
 

 

 

 

 

 

 

 

 

 

 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

• This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

• A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

• This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

• The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

• When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



Recent identity by descent

in human genetic data –

methods and applications

Dominik Glodzik

Institute for Genetic and Molecular Medicine

University of Edinburgh

A thesis submitted for the degree of

Doctor of Philosophy

2013

mailto:dominik.glodzik@igmm.ed.ac.uk
http://www.igmm.ed.ac.uk
http://www.ed.ac.uk


The thesis has been composed entirely by me.

The thesis presents my own work unless where I obtained help from

group members, as acknowledged.

The work presented in this thesis has not been submitted for any

other degree or professional qualification.

Dominik Glodzik



I dedicate this thesis to my loving parents and family,

to Cici,

to all friends I met in Edinburgh

and to the inspiring city.



Acknowledgements

Most of the work presented in the second and third chapters was

published as an article (Glodzik et al., 2013). I developed and im-

plemented the algorithm, applied it to data and wrote the article. I

obtained help on data pre-processing, as acknowledged later. A re-

sequencing study that used my algorithms was also described in a

published article (Joshi et al., 2013).

I would like to thank my supervisor Paul McKeigue and all kind

friends who helped me by reading parts of this thesis.



Abstract

The thesis describes algorithms for detecting regions of recent identity

by descent (IBD) from human genetic data and its applications in

optimising resequencing studies, genomic predictions and detecting

Mendelian subtypes of diseases.

Firstly, we describe the algorithm ANCHAP, which scans pairs of

multi-point SNP genotypes for sharing IBD of long haplotypes. A

comparison with other methods shows that ANCHAP outperforms

them in terms of speed or accuracy. We demonstrate the algorithm

on data from population isolates - from Orcades, Croatian islands,

and from a population of unrelated individuals. We compare the

abundance of IBD segments between cohorts, and identify genetic

regions where IBD is most common.

Secondly, we verify the IBD regions detected from array data against

exome sequence data. We estimate that where sharing IBD between

a pair of individuals is inferred, this is confirmed by exome data in

98% of cases. Correctness of IBD detection varies with settings of

ANCHAP, length of IBD segments, and position with respect to seg-

ment endpoints. We find that with sample sizes of 1000 individuals

from an isolated population genotyped using a dense SNP array, and

with 20% of these individuals sequenced, 65% of sequences of the un-

sequenced subjects can be partially inferred. Implementation of such

resequencing strategies requires an IBD-based imputation algorithm,

which is outlined.

Thirdly, we use recent IBD to detect carriers of Mendelian subtypes

of colon cancer. We show this with the example of Lynch syndrome,

which accounts for about 3% of colon cancer patients. We detect IBD



sharing between known and unknown carriers around DNA mismatch-

repair genes. Using the IBD relationship, we build and evaluate a

model that predicts presence of Lynch Syndrome mutations.

Finally, we discuss whether regions of identity by descent can be used

for genomic predictions. We conclude that the utility of the inferred

IBD regions depends on accuracy of detection, time to most recent

common ancestors and mutation rates since.
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Chapter 1

Introduction

1.1 Motivation and aims

We first present an idea that connects the parts of the thesis, and then outline

the scientific, technological and historical background behind it.

The idea behind the work presented in this thesis is to tag rare variants in

genetic data through long-range haplotypes. Rare genetic variants could explain

some of the missing heritability of diseases and quantitative traits. Due to allelic

heterogeneity, single nucleotide polymorphisms (SNPs) may not tag rare variants,

however the rare variants would be likely captured by long-range haplotypes.

Long identical-by-descent (IBD) haplotypes are more likely to occur in isolated

populations, where due to geographical isolation and constrained population size

any two individuals are likely to have a recent ancestor. Resulting from the

relatedness are long haplotypes shared IBD, which can be recovered from SNP

data by algorithms.
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Figure 1.1: An ancestral haplotype shared IBD in current generation. The an-
cestral haplotype, depicted in black, was shortened by recombination events as it
was passed through generations towards bottom of the figure. Where cross-overs
did not occur, current generation of individuals (C1-C8) share the haplotype IBD
around locus x. Source: (Morris et al., 2002)

Genetically isolated populations result from ”the founder effect of a small

number of individuals as a consequence of some type of bottleneck. They exist in

geographical, cultural, or geographical and cultural isolation over many genera-

tions without genetic interchange from other subpopulations” (Arcos-Burgos and

Muenke, 2002). In isolated populations most individuals share relatively recent

common ancestors. If more than one individual inherited the same ancient haplo-

type in a region, we call them haplotype sharers. Segments of their chromosomes

are identical by descent - their haplotypes ”descend from a common ancestor

without either of them experiencing a recombination” (Powell et al., 2010). The

concept of sharing IBD of an ancestral haplotype is depicted in Figure 1.1. While

any two copies of an allele are identical by descent with a recent common ances-

tor in the remote past, where longer stretches have been inherited, the common

ancestor is likely to have been more recent. Although there is a continuum be-

tween recent and ancient sharing, we distinguish recent IBD from the ancient one

based on length of segments shared IBD. While SNP arrays do not directly reveal
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gametic phase, haplotype sharers can be identified using computational methods.

Applications of inference of regions of identity by descent include:

1. mapping genetic effects on complex traits,

2. optimization of resequencing studies

3. genomic predictions,

4. studying Mendelian subtypes of diseases.

In the first application, inference of shared haplotypes may make it possible to

detect the effects of genes in which functional variants that are rare in the general

population have drifted to high frequency in the isolated population. Further-

more, the reduced allelic heterogeneity in an isolate provides an opportunity to

detect associations with these otherwise rare variants. In an outbred population

conventional GWAS studies may fail to detect associations with rare variants, as

these may not be in linkage disequilibrium with SNPs on genotyping arrays that

have been optimized to tag common variants (Johnson et al., 2001; Terwilliger

and Weiss, 1998). In genetically isolated populations like Iceland or Finland the

linkage disequilibrium may be higher. Examples of diseases which were linked to

genetic loci in studies of isolates include: myocardial infarction, stroke, type 2 dia-

betes, atrial fibrillation, prostate cancer, schizophrenia and asthma (Kristiansson

et al., 2008). The uncovered ancestral haplotypes can be in even stronger asso-

ciation with rare functional variants and hence improve the power of association

tests. The most ambitious attempts to map effects of shared haplotypes recon-

struct descent trees, but this approach has been found computationally infeasible

(Morris et al., 2002).

In the second application, when SNP genotypes are available and next-generation

sequencing is planned, exploiting haplotype sharing between individuals can save

resources. With sharing inferred from SNP genotypes, it is possible to choose a

minimally redundant subset of individuals to be sequenced, and then to impute

sequence data into other subjects with SNP genotype data.

In the third application, IBD segments could be used in models for genomic

predictions. They should be most effective when traits being predicted are af-

fected by rare genetic variants.
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In the fourth application, IBD segments could be used for studying Mendelian

subtypes of diseases. Around each causal mutation the carriers are likely to

share haplotypes even in out-bred populations, and depending on the time to

the recent common ancestor the shared segments could be long. Carriers of the

same Mendelian subtypes could be identified through IBD analysis on SNP data.

Identifying carriers of Mendelian subtypes of diseases is a real clinical problem,

for example in colon cancer, where patients who carry Mendelian forms of the

disease are often not correctly diagnosed and accordingly do not receive the most

appropriate treatment.

1.1.1 Aims

The aims of the project were:

• to develop an algorithm for detecting recent identity by descent from SNP

data,

• to compare it against existing methods,

• to use detected IBD haplotypes for optimisation of resequencing study in

an isolated population,

• to develop and test a method for detecting patients of carrying Mendelian

subtypes of diseases, such as Lynch syndrome in colon cancer,

• to evaluate utility of IBD segments for genomic predictions.

1.2 Genotyping and sequencing technology

Recent developments in genotyping and sequencing technologies present excit-

ing opportunities for understanding genetic cause of diseases, and for verifying

population-genetics models against large-scale data sets. SNP genotyping is grad-

ually giving way to next-generation sequencing technologies, which are being em-

ployed in increasingly larger studies.

4



1.2.1 SNP arrays

The HapMap project (Consortium, 2007) characterised single nucleotide polymor-

phisms of 270 individuals from African, Asian and European ancestry. Identified

and verified were 3.1 million variants with frequency at least 0.05 (Stranger et al.,

2011). Once identified, the SNPs are used to design genotyping arrays. Primers

for the SNPs are bound to a chip, such that SNPs can be identified by their posi-

tions on a plate (Syvänen, 2001). Segmented and amplified fragments of a DNA

segments hybridise to the primers, after which fluorescent-marked nucleotides

attach to sample fragments, and different nucleotides are marked with different

colours. Decoding genotypes at SNPs on an array involves analysis of an image,

in which different colours of light denote different nucleotides.

1.2.2 Next-generation sequencing

The development of sequencing technology led to discovery of 10 million new

variants in the 1000 Genomes project (Consortium, 2012). Next-generation se-

quencing, irrespective of specific technology, consists of template preparation,

sequencing and imaging (Metzker, 2009; Nekrutenko and Taylor, 2012). Firstly,

a sample of DNA is fragmented to produce templates. These are immobilised

to a solid surface or support, and clonally amplified through polymerase chain

reaction. Many clusters of identical single-stranded templates are produced, and

are gathered close together to facilitate sequencing. Sequencing is done for many

amplified templates simultaneously to speed up the process. Sequencing is ini-

tiated by adding known primers, after which nucleotides hybridise to the tem-

plates. These are often dyed (Solexa platform), or their inclusion can be detected

through light the inclusion of nucleotides produces (Roche 454). A template

is read through analysis of images from cameras attached to sequencing plates.

In subsequent analysis template reads are aligned against the reference human

genome, and variants from the reference are detected.
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1.3 Mapping of disease and trait-associated ge-

netic loci

The emergence of technology for reading DNA poses an exciting opportunity for

understanding genetic diseases. Such knowledge could be used for understanding

their molecular basis or estimating individuals’ risk for developing the conditions.

The following section presents the methods for identifying genetic loci where

variants are associated with traits and diseases.

1.3.1 Family-based linkage studies

Linkage analysis is a way of localising genetic loci that predispose to disease with

respect to a set of known genetic markers (Teare and Barrett, 2005). Linkage

studies require families with multiple affected members, knowledge of genotypes

at genetic markers in the family and a pedigree. Estimate of genetic position of

a disease-causing locus comes from maximising the LOD score (Morton, 1956).

The LOD score is calculated as a logarithm of the ratio of likelihood of the data

given a disease locus at a genetic position to the likelihood of the data given

no linkage with the locus. A major problem with linkage studies is reduced

power when there are many genes associated with a disease and they are of

small effect. Nevertheless, genes for disorders affected by several genes have

been mapped with linkage analysis, for example BRCA1 and BRCA2 for breast

cancer. Another limitation is that resolution of mapping in this way is limited

to tens of centiMorgans, depending on the number of informative meioses in a

pedigree. Finally, linkage analysis has only been effective for simple diseases with

large risk-ratios for different genotypes. Building a genetic model for parametric

linkage studies requires knowledge of mode of inheritance of a disease, disease

allele frequency and penetrance, some of which may be unknown.

Major gene disorders are amenable to parametric linkage analysis, because the

disease allele frequencies and penetrance can be estimated in advance. For com-

plex diseases, non-parametric methods have been used but there have been rel-

atively few successes in discovering disease susceptibility genes. Non-parametric

linkage methods involve testing of increased IBD sharing among relatives, in cer-
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tain genomic regions. These tests can be pair-wise, between siblings, but also

exploit larger pedigrees. Simplest tests would look for excess IBD sharing com-

pared to expected due to relatedness at a single locus at a time, while more

complex ones would attempt to map the genes throughout the chromosomes. An

advantage of linkage studies in comparison with association mapping is that they

are not affected by allelic heterogeneity.

1.3.2 Genome-wide association studies

Linkage analysis has little chance of success with complex diseases which could

be affected by variants of modest effect in multiple genes, because the power of

the method is heavily reduced when little of trait variance is explained (Sham

et al., 2000). In order to dissect genetic mechanisms that drive diseases and com-

plex traits, genome-wide association studies analyse genetic data from unrelated

individuals who share at most short haplotypes around causal variants. Genome-

wide association studies (GWAS) assume that the causal variants can be tagged

by single-nucleotide polymorphisms (SNPs), at which the samples are genotyped

(McCarthy et al., 2008). In GWAS genotypes at each SNP individually are tested

for association with a disease or trait, through linear or logistic regression.

GWAS studies have identified many disease-associated loci, but the associa-

tions detected at genome-wide significance level account for only a small propor-

tion of estimated genetic variance, as estimated from phenotypic resemblances

between relatives. This is the ’missing heritability’, which limits the potential for

individual disease risk prediction (McCarthy et al., 2008). Missing heritability

could arise from allelic heterogeneity. Multiple causal variants may not be tagged

by genotyped SNPs (Terwilliger and Weiss, 1998). Some of the problem with

allelic heterogeneity can be dealt with through choice of samples, for example

through choosing distantly related familial cases. Finally, the problem of allelic

heterogeneity in GWAS could be addressed through increasing coverage of vari-

ation on genotyping arrays, so that typed markers are correlated with the causal

variants. However, to tag all rare variants, very dense arrays or resequencing

would be required.
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1.3.3 Population isolates

Allelic heterogeneity of complex diseases and traits can be reduced by studying

isolated populations (Peltonen et al., 2000). Population isolates may be generated

either by prolonged constraint of population size or by a founder effect. Genetic

drift and population bottlenecks reduce genetic complexity of individuals. Ge-

netic variants that are rare in general population may become more frequent, and

they may be better tagged by SNPs on genotyping arrays. Association studies

may be further facilitated for diseases particularly common in an isolate, also

because environmental factors and cultural features are more uniform than in

general population.

Two widely studied isolated populations are Finland and Iceland. The major-

ity of Finns descended from migration waves 4000 and 2000 years ago, and since

then formed several sub-isolates around the country. Iceland was settled around

1000 years ago by immigrants from Norway, Ireland and Scotland, and since then

received few newcomers.

Population isolates offer reduced allelic heterogeneity, increased frequency of

some diseases and uniform exposure to environmental factors. While reduced

genetic complexity of individuals in isolates may facilitate association studies, it

also means that the associations found may not generalise to wider population.

1.3.4 Linkage disequilibrium studies

Linkage disequilibrium studies assume that affected individuals share a region of a

chromosome around the causal variant, because they all co-inherited a haplotype

on which the mutation occurred. This is more likely in a population isolate,

where due to migration constraints any two carriers are likely to have a recent

common ancestor, and where genetic heterogeneity of diseases is reduced. A

linkage disequilibrium study in the isolated population of Finland localised a gene

associated with diastrophic dysplasia (Hastbacka et al., 1992). Studied were 77

Finnish families where the disease segregated. Initially, 20 markers of chromosome

5 had been shown to be in linkage with the diseases, and the following linkage

disequilibrium study focused on haplotypes at these markers. At a 2 consecutive

markers 95% of individuals affected by disease shared a haplotype, from which it
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was inferred that the causal variant was within as little as 0.06 cM.

The linkage disequilibrium study narrowed down the position of the causal

variant from a region of 1.6 cM which had previously been established by linkage

analysis. The linkage disequilibrium study took advantage of many more informa-

tive recombinations that occurred in the whole isolate, in comparison to within

affected families. The approach treated all Finnish carriers as a big, distantly

related family.

1.3.5 Coalescent model

Linkage disequilibrium between genetic loci arises because of history of mutation,

recombination and coalescence of lineages. Alleles on the same haplotypes are

statistically dependent because of genetic linkage, and there is dependence be-

tween haplotypes due to shared ancestry. The coalescent is a stochastic process

that enables modelling history behind genetic polymorphism data (Rosenberg

et al., 2002).

The Kingman’s coalescent is an approximation which allows a computation

of probability of a genealogical tree for each genetic locus. At the bottom of the

tree are alleles in samples studied, which coalesce in the past to form lineages.

All lineages within a sample coalesce at the time when the most recent common

ancestor (MRCA) lived, from which all samples inherited an allele. Mutation at a

locus might have occurred at some point in the past, so that all lineages descend-

ing from an ancestor for which it occurred, carry the variant. The Kingman’s

coalescent allows computation of probabilities of ancestral trees. The lineages

under study randomly choose other lineages to coalesce with, at times in the past

dependent on number of lineages. The rate at which they coalesce depends on

the number of samples in the study and number of lineages at each point in the

past. Eventually all lineages coalesce to their MRCA.

Recombination events that gave rise to haplotypes in the studied samples also

affect coalescent trees. Coalescent trees at neighbouring loci are will be distinct if

recombination occurred between neighbouring haplotypes. The extent to which

two coalescent trees between neighbouring sites are similar will be affected by

recombination rates in the region. When few cross-overs occur, this will manifest
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itself as linkage disequilibrium in the genetic region.

The coalescent model can be used for building simulations, or estimating

parameters of history of a population studied. With the coalescent it is possible

to compare fit of different history models with the genetic polymorphic data.

This involves summing over all possible models of the past, which however is

computationally very demanding.

1.3.6 Shattered coalescent

One of uses of the coalescent model is fine-mapping of disease loci (Morris et al.,

2002). Morris et al. described a method for inference of location of a causal

disease locus from case-control haplotypes from an implicated region. The idea

is the same as in linkage disequilibrium studies, namely that disease haplotypes

in the neighbourhood of the causal variant are all the same, and descend from

same branches of the coalescent tree.

In an effort for disease fine-mapping, the authors specify a fully Bayesian

model of case-control haplotypes, with a prior probability on coalescent trees

which connect them. Adjacent neighbouring trees are linked by recombination

events, which in a simplified way are also included into the coalescent model. An

important innovation is allowing the tree to coalesce to multiple roots rather than

one common ancestor, from which the name ’shattered coalescent’ is derived. In

this way, the model can account for multiple mutations affecting the disease and

sporadic occurrence of a diseases, for example due to genes outside of the studied

region.

Morris et al. studied 92 control 94 case chromosomes from patients affected by

cystic fibrosis, a disease whose genetic background is well understood. 23 markers

in a previously implicated region on chromosome 7 entered the analysis. As a

result of applying the method, the most likely associated causal locus coincided

closely with a variant known to be a causal one. As a further benefit of modelling

the coalescent trees, estimated was also time to common ancestor of the cystic

fibrosis mutation. However, the computational cost of Bayesian analysis turned

out to be very large - analysis with only 23 markers took 2 days of computation

on a personal computer. Similar large-scale analysis of more complex disease may
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be prohibitively demanding, because computation time scales exponentially with

depth of descent tree

1.3.7 Fragmentation-coagulation process

Coalescent trees are one way of modelling haplotypes found in genetic data, how-

ever other more tractable methods have been developed. The other methods

group haplotypes into clusters throughout the genome, such that all haplotypes

in a cluster descended from a common ancestor. The methods represent the

haplotypes as a mosaic of ancestral haplotypes.

One example of such a mosaic-based model is the Fragmentation-Coagulation

Process (Teh et al., 2011), which is illustrated in Figure 1.2. Because this is a

Bayesian non-parametric model, the number of haplotype clusters can adjust to

data in each genetic region. Haplotypes in study change their cluster memberships

throughout genetic regions. In coagulation event all haplotypes from a cluster

join another one, and other clusters may fragment into several clusters. Coupling

this prior haplotype model with a data-likelihood, various types of inference can

be performed, for example allele imputations.

Inference on the Fragmentation-coagulation process requires Monte-Carlo Markov

Chain sampling, which is computationally demanding for large data sets. The

computational time required by the algorithm is proportional to number of clus-

ters of haplotypes in data, so limiting the maximum number of haplotype clusters

at a locus simplifies inference. Several phasing algorithms are based on this idea,

typically using hidden Markov models, as outlined in further sections.

1.4 Phasing algorithms

The aim of phasing algorithms is to reveal haplotypes in genotype data. Short-

range HMM-based methods rely on linkage disequilibrium between neighbouring

genetic loci, whereas long-range methods depend on long haplotypes shared be-

tween distantly related samples.
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Figure 1.2: Fragmentation Coagulation Process, a Bayesian non-parametric
model for haplotypes. Six different haplotypes are modelled in the genetic re-
gion between 0 and T . At loci marked with C the clusters merge, where marked
by F the clusters split. Probabilities of these events depend on cluster sizes.
Source: (Teh et al., 2011).

