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Abstract 

Over the last decade the multilayer perceptron (MLP) artificial neural network (ANN) has 

been applied increasingly to nonlinear modelling problems in fields such as process 

control and machine vision. Nonlinear modelling is also a problem which has been 

studied extensively by statisticians for several decades, and in recent years several people 

have pointed out that standard MLP and statistical regression methods are in fact very 

closely related. 

This is a useful observation because MLP modelling has traditionally been a somewhat 

trial and error empirical process. Identifying the similarity between MLP and regression 

methods thus offers the possibility that the large body of existing statistical theory and 

practice may be used to improve our understanding and use of the MLP. 

This thesis adopts this approach to examining two important practical problems in MLP 

regression. These are: the use of robust estimators to improve the fit, particularly when 

the training data contains outliers, and prediction error estimation for MLP model 

complexity selection. The investigations into robust MLP regression discovered that only 

simple robust estimators are likely to be useful in most MLP regression problems. 

Though more sophisticated estimators have previously been suggested for this task, it is 

shown why these are in fact unsuited to this. Estimating prediction error is a particularly 

important problem in MLP regression. The investigations into estimating prediction error 

yielded a fast method for estimating prediction error by cross-validation and also 

examined its limitations. This method is particularly useful when the amount of training 

data is limited. 

The primary motivation for investigating these two issues was the desire to use the MLP 

to model a phenomenon known as curl in papermaldng, and to use this model to improve 

the yield of a papercoating process. Only a limited amount of data was available for this 

task, and it was suspected that the data 'included several gross errors. Since these are 

general problems in MLP regression, the techniques devised here have wide applicability 

and importance. 
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Chapter 1 

General introduction and thesis overview 

1.1. Artificial neural networks 

Over the last decade, much interest has developed in applying artificial neural network 

(ANN) methods to solving difficult problems in many fields such as machine vision, 

medical condition monitoring, market forecasting and process control[1-3]. 

ANNs are information processing systems based loosely upon the structure of the brain, 

which thereby attempt to emulate its abilities to process complex information such as 

speech and vision, and finding complex patterns in data[4-7]. These tasks are difficult to 

emulate using conventional algorithmic methods simply because they are so complicated 

that suitable algorithms are not known. Much of the interest in neural networks has been 

stimulated by the demonstrated ability of simple ANNs to solve many of these types of 

problems without the need for a detailed understanding of the problem. 

1.2. Function fitting and classification 

However, despite the impressive range of problems for which ANN solutions have been 

developed, the basic problem addressed by the ANN in many of these is simply that of 

modelling nonlinear relationships between sets of variables. Indeed, two basic types of 

nonlinear modelling problem which are fundamental to many larger problems in process 

control, signal processing, machine vision and general data analysis are: 

• 	Classification problems where the decision boundaries to be estimated are nonlinear 

curves or surfaces. 

• 	Function fitting (regression) problems where a nonlinear function must be estimated 

from a set of noisy samples of this function. 

This thesis examines some issues in nonlinear function fitting using a particular ANN 

known as the multilayer perceptron (MLP). The MLP and its variants are arguably 

among the simplest and most widely used ANNs[3], and have provided useful solutions 

to many important nonlinear modelling and prediction problems in fields such as: 

• 	Modelling and controlling complex nonlinear industrial processes[8-14]. 
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• 	Predicting nonlinear time-series[15] such as the behaviour of financial 

markets[16-18] and variations in the demand for electric power[ 19-2 1 ]. 

1.3. The original project goals 

Given the interest and many reported successes in using MLPs to model and control 

industrial processes, the original aim of this project was to examine whether they could 

be used to model a phenomenon known as curl in papermaking. 

Curl is a paper quality that cannot be measured during manufacture, and the primary 

project goal was to examine whether the curl measured after manufacture could be 

modelled as a function of other variables which are measured during manufacture. Given 

such a curl model, it would be possible to estimate, and hence control, curl on line from 

measurements of these other quantities. In process engineering, this technique is known 

as inferential estimation, and is one area in which the MLP is becoming used quite 
widely[8]. 

The process of fitting a MLP model to a given data set is known as training, and 

traditionally a least squares estimation method known as backpropagation has been used 

for this task. At the beginning of this project it was assumed that this method would be 

suitable for developing the curl model, and the project thus aimed to investigate issues 
such as 

integrating the MLP curl model into the production process, and 

updating the model to accommodate changes in the process over time, 

rather than basic issues in the function learning task itself. 

1.4. Problems, investigations and project evolution 

However, once the curl modelling data became available, it quickly became apparent that 

much of this data could not be used to develop the MLP curl model. This was because 

many of the data records had missing entries, and standard MLP training methods such as 

basic backpropagation cannot use such data. 

As methods for approaching this problem were examined, further modelling issues were 

identified which were considered pertinent not only to the problem of modelling curl, but 

to MLP function fitting problems in general. These issues were: 

	

• 	What effect can outliers in the data have on the MLP fit to the data, and what can be 

done to minimise any possible adverse changes they may cause in the fit? 

• 	What effect do a type of influential data, known as leverage points in classical 
regression, have in MILP regression, and how can such data be diagnosed? 
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• 	How can the MLP generalisation ability be estimated when there is too little data 

available to use conventional split sample validation methods? Estimation of the 

generalisation ability is central to the important problem of selecting an appropriate 

MLP for a given modelling problem. 

Though only the last of these issues has received much attention in the MLP literature, 

the problem of function fitting with noisy data is well-known to statisticians as a 
regression problem, and all these issues have been studied extensively in the regression 
literature. 

Regression modelling is essentially concerned with the common problem of estimating a 

function given a set of noisy samples of this function. This task is clearly similar to those 

to which the MLP is commonly applied, and while investigating the above problems it 

was in fact noted that the MLP and its training methods were simply a type of regression 

model and model fitting methods. Once this was appreciated, it was realised that a wide 

range of existing regression knowledge and practice could thus be applied to tackling 
these problems in MLP modelling. 

The main aim of this project thus shifted towards investigating these issues in this 

manner. Once these general issues were investigated, it was felt that this would provide a 

important tool-box of methods based on existing regression theory and practice, which 

could be applied not only to the curl modelling problem, but to practical MLP modelling 
problems in general. 

1.5. Structure of the thesis 

Though the issues listed in the previous section share many common features, they also 

represent a number of distinct areas of statistical research. Consequently, it would not be 

possible to provide one coherent review chapter which covers all the relevant background 

material, and so this has been distributed amongst the appropriate chapters. 

Since most of the techniques used in this thesis were drawn from the regression literature, 

chapter two reviews the basic regression concepts and terminology which are important 

to understanding the MLP, and on which the work presented in the later chapters is based. 

The MLP is introduced as a type of regression model and some of the more important 

issues in its use, particularly overfitting and underfitting, are reviewed. 

Underfitting and overfitting are important problems which must be considered when 

using MLP regression. In chapter three some regularisation methods for preventing 

overfitting are reviewed, and a simple modification of one of these methods is examined 

briefly. The main reason why regularisation methods were examined in some depth was 

that the techniques described in chapter six are more convenient to use when training is 

performed with regularisation. 
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In chapter four the curl modelling problem is revisited and described in more detail. The 

particular reason for this review is to discuss why the MLP was chosen for the curl model 

and also to discuss the data deficiencies which lead to the investigations which are 

described in the chapters five and six. 

Chapter five examines the issue of training MLP regression models with data which 

contains outliers. The standard least squares training method which is used in MLP 

regression can be shown to be sensitive to outliers, and this chapter examines issues in the 

selection and use of alternative robust training methods which are less sensitive to 

outlying data. In classical regression, a type of influential points known as leverage 

points can cause difficulties for some robust regression methods, and the effects of these 

points in MILP regression is also considered. 

Chapter six begins with a closer examination of leverage in MLP regression. The original 

aim of this investigation was to ascertain leverage could be used to diagnose local 
overfitting in MLP regression. However, it soon became apparent that leverage could also 

be used for the important task of estimating the generalisation ability of fitted MILP 

models using standard leave-one-out cross-validation. This is a particularly useful 

technique for problems where the amount of data is limited, such as the curl modelling 

problem. A fast cross-validation method based on the fit leverages, and conditions for its 

performance, are discussed using the curl modelling problem. 

Earlier chapters having examined a range of methods for practical MLP regression, 

chapter seven returns to the curl modelling problem and the application of these methods 
to this problem. 

Finally, chapter eight provides a summary of the thesis and states its final conclusions and 
suggestions for future work. 

1.6. Contributions to knowledge 

The main contributions to knowledge contained in this work are: 

• 	In chapter three, some minor contributions are made towards extending current 

understanding and use of roughness penalties in MLP regression. This work was 

limited simply by the realisation that there was too little time to investigate it in the 
depth required. 

• 	Chapter five makes several major contributions towards current understanding of the 

practical issues involved in applying classical robust regression methods and ideas to 

MLP regression. These techniques are important when dealing with real data which 

may contain gross errors and other outliers. 

Chapter six makes two contributions on the issue of overfitting, the most important 

of which is in the area of estimating generalisation ability using a fast and 
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approximate method for computing the leave-one-out cross-validation score for the 

MLP regression models considered in this thesis. This method is of particular 

importance in problems where training data are limited. A minor contribution is 

also made in illustrating the diagnostic uses of leverage in MLP regression. 
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Background to regression modelling and the MLP 

2.1. Introduction 

Chapter one stated that a regression modelling approach was adopted for developing the 

MLP curl model. The primary reasons for this were: 

• 	The function fitting problems to which MLP methods are applied are generally 

examples of regression modelling problems, and fit neatly into existing regression 

theory. 

It was felt that many important problems, such as how to deal with outliers, had not 

been addressed adequately in the MILP literature. These are not just specific to the 

curl modelling problem, but are general regression problems. These problems have, 

however, received much attention in the regression literature, and it would clearly be 

sensible to use well-understood existing methods as a starting point for tackling 

these problem in MLP regression. 

Indeed, in recent years, many neural networks researchers have realised that existing 

statistical theory offers answers to many important problems in MLP modelling, and this 

is now an area of much research activity[22-28]. This chapter: 

• 	reviews the basic regression concepts necessary to understand the material in later 
chapters, 

• 	introduces the MLP as a regression model, and 

• 	discusses some of the important basic issues in MLP regression. 

The chapter is organised as follows: 

Section 2 introduces the regression problem and the 2 issues which primarily determine 

what models and methods are applicable for a given problem type. 

Section 3 reviews basic concepts in parametric regression, least squares fitting of 

parametric models and the difficulties of specifying the model functional form. 

