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Lay Abstract 
 

Cellular senescence is a common stress response in aged organs or malfunctioning cells, 

such as those that might became cancerous. Cellular senescence tries to prevent these cells 

from harming the organism, for example by preventing cancer. Once cells become senescent, 

they interact with surrounding cells and induce a “secondary” senescence response in them, 

spreading senescence within the tissue. However, if senescent cells persist or there are too 

many of them they can accelerate ageing and age-related disease. The discovery that senescent 

cells can be harmful has led to research and development in drugs that can specifically 

eliminate senescent cells, called senolytica. Examining the RNA in single-cells allowed, we 

have captured the complex interactions between senescent and non-senescent cells that get lost 

when measuring at the tissue level.  

The first part of this research study shows that primary and secondary senescent cells are 

quite distinct from each other, and might fulfil different roles. These findings also raise the 

question of which cells are responsible for the negative effects seen in the persistence of 

senescent cells and whether this needs to be considered when developing new drugs 

(senolytica). The work has revealed an additional mechanism by which cells mediate secondary 

senescence after cancerous stress, called Notch signalling. Notch signalling relies on cells 

directly contacting each other. This study also highlights how diverse the senescence response 

is and how little we know about the role secondary senescence plays in health and disease.  

In the second part of this research, we explored Hutchinson-Gilford progeria syndrome 

(HGPS). It is an early-onset form of a rare autosomal dominant genetic diseases characterised 

by clinical features of premature ageing and has been extensively studied as a model for the 

ageing process. We investigated the proportion of cells affected by the progeria condition in a 

mouse model, how these cells behaved phenotypically and transcriptionally. A better 

characterisation of phenotypes and transcriptional profiles of progeria cells could ultimately 

help improve our understanding of the ageing process per se, as well as open a window for safe 

and effective intervention.     
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Abstract 
 

This thesis contains two main research projects, both of which demonstrate the power of single-

cell approaches in the interrogation of complex biological systems. The first part of my studies 

focuses on cellular heterogeneity in oncogene-induced senescence (OIS). 

Senescence is a cellular response triggered by diverse stresses. It can be beneficial, as a tumour 

suppressive response to oncogene activation, or detrimental as it drives inflammation and 

pathology of ageing. Senescence can be transmitted to neighbouring cells through secreted 

factors of the senescence associated secretory phenotype (SASP), a phenomenon known as 

secondary senescence. Thus far, primary and secondary senescence have been considered 

identical phenotypes. Here, I used single-cell transcriptomics in co-culture systems to decipher 

heterogeneity between primary and secondary Ras-induced senescence and observed two 

distinct transcriptional trajectories, one marked by Ras and the other by Notch. Furthermore, 

secondary senescence in vitro and in vivo were found to be driven by Notch, rather than by the 

SASP alone as previously thought. In conclusion, primary and secondary senescence showed 

functional diversification and were distinct molecular endpoints.  

In the second part of this thesis, I explored cellular heterogeneity in Hutchinson-Gilford 

progeroid syndrome (HGPS), which represents a sporadic, rare, autosomal dominant genetic 

disease characterised by clinical features of premature ageing and has been extensively studied 

as a model for the ageing process. 

Ageing remains indisputably the largest risk factor for the majority of prevalent human 

pathologies such as cancer, cardiovascular diseases and neurodegenerative disorders. An 

attractive interpretation of ageing is that cells age as a result of a ‘toxic environment’ created 

from damaged or defected cells, which then toxically impact on their healthy and normal 

neighbouring cells and tissues. Studies that lend support to this model reported that removal of 

senescent cells, namely stably non-proliferating cells induced by insulting stimuli, from mouse 

tissues can delay the onset of age-associated disorders in adipose tissues, skeletal muscles and 

eyes, as well as extend their healthy lifespan. Provided that persistent secretion of inflammatory 

cytokines and other systemic factors during chronic senescence can favour both degenerative 

and hyperplastic pathologies, it is plausible that accumulation of senescent cells might 

systematically promote an ageing environment and therefore the ensuing loss of cellular 

function. A study in mice whose cells were half progeria and half normal demonstrated that 

these mosaic mice age normally, with no overt abnormalities in the proliferative capacity in 

cell culture or increased levels of progeria markers, suggesting cell-extrinsic mechanisms in 

the pathogenesis of progeria. This finding further supports the interpretation of the toxic ageing 

model. Using confocal microscopy and single-cell technologies, I aimed to understand the 

heterogeneity in progeria by quantifying the proportion of progeria cells that were 

compromised phenotypically and transcriptionally. By combining the morphological profiles 

with the transcriptional profiles, I hope to dissect the disease state of progeria and propose a 

mechanism by which organismal ageing occurs. The molecular insight into the 

pathophysiology this premature ageing disease will help pave the way for novel development 

of therapeutic strategies against age-related disorders with the improvement of both lifespan 

and healthspan 
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Chapter 1: Introduction 
 

1.1 Thesis Content  
 

The main content of this thesis is based on the work published in Cell Reports titled 

“Notch Signalling Mediates Secondary Senescence” (Teo et al., 2019), of which I am a co-

first author. The published article is available under the terms of the Creative Commons 

Attribution Licence (CC BY), which permits individuals to “copy and distribute the article, 

create extracts, abstracts and new works from the article, alter and revise the article, text or 

data mine the article and otherwise reuse the article commercially (including reuse and/or 

resale of the article) without permission from Elsevier.” In each chapter of this thesis, I will 

give full credit to the original work and indicate any alterations made in figures or tables. The 

full references and relevant DOIs are also provided.   

 

1.1.1 Thesis Statements and Questions  
 

This thesis revolves around two research projects, both of which applied single-cell 

approaches to explore cellular heterogeneity within their respective contexts. The 

investigations were based on two thematic questions that have been framed and elaborated in 

what follows:  

(1) Cellular senescence is characterised by an irreversible cell cycle arrest and has been 

implicated in tumour suppression, normal development, wound healing and ageing. 

Senescent cells differ from normal or quiescent cells in a prominent feature: the 

senescence-associated secretory phenotype (SASP), whose components include 

various signalling factors that affect surrounding cells and modify the 

microenvironment. These factors can serve to induce secondary senescence in 

neighbouring cells in a paracrine fashion. Meanwhile, secondary senescence can 

alternatively be triggered through cell-to-cell contact (juxtacrine). This leads to the 

first question: what mechanism dictates the induction of senescence through 

paracrine or juxtacrine communication? Differences between the transcriptional 

signatures of primary senescent cells and fully secondary senescent cells are also 
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understudied. Understanding the heterogeneity within the senescent population is a 

necessary task in order to fully understand secondary senescence and how it is 

induced.  

 

(2) Hutchinson-Gilford progeria syndrome (HGPS) is an early-onset form of a rare 

autosomal dominant genetic disease characterised by clinical features of premature 

ageing. HGPS has been extensively used as a model to study human ageing, but the 

complete characterisation of phenotypic and transcriptional features of HGPS at the 

single-cell level remains a challenging task. The question here is: what is the 

proportion of HGPS cells that are compromised, phenotypically and 

transcriptionally? A better characterisation of phenotypes and transcriptional 

profiles of HGPS cells via the use of novel single-cell technologies could ultimately 

help improve our understanding of the disease state of HGPS and of the ageing 

process per se, as well as open a window for safe and effective intervention.     

 

 

1.1.2 Thesis Aims 

 

The aims of my studies can be seen as a single overarching theme: understanding the 

heterogeneity of senescence and ageing at the single-cell level. Overall, I aimed to address 

two sub-goals in this thesis:  

 

(1) The first goal of this research was to investigate the heterogeneity within the 

oncogene-induced senescence (OIS) population using single-cell technologies.  

 

(2) The second part of the thesis is dedicated to examining single-cell heterogeneity in 

HGPS through the use of single-cell technologies.  
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1.1.3 Thesis Structure 

 

The thesis is divided into six chapters and covers two lines of research:  

(1) Chapter 1 is the introductory chapter and deals with the preliminary background 

knowledge about cellular senescence and its mechanisms, modes of action and 

biological significance.  

 

(2) Chapter 2 describes the research materials and methodologies employed to 

investigate the research problems.  

 

(3) Chapter 3 describes the work on OIS as featured in our paper (Teo et al., 2019). 

 

(4) Chapter 4 continues to discuss further and key experimental evidence, in vitro and 

in vivo, which brought the study of cellular heterogeneity in OIS to completion. 

 

(5) Chapter 5 is devoted to a study of cellular heterogeneity in Hutchinson-Gilford 

progeria syndrome (HGPS). The chapter will contain a separate introductory section 

for HGPS and its relevance to human ageing and age-associated disorders.   

 

(6) Chapter 6 presents the conclusions and implications derived from the two projects as 

well as future studies that need to be carried out.   
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1.2 Cellular Senescence and Ageing  

 

1.2.1 Origin: the Biology of Telomeres 

 

Cellular senescence refers to a process by which the cell cycle comes to a stable arrest 

accompanied by stereotyped phenotypic changes and implicated in various biological 

processes from cancer to ageing (van Deursen 2014). The origin of cellular senescence dates 

back to 1961, when Leonard Hayflick discovered that human diploid cells cease to proliferate 

after a limited number of passages in culture, a phenomenon called replicative senescence 

(Hayflick and Moorhead 1961). This finite capacity for cell division is still known as the 

‘Hayflick Limit’, which since then has given rise to the speculation that replicative senescence 

plays a causal role in ageing at the cellular level. Studies of the end of the replicative lifespan 

have laid an important foundation for the theory that cellular senescence drives the ageing 

process in a cell-autonomous manner, exhausting replication resources required for tissue 

repair, regeneration and homeostasis.  

The mechanism behind the maximum proliferative potential of cells is now well 

understood. In successive cell cycles, the telomeres, the chromosomal termini containing 

highly repetitive DNA sequences (TTAGGG repeats), are shortened as a result of the inability 

of DNA polymerases to completely replicate linear chromosomes (Olovnikov 1973; Watson 

1972). Functional telomeric DNA is capped with a protective multiprotein complex known as 

shelterin, which together prevents chromosomal ends from being recognised as sites of DNA-

double strand breaks from DNA damage response (DDR) proteins (de Lange 2005). 

Progressive telomere attrition, therefore, ultimately uncaps the protective ends, propagating 

persistent DNA damage signals and evoking DDR-mediated senescence (Fagagna et al., 2003). 

However, telomere erosion can be circumvented in cells that express telomerase, a reverse 

transcriptase specialised in replenishing and maintaining the length of telomeric regions. Most 

tumour cells, germ cells and embryonic stem cells are examples of telomerase-expressing cells 

with unlimited proliferative capacity. In fact, long-term maintenance of the telomeres and 

upregulation of telomerase activity represent one of the hallmarks of cancer, where replicative 

senescence is bypassed during malignant transformation (Hastie et al., 1990).  

Given the roles of the telomeres in determining the trajectory of cellular replication and 

in maintaining genome integrity, much evidence has accrued to support the causative 
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association between telomere shortening and ageing. A lack of the telomerase gene in mice 

leads to premature ageing pathologies (H.-W. Lee et al., 1998). Such deterioration can be 

mitigated by transiently activating telomerase expression. Similarly, studies of telomere length 

in humans have presented evidence that supports the interpretation that shortened telomere 

length correlates with age-associated diseases and increased rates of mortality, and is therefore 

a potential biomarker of ageing (Harley, Futcher, and Greider 1990; Chang and Harley 1995; 

Rudolph et al., 2000; Cawthon et al., 2003). Yet the telomere theory of ageing has been 

received with scepticism and challenges in the past decade, as many cross-sectional and 

longitudinal studies failed to observe a significant relationship between telomere length and 

increased risk of mortality (Njajou et al., 2009; Bischoff et al., 2006; Martin-Ruiz et al., 2005). 

This is further complicated by reports from mouse models which do not conform to telomere-

mediated replicative ageing and whose telomerase expression is not required for cellular 

immortalisation (Rudolph et al., 1999; Hande et al., 1999). It appears that the biological 

consequences of telomere dynamics on ageing diverge in different organisms and the exact 

reason for these contradictory results is still not revealed. A possible explanation is likely to 

involve factors beyond replicative senescence, which in itself offers only a partial glimpse into 

the many different contexts in which cellular senescence is established.  
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1.2.2 Molecular Basis: Molecular Players that Arrest Cells and Their Markers 

 

The comprehensive model of cellular senescence is still in a nascent stage of 

development, but massive research efforts have contributed to a growing list of stimulators and 

our improved understanding of molecular mechanisms that underlie senescence-mediated cell 

arrest. In addition to and independent of telomere attrition, a variety of stressors (oncogene 

activation, oxidative damage, mitochondrial dysfunction and inflammation) and damaging 

agents (radiation and genotoxins) are canonically known to induce double-strand breaks 

(DSBs) and DNA lesions that are subsequently sensed by the DDR system [Figure 1.1]. DDR 

components exert their effects through activation of the p53 tumour suppressor, which in turn 

induces p21CIP1/WAF1 (hereafter referred to as p21).  Upregulation of p21 inhibits the formation 

of the cyclin-dependent kinases (CDK4 and CDK6), preventing the phosphorylation of the 

retinoblastoma tumour suppressor (RB) to become an active form, thereby inhibiting the 

subsequent progression of the G1 phase of the cell cycle.   
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Alternatively, the p16INK4a/RB tumour suppressor network presents a different means 

by which senescence establishment is independent of the DDR-p53 axis. The pathway mediates 

its anti-proliferative actions through the INK4/ARF locus, which encodes p16INK4a (hereafter 

referred to as p16) and ARF. The former serves directly to repress CDK4/6, while the latter 

cross-talks with the p53 pathway by inhibiting MDM2, a ubiquitin ligase for p53. The 

activation of the INK4/ARF locus is under epigenetic regulation by Polycomb repressive 

complexes (PRCs), histone modifiers that deposit repressive H3K27me3 marks to silence 

INK4/ARF gene expression. Triggers of senescence displace PRCs and remove the repressive 

marks to allow the onset of p16-mediated cell cycle arrest. For an additional layer of epigenetic 

control, p16 expression is also maintained in a permissive state by the histone demethylase 

JMJD3 during senescence. 

While it is now clear that cellular senescence can be triggered by a plethora of stimuli, 

external and internal, senescent cells exhibit morphological changes and several markers that 

allow them to be detected and quantified. One of the gold-standard biomarkers frequently used 

to distinguish senescent cells from other non-dividing cells (quiescent or terminally 

differentiated cells) is senescence-associated β-galactosidase (SA-β-gal) activity, assayed at 

suboptimal pH (pH 6.0). This is believed to reflect the increased autophagy and lysosomal 

content during the execution of the senescence programme (Muñoz-Espín and Serrano 

2014). Another canonical marker is elevated levels of p16, which indicate the activation of 

tumour suppressor networks. Senescent cells also secrete a panoply of extracellular proteins 

and pro-inflammatory factors, commonly known as the senescence-associated secretory 

phenotype (SASP), with potent effects on neighbouring cells. These SASP components point 

to the non-cell-autonomous function of cellular senescence, which will be discussed in depth 

later on.       

Other notable features include the enlarged and flattened morphology, lack of the 

proliferation protein Ki67 or 5-bromodeoxyuridine (BrdU) incorporation, cessation of DNA 

Figure 1.1: Molecular Pathways of Cellular Senescence; license number granted: 4663140192195 . 

Taken and modified from McHugh and Gil 2018. 

Regulation of the senescence growth arrest is achieved by two main pathways: p16INK4a/Rb and p53/p21CIP1, both 

of which converge on repression of CDK4/6. Under normal conditions, the INK4A/ARF locus is repressed by 

Polycomb repressive complexes (PRCs) and becomes activated during senescence. Activation of the 

p53/p21CIP1 pathway occurs downstream of the DNA damage response (DDR) from repair-resistant DNA segments 

with chromatin alterations reinforcing senescence (DNA-SCARS). 
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replication and presence of punctate DNA-dense, H3K9me3-rich senescence-associated 

heterochromatin foci (SAHF). However, given the heterogeneity of senescent cells, the 

application of these markers in defining the senescent state in vitro and in vivo remains limited 

and inconsistent. For example, a lack of SA-β-gal activity does not always compromise the 

ability of somatic cells to senesce (Lee et al., 2006). Likewise, the expression of p16, 

putatively the most reliable senescence biomarker, is absent in many forms of senescence 

such as telomere-mediated replicative senescence (Herbig et al., 2004; Beauséjour et al., 

2003). These limitations imply that must the characterisation of senescence in any 

experimental model must be interpreted with caution and multiple markers should be used 

in combination.  

Although none of these markers appears to be faithfully exclusive to or universally 

reliable for all types of senescence, it is generally accepted that most senescent cells display 

these characteristics reflecting the mechanistic relevance to the establishment and maintenance 

of the senescent state (S. Lee and Schmitt 2019). Overall, our molecular understanding of 

senescence demonstrates a complex and diverse nature of this phenomenon, with a collective 

phenotype resulting from multiple effectors and showing heterogeneous outcomes. As the field 

of senescence biology continues to evolve, in vitro and in vivo studies of senescence in the 

context of oncogenic signalling and tumour suppression pathways have greatly assisted in an 

ongoing search for a robust senescence signature and helped to reveal different levels of 

biological functionality of cellular senescence per se.         

 

1.2.3 Oncogene-induced Senescence: Causes and Mechanisms 

 

Oncogenic activation represents a dominant event that confers cancer cells the 

proliferative advantage critical for tumour growth and development. Oncogene-induced 

senescence (OIS) therefore refers to an irreversible state of proliferative arrest in response to 

oncogenic stimuli. OIS was first described in primary human lung fibroblasts IMR90 where 

expression of the oncogene HrasV12, a mutational form of Ras, provoked cell cycle arrest 

phenotypically reminiscent of replicative senescence (Serrano et al., 1997). Unlike replicative 

senescence, OIS is independent of telomere attrition and requires the engagement of p16/RB 

and p53 pathways. Early studies have shown that inactivation of p53 or its regulator p19Arf in 

murine cells promotes Ras-induced malignant transformation, while the re-introduction of p53 
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expression regresses tumour growth and is accompanied by markers of cellular senescence 

(Kamijo et al., 1997; Ventura et al., 2007; Xue et al., 2007). OIS cells also express high levels 

of p16 and can escape from senescence and resume cell division if p16 expression is low 

(Rayess, Wang, and Srivatsan 2012). The accumulation of RB, which functions downstream 

of p16 by repressing E2F-target genes involved with DNA replication, is essential to the 

maintenance of OIS. This was shown in Ras-senescent cells that escape from cell arrest with 

the disruption of a p21-mediated cell cycle checkpoint following RB elimination (Chicas et al., 

2010). 

However, the important roles of p53 and p16 in OIS have faced contentious challenges 

from later studies which have demonstrated that loss of p16 does not bypass senescence and 

that p53 and p16 are dispensable for initiating and maintaining OIS. For instance, human 

melanocytes undergo OIS without requiring p53 or p16 (Zhuang et al., 2008). Discordant 

results have also been reported from other studies where abrogation of p16 did not affect Ras-

induced senescence in melanocytes (Denoyelle et al., 2006). This is also the case in human 

mammary epithelial cells, which undergo p16- and p53-independent OIS in response to 

aberrant Ras activation that relies on TGF- β signalling (Cipriano et al., 2011). It appears the 

extent to which p53 and p16 contribute to the OIS programme varies from cell type to cell type. 

Unlike the well-documented triggers and components upstream of senescence cascades, little 

is known about how downstream mediators and effectors interact at the molecular level to 

enforce OIS.    

A defined model of replicative senescence suggests a clear, linear signalling cascade 

whose stressors (telomere erosion) activates the DNA damage response (DDR) machinery 

(sensors), which then engages p53 and p21 (effectors) to manifest the senescent phenotype 

(Muñoz-Espín and Serrano 2014). For OIS, the prevailing view until now is that persistent 

DNA damage and the ensuing gross genomic abnormalities are the intrinsic requirements for 

OIS establishment and maintenance [Figure 1.2] (Di Micco et al., 2006; Bartkova et al., 2006). 