1.4.1 Short-range HMM-based methods

All of the discussed short-range phasing methods rely on the the idea that hap-

lotypes of a new sample are noisy copies of haplotypes among other samples

(Browning and Browning, 2011b). They form a mosaic of the reference hap-

lotypes, as a result of recombination events that occurred since their common

ancestor. Additionally, the sample and reference haplotypes can differ at indi-

vidual loci, which is a trace of mutational process. Because the methods allow

for recombinations and mutations between haplotypes, they are called coalescent-

based.

The phasing programs connect the observed input genotypes with haplotype

models through hidden Markov models (HMM). HMMs are sequential models of

data with hidden structure, appropriate for the application because genetic loci

are linked by linkage and linkage disequilibrium. Visible states correspond to

input genotype data, whereas hidden states correspond to the underlying hap-

lotypes, either to the particular reference haplotypes in some phasing programs,

or to modal haplotypes. Transition probabilities between hidden states represent

recombination rates, and will likely depend on genetic map in a region. Emission

probabilities, which link hidden states and the input genotypes, enforce a match
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between inferred haplotypes and the data, and to some extent model mutation

between reference and sample haplotypes. The output haplotypes are a result of

inference with HMMs, returning the most likely haplotypes given the data. The

algorithms typically require several iterations, initially starting with random hap-

lotypes, at each iteration improving the haplotype estimates. The phasing pro-

gram PHASE is an exception (Stephens et al., 2001), because instead of an HMM

it uses an Expectation-Maximisation (EM) algorithm which does not model the

local structure of haplotypes. Instead, PHASE uses a coalescent-inspired model

of possible haplotypes out of already known ones, and makes haplotypes hidden

variables whose most likely values are inferred by the EM algorithm.

The HMM-based phasing programs differ in how they model possible haplo-

types. FastPHASE models haplotypes as belonging to one of a very limited

number of clusters throughout genomic locations (Scheet and Stephens, 2006).

For each of the clusters and at each locus, haplotype alleles are assumed to come

from a binomial distribution whose parameters are estimated. The number of

clusters is chosen by cross-validation, guided by imputation accuracies. The rec-

ommended number of clusters is 8, which limits the chance of the cluster to

convey long-range dependencies between loci. MACH and IMPUTE, rather

than modelling haplotype clusters, as hidden states take haplotypes that have

been estimated for other individuals in previous iterations or from a reference

panel (Howie et al., 2009; Li et al., 2010; Marchini et al., 2007). In HMMs large

number of hidden states make inference harder, so both MACH and IMPUTE re-

duce their numbers. As hidden states MACH uses a random subset of haplotypes,

whereas IMPUTE chooses haplotypes that are globally most similar to a current

estimate of haplotypes for a proband. Instead of using haplotypes from other

samples, Beagle utilizes the localized haplotype cluster model as a parsimonious

empirical LD model (Browning and Browning, 2007). The haplotype model is

built from haplotypes reconstructed so far for other samples, and the complexity

of the haplotype model through genetic regions can vary with complexity of the

haplotypes. Limiting the number of hidden states is very important, since com-

plexity of inference on HMMs scales quadratically with number of hidden states,

which becomes prohibitive with sizes of samples currently becoming available.

The main advantage of ShapeIT, another phasing program is that complexity of
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its computation scales linearly with the number of samples in a study (Delaneau

et al., 2011). The algorithm represents haplotypes as a graph structure, whose

space is limited to a constant for each marker. Based on the graph is an HMM,

which despite its state space conveys information about all of the haplotypes.

Furthermore, the sampling of haplotypes consistent with the genotypes is also

simplified. The method splits the genome into smaller regions containing only a

few heterozygous markers, and in each of these regions the allowed haplotypes

are enumerated. At the region borders the haplotypes are allowed to switch their

state membership. The recently described algorithm of ShapeIT2 uses a similar

representation of haplotypes and inference, however it improves phasing accuracy

through an idea borrowed from IMPUTE (Delaneau et al., 2012). When inferring

haplotypes for a sample, the algorithm is guided by several haplotypes of other

samples globally most similar to a proband. This improves the phasing accuracy

and the chance of haplotypes being correct across longer genetic regions. In sum-

mary, obtaining scalability of phasing algorithms relies on making compressed

representations of haplotypes as hidden states of HMMs.

1.4.2 Long-range phasing methods

Long-range phasing methods rely on long identical-by-descent haplotypes inher-

ited from common ancestors of any pair. They do not model or simplify the

haplotypes, which often increases phasing accuracy. The first rule-based algo-

rithm for long range phasing was described by Kong et al. (Kong et al., 2008a,

2009) and is similar to the method presented later by Hickey et al. (Hickey et al.,

2011). The principle behind these methods is explained in Figure 1.3. Both of

these algorithms detect IBD sharing only in pre-specified genetic regions, identi-

cal for all pairs of compared multi-point genotypes, whereas in reality boundaries

of IBD regions can occur anywhere across the genome. Further implementations

and improvements were brought by Palin et al. (Palin et al., 2011) through

Systematic Long Range Phasing (SLRP).

Systematic Long Range Phasing (SLRP) is a fully probabilistic model for

phasing and IBD detection in isolated populations. The Bayesian network in

SLRP allows for handling of genotyping errors. Additionally, this framework also
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Figure 1.3: Principle by which IBD sharing is inferred from SNP data in the
algorithm described by Kong et al.
Multi-point genotypes at consecutive SNPs are shown for two individuals. Minor
alleles are denoted by lower-case letters, while major alleles by capital letters.
No haplotype could be shared between the two samples at loci with opposing
homozygotes, i.e. at the ”bb/BB” locus and the ”HH/hh” locus. Where there is
a long region without opposing alleles, IBD sharing of a haplotype is inferred.

integrates detection of IBD and phasing, so that they are done simultaneously.

Inference of phase and the regions of IBD sharing is done through loopy be-

lief propagation, a special case of the sum-product algorithm for factor graphs

(Kschischang et al., 2001). Maximum-a-posteriori configuration is arrived at af-

ter many iterations, in each of which nodes adjacent in the Bayesian network

send messages one to another. In networks without loops this procedure finds an

exact solution, however in networks with loops like SLRP the algorithm is not

guaranteed to converge to an optimal solution. The authors limit the number of

iterations of the algorithm to 30, and according to their experiments the messages

sent always converge before then.

The computational complexity of the loopy belief propagation in SLRP scales

quadratically with number of individuals in the study, and linearly with the

number of SNPs and iterations. The authors of SLRP took steps to decrease

the computational load. The belief propagation algorithm is applied only to such

parts of the network where pre-processing identifies possible IBD sharing. The

set of putative IBD regions can be pruned, as typically only few haplotype sharers
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are required for phasing. Furthermore, the genome can be divided according to

the putative IBD regions, so that the algorithm can proceed independently in

each of the regions and chromosomes. Finally, the implementation of SLRP had

been prepared for parallel processing.

At the time I started the project only the method by Kong et al. was available.

SLRP is the most recent, thorough and elegant method for long-range phasing,

and it is against this method I will compare my method described in further

sections. Another motivation for developing my long-range program was that

implementation of Long Range Phasing was not published.

1.5 Algorithms for detecting and analysis of IBD

segments

For several applications described in this thesis the purpose is not phasing, but

rather obtaining IBD segments where two individuals share long haplotypes IBD.

Often, like in the case of SLRP algorithm, the IBD segments are a by-product,

since they are used for phasing (Palin et al., 2011). Other methods for detection

of IBD segments use short-range phasing methods, and then attempt to correct

for likely phasing errors.

Two examples of such programs are fastIBD and GERMLINE (Browning and

Thompson, 2012; Gusev et al., 2009). Both algorithms are based on the same idea.

They first use short-range phasing methods to obtain estimates of haplotypes,

and then check for match of haplotypes between samples. Next, they extend the

matches where possible, correcting for phasing errors. Both of the methods score

the likelihood of true IBD sharing in a region. The difference between fastIBD

and GERMLINE is that the former uses Beagle haplotyping algorithm internally,

whether GERMLINE expects pre-phased haplotypes as input.

Methods for analysis of the inferred IBD segments have also been described.

The effectiveness of localising genetic variants with fastIBD was described for

case-control studies (Browning and Thompson, 2012). Statistical methods as-

sessed whether cases of a disease share IBD more often than controls, which is

reminiscent of non-parametric linkage studies. The power of the approach was
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evaluated using simulation, which showed that IBD analysis for populations with

a very recent bottleneck is more powerful than SNP association analysis. They

conclude that if the founding event for a population studied is very recent, IBD

analysis should be preferred over conventional association studies, particularly

with large samples sizes where rare variants would accumulate. For older popula-

tions without such history the result no longer holds. Using fastIBD, the authors

search for IBD associations with type I diabetes, in the Wellcome Trust Case

Control data. They find that conventional association studies found more signif-

icant associations than the IBD analysis. They conclude that IBD analysis could

still be beneficial with larger sample sizes. However, in larger studies it is likely

that data will come from several different genotyping platforms, in which case

accurate IBD detection would be more challenging.

Another method for analysis of IBD segments is named DASH (Gusev et al.,

2011). The method corrects potentially noisy IBD segments with graph-theoretical

approach, and checks for associations of IBD clusters with diseases. IBD clus-

ters could be in closer associations with diseases than SNPs, because the latter

may not be sufficiently correlated with the functional variants. The authors use

identical-by-descent regions as proxies for recent variants. IBD segments are

first recovered from genotype data using GERMLINE, and errors are corrected

through graph theoretical methods. Transitivity of IBD means that if haplotype

A is identical to B and B is identical to C, then A should be identical as C.

Although in theory the IBD relationship should be transitive, imperfect detec-

tion of recently co-inherited regions may remove this property. The algorithm

restructures the IBD relationship so that it becomes transitive, and the graph

representing it consists of fully connected components. For each IBD cluster, the

method computes a likelihood ratio between it being a true cluster, where all

individuals share IBD with each other, and of the cluster being spurious, where

IBD sharing between the members of the group is due to noise. They translate

the principle of likelihood into density of a graph, and propose an algorithm for

finding optimal sub-graphs. The output of the method is clustering of haplo-

types, which can potentially be different at each locus. The resulting clusters are

checked for associations with quantitative traits, and in particular whether they

carry more signal than individual markers typed in the nearby regions.
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1.6 Outline of the thesis

We have described methods and technology for localising genetic loci associated

with traits and diseases. At the core of theses methods is the coalescent model,

according to which haplotypes containing disease haplotypes have been inherited

from a common ancestor.

In the subsequent chapters we describe a novel long-range haplotyping method

and its application to resequencing studies, to understanding diseases with Mendelian

subtypes and to genomic predictions.
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Chapter 2

Inference of identity by descent

in genetically isolated

populations

Data from large genetic studies of population isolates was generated in my group,

with intention of studying effects of rare variants. SNP genotypes became avail-

able for around 1000 individuals each from Scottish archipelago of Orkney and

from Croatian islands of Vis and Korcula. Long-range phasing was then first de-

scribed (Kong et al., 2008b), but no implementation was available. My aim was to

develop an algorithm capable of correctly recovering long-range haplotypes and

of detecting regions of haplotypes shared IBD between pairs of samples. During

my work other methods for long-range phasing and detecting of recent IBD were

released. In this chapter the newly described methods are evaluated.

The work presented here was described in a published article (Glodzik et al.,

2013).

Outline. We describe ANCHAP, a new long-range algorithm for detection of

identical by descent haplotypes in genetically isolated populations. Our method

is designed to detect borders of regions of identity by descent precisely, with min-

imal computation time and with state-of-art sensitivity and false discovery rates.

We compare ANCHAP against other long-range methods, a short-range method,

and demonstrate an application of the identified IBD regions for optimisation of
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sequencing studies.

2.1 Background

2.1.1 Properties of recent identity by descent

Expected lengths of haplotypes shared IBD can be derived by making assump-

tions about population history and properties of the recombination process. Hap-

lotypes that are identical by descent originate ’from a common ancestor without

either of them experiencing a recombination’ (Powell et al., 2010). The length of

a common haplotype between a pair of samples depends on the number of recom-

binations that occurred on the haplotypes since their common ancestor, so also

indirectly on the number of generations that carried the haplotype. Assuming

that genetic positions of cross-over events follow a Poisson arrival process at rate

1 per Morgan, we can derive the expected length of a shared haplotype and its

variance. For two individuals sharing a haplotype inherited from a common an-

cestor, the lengths of the shared regions are exponentially distributed with mean

equal to (2n)−1 Morgans, where n is number of generations back to most re-

cent common ancestor (MRCA) (Browning and Browning, 2010; Haldane, 1919).

However, the distribution of segment lengths has variance of (2n)−2 Morgans,

so the correspondence of segment length with time to common ancestor is only

approximate. For example, for a pair of individuals with a common ancestor 25

generations ago, the expected length of a shared haplotype segment is 2 cM, with

standard deviation of 2 cM.

Furthermore, we expect haplotype sharers from a population isolate to form

clusters. As shown in Figure 2.1, where several individuals co-inherited the same

haplotype IBD at a locus, they will all share IBD with each other. Haplotype

sharing with respect to the gametes of each individual is a transitive relationship.

If a haplotype A is IBD with haplotype B, B with C, then A is IBD with C.

These characteristics of IBD sharing are assumed in the algorithm for detecting

IBD from SNP data, and we can make us of the properties to correct imprecise

IBD inference.
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Figure 2.1: Haplotype sharing within a population isolate. Genotyped individuals
are identified by numbers 1 to 5. Each individual has two haplotypes, represented
by thick light-grey bars. Red, blue, and green dotted lines represent identity by
descent of two haplotypes in a genomic region. The dark-grey shaded haplotypes
are unique in the sample, and they are not shared between the sampled subjects.

2.1.2 Identifying regions of IBD sharing from SNP data

After the first long-range phasing algorithm was described by Kong et al., sub-

sequent ones appeared with implementations (Kong et al., 2008a, 2009). Hickey

at al. presented a method that was very similar to Kong’s in that it also de-

tected IBD in genetic regions that a genome is first divided into (Hickey et al.,

2011). Subsequently Systematic Long Range Phasing (SLRP) appeared, which is

a more flexible, elegant probabilistic model (Palin et al., 2011). As an alternative

to long-range phasing appeared, FastIBD, which uses a HMM-based short-range

method. The likely phasing errors are then corrected when identifying IBD shar-

ing between genotypes which were phased. The algorithms are described in more

detail in Chapter 1.

In this chapter for comparison we used SLRP and FastIBD, each represent-

ing long-range and short-range methods for detecting haplotypes shared IBD

between pairs of samples. SLRP exemplifies a long-range method capable of per-

forming probabilistic inference simultaneously for pairs of individuals, at likely

high computational cost. FastIBD reduces the computational effort by more con-

cise haplotype modelling. In contrast, the method I developed, ANCHAP, is a

long-range but heuristic method.
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2.2 Methods

2.2.1 Populations studied

In our study of ancestral haplotypes we analysed four European cohorts, three

of which (ORCADES, CROATIA-VIS, CROATIA-KORCULA) are from isolated

island populations and one from a mainland population (SOCCS).

The Orkney Complex Disease Study (ORCADES) is a family-based, cross-

sectional study in the isolated Scottish archipelago of Orkney (McQuillan et al.,

2008). Genetic diversity in this population is decreased compared to mainland

Scotland, consistent with the high levels of endogamy throughout history. Orkney

has been inhabited for over 5000 years, but the original population was almost

completely replaced by Norse Vikings about 800-900 CE. From about 1300 to

1600 CE there was an influx of mainland Scots (Wilson et al., 2001). For this

analysis we used data from 749 participants aged 18-100 years from ten islands,

however for the purposes of evaluation of methods we removed parents from

genotyped parent-offspring pairs which reduced the cohort size to 597 individuals.

Genotyping in the study was done using the Illumina HumanHap300 array with

302379 single nucleotide polymorphisms (SNPs) after quality control.

The CROATIA-VIS study is a family-based, cross-sectional study in the vil-

lages of Komiza and Vis on the isolated island of Vis that included 1,056 exami-

nees aged 18-93 years (Vitart et al., 2006). The CROATIA-VIS study genotyping

used the Illumina Hap300v1 SNP chip with 301069 SNPs after quality control.

The CROATIA-KORCULA study is a family-based, cross-sectional study in

the villages of Lumbarda, Zrnovo and Racisce on the isolated island of Kor-

cula in Croatia (Polasek et al., 2009). The study included 965 examinees aged

18-95 years. The CROATIA-KORCULA study genotyping used the Illumina

Hap370CNV SNP chip with 317223 SNPs.

The Study of Colorectal Cancer in Scotland (SOCCS) is a case-control study

of prospectively collected colorectal cancer cases from all Scottish hospitals, and

matched controls. One thousand participants in each group in the first phase of

the study were genotyped with Illumina HumanHap300 array with 306204 SNPs.

The participants for the control group were matched by age, sex and region to
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cases according to a nearly complete population based register, and then selected

at random. We analysed the genotypes from the control group, so as to obtain a

sample representative of the Scottish population as a whole.

2.2.2 Recent identity by descent in population isolates

In an isolated population such as the Orkney population, founded by Viking set-

tlement about 50 generations ago, and where population size has been constrained

over many generations, the time to MRCA is either of the order of 1000 genera-

tions ago, during the early settlement of Europe, or less than 50 generations ago.

To be able to use IBD sharing to infer sharing of rare variants, taking into ac-

count mutation rates (Duret, 2009; Nachman and Crowell, 2000), we restrict the

definition of IBD sharing to sharing via a recent common ancestor. In practice,

we can only do this by setting a minimum length for the shared region. For this

study we set the cut-off at 2 cM, equal to the expected length of sharing given

a time to MRCA of 25 generations. We used the high-resolution genetic map

from the HapMap project (Myers et al., 2005). Additionally, the cut-off at 2 cM

has been suggested in literature as a threshold above which accurate detection

from contemporary genotyping arrays can be obtained (Browning and Browning,

2010).

2.2.3 Algorithm of ANCHAP

The objective of ANCHAP is to infer recent identity by descent from SNP data

with maximum sensitivity and specificity, which means that it should declare IBD

only where the haplotype was co-inherited from a recent common ancestor, and

find all of such regions.

The algorithm consists of three stages:

1. Stage I. First scan for IBD sharing from comparisons of multi-locus geno-

types of all pairs of individuals.

2. Stage II. Splitting haplotype sharers by alignment and phasing. Individuals

carrying parts of the individual’s ”maternal” haplotype are distinguished

from ones that carry the ”paternal” haplotype. While the actual paternal or
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maternal origin of the proband’s haplotypes is unknown, haplotype sharers

are split into two groups.

3. Stage III. Second scan for haplotype sharing: a more sensitive and spe-

cific scan for IBD sharing, by pairwise comparisons of partially uncovered

haplotypes.

In Stage I, ANCHAP detects IBD sharing between pairs of multi-locus geno-

types, scanning for large regions without opposing homozygotes. Allelic dosages

at each SNP are coded as 0, 1 and 2, and opposing homozygotes between two

individuals at a SNP are when allelic dosages are 0 for first individual and 2 for

the second one, or 2 and 0. Where there are no opposing homozygotes over a

long region, a haplotype is likely to be shared IBD. To account for uncertain

sharing near the boundaries of a region with no opposing homozygotes, a number

of markers at the margins are trimmed, and are not included into the shared

region. The parameters of the method are the IBD threshold (the minimum ge-

netic length in centiMorgans of a region without opposing homozygotes between

a pair of genotypes) and the number of markers to be trimmed at margins. The

threshold values in centiMorgans relate to the time to common ancestor from

whom the haplotype was inherited, while values expressed as number of SNPs

exclude regions with low SNP density.

Stage II of the algorithm is executed for each proband in a study separately.

