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Summary 

As a starting point for the investigation of the role of plasmids 

in the Rhizobiurn trifolii/clover symbiosis, it was decided to 

search for a strain of R. trifolii having a single plasmid. Five 

effective strains of R. trifolii were screened for the presence of 

plasmids; four size-classes were detected in strain FA-6, two in 

TA-1, two in 204, one in F3 , while no plasmid DNA was found in 

l-DL. It was impossible to say whether 1-DL lacked a plasthid 

or possessed (a) large plasmid(s) which fragmented during 

extraction. The F 3  plasmid, designated pMAM-4, had a MW of 

220 0.2 x 1o 6 . To unravel the functions conferred by pMAM-4, 

it was thought desirable to label the plasmid with a biological 

marker using a technique which involved insertion of the transpos-

able element Tn-5. By appropriate crosses between labelled 

strains, clones were identified which transferred kanamycin 

resistance at a frequency of 10 ,6  and these were presumed to 

carry Tn-5 on the plasmid. Further work revealed that pMAM-4 

confers host-specificity and is related to the P- incompatibility 

group. 

Symbiotic functions, i. e. nodulation and fixation, were 

eliminated from several clones of R. trifofli 204 incubated at an 

elevated temperature; a possible correlation with plasmid-loss 

was suggested. Other symbiotic-defective mutants, of R. trifolii 

P3 , were isolated following transposon mutagenesis. However, 

mapping experiments using R. leguminosarum as the recipients 
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showed multiple sites of insertion of the transposon into the 

chromosome which appears to preclude this approach as a method 

for mapping symbiosis-genes in H. trifolii P3 . 

The relative nodulating success with Trifolium repens cv. Huia 

of three genetically-marked strains of H. trifolii, two from the 

U.K., i.e. (MD-lb) and (MD-ic) and one from Iraq, having a high 

maximum growth temperature, 1. e. (MD-la), was assessed. 

Inocula of paired competitors were supplied in a 1:1 ratio at 

different temperatures. Using aseptic test-tube culture, the two 

U. K. strains competed equally for nodulation at 20 °C. Their 

competitive behaviour was very evident at 15 ° C when combined 

separately with (MD-la); although at 25 ° C their competitive 

advantage over the Iraqi strain was reduced. A similar effect of 

temperature was noted when the number of mixedly-infected 

nodules at 15 ° C and 25 ° C were compared. The ratios of the 

strains in the mixedly-infected nodules generally deviated from a 

1:1 ratio. Thus (MD-lc) always formed the majority of the 

population when present with either (MD-lb) or (MD-la). An 

approach for the exploitation of competition in Rhizobium was 

discussed. 
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IMPORTANCE OF BIOLOGICAL FIXATION OF NITROGEN 

Although an abundant supply of nitrogen is present in its 

elemental form in the atmosphere (approximately 80% by volume of 

the air is nitrogen), it can enter biological systems only when it 

has been "fixed' or combined with certain other elements, such as 

hydrogen or oxygen (Brill, 1977). Fixation of nitrogen occurs via 

three major routes (Postgate, 1980) spontaneous, i. e. the forma- 

tion of nitrogen oxides in the atmosphere as the result of combustion, 

electric discharges and UV-irradiation; industrial, almost 

exclusively by the Haber-Bosch process, i, e. the catalytic 

reduction of N 2  to NH  with H2 ; and biological fixation, i. é. the 

conversion of N 2  to NH4+  and thence to cell material by prokaryotes. 

Quantitative estimates of the contributions of the various routes differ 

greatly in their precision (Burns, 1977). Burns and Hardy (1975) 

estimated that industrial fixation contributes 40 x 10 tonnes of 

nitrogen, other abiological processes 45 x 10  tonnes and biological 

fixation 175 x 106 tonnes, per annum. These figures, coupled with 

the disadvantages of the Haber-Bosch process such as the expense 

of manufacture and the cost of transport and distribution (Pimentel, 

1976), serve to emphasise the paramount importance of biologically-

fixed nitrogen over chemically-fixed nitrogen (see review by Evans 

and Barber, 1977). Biological nitrogen fixation is restricted to 

certain micro-organisms. It was the demonstration that the ability 

of a microbe to fix nitrogen is correlated with its ability to reduce 
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acetylene to ethylene (Dilworth, 1966), that has revolutionized the 

list of accepted nitrogen-fixing systems during the last two decades 

(see review by Dalton, 1974; Yates, 1977). Some of the organisms 

can fix nitrogen while in the free-living state, e.g. Azotobacter and 

blue green algae (Cyanobacteria), while others do so only when 

associated with plants, e.g. Rhiz obium -legume symbiosis. 

Nitrogen fixation by Spirillum lipoferum in association with the 

roots of Digitaria decumbens is still a matter for investigation 

(D6bereiner and Day, 1976). Some rhizobia have been shown to 

be capable of aerobic nitrogen fixation ex planta if the oxygen 

tension is low enough (Keister, 1975; •Kurz. and La Rue, 1975; 

McComb et al., 1975; Pagan et al., 1975). All the above 

mentioned prokaryotes share a unique enzyme system, nitrogenase 

(Eady and Postgate, 1974), which reduces N 2  to NH 4 . 

Among the various biological systems that are able to fix 

atmospheric nitrogen, the symbiosis of Rhizobium with 

Leguminoseae contributes a significant amount of fixed nitrogen to 

the ecosystem and to food production (Table 1-1), The leguminous 

crops are known for their ability to enrich with fixed nitrogen the 

soil in which they are grown. This beneficial effect was realized 

by the ancient Chinese, Greeks and Romans (Fred, Baldwin and 

McCoy, 1932), and led to a widespread use of crop rotation. 

Unfortunately, legumes form merely 13% of world food production, 
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Table 1-1: Estimates of annual biological nitrogen fixation on earth 
(figures in parentheses indicate alternative values) 

Systems 

KgN 2  fixed 
Metric tons/yr 

x 10-6 (ha x yr) 

Legumes 140 (80) 35 (20) 

Non legumes 35 9 

Permanent grassland 15 (8) - 	 45 (24) 

Forest and woodland 10 (5) 40 (20) 

Unused land 2 10 

Total land 139 (83) 

Sea 1(0.5) 36 (18) 

Total 175 (101) 

* From Subba Rao (1980) 
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while 50% is formed by cereals (Hardy, 1976). The cereal grain 

crops produce their elevated yields in response to increased 

fertilizer application. Thus we are faced with one of the greatest 

challenges of our time, the supply of N-fertilizer. This has led 

to an increasing world-wide effort to enhance biological production 

of the nitrogen fertilizer as the process of choice in the future. 

The prospects for the exploitation of the biological process have 

been the subject of numerous publications, e.g. Hardy (1976, 1977), 

Burns (1977), Postgate (1977), Wittwer (1977), Gutschick (1978), 

Andersen et al. (1980). Possibilities range from those likely to 

be effective in the short term, e.g, expanded use of grass and 

woody symbioses, through medium term, e.g. genetic manipulation 

of the appropriate bacteria to yield effective symbiosis, to long 

term, e.g. development of new nitrogen fixing systems by somatic 

hybridization of plants. In recent years, steps towards the achieve- 

ment of these applied goals have been started (Johnston et al., 1978a; 

Davey and Cocking, 1980). 

AIMS OF THIS STUDY 

The aims of this study were, firstly, to elucidate the role of 

plasmids in nitrogen fixation in Rhizobium trifolii. To achieve 

this, several lines were followed. These were: screening 

effective strains of R. trifolii for the presence of single-size class 
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plasmid DNA; elimination of the plasmid from B. trifolii and 

assessing the symbiotic properties of the plasmidless strains; 

transfer of the plasmid to other species of Rhizobium and assess-

ment of the symbiotic properties acquired (since plasmids in 

R. trifolii are assumed to be cryptic, biological labelling is a 

prerequisite for this step); and application of efficient mutagenic 

procedures for the isolation of symbiotically-defective mutants 

and mapping of the mutations generated. Secondly, to evaluate 

the competitive ability of strains of R. trifolii, in nodulating clover, 

from different geographical origins, taking the temperature (an 

environmental limiting factor for the symbiotic process) into 

consideration. The practical use of naturally-selected or 

genetically-altered superior nitrogen-fixing Rhizobium strains is 

hampered by an ignorance of how to improve their competitiveness 

for nodulation compared with that of indigenous strains already in 

the soil. Other problems include the lack of understanding and 

present inability to solve the ecological problems such strains 

encounter in the fiercely competitive situation in soil and on the 

root. 

ESTABLISHMENT OF AN EFFECTIVE RIIZOBIUM-LEGUME 
SYMBIOSIS 

The process that begins on the root surface and culminates in 

the establishment of an effective N 2 -fixing nodule is a multi-stage 

sequence of interdependent steps. The first step, recognition, 
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appears to involve the specific-binding of exo- or lipopoly-

saccharides of the rhizobia to lectins in a manner comparable to 

that of an antigen-antibody reaction (Beringer, 1978). It has been 

suggested that the initial attachment is cemented by cellulose 

fibrils of rhizobial origin (Napoli, Dazzo and Hubbell, 1975). 

Infection of the plant is the next step. In the normal infection 

sequence, the root hair curls in response to the dense rhizobial 

population which aggregates at its surface. Possible involvement 

of gibberellin has been suggested (Dixon, 1969). Pectinase-

production by the rhizobia may soften the root-hair cell wall 

(Hubbell, Morales and Umali-Gracia. 1978) which with theplasma-

lemma invaginates into the root hair, and subsequently the root, 

forming an "infection thread" containing rhizobia. Growth of the 

infection thread may be stimulated by the auxin indole acetic acid 

(MA) produced by rhizobia (Dart, 1975). The latter also produce 

cytokinins which may diffuse into the root cortex and stimulate cell 

division leading to formation of the nodule into which the infection 

thread grows (Syono, Newcomb and Torrey, 1976). The rhizobia 

are "budded off" from the tip of the infection thread in vesicles 

surrounded by plasmalemma, into the nodule cells, where they 

differentiate into spheroplast -like organisms called bacteroids 

which are the site of nitrogen fixation (Jordan, 1962). In an effective 

symbiosis, leghaemoglobin is produced, the haem moiety by the 

bacteria and the globin moiety by the plant (Cutting and Schulman, 1971). 
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The nitrogenase enzyme complex is synthesized and nitrogen is 

fixed. Further understanding of the symbiotic process requires 

both an analysis of the genetic determinants controlling the 

intrinsic properties of the partners and their mutual compatibility, 

as well as a study of the influence exercised by the environment on 

each partner separately and on their interaction. 

PROKARYOTIC DETERMINANTS 

Three gross symbiotic phenotypes and their genetic designation 

have been classically distinguished: infectivity (Inf), which is the 

ability of a strain to induce nodule formation; effectiveness (Eff+), 

generally applied to a Rhizobium strain which can initiate the 

development of nodules on its host and can proceed through the 

several stages required to form the nitrogen-fixing bacteroid-

containing tissue in the nodule; and host specificity (Hsp+),  which 

is the ability of a strain to nodulate aspecific host. Most reports 

of the symbiosis are in such general terms. However, a more 

analytical scheme for nomenclature has been initiated by Dnarii 

and Truchet (1976). They categorized the genes controlling 

effectiveness into three groups: those affecting Eff+ but having a 

characteristic observable in vitro were represented by the symbol 

corresponding to the in vitro phenotype, e.g. leu, ade; those 

affecting Eff+ but having no known in vitro phenotypic characteristic 

were called eff and genes controlling nitrogenase synthesis were 
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designated nil. The shorthand name nil was generalized by 

Postgate (1978) to describe the genetic information enabling 

bacteria to fix nitrogen. He proposed that any mutation in the nil 

genes which leads to the failure of its expression should be given a 

minus sign (j(), and for those which have not been positively 

identified as in nil, the term Nil (capital letter and no italics) 

should be used. As more information on the three major recog-

nizable stages became available; a framework was formulated by 

Vincent (1980) within which the genotypic designation of the detailed 

stages, grouped to conform with three steps, were conveniently 

coded (see Table 1-2). However, Brewin, Johnston and Beringer 

(1980) proposed the designations Nod (i.e. not producing visible 

root nodules) and Fix (unable to fix N 2  or reduce acetylene, within 

nodules) on the basis that these designations are more easily 

ascribed. Indeed a Nod mutant might be blocked at the stage of 

nodule meristem initiation and this mutant would thus be "infective "   

in the sense that it still forms infection threads. For these 

reasons the designations of Brewin et al. (1980) will be used, as 

far as possible, throughout this thesis. 

LOCATION OF SYMBIOTIC GENES IN RHIZOBIUM 

Many properties not essential for cell %flOfl5are determined 

by extrachromosomal genes. Examples include bacteriocin 

production and resistance (Meynell, 1973'), antibiotic production 
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Table 1-2: Analysis of symbiotic sequence* 

Stage Abridged description 
Phenotypic 

code 

I. 	Pre-infection 
1. Multiplication on root- 

surface (rhizoplane) Root colonization Roc 

2.Attachment to root 
surface Root adhesion Roa 

Branching of root hairsi Hair branching Hab 

"Marked" curling of 
root hairs Hair curling Hac 

II. 	Infection and Nodule 
Formation 

Formation of infection 
thread Infection Inf 

Development of poly- 
ploid (disomatic) 
meristem; nodule 
development and 
differentiation Nodule initiation Noi 

'Intracellular" release 
of rhizobia from - 

infection thread Bacterial release Bar 

8."Intracellular'' multi- 
plication of rhizobia 
and development of full Bacteroid 
bacteroid form development Bad 

III. Nodule Function 

Reduction of N2 to 

NH4+ (nitrogenase) Nitrogen fixation Nif 

Complementary bio- 
chemical and physio- Complementary 
logical functions P.nctions .  Cof 

Persistence of nodule 
function Nodule persistence Mop 

*From Vincent (1980) 
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in Streptomyces (Kirby, Wright and Hopwood, 1975), degradation 

and utilization of certain exotic substrates in Pseudomonas 

(Chakrabarty, 1976) and oncogenicity conferred on Agrobacterium 

tumefaciens by the so-called "Ti" (tumour inducing) plasmids (Van 

Larebeke et al., 1974; Watson et al,, 1975). "Ti" plasmids are 

large plasmids of MW ranging from about 100 to 160 ± 10  (Zaenen 

et al., 1974; Sciaky, Montoya and Chilton, 1978). They carry 

genes that determine whether or not tumours induced on their hosts 

will contain unusual amino acids such as octopine or nopaline 

(Schell and Van Montagu, 1977). They can be introduced into 

strains lacking them by mobilization with 'the promiscuous plasmid 

RP  (Chilton et al., 1976). Recently, it was found that "Ti" 

plasmids can act as conjugative plasmids themselves. However, 

conjugation only takes place when donor and recipient bacteria are 

incubated on a solid minimal medium containing for example 

octopine for octopine-coding Ti plasmids (Genetello et al., 1977; 

Kerr, Manigault and Tempe', 1977; Petit et al., 1978). Mutants 

of A. tumefaciens can be isolated that carry plasmids derepressed 

for transfer (Hooytcaas, Roobol and Schilperoort, 1979). The 

properties of Agrobacterium may be relevant to those of Rhizobium 

since both genera are able to induce cell multiplication in host 

plants. Taxonomic similarities (Graham, 1976) were strengthened 

by the demonstration that the "Ti" plasmid could be transferred 

from A. tumefaciens into R. trifolii •  Transconjugants were able 

C 
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to induce tumours but were still able to form effective nodules on the 

legume host. The type of induced tumours and the regulation of 

"Ti" transfer were similar in both bacteria, confirming their close 

relationship (Hooykaas et al., 1977). A bacterial strain has 

recently been reported that can induce both nodule formation on - 

clover and crown gall on a suitable host (Skotnickie and Rolfe, 1978). 