It was shown that H-RASV12 activation induces robust DDR signalling, which then causes 

senescence (Di Micco et al., 2006). Cells undergoing OIS displayed increased phosphorylation 

of DDR elements that are associated with DNA damage in different cell cycle stages, whereas 

inactivation of these DDR gene products abolished OIS. It was next revealed that senescence 

was preceded by a hyper-proliferative phase in which activation of the H-RAS oncogene was 

followed by an increase in the number of simultaneously active DNA replication origins. 

Increased activity of origin firing was associated with fork progression asymmetry and higher 
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rates of fork stalling. An additional alteration in DNA replication observed was re-firing of the 

same origin, induced by H-RAS expression. Indeed, OIS was shown to engage DDR by driving 

prematurely terminated DNA replication forks and double-strand breaks (Bartkova et al., 

2006). Disabling the ataxia telangiectasia mutated (ATM), a kinase sensor of DNA double-

strand breaks, contributed to bypass of OIS and an increase in tumour size and invasiveness in 

a mouse model.   
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Figure 1.2: Model of Oncogene-Induced Senescence.  

The established theory of oncogene-induced senescence posits that OIS induction is driven by hyper-

proliferation following oncogene overexpression. This results in the accrual of DNA damage, which elicits a 

DNA damage response (DDR) to transduce signals via key effector pathways (here the p53/p21 and the p16/RB 

networks) and to execute senescence. Adapted from Nardella, 2011 (Nardella et al., 2011). 
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Conversely, DDR can be activated in the absence of DNA damage as shown in 

E1A+Ras-transformed rodent fibroblasts (Pospelova et al., 2009). Here, based on the comet 

assay, induction of senescence by p21 or p16 caused DDR activation without detectable DNA 

breaks. Furthermore, HRASG12V-expressing mammary epithelial cells senesced without the 

participation of DDR and inhibition of DDR gene products did not affect NRASQ61K-induced 

senescence in normal human melanocytes. These observations raise the possibility that instead 

of DNA lesions per se, other forms of damage are sensed by the DDR machinery or DDR itself 

may be dispensable in the process of OIS (Pankotai et al., 2009). In the light of this, the exact 

trigger of OIS-induced DDR activation has not been elucidated. If it is an actual elevation in 

DNA damage levels, the precise structure and genomic locations of DNA lesions as well as the 

extent of DNA damage generated remain unknown.  

Although it is evident that DDR is a fundamental upstream signalling pathway in 

triggering and maintaining senescence in response to DNA damage in several settings, it is not 

known whether there are large-scale alterations in DNA pre-senescence and to what extent 

DNA damage acts as a sensor in OIS. And if there is no involvement of DNA damage, what is 

the sensor in OIS? Therefore, it appears that the role of DDR in mediating OIS is less 

straightforward in some experimental models and that pathways that lead to OIS are determined 

by several biological parameters, ranging from cell types, species, the nature of oncogenic 

insults and the microenvironment. One of the key challenges is to identify upstream signalling 

pathways that link oncogenic stimuli to downstream signalling events.  

As investigation continues into the OIS cascade and the unknown nature of DNA 

damage, it is likely that new sensors of OIS and novel signalling pathways might be discovered. 

Insights into the type of DNA damage will also entail important consequences on how the 

dynamics of the tumour-suppressive state in OIS are viewed in vitro and in vivo.  
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1.2.4 Oncogene-induced Senescence In Vivo: the Anti- and Pro-Cancer 

Modulator 

 

To date, it remains clear and unequivocal that OIS serves as a major barrier to the early 

stages of tumourigenesis. Multiple lines of evidence obtained from mouse models of cancer 

strongly advocate for the tumour-suppressive role of OIS. Conditional activation of oncogenic 

KRASV12 in lung and pancreas tissues resulted in neoplastic lesions, most of which were in the 

premalignant stage accompanied by senescence markers (Collado et al., 2005). Some 

adenocarcinomas were also induced, but they were negative for senescence markers. Another 

work in the same year reported an in vivo induction of OIS after NRAS overexpression in a 

Suv39h1-dependent, H3K9me-mediated response, halting mouse lymphoid cells from 

progressing into full-blown lymphomagenesis (Braig et al., 2005). An in vivo OIS response in 

premalignant neoplasia was also observed in the mouse prostate following inactivation of the 

tumour suppressor PTEN, but not in an advanced stage of prostate cancer where combined loss 

of PTEN and Trp53 was required (Chen et al., 2005).  

Essentially, one of the strongest findings of OIS acting to counteract tumour 

progression emerged from in vitro and in vivo experiments in human melanocytic naevi (moles) 

(Michaloglou et al., 2005). These naevi are benign lesions remaining in the growth-arrested 

state with a low tendency to transform into malignancy and harbour mutations in BRAF, a 

downstream kinase effector of Ras and the most prevalent mutated proto-oncogene in 

melanoma. BRAFV600E-expressing melanocytes contain several OIS markers, including 

proliferative arrest, p16 induction and increased SA-β-gal activity, in the absence of telomere 

shortening. The course of melanomagenesis thus often involves silencing or reversing 

BRAF-induced senescence. Together with the clear evidence for OIS induction in the 

cutaneous melanocytes of mice carrying endogenous BrafV600E (Dankort et al., 2009), the 

biological relevance and significance of OIS in vivo has been confirmed. As one of the best-

characterised examples of OIS in vivo, melanocytic naevi can persist in a stable proliferative 

arrest for decades before melanomagenesis occurs. It is thus interesting to understand how 

genomically stable the tumour suppressor state is before the escape of senescence takes place 

and cells progress to malignant melanoma. 

In addition to being identified a fail-safe, tumour-protective mechanism, senescence 

also plays active roles in normal embryonic development, tissue homeostasis, wound healing, 

pathological processes and, putatively, ageing (Muñoz-Espín and Serrano 2014). 
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Paradoxically, the past decade has begun to witness the diverse and contradictory impacts of 

OIS on carcinogenesis. Beneath a simple, stable state of replicative cessation lies a hidden layer 

of metabolically active environments, internal and external of the senescent cells, capable of 

influencing, altering or even reversing the tumour-suppressive effects of OIS in a 

spatiotemporal manner. Coming into light are the previously unappreciated non-cell 

autonomous activities of OIS in vivo in promoting tumourigenesis by means of secreted factors 

of the SASP phenotype in the extracellular compartment (Pérez-Mancera, Young, and Narita 

2014). The SASP encompasses immune modulators, inflammatory cytokines, chemokines, 

extracellular, growth factors and metalloproteinases that cannot only signal recruit immune 

cells, such as neutrophils, macrophages and natural killer (NK) cells, to eliminate cancer cells 

(Lesina et al., 2016; Iannello et al., 2013), but also provoke tumour-promoting responses under 

unfavourable physiological conditions. SASP factors released from OIS cells might promote 

migration of tumour cells or create an immunosuppressive microenvironment, encouraging 

proliferation, angiogenesis and metastasis, as shown in skin, prostate, liver cancer models 

(Malaquin et al., 2013; Laberge et al., 2015; Eggert et al., 2016).       

Currently available evidence seems to indicate that the dual role of OIS on cancer 

pathogenesis is dependent on the tissue context, the composition of the SASP and duration of 

the senescent state. In this regard, an interesting goal is to selectively eliminate non-beneficial 

senescent cells that may prime their surrounding cells for malignancy while leaving the 

functionally advantageous senescent cells intact. Indeed, one elegant study established a 

transgenic mouse model in which p16-positive cells can be targeted for clearance (Baker et al., 

2011). Chemical ablation of p16-expressing senescent cells attenuated age-related phenotypes, 

increased longevity and improved tissue rejuvenation in late life. A subsequent report also 

showed that selective elimination of senescent cells significantly reduced spontaneous tumour 

formation (Baker et al., 2016).  

Hence, OIS can be conceptually viewed as in vivo antagonistic pleiotropy in action: it 

has an anti-tumourigenic function in the early phase of oncogenesis but switches to a 

deleterious, pro-tumourigenic event over time with advanced age. However, the questions of 

when and why precisely the twisted turn of senescence takes place are still unresolved. 

Unravelling how senescent cells interact with their microenvironment through short- and long-

term secretion of SASP factors is key to understanding the complexity of senescent phenotypes, 

as well as to the current exploration of senolytic agents for selective clearance of disease-prone 

senescent cells.    
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1.2.5 Paracrine Senescence:   

 

It is becoming increasingly appreciated that the definition of cellular senescence 

extends beyond the singular state of permanent cell cycle arrest, capturing multidimensional 

aspects of the effects of senescent cells on their surrounding cells with far-reaching biological 

significance. Logically, the ability of senescent cells to alter their microenvironment must, to 

a large extent, depend on paracrine signalling, which allows cell-to-cell communication by 

locally secreted molecules. Following the reports that OIS cells can act on themselves in an 

autocrine fashion to self-amplify the SASP programme, whose components include the 

inflammatory molecules IL-6 and IL-8, by continuously activating NF-κB and C/EBPβ ( 

Acosta et al., 2008; Kuilman et al., 2008), paracrine transmission of senescence was described 

in an elegant experimental system in which OIS cells were co-cultured with normal cells ( 

Acosta et al., 2013). The authors showed that OIS cells spread the senescence phenotype to 

their healthy neighbouring cells via the release of several soluble SASP proteins. By using 

quantitative proteomics and small-molecule inhibitor screens, they identified TGFβ, VEGF and 

CCL2 as part of the inflammasomes and secretomes that modulate paracrine senescence. It was 

further shown that IL-1 signalling functions as a key upstream regulator of the proinflammatory 

signalling and the SASP phenotype was suppressed when the NLRP3 inflammasome, which 

controls IL-1β, was inhibited.  

Additional evidence has also highlighted the mechanistic relationship between 

oxidative stress, DNA damage and paracrine senescence through IL-1 and TGFβ secretion, 

showing that normal bystander cells can be induced to senesce as a result of DDR signalling 

(Hubackova et al., 2012). Also consistent with the non-cell autonomous activity of OIS in the 

context of tumourigenesis, paracrine senescence was observed in mouse and human models of 

OIS, presenting a link between the upregulation of SASP components and the induction of 

paracrine senescence in vivo ( Acosta et al., 2013). More recently, it has been proposed that the 

paracrine transmission of senescence may apply to the processes of cellular reprogramming, as 

shown when SASP factors triggered senescence and favoured reprogramming by activation of 

Oct4, Sox2, Klf4 and c-Myc (OSKM or Yamanaka factors) in non-senescent cells (Mosteiro 

et al., 2018). These studies collectively extend our understanding of the complex network of 

the SASP, which contains many layers of regulation for signal amplification and utilises both 

autocrine and paracrine mechanisms to effect secondary senescence in the cell neighbourhood 

both in vitro and in vivo. 
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Intriguingly, the basis for controlling the extrinsic properties of senescent cells is just 

beginning to be elucidated, a concept that is likely to be explained not by a static process but 

by a dynamic and variable quality of different SASP secretome profiles. Proteomic analysis of 

OIS fibroblasts suggests a switch in the SASP-associated secretomes over time (Hoare et al., 

2016b). The study reported two biochemically distinct and functionally antagonistic 

secretomes whose dynamics are dictated by the engagement of Notch signalling. High levels 

of NOTCH1 mark the first peak of the senescence time course by which TGFβ is activated 

and C/EBPβ inhibited. In this phase, senescence develops from pre-senescence to full-fledged 

senescence and can then be spread. Here, secondary senescence can alternatively be triggered 

through cell-to-cell contact (juxtacrine), with NOTCH1 signalling acting as the pathway to 

mediate juxtacrine senescence. The second phase of the secretome programme is characterised 

by the reliance on C/EBPβ-dominant expression of proinflammatory cytokines accompanied 

by low levels of NOTCH1. And thus, a dynamic shift from the TGFβ-driven to the C/EBPβ-

driven SASP-mediated senescence could provide an explanation for the dual and pleiotropic 

effects of senescence on tumour development. Downregulation of NOTCH1 in the later-

wave secretome, for example, would favour the immunosuppressive microenvironment and 

inefficient clearance of tumour-prone senescent cells, increasing the susceptibility of normal 

bystander cells to pre-neoplastic change (S. Lee and Schmitt 2019). In line with this dynamic 

concept of secondary senescence control is an in vivo liver cancer model in which NOTCH1-

driven senescence compromised the recruitment of immune cells to the local sites (Hoare et 

al., 2016).  

Nevertheless, the mechanisms that dictate the induction of senescence through 

paracrine or juxtacrine signalling and control the shift in the spatiotemporal patterns of 

NOTCH-mediated secondary senescence remain poorly understood. It is conceivable that 

the secondary induction of senescence is determined by the dynamically continuous 

spectrum of senescence-associated secretomes as well as other cell-extrinsic factors that 

contribute to the varied quality, quantity, functional outcomes of compositional changes in 

the SASP content. To gain a deeper insight into the molecular basis for the regulation of 

secondary senescence, emerging technologies for single-cell transcriptomics and genomics 

offer the potential to help identify and characterise more subtle events taking place during 

cellular senescence, primary and secondary. Accordingly, studying the heterogeneity of a 

senescent cell population is one approach to addressing the actual contribution of each wave 
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of the senescent secretomes, and bears profound implications for the development of new 

and specific drugs that target unfavourable senescent cells.               

 

1.2.6 Hutchinson-Gilford Progeria Syndrome 

 

Progeroid syndromes represent sporadic, rare, autosomal dominant genetic diseases 

characterised by clinical features of premature ageing (Sinha, Ghosh, and Raghunath 2014). 

Hutchinson-Gilford progeria syndrome (HGPS), an early-onset form of progeria, has been 

extensively studied as a model for the ageing process. It is most commonly caused by a silent 

mutation (G608G) within the LMNA gene, which encodes lamin A, resulting in an aberrantly 

spliced lamin A isoform that is permanently farnesylated called progerin (Eriksson et al., 2003; 

De Sandre-Giovannoli et al., 2003). Since lamins play a vital role in the architecture of the 

nuclear membrane by forming part of the protein-based scaffold underlying the nuclear lamina, 

accumulation of progerin leads to various structural defects in the nucleus, including nuclear 

lobulation or blebbing, loss of heterochromatin, increased DNA damage and senescence 

(Eriksson et al., 2003; Scaffidi and Misteli 2008). Mouse models deficient in Lmna and 

Zmpste24, which encodes a metalloprotease essential for the maturation of lamin A, also 

exhibit nuclear abnormalities and accelerated ageing disorders (Pendás et al., 2002; Sullivan et 

al., 1999). As the only substrate for ZMPSTE24 in mammals, mature lamin A is absent in 

Zmpste24-knockout mice, while pre-lamin A accumulates in the nuclear envelope, causing 

direct structural disruption (Bergo et al. 2002). Although several characteristics of progeria 

such as premature senescence and genomic instability represent some of the hallmarks of the 

normal ageing process, the understanding of how ageing occurs and what is driving it is far 

from complete. A study on a mouse system whose cells were half Zmpste24-proficient and half 

Zmpste24-deficient demonstrated that these mosaic mice age normally, do not harbour overt 

abnormalities in the proliferative capacity in cell culture and do not show the increased levels 

of progeria markers, suggesting cell-extrinsic mechanisms in the pathogenesis of progeria (de 

la Rosa et al., 2013).  
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1.2.7 Summary 

 

Originally conceived as a permanent state of cell cycle arrest following replicative 

exhaustion in culture, cellular senescence embodies a stress response whose phenotypes can be 

evoked by a number of stimuli that include telomere shortening or dysfunction, oxidative stress 

and DNA damage, inflammatory cytokines and activated oncogenes. Intrinsic changes that 

accompany the senescence process are predominantly associated with the engagement of the 

p53 tumour suppressor network and upregulation of the CDK4/6 inhibitor p21, as well as 

activation of the p16/RB signalling pathway, but the characteristic description of the senescent 

state can vary from cell to cell and strongly depends on the biological context.        

Importantly, much of the current understanding of senescence in vivo comes from a 

substantial body of evidence for the tumour-suppressive function of senescence. In oncogene-

induced senescence in particular, the irreversible growth arrest cell-intrinsically acts as a fail-

safe mechanism to curb uncontrolled proliferation that would otherwise chart the course for 

oncogenesis. OIS is, however, far from being a stable state; it exhibits paradoxically opposing 

effects on cancer development in cell-autonomous and non-cell autonomous manners. The cell-

extrinsic effects of senescence underscore the induction of secondary senescence in the 

surrounding microenvironment and are mediated through components of the senescence-

associated secretomes under complex spatiotemporal dynamics.  
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Chapter 2: Materials and Methods 

2 2 

2.1 Laboratory Procedures   

 

Substantial elements of the research methodologies that underpin this thesis rely on the 

content of our Cell Reports paper, “Notch Signalling Mediates Secondary Senescence”  (Teo 

et al., 2019), which was a collaborative project between the University of Edinburgh, the 

University of Glasgow and Brown University. All experimental work, except where otherwise 

indicated and credited, was performed by me. The computational analyses in the paper were 

driven by Yee Voan Teo, Brown University.  

 

2.1.1 OIS Cell Culture   

 

I used normal diploid human female lung fibroblasts IMR90 isolated at 16 weeks of 

gestation for all in vitro assays (ATCC® CCL-186). pLNCX2-ER:rasG12V-expressing IMR90 

(plasmid obtained from Addgene #67844) were maintained in DMEM (ThermoFisher 

Scientific with pyruvate) with 10% fetal calf serum (FCS) and 1% penicillin-streptomycin in 

standard ϕ 10cm dishes in 21% O2/5% CO2 levels standard incubators. Cells were split at 80% 

confluency every 3-4 days. 100nM 4-hydroxytamoxifen (4-OHT)(Sigma) was used to induce 

senescence over the course of 7 days. Dishes that were not treated with 4-OHT were used as 

control.   

For co-culture experiments, ER:IMR90 cells were co-cultured with IMR90:GFP 

(pGIPZ-GFP, a kind gift from M. Narita to J.C.A.) or an empty vector fused with mVenus 

(pLPC-puro-mVenus, a kind gift from M. Narita to J.C.A.) or with a dominant-negative form 

of MAML1 fused with mVenus (pLPC-puro-dnMAML1-mVenus, a kind gift from M. Narita 

to J.C.A.) cells at 10:1 ratio. 

 

 

https://www.sciencedirect.com/topics/immunology-and-microbiology/diploidy
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/fibroblast
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/addgene
https://www.sciencedirect.com/topics/neuroscience/dihydrotachysterol
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2.1.2 HGPS Cell Culture   

 

I used progeria fibroblasts extracted from Zmpste24-deficient mice, which were 

provided by Lopez-Otin. Cells were cultured under 3% oxygen concentration at 37°C in 

DMEM (ThermoFisher Scientific) supplemented with 10% fetal bovine serum (FBS), 1% 

Penicillin Streptomycin, 1% non-essential amino acid, 1% antibiotic-antimycotic and 1% 

sodium pyruvate. For single-cell RNA sequencing preparation, cells were harvested at passage 

6, counted using the Coulter counter and resuspended at a concentration of 500 cells/ml.  

 

2.1.3 Animal Models for In Vivo Experiments   

 

Animal welfare guidelines and management have been comprehensively provided by 

Lu et al., 2015. All animal experiments were performed on healthy, treatment-naive animals 

according to regulations within the UK and protocols ethically approved by the Animal Welfare 

and Ethical Review Body (AWERB) and the Home Office (UK). In vivo mouse experiments 

and ex vivo techniques were carried out by members of the Bird lab, the University of Glasgow, 

where the AhCre+/WT Mdm2fl/fl and AhCreWT/WT Mdm2fl/fl mice (colony N4 C57/Bl6J 

background) were crossed. Male littermates were housed together, and when used in 

experiments were all > 20 g body weight and of 10-16 weeks age. Using the protocol provided 

by Bird et al., 2018, mice were injected intraperitoneally one time with β-Naphthoflavone 

(βNF, Sigma UK) at 20mg/kg and genotyped as described in Bird et al., 2018. 