In a given region, in order to reconstruct phase, the proband’s haplotype sharers

can be split into two groups by alignment in Stage II. If sharers of proband’s

haplotypes on both gametes are present, they will form two groups. If sharers of

only one gamete are present, or if the proband is homozygous by descent they

will form one group. When sharers of each proband’s haplotypes are identified,

phasing becomes possible. We can recover the proband’s haplotypes at each locus

where at least one of the haplotype sharers is homozygous, but information about

all of the homozygotes among the sharers reduces the number of phasing errors.

Because a haplotype is shared, the haplotype sharer’s allele at a homozygous locus

must be the same as the allele on the proband’s haplotype (Kong et al., 2008a).

Each homozygous SNP among haplotype sharers is a ”vote” for consistent phase

at proband’s heterozygous locus; and votes from all homozygous sharers at a locus
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are added up to decide phase. As the method distinguishes groups of individuals

sharing each of the proband’s haplotypes in a region without recourse to pedigree,

the actual paternal or maternal origin of these proband’s haplotypes is not known.

Haplotype sharers are split into two groups, which could correspond to haplotype

origin. Figure 2.2 illustrates Stages I and II of the algorithm.
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Figure 2.2: Example of IBD detection (Stage I) and alignment of IBD regions
(Stage II) for one individual from ORCADES, chromosome 2. First we find
his/her haplotype sharers across the genome, and mark the regions of putative
IBD sharing as segments. The shared sequences are aligned into two groups, and
marked red, and blue accordingly. The grey segments denote misaligned shared
sequences. Individual 697 is a full sibling of the proband, with almost the entire
chromosome shared and more distant relatives share smaller blocks. Regions
of increased IBD are visible, which could arise in parts of genome where we
incorrectly infer time to common ancestors from whom haplotypes were inherited.

In Stage III of ANCHAP we make use of the phase information obtained from

IBD regions detected earlier. When partially complete haplotypes have been in-

ferred, a second scan for IBD sharing is undertaken, exploiting the additional

phase information gained. Phased haplotypes are compared between samples

and IBD is declared when they continuously match across a number of markers.

The idea for this second scan for haplotype sharing was inspired by the hidden

Markov model described in (Genovese et al., 2010). A pair of completely known
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haplotypes can have different alleles at any phased locus, while in a pair of un-

phased genotypes only at loci homozygous for both individuals are indicative of

sharing. Partially complete haplotypes carry more information for IBD detec-

tion, and thus the second scan can be more informative. To detect IBD from

comparisons of nearly complete haplotypes, we can use a smaller threshold in

terms of consecutive number of SNPs than the one that delineates IBD sharing

from IBS in Stage I, and we no longer need to trim the margins of the shared

regions as in Stage I. Recent IBD is declared in a region of consecutively matching

alleles between haplotypes that spans a sufficient genetic distance, and when the

number of phased markers in the region exceeds the threshold of minimum phase

information.

2.2.4 Settings required by ANCHAP

ANCHAP requires values for the following settings:

• TI - IBD threshold (Stage I). Minimum length of a region without opposing

homozygotes before it is declared as IBD, expressed in centiMorgans.

• RM - IBD region margins (Stage I). Number of markers trimmed from

margins of IBD segments.

• Alignment parameters: OT overlap threshold (number of heterozygous SNPs

where two segments overlap) and matching threshold MT (Stage II).

• PIII - minimum number of markers phased for both individuals in a putative

IBD region (Stage III).

• TIII - IBD threshold (Stage III), expressed in centiMorgans.

Using this notation for the parameters, algorithms for Stages I, II and III of

ANCHAP are described in Figures 2.3, 2.4, 2.5 and 2.6.
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Figure 2.3: Stage I: algorithm for first scan for sharing from unphased genotypes

Input: G, TI , RM

G : Genotype matrix: N×M (N : Number of samples, M number of SNPs),
with Gi,j ∈ {0, 1, 2,NA} - allele dosage

1. initialise IBD.segments (empty list for storing IBD segments)

2. for all pairs of individuals (i, j)

(a) identify segments of genome longer than TI centiMorgans without op-
posing homozygotes between multi-point genotypes of i and j,

(b) for all segments

i. trim RM from each margin of an IBD segment identified in (a)

ii. add indices of start and end SNPs, indices of individuals i, j to
IBD.segments

Output: IBD.segments
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Figure 2.4: Stage II: algorithm for alignment of IBD segments.

Input: G, IBD.segments, OT , MT

1. Initialise H1, H2 - two matrices to store phased haplotypes of all probands,
of same size as G. Initialise them at homozygous loci, otherwise leave
unknown.
i.e. H1(G == 0) = 0, H1(G == 1) = NA, H1(G == 2) = 1, similarly for
H2.

2. Initialise gam - a vector of same size as IBD.segments, gam ∈ {1, 2}, to
store which proband’s gamete a segment belongs to

3. for all individuals i

(a) IBD.segments.i - IBD segments of individual i with others, sorted by
the segment length in descending order

(b) for all segments s in IBD.segments.i

i. check if the genotype of the haplotype sharer in segment s is
matching haplotype 1, 2, or none of the proband i, with parame-
ters: if there are enough phased loci as specified by OT and that
i’s haplotype alleles agree with sharers genotype with tolerance
MT , accordingly assign 1 or 2 to gam[s]

ii. based on the new segment and its gamete assignment, update i’s
haplotypes in H1 and H2
(H1, H2) = phase(i, IBD.segments.i[1 : s], gam[1 :
s], G,H1, H2) (Figure 2.5)

Output: H1, H2, gam
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Figure 2.5: Stage II: algorithm for phasing using the aligned IBD segments

(H1, H2) = phase(i, IBD.segments.i, gam,G,H1, H2)

1. initialise vectors counting phase ”votes” , at each locus: ”votes” for ma-
jor allele on gamete 1 votes.H1.major, and for minor allele on gamete 1
votes.H1.minor

2. for all genetic loci l

(a) IBD.segments.i.l is a list IBD segments with individual i spanning
locus l

(b) identify all homozygotes of haplotype sharers at locus l from G

(c) according to the homozygous genotypes, and their gamete assignments,
update phase votes votes.H1.major and votes.H1.minor

(d) If votes.H1.major 6= votes.H1.minor, decide on phase at locus l ac-
cordingly, i.e. major H1 if votes.H1.major > votes.H1.minor

Output: updated H1, H2
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Figure 2.6: Stage III: algorithm for second scan for sharing from partially com-
plete haplotypes

Input: H1, H2, TIII , PIII

1. initialise IBD.segments.III(empty list for storing IBD segments)

2. for all pairs of individuals (i, j)
and 4 gamete combinations (g1, g2) ∈ {(1, 2), (1, 1), (2, 1), (2, 2)}

(a) identify segments of genome without opposing homozygotes between
multi-point haplotypes of i and j from gametes g1, g2, longer than
TIII centiMorgans, with at least PIII phased SNPs

(b) for all found segments

i. add indices of start and end SNPs, indices of individuals i, j, ga-
mete indicators g1, g2 to IBD.segments.III

Output: IBD.segments.III

2.2.5 Comparison of methods

We evaluated methods for detecting recent IBD using genetic data for parent-

offspring trios. We compared ANCHAP against SLRP - a fully probabilistic

method for long-range phasing, and against fastIBD - a short-range method

designed for populations of unrelated individuals. We evaluated their results

genome-wide against recent IBD that can be reliably detected by comparison of

haplotypes phased using parental genotypes.

Reference haplotype sharing was recovered between individuals whose parents

were also genotyped. Among the individuals genotyped in ORCADES, there were

58 individuals with both parents genotyped, and on average 80% of heterozy-

gous loci of such reference individuals were phased. We identified the regions of

reference recent IBD sharing between pairs of reference individuals where their

haplotypes are identical for at least 2 cM, over at least 100 SNPs. For genotyping

arrays used in this study 2 cM corresponds roughly to 200 SNPs, and setting a
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lower threshold eliminates only the regions with particularly low SNP density.

Such a definition of reference IBD segments carries possible problems. Firstly,

by setting a threshold on length of the segments, we are not setting a precise

cut-off for time to common ancestor. Given length of a haplotype shared IBD

there is much uncertainty about time to the common ancestor from which the

haplotype was inherited. This is further discussed in Chapter 5. Secondly, there

may be genotyping errors or incomplete phase in the genotypes of the parents,

and therefore the reference segments may be inaccurate. An alternative would be

to generate true IBD segments and genotype data through simulations, yet this

would involve making many assumptions about the history of the populations.

Our reference IBD segments from ORCADES should reflect the population well.

Each of the compared methods was applied to genotype data from the 597

individuals in ORCADES, free from parent-offspring pairs. The results between

the 58 reference individuals were evaluated against the regions of reference IBD

obtained from their known haplotypes, as also parents of the reference individuals

were genotyped. For fairness of the comparison with ANCHAP, segments shorter

than 2 cM had been pruned from results of SLRP and fastIBD. Before this simple

post-processing of the result, ANCHAP outperformed the other methods. Since

the aim is to recover regions of IBD sharing longer than 2 cM, I found this post-

processing fair.

The total number of markers in output regions that are also in the reference

IBD regions is TP (true positives), in reference regions but not in the output

regions is FN (false negatives), not in reference regions but in the output regions

is FP (false positives). For each method in the comparison we quote sensitivity

defined as the ratio TP/(TP + FN) and false discovery rate FP/(FP + TP ).

Parameter tuning for the methods was informed by the following performance

metrics:

• sensitivity - TP/(TP + FN),

• false discovery rate - FP/(FP + TP ). We used false discovery rate, rather

than false negative rate, because it is informative for further analysis of the

IBD relationship. It is useful to know that given recent IBD was detected

at a locus, how likely a recent haplotype is not shared.
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In case of ANCHAP, there are also evaluation measures that express the

quality of alignment in Stage II:

• Ir - inconsistency rate - how many of the alleles of haplotype sharers were

homozygotes not consistent with homozygotes of the majority of the hap-

lotype sharers, divided by the number of haplotype sharers.

• Pa - percentage of aligned sequences in the first stage of an algorithm. Out

of all detected IBD regions in the first round, what proportion of them were

aligned into one of the gametes.

2.2.6 Parameter tuning

All of the compared methods require setting different parameters. The methods

were tuned according to their sensitivity and false discovery rate on a subset

of the ORCADES data set from chromosome 2, using the reference individuals

phased in parent-offspring trios, as well as by success of alignment in Stage II (Ir

and Pa)

We attempted to set the IBD threshold at Stage I of ANCHAP (TI) such

that the length of falsely assumed IBD regions is reduced (false discovery rate)

while recovering as much of the true IBD regions as possible (sensitivity), and

thus the phase recovery that uses the IBD segments is most accurate and max-

imally spread. The margin sizes RM were set by comparison of margins of IBD

regions deduced from genotypes and the reference haplotypes. The setting of the

alignment parameters at Stage II aimed at increasing the ratio of the IBD seg-

ments aligned into haplotypes (Pa), and minimizing the inconsistencies between

them (Ir), which indicate alignment errors. At Stage III, the minimum number

of markers phased for both individuals in a putative IBD region (PIII) was set

using the reference haplotypes and the sensitivity and specificity values.

Also using the values of sensitivity and false discovery rate in data from chro-

mosome 2, we adjusted the parameters of SLRP and fastIBD. SLRP required

setting the expected length of IBD regions and expected regions of IBS but not

IBD regions. The scale parameter in fastIBD controlled the parsimony of the

haplotype model.
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2.2.7 Data pre-processing

The data sets were pre-processed in PLINK (Purcell et al., 2007) to eliminate

low quality markers. We removed markers with call rate of less than 95%, out

of Hardy-Weinberg equilibrium (p < 0.001), or those with minor allele frequency

lower than 1%. We excluded individuals with more than 7% genotype markers

missing, and retained only the autosomal SNPs. After pre-processing, the follow-

ing numbers of samples remained: ORCADES (749 individuals, 302,379 SNPs

on 22 chromosomes), CROATIA-KORCULA (945 individuals; 317,223 autoso-

mal SNPs, including 295,574 ORCADES SNPs), CROATIA-VIS (991 individu-

als; 301,069 autosomal SNPs, including 291,857 ORCADES SNPs), SOCCS (958

individuals; 306,204 autosomal SNPs, including 294,703 ORCADES SNPs). We

localized the SNPs on the HapMap genetic map of recombination rates (Consor-

tium, 2007).

2.3 Results

2.3.1 Tuning ANCHAP

2.3.1.1 Reference sharing in ORCADES study

The evaluation of the algorithms was possible thanks to parent-offspring pairs

genotyped in the ORCADES study. There are 58 individuals with both parents

genotyped, and at 80% of their heterozygous loci they could be phased using their

parents’ genotypes. There are 160 with at least one parent genotype and they

could be phased at 70% of heterozygous loci.

To obtain the reference IBD information, we extracted IBD regions between

the 58 reliably phased reference individuals. We required alleles with identical al-

leles in a region of haplotypes larger than 2 cM and containing at least 100 SNPs.

Such regions are highly likely to be IBD since they are based on haplotypes

reconstructed from parents’ data. The search for IBD regions is more specific

when comparing known haplotypes than when comparing genotypes, since the

former uses information at all markers, while the latter only at doubly homozy-

gous markers. The length of IBD regions between the reference individuals is
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shown in Figure 2.7a. Frequency of IBD sharing across the genome is shown

in Figure 2.7b. To verify if the regions of increased IBD sharing coincide with

unusual SNP densities in region with respect to physical and genetic maps, we

show these below.
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(a) Lengths of reference IBD segments in the reference data set for 58 individuals from
ORCADES. Most of the shared regions are only slightly larger than 2 cM, giving a
median of 5 cM.

(b) Distribution of IBD segments across the genome in the reference data set for 58
individuals. Regions of common IBD sharing could arise because of many false positive
detections in a region, for example in regions with poor SNP coverage, or where genetic
map does not allow to distinguish recent from ancient IBD sharing. Top: frequency
of IBD sharing at a genetic locus, averaged over samples in study. Middle: genetic
positions of SNPs. Bottom: physical positions of SNPs. We conclude that there are is
no unusually low density of SNPs in the regions of frequent IBD. Around the peak on
chromosome 6 there are fewer recombinations than in neighbouring genetic regions.

Figure 2.7: Properties of IBD segments between the 58 reference samples in
ORCADES.
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2.3.1.2 IBD threshold in Stage I

In Stage I of ANCHAP we would like to phase all heterozygous genotypes with

maximum accuracy, and using this principle we set a parameter value for TI .

Genotypes would be widely phased if many haplotype sharers are detected through-

out the genome. There would be few phasing errors if there is no falsely detected

IBD sharing. Therefore the sensitivity and false discovery rate of detecting IBD

sharing, as evaluated on the reference phased individuals, are meaningful metrics

which will reflect the quality of phasing. The plot of sensitivity and false discov-

ery rates of IBD sharing for different IBD thresholds in Stage I is shown in Figure

2.8. In further experiments we set the threshold TI to 3 cM.

On the other hand, incorrectly detected IBD in the first stage does not neces-

sarily lead to phasing errors. When there is more than one haplotype sharer, and

some falsely detected IBD segments in the region, the alignment stage of AN-

CHAP will likely eliminate it if true IBD sharers are in majority. This is because

the phase of a genotype is decided by voting from genotypes of haplotype sharers

(see Figure 2.5).
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Figure 2.8: Sensitivity and false positive rate of IBD regions as recovered by
Stage I of ANCHAP. The numbers in green on the plot are the TI threshold
values expressed in centiMorgans.
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2.3.1.3 IBD region margins

At each margin of a putative IBD sharing region we trimmed RM = 100 markers.

In the experiments with the reference data, after cutting off 100 markers at each

side, 94% of detected sharing regions did extend to where the reference haplotypes

were no longer identical.

2.3.1.4 Stage II - alignment parameters

In Stage II of ANCHAP haplotype sharers are split into two groups based match

between sharers’ genotypes and haplotypes of a proband being reconstructed.

The algorithm starts with the longest and therefore most certain IBD regions

shared with other individuals, reconstructs a draft of the phase for genotypes of

an individual, and then matches the remaining sharers against the preliminarily

phased genotypes. Errors may occur in the preliminarily reconstructed haplo-

types, and therefore a few inconsistencies between the draft of the haplotypes

and the aligned sequences may be allowed.

There are two parameters necessary for this part of the algorithm. The overlap

threshold (OT ) specifies the minimal number of markers of overlap between the

draft of phase of an individual and the new IBD region shared. The matching

threshold (MT ) specifies how many alleles may be mismatching between the draft

of the phase and a genotype of the putative IBD sharer.

Appropriate values of parameters will result in more accurate splits of haplo-

type sharers into two groups and consequently in lower phasing error, and higher

proportions of genotypes will be phased. A higher proportion of the putative

IBD sequences would be therefore aligned (Pa). The genotypes of IBD sharers

who are all classified as sharing the same haplotype, should also be consistent be-

tween each other. There should be no opposing homozygotes between genotypes

of haplotype sharers of an individual, and therefore the inconsistency rate (Ir)

should be lower.

In Figure 2.9 we evaluate the impact of different values of the overlap threshold

and the matching threshold. For each pair of values, we evaluate the percentage

of the putative IBD regions successfully aligned (Pa), and the inconsistency ratio

(Ir).
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Figure 2.9: Experiments with parameters for Stage II of ANCHAP.
On the left Y-axis is Pa - percentage of aligned sequences in the Stage II of an
algorithm. On the right Y-axis is Ir - the inconsistency rate as a consequence of
alignment - how many of the alleles of haplotype sharers were homozygotes not
consistent with homozygotes of the majority of the haplotype sharers, divided by
the number of haplotype sharers.
Intending to maximise Pa while minimising Ir, in further experiments we chose
parameter values indicated by the vertical line.
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2.3.1.5 Stage III parameters

For an individual, where regions of IBD sharing were detected in Stage I and hap-

lotype sharers were assigned accordingly to gamete of origin in Stage II, his hap-

lotypes would have been partially recovered. In Stage III the algorithm searches

for haplotypes matching continuously in regions which are at least 2 cM long. In

addition we require that both of the compared haplotypes are phased. Another

parameter (PIII) specifies a minimum number of markers phased in both of the

haplotypes. The default parameter value is 200 SNPs.

In Table 2.1 we show the accuracy of IBD detection when the PIII threshold is

varied. With values of the parameter below 100 SNPs sensitivity is not increased,

as there are hardly any reference IBD segments with fewer than 100 consecutive

and phased SNPs. For larger values of the threshold false discovery rate decreases,

because they eliminate regions with low SNP density or unphased genotypes. In

order to reduce false discovery rate, in further experiments we set PIII to 200

phased markers.

PIII sensitivity false discovery rate
10 0.84 0.031
20 0.84 0.031
50 0.84 0.027
100 0.84 0.016
200 0.81 0.011

Table 2.1: Experiments with values of the parameter for Stage III - PIII . This
parameter specifies how many markers in the region of putative IBD need to be
phased in the relevant region of two multi-point genotypes. Below 200 markers
noted is increase of false discovery rate. Marked in grey is the value of the
parameter used in further experiments.
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2.3.2 Tuning settings of SLRP

Table 2.2 shows experiments with empirical and default parameter values for

SLRP. We compared accuracy of the algorithm in detecting the IBD segments on

chromosome 2 when used with the default values and with values obtained em-

pirically. The expected IBD length in centiMorgans was computed from the IBD

regions between the reference individuals in ORCADES, after they were phased.

The expected IBS but not IBD was calculated from IBS segments between the

reference individuals. Because we defined IBD as matching of haplotypes within

a region longer than 2 cM, out of the output of SLRP we filtered out the results

shorter than this threshold. Table 2.2 shows accuracy of SLRP.

SLRP setting ExpectedIBS ExpectedIBD sensitivity false
(cM) (cM) discovery rate

default 1 10 0.76 0.0076
empirical 0.42 9.17 0.77 0.0106

Table 2.2: Tuning parameter settings for SLRP. Only counting the IBD regions
longer than 2 cM. Sharing between the 58 Orkney individuals was evaluated using
data from chromosome 2. Marked in grey is the value of the parameter used for
a genome-wide comparison.

2.3.3 Tuning settings of fastIBD

In Table 2.3 we show experiments varying the scale parameter required by fastIBD.

