
Three Inadequate Models

Gordon Plotkin∗

1 Introduction

The connection between operational and denotational semantics is of longstanding
interest in the study of programming languages. One naturally seeks positive results.
For example in [FP94, Sim99] adequacy results are given for models in a variety of
categories. Again, the failure of full abstraction in the standard models constructed
using complete partial orders and continuous functions [Plo77, Mil77] prompted the
exploration of other categories (see, e.g., [BCL85, FJM96, AM98, AC98]) with varying
degrees of success.

In this paper we interest ourselves in counterexamples in order to make a case that
these natural avenues of research had a degree of necessity. To this end, we construct
inadequate models and investigate whether one can do better than the standard
model, but still stay in the category of complete partial orders. (In contrast, an
inadequate standard model of PCF is given in [Sim99]—but in a specially constructed
category.)

We consider just one example, an untyped call-by-name λ-calculus L, whose ex-
pressions M are given by

M ::= x | 0 | succ(M) | λx.M |
∂(M, M, M) | pred(M) | if M = 0 then M else M | MM

where x runs over a fixed countably infinite set of variables. This is, essentially,
the language considered by Pitts in [Pit93], but with the trivial variation of using
natural numbers rather than integers (as will be seen from the operational semantics)
and with the more significant addition of ∂ (to discriminate between functions and
natural numbers).

There is a natural domain equation associated to this language

D ∼= (D ⇒ D)⊥ + N⊥

and its standard solution is adequate. We give a non-standard solution to the domain
equation which is not adequate, confirming that some restriction in the class of models
is needed for adequacy. The idea of the construction dates back to Park [Par76], who
gave a non-standard model of the pure untyped λ-calculus in which the paradoxical
combinator does not denote the least fixed-point operator.

∗Division of Informatics, University of Edinburgh, King’s Buildings, Edinburgh EH9 3JZ, UK;
phone: 44-131-650-5158, e-mail: gdp@dcs.ed.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429729968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

One would hope next to show that the standard model, even though itself not
fully abstract, gets as close as possible to that ideal among the models available or,
if not, at least among the adequate models. The position here is not quite what one
might expect. It turns out that if, in a suitable sense, one model is less abstract than
another, then they make the same termination predictions for L+, an extension of L
by a “parallel or” construct. It then follows that a model is comparably abstract with
the standard one iff it is L+-adequate. This is somewhat surprising as one might,
for example, have expected that the equational theory of any model adequate for L
would be included in that of the standard model, rather than the prima facie stronger
requirement of adequacy for L+. We are able to give a non-standard solution of the
domain equation which is adequate for L but not for L+ and so consideration of the
stronger adequacy condition really is required; this is our technically most involved
result.

So far the standard model is the only example we have that is adequate for L+,
but it is not difficult to find other solutions of the domain equation which are also
adequate for L+, and in fact we can even find one in which the Y-combinator does
not denote the least fixed-point operator. This model is inadequate in the sense that
no analogue of the Hyland-Wadsworth approximation theorem [Bar84] can hold.

Section 2 below presents various technical preliminaries. The three inadequate
models are presented in Sections 3, 5 and 6, with the “less abstract than” relation
being considered in Section 4; Section 7 is a discussion section, placing our work
in a broader context. The Appendix presents two results on full abstraction for
the standard model; while perhaps not quite folklore, they are hardly unexpected:
that the model is not fully abstract for L, but is for L+. While we do define the
particular flavour of domain used (cppos) the paper is not completely self-contained,
and appropriate knowledge of domain theory is assumed.

2 Technical Preliminaries

2.1 Syntax

We have given the syntax of L above. Free and bound variables are defined as usual (λ
is the only binding operator), as is simultaneous substitution M [N1/x1, . . . , Nn/xn];
we write Lo for the set of closed terms of L. The operational semantics of L is given
by the rules in Figure 2.1, giving an inductive definition of an evaluation relation
M ⇒L V between closed terms M and (syntactic) values V ; the latter are taken to
be those closed terms which are either abstractions λx.N or numerals n =def succn(0).
We define the termination property M ⇓L for L-terms M to be that M ⇒L V , for
some V .

The language L+ is obtained from L by adding a “parallel or” construct por(M, N);
its values are again closed abstractions and numerals. The evaluation rules are as
before, together with:

M ⇒ 0 N ⇒ 0
por(M,N) ⇒ 0

M ⇒ 1
por(M,N) ⇒ 1

2

0 ⇒ 0
M ⇒ n

succ(M) ⇒ n + 1
λx.M ⇒ λx.M

L ⇒ λx.L′ M ⇒ V
∂(L,M, N) ⇒ V

L ⇒ n N ⇒ V
∂(L,M, N) ⇒ V

M ⇒ n + 1
pred(M) ⇒ n

L ⇒ 0 M ⇒ V
if L = 0 then M else N ⇒ V

L ⇒ n + 1 N ⇒ V
if L = 0 then M else N ⇒ V

M ⇒ λx.M ′ M ′[N/x] ⇒ V
MN ⇒ V

Figure 1: Operational Semantics of L.

N ⇒ 1
por(M,N) ⇒ 1

yielding an evaluation relation M ⇒L+ V for L+ (and a termination predicate
M ⇓L+)

There is a natural equational theory of “β-rules” for L with axioms:

1. ∂((λx.L),M,N) = M

2. ∂(n,M,N) = N

3. pred(n + 1) = n

4. (if 0 = 0 then M else N) = M

5. (if n + 1 = 0 then M else N) = N

6. (λx.M)N = M [N/x]

and the usual rules for equality, including the ξ-rule for λ; we write M =β N if
M = N is provable in this theory. It is easily verified that M =β V holds when
M ⇒L V ; the same is true for L+, extending 1–6 to the terms of that language and
adding the evident three equations for parallel or.

2.2 Denotational Semantics

We take our models in the category CPPO of cppos and strict continuous functions.
A cpo (complete partial order) is a partial order with lubs of increasing ω-sequences;
a continuous function f : P → Q between such cpos is a monotone function which
preserves the lubs; we write CPO for the cartesian closed category of cpos and
continuous functions. A cppo (complete pointed partial order) is a cpo with a least
element; a function between such cppos is strict if it preserves the least elements,
and we write f : D →⊥ E for strict continuous functions. We write D ⇒ E for the
cppo of continuous functions from D to E, ordered pointwise; this yields a functor
⇒: CPPOop × CPPO → CPPO. We write D + E for the sum of D and E

3

amalgamating the least elements; this is the categorical sum. For any set X, X⊥ is
the flat cppo whose elements are those of X plus a new least element; finally for any
cppo D, D⊥ is D with the addition of a new least element, yielding the lifting functor
on CPPO.

A model of L is a structure E =<E, s, r> where

((E ⇒ E)⊥ + N⊥) s−→⊥ E r−→⊥ ((E ⇒ E)⊥ + N⊥)

is a retraction pair in CPPO (i.e., ros = id); elements x of E such that r(x) 6=⊥ are
called (semantic) values; and we say that a model is extensional if s is an isomorphism.
We set

num =def inr : N⊥ −→ (E ⇒ E)⊥ + N⊥

and
fun =def inloup : (E ⇒ E) −→ (E ⇒ E)⊥ + N⊥

and it will often prove convenient to regard s as an inclusion and omit it, writing
num (respectively fun) for sonum (respectively sofun). We also define an “application”
function by

e · e′ =
{

f(e′) (if r(e) = funf)
⊥ (otherwise)

Given any such model E we define the interpretation (or denotation) E [[M]](ρ) of
an L-term as in Figure 2.2. Here ρ is an environment, i.e., a function from variables
to E; note the use of “semantic substitution”: ρ[e1/x1, . . . , en/xn] is the environment
that is equal to ρ except at an xi where it is equal to ei.

As usual, E [[M]](ρ) is continuous in ρ, depends only on the values ρ assigns to the
free variables of M , and the Substitution Lemma holds, viz.

E [[M [N/x]]](ρ) = E [[M]](ρ[E [[N]](ρ)/x])

We say an equation M = N is true in E , writing E |=L M = N , if E [[M]](ρ) = E [[N]](ρ)
for all ρ (and we write EqThL for {<M, N >| E |=L M = N}). All the above axioms
for L are true in this sense and the rules for equality preserve truth. Consequently
we have that if M ⇒L V then E |=L M = V . So, writing E |=L M ↓ to mean that
E [[M]](ρ) is a semantic value for all ρ, we have that for all closed terms M

M ⇓L implies E |=L M ↓

as E [[V]](⊥) is always a semantic value; E is said to be L-adequate if the converse
holds. We write TerThL for {M ∈ Lo | E |=L M ↓}.

Operational equivalence is also defined as usual, taking L-contexts C[] to be
L-terms with a “hole” and defining M 'L N to mean that for all contexts C[] such
that C[M] and C[N] are both closed, C[M]⇓L iff C[N]⇓L.

Adequacy is then equivalent to the soundness assertion that for all terms M, N

E |=L M = N implies M 'L N

That adequacy implies this implication follows as the congruence rules are sound
for equations true in E . For the converse one uses the fact that E |=L M ↓ implies
E |=L ∂(M, 0, 0) = 0.