Based on the resemblance mentioned above and certain additional 

evidence which supports the suggestion that host specificity genes 

may be extrachromosomal (see later), a hypothesis is presented 

here, that plasmids in Rhizobium play an essential role in 

establishing symbiosis on legumes; as the Ti" plasmids do in the 

formation of crown gall by A. tumefaciens. 

INVOLVEMENT OF PLASMIDS IN SYMBIOSIS IN RK[ZOBIUM 

Plasmids have been detected in different species and strains of 

Rhizobium using DNA sedimentation profiles in sucrose or caesium 

chloride (CsCl)-ethidium bromide (EtBr) gradients (Klein et al., 

1975; Tshitenge et al., 197-5; Zurkowski and Lorkiewicz, 1976; 

Olivares, Montoya and Palomares, 1977). The commonly 

employed cleared lysate procedure (Clewell and Helinski, 1969) 

allowed the isolation of plasmids of low molecular weight. Thus 

strains of R. trifolii were reported to carry plasmids of 28 x 106 

(Dunican, O'Gara and Tierney, 1976) and 5. 5 x 10  (Kowalczuk and 

Lorkiewicz, 1977). However, Nuti et al. (1977) pointed out that 
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large plasmids in Rhizobium must have been overlooked in earlier 

studies, since the initial step in that procedure involved the 

removal of chromosomal DNA as part of a membrane complex and 

large plasmids would have behaved as if they were chromosomal. 

This phenomenon has been encountered with other large plasmids 

(Palchaudhuri and Chakrabarty, 1976). Following the method 

which was devised for the isolation of large covalently-closed 

circular (CCC) DNA molecules from A. tumefaciens (Zaenen et al., 

1974; Ledeboer et al,, 1976; Currier and Nester, 1976 ), Nuti et 

al. (1977) detected large plasmids in strains of H. leguminosarum, 

R. trifoiii, H. japonicum and Rhizobium "cow pea'. As estimated 

by renaturation kinetics, the molecular weights of these plasmids 

were in the range of 70 to 400 x 10 6 . Similar observations were 

made by Casse et al, (1979) who identified plasmids in 25 effective 

H. meliloti strains; plasmids of 90 - 200 x 10 6 
 MW, assessed by 

relative electrophoretic mobility on agarose gels and electron 

microscopy, were found in 22 strains, eight of which carried more 

than one plasmid size. Differences in plasmid number and 

molecular weight exhibited by strains of H. japonicum from 

different geographical origins led Gross, Vivader and Kiucas (1979) 

to consider the plasmid profiles to be a rapid and reliable 

for strain distinction. The suggestion that these plasmids are 

active participants in symbiosis has been tested in two ways: 
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(a) Curing of plasmid DNA: 

Chemicals, such as acridines used at sub-bacteriostatic 

concentrations, can eliminate some plasmids from their hosts, a 

phenomenon known as "curing". The response of infectiveness, 

using acridine orange and sodium dodecyl sulphate as curing agents 

and mitomycin C as an inducing one, was studied by Higashi (1967); 

Pari4skaya (1973); Zurkowski, Hoffman and Lorkiewicz (1973). 

After treatment of infective Rhizobium with the curing chemicals, 

these authors found a sharply decreasing ability of bacteria to form 

nodules on the corresponding legume root. Dunican and Cannon 

(1971) correlated effectiveness with the presence of a plasmid in 

R. trifolii since a change of viomycin sensitivity and resistance 

occurred after treatment of bacteria with a curing agent. 

Effectiveness has also been linked to an indigenous resistance 

plasmid (R-plasmid) in R. trifolii (Dunican, O'Gara and Tieitey, 

1976). Though loss of the plasmid and, concurrently of 

effectiveness, was claimed by the authors to be the result of 

treatment with EtBr, the strain used was already ineffective. 

Moreover, loss of a property after treatment with a curing agent 

could be due to any one of a number of effects especially when it is 

known that a characteristic such as infectivity can be lost at high 

frequency as the result of a pleiotropic mutation, e.g. one leading 

to auxotrophy (Sherrer and De'narie 1971) or antimetabolite 

resistance (Schwinghamer, 1968). This makes it rather difficult 
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to interpret these reports. However, following incubation at 35 0 C 

for seven days, Zurlcowski and Lorkiewicz (1978) isolated non-

nodulating mutants of R. trifolii and suggested that these were the 

result of the loss of a plasmid. Similarly, Casse et al. (1979), 

following heat treatment of the wild type, obtained a non-nodulating 

mutant of R. leguminosarum which had been cured of the smallest 

of the three plasmids contained in the parental strain. It would 

appear, therefore, that nodulation genes are plasmid-borne, at 

least in some strains of Rhizobium. 

(b) Transfer of plasmid DNA: 

In only three early cases have there been reports of the transfer 

of plasmids carrying symbiotic genes. Higashi. (1967) reported 

transfer of the ability to nodulate clover from R. trifolii to 

R. phaseoli. He proposed a plasmid nature for this property, i. e. 

host specificity, since transfer was apparently unassociated with 

the transfer of other chromosomal markers. However, this work 

is rather rudimentary as the bacteria used did not carry other 

genetic markers. Dunican and Tierney (1974) presented evidence 

for the transfer of nitrogen-fixing genes from R. trifolii to 

Klebsiella aerogenes using a derepressed It-factor, R1-19drd. 

Following the same protocol, Dunican, O'Gara and Tierney (1976) 

claimed a plasmid model for effectiveness on the basis that transfer 

of nitrogen-fixing genes from R. trifolii to K. aerogenes occurred 

at a frequency higher than that expected for chromosomally located 
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markers. However, a selectable marker on a plasmid would 

provide the best way of following transfer of the plasmid and to 

assess its presence or absence in a cell. Innate ones such as 

antibiotic resistance (Cole and Elkan, 1973), induction of 

polygalacturonas e -production (Palomares, Montoya and Olivares, 

1978), phage sensitivity (Corral, Montoya and Olivares, 1978) and 

bacteriocin production (Beringer, 1976) were all claimed to be 

linked to the resident plasmids in Rhizobium. Recently, the 

conjugative ability of a bacteriocinogenic plasmid has been 

demonstrated (Johnston et al., 1973a). The insertion into this 

plasmid of a transposon coding for kanamycin resistance, i. e. 

Tn-5 (the vector used and the potential of using transposons in 

Rhizobium will be discussed later), provided the first definitive 

evidence for the participation of plasmids in host specificity and 

nodulation. Johnston et al. ( 1 978!) followed the transfer of Tn-5 

into different species of Rhizobium and into a non-nodulating strain 

of R. leguminosarum and showed that all had acquired the ability to 

nodulate peas, the specific host of H. leguminosarum. But the 

carrying by a strain of more than one plasmid led to the question 

of diagnosing the one(s) involved in the symbiotic process. 

However, in view of the reports implicating plasmids as the site of 

symbiotic genes, it is relevant to ask whether any symbiotic gene 

at all is harboured on the chromosome. In several interspecific. 

crosses, involving transfer piecemeal of about 50% of the chromo-

some, Johnston and Beringer (1977) found no evidence for the 
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transfer of host specificity from R. phaseoli and R. trifolii to 

R. leguminosarum. These negative results provided circumstan-

tial evidence that the genes determining host range are extra-

chromosomal. A classification of symbiotic genes on the basis 

of their location could be obtained by mapping. However, the 

prerequisite for any genetic analysis is the isolation of mutants and 

the development of a system for gene transfer. 

INDUCTION OF MUTATION IN RHIZOBIUM 

The induction of mutations in rhizobia has been achieved by 

employing a variety of mutagenic agents, those most commonly 

used being N-methyl_NCnitroNnitrosoguanidine (MNNG) 

(Schwinghamer, 1969; Beringer, 1974; Kondorosi et al., 1977 ), 

ultraviolet light (UV) (Gupta and Kleczkowska, 1962; Kowalski, 

1970) and ethyl methanesulphonate (EMS) (Schwinghamer, 1969; 

Kaushik and Venkataraman, 1972; Meade and Signer, 1977). The 

utility of such mutagenic treatments for the production of symbiotic 

mutants is questionable (for review and criticism, see Cunningham. 

1979) as they require every surviving clone to be assessed for its 

symbiotic ability. This problem may be relieved in part by 

employing transposons which can mark the mutated gene with a 

selectable phenotype. Transposons are discrete sequences of 

DNA, incapable of self-replication and can insert into DNA 

replicons, such as the chromosome or the plasmid independent of 
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host recombinational ability (Kleckner, Roth and Botstein, 1977). 

Insertion can be random and, where it occurs in a gene, leads to a 

non-leaky polar mutation. Some transposons code for drug 

resistance, e.g. Tn-5 (Berg et al., 1975). However, in order to 

introduce Tn-S into Rhizobium, Beringer et al. (1978b) constructed 

a P1-group plasmid called pJB4JI. This plasmid is not 

replicated in Rhizobium due to insertion within it of the phage Mu 

genome. Using this vector for Tn-S insertion, auxotrophic mutants 

were isolated in H. leguminosarum, H. trifolii and R. phaseoli 

(Beringer et al., 1978b). However, transposon-induced mutations 

can be located by mapping the position of the antibiotic resistance 

carried on the transposon. 

GENE MAPPING 

Transformation: 

There have been reports of transformation in several 

Rhizobium species (Balassa, 1963; Raina and Modi, 1972). 

However, most transformation experiments were carried out 

between strains differing only in the marker being tested (for 

review and criticism, see Beringer, 1973) and no transformation 

system is available for fine-scale genetic mapping. 

Transduction: 

Most studies on transduction have involved R. meliloti 

(Kowalski, 1970, 1974). Svab et al. (1978) described a specialized 
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transducing phage for a cysteine marker on the chromosome of a 

R. meliloti strain. Generalized transduction has also been 

demonstrated in R. meliloti (Casadesus and Olivares, 1979a, 1979b) 

and in R. leguminosarum (Buchanan-Wollaston, 1979). The 

bacteriophage described by Buchanan-Wollaston (1979) could 

transduce a number of markers from R. leguminosarum to 

R. trifolii but no transduction was detected in the reverse direction. 

It has also been used to map closely-linked markers on the 

R. leguminosarum chromosome (Johnston et al., 1978a). 

(c) Conjugation: 

Of the three major forms of gene transfer in bacteria: 

conjugation, transformation and transduction, conjugation is 

potentially the most useful for preliminary studies of gene linkage 

because relatively large fragments of the genome may be trans- 

ferred, - 

Rhizobium was shown to be capable of conjugal gene transfer, 

as witnessed by its ability to receive and donate the wide host 

range, P-group fl-factor RP4 (Datta and Hedges, 1972; Olsen and 

Shipley, 1973; Beringer, 1974). P-group fl-factors are capable 

Of mobilizing chromosomal genes in Pseudomonas aeruginosa (Haas 

and Holloway, 1976) and Acinetobacter calcoaceticus (Towner and 

Vivian, 1976) as well as H. rneliloti (Boucher et al., 1977). Indeed, 

circular linkage maps of H. meliloti have been constructed using 

R68.45 (Kondorosi et al., 1977; Casadesus and Olivares, 1979a) 
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and RP4 (Meade and Signer, 1977) and of R. legumi.nosarum using 

R68.45 (Beringer, Hoggan and Johnston, 1978j. Kondorosi et al. 

(1980) compared the maps of R. leguminosarum and R. meliloti 

and showed that the map lengths and the positions of many mutations 

for particular nutritional requirements were very similar. 

However, features of the behaviour of R68.45-mediated recombin-

ation in Rhizobium were summarized by Beringer, Brewin and 

Johnston (1980). In all cases very large segments of the donor 

chromosome are transferred from donor to recipient, and within 

the recipient these large sections replace homologous chromosomal 

segments with very little internal recombination. Another 

interesting finding is that the frequencies of recombination in 

crosses between R. leguminosarum and H. trifolii or H. phaseoli 

are about the same as between derivatives of the same isolate of 

H. legurninosarum (Johnston and Beringer, 1977), implying 

substantial chromosome homology between these three species. 

However, in crosses between H. leguminosarum and H. meliloti, 

the frequency of recombination of chromosomal markers is much 

reduced and most of the recombinants are H-primes (Johnston, 

Setchell and Beringer, 1978c). R-primes allow Rhizobium DNA to 

be introduced into other hosts such as E. coli or P. aeruginosa, 

although it appears that Rhizobium genes are not normally expressed 

in the former (Johnston, Bibb and Beringer, 1978b). 
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RELEVANCE OF RECOMBINATION STUDIES TO SYMBIOSIS 

Most of the fundamental research on gene transfer systems in 

Rhizobium has involved auxotrophic and antibiotic-resistant 

mutants. Of what benefit are such studies to an understanding of 

symbiosis? 

To date, commercial inoculum strains have been selected 

from unmodified field isolates. The fact emerges from recombin-

ation studies that gene transfer can occur between different 

Rhizobium species. This should provide a solid basis for 

constructing strains possessing the best attributes of different 

parental strains. Such attributes could include high levels of 

effectiveness, tolerance to extreme environment and competitiveness. 

However, the contemplation of a Rhizobium breeding programme 

should be preceded by an analysis of the rules that might govern 

the aforementioned desirable characteristics. 

COMPETITION IN RHIZOBIUM 

In natural environments, competition, e.g. the rivalry for 

limiting nutrients or other common needs, is one among a number 

of relationships that can exist between individual microbial species. 

Rhizobium, being a symbiont, must compete in the soil as a free-

living bacterium before the onset of the symbiotic process. The 

survival of Rhizobium in the complexity of the soil system is 

affected by non-biological factors such as pH (Vincent, 1958b; 
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Holding and King, 1963; Jones, 1963; Munns, 1968), temperature 

(Vincent, 1958a; Marshall, 195j), desiccation (Hamdi, 1971), 

soil type (Johnson and Means, 1963; Damirgi, Fredirk)(and 

Andersen, 1967) and soil moisture (Sherwood and Masterson, 1974). 

Interactions of rhizobia with indigenous soil micro-organisms 

exert a considerable influence on the ability of rhizobia to become 

established in the soil (Damirgi and Johnson, 1966; Hattingh and 

Louw, 1969). Having survived all adverse factors and multiplied, 

rhizobia then have to infect the host, which again requires the 

right conditions and successful inter-strain competition with other 

rhizobia, In general, a nodule is formed by only one strain of 

Rhizobium (Johnson and Means, 1963; Dudman and Brock-well, 

1968), although different nodules on the same plant could contain 

different strains (Vincent and Waters, 1953). However, in tube- 

culture experiments, 10% of clover and soybean nodules may contain 

two strains of a Rhizobium species (Skrdleta, 1970; Marques Pinto, 

Yao and Vincent, 1974). Johnston and Beringer (1976) showed, in 

laboratory experiments, that the presence of R. leguminosarum 

can allow R. trifolii and R. phaseoli to enter the nodules of pea, 

and van Rensburg and Strijdom (1972) reported that a large propor-

tion of soybean-root nodules contained an unidentified fast-growing 

contaminant as well as R. japonicum. Studies of Rhizobium 

competition necessitate the development of methods for strain 

distinction. 
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STRAIN IDENTIFICATION IN RHIZOBIUM 

Recognition of Rhizobium strains has depended mainly on 

morphological, serological, biochemical and genetic tests. 

Characteristics based on morphological grounds, such as 

distinctive nodule form (Vincent, 1970), colour (Cloonan, 1963) 

or unusual colony morphology (Marques Pinto, Yao and Vincent, 

1974) have been used, though none is of general application but can 

be a useful secondary criterion. Identification of rhizobia 

re-isolated from nodules has, in the past, been based almost 

exclusively on serological methods (Read, 1953; Marshall, 1956; 

Date and Decker, 1965; Schmidt, Bankole and Bohlool, 1968). 

Serology permits the persistence of inoculant strains to be deter-

mined with considerable precision provided that appropriate, 

controls are used. Many studies based the differentiation 

between Rhizobium strains on a large range of biochemical and 

metabolic tests. These include such properties as vitamin 

requirements (Graham, 1963 ) and utilization of carbohydrates 

and Krebs Cycle intermediates (George and Ettinger, 1941; 

Graham, 1964 	Graham and Parker, 1969). The genetic aspect 

involves mutation to auxotrophy and resistance to antibiotics 

(Johnston and Beringer, 1975). These mutants should be free of 

pleiotropic effects involving symbiotic properties (Pankhurst, 1977). 

Recently, enzyme polymorphism has been suggested as a recog-

nition test (Myron, McAdam and Portlock, 1978). 
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COMPETITION STUDIES; PAST AND PRESENT 

Competition between strains of rhizobia occurs in broth and 

peat (Marshall, 1956; Vincent, Thompson and Donovan, 1962). 

Brockwell and Dudman (1968) showed that competition for available 

infection sites on roots also occurs. It can take place between 

indigenous soil populations (Johnston and Means, 1963; Ham, 

Frederich and Anderson, 1971), among introduced strains 

(Caldwell, 1969) and between introduced and indigenous soil 

populations (Abel and Erdman, 1964). Roughley, Blowes and 

Herridge (1976) investigated the numbers of naturaliied populations 

of R. trifolii at five sites in Australia and reported a range from 

no detectable rhizobia to 4 x 106 rhizobia/g soil. There were 

marked differences in competitive ability among the introduced 

strains and these differences were modified by the host cultivar 

and the site. At locations where rhizobia were abundant at sowing, 

they formed most of the nodules regardless, of the inoculum used. 

However, the current emphasis on redeveloping soils already 

colonized by rhizobia poses the necessity of clarifying the 

parameters responsible for competitive advantage. 

THE BASIS OF COMPETITIVE SUCCESS 

In looking for a property that might explain competitive success 

in nodule formation, attention was first paid to the relative growth 

rates of competing strains (Nicol and Thornton, 1941). However 
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there were too few comparisons to justify the use of this property 

to predict events on the root surface leading to nodulation. In 

later experiments, relative growth rate did not consistently 

relate to success in nodulation (Vincent and Waters, 1953). 

Properties such as bacteriocinogeny and lysogeny can markedly 

alter the composition of mixed strain inoculants in broth and peat 

culture when producer and sensitive strains are present in the 

mixture (Schwinghamer and Brockwell, 1978). Recently, Evans, 

Barnet and Vincent (1979a, 1979b) studied the effect of a virulent 

rhizobiophage on the populations of R. trifolii in the rhizoplane 

and on the relative competitiveness of pairs of R. trifolii strains. 

The presence of the rhizobiophage reduced the rhizoplane popula-

tion of a susceptible strain of R. trifolii and in competition 

favoured resistant or partially resistant strains which were 

otherwise less able to form nodules. It has not been possible to 

attribute relative competitiveness of paired strains to any single 

feature of their symbiotic capacity, e.g. the N 2 -fixing effectiveness 

with a particular host. There have been many cases where the 

effective N 2 -fixing strain appeared to have an advantage over an 

ineffective competitor (Robinson, 1969; Marques Pinto, Yao and 

Vincent, 1974; Labandera and Vincent, 1975). On the other hand, 

there have been some instances where the less effective strain 

was the better competitor (Johnston and Beringer, 1976), and 

marked differences in nodulating competitiveness have also been 

found among fully effective strains (Franco and Vincent, 1976). 
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These conflicting results were generally explained by assuming 

that a "greater compatibility with the host" played a dominant role 

in determining which strains form nodules. Interactions 

between the competing strains and the host were noted by 

Caldwell and Vest (1968) who showed that closely-related soybean 

genotypes had similar distributions of rhizobia in their nodules. 

Roughley, Blowes and Herridge (1976) reported that R. trifolii 

strain W495 was outstanding on Woogenflup cultivar as compared 

to Mt. Barker cultivar. In all these cases, the nature of the 

"extra" compatibility was not apparent. 

Studies carried out over the last 40 years on the factors which 

may control competitiveness have failed to produce improved 

experimental design and have also failed to produce consistent 

interpretations of results such that no coherent picture of 

competitiveness has evolved. What appears to be needed is an 

altered approach to the study of competitiveness. While not 

claiming that the results on competitiveness in this thesis have 

been the breakthrough, nevertheless ideas generated in the course 

of these studies will be presented in the discussion. 



CHAPTER II 

'GENERAL MATERIALS AND METHODS" 
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BACTERIAL STRAINS AND PLASMIDS USED 

The strains of bacteria used are recorded in Tables 2-1 to 2-3, 

together with the relevant details of their genotype or phenotype 

and source. The plasmids used are listed in Table 2-4. Some of 

them were transferred to hosts other than those in which they 

were received. 

PHAGES 

Two donor specific phages PRR1 and PR4 used during the course 

of this study were supplied by Dr. N. S. Willets (Department of 

Molecular Biology, University of Edinburgh). A rhizobiophage, 

Rtl, supplied by Dr. D. Walton was used as well. 

PLANTS 

All experiments were carried out with Trifolium repens cv. Huia. 

MEDIA 

The features common to the preparation of most media will be 

listed below and assumed in all cases unless indicated otherwise: 

Distilled water was used throughout. 

-1 Media were solidified as required with 15gl DiSco Bacto Agar 

(Difco Laboratories, Detroit, Michigan). 

Agar media were made in 1 litre amounts in Roux. flasks. 

Melted media were poured into plastic petri dishes (Sterilin, 
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Table 2-1: Strains of Rhizobium trifol.ii used/isolated 

Strain designation 
Relevant phenotype or 

genotype (a) (b) Source 

FA-6 wild type Prof. J. Holding (c) 

TA-1 wild type TI 

1-DL wild type 'I  

MD-I str-i (derived from this thesis 
1-DL) 

P 3  wild type Prof. J. Holding 

Derivatives of P 3  

MD-lb this thesis 

MD-2b,a to t rif4 (PMAM4::Tri-5) 

MD-3b to 7b rif-i (Fix::Tn-5) 

MD-8b MD-3b (pJB 3 JI) 

MD-9b MD-4b (pJB 3 JI) 

MD-lob MD-5b (pJB 3 JI) 

MD-11b MD-6b (pJB 3 JI) 

MD-12b MD-7b (pJB 3 JT) 

204 wild type Dr. Y. A. Hamdi (d) 

Derivatives of 204 

MD-la this thesis 

MD-2a to lOa spc-1 Nod - 

MD-11a to 15a spc-i Fix 

Abbreviations: Antibiotic resistance, rif - rifampicin; 	- 
str - streptomycin; spc - spectinomycin; others: Fix , Nod 
- symbiotically defective. 

Plasmids carried by these strains are in parentheses 

Department of Agriculture and Food Microbiology, Queen's 
University of Belfast, Belfast, Northern Ireland. 

Institute for Applied Research on Natural Resources, Scientific 
Research Foundation, Jadiriyah, Baghdad, Iraq. 



Table 2-2: Strains of Rhizobium leguminosarum used/isolated 

Strain designation Relevant genotype 
(a) (b) 

Map section 
(c) 

Source 

1860 met-12 rib-2 str-69 1 Dr J. E. Beringer (d) 

1433 ade-27 rib-2 str-69 2 U 

1628 ura-14 ade-27 str-75 3 

1062 ura-l4trp-l6str-86 4 U 

1056 ura-14met-14str-84 5 1 

1629 -8 ura-14 ade-88 str-69 8 U 

1840 -8 ura-14 str-69 9 

DC-11 ser-2 met/cys-19 str-1 6 Dr D.A. Walton (e) 

DC-21 ser-2 ade-88 str-2 7 

Derivatives of 1056 ura-14 met-14 str-84 
MD-id, a tot (p1VIAM-4::Tn-5) this thesis 

Abbreviations: growth requirements - rib - riboflavin; met - methionine;. ade - adenine; ura - 
uracil; trp - tryptophan; cys - cysteine. 
Plasmids carried by these strains are in parenthesis. 
See Fig. 2-1. 
Rothamsted Experimental Station, Harpenden, Herts, AL,5 2JQ. 
Department of Genetics, University of Birmingham. 



Table 2-3: Other species used 

Strain designation Relevant genotype (a) Source 

Escherichia coli 

1830 pro met nal (pJB4JI) Dr J. E. Beringer 

1843 pro met nal (pJB3JI) 11 

J5-3 (RP 4 ) pro met nal (RP 4 ) DrB.E, Moseley (b) 

Pseudomonas aeruginosa 

PAO-1670 adeleurifcth Dr N S. Willets 

(MD-le) ade leu rif Cm (RI)) this thesis 

Abbreviations: Antibiotic-resistance - nal - nalidixic acid; Growth requirements - pro - proline; 
leu - lèucine. 	 - 

Department of Microbiology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JG. 

Co 



Table 2-4: Plasmids used in this study 

Plasmid Compatibility group Selectable markers (a) Source 

pJB4JI P1 Gm Spc Sm::Mu::Tn-5 Dr. J. E. Beringer 

pJB3 JI P1 Ap Tc Dr. J. E. Beringer 

RP  P1 Ap Km Tc Dr. B.E.B. Moseley 

(a) Abbreviations: Antibiotic resistances: Ap - Ampicillin; Km - Kanamycin; Tc - Tetracycline; 
Gm - Gentamycin; Spc - Spectinomycin; Sm - Streptomycin. 

Others: Mu - phage Mu; Tn-5 - transposon coding for kanamycin resistance. 

(A) 

0 
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Teddington, Middlesex). All plates were dried before use. 

Liquid media were made up in 200 ml in medical flats. 

Sterilization of media, filters, etc. was by autoclaving at 

121 ° C (1.05 Kg Cm- 2 steam pressure) for 15 minutes. 

Selective media were supplemented as shown in Table 2-5. 

Supplements were sterilized by filtration through a 

Millipore HAWP membrane filter, 0.45 Am pore size 

(Millipore UK Ltd. Wembley, Middlesex). 

The following media formulations were used: 

TY (Beringer, 1974) 

gl
-1  

Difco Bacto-tryptone 	5 

Difco yeast extract 	3 

CaC12 . 6H2 0 	 1.3 

SY (Beringer, 1974) 

-1 

K2 HPO4 	 0.22 

The following were sterilized separately and added to the 

medium prior to use: 

Addition 

Mg504 . 7H2 0 

Cad2. 61120 

FeCl3. 61120 

Stock solution g1 1  

0.1 

0.04 

0.033  

ml added 1_i 

1 

1 

1 



Table 2-5: Antibiotic supplements for media 

Antibiotic (a) 
Stock solution 
(mg ml) (b) Solvent 

Concentration in media 
(pg ml) 

M. I. C. 
(jig ml - 1 )(c) 

Rifampicin 50 Dimethyl 50 0.5 
sulphoxide. 

Streptomycin 100 Distilled water 100 10 

Kanamycin 100 Distilled water 100 50 

Spectinomycin 100 Distilled water 100 20 

Nalidixic acid 50 Distilled water 50 ND (d) 

Tetracycline 5 Distilled water 2.5 0.05 

Ampicillin 100 Dilute NaOH 50 5 

Rifampicin, kanamycin, ampicillin and tetracycline were obtained from Sigma Chemical Co. Ltd. 
London; streptomycin from Glaxo Laboratories Ltd.; England; nalidixic acid from Calbiochem, 
San Diego, U.S.A.; spectinomycin from Upjohn Ltd., Crawley, Sussex. 
All stock solutions except tetracycline and ampicillin were stored in the dark at 4 C. Tetracycline 
and ampicillin were made up immediately prior to use. 
Minimum inhibitory concentration for R. trifolii P 3 . This was determined as the lowest 
concentration of antibiotic causing complete inhibition of growth on an agar plate. 
ND - not determined. 
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Stock solution gl
-1 	

ml added 1-1  

0.27 	 5 

0.22 	 5 

0.001: 	 1 

Addition 

Na succinate 

Na glutamate 

Biotin 

Thiamine hydrochloride) 

Calcium pantothenate 

Nutrient broth and agar 

gl -1 

Oxoid nutrient broth 	25 

YEM (Vincent, 1970) 

K2HPO4 0.5 

MgSO4 .7H2 0 0.2 

NaCl 0.1 

Mannitol 10.0 

Difco yeast extract 0.4 

Seedling agar and nutrient solution (Jensen, 1942) 

CaHPQ4 	 1,0 

K2HPO 	 0.2 

MgSO4 .7H2 0 	 0.2 

NaCl 	 0.2 

FeCl3 	 0.1 

Trace elements were then added as 1 ml of a stock solution 
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containing: 

Bo 0,05% 

Mn 0.05% 

Zn 0.005% 

Mo 0,005% 

Cu 0.002% 

Slopes were made by dispensing the agar medium into 150 x 

19 mm tubes in 10 ml amounts. 

Liquid medium was made at half the strength of the solidified 

medium, 

BUFFERS 

Phosphate buffer, 0. 067M, pH 7.0 

gl -1 

K112 PO4 	 4.56 

Na 2 HPO4 	 4.75 

TES buffer, pH 8.0 

- 

91 -1  

Tris 	 6.05 

Na 2 .EDTA 	 1,36 

NaCl 	 2.92 

CHEMICALS 

Sodium lauryl sulphate (SLS), ethylene diamine tetra-acetic acid- 

disodium salt (Na 2 .EDTA), hydroxymethyl methyl amine (Tris), 
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caesium chloride for ultracentrifuge work, and polyethylene 

glycol-6000 (PEG) were obtained from BDH Chemicals Ltd., 

England. Lysozyme (E.C.321.17,, Grade 1; Sigma 

Chemical Co. Ltd.) was stored in a desiccator at 4 ° C. 

MAINTENANCE OF CULTURES. 

Strains in routine use were subcultured monthly on TY agar 

plates from a single representative colony. Stock cultures, 

liquid suspensions of crosses and mutagenized strains were 

maintained in 20% glycerol at -20 °C. Genetically marked strains 

and those carrying plasmids were routinely subcultured to 

supplemented media for characterization of the phenotype. 