The scale parameter controls the complexity of haplotype model created. We fil-

tered out regions shorter than 2 cM, in accordance with our definition of IBD.
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scale sensitivity false discovery rate
minimum advised 1 0.270 0.000

2 0.631 0.010
2.5 0.744 0.018
2.6 0.767 0.018
2.7 0.783 0.019
2.8 0.802 0.021
2.9 0.805 0.024
3 0.825 0.024

3.1 0.832 0.027
3.2 0.837 0.028
3.3 0.845 0.030
3.4 0.849 0.032
3.5 0.857 0.036

maximum advised 4 0.870 0.045
merge 10 runs 3 0.868 0.044

Table 2.3: Tuning parameter settings for fastIBD, using data from chromosome 2
for the 58 reference individuals from ORCADES. Marked in grey is the value of the
parameter used, where sensitivity matches that one of ANCHAP on chromosome
2.
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2.3.4 Phase propagation in ANCHAP

Table 2.4 shows the gain in sensitivity and the reduction in false discovery rate in

detection of recent IBD regions that are obtained at Stage III of our algorithm,

as compared to Stage I. On chromosome 2, sensitivity of IBD detection between

the 58 reference individuals per pair of individuals per marker grew from 0.75 to

0.81 in the second round. Detection of identity by descent for partially phased

haplotypes in the second round helped to reduce the false discovery rate from

0.16 to 0.01.

method ANCHAP Stage ANCHAP Stage III

sensitivity 0.75 0.81

false discovery rate 0.16 0.01

Table 2.4: Experiments with data from chromosome 2, 597 ORCADES individ-
uals with their genotyped parents removed. The identified regions of IBD were
evaluated against phased haplotypes of 58 individuals who could be phased using
the genotypes of their parents.
Stage III of ANCHAP offers better accuracy in detecting regions of IBD than the
first one.

2.3.5 Comparison of ANCHAP against other methods

Table 2.5 compares different tuning settings of ANCHAP, SLRP and fastIBD. Us-

ing data from chromosome 2, we manipulated parameters of SLRP and fastIBD

to match sensitivity and false discovery rate of ANCHAP. Notably, as the sen-

sitivity of fastIBD grows to exceed ANCHAP’s 0.81, the false discovery rate of

fastIBD reaches 0.024.
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method parameters and values sensitivity false discovery rate

ANCHAP TI - IBD threshold Stage I: 3 cM 0.81 0.010

TIII - IBD threshold Stage III: 2 cM

OT - overlap threshold: 10 markers

MT - mismatch tolerance: 2 %

PIII - minimum phase information: 200 SNPs

SLRP default 0.76 0.008

ExpectedIBS: 1cM

ExpectedIBD: 10 cM

SLRP empirical 0.77 0.011

ExpectedIBS: 0.42 cM

ExpectedIBD: 9.17 cM

fastIBD scale: 1 0.27 0.000

fastIBD scale: 2.8 0.80 0.021

fastIBD scale: 2.9 0.81 0.024

fastIBD scale: 3 0.83 0.024

fastIBD scale: 4 0.87 0.044

Table 2.5: Parameter tuning of ANCHAP, SLRP and fastIBD. Experiments with
data from chromosome 2, 597 ORCADES individuals with their genotyped par-
ents removed. The identified regions of IBD were evaluated against phased haplo-
types of 58 individuals who could be phased using the genotypes of their parents.
Highlighted rows indicate parameters used in genome-wide analysis.

Table 2.6 shows the accuracy of IBD detection of ANCHAP against the other

methods and their running times. Genome-wide, the methods achieved similar

sensitivity of IBD: from 0.75 for SLRP, 0.78 for ANCHAP and 0.82 for fastIBD.

Long-range methods, ANCHAP and SLRP resulted in similar false discovery

rates of 0.009 and 0.007 respectively, while for fastIBD it is 0.025. Genome-wide

inference of IBD with the SLRP model took much longer than for the other

methods: the analysis with SLRP took 207 hours, whereas ANCHAP handled

the same task in 20 hours and fastIBD in 12 hours.
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method ANCHAP SLRP fastIBD

sensitivity 0.78 0.75 0.82

false discovery rate 0.009 0.007 0.025

runtime(hours) 20 207 12

Table 2.6: Comparison of accuracies of methods for IBD detection. ANCHAP is
compared to SLRP - a probabilistic method for phasing in isolated populations,
and to fastIBD - a method designed for general populations. This genome-wide
comparison was run on the subset of 597 individuals from ORCADES, such that
their parents were not included. Regions of IBD were also evaluated using parent-
offspring trios. Experiments were run on a computer with a 2.0 GHz and 16 GB
of RAM.
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Additionally, in Figure 2.10 we show frequency of IBD sharing across the

genome, as detected by different methods. In Figure 2.11 compared are lengths

of IBD segments detected by different methods. As can be seen from the graph,

ANCHAP does not detect the longest segments of IBD sharing in one piece. This

could be because ANCHAP does not account for possible phasing errors in Stage

III.

Figure 2.10: Genome-wide view of haplotype sharing as recovered by the com-
pared methods. SLRP and fastIBD are more conservative in IBD detection, and
have less apparent IBD peaks.
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Figure 2.11: Lengths of detected IBD segments [cM]. IBD regions detected by
ANCHAP are generally shorter than ones identified by fastIBD or SLRP.

2.3.6 Sharing in different cohorts and across the genome

The average number of haplotype sharers per SNP varied from 9.4 in CROATIA-

KORCULA, through 12.3 in ORCADES and 12.6 in CROATIA-VIS. In SOCCS

which consists of genotypes of nominally unrelated individuals, there were only

0.9 sharers per locus on average.

The frequency of haplotype sharing varies not only between the cohorts, but

also across the genome. Figure 2.12 shows average counts of haplotype sharers

in different locations across the genome. Drops at the telomeres can be consis-

tently observed, as well as the peaks on chromosomes 2, 6, 8, and 9. In SOCCS

particularly notable are the peaks on chromosomes 2 and 6, that also occur in

ORCADES and CROATIA-VIS but not in CROATIA-KORCULA.
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Figure 2.12: Density of haplotype sharers across the genome, in the four cohorts.
The horizontal axis shows index of a SNP, and not its physical or genetic location.
Genetic positions of the peaks highlighted with diamonds are given in Tables 2.7,
2.8, 2.9, 2.10.

2.3.7 Regions of increased frequency of IBD

In Figure 2.12 marked with dots at horizontal axes are regions where recent IBD

is particularly common. Tables 2.7, 2.8, 2.9, 2.10 list positions of these peaks in

the genome. Next to the locations of peaks, shown are references to studies where

the same peaks have been found in different outbred and inbred populations, and

interpretation or names of genes present.
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chromo-

some

position position studies reporting differential

selection in region

interpretation

left [kb] right [kb]

2 134144 138947 Moskvina, Han Immunity (AMSD), lactase

(LCT)

3 15484 24365

6 27145 33161 Moskvina, McEvoy, Albrecht-

sen, Han

HLA region - immunity, zinc

fingers

8 95306 97626 Albrechtsen, Han COH1, VPS13B, COX6C

10 100639 119196

14 77965 88690 Albrechtsen

19 18379 34464

Table 2.7: Positions of peaks in frequency of IBD in ORCADES (build 36)

chromo-

some

position position studies reporting differential

selection in region

interpretation

left [kb] right [kb]

1 186888 190805 Han RGS1

2 47152 59773 Albrechtsen

6 25952 33936 Moskvina, McEvoy, Albrecht-

sen, Han

HLA region - immunity, zinc

fingers

9 80562 83295

9 101090 106669

Table 2.8: Positions of peaks in frequency of IBD in CROATIA-VIS (build 36)

chromo-

some

position position studies reporting differential

selection in region

interpretation

left [kb] right [kb]

1 90094 101013

1 167719 177243 Han NME7, BLZF1, C1orf114,

GPR52, TNR

2 54456 63368

12 77079 90001

18 64446 66196

Table 2.9: Positions of peaks in frequency of IBD in CROATIA-KORCULA (build 36)

chromo-

some

position position studies reporting differential

selection in region

interpretation

left [kb] right [kb]

2 134028 139092 Moskvina, Han Immunity (AMSD), lactase

(LCT)

6 25535 33096 Moskvina, McEvoy, Albrecht-

sen, Han

HLA region - immunity, zinc

fingers

Table 2.10: Positions of peaks in frequency of IBD in SOCCS (build 36)
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Figure 2.13: Frequency of IBD sharing throughout the genome, when lengths of
IBD segments were expressed as a number of SNPs.
ORCADES - red, CROATIA-VIS - blue, CROATIA-KORCULA - green, SOCCS
- orange.
IBD peaks on chromosomes 6 and 11 had been apparent before a genetic map
was used for measuring length of IBD segments, and indirectly measuring time
to common ancestor from whom a haplotype was co-inherited.

Figure 2.13 shows peaks on chromosomes 6 and 11, which we removed by

specifying IBD thresholds as minimum length in centiMorgans, rather than as

minimum number of SNPs in a region. In Figure 2.13 the peak on chromosome

6 falls in the HLA region, where according to the genetic map recombinations

are infrequent, but the density of SNPs per centiMorgan is unusually high. The

shared haplotypes recovered around the peaks were probably co-inherited from

common ancestors in very remote past. The more ancient the common ancestor,

the more contemporary lineages there that carry the haplotype, which would

explain the peaks of IBD frequencies. As using the genetic map eliminates the

drastically high peaks, we believe that time to common ancestors of haplotype

of same lengths can be dated back to similar times in the past throughout the

genome.
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2.4 Discussion

In the previous sections we described ANCHAP - a new heuristic-based algorithm

for detecting recent IBD sharing from SNP data. The algorithm was compared

against SLRP - a probabilistic long range-phasing method and fastIBD - a short-

range program designed for studies containing nominally unrelated individuals.

We found that ANCHAP is an order of magnitude faster than SLRP and has

lower false discovery rate than fastIBD. We studied recent IBD in three isolated

populations and in a study of nominally unrelated individuals. We noted that in

some parts of the genome IBD sharing is particularly frequent.

2.4.1 Comparison with other methods for IBD detection

Design of the algorithms affects the performance of the methods for IBD in-

ference. Systematic Long Range Phasing (SLRP) is a model-based probabilistic

approach for simultaneous IBD detection and phasing. It can simultaneously han-

dle genotyping errors and phase uncertainty, yet this comes at the price of high

computational demand. The loopy belief propagation algorithm, which SLRP

uses for inference, may not find the optimal solution and is not guaranteed to

converge. ANCHAP does not explicitly model genotyping errors; phasing and

IBD detection are separate steps, yet in our test detects recent IBD as well as

the computationally more expensive SLRP. When a genotyping error gives rise

to a pair of opposing homozygotes in a region of IBD sharing, the region of shar-

ing detected by ANCHAP may be shorter, or missed altogether. However, in

ORCADES we encountered on average only 1 opposing homozygote per 10,000

markers in genotypes of parent-offspring pairs, so genotyping errors will not pre-

vent most of the shared regions from being detected. FastIBD is a method for

IBD detection designed for general populations (Browning and Browning, 2011a).

It builds a model of haplotypes which can capture only short range allele corre-

lations. This deficiency is then ameliorated by sampling multiple haplotypes for

each individual, and checking overlap of such samples between pairs of individ-

uals. FastIBD was more sensitive than ANCHAP or SLRP, but also returned

more false discoveries. A possible explanation for why fastIBD yields more false

discoveries is that haplotype re-sampling of short blocks may occasionally yield
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haplotype matches between samples by chance.

It seems unlikely that the differences in sensitivity and false discovery rate

between the methods would seriously affect the uses of detected IBD region in

mapping complex traits or IBD-based imputations. Sensitivity approaching 100%

would be desirable for downstream applications (Browning and Browning, 2011b),

but none of the methods achieves sensitivity of IBD detection of more than 81%

for the ORCADES data. In case of ANCHAP this probably results from inabil-

ity to handle the incorrect assignments in Stages I and II, which trigger phasing

errors, so that IBD is no longer detected in Stage III. Ability to recover from

sporadic phasing errors would certainly improve the sensitivity of IBD detection.

For SLRP incomplete IBD detection could be due to limitations of the inference

algorithm, conservative approach to declaring IBD, or low tolerance to inconsis-

tencies between the IBD sharing relationship and possibly noisy data. In case of

fastIBD, if for a pair of individuals sharing IBD there are few haplotypes which

would explain the genotypes, the program may not sample the matching pair. In

accordance with this observation, the highest sensitivity we could achieve was by

runs of fastIBD with scale parameter set to 4.0, repeated ten times. Together

with the sensitivity going up to 89%, the false discovery rate also grew to 7%.

When comparing the design of the algorithms, SLRP seems more elegant and

flexible than ANCHAP. The SLRP algorithm not only handles genotyping er-

rors, but also discovers IBD regions and haplotyping simultaneously. However,

inference on the Bayesian network in SLRP is computationally very expensive,

and its implementation relies on simplifications that likely impede performance

of SLRP. ANCHAP, on the contrary, has the advantage of simplicity in imple-

mentations which, according to the results of the experiments, does not impair

the performance.

The comparison of methods as well as parameter tuning are based on presence

of parent-offspring trios among the ORCADES samples. Genomic locations of

endpoints of reference sharing regions as determined by parent-offspring phasing

are only as accurate as the SNP density allows. The reference regions may still

have false endpoints because a recombination may not be detectable from SNP

alleles. However, the endpoints should not affect the results of the comparison, as

they will be small compared to the regions themselves; long matching haplotypes
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that do not descent from a common ancestor are unlikely. In the absence of

parent-offspring trios, several types of inconsistencies between the genotype data

and IBD relationships recovered could indicate errors. For example, the multi-

point genotypes of haplotype sharers, which are recognized to carry one of the

probands haplotypes, cannot have opposing homozygotes with respect to not just

the proband, but also each other.

2.4.2 Genetic maps and peaks of IBD

ANCHAP requires setting a minimum length of a segment between two multi-

point genotypes without opposing homozygotes, and above this threshold the

algorithm infers that two samples share a haplotype IBD. The threshold is ex-

pressed in centiMorgans, with respect to a genetic map (Consortium, 2007; Myers

et al., 2005). By expressing the threshold on a haplotype segment shared IBD in

centiMorgans, we indirectly limit the times to common ancestors from whom the

haplotypes were co-inherited. Such a correction is evident in the SOCCS data,

where using the HapMap genetic map markedly reduces the size of the peaks for

apparent IBD sharing on chromosomes 6 and 11, as shown in Figure 2.13.

Still, the genetic map may not fully account for population history, for example

the extent of linkage disequilibrium in DNA of isolate founders in different parts

of the genome, or selection pressure that favoured some variants in relevant parts

of the genome. In regions of extended linkage disequilibrium haplotypes may be

very similar to each other, which may be confusing for ANCHAP. If haplotypes

are very similar to each other, and we observe only unphased SNP genotypes,

our method may declare IBD incorrectly even when two individuals do not share

a recent common ancestor and their full sequences are not identical. If selection

acted on some part of the genome, it might have increased frequencies of some

haplotypes. ANCHAP would detect the selection signature as increased frequency

of IBD sharing in a region. Because of selection, times to common ancestors from

whom the haplotypes were inherited would date further back than elsewhere in

the genome. This gives rise to regions of increased frequency of IBD sharing.

Even when using the genetic map, we can observe regions of excess IBD

sharing also in SOCCS, a cohort composed mainly of unrelated individuals from
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across Scotland, around the two peaks on chromosome 2 and 6. These peaks also

occur in ORCADES and partially in the Croatian cohorts. Any two individuals in

SOCCS are likely to have only very remote common ancestors. Because selection

pressure or high linkage disequilibrium in the peak regions are not taken into

account, ANCHAP confuses the ancient common ancestors with more recent

ones.

We thus believe that while in general by using the genetic map we limit the

inference of IBD to segments with recent common ancestors from whom haplo-

types were co-inherited, in some parts of the genome we may not account for

extensive linkage disequilibrium among isolate founders or selection events.

2.4.3 Identity by descent and positive selection

Albrechtsen et al. have shown in simulations that positive selection gives rise

to excess IBD sharing (Albrechtsen et al., 2010). They also detect where recent

positive selection might have acted in the 11 populations from HapMap. They

find peaks on chromosome 6 in the HLA region and on chromosome 8, which

contains the defensin gene.

A new method for IBD detection based on a hidden Markov model is described

(Han and Abney, 2012). The model gives probabilities of all 9 IBD states between

pairs. The model is employed in a search for positive selection in genotype samples

from Kenya. A simulation study estimates the accuracy of the method. The

authors quantify IBD rates across the genome, and exclude the possibility that

the peaks are a reflection of increased linkage disequilibrium. In the increased

regions, they search for evidence for positive selection in literature. Around 50

signals were found, half of which are novel. Only the literature search is presented

as validation of the results, and no evaluation of significance is provided. They

also find peaks in the HLA region, and one on chromosome 11 which contains

clusters of olfactory receptors.

The HLA region is known for extensive conservation of haplotypes spanning

it (Ferreira et al., 2012). HLA molecules are expressed on many human cells,

and more than 100 SNPs in the HLA region have been implicated in autoimmune

and inflammatory conditions. Many of the described associations are with hap-
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lotypes, as otherwise the mapping efforts have been thwarted by the high linkage

disequilibrium.

2.4.4 Detection of positive selection through allele fre-

quencies

Genes under positive selection would reveal themselves through excess IBD, but as

a consequence also through altered allele frequencies. If several haplotypes carry

a variant under selections in a population, this would affect the allele frequencies

in the region. Moskovina et al. (Moskvina et al., 2010) analyse differences in allele

frequencies between participants of a schizophrenia study from Bulgaria, Ireland,

Scotland, Sweden and Portugal. They detect SNPs where allele frequencies are

significantly different in the populations. They list 11 top regions and annotate

them with gene ontology software.

Equivalently, traces of natural selection can be seen by computing Wright’s

fixation index FST (McEvoy et al., 2009). They identify 11 peak regions, annotate

them with genes they contain, and provide interpretation. Furthermore, they

demonstrate haplotype analysis of the HLA peak. They demonstrate a commonly

shared haplotype longer than 3 cM.

2.4.5 Possible improvements to the algorithm

To use ANCHAP in new studies, the the program would benefit from improve-

ments like explicit handling of genotyping errors and parallel execution.

2.4.5.1 Explicit handling of genotyping errors

At the moment the genotyping errors in array data are not explicitly accounted

for. I estimated in data from ORCADES that opposing homozygotes due to

genotyping errors occur only once per 10,000 SNPs. Because of the heuristics used

and the amount of data, the genotyping errors should be irrelevant. In the first

Stage of the algorithm, the inference relies on presence of opposing homozygotes,

which are unlikely to occur by chance. At Stage II, phase is decided based on
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genotypes of multiple sharers, most of whom are likely to be correct. Any single

genotyping error is unlikely to affect the haplotypes being phased.

However, explicit modelling of genotyping errors will be important for detec-

tion of IBD segments from next-generation sequencing data. In next-generation

sequencing data, SNP calls carry uncertainty depending on read depth. Handling

of genotype errors could be achieved through introducing hidden Markov models,

where hidden states correspond to whether a haplotype is shared, and observed

variables are possibly noisy genotypes.

2.4.5.2 Implementation

The algorithm has been implementing as an R package, for ease of prototyping

and sharing. String matching at Stages I and III was implemented in C++

for efficiency. Further improvement would be achieved if more of the code was

translated into C++, for example whole of Stage II.

While for cohorts with 1000 samples the running times are less than one day

on a compute cluster, running it on sets with 10000 individuals requires running

several smaller jobs in parallel. This can be achieved by dividing the genome

into chromosomes, as processing of chromosomes is independent. Furthermore,

in Stage II all individuals are processed independently of one another, so these

computing jobs could be run in parallel.