 

2.1.4 Hepatocyte Isolation   

 

Following a protocol provided in Lu et al., 2015, primary hepatocytes were isolated ex 

vivo using an adapted version of the retrograde perfusion technique. Next, hepatocyte 

purification was performed by pelleting through a 40% (v:v) Percoll gradient separation before 

FACS sorting.  

 

 

 

 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mdm2
https://www.sciencedirect.com/science/article/pii/S2211124719304516#bib7
https://www.sciencedirect.com/science/article/pii/S2211124719304516#bib27
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/pelleting
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/percoll
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2.1.5 OIS In Vitro Immunohistochemistry 

  

2x104 cells were plated on gelatin-treated coverslips and allowed to attach to the surface 

overnight. Cells were fixed in 4% paraformaldehyde (PFA) in 1xPBS for 15 minutes, washed 

three times, and thereafter treated with 0.2% TritonX/PBS for permeabilisation for 5 minutes 

at room temperature (RT). Anti- C/EBPB clone E299 (Abcam) was used as the primary 

antibody at 1:500 dilution together with 0.5% goat serum with the incubation time of 45 

minutes at RT. Blocking was performed by washing the coverslips in PBS-T (0.1% Tween in 

1xPBS) three times for 30 minutes. Incubation with the secondary antibody Alexa Fluor® 488 

goat anti-rabbit (1:500 dilution) was subsequently performed at RT for 45 minutes in darkness 

at RT. 4’-6-diamidine-2-phenyl indole (DAPI) was also used in 1:1000 (1xPBS) to stain the 

cells in order to visualise the DNA. After secondary incubation, the cells underwent additional 

washes with PBS-T for another 30 minutes before being dried and mounted with Vectashield 

antifade mounting medium. 

HGPS in vitro immunohistochemistry followed the same procedure, but different 

primary antibodies were used: anti-lamin B1 [Ab16048, Abcam] and anti-γH2AX Phospho 

(Ser139) [2F3, BioLegend]). 

 

2.1.6 In Vivo Immunohistochemistry    

 

For tissue collection, mouse liver sections were harvested and underwent partial storage 

in paraffin. They were next fixed in 10% formalin (in PBS) for 18 hours before being 

embedded. Every immunohistochemistry run followed the protocol in Bird et al., 2018. Three 

μm thick paraffin sections were double-stained for p53/CDKN1A and CDKN1A 

and CEBPB using the CDKN1A clone HUGO291H (a gift from Serrano lab, CNIO in Madrid), 

and either C/EBPB clone 1H7 (Abcam) or p53 clone 1C12 (Cell Signaling). Signal 

visualisation was achieved by TSA-Cy3 (Perkin Elmer, NEL744B001KT, 1:50) and TSA-

FITC (Perkin Elmer, NEL741B001KT, 1:50). Images acquisition was performed on a Zeiss 

710 Upright Confocal Z6008 microscope. Stained slides were scanned using the Opera 

Phoenix High Content screening system (Perkin Elmer) scanner and analysed using the 

Columbus software. 

 

 

https://www.sciencedirect.com/topics/immunology-and-microbiology/dilution
http://www.abcam.com/goat-mouse-igg-hl-alexa-fluor-555-preadsorbed-ab150118.html
https://www.sciencedirect.com/science/article/pii/S2211124719304516#bib7
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cebpb
https://www.sciencedirect.com/topics/immunology-and-microbiology/p53
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2.1.7 Transwell Assay    

 

ER:RasG12V-expressing cells were co-cultured with IMR90:GFP cells. The co-cultured 

cells were seeded in the lower chamber of a transwell system (density 5x103 cells/well) 

(Corning, Tewksbury, MA). Another pure population of IMR90:GFP cells were placed in the 

upper chamber of the transwell system. All cells were cultured in 4-OHT for 7 days. All 

experiments were performed in triplicate. 

 

2.1.8 Flow Cytometry    

 

Cells were washed with Dulbecco’s Phosphate Buffered Saline (D-PBS) before being 

trypsinized by 0.25% trypsin/Versene solution at 37°C until cell dissociation was achieved. 

Cell suspensions were washed with D-PBS, centrifuged and resuspended in D-PBS/2% 

FCS/0.5mM EDTA. Cells were incubated with a combination of fluorochrome-conjugated 

antibodies as follows: anti-Notch1-PE (R&D systems, FAB5317P) and anti-JAGGED1-APC 

(FAB1726A). Cell counting and sorting of YFP-positive and YFP-negative populations were 

performed on a BD FACScan flow cytometer (FACSAria II) (BD Biosciences, San Jose, CA) 

using the BD CellQuest PRO software (BD Biosciences, San Jose, CA). Dead cells were 

excluded by DAPI staining. Flow data were analysed with FlowJo v10 (Tree Star, Ashland, 

OR). Flow cytometry was performed with three independent replicates.  

 

2.1.9 RNA Extraction 

 

Total RNA was extracted from three to four independent experiments using the 

instruction from the RNeasy Mini Kit (QIAGEN). The extracted RNA was quantified by a 

Nanodrop and RNA quality determined by all RNA that passed with a RIN of 9 or greater via 

Bioanalyser profiling (Agilent). Ribosome depletion was performed prior to bulk RNA 

sequencing. 

 

 

 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/flow-cytometry
https://www.sciencedirect.com/topics/immunology-and-microbiology/ribosome
https://www.sciencedirect.com/topics/immunology-and-microbiology/rna-sequence
https://www.sciencedirect.com/topics/immunology-and-microbiology/rna-sequence
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2.1.10 qPCR 

 

Enzymatic digestion of total RNA and cDNA generation were performed according to 

the Tetro cDNA synthesis kit. qPCR was performed on a Roche LightCycler 480 (Roche) with 

the Sybr Green method (ThermoFisher). The LightCycler 480 software (Roche) was used to 

monitor and analyse fluorescent signals generated during PCR amplification. Primer sequences 

are shown in Table S1. 

 

2.1.11 EdU Incorporation 

 

To measure cellular proliferation, OIS and co-cultured cells were maintained on 

gelatin-treated 20 mm x 20 mm cover glasses in 6-well plates at a seeding density of 5x104 and 

incubated with 10mM EdU-treated media for 4 hours. Cells on the cover glasses were washed 

with PBS and fixed using 4% paraformaldehyde for 15 minutes and rinsed three times with 

PBS. EdU incorporation into DNA was detected using the Click-iT™ EdU Alexa FluorTM 555 

imaging kit (Invitrogen/Molecular Probes, Eugene, OR). Cover glasses were mounted onto 

glass slides using the VECTASHIELD® Mounting Medium with DAPI and sealed with 

fingernail polish. Progeria cells underwent the same treatment and steps as described above. 

 

2.1.12 Proliferative Assay 
 

To measure the proliferative capacity of progeria cells, cells were serially passaged in 

a 6-well plate at a seeding density of 2x104 cells per well every 3 days until they stopped 

expanding. The counting of the total number of cells was determined by the Coulter counter at 

the end of each passage. Population doubling time (PDT), population doublings (PD) and 

cumulative population doublings were calculated according to formulas PDT = 

ln2*T/ln(NT/N0), PD = T/PDT, and cumulative PD = the sum of PD, respectively, where T = 

culture time, NT = cell number at the end of a passage, N0 = cell number at the beginning of a 

passage. PDT refers to the time taken for the cell population in culture to increase twofold in 

the middle of the exponential phase of growth. Cell proliferation rates of progeria cells were 

https://www.sciencedirect.com/topics/immunology-and-microbiology/real-time-polymerase-chain-reaction
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compared to those of normal fibroblasts from young mice, using PDL and passage number as 

the parameters. Each sample was seeded in triplicates for each passage.  

 

2.1.13 SA-Beta Gal staining 

 

2x104 cells from each experimental condition were seeded in 3 wells of a 6-well plate. 

To perform the SA-β-galactosidase (SA-β-Gal) assay, cells were washed with 1xPBS and fixed 

in 0.5% glutaraldehyde for 12 minutes at room temperature (RT). The fixed cells were washed 

twice with 1xPBS/MgCl2 (pH 6.0) and stained with a mixed solution of 1 mg/ml X-Gal, 

100mM K3Fe(CN)6 and 100 mM K4Fe(CN)6. Cells were incubated at 37°C overnight in 

darkness and washed twice with 1xPBS. To acquire a quantifiable result, images of stained 

cells were captured by a camera connected to an inverted microscope. Cells containing blue 

stain were counted as senescent, evaluated by two independent observers. At least 200 cells in 

different fields of vision were counted.     

 

2.1.14 Confocal Microscopy  

 

A BriteMac confocal microscope was used to visualize cells and capture fluorescent 

images at 40x. The triple band excitation DAPI-FITC-TRITC filter was used to detect 

fluorescent signals from DAPI, YFP-mVenus and EdU Alexa Fluor® 555, respectively. 

Images were analysed using Image J, an open-source image processing software.  

As for progeria experiments, a Nikon’s A1R point scanning confocal laser-scanning 

microscope was used for capturing immunofluorescent images at 60x for the optimised image 

quality. The triple band excitation DAPI-FITC-TRITC filter was used to detect fluorescent 

signals from DAPI, Alexa Fluor® 488 and Alexa Fluor® 555, respectively. The laser power 

was set at 5.00 and the detector sensitivity fixed at 105 for every fluorescence channel. The 

pinhole was set at 1.2AU and the images acquired were 2048 x 2048 in pixel.  
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2.2 Experimental Data Analysis    

 

2.2.1 Microscopic Image Analysis  

 

For OIS and co-culture experiments, the captured images were analysed using Image J, 

an open-source image processing software. Percentages of SAHF, YFP and EdU-positive cells 

were calculated by assessing 1600-2000 cells (triplicate counts) in each experimental 

condition. 

Images obtained from progeria experiments were also analysed by Image J, but with 

additional Macro scripts (Image J Macro). DAPI-stained nuclei were categorised as bleb-

positive or -negative, based on the characteristic nuclear lobulation observed in progeria cells. 

The nuclear peripheral lamin B1 fluorescent intensity was quantified semi-automatically using 

another Image J Macro developed by the advanced imaging resource team at IGMM (Institute 

of Genetics and Molecular Medicine). Creation of the script is based on the erosion 

morphological operator working on a binary mask of the segmented nucleus whose area is 

known. Erosion removes pixels from the edge of an object an in this manner the nuclear mask 

is eroded away through consecutive loops until the area is 4/5 of the original area. At this point, 

a ring region of interest (ROI) is added to the image. This process continues until the area is 

eroded to 3/5 of the original at which point another ring ROI is added to the image until the 

innermost ring is reached.  

To quantify the intensity of lamin B1, the nucleus was first divided into 5 equal areas, 

represented by 5 concentric rings [Figure 5.5A]. Since lamin B1 was fluorescently tagged with 

Alexa Fluor® 488, the raw fluorescent intensity detected in the FITC filter (green) for every 

concentric ring of the nucleus was recorded. The lamin B1 intensity in the outermost ring 

(referred to as ring 1), which indicates the nuclear peripheral lamin B1, was compared between 

progeria and WT conditions. To quantify the distribution of lamin B1 within the nucleus, the 

ratio of lamin B1 intensity in ring 1 to that in ring 4 was calculated and histogram generated. 

The raw measurements of intensity were also converted into log values. Gaussian mixture 

model, a histogram probabilistic model, was applied on the log values to generate WT- and 

KO-specific regions. The probability that a particular cell would belong to one or another 

region was calculated using the weighted sum model.  

 

http://www.abcam.com/goat-mouse-igg-hl-alexa-fluor-555-preadsorbed-ab150118.html
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2.3 Single-cell Technologies  
 

This thesis highlights the use of single-cell technologies to unravel any genetic 

heterogeneity or rare subpopulations within cell populations by detecting heterogeneous 

changes that tend to be averaged out in bulk sequencing. The focus of my research studies is 

on single-cell transcriptomes of senescent and progeria cells, which have been explored by two 

single-cell techniques: the Smart-Seq2 and the 10X Genomics Chromium protocols.      

 

2.3.1 Smart-Seq2  

 

The Smart-Seq2 method represents one of the most robust and reliable platforms for 

single-cell RNA expression analysis. It was developed by Picelli and colleagues (Picelli et al., 

2014) and is an improved version of the first Smart-Seq (switching mechanism at 5′ end of 

RNA template sequencing) (Ramsköld et al., 2012). At the end of the Smart-Seq2 workflow, 

full-length cDNAs are generated from amplified mRNA transcripts, allowing good read 

coverage across the transcriptome with the ability to detect rarer transcripts or isoforms without 

using specialist equipment. This technique, however, has a difficulty in incorporating unique 

molecular identifiers (UMIs) and unique cellular barcodes, and the number of cells that can be 

processed is restricted to those seeded in 96 or 384 well plates. Such limitations render gene-

level quantification and multiplexing of samples difficult, complicate downstream data 

analysis and introduce technical variation from several manual pipetting steps.          

 

2.3.2 10X Genomics  

 

The 10X Genomics Chromium workflow is based on microfluidic principles or the 

GemCode technology (10xGenomics). Using an 8-channel microfluidic chip, the 10X system 

isolates a large number of single cells in nanodroplets using a Gel bead in EMulsion (GEM) 

approach. The droplet-based encapsulation is achieved by gel beads, each of which is 

functionalised with oligonucleotides that contain a unique barcode, a UMI, sequencing adapters 

and primers, and an anchored 30bp oligo-dT. Cell lysis, reverse transcription, cDNA 

amplification, molecular tagging, and library construction all take place in one process and up 
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to 10,000 cells can be processed simultaneously in a single Eppendorf tube. Alternative to the 

Smart-Seq2 protocol, the 10X system allows for automatic and high-throughput single-cell 

capture, barcoding and profiling and is compatible with FACS sorting, which offers control 

over cell input and selection. Yet the 10X platform requires specialist equipment and comes at 

a substantially increased cost compared to the Smart-Seq2 platform.  

 

2.3.3 Single-cell Data Generation    

 

The Smart-Seq2 protocol (Picelli et al., 2014) was used on ER:IMR90 or hepatocytes 

after they were sorted on the FACSAria II into 96-well plates.  

Single-cell data for all co-culture experiments were obtained through the 10X 

Chromium technique (10xGenomics). Sorted cell suspensions were loaded onto single-use 

microfluidic chips. Single-cell RNA-seq libraries were prepared using the GemCodeTM 

technology and Single Cell 3’ v2 Library Kit according to manufacturer specifications. The 

barcoded sequencing libraries were quantified by quantitative PCR (KAPA) and loaded on an 

Illumina sequencing platform. Sample demultiplexing, barcode processing and single-cell 

3’gene counting were carried out by the 10X’s CellRanger pipeline.  

Single-cell data from progeria experiments were also generated using the Chromium 

Single Cell 30 Chip Kit v2.  
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2.4 Bioinformatics Analysis    
 

The bioinformatics workflow was established by Yee Voan Teo, Brown University, the 

other co-first author of the paper, who helped drive the computational analysis to fruition.   

 

2.4.1 Sequencing Reads Processing Alignment and Quantification of Smart-

Seq2 RNA-seq Data  

 

Smart-Seq2-generated paired-end reads were quality trimmed using Trim galore 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) and aligned to the human 

reference genome, hg19, neomycin sequence from pLNCX2-ER-ras_neo, ERCC spike-in 

sequences and RasV12 using HISAT v2.0.1beta (Kim et al., 2015). Cells with less than 200,000 

hg19 aligned reads, and a ratio of ERCC RNA spike-in control aligned reads to total aligned 

reads greater than 0.5 were omitted. hg19 aligned reads were randomly downsampled to 

200,000 reads. Genes were quantified using HTSeq-0.6.1 (Anders et al., 2015). Cells with more 

than 80,000 total gene counts and at least 500 genes with at least one count were used for 

downstream analysis. 224 IMR90 cells (100 Growing cells, 41 Day 2 cells, 42 Day 4 cells and 

41 senescent cells) passed this second filtering step and used for downstream analyses. 

 

2.4.2 Sequencing Reads Processing, Alignment, Quantification and Analysis of 

10x Chromium RNA-seq Data 

 

Cell Ranger 2.0.1 (10x Genomics) was used to align the GFP and ER:RasG12V co-culture 

10x Chromium RNA-seq reads to hg19, TurboGFP, puromycin sequence from pGIPZ and 

neomycin sequence from pLNCX2-ER-ras_neo, and to generate gene-cell matrices. The 

growing and senescence dataset were aggregated using “cellranger aggr.” The data were 

subsequently processed using Seurat 2.3.0 with cells with less than 15% mitochondrial reads 

and at least 2500 number of genes being retained (Butler et al., 2018). Seurat 2.3.0 with the 

default parameters (unless otherwise stated) was used to generate the t-SNE plots 

(resolution:0.4; dimensions used: 1:15) and three clusters were identified using sparcl 1.0.3 

(https://cran.r-project.org/web/packages/sparcl/index.html). SCDE v1.99.1 was used to 

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib19
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib9
https://cran.r-project.org/web/packages/sparcl/index.html
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identify differentially expressed genes between OIS cluster and secondary senescent cluster 

(Kharchenko et al., 2014). The DE genes (p-values < 0.05) [Table S2] were used as the defined 

gene sets for GSEA Preranked analysis of NIS and RIS log2FC ranked genes. GFP+ cells were 

identified as cells with > 0.3 normalized expression of GFP or puromycin and Ras+ cells were 

identified as cells with non-zero expression of neomycin or one or more reads supporting the 

G > T mutation at Chr11:534288 as identified by FreeBayes v0.9.20-8-gfef284a (Garrison and 

Marth, 2012). Integration analysis between Smart-seq2 time-point data and 10x data were 

performed using the canonical correlation analysis in Seurat 2.3.0, in which the union of the 

top 50 highest dispersion genes and the first two dimensions were used. 

Cell Ranger 2.0.1 (10x Genomics) was used to align the 10x Chromium RNA-seq reads 

from mVenus:dnMAML1 or mVenus:EV co-cultured with ER:RasG12V cells to hg19, mVenus 

sequence, puromycin sequence from pLPC-puro and neomycin sequence from pLNCX2-ER-

ras_neo to generate gene-cell matrices. mVenus cells were identified as cells with more than 

zero normalized expression of mVenus or puromycin and Ras+ cells were identified as cells 

with non-zero expression of neomycin or one or more reads supporting the G > T mutation at 

Chr11:534288 as identified by FreeBayes v0.9.20-8-gfef284a (Garrison and Marth, 2012). The 

data were subsequently processed using Seurat 2.3.0 with cells with less than 10% 

mitochondrial reads and at least 2500 genes being retained. Seurat 2.3.0 with the default 

parameters (unless otherwise stated) was used to generate the tSNE plots (resolution:0.6; 

dimensions used: 1:7). The cells were projected to the 10x Chromium GFP and ER:RasG12V co-

culture dataset using scmap-cluster v1.4.1. 

Cell Ranger 2.0.1 (10x Genomics) was used to align the 10x Chromium RNA-seq reads 

from progeria cells with the mouse reference genome (mm10). Reads were filtered based on 

library size, number of expressed genes and mitochondrial proportion by the scater package in 

Bioconductor in R. Cells with library size of less than 20,000, number of expressed genes fewer 

than 4000 and mitochondrial proportion more than 0.06, were filtered out. 502 WT cells and 

201 progeria cells passed these filtering steps. Downstream analyses were performed on the 

703 cells.  