4

E [[x]](ρ) = ρ(x)

E [[0]](ρ) = s(num(0))

E [[succ(M)]](ρ) = s(num(E [[M]](ρ) + 1))

E [[λx.M]](ρ) = s(fun(λe : E.E [[M]](ρ[e/x])))

E [[∂(L, M, N)]](ρ) =

E [[M]](ρ) (if r(E [[L]](ρ)) = fun(f))
E [[N]](ρ) (if r(E [[L]](ρ)) = num(n))
⊥ (otherwise)

E [[pred(M)]](ρ) =

{

s(num(n)) (if r(E [[M]](ρ)) = num(n + 1))
⊥ (otherwise)

E [[if L = 0 then M else N]](ρ) =

E [[M]](ρ) (if r(E [[L]](ρ)) = num(0))
E [[N]](ρ) (if r(E [[L]](ρ)) = num(n + 1))
⊥ (otherwise)

E [[MN]](ρ) = E [[M]](ρ) · E [[N]](ρ)

Figure 2: Denotational Semantics of L

5

We say that E is (equationally) fully abstract for L iff it is adequate, and the
converse holds, that for all terms M,N :

M 'L N implies E |=L M = N

Models of L can also be used as models of L+ if one sets

E [[por(M, N)]](ρ) = ∨p(E [[M]](ρ), E [[N]](ρ))

where the parallel or function is defined by

∨p(e, e′) =

s(num(1)) (if one of r(e), r(e′) is num(1))
s(num(0)) (if r(e) = r(e′) = num(0))
⊥ (otherwise)

Analogues of all the above remarks then hold and we can define E |=L+ M = N ,
E |=L+ M ↓, M 'L+ N , L+-adequacy and L+-full abstraction.

In any model E of L we identify the least fixed-point operator as the functional
value fun(F) such that

F (x) =

{

∨

n≥0 fn(⊥) (if x = fun(f))
⊥ (otherwise)

The paradoxical combinator Y =def λf.∆∆, where ∆ =def λx.f(xx), need not denote
the least fixed-point operator—as will be seen below—although it does in S (proof
as in, e.g., [Pit96]). However

Proposition 1 There is an L-term Yµ that denotes the least fixed-point operator in
any model.

Proof The presence of N in all models allows us enough “standard” material to
find a uniform definition, using a standard chain; the idea comes from the proof of
the uniformity of the least fixed-point combinator in, e.g., [Fre91].

So consider the term

L =def λc.λf.Y(λh.λz.if cz = 0 then f(h(z + 1)) else 0)

The following equation holds in any model

Lcfz = if cz = 0 then f(Lcf(z + 1)) else 0

Now fix a model E and let γn : E → E be num(0) on any num(m) with m < n
and ⊥ elsewhere. Then γn is an increasing sequence with least upper bound the
function λe : E.E [[if z = 0 then 0 else 0]](⊥ [e/z]). Using the above equation it is
straightforward to show that

E [[Lcfn]](⊥ [γn/c, funh/f,m/n]) = hn−m(⊥)

for m ≤ n and h : E → E, and so

E [[L(λx.if x = 0 then 0 else 0)f0]](⊥ [funh/f]) =
∨

n≥0

hn(⊥)

6

the least fixed-point of h, and we can take

Yµ =def λf.L(λx.(if x = 0 then 0 else 0))f0

2

Some abbreviations will prove useful. We write if L then M else N as an ab-
breviation for the term if L = 0 then N else (if pred(L) = 0 then M else Ωµ)
treating 1 and 0 as the truthvalues. Then sequential conjunction M and N is read
as if M then N else 0 and negation ¬M has an evident definition. Finally, we write
por for λx.λy.por(x, y).

So far our considerations have been equational. However there are analogous
inequational concepts. Define E |=L M ≤ N to hold iff E [[M]](ρ) ≤ E [[N]](ρ) for all ρ
and define the operational inequivalence relation M �L N to hold iff for all contexts
C[] such that both C[M] and C[N] are closed, C[N] ⇓L if C[M] ⇓L. Then we can
say that say that E is (inequationally) fully abstract for L iff for all L-terms M, N

M �L N iff E |=L M ≤ N

Similar definitions can be made for L+.
Fortunately this does not cause a duplication of material as the inequivalences can

all be reduced to equivalences. Consider two closed L-terms M and N , and define

A = λz.if zM then 1 else Ωµ

and
B = λz.if zM and zN then 1 else Ωµ

Then one has that
E |=L M ≤ N iff E |=L A = B

and
M �L N iff A 'L B

This gives reductions for closed terms; for open terms note that the relations at hand
are closed under λ-abstraction, for example, for any terms M ′ and N ′

M ′ �L N ′ iff λx.M ′ �L λx.N ′

and so one can reduce to the case of closed terms. We just give some hints of the
proofs of the reductions for closed terms. The first is not hard: one uses the fact that
in any cppo D the ordering is extensional in the sense that

∀x, y ∈ D. x ≤ y iff ∀f : D → O. f(x) ≤ f(y)

where O is “Sierpinski space,” the two-point cppo {⊥,>}. For the second, the key
fact needed is that for any L-terms A′ and B′

λz.A′ �L λz.B′ iff ∀C.A′[C/z] �L B′[C/z]

where C ranges over closed L-terms.
This is by no means easy to establish. One way is to use Abramsky’s notion of

applicative bisimilarity, introduced in the study of the lazy λ-calculus [Abr90].

7

Here one takes simulation to be the largest relation R between closed L-terms
such that if R(A,B) holds then

(a) if A ⇒L n then B ⇒L n

(b) if A ⇒L λz.A′ then for some B′, B ⇒L λz.B′ and for all closed L-terms C,
R(A′[C/z], B′[C/z]) holds

The simulation relation is then extended to all terms by substitution. It turns out
that it is identical to �L; for a proof, one can, for example, follow [Pit97]. The key
fact is then an immediate consequence.

The corresponding reductions hold for L+, with the same semantical reasoning
and using, for the operational assertion, the inequational full abstraction of the stan-
dard model is established by an easy modification of the proof of equational full
abstraction in the Appendix. It follows that the equational and inequational notions
of full abstraction coincide.

2.3 Constructing Models

Let K be a CPO-enriched category with ωop-limits, and let F : Kop ×K → K be
CPO-enriched. Then one can construct a functor T : Ke → Ke on the category of
embeddings in K by putting:

T (x) = F (x, x)

and
T (φ) = F (φR, φ)

(and then T (φ)R = F (φ, φR)). See [SP82, AC98] for details.
Now one can solve the domain equation

x ∼= F (x, x)

provided one has an embedding

φ0 : x0 → T (x0)

Define a chain ∆ =<xn, φn >, setting xn+1 = T (xn) and φn+1 = T (φn) for n ≥ 0. Let
ρ : ∆→x∞ be colimiting. Then the ρn are embeddings and there is an isomorphism
η : T (x∞)→x∞, the mediating morphism from T (ρn) to ρn+1, i.e., the unique η such
that ρn+1 = ηoT (ρn) for n ≥ 0. There are explicit formulae for it and its inverse, viz

η =
∨

n≥0

ρn+1oT (ρn)R

and
η−1 =

∨

n≥0

T (ρn)oρR
n+1

We say the solution <x∞, η, η−1 > so generated is standard in the case that x0 is
initial in Ke. Our primary application is to CPPO and the functor F given by

F (E, D) = (E ⇒ D)⊥ + N⊥

8

Note that such solutions are extensional models of L. The category CPPOe has an
initial object, the one-point cppo 1 and we write S =<S, η, η−1 > for the standard
model (i.e., solution). L-adequacy can be established for S by using a recursively
defined relation between S and closed terms, as in [Pit93]. In addition, although S
is not fully abstract for L, it is for L+; these latter facts do not seem to have been
published elsewhere, but are hardly unexpected given the plethora of closely related
material—see, for example, [AO93]. We give (fairly detailed) proofs in the Appendix.

2.4 Recursively Defined Predicates

We (more or less) follow the ideas of Pitts [Pit96], but rather than using Tarski’s
theorem, we give an abstract version of the treatment of predicates in [SP82]. We
take a fibrational approach following Hermida [Her93], Hermida and Jacobs [HJ98]
and what we do is essentially a special case of Fiore, Cattani and Winskel [FCW99].
So let us begin with a category K and a functor P : Kop → Pos (the category of
partial orders). We think of elements P of P(x) as predicates over x and of P(f)Q
as f−1(Q); we write f∗(Q) for P(f)Q.

We can form the total category Kt with objects of the form < x, P > (where
P ∈ P(x)) and morphisms of the form f :<x, P >→<y, Q>, where f : x → y and
P ≤ f∗Q. This yields an evident fibration, U : Kt → K.

We are going to obtain recursively defined predicates on solutions to domain
equations in K by solving associated domain equations in Kt. To this end, suppose
we have a functor F : Kop ×K → K, and we wish to extend it to Kt. For this we
need an action of F on the fibres, P(x). Specifically we need for all pairs of objects
y, x in K a monotone function:

Fy,x : P(y)op × P(x) −→ P(F (y, x))

such that for all y′
g→ y, x

f→ x′, Q in P(y), and P ′ in P(x′)

Fy,x(Q, f∗P ′) ≤ F (g, f)∗Fy′,x′(g∗Q,P ′)

We may then define Ft : Kt
op ×Kt → Kt by putting

Ft(<y, Q>, <x, P >) =<F (y, x), Fy,x(Q, P)>

and
Ft(g, f) = F (g, f)

(and any functor lifting F to Kt arises in this way). Now suppose we have a solution

η : F (<x,P >, <x, P >) ∼= <x, P >

to the domain equation in Kt. Then certainly we have a solution

η : F (x, x) ∼= x

of the domain equation in K and also

P = (η−1)∗Fx,x(P, P)

9

since we also have that Fx,x(p, P) ≤ η∗P and P ≤ (η−1)∗Fx,x(P, P). One easily sees
that this is a 1-1 correspondence between solutions in Kt and solutions in K, together
with such “recursively defined” predicates.