2.4.6 Conclusions

We have described methods for detecting regions of haplotypes shared IBD from

SNP data. We now proceed to applications of inferred IBD regions: optimisation

of resequencing studies, studying diseases with Mendelian subtypes and genomic

predictions.
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Chapter 3

Optimisation of resequencing

studies in population isolates

based on identity by descent

3.1 Background

The aim of resequencing studies in population isolates is to identify effects of

variants which outside of an isolate could be very rare. While cost of next gen-

eration sequencing is still significant, we can reduce costs of resequencing by

exploiting widespread identity by descent between the subjects. The reduction

of cost can be obtained by sequencing a subset of individuals whose haplotypes

are representative of study, and using identity by descent to impute genotypes for

non-sequenced samples. Imputations that rely on identity by descent (IBD) are

now recognized to increase the power of sequencing studies in population isolates

(Zeggini, 2011).

The aim of this chapter is to assess whether recent identity by descent dis-

covered in array data can be useful for optimising resequencing studies. This

could be achieved by optimal selection of individuals for resequencing, as well as

by more accurate imputations. We investigate accuracy of regions of identity by

descent inferred by ANCHAP, which has implications for imputations and the

algorithm of ANCHAP. Later we describe an algorithm for optimising the design

56



of resequencing studies in isolated populations. Finally, we discuss the design of

an algorithm for imputations informed by identity by descent.

3.1.1 Methods for optimisation of resequencing studies

Imputation models can be categorised into short and long-range ones, with the

former relying on linkage disequilibrium and the latter on longer regions of recent

identity by descent between samples.

3.1.1.1 Short-range imputation methods

Most short-range imputation methods use hidden Markov models (HMMs). HMMs

represent genotypes as mosaics of haplotypes from remaining individuals. The

visible states correspond to genotype data, and the hidden states correspond to

a haplotype mosaic. The models typically require parameters that represent re-

combination and mutation rates, and rely on haplotype blocks of 10-100 kb (Daly

et al., 2001). Where there are also longer, more recent IBD segments between

samples, short-range programs will not necessarily make use of them, because

they do not prioritise using longest haplotype segments as templates. In con-

trast, long-range methods use recent IBD segments, however they will not work

at all where there is no recent IBD.

Three examples of short-range imputation methods are IMPUTE2 (Howie

et al., 2009), MACH (Li et al., 2010) and Beagle (Browning and Browning, 2007).

MACH represents haplotypes in study samples as a mosaic of reference haplo-

types from the imputation reference panel only, for example HapMap haplotypes

(Gibbs et al., 2003). MACH first creates a haplotype mosaic for a subject us-

ing SNPs typed in both study and reference samples, and accordingly imputes

the genotypes not typed in study samples. In contrast, IMPUTE2 uses also

haplotypes from other study samples in addition to the reference haplotypes. In

IMPUTE2 the sampled mosaics are used for phasing only at SNPs typed for both

study and reference samples, and haplotypes at these universally typed SNPs are

then compared with reference haplotypes, assuming the phasing to be correct.

In addition to reference haplotypes, IMPUTE2 also allows use of unphased geno-

type reference samples. Beagle uses a similar imputation procedure, however it
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employs a more parsimonious model of haplotypes. All of the short-range imputa-

tion programs first perform phasing at universally typed SNPs, and subsequently

use the haplotypes for imputations.

3.1.1.2 Long-range imputation methods

Imputations could exploit long-range identity by descent, rather than using only

short co-inherited haplotypes. Where recent IBD is found, such imputations

could be more accurate, particularly for recent mutations, which create rare vari-

ants. No algorithm has been described which would use IBD to perform sequence

imputations.

IMPUTE2 does use the analogous concept of ’surrogate family’, however not

to find segments of IBD, but rather to speed up the algorithm. For a proband,

its ’surrogate family’ consists of samples most similar to proband’s genotype and

haplotypes, in terms of Hamming distance in the region considered (Howie et al.,

2011). In phasing, focusing on ’surrogate family’ members reduces the number of

hidden states of the hidden Markov models. For imputation, only haplotypes of

’surrogate family’ members are used from the reference samples. As each sample

is imputed using his custom set of reference samples, this allows using very large

reference sets. Because of the approximation IMPUTE2 may often make use of

long identical-by-descent haplotypes, but this is not explicit or guaranteed.

3.1.1.3 Optimisation of resequencing studies using recent IBD

Optimisation of resequencing studies was demonstrated in an extremely isolated

population of the Pacific island Kosrea in Micronesia (Gusev et al., 2012). They

proposed both an algorithm for choosing samples from resequencing, and a way

to evaluate regions of IBD inferred from array data against sequence data. In the

pilot study, they chose the seven sequencing samples, according to SNP genotypes

previously available. The selection of individuals is driven by their algorithm

called INFOSTIP, which exploits presence of IBD segments between individuals

in a study. It is a greedy algorithm for optimising resequencing studies, which is

described here in detail before I describe my modifications.

In INFOSTIP (Gusev et al., 2012), the choice of next individual for sequencing
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is driven by its utility given the previously selected individuals. Let:

• P be the set of individuals in a population,

• Q - the subset of individuals already sequenced,

• i - index of an individual,

• k - a locus in the genome,

• R(i, q) - set of IBD segments between individuals i and q,

• G - the set of SNPs in genome.

Chosen for resequencing each time is an individual that maximises the util-

ity of sequencing given Q, U(i, Q). The utility is defined with respect to total

information content (TIC) of set {Q, i} about the whole population P , and by

information content of the set Q about P .

U(i, Q) = TIC(P, {Q, i})− TIC(P, {Q}) (3.1)

Total information content expresses how much information about genotypes

of total cohort with individuals P is known if individuals in Q are sequenced,

however it is not a measure coming from the field of information theory. Rather,

it is fraction of all SNP genotypes in data for P that would be known through

either sequencing individuals in Q or ones that could be imputed from Q to P ,

and the number of all SNP genotypes in P . The number of SNP genotypes that

could be imputed for non-sequenced individuals is Σi∈P\QL(i, Q).

TIC(P,Q) =
|Q|G+ Σi∈P\QL(i, Q)

|P |G
(3.2)

For an individual i not in Q, the amount of information that can be imputed is

obtained by summing over genetic loci. This uses an indicator whether a genotype

of individual i can be imputed at locus g from sequenced samples in Q.
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L(i, Q) = Σg∈GI(i, g, Q) (3.3)

Lastly, the indicator is defined with respect to the IBD segments R. A geno-

type can be imputed for individual i at locus k if there exists (∃) an individual

q, such that i and q share IBD in a region containing k.

I(i, k,Q) =

{
1 ∃q ∈ Q(∃(l, r) ∈ R(i, q)(l < k ∧ r > k))

0 otherwise
(3.4)

Therefore, when selecting a new individual, the algorithm considers all regions

of genotypes where they share IBD with sequenced sample, as known. In practice,

they would be only known when there is a haplotype sharer for both gametes of

a proband, and the genotypes of a sequenced samples are homozygous, through

a similar argument like for long-range phasing algorithms in Chapter 2.

The algorithm chooses individual i that maximises U(i, Q), and adds i to

Q. This is a greedy procedure, which is a necessary approximation given that

in general the maximal coverage problem is NP-hard. An important part of

INFOSTIP is the data structure for storing IBD regions, such that they can be

efficiently queried for locations.

The algorithm was evaluated through the quality of imputations at deliber-

ately concealed SNPs. The authors did not propose an IBD-based imputation al-

gorithm, but rather used Beagle, a short-range imputation method. It was shown

that random selection of individuals gave imputations of considerably lower qual-

ity of imputations than when prioritised according to INFOSTIP.

Furthermore, the authors also evaluated quality of IBD segments against the

whole sequence data for seven selected samples. For a pair of samples that are IBD

in a region, there should be no opposing homozygote genotypes in sequence data.

If a an individual carries two copies of a rare allele at SNP, and his haplotype

sharer carriers no copies of the rare alleles at the SNP, this is not consistent

with a haplotype being shared. The authors counted all opposing homozygotes

between pairs in regions previously inferred as identical by descent. They also
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counted all loci where such inconsistencies could have happened, namely where

both samples are homozygous at a SNP in a region that the two individuals

share IBD, and when at least one genotype has two copies of the rare allele. Let

I be the number of opposing homozygotes between pairs of IBD sequences and A

number of mutually homozygous genotypes between pairs of IBD sequences, with

at least one being non-reference allele. Concordance C is defined as the ratio of

non-opposing homozygote genotypes in exome data (A− I) over A:

C =
A− I
A

(3.5)

Opposing homozygotes suggest incorrectly detected IBD or low quality of

sequence genotype calls. The authors of INFOSTIP take the concordance rate

as a measure of imputation accuracy when only one individual from the pair was

sequenced. By chance match of alleles, the concordance will not be zero even

at non-IBD segments, therefore a background concordance of sequence SNPs is

calculated for reference.

This method of optimising resequencing studies and evaluating IBD segments

against sequence data was a starting point for my analysis of data from the

ORCADES study.

3.2 Methods

3.2.1 Array data

Array data has been merged from ORCADES data set, obtained with a Illumina

Human Hap300 array with 293,687 SNPs, and from the Orcadian multiple scle-

rosis study, where a Omni1 array was used with around 1 million SNPs. After

merging and quality control, there were 171,755 genotypes for 908 individuals,

from which IBD segments were identified.
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3.2.2 Exome data

Individuals for exome sequencing were chosen from ones who had previously been

genotyped. The subset of individuals was selected to minimise relatedness be-

tween samples and maximise representation of haplotypes, using my algorithm

described later in this chapter.

Whole exome sequences were generated using the Agilent SureSelect All Exon

50 Mb kit. Average depth of reads was 29.5 x. Read alignment was done with

reference to human genome build 19, using Stampy (Lunter and Goodson, 2011).

GATKs genotyper generated genotype calls, using default parameters (McKenna

et al., 2010), and identified and 217,015 variants. Alignment of reads and SNP

calling were performed by Ross Fraser (Joshi et al., 2013).

The resulting genotypes underwent rigorous quality control, since in further

analysis we would like to assume their full correctness. Kept were only such

variants with phred-scaled quality of more than 40, called in at least 50% of

subjects, and with minor allele frequency more than 0.75%. Further criteria

included Hardy-Weinberg equilibrium test with p-value greater than < 10−4, and

mapping to homologous regions. After quality control, there were 100 samples

with 159594 SNPs. Retained were only the sites with quality exceeding 40, and

genotypes with quality at least 20. Available for analysis was exome sequence data

for 99 individuals from the ORCADES study, previously genotyped with GWAS

array. There were 7730 SNPs in common between the array and called exome

variants, which we used to assess the match between these two data types. We

excluded seven samples for whom the correlations between the exome and array

genotypes was less than 0.5, because we inferred that genotyping and sequencing

were done on different samples and the sample identities were misleading. For the

remaining 92 average correlation between exome and array genotypes was 0.92.

The imperfect match between array and sequencing genotypes could result from

errors in areas of lower sequencing depth. The resultant exome genotypes were

used for evaluating accuracy of inferred IBD segments.
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3.2.3 Evaluation of identity by descent established from

array data

Identity by descent inferred from array data should also hold for untyped loci in

the region. We can thus confirm postulated IBD-regions between two samples

using SNPs in exome sequence data. Even though the latter is unphased and

possibly noisy, absence or presence of opposing sequence homozygotes between

putative haplotype sharers can cast light on quality of the inferred IBD regions.

As a measure of consistency between sequence genotypes in the IBD segments

detected from array data we used concordance as defined in Section 3.1.1.3. This

enables comparisons with earlier work, and concordance also has the interpre-

tation as the probability of correct imputation from sequence of IBD sharers.

Finally, since the computation involves only pairs of genotypes where at least

one is homozygous on the non-reference allele, it is approximately independent

of allele frequencies.

The procedure of evaluating IBD regions with sequence data thus involves it-

erating over all IBD segments identified from array data, and counting opposing

homozygotes between sequences of the pairs. In this way we can see if the oppos-

ing sequence homozygotes occur more frequently in some regions of the genome,

whether they occur more often in tails of such segments, and whether the second

round of ANCHAP indeed improves the quality of IBD inference. The procedure

is described in Figure 3.1.

We repeated the procedure for control IBD segments. The control segments

are the same as the ones detected from data, but the identities of the individ-

uals from whom they come were randomly permuted. As long IBD between a

pair of random samples is unusual, such control segments are unlikely to be in

IBD regions, but have same lengths as the IBD segments detected. The control

segments allow as computing background concordance rates in non-IBD regions.
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Figure 3.1: Evaluation of IBD segments against exome SNPs: computing concor-
dance C

Input: E, IBD.segments

E: Exome SNP matrix: N ×M (number of samples by number of exome

SNPs), with Ei,j ∈ {0, 1, 2,NA} - allele dosage

IBD.segments = {(id1, id2, start.SNP, end.SNP)} (list of IBD segments

from array data, each with identities of sharers, and indices of start and

end SNPs)

1. initialise A := 0, I := 0

2. loop through IBD.segments

(a) access the pair of exome SNPs in E relevant to an IBD segment

(b) count opposing homozygotes between the pair of exome segments: ii

(c) count mutual homozygotes in the exome segments: ai

(d) update to summary variables: I := I + ii, A := A+ ai

3. C = A−I
A

(Calculate concordance of exome SNPs in IBD regions)

Output: C

3.2.4 Description of algorithm for selection of samples in

resequencing studies

The uncovered IBD sharing within a cohort can be used for efficient selection of

individuals to resequence, with a view to using them as a reference for imputation.

Selection of individuals for resequencing is based on maximizing representation

of haplotypes and minimizing multiple resequencing of the same haplotypes. As
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the first individual for resequencing we choose the one whose haplotypes have

the most copies in the rest of the cohort. After excluding regions that have been

covered by sharing with individuals already chosen, we repeat the procedure of

selecting the individual with most copies until a target level of coverage has been

achieved (Figure 3.2).

The algorithm is very similar to one described in (Gusev et al., 2012) - it is

also greedy and picks individuals for sequencing to maximise information content.

However, the algorithm presented here also takes into account parent-of-origin

of recent IBD. To consider a segment of unsequenced genotypes imputable, our

algorithm requires at least one sharer of each of the two haplotypes. We therefore

modify the total information content, by a factor of 2 to reflect that now we wish

to impute an allele on each of the two haplotypes of a proband:

TIC ′(P,Q) =
2× |Q|G+ Σi∈P\QL

′(i, Q)

2× |P |G
, (3.6)

where

L′(i, Q) = Σg∈GI
′(i, g, Q). (3.7)

We also modify the indicator I ′ of whether a genotype is imputable to indicate

how many alleles of a proband can be inferred: 2, 1 or 0. To do so, we augment

the description of IBD segments. The sets of IBD segments of proband i with

individual q such that i and q share IBD on the first and second gametes are

denoted by R′1(i, q) and R′2(i, q). Both alleles can be imputed if there exist hap-

lotype sharers for both gametes (hence logical ’and’ denoted by ∧), one allele can

be imputed if there is a haplotype sharer of either gamete (hence logical exclusive

’or’ denoted by Y), 0 otherwise, as shown in Equation 3.8.
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I ′(i, k,Q) =



2 ∃q1 ∈ Q(∃(l, r) ∈ R′1(i, q)(l < k ∧ r > k))

∧∃q2 ∈ Q(∃(l, r) ∈ R′2(i, q)(l < k ∧ r > k))

1 ∃q1 ∈ Q(∃(l, r) ∈ R′1(i, q)(l < k ∧ r > k))

Y∃q2 ∈ Q(∃(l, r) ∈ R′2(i, q)(l < k ∧ r > k))

0 otherwise

(3.8)

My work on this algorithm had been completed before publication of (Gusev

et al., 2012), and we had not been aware of the competing algorithm.
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Figure 3.2: Choosing an optimal subset of individuals for re-sequencing

Input: IBD.segments, targetN

IBD.segments = {(id1, id2, start.SNP, end.SNP)} (list of IBD segments

from array data)

target.n - target number of individuals for resequencing

1. initialise I (matrix |P |×|G| for storing the indicator variables I if a genotype

is imputable)

2. initialise Q (empty set of individuals for resequencing)

3. for n ∈ 1 . . . target.n

(a) for i ∈ P \Q (for all non-selected individuals)

i. compute U ′(i, Q), based on IBD.segments and I, according to

Equation 3.1

(b) choose an individual i.picked = maxiU
′(i, Q), add to Q

(c) update I

Output: Q

3.3 Results

3.3.1 IBD inferred from array data against the exome

SNPs

Between genotypes of the verified individuals, in Stage I ANCHAP found 33982

IBD segments, and 32868 in Stage III. At an average locus, a sequenced individual
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shared IBD with 0.8 other sequenced individuals. Between pairs of IBD sequences

from Stage I, there were 8430 homozygotes of opposing alleles in exome sequence

data, and 1922 in Stage III. Respective concordance (C) scores were 0.87 and 0.96.

The moderately low number of opposing homozygotes in sequence data in IBD

regions suggests that the inference of IBD regions is accurate, but because most

IBD sequences fall outside of the exons, no verification there is possible. However,

the concordance score (C) accounts for the bias of sequence data towards exons.
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(a) Concordance (C) of exome sequences in IBD segments of different length, when
length is expressed as number of array SNPs a segment contains. The longer a re-
gion, the higher the concordance. Irrespective of length, concordance in detected IBD
segments is much higher than in control segments.
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(b) Concordance (C) of exome sequences in IBD segments of different length, when
length is expressed in centiMorgans.

Figure 3.3: Concordance (C) of exome sequences in IBD segments identified from
array data, depending on length of the segments.
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Figure 3.4: Genome-wide view of concordance (C) of exome sequences in IBD
segments identified from array data. Note that in regions where sharing IBD is
more frequent than elsewhere (chromosomes 2, 6), concordance is typical, within
one standard deviation from genome-wide mean and within standard deviation of
concordance computed for control segments. This implies that the IBD segments
recovered in these regions are not artefacts of the inference method.
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Figure 3.5: Concordance (C) of exome sequences in IBD segments identified from
array data, in Stages I and III of ANCHAP. Top: normalised position within
IBD segments. Bottom: position with respect to IBD segment borders. Control
IBD segments generally give concordance of 0.17, much less than in the IBD
segments declared by ANCHAP. As expected, the concordance for the control
segments is uniform throughout the segments. Stage III of ANCHAP generally
gives better concordance. There is poor concordance close to borders of IBD
segments identified in Stage I.
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Figure 3.3 shows concordance (C, defined in Equation 3.5) between exome

SNPs in regions declared as IBD in array data. IBD regions contain fewer oppos-

ing homozygotes than control regions, as depicted in Figures 3.3a and 3.3b. In

control regions, the concordance per SNP is 0.18, whereas in IBD regions 0.99 for

round 2 in Figure 3.3a. Among the shorter IBD regions, there are some where

the exome data suggest they are not IBD, as shown by large standard devia-

tion of error rates, however mean concordance remains at 0.95 even for shortest

segments. When IBD threshold is expressed as a number of SNPs in a segment

(Figure 3.3a), opposing homozygotes occur only in the shortest segments, but

they do occur more often even in longer segments as measured in centiMorgans

(Figure 3.3b).

Stage III of ANCHAP reduces not only the mean number of mismatches be-

tween sequence segments, but number of outlier segments with very large num-

ber of mismatches. Concordance decreases most rapidly with segment length

expressed as number of array SNP. Segments longer than 300 markers, which

also are longer than 2 cM in round 2, give concordance of 0.98.

Figure 3.4 shows concordance in different parts of the genome, and compares

it with the IBD density. On this dataset, in which SNPs are sparser than the

one used in Chapter 2, we can still observe peaks of IBD on chromosomes 2 and

6. Interestingly, in the peak on chromosomes 2 and 6 the concordance is typical,

within one standard deviation from the mean observed genome-wide. This implies

that the peaks of IBD on chromosomes 2 (lactase region) and 6 (HLA region) are

genuine, rather than being artefacts of IBD detection.

Figure 3.5 shows concordance with respect to positions within the IBD seg-

ments. We could expect to see more of the inconsistencies towards edges of the

segments where IBD status is less certain. This can be observed in results for

both Stages I and III of ANCHAP. The results justify trimming 50-100 SNPs

(5-10e7 bp) at segment borders in round 1, and 25 (2.5-10e7 bp) in round 2.