 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib18
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#mmc3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib15
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2.4.3 Sequencing Reads Processing, Alignment and Quantification 

of In Vivo Data 

 

Smart-Seq2 generated paired-end reads were quality trimmed using Trim galore 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) and aligned to the mouse 

reference genome mm10 and ERCC spike-in sequences using HISAT v2.0.1beta (Kim et al., 

2015). The mm10 aligned reads were randomly downsampled to 50,000 reads. Cells with less 

than 50,000 reads, less than 20,000 gene count, less than 500 genes with at least one read 

detected and with the log-transformed number of expressed genes and library size of 3 median 

absolute deviation below the median value were removed (Lun et al., 2016). 39 single cells 

from the induced hepatocytes and 19 cells from the uninduced hepatocytes passed these filters. 

22 primary senescent cells were identified from the induced hepatocytes as cells with no reads 

mapping over exon 5 and 6 (chr10:117695953-117696049, chr10:117696381-117696439, 

chr10:117701565-117701614 and chr10:117702202-117702335) of Mdm2 gene before the 

downsampling. 17 cells were classified as secondary hepatocytes as judged by their gene 

expression profiles. Differential genes expression between Mdm2+ cells and Mdm2- cells was 

identified using SCDE v1.99 and log2FC ranked gene list from SCDE was used in GSEA pre-

ranked analysis. Genes with more than zero log-transformed normalized count (McCarthy et 

al., 2017) were labelled red, and otherwise white in the binary heatmap. Pathway enrichment 

was identified using WebGestalt (Wang et al., 2017) with genes that have a z-score of greater 

than 2 in Mdm2+ cells /Mdm2- comparison. 

 

2.4.4 Differential Gene Expression Analysis and Temporal Ordering of Cells 

 

We used raw counts from HTSeq-0.6.1 (Anders et al., 2015) as an input to single-cell 

differential expression (SCDE v1.99.1) (Kharchenko et al., 2014) for differential gene 

expression analysis between growing and senescence. Cut-off for significantly differentially 

expressed (DE) was set at 0.05. The expression magnitude (fragments per million) was 

obtained from SCDE and converted to FPKM as an input for Monocle2 (Qiu et al., 2017) 

Monocle2 was used to order the transitions of senescent cells of different time points at a 

pseudo-temporal resolution, and single-cell data were reduced to a 2-dimensional space by 

using the DDRTree algorithm implemented in Monocle2 (Qiu et al., 2017). Specifically, DE 

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib19
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib19
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib28
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib36
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genes between senescence and growing conditions that were identified in SCDE were used to 

define the trajectory. A consensus clustering approach, SC3, was also applied to the raw count 

of single cells and used to cluster senescent cells (Kiselev et al., 2017). 

 For progeria cells, the consensus clustering tool SC3 was used on the raw count of 

single cells to create 5 clusters of cells. Diffusion maps for single-cell data were created using 

destiny, an open-source R/Bioconductor package. Differentially expressed genes were 

identified by Discrete Distributional Differential Expression (D3E) (Hemberg Group). 

 

2.4.5 Detection of RasV12 Construct in Smart-Seq2 Dataset 

 

We counted reads with a G > T mutation at Chr11:534288 using samtools v1.2 mpileup 

and bcftools v1.2 (Li, 2011). Cells with more than 1 read supporting over G > T mutation or at 

least 9 reads mapping to the neomycin sequence are considered as RasV12 positive cells. 

 

2.4.6 Paracrine-induced Senescence and RIS Microarray Data Analysis 

 

Log2 RMA signal intensity of RIS IMR90 cells and IMR90 co-cultured in transwells 

with RIS cells were obtained from GEO GSE41318. Differentially expressed genes were 

identified using limma (Ritchie et al., 2015) and an adjusted p-value of 0.05 was used as the 

cut-off for significant genes. 

 

2.4.7 Notch and Ras-induced Senescence Data and GSEA Analysis 

 

We used NIS and RIS RNA-seq data with accession number GSE72404. Reads were 

aligned to as described above. Differential gene expression analysis between NIS and RIS was 

performed using DESeq2 (Love et al., 2014). The log2 fold change for each gene was used to 

rank the list of genes in GSEA Preranked analysis(Subramanian et al., 2005). Differentially 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib22
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib25
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41318
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72404
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expressed (DE) genes between senescence top and bottom were identified using SCDE with a 

p-value cutoff of 0.05. The DE genes defined the gene set in GSEA Preranked analysis. 

 

2.4.8 Sequencing Reads Alignment and Quantification of Transwell Bulk RNA-

Sequencing Data 

 

Reads were aligned to the human reference genome hg19 using HISAT v2.0.1beta (Kim 

et al., 2015) and those that mapped to annotated genes were quantified using HTSeq-0.6.1 

(Anders et al., 2015). Differential gene expression was determined using DESeq2 v1.22.1 

(Love et al., 2014). Over-representation analysis was performed using WebGestalt (Wang et 

al., 2017) and GSEA pre-ranked analysis was performed using the ranking of genes based on 

the log2FC between GFP contact and GFP no contact. 

 

2.5 Statistical Analysis   

All t-tests and one-way ANOVA for the in vitro data were performed in R. TukeyHSD 

was used as the post hoc test for one-way ANOVA. For the in vitro data, each experiment and 

measurement were obtained from three independent experiments unless otherwise specified in 

the figure legends. Barplots are represented as means with SEM. Statistical significance was 

set at p < 0.05. t-test for the in vivo data was performed in R and the two-way ANOVA 

followed by Tukey’s test for the in vivo data was performed using GraphPad Prism. All animal 

data were obtained from three biological replicates. Details of all statistical analysis can be 

found in associated figure legends. For qPCR analysis, Delta delta Ct method was used for 

quantification with error bars resulting from the delta Ct expression of three to four biological 

replicates. A two-sided t-test was used to calculate p-values.  

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib26
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib44
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib44
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Chapter 3: Single-Cell Transcriptomics of Oncogene-Induced 

Senescence Systems Part I: OIS Cells Showed Two 

Facultative Transcriptional Endpoints. 

3 3 

3.1 Introduction  

 

 Cellular senescence is a stress response that irreversibly inhibits the cell cycle, 

suppresses tumourigenesis, promotes wound healing and is strongly associated with ageing 

(Campisi 2013; van Deursen 2014). Aberrant activation of particular oncogenes or tumour 

suppressors results in what is called oncogene-induced senescence (OIS), which is widely 

recognised as an in vivo anti-cancer mechanism yet confers a pre-cancerous state (Di Micco et 

al., 2006; Serrano et al., 1997; Braig et al., 2005; Xue et al., 2007).  

Human cells undergoing OIS are characterised by a unique pattern of heterochromatin 

displayed as punctate DNA foci, known as senescence-associated heterochromatic foci 

(SAHFs) (Narita et al., 2003; Chandra and Kirschner 2016). OIS cells are also distinguished 

from normal or quiescent cells by one prominent feature, the senescence-associated secretory 

phenotype (SASP), whose components include interleukins, chemokines and extracellular 

matrix proteases that affect the surrounding cells and modify the microenvironment (Acosta et 

al., 2008; Coppé et al., 2008; Kuilman et al., 2008). These factors play a critical role in 

tumourigenesis through modulation of the extracellular matrix, and recruitment of immune 

cells to eliminate unwanted senescent cells, but under an inflammatory microenvironment, 

SASP instead contributes to cancer initiation, cellular reprogramming and ageing (Mosteiro et 

al., 2018; de la Rosa et al., 2013; Soria-Valles et al., 2019; Osorio et al., 2012).  

Remarkably, SASP can serve to induce secondary senescence in neighbouring cells in 

a paracrine fashion ( Acosta et al., 2013). Paracrine secondary senescence is believed to 

augment immune surveillance and provide a failsafe mechanism that minimises the risk of 

retaining damaged cells ( Acosta et al., 2013; Nelson et al., 2012; Kuilman et al., 2008). Recent 

evidence has suggested that ectopic activation of Notch signalling is interpreted in an 

intermediate stage during primary senescence induction, accompanied by a distinct secretome 
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(Hoare et al., 2016a). The details of Notch’s involvement in secondary OIS mediation are yet 

to be described.    

Here, single-cell RNA sequencing (scRNA-seq) was carried out to investigate the 

heterogeneity within OIS populations. I used H-RasG12V-induced senescent IMR90 

(ER:IMR90) fibroblasts (Young et al., 2009) as the experimental model. The design of the H-

RasG12V construct is based on its fusion to a mutant form of the estrogen receptor (ER) ligand 

binding domain. 4-hydroxy-tamoxifen (4-OHT) is used as a conditional activator of RAS, 

which drives the ER:IMR90 fibroblasts into cell cycle arrest within 7 days with clear and 

observable morphological and biochemical phenotypes and 5-10-fold higher levels of the Ras 

oncoprotein compared to normal physiological conditions, making this system a robust and 

effective platform to study senescence (Takaoka et al., 2004). The single-cell experiments 

showed two distinct transcriptional signatures at the end of the primary OIS process, with 

activation of Notch characterising one transcriptional endpoint uniformly consisting of 

secondary senescent cells in vivo and in vitro.   

 

3.2 OIS Cells Bifurcated into Two Sub-Populations  

 

I performed a scRNA-seq time course experiment to investigate the dynamic changes, 

trajectory and cell-to-cell heterogeneity of H-RasG12V-induced senescent IMR90 

(ER:IMR90) fibroblasts (Young et al., 2009) before and after 2, 4, and 7 days, using the Smart-

Seq2 protocol (Picelli et al., 2014)[Figure 3.1]. As part of the research collaboration, the 

downstream computational techniques for scRNA-seq data analysis were performed by Yee 

Voan Teo, with my constant engagement along the research journey.    

 

 

 

 

Figure 3.1: Schematic Representation of the Time-Course Experiment. (ER:IMR90) fibroblasts were induced 

to become senescent before and after 2, 4 and 7 days using FACS single cell isolation for the Smart-Seq2 

protocol. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib48
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib48
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Stringent filtering criteria were applied to the scRNA-seq data. These quality control 

(QC) steps included total mapped reads, ratio of ERCC RNA spike-in control aligned reads to 

total aligned reads, and total gene counts [Figures 3.2A-3.2C; Table S2].  The cells that passed 

QC were normalised by downsampling to 200,000 aligned reads for downstream analysis. 

These filtering steps led to a final cell count of 100/288 for day 0, 41/96 for day 2, 42/96 for 

day 4, and 41/288 for day 7 [Figure 3.2D]. Another critical QC procedure conducted was to 

select for senescent cells with reads mapped to the G >T mutation site of RAS gene [Figure 

3.3].    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Filtering Criteria.  

(A, B) Filtering according to total mapped reads. Cells with less than 200,000 human aligned reads and with a 

ratio of ERCC RNA spike-in control aligned reads to total aligned reads that is greater than 0.5 were removed. 

(C) The second filtering step was performed to retain cells that have greater than 80,000 total gene counts and at 

least 500 genes with at least one count. Cell were normalised by downsampling to 200,000 aligned reads for 

downstream analysis.  

(D) The number of cells that passed the filtering step in (A) and (B). 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#mmc1
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Since OIS induction takes 7 days of culture in 4-OHT, I confirmed a senescence 

phenotype at day 7 by profiling bromodeoxyuridine (BrdU) incorporation, counting of cells 

with senescence associated heterochromatic foci (SAHF) and the senescence-associated beta-

galactosidase (SA-Beta Gal) assay [Figures 3.4A-C]. At the end of senescence induction, 

37/390 cells [9%] incorporated BrdU, 265/390 cells [68%] were SAHF-positive, and 428/523 

cells [82%] were stained positive for SA-Beta Gal.    

 

Figure 3.3: Number of senescent cells with reads mapping to the G > T mutation site of RAS gene. 

Ras+ cells were identified as cells with non-zero expression of neomycin or one or more reads supporting the 

G > T mutation at Chr11:534288 as identified by FreeBayes v0.9.20-8-gfef284a 
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Next, to assess time-dependent changes in the transcriptome, pseudo-temporal ordering 

of cells, or pseudotime, was employed to reveal a trajectory of single-cell data based on 

differential gene expression between growing and senescence [adjusted p < 0.05; Table S3; 

Figure 3.5] (Kharchenko et., 2014).  

 

A B 

C 

Figure 3.4: Confirmation of Senescence Markers. 

(A) BrdU incorporation profiling and proportion of SAHF-positive cells. Cells cultured on coverslips were incubated for 6 

h with BrdU (10 µM) and fixed following the kit instructions. The presence of SAHF was detected by DAPI staining. 

(B) Percentages of SA-Beta galactosidase-positive cells. Cells were scored as SA-Beta -positive cells based on the presence 

of galactosidase staining. 

(C) SA-Beta galactosidase staining in ER:Ras fibroblasts. SA-Beta gal staining was performed as previously described 

(Kirschner et al., 2015).  

Days indicated time of tamoxifen treatment. Error bars are SEM, n=3 for each time point. F[3,8] = 234.8, p<0.001; 

**p<0.001 using one-way ANOVA with Tukey’s test. Scale bar 100μm. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#mmc3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib20
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The Monocle2 method, which utilises the principle component analysis (PCA) and 

dimensionality reduction (Qiu et al., 2017), was applied to plot the pseudo-temporal trajectory 

of single-cell OIS data. The Monocle2 plot revealed a continuous progression of cells from 

growing to senescence, featuring intermediate stages at days 2 and 4 and ultimately bifurcating 

into two distinct senescent sub-populations at day 7 [Figure 3.5]. The result suggests two 

facultative, alternative endpoints for OIS cells.  

 

 

 

 

Figure 3.5: Pseudo-Temporal Trajectory of scRNA-seq Data. 

Monocle2 plot for the time-course experiment shows the presence or absence of the mutated RAS gene as indicated. 

Pie charts for the percentage of Ras+/Ras− cells in the top and bottom clusters. Monocle2 was used to order the 

transitions of senescent cells of different time points at a pseudo-temporal resolution, and single-cell data were 

reduced to a 2-dimensional space by using the DDRTree algorithm implemented in Monocle2 (Qiu et al., 2017). 

The figure shows a continuous progression from growing to senescence, with days 2 and 4 cells as intermediates 

and two distinct senescent populations. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib36
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3.3 Senescence Top and Bottom Populations Were Separated by the 

Activation of Ras  
 

To determine whether the split into two senescence populations was a result of RasV12 

activation [Figure 3.3], RasV12 expression was overlaid onto the Monocle2 plot [Figures 3.3 

and 3.4; Figures 3.6A-B; ta]. The combined datasets showed a progression of RasV12-

expressing cells [Figure 3.5; Ras+, round symbols] into two terminal senescence clusters with 

a 21:4 skew toward the endpoint designated OIS. On the other hand, fibroblasts without 

detectable RasV12 expression had a consistent progression to the endpoint tentatively 

designated secondary senescence, implied as the obligate endpoint [cross symbols, 

Ras−; Figure 3.5; Fisher’s exact-test, 1.64 × 10−6]. The undetectability of RasV12 in the 

secondary sub-cluster suggests that senescence induction in this cluster was a secondary event.  

 

 

Figure 3.6: Determination of RasV12 Activation and Overlay of RasV12 Expression onto Monocle2. 

(A) Number of reads aligning to the neomycin sequence from the pLNCX2-ER-ras_neo construct in senescent 

single cells in the time-course experiment. Ras+ cells were identified as cells with non-zero expression of 

neomycin.  

(B) Fraction of cells that are RasV12+ in each condition in the time-course experiment. 

A B 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#mmc1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#mmc4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig1/
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To further investigate the differences between the top and bottom senescence 

populations, Ingenuity Pathway Analysis (IPA, QIAGEN) was used [Figure 3.7A]. IPA 

identified HRAS as one of the top predicted upstream regulators for the senescence top 

population (p = 3.1 × 10−34) [Figure 3.7A]. Despite this difference, both populations still 

categorically exhibit upregulation of key senescence genes such as cyclin-dependent kinase 1a 

(CDKN1A) and cyclin-dependent kinase inhibitor 2b (CDKN2B) and SASP factors interleukin 

8 (IL8), interleukin 6 (IL6), and interleukin 1B (IL1B) [p < 0.05 for all genes; Figure 3.7B], 

confirming the senescence phenotype.  
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Figure 3.7: Transcriptional Profiles of Top and Bottom (Primary and Secondary) Populations. 

(A) IPA analysis of OIS/growing in time-course scRNA-seq. IPA pathway analysis identifies TGFB1 as 

exclusively activated in the secondary senescence clusters compared to growing or the primary OIS. 

(B) Boxplots for the expression of senescence genes in the time course experiment. The top and bottom bounds 

of the boxplot correspond to the 75th and 25th percentile, respectively. p-values were obtained using differential 

analysis in SCDE. 

 

A 

B 



43 
 

 

A consensus clustering approach, SC3 (Kiselev et al., 2017), was then applied to verify 

if the two main senescence populations were transcriptomically distinct, using silhouette plot 

to determine the number of clusters (Rousseeuw 1987) [Figure 3.8A]. SC3 found two 

senescence clusters with a high degree of overlap with the sub-populations detected by 

Monocle2 (cluster 1 16/21 or 76% RasV12+ cells, cluster 4 11/15 or 73% RasV12− cells). This 

consistent finding supports the idea that the bifurcation into two senescence clusters depends 

upon the absence or presence of RasV12 [Figure 3.8B].  

 

 

 

 

 

A B 

Figure 3.8: Unsupervised Clustering of Senescent Cells.  

(A) Silhouette plot to assess the quality of clustering. The average silhouette width was 0.47. Silhouette plot was used 

to determine the number of clusters.  

(B) Unsupervised clustering using SC3 for senescent cells. Cells were annotated as either OIS (top senescence branch, 

purple), secondary senescence (bottom branch, green), or NA (neither, pink). SC3 detected two senescence clusters 

largely overlapping with the subpopulations obtained by Monocle2.  
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3.4 Primary Senescence and Secondary Senescence Were 

Transcriptomically Distinct  
 

To verify that the two major sub-populations observed represent primary OIS and 

secondary senescence, I set up a co-culture experiment in which ER:IMR90 were co-cultured 

with IMR90:GFP fibroblasts in a ratio of 10:1. By treatment with 4-OHT, secondary 

senescence would be induced in IMR90:GFP-positive cells (Acosta et al., 2013). Using the 

10X Genomics Chromium, I obtained scRNA-seq data before and 7 days after RasV12 

activation [Figure 3.9A].  

 

 

 

 

 

 

 

 

A B 

C D 

E F 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib2
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The senescence phenotype was verified on sorted populations by qPCR, as shown by 

common senescence markers (CDKN2B, IL6 and IL8) [Figure 3.9B; Table S2]. I also 

performed the SA-Beta Gal assay on both primary and secondary senescent cells and 

consistently found positive staining in the 4-OHT-treated groups [Figures 3.9C-3.9D]. 

Furthermore, long-term stable cell cycle arrest was confirmed at 21 days post co-culture by 

EdU incorporation profiling, with less than 10% of the senescent cell populations, primary and 

secondary, incorporating EdU [Figures 3.9E-3.9F]. 

 

 

 

 

 

 

 

 

Figure 3.9: Confirmation of Senescence in Co-Cultured Cells.  

(A) Schematic representation of the co-culture experiment. ER:IMR90 cells were co-cultured with IMR90:GFP 

fibroblasts (10:1), where secondary senescence is induced in IMR90:GFP-positive cells. We generated scRNA-

Seq data before and 7 days after RasV12 activation by using the 10× Genomics Chromium protocol. 

(B) Box plots for gene expression of CDKN2B (n=3), IL6 (n=3), and IL8 (n=3) mRNA measured by qPCR in 

OIS and GFP cells. Unpaired Student’s t-test showed no significant difference in senescent markers expression 

between OIS and GFP cells. Error bars represent SEM. 