Section 4 reviews basic nonparametric regression concepts, focusing primarily on kernel 

regression to illustrate the idea of local smoothing. 
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Section 5 examines the important issues of under- and overfitting, using examples from 

both parametric and nonparametric regression. Under- and overfitting are important 

problems in MLP regression. 

Section 6 discusses a problem known as Bellman's curse, which relates the amount of 

data required to estimate a regression function to the number of variables involved in the 

regression problem. 

Section 7 summarises the key advantages of parametric and nonparametric models in 

preparation for discussing the advantages of using the MLP for regression. 

Section 8 introduces the MLP regression model, and reviews the MLP, MLP training 

methods and some practical problems in training MLPs. 

Section 9 focuses in depth on the issue of under- and overfitting in MLP regression, and 

how to minimise them when fitting the MLP. 

2.2. Basic regression concepts and terminology 

Finding and expressing systematic relationships between two or more noisy variables is a 

common problem in science and other fields, and it is this problem that regression 

modelling methods address. Figure 2.1 shows a simple example of such a problem 

involving only two variables, x and y: 

A simple illustration of the regression problem 
I 	 I 	 I 

JJ.(x) - 
noisy observations of L(x) 0 

1.5 

0.5 

0 

-0.5 

-1 

-1.5 
- - 0 	 0.2 	 0.4 	 0.6 	 0.8 	 1 

x 

Figure 2.1: Illustration of a simple, two variable regression problem. The 

problem is to estimate p(x) given the set of noisy observations of this 

function shown. 

Here, the typical value (this will be made more precise shortly) of y depends upon x 

according to the regression function u(x). However, one or both variables are subject to 
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random variations which result in their observed values being scattered about this 

function. Since y depends systematically on x, it is usually called a dependent or 
response variable, and x is called an independent or predictor variable. 

Given a set of data such as that shown in figure 2.1, it is often desirable to estimate the 
regression function (if any) which describes the systematic relationship between them. 

For example, knowledge of this function may be useful when examining the nature of the 

relationship between these variables, or it may be used to predict the response which is 

likely to be observed for given values of the predictor variables[29]. 

The aim of regression modelling methods is to estimate a regression function given a set 

of noisy observations of this function[29, 301. Many methods have been developed for 

this task, and the choice of an appropriate method is dictated mainly by two 

considerations: 

How should the regression function be expressed? For example, it may be known 

that the regression function can be approximated closely by a specific type of 

function such as an exponential decay curve, or little may be known about the shape 

of this function other than its general properties, such as smoothness. 

How do the random variations, or errors, affect the observations of p(x)? The 

answer to this question determines the type of estimation (fitting) method which 

should be used in conjunction with the chosen regression model. 

The next sections expand upon these issues and discuss the trade-offs involved in 

choosing a particular model type and fitting method. This discussion also serves to 

introduce further basic issues, notably underfitting and overfitting, which are of great 

importance in MLP regression[31]. 

2.2.1. How the error structure affects the regression problem 

Before considering what sort of models can be used for the regression function, the 

important issue of how the random errors affect the data will be considered. The error 

structure largely dictates what methods are used to fit a model to the data, and failure to 

consider this may give a poor fit. 

This thesis is concerned only with method based on the fixed design[30] or fixed 
regressor[32] model. This assumes that random errors affect only the response variable, 
so that the data have the form 

y = p(x1,. .. ,xq)+e = p(x)+e 	 (2.1) 

where e is the error, x is the vector (x 1  . . xq)T and the regression function is shown as a 
function of q predictor variables for the sake of generality. 
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It is also necessary to consider what probability distribution best describes the 

distribution of the response errors. Since this question raises many issues, it is not 

discussed here, but at more appropriate points throughout this thesis. 

Figure 2.2 show the fixed design model with Gaussian errors which was used to generate 
the data shown in figure 2.1. 

The fixed design error model 

y has a Gaussian distribution 

Figure 2.2: Example of a fixed design error model. Only the response 

variable is subject to random errors, which follow the distribution N(O, 0.25). 

The fixed design assumption may seem too simple for real data, and techniques known as 

errors-in-variables methods[321 extend the error structure to include errors in the 

predictor variables. However, fixed design methods were used here because, 

most regression methods assume fixed design errors, and so the widest range of 

existing methods can be adopted for MILP regression when this error structure is 
assumed, and 

the fixed design method can actually be quite accurate for many problems, such as 

modelling industrial processes where most of the output variation arises within the 

process, which does not affect the inputs[33]. 

The regression function under the fixed design assumption 

Assuming fixed design errors, a formal definition of a regression function can be given. 

If each error distribution has zero mean, then the regression function at any x is the 

expected value of the response[30, 34]. If many data are collected at a given x, then 

averaging their responses will give a value close to p(x) (c.f. figure 2.2). 
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2.3. Parametric models, nouparametric models, fitting and residuals 

Most regression models can be classified as either parametric or nonparametric models; 

the difference between them being how the estimate of the regression function, or fit, is 
expressed mathematically. 

Using either model type, the goal of regression modelling is to find a fit which 
minimises2  the differences between the fit values and the data, or residuals, {y, - f(x,) }, 
where f(x,) is the value of the fit at x. If the fit is a good estimate of the regression 

function, then the fit residuals are also good estimates of the response errors, {e 1  }. 
Examining the residuals is a good method for assessing the adequacy of a regression fit, 

and some examples of this are given in chapter seven[35]. 

Understanding the relative merits of the parametric and nonparametric approaches is 

essential for understanding the merits of using the MLP for regression. 

2.3.1. Parametric models 

Linear regression[35, 36] gives a good illustration of the parametric modelling approach. 

In linear regression, it is assumed that the shape of the regression function is known 

(linear), and only the model slopes and y-axis intercept (the model parameters) must be 
estimated to fit the model to the data. Formally, the linear model is 

fc;) = 00+X10I+"+Xq Oq 	 (2.2) 

when 0 is the vector (0g . . Oq)T and it is assumed that 

c) = fc;) 
	

(2.3) 

for some unknown value of the model parameters, 0. The problem is then to find a good 
estimate of e, so that the model fits the data well. 

Clearly the linear model is not appropriate for all problems, and any function can be used 

as a parametric model, provided that suitable parameters are included to allow it to be 

fitted to the data. For example, the models 0 1  sin(02 x) and 93 x3  + 02 x 2  +0 x +00  can 
both fit the 'N'-shaped regression function in figure 2.1, and so are more appropriate than 
a linear model. 

2.3.2. Fitting parametric models using least squares 

The most well-known and widely-used method for fitting parametric models is least 

squares (LS) estimation[32, 37]. In LS estimation, the model is fitted to the data by 

finding the parameter values, O, which minimise the sum-of-squares error, 

2 Subject to avoiding an effect known as overfitting, which is described shortly. 



Chapter 2 
	

11 

SSE 
= 	

Iy - fc; 9)12 	 (2.4) 

where n is the number of data. The SSE is the sum of squared fit residuals, and so 

minimising the SSE attempts to improve how accurately the regression function is 

estimated by the fit by reducing the measured misfit between the model and the data. 

Statistical aspects of LS estimation (error distribution) 

Though LS estimation can be used without knowledge of the response error distribution, 

the method is most appropriate when the errors are independent and identically 

distributed variates from a Gaussian distribution. 

If this the case, then it can be shown that the SSE is proportional to the negative log-

likelihood of the parameters, and hence the LS estimates, t, are the maximum likelihood 

estimates (MLEs) of the unknown e[32]. 

MLE is an important estimation method in statistics because MILEs often have various 

desirable statistical properties (MILE is reviewed in appendix A). The properties of LS 

estimates, and other fitting methods, are examined further in chapter five. 

2.3.3. The parametric model specification problem 

A major difficulty with parametric modelling is that the shape of the regression function 

to be estimated is often unknown, making it very difficult to specify a suitable functional 

form for the model[38]. While visual inspection may suggest a suitable model function 

when there are only a few variables, this soon becomes a very difficult problem in higher-

dimensions[39]. 

In such situations, nonparametric regression techniques are more suitable. These are 

discussed now. 

2.4. Nonparametric regression 

For regression problems where the shape of 4u(x) is unknown and a suitable parametric 

model cannot be specified easily, a flexible method which can adapt to the shape of any 

systematic trends within the data is clearly desirable. This is the purpose of 

nonparametric methods[30, 381. 

The basic principle underlying the nonparametric approach is to locally smooth the data 

to reduce the response error variations and hence recover the shape of p(x)[30, 40]. 
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2.4.1. Kernel regression as an illustration of nonparametric smoothing 

Figure 2.3 shows a typical example of local smoothing using a nonparametric method 

know as kernel regression. This example is discussed in some detail both to illustrate the 

principle of local smoothing, and because some later chapters use kernel regression 

analogies to explain phenomena in MLP regression. 
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Figure 2.3: Illustration of local smoothing in nonparametric regression. 

u(x = 0. 15) is estimated averaging the weighted response data, where the 

weights are given by the dashed kernel function. 

Figure 2.3 shows the kernel regression estimate of p(x), and also details how p(O. 15) 
was estimated. Assuming du(x) to be smooth, then the values of this function should be 

similar for all x in the vicinity of x = 0. 15. Thus the regression function can be 

estimated by averaging the responses for these data, which reduces the random error 

variation[30, 41]. The data closest to x = 0. 15 provide the best estimates of p(O. 15), and 

so the average is weighted towards these cases. In this example, the average is weighted 

according to the Gaussian kernel function shown centred at x = 0. 15. 

Formally, the kernel estimate of the regression function at x is the weighted average 

n 

wI 	'Iy 
y— 	 .5 

n 

w1__I  
=i 	 2 

where W(a) is the kernel function and 9 is a notation for the regression function estimate. 

The parameter 2 controls the kernel bandwidth; that is, it controls how rapidly the kernel 

function decays as the distance x - x i  increases. Wide bandwidth kernels smooth over a 

wide area, while narrow bandwidth kernels average only the data in narrow 
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neighbourhood around x. The consequences of using a bandwidth that is too wide or 

narrow are examined in section 5. 

Though the above description made no explicit statement about the fitting method used 

by kernel regression, this type of kernel regression is in fact a LS estimator. This is 

because taking the sample mean of the weighted response data is a LS estimator (see 

appendix A). 

2.4.2. Other nonparametric methods 

There are many other nonparametric methods in addition to kernel averaging. For 

example, cubic regression splines are another popular nonparametric estimation method 

where p(x) is approximated by joining a series of cubic polynomial segments at their 

endpoints, subject to some smootimess constraints on how they are joined. This and 

other nonparametric methods are discussed in[30, 38, 42-48]. 