However, in round 2, concordance is high even close to the segment borders.
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3.3.2 Resequencing optimization

The inferred shared haplotypes in an isolated population can be exploited to

increase the efficiency of a sequencing study given a fixed budget. One pos-

sible strategy is to identify an optimal subset of individuals for resequencing

at high coverage so as to obtain accurate sequence data, then to impute these

sequences into the other cohort members with whom they share IBD. For the

selection of individuals, our algorithm favours individuals who share the largest

regions IBD with individuals who were not chosen for resequencing. We have

examined the strategy based on resequencing an optimal 20% of individuals from

ORCADES, which would reduce the cost fivefold, with 65% of the unsequenced

diploid genomes sharing with the sequenced individuals. Had we chosen the indi-

viduals randomly, the IBD coverage of unsequenced haplotypes would have been

61 %, as shown in Figure 3.7.
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Figure 3.6: Proportion of haplotypes sequenced with respect to proportion of
samples sequenced. The curves are affected by relatedness of individuals in a
population, and fraction of samples that were added to a study.
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Figure 3.7: Comparison of the algorithm for selecting individuals against random
choice - proportion of haplotypes sequenced with respect to proportion of samples
sequenced in ORCADES. If samples are selected according to our procedure,
the proportion of haplotypes sequenced is always higher than when samples are
chosen randomly. For example, when resequencing 20 % of individuals in a study,
coverage of haplotypes would be 65 % if individuals are chosen using our method
and 61 % if they are chosen randomly.
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3.4 Discussion

3.4.1 Implications for the algorithm of ANCHAP

Exome sequence data show that the IBD segments inferred by the Stage III of

ANCHAP are more accurate than ones from Stage I. Trimming borders of the

segments in Stage I is definitely necessary, and may still remove errors in IBD

segments from Stage III.

Concordance rates (C) in the IBD segments vary throughout the genome.

This could be a statistical variation arising from a limited number of sequenced

samples. Alternatively, the variation of concordance could be a reflection of fea-

tures that vary throughout the genome. For example, if in some regions the

detected IBD segments date to more ancient ancestors than in other, more mu-

tations might have accumulated. Alternatively, regions of genome with higher

concordance could be ones where IBD is falsely detected, for example in regions

of poor SNP coverage, or where SNPs are not informative, for example where the

minor allele frequencies are very low.

3.4.2 Exome sequence data evaluated against IBD seg-

ments from array data

Shorter inferred IBD segments show lower concordance with sequence data than

longer ones. This could be because shorter IBD segments are more difficult to

detect accurately, as they contain fewer array SNPs. Alternatively, for shorter

segments the common ancestor was more ancient and mutations were more likely,

which reveals itself in opposing homozygotes between sequence genotypes. The

relation between length of IBD segments, time to the common ancestor and mu-

tation rates is further commented on in the Discussion of this thesis.

3.4.3 IBD-based imputations

The example in Figure 3.8 shows a sample imputation for an individual with three

sequenced haplotype sharers. IBD sharing between array SNPs 1 and 2 had been

established between the individual and its three haplotype sharers based on the
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array data. If any of the sharers carries an a polymorphism in one locus, there

is 50% chance the child will carry it too. If any of the haplotype sharers is

homozygous on some rare variant, there is 100% chance the child would carry

it too. If there are few haplotype sharers, we could calculate probabilities of

alleles that the individual carries, based on sharers’ genotypes. The resulting

sequence-SNP genotype will not be phased, and would contain probabilities of

having certain rare variants.
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Figure 3.8: Imputation for an individual with three sequenced haplotype sharers

When we know the phase of the SNP genotypes, there is more information for

IBD-based imputations. Haplotype sharers of an individual can be divided into

two groups corresponding to the two proband’s gametes, and often this reduces

the number of imputation possibilities. Figure 3.9 shows imputation using phase

information for SNP data. With the phase information, the middle locus which

couldn’t be imputed before, can be imputed.

A number of factors determine the accuracy of imputations based on IBD,

as described above. Firstly, only correctly detected IBD would result in correct

imputations. Secondly, a variant could be correctly imputed only if it is older than

the most common ancestor from whom the haplotype was co-inherited. Longer

haplotypes shared IBD should allow for more accurate imputation than with

shorter segments for which the common ancestor was much more ancient. Thirdly,
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Figure 3.9: Imputation is facilitated when the haplotype sharers are split into
two groups (see the middle locus).

imputation relies on the presence of homozygotes among the haplotype sharers,

and often more than one sharer is needed, which is not taken into account in the

selection algorithm (Algorithm 3.2). Finally, the ease of sequence imputations

with the IBD sharing information depends on whether the sequence data can be

phased, and whether it is possible to overlay the array and sequence haplotypes.

There is work in progress both on algorithmic and laboratory methods for phasing

of sequences (Browning and Browning, 2011b). If the sequences are not phased,

the IBD sharing can still be exploited for imputation, but this would result in

more uncertainty about imputed alleles.

For some rare, very recent variants, their carriers should have a recent common

ancestor, and all share IBD in the region with each other. If this is identified by

ANCHAP, and a haplotype of an unsequenced individual also belongs to such a

cluster, he almost certainly also carries the variant. This approach would rely on

detecting IBD clusters, and ANCHAP revealing recent IBD alongside parent-of-

origin for each segment.

The imputation approaches described so far rely on identifying homozygous

minor allele genotypes, which may be very rare, and therefore such approaches

may be infeasible. For example, in the exome data from the ORCADES study, less

than 3% genotypes are homozygous on minor allele. With the approach that relies
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on IBD clusters, we could make use of heterozygous genotypes among sequenced

individuals. If a group of genotypes are all IBD in a region, and they all share

at least one copy of the minor allele, it is very likely that the shared haplotype

contains the rare variant. A similar approach to detecting carriers of Mendelian

variants is presented in Chapter 5. Success of this approach to IBD-informed

mutations would depend on whether the carriers of rare variants among sequenced

individuals indeed share IBD with each other in relevant genomic regions, and on

how old a mutation is.

3.4.4 Accuracy of short-range imputations

Accuracy of the short-range imputation program IMPUTE2 was analysed on the

same data set (Joshi et al., 2013). Accuracy was measured by r2 correlation

between sequence genotypes and ones obtained by imputations using data from

1000 genomes project (Consortium, 2012). The accuracy varied heavily based on

allele frequencies. The r2 values were as follows:

• Minor Allele Frequency 1%− 3.2%: 0.753

• MAF 3.2%− 10%: 0.867

• MAF 10%− 32%: 0.931

• MAF > 32%: 0.944

The performance is generally very good, however accuracy could be improved

for SNPs with low minor allele frequencies. This is because either the model in

IMPUTE2 is not capable of capturing long-range haplotypes, or the rare variants

can be absent from the reference panel altogether. Imputations based on IBD

could help with imputing rare variants, which are possibly newer than others,

and can only be distinguished by long-range haplotypes. Because samples were

selected for resequencing using our algorithms, the imputation accuracy was likely

better that if they had been selected at random.
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3.4.5 Alternative resequencing strategies

An alternative strategy would be to resequence the entire cohort at low cover-

age, then exploit IBD sharing to combine data from all individuals who share

a haplotype IBD to infer an accurate sequence for this haplotype. For instance,

current resequencing methods typically require at least 40 x coverage for accurate

sequence imputation. With an average of four haplotype sharers for each gamete,

it would be sufficient to type all of the individuals at 10 x coverage.

3.4.6 Utility of IBD-informed optimisation of resequenc-

ing studies

We showed that samples in the individuals in the ORCADES study share large

fragments of haplotypes IBD, and the inferred IBD segments are accurate when

evaluated against sequence data. In this section we argue whether the inferred

IBD contributes to optimising resequencing studies and imputations.

Gusev et al. showed vast amounts of recent IBD in Kosrea, and many else-

where unknown variants (Gusev et al., 2012). Also, much recent IBD was iden-

tified in data from ORCADES. In IBD segments, the concordance of sequence

data is nearly perfect for longer IBD segments, is lower at region boundaries, and

varies moderately throughout the genome. Where IBD segments are found, they

are accurate, and there is good potential for imputations.

The identified identity by descent is useful for optimising the design of rese-

quencing studies. We have shown it through increased IBD-coverage compared

to random selection or one informed by genomic relatedness. Gusev et al. also

showed this by improved imputation performance in simulations, using Beagle

imputation software. In ORCADES, when resequencing 20% of samples from an

original study, we could cover 65% of haplotypes when selecting samples based

on their IBD sharing. Had we chosen them randomly, we would cover on average

61%. One could argue our selection algorithm brings only a small improvement,

whereas Gusev at al. showed more impressive improvement in imputation qual-

ity. In the isolated population of Kosrea, 60% of variant alleles could be imputed

with sequencing data from random 1.7% of cohort, or 1.3% if the samples were

chosen by the algorithm. In case of the latter study, the good improvement could
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be because only seven samples were selected, and it is important that they con-

tain several popular haplotypes. In the case of ORCADES, 20% of the original

study corresponds to 180 samples. Even if these are selected randomly, there is a

good chance they will cover haplotypes popular in the isolate. Our algorithm is

capable of picking individuals who carry moderately popular haplotypes, which

however has less contribution to the overall performance score.

Once samples for resequencing are selected and sequence data is available,

we focus on accurate imputations. The accuracy of exome imputations using

IMPUTE2 in the individuals from ORCADES is generally good, but could be

improved for less common and rare variants. It could be improved with IBD-based

imputations, thanks to the abundance of IBD identified from array data and its

high concordance with sequence data. However, naive IBD-imputation algorithms

would fail to deliver the promised improvement in imputation accuracy.

An IBD-based imputation algorithm would need to extract all available in-

formation from the sequence data. An algorithm that imputes a rare variant

in an individual only when his haplotype sharer is homozygous for a rare allele

will fail, since genotypes will be very rarely homozygous for rare alleles. If for

example we decide to sequence n optimal 20% of individuals from ORCADES,

65% of haplotypes would be sequenced either directly (20%) or through a sharer

(45%). However, if we assume there is exactly one sharer of the haplotype, and

we use allele frequencies from exome data, only 3% of the 45% could be imputed.

A IBD-based imputation algorithm would need to use not just homozygous geno-

types among the sequenced individuals, but also heterozygous ones, as described

in Chapter 4.

Before such an IBD-based algorithm is developed, standard imputation strate-

gies, which do not utilise full potential of the data, may be used. In Chapter 4

we demonstrate that IBD-based imputations of rare variants are important for

identifying carriers of Mendelian subtypes of diseases.
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Chapter 4

Identity by descent for

identifying Mendelian subtypes

of diseases - colorectal cancer

4.1 Introduction

Lynch syndrome (LS, hereditary nonpolyposis colorectal cancer) is a Mendelian

form of colorectal cancer (CC), caused by loss-of-function variants in DNA mis-

match repair (MMR) genes: MLH1, MSH2, MSH6, and PMS2 (Lynch et al.,

2009). It is important to detect LS carriers among new CC patients because

it has implications for their clinical management. More extensive resection and

more intensive follow-up screening is indicated in LS carriers, because of the in-

creased risk of new primary tumours in the unresected colon and in other organs

(Vasen et al., 2007). Relatives of Lynch syndrome carriers who share the disease-

causing variant also require screening and follow-up to detect cancer at an early

stage (Lynch and de la Chapelle, 1999), (Moreira et al., 2012). LS is difficult to

diagnose ”as there are no specific clinical or histo-pathological features” (Lynch

et al., 2009). Current methods for detecting LS carriers rely on clinical informa-

tion and tumour biomarkers, however they have serious limitations (Barnetson

et al., 2006), (Moreira et al., 2012), (Aaltonen et al., 1998).

It is likely that a high proportion of the LS mutations arose only once in history
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(Lynch and de la Chapelle, 1999), thus they lie on ancestral haplotypes and the

patients that inherited them are distantly related. Thanks to genotype data

from modern SNP arrays and algorithms for detecting recent identity-by-descent

(IBD) (Kong et al., 2008b), carriers of same LS mutations can be identified.

Furthermore, we can detect IBD in risk regions between known LS carriers and

new colon cancer patients, which is indicative of the latter carrying LS mutations.

Where several unrelated colon cancer patients share IBD at MMR genes, they

could carry a novel LS mutation.

The novel methodology involves first computing similarity measures of SNP

genotypes in regions containing known LS genes through inference of recent IBD.

Secondly, a predictive model takes into account possible inaccuracies in the de-

tection of IBD segments.

Outline We describe methods for detecting haplotypes co-inherited from recent

common ancestors from SNP data, and build a predictive model for LS carrier

status among CC patients. We show feasibility of the approach, quoting accu-

racy of Lynch syndrome prediction, and conclude that the method is promising

especially when extensive amounts of genotype data will be available in biobanks.

4.2 Materials and Methods

4.2.1 Collection of genotypes of patients with Lynch syn-

drome - MOMA

Genotype data for Lynch syndrome carriers was collected in the MOMA (Modifier

of MMR alleles) study, whose aim is to identify the modifiers of mutant alleles of

DNA mismatch repair. The main inclusion criterion was that participants must

be carriers of pathogenic mutations in one of the DNA mismatch repair genes,

and samples in Phase 1 were partly selected for extremes of phenotype and age of

onset. Individuals were recruited to the study either because of family history of

colon cancer with early onset at the time they or their relatives were diagnosed

with the disease, or from prospective studies.
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For all of them, genes involved in MMR were sequenced, so the MMR mu-

tations are known independently of array data. The records of mutations the

individuals carried follow the standard nomenclature for description of sequence

variations (Den Dunnen et al., 2000) . For example, ”c.116G>T” denotes that

116th nucleotide in coding sequence of MLH1 was T instead of G.

Among three platforms used in this study, most MLH1 mutation carriers in

Phase 1 were genotyped with the Illumina HumanHap660W array, and therefore

we focused on this part of the data. The subset of samples we study here consists

of 511 individuals (184 from Scotland, 57 from Melbourne, Australia, 136 from

Newcastle, Australia, 136 from the Netherlands), 456 of which had mutations in

MLH1.

4.2.2 Collection of genotypes of patients with colon cancer

- SOCCS

The Study of Colorectal Cancer in Scotland (SOCCS) is a case-control study of

3,400 prospectively collected colorectal cancer cases from all Scottish hospitals,

and 3400 matched controls. In the first phase of the study 976 early-onset cases

and 1,002 matched controls were genotyped with the Illumina HumanHap550

array (Tenesa et al., 2008). The patients had no known family history of colon

cancer.

The majority of the samples (more than 80%) underwent the procedure for

identifying Lynch syndrome mutations in germline DNA (Barnetson et al., 2006).

To detect mutations, 16 exons of MLH1 were analysed with denaturing high-

performance liquid chromatography analysis to detect single-base substitutions,

insertions and deletions (Wagner et al., 1999). Variants noted there were se-

quenced, as were MLH1 exons 8, 12, and 15 in every sample. Additionally, in

most samples the MMR genes were checked for large deletions using multiplex

ligation-dependent probe amplification. When the procedure was positive, sam-

ples were removed from SOCCS study, so in theory there should be no remaining

LS carriers. For majority of patients also information on tumour biomarkers is

available, eg. micro-satellite stability and immunochemistry tests.
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Figure 4.1: A diagram showing the data set merged of MOMA and SOCCS
studies.

4.2.3 Merging the dataset

Genotypes from the two sources were merged, and markers missing more often

than 1/10 were removed from the compiled set. Strand inconsistencies were

removed using Plink software. This resulted in a MOMA-SOCCS dataset with

508854 markers and 2489 individuals, summarised in Figure 4.1.

4.2.4 Inference of IBD from multi-locus SNP genotypes

In order to infer sharing of LS alleles, identity-by-descent around MMR genes

between multi-locus genotypes was detected using software package ANCHAP

(Glodzik et al., 2013). In the first stage of ANCHAP’s algorithm, large genomic

regions without opposing homozygotes are detected, in the second stage shared

regions are assigned to one of two gametes, and they are used for phasing of the

genotypes. In the last stage, all of the resulting haplotypes are compared to find

regions identical by descent with greater accuracy. In stage I, we searched for

matching genotype sequences longer than 2 cM. Alignment in stage II was with

standard parameters. In stage II, the program identified identical haplotypes

longer than 1 cM and containing 200 phased alleles. This is a shorter genetic

region than standard settings (2 cM), but since data available had more markers

than in the article describing the method, we utilised it and set a threshold for

number consecutive SNPs with phased alleles in a segment to 200 (originally 100).
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ANCHAP was our preferred algorithm over GERMLINE (Gusev et al., 2009)

because the genetic data in the study is unphased, and over fastIBD (Browning

and Browning, 2010), whose performance we evaluated and found it matches

ANCHAP only when its parameters are tuned. We applied fastIBD with various

values of the scale parameter which controls complexity of haplotype model, and

show the results for the smallest and larger recommended values of the parameter

and for the best performing one.

We visualised the IBD covering whole of each MMR genes by graphs, where

nodes represent individuals and links signify sharing IBD between them (Gansner

and North, 2000).

4.2.5 Predictive model for carrying LS mutations

The predictive model allows to compute probabilities of carrying LS mutations,

by considering IBD shared by a proband with all known LS carriers. In this

model, the probability of sharing a LS mutation, given the length of a segment

IBD, is parametrised. The longer the IBD segment, the more recent the common

ancestor was, and the more likely that the DNA in the shared region is identical.

We define φi,j as probability that samples i and j are IBD in a genetic risk

region. IBDi,j is length of identical haplotypes [cM] spanning the region declared

by ANCHAP. a, b and c are real-valued parameters to be learned from the data.

φi,j = c× logistic(a+ b× IBDi,j) =
c

1 + e−(a+b×IBDi,j)

We build a predictive model on the intuition that a proband carries a LS

mutation if he shares the disease haplotype in MLH1 gene with at least one LS

carrier, and does not share the disease haplotype with controls. Some haplotypes

are particularly common, and may be shared by individuals with and without

the LS mutation present. To eliminate their impact, we use IBD between a new

patient and SOCCS controls. If the patient shares IBD with several LS carriers,

as well as SOCCS controls, this casts doubt as to whether the patient also carries

LS mutations. Let Li = 1 denote that proband i carries a LS mutation, C a set

of LS carriers in training set, and O set of SOCCS controls in training set.
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Pr(Li = 1) ∝

(
1−

∏
c∈C

(1− φi,c)

)(∏
o∈O

(1− φi,o)

)
, α (4.1)

Pr(Li = 0) ∝
∏

c ∈ C (1− φi,c) , β (4.2)

Pr(Li = 1) =
α

α + β

4.2.6 Experimental design

In order to reduce the dependency of the model on close relatives, and ensure it

generalises on new patients, who are likely to be unrelated to known LS carriers,

when predicting whether a proband carriers a LS mutation, we ignored his close

relatives. In products in Equation 4.1, for each predicted patient, we consulted

data on only such patients in the training set whose genetic relatedness with the

predicted patient is less than a threshold. In experiments we evaluated effects of

different thresholds for genetic relatedness. Furthermore, we decided to exclude

non-Scottish carriers from the data used for model learning, as otherwise the

model might learn to predict Dutch or Australian ancestry, rather than LS carrier

status. We trained and evaluated the predictive model on the set of 181 Scottish

MLH1 LS carriers and 976 SOCCS controls who we assume do not carry LS

mutations.

4.2.7 Computation of genetic relatedness matrix

Genetic relatedness was computed as a matrix of dot products of normalised

genotype vectors (Yang et al., 2010). Accordingly, average relationship between

pairs is 0 and average relationship of an individual with himself is 1. In Equation

4.3 Aj,k denotes genetic relatedness of individuals j and k, N is the number

of SNPs in each genotype vector, and xj and xk are the genotype vectors for

individuals j and k, where allele dosages had been normalised with respect to

allele frequencies for each SNP.
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Aj,k =
1

N
xj · xk (4.3)

4.2.8 Cross-validation

To train and evaluate the model we used a cross-validation procedure. We run

cross-validation with 10 folds, in each choosing different 1/10 of data to be the

test set, and the rest to be training set. Based on this, we make predictions on

test data in each fold, and finally evaluate the overall procedure. This rigorous

cross-validation procedure should ensure that the predictions made on unseen

data, SOCCS cases, are of similar quality.

4.2.9 Learning

We selected model parameters (a, b, c) to maximise likelihood on training data, in

each fold. We optimised the likelihood using a constrained active set optimisation

algorithm as implemented in Matlab, with starting parameters set randomly in

the region of high-likelihood (−2 > a > −50, 2 < b < 50, 0.01 < c < 0.99),

chosen from a prior visual inspection of the likelihood surface.

4.2.10 Predictions on colon cancer patients and verifica-

tion

Finally, we make predictions of LS status for new CC patients, whose LS status

is unknown. We do this using the predictive model optimised using all training

data. By reference to the haplotype sharers of a proband, the algorithm also

highlights a likely mutation and its location in the MLH1 gene.
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4.2.11 Verification of the suspected patients by Sanger

sequencing

For top indicated patients, the predictions were verified by targeted dideoxy

Sanger sequencing in indicated exons. As positive controls we used samples from

the MOMA study which had been confirmed to carry the same mutations as the

suspected patients. Additionally, we looked up the mutations identified earlier

in the original sequencing of the MLH1 gene in SOCCS study. This work was

carried out by Susan Farrington.

4.3 Results

4.3.1 Lynch syndrome carriers share IBD around the MLH1

gene

Figure 4.2 illustrates identity-by-descent of long haplotypes between individuals

with MLH1-related Lynch syndrome. Throughout MLH1 LS carriers share IBD

around 9 times more often than SOCCS controls, and 4.5 times more often than

the same LS carriers elsewhere on chromosome 3. Because on chromosome 3

there are no other regions of increased IBD sharing like at MLH1, frequent IBD

sharing at MLH1 between LS carriers cannot be explained by relatedness alone,

but rather by sharing the disease haplotype.
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Figure 4.2: Frequency of IBD sharing on chromosome 3, with MLH1 marked
by the vertical line. The horizontal axis shows genetic position on chromosome
3, and the vertical axis shows sharing density, or the probability that a pair of
individuals share IBD at a locus. Only sequences longer than 2 cM are plotted.
LS carriers share IBD around the MLH gene more often than elsewhere on the
chromosome. There is almost no sharing between controls.

The IBD relationships in the data at the MLH1 gene were visualised in Figure

4.3.
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Figure 4.3: IBD graph for the MLH1 region, where edges denote IBD relation-
ship longer than 3 cM. Each node in this figure represents a patient or Lynch
syndrome carrier, and shown are only individuals who share a haplotype with
at least one other sample. Green nodes represent Scottish colon cancer patients
and controls. Other colours represent Lynch syndrome carriers from different ge-
ographic locations. Where two nodes are connected, this indicates that the two
patients share region including MLH1 gene IBD. Clusters of patients (identified
with labels) indicate groups that carry same LS mutations. Where a Scottish
colon cancer patient falls into a cluster of LS carriers, we infer the patient could
be an unsuspected LS carrier.
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4.3.2 Evaluation of recent IBD against mutation informa-

tion

Further validation is provided by resequencing data available for the LS carriers

in the MOMA study, through which mutations in MLH1 had been identified. We

defined sensitivity as a ratio of pairs who were found to share IBD at MLH1 to

number pairs of individuals who share the same LS mutation:

number of pairs that share the same LS mutation and share IBD at MLH1

number of pairs that share the same LS mutation of MLH1

False discovery rate is the ratio of number of pairs of individuals that share IBD

at MLH1 despite not having the same LS mutations to the number of pairs of

individuals that were found to share IBD at MLH1:

number of pairs that share IBD at MLH1 and have different LS mutations

number of pairs that share IBD at MLH1

IBD sharing between a pair that carry two different LS mutations could arise if

the two individuals share the non-disease haplotype IBD.

We evaluated whether pairs identified to share IBD around MLH1 also carry

the same LS mutations, and present the result in Figure 4.4. For sequences longer

than 3 cM, sensitivity and false discovery rate are 0.51 and 0.1, for sequences

longer than 2 cM they are 0.60 and 0.13 respectively. Below this threshold more

errors occur, such that for all sequences longer than 1 cM the sensitivity reaches

0.65 and false discovery rate 0.28. Using the same reference data we compared

the performance of ANCHAP against fastIBD, another algorithm for detecting

recent IBD, and found that it matches the performance of ANCHAP only with

most optimal non-standard settings. Overall, there is agreement between the

IBD segments and the mutation annotation, but also considerable amount of

uninformative IBD sharing that the predictive model needs to deal with.
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Figure 4.4: Evaluation of IBD detection between carriers of LS mutations in
MLH1 against mutation information obtained from sequencing of the gene. We
checked whether pairs that share IBD at MLH1 also carry the same mutations.
With decreasing length of IBD segments, concordance with mutation information
drops. In the comparison of methods ANCHAP performed as well as fastIBD with
the optimal scale settings.
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4.3.3 Relatedness and length of IBD segments

New patients diagnosed with colon cancer are likely to be related with known LS

carriers only distantly. To be able to use IBD with LS carriers as a diagnostic,

we should be able to find also unrelated pairs who share IBD in the risk region.

Figure 4.5 shows this is the case. Even though there are many closely related pairs

of Lynch syndrome carriers, there are also nearly unrelated patients who share

large segments (8 cM) that spans MLH1. IBD can be observed among pairs where

one individual is a LS carrier and second is a SOCCS case, and among LS-SOCCS

control pairs. Longest segments (>3 cM) are between LS carriers and SOCCS

cases, however also present are shorter segments (<2.5 cM) of haplotype identity

between LS carriers and SOCCS controls. In summary, at MLH1 there are long

haplotypes shared IBD between nominally unrelated individuals, as required by

out method for detecting carriers of LS mutations.

4.3.4 Quality of predictions of Lynch syndrome

In order to detect unsuspected LS carriers among new colon cancer patients,

we learned parameters for a predictive model. Predictions that are made by

the model on test data are illustrated in Figure 4.6. The model identifies the

majority of LS carriers in the MOMA set. Performance of the predictive model

is summarised in Figure 4.7. When all, also related individuals from the training

data, are used for making predictions on test data individuals, the area under

the ROC curve is 0.91, and it drops to 0.83 when only individuals whose genetic

relatedness with a tested patient is less than 0.05 are used. Predictions are very

accurate, however the performance does depend on whether close relatives are

used in the analysis.
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Figure 4.5: Genomic relatedness and the length of segments shared IBD around
MLH1. Some pairs of LS carriers (LS pairs) share long regions IBD at MLH1,
even though their genome-wide relatedness is low (< 0.05). Accordingly, we can
expect to find long IBD regions between unrelated pairs of known LS carriers and
new colon cancer patients.
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Figure 4.6: Predictions on test data using top model.
Top figure: true LS carrier status for samples, where blue denotes that mutation
present.
Bottom figure: predictions for LS carrier status made by the model
The model detects many of true LS carriers, and assigns low probabilities of LS
to SOCCS controls, who have not developed colon cancer. The good quality of
predictions is summarised by the ROC curve, area under which is 0.85.
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Figure 4.7: ROC curves for the predictive model, on test data. Also plotted is
performance of Bethesda and Modified Amsterdam criteria, which need clinical
and family information and are currently used in clinics. With all samples used,
the performance of our model is similar to one that uses clinical data and tumour
information.

4.3.5 Comparison against currently used diagnostics

For comparison, Figure 4.7 shows performance of other available diagnostics. At

the extremes of our ROC curves we see the Modified Amsterdam and Bethesda

criteria, which are based on the disease history in the family and clinical infor-

mation like presence of microsatellite instability in the tumour. With all samples

used, the performance of our model is similar to performance of predictive model

that uses clinical information and tumour biomarkers.

4.3.6 LS predictions for colon cancer patients

Finally, we used the predictive model to rank colon cancer patients in SOCCS

study as unsuspected cases of Lynch syndrome. Table 4.1 shows a list of individ-
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uals to whom the model assigned probabilities for carrying LS mutations more

than 0.8. Indeed, the three individuals there, ones identified as: ”7335”, ”1863”,

”2665”, could also be identified visually from Figure 4.3, because they share IBD

around MLH1 with Scottish samples who share IBD also between each other.

The remaining five candidate individuals that were predicted to carry LS muta-

tions shared shorter haplotype segments, and therefore they were not shown in

the Figure.

patient Number of IBD sharers, LS carriers LS mutations Number of IBD sharers, controls

ID segment length of IBD sharers segment length

3 cM 2cM 1.5cM 1cM 0.5cM 3cM 2cM 1.5 cM 1cM 0.5cM

7335 6 6 6 15 16 c.116G> T 0 0 0 1 3

1863 6 6 6 6 18 c.116G>T 0 0 0 0 3

1873 0 0 0 0 20 c.116G>T 0 0 0 1 3

5021 0 0 0 0 16 c.116G>T 0 0 0 1 3

2665 3 3 4 5 10 c.1190 1191delT 0 0 0 1 8

7008 0 0 3 3 4 H264R 0 0 0 0 2

1808 0 0 0 2 4 EX1del 0 0 0 0 0

2631 0 0 2 2 3 c.116 +1G>A 0 0 0 0 0

Table 4.1: Top colon cancer patients suspected of carrying the LS mutations,
their IBD sharing with known LS carriers and controls, and the mutations in
MLH1 they could carry.

4.3.7 Search for novel Lynch syndrome mutations

Figure 4.8 shows a cluster of SOCCS patients that all share IBD with each other,

without sharing with any known LS carriers. We suspect that these individuals

carry novel LS mutations. On chromosome 3, the individuals share IBD only

around MLH1. The cluster also includes on SOCCS control who may also be

carrying the mutation, which is not fully penetrant.

97



A cluster of SOCCS cases sharing haplotypes IBD longer than 3 cM with each

other around MLH1.
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Figure 4.8: A demonstration of detecting possible carriers of unknown mutations
in MMR genes among colon cancer patients. On chromosome 3, four unrelated
SOCCS patients and one control share IBD only around the MLH1 gene. Almost
all pairs of cluster members share IBD between each other around MLH1, which
implies sharing a common haplotype. IBD sharing of long haplotypes between
unrelated samples is unlikely, and indeed this does not happen outside the vicinity
of MLH1, as shown by the middle plot. Bottom plot shows that background rates
of sharing such long haplotypes IBD among the controls are negligible. The five
samples are therefore suspected of carrying a novel LS mutation.
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4.3.8 Verification of Lynch syndrome carrier status of sus-

pected patients through targeted sequencing

None of the suspected eight patients was found to carry the predicted mutations

in MLH1. Some other variants in MLH1 were observed, for example IVS 14-19

SA a>g, IVS 13+14 SD G>A or I219V, as shown in Table 4.2. IVS 14-19 SA

A>G stands for A to G mutation of 19th last nucleotide of intron 14 of MLH1

(Den Dunnen et al., 2000), IVS 13+14 SD G>A stands for G to A mutation of

13th nucleotide of intron 13, and I219V denotes change of isoleucine to valine at

219th amino-acid of the MLH1 protein. The SOCCS patients who all share IBD

with each other carry variants are also listed in Table 4.2.

patient ID LS mutation suspected mutation confirmed other variants in MLH1

Patients suspected because of IBD with known LS carriers

7335 c.116G> T Scotland No -

1863 c.116G>T Scotland No IVS 14-19 SA a>g

1873 c.116G>T Scotland No -

5021 c.116G>T Scotland No I219V, IVS 14-19 SA a>g

2665 c.1190 1191delT Scotland No I219V, IVS 14-19 SA a>g

7008 H264R Oxford Not screened

1808 EX1del Scotland No IVS 13+14 SD g>a

2631 c.116 +1G>A Scotland No -

Patients suspected because their share IBD with each other

2965 unknown I219V, IVS 14-19 SA a>g and IVS 9+10 SD a>g

2593 unknown I219V, IVS 14-19 SA a>g

1991 unknown I219V

2966 unknown I219V, IVS 14-19 SA a>g

Table 4.2: Resequencing of MLH1 from top suspected SOCCS patients was not
confirmed in any case. The patients in the IBD cluster at MLH1 all carry the
I219V mutation.
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4.4 Discussion

4.4.1 Spectrum and inheritance of Lynch syndrome mu-

tations

For new LS carrier detected with our method, the suspected patient has to carry

the same mutation as at least one known LS carrier, and share a long haplotype

with him. Carriers of private mutations cannot be detected in this way.

It is probable that most LS mutations are not private variants but are shared,

based on frequencies of mutations in MOMA study. Firstly, the samples in

MOMA studies come from only 3 countries, where the pool of mutations may

be limited. Secondly, as discussed in the introduction, LS mutations are unlikely

to affect reproductive fitness and thus are not removed by selection. To check

these assumptions, we analysed the frequencies of LS mutations in the MOMA

study, as shown in Figure 4.9. Only 20-24% of mutations occur only once, and

some mutations are particularly common.

Many participants of the MOMA study had been recruited because they had

affected family members, and therefore we may have a biased view of the pro-

portion of mutations that are shared. In building the predictive models we took

steps to reduce the effects of such a design of the study, by ignoring close family

members based on genetic relatedness. The reported accuracy of the model may

still be unrepresentative of how it would perform in general, as the proportion of

shared to private mutations may not be general for the whole population. This

problem would be ameliorated if a larger proportion of LS carriers were sequenced.

4.4.2 Assumption of high penetrance of Lynch syndrome

variants

Our validation study assumes that the control individuals in SOCCS study do

not carry any LS mutations, however in reality mutations of low penetrance could

occur even among individuals who did not develop colon cancer. In such case LS

carriers could occur even among SOCCS controls, and our experimental design

would be inappropriate. We hoped to sequence the three SOCCS control individu-
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Figure 4.9: Ordered frequencies of Lynch syndrome mutations in MLH1. Left:
whole of MOMA study, right: Scottish carriers only. In both cases there exist
some very common mutations. In the whole of MOMA study 20% of carriers
carry singleton mutations, and among the Scottish carriers 24%. The remaining
mutations are shared between two or more individuals, either due to their high
frequency or due to design of the MOMA study.

als whom the model indicated that they could carry LS mutations. Unfortunately

the sequencing of these samples could not be done due to time constraints of our

collaborators.

4.4.3 Accuracy of IBD detection

Accuracy of detected recent identity-by-descent is crucial for predictions of LS

status. For this application, the identical regions should be co-inherited from

a common ancestor more recent than ancestor in whom the LS mutation first

arose. In Chapter 2 as important for accurate detection of recent IBD shown

were accuracy of genetic map and accounting increased linkage-disequilibrium in

some parts of the genome. It is possible that some of the segments we identify as

IBD in reality were inherited from their common ancestor that was earlier than

the ancestor in whom the disease mutation first arose. It has been reported that

dating common ancestors based on length of IBD segments may be imprecise

(Ralph and Coop, 2012). Because unexpectedly we detect some IBD segments

even between LS carriers and SOCCS controls, we may be detecting ancient
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haplotypes that are unusually long. Furthermore, some of the inaccuracies may

result from the border position of the MLH1 gene in many IBD segments. Most

haplotypes shared IBD that span the MLH1 end shortly after the gene. This

could be either because of a recombination hotspot downstream of the MLH1, or

increased linkage disequilibrium upstream of the gene. We showed in Chapter 3

that towards the ends of detected IBD segments, genotypes of sequences match

less often. For pairs where the recent IBD segments cover MLH1 gene only

marginally, LS mutations might not have been inherited. On the other hand, our

predictive model appears to cope with occasionally imprecise inference of IBD,

given its high predictive accuracy on test data.

4.4.4 Sequencing the suspected patients in search for vari-

ants in MLH1

The usefulness of work presented here depends on whether the predictive accuracy

generalises to new colon cancer patients. We resequenced the top colon patients

suspected of carrying LS mutations, as highlighted by our model. Sequencing of

the patients suggested by the algorithm, on the contrary, did not identify any of

Lynch syndrome carriers. Even though the model was very accurate in predicting

LS status on test data, it failed on new colon cancer patients. Possible reasons

for this include:

1. incorrect detection of IBD segments,

2. that the detected IBD segments between are so ancient, that the common

ancestor precedes the time when a given Lynch syndrome mutation arose,

3. sample mishandling: different samples used for SNP genotyping and rese-

quencing,

4. high-performance liquid chromatography not revealing all mutations.

Incorrect detection of IBD segments is unlikely for long shared haplotypes.

IBD segments for the top suspected patient with identifier 7335 are shown in

Figure 4.10. There are hardly any missing genotypes in the genotypes of known
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LS carriers and the suspected ones. I verified that the haplotypes recovered by

ANCHAP for the LS carriers and suspected patients are indeed identical at the

typed SNPs. There are no unusual allele frequencies of SNPs around MLH1.

Additionally, another program fastIBD returned IBD segments very similar to

ones given by ANCHAP.

The most likely source of error is in the assumptions we made. We showed

earlier that the method correctly identifies carriers of the same mutations for

known LS carriers, as in Figure 4.4. However, it does not imply that the method

would work equally well between the LS carriers and new CC patients. IBD

segments are generally shorter for the later pairs. Between the known LS carriers

and new CC patients, we may be detecting sharing IBD of the ancient, shorter

haplotypes that pre-date the LS mutations. This point can be verified from

the data: in Figure 4.11 - pairs of known carriers of the same LS mutation

mostly share longer IBD segments with each other, than with the top 4 SOCCS

patients suspected of carrying the same mutation. Additionally, between known

LS carriers false positive detection of IBD is less probable, as there are fewer pairs

for detecting IBD sharing.

Another reason why we find shared haplotypes between known LS carriers and

new CC patients, but not the same mutations, is that the haplotypes of MLH1

themselves are more prone to mutations, and so increase the risk of colon cancer.

This would explain the lack of indicated mutations among the new CC patients.

However, we have not found any such haplotypes among the known LS carriers,

as they mostly share the mutations when they share IBD around the MLH1 gene.
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Figure 4.10: Illustration of IBD sharing between top suspected patient 7335 from
the SOCCS study, and samples with diagnosed Lynch syndrome. Top figure:
position of IBD segments (X-axis, MLH1 marked with a vertical line), shared with
other samples in the study (Y-axis), ordered from bottom: known LS carriers,
SOCCS cases, SOCCS controls. Bottom figure: length of IBD segments with
known LS carriers, and the mutations in MLH1 they carry. As a result, the
sample 7335 was predicted to carry the same mutation c.116 G> T with high
confidence.
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Figure 4.11: Lengths of IBD segments between the pairs of patients with Lynch
syndrome with mutation c.116 G>T in MLH1, and between them and four
SOCCS patients suspected of carrying the same LS mutation. Known LS pairs
share mostly much longer segments IBD, and are much closely related between
each other.

The sample mix-up might have occurred due to the sheer number of them

handled in the SOCCS study. Identity of sequenced and genotyped samples could

be evaluated if larger portions of the MLH1 gene exons had been fully sequenced.

4.4.5 Predictive model learning

The fact that MOMA samples were recruited from families could not only distort

the results for predictive accuracy of our model, but also affect learning. The

model could learn to depend only on very long stretches of IBD, which in reality

would not be encountered between unrelated LS carriers and a new colon cancer

patient. We attempted to reduce the dependencies on close relatives by restricting

the data set to unrelated individuals.

The IBD segments between known LS pairs are mostly much longer than

with unsuspected LS mutation carriers. From the φ function learnt, as shown
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in Figure 4.12, we see that the model relies on IBD segments 1.5 cM long as

much as on segments 5 cM long. For the data available, it seemed valid, as the

predictive accuracy of the model on test data was very good. On data where real

LS carriers are not from MOMA study, the performance of the model may not

generalise, and longer IBD segments might be required for accurate predictions.

This could be due to different sample sizes or to the partially family-based design

of MOMA. To ensure a better match between test and unseen data, test data

should be composed of LS carriers identified in a prospective study.

Figure 4.12: Phi functions learnt across folds of the model training. Horizontal
axis: length of IBD segments. Vertical axis: value of φ. From the φ function
learnt, we see that the model relies on IBD segments 1.5 cM long as much as on
segments longer than 5 cM.

4.4.6 Suggestions for repeating the experiments

Most of the SOCCS patients had been screened for Lynch syndrome using high-

performance liquid chromatography, sequencing of three exons for everyone and

other exons if the initial screening revealed variants (Barnetson et al., 2006).