Liquid cultures were grown in 5-10 ml amounts in 250 ml 

Erlenmeyer flasks on an orbital shaker incubator or a reciprocal 

shaking water bath. Rhizobiurn strains were incubated at 30 ° C 

Escherichia coli and Pseudomonas aeruginosa were incubated at 

37 ° C. 

Dilutions of cultures for counts of viable numbers were 

carried out in either TY broth or SY broth. These were 10-fold 

(0.5 ml into 4.5 ml) or 100-fold (0:1 ml into 9.9 ml). 

ISOLATION OF GENETICALLY MARKED STRAINS 

Antibiotic resistant strains were isolated by plating a 

suspension of the parental strain containing about 1010 V. U. ml- 1 



36. 

(obtained by centrifuging a late-log phase culture and resuspending 

in one tenth the original volume) onto plates containing the appro-

priate antibiotic. Single colonies arising after 4 days incubation 

were restreaked for purification on the selective medium. 

ISOLATION AND TESTING OF BACTERIA FROM NODULES 

Nodules were sterilized by soaking in 955o ethanol (1 minute), 

followed by 0. 1 010 mercuric chloride (3 minutes); then washing six 

times in sterile distilled water. Each individual nodule was 

crushed in 1 ml TY broth and dilutions were spread on TY plates 

and TY plates supplemented with appropriate antibiotics. 

ISOLATION AND CHARACTERIZATION OF PLASMID DNA 

The rationale for the isolation of plasmid deoxyribonucleic 

acid depends upon lysing host bacterial cells and subsequently 

treating the lysate so that the smaller circular plasmid DNA 

molecules are separated from the relatively huge mass of 

chromosomal DNA. An integral part of this requires either the 

sedimentation through an alkaline or neutral sucrose gradient 

or equilibrium density centrifugation with an intercalating dye such 

as ethidium bromide. The protocol employed in this study is that 

of Hansen and Olsen (1978). It includes some aspects of three 

extant lysis procedures (Guerry, Le Blanc and Falkow, 1973; 
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Humphreys, Willshaw and Anderson, 1975; Currier and Nester, 

1976), and also incorporation of a heat pulse during lysis. 

Conditions of treatment for each step are summarized in Table 

2-6. 

Characterization by electron microscopy 

To prepare plasmid DNA for electron microscopy, the crude 

plasmid preparation was centrifuged, after phenol extraction for the 

separation of proteins, at 36, 000 rpm on an MSE Superspeed 

Ultracentrifuge in a caesium chloride ethidium bromide gradient. 

The plasmid band was collected from above using a syringe with a 19 

gauge needle, extracted with cold CsC1 saturated isopropanol to 

remove ethidium bromide and dialyzed against two changes of cold 

TES buffer. Analysis of DNA contour length using the basic protein 

film technique (Davis et al., 197 1) was performed with a Silmens 

101 electron microscope. Tracings of circular molecules of plasmid 

DNA were measured using a map measurer. 

Plasmid molecular size was determined by the ratio of contour 

lengths using pSC101 as a 6.06 x 10  standard (Bukhari et al., 1977). 

PREPARATION OF HIGH TITRE PHAGE LYSATES 

A suspension of the phage was plated by the agar layer method 

(see below) to yield confluent plaques. This layer was then scraped 

off into 3 ml broth, thoroughly shaken and 0. 2 ml chloroform added 

to kill any remaining bacteria. The suspension was shaken again, 
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Table 2-6: Isolation of plasmid DNA (a) 

L_Step Operation Conditions 

1 Cell growth 1 litre of cells in TY broth, to 
about 2 x 108  cells ml. 

2 Cell lysis Washed cells resuspended at 
high osmolarity, cold; 	addition 
of lysozyme; Na2EDTA, SDS to 
4%; 	intermittent 55 0C pulses. 

3 Alkaline 
denaturation pH 12.1-12.3, 3 minutes. 

4 Neutralization Addition of 2M Tris (pH 7. 0) to 
lower pH to 8.5-9.0. 

5 Removal of Addition of SDS to 4 016, NaCl to 
membrane- 1M; 	refrigeration overnight; 
chromosome centrifugation 30 minutes at 
complexes 12, 000 rpm. 

6 Concentration Addition of PEG 6000 to 10 01o; 
of plasmid DNA refrigeration for 6 hr; 	centri- 
from supernatant fugation at 2, 500 rpm for 5 mm; 

resuspension in about one 
fortieth volume. 

(a) Hansen. J. B. and Olsen R. H., 1978. 
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centrifuged at 3, 000 rpm on a bench centrifuge (MSE Angle 

Centrifuge) for 2-3 minutes. The supernatant was removed, 

passed through a Millipore membrane filter (pore size 0. 45 pm, 

diameter 25 mm), and stored at 4 ° C. This method usually gave a 

phage lysate containing about 1010 plaque-forming units (p.f.u.) 

ml- 1. 

DETERMINATION OF PHAGE TITRE 

The phage titre was determined by the agar layer method. To 

tubes containing 3 ml of molten TYmedium with half-strength 

agar (7.5 gl), 0.1 ml amounts of an early log phase culture were 

added. Then 0. 1 ml dilutions of the phage were added to the 

tubes which were gently rotated to mix the contents before pouring 

onto prepared plates of full strength TY agar. Plaques could be 

observed after incubation for 2 days at 30 ° C. 

CONJUGATIONAL TRANSFER OF R-FACTORS 

Transfer of R-factors was carried out using a membrane 

mating procedure (Jacob et al.,, 1976). Cultures of late log phase 

bacteria, about 1O 9  v. u. ml , were used in crosses. In 

Rhizobj.um x Rhizobium crosses, 0. 5 ml volumes of donor and 

recipient cultures were mixed in TY broth. In crosses involving 

other species 0. 1 ml of donor culture was mixed with 0. 5 ml of the 

recipient culture. The suspension was passed through a Millipore 

membrane filter (pore size 0.45prn, diameter 25 mm), the bacteria 
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being retained on the filter which was then transferred to the 

surface of a TY plate. Following incubation, the bacteria 

adhering to the filter were scraped off, resuspended in 2 ml 

phosphate buffer, diluted and plated onto appropriate selective 

media. 

MAPPING OF MUTANTS 

The plasmid R68.45 mediates chromosomal transfer within and 

between several species of Rhizobium including H. trifolii 

(Beringer and Hopwood, 1976; Johnston and Beringer, 1977; 

Beringer, Hoggañ and Johnston, 1978a). A kanamycin sensitive 

derivative, pJBJI, which has the same mode of transfer, was 

used for mapping purposes in this project. The first step was to 

construct a suitable donor strain from that carrying the genes to be 

mapped, by transfer of the plasmid. A series of crosses were 

then carried out with nine recipient strains of H. leguminosarum, 

each carrying genetic markers two of which flanked a section of the 

bacterial chromosome, the nine sections making up the whole 

chromosome (see Fig. 2-1 and Table 2-2). When Rhizobium 

recipients receive a section of the chromosome flanked by two 

genetic markers, any marker located between these will nearly 

always be inherited with them (Beringer et al., 1978a). It was 

suggested that this effect might be the result of poor recombina-

tional ability, at least when this plasmid was used to promote 

chromosome transfer. Alternatively, there might be some sort of 
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LLP -1b 	
1056 

Fig. 2-1: Map of the chromosome of Rhizobium leguminosarum 

showing sections used for mapping. The strains 

carrying the flanking markers for each section are 

indicated (J. E. Beringer, personal communication). 
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" end effect" due to preferential recombination at the ends of 

incoming fragments. 	 - 

It was therefore possible to select for the transfer of two dorior 

alleles, e.g 	and ade in a cross with R. leguminosarum 

1628 as recipient and then to test the recipient bacteria for 

co-inheritance of the genetic marker to be mapped. The marker 

was then assigned to the section. A more accurate position for 

the marker within the section could be obtained from an analysis 

of co-inheritance percentages with the flanking markers. The 

co-inheritance percentages are the frequencies with which recipients 

selected for one chromosomal marker also receive a second non-

selected marker. Details of the crosses are given in the relevant 

chapter. 

GROWTH OF CLOVER PLANTS 

The plants were grown in a greenhouse with a minimum 

temperature of 20 ° C, unless otherwise indicated, and a 16 hour 

daylength. They were illuminated by banks of two warm-white 

and two daylight fluorescent tubes (Crompton) positioned 71 cm 

above bench level and supplying 29, 000 lux at plant height. 
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PREPARATION AND INOCULATION OF STERILE CLOVER PLANTS 

The seeds were sterilized by treating them for 15 minutes with 

concentrated sulphuric acid. The sterilized seeds were trans-

ferred to plates of yeast-mannitol agar since TY medium gave only 

low germination percentages. The plates were inverted and 

incubated in the dark for 2 days. Contaminated and apparently 

abnormal seedlings were then discarded. 

The seedlings were transferred to prepared growth tubes and 

placed in the greenhouse for 2 days, to allow them to establish. 

The growth tubes were held in wooden blocks 8.7 cm x 37,5 cm x 

4.0 cm into which holes 2 cm diameter by 3.2 cm depth had been 

drilled. Thus the roots obtained some degree of shading. The 

growth tubes were spaced 2 cm apart within the rack. Following 

2 days growth the plants were inoculated by adding a suspension of 

the bacteria (about 10 v.u.ml) in liquid Jensen's medium, 

sufficient to cover the roots of the seedling. Plants were then 

grown for 5 to 6 weeks, liquid growth medium being added as 

required. All experiments included both uninoculated controls 

and nitrogen-supplied controls which contained 10mM NH 4WO 3  in 

both liquid and solid medium. Nodules began to appear approxim-- 

ately 10 days after inoculation, and differences between treatments, 

e.g. inoculated and uninoculated, generally became apparent 3 to 4 

weeks after inoculation. 
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PREPARATION AND SAMPLING FOR THE ACETYLENE 

REDUCTION ASSAY 

For acetylene reduction assays the cotton wool stopper of the 

test tubes was replaced by a rubber Subaseal (Gallenkamp & Co. 

Ltd. ) and 2 ml of acetylene (British Oxygen Corporation Ltd. 

injected into the tube. . The tubes were kept in the greenhouse for 

10 hours before sampling, unless otherwise indicated. Samples of 

0. 2 ml for assay were taken up into 1 ml plastic disposable syringes 

(Becton, Dickinson & Co. Ltd.). Where many samples were taken 

at one time, the syringes were stuck into rubber bungs until they 

could be assayed. No appreciable loss of gas was observed over 

a period of several hours. A useful review on the preparation of 

material for the acetylene reduction assay, and details of the assay 

procedure, is given by Masterson & Murphy (1980). 

THE ACETYLENE REDUCTION ASSAY 

Gas liquid chromatography of samples was carried out on a Pye 

104 gas-liquid chromatograph fitted with a 152 cm column packed 

with Porapak R (PhaseSep Ltd., Deeside, Clwyd). The nitrogen 

carrier gas had a flow rate of 20 ml mm'; the hydrogen pressure 

-2 -2 was 1. 05 kg cm ; and the air pressure 1.5 kg cm . The column 

oven was held at 50 ° C and the detector oven at 150 ° C. Samples of 

0.2 ml were injected into the column and ethylene and acetylene 

gases identified by the position of their peaks on the chart 
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recording, the peak of ethylene emerging immediately before the 

peak of acetylene. Ethylene was measured by a comparison of 

the peak height produced with that of a 0. 2 ml standard sample 

containing 9. 69 nmoles of ethylene in that volume (PhaseSep Ltd. ). 



CHAPTER III 

"EXPERIMENTAL INVESTIGATIONS" 



PART I 

"INVOLVEMENT OF PLASMIDS IN SYMBIOSIS" 



M. 

Screening for plasmids in strains of 
	

trifolii and estimation of 

their molecular weights: 

The isolation procedure for large plasmid DNA molecules, 

summarized in Table 2-6, was used with five symbiotically-

effective strains of H. trifolli: TA-i, FA-6, F 3, 204 and 1-DL. 

After ultracentrifugation of their cell lysates in CsCl-EtBr density 

gradients, two fluorescent bands under UV irradiation were clearly 

seen for strains TA-1, FA-6, F 3  and 204. Only one band was 

detected for strain 1-DL in the position of the linear DNA. The 

failure to detect supercoiled DNA in strain 1-DL may have been due 

to limitations of the method used or it may reflect an actual absence 

of extrachromosomai DNA. DNA taken from plasmid bands of 

strains TA-1, FA-6, P 3  and 204 was used directly for electron 

microscopy. Micrographs were taken at 20, 000x magnification 

(see Fig. 3-1) and these were magnified 5x in a De Vere 54 Varicon 

projector for tracing. By measuring the contour length of the 

molecules examined and that of pSClOi as a standard, it was 

possible to estimate the molecular weight of the plasmids. The 

range of the sizes was from 7 0.2 to 220 0.2 x 10 (Table 3-1). 

This range of molecular weights is in general agreement with 

previously reported values for plasmids in Rhizobiuin (see Chapter I). 

However, it is worthy of note that piasmids of molecular weight 

less than 20 x 106 are rarely found in Rhizobium and these may well 

be suitable as cloning vectors for genetic engineering. Three strains 
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Table 3-1: The electron-microscopic determination of molecular weights of the plasmids isolated 
from different strains of R. trifolii 

Strain Plasmid No. of molecules measured Molecular weight (x 1 0  6 ) 

pMAM-la 12 26 	0.3 

pMAM-lb 7 62 - 0.4 
FA-6 

pMAM-lc 6 82 - 0.6 

pMAM-1d 4 127 	0.5 

pMAM-2a 12 
TA-1 

pMAM-2b 11 30 - 0.2 

pMAM-3a 10 18 	0.2 
204 

pMAM-3b 7 65 - 0.4 

P3  pMAM-4 4 220 	0.2 



49. 

of.R. trifolii: FA-6, TA-1 and 204 contain more than one size-

class of pläsmid. In the preparations examined using electron 

microscopy, the small plasmids (MW<  30 x 106)  occurred two 

to three times more frequently than the larger plasmids. This 

may represent their actual frequency in the cell, or the small 

molecules may have arisen through the occasional breakage of 

large plasmids, a phenomenon observed for some R-factors 

(Nisioka, Michiko and Clowes, 1969). However, although the 

strains showed an apparent diversity in their plasmid spectrum, 

they had indistinguishable sensitivity profiles to six antibiotics 

(Table 2-5) with no significant resistance to any individual anti- 

biotic. This excludes the possibility of any plasmid detected being 

an R-factor. Of particular significance was the detection of a 

single-size class of plasmid in strain P 3 . The estimated 

molecular weight was 220 0. 2 x 10. The concentration of the 

purified plasmid DNA was measured spectrophotometrically, the 

calculation being based on the assumption that an absorbance of 1.0 at 

260 nm corresponds to SOpg DNA ml* Between 200 and 600ag of 

plasmid DNA was obtained in different experiments from three gm 

wet weight of bacteria. These yields are compatible with those 

expected for cells containing one copy of plasmid per genome. 

The plasmid isolated from strain P 3 , designated pMAM-4, was 

chosen as a candidate on which to study the hypothesis of plasmid-

participation in symbiosis. The reasons for this choice were that 



50. 

p1VIAM-4 is present in P 3  as a single-size class, which excludes 

the possibility of the dispersion of plasmid-borne symbiotic genes 

on different plasmids, and because of previous genetic studies on 

its host (Cunningham, 1979). 