(C) SA-Beta galactosidase counts in OIS and GFP cells. (OIS t = 10.199, df = 2.0096, p= 0.009; GFP t = 15.239, 

df = 2.3673, p= 0.002 using unpaired Student’s t-test). Scale bar 100μm. 

(D) Representative images from SA-Beta Gal staining in OIS and GFP cells captured by an inverted microscope. 

(E) Bar plots showing EdU incorporation in GFP cells co-cultured with ER:Ras cells after 21 days as proportion 

of all cells scored. Error bars are displayed as SEM; **p<0.001, *p<0.05. 

 (F) Representative images from EdU incorporation profiling are shown. Scale bar 20μm. (ER:Ras t = -9.899, df 

= 2.86 68, p=0.0024; GFP t = 10.395, df = 3.3348, p= 0.0012 using unpaired Student’s t-test) (n=3 per 

experiment). 
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Figure 3.10: 10X Genomics Transcriptional Profiles of Co-cultured Cells.    

(A) t-Distributed Stochastic Neighbor Embedding (tSNE) visualization of co-culture scRNA-seq.  

(B) tSNE visualization of single cells grouped into 3 clusters. Three distinct clusters, namely growing (blue dots), secondary 

senescence (GFP positive, black dots) and OIS (RasV12 positive, red dots), were identified with significant enrichment for 

the OIS and secondary senescence populations. 

(C) Boxplots for the expression of senescence genes in the co-culture experiment. The top and bottom bounds of the boxplot 

correspond to the 75th and 25th percentile, respectively. p-values were obtained using differential analysis in SCDE. 

 

B A 

C 
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Transcriptome-wide, cells were annotated based on GFP, RasV12 expression, and the 

G > T mutation of Ras gene (Figure 3.10A). Three major clusters were identified using the 

Seurat and Sparcl packages (Butler et al., 2018; Witten and Tibshirani 2010): the clusters are 

growing (blue dots), secondary senescence (GFP positive, black dots) and OIS (RasV12 

positive, red dots), with significant enrichment for the OIS and secondary senescence 

populations (chi-square test, p = 4.1 × 10−14; Figure 3.10B). A small fraction of RasV12-

expressing cells also existed in the secondary senescence cluster, which reflects the earlier 

findings of two facultative terminal senescence stages for primary RasV12 senescent cells, with 

GFP-positive secondary senescent cells being uniformly distributed. In addition, differential 

gene expression analysis in SCDE confirmed the senescent phenotype by upregulation of genes 

including CDKN1A, CDKN2B, and IL8 in both senescent clusters in comparison with the 

growing cluster [Figure 3.10C; Table S2]. 

 Next, to integrate the data from two single-cell experiments, the transcriptomes of the 

time-course and the co-culture experiments were overlaid. Strikingly, a significant portion of 

cells labelled as OIS and secondary senescence (GFP and part of RasV12) clustered together 

[Figure 3.11; chi-square test, p < 0.05]. It is surprisingly consistent that such a co-clustering 

pattern with the same senescence signatures was achieved despite the datasets being 

independently obtained from two different techniques: the 10X and the Smart-Seq2 protocols. 

 

 

 

 

 

 

 

 
Figure 3.11: Integration Analysis of the Two Senescence Clusters from Time-Course and Co-Culture 

Experiments. 

When overlaying transcriptomes of the time course and the co-culture experiments, a significant number of cells 

identified as OIS and secondary senescence (GFP and part of RasV12) clustered together. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#mmc3
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3.5 Paracrine Senescence Only Partially Explained Secondary 

Senescence 

 

Strong in vitro and in vivo evidence has led to the notion that paracrine senescence is the 

main effector mechanism mediating cell-extrinsic or secondary senescence (Acosta et al., 

2013; Kuilman et al., 2008). To test whether the secondary senescence cluster identified here 

was explained by a paracrine signature, the published bulk RNA-seq data (Acosta et al., 2013) 

was overlaid our two single-cell datasets. A significant overlap with paracrine senescence 

genes was found (hypergeometric test: paracrine/OIS and time course secondary 

senescence/OIS (Ras−/Ras+) p < 0.001; paracrine/OIS and 10× secondary senescence/OIS p < 

0.001, 10× secondary senescence/OIS and time course secondary senescence/OIS (Ras−/Ras+) 

p < 0.001; Figure 3.12; Table S4). However, a great portion of genes shared between the 10X 

and the Smart-Seq2 single-cell experiments could not be explained, suggesting that additional 

pathways in secondary senescence were involved.   

 

 

 

 

 

 

 

 

Figure 3.12: Overlap of differentially expressed (DE) genes between paracrine/OIS, time course, and co-culture 

experiments. 

There was a significant overlap with paracrine genes (hypergeometric test: paracrine/OIS and time course secondary 

senescence/OIS (Ras−/Ras+) p < 0.001; paracrine/OIS and 10× secondary senescence/OIS p < 0.001, 10× secondary 

senescence/OIS and time course secondary senescence/OIS (Ras−/Ras+) p < 0.001; but a large fraction of genes shared 

between our two single cell experiments remained unexplained. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib24
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#mmc5
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3.6 Notch Signatures Characterised the Transcriptome of Secondary 

and a Subset of Primary Senescent Cells  
 

 Since paracrine senescence signatures only partially explain the secondary senescence 

clusters, additional differential gene expression analysis was carried out to explore consistent 

differences between the secondary senescence and the primary OIS clusters. Fibrillar collagens 

(collagen 1A1, 3A1, and 5A2) emerged as one of the most differentially expressed genes 

[Figure 3.13A]. A previous study also reported downregulation of fibrillar collagens in 

senescence (Hoare et al., 2016). In our secondary senescence cluster, however, these collagen 

genes were not downregulated [Table S3; Figure 3.13A]. Similarly, a failure to downregulate 

collagens was observed in a specialised primary senescence phenotype, established by ectopic, 

temporal activation of Notch (Hoare et al., 2016). The same study suggested a model of 

RasV12-induced senescence whose secretome regulation depends on a choice between 

CCAAT-enhancer-binding protein beta (CEBPβ) and  transforming growth factor beta (TGFβ), 

with Notch-induced senescence specifically repressing CEBPβ and relying on TGFβ [Figure 

3.13B] (Hoare et al., 2016). 

 

 

 

 

 

 

 

Figure 3.13: Fibrillar Collagen Expression and Secretome Regulation Model of NIS and RIS.    

(A) Boxplots for the expression of genes COL1A1, COL3A1, and COL5A2 in the time course and co-culture experiments 

(p < 0.05). The top and bottom bounds of the boxplots correspond to the 75th and 25th percentile, respectively. p-values 

were obtained using differential analysis in SCDE. 

(B)   Model suggesting NIS and RIS are regulated by Notch1 through TGFB and CEBPB, respectively. 

 

B A 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib16
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib16
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Here, a variety of analytical methods identified a notch-induced senescence (NIS) 

signature in the secondary senescence population. First, IPA pathway analysis revealed TGFB1 

as one of the most exclusive activator in the secondary senescence clusters compared to 

growing or the primary OIS [Table 3.1A]. By contrast, the primary OIS clusters specifically 

contained differentially activated regulators of the CEBPβ transcriptome, RELA and IL1β 

pathways [Table 3.1B]. Consistently, HRAS was exclusively activated in primary OIS, 

mirroring the previous RasV12 annotation [Tables 3.1A-B]. In relation to changes in 

components of the extracellular matrix between the primary and secondary clusters, a previous 

study also showed that integrin β subunits (β3 or ITGB3) were significantly deregulated during 

OIS and that β3 expression induced senescence by activating TGFβ. (Rapisarda et al., 2017). 

 

Second, candidate genes involved in Notch signaling and TGFB activation were 

profiled. When TGFβ-induced transcript 1, (TGFβ1I1) was plotted with Notch-target 

connective tissue growth factor (CTGF) and CEBPβ, a significant (p < 0.05) upregulation was 

found in CTGF and TGFβ1I1 genes in the secondary senescence cluster with a simultaneous 

downregulation of CEBPB, significant on the protein but not mRNA level [Figures 3.14-3.15; 

p = 0.016), resembling the TGFβ and CEBPβ bias in NIS. This bias was confirmed by qPCR 

[Figure 3.14; TGFβ1 p = 0.02, TGFβI p = 0.05). 
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B 

A 

Table 3.1: Differentially Expressed Genes in Primary and Secondary Senescence Clusters.    

(A) IPA analysis of the two senescence clusters from time-course and co-culture scRNA-seq. Red indicates 

activated upstream regulator and blue indicates inhibited upstream regulator. 

(B) IPA analysis of the two senescence clusters from the time course and co-culture experiments relative to 

growing. 
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Figure 3.14: Boxplots for the expression of TGFB1I1, CTGF, and CEBPB genes in the time course (top) 

co-culture experiments (middle), and the relative fold change (bottom) in OIS and GFP. 

The top and bottom bounds of the boxplot correspond to the 75th and 25th percentile, respectively. p-values 

were obtained using differential analysis in SCDE.  

Bar graphs denoting expression of TGFB1 (n = 6), TGFBL (n = 6), and CEBPB (n = 3) mRNA as measured by 

qPCR in OIS and GFP cells (bottom) (TGFB1: t = −3.2317, df = 5.5117, p = 0.02; TGFBI: t = −2.2567, df = 

9.8141, p = 0.05; CEBPB: t = 0.068192, df = 3.2294, p = 0.95, unpaired Student’s t-test. Error bars represent 

SEM). 
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Third, an unbiased genome-wide analysis was applied. Gene set enrichment analysis 

(GSEA) (Subramanian et al., 2005) was used to identify the enrichment of NIS and Ras-

induced senescence (RIS) signatures in the primary OIS and secondary senescence 

transcriptomes, with ranked transcriptome differences between NIS and RIS [Figure 3.16A].  

A high enrichment of NIS signatures was found in the secondary senescence 

transcriptomes from the time-course and co-culture experiments [normalised enrichment score 

[NES] = 2.61, false discovery rate [FDR] < 0.005 for time course; NES = 2.89, FDR < 0.005 

for co-culture experiments; Figure 3.16A]. On the other hand, RIS signatures were enriched in 

the primary OIS transcriptomes [Fugure 3.16B].  

Finally, the extent of NIS in secondary senescence was assessed. A comparison between the 

most differentially regulated genes (adjusted p < 0.05) of RIS and NIS showed that NIS genes 

are significantly enriched in the secondary senescence clusters in the time course and co-culture 

experiments, with primary OIS signature being enriched for RIS [Figures 3.16A-D] 

Figure 3.15: Representative image of GFP (secondary senescence) and CEBPB (red) immunofluorescence in the 

co-culture experiment.  

Immunoflurorescence was performed as previously described (Kirschner et al., 2015). Anti- C/EBPB clone E299 

(Abcam) was used as 1:500 dilution. Mean intensity for primary (ER:Ras) and secondary senescent cells (GFP) was 

measured (p = 0.016, unpaired Student’s t-test). Error bars are displayed as SEM. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib20
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3.7 Discussion  
 

 The ability to study OIS cells at the single-cell level is a great leap forward in this 

research field. One important question that needs to be addressed is why some cells can escape 

from OIS and become cancerous. To answer that question, I first attempted to explore the 

heterogeneity of OIS cells and determine if all OIS cells are transcriptionally equal. Analysis 

of OIS heterogeneity provided a compelling rationale for embarking on scRNA-seq studies. In 

this chapter, I described the findings from single-cell transcriptomics time-course and co-

culture experiments after Ras induction and investigated the differences between primary and 

secondary senescence as a defining source of cellular heterogeneity in OIS. 

The two ScRNA-seq technologies employed here, Smart-Seq2 and 10X Genomics, 

have offered comparisons of the transcriptomes of individual senescent cells and identified rare 

senescent sub-populations that would otherwise go unnoticed in bulk sequencing experiments. 

Nevertheless, in the identification of Ras cells by mapping a mutation in the Ras gene, the 

unmappability of some cells presents a challenge for downstream analyses. This issue could be 

attributed to dropout events, meaning that the gene expression went undetected as a result of 

technical limitations during the preparation of cells. An alternative explanation could involve 

a biological phenomenon, namely the formation of SAHF, which will be discussed in details 

later on in Chapter 4.   

Figure 3.16: Enrichment of NIS Signatures. 

NIS and RIS RNA-seq data with accession number GSE72404 were used and their reads aligned. Differential gene 

expression analysis between NIS and RIS was performed using DESeq2 (Love et al., 2014). The log2 fold change for 

each gene was used to rank the list of genes in GSEA Preranked analysis (Subramanian et al., 2005). Differentially 

expressed (DE) genes between senescence top and bottom were identified using SCDE with a p value cutoff of 0.05. 

The DE genes defined the gene set in GSEA Preranked analysis. 

(A) GSEA plots for the enrichment of secondary and primary OIS DE genes (time course and co-culture experiments) 

in Hoare et al., (2016) NIS and RIS log2FC pre-ranked genes. Normalized enrichment score (NES) and false discovery 

rate (FDR) are shown. 

(B) GSEA was used to assess the enrichment of secondary and primary senescence (OIS) DE genes in Hoare et al.,’s 

NIS and RIS log2FC pre-ranked genes. NES and FDR are shown. 

(C) Venn diagrams overlapping expression signatures from time course (top) and co-culture (bottom) with NIS signature 

genes. (Secondary senescence: Secondary senescence/OIS upregulated genes; NIS: Hoare et al., (2016) NIS/RIS 

upregulated genes; RIS: Hoare et al., (2016) RIS/NIS upregulated genes). 

(D) Venn diagrams overlapping expression signatures from top panel: time-course and bottom panel: co-culture 

experiments with NIS signature genes (OIS: OIS/Secondary senescence upregulated genes; NIS: Hoare et al.,’s NIS/RIS 

upregulated genes; RIS: Hoare et al.,’s RIS/NIS upregulated genes). 

 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72404
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib26
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib42
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib16
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib16
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib16
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In the first part of the downstream analysis process, lineage tracing (Monocle2) and 

unsupervised clustering (SC3) separated the Ras induced senescence population into two 

groups based on single cell transcriptomes and referred to as primary and secondary senescence 

populations. It was clear that both senescence clusters showed the senescence phenotype, as 

confirmed by a plethora of senescence assays and markers, but the inability to detect Ras 

activation in the secondary cluster suggests that senescence was secondarily established. Given 

that the two single-cell experiments were conducted independently and utilised two different 

techniques to generate the data, the consistent co-clustering of senescence signatures from the 

two datasets warrants the conclusion that primary and secondary senescence populations had 

distinct transcriptomes.     

Since paracrine transmission of senescence is as a well-established mediator of 

secondary senescence (Acosta et al., 2013), the lists of differentially expressed genes found in 

the secondary senescence transcriptomes were compared with the list of paracrine-induced 

senescence genes. Interestingly, the overlap between them was small, with a large number of 

genes not intersecting. Previous work indicates that Notch signalling regulates the senescence 

secretomes, in turn affecting the functional output of senescence (Hoare et al., 2016a). In 

agreement with this model, our gene profiling and enrichment analyses identified notch-

induced senescence signatures in the transcriptomes of secondary and a subset of primary 

senescent cells. The results point to the novel role of the Notch pathway in regulating secondary 

senescence.  

Another prominent observation that must be discussed concerns the dynamics of OIS 

shown in the time-course analysis [Figure 3.5]. While the intermediate stages present over the 

temporal trajectory of OIS induction reflect dynamic shift and functional transition of OIS, it 

remained to be elucidated whether the spatio-temporal pattern of senescence control fits in the 

Notch-regulated 2-state model of SASP in which high Notch activity drives the first phase in 

a TGFβ-dependent and CEBβ-suppressive manner, while the latter phase is characterised by 

the pro-inflammatory secretome and derepression of CEBPβ (Hoare and Narita 2017). To 

understand more about the function of Notch in this regard, the next chapter will focus on the 

mechanistic link between Notch signalling and establishment of secondary senescence.    
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3.8 Summary   

In summary, two major transcriptional endpoints in primary OIS were identified, with 

a uniform assignment of secondary senescent cells. Subsequent analyses revealed a pronounced 

NIS signature in the secondary senescence population and in a subset of primary senescent 

populations as an alternative endpoint to OIS. 
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Chapter 4: Single-Cell Transcriptomics of Oncogene-Induced 

Senescence Systems Part II: NIS is a Secondary Senescence 

Effector Mechanism during OIS. 

4 4 

4.1 Introduction  
 

Notch signalling is evolutionarily conserved across bilaterian animals and has its origin 

in cell-fate decisions during wing development in Drosophila (Couso et al., 1994). The 

canonical Notch pathway is executed through a single-pass transmembrane Notch receptor on 

the signal-receiving cell upon direct binding with its ligand located on the apposing signal-

sending cell [Figure 4.1] (Ito et al., 2017). This cell-to-cell, ligand-receptor interaction causes 

the Notch receptor to undergo a conformational change and triggers a proteolytic cleavage of 

the Notch extracellular domain by the ADAM/TACE metalloproteinase family. The resulting 

intermediate transmembrane form of the receptor is subsequently subjected to a second 

cleavage by the γ-secretase complex, which releases the Notch intracellular domain (NICD) 

from the inner membrane, allowing it to translocate to the nucleus to bind to the DNA-binding 

protein RBPJ, mastermind-like 1(MAML1) and other transcriptional activators. The formation 

of this transcriptional complex displaces co-repressors and activates target gene expression. 

Notch-mediated cell-to-cell interactions are highly context-dependent but essential for the 

development of multicellular organisms with implications in diseases such as cancer.    

Recent lines of evidence have favoured the role of Notch in the modulation of 

senescence and mediation of secondary senescence (Hoare et al., 2016; Parry et al., 2018). The 

transition from growing cells to Ras-induced senescence (RIS) cells was accompanied by a 

progressive increase in the expression of the Notch receptor, with the level of downstream 

Notch signalling depending on the activity of the growth factor-rich, TGFβ secretome or the 

CEBPβ-rich, pro-inflammatory SASP secretome (Hoare et al., 2016a). It was shown that Notch 

relies on TGFβ signalling during the early phase of RIS, transcriptionally suppressing CEBPβ. 

Notch activity was later downregulated at full RIS, with CEBPβ being de-repressed and pro-

inflammatory SASP promoted. Ectopic expression of the Notch1 intracellular domain (N1ICD) 

in the context of RIS led to an upregulation of the Notch1 ligand JAG1 in adjacent cells and 

was found to laterally induce senescence, presenting the evidence for in vitro non-autonomous 

transmission of Notch-induced senescence (NIS) (Hoare et al., 2016a). However, the effects of 
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primary OIS cells (without ectopic activation of Notch) on secondary naïve cells that are not 

under oncogenic stress had not been described before. This chapter focuses on in vitro and in 

vivo experiments that have established Notch-mediated juxtacrine senescence as an essential 

mechanism of secondary senescence in OIS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1: The Canonical Notch Signalling Pathway [Taken from Ito, Hoare, and Narita 2017; licence 

number granted: 4658430825772]. 

Notch signalling is achieved by an interaction between a ‘signal-sending’ cell and a ‘signal-receiving’ cell through 

ligand–receptor binding in a cell–cell contact-dependent manner. Humans have five DSL family ligands, Jagged 

(JAG) 1 and 2, and Delta-like (DLL) 1, 3 and 4, and four single-pass transmembrane-protein receptors (NOTCH 

1, 2, 3, and 4). The Notch receptor undergoes a series of proteolytic cleavage steps when bound to its ligand: the 

receptor ectodomain is then cleaved by metalloproteases of the ADAM/TACE family, followed by a second 

cleavage step by the γ-secretase complex, releasing the Notch intracellular domain (NICD). The NICD can then 

enter the nucleus to bind to the DNA-binding protein RBP-J on chromatin. This binding displaces co-repressors 

from the complex and recruiting transcriptional co-activators, such as MAML1, p300, and others, and allows the 

formation of active transcription complexes on Notch target genes, such as the HES and HEY family of 

transcription factors. Inhibition of Notch signalling is possible by pharmacological or genetic intervention at each 

critical point in the pathway. γ-secretase inhibitors (GSIs) or expression of the dominant-negative form of 

MAML1 (DN-MAML) are examples. 
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4.2 Notch Perturbation Compromised Secondary Senescence    
 

To test if Notch signalling acts as an effector mechanism in secondary senescence, I set 

up co-culture systems between primary OIS cells and secondary Notch-incompetent cells. 