Measured were also biomarkers for most of the sample tumours: micro-satellite
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instability and immuno-histochemistry. We aimed to detect Lynch syndrome

carriers missed in this procedure, but very few cases would have been missed.

Out of the 976 cases, we would expect around 30 LS carriers (Lynch et al.,

2009), and among these we expect 11 to carry de-activating mutations in MLH1

(Moreira et al., 2012). In SOCCS, previously reported had been 14 (Barnetson

et al., 2006), they had been moved from SOCCS to MOMA, so the chance that

any undiagnosed carriers remain is low.

In order to properly evaluate accuracy of the predictive algorithm, we could

try to reconstruct the original SOCCS dataset with the 14 prospective LS carriers

in it. The 14 individuals who turned out to be LS carriers could be then taken as

reference LS carriers. However, the 14 individuals are a too small number for a

formal evaluation. I looked into the data on the 14 individuals that were moved

from SOCCS to MOMA after LS was detected. Unfortunately, using our method

only 2 carriers could be detected because they share IBD with other known LS

carriers. A further 4 could be detected, but they have very close relatives in

MOMA as well, probably due to design of the MOMA study. The rest of LS

carriers either have private mutations, or they share IBD regions that are too

short to be picked up by the model from noise.

In conclusion, in order to show the power of the algorithms presented here,

one would require a large study covering a larger sampling fraction of cases. With

higher sampling fraction, many of the singleton mutations in MMR genes might

turn out to be shared.

4.4.7 Detecting novel Mendelian subtypes

Sharing long haplotypes IBD in disease risk regions between unrelated individu-

als could be indicative of unknown mutations causing Mendelian variants of the

disease. When a number of patients all share recent IBD with each other, this

is unlikely to happen by chance. We accessed the initial sequencing information

on the exons of the MLH1 gene from patients in the cluster. We found that the

only variant that they share affects the MLH1 protein by substituting isoleucine

to valine at amino-acid 219 (I219V), or c.655 A>G in nucleotide notation. This

variant is common enough that it was assigned a number rs1799977, and the
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frequency of the G allele is 0.4 in European population. There is no conclusive

evidence on impact of this mutation on the DNA mismatch-repair mechanism.

With this data set, we could not demonstrate that the approach is able to

detect unsuspected LS carriers. This approach could still be examined if a higher

proportion of colon cancer patients are genotyped, giving a chance that the un-

suspected carriers share larger IBD segments with each other.

4.4.8 Possible improvements to the predictive model

The algorithm we presented is a prototype designed for simplicity, which could be

further improved. Other types of φ functions, which we only require are monoton-

ically increasing, could improve predictive accuracy. Further improvement could

be brought by explicit modelling of clusters of identity by descent, through graph

theoretic algorithms, as for example DASH (Gusev et al., 2011).

4.4.9 Prospects for using the method in future

The chance of identifying novel Mendelian subtypes grows with number of sam-

ples genotyped. With increasing proportions of population in biobanks for which

genotype data is available, more recent IBD will be detected, improving predic-

tion accuracy. The number of colon cancer patients in our study is only about

3% of patients diagnosed in Scotland per 10 years (Scotland, 2013). When a

higher fraction of colon cancer patients appears in biobanks, the approach we

demonstrate here is likely to perform better for detecting Mendelian subtypes of

diseases such as colon cancer.
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Chapter 5

Applications to Genomic

Predictions and Discussion

The original motivation for the work described in this thesis was that identical-

by-descent haplotypes capture rare variants. In order to establish utility of IBD

segments inferred from SNP data, we have focused on their use in optimising

resequencing studies, in studying Mendelian subtypes of diseases, and in genomic

predictions. For these applications, utility of the detected IBD sharing depends

on:

• how accurate and complete detection of IBD regions is,

• whether time to common ancestor for a shared haplotype can be estimated,

• how likely are mutations that accumulate on haplotypes since the common

ancestors,

• whether long-range phasing is more accurate than traditional short-range

methods.

We first present preliminary work on genomic predictions that use regions

of recent IBD, since the rare variants that they capture were thought to be the

reason behind missing heritability of many complex traits. In this section we

also discuss the factors that decide on utility of the IBD segments for all of the

mentioned applications. Finally, we predict the future of IBD analysis when

genetic data for a large proportion of the population is available in biobanks.
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5.1 Genomic predictions utilising recent iden-

tity by descent

Missing heritability of quantitative traits could be explained with rare variants

of large effect. Alternatively, common SNPs could explain a large proportion of

genetic variants of traits if the traits are very polygenic and the effects sizes are

too small to reach significance levels in genome-wide association studies (Yang

et al., 2010).

We present preliminary results of our work on genomic predictions here be-

cause more work should be done to complete the experiments. The aim of the

work presented here is to compare predictive models of quantitative traits based

on the two hypotheses, in particular to test whether models that take into ac-

count rare variants predict traits better. One predictive models uses common

SNPs only, and another one uses ancestral haplotypes shared IBD, together with

rare variants that they carry. Building models for genomic predictions is impor-

tant because, among others, it would allow for predicting risk for diseases and

their early prevention.

By comparing the two predictive models, one based on common SNPs only

and one based on haplotypes, we evaluate the additional predictive power rare

variants could have. If the aim was to develop most accurate predictions of traits

and diseases from genetic data, the predictive models would have to become more

complex, for example by learning which genetic variants are important for each

trait or disease.

In the project on genomic predictions I wrote programs to compute genomic

kernels, whereas Athina Spiliopoulou set up the predictive model and experi-

ments.

5.1.1 Polygenic model

Known associated SNPs which exceed genome-wide significance threshold can

explain 10 % of phenotypic variance for height (Allen et al., 2010), 1.45 % for

BMI (Speliotes et al., 2010) and 12.1 % for HDL cholesterol (Teslovich et al.,

2010). SNPs that do not reach the threshold could explain some of the remaining
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variance (Yang et al., 2010).

Yang et al. set up a polygenic model to estimate the variance explained by

common SNPs. The authors utilise a linear additive model of quantitative traits:

yj = µ+ gj + ej

where yj is a measurement of a phenotype, µ is mean, gj is a genetic component

and ej is the environmental component. The genetic component is a sum of effects

of individual variants:

gj = Σm
i=1zi,jui

where m is the number of variants affecting the trait, zi,j’s are allele dosages

normalised with respect to the allele frequencies, and ui are the variant effects.

Genetic variance is recovered from this equation, using restricted maximum like-

lihood approach, or equivalently by regressing genomic relatedness of pairs onto

the square of difference of the phenotypic values.

var(y) = Gσ2
g + Iσ2

e

where G is the genomic relationship matrix between pairs of individuals at causal

loci, for which they obtain an estimate by computing dot products between all

available SNP genotypes for pairs of individuals.

With this approach Yang et al. estimate that 0.45 of genetic variance for

human height is explained by common SNPs. Not all of variance is explained,

because some of the rare causal variants are not in LD with the SNP data avail-

able. The authors conclude that the remaining missing heritability is due to rare

variants, some of them in weak linkage with genotyped SNPs. However, the her-

itability computed in this way accounts for only such variants that influence the

traits independently and linearly. Zuk et al. (Zuk et al., 2012) claim that many

of the variants interact in pathways, and therefore estimates of heritability from

relatives and computed as above are inconsistent.

We build a model for genomic predictions borrowing from the polygenic model,

which serves us our baseline for predictive accuracy from common SNPs.
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5.1.2 Kernel-based genomic predictions

The estimate of G, which Yang et al. compute from pair-wise dot-products of all

SNP genotypes, is an example of a kernel. We propose another kernel, one based

on haplotype IBD sharing which should convey sharing of rare variants. We also

describe kernel ridge-regression, with which the kernels can be used for genomic

predictions.

Kernel functions provide a measure of similarity between two items (Hofmann

et al., 2005), in our case between two SNP genotypes. Valid kernels represent

original observations in a different, possibly infinite-dimensional, space. This is

equivalent to the kernel matrix, a result of evaluating the kernel function be-

tween all pairs of items, being positive definite. Valid kernels can be defined not

only between real-valued vector items, but also between other types of data, for

example strings.

As a baseline we used a linear kernel, borrowed from Yang et al. If genotype

vectors of two individuals are denoted as xi,xk, where the allele dosages have been

normalised with respect to frequencies for each SNP, then the kernel function for

the two takes the following form:

k(xi,xk) = xT
i xk

.

We compare this with an alternative kernel based on haplotypes, which implic-

itly conveys the extent to which haplotypes of a pair of individuals are identical

by descent. We compute string kernels on the haplotypes, weighting them so that

sharing a long segment of a haplotype contributes to similarity more than shar-

ing several sub-strings. Given two haplotypes strings (hA,hB), the IBD kernel

we propose is computed as follows:

k(hA,hB) = (Σs∈Slength(s)p)
1
p (5.1)

where S is a set of identical sub-strings between the two haplotype strings,

with their length being the number of SNPs in an identical region, and p is a
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parameter dictating how much more weighted are longer continuously matching

sub-strings. The kernels between haplotypes are then combined to give a similar-

ity measure between two individuals. If genotype xi consists of haplotypes hi,1

and hi,2, and xk accordingly, the kernel between the individuals is a sum over all

four combinations of haplotypes:

k(xi,xk) = k(hi,1,hk,1) + k(hi,1,hk,2) + k(hi,2,hk,1) + k(hi,2,hk,2)

I have proved that this kernel is positive definite.

In order to build a model for genomic predictions, we plugged both of the

kernels into kernel ridge regression. Ridge regression is a linear regression model,

which can cope with low number of samples compared to number variables thanks

to L2 penalty on sum of squared weights, denoted by λ. It can also be used with

kernel functions, which implicitly represent SNP data in another space. In our

experiments, for training of the model and the predictions we used implementa-

tion of Multiple Kernel Learning, which as a special case includes kernel ridge

regression (Bach et al., 2004). We trained and evaluated the models using cross-

validation. We evaluated quality of phenotypic predictions on the test data by

computing Pearson’s correlation between predicted and measured phenotypic val-

ues.

5.1.3 Genotype and phenotype data

In order to demonstrate the predictive model, we used genetic and phenotypic

data from three Croatian populations. Two of the populations have been isolated

on the islands of Korcula and Vis, and the third group of samples comes from the

mainland city of Split. Overall, 2,186 individuals were genotyped with SNP ar-

rays, such that after standard quality control the intersection of SNPs contained

267,912 SNPs. Available were measurements of the following phenotypes we wish

to predict from genotype data: height, body-mass index (BMI), HDL cholesterol.

Individuals with poor genotyping or phenotypic measurements standing out from

the mean by four standard deviations were removed. HDL cholesterol measure-

ments were log-transformed since after the transformation the distribution of

values resembled normal distribution. All phenotypic measurements were nor-

113



malised to a mean of 0 and standard deviation of 1.

5.1.4 Results

On test data, in experiments with height, HDL cholesterol and BMI, we could

not establish with statistical significance that the kernel encoding identity by

descent outperformed the linear kernel. Figure 5.1 shows correlations between

predicted and measured genotypes in a 5-fold cross-validation on validation data.

Because on the validation data we also choose optimal value of the parameter λ,

this experiment could return biased results, performing better than with unseen

data.

Figure 5.1: Correlations between real and predicted phenotype measurements on
validation data. P1, P2, P5 correspond to p in Equation 5.1 taking values 1,
2 and 5 respectively. Kernels based on IBD are not predicting the phenotypes
significantly better than the linear kernel.
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5.1.5 Conclusions

We were not able to answer conclusively whether rare variants as captured by

recent identity by descent matter for genomic predictions. Either the kernel

constructions we proposed are not better at capturing the rare variants than the

linear kernel, or our experiments had too few samples to show this.

Different quantitative traits may be influenced by common SNPs or rare vari-

ants to different extent. Both height and BMI are thought to be highly polygenic,

so the results of our experiments should not be surprising. Fewer variants have

been associated with HDL cholesterol, so it is for this trait that we might have

expected to see an improvement in predictive accuracy with an IBD-based kernel.

A possible problem with the presented experiments is that we give perfor-

mance measures on validation data, which as result could be better than for

unseen data. This problem could be tackled by setting up a fully nested cross-

validation procedure, where performance would be measured on test data rather

than validation data. However, since there is only one real-valued parameter

tuned on the validation data, λ, predictive accuracy on the validation data will

likely generalise to unseen test data.

High relatedness of the samples from the isolated populations could also affect

our results. On one hand, this ensures that there are more segments of IBD which

we could utilise. On the other hand, our model may learn to depend on close

relatives only, rather than to rely on any meaningful, causal genetic variations.

A possible way to check whether this is the case is to remove pairs of very close

relatives from the data and then again assess the predictive accuracy.

Finally, the predictive accuracy of our models could be further optimised.

The models could learn to depend on SNPs or haplotype sharing in the predictive

parts of the genome only. Such models could learn the regional dependencies from

genetic and phenotypic data only, but could also utilise genomic annotations like

information on chromatin structure.
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5.2 Limitations of inference of identity by de-

scent

We could not show the advantages of IBD analysis in genomic predictions over

a simple linear SNP-based kernel. This, and the other presented application

depends on whether the shared haplotypes also imply sharing rare variants. The

shared haplotypes will only capture rare variants when they are recent enough,

which could be estimated from the size of regions shared IBD.

5.2.1 Relationship between lengths of IBD segments and

time to common ancestor

Length of IBD segments given time to a common ancestor can be modelled, from

which we may learn about the reverse problem of dating back segments of IBD. If

we assume that locations of crossover on gametes follow exponential distribution

at each meiosis, and if n is the number of generations to a common ancestor,

then the expected length of a IBD haplotypes is (2n)−1 Morgans, with variance

of (2n)−2.

When trying to estimate time to a common ancestor to an IBD segment,

the problem is the opposite. It may be misleading to date IBD segments based

on their length and the exponential distribution above (Ralph and Coop, 2012).

For example, expected length of an IBD segment given a common ancestor 50

generations ago is 1 cM, but if an IBD segment is 1 cM long, then an ancestor more

ancient than 50 generations ago is likely. This is because as time to a common

ancestor increases, the number of lineages descending from that common ancestor

grows fast. There are many individuals sharing ancient haplotypes, and some of

them may be unusually long. As a consequence the distribution of time to the

common ancestor given length of a haplotype shared IBD is heavily right-skewed

towards older segments.
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5.2.2 Mutation rates in old IBD segments

Older IBD segments that we detect from array data might have accumulated

mutations in the time since their common ancestors, so that apparent IBD sharers

do not share all variants. This would impair utility in such IBD segments in

the applications such as optimising resequencing studies, identifying Mendelian

subtypes of diseases and genomic predictions.

Mutations rates per generation were recently estimated in an Icelandic study

of 78 parent-offspring trios utilising whole-genome next-generation sequencing

(Kong et al., 2012). Average de novo mutation rate was found to be 1.20×10−8 per

nucleotide per generation at parental gametes, and less than third of at maternal

gametes. The rate heavily varied with father’s age, increasing 4.3 % per year.

The estimates indicate that mutations in IBD segments that we detect from

array data are unlikely. With a common ancestor 50 generations ago, the expected

length of an IBD segment is 1 cM, which on average corresponds to 1 Mb. If

we accept Kong’s estimate for mutation rate, the rate of mutation within 50

generations would be still less than 10−6 per nucleotide. We can therefore rely

even on shortest detectable IBD segments, as their sharers share likely all of the

variants.

A different situation may arise in Chapter 4. The Lynch Syndrome mutations

are generally very rare, so their respective mutations might have occurred in near

past. In our method for detecting unsuspected Lynch syndrome carriers we know

that a new patient share IBD with a known carrier who inherited the mutation,

so in other words we condition on the presence of a rare variant. Taking the low

general mutation rate per nucleotide may be misleading for inference of carrier

status this case.

5.3 Advantages of long-range methods for de-

tecting recent IBD

Already existing short-range phasing might have been used for extracting regions

of IBD. Algorithms like Beagle could output haplotypes, and when they con-

tinuously match between samples, we could declare them identical by descent.
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Whether such strategy could be accurate depends on phasing accuracy of short-

range methods.

Phasing accuracy of short- and long-range methods has been compared. Palin

et al. computed haplotype accuracy of Beagle and Mach1, short-range phasing

algorithms, and of SLRP, a long-range algorithm, and quote switch error rates

on data from the ORCADES cohort (Palin et al., 2011). The long range method

(SLRP) achieved phasing accuracy of 0.036-0.038 phase switches per centiMorgan,

whereas Beagle 0.233-0.625 and Mach1 0.172-0.233 switches per centiMorgan.

The accuracy for all methods dropped as the relatedness of samples decreased.

These results impact accuracy of inferring IBD from resulting haplotypes. If

the switch errors follow the Poisson process with rate 0.625 cM (Beagle), the

probability of a 2 cM region free from switch errors is 0.29. To detect IBD region

of size 2 cM both haplotypes have to be switch error free, the probability of which

is 0.08. When detecting IBD using short-range methods without accounting for

switch errors, many segments would be missed. It is therefore clear that when

searching for longer segments using short-range methods possible switch errors

need to be taken into account. Long-range methods, such as SLRP, are more

appropriate for finding IBD segments.

5.4 IBD analysis in future

Rise and growth of biobanks that store genetic data may be the driving force

for development of new methods for analysis, for example using IBD segments.

Only with high sampling fraction of the population can we find many relatively

recent common ancestors. Expected number of haplotype sharers is proportional

to average kinship in population and number of samples. The population history,

size and number of Iceland is an ideal situation: out currently living 316000

inhabitants of the isolated population, 36000 were genotyped. Similar efforts are

now undertaken in the UK, where similar biobanks are being built: for example

Generation Scotland or the announced sequencing of whole-genomes from 100000

individuals in Britain (Prime Minister’s Office, 2013).

As sizes of the biobanks grow, more important become scalability of algo-

rithms for data analysis. The algorithm of ANCHAP we presented, as well as
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many other algorithms require computation time of the order n2, where n is the

number of samples. Our algorithm, and many others, could be optimised to linear

complexity by using heuristics. For each individual, the analysis could include

only a fixed number of closest related individuals. Closest-related individuals

could be extracted from genetic relatedness computed as correlations of genome-

wide SNP genotypes. Computation of such a relatedness matrix would still have

to be optimised as computed naively, the time required still scales quadratically.

Another technological change is the shift from SNP genotyping technology to

next-generation sequencing. The advantages of next generation sequencing is that

they reveal all variants in DNA, and imputations would be no longer necessary.

Because next-generation reads are from one chromosome each, this information

can be also used to help phasing (Menelaou and Marchini, 2013). While the costs

of next generation sequencing is still significant, combining array data with low-

coverage sequencing data could be a cost-efficient option. As genotyping errors in

next-generation sequencing are more common than in array data, the algorithms

for detecting IBD will necessarily have to handle genotyping errors.

We can hypothesise what we could do had next-generation sequencing been

available for the colon cancer patients and Lynch syndrome carriers in Chapter 4.

Detecting unsuspected carriers of Lynch syndrome would involve only searching

for known mutations in the known mismatch-repair genes. However, for discov-

ering novel mutations the IBD algorithms would still be useful. When we see a

novel variant, and the person carrying it shares IBD at a mismatch-repair gene

with other affected carriers, the variant is likely very harmful as the co-inheritance

of the same haplotype by chance is unlikely. The same idea can be used when de-

tecting new genes associated with the syndrome: frequent IBD sharing of affected

patients at a locus is unlikely by chance.

There are also other possible applications of IBD segments not mentioned in

the thesis, one of which is searching for genes associated with idiosyncratic drug

reactions. Because such reactions can only be detected among patients who were

given a drug, the inheritance pattern is often missed. As a consequence, linkage

studies would not be appropriate for identifying the responsible variants. With

IBD analysis, we may detect distant relatives affected. We may attempt to map

the susceptibility genes by noting loci in the genome where haplotype sharing is
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more common than elsewhere. A key advantage of this method is that it would

allow prediction of the severity of the disease phenotype, based on phenotypes of

the haplotype sharers.

In summary, IBD analysis will require development of large biobanks, al-

gorithm improvement and adjustment to data from next-generation sequencing.

When these become available, opportunities for other applications of IBD analysis

arise.
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