions for future work.

Recall that the aim of the thesis was to explain WSat behaviour on random SAT

instances. By elucidating this behaviour we developed a speculative account of the
behaviour of WSat and, inspired by this, a featural theory centred around the new

concept of backbone fragility. This theory is the major contribution of the thesis. Sec¬

tion 7.1 summarises the speculative account of behaviour, the featural theory and the

evidence for it. Sections 7.2 and 7.3 suggest areas of further work where research could

build on the thesis results, emphasising particularly where the theory complements the

results of other work. Section 7.4 is a brief epilogue.

7.1 The contribution of the thesis

Our summary of the contribution of the thesis is divided into two sections. In Section

7.1.1 we summarise our speculative account of the behaviour of WSat on Random-3-

SAT threshold instances. In Section 7.1.2 we summarise the featural theory and give

pointers to evidence for the theory which has been presented earlier in the thesis.

7.1.1 A speculative account of WSat behaviour

Here we summarise our own intuitions about the behaviour of WSat at the threshold

of Random-3-SAT, purely to illustrate how the featural theory originated. We should

148

CHAPTER 7. CONCLUSIONS AND FURTHER WORK 149

emphasise that the propositions in this section are much more conjectural than those

in the following section.

1. We speculate that WSat cost on a Random-3-SAT instance is largely deter¬

mined by the likelihood of the algorithm to be at a low Hamming distance from a

solution shortly after the early hill-climbing part of the search. We think that in

the second, longer plateau-like phase, WSat is unguided towards the solutions
and is searching blindly among the quasi-solutions. So we think the length of the

second phase will be largely determined by the Hamming distance between the

algorithm's position and a solution at the end of the hill-climbing phase.

2. We conjecture that if solutions are widely-distributed, since this means they

occur in different regions, a solution is likely to be present near the random

initial assignment. Hill-climbing is then likely to position the search near to a

solution and the plateau-like phase will be shorter. On the other hand, we think

that if solutions are narrowly-distributed, the random initial assignment is not

likely to be near to the solutions and so hill-climbing may (depending on other

features of the instance) position the search at a point distant from the solutions,

causing the plateau-like phase to be longer.

3. We speculate that on Random-3-SAT threshold instances, the number of vari¬

ables not mentioned in the backbone corresponds to a large extent to the average

Hamming distance between pairs of solutions, which is one measure of how widely

distributed the solutions are. This is why we think that small-backbone instances

are easier than large-backbone instances.

4. For small-backbone Random-3-SAT instances, the extent to which solutions

are widely-distributed presumably varies. There is probably more variation in

this factor in small-backbone instances than in large-backbone instances. We

speculate that for random-3-SAT instances of a given backbone size the number
of solutions corresponds to how widely-distributed solutions are.

5. We speculate that the large differences in WSat cost between large backbone

instances are not due to differences in how widely solutions are distributed. We

think that large backbone instances can have other features which, if present,

CHAPTER 7. CONCLUSIONS AND FURTHER WORK 150

cause WSat to initially hill-climb to assignments that are Hamming distant
from the solutions, so hindering search success. It is the presence or lack of these

features which accounts for the differences in search cost, rather than how widely

solutions are distributed.

6. We speculate that the immediate cause of cost variation in large-backbone in¬

stances is variation in the extensiveness of the quasi-solution area. We think that

when the quasi-solution area is extensive, cost is high because hill-climbing from
a random initial assignment is ineffective1. We think that hill-climbing is ineffec¬

tive in this case because quasi-solutions are available at locations Hamming-near
to the initial assignment, and these are more readily visited. The plateau phase

then begins with the current assignment still at some Hamming distance from
the nearest solution. When the quasi-solution area is less extensive, cost is lower

because the hill-climbing phase, though longer, is more effective and ends at a

quasi-solution which is Hamming-near a solution.

7. We speculate that in Random-3-SAT, just as we think backbone size corre¬

sponds to how widely distributed solutions are, backbone fragility corresponds

to how widely distributed quasi-solutions are compared to solutions. This is

why we think that backbone fragility represents the cause of cost variation in

large-backbone instances.

7.1.2 The backbone fragility theory of WSat cost

The above intuitions led us to the formulation of backbone fragility as part of our

featural theory which predicts WSat's behaviour on Random-3-SAT threshold in¬

stances. A substantial part of the work was dedicated to testing this theory. The main

points of the featural theory are summarised here (in italics), along with pointers to

the evidence from the thesis and from other work which supports each theory element.

1. Among satisfiable instances, as m/n is increased, there is a transition from small-
to large-backbone instances near the satisfiability threshold . Evidence: Parkes

1 This assumption could feasibly be checked using experiments, although this was not done as part
of our work.

CHAPTER 7. CONCLUSIONS AND FURTHER WORK 151

(1997).

2. Backbone size is positively correlated with cost near the threshold. Evidence:

Parkes (1997), and data in Section 3.3.3.