However, to build up any form of genetic evidence for such 

participation, it is necessary to have a genetic marker on the 

plasmid under study in order to assess its presence or absence in 

a cell. 

In vivo genetic labelling of plasmid p1VIAM-4: 

For biologically labelling the plasmid pMAM-4, the vector 

pJB4JI was employed (Beringer et al., 1978b; see chapter I.). 

Briefly, the method relies upon the fact that P1 -incompatibility-

group plasmids into which the bacteriophage Mu genome has been 

inserted can be transferred into Rhizobium but fail to become 

established. To make pJB4JI, a Mu-containing derivative of the 

g entamicin- resistant P-group plasmid, pPHl JI, was constructed 

in E. coli, and into this Tn-5 was inserted. An E. col! strain 

(1830) carrying this hybrid plasmid, was crossed to R. trifolii 

strain (MD-lb), a rifampicin- resistant derivative of strain P 3 , on 

a filter membrane (see chapter II for method). After incubation at 

30 
0
C for 24 hrs, the mating mixture was spread on TY agar plates 

supplemented with rifampicin (50 pg m1 1 ) to counterselect the 

E. coli donor, and kanamycin (100 ig ml ' ) to select for Tn-5 
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transfer. Such selection picks out those bacteria in which Tn-5 

has left the "suicide" plasmid and inserted into either the chromo-

some or the resident plasmid in R. trifolii •  As a control, 

R. trifolii (MD-lb) was plated on TY Kan; spontaneous mutation to 

kanamycin resistance occurred at a frequency of less than 10. 

Transconjugants resistant to 100 pg ml '  of kanamycin were selected; 

they arose at a frequency of 5 x 10- 
6 
 per recipient. 

To pick up those clones in which Tn-S had inserted into the 

resident plasmid, transconjugants were tested in patch crosses for 

the ability to transfer Kan at high frequency to R. leguminosarum 

strain (1056). For patch crosses, master plates'were replica 

plated, using sterile velvet onto the surface of selective TY plates 

each spread evenly with 0. 1 ml of an exponentially-growing 

culture of the recipient. The selective plates were supplemented 

with streptomycin (lOOpg m1±) and kanamycin (lOOpg ml ' ). 

The plates were then incubated for 24-36 hrs at 30 ° C. Confluent 

growth of clearly distinguishable recombinant colonies were 

observed. Out of 250 presumptive recombinants, 220 carried the 

expected auxotrophic and antibiotic-resistance markers of the 

strains from which they were derived, 20 of which were chosen 

for further study. 

Kanamycin- resistant derivatives of strain (MD-lb), designated 

(MD-2b, a to t), that gave rise to the 20 recombinants were tested 

subsequently in filter mating (see method) with 
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R. leguminosarum (1056) to assess the actual frequency of Kan 

transfer. Transconjugants at a mean frequency of 4 x 	were 

obtained. The self-transmission of the resident plasmid pMAM-4 

can be deduced from this result, as the frequency is too high to be 

explained by mutation of the parent cells to antibiotic resistance. 

However, the low frequency may be attributed to entry exclusion/ 

incompatibility with the resident plasmids in strain (1056), the 

parent of which was shown to carry at least four plasmids of MW90 to 

200 x 10  (Hirsch et al., 1980). These results demonstrated the 

conjugative ability of plasmid pMAM-4. 

No further work was carried out on the plasmid location of 

Tn-5 insertion, which can be ascertained by DNA-DNA hybridization 

(Southern, 1975); because it became clear from the results of Nuti 

et al. (1979), Stanley and Dunican (1979) and Zurkowski and 

Lorkiewicz (1979), during the course of this work, that plasmids in 

Rhizobiuin could carry genes involved in symbiosis. 

Symbiotic phenotypes of the interspecific recombinants: 

R. leguminosarum recombinants, designated (MD.1d, a to t), 

that inherited the auxotrophic and antibiotic-resistance markers, 

were selected randomly from crosses involving all 20 R. trifolii 

(MD-2b, a to t) donors. These were used to inoculate clover. 

Individual colonies were transferred to 1 ml TY broth in test tubes 

and incubated for 2 days at 30 ° C. The cultures were diluted 100-

fold into Jensen l s  liquid medium and each used as an inoculum for 
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10 replicates of clover plants (for plant growth conditions, see 

chapter II). Strain (MD-2ba) and strain (1056) were included as 

controls. Nine recombinants formed ineffective nodules (assayed 

by acetylene reduction, see chapter II for method). However, 

nodulation was delayed by about one week and the number and size 

of nodules were reduced compared with those in the (MD-2ba) 

control. Strain (1056) did not nodulate clover. Nodulation by the 

recombinants mentioned above showed that some "nodulation" genes 

are located on the plasmid pMAM-4 or are co-transferred at 

comparatively low frequency with this plasmid. However, in 11 

cases "clover nodulation" was not co-transferred with Kan. These 

cases could be explained by any of the following possibilities: 

The insertion of Tn-5 into a transmissible nodulation gene. 

The insertion of Tn-5 into another cryptic plasmid that does not 

carry nor co-transfer nodulation genes. 

The inability of nodulation genes to be transferred and become 

established intact in the recipients. 

Sensitivity of R. trifofli carrying the plasmid pMAM-4 to the donor-

specific phages PRR1 and PR4: 

The phage PRR1 adsorbs specifically to the sides of pili coded 

by Inc P1 plasmids (Bradley, 1976) and therefore lyses only bacteria 

carrying PI-plasmids. A group of other donor-specific phages, of 

which PM (Bradley, 1976) is an example, attaches to the tips of 
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both Inc P1-determined pili and morphologically different pili 

determined by plasmids of Inc W and Inc N groups (Bradley and 

Cohen, 1976). The sensitivity of strain P 3  to PRR1 and PR4 

(108 p.f.u. ml- 1 ) was tested by using the agar layer method (see 

chapter II), using (MID-le), P. aeruginosa strain (PAO) carrying 

RP4, as a control. However, it was not possible to demonstrate 

the multiplication of PRR1 and PR4 in strain P 3  as no plaques 

were observed after three days of incubation at 28 ° C, whereas 

strain (MD-le) carrying RP4 acted as an efficient host for the 

multiplication of these phages leading to the formation of plaques. 

A similar observation was made by Hirsch (1978) when assessing 

sensitivity of R. leguminosarum pPH1JI to the donor-specific 

phages. She explained this inhibition of plaque formation as the 

result of "the masking effect of exopolysaccharides slime 

produced by R. legurninosarum" 

exist: 

However, two other possibilities 

The reduction in the efficiency of plating may be due to lower 

conjugal transferability observed with plasmid p1VIAM-4, since 

both efficient plasmid transfer and phage susceptibility are 

under the same regulatory control, a phenomenon known to be 

associated with some R-factors (Stanisich, 1974). 

Host-controlled restriction and modification may be exhibited 

by strain P 3  

The latter possibility was examined by performing an experiment 

illustrated in Fig. 3-2. The host ranges of PRR1 and PR4 were 



55. 

P. aeruginosa (RP 4 ) 

1 
phage lysate (PRR1 or PR 4' 1010 p.f.u. miH 

L 	1 
agar-layer method 	 spot-phage assay 

P. aeruginosa (RP 4 ) E. coil p5_ 3 (RP4 U 	R. trifolii (P3 ) 

phage lysate 

agar-layer method 

P. ael'uginosa (RP 4 ) 	E. coli 	(RP 
4)7R. 

 trifolii (P3 ) 

Fig. 3-2: A diagram showing the protocol used in demonstrating 
restriction and modification in R. trifolii (F3). 
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determined by using the agar layer method with (MD-le) and 

E. coli [J5-3 (RP4jJ, the latter being included as an additional 

control and by using the spot phage assay with P 3 . In the latter 

assay, bacteria were seeded on the surface of TY medium by 

flooding the agar surface with 2 ml of a log-phase culture and 

removing the excess fluid. When the surfaàe was dry, 50 p1 of 

1010 p.f.u. ml- I phage lysate (see chapter II for method) was 

spotted onto the bacterial lawn using sterile micropipettes. For 

every tested culture, one plate seeded with bacteria was prepared 

without adding the phagelysate. 

No restriction was observed of the phages grown on 

P. aeruginosa and tested on E. coli. A positive response of strain 

P3  was observed in the spot phage method as a partial clearing in 

the lawn. It was assumed that this clear area contained those 

phage molecules that had escaped restriction and survived. The 

cleared areas were used to prepare phage lysates, the titres of 

which were determined by the agar layer method on P 3 ,(MD-le), 

and [J5-3 (RP40, The P 3 .PR4 lysate was shown to be of 

10 p.f.u. ml 
1 
 on P.33 (MD-le) and 	(RP4)J. The P 3 . 

PRR1 lysate contained 	10 p.f.u. ml on the above-mentioned 

hosts. The efficiency of plating values was based on averages of 

three independent experiments with each member. The p,f.u. ml '  

is indicated as less than a certain value because of abnormal plaque 

morphology which made the plaque count subject to error. From 
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these values, the reduction in the efficiency of plating of phages 

PR4 and PRR1 on P3  is due to restriction of most of the phage 

DNA molecules. 

Since the inability of R. trifolii strain P 3  to propagate the 

donor-specific phages grown on P. aeruginosa was due to 

restriction and that surviving phage DNA molecules plaqued at the 

same titre on P. aeruginosa, E. coli and H. trifolii (P 3 ), it can be 

concluded that the plasmid pMAM-4 belongs to the incompatibility 

group P1. 



PART II 

"ISOLATION AND MAPPING OF SYMBIOTIC- 

DEFECTIVE MUTANTS" 
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The isolation of symbiotic-defective mutants was achieved 

using two methods: firstly, growing bacteria at an elevated 

temperature, in the hope that some of the cells which survived 

were cured of their plasmid DNA and had altered symbiotic 

properties. Secondly, transposon-mutagenesis and assessment 91 

the symbiotic properties of the clones isolated. 

1. Attempt to cure R. trifolii of its resident plasmid: 

An attempt was made to isolate plasmid-free mutants which 

could be used as recipients to study the expression of foreign DNA 

in Rhizobiun. The protocol was to incubate bacterial cultures at 

elevated temperatures (Zurkowski and Lorkiewicz, 1978), isolated 

clones of which could then be assessed for their symbiotic properties. 

The strains of R. trifolii chosen originally for this study were 

(MD-lb) and (MD-la). The optimal temperature for the growth of 

both of these strains was 28 °C. However, the maximum 

temperature for the growth of strain (MD-lb) was 32 °C, while 

strain (MD-la) showed some growth even at 37 ° C. Strain (MD-la) 

was selected therefore for this experiment. A culture was incubated 

at 37 ° C for 48 hrs, and the bacteria plated on TY agar medium to 

give single colonies. These were transferred to agar slants and 

the symbiotic properties of the clones determined in test tubes by 

inoculation of sterile clover seedlings with samples of the isolated 

clones. The experiment was terminated after five weeks. Putative 
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Nod and Fix mutants were re-tested using five replicates for 

each clone. Out of 100 clones tested, nine showed the Nod 

phenotype. The Nod mutants, designated (MD-2a to lOa), 

remained non-nodulating on re-testing; reversion to the Nod+ 

phenotype was not observed. The provenance of the isolated Nod 

mutants was confirmed to exclude the possibility that they were 

contaminants. All Nod mutants showed the same level of 

resistance to spectinomycin as the parental strain, as well as 

showing the same sensitivity to the rhizobiophage Rtl (Cunningham. 

1979). In addition to the Nod mutants, another five clones were 

isolated that nodulated clover but were completely ineffective. 

These Fix mutants were designated (MD-ha to 15a). Dry 

weights of plants nodulated by (MD-ha to 15a) were significantly 

lower than those nodulated by the parental strain (MD-la) (see 

Table 3-2). It was demonstrated that strain 204, the parental 

strain of (MD-la), carried at least two plasmids (see Part I). The 

Nod and Fix phenotypes obtained after heat treatment were 

probably the result of loss of the resident plasmid(s) or possibly 

due to a deletion in the plasmid(s). 

2. Tn-S mutagenesis: 

A cross between E. coli (1830) and R. trifofli (MD-lb) was set 

up. Following incubation, the bacteria from this cross were 

resuspended in TY broth and plated onto an appropriate selective 
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Table 3-2: Dry weights of clover plants uninoculated or 
inoculated with parental or Fix -  mutants of - 
R. trifolii 

Inoculum strain Dry weight (mg) (a) 

MD-la 96.8 28 

MD-ha 22.3 95 

MD-12a 24 4 0t 9.6 

MD-13a 20.3 t 8.8 

MD-14a 19.0 8.6 

MD-15a 22.5 9. 9 

None: 	uninoculated plants 13.2t 8.4 

+ 
(a) Mean value of 5 replicates - 1 standard deviation. 
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medium to detect the transfer of Tn-S to R. trifolii. The frequency 

of transfer was 10 and a total of 1, 000 colonies was obtained 

following incubation. Individual colonies were transferred to 1 ml 

TY broth in test tubes and incubated for 2 days at 30 ° C. The 

cultures were diluted 100-fold in Jensen's medium and each was 

used as an inoculum for an individual clover plant. A 0. 5 ml 

volume from each culture was also diluted, with an equal volume of 

40 1/6 glycerol, and stored at -20 °C. The plants were grown for 5 

weeks and acetylene reduction assays were carried out as 

described in chapter II. 

Putative non-fixing mutants were retested, five replicates 

being used for each clone. Plants were grown at both 15 °C and 

0 	 0 + 0 
25 C. Those at 15 C (- 1 C) were illuminated by Wotam mercury 

iodide lights delivering 63, 000 lux at plant height. Plants at 25 ° C 

(t 2 ° C) were grown in a greenhouse with lighting as described 

previously (see chapter II). Out of 1, 000 clones screened, a total 

of five Fix mutants were isolated. The mutants, designated 

(MD-3b to 7b), had considerably decreased acetylene reducing 

ability, i. e. nitrogenase activity, relative to the parental strain at 

both 15 °C and 25 °C (see Fig. 3-3). All of the mutants were 

defective in acetylene reducing ability at both temperatures 

suggesting that they were not temperature sensitive in nitrogen 

fixation. None of the mutants isolated was auxotrophic and their 

growth rates were not greatly different from that of the parental 



62. 

Fig. 3-3: Separation of hydrocarbons by gas chromatography. 

Peaks: (1) methane; (2) ethylene; (3) acetylene. 

(A) strain (MD-lb); (B) (MD-3b) at 150C. 
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strain, in so far as they produced similar sized colonies on TY 

agar after 3 days incubation at 30 ° C. All the mutants nodulated 

clover plants at the same time as the parent (MD-lb). 

Mapping of the sites of transposon insertion that give rise to the 

Fix phenotype: 

Appropriate donor strains were constructed by transferring the 

plasmid pJB3JI from E. coli (1843) to R. trifolii (MD-3b to 7b). 

Selection was made for tetracycline resistance. Tetracycline 

resistant transconjugants arose at a frequency of 10- 2 per 

recipient bacterium. One clone froth each cross was purified and 

used in crosses with appropriate recipient strains of R. legumino-. 

sarum (see Table 2-2). Screening was for the transfer of 

kanamycin resistance and the appropriate prototrophic markers. 

The results of these crosses are shown in Table 3-3, from which it 

is clear that all strains were Cma+ but with differing levels of 

efficiency. This variability could have resulted from strain 

differences or from the fact that the chromosome mobilizing ability 

of the parental plasmid R68.45 is unstable (Holloway, 1979). 

However, each mutant mapped showed two to three possible sites 

for Tn-5 insertion s  This meant that further analysis, to map the 

accurate position of the insertion responsible for the symbiotic 

defective phenotype, was difficult. Models of trañsposon insertion 

which may explain this observation will be discussed later. 



Table 3-3: Mapping of Tn-5 insertions 

R. trifolii donor 
R. leguminosarum 

Map section 
Frequency of inheritance of 

selected markers (per recipient) recipient 

MD-8b 1062 4 1,3 x 

DC-11 6 2.2x10 6  

MD-9b 1433 2 5.0 x 

1056 5 2.2 x 

1062 4 4.1 x 106 

MD-lob DC-21 7 7. 5x 

DC-11 6 3.1 x 10- 6 

MD-11b 1062 4 5.0 x lO 

1433 2 34 x 10- 6 

MD-12b 1056 5 1.1 x 10 

1629 8 9•5x10"7 



PART III 

"A STUDY ON THE COMPETITIVE ABILITY OF THREE 

STRAINS OF RHIZOBIUM TRIFOLII" 
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Effect of temperature on competition amongst strains of 

Rhizobium trifolii: 

The original Rhizobium strains used in the present investigation 

were selected after a preliminary study of nodulation and nitrogen 

fixation. Strain P3  and i-DL were from the United Kingdom and 

strain 204 from Iraq. The reason for comparing two U. K. strains 

with an Iraqi strain is the expectation that the Iraqi strain would 

perform better in nodulation than the U. K. ones as the temperature 

increased, since it showed high tolerance to temperature under 

laboratory conditions (see Part II). However, all nodulated 

Trifoliuxn repens effectively at 20 ° C. Mutants resistant to anti-

biotics were isolated as described in chapter II. These were as 

follows: strain (MD-1a), a spectinomycin- resistant derivative of 

strain 204; strain (MD-lb), a rifampicin- resistant derivative of 

strain P3  and (MD-1c), a streptomycin-resistant derivative of 

strain 1-DL. Inocula consisted of an intended i:i mixture in the 

following combinations; 

A 	- 	(MD-lb) + (MD-1c) 	- 	tested at 20 ° C 

B 	- (MD-lb) + (MD-la) 	- tested at 15 0 C and 25 °C 

C 	- (MD-1c) + (MD-1a) 	- tested at 15 ° C and 25° C 

The 1:1 mixture of strains was prepared by mixing equal proportions 

(0. 5 ml) of the two suspensions of bacteria, the concentrations of 

which were adjusted to 5 x 10 bacteria ml 	This concentration 

was chosen in an attempt to exclude the spontaneous acquisition of 
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resistance to the antibiotics used as selective agents, i. e. the 

occurrence of nodules containing more than one strain of R. trifolii 

would not be due to a clone derived from a spontaneous mutant 

arising during the growth of the bacteria in the course of nodule 

development. 

The plants (for growth conditions see chapter II and Part II, 

chapter III) were inoculated with samples of appropriate bacterial 

suspensions. A number of well separated and suitably sized 

nodules were isolated from clover plants about 5 weeks after 

inoculation. However, for several combinations this was not 

possible because large numbers of nodules were closely grouped 

together and single nodules could not be isolated. The number of 

nodules yielding data was further reduced because no bacteria could 

be isolated from many of the smaller nodules. Either bacteria 

were not present or were killed by the sterilization procedure. 

Thus the data are biased in favour of isolates from larger nodules. 

The presence of rifampicin-resistant, streptomycin-resistant or 

spectinomycin-resistant populations was detected by plating the 

macerates on TY medium supplemented with the appropriate anti-

biotic 	Tabulated results for nodule strain identity are given in 

the Appendix. 

In the combination (MD-lb) plus (MD-lc), the two strains 

competed equally for nodulation at 20 ° C, as they form equal numbers 

of singly infected nodules. However, the competitive ability for 
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nodulation of these two strains was very evident when they were 

combined separately with (MO-la). At 15 
0
C, out of 101 nodules 

examined from the inoculation combination of (MD-1c) and (MD-la), 

none contained (MD-la) alone. When (MD-lb) and (MD-la) formed 

the mixed inoculum only one nodule out of 84 contained (MD-la) 

alone. However, strain (MD-la) performed better at 25 °C as the 

incidence of single infection by this strain increased to 6. 3% when 

combined with (MD-lc) and to 13 1/6 when combined with (MD-1b). 

Double strain occupancy showed similar variation at different 

temperatures. In the combination (MD-lb) plus (MD-la), the 

percentage of double strain occupancy increased from 7. 1% at 15 0 C 

to 17.8% at 25 °C. The combination (MD-1c) plus (MD-la) showed a 

similar increase, i. e. from 6.9% at 15 °C to 15.9% at 25 0C. 

However, the percentage of double strain occupancy was 33.3% in 

the combination (MD-lb) plus (MD-1c). This high percentage may 

be attributed to their equality in competition for nodule formation. 

In the mixedly-infected nodules from all these inoculant mixtures, 

the observed populations of strains did however deviate from the 

1:1 ratio of the inoculum (see Table 3-4). Strain (MD-lc) formed 

the majority of the population in all combinations. At 15 0C, the 

average population in nodules mixedly infected with (MD-1c) and 

(MD-1a) was made up of 1.1 x 1O 4  cells mY 1  of (MD-ic) and 1.8x 

10 2 of (MD-la). At 25 0 C, the average population of (MD-1c) was 

4  1.4 x 10, while that of (MD-la) was 5.9 x 	In the combination 
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Table 3-4: Average numbers of strains present in mixedly 
infected nodules at different temperatures 

Mixture Temperature 

15 ° C 20 ° C 25 ° C 

(MD-lb) 
) 1.5 x 10  

(MD-1c) 
) 1.5 x 10 4 

(MD-lb) 
) 2.0x 10 7.5x 103 

(MD-la)) 5.8 x 102 5 • 7 x 10 

(MD-1c) 
) 1.1 x 10 1.4 x 10 4 

(MD-la) 
) 2  1.8x10 5.9x103 
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(MD-lb) plus (MD-1c), the average population of strain MD-lb was 

1.5 x 10 2 , while the average population of strain MD-la was 1.5 x 

1O4 . However, when strain (MD-la) and (MD-lb) were present in 

the same nodule their numbers, at 25 °C, were approximately 

equal, viz. 5,7 x 10 and 7.5 x 10 respectively. At 15 °C, some 

deviation was observed, the average population of strain (MD-lb) 

being 2 x 	cell m1 1 , while that of (MD-la) was 5.8 x 10 



CHAPTER IV 

"DISCUSSION" 
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1. PLASMIDS IN RHIZOBIUM TRIFOLII 

(a) Screening for plasmids in H. trifolii 

Attempts to isolate and positively identify plasmids in 

Rhizobium, particularly the large plasmids, were largely 

unconvincing or negative until improved cell lysis and DNA 

isolation procedures were used. The "gentle lysis" methods used 

generally for bacteria such as E. coil were unsatisfactory for 

rhizobia (Schwinghamer, 1981). However, following "complete 

lysis" involving the use of lysozyme, ionic detergents, proteases 

and other agents, a variety of procedures have been employed to 

look for large plasmids in different Rhizobium strains, i. e. 

alkaline sucrose gradients followed by the measurement of DNA 

renaturation kinetics (Nuti et al,,, 1977; Prakash et al,, 1980), 

ultracentrifugation in CsCl-EtBr gradients followed by electron 

microscopy (Casse et al., 1979) and agarose gel electrophoresis 

(Hirsch et al,,, 1980). Factors pertinent to the isolation of large 

plasmids were discussed by Hansen and Olsen (1978). On the 

basis of their considerations, they devised a novel protocol 

incorporating aspects of three, then extant, procedures (Guerry, 

Le Blanc and Falkow, 1973; Humphreys, Willshaw and Anderson, 

1975; Currier and Nester, 1976, i V ") to achieve reproducible isola-

tion of large plasmids. Strict lysis conditions were defined that 

appeared to improve the separation of plasmid from chromosomal 
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DNA. The results in this thesis have confirmed the usefulness of 

this protocol. It was simple and reproducible, allowing the 

isolation of plasmids of molecular weight greater than 100 x 10  

However, large plasmids seem to be a general feature of 

Rhizobium since they have been found to be abundant in different 

Rhizobium strains (Badenoch Jones et al,, 1981; Dnarie' et_al., 

1981; Dunican et al., 1981). An answer to the significance of the 

large plasmids in symbiosis may come from estimating the amount 

of extrachromosomal genetic information, i. e. from 3 to more 

than 10%, assuming that the Rhizobium chromosome is of a 

similar size to that of E. coli. It is now obvious that future 

Rhizobiurn breeding for legume inoculation will require not only 

chromosomal recombination (Kondorosi et al., 1977) but also 

plasmid transfer and recombination (De Jong, Brewin and Phillips, 

1981). 

(b) Genetic functions located on an indigenous plasmid in R. trifolii: 

The plasmid pIVIAM-4, which originated in R. trifolii strain P 3 , 

was chosen to investigate the role of plasmids in symbiosis because 

of its presence as a single-size-class in P 3  (see chapter III) and of 

previous genetic studies on its host (Cunningham, 1979), Using a 

technique for transposon-mutagenesis (Beringer et al., 1978b) a 

derivative of pMAM-4 was obtained which contained the transposon 

Tn-S conferring resistance to kanamycin (Berg et al., 1975). This 
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technique has been employed by others to insert a selectable marker 

into indigenous plasmids in Rhizobium to facilitate the selection of 

their transfer between different bacteria (Johnston et al., 1978a; 

Hooykaas et al., 1981). Recently, native markers, i.e. medium 

bacteriocin-production (Hirsch, 1979) and melanin production 

(Beynon, Beringer and Johnston, 1980) were found to be associated 

with transmissible plasmids in R. leguminosarum and R. phasepli 

respectively. Such native markers are stable and their exploitation 

has provided a fruitful start to understanding the role of large 

plasmids in symbiosis. Nevertheless, the marking technique 

mentioned above is a necessity, in the absence of recognizable 

native markers, in the assessment of the genetic functions 

conferred by indigenous plasmids in Rhizobium (Beringer, Brewin 

and Johnston, 1980; Brewin.et_al.,, 1980a; Johnston and Brewin, 

1981): 

(i) Conjugative activity (Tra): 

The plasmid pMAM-4 is transferred from R. trifolii P 3  

to R. leguminosarum strain 1056 at a frequency of 10- 6 
 per 

recipient as measured by the frequency of transfer of kanamycin 

resistance. Resident sex factors in Rhizobium may be rare. 

In two surveys, three out of 97 isolates of R. leguminosarum 

(Hirsch, 1979), and one out of 145 isolates of R. phaseoli 

(Beynon, quoted in Beringer et al., 1980) were shown to carry 

transmissible bacteriocinogénic plasmids. However, the 
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frequency of transfer exhibited by pMAM-4 was similar to that 

of plasmid pRL5JI, an indigenous plasmid in R. leguminosarum 

strain TOM (Brewin, Beringer and Johnston, 1980b). Other 

transmissible plasmids, i. e. pRL1JI, pRL3JI and pRL4JI, 

were found to have a higher frequency of transfer, i 0  e. 10_ 2  

per recipient and to mobilize chromosomal genes at detectable 

-6 	-7 
frequencies (10 to 10 per recipient) (Hirsch, 1979). Such 

variability in the transmissibility among Rhizobium plasmids 

may be attributed to the properties of the donor and the 

recipient strains as well as to the transfer functions specified 

by the plasmid itself. 

(ii) Host-range specificity (Hsp): 

One aspect of symbiosis is the specificity whereby 

particular legume species are nodulated only by certain 

Rhizobiuin species; indeed R. trifolii and H. leguminosarum 

are distinguished by their ability to nodulate clovers and 

members of Vicieae respectively. However, the transfer of 

the kanamycin- resistant derivative of pMAM-4 to 

R. leguminosarum (1056) allowed some of the transconjugant 

clones, i. e. nine out of 20, to nodulate clover. The resident 

plasniid in H. trifolii is clearly important as a determinant of 

host-range specificity since recipient controls did not nodulate 

clover. Plasmid-mediated transfer of host-range specificity 

has been reported to occur between different Rhizobium species 
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(Johnston et al., 1978a; Beynon et al., 1980; Brewin et al., 

1980b) and other bacterial genera, e.g. Agrobacterium 

(Hooykaas et al., 1981). However, nodulation of clover by 

R. leguminosarum trans conjugants was delayed and reduced 

compared with the control of R. trifolii (MD-lb). These 

results are consistent with the interpretations of Johnston et 

al. (1978a) which suggested that the presence in the same 

Rhizobium strain of genetic information needed to nodulate host 

plants of different cross-inoculation groups might cause it to be 

impaired in its nodulation of either host. The analysis of the 

plasmid content of the clones involved (Beynon et al., 1980) 

could clarify this observation and give direct evidence for the 

proposal that there is an interaction between the resident 

plasmids in Rhizobiuni. The nodules formed by H. legumino-

sarum transconjugants on clover were Fix - . Similarly, 

variations between different recipient classes and between 

transconjugants of the same recipient, in their ability to reduce 

acetylene, have been recorded (Johnston et al., 1978a; Beynon 

et al., 1980). This indicates that specificity becomes more 

apparent when the effectiveness of N 2 -fixation and not merely 

nodule-forming ability is considered. Nodulation that occurs 

outside the common-cross inoculation group, i. e. "abnormal" 

nodulation, is seldom effective in N 2 -fixation (Hepper and Lee, 

1979). 
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(iii) Incompatibility (Inc): 

The attempt made to define the incompatibility group to 

which the conjugative plasmid pMAM-4 belongs led to the 

observation that restriction and modification can occur in 

R. trifolii strain P3 . The plasmid pMAM-4 appears to be 

related to the Inc P group piasmids as determined by lysis of 

the bacteria carrying this plasmid by the donor specific phages 

PRR1 and PR4 (Bradley, 1976). However, incompatibility has 

been defined as the inability of two distinct plasmids to be 

stably co-inherited in a single clone of dividing bacteria in the 

absence of continued selection pressure for both plasmid types 

(Timmis, 1979). On the basis of this definition, incompati-

bility has been demonstrated between some of the resident 

conjugative plasmids in Rhizobium (Beynon et al.. 1980; 

Brewin et al., 1980b). However, none of the incompatible 

plasmids was assigned to any of the known incompatibility 

groups of plasmids (Datta, 1979). As mentioned before, the 

phages PRR1 and PR4 were restricted by R. trifolii strain P 3 . 

Restriction was of high order, i. e. 	10 8 , This points to the 

likely occurrence of nucleases in the restricting strain that 

inhibit the transfer of bacterial plasmids particularly in inter-

generic transfer attempts (Cunningham, 1979). However, the 

modified forms of both phages plaqued with equal efficiency on 

the three hosts, i. e. R. trifolii, E. coli and P. aeruginosa. 
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Host-controlled or phenotypic modification of phage DNA by 

some strains of bacteria and the recognition of unmodified 

DNA by other "restricting" strains has been described for two 

phages of R. leguminosarum (Schwinghamer, 1965, 1966) and 

has also been observed in a phage of R. trifolii (Schwinghather, 

1971). 

2. Isolation of symbiotic defective mutants in EL trifolii: 

(a) Heat treatment: 

The elimination of plasmids by growing their hosts at 

elevated temperatures was first employed by May, Houghton 

and Ferret (1964) with Staphylococcus and byTp,rawaki, 

Takayasu and Akiba (1967) with Proteus. The most reasonable 

explanations for the phenomenon of plasmid-curing following 

heat treatment are that the plasmid either does not replicate in 

complete synchrony with chromosomal DNA or is not 

partitioned efficiently to daughter cells during cell division. 

Incubation of strain (MD-la) at 37 ° C for 48 hrs caused 9% of the 

clones isolated to have the Nod phenotype and 5% to form 

nodules that were ineffective. The parental strain was shown 

to harbour two plasmids (see chapter III). The loss of 

symbiotic properties from R. trifolli (MD-la) may similarly be 

due to the temperature-sensitive replication of the resident 
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plasmid(s) that carry symbiosis genes. Plasmids in 

Rhizobium are involved in nddulation (Brewin et al. 1980a; 

Lorldewicz et al., 1981) and fixation (Ruvkun and Ausubel, 

1980a; Kondorosi et al., 1981; Prakash et al., 1981). 

However, although promising, these results, and subsequently 

the conclusion, can only be valuable if they are checked 

rigorously as follows: 

(i) It is important from a genetic standpoint, that a marker 

is introduced into the plasmid, for instance using known 

transposons (Beringer et al., 1978b). Alternatively, 

native markers, e.g. cell wall polysaccharide can serve 

as good tools to indicate the presence or absence of a 

plasmid (Prakash et al., 1980). 

(ii)-  Physical analysis of the DNA content of both the "cured" 

clones and the parental strains to clarify the extent of 

the plasmid loss, whether it is partial, i. e. a deletion or 

a complete loss (Zurkowski and Lorkiewicz, 1979). 

(iii) For complete proof of the role of the plasmid loss in the 

generation of a defect in the nodulation process or in 

fixation, the restoration of these functions upon re-intro-

duction of the plasmid is necessary. This will exclude 

the possibility of a secondary mutation due to heat treat-

ment (Hookyaas et al,, 1981). 

Variants which have been cured of a plasmid altogether are 

important in studying the genetics of that plasmid. Heat 
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treatment has proved efficient in generating symbiotic-defective 

mutants due to plasmid-curing (Zurkowski, 1981). Curing 

agents, e.g. acridine orange, have also been used to generate 

symbiotic-defective mutants in Rhizobium (Higashi, 1967). 

However, neither heat treatment nor acridine orange is 

universally successful, and to date there is no report of a 

strain of Rhizobium that has been cured of all its plasmids. 

(b) Tn-S mutagenesis: 

A range of symbiotic-defective mutants of Rhizobium have 

been produced by classical mutagenic techniques using 

chemicals or radiation as mutagens (Maier and Brill, 1976; 

Beringer, Johnston and Wells, 1977). Recently, transposons 

have been used to induce mutations in a wide range of bacterial 

species (Kleckner, Roth and Botstein, 1977). The advantages 

of using transposon mutagenesis with the transposon Tn-S are 

that: (1) it induces insertion mutations at single sites; (2) the 

mutation is labelled by simultaneously acquiring the kanamycin 

resistance marker encoded by the transposon; (3) the DNA into 

which the transposon becomes integrated can be isolated by 

screening fragmented DNA for the piece(s) which hybridize with 

the transposon (Ruvkin and Ausubel, 1980b). 

A total of five transposon_induced symbiotic-defective 

mutants have been generated using the vector pJB4JI (Beringer 
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et al., 1978b). In all cases, the defect appeared to affect 

specifically the ability of the R. trifolii - T. repens symbiosis 

to fix nitrogen. Whether this was the result of a direct 

mutation involving the nitrogenase complex or an indirect one, 

e. g. affecting energy supply within the bacteroid, could not be 

ascertained. The insertion of Tn-S was considered to be 

responsible for the mutant phenotypes observed. Transposon 

mutagenesis in Rhizobium has facilitated the isolation of 

specific mutants blocked in steps leading to a functional 

symbiosis (Buchanan-Wollaston et al,, 1980; Ruvkin and 

Ausubel, 1980b; Rolfe et al, 1981). 

(c) Mapping of the transposon-induced symbiotic-defective 

mutants: 

As mentioned before, the mapping of the symbiosis genes 

after transposon mutagenesis can be done by mapping the drug 

resistance encoded by the transposon. The insertion sites for 

Tn-5 in the five isolated mutants of R. trifolii. were found to be 

chromosomally located. Similarly, Cunningham (1979) found 

that a symbiosis gene in R. trifolii is located chromosomally 

and Meadtet al. (1979) located genes involved in the R. meliloti-

alfalfa symbiosis on the bacterial chromosome. 

One of the interesting findings during this project was the 

discovery of multiple sites of insertion for Tn-5 on the chromo-

some, i. e. 2 - 3 sites in each mutant produced by Tn-5 
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mutagenesis. Such genetic instability has been shown by the 

transposon Tn-1816, a transposon coding for mercury 

resistance, leading to multiple auxotrophy in P. putida and 

E. coli (Friello and Chakrabarty, 1980). Furthermore, intro-

ductions of RP4 into strains harbouring Tn-1816 and subsequent 

restriction endonuclease analysis of RP4::Tn-1816 revealed 

that multiple copies of Tn-1816 occurred on the RP4 plasmid. 

Similar behaviour has been shown by the transposon Tn-501, 

another transposon determining resistance to mercury (Bennett 

et al., 1978). Various attempts have been made to explain non-

homologous recombination events in transposition by a 

systematic model (Arthur and Sherratt, 1979; Grindley and 

Sherratt, 1979; Shapiro, 1979; Read, Das Sarma and 

Jaskunas, 1980; Galas and Chandler, 1981; Harshey and 

Bukhari, 1981). The following features seem to be applicable 

to most, if not all, models of DNA transposition: (1) replication 

of the transposable element and conservation or regeneration of 

the donor site; (2) specific DNA cuts at the termini of the 

transposable element; (3) staggered DNA cuts at the target 

site; (4) generation of replicon fusion structures as transposition 

intermediates or products of a process closely related to 

transposition (Shapiro, 1980; Bukhari, 1981). However, the 

results in this thesis do not permit the choice unequivocally of 

one model from the various models described in recent 



81. 

literature. The best that can be achieved is to eliminate the 

simple model of Berg (1977). In this model, a phage lambda-

like excision-integration system for Tn-5 operates, in which 

the element possesses a mechanism whereby it is precisely 

excised, at a high frequency, and reinserted at another site 

with the subsequent exonucleolytic degradation of the donor 

molecule. 

The creation of multiple transposon insertions in the 

chromosome in all the clones investigated precludes the use of 

Tn-5 mutagenesis as a method of investigating the chromosomal 

location of individual symbiosis genes. 

3. — COMPETITION IN RHJZOBITJM 

The present investigation used mutation to antibiotic resistance 

as a marker technique, which has the distinct advantage over 

serological methods of being both rapid and sensitive. Such 

genetic markers are stable and different strains may be labelled 

with ease. The results demonstrated the usefulness of this 

technique in studies of competition befween strains in nodule 

formation especially in identifying mixed-infected nodules. In 	- 

some cases, the frequency of one of the strains was less than 0. 1% 

of the total number of viable bacteria isolated from the nodule, yet 

this strain was readily detected. However, the main disadvantage 

is that mutant strains are being used in place of
-wild-type strains. 
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Mutation to antibiotic resistance can be associated with partial loss 

of effectiveness in nitrogen fixation (Jones and Bromfield, 1978; 

Pain, 1979). However, the results reported in the above-cited 

references showed that it is only a minority of the mutants isolated 

that had a modified symbiotic phenotype and by screening adequate 

numbers of mutants it would be possible to select strains having 

effectiveness indistinguishable from the parental strains. 

Recently, Josey et al. (1979) used the intrinsic low-level resistance 

to a range of antibiotics to characterize wild-type and genetically 

marked strains of Rhizobium. This test, though it has the 

advantage that it does not demand alterations in the strain which 

may interfere with its symbiotic performance, does not give 

optimal reproducibility over an extended period and because of this 

instability, accurate strain identification could not be made without 

reference to a control culture. However, it is possible that other 

intrinsic properties such as phage- resistance and bacteriocin 

production may be applicable to the problem of strain identification 

in Rhizobium. 

There were marked differences in competitiveness as measured 

by success in nodulation, between the mutant strains used. 

Surprisingly, the United Kingdom strains (MD-lb and MD-1c) were 

more competitive at 25 ° C than the Iraqi strain (MD-la). This may 

be attributed to specific host effects in determining the relative 

success in nodulation by the competing strains, since the host variety 



83. 

from which the Iraqi strain (MD-la) was originally isolated, and 

was therefore compatible with, is Trifolium alexandrium and not 

T. repens. Similar selection by clover varieties of specific 

strains of nodule bacteria from a mixture present in the rhizosphere 

has been observed (Russel and Jones, 1975; Jones and Hardarson, 

1979). However, the results of this investigation indicated that the 

competitive ability of a strain, which may be affected by host 

preference, can be markedly altered by temperature as can be 

seen from the increase in the frequency of both single and double 

strain occupancy of strain (MD-la) at 25 ° C compared with its 

performance at 15 ° C. This confirms results published by 

Hardarson and Jones (1979) and emphasises the necessity for 

information on environmental factors, such as soil temperature, 

to establish a 	 legume vaxi 

an effective strain of Rhizobium. 

In contrast with legumes grown in soil (Bromfield and Jones, 

1980), the results showed that the frequency of doubly infected 

nodules is high (33.3% in the combination MD-lc + MD-lb). Such a 

high frequency of mixed strain occupancy has been observed 

previously (Johnston and Beringer, 1975; Bromfield and Jones, 

1980) when legumes are grown under laboratory conditions. This 

artefact may be explained by the fact that the growth of aseptic 

plants under conditions where the two bacterial strains are present 

in a continuous film of moisture on the root surface is conducive to 
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double invasion. However, in mixed-infected nodules, strain 

(MD-lc) formed the majority of the population in all combinations 

and at both temperatures. This may add another factor for its 

superiority as a competitor and could be explained by any of the 

following: 

Strain (MD-lc) is more competitive in the formation of 

infection threads, although the data obtained do not clarify whether 

there is a mixture of bacterial strains within a single infection 

thread, or whether two separate threads, each containing a single 

genotype, are involved. In any case, if the nodule is formed by the 

progeny of a single bacterium, there is no exclusion mechanism 

against subsequent invasion by other bacteria. 

Since the competing strains have a similar growth rate, in so 

far as they produced similar sized colonies in three days, strain 

(MD-ic) could be more competitive in the utilization of carbon 

sources in the nodule. This could be confirmed by biochemical 

analysis of the competing strains separately. 

Strain (MD-ic) could be bacteriocinogenic or lysogenic. Such 

properties would alter the proportions of strains of rhizobia 

growing in a mixture. 

However, the relevance of this study to the field situation is not 

clear. Johnson, Means and Weber (1965) found that one strain of 

R. japonicum which was competitive in the greenhouse was not 

competitive in the field. Other strains were competitive under both 
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It is likely that, in field situations, the degree of competitiveness 

is influenced by other parameters such as the ability to survive and 

multiply in the presence of indigenous microbial species absent from 

the greenhouse trials. The need to analyse the competitiveness of 

Rhizobium arises from the desire to promote nodulatibn specifically 

using a particular inoculant strain. Brewin, Johnston and 

Beringer (1980) suggested a strategy to ensure this specific inter-

action by using a host genotype with an extremely rigorous speci-

ficity for nodulating rhizobia. This approach, although very 

limited, leading to the accumulation of knowledge concerning the 

factors affecting only one particular liaison would, nevertheless, 

provide a good basis for the exploitation of competition. 

To understand the factors involved in the successful liaison it 

would be necessary to analyse both genetic and environmental 

factors. The genetic factors would include the involvement of the 

indigenous conjugative plasmids of Rhizobium in nodulation, 

fixation and bacteriocinogeny. The environmental factors, 

important as they are in ultimate practice, are too complex to 

readily permit separate evaluation. Nevertheless, an attempt has 

to be made to unravel the various effects of the environment on 

competition of Rhizobiurn in natural situations. Competition 

between Rhizobium strains can take place during the stages leading 

to successful nodulatiop. It would be necessary to assess the time 



ME 

required for each stage to be completed in order to determine the 

sensitivity of each to alteration in the environment. Thus, Munns 

(1968) found that prevention of nodulation by acidity in heavily 

inoculated solution cultures could be attributed to prevention of a 

step which approximately coincides temporally with the curling of 

root hairs. This step occupied less than 12 hours of the 4 to 7 

days required for visible nodules to appear. Moreover, Winaro 

and Lie (1979) showed that the critical period of competition is 

restricted to 24 hrs after inoculation. 

For a completely coherent picture of competition, greenhouse 

trials would be used to forecast the outcome of field trials, the 

latter being the ultimate test of a strain's ability to compete, since 

the proportion of nodules formed and the amount of nitrogen fixed 

are the end result of many interacting factors. 
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"APPENDIX" 



Table 1: Nodule-strain identity of the combination (MD-lb) plus (MD-lc) at 20 ° C 

No. of nodule (MD-lb) (MD-ic) No. of nodule (MD-fl) (MD-1c) 

1 9.5x102  21x104  13 - 6.1x104  

2 1.0 x 10  1.6 x 10 14 2.1 x 10 - 

3 90 2.2x104  15 1.0x102  - 

4 - 1.9x10 3  16 - 2.4x104  

5 4.4x10 2  7.2x103  17 1.0x102  3.1x103  

6 1.2x10 2  3210 18 - 2.9x104  

7 1.8x10 2  2.6x104  19 - 1.0x104  

8 4.5x102 - 20 4.8x102 . - 

9 1.4x104. - 21 - 2.0x104  

10 - 3.2x104  22 - 8.8x10 2  

11 3.0x102 - 23 2.2x10 2  3610 

12 1.15x102 - 24 30 - 



Table 1 (contd.) 