Now assume K has ωop-limits and that P is in fact a functor P : Kop → mCPO,
where mCPO is the category of posets with meets of decreasing sequences. Then
Kt has ωop-limits too, and U preserves them. To see this, let ∆ =<<xn, Pn >, gn >
be an ωop-chain in Kt, and suppose that σ : x∞ →<xn, gn > is limiting in K. Then
(σn)∗Pn is decreasing as

(σn)∗Pn = (σn+1)∗((gn)∗Pn)

≥ (σn+1)∗Pn+1 (as gn :<xn+1, Pn+1 >→<xn, Pn >)

and we may set P∞ =
∧

n(σn)∗P . One then easily verifies that σ :<x∞, P∞>→ ∆ is
limiting in Kt.

Putting all this together, suppose now that K is CPO-enriched, and that this
yields a CPO-enrichment of Kt. Suppose we also have a functor F : Kop ×K → K,
equipped with an action, as above, and now also assumed to be CPO-enriched; then
we have that Ft : Kt

op × Kt → Kt is also CPO-enriched. Now, assuming K has
ωop-limits, suppose we have an embedding

φ0 :<x0, P0 >→ Tt(<x0, P0 >)

in Ke
t . Then following the above remarks we can construct a solution

η : Tt(<x∞, P∞>) ∼=<x∞, P∞>

to the domain equation in Kt, following Section 2.3; and this solution can be taken
so that

η : T (x∞) ∼= x∞

is the solution to the domain equation in K constructed as in Section 2.3, starting
now from φ0 : x0 → T (x0). Finally, we have that P∞ satisfies the recursive predicate
equation

P = (η−1)∗F (P, P)

One application is to predicates on CPPO. A relation R ⊂ Dn is strict iff
R(⊥, . . . ,⊥) holds; it is ω-inductive iff for any n increasing sequences < xij >j≥0,
R(

∨

j≥0 x1j , . . . ,
∨

j≥0 xnj) holds whenever R(x1j , . . . , xnj) does for all j ≥ 0; it is
admissible if it is both strict and ω-inductive. Now set

APredn(D) = {R ⊂ Dn | R is admissible}

Then we can take to be P(D) to be APredn(D) or even APredn(D)X , for some fixed
set X. For example Pitts [Pit93] proof of adequacy for his language L uses n = 1
and X = Lo. To use these predicates one has to prove a so-called Logical Relations
Lemma, that the terms of the language at hand satisfy the predicate. We do not
give any general formulation of such a lemma here; we rather content ourselves with
stating the required version in each case, omitting the routine proof by structural
induction.

10

3 The First Inadequate Model

As already remarked, in [Par76] Park showed that in non-standard models of the
untyped λ-calculus the paradoxical combinator need not denote the least fixed-point
operator. Now while Y may not be the least fixed-point operator semantically, it
is syntactically, and we will show that inadequacy can result from this difference
(though it need not—see Section 6).

The next lemma gives a general condition under which inadequacy occurs in this
way. The statement of the lemma uses step functions: for x, y in cppos D, E, we
take x ⇒ y to be the function from D to E with value y at elements of D above (or
equal to) x and ⊥ elsewhere. Say that an element of a cppo is ω-finite iff whenever
it is less than (or equal to) the lub of an increasing sequence it is less than (or equal
to) a member of the sequence. Then x ⇒ y is continuous iff x is ω-finite and it is
then an ω-finite element of D ⇒ E iff y is also ω-finite.

We should add that by the above operational assertion about Y we mean that
the sentence

∀f, x.fx ≤ x ⊃ Yf ≤ x

is operationally true in the sense of [LP98], that is that for any closed L-terms F , X,
if FX �L X then Y F �L X. It is straightforward to prove using the properties of
the standard model, particularly that Y denotes the least fixed-point operator there.
The idea dates back to Morris (see [Bar84]), who proved a similar theorem in the
context of the untyped λ-calculus.

Lemma 1 Let E be a model of L and suppose that a, b are ω-finite elements of E
such that a = fun(a ⇒ b). Then E is not L-adequate: specifically Y(λx.x) does not
denote ⊥, although it fails to terminate.

Proof Since b ≤ E [[xx]](⊥ [a/x]) we have that a = fun(a ⇒ b) ≤ E [[λx.xx]](⊥) and
so a ≤ E [[(λx.xx)(λx.xx)]](⊥) = E [[Y(λx.x)]](⊥). 2

And now we may prove

Theorem 1 L has an extensional model which is not L-adequate.

Proof We use the construction of section 2.3 with D0 taken to be Sierpinski space
and with φ0 given by φ0(>) = inl(up(> ⇒ >)). Note that φ0 is an embedding, that
φR

0 (inr(m)) =⊥ and that φR
0 (inl(up(g))) = g(>).

Now set a = ρ0(>); this is ω-finite as > is and embeddings preserve ω-finiteness.
Next we have

a = ρ1(φ0(>))

= η(T (ρ0)(inl(up(> ⇒ >))))

= η(inl(up(ρ0o(> ⇒ >)oρR
0)))

= fun(a ⇒ a)

But now we may apply Lemma 1 to see that <D∞, η, η−1 > is not L-adequate. 2

11

4 Comparing Models

How should we compare models? We would like to say that D ≤ E iff E is closer
to being fully abstract than D. It is natural to take this to mean that if D cor-
rectly predicts an observational equivalence then so does E , leading to the following
definition

Definition 1 Let D and E be models of L. Then D ≤ E iff for all expressions M ,
N such that M 'L N , if D |=L M = N then E |=L M = N .

Note that this definition is formulated so as to apply whether or not the models are
L-adequate. Also, by remarks in Section 2.2, the equational and inequational “less
abstract than” relations coincide (with the evident definition of the inequational
notion). The next proposition gives some apparently stronger but in fact equivalent
conditions, one of which involves L+-notions; it also shows that only models which
are “equally L+-adequate” can be compared.

Proposition 2 Let D and E be models of L. Then the following three conditions are
equivalent and imply the fourth.

1. D ≤ E

2. EqThL(D) ⊂ EqThL(E)

3. EqThL+(D) ⊂ EqThL+(E)

4. TerThL+(D) = TerThL+(E)

Proof Clearly 3 implies 2 implies 1, and so we show that 1 implies 3. To this end
suppose D |=L+ M = N . Then M =β M0por and N =β N0por for some M0 and
N0 in L. Now set

M1 =def λz.if dz ≥ ∨pe then M0(Rz) else Ωµ

and
N1 =def λz.if dz ≥ ∨pe then N0(Rz) else Ωµ

Here dz ≥ ∨pe abbreviates (z 1 ⊥) and (z ⊥ 1) and ¬(z 0 0) and R is the expression
λz.λx.λy.(if x ≤ 1 and y ≤ 1 then zxy else Ωµ), where, in turn, w ≤ 1 abbreviates
if w then 1 else 1.

Then M1 and N1 are in L and M1 'L λx.Ωµ 'L N1 follows from Lemma 7. Since
D |=L M = N we also have that D |=L M1 = N1, and so, as D ≤ E , E |=L M1 = N1.
Now, applying both sides to por, we see that E |=L+ M = N as required.

That 3 implies 4 is immediate once we have noticed that for any model D and
closed M in L+,

D |=L+ M ↓ iff D |=L+ ∂(M, 0, 0) = 0

and
D 6|=L+ M ↓ iff D |=L+ ∂(M, 0, 0) = Ωµ

2

12

As a Corollary we can characterise comparability with the standard model:

Corollary 1 Let D be a model of L. The following three conditions are equivalent:

1. D and S are comparable

2. D is L+-adequate

3. D ≤ S

Proof That 1 implies 2 follows from the Proposition and the L+-adequacy of S.
That 2 implies 3 follows from the full abstraction of S for L+. 2

This result is, perhaps, not quite what one might hope for. To show S is the “best”
model one would like to show it is better than any L-adequate models. However this
is true only for L+-adequate models, and models which are not L+-adequate are, by
the Proposition, incomparable with S. It may bear emphasising that this implies the
latter make true predictions of equalities that the standard model does not.

Corollary 1 implies that S is maximal in the abstraction ordering; this can be
strengthened. The standard model is characterised by its minimality, where a model
E =<E, s, r> is said to be minimal iff idE is the least g : E →⊥ E such that

g = soF (g, g)or

Then E is minimal iff it is isomorphic to S. To see this, follow the discussion in [Pit96],
but adapted to models rather than Pitts’ invariants, which are just our extensional
models. (One can also show that idE is in fact the unique such g.)

The transformation g 7→ soF (g, g)or is definable by the term

T =def λx.∂(x, λz.f(x(fz)), x)

in the sense that E [[T]](⊥ [fung/f]) = soF (g, g)or. We therefore have that E is minimal
iff the following equation holds

Yµ(λf.T) = λx.x

So S is not only maximal in the abstraction ordering, but even strictly so in the sense
that any model equivalent to it in that ordering is isomorphic to it.

5 The Second Inadequate Model

The last section left open the possibility that every L-adequate model was actually
L+-adequate, when the standard model would indeed be the closest to full abstraction
among the L-adequate models. We now show that this is, unfortunately, not the case,
proving

Theorem 2 There is an extensional model which is adequate for L, but not for L+.

The idea of the proof is to modify Lemma 1 by adding a “parallel or guard,”
inaccessible to L-terms, but not to L+-terms. We find it convenient here, and below,
to write (a ⇒ b) rather than fun(a ⇒ b), omitting fun.

13

Lemma 2 Let E be a model containing an ω-finite element a = (∨p ⇒ (a ⇒ a)).
Then E is not L+-adequate.

Proof Let T = λz.λx.xzx. Then TMT terminates for no closed M . Since a·∨p·a ≥ a
we get that E [[T]](⊥) ≥ (∨p ⇒ (a ⇒ a)) = a. So E [[TporT]](⊥) ≥ a 6=⊥ and it follows
that E is not L+-adequate. 2

To apply this lemma we proceed analogously to the proof of Theorem 1, but with
complications caused by the appearance of ∨p and the nested ⇒. The idea is to find
elements a, b, v in ρ0(D0) such that a = (v ⇒ b), b = (a ⇒ a) and v = ∨p; the latter
requires further decompositions into elements corresponding to (1 ⇒ (⊥⇒ 1)) etc.
We achieve this by taking D0 to be the set of configurations of E0, an event structure
in the sense of [NPW81].

Specifically, the events in E are: α, β, ν, ν⊥, ν1, ν0, 1, 0 with the ordering: ν1 ≤ ν⊥
and with inconsistency relation the symmetric closure of

{<i, e>| i ∈ {0, 1}, e 6= i} ∪
{<ν0, ν⊥>, <ν, ν1 >,<ν, ν0 >,<ν, ν⊥>,<β, ν⊥>,<α, ν⊥>,<α, β>}

This determines D0 as Γ(E0), the cppo of configurations of the event structure. Next
we define φ : E0 → D1 by

φ(α) = {ν} ⇒ {β}
φ(β) = {α} ⇒ {α}
φ(ν) = ({1} ⇒ {ν⊥, ν1}) ∨ (⊥⇒ {ν1}) ∨ ({0} ⇒ {ν0})
φ(ν⊥) = ⊥⇒ {1}
φ(ν1) = {1} ⇒ {1}
φ(ν0) = {0} ⇒ {0}
φ(1) = 1
φ(0) = 0

which should make clear the intended rôles of the events. One can then verify that
for any e, e′ in E0

e ≤ e′ iff φ(e) ≤ φ(e′)

and
e # e′ iff φ(e) # φ(e′)

(In fact, requiring these conditions forces the choices of ≤ and # for E0 except for
whether or not α#β.)

We can now define an embedding-projection pair D0
φ0→ D1

ψ0→ D0 by

φ0(d0) =
∨

{φ(e) | e ∈ d0}

and
ψ0(d1) = {e | φ0(e) ≤ d1}

Clearly φ0 and ψ0 are monotone: we now show they form an embedding-projection
pair. We have ψ0oφ0 ≥ idD0 since:

ψ0(φ0(d0)) = {e′ | φ0(e′) ≤
∨

{φ(e) | e ∈ d0}}
≥ {e′ | e′ ∈ d0}
= d0

14

and φ0oψ0 ≤ idD1 as

φ0(ψ0(d1)) =
∨

{φ(e) | φ(e) ≤ d1}
≤ d1

To show ψ0oφ0 ≤ idD0 , consider a d0 and an e′ such that φ0(e′) ≤
∨

{φ(e) | e ∈ d0}.
If φ0(e′) is prime, then φ(e′) ≤ φ(e) for some e in d0 and then e′ ≤ e ∈ d and so
e′ ∈ d0. The only non-prime φ(e′) is φ(ν). In that case we have (1 ⇒ ν⊥) ≤ φ(ν) and
so, as (1 ⇒ ν⊥) is prime, (1 ⇒ ν⊥) ≤ φ(e) for some e in d0; but then, as an inspection
of the possibilities shows e = ν. So, in all cases e′ ∈ d0 showing that ψ0oφ0 ≤ idD0 ,
as required.

We may now form D∞ in the usual way, yielding an extensional model
D =<D∞, η, η−1 >. Clearly ρ0({ν}) = ∨p; so, setting a = ρ0({α}) and b = ρ0({β}),
we get

a = ρ0({α})
= ρ1({ν} ⇒ {β})
= ρ0({ν}) ⇒ ρ0({β})
= ∨p ⇒ (ρ1({α} ⇒ {α}))
= ∨p ⇒ (a ⇒ a)

So by Lemma 2, D is not L+-adequate.
We now prove that is L-adequate by combining the usual “d ≤ M method”

with the ternary logical predicate used to show parallel or is not definable in [Sie92],
defining the functor P as follows

P(D) = APred3(D)(L
o)3

and
P(f) = APred3(f)(L

o)3

and then define the action of F on predicates by taking FE,D(Q,P)L1,L2,L3(u1, u2, u3)
to hold iff one of the following is true

(a) u1 =⊥ ∨ u2 =⊥ ∨ u3 =⊥

(b) for some m, u1 = u2 = u3 = inr(m) and L1, L2, L3 ⇒ m

(c) for i = 1, 3, ui is functional and Li ⇒ λx.L′i, and whenever QM1,M2,M3(v1, v2, v3)
holds then so does QL′1[M1/x],L′2[M2/x],L′3[M3/x](u1 · v1, u2 · v2, u3 · v3).

where u is said to be functional if it has the form inl(up(f)), and then u ·v =def f(v).
One can verify the required condition on the action, including those on enrichment.

We think of these predicates as order relations between semantics and syntax and
write u1,u2,u3 ≤ L1,L2,L3 rather than PL1,L2,L3(u1, u2, u3). We need to define such
a ≤0 on D0 and begin with a corresponding predicate on E0, e1,e2,e3 ∈0 L1,L2,L3,
which we define by cases.

15

First consider the diagonal e,e,e ∈0 L1,L2,L3; this holds iff one of the following
cases hold.

(a) e = 0 and Li ⇒ 0 (for all i)

(b) e = 1 and Li ⇒ 1 (for all i)

(c) e = ν0 and Li ⇒ λx.L′i and L′i[Mi/x] ⇒ 0 (for all i) whenever all the Mi
evaluate to 0.

(d) e = ν1 and Li ⇒ λx.L′i and L′i[Mi/x] ⇒ 1 (for all i) whenever all the Mi
evaluate to 1.

(e) e = ν⊥ and Li ⇒ λx.L′i and L′i[Mi/x] ⇒ 1 for all Mi.

(f) e = β and Li ⇒ λx.L′i (for all i) and all L′i[Mi/x] evaluate to a functional value
whenever all the Mi do.

(g) e = α and Li ⇒ λx.L′i (for all i).

Next, e1,e2,e3 ∈0 L1,L2,L3 holds off the diagonal iff all the Li evaluate to func-
tional values λx.L′i and one of the following mutually exclusive conditions hold:

(a) ν⊥ appears among the e1, e2, e3 and all the others are either ν⊥ or ν1, and for
all Mi, L′i[Mi/x] ⇒ 1.

(b) Otherwise ν appears among the e1, e2, e3 and all the others are either β or α
and for all Mi, all the L′i[Mi/x] evaluate to functional values.

(c) Otherwise ν0 or ν1 appears among the e1, e2, e3 but neither 0 nor 1 do.

(d) Otherwise β appears twice among the ei, and α once, and all the L′i[Mi/x]
evaluate to functional values for all Mi such that: (i) Mi ⇒ λx.M ′

i , and (ii) for
any Ni, M ′

i [Ni/x] evaluates to a functional value.

(e) Otherwise the condition holds (here α appears twice among the ei, and β once).

Note that e1,e2,e3 ∈0 L1,L2,L3 does not hold if any two of the ei are equal to ν.
Now define ≤0 by: u1,u2,u3 ≤0 L1,L2,L3 iff e1,e2,e3 ∈0 L1,L2,L3 for all ei in ui.

Lemma 3 If u1,u2,u3 ≤0 L1,L2,L3 then φ0(u1),φ0(u2),φ0(u3) ≤1 L1,L2,L3.

Proof We proceed according to the three cases in the definition of the action of F
on predicates (here ≤0). If one of the ui is ⊥ then the conclusion follows by case (a)
as φ0 is strict.

Otherwise, suppose one of the ui contains 0, then, since e1,e2,e3 ∈0 L1,L2,L3
for all ei in ui, we must have that all the ui are equal to {0}. But then we have
that 0, 0, 0 ∈0 L1,L2,L3 and so Li ⇒ 0 and the conclusion follows by case (b) as
φ0({0}) = 0. The case where one of the ui contains 1 is similar.

Otherwise we must proceed according to case (c). First, since here we have ei
in ui such that e1,e2,e3 ∈0 L1,L2,L3 and none of the ei are 0 or 1, it follows by the

16

definition of φ0 that the φ0(ui) are all functional and by the definition of ∈0 that the
Li evaluate to functional values λx.L′i.

Now we must take vi in D0 such that v1,v2,v3 ≤0 M1,M2,M3, and show that
u1 · v1,u2 · v2,u3 · v3 ≤0 L′1[M1/x],L′2[M2/x],L′3[M3/x]. The proof again splits, into
mutually exclusive cases.

Case 1 Here ν⊥ is in some ui. Then ui ⊂ {ν⊥, ν1}, for all i, and we have ei in
ui such that e1,e2,e3 ∈0 L1,L2,L3 one of the ei is ν⊥, and the others are ν⊥ or ν1.
From the former it follows that each ui · vi is either 1 or ⊥, and from the latter that
L′i[Mi/x] ⇒ 1; but then u1 · v1,u2 · v2,u3 · v3 ≤0 L′1[M1/x],L′2[M2/x],L′3[M3/x] holds,
as required.

Case 2 Here ν is in some ui, say u1 (the situation is symmetrical). Here, by
case (b) of the off-diagonal part of the definition of ∈0 we know that for all Mi, that
L′i[Mi/x] evaluates to a functional value. Further, by consistency considerations, we
have that u1 ⊂ {ν, α, β}, and also that each of u2,u3 is {α} or {β} (using case (b) of
the off-diagonal part of the definition of ∈0 again too).

We may assume that no ui · vi is ⊥. Then neither 0 or 1 is in v1 as otherwise
v2 is {0} or {1} and then u2 · v2 =⊥; it follows that u1 · v1 ⊂ {ν1, β, α}. Now, we
cannot have β occurring in two of the ui · vi as otherwise ν occurs in two of the vi,
contradicting the definition of ∈0. As each of u2, u3 is {α} or {β}, the remaining
possibilities are:

1. β ∈ u1 · v1 ⊂ {ν1, β} and u2 · v2 = u3 · v3 = {α}

2. β 6 ∈u1 · v1 ⊂ {ν1, α} and one of u2 · v2, u3 · v3 is {α} (the other is {α} or {β})

In both cases we u1 ·v1,u2 ·v2,u3 ·v3 ≤0 L′1[M1/x],L′2[M2/x],L′3[M3/x], as required, as
e1,e2,e3 ∈0 L′1[M1/x],L′2[M2/x],L′3[M3/x] for any e1, e2, e3 ∈ u1, u2, u3, since all the
L′i[Mi/x] all evaluate to functional values, and such a triple is either all α’s, or else
fall under one of the off-diagonal cases (c) or (e).

Case 3 Here neither ν⊥ nor ν is in any ui. Here if some vi is ⊥ then so is the
corresponding ui · vi, and we are done. So we may assume that no vi is ⊥, and the
proof splits into subcases.

Case 3.1 Here 0 is in some vi. Then they are all equal to {0}, and Mi ⇒ 0. Now,
if some ν0 is not in some ui then the corresponding ui · vi is ⊥, and we are done. So
we may assume that every ui contains ν0. Then we have that ν0,ν0,ν0 ∈0 L1,L2,L3
and so, as Mi ⇒ 0, we have that L′[Mi/x] ⇒ 0 and as we also have that ui · vi = {0}
we are done.

Case 3.2 Here 1 is in some vi; this case is similar to the last.
Case 3.3 Without 0 or 1 in any vi, or ν⊥ or ν in any ui we have

ui · vi = (ui ∩ {α, β}) · (vi ∩ {α, ν})

If some (ui ∩ {α, β}) is empty, we are done. Otherwise the proof again splits into
subcases.

Case 3.3.1 Here β is in every ui; we then have that β,β,β ∈0 L1,L2,L3. We may
also assume that α is in every vi; we then have that α,α,α ∈0 M1,M2,M3 and also
that ui · vi = {α}. Now, since α,α,α ∈0 M1,M2,M3, all the Mi evaluate to functional
values. But then, since β,β,β ∈0 L1,L2,L3, it follows that all the L′i[Mi/x] do too,
and so {α},{α},{α} ≤0 L′1[M1/x],L′2[M2/x],L′3[M3/x] as required.

17

Case 3.3.2 Here β is in exactly two ui’s—say u1 and u2 (and then α ∈ u3); we
then have that β,β,α ∈0 L1,L2,L3. We may also then assume that α is in v1 and v2
and ν ∈ v3; we then have that α,α,ν ∈0 M1,M2,M3 and also that u1 ·v1 = u2 ·v2 = {α}
and u3 · v3 = {β}. But then, by similar reasoning to the previous case, from the facts
that β,β,α ∈0 L1,L2,L3 and α,α,ν ∈0 M1,M2,M3 it follows that the L′i[Mi/x] evaluate
to functional values and so that α,α,β ∈0 L′1[M1/x],L′2[M2/x],L′3[M3/x].

Case 3.3.3 Here α is in at least two ui’s. Some ui · vi is then ⊥, for we cannot
have ν in two vi’s as there is no triple of events in ∈0 with two ν’s. 2

Lemma 4 If v1,v2,v3 ≤1 L1,L2,L3 then ψ0(v1),ψ0(v2),ψ0(v3) ≤0 L1,L2,L3.

Proof
Suppose that v1,v2,v3 ≤1 L1,L2,L3. The case where some vi is ⊥ is trivial (ψ0

is strict) as is the case where v1 = v2 = v3 = numm for some m. So we may
assume that all the vi are functional values, that Li ⇒ λx.L′i, and that whenever
w1,w2,w3 ≤0 M1,M2,M3 then v1 ·w1,v2 ·w2,v3 ·w3 ≤0 L′1[M1/x],L′2[M2/x],L′3[M3/x]
(where we write v · w for f(w) if v = funf).

Now, in order to show that ψ0(v1),ψ0(v2),ψ0(v3) ≤0 L1,L2,L3, we take ei in ψ0(vi)
and show that e1,e2,e3 ∈0 L1,L2,L3. Note that none of the ei are 0 or 1, and that
φ(ei) ⊂ vi. It is convenient to define e in D0, for e 6= 0, 1 by

α = {ν}
β = {α}
ν = ⊥
ν⊥ = ⊥
ν1 = {1}
ν0 = {0}

The proof now divides into mutually exclusive cases.
Case 1 Here some ei is ν⊥—say e1. Then we have ⊥,e2,e3 ≤0 M1,M2,M3 (for

any Mi) and so v1· ⊥,v2 · e2,v3 · e3 ≤0 L′1[M1/x],L′2[M2/x],L′3[M3/x]. But 1 ∈ v1· ⊥
and so v1· ⊥= v2 · e2 = v3 · e3 = {1} and L′i[Mi/x] ⇒ 0, for all i. As v2 · e2 = {1},
e2 is ν⊥ or ν1, and similarly for e3. Summarising, we have that e1 = ν⊥, e2, e3 are
each ν⊥ or ν1 and for all Mi, L′i[Mi/x] ⇒ 0. This shows that e1,e2,e3 ∈0 L1,L2,L3 as
required.

Case 2 Here some ei is ν—say e1. Then neither e2 nor e3 can be ν0 or ν1. For
example if e2 = ν0, then as ⊥,{0},e3 ≤0 M1,M2,M3 (for any Mi), by the definition
of ≤1, we get that ν1,0,e ∈ v1· ⊥,v2 · {0}, v3 · e3 ≤0 L′1[M1/x],L′2[M2/x],L′3[M3/x], for
some e, which is impossible. So e2, e3 are each ν, α or β.

We now show that in fact neither can be ν. First, suppose that both are.
Then, as ⊥,{1},{0} ≤0 M1,M2,M3 (for any Mi), by the definition of ≤1, we get
that ν1,ν⊥,ν0 ∈0 L′1[M1/x],L′2[M2/x],L′3[M3/x], which is impossible. Next, suppose
that (say) only e2 is. Then, as ⊥,{1},e2 ≤0 M1,M2,M3 (for any Mi) we get that
ν1,ν⊥,e ∈0 L′1[M1/x],L′2[M2/x],L′3[M3/x], for some e distinct from ν1 and ν⊥, which
is impossible.

So e2, e3 are each α or β. Now, as, for any Mi, ⊥,e2,e3 ≤0 M1,M2,M3, by the
definition of ≤1, we get that ν1,e′2,e

′
3 ∈0 L′1[M1/x],L′2[M2/x],L′3[M3/x] for some e′2,

18

e′3 which are α or β, showing that the L′i[Mi/x] all evaluate to functional values, as
required.

Case 3 Here some ei is ν0—say e1. If some other ei is not ν0 then we are done
by case (c) of the off-diagonal part of the definition of ∈0. Otherwise suppose that
they are all ν0. Take Mi which all evaluate to 0. Then {0},{0},{0} ≤0 M1,M2,M3,
and so v1 · {0},v2 · {0},v3 · {0} ≤0 L′1[M1/x],L′2[M2/x],L′3[M3/x], which implies that
0,0,0 ∈0 L′1[M1/x],L′2[M2/x],L′3[M3/x] and so all the L′i[Mi/x] evaluate to 0, showing
that ν0,ν0,ν0 ∈0 L1,L2,L3, as required.

Case 4 Here some ei is ν1. This case is similar to the previous one.
Case 5 Here all the ei’s are α or β. The proof splits into subcases.
Case 5.1 Here all the ei’s are β. Now suppose that Mi are terms which all

evaluate to functional values. Then {α},{α},{α} ≤0 M1,M2,M3, and we have that
α,α,α ∈ v1 ·{α},v2 ·{α},v3 ·{α} ≤0 L′1[M1/x],L′2[M2/x],L′3[M3/x] and so the L′i[Mi/x]
evaluate to functional values, and it follows that β,β,β ∈0 L1,L2,L3 as required.

Case 5.2 Here two of the ei’s are β—say e1 and e2, and the other is α. Now sup-
pose that Mi are terms such that: (i) Mi ⇒ λx.M ′

i , and (ii) for any Ni, M ′
i [Ni/x] eval-

uates to a functional value. Then {α},{α},{ν} ≤0 M1,M2,M3 and, arguing as usual,
we find that α,α,β ∈0 L′1[M1/x],L′2[M2/x],L′3[M3/x] showing that all the L′i[Mi/x]
evaluate to functional values, as required.

Case 5.3 Here at least two of the ei’s are α. This case is immediate as we already
know that the Li evaluate to functional values. 2

We therefore obtain a relation

d1,d2,d3 ≤∞ L1,L2,L3

between triples of elements of D∞ and triples of closed terms of L which holds iff one
of the following is true

(a) d1 =⊥ ∨ d2 =⊥ ∨ d3 =⊥

(b) for some m, d1 = d2 = d3 = num(m) and L1, L2, L3 ⇒ m

(c) for i = 1, 3, di is functional and Li ⇒ λx.L′i, and whenever

d′1,d
′
2,d

′
3 ≤∞ M1,M2,M3

holds, then so does

d1 · d′1, d2 · d′2, d3 · d′3 ≤∞ L′1[M1/x], L′2[M2/x], L′3[M3/x]

We then have the following Logical Relations Lemma.

Lemma 5 Let M be an L-term with free variables x1, . . . , xn. Suppose for i = 1, n
that di1, di2, di3 ≤∞ Ni1, Ni2, Ni3. Then

D[[M]](ρ1),D[[M]](ρ2),D[[M]](ρ3) ≤∞ M1, M2, M3

where ρj =⊥ [d1j , . . . , dnj/x1, . . . , xn] and Mj = M [N1j , . . . , Nnj/x1, . . . , xn].

It follows that D is L-adequate. For suppose that M is a closed term with non-⊥
denotation. Then by the lemma we have that

D[[M]](⊥),D[[M]](⊥),D[[M]](⊥) ≤∞ M, M, M

and so either (b) or (c), as above, holds, and in either case, M ⇓L.

19

6 The Third Inadequate Model

In this section we concentrate on L+-adequate extensional models, beginning by
displaying class many distinct from the standard model. We then give our third
inadequate model. It is again L+-adequate; its “inadequacy” lies rather that that
in it Y does not denote the least fixed-point operator; thus no Hyland-Wadsworth-
type theorem [Bar84], that the meaning of a term is the lub of the meanings of
its approximants, is going to hold. Finally we extract some information on the
abstraction ordering below the standard model.

Consider the embedding
φ0 : D0 → T (D0)

where D0 = P(X) (where ||X|| ≥ 2) and, for x 6= ∅, φ0(x) =
∨

{inl(up(⊥⇒ i)) | i ∈ x}
(and then φR

0 (inl(m)) =⊥ and φR
0 (inl(up(g))) = g(⊥). We write DX for the resulting

model <D∞, η, η−1 >.
Say that an automorphism of a model E =<E, s, r> is an automorphism of cppos

θ : E ∼= E such that the following diagram commutes

T (E)
s - E

T (E)

T (θ)

?

s
- E

θ

?

It turns out that DX has at least as many automorphisms as there are bijections of
X, yielding the required class many mutually non-isomorphic models, all of which
are distinct from the standard model (which only has one automorphism).

Let θX be a bijection of X. Define θn : Dn ∼= Dn by θ0(x) = {θX(i) | i ∈ x} and
θn+1 = T (θn). This gives an automorphism θ : ∆ ∼= ∆ of chains, i.e., the following
diagram commutes for all n

Dn
φn- Dn+1

Dn

θn

?

φn

- Dn+1

θn+1

?

This is easily verified for n = 0, and the general case immediately follows by induction.
Then the mediating morphism θ∞ : D∞ ∼= D∞ from ρ to ρoθ is an automorphism of
cppos (with inverse the mediating morphism from ρ to ρoθ−1). Some straightforward
diagram chasing shows that both ηoT (θ∞) and θ∞oη are mediating morphisms from
T (ρ) to ρ+oT (θ). They are therefore equal and so θ∞ is indeed an automorphism of
DX .

20

To show L+-adequacy we construct a predicate ≤∞ in APred1(D∞)L
o

such that
d ≤∞ L iff one of the following is true

(a) d =⊥

(b) For some m, d = num(m) and L ⇒ m

(c) d is functional, L ⇒ λx.L′, and if e ≤∞ M holds so does d · e ≤∞ L′[M/x].

This can be done as usual, using the evident action on predicates and starting from
d ≤0 M iff d =⊥. We just check that φ0 and ψ0 preserve the predicate in the usual
sense. This is trivial for φ0 as it is strict. For ψ0 suppose that d1 ≤1 M in order
to show that ψ0(d1) ≤0 M . If d1 is ⊥ or numm this is immediate, so only case (c)
remains. Here we have that d1 = fun(f), L ⇒ λx.L′ and f(x) ≤0 L′[M/x] whenever
x ≤0 M . So as ⊥≤0 λy.y we get that f(⊥) ≤0 L′[λy.y/x], and therefore f(⊥) =⊥,
showing that ψ0(d1) ≤0 M , as desired, since ψ0(d1) = f(⊥).

Finally, we outline a proof of a property needed below, that Y denotes the least
fixed-point operator in DX (see Section 2.2). It is not hard to show that DX enjoys
a modified form of minimality—as does any model constructed following the general
pattern of Section 2.3—that the identity is the least g : D∞ →⊥ D∞ such that

p0 ≤ g = ηoF (g, g)oη−1

(where, in general, pn = ρnoρR
n). We now follow the proof in [Pit96]. It is enough to

prove that DX [[Y]](⊥) ≤ fun(F) as the opposite inclusion follows from the β-equality
Yz = z(Yz). Choose a functional value d in D∞, and consider the set

P = {p : D∞ →⊥ D∞ | p ≤ id ∧ p(δd) · δd ≤ F (d)}

where δd = DX [[∆]](⊥ [d/f]). This set contains p0—as can be seen using the facts that
p0(fun(h)) = p0(h(⊥)) and p0(u) · v = p0(u)—and it is ω-inductive and closed under
the mapping g 7→ ηoF (g, g)oη−1. So, by the above modified notion of minimality it
contains the identity, which concludes the proof as DX [[Y]](⊥) · d = δd · δd.

The construction of our third inadequate model is based on the following refine-
ment of Lemma 1.

Lemma 6 Let E be a model. Suppose it contains ω-finite elements a, b, c, with b 6=⊥
and such that a ⇒ b ≤ a ≤ a ⇒ c. Then E 6|= Y = Yµ.

Proof We have (b ⇒ c) · (a · a) ≥ (b ⇒ c) · b ≥ c from which it follows that
E [[λx.f(xx)]][(b ⇒ c)/f] ≥ (a ⇒ c) ≥ a and hence

E [[Yf]][(b ⇒ c)/f] ≥ (a ⇒ c) · a = c

But c is not the least fixed-point of b ⇒ c. 2

Note that such a E cannot be isomorphic to S, as there Y denotes the least fixed-
point operator. To construct an L+-adequate such E , let A be the cppo which is an
increasing sequence of four objects: ⊥≤ β ≤ α ≤ γ and take D′

0 to be A+P(B), where
B = {0, 1} (we are following the usual construction, but using primes to distinguish
this instance from that of the construction of DX).

21

Now define φ′0 : D′
0 →⊥ D′

1 as the strict map such that:

φ′0(γ) = ⊥⇒ γ
φ′0(α) = (⊥⇒ β) ∨ (γ ⇒ γ)
φ′0(β) = ⊥⇒ β
φ′0({0}) = ⊥⇒ {0}
φ′0({1}) = ⊥⇒ {1}
φ′0({0, 1}) = ⊥⇒ {0, 1}

where A and P(B) are identified with the corresponding subsets of A +P(B). Then
φ′0 is an embedding, and for functional g in D′

1, ψ′0(g) is g·⊥, unless g ≥ φ′0(α) when
it is (g·⊥) ∨ α. We therefore obtain an extensional model D′ = <D′

∞, η′, (η′)−1 > as
usual. (This construction is more complicated than is needed to get an inadequate
model—one could instead just take D′

0 = A; the point of adding P(B) is, as will
become clear, to be able to relate D′ and DB.)

Theorem 3 D′ is an extensional L+-adequate model in which Y does not denote the
least fixed-point operator.

Proof In D′
∞ set a = ρ0(α), b = ρ0(β) (6=⊥) and c = ρ0(γ). Then we have

a = ρ0(α)
= ρ1((⊥⇒ β) ∨ (γ ⇒ γ))
≥ ρ1(⊥⇒ β)
= ⊥⇒ b

Also,
a = ρ1((⊥⇒ β) ∨ (γ ⇒ γ))

= ρ1(⊥⇒ β) ∨ ρ1(γ ⇒ γ)
= (⊥⇒ b) ∨ (c ⇒ c)
≤ ⊥⇒ c

So, by Lemma 6, Y does not denote the least fixed-point operator in D′. For L+-
adequacy we use the same properties and action as before and again set x ≤0 M to
hold iff x =⊥; we omit the details. 2

We can exploit these results to learn a little about the abstraction relation ≤
below S. First in any of the DX , Y is the least fixed-point operator and so the
equation Y = Yµ holds there but not in the model D′ just constructed, showing that
DX 6≤ D′. We now outline a proof that, D′≤DB and so that we have a proper chain

D′ < DB < S

(It would also be interesting to construct two mutually incomparable models strictly
below S; perhaps this could be done by refining the current methods to construct
models which do not satisfy some of the iteration theory axioms of Bloom and
Ésik[BE93]—reading µx.M as Y(λx.M).)

The idea of the proof is to find a projection β∞ : D′
∞ → D∞ such that

β∞(D′[[M]](⊥)) = D[[M]](⊥) (1)

22

for all L+-terms M . For this implies that EqThL(D′) ⊂ EqThL(D) and so D′≤DB.
Equation 1 will be established by a logical relations argument; we package up the
construction of β∞ and the relation and its properties in a category L and apply the
method of Section 2.3 to show existence.

The objects of L are structures

<D, D′, α, β,R>

where D and D′ are cppos, α : D → D′ is an embedding with right adjoint β,
R ⊂ D ×D′ is an admissible relation and the following hold:

(i) ∀d ∈ D. R(d, α(d))

(ii) ∀d ∈ D, d′ ∈ D′. R(d, d′) ⊃ d = β(d′)

Morphisms are pairs

<f, f ′>:<D, D′, α, β, R>→<E,E′, γ, δ, S >

of strict continuous functions f : D →⊥ D′, E →⊥ E′ such that the following two
diagrams commute

D
α - D′

E

f

?

γ
- E′

f ′

?

D′ β - D′

E′

f ′

?

δ
- E

f

?

and such that
∀d ∈ D, d′ ∈ D′. R(d, d′) ⊃ S(f(d), f ′(d′))

This category is CPO-enriched. It also has ωop-limits, as we now sketch. Let

∆ =<<Dn, D′
n, αn, βn, Rn >,<gn, g′n >>

be an ωop-chain in L. Let ρn : D∞ →< Dn, gn > and ρ′n : D′
∞ →< D′

n, g′n > be
limiting cones. Set α∞ to be the mediating morphism from αnoρn to ρ′n, and set β∞
to be the mediating morphism from βnoρ′n to ρn and define R∞ ⊂ D∞ × D′

∞ by:
R∞(d, d′) iff ∀n.Rn(dn, d′n). Then

<ρn, ρ′n >:<D∞, D′
∞, α∞, β∞, R∞>→ ∆

is limiting in L.
We now define a CPO-enriched functor G : Lop × L → L. For objects we set

G(<E,E′, γ, δ, S >,<D, D′, α, β, R>) =<F (E,D), F (E′, D′), F (δ, α), F (γ, β), Q>

where Q(u, u′) holds iff one of the following is true

(a) u =⊥ ∧ u′ =⊥

23

(b) for some m, u = inr(m) and u′ = inr(m)

(c) for some h and h′, u = fun(h), u′ = fun(h′) and whenever S(v, v′) holds so does
R(h(v), h′(v′))

For morphisms we set

G(<g, g′>,<f, f ′>) =<F (g, f), F (g′, f ′)>

We now construct a solution to the domain equation x ∼= U(x) where U : Le → Le

is the “diagonalisation” U(x) = G(x, x) of G. For this, follow section 2.3, starting
with the embedding

<φ0, φ′0 >:<D0, D′
0, inr, inrR, R0 >→ U(<D0, D′

0, inr, inrR, R0 >)

where R0 is the graph of inr. By the above construction of ωop-limits the solution
has the form

<η, η′>: U(<D∞, D′
∞, α∞, β∞, R∞>) ∼=<D∞, D′

∞, α∞, β∞, R∞>

This yields that R∞(u, u′) holds iff one of the following is true

(a) u =⊥ ∧ u′ =⊥

(b) for some m, u = num(m) and u′ = num(m)

(c) for some h and h′, u = fun(h), u′ = fun(h′) and whenever R∞(v, v′) holds so
does R∞(h(v), h′(v′))

The usual argument by structural induction on terms then gives us that for every
closed L+-term M , R∞(D[[M]](⊥),D′[[M]](⊥)) holds. But then equation 1 follows by
the construction of L (specifically the second required property of the relation).

7 Discussion and Conclusions

The techniques used here originate, as we have already remarked, in work on the
pure untyped λ-calculus. Much is now known about the construction of models of
this calculus by means other than inverse limits—see, e.g., [Kri93, Plo93, Ber00]. It
may be that these techniques can also be of use for the construction of inadequate
models for such applied λ-calculi as L. In particular it would be good to find a more
conceptual account of our second inadequate model.

Having looked at one example—L—it is natural to ask how typical it is. Suppose
instead we took an applied typed λ-calculus such as PCF [Plo77, FJM96, AC98]. We
could say that a model consists of a collection of cppos Dσ such that each Dσ ⇒ Dτ
is a specified retract of Dσ→τ and the flat cppos of the natural numbers and booleans
are specified retracts of Dι and, respectively, Do; we could then interpret PCF and
its extension PCF+ in the Dσ, taking Y as the appropriate least fixed-point operator,
modulo the retractions. One then easily shows that any such model is adequate for
PCF+ and so below the standard model in the evident abstraction ordering.

24

Thus, with no possibility of inadequacy, none of the phenomena of the type-free
case arise and the picture is as perfect as it could be: the standard model, bad as it
is, is the best we can do in the category of cppos. Note that this does not contradict
the fact that stable models etc. are cppos as we have built the continuous function
space into our notion of model.

We conjecture this pleasant situation should extend further, certainly to a frag-
ment of, say, FPC [Fio96] with recursion but restricting recursive types µX.σ so that
σ contains no occurrence of lifting or function space (it may even be possible to allow
lifting and function space, asking only that all occurrences of X are positive).

In contrast we would expect the same phenomena as arose for our type-free λ-
calculus to arise for FPC itself; it would be interesting to see what kinds of counter-
example one could construct. Presumably, too, much the same phenomena would
arise for a call-by-value variant of our untyped λ-calculus. All in all, our language
seems to be the simplest functional language for which inadequacy phenomena arise;
it might be interesting to explore what happens with other language features.

It could also be interesting to look at other categories. Nothing much seems
to hinge on the peculiarities of parallel or and we would expect similar inadequacy
phenomena to occur in the various categories of stable functions that have been
explored (e.g., see [AC98]). On the other hand, in categories of games there are
strong uniqueness phenomena arising from intensionality, as in [DFH99, DF99]; it
may be that no inadequate models of L exist there.

Acknowledgements

I thank Samson Abramsky for useful discussions.

References

[Abr90] S. Abramsky. The Lazy Lambda Calculus, in Research Topics in Func-
tional Programming (ed. D. Turner), UT Year of Programming Series,
pp. 65–117, Reading: Addison-Wesley, 1990.

[AO93] S. Abramsky and C.-H. L. Ong, Full Abstraction in the Lazy Lambda
Calculus, Inf. & Comp. Vol. 105, pp. 159–267, 1993.

[AM98] S. Abramsky, G. McCusker, Game Semantics, in Proc. 1997 Marktober-
dorf Summer School, II (eds. H. Schwichtenberg and U. Berger), Berlin:
Springer-Verlag, 1998.

[AC98] R. M. Amadio and P-L. Curien, Domains and Lambda-Calculi, Cam-
bridge Tracts in Theoretical Computer Science, No. 46, Cambridge: Cam-
bridge University Press, 1998.

[Bar84] H. Barendregt, The Lambda Calculus, Amsterdam: North-Holland, 1984.

[Ber00] C. Berline, From Computation to Foundations via Functions and Appli-
cation: the λ-Calculus and its Webbed Models, Th. Comp. Sci., Vol. 249,
No. 1, pp. 81–161, 2000.

25

[BCL85] G. Berry, P.-L. Curien and J.-J. Lévy, Full Abstraction for Sequential
Languages: the State of the Art, in Algebraic Methods in Semantics
(eds. M. Nivat and J. C. Reynolds), pp. 89–132, Cambridge: Cambridge
University Press, 1985.

[BE93] S. Bloom and Z. Ésik, Iteration Theories: The Equational Logic of Iter-
ative Processes, EATCS Monographs on Theoretical Computer Science,
Berlin: Springer-Verlag, 1993.

[DFH99] P. Di Gianantonio, G. Franco, and F. Honsell, Game Semantics for Un-
typed λβη-Calculus, in Proc. 4th. TLCA (ed. J. Y. Girard), Lecture
Notes in Computer Science, Vol. 1581, pp. 114–128, Berlin: Springer-
Verlag, 1999.

[DF99] P. Di Gianantonio and G. Franco, The Fine Structure of Game Lambda-
Models, Technical Report, Dipartimento di Matematica e Informatica,
Udine, 1999.

[Fio96] M. P. Fiore, Axiomatic Domain Theory in Categories of Partial Maps,
Cambridge: Cambridge University Press, 1985.

[FCW99] M. P. Fiore, G. L. Cattani and G. Winskel, Weak Bisimulation and Open
Maps, in Proc. 14th LICS, pp. 67–76, Washington: IEEE Computer
Society Press, 1999.

[FJM96] M. P. Fiore, A. Jung, E. Moggi, P. O’Hearn, J. Riecke, G. Rosolini and
I. Stark, Domains and Denotational Semantics: History, Accomplish-
ments and Open Problems, Bulletin of the European Association for Th.
Comp. Sci., No. 59, pp. 227–256, 1996.

[FP94] M. P. Fiore and G. D. Plotkin. An Axiomatisation of Computationally
Adequate Domain-Theoretic Models of FPC, in Proc. 9th LICS, pp. 92–
102, Washington: IEEE Computer Society Press, 1994.

[Fre91] P. J. Freyd, Algebraically Complete Categories, in Proc. Como Con-
ference on Category Theory (eds. A. Carboni, M. C. Pedicchio and
G. Rosolini), Lecture Notes in Mathematics, Vol. 1488, pp. 95–104,
Berlin: Springer-Verlag, 1991.

[Her93] C. Hermida, Fibrations, Logical Predicates and Indeterminates, Ph.D.
thesis, Univ. Edinburgh, Techn. Rep. LFCS-93-277, 1993.

[HJ98] C. Hermida, and B. Jacobs, Structural Induction and Coinduction in a
Fibrational Setting, Inf. & Comp., Vol. 145, No. 2, pp. 107–152, 1998.

[Kri93] J. L. Krivine, Lambda-Calculus, Types and Models, Paris: Masson, 1993.

[LP98] J. Longley and G. Plotkin, Logical Full Abstraction and PCF, in Tbilisi
Symposium on Logic, Language and Information: Selected Papers (eds.
J. Ginzburg, Z. Khasidashvili, C. Vogel, J.-J. Lévy and E. Vallduv́ı), pp.
333–352, Stanford: CSLI, 1998.

26

[Mil77] R. Milner, Fully Abstract Models of Typed λ-calculi, Th. Comp. Sci., Vol.
4, pp. 1–22, 1977.

[NPW81] M. Nielsen, G. D. Plotkin and G. Winskel, Petri Nets, Event Structures
and Domains, Part I, Th. Comp. Sci., Vol. 13, No. 1, pp. 85–108, 1981.