3. Near the threshold, for instances of a given backbone size, cost decays as m/n is
increased. Evidence: Parkes (1997), and data in Section 3.3.3.

4. Near the threshold, if m/n is fixed, for instances of a given backbone size there
is a large variation in cost. Evidence: data in Section 3.3.3.

5. For instances of a small given backbone size near the threshold, if m/n is fixed,
variation in cost is accounted for by variation in the number of solutions. Evi¬

dence: data in Section 3.3.4.

6. For instances of a large given backbone size near the threshold, if m/n is fixed,
variation in cost is not accounted for by variation in the number of solutions.

Evidence: data in Section 3.3.4.

7. For instances of a large given backbone size near the threshold, if m/n is fixed,
variation in cost is caused by variation in a factor represented adequately by

backbone fragility. This causal hypothesis makes three correct predictions which

we tested in Chapter 4:

(a) For instances of a large given backbone size, if m/n is fixed, variation in

cost is accounted for by variation in backbone fragility. Evidence: data in

Section 4.3.

(b) If Random-3-SAT instances are altered so as to become more backbone

fragile, their cost increases. Evidence: data in Section 4.5.

(c) If the size of the backbone is highly dependent on the presence of a clause,
then the clause will be more often unsatisfied during search than average.

This is a prediction of the model of search which motivated backbone

fragility. Evidence: data in Section 4.6

8. The backbone fragility theory can be applied to explain WSat cost behaviour in

different scenarios:

CHAPTER 7. CONCLUSIONS AND FURTHER WORK 152

(a) The WSat cost peak in random-3-SAT instances. The evidence for this

is summarised in Section 4.8.

(b) The difference in WSat cost between cost-typical random-2+p-sat thresh¬
old instances at different values of p. Preliminary experiments in Section

5.5 indicated that a plausible explanation for this difference is backbone

fragility.

(c) Differences in WSat cost in double-clause encodings of (NAE) Random-
3-SAT instances when backbone size is large and m/n is fixed and the fall
in cost when m/n is varied. Evidence that backbone fragility causes this

appears in Section 6.4.2. The results from Chapter 6 are also evidence

that the theory generalises to threshold instances of at least one constraint

problem where the definition of the backbone must be broadened.

7.2 Extending knowledge about hard instances

This section outlines suggestions for further work possibilities, focusing on promising

ways in which our knowledge about the nature of hard instances could be extended in

the light of the new results from this thesis and other recent work.

This thesis has concentrated on a single algorithm and a rather narrow range of problem

instance types. Ultimately we would like to understand the operation of many different

search algorithms on as broad a range of instances as possible.

WSat is just one of a vast array of techniques which has been applied to the SAT

problem. Many other techniques have radically different architectures and so it will be

necessary to see what elements of the theory apply to these. Sections 7.2.1 and 7.2.2

suggest two initial directions which could be followed for this purpose.

The random-£;-SAT model, although it appears to be universally hard, is in some

respects unrepresentative. For example, in real world SAT instances, it may be that

clauses are likely to be of different lengths and that clauses involving one particular set

of variables are more likely to appear than clauses involving another set. Therefore, it

will be important to find out which results from this domain generalise to other kinds

of problem instance and which do not. Section 7.2.3 suggests an area where research

CHAPTER 7. CONCLUSIONS AND FURTHER WORK

towards this objective could begin.

153

7.2.1 A cross-algorithm explanation of hard instances

Gent and Walsh (1996) looked at the probability that an unsatisfiable random SAT
instance (not Random-3-SAT in this case) became satisfiable if a fixed number of
clauses are removed at random. The unsatisfiable threshold instances which had the

highest computational cost for their version of DPLL were found to be those which

were unsatisfiability-fragile - their unsatisfiability was sensitive to the random removal

of clauses. It may therefore be that the fragility of an instance's unsatisfiability is

correlated with computational cost of unsatisfiable threshold instances for complete

procedures such as DPLL.

Recent work such as that by Mammen and Hogg (1997) and Culberson and Gent

(2000) has suggested that the cause of hard instances for complete algorithms at the

solvability thresholds of colouring and SAT is closely related to the nature of the MUSs

of the instances. For a complete algorithm, it is thought that the hardest instances are

those where the smallest MUSs are large2, involving many constraints and variables.
It is also thought that the number of MUSs may be important in the cost. Both these

hypotheses are reasonable, since to prove unsolvability, an algorithm must identify an

MUS, and if these are large and scarce, this should be difficult.

One way of viewing unsatisfiability fragility as measured by Gent and Walsh (1996)
is as a proxy for the properties of the MUSs of an instance. If the smallest MUS of

an instance is large, and there are few MUSs, then unsatisfiability is more likely to

depend on a particular constraint or small set of constraints. Hence unsatisfiability is

more likely to be lost if a random set of constraints is removed, and so the instance in

this case would be more unsatisfiability-fragile.

Similarly, backbone fragility may be seen as a proxy for the properties of an instance's

BMSs, or for the properties of those minimal sub-instances which induce individual
2 However, this only appears to hold if the algorithm has some intelligent features such as backjumping.

For standard DPLL (which has none of these features), the hardest instances are those with a very
small number of very small MUSs - these are the so-called exceptionally hard instances. There is
also some evidence that even for the more intelligent algorithms these instances are exceptionally
hard (Bayardo and Schrag 1996).

CHAPTER 7. CONCLUSIONS AND FURTHER WORK 154

implicate literals. Again, if these sub-instances are large and scarce, an instance will
be backbone-fragile. The backbone fragility theory therefore represents an interesting
link between the two classes of algorithms. In fact, unsatisfiability can be seen as the
case when the empty clause is an implicate. So computational cost for both classes

may be dependent on the nature of the sub-instances which induce implicates.

This suggests the possibility that although local search and complete search algorithms
are completely different in architecture, they may be susceptible to the same instance

properties. This in turn implies that these instance properties may be fundamental to

the nature of hard distributions.

7.2.2 Non-random artificially backbone-fragile instances

The hypothesis proposes a causal link between backbone fragility and WSat cost for

large backbone instances. One prediction from this statement is that if instances are

made to have large backbones and be very backbone fragile they should be difficult for

WSat. This prediction was tested in Section 4.5 when random instances were altered

so as to be more backbone-fragile. Another possibility is the construction of non-

random SAT instances, specifically designed to be backbone-fragile. The hypothesis

predicts that these should be difficult for WSat variants. A class of such instances was

suggested by Steven Prestwich (Prestwich 2000a). These are constructed as follows:

Xl A X2 A

[(xi A x2) -a (x3 A x4)] A

[(x3 A £c4) -> (x5 A x6)] A

[(x5 A xq) -A (X7 Ax8)] A

[(X2i+1 A X2i+z) -A (x2i+3 A X2i+4)] A

[(X2M+1 A X2M+2) -A (Z2M+3 A X2M+4)]

The index i ranges from 0 to M. M governs the size of the formula. The formulas
are easily translated into conjunctive normal formulas with O(M) clauses. They have

CHAPTER 7. CONCLUSIONS AND FURTHER WORK 155

a maximal backbone consisting of all the variables. This is due to the chain of im¬

plications starting at x\ A X2 and adding two more literals to the backbone with each
new line. However, the removal of a few clauses is likely to leave a break in the chain

quite early on. All literals added to the backbone after this break are then no longer

implicates. The instances are therefore also quite backbone-fragile.

Some initial experiments (Hoos and O'Neill 2000; Prestwich 2000a) showed that these
instances are very difficult for a range of existing variants of WSat, which lends cred¬

ibility to our hypothesis that these algorithms are adversely affected by backbone

fragility. It may also show that the effects of backbone fragility are not limited to the
domain of random instances.

Holger Hoos and Kevin O'Neill have devised an algorithm WWSat which combines

WSat with a clause weighting scheme. This solves the above instances quickly (Hoos
and O'Neill 2000). Another algorithm CLS (Prestwich 2000b) which combines local
and constructive search also appears to solve the instances without difficulty (Prestwich

2000a). This prompts the conclusion that a large backbone combined with backbone

fragility is not a sufficient condition for an instance to be hard for every local search

algorithm, since we have local search algorithms which solve some large backbone,

backbone-fragile instances without difficulty. However, the combination may be a suf¬

ficient condition for an instance to be hard for a certain class of local search algorithms

encompassing the standard WSat variants.

This line of research may have some interesting implications for future extension of
the theory presented in Section 7.1.2. Assuming that the new algorithms are adversely

affected by the Random-3-SAT satisfiability threshold and that there is variation in

their cost at the threshold, there are two possibilities:

1. They find the same threshold instances hard as the standard WSat variants

do i.e. backbone size accounts for much of the variance and backbone fragility

accounts for much of the remaining variance. This would imply that the combi¬
nation of backbone size and backbone fragility is a latent factor which is itself
correlated with some other feature which causes hardness more directly.

2. They find a different set of instances at the satisfiability threshold hard. This

CHAPTER 7. CONCLUSIONS AND FURTHER WORK 156

would reinforce the idea that the combination of backbone size and backbone

fragility is really only relevant for some subclass of local search algorithms.

7.2.3 A rival explanation of the cost peak

Recent work by Achlioptas et al. (2000) has investigated the behaviour of WSat on a

novel class of SAT instances: encodings of the quasigroups-with-holes (QWH)

problem. Achlioptas et al. devised an efficient method by which only satisfiable

instances are generated, but where the number of constraints can be varied as in

random-3-SAT. One interesting result was that they found a peak in WSat cost

which coincided with the point at which large backbone instances emerge. The au¬

thors speculate:

"The reasons for the correlation between problem hardness and the appear¬

ance of the backbone are not fully understood at this time. [...] For local
search procedures, an explanation might be developed by considering the

relationship between the backbone and set of solutions to the instances.

When the backbone is small, there are many solutions widely distributed

in the search space, and so local search may quickly find one. When the

backbone is near 1 [i.e. iarge], the soiutions are tightly clustered, so that
all clauses "vote" to push the search in the same direction. A partial back¬

bone, however, may indicate that solutions are in different cfusters that are

widely distributed, with different cfauses pushing the search in different
directions [...]"

Thus the authors suggest an alternative hypothesis to the backbone fragility theory.

Their key conjecture above is that hardness emerges because of the presence of medium-

sized backbone instances, which do indeed occur most frequently near the satisfiability

threshold in Random-3-SAT. However, in Random-3-SAT this conjecture is contra¬

dicted by the positive correlation between an instance's backbone size and the cost for

WSat to solve the instance; at the threshold, the large backbone instances are the

hardest, not the medium-sized backbone instances.

CHAPTER 7. CONCLUSIONS AND FURTHER WORK 157

The correspondence between the emergence of the large backbone instances and the
WSat cost peak in QWH is also consistent with the backbone fragility theory, because

we would expect the peak at the point where the backbone size changes. This is
because the determinant of cost changes at this point from the number of solutions
to backbone fragility. QWH would therefore be an interesting future case study for

testing the backbone fragility theory against the conjecture of Achlioptas et al.

7.3 Exploiting knowledge about backbone-fragility

This section covers further work with a different objective: that of engineering better

algorithms. The knowledge that backbone fragility is a difficulty may allow us to direct
the design of new algorithms to mitigate it. Here two possibilities along these lines are

outlined.

7.3.1 Intelligent initialisation

Given the very strong correlation between hci and cost, we concluded that the hard

instances are those where the assignment found as a result of hill-climbing is generally

Hamming distant from the nearest solution. A further experiment could investigate

the effect of varying the Hamming distance between the initial assignment and the

nearest solution. A very possible result is a positive correlation between this and the

run length. This would indicate that the success of a particular run is dependent on

the location of the initial assignment.

Current local search algorithms typically begin each try with a random assignment.

The initial assignment could be chosen more intelligently, so as to reduce the Hamming

distance between it and the nearest solution. This may then cause the length of the

run to be reduced. The benefit from a reduction in run length may outweigh the

computational cost of the intelligent initialisation. Non-random initialisation strategies

have been investigated before. For example, in OSat (Gent and Walsh 1993b) the
initial assignment was greedily constructed so as to minimise the number of unsatisfied
clauses i.e. it found a quasi-solution. However, the results from this thesis suggest that

the difficulty is perhaps not finding a quasi-solution but instead finding an assignment

CHAPTER 7. CONCLUSIONS AND FURTHER WORK 158

which is at a low Hamming distance from the nearest solution. This may suggest why

OSat did not perform much better than GSat.

How tries are initialised more intelligently is an open research question. One recent

advance in tree-search style techniques is discrepancy-based search (Harvey and Gins¬

berg 1995; Walsh 1997). Discrepancy-based search effectively probes promising but

radically different regions of the search space at each iteration. Each iteration could be

used to produce an initial assignment for local search. Hence subsequent tries can be¬

gin in different promising regions. This may increase the likelihood of a try beginning
at an assignment which is at a low Hamming distance to the nearest solution.

7.3.2 Adding implicates to reduce backbone fragility

Rather than altering the algorithm, it may be possible to modify the instance to avoid
the effects of backbone fragility. Recall from Section 4.2.3 that as m/n is increased in

Random-3-SAT, backbone fragility decreases. It was proposed in Section 4.2.1 that

the main reason for this is the addition of clauses which allow backbone literals to be

derived from the instance via alternative proofs. Hence, the backbone fragility of an

instance can be reduced by the addition of clauses with this property.

However, computing the amount by which a given new clause reduces backbone fragility
is unlikely to be cost-effective. The approach would be to add clauses to the instance

with the hope that these will sufficiently reduce backbone fragility. Furthermore it

may be preferable that the added clause does not contradict any existing solutions to

the problem. Implicates are good candidates for this since they are guaranteed not

to contradict any existing solutions. Certain classes of implicates can be computed

efficiently, for example the Horn closure (Molony 1999). A method whereby implicates
are added with the aim of improving local search is given by Cha and Iwama (1996).
It may prove that local search is made easier because of the reduction in backbone

fragility.

CHAPTER 7. CONCLUSIONS AND FURTHER WORK

7.4 Epilogue

159

The research question was why solutions can be hard to find. In this thesis we have

concentrated on a specific algorithm and problem instance type. We formulated and
tested a featural theory to answer the question for this particular scenario, based on

a new feature of instances, backbone fragility. We have also conducted some initial

experiments aimed at broadening the range of instances covered and given some sug¬

gestions at how further research establishing the scope of the theory may be conducted.

Thus, while many questions remain unanswered, we have made a contribution to the

overall knowledge about problem instance hardness in general by studying this partic¬

ular scenario. We hope that this thesis will serve as a starting point for the broadening

and exploitation of this knowledge.

Bibliography

Achlioptas, D. and Sorkin, G. B. (2000). Optimal Myopic Algorithms for Random
3-SAT . In Proceedings of FOCS-2000, pages 590-600.

Achlioptas, D., Kirousis, L. M., Kranakis, E., and Krizanc, D. (1997). Rigorous Results
for (2+p)-SAT. In Proceedings of RALCOM 97, pages 1-10.

Achlioptas, D., Gomes, C., Kautz, H., and Selman, B. (2000). Generating Satisfiable
Problem Instances. In Proceedings of AAAI-00, pages 256-261. AAAI Press / The
MIT Press.

Aspvall, B., Plass, M. F., and Tarjan, R. E. (1979). A linear-time algorithm for testing
the truth of certain quantified Boolean formulas. Information Processing Letters,
8(3), 121-123.

Bayardo, R. J. and Schrag, R. (1996). Using CSP Look-Back Techniques to Solve
Exceptionally Hard SAT Instances. In Proceedings of the Second International Con¬
ference on the Principles and Practice of Constraint Programming, pages 46-60.
Springer.

Beame, P., Karp, R. M., Pitassi, T., and Saks, M. E. (1998). On the Complexity
of Unsatisfiability Proofs for Random k-CNF Formulas. In Proceedings of the 30th
Annual ACM Symp. on the Theory of Computing, pages 561-571.

Cha, B. and Iwama, K. (1996). Adding New Clauses for Faster Local Search. In
Proceedings AAAI-96, pages 332-337. AAAI Press / The MIT Press.

Cheeseman, P., Kanefsky, B., and Taylor, W. (1991). Where the Really Hard Problems
Are. In Proceedings of IJCAI-91, pages 331-340. Morgan Kaufmann.

Chvatal, V. and Szemeredi, E. (1988). Many hard examples for resolution. Journal of
the ACM, 35(4), 759-768.

Clark, D., Frank, J., Gent, I. P., Maclntyre, E., Tomov, N., and Walsh, T. (1996). Local
Search and the Number of Solutions. In Proceedings of the Second International
Conference on the Principles and Practice of Constraint Programming, pages 119—
133. Springer.

Cohen, P. (1995). Empirical Methods for Artificial Intelligence. The MIT Press.

Cook, S. A. (1971). The Complexity of Theorem-Proving Procedures. In Proc. 3rd
Ann. ACM Symp. on Theory of Computing, pages 151-158.

160

BIBLIOGRAPHY 161

Cook, S. A. and Mitchell, D. G. (1997). Finding Hard Instances of the Satisfiability
Problem: A Survey. In Satisfiability Problem: Theory and Applications, DIMACS
Series in Discrete Mathematics and Theoretical Computer Science. American Math¬
ematical Society.

Crawford, J. M. and Auton, L. D. (1996). Experimental Results on the Crossover Point
in Random 3SAT. Artificial Intelligence, 81, 31-57.

Culberson, J. (1999). Personal communication.

Culberson, J. and Gent, I. P. (1999a). On the Completeness of WalkSAT for 2-SAT.
Technical Report APES-15-1999, APES Research Group.
Available from http://apes.cs.strath.ac.uk/apesreports.html.

Culberson, J. and Gent, I. P. (1999b). Well out of reach: Why hard problems are hard.
Technical Report APES-13-1999, APES Research Group.
Available from http://apes. cs. strath.ac .uk/apesreports .html.

Culberson, J. and Gent, I. P. (2000). Frozen Development in Graph Coloring. Technical
Report APES-19-2000, APES Research Group.
Available from http://apes.cs.strath.ac.uk/apesreports.html.

Davis, M. and Putnam, H. (1960). A computing procedure for quantification theory.
Journal of the ACM, 7, 201-215.

Davis, M., Logemann, G., and Loveland, D. (1962). A machine program for theorem-
proving. Commun. ACM, 5, 394-397.

Dubois, O., Boufkhad, Y., and Mandler, J. (2000). Typical random 3-sat formulae and
the satisfiability threshold. In Proceedings of the Eleventh ACM-SIAM Symposium
on Discrete Algorithms, pages 124-126.

Franco, J. and Paull, M. (1983). Probabilistic analysis of the Davis Putnam procedure
for solving the satisfiability problem. Discrete Applied Math., 5, 77-87.

Frank, J. (1996a). Learning Short-Term Weights for GSAT. Technical Report CSE-
96-14, Department of Computer Science, University of California, Davis.

Frank, J. (1996b). Weighting for Godot: Learning Heuristics for GSAT. In Proceedings
of AAAI-96, pages 338-343. AAAI Press / The MIT Press.

Frank, J., Cheeseman, P., and Stutz, J. (1997). When Gravity Fails: Local Search
Topology. J. Artificial Intelligence Research, 7, 249-281.

Friedgut, E. (1999). Sharp thresholds of graph properties, and the k-sat problem.
Journal of the American Mathematical Society, 12, 1017-1054. (Note: appendix by
J. Bourgain).

Frieze, A. and Suen, S. (1996). Analysis of Two Simple Heuristics on a Random
Instance of A;-SAT. Journal of Algorithms, 20(2), 312-355.

Garey, M. and Johnson, D. (1979). Computers and intractability : a guide to the theory
of NP- completeness. W. H. Freeman.

BIBLIOGRAPHY 162

Gent, I. P. (1998). On the Stupid Algorithm for Satisfiability. Technical Report APES-
02-1998, APES Research Group, Leeds University / Strathclyde University.

Gent, I. P. and Walsh, T. (1993a). An Empirical Analysis of Search in GSAT. J.
Artificial Intelligence Research, 1, 47-59.

Gent, I. P. and Walsh, T. (1993b). Towards an Understanding of Hill-climbing Proce¬
dures for SAT. In Proceedings of AAAI-93, pages 28-33. AAAI Press / The MIT
Press.

Gent, I. P. and Walsh, T. (1995). Unsatisfied Variables in Local Search. In J. Hallam,
editor, Hybrid Problems, Hybrid Solutions (Proceedings of AISB-95), pages 73-85,
Amsterdam. IOS Press.

Gent, I. P. and Walsh, T. (1996). The satisfiability constraint gap. Artificial Intelli¬
gence, 81, 59-80.

Gent, I. P., Maclntyre, E., Prosser, P., and Walsh, T. (1996). The Constrainedness of
Search. In Proceedings of AAAI-96, pages 246-252. AAAI Press / The MIT Press.

Gent, I. P., Maclntyre, E., Prosser, P., and Walsh, T. (1997). The Scaling of Search
Cost. In Proceedings of AAAI-97, pages 315-320. AAAI Press / The MIT Press.

Gu, J. (1992). Efficient local search for very large-scale satisfiability problem. SIGART
Bulletin, 3(1), 8-12.

Guerra e Silva, L., Miguel Silveira, L., and Marques-Silva, J. P. (1999). Algorithms
for Solving Boolean Satisfiability in Combinational Circuits. In Proceedings of the
IEEE/ACM Design, Automation and Test in Europe Conference. IEEE Computer
Society.

Harvey, W. and Ginsberg, M. (1995). Limited Discrepancy Search. In Proceedings of
IJCAI-95, pages 607-613. Morgan Kaufmann.

Hirsch, E. A. (2000). SAT Local Search Algorithms: Worst-Case Study. Journal of
Automated Reasoning, 24(1/2), 127-143.

Hogg, T. and Williams, C. P. (1994). The hardest constraint problems: a double phase
transition. Artificial Intelligence, 69, 359-377.

Hooker, J. N. and Vinay, V. (1995). Branching Rules for Satisfiability. Journal of
Automated Reasoning, 15, 359-383.

Hoos, H. (1998). Stochastic Local Search - Methods, Models, Applications. Ph.D. thesis,
Darmstadt University of Technology.

Hoos, H. (1999a). On the Run-time Behaviour of Stochastic Local Search Algorithms
for SAT. In Proceedings of AAAI-99, pages 661-666. AAAI Press / The MIT Press.

Hoos, H. (1999b). SAT-Encodings, Search Space Structure, and Local Search Perfor¬
mance. In Proceedings of IJCAI-99, pages 296-302. Morgan Kaufmann.

Hoos, H. and O'Neill, K. (2000). Personal communication.

BIBLIOGRAPHY 163

Hoos, H. and Stiitzle, T. (1998). Characterising the Run-time Behaviour of Stochastic
Local Search. Technical Report AIDA-98-01, Darmstadt University of Technology.

Jeroslow, R. G. and Wang, J. (1990). Solving propositional satisfiability problems.
Annals of Mathematics and Artificial Intelligence, 1, 167-187.

Kautz, H. and Selman, B. (1992). Planning as Satisfiability. In Proceedings of ECAI-
92, pages 359-363. John Wiley & Sons.

Kautz, H. and Selman, B. (1996). Pushing the Envelope: Planning, Propositional
Logic and Stochastic Search. In Proceedings of AAAI-96, pages 1194-1201. AAAI
Press / MIT Press.

Kautz, H., Selman, B., and Jiang, Y. (1997). General Stochastic Approach to Solving
Problems with Hard and Soft Constraints. In Satisfiability Problem: Theory and
Applications, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science. American Mathematical Society.

Koutsoupias, E. and Papadimitriou, C. H. (1992). On the greedy algorithm for satis¬
fiability. Information Processing Letters, 43(1), 53-55.

Larrabee, T. and Tsuji, Y. (1992). Evidence for a Satisfiability Threshold for Ran¬
dom 3CNF Formulas. Technical Report UCSC-CRL-92-42, Jack Baskin School of
Engineering, University of California, Santa Cruz.

Mammen, D. L. and Hogg, T. (1997). A New Look at the Easy-Hard-Easy Pattern of
Combinatorial Search Difficulty. J. Artificial Intelligence Research, 7, 47-66.

Mazure, B., Sai's, L., and Gregoire, E. (1997). Tabu search for SAT. In Proceedings of
AAAI-97, pages 281-285. AAAI Press / The MIT Press.

McAllester, D., Selman, B., and Kautz, H. (1997). Evidence for Invariants in Local
Search. In Proceedings of AAAI-97, pages 321-326. AAAI Press / The MIT Press.

Mitchell, D. G., Selman, B., and Levesque, H. J. (1992). Hard and Easy Distributions
of SAT Problems. In Proceedings of AAAI-92, pages 459-465. AAAI Press / The
MIT Press.

Molony, J. (1999). Symmetry Arguments in Automated Reasoning. Ph.D. thesis, (sub¬
mitted) Division of Informatics, University of Edinburgh.

Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., and Troyansky, L. (1999a).
2+P-SAT: Relation of Typical-Case Complexity to the Nature of the Phase Transi¬
tion. Random Structures and Algorithms, 15, 414-440.

Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., and Troyansky, L. (1999b).
Determining computational complexity from characteristic 'phase transitions'. Na¬
ture, 400, 133-137.

Morris, P. (1993). The Breakout Method for Escaping from Local Minima. In Proceed¬
ings of AAAI-93, pages 40-45. AAAI Press / The MIT Press.

Papadimitriou, C. H. (1991). On selecting a satisfying truth assignment. In Proc. 32nd
IEEE Symp. on the Foundations of Comp. Sci., pages 163-169.

BIBLIOGRAPHY 164

Papadimitriou, C. H. (1994). Computational Complexity. Addison-Wesley.

Parkes, A. (1997). Clustering at the Phase Transition. In Proceedings of AAAI-97,
pages 340-345. AAAI Press / The MIT Press.

Parkes, A. and Walser, J. (1996). Tuning Local Search for Satisfiability Testing. In
Proceedings of AAAI-96, pages 356-362. AAAI Press / The MIT Press.

Prestwich, S. (2000a). Personal communication.

Prestwich, S. (2000b). A Hybrid Search Architecture Applied to Hard Random 3-SAT
and Low-Autocorrelation Binary Sequences. In Proceedings of the Sixth International
Conference on the Principles and Practice of Constraint Programming, pages 337 -

352. Springer.

Schrag, R. and Crawford, J. (1996). Implicates and prime implicates in Random 3-SAT.
Artificial Intelligence, 81, 199-222.

Selman, B. and Kautz, H. (1993a). An Empirical Study of Greedy Local Search for
Satisfiability Testing. In Proceedings of AAAI-93, pages 46-53. AAAI Press / The
MIT Press.

Selman, B. and Kautz, H. (1993b). Domain-Independent Extensions to GSAT: Solving
Large Structured Satisfiability Problems. In Proceedings of IJCAI-93, pages 290-
295. Morgan Kaufmann.

Selman, B., Levesque, H. J., and Mitchell, D. G. (1992). A New Method for Solving
Hard Satisfiability Problems. In Proceedings of AAAI-92, pages 440-446. AAAI
Press / The MIT Press.

Selman, B., Kautz, H., and Cohen, B. (1994). Noise Strategies for Improving Local
Search. In Proceedings of AAAI-94 > pages 337-343. AAAI Press / The MIT Press.

Selman, B., Mitchell, D., and Levesque, H. J. (1996). Generating Hard Satisfiability
Problems. Artificial Intelligence, 81(1-2), 17-29.

Singer, J., Gent, I. P., and Smaill, A. (2000a). Backbone Fragility and the Local Search
Cost Peak. Journal of Artificial Intelligence Research, 12, 235-270.

Singer, J., Gent, I. P., and Smaill, A. (2000b). Local Search on Random 2+p-SAT. In
Proceedings of ECAI-2000, pages 113-117. IOS Press.

Slaney, J., Fujita, M., and Stickel, M. (1995). Automated reasoning and exhaustive
search: quasigroup existence problems. Computers and Mathematics with Applica¬
tions, 29, 115-132.

van Gelder, A. and Okushi, F. (1999). A propositional theorem prover to solve planning
and other problems. Annals of Mathematics and Artificial Intelligence, 26, 87-112.

Walsh, T. (1997). Depth-bounded Discrepancy Search. In Proceedings of IJCAI-97,
pages 1388-1393. Morgan Kaufmann.

BIBLIOGRAPHY 165

Yokoo, M. (1997). Why Adding More Constraints Makes a Problem Easier for Hill-
Climbing Algorithms: Analysing Landscapes of CSPs. In Proceedings of the Third
International Conference on the Principles and Practice of Constraint Programming,
pages 356-370. Springer.

Zhang, H. and Stickel, M. (1994). Implementing the Davis-Putnam Algorithm by Tries.
Technical Report 94-12, Department of Computer Science, University of Iowa.

Zhang, H., Bonacina, M. P., and Hsiang, J. (1996). PSATO: a Distributed Prepo¬
sitional Prover and its Application to Quasigroup Problems. Journal of Symbolic
Computation, 21(4), 543-560.

Appendix A

Bootstrap Methods

We summarise the methods as used in this context. Further explanation of resampling
methods is given in Cohen (1995).

A.l Bootstrap method for testing whether two medians
are equal

This method was taken from David Howell's web pages on resampling:

http://www.uvm.edu/~dhowell/StatPages/Resampling/Boot2Medians/
bootstrapping_two_medians.html

A bootstrap method can be used to test the hypothesis that the medians of two pop¬
ulations are equal given a pair of samples, one from each population.

We have two original samples Xsampie = {xi,x2,... xN) and Ysampie = {yi, y2, • • • Vn)-
We assume that the sample sizes are equal for simplicity. A pseudo-sample from one of
these original consists of N data. A datum in a pseudo-sample from Xsampie is xq where
q is a random number between 1 and N. Each datum in the pseudo-sample is chosen
independently i.e. data are sampled from the original with replacement. We assume
that our original samples are representative of the underlying population. Given this,
composing many pseudo-samples and taking the median of each pseudo-sample gives
us the sampling distribution of the median for the underlying population. If we take
pairs of pseudo-samples, consisting of one pseudo-sample from Xsampie and the other
from Ysample and collate the differences in the medians between the two pseudo-samples
in each pair, this will give us the sampling distribution of the difference between the
medians in the underlying population. If we use a large number of pairs of pseudo-
samples, we can then study the sampling distribution of the difference between the
medians to see whether it is consistent with the hypothesis that the difference is zero.
If it is consistent with this hypothesis at the 95% level, then zero should fall between
the 2.5th and the 97.5th percentiles. Otherwise, we can reject the hypothesis with 95%
confidence.

166

APPENDIX A. BOOTSTRAP METHODS 167

A.2 Bootstrap estimation of confidence intervals for
correlation coefficients

We have an original sample ((xi, yi), (^2,2/2)5 ■ • • Vn)) of N pairs. A pseudo-sample
from the original in this case consists of N pairs. The jth pair in the pseudo-sample
(.xbj,yj) = (xq,yq) where q is a random number between 1 and N. Each pair in the
pseudo-sample is chosen independently i.e. pairs are sampled from the original with
replacement. We assume that our original sample of pairs of data is representative of
the whole population of such pairs. Given this, composing pseudo-samples is just like
sampling from the whole population. Therefore by measuring the correlation coefficient
of many pseudo-samples, we can study what the correlation coefficient would have
looked like had we taken many sets of samples from the whole population. From the
distribution of the correlation coefficient among many pseudo-samples (the bootstrap
sampling distribution) we can infer bounds on the confidence interval for the observed
correlation coefficients.

Many pseudo-samples are taken, and the correlation coefficient is calculated for each of
the pseudo-samples. This gives the bootstrap sampling distribution of the correlation
coefficient. The 97.5th percentile of this distribution is an upper bound on the 95%
confidence interval for the correlation coefficient, and the 2.5th percentile is a lower
bound.

Appendix B

The Relationship Between BMSs
and MUSs

Let C be a satisfiable SAT instance and {I1J2, ■ ■ ■ ,h} be the set of all literals entailed
by C. Let d be the clause —>Zi V -1I2 V ... V ->Ik-

Theorem C' is a BMS of C iff C' A d is an MUS of C A d □

PROOF Suppose C' is a BMS of C. Then C' A d, which is a sub-instance of C A d.
must be unsatisfiable, as d violates every literal in the backbone of C'. If d is removed
from C' A d, the result C1 is satisfiable. If any other clause c is removed from C' A d,
there must be some literal from the backbone of C", Z; say, such that (C' — {c}) A
is satisfiable. Therefore, since ->li is also a literal of d. (C" — {c}) A d is satisfiable.
Therefore C' A d is an MUS of C Ad.

Conversely, suppose C' A d is an MUS of C Ad. Since C" A d is minimally unsatisfiable,
C' is satisfiable. Since C' is a sub-instance of C, the backbone of C' must be a subset
of the backbone of C. Suppose there were some literal lj which was in the backbone
of C but not in the backbone of C'. Then there would be a solution to C' A -<lj. This
would then also be a solution to C' A d, since -1 lj is one literal of d. This contradicts
C' Ad being unsatisfiable and so there can be no lj i.e. C' and C must have the same
backbone.

C' A d is minimally unsatisfiable. Therefore for any clause c of C', (C' — {c}) A d is
satisfiable. Any solution to (C' — {c}) A d must make some literal -1Ik of d true, and
must therefore also be a solution to (C — {c}) A -1 Ik- Therefore which is in the
backbone of C", is not in the backbone of (C — {c}). Hence C' is a BMS of C □

168