IMR90 fibroblasts with compromised Notch signalling were generated by introducing a 

dominant-negative form of mastermind-like protein 1 fused to mVenus (mVenus:dnMAML1) 

or empty vector (mVenus:EV) control and co-cultured with ER:Ras IMR90 cells in the 

presence of tamoxifen [Figure 4.2A].  

Many pieces of evidence point to a causal involvement of Notch signalling in secondary 

senescence. First, EdU labelling was performed between mVenus:dnMAML1 and mVenus:EV 

cells at days 0 and 7 [Figure 3B]. At day 7, mVenus:dnMAML1 had significantly more EdU 

incorporation compared to mVenus:EV cells (p = 0.01), with day 7 mVenus:dnMAML1 cells 

showing similarly high levels of EdU incorporation as growing mVenus:dnMAML1 and 

growing mVenus negative ER:Ras conditions (p = 0.997 and p = 0.08), suggesting that the 

secondary senescence was not induced as a result of Notch inhibition (Figure 3B). As expected, 

ER:Ras cells showed low levels of EdU incorporation at day 7 tamoxifen (p = 0.01 for 

ER:Ras/mVenus:dnMAML1 co-culture and p = 0.0005 for ER:Ras/mVenus:EV co-

culture; Figure 4.2B). Also, day 7 co-cultured mVenus:dnMAML1 cells exhibited lower 

expression of extracellular matrix gene COL3A1 (p = 0.02) and Notch target CTGF [p = 

0.056; Figure 4.2C] as measured by qPCR, compared to mVenus:EV, confirming Notch 

signalling impairment. 

Second, mVenus (YFP) signal was scored between mVenus:dnMAML1 and 

mVenus:EV cells at day 0 (growing) and day 7 co-culture with ER:Ras. The number of day 7 

mVenus:dnMAML1 cells was significantly more than that of mVenus:EV cells (p = 0.01), 

suggesting that primary OIS cells have reduced secondary senescence effect on neighbouring 

cells when Notch signalling was perturbed [Figure 4.2D]. No significant difference in mVenus-

positive cells was observed in growing mVenus:EV compared to mVenus:dnMAML1 cells 

(p = 0.38), showing that the dnMAML1 itself does not affect cell numbers [Figure 4.2D].  

 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig3/
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Figure 4.2: Notch Perturbation in Co-Culture Systems as Shown by Immunofluorescence.    

(A) Schematic representation of co-cultures with perturbed Notch signalling. We generated IMR90 fibroblasts 

with compromised Notch signalling by introducing a dominant-negative form of mastermind-like protein 1 fused 

to mVenus (mVenus:dnMAML1) or empty vector (mVenus:EV) control and co-cultured with ER:Ras IMR90 

cells in the presence of tamoxifen. 

(B) Bar plot for EdU incorporation in growing (black) or senescent (gray) EV or dnMAML1 cells co-cultured with 

ER:Ras as proportion of all cells scored. Error bars are displayed as SEM; F[7,16] = 20.63, p < 0.001, one-way 

ANOVA with Tukey’s test. (n = 3 per condition). Representative images are shown. 

(C) Bar plot showing the expression of CTGF (n=6) and COL3A1 (n=3) genes in EV or dnMAML1 cells compared 

to ER:Ras senescent cells by qPCR. (COL3A1: t=5.3405, df=2.4861, p=0.02; CTGF: t=2.2104, df=8.4894, 

p=0.056 using unpaired Student’s t- test). Error bars represent SEM. 

(D) Bar plot denoting the proportion of growing (black) or senescent (grey) mVenus cells with dnMAML1 or EV 

as proportion of all cells scored. Error bars are displayed as SEM; F[3,8] = 10.05, p<0.05 using one-way ANOVA 

with Tukey’s test (n=3 for each condition). Representative images of mVenus cells and cells stained with DAPI 

are shown on the right. Scale bar 10μm. 
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4.3 SAHF Formation Was Absent in Secondary Senescence  
 

 Third, SAHF formation in primary OIS and secondary senescence was investigated. 

Primary OIS cells displayed SAHF as expected [p = 4.437 × 10−6; Figure 4.3A]. Secondary 

senescent cells (mVenus:EV) did not show significant SAHF formation when compared to OIS 

[p = 0.32; Figure 4.3A]. Interestingly and consistently, in primary OIS cells, SAHF-negative 

cells exhibited a failure to downregulate COL1A2 and higher levels of Jag1, compared to 

SAHF-positive cells, suggesting that SAHF-positive cells were primary senescent cells while 

SAHF-negative cells were secondary senescent cells.    
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4.4 Notch Perturbation Compromised Transcriptional Signatures of 

NIS  
 

To establish transcriptional differences between secondary senescence with and 

without Notch signalling, scRNA-seq data were obtained from IMR90 mVenus:EV and 

mVenus:dnMAML1 co-cultures with ER:Ras IMR90 at day 7 tamoxifen using the 10X 

protocol. To integrate this dataset with our previous secondary senescence transcriptomes 

[Figure 3.10A], the mVenus:EV and mVenus:dnMAML1 were projected by Scmap (Kiselev 

et al., 2018). Scmap clearly matched all primary senescent cells containing RasV12 to the OIS 

population [Figure 4.4A) and identified significantly more secondary senescence cells in 

mVenus:EV compared to mVenus:dnMaml1 [Figure 4.4A; 37% versus 24%, chi-square test, 

p = 0.00062], confirming a role of Notch in secondary senescence.  

Figure 4.3: SAHF Formation and Immunofluorescence of Fibrillar Collagens in Co-Culture Systems.    

(A) SAHF counts in OIS and secondary senescent (unpaired Student’s t-test, ER:Ras t=-34.05, df=2.12, ** 

p<0.01; mVenus:EV t=-1.23, df=2.28, p=0.32; n=3 for each condition). Representative images are shown on the 

right. 

(B) Bar plot showing the expression of COL1A2 and Jag1 genes in primary OIS cells by immunofluorescence 

(unpaired Student’s t-test; ** p<0.01). Error bars represent SEM. Representative images are shown on the right. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib23
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib23
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig3/
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Figure 4.4: Integrated Analysis of Co-Culture Data.    

This 10X dataset were combined with the previous secondary senescence transcriptomes. We then projected the 

mVenus:EV and mVenus:dnMAML1 using Scmap (Kiselev et al., 2018).  

(A)  Scmap cluster projection of the dnMAML1 and EV 10× scRNA-seq dataset to the GFP co-culture 10× 

scRNA-seq dataset (see 3.10A). Scmap clearly matches all primary senescent cells containing RasV12 to the OIS 

population and identifies significantly more secondary senescence cells in mVenus:EV compared to 

mVenus:dnMaml1. 

(B) tSNE plot of single cells coloured by the projection toward the GFP co-culture 10X dataset (see Figure 3.10A). 

Pie charts show percentage of cells. 

 

To explore transcriptomic differences between secondary senescence, all cells were 

plotted by Seurat, which separated mVenus:EV and mVenus:dnMAML1 into distinct 

secondary senescence clusters [Figure 4.4B].  

Differences in the activation of Notch pathway between mVenus:EV and 

mVenus:dnMaml1 were confirmed by GSEA analysis [Figure 4.5A; NES = −1.35] and on the 

gene level for fibrillar collagens [Figure 4.5B; p < 0.05]. GSEA analyses also showed that 

Notch signalling weakened the cytokine response in senescence as mVenus:EV and 

mVenus:dnMaml1 had a differential regulation of SASP factors (Figure 4.5C; NES = 1.1) and 

the interferon-gamma response [Figure 4.5E; NES = 1.48]. Importantly, mVenus:dnMaml1 

showed an upregulation of E2F targets, whose downregulation is one of the hallmarks of 

A B 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib23
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#mmc1
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senescence, compared to mVenus:EV [Figure 4.5D; p = not significant (n.s.)] (Narita et al., 

2003), which explains why the strong phenotype differences were observed between the two 

conditions [see Figure 4.2B]. 
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib31
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib31
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig3/
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4.5 Notch Acts in a Juxtacrine Manner to Induce Secondary 

Senescence  
 

It is well established that Notch induces senescence in a juxtacrine manner through cell-

to-cell contact. To verify the effect of cell-to-cell contact on the secondary senescence 

transcriptome, transwell experiments were set up. ER:Ras cells were co-cultured with GFP 

cells (GFP contact; Figure 4.6A) and GFP cells on their own in the transwell of the same well 

(GFP no contact). In this setting, GFP no contact cells shared media with ER:Ras cells, where 

cytokines could be transferred without cell-to-cell contact. Bulk RNA-seq of GFP contact and 

no contact cells were performed 7 days after tamoxifen induction and confirmed enhanced 

expression of previously observed marker genes for NIS secondary senescence in GFP contact 

cells [Figure 4.6B].  

In addition, enrichment of Notch (NES = 1.59, FDR q = 0.019) and TGFB (NES = 1.87, 

FDR q = 0.0016) signalling [Figures 4.6C and 4.6D] was confirmed in GFP contact cells, as 

judged by GSEA. Equally, GSEA confirmed repression of E2F target genes in GFP contact 

compared to GFP no contact fibroblasts [Figure 4.6E] except for E2F7, whose upregulation is 

known in senescence [Figure 4.6B] (Aksoy et al., 2012). GSEA analysis suggests that the 

global differences between GFP contact and no contact cells bore a close resemblance to the 

differences between mVenus:EV and mVenus:dnMaml1 secondary senescence [Figure 4.6F]. 

Pathway analysis also indicated significant upregulation of previously described senescence 

Figure 4.5: Enrichment of Notch in Secondary Senescence mVenus:Ev.    

The differences in the activation of Notch pathway between mVenus:EV and mVenus:dnMaml1 were  

confirmed by GSEA analysis. 

(A)  GSEA pre-ranked test for enrichment of Notch signaling in mVenus:EV identified as secondary senescence 

by scmap. 

(B) Heatmap of single-cell data comparing mVenus:EV and mVenus:dnMAML1 for collagens and SASP genes. 

Red, upregulated and blue, downregulated. 

(C) GSEA pre-ranked test for enrichment of SASP genes in mVenus:dnMAML1 identified as secondary 

senescence by scmap. 

(D) GSEA pre-ranked test for enrichment of E2F targets in mVenus:dnMAML1 identified as secondary 

senescence by scmap. 

(E) GSEA pre-ranked test for enrichment of interferon gamma response in mVenus:dnMAML1 identified as 

secondary senescence by scmap. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#mmc1
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pathways, such as “Senescence and Autophagy in Cancer” and “Matrix Metalloproteases” in 

GFP contact compared to GFP no contact cells [Figure 4.6G]. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig3/


69 
 

 
A B 

C D

A 

E F

 

G 



70 
 

 

4.6 Transition to Secondary Senescence Was Notch-Dependent 

 

OIS induction is a multi-step process with an early proliferative phase at days 1–3, 

followed by a phenotype transition phase at days 3–5, and established senescence from day 7 

after RasV12 expression (Young et al., 2009). To compare the impact of the different phases 

of primary OIS onto secondary senescence, mVenus:EV or mVenus:dnMAML1 cells were co-

cultured repeatedly with ER:Ras cells at days 3–6 or at days 7–10 after RasV12 induction 

[Figure 4.7A].  

As expected, ER:Ras cells showed low levels of EdU incorporation in 

mVenus:dnMAML1 (day 7, p = 0.01) or mVenus:EV co-culture (day 7, p < 0.001) [Figures 

4.7B-4.7C] as a result of primary OIS. Co-culturing mVenus:EV with ER:Ras cells in the 

phenotype transition phase (days 3–5 after RasV12 induction) caused a significant decrease in 

EdU incorporation when compared to uninduced co-cultures (p < 0.001; Figure 4.7B), 

suggesting that secondary senescence induction requires transition-phase primary OIS cells. 

The transition-phase effect also required Notch because it could not be induced in 

mVenus:dnMAML1 cells (p = 0.12; Figure 4.7C).  

Figure 4.6: Transwell Experiments.    

To verify the effect of cell-to-cell contact on the secondary senescence transcriptome, transwell experiments were set up.  

(A)  Schematic representation of transwell co-culture assay of OIS and GFP cells. ER:Ras cells wer co-cultured with GFP 

cells and GFP cells on their own in the transwell of the same well (GFP no contact). In this setting, GFP no contact cells 

shared media with ER:Ras cells, where cytokines can be transferred but no cell-to-cell contact is possible. 

(B) Heatmap of significantly differentially expressed genes (p < 0.05) between GFP contact and GFP no contact cells. We 

performed bulk RNA-seq of GFP contact and no contact cells 7 days after tamoxifen induction and confirmed enhanced 

expression of previously observed marker genes for NIS secondary senescence in GFP contact cells.  

(C) GSEA pre-ranked analysis for enrichment of Notch signalling in GFP contact cells compared to GFP no contact cells. 

(D) GSEA pre-ranked test for enrichment of TGF-beta signalling in GFP contact compared to GFP no contact cells. 

mVenus:dnMAML1 identified as secondary senescence by scmap. 

(E)  GSEA pre-ranked analysis for enrichment of E2F targets in GFP no contact compared to GFP contact cells. Leading 

edge genes are indicated. 

(F) GSEA pre-ranked test for enrichment of mVenus:EV signature genes in GFP contact/GFP no contact upregulated gene 

set. 

(G) Pathway analysis for DE genes between GFP contact/GFP no contact (p < 0.05).  

Overall, GSEA analysis confirmed the enrichment of Notch in the GFP contact cells compared to the GFP no contact.  

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib48
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#mmc1
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In contrast, the co-culture between mVenus:EV cells and primary OIS cells in 

established senescence phase (days 7–10 after RasV12 induction) did not lead to a reduction 

in EdU incorporation in mVenus:EV cells compared to uninduced co-cultures (p = 

0.59; Figure 4.7B), mirroring results obtained in mVenus:dnMAML1 co-cultures (p = 

0.99; Figure 4.7C). From day 4 co-culture, there was a significant upregulation of Notch1 on 

the cell surface of mVenus:EV (p = 0.041 day 4, p = 0.038 day 7; data not shown) and 

mVenus:dnMaml1 (p = 0.023 day 4, p = 0.046 day 7; data not shown) cells compared to 

growing, providing a pathway to NIS induction [Figure 4.7D]. Overall, the data identified 

Notch as a key mediator of secondary senescence. 

 

 

 

 

 

 

Figure 4.7: Dynamic Co-cultured Experiments.    

(A)  Schematic representation of co- culturing mVenus cells with Day 3 or Day 7 OIS cells. To compare the impact 

of the different phases of primary OIS onto secondary senescence, we co-cultured mVenus:EV or 

mVenus:dnMAML1 cells repeatedly with ER:Ras cells at days 3–6 or at days 7–10 after RasV12 induction.  

(B) Bar plot showing EdU incorporation in OIS or mVenus:EV cells in growing (black), co- culture with Day 3 OIS 

(grey) or Day 7 OIS cells (blue). Error bars are displayed as SEM; F[5,18] = 144.4, p<0.001 using one-way ANOVA 

with Tukey’s test (n=3 for each except for Day 3 OIS (n=6)). Representative images are shown below the bar plot. 

Scale bar 10μm. 

(C) Bar plot showing EdU incorporation in OIS or mVenus:dnMAML1 cells in growing (black), coculture with Day 

3 OIS (grey) or Day 7 OIS cells (blue). Error bars are displayed as SEM. F[5,24] = 58, p<0.001 using one-way 

ANOVA with Tukey’s test (n=3 for all conditions except for Day3 OIS (n=6)). **p<0.001, *p<0.05. Representative 

images are shown on the right of the bar plot. Scale bar 10μm. 

(D) Barplot showing the upregulation of NOTCH1 on the cell surface of mVenus:EV and mVenus:dnMAML1 cells 

4 days after co-culture with ER:Ras compared to nonco-cultured, growing mVenus:EV (mVenus:EV t = -3.27, df = 

2.01, p-value = 0.041; mVenus:dnMAML1 t = -3.29, df =3.03, p-value = 0.023 using one-sided t- test). Error bars 

represent SEM. Representative FACs plots showing NOTCH1 staining of YFP uninduced fibroblasts and YFP:EV 

and YFP:dnMaml1 at 4 days of co-culture. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#mmc1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#mmc1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#mmc1
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4.7 In Vivo Model of Primary and Secondary Senescence Was 

Generated in Hepatocytes 

 

To test the involvement of NIS in vivo, a model where primary senescence is induced 

in a subpopulation of hepatocytes following Mdm2 deletion was generated in the Bird lab, 

Glasgow (Bird et al., 2018). The activation of this model by hepatocyte-targeted recombination 

of Mdm2 (β-napthoflavone [βNF] induction AhCre, Mdm2−) resulted in primary senescence 

in Mdm2− cells. Crucially, Mdm2− hepatocytes induced secondary senescence in neighbouring 

hepatocytes (Bird et al., 2018) [Figure 4.8A]. In this model, the presence of p53 induction 

through Mdm2deletion with medium levels of CDKN1A (non-senescence/primary p < 0.001) 

marks primary senescence induction (Bird et al., 2018) [Figure 4.8B; Figures 4.8C-4.8D]. 

Physiological levels of P53 and high levels of CDKN1A (CDKN1A expression 

secondary/primary p < 0.0001) marks secondary senescence in Mdm2normal (Mdm2+) 

hepatocytes as described (Bird et al., 2018) [Figure 4.8B]. Based on these characteristics, cells 

can be readily distinguished by immunohistochemistry with 23% of primary and 10% of 

secondary senescence hepatocytes detected [Figure 4.8C]. We have previously shown that both 

subpopulations of hepatocytes upregulate senescence markers (gH2AX, Il1A, SA-Beta Gal) 

and reduce BrdU incorporation (Bird et al., 2018

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#mmc1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib7
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Figure 4.8: In Vivo Model for Primary and Secondary Senescence.    

(A)  Schematic representation of in vivo single-cell experiment. 

(B) Representative immunofluorescence images of liver section from 

induced AhCre+Mdm2fl/fl and control AhCreWTMdm2fl/fl mice 

stained for p53 and CDKN1A. Intrinsically induced senescence 

(arrowhead) and secondary senescence (arrow) are indicated. Boxplot 

for CDKN1A intensity in primary versus secondary senescent cells. 

(senescence: F[1,50291] = 2766, p < 0.0001; biological replicates: 

F[2,50291] = 283.2, p < 0.0001; senescence × biological replicates: 

F[2,50291] = 280.5, p < 0.0001, two-way ANOVA). Scale bar, 22 μm. 

(C) Bar graph denoting the percentage of primary and secondary 

hepatocytes (Primary: t=2.4241, df=2.0641, p-value = 0.1324; 

Secondary: t=7.7563, df=2.0053, p=0.0161 using unpaired Student’s t-

test). 