[Par76] D. Park, the Y-Combinator in Scott’s Lambda-Calculus Models, Theory of
Computation Report No. 13, Department of Computer Science, Warwick
University, 1976.

[Pit93] A. M. Pitts, Computational Adequacy via ‘Mixed’ Inductive Definitions,
in Proc. 9th MFCS (eds. S. Brookes, M. Main, A. Melton, M. Mislove and
D. Schmidt), Lecture Notes in Computer Science, Vol. 802, pp. 72–82,
Berlin: Springer-Verlag, 1994.

[Pit96] A. M. Pitts, Relational Properties of Domains, Inf. & Comp., Vol. 127,
pp. 66–90, 1996.

[Pit97] A. M. Pitts, A Note on Logical Relations Between Semantics and Syn-
tax, WoLLIC’96 Proc., Logic Journal of the Interest Group in Pure and
Applied Logics, Vol. 5, No. 4, pp. 589–601, 1997.

[Plo77] G. Plotkin, LCF Considered as a Programming Language, Th. Comp.
Sci., Vol. 5, pp. 223–255, 1977.

[Plo93] G. Plotkin, Set-Theoretical and Other Elementary Models of the λ-
Calculus, Th. Comp. Sci., Vols. 1 & 2, pp. 351–409, 1993.

[Sie92] K. Sieber, Reasoning about Sequential Functions via Logical Relations,
LMS, Vol. 177, pp. 258–269, 1992.

[Sim99] A. Simpson, Computational Adequacy in an Elementary Topos, in Proc.
CSL ’98, Lecture Notes in Computer Science, Vol. 1584, pp. 323–342,
Berlin: Springer-Verlag, 1999.

[SP82] M. B. Smyth and G. Plotkin, The Category-Theoretic Solution of Recur-
sive Domain Equations, SIAM Journal on Computing, Vol. 11, No. 4,
pp. 761–783, 1982.

[Sto91] A. Stoughton, Interdefinability of Parallel Operations in PCF, Th. Comp.
Sci., Vol. 79, pp. 357–358, 1991.

Appendix

To show that the standard model S =<S, η, η−1 > is not fully abstract for L let us
consider the following two terms

M = λz.if dz ≥ ∨pe then 1 else Ωµ

N = λz.Ωµ

27

Clearly S[[M]] 6= S[[N]], since S[[M]](⊥)(∨p) = num(1) and S[[N]](⊥)(∨p) =⊥ (we are
identifying ∨p with the corresponding element in S, viz S[[por]](⊥)). It therefore
suffices to show M and N are operationally equivalent:

Lemma 7 M 'L N

We use a logical relations argument. In [Sie92] a ternary relation is given to show
that parallel or is not definable in PCF. We adapt this to L, “doubling it up” to enable
the connection between M and N to be made. We take P(D) to be the 6-ary admis-
sible relations on D and define the action of F by taking F (Q,P)(u, v, w, u′, v′, w′)
to be true iff one of the following hold:

(a) u = u′ =⊥ ∨ v = v′ =⊥ ∨ w = w′ =⊥

(b) ∃m. u = v = w = u′ = v′ = w′ = num(m)

(c) u, v, w, u′, v′, w′ are all functional values, and whenever Q(x, y, z, x′, y′, z′) holds,
so does P (u · x, v · y, w · z, u′ · x′, v′ · y′, w′ · z′).

One checks that this is indeed an action and then proves the appropriate Logical
Relations Lemma for the resulting recursively defined relation P∞ ⊂ S6. This is that
for any term L whose free variables are included in x1, . . . , xn, if uij (i = 1,m; j = 1, 6)
are such that P∞(ui1, . . . , ui6) hold (for i = 1,m) then P∞(S[[L]](ρ1), . . . ,S[[L]](ρ6))
holds where ρj =⊥ [u1j/x1] . . . [umj/xm].

We now show that P∞(a, a, a, b, b, b) holds where a = S[[M]](⊥) and b = S[[N]](⊥).
For this we must establish case (c), so we suppose P∞(u, v, w, u′, v′, w′) and have to
show P∞(a · u, a · v, a · w, b · u′, b · v′, b · w′). We establish (a) by contradiction. So,
assuming its negation, none of a · u,a · v,a · w are ⊥ since b · u′ = b · v′ = b · w′ =⊥.
But then u,v,w all extend ∨p, and so as

P∞(u· ⊥ ·1, v · 1· ⊥, w · 0 · 0, u′· ⊥ ·1, v′ · 1· ⊥, w′ · 0 · 0)

holds, we obtain that P∞(1, 1, 0, u′· ⊥ ·1, v′ · 1· ⊥, w′ · 0 · 0), providing the required
contradiction. (We have allowed ourselves the freedom to omit writing num here.)

Now to show M 'L N , consider a context C[] with no free variables to show that
C[M]⇓ iff C[N]⇓. By adequacy it is enough to show that S[[C[M]]](⊥) =⊥ holds iff
S[[C[N]]](⊥) =⊥ does. Set c = S[[λx.C[x]]](⊥), where x does not appear in C[].

By the Logical Relations Lemma, P∞(c, c, c, c, c, c) holds. Therefore we also have
that P∞(c · a, c · a, c · a, c · b, c · b, c · b) holds from which we clearly have c · a =⊥ iff
c · b =⊥, concluding the proof as S[[C[M]]](⊥) = c · a and S[[C[N]]](⊥) = c · b. 2

The case for L+ is different, and we will show that the standard model is fully
abstract for L+. Full abstraction is a consequence of the definability in L+ of all
ω-finite elements of S; we build up to that by a sequence of definability results,
beginning with a suitable “parallel conditional” for S. First we define one for the
“truthvalues” 0,1 by the term:

⊃T =def λb.λx.λy.(b ∧p x)∨p(¬b ∧p y)∨p(x ∧p y)

where M ∧p N abbreviates ¬(¬M ∨p ¬N).

28

Using that we can define a parallel conditional for the natural numbers, by a
technique of “determining one bit at a time” (and see [Sto91])

⊃N=def Yµ(λc.λb.λx.λy.if ⊃T b(zerox)(zeroy) then 0 else succ(cb(predx)(predy)))

where zeroM abbreviates if M = 0 then 1 else 0. With that we can define a parallel
conditional for all of S by

⊃S=def Yµ(λc.λb.λx.λy.if ⊃T b(funx)(funy) then λz.cb(xz)(yz) else ⊃N bxy)

Then one has for x, y in S that: ⊃S ·1·x·y = x, ⊃S ·0·x·y = y and ⊃S · ⊥ ·x·y = x∧y.
In the proof of the following lemma we allow ourselves further notational freedom,

identifying N and S ⇒ S with subsets of S and confusing syntax and semantics.

Lemma 8 Every ω-finite element of S is definable in L+.

Proof For every ω-finite element a of S there is an ω-finite b in some Sn such that
a = ρn(b); let the rank of a be the smallest such n. Then every ω-finite element of S
is either ⊥, an integer or of the form

∨

i=1,n

bi ⇒ ci

where the bi, ci are ω-finite elements of strictly smaller rank than a. We show by
induction on rank that for any ω-finite element a two elements #a and ∨a are definable
such that:

#a · x =

1 if x # a
0 if x ≥ a
⊥ otherwise

and
∨a · x = a ∨ x (if x ↑ a)

(where we write x# y to mean that x and y have no upper bound and x ↑ y to mean
the opposite). The result will then follow as ∨a· ⊥= a.

Now let a be an ω-finite element of S. If it is ⊥ or an integer then it is straight-
forward to define #a and a suitable ∨a in L. Otherwise we have bi and ci (i = 1, n)
as above. In that case, a#x iff x is an integer or else x · bi#ci for some i; also x ≥ a
if x · bi ≥ ci for all i. We therefore have

#a · x = ∂(x, (#c1 · (x · b1) ∨p . . . ∨p #cn · (x · bn)), 1)

and so as the #ci are all definable in L+ by the induction hypothesis, #a is too.
For ∨a we first establish the result in the case n = 1, setting b = b1 and c = c1.

We claim that ∨a⇒b can be defined by

∨a⇒b · x · u = ⊃S ·(#a · u) · (x · u) · (∨b · (x · u))

So, assume x ↑ (a ⇒ b) in which case x is a function or ⊥. There are three cases.
In the first u ≥ a. Here x · u ↑ b and so the right hand side is b ∨ (x · u) which is
(∨a⇒b ∨ x) · u as required. In the second case u#a and the right hand side is x · u
which again is (∨a⇒b ∨ x) · u. In the third and last case u ↑ a but u 6 ≥a. Here

29

(x · u) ↑ b and the right hand side is therefore (b ∨ (x · u)) ∧ (x · u) which is (x · u),
again as required.

Returning to the general case, we may define ∨a by

∨a · x = ∨a1⇒b1 · (∨a2⇒b2 · . . . · (∨an⇒bn · x) . . .)

concluding the proof. 2

Full abstraction now follows by a standard argument.

Theorem 4 The standard model is fully abstract for L+.

Proof It is enough to consider the case of two closed terms M and N such that
M 'L+ N . Let a ≤ S[[M]](⊥) be ω-finite and let D define a ⇒ 1; it follows that
S[[DM]](⊥) 6=⊥. We then have, successively, that DM ⇓ (by L+-adequacy), that
DN ⇓ (as M 'L+ N), that S[[DN]](⊥) 6=⊥ (again by L+-adequacy) and so that
a ≤ S[[N]](⊥). This shows that S[[M]](⊥) ≤ S[[N]](⊥) and the converse inequality
follows by a similar argument. 2

Note that, by the equational formulation of minimality, it follows that the stan-
dard model is the unique fully abstract model for L+.

30