No 1  of nodule (MD-lb) (MD-1c) No. of nodule (MD-1b) (MD-1c) 

25 1.3x10 3 - 37 25 2.3x104  

26 - 9.8x104  38 25 104 
4.fix lo 

27 - 5.7x104  39 50 7.8x103  

28 20 5.4x104  40 - 6.9x104  

29 - 69x 10 41 - 2.2x 10 - 

30 45 2 0 7xiO3  42 - 4.1x104  

31 - 6.6x104  43 - 1,8x104  

32 3. ix 10 - 44 1.2 x i0 2  4.9 x 10 4 

33 20 2.3x10 2  45 4.6x 102 1.0x102 

34 - 2.0x104  46 75 72x104  

35 15 3.1 x 10 47 1.5 x 10 
 

 9.8 x 1O4  

36 35 6.6x104  48 2.4x104  - 



Table 1 (contd,) 

No 	of nodule (MD-lb) (MD-la) No. of nodule (MD-1b) (MD-1c) 

49 1.2x102  9.7x104  61 2.9x10 3  - 

50 1.9x104  62 4.4x10 2  - 

51 	. 3.5x10 2  - .63 95 

52 1.7x10 2  64 1.5x10 2 
 

12x103  

53 1.6x10 2  2.3x104  65 1.7x10 2  - 

54 40 75x104  66 - 3.4x104  

55 1.3x103  - 67 7.0x102  - 

56 - 7.1x104  68 - 	 . 18x103  

57 2.3x10 2  - 69 29x10 2  - 

58 2.4x102 - 70 1.1x10 2  3.8x104  

59 1.3x103  . 	 - 71 11x102  5.5x104  

60 5.4x10 2  - 72 1.5x102  62x104 



/ 
I 

Table 1 (contd.,) 

No 	of nodule (MD-1b) 	. (MD-1c) No 	of nodule (MD-lb) (MD-1c) 

73 32x102  5.6x104  85 9.8x10 2  4.0x104  

74 . 	- 	. 17x104 	. 86 7.9x10 2  3.2x103  

75 - 11x104  87 - 6.8x104  

76 - 20x104  88 56 1,1x104  

77 85 2.7x104  89 20 27x104  

78 1.5x10 3  90 - 2.9x103  

79 1.2 x 10 
  is x 10 91 2.4 x 10 

  - 

80 50 9.7x10' 92 - 5.1x10 2  

81 20 1 • 4x104  93 . 	35 - 

82 - 3.7x104  94 1.1x10 2  1.7x104  

83 - 7.6x103  . 
2 

10 
- 

 

84 3 0 6x10 2  9.2x103  96 38x10 2  - 



Table 1 (contd.) 

No. of nodule (MD-lb) (MD-1c) No 	of nodule (MD-lb) (MD-1c) 

97 3.1x10 2  52x104  109 .20 - 

98 1.3x10 3  - 110 
- 1.6x10 2  

99 75 - iii - 5.6x104  

iOO 25 - 112 
- 5.6x104  

101 20 - 113 4.0x102  - 

102 - 3.4x104  114 - 6.3x104 

103 - 26x10 2  itS 1.4x104  - 

104 iS - hG - 3.6x103  

105 85 8.6x 10 ii? 2.2x 102 

106 - 	
. 1.3x10 2  118 - 5.4x104  

107 - 7 1 2x103  119 - 4.8x104  

108 . 	 40 - 120 - 	 . 3.2x103 



Table 2: Nodule-strain identity of the combination (MD-lb) plus (MD-la) at 25 0 C 

No. of nodule (MD-lb) (MD-la) No. of nodule (MD-lb) (MD-la) 

1 	* 2.0x103  - 13 2.8x10 

2 10x104  25 14 85 3.2x10 

3 2.5x104 - 15 2.9x104  - 

4 2.6x104  15 16 45 - 

5 1.2x10 3  - 17 7.5x10 - 

6 - 4,2x10 3  18 2.5x10 2  - 

7 1.4x104  - 19 2.1x104  - 

8 7.1x10 3 
 

1.0x104  20 2.7x104  - 

9 45 - 21 4.6x10 3. - 

10 6.7x10 2  - 22 9.1x10 - 

1.1 2.5 x 10 - 23 9.1x 1O3  1.0 x 10 

12 6.3x10 2  - 24 6.3x10 2  - 



Table 2 (contd.) 

No. of nodule (MD-lb) (MD-la) No. of nodule (MD-lb) (MD-la) 

25 9,2xl03  - 37 32x104  - 

26 2.0x10 3  - 38 2 • 5x103  1.0x102  

27 2.1x104  - 39 1.1x102  - 

28 30 
- 

40 7.4x10 2  - 

29 1.4x10 3  - 41 2.4x104  5.1x103  

30 - 50 42 1.9x10 3  25 

31 5.0x10 2  - 43 5.6x103  - 

32 7 • 0x10 3  2.4x103  44 45 - 

33 - 2.7x104  45 6.5x103  - 

• 	34 3.8x10 2  - 46 4.7x10 - 

35 1,0x10 2  - 47 - 3.1x104  

36 2  4.5x10 - 48 - 4  22xl0 

I- 



Table 2 (contd.) 

No. of nodule (MD-lb) (MD-la) No 	of nodule (MD-lb) I 	(MD-la) 

49 1.0x102 - 61 9.4x10 2  - 

50 65 - 62 95 - 

51 1.7x104  2.3x104  63 2.4x10 2  - 

52 - 30 64 1,1x104  - 

53 5.0x103 - 65 5.0x102  - 

54 - 2.7x104  66 8.1x102  - 

55 - 1 • 7x10 2  67 - 1.2x104 

56 - 2.9x104  68 1.0x104  - 

57 9.4x102 - 69 5.6x10 3  - 

58 1.9x10 2  - 70 40 

59 3.5ic10 2 55 71 3.1x10 2  - 

60 6.0x102 - 72 5.7x10 - 



Table 2 (contd.,) 

No. of nodule (MD-lb) (MD-la) No. of nodule (MD-lb) (MD-la) 

73 3•8x102 - 79 81x10 2  - 

74 7 • 9x103  - 80 22x10 2  - 

75 17x104  47x10 3  81 1.1x103  - 

76 6.6x102 - 82 2.9x10 2  70 

77 22x10 3 
 

1.2x10 2  83 86 - 

78 3  1 • 1x10 3  8.8x10 84 7.0x102  - 

k 



Table 3: Nodule-strain identity of the combination (MD-lb) plus (MD-la) at 15 0 C 

No. of nodule I 	(MD-lb) (MD-la) No. of nodule (MD-lb) (MD-la) 

1 1.3x102 - 13 5 4 3x10 3  - 

2. 6.0x 10 2  - 14 2.2x 10 2  - 

3 1.0x102 - 15 8,3x10 2  - 

4 2.1x102  . 	 - 16 1.5x102  - 

5 3.3 x 10 1.5 x 10 17 6.2 x 10 2  - 

6 35 - 18 2.6x10 2  - 

7 9.3 x lO - 19 2.3 x 10 - 

8 1.2x103  - 20 1 • 3x103  - 

6.2x10 2  - 21 3.4x102  - 

10 1.0x10 2  - 22 2.4x10 2  - 

11 4.0x10 2  - 23 4.5x10 2  - 

12 1.0x104  - 24 3.9x10 2  - 

k 



Table 3 (contd. 

No. of nodule (MD-lb) (MD-la) No, of nodule (MD-lb) (MD-la) 

25 7,2x10 2  - 37 2.2x10 2  - 

26 10x10 3  - 38 2,0x10 3  - 

27 2.2x10 2 - 39 
2 

12x10 - 

28 4.1x10 2  - 40 6.5x103  - 

29 2 0 1x10 2  - 41 9.1x10 2  35x10 2  

30 1.0 x 10 3 - 42 1.1 x 10 - 

31 45 - 43 2.3x10 3  - 

32 14x10 3  - 44 47x102  1,1x10 2  

33 1.0x10 3  - 45 11x103  - 

34 2 • 3x103  2.5x10 2  46 9 • 2x10 2  - 

35 35 - 47 32x102  - 

36 3 1 4 0x10 - 48 2 2 . 1*10 - 

k 



Table 3 (contd.) 

• No. of nodule (MD-lb) (MD-la) No. of nodule (MD-lb). (MD-la) 

49 1.8 x lO - 61 21x103  - 

50 20x102 - 62 22x103  - 

51 3.6x10 2  - 63 24x103  - 

52 65 15 64 90 - 

53 95 - •65 7.8x10 2  - 

54 - 2 • 5x10 2  66 21x10 2  - 

55 13x102 - 67 5.4x102  - 

56 1•1x102 - 68 1.6x102  - 

57 55 - 69 3 • 4x103  - 

58 	• 12x10 2  - 70 19x10 2  - 

59 4,6x10 3  - • 	 71 2.9x10 2  - 

60 20x10 3  - 72 36x102  - 



Table! (contd.) 

No 	of nodule (MD-lb) (MD-la) No. of nodule (MD-lb) (MD-la) 

73 1.2 x 10 - 79 1 • 4x10 - 

• 	 74 14 x102 -. 80 65x10 2  - 

75 2.8x10 2  - 	 • 81 3 • 2x102  - 

76 7.2x10 2  - • 	 82 3.6x10 2  - 

• 	 77 2.9x103  83 10x103  - 

78 28x102 - 84 2.9x102  - 

Dl 



Table 4: Nodule-strain identity of the combination (MD-1c) plus (MD-la) at 25 ° C 

No. of nodule (MD-ic) (MD-la) No. of nodule (MD-lc) (MD-la) 

10x104  - 13 1.8x104  - 

2 1.3x10 3  - 14 45 - 

3 - 6.8x10 2  15 10x102  85 

4 20x104  - 16 26x103  - 

5 92x104  - 17 1.0x104  - 

6 4.9x104 
 

10x103  18 71x10 2  - 

7 12x10 - 19 3 0 2x104  2.2x104  

8 54x103  - 20 12x103  - 

9 28x10 2  - 21 6.8x104  - 

10 2 • 0x10 2  - 22 6.0x104 
 

12x103  

11 - 7.0x10 2  23 6.3x104  - 

12 10x103  - 24 3.0x10 2  - 

k 



Table 4 (contd.) 

No 0  of nodule (MD-lc) (MD-la) No. of nodule (MD-1c) (MD-la) 

• 	 25 19x104  - 37 77x103  25 

26 1.2x10 3  - 38 1 0 0x104  - 

27 3 0 3x104  - 39 24x104  

28 1.6x103  6 0 4x10 2  40 18x104  2 • 8x103  

29 6 0 6x104  - 41 2.0x10 3  - 

• 	 30 1 • 0x10 5  - 42 12x10 3  - 

31 1 0 0x10 6  - 43 4 • 2x10 3  - 

32 3.6x104  - 44 8 0 5x10 3  - 

33 1 0 7x104  - 45 39x10 2  - 

34 83i10 - 46 - 35 

35 1.4x104  - 	

• 47 1 0 0x104  - 

36 419x103 
- 48 1 0 4x10 3  - 

k 
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Table 4 (contd.,) 

No 1  of nodule (MD-dc) (MD-la) No 0  of nodule (MD-1c) (MD-la) 

49 1 • 3x 10 - 61 1 0 7x104  - 

50 4 0 5x 10 1.3 x 102 62 2.5 x 10 - 

2 1 8x103  63 1 • 0x104  1 0 8x10 2  51 - 

52 - 1 0 7x10 3 64 5.4x103  - 

53 6 • 6x10 1 • 2x10 65 4 • 3x104  95 

41x102  54 - 66 4,9x103  50 

55 2 1 6x104  - 67 1 0 9x 10 - 

56 2 1 4x104  - 68 5 • 4x103  - 

57 2.7 x 69 2.1 x 1O4  - 

58 2 0 7x104  - 70 2 0 0x103  - 

59 4.4x104  - 71 9.4x10 3  35 

60 - 3.6x10 2  72 1 1 0x10 - 

k 



Table 4 (contd.,) 

No. of nodule (MD-lc) (MD-la) No 	of nodule (MD-.lc) (MD-la) 

73 4•8x103 - 84 1.0x104  - 

74 505x103 - 85 50 - 

75 43x104  30 86 6 • 1x102  - 

76 67x10 3  - 87 21x104  - 

77 •97x103  - 88 10x104  - 

78 23jc104  - 89 3,0x102  - 

79 65x10 3 -. 90 1•5x10 3 - 

80 33x10 2  - 91 1 0 0x103  - 

81 19x104  - 92 23x104  - 

82 2,1x104  35 93 85x103  - 

83 33x104  94 1.1x10 2  - 

/ 



Table 5: Nodule-strain identity of the combination (MD-1c) plus (MD-1a) at 15 ° C 

No. of nodule . 	(MD-1c) (MD-1a) No. of nodule (MD-1c). (MD-1a) 

i 2.9x103 . . 	- 1.3 2.Ox104  - 

2 2 • 1x 10 - 	. 14 10x103  - 

3 1.5x104  - 15 3.4x103 . 

4 1.4x104  - 16 1.5x102  

5 2.7x103  . 	- 	. .17 1.2x103  - 

6 2.1x103  - 18 6.6xiO3  - 

7 1.9x103  - 	. 19 6.9x10 2  - 

8 5.4x103  20 2,8x103  - 

9 1.6x103  - 21 1 • 6x103  

10 1.2x103  - 22 5.5x103  - 

11 1 4 7x103  45 23 7.8x103  - 

12 1.9x103  .. 	 - . 	24 2.3x104  . 	- 



Table 5 (contd.,) 

No. of nodule (MD-1c) (MD-la) No, of nodule (MD-lc) (MD-la) 

25 5 0 5x10 2  - 37 14x104  - 

26 63x102  15 38 1 0 7x104  - 

27 18x103  -. 39 10x105  - 

28 27x104  - 40 14x10 3  - 

29 19x104  - 41 18x104  - 

30 45x103  - 42 14x103  - 

31 2 • 2x10 2  - 43 19x104  - 

32 15x104  - 44 2 0 6x104  - 

33 1.4x10 3  - 45 24x104  - 

34 35x102  - 46 1.0x103  - 

35 60x 10 - 47 10x103  - 

36 8.3x103  - 48 3.0x104  - 

k 



Table 5 (contd.) 

No. of nodule (MD-lc) (MD-la) No. of nodule (MD-lc) (MD-la) 

49 89x10 2  - 61 3.2x104  - 

50 2 0 5x 10 - 62 5.2x 10 - 

51 3.1x104  - 63 6.4x103  - 

52 3.8x104  45 64 24x10 2  - 

53 2.4x104  - 65 3.1x104  - 

54 1.2x104  - 66 35x104  - 

55 1.5x103  - 67 3.4x104  - 

56 9 • 2x10 3  - 68 33x104  - 

57 21x102  - 69 36x104  - 

58 1.6x104  - 70 1.5x104  - 

59 3 • 2x104 
 

1.8x102  71 1 • 2x103  - 

60 38x104  - 72 22x103  15 

k 
x 



Table 5 (contd.) 

No 	of nodule (MD-ic) (MD-la) No. of nodule (MD-lc) (MD-la) 

73 3.1x104 
- 85 6.1x10 2  - 

74 1.5x104 
- 86 2.,0x104  - 

75 2.5 x 10 
 
 - 87 1.0 x 10 - 

76 6.1x1132 
- 88 30 - 

77 1.2x104 
- 89 7.5x19 2  - 

78 2.8x104  3.5x102  90 4.5x10 2  - 

79 2 0 2x 10 
- 91 8.0x 10 - 

80 6.0x102 -. 92 1.1x103  25 

81 1.9x103 
- 93 4.1x102  - 

82 240x102 
- 94 1.2x104  - 

83 45 
- 95 10x103  - 

84 4.5x10 2  - 96 33x10 2  - 

k 
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Table 5 (contd.) 

No. of nodule (MD-1c) (MD-la) No 	of nodule (MD-lc) MD-la) 

97 5 0 6x103  - 100 11x10 2  - 

98 4.8x10 3  - 101 2 0 7x103  - 

99 12x104  - 

k 
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