(D) Histogram with the number of induced and control cells is plotted 

against log mapped reads. 75 single cells with at least 50,000 aligned 

reads are downsampled to 50,000 reads. 
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4.8 NIS Signatures Characterised Secondary Senescent Hepatocytes  
 

To investigate if primary and secondary senescence transcriptomes were 

distinct in vivo, scRNA-seq was performed on hepatocytes using the Smart-Seq2 protocol 

[Figure 4.8A]. 39 single cells from induced Mdm2-deleted mouse liver passed the filtering 

criteria for downstream analysis [Figures 4.9A and 4.9B; Table S2]. Mdm2− cells were 

distinguished from Mdm2+ hepatocytes by the absence of mapping reads over exon 5 and 6 of 

the Mdm2 gene [Figure 4.9B]. Both senescent populations expressed Cdkn1a consistently with 

the differences in CDKN1A protein levels as shown by immunohistochemistry [Figure 4.8B], 

with lower (but not significant) Cdkn1a expression in Mdm2−compared to Mdm2+ 

hepatocytes [Figure 4.9C], enabling primary and secondary senescence to be distinguished.  

To verify a senescence phenotype in both Mdm2− and Mdm2+ hepatocyte populations, 

pathway analysis was conducted, showing upregulated pathways being enriched in p53 

signalling, including CDKN1A, DNA damage response, and cytokine signalling [Figure 4.9D]. 

To determine if NIS plays a role in secondary senescence in vivo, the single-cell data were 

analysed by using three independent methods. Single-cell differential expression (SCDE) 

identified differentially expressed genes between Mdm2+ and Mdm2− cells [Table S3], and 

genes were ranked between Mdm2+/Mdm2− cells for downstream analysis. First, pathway 

analysis demonstrated enrichment in Notch signalling (ratio of enrichment [RE], 7.07), Delta-

Notch signalling (RE, 4.63), and TGFB (RE, 4.11) signalling pathways [Figure 4.9E].  

Second, GSEA ranked the Notch signalling pathway (NES = 1.07) as one of the top 20 

Kegg pathways enriched in Mdm2+/Mdm2− [Figure 4.9F] with leading-edge 

genes Maml1 and Jag2 found specifically in Mdm2+ cells [Fisher’s exact-test = 

6.93 × 10−7; Figure 4.9G]. Regardless of Mdm2 status, the majority of cells expressed the same 

level of housekeeping and hepatocyte-specific genes [Figure 4.9G]

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#mmc1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#mmc2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#mmc1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#mmc1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#mmc1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#mmc3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig4/


76 
 

A B C 

D E F 

G 



77 
 

 

 

 

Third, SCDE analysis confirmed that Notch and TGFB 

targets Maml1 (adjusted Z score [aZ] = 0.4) and Rfng (aZ = 0.39) with effector 

protein Smad3 (aZ = 0.26) were specifically upregulated in Mdm2+ compared 

to Mdm2−hepatocytes (Figure 4.10A). To assess the proposed TGFB and CEBPB bias 

between primary and secondary senescence in vivo, liver samples from uninduced and induced 

mice were stained for CDKN1A and CEBPB by immunohistochemistry. Consistent with the 

previous in vitro data, higher CEBPB protein was significantly expressed in primary (p < 

0.0001; Figure 4.10B] compared to secondary senescent hepatocytes. These lines of evidence 

from hepatocytes show that NIS signature characterises secondary senescent in vivo. 

 

 

 

 

 

 

Figure 4.9: Single-Cell In Vivo Data Analysis.    

ScRNA-seq was performed on hepatocytes using Smart-Seq2. After filtering, we retained 39 single cells from 

induced Mdm2-deleted mouse liver for downstream analysis.  

(A)  Dot plot with the number of genes with at least one read to total gene count for induced (black) and control (grey) 

cells. Cells with a total gene count of more than 20,000 and 500 genes detected were retained.  

(B) 17 Mdm2- cells were identified as cells with no reads mapping to exon5/6 of Mdm2 gene and 22 Mdm2+ cells 

contained reads mapping to the exons.  

(C) Box plots showing the expression of Cdkn1a in induced cells relative to control (p=4.46x10-18). The top and bottom 

bounds of the boxplot correspond to the 75 and 25th percentile, respectively. p-values were obtained using differential 

analysis in SCDE. 

(D) Pathway analysis for induced/uninduced hepatocytes. Kegg pathways are shown in turquoise and Wikipathways in 

blue.  

(E) Pathway analysis for Mdm2+ (secondary) genes. GSEA revealed Notch signaling pathway (NES = 1.07) as one of the 

top 20 Kegg pathways enriched in Mdm2+/Mdm2−. 

(F) GSEA for Mdm2+/Mdm2− cells (NES = 1.07). Leading edge genes are indicated. 

(G) Heatmap for Notch pathway, hepatocyte markers, and Cdkn1a genes in Mdm2+ and Mdm2− cells. Constitutive genes 

and Cdkn1a were coloured by their expression relative levels (binary: red expressed, white not expressed). 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/figure/fig4/
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Figure 4.9: In Vivo Enrichment in Notch Signatures.    

Differentially expressed genes between Mdm2+ and Mdm2− cells were identified using single cell differential 

expression (SCDE). 

(A)  SCDE for Maml1, Rfng, and Smad3 in Mdm2+ cells (orange lines) and Mdm2− cells (blue lines). Joint 

posterior is marked by black line. Fold change of the genes in Mdm2+/Mdm2− is indicated in red, and dotted 

lines mark the 95% confidence interval. MLE, maximum likelihood estimation; CI, confidence interval; 

Z, Zscore. SCDE analysis confirmed the specific upregulation of Notch and TGFB 

targets Maml1 (adjusted Z score [aZ] = 0.4) and Rfng (aZ = 0.39) with effector protein Smad3 (aZ = 0.26) 

in Mdm2+ compared to Mdm2− hepatocytes. 

(B) Representative immunofluorescence images of liver section from induced and control mice. Primary 

senescent cells (arrowheads) and secondary senescent cells (arrows) are indicated (CDKN1A: F[1,60145] = 

353.3, p < 0.0001; biological replicates: F[2,60145] = 1044, p < 0.0001; CDKN1A × biological replicates: 

F[2,60145] = 8.96, p < 0.0001, two-way ANOVA). Scale bar, 22 μm. 
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4.9 Discussion 

 

The understanding of tumour heterogeneity has greatly advanced, but it remains why 

cancer cells exhibit cellular heterogeneity in a pre-cancerous state. Do cells equally respond to 

the same oncogenic cue or does oncogenic activation lead to a heterogeneous population? 

Gaining insight into the heterogeneity in a pre-cancerous state will inform distinct propensities 

for transformation in subpopulations. Similarly, senescence can be induced by various stressors 

to overwrite the current transcriptional state that cells are in, but to what level does the pre-

senescent state of these cells reflect the outcome of a senescence stimulus, particularly an 

oncogenic insult? These questions highlight the importance of understanding cellular 

heterogeneity in cellular senescence. 

Using single-cell approaches, my research studies have uncovered heterogeneity in 

primary OIS and secondary senescence transcriptomes following oncogenic activation. The 

two transcriptional endpoints for primary OIS, namely a Ras-driven and a NIS programme, 

have been identified from single-cell experiments. The establishment of paracrine senescence 

via SASP is believed to be the main mechanism for secondary induction of senescence in OIS 

(Acosta et al., 2013, Kuilman et al., 2008). The results shown in this chapter, as well as in the 

previous chapter, challenge this canonical view and implicate NIS as a synergistic driver of 

secondary senescence in vitro, in the most studied OIS background (RasV12) and in the 

liver in vivo. 

Primary and secondary senescent cells had never been viewed as functionally distinct 

end stages in OIS. Here, I have provided strong evidence that primary OIS and secondary 

senescence are functionally different, utilising the system that expressed dominant-negative 

form of the mastermind-like 1 protein by which Notch-mediated transcriptional activation was 

inhibited. Relatively little is known about the role of MAML coactivators in OIS apart from its 

importance as a central regulator in Notch signalling whose deregulation was found in several 

types of cancer such as human lymphomas (Köchert et al., 2011). The involvement of MAML 

coactivators in the complex signalling networks of cellular senescence remains to be unveiled.  

Overall, the data indicate cells carrying a composite transcriptional signature of 

paracrine and juxtacrine events as a facultative endpoint for cells with detectable Ras activation 

(primary). Notch signalling has been found to be the mediator of the secondary senescence 

endpoint through cell-to-cell contact (juxtacrine), which is consistent with the model of a 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib24
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transient state towards primary senescence induction (Hoare et al., 2016). These results also 

highlight a need for primary Ras fibroblasts to be in the transition phase phenotype to mediate 

secondary senescence by Notch. 

 Looking beyond the fact that Notch is the main mediator of secondary senescence, I 

also reported an interesting pattern of SAHF suppression in secondary senescent populations, 

which is in agreement with an earlier report where impaired Notch signalling partially 

suppressed SAHF formation in primary senescence (Parry et al., 2018). The co-occurrence 

between SAHF-negative phenotype and secondary senescence has far-reaching consequences 

in the field of senescence biology. It offers a possible explanation for a long-standing question 

in the field since 2003 when SAHF was discovered: what is the difference between SAHF-

positive and SAHF-negative senescent cells? A simple answer would be primary OIS cells are 

SAHF-positive, while secondary senescent cells are SAHF-negative.      

It is clear that primary senescence and Notch-mediated juxtacrine senescence possess 

distinct gene expression profiles and potentially different transformation potentials (Acosta et 

al., 2013, Hoare et al., 2016). Interestingly, as can be seen from the gene set enrichment 

analysis of secondary senescence clusters, components of Wnt signalling were also identified 

as leading genes (Wnt5A and Fzd1). It is well established that overactivation of canonical Wnt 

signalling promotes cancer while OIS acts to suppress it. Available evidence suggests that the 

onset of primary OIS requires Wnt suppression and activation of Wnt delays primary OIS 

(Adams and Enders 2008). Further work is needed to understand why a relative de-repression 

of Wnt signalling took place during Notch-enriched secondary senescence compared to 

primary senescence. Some of the findings also indicate a functional diversification; for 

instance, secondary senescence showed the blunted SASP response and the induction of 

fibrillar collagens compared to OIS. The transformation potential of these heterogeneous 

populations, however, is an area that still needs to be explored further.  

Finally, given the nascent stage of research on secondary senescence, the biological 

significance of this juxtacrine mechanism is yet to be revealed. An unpublished result obtained 

from the scRNA-seq experiment of OIS cells discussed in Chapter 3 appears to provide a clue 

to the link between the biological meaning of senescence and its mechanism. The Notch ligand 

JAG1 was upregulated specifically in primary senescence cells [Figures 4.11A-B]. This could 

deliver an explanation as to why the secondary spread of senescent cells can be contained 

locally, as opposed to the senescence process expanding endlessly once established. Secondary 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib34
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486482/#bib16
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senescent cells, which express low levels of the ligand JAG1, will not be able to induce further 

senescence responses [Figure 4.11C]. Such a local containment might be beneficial for the 

clearance of unwanted senescent cells by the immune system.              

 

 

Figure 4.11: Single-cell Time Course Analysis of OIS cells and a Proposed Model for the Role of Secondary NIS.    

(A)  Monocle2 plot for the time-course experiment shows the presence or absence of the mutated RAS gene as indicated.  

(B) Monocle2 plot for the time-course experiment shows the FPKM values of JAG1 expression. 

The data indicate cells carrying a composite transcriptional signature of paracrine and juxtacrine events as a facultative endpoint 

for cells with detectable Ras activation (primary).  

(C) Schematic representation of how secondary senescence is locally contained.  Since the Notch ligand JAG1 was upregulated 

specifically in primary senescence cells, this could explain why the secondary spread of senescent cells can be contained locally, 

as opposed to the senescence process expanding endlessly once established. Secondary senescent cells, which express low levels 

of the ligand JAG1, will not be able to induce further senescence responses. Such a local containment might be beneficial for the 

clearance of unwanted senescent cells by the immune system.              
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4.10 Summary 

 

By establishing a co-culture system in which Notch signalling could be interrupted and 

from which single-cell data were obtained, it was confirmed that secondary senescence requires 

Notch signalling in vitro. The in vivo hepatocyte model also recapitulated the induction of 

secondary senescence that was characterised by Notch-induced senescence signatures. In 

summary, Notch signalling has been identified as a main effector of secondary senescence.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



84 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



85 
 

5 Chapter 5: Single-Cell Transcriptomics of Hutchinson-

Gilford progeria syndrome (HGPS) 

 

5.1 Introduction  
 

Attempts in ageing research have been directed to studies in model organisms from the 

yeast to the mouse. Hutchinson-Gilford progeria syndrome (HGPS), a group of sporadic, rare, 

autosomal dominant genetic diseases characterised by clinical features of premature ageing, 

allows researchers to explore the molecular events that explain accelerated age-related 

phenotypes (Sinha, Ghosh, and Raghunath 2014). The identification of LMNA as the target 

gene for mutations causing structural abnormalities in the nucleus and characteristics of 

premature ageing has led to the generation of hypotheses of the mechanism that drives the 

ageing process. 

Several ageing models have revolved around the hypothesis that stem cell exhaustion 

is responsible for ageing-related dysfunction [Figure 5.1]. A substantial amount of evidence in 

haematopoietic stem cells shows that a decline in stem cell function and self-renewal capacity 

causes tissue degeneration and ageing phenotype (Rossi et al. 2007; Oh, Lee, and Wagers 

2014). Progressive impairment of stem cell functionality with age may arise because of the 

exposure to intrinsic/extrinsic stress over a lifetime, but the mechanism behind this is still being 

unravelled (Pazhanisamy 2009). Alternatively, we could interpret ageing as a result of a ‘toxic 

environment’ created from damaged or defected cells, which then toxically impact on 

neighbouring cells and tissues. Studies that lend support to this model reported that removal of 

senescent cells from mouse tissues can delay the onset of age-associated disorders in adipose 

tissue, skeletal muscle and eye, as well as extend their healthy lifespan (Baker et al., 2011). 

Given that persistent secretion of inflammatory cytokines and other systemic factors during 

chronic senescence can favour both degenerative and hyperplastic pathologies (Campisi 2013), 

it is plausible that accumulation of senescent cells might systematically promote an ageing 

environment and therefore the ensuing loss of cellular function.   

This chapter focuses on the second project, which explored single-cell heterogeneity in 

progeria cells, specifically the proportion of progeria cells that were compromised 

phenotypically and transcriptionally. Although much research has been conducted on the 

cellular features of progeria cells, characterising them at the single-cell level is a challenging 
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task. The first phase of this project addressed the question of how many cells are affected by 

the progeria condition through cellular phenotyping of progeria nuclei. I began the study by 

performing immunofluorescence labelling of lamin B1 in Zmpste24-/- and wild-type cells. B-

type lamins are involved in the regulation of organogenesis as well as the organisation of the 

nuclear lamina (Dreesen et al., 2013). Lamin B1 co-localises with prelamin A in Zmpste24-/- 

mice (Pendás et al., 2002) and low levels of lamin B1 have been reported in HGPS and 

senescent fibroblasts (Scaffidi and Misteli 2008; Taimen et al., 2009), but the causal 

relationship between lamin B1 levels and progeria condition remains to be established. 

Through the quantification of lamin B1, I hope to understand the extent of cellular 

heterogeneity in progeria cells.      

The second part of the work exploited a state-of-the-art single-cell technology, the 10X 

Genomics platform, to characterise the transcriptome of individual progeria cells and variation 

in gene expression within the progeria population. A great amount of computational resources 

required for analysing the single-cell data were obtained from Jeanette Baran-Gale, who 

developed the upstream bioinformatics pipeline for scRNA-seq quality control and profiling 

and guided me through subsequent downstream processing of the data. By combining the 

morphological profiles with the transcriptional profiles, I hoped to gain insight into the disease 

state of progeria and improve our understanding of the ageing process.   
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Figure 5.1: Schematic Diagram of the Toxic Ageing Model. 

An attractive interpretation of ageing is that cells age as a result of a ‘toxic environment’ created from damaged 

or defected cells, which then toxically impact on their healthy and normal neighbouring cells and tissues. 
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5.2 Progeria Cells Showed Senescent Markers   
 

 To understand the heterogeneity of premature ageing, I started to explore cellular 

phenotypes of progeria cells obtained from Zmpste24-deficient (Zmpste24-/-) mice, commonly 

used as a model system to study progeroid diseases. I examined whether these knock-out (KO) 

cells exhibited early signs of senescence. As expected, the KO progeria cells senesced 

prematurely compared to the control cells as revealed by the senescence-associated β-

galactosidase assay [Figure 5.2]. While no observable control cells (0%, n = 200) were stained 

positively for β-galactosidase activity at passage 6, approximately 48% (n = 200) of KO 

progeria cells were positive at passage 6 [Figure 5.2]. The results concur with previous findings 

in Zmpste24-/- mice [Varela, 2005].  
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Since cellular senescence refers to the irreversible growth arrest of cells, I measured the 

proliferative ability of progeria fibroblasts and their WT counterparts. Cells were cultured at 

low oxygen levels (3%) and passaged successively until they stopped dividing. WT cells 

exhibited a sustained growth rate throughout the duration of 30 days before reaching a growth 

plateau after 20-21 population doublings (PDs) [Figure 5.3]. KO progeria cells, on the other 

hand, showed a marked decrease in their proliferative capacity, entering growth arrest after 8-

9 PDs, indicating early senescence. This is in agreement with the previous publication and 

confirms the characteristics of progeria cells, which include reduced proliferation and the 

expression of markers for cellular senescence.  
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Figure 5.2: SA-Beta Gal Counts for Progeria Cells. 

Cells were stained for the presence of SA-β-gal as described in the methodology. The number of SA-β-

gal-positive cells was counted for each condition. H-RasV12 cells undergoing full senescence at day 7were 

used as a positive control. The experimental conditions were normal adult wild-type (WT) fibroblasts at 

passage 6, and progeria fibroblasts (Zmpste24-/-) at passage 6. Representative images are shown at the 

bottom. Error bars are ± SEM, n=300 for each experimental condition, and *** P < 0.001 vs WT control. 

Scale bar 100μm. 
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As it has been well established that Zmpste24-/- nuclei contain blebs, described as 

nuclear envelop invagination and lobulation [Pendas, 2002], I next explored whether the 

majority of progeria cells here correspondingly showed structural abnormalities when subject 

to microscopic scrutiny. Interestingly, immunofluorescence analysis of Zmpste24-/- cells 

revealed only a very small percentage (2%) of progeria cells affected by the blebbing 

phenotype [Figures 5.4A-B]. Without being invaginated or lobulated, approximately 98% of 

Zmpste24-/- nuclei appeared to have normal nuclear membranes, suggesting that not all progeria 

cells are phenotypically abnormal.  
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Figure 5.3: Population Doubling Assay of WT and Progeria Cells. 

Cell proliferation was estimated by the population doubling assay. Cells were serially passaged in a 6-well 

plate at a seeding density of 2x104 cells per well every 3 days until they stopped expanding. The counting of 

the total number of cells was determined by the Coulter counter at the end of each passage (n = 3 for each 

passage and conducted in one replicate). 
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5.3 Not All Progeria Cells Were Phenotypically Abnormal   
 

The fact that not all progeria cells showed the gross morphology of blebs prompted me 

to investigate the nuclear lamina in Zmpste24-/-fibroblasts by carrying out immunostaining of 

lamin B1, a major structural component of the nuclear envelope. Previous work in Zmpste24-/- 

fibroblasts did not find any difference in lamin B1 when compared with WT fibroblasts (Pendás 

et al., 2002). Strikingly, I found a redistribution of lamin B1 in Zmpste24-/- cells, accompanied 

by a loss of peripheral lamin B1 [Figures 5.5A-G].  
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Figure 5.4: Characterisation of Progeria Blebbing. 

 Representative immunofluorescence image of a grossly abnormal nucleus. Nuclei were visualized with 

DAPI (blue). Yellow arrows indicate the blebbing feature. Objective magnification, 60x.  DAPI-stained 

nuclei were categorised as bleb-positive or -negative, based on the characteristic nuclear lobulation 

observed in progeria cells. Percentages of bleb-positive cells are shown (n = 300, p > 0.05).  
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Figure 5.5: Quantifications of LaminB1.  