2.5. Underfitting and overfitting 

Underfitting and overfitting can be serious problems when using parametric or 

nonparametric regression, though they are much easier problems to cure in nonparametric 

regression. Under- and overfitting are often serious problems in MLP regression, and are 
now discussed. 

Underfitting 

Underfitting occurs when the regression model cannot capture the shape of the regression 

function to be estimated. Figure 2.4 illustrates this concept using parametric and 

nonparametric regression examples, fitted to the data shown in figure 2.1. 

1.5 

0.5 

0 

-0.5 

-I 

-I-S 

Illustration of underfitting (linear regression) 

Linear LS fit - 

o 

a 

a * 0 0 

0 	 0 

a 	
00 dn1,.n'g'-uwdby using 

etric , 

 

I.) 

0.5 

0 

-0.5 

Gaussian kernel regression underfitting 

Bandwidth 0.25 fit - 

0 

IamrIgIofljdeng 00 
caused by using a bandwidth that 	a 	 a 
istoowide. 	 a a 

0 
	

0.2 	 0.4 	 0.6 	 0.8 	 I 	 0 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 

Figure 2.4: Underfitting in parametric (left graph) and nonparametric (right 

graph) regression 

The parametric linear model obviously cannot represent accurately the regression 

function because it cannot capture the nonlinear relationship between the variables. In 
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this sense, the model can be considered too simple to represent the regression function, 

and is thus said to be underfitted. In the kernel regression example, the use of an 

excessively wide bandwidth kernel has not only averaged-out the errors very effectively, 

but has also averaged-out the trends in the data. 

Avoiding underfitting can be a very difficult problem in parametric regression because of 

the difficulties that finding a suitable model function to fit high dimensional regression 

functions can pose. Underfitting is a much easier problem to solve in nonparametric 

regression, because simply reducing the width of the smoothing neighbourhood (the 

kernel bandwidth in kernel regression) reduces the underfitting. 

Statistically, underfitting is an example of estimation bias because the fit cannot converge 

to the regression function that it attempts to estimate no matter how much data is 

available to estimate this function[43]. That is, there will always be a systematic 

deviation between the fit and the data because the model simply cannot fit the trends in 

the data. 

Overfitting 

Overfitting is essentially the opposite problem to underfitting, and occurs when the model 

can fit not only the regression function, but also the random variations of the data due to 

the response errors. Figure 2.5 illustrates overfitting using kernel regression. 

Illustration of overfitting (kernel regression) 

	

I 	I 	I 	I 	 I 	 I 	I 

Estimated JJ.(x) - 

00 	
0 0 

	

Observations of 11(x) 0 - 

0 0 

0  
0 	 0 

0 	 0 
0 

	

o 	 0 
0 	 0 

0 	
0 	 0 

	

• 	 0 

0 

0 
00 

	

I 	I 	I 	I 	I 1 	I 	I 	I 

	

0 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 
x 

Figure 2.5: Illustration of overfitting in kernel regression 

The regression fit shown in figure 2.5 follows the shape of the regression function well, 

but is a poor estimate of the regression function because it also follows the random data 

variations. This occurred because a narrow kernel was used, which does not allow for 

averaging of many data, and hence smoothing of the random errors. 
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Overfitting in parametric regression is illustrated later using the MLP. The absence of a 

MLP example here does not mean that it is not a serious problem. 

Overfitting can be reduced in nonparametric regression simply by widening the 

smoothing neighbourhood. However, avoiding overfitting in parametric regression 

without causing underfitting instead is a difficult problem. Again, this is due to the 

difficulties of specifying a suitable parametric model form for complex, high-dimensional 

regression functions. 

Statistically, overfitting is an example of high-variance estimation[43]. This is a result of 

the oscillations in the fit, such as those visible in figure 2.5. These oscillations are 

sensitive to the response error values, and so re-estimating the regression function using 

data with different errors will give different oscillations. This variation of the fit between 

different data-sets is the source of the high variance. 

2.5.1. Trading-off underfitting bias versus overfitting variance 

Obtaining the best possible fit to the data requires that underfitting and overfitting are 

minimised. However, reducing bias due to underfitting, by using a narrower kernel for 

example, always causes an increase in the fit variance. Conversely, reducing overfitting 

(variance) by using a wider bandwidth always increases the fit bias. This is known as the 

bias-variance trade-off or bias-variance dilenima[49]. 

Techniques for assessing when the best combination of low bias and variance have been 

achieved are discussed later in the context of MILP regression. 

2.6. Bellman's curse of dimensionality 

The final basic regression issue considered here relates to the amount of data required to 

estimate a given regression function, and is known as Bellman's curse of dimensionality. 

Accurate estimation of complex regression functions, such as functions with many 

minima and maxima, requires many data to define these features accurately. A good 

analogy to this situation can be drawn with the Nyquist sampling theorem in signal 

processing, which states that a signal must be sampled at a rate greater than twice the 

highest frequency components in the signal if these components (the fine detail) are not to 

be lost due to aliasing. 

However, as the number of predictor variables increases, the number of observations of 

the regression function required to maintain dense sampling of this function rises 

exponentially[29, 50]. For example, suppose ten uniformly spaced samples of a function 

of one variable are taken. In order to obtain a similar sampling density for a function of 

two variables, 100 samples would be required, distributed evenly over a fixed grid. For a 

function of three variables, 1000 samples over a cube would be required, and so on. 
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The consequence of Bellman's curse is that it is almost always difficult to estimate high-

dimensional regression functions accurately, because of the vast amount of data that is 

required to represent the features of all but the simplest functions. The exponential 

increase in the number of data required to estimate functions accurately as their 

dimension increases is Bellman's 'curse' of high dimensionality. 

MLP regression is often applied to high-dimensional data, and so Bellman's curse is a 

common problem in MLP regression. 

2.7. A review and comparison of the regression approaches 

Before introducing the MLP and discussing its useful features as a regression model, it is 

worth reviewing some of the relative merits of the parametric and nonparametric 

approaches. 

Strengths of the nonparametric approach 

The obvious weakness of the parametric approach is the difficult problem of specifying a 

suitable model for the regression function when the shape of the regression function is 

unknown. A bad model choice can lead to serious under- or overfitting. While 

nonparametric methods do require suitable smoothing parameter values (such as kernel 

bandwidths) to avoid serious under- or overfitting, choosing appropriate values for them 

is a much simpler problem than trying to specify a complex parametric model. 

An additional advantage of nonparametric methods is that they do not require any model 

parameters to be estimated. For parametric models involving many nonlinear parameters 

this can be a difficult and very computer-time consuming task. 

Strengths of the parametric approach 

A particularly useful characteristic of parametric models in fields such as process 

modelling is that they provide a concise, functional summary of the regression function. 

To see why this is useful, note that once the model parameters have been estimated then 

du(x) can be estimated at any point without the need to store the data used to compute 0. 

In contrast, nonparametric methods must consult this data every time u(x) is to be 
estimated, and this may require a significant amount of data storage space. In addition, 

for large amounts of data involving many variables, the time required to search this data 

to find the data which lie within the smoothing neighbourhood may be significant. 

Parametric models are also useful if features of the regression function such as minima 

and maxima are to be found, or if this function is to be differentiated or integrated. With 

parametric models, these problems often can be addressed efficiently by applying 

appropriate standard analytic methods to the fitted model. 
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Combining the advantages of both approaches 

While the nonparametric approach is most useful for estimating unknown nonlinear 

regression functions, the parametric approach also offers some practical benefits. Clearly 

it would be useful in some applications to combine the flexible function approximation 

abilities of nonparametric methods with the convenience of the parametric model. The 

curl modelling problem was considered to be one such application, and the MLP is one 

type of regression model that provides this combination. 

2.8. The multilayer perceptron (MLP) 

The remaining sections of this chapter now introduce and discuss the MLP as a type of 

parametric regression model. The issues discussed are: 

the MLP and its relationship to the regression concepts reviewed in the previous 

sections of this chapter, 

training (fitting) methods for MLPs, and 

underfitting and overfitting in MLP regression, and how these are usually avoided. 

Avoidance of under- and overfitting is widely considered to be one of the most important 

problems in MLP regression[31], and provided the motivation for much of the work 

presented in chapter six. Consequently, this issue is discussed in most detail. 

2.8.1. MLP architecture and universal function approximation 

There are very many types of ANN[2], though only a few such as the MLP and radial 

basis functions are appropriate for regression modelling[5 1, 52]. Of these two, the MLP 
is arguably the most widely used. 

The name 'multilayer perceptron' arises from the fact that a MLP is comprised of 

interconnected layers of simple mathematical models of the neuron (the basic brain cell). 

These neuron models are sometimes known as perceptrons. The neurons can be 

connected in many possible ways, and the combination of the neuron-types and 

interconnectivity in a given MLP define its architecture. 

Figure 2.6 shows the MLP architecture used for the work presented in this thesis. The 

arrows show the direction of data flow through the MLP, and since all arrows point from 

the input layer to the output, this is known as afeedforward MLP. 
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Figure 2.6: A feedforward MLP with one hidden layer of nonlinear neurons 

and a linear output neuron. 

This MLP implements the parametric model 

U 

fc; 9) = v0 + vo(wx + who) 	 (2.6) 
u= I 

where the parameter vector is comprised of the input and output weights, w and v, and 
the input and output biases, w 0  and v0 . When presented with a vector of inputs, x, each 
hidden unit computes an activation which is a weighted sum of the inputs to which a 
constant bias is added 3. These activations are transformed using the logistic sigmoid 
function 

a(a) =  
1 + e 

(2.7) 

to form the hidden unit outputs, and the final MLP output, f(x; 0), is a weighted sum of 

the hidden outputs. In summary: each hidden unit computes a nonlinear function of a 

linear combination of the inputs, and these are added to form the MLP output. 

Here bias refers to the intentional addition of an offset, such as the fit y-axis intercept, v0 . It 
should not be confused with the use of bias as an unwanted offset in an estimator's value. 



Chapter 2 	 19 

Universal function approximation using the MLP 

Much of the interest in using MLPs for regression can be traced to the fact that they are 
universal function approximators[51, 53]. This means that a there is always a MLP 

(which may require infinitely-many hidden units) that can approximate any smooth, 

continuous function exactly. 

While few problems need infinitely-many hidden units, MLPs with even a single layer 

comprised of a few hidden units can still approximate a surprisingly wide range of 

functions well. This curve-fitting flexibility makes MLP regression competitive with 

nonparametric regression techniques for problems where the shape of the regression 
function is not known[24, 49]. 

Much of the success of the MLP in applications such as process control can be attributed 

to their combining of a compact parametric model form with the function-fitting 
flexibility of nonparametric methods. 

2.8.2. MLP training (fitting) methods and practical problems 

The process of estimating the parameters which fit the MLP to the data is usually called 

training. The methods used for training affect many aspects of how MLPs are used. In 

particular, understanding how MLPs are trained is necessary to understand how a 
technique known as early stopping works. 

This review of basic MLP techniques thus concludes with a brief review of common 
training methods. 

Fitting the MLP to the data 

Training a MLP is conceptually no different from fitting a linear regression model; both 

require parameters to be estimated to fit the model to the data. The main difficulty in 

MLP regression is that the SSE is a complex, nonlinear function of the parameters, and so 

it is not possible to derive analytically the parameter values which minimise the SSE. 

Instead, iterative optimisation methods are used to find the SSE minimum[54-56]. 

Training by batch backpropagation 

The first, and still commonly used, MLP training algorithm was a simple gradient descent 

method known as backpropagation 4, or usually just backprop[57]. Backpropagation 

searches for a SSE minimum by taking successive small steps in the direction in which 

the SSE function decreases most rapidly. The parameter update rule is 

n+I = On - 77V9 SSE(e) 	 (2.8) 

where the learning rate parameter, i, controls the step size made on each update, and is 
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normally fixed in backpropagation. 

This version of backpropagation is known as batch training because all the training data 

must be used to compute the SSE gradient direction before any parameter update is made. 

A common variant known as stochastic or on-line backpropagation uses a different 
gradient search method, where the components of the gradient direction due to individual 

training data are used to make the parameter updates[58]. This method is more suitable 

for time-series modelling than regression work, and so is not discussed further. 

Faster training methods 

Backpropagation is a rather unstable optimisation method, and this can cause its user 
much frustration[58]. 

If i is large and the descent path stumbles into a region where the SSE drops rapidly for 

small changes of the parameters, then the next training step changes the parameter values 

by a large amount. This can result in the new parameter estimates being further from the 

SSE minimum than the previous estimates, and so the minimum is not found. 

This problem can be overcome by using a smaller learning rate, but training often 

becomes extremely slow, as very many of the small parameter updates may be needed to 

reach the SSE minimum. In practice, much time may be wasted simply tinkering with 

the learning parameter to achieve stability or to accelerate slow convergence. 

Due to these problems of stability and convergence time, fast, stable optimisation 

methods such as conjugate gradient methods with line- searching and Newton-type 

methods have become increasingly popular for training MLPs[54, 58-61]. During this 

project, both conjugate gradient methods and the Nelder and Mead downhill simplex 

method[55, 62] were used, and both gave far faster training than backpropagation, with 

the further advantage of stability. 

Local minima: a practical training problem 

Since the SSE is a complex nonlinear function of the parameters, it often has several local 

minima in addition to a global minimum. All iterative optimisation methods may become 

trapped in these local minima, leading to poor fits to the training data. 

If a poor fit is obtained, and it is suspected that this is due to a local minimum rather than 

underfitting, then the simplest method for addressing this problem is to train several 

MLPs using different random starting parameters values. This increases the likelihood of 

finding a SSE minimum (not necessarily global) which gives a good fit to the data, 

' Strictly, backpropagation refers only to the version of the chain rule that is used to calculate 
the gradient. However, the term is often used to refer to the training process itself[23]. 
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though training many MLPs does increase the time required to develop the MLP 
regression model. 

Hidden unit saturation: a practical training problem 

Another practical problem is known as hidden unit saturation. Saturation occurs when 

most or all of the hidden unit activations become large, forcing their outputs to be close to 

0 or 1 for sigmoidal hidden units[63]. This almost binary behaviour of the hidden units 
usually gives a poor fit to the data. 

Saturation is a difficult situation to escape from once entered, because the SSE gradient 

becomes very small, and so training slows dramatically. Fortunately, saturation can 

usually be avoided by scaling all predictor and response variables to small ranges near 

zero. Commonly used transforms include translating and scaling to fit the range [0, 1] 

and standardising by subtracting the mean and dividing by the standard deviation. The 

need for, and possible consequences, of saturation and scaling are discussed at 
appropriate points in later chapters. 

2.9. Underfitting and overfitting in MLP regression 

Avoiding under- and overfitting is one of the most important problems in MLP 

regression[24], and so the remaining sections of this chapter discuss this problem, and 
some methods for addressing it, in some depth. 

The cause of under- and overfitting 

The complexity of the functions which can be approximated by a given MLP increases as 

more hidden units are used. If a MLP contains too few hidden units to approximate the 

regression function being estimated, then it cannot fit the data well no matter how much 

training data is available. This is underfitting in MLP regression. 

Conversely, a MLP with many hidden units may be able to fit not only any regression 

function within the data, but also spurious trends which are due to the random response 

errors, and are not part of the regression function. This is overfitting in MLP regression. 

Finding the right fit complexity to avoid under- and overfitting 

Under- and overfitting can be avoided by using a MLP with enough hidden units to avoid 

underfitting, but no so many units as to allow overfitting 5 . However, since the shape of 
the regression function is usually unknown, it is not possible to specify a suitable number 

Other methods for complexity control are discussed later and in the chapter three. However, 
the goal of all complexity control methods is the same, and so this discussion considers only vary-
ing the number of hidden units for controlling the fit complexity. 
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of hidden units in advance of fitting the MLP. Instead, it is usual to search for signs of 

under- or overfitting after training, and then to re-train with more or fewer hidden units 
respectively. 

The training data cannot be used to detect under- or overfitting 

One method which cannot be used to assess whether under- or overfitting has occurred is 

to compare how well MLPs with different numbers of hidden units fit the training data. 

Figure 2.7 illustrates this point. Here, sets of 10 MLPs with random initial parameter 

values and 1 to 6 hidden units have been trained using 25 data drawn randomly from the 

data shown in figure 2.1. One reason for using only half of the data in figure 2.1 is to 

encourage overfitting by having sparse training data, and another important reason for 

holding-back some of the data is discussed in the next section. 
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Figure 2.7: Mean square fit error versus number of hidden units for MLP fits 

to 25 of the data shown in figure 2.1. Error-bars are ± 1 standard deviation of 

the training errors obtained for the 10 different MLP fits with each number of 
hidden units. 

The sub-figures within figure 2.7 show the typical fit shapes obtained using different 

numbers of hidden units. It is clear that only the MLP with 2 hidden units provides a 

good estimate of the regression function. However, this cannot be ascertained by 

comparing how well the MLPs fit the training data, because overfitting caused by 

increasing the number of hidden units always gives a lower training error. Here it can be 

seen that the error decreases monotonically as the number of hidden units increases, and 

this trend gives no indication that underfitting occurs with less than 2 hidden units or that 
overfitting occurs with more than 2. 
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Some other method clearly is required to identify under- and overfitting so that the right 

number of hidden units can be chosen for a given problem. This is normally achieved by 
comparing the MLP generalisation abilities, which is discussed now. 

2.9.1. Generalisation ability and prediction error 

Generalisation ability refers to the how well a trained MLP fits the regression function 

represented within its training data. If the fit gives accurate predictions of the regression 

function for all x of interest, then the MLP is said to show good generalisation ability. 

Both underfitting and overfitting cause poor generalisation ability, the former due to the 

bias in the fit and the latter due to the wild fit-oscillations which are characteristic of 

overfitting (see figure 2.7 for example). 

To determine how many hidden units are needed to obtain a MLP fit with good 

generalisation ability, it is first necessary to quantify this property. In both classical and 

MLP regression, generalisation ability is quantified using the expected prediction error of 
the fitted model[64]. Using the MSE as an example error measure, the expected 
prediction error is 

Expected prediction error = E [i Y - 91 
 2] 	

(2.9) 

where the expectation is over all possible noisy observations of the regression function, 
and 9 is a common short-hand notation for the fitted model's regression estimate, f(x; Ô). 

The expected prediction error is minimised for a perfect fit to the regression function, and 

increases as the fit deviates further from this function. One easy way to confirm this is to 

note that when there is an infinite amount of training data, then a MLP with a suitable 
number of hidden units[49, 531 can estimate the regression function exactly. If this MLP 
is trained using LS estimation, then the SSE divided n tends to (2.9), and so (2.9) is 
minimised for a perfect fit. 

In practice, the joint distribution of x and y is unknown (if it was known, the regression 

function could be estimated exactly by computing the expected y for any given x), and so 

the expected prediction error must be estimated. If N new data become available after 
the MLP is fitted, then one estimate of the expected prediction error is 

iN 
PE=- Iy - 9I

2 
	 (2.10) N v=1 

which is simply an estimate of (2.9) based upon a finite sample. 

Thus new data can be used to estimate the generalisation ability of MLP regression 

models by measuring how well the fitted model predicts this data. Note that this test data 

cannot also be used for training, as the prediction error can then be driven to zero by 
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overfitting to this data during training. Rather than collecting new test data after training 

the MLP, it is usual to collect one set of data, but to reserve some of this data solely for 

the purpose of testing the MLP generalisation ability after training. This technique is 

used very widely, and is now discussed. 

2.9.2. Data splitting 

The most widely used method for estimating prediction error in MLP regression is data 

splitting[65, 66], which is also known as the hold-out method in the MLP literature[67]. 

Data splitting simulates model testing with new data by excluding some of the available 

data from training, and using this data to estimate the prediction error after the MLP is 

trained. Typically, the available data are split into two, or possibly three, data sets: 

A training set. This is used to train the MLP. 

A validation set. This is used to estimate generalisation ability for the purpose of 

deciding which of two MLPs has the best generalisation ability. 

An optional test set. This data is used to provide a final estimate of the 

generalisation ability once the model complexity has been tuned using the validation 

set. 

Separate validation and test sets should be used because the validation error may be an 

over-optimistic estimate of the true generalisation ability. This is because the MLP 

complexity is determined by varying the MLP fit complexity and then selecting the MLP 

which fits the validation data best, and so this process is biased toward selecting models 

which may happen to overfit the validation data[66, 67]. The test set is thus used to 

provide an estimate of the generalisation ability using data which has not been used to 

train the MLP or to tune its complexity. In practice, however, limited data availability 

often results in the validation-set being used both to tune the MLP complexity and to 

estimate the final generalisation ability. 

Figure 2.8 shows how data splitting can be used to find the number of hidden units which 

minimises under- and overfitting for the MLPs used in the previous example (figure 2.7). 
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Figure 2.8: Training and validation data MSEs for the MLPs of figure 2.7. 

Each point is the average MSE for 10 MLP fits, and the error-bars are ± 1 

standard deviation of the MSEs for these 10 MLPs. 

This figure shows 2 error curves, 

• 	the training data MSE shows how well the MLP fits the 25 training data, and 

• 	the validation data MSE shows how well the MLP fits the 25 data which were held- 
back. 

Though the training errors provide no indication of which MLPs are underfitted or 

overfitted, the validation data estimates of the prediction error show clearly that the best 

generalisation ability (i.e. least under- and overfitting) occurs for the MLPs with 2 hidden 
units. 

2.9.3. Practical data splitting issues 

While the simplicity of data splitting is very appealing, there are 2 practical issues to 

consider when using this method. These are 

• 	deciding how much of the data to reserve for validation and testing, and 

• 	ensuring that the validation data is not all concentrated in one small region. 

Deciding how much data to reserve for validation 

Deciding how much data to reserve for training and how much to reserve for validation 

(and testing, if a test set is to be used) is a contentious issue. This section discusses the 

problems this poses, and some methods used to address them. 
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Reserving too little validation data does not allow thorough testing of the MLP fit. This 

can result in overfitting or underfitting passing un-noticed where there is no validation 

data to detect their occurrence. Additionally, the estimates of the prediction error may be 

quite variable due to the small sample size[66, 681, and can change significantly 

depending on which portion of the data is used for model validation. If the validation 

errors are considered too variable to be reliable, then there is little point in using such a 

small validation set. 

However, using too much of the available data for validation and testing may not leave 

enough data in the training set to estimate the regression function accurately[66, 69]. 

This can be particularly serious when the model involves many predictor variables, since 

Bellman's curse means that the regression function will be sampled sparsely, and so may 

be quite poorly defined by the data. Reducing the amount of training data further for 

validation and testing may remove completely some feature of this function. 

A compromise must be made between reserving too little or too much data for validation 

and testing. In practice, typically 10 to 20 percent of the data is reserved for model 

validation; though this is a somewhat heuristic rule, and can vary appreciably between 

practitioners, and with whether or not test data is also to be reserved. Some recent 

theoretical results[68, 69] suggest how much validation data to reserve, though no 

experimental confirmations of these results have been reported yet. 

Obtaining maximum validation set coverage 

Once the validation-set size is determined, the next issue to address is ensuring that the 

validation data covers the same predictor variable range as the training data: that is, 

ensuring that the validation data is not concentrated in one or two small regions, but tests 

the model as extensively as possible over the domain of interest. Random splitting is 

used commonly in MLP regression, and does appear to work quite well in practice. 

However, it has been suggested that random splitting can often give poor validation 

coverage, and that systematic splitting methods should be used[65, 66]. This approach 

does not appear to have been examined in MLP regression to date, but certainly merits 

further investigation. It was not investigated here because the curl data was ordered in a 

way which meant that reasonably good systematic coverage could be obtained easily. 

2.9.4. Complexity control using the method of early stopping 

The final MLP regression technique reviewed here is the widely-used method of early 

stopping. Early stopping is an alternative to adjusting the number of hidden units when 

trying to avoid under- and overfitting[31]. 
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When using early stopping, a large number of hidden units is normally used, so that 

underfitting is unlikely to be a problem. To then avoid overfitting, the validation error is 

monitored continuously during training, and training is stopped when the lowest 

validation error occurs[67, 70, 71]. 

The principle on which early stopping is based is as follows. In the initial stages of 

training, it is assumed that the MLP first learns the gross trends in the data, that is the 

regression function, and that overfitting to the finer error detail occurs only after 

prolonged training. Consequently, the validation error drops during the early stages of 

training when the regression function is being learned, but increases when overfitting 

begins. Training is thus stopped when a rising validation error signals the onset of 

overfitting[69, 70]. 

Figure 2.9 illustrates the use of early stopping. This figure which shows the variation in 

the validation error during training for one of the MLPs with 6 hidden units from the 

previous example (see figures 2.7 and 2.8). 
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0.06 

Variation in validation error during training for a 6-hidden-unit MLP 
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Figure 2.9: Variation of the validation error during training for one of the 

MLPs with 6 hidden units used in the previous examples. The error decreases 

at first as the regression function is learned, and then increases as overfitting 

begins. 

In figure 2.9, the best generalisation (lowest prediction error) occurs between 300 to 700 

training steps, and further training leads to degradation of the generalisation ability due to 

overfitting. Note that the lowest validation error obtained in this case is similar to that 

obtained previously using 2 hidden units (see figure 2.8). This illustrates an important 

reason for using early stopping, namely that a good fit can be obtained using a wide 

number of hidden units, and so less searching is required to find the optimal number of 
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units. A further reason, as some examples in later chapters show, is that it is possible to 

obtain a lower validation error using early stopping than may be obtained for any 

combination of hidden units and training to completion. 

Issues to consider when using early stopping 

This review of early stopping concludes with a brief review of some known problems 

with this method[22, 41]. In most cases, these problems are in fact of little practical 

concern. 

One problem is that the validation error may exhibit several minima during training, the 

first of which may not give the lowest validation error. Thus stopping training when the 

first minimum is encountered may cause underfitting. Figure 2.9 shows one of these 

early minima near 50 training steps. The simple solution to this problem is to continue 

training until all minima have been found, or until it is unlikely that no new lowest 

minimum will be found. While this will increase the MLP training time, training times 

with early stopping tend to be short anyway (because of the early stopping) compared to 

varying the number of hidden units and training the MILP to completion. 

Another issue with early stopping is that there is no reason why the regression function 

must be learned well before early stopping occurs. Indeed, if training starts from 

overfitting, then further training leads only to worse overfitting. In practice, this 

particular problem is somewhat unlikely due to the use of small initial parameter values 

to avoid hidden unit saturation during training. However, using very many hidden units 

does increase the likelihood of rapid overfitting occurring before a good fit is learned. 

Consequently, different numbers of hidden units should still be tried when using early 

stopping, though as shown earlier, finding the optimal number of hidden units is less 

critical then when early stopping is not used. 

A final, mostly theoretical, problem with early stopping is that it is difficult to analyse the 

statistical behaviour of the parameter estimates obtained using this method. This is 

simply because the path followed by the parameters toward a given minimum of the 

training error function depends upon the initial parameter values, and hence 2 different 

start points may lead to quite different parameter estimates depending on how the 

minimum is approached. A more practical aspect of this problem is that since the path 

followed towards the training error minimum depends on the starting parameter values, 

one MLP may give a good fit while an identical MLP trained using different starting 

conditions may not. In addition to the problem of avoiding local minima, this is another 

reason why MILPs are often trained several times with different starting parameters. 
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2.10. Summary 

This chapter has reviewed the basic regression concepts and terminology used in the 

remaining chapters of this thesis. 

Review of general regression topics 

The regression problem was introduced, including a review of how 

• 	the error structure, and 

• 	how much is known about the shape of the regression function 

affect the choice of methods for estimating a regression function. 

Both parametric and nonparametric regression methods were reviewed. In terms of MLP 

regression, the key issues reviewed in this chapter are 

what under- and overfitting are, and how they result from fitting models to the data 

which are too simple or complex, and 

that the problems of under- and overfitting are more easily solved in nonparametric 

regression. 

Avoiding under- and overfitting in parametric regression is a difficult problem because 

this requires a suitable parametric model to be specified for the regression function, but 

the shape of the regression function is usually unknown. 

Review of MLP regression topics 

The MLP was introduced as a flexible, nonlinear parametric regression model. One of 

the primary reasons for using the MLP is that it can fit a wide range of functions, and 

MLP regression can hence rival the flexibility of nonparametric methods for problems 

where the shape of the regression function is unknown. 

As is also the case for nonparametric methods, careful complexity control is required to 

avoid serious underfitting or overfitting when using MLP regression. If either of these 

occurs, then the fit will be a poor estimate of the regression function. Optimising the fit 

complexity to minimise the degree of under- and overfitting requires 

• 	methods for measuring or estimating the fit prediction error, and 

• 	methods for controlling the complexity, so that the prediction error can be 

minimised. 

Data splitting was reviewed as a popular method for estimating the prediction error, and 

varying the number of hidden units and early stopping were reviewed as two possible 

methods for controlling the fit complexity. 
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Regularisation and smoothing 

3.1. Introduction 

As discussed in chapter two, under-fitting and overfitting are among the most important 

problems to consider when training MLPs[31].  Complexity control to prevent overfitting 

was achieved either by reducing the number of hidden units or by using early stopping. 

This chapter continues the discussion of how to control the fit complexity by looking at 

some examples of another method of complexity control: regularisation penalties. 

One advantage of using regularisation is that this method can allow more sophisticated 

complexity control than the methods used in chapter two. However, the most important 

property of regularisation in the context of this project is that when it is used to prevent 

overfitting, training can continue until the training error function is minimised (i.e. no 

early stopping). This is necessary when using a technique described later, and it was the 

desire to use this technique for the curl modelling problem which stimulated this 

examination of regularisation methods. 

Chapter overview 

Two types of regularisation penalty are examined in this chapter: roughness penalties 

based on splines, and weight decay. The chapter is structured as follows. 

Section 2 gives an overview of how regularisation is implemented in MLP training, and 

the principles underlying regularisation. 

Section 3 looks at roughness penalties for smoothing MLP fits. Roughness penalties have 

received a little attention in the IVILP regression literature, and interest in them continues 

to grow. They offer an intuitively appealing approach to smoothing, and so it was 

decided to develop them further with a view to using them for the curl problem. This 

investigation discovered a number of practical limitations on their use for MLP 

regression. Noise jittering methods are closely related to roughness penalty 

regularisation and so are compared with the roughness penalty approach. 

Section 4 provides a review of weight decay smoothing penalties. 

30 
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Section 5 discusses a problem which was uncovered while examining weight decay, 

namely how linearly transforming the data can affect the shape of fit. A minor change to 

the standard weight decay penalty is suggested to give invariance to translations of the 

training data when fitting the MLP. A simple example illustrates how this gives more 

intuitively appealing smoothing behaviour than standard weight decay. 

3.2. What is regularisation? 

Regularisation includes various techniques used to stabilise the solutions of numerically 

unstable problems known as ill-posed problems [72]. In ill-posed statistical estimation 

problems, the estimates are sensitive to small perturbations of the data, and this causes 

high estimate variances. Regularisation places additional constraints on the values of the 

estimates which limit their variances. This variance reduction is usually obtained at the 

cost of some added estimate bias[73].  By adjusting the amount of regularisation used in a 

given problem, the trade-off between estimate bias and variance can be controlled. 

IvILP overfitting gives fits which have low bias but are sensitive to perturbatIons of the 

training data. In fact, MLP overfitting is an example of a problem which is ill-posed 

through using an overparameterised model; there is too little data to assign unique values 

to the parameter estimates. Reducing the number of hidden units attacks this problem 

directly by reducing the number of parameters to be estimated during training. In 

contrast, by constraining the MLP parameter estimate values, regularisation reduces the 

effective number of parameters[74] or degrees offreedom[75]  available for fitting without 

actually reducing the MILP size. 

Implementing regularisation in MLP regression 

The commonest method of implementing regularisation in MLP regression is to add a 

term to the training error function which penalises the learning of fits which are too 

complex. For example, if the SSE is used to measure fit error, then the regularised error 

function has the form 

Error = SSE(0)+AJ(0) 	 (3.11) 

where the value of the penalty J(9) increases with increasing fit complexity and its 

contribution to the total error is controlled by the non-negative parameter A. In the 

statistical literature, this is often known as the penalised likelihood [75] or penalised 

distance[76] method. 

The fit complexity is controlled by the value of A. A small A suppresses the effect of the 

regularisation penalty in (3.11) and so biases training towards minimising the SSE. If A 

is very small then there is little complexity control and so overfitting may occur. 

Conversely, a large A biases training toward minimising the complexity rather than the 
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SSE. If A is too large then the complexity penalty may prohibit the SSE from being 

reduced to a low enough level to allow a good fit to the data: that is, underfitting can 

occur. 

Two questions which using regularisation thus raises are: 

what sort of penalty function should be used, and 

what value of A should be used? 

Choosing a penalty function 

Ideally, the penalty function should be chosen to incorporate any prior knowledge about 

the shape of the regression function. For example, if it is known that this function is 

monotone, then the penalty should strongly penalise non-monotonic fits. 

In practice, however, there is often very little or no prior knowledge about the shape of 

the regression function. Consequently, it may be necessary to try various penalties to 

obtain the best generalisation performance. This is the reason why 2 different penalty 

types are examined here. 

Setting the value of A 

The value of A is normally chosen to minimise the fit prediction error. This usually 

requires the MLP to be fitted for various values of A and the fit prediction error estimated. 

The fit with the lowest error is then used as the regression function estimate. 

To avoid underfitting even when A is very small, a relatively large number of hidden units 

should be used when using regularisation to control the fit complexity. 

3.2.1. Why use regularisation foE fit complexity control? 

One advantage regularisation offers over adjusting the number of hidden units is that very 

fine complexity control can be exercised by making very small changes in A. Another 

advantage over early stopping and varying the number of hidden units is that the form of 

J(6) can be tailored to enforce properties of the fit such as smoothness. Such properties 

usually cannot be enforced easily by controlling the number of hidden units or using early 

stopping (see[31] for some examples using early stopping). 

My main reason for using regularisation for the curl modelling problem, however, was to 

aid the use of the technique discussed in chapter six. This technique requires training to 

continue until the error function is minimised, thus prohibiting the use of early stopping. 

The error function (3.11) can, however, be minimised when the regularisation penalty is 

used to prevent overfitting. 
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3.2.2. MLP regularisation using roughness and weight decay penalties 

Various penalties have been used in the MLP literature to control the fit 

complexity[77-79]. The two types which are considered in this thesis are roughness 

penalties and weight decay penalties. 

Roughness penalties have received some attention in the MLP literature [79- 82], but are 

not yet used widely. I felt, however, that these offer a more intuitive and extensible 

approach to smoothing than weight decay, and so decided to investigate them further. 

This investigation was further motivated by the fact that such penalties have already been 

examined in detail in the regression literature as the basis of smoothing spline regression, 

and so a useful range of existing theory and experience could be drawn upon. 

Weight decay is by far the most popular penalty for complexity control. It has been 

discussed widely in the literature[77, 78, 83, 84] and thus will not be discussed in depth 

in this chapter. The main discussion of weight decay in the second half of this chapter 

instead focuses on a suggested minor change to a standard weight decay penalty to 

remove its dependency on where the data origin is placed. 

3.3. Roughness penalties and splines 

Overfitted MLPs exhibit high roughness in order to fit closely as many of the training 

data as possible. Here, roughness refers to the fact the fit must deviate far from linearity 

to do this. Visually, this is apparent as wild oscillation of the fit between local maxima 

and minima. Mathematically, this is manifest as large values for the second and higher 

order derivatives of the fit[85-87]. 

One way to smooth the fit to prevent overfitting is to penalise the learning of fits with 

large high order derivatives. This idea has been used previously by numerical analysts 

and statisticians as the basis for smoothing spline regression[30, 38, 43, 86, 87]. 

Curiously, the large existing literature on splines has been neglected in many studies of 

roughness penalties for IvIILP regression. However, the spline literature provides a rich 

source of ideas for roughness penalties, as well as providing much guidance about their 

properties. The spline penalties are also quite similar to other penalties used previously 

for MLP regression[80-82], and so an understanding of spline penalties can also be used 

to predict the likely properties of these other penalties. 

While investigating the use of spline-based penalties for smoothing MLP fits, important 

practical issues surrounding the use of these penalties became apparent. This discussion 

focuses mainly on these practical issues and their implications for the use of roughness 

penalties. 
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Why use MLPs like smoothing splines? 

Given that various methods are known for constructing cubic splines, one point to address 

before proceeding is to justify the use of the MILP as seemingly yet another method for 

constructing splines. 

Firstly, it should be noted that a MLP with a limited number of hidden units may only be 

able to approximate the true spline smooth, and so the MLP and spline fits may differ 

significantly. However, there is no obvious reason why the MLP fit should necessarily be 

better in such cases, and any differences could be reduced by using more hidden units. 

A more practical point is that smoothing splines require many segments when there are 

many data, and a simple MLP may provide a more compact and convenient 

approximation to the true smoothing spline in some problems. Regression splines are 

another alternative which require fewer segments than smoothing splines, but these 

require the number of knots, and their positions, to be determined, which can be a 

difficult problem[43, 48]. 

Thus there is some practical justification for investigating spline penalties for MLP 

regression. 

3.3.1. Two dimensional cubic splines and MLP regularisation 

The simplest spines are two dimensional cubic smoothing splines. This section provides 

a brief overview of the properties of these splines as a prelude to using them in roughness 

penalties. 

Two dimensional LS cubic smoothing splines are functions which minimise the error 

(3.11) when 

b  Id2f(x;9)I 

= f I 
a 	

dx 	 (3.12) 
I 	I 

integrated over the range of the predictor variable 6. The cubic smoothing spline is unique 

for a given 2[38],  and is comprised of cubic polynomial segments between the data, 

joined so that the first and second derivatives of the spline are continuous[30, 46, 871. 

This segmented polynomial construction makes splines very flexible curve fitting tools, 

which can fit features which single polynomials cannot, such as plateaus and other flat 

regions[89]. The spline smoothness is controlled by varying 2; increasing 2 forces the 

second derivatives of the spline to zero and so drives the smooth towards the LS linear 

regression line. 

6 This is also seen with limits of ±00 to avoid boundary problems in theory[88}. Natural 
splines, which are linear outside the interval [a, b], satisfy both forms[38,  431. 
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Cubic spline-based penalties for MLP regression 

The penalty (3.12) leads to a useful, intuitive and theoretically well-understood type of 

smoothing, and so it was decided to investigate its use for smoothing MLP fits. 

Unfortunately, a closed-form expression for the value of (3.12) cannot be derived for 

MLPs with sigmoidal hidden units. Thus an approximation of the integral is required for 

training, and the most obvious candidate is the numerical quadrature formula 

b—a 

AX
-  

J() = Ax 
s=O 

d2 f(x; 9) 
2 

dx 2  
x0 +thx 

(3.13) 

In practice the constant Ax can be absorbed into A by defining A,, = A0ldAx, and thus 
omitted from (3.13), giving the discrete cubic spline penalty 

	

b—a 	 2 
d2f(x;9) 	

(3.14) J()= 

	

s=O 	
Xa+SAX 

This penalty was used to generate the spline regularised examples and measured 

roughnesses which are presented throughout this thesis. 

The derivatives in (3.14) can be computed by deriving a mathematical expression for the 

MLP fit derivative, or by using the finite difference approximation 

d2 f(x; 9) 	f(x - Ax; 9) - 2f(x; 9) + f(x + Ax; 	
(3.15) 

Ax2  

Finite difference spline smoothing is discussed in[86, 90, 91]. Faster training is possible 

with the finite difference penalty if many of the fit values required for computing the SSE 

can be re-used in (3.15). 

3.3.2. Practical issues in the use of the two dimensional penalty 

There are two issues to consider when using the spline penalty, namely 

• 	how many smoothing points should be used, and 

• 	whether to use analytic or finite derivatives. 

The issues, and some possible solutions to the serious problems posed by the first issue, 

are discussed now. 

Practical point 1: setting the interval width, Ax 

The most important and difficult problem is choosing a suitable width for the interval 

between the smoothing points, Ax. 
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If narrow intervals are used then there are many smoothing points, and this can increase 

the MLP training time considerably. However, if wide intervals are used, then overfitting 

may occur within the intervals. This is demonstrated by figure 3.1, which shows two fits 

obtained using MLPs with 4 hidden units. One fit was obtained using 10 equi-spaced 

smoothing points in the interval 0 ! ~ x ( 0.9 (giving Ax = 0. 1) and the other fit was 

obtained using 19 points (giving Ax = 0.05). The 2 values have the ratio 10/19 in an 

attempt to give the same 2J(9) value, and hence fit, in both cases. 
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Figure 3.1: Demonstration of how overfitting may occur when using too few 

smoothing points. The fit obtained using 10 points shows two kinks between 

the smoothing points at 0.2, 0.3 and 0.4. 

The fit obtained using 10 smoothing points shows two kinks which lie between 

smoothing points at x = 0.2,0.3 and 0.4. These kinks thus do not contribute to the 

measured fit roughness, and so are not suppressed during training. This problem is also 

considered by Minai[81], and arises because measuring the fit roughness using a finite set 

of sample points will miss any overfitting between these points. The likelihood of this 

increases as the interval Ax becomes wider. When the number of smoothing points was 

increased to 19, the fit kinks disappeared, and did not appear even when training was 

restarted with various initial weights and biases. 

Since the minimum Ax required to avoid overfitting depends on the number of hidden 

units, the function to be estimated and the training data, it is difficult to suggest any 

general rules which may be used to estimate a suitable Ax prior to training. Hence, 

attention focussed on finding ways for detecting overfitting after training, so that remedial 

action could be taken. 
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While visual inspection can be used in two and three dimensional problems, spotting 

overfitting this way may be difficult for higher dimensional fits. One method for 

identifying overfitting in all dimensions is to use a validation set. However, this reduces 

the amount of training data. 