(A) Illustration of a concentric ring Macro. The nuclear peripheral lamin B1 fluorescent intensity was quantified semi-

automatically by calculating the intensity of lamin B1 in 5 areas. Creation of the Macro software is based on the erosion 

morphological operator working on a binary mask of the segmented nucleus whose area is known.  

(B) Bar charts of averaged raw intensity of lamin B1 across 5 concentric rings (n = 200; error bars are ± SEM). 

(C) Histogram of raw lamin B1 intensity in the WT and progeria conditions (n = 200).  

(D) Histogram of the log-transformed raw lamin B1 intensity in the WT and progeria conditions (n = 200).  

(E) Separate histogram of ratio of lamin B1 intensity in ring 1 over ring 4 in the WT and progeria conditions (n = 200).  

(F) Histogram for Gaussian mixture model test on the log-transformed raw lamin B1 intensity in the WT and progeria 

conditions. Variance = 0.045 and 0.062 (n = 200). 

(G) Histogram for Gaussian mixture model test on the ratio of raw lamin B1 intensity in ring 1 over ring 4 the WT and 

progeria conditions. Variance = 0.124 and 0.112 (n = 200). 

Overall, the histograms show the probability that a cell of a particular phenotype would belong to one or another region. 

The results suggest that up to 50% of progeria nuclei had normal lamin B1 expression and behaved like WT nuclei did. 
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To verify such a difference in lamin B1 localisation pattern between WT and progeria 

nuclei, the lamin B1 fluorescent intensity in both conditions was measured. Using the Macro 

script to capture lamin B1 signals in 5 concentric rings, I found that the intensity of lamin B1 

in progeria cells was significantly lower (P <0.001) than that of control cells across all 

concentric rings [Figure 5.5B]. To further quantify the proportion of progeria cells that showed 

a reduction in lamin B1 levels and those that did not, the Gaussian mixture model was adopted 

to create two regions of lamin B1 intensity, one for WT, another for progeria cells, based on 

the log values of averaged raw lamin B1 intensity [Figures 5.5F-G]. In this way, the probability 

that each intensity value would be characterised as WT-like or progeria-like could be calculated 

using the weighted sum model. I found that 78% of WT cells had normal lamin B1 levels as 

WT cells would have, whereas 56% of KO cells showed reduced lamin B1 levels as expected 

from progeria cells [Figure 5.5F]. The remaining percentages (22% WT and 44% progeria) of 

cells were estimated to belong to each other’s opposite conditions. The ratio of lamin B1 

intensity in ring 1 to the intensity in ring 4 was also calculated and the Gaussian mixture model 

applied. Compared with the WT condition, progeria cells showed a shift in the intensity ratio 

of ring 1 to ring 4 towards 1.0, demonstrating a reduction in lamin B1 distribution in the nuclear 

lamina [Figure 5.5G].  Similarly, 75% of WT cells and 49% of progeria cells were classified 

as WT-like, and 25% of WT and 51 progeria as progeria-like. Overall, the results suggest that 

up to 50% of progeria nuclei had normal lamin B1 expression and behaved like WT nuclei did.  
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Finally, since progeria cells exhibited increased DNA damage and DNA repair defects 

(Liu et al., 2005), I analysed immunofluorescent images of yH2AX staining, a common proxy 

for double-strand break-induced DNA damage [Figure 5.6A]. As expected, only 15% of WT 

cells were yH2AX-positive compared to 59% in progeria cells [Figure 5.6B]. The 

quantification of all the morphological features, which reflect a heterogeneous distribution, is 

summarised in Table 5.1.     
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Figure 5.6: Immunofluorescence Staining of LaminB1 and yH2AX. 

HGPS cells on coverslips were fixed and visualised using the immunohistochemistry protocol as described in the 

methodology.  

(A) Representative immunofluorescent images of WT and KO (Zmpste24-/-) fibroblasts at passage 6 with DAPI and anti-

γH2AX Phospho (Ser139). Objective magnification, 60x (n = 300).  

(B) Bar graphs denote the proportion of yH2AX-positive cells, as measured by the presence of at least 3 foci (n = 300; 

*** p < 0.001). Error bars represent SEM.  
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Phenotype %WT %KO 

B-Galactosidase 0 (n = 300) 48 ± 3.5 (n = 300) 

Blebs 2 ± 1.1 (n = 300) 3 ± 1.0 (n = 300) 

Loss of Lamin B1 Intensity 22* ± 3.5 (n = 200) 56* ± 4.3 (n = 200) 

Reversal of Lamin B1 

Distribution 

25* ± 3.2 (n = 200) 51* ± 2.6 (n = 200) 

yH2AX 15* ± 5.4 (n = 300) 59* ± 10.6 (n = 300) 

Table 5.1: Heterogeneity Table of Morphological Features.  

The table summaries all the heterogeneous phenotypes, as characterised by different assays.  

n indicates the number of sample size.  

* mean percentage of cells with a particular phenotype  ± SEM. 

 

5.4 More Progeria Cells Entered the G2/M Phase 
 

Next, to investigate single-cell heterogeneity of the transcriptomes of WT and progeria 

cells, single-cell RNA sequencing was performed using the 10x Chromium technology. Three 

quality control metrics were calculated for library size, number of expressed genes and 

percentage of mitochondrial content, leaving 502 WT cells and 201 Zmpste24-/- cells that 

passed the QC filters [Figure 5.7A]. By applying SC3 with k = 5 on the dataset, the cells could 

be stably clustered [Figure 5.7B]. SC3 reported 5 consensus clusters based on the expression 

of marker genes [Figure 5.7C]. To provide more informative cues about the transcriptome 

signatures of these cells, cyclone, the cell-cycle predictor for single-cell transcriptome data, 

was applied on the clustering outcome, assigning a cell-cycle stage to each single cell.     

To allow better visualisation of single-cell expression data, a non-linear reduction 

dimension tool was applied on the log2-transformed expression dataset to create diffusion maps 
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(destiny package) [Figure 5.8]. Individual cells were coloured by condition, the 5 consensus 

clusters, cell-cycle stages and expression levels of genes of interest.  
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Figure 5.7: Transcriptional Profiles of Progeria Cells.  

Single-cell RNA sequencing was performed on WT and progeria cells using the 10x Chromium technology. 

The figures show transcriptomic profiles in different metrices.  

(A) Quality control metrics for library size, number of expressed genes and percentage of mitochondria. 

(B) Consensus matrix as generated by SC3 for progeria and WT datasets, indicating how often each pair of cells 

was assigned to the same cluster by the different parameter combinations (1, always; 0, never), corresponding 

to k value = 2. Colours at the top indicate reference labels corresponding to conditions and cell cycle stages.  

(C) Marker-gene expression matrix of WT and progeria cells. Clusters (separated by white vertical lines) 

correspond to k = 5. Only the top 10 marker genes are shown for each cluster.  
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Regarding the cell-cycle phase, it is clear that 87% of all cells were in G1, 10% in G2/M 

and the rest in S [Figure 5.9A]. While G1 cells were dominant, SC3 could clearly separate 

G2/M-specific cluster from other clusters. Interestingly, the proportion of progeria cells in 

G2/M was almost twice as much that of control cells. An increase in the mitotic population 

was observed before in progeria smooth muscle cells [Figure 5.9B; Cao et al., 2014]. This led 

me to explore deeper the genes that were specifically expressed/depressed in the G2/M sub-

population.  

 

 

 

 

 

 

 

 

Figure 5.8 Diffusion maps single-cell expression data. 

Two-dimensional PCA representation of cells based on levels 

of all differentially expressed genes.  

Points represent individual cells.  

Cells belong to two genotypes: WT control and KO progeria.  

The number of clusters is 5.  

Cells are labelled according to cell cycle stages.  

The five diffusion maps show genes of interest (Zmpste24, 

Fgf2, Gas1, Ngf, Ccng2). 
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Figure 5.9: Cell Cycle Profiling of Progeria Cells. 

(A) Bar charts of the proportion of WT and progeria cells in different cell cycle stages.  

(B) Cell cycle analysis of normal and HGPS SMCs at day 14, illustrating the distribution of G0/G1, S, and 

G2/M phases [Cao, 2014].  

(C) Venn diagram showing distribution and overlap of differentially expressed genes as identified by D3E in 

non-G2M and G2M-specific cells from the WT and progeria conditions.  

(D) Violin plots showing log2 normalised counts of gene expression in WT and progeria cells. Columns 

indicate clusters, rows indicate genes of interest.  
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Non-G2/M cells were then excluded and G2/M cells re-clustered to extract the G2/M 

marker genes the defined the WT and progeria clusters. D3E was also used to produce a list of 

genes that are differentially expressed between the mitotic population and non-G2/M 

population. 211 genes were found to be specific to the G2/M cells [Figure 5.9C]. Zmpste24, 

Fgf2, Ngf, Gas1 and Ccng2 stood out as the genes of interest, as shown by their expression 

dimension and log2expression levels across the 5 clusters [Figures 5.9C-5.8D]. In the G2M-

only progeria cells, Zmpste24 was expectedly downregulated, indicating the disruption of the 

gene in that causes progeria. Gas1 (growth arrest-specific 1) was also down-regulated, 

followed by Ccng2. Surprisingly, growth factor genes such as Fgf2 and Ngf were highly 

expressed in these supposedly non-dividing cells.  

 Finally, all the marker genes used to perform consensus clustering were re-investigated 

and analysed by D3E to identify differentially expressed genes between the WT and progeria 

conditions. These genes were ranked by their p-value and fold change in expression. By 

selecting the top differentially expressed genes, a heatmap of gene expression levels was 

generated [Figure 5.10] for the WT and KO conditions [Figure 5.10]. With further downstream 

processing, it would be possible to estimate the proportion of cells in different conditions and 

clusters that upregulated or downregulated the genes of interest. This estimation will also be 

applicable for the comparison between G2/M-specific WT and KO subpopulations.  
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Figure 5.10: Heatmap of Differentially Expressed Genes in WT and Progeria Cells.   

Heatmap of expression of genes of interest for WT and progeria cells. The heatmap is based on log2 normalised counts of 

differentially expressed genes as identified by D3E. Genes are ranked by order of fold change between the two conditions. 

The result shows an overview over similarities and dissimilarities between samples, with Cdkn1a being the top 

differentially expressed gene between the two conditions.  
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5.5 Discussion  

 

As the only substrate for ZMPSTE24 in mammals, mature lamin A is absent in 

Zmpste24-knockout mice, while pre-lamin A accumulates in the nuclear envelope, causing 

direct structural disruption (Bergo et al. 2002). Similarly, reduced lamin B1 levels are 

associated with progeria and senescent fibroblasts (S.-J. Lee et al., 2016; Scaffidi and Misteli 

2008). In this study, I examined the levels and distribution of lamin B1 in progeria cells and 

how many of them were affected by Zmpste24 deficiency. The results identified the loss of 

peripheral lamin B1 and its relocalisation in around 50% of the progeria population. A key 

question is whether the loss of lamin B1 is a cause or consequence of progeria. The way forward 

is to investigate the pattern of lamin B1 expression in nuclei from Zmpste24 mosaic mice, 

whose features are phenotypically normal. The rationale is to compare mosaic cells with 

complete Zmpste24-/- cells. Features that are present in the complete KO cells but not in the 

mosaic cells will be of special interest, as they might be important features that contribute to 

ageing.  

Transcriptome-wide, Zmpste24-/- cells were profiled at the single-cell level to 

understand cellular heterogeneity in progeria. I observed transcriptional differences between 

WT and progeria cells, with genes such as Fgf2 and Ngf being highly expressed in progeria 

cells, and associated them to the G2/M phase of the cell cycle. At first glance, this might appear 

counter-intuitive as high expression of growth factors are often linked to increased rates of 

cellular proliferation and growth, while progeria cells are senescent-like.  

One study correspondingly found that expression of FGF2 in mouse cell lines prevented 

cell proliferation and induced a G2/M arrest in the context of malignant cells transformed by 

the Ras oncogene (Salotti et al., 2013). Given that the majority of progeria cells were in the G1 

state, it is tempting to speculate that progeria cells are more prone to damage and, therefore, 

G1 arrest than WT cells are. Through a compensatory response or (epi)genetic selection, some 

progeria cells with high levels of Fgf2 may escape the G1 phase and are driven into the G2/M 

phase [Figure 5.10].  
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5.6 Summary 

 

The characterisation of morphological features and biochemical assays of Zmpste24-/- 

cells indicated that the progeria phenotype is heterogeneous, with certain portions of progeria 

cells showing abnormalities, in contrast to the classical view that the cells are severely 

compromised in their entirety. Next, single-cell RNA sequencing data presented the starting 

point for the revelation of cell-to-cell transcriptional heterogeneity between WT and progeria 

cells. Cell cycle analysis suggested that a greater proportion of progeria cells cycled in the 

G2/M phase, which could be explained by a scenario in which progeria cells had undergone a 

compensatory or selection process and been forced to enter the G2/M arrest.     

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Schematic Diagram for a Model of Progeria Cell Cycle.    
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Chapter 6: Conclusions and Future Directions 

6  

6.1 Single-Cell Transcriptomics in OIS 

 

Oncogene-induced senescence (OIS) represents a tumour-suppressive response to 

oncogenic insults and is transmissible through secreted factors of the senescence-associated 

secretory phenotype (SASP). As a result and considered as a secondary event, primary OIS 

cells can induce the neighbouring cells to become senescent in a paracrine fashion. The current 

and predominant view holds that primary and secondary senescent cells are not functionally 

distinct endpoints.     

 The first research project of this thesis explored the use of single-cell technologies, the 

Smart-Seq2 and the 10X Chromium Genomics, in deciphering molecular endpoints in OIS. 

Single-cell transcriptome analyses revealed two distinct transcriptional endpoints, a primary 

endpoint characterised by the Ras oncogene activation, and a secondary endpoint marked by 

Notch signalling activation.   

 Subsequent in vitro and in vivo experiments showed that secondary-induced senescence 

is dependent on Notch, rather than on SASP alone, as previously believed. Furthermore, in 

secondary senescence, SASP was weakened, but not abolished, by Notch signalling. This 

Notch-dominant and SASP-suppressive event also occurred in parallel with a failure to 

downregulate fibrillar collagens. Together, the global transcriptomic differences, the blunted 

SASP response, and the maintenance of fibrillar collagens in secondary senescence support the 

role of Notch as an essential driver of secondary senescence and point towards a functional 

diversification between secondary and primary senescence.  

 Despite the abundance of evidence uncovering a clear distinction between primary OIS 

and secondary senescence, one fundamental and intriguing question that has emerged and 

awaits further investigation is whether secondary senescence per se bears any significant 

biological function and physiological relevance. Assessing the functional role of secondary 

senescence remains an open question in the research field. The specific upregulation of Jagged1 

in the primary OIS population seems to hint at the function of secondary senescence in 

containing the effects of senescence within a local microenvironment to pave the way for 
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efficient immune clearance. Future studies will need to focus on testing the proposed 

mechanism and linking it to a meaningful biological interpretation.   

A pilot study has already been underway to decipher transcriptional differences 

between SAHF-positive and SAHF-negative cells in OIS. This can be achieved by the recently 

developed approach to isolating single cells, known as the Vycap Puncher platform, which 

allows live multi-coloured fluorescent images of cells to be captured at the same time as the 

selection of live cells that pass defined criteria for downstream single-cell analysis. In tandem 

with an in vivo model designed to test the physiological role of secondary senescence, a better 

understanding of the putative relationship between SAHF formation and secondary senescence 

will provide the basis for subsequent studies aiming to determine the function of secondary 

senescence.  

  Another important experiment that has already begun in the lab revolves around the 

genome-wide chromatin landscape data of OIS, both in monoculture and in co-culture using 

the ATAC-Seq technology, which is commonly used to detect nucleosome-free regions of the 

genome. The mapping and analysis of chromatin accessible sites in OIS will allow transcription 

factors and regulatory elements playing a part in OIS to be discovered and characterised at the 

single-base pair resolution. This, in turn, presents a new opportunity to describe the variability 

of chromatin accessibility and classification of senescent cells based on their chromatin 

architecture.      

 In summary, the molecular mechanisms underlying OIS are beginning to be revealed, 

subject to intense investigation achievable by single-cell technologies. The functional and 

molecular diversification of OIS endpoints is a relatively new concept in the field of 

senescence, but could bear significant implications on the role of OIS in vivo, given the firmly 

established evidence of its tumour-suppression and tumour-promotion effects. Predominantly, 

this is largely mediated by the transmission of senescence through SASP, which is thought to 

govern cell communication within the tissue microenvironment. As shown in this thesis, Notch 

signalling has emerged as an important regulator of lateral facilitation of secondary senescence. 

Since Notch ligands are often overexpressed in cancer cells, the significance of Notch-mediated 

senescence may not just represent a phenomenon with no physiological relevance. Deciphering 

the nature and meaning of juxtacrine senescence is likely to offer scientists with promising 

exploitation in cancer therapy. 
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6.2 Single-Cell Transcriptomics in Progeria 

 

Single-cell sequencing technologies are a valuable tool for addressing the long-standing 

question of what causes ageing and senescence. Clearance of senescent cells has been shown 

to improve age-related dysfunctions and extend healthy lifespan in mammals, implicating 

senescent cells in promoting an ageing environment that leads to the demise of neighbouring 

cells and, ultimately, whole organisms. In the second research project, I applied the 10X single-

cell technology and molecular phenotyping techniques to dissect cellular heterogeneity of 

progeria cells, which serve as a model system for studying ageing, with the aim to understand 

how many of them were functionally compromised and how progeria conditions could drive 

the ageing phenotype. 

Preliminary observations on the morphology of Zmpste24-/- nuclei suggested that only 

a very small proportion of progeria nuclei showed gross nuclear lobulation or invagination, as 

opposed to this being a common feature attributed to classical progeria. This led to the 

investigation of other morphological features, which are thought to be characteristic of the 

progeria phenotype. The results indicate that progeria cells are phenotypically heterogeneous 

with a substantial proportion of cells appearing to be normal and unaffected by the genetic 

defect. This unexpected finding seems to fit well with the toxic ageing model, as it would 

explain how a small proportion of dysfunctional cells could exert toxic effects on other 

functionally normal cells and drive organismal ageing.  

At the transcriptome level, single-cell analyses shed light into the genes that are 

differentially expressed between normal and progeria cells and identified upregulation of 

growth factor genes in such as Fgf2 and Ngf in a progeria sub-population whose cell cycle 

profiles corresponded to the G2/M phase. Accordingly, it has been hypothesised that since 

progeria cells are more susceptible to damage and cell cycle arrest than normal cells are, some 

progeria cells would be subjected to (epi)genetic selection or a compensatory mechanism, with 

cells that highly express growth factors being able to escape the G1 phase and enter the G/M 

arrest. 

Therefore, to test this hypothesis, one can enforce Fgf2 expression in normal and 

progeria cells and assess if more of them undergo a G2/M arrest. Additional work will include 

downstream analyses of differentially expressed genes and associated regulatory pathways in 

which those genes are involved. A treasure trove of marker genes identified and how they are 
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linked to cell-fate decisions will provide guidance for carrying out more thorough downstream 

analyses and to understand how and why progeria cells are largely heterogeneous.  

Finally, efforts should be directed at characterising different subpopulations of cells 

based on their transcriptomes and cell cycle stage and to determine the number of cells that 

belong to each subpopulation. Foreseeably, new insights into the heterogeneity of progeroid 

syndromes through single-cell analyses will help to elucidate which of the numerous pathways 

are compromised, most relevant for and causally linked to the pathologies. This will entail 

wide-ranging implications for understanding cellular heterogeneity in ageing and offer new 

avenues for therapeutic applications in promoting healthy lifespan.   
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