A very effective method for detecting overfitting is to reduce Ax after training and to re-

compute the roughness to search for overfitting within the original smoothing intervals. 

For example, if Ax is halved after training, then the fit roughness measured using (3.14) 

should approximately double, because almost twice as many derivative samples will be 

summed. A larger increase indicates that overfitting may have occurred. This is 

illustrated in table 3.1, which shows the roughnesses measured at the end of training and 

after training using half the interval width for the fits shown in figure 3.1. 

Ax 0.1 0.05 0.025 ratio 

10-point fit 34.6 (train) 208 (after) - 6.01 

19-point fit - 352 (train) 704 (after) 2.00 

Table 3.1: Comparison of the measured roughnesses at the end of training 

with those measured using half the smoothing interval width after training. 

The roughness for the overfitted MLP increases by 3 times more than would 

be expected if no overfitting occurred. 

Using half interval widths, the roughness doubles as expected for the 19-point fit, but 

increases by a factor of 6 for the 10-point fit. This large increase indicates that high fit 

curvature has been found within the original intervals, and hence that overfitting has 

occurred. 

Compared to visual inspection for detecting overfitting, this method has the advantage of 

being easily extended to higher dimensional problems when suitable roughness penalties 

are used. It also has the advantage over the use of a validation set in that the fit can be 

tested even in regions where little or no data exist. For example, reserving a validation 

set in the above example could not have detected the overfitting near x = 0.3 because 

there is no data available to test this region. 

Computer time requirements versus smoothing interval width 

If overfitting is detected after training, then the MLP must be re-trained using a narrower 

smoothing interval. This process may have to be repeated several times, which can result 

in long model development times. Starting with a very narrow interval clearly reduces 

the chance of overfitting and hence the need for re-training, but requires a long training 

time. It is desirable to develop methods which can prevent overfitting during training 

while using the largest possible Ax to reduce the required computer time. 
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One possible method (which has not been tested) for addressing this problem is to 

combine the roughness penalty with a weight decay penalty. Weight decay smoothers do 

not sample the fit roughness and hence do not have the associated problem of overfitting 

between smoothing points. Thus relatively wide intervals could be used if some weight 

decay is added to discourage overfitting between the smoothing points. Other possible 

approaches to this problem include 

increasing the number of smoothing points once weight decay has been used to 

prevent initial overfitting, and 

adapting the smoothing interval based on occasional narrower interval (and hence 

computer-intensive) roughness measurements during training. 

A further possibility is to search for an alternative to the sigmoid curve for the hidden unit 

transfer function, for which (3.12) can be integrated exactly without the need for 

computer-intensive numerical approximations. This is probably the most sensible 

approach to this problem, because it eliminates completely the need to choose a suitable 

smoothing interval width and to use computer-intensive numerical integration methods. 

New results using this approach are given in[92]. 

Practical issue 2: analytic versus finite difference derivatives 

The second issue concerns the choice between the use of analytic derivatives or finite 

difference derivatives for the roughness penalty. If overfitting occurs, then the values of 

these derivatives may differ significantly, leading to different estimates of the fit 

roughness. This is shown in table 3.2, which gives the roughnesses for the previous 

example measured using finite differences. 

Ex 	1 _0.1 0.05 0.025 ratio 

10-point fit 212 (train) 2361 (after) - 11.1 

19-point fit - 339 (train) 697 (after) 2.06 

Table 3.2: Roughnesses for the fits of figure 3.1 computed using the finite 

difference derivative approximation. 

Here it can be seen that the 10-point-fit roughnesses are significantly larger than those 

given in table 3.1, while the 19-point-fit roughnesses are quite similar. The reason the 

analytic derivatives are lower in the 10-point case is because the spline penalty has forced 

the fit to be almost linear except at the kinks, and the roughness measured at over these 

linear regions is very low. In contrast, the finite difference derivatives effectively measure 

the curvature of the parabola which passes through the points used to compute the 

derivative. If these points do not lie on a straight line, then the roughness will be high. 

Hence kinks in the fit can be detected even when no roughness measurements are taken at 
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the kink positions. 

This result suggests that using finite difference derivatives is superior to using analytic 

derivatives for avoiding overfitting between the roughness sample points. However, 

problems could also occur if finite derivatives are used during training. For example, a 

situation may arise where the analytic derivatives are high, but where the roughness 

sample points lie on a smoother curve. Though the finite difference variant was not 

studied in sufficient depth to observe such behaviour, this would simply be analogous to 

the well-known problem of aliasing in sampled data systems[93]. 

Usefully, comparing the analytic and finite difference derivatives offers another means of 

detecting overfitting; they differ when overfitting occurs. However, further work is 

required to assess if one method is generally better than the other in terms of avoiding 

overfitting during training and computer time requirements. 

3.3.3. Overall assessment of the two dimensional penalty 

Overall, the two dimensional spline-based penalty was found to be a useful penalty which 

gave good, smooth fits in a number of simulation studies. It has also been discussed in 

depth in the numerical analysis and regression literature, and so the basic properties of 

such penalties are well-understood. 

However, the practical issues surrounding the trade-off between finding a suitable 

maximum smoothing interval width and the considerable amount of computer time that 

may be required when using too narrow intervals must be addressed if this penalty is to 

receive wider acceptance in MLP regression. These issues were not addressed here 

because other, more important issues merited attention. 

There are also more significant issues to be addressed if the spline-based smoothing 

penalties are to be used in problems involving many predictor variables, including the 

curl modelling problem. These issues are discussed now. 

3.3.4. Spline-based penalties in more than two dimensions 

So far, the spline smoothing penalty has been considered only for problems involving one 

predictor variable. However, most problems to which MLPs are applied involve many 

predictor variables. 

One interpretation of (3.12) is that it provides a measure of the bending energy in a thin 

straight rod7  when deflected, and this suggests a method for extending the smoothing 

penalty to higher dimensions. For a thin plate in two dimensions, the equivalent energy 

Notably a draftsman's spline, from where the term was first adopted. 
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measure is[94] 

= 	

2 	 2f(XX;9) 	
.(3.16) 

 j
2dXj  

plate 

Smoothing splines obtained using this penalty are thus called thin-plate splines. In higher 

dimensional problems the general thin-plate penalty is[38,  86] 

2 
m! 

= 	 J -' al 	- am dx 	(3.17) 
a I +-+aq =m a 1 .. •aq ! - 	 OX 1 	OXq  

where 0 :!~ a, <m, q is the number of predictor variables and 2m > q. This last 

requirement is technically necessary to ensure that the smooth is well defined, and the fit 

may not be smooth if it is violated[86]. 

Unfortunately, high dimensional MLP roughness penalties based on (3.17) are very 

computationally-intensive to use for two reasons 

the number of terms in the sum grows combinatorially as q, and thus m, increase, 
and 

the number of smoothing points required to fill the space of interest grows 

exponentially with its dimension; another manifestation of Bellman's curse. Note 

that this exponential increase is due to the increase in dimension, and is not related 

to the issue of using enough smoothing points to prevent overfitting of the type 

discussed previously. 

From experience, the thin-plate penalty can become computationally demanding for use 

in 3-dimensional problems which require many smoothing points, and will most likely be 

impractical without specialised computer resources 8  for almost all MLP regression 
problems where q is greater than about 5. 

Since the curl modelling problem involves many predictor variables, spline-based 

roughness penalties clearly cannot be used, unless 

the number of variables (i.e dimensionality) can be reduced dramatically, or 

less computationally-demanding, high-dimensional penalties can be found. 

Given roughness penalties' intuitive appeal and utility in low-dimensional problems, it is 

worth considering means for increasing their useful dimensionality. 

8 Assuming 1996 high-end workstation speeds. 
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Some possible approaches to higher dimensional roughness regularisation 

One possible approach to the dimensionality problem which has often been associated 

with smoothing splines is to limit the regression model to the class of generalised additive 

models[43, 48, 95, 96]. An additive regression model has the form 

f() = f1 (x)+. +fq (x q )+constant 	 (3.18) 

and so reduces the overall regression problem from q + 1 dimensions to a one-

dimensional and q two-dimensional problems by disallowing interactions between the 

variables. This may of course lead to some model bias, but it is generally hoped that this 

will be less than the bias from which all smoothers suffer in high-dimensional 

problems[38, 95, 96], and will be an acceptable price for reducing the problem to 

manageable dimensions. The individual functions in (3.18) can be implemented using 

separate MLPs, or the MLP architecture can be modified to prevent interactions between 

predictor variables by ensuring that only one input leads to any hidden unit[24].  The 

roughness penalty for an additive model is simply the sum of the individual penalties for 

each function. In combining the penalties, each term can be weighted by an individual 

regularisation parameter if optimisation of the individual parameters is considered 
feasible[86, 95].  If simple interactions between some variables are desired then these can 

be regularised by adding suitable low-dimensional thin-plate roughness penalty 

terrns[97]. 

Another means of reducing dimensionality is to approximate high-dimensional functions 

using sums of products of lower-dimensional functions. There is an example of this 

approach using spline basis functions in[98], and it is also the principle on which tensor 
product splines are based[41]. 

Though successful application of these methods to MLP regression will require some 

research to address their practical issues, the usefulness of these approaches has been 

demonstrated previously in the regression literature, and there is clearly much scope for 

employing roughness penalties in reasonably high-dimensional problems if some 

architectural constraints are placed upon the types of regression functions which can be 

realised by the MLP. 

Finally, recent work[92] which has examined the use of non-sigmoidal hidden unit 

transfer functions provides very promising possibilities for using spline-like smoothing 

penalties for high-dimensional problems without the need for computer-intensive 

numerical evaluation of the thin-plate penalty integral. 
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3.3.5. The Tikhonov roughness penalty 

The first roughness penalty used for MLP regression was Bishop's Tikhonov penalty[79, 

80]. This is hence the roughness penalty that other MLP researchers are most likely to be 

familiar with and use. This section thus compares the Tikhonov penalty with the splme 

penalty discussed in the previous sections. 

Bishop's penalty derives its name from its origins in a method used by Tikhonov and 

Arsenin for solving ill-posed problems in numerical analysis[72]. The general form of 

the penalty is 

2 
S 	 d2 f(x s ;9) 

5=' 

J(0) = 	p(x) I 	 (3.19) 

which can be considered a generalisation of the discrete cubic spline penalty where a 

weighting function p(x) has been introduced. To allow re-use of fit values computed for 

the SSE, Bishop suggests that p(x) should be the empirical density function of the 

training data: that is, the training data should also be used as smoothing points[79].  In 

contrast, the spline penalties discussed previously assume that the smoothing points are 

distributed uniformly over the region of interest, irrespective of the training data 

distribution. This comparison of the Tikhonov and spline roughness penalties focuses 

mainly on this difference. 

Smoothing regions of low density data 

One disadvantage of weighting the smoothing penalty according to the data density is that 

the smoothing intervals will be widest in regions of low-density data, possibly resulting in 

overfitting manifest as kinks in the fit between the smoothing points. It could be argued 

that this overfitting would be relatively unimportant, since it occurs in regions where 

there is little data. However, sparse data in a given region does not always mean that the 

region is unimportant; for example the measurements might be the most expensive to 

make, and thus important. Even if the region does not have special significance, sharp 

ridges and valleys in the regression surface resulting from overfitting may cause problems 

if, for example, the MILP is used as part of a control system which uses gradient-based 

optimisation methods to find minima of the regression fit. 

Smoothing regions of high density data 

It seems intuitively plausible, however, that weighting the smoothing penalty according to 

the data density could be advantageous in regions where the data is most dense. As the 

local training data density increases, the local fit contribution to the SSE also increases 

because more squared fit errors are summed. If the local smoothing is not increased to 

compensate for this, then the SSE may dominate in determining the local fit, possibly 
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causing local overfitting. 

Cubic splines do, however, adapt very well to non-uniform data[87] and so such 

compensation may not be necessary. This was confirmed in simple comparisons of the 

Tikhonov and spline penalties with non-uniform artificial data, where little significant 

differences were noted between the quality of the fits. 

Using the Tikhonov penalty in higher dimensions 

The final comparison of the Tikhonov and spline penalties focuses on their applicability 

to multidimensional regression problems. Bishop suggests that the Tikhonov penalty can 

be used in problems of arbitrary dimensions simply by adding the derivative with respect 

to each MLP input to the penalty[79]. However, this will result in the additive model 

spine penalty instead of the thin-plate penalty, assuming the smoothing mesh is uniform. 

Thus overfitting due to interactions between variables may not be suppressed when using 

the Tikhonov penalty in high dimensional problems. 

Conclusions on the Tikhonov penalty 

The Tikhonov penalty appears to have shortcomings which limit its applicability to data 

sets with regions of low density data and to problems involving more than one predictor 

variable. For these reasons, this penalty was not used for any of the work reported in this 
thesis. 

3.3.6. Roughness penalties and noise uttering 

Jittering is the addition of random noise to the predictor variables, and has enjoyed 

considerable success and popularity in neural network research as a method for avoiding 

overfitting[77, 99, 1001. New noise is usually added on each training cycle, though a 

larger set of training data with pre-computed noise can also be used. It has been shown 

that this technique is closely related to training using a specific type of roughness 

penalty[100, lol]. 

An intuitive illustration of how jittering smooths MLP fits is shown in figure 3.2. 

Perturbing the point in the left hand example in this figure results in a large increase in 

the fit error, while perturbing the point in the right hand example by the same amount 

causes a smaller change in the error. Thus the average error when jittering is higher for 

fits with steep gradients, and so jittering forces the learning of fits with low gradients: that 

is, fits parallel to the line (or plane) on which the predictor variables lie. Complexity 

control is achieved by varying the jitter variance; larger perturbations cause larger 

increases in the error, and so result in more smoothing. 
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Figure 3.2: Illustration of how uttering favours fits with low gradients, 

leading to a 'levelling'-type smoother. 

An asymptotic analysis (i.e. valid only for suitably-large training-data sets) of jittering by 

Bishop[67, 101] shows that training with jitter is similar to training with the roughness 

penalty 

(df(x ; e)
)2  1 J() 	 +(Yi_f(xi;O))dfM]. 	(3.20) 

where N is the number of training data and a 2  is the variance of the jitter noise, which is 

varied to adjust the smoothing in the same way as A. is when using regularisation. Bishop 

further argues that the first term will dominate under certain conditions 9, giving the 
penalty 

N 

J(e) =  
- 	2t 	dx 	J 	(3.21) 

For uniformly spaced training data, this is a discrete linear spline penalty[47]. 

An notes that these conditions will not be valid in general, except for very large data 
sets[ 100 ]. 
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Comparison of jittering with roughness regularisation 

Though analyses of jittering have been shown it to be similar to training with a roughness 

penalty, it has some undesirable characteristics. 

One problem with jittering is that the type of smoothing obtained depends both on the 

probability density function of the jitter and also on the choice of fit error function[100]. 

The SSE is not an appropriate measure of fit error for all problems, and so various fit 

error functions may be tried in practice[102]. If different error functions are tried, then 

the type of smoothing applied to the fit will also vary when using jitter. Hence it is 

difficult to vary the fit error function while maintaining the same type of smoothing. In 

contrast, the fit error function and smoothing penalty can be chosen independently when 

regularisation is used. 

A second problem with jittering, which it shares with the Tilchonov penalty, is that 

smoothing is localised around the training data. Thus the least smoothing is applied in 

regions of sparse data, but this is where overfitting is most likely and hence where fit 

smoothing is wanted most. 

A third problem with jittering is that training with jitter does not lead to a minimum of 

any training error function. Instead, the training error drops until eventually it oscillates 

noisily around a level set by the competition between (over)fitting the data more closely 

to reduce the fit error and the jitter smoothing. The main reason for using regularisation 

for the curl modelling problem was to allow use of a technique which requires the 

training error to be minimised. This technique thus cannot be used if jittering is used. 

3.3.7. Spline-based roughness penalties: conclusions 

The first sections of this chapter have 

• 	examined spline-based roughness penalties for MILP regression, 

• 	examined the relationship between these penalties and a similar penalty that has 

been discussed in the existing MLP literature, and 

• 	discussed some trade-offs between using the related methods of roughness penalty 

regularisation and noise jittering for smoothing. 

The main results drawn from this work and the experience gained with using roughness 

penalties is that they are useful smoothing penalties, but a number of practical issues must 

be addressed before they can be used easily in all but simple, low-dimensional problems. 

These issues are 

• 	choosing a sampling interval that is small enough to avoid overfitting, but not so 

small as to require much computer time to train the MLP, and 



Chapter 3 
	

Eel 

• 	simplifying the penalty for use in high dimensional problems without requiring an 

exponential increase in the number of sample points with dimension. 

Some possible solutions to these problems have been suggested, but were not examined 

here because other more important issues demanded attention. It was thus decided to use 

only weight decay for the curl modelling problem. 

Other recent work has shown further promising ways of addressing the computational 

problems associated with roughness penalties. 

3.4. Smoothing using weight decay penalties 

Since roughness penalties cannot be applied easily to problems involving many predictor 

variables, it was decided to use only weight decay for the curl modelling problem. 

Weight decay is used commonly for two reasons, namely 

smoothing the MLP fit to prevent overfitting[78, 83], or 

for weight elimination. Weight elimination attempts to minimise during training the 

values of any weights or biases which do not contribute significantly to the overall 

fit. These redundant parameters can be removed after training[84, 103, 104]. 

This discussion is concerned only with smoothing. 

How does weight decay smoothing work? 

Weight decay penalises the sizes of the MILP weights and biases during training. This 

smooths the MLP fit because 

small input-to-hidden-layer weights give small hidden unit activations. Small 

activations limit the hidden unit output range to the almost linear central section of 

the sigmoid transfer curve, hence limiting the amount of nonlinearity that the fit can 

exhibit. 

Small hidden-layer-to-output weights limit the amount by which the MLP output 

can change when a hidden unit's output changes between its maximum (1 for 

sigmoids) and minimum (0 for sigmoids) values. This suppresses the formation of 

sudden, large jumps in the fit. 

While these effects do smooth the fit, the exact nature of the smoothing is not as intuitive 

as it is with the roughness penalties discussed previously. This is one reason why 

roughness penalty approaches are receiving more interest for smoothing MLP fits. 
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3.4.1. The weight decay penalty function 

The most widely used weight decay smoothing penalty is the squared Euclidean length of 

the parameter vector, 

J() ==  1012 	 (3.22) 

Other distance measures can be used but the Euclidean length is most popular, mostly 

because 

it is similar to the sum-of-squares fit error expression, and 

its gradient is easy to compute, which simplifies the programming of weight decay 

training routines and reduces the amount of computer time required to train the 

MLP. 

Weight decay, ridge regression and ill-conditioning 

Weight decay is not unique to MLP regression but is used quite widely in classical 

regression under the name ridge regression[105-107]. The motivation for using the 

penalty (3.22) in ridge regression is not, however, to smooth the fit. Indeed, ridge 

estimation is commonly used in linear regression, where the fit is already smooth. 

In ridge regression, the penalty is used to improve the numerical stability of the parameter 

estimates when certain types of ill-conditioning arise. Weight decay has the same effect 

in MLP regression, and some later examples show how this side-effect of weight decay 

can be useful. 

3.5. Using regularisation with transformed training data 

One question that arose concerning the use of weight decay was how linearly 

transforming the training data could affect the shape of the fit when using weight decay. 

Training data are often scaled and translated in MLP regression in an attempt to avoid 

hidden unit saturation during training. The predictor variables may also be rotated about 

their origin when using some data preprocessing methods such as principal components 

analysis[108, 109]. 

It is known that linear ridge regression is not invariant to linear transformation of the 

training data[l 10, 111]. This means that if the data are scaled, shifted or rotated and the 

model fitted, then applying the inverse transformations to the fit usually will not give the 

same fit that is obtained by fitting directly to the untransformed data[l 12]. One effect of 

this is that transforming the data may result in better estimation of the underlying 

regression function, or it may make the fit worse. For this reason it is usually 

recommended that the raw data are not transformed without good reason[1 11]. 
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In MLP regression the training data usually must be transformed to avoid saturation, and 

so it was decided to examine how this could affect the fit when using weight decay or 

roughness penalty smoothing. Given that the transformations applied to avoid saturation 

are usually quite arbitrary, it was decided that invariance to as many transformations as 

possible would be desirable. This would eliminate the unfortunate choice of a bad 

transform as a culprit when trying when trying to diagnose why a good fit cannot be 

obtained. 

How should linear transformations affect the MLP fit? 

Translating or rotating the training data does not affect the shape of the regression 

function which this data describes. Thus, it is intuitively desirable that translating or 

rotating the training data should result in a similarly rotated or translated version of the 

original fit when using smoothing penalties. 

It is also clear that invariance to arbitrary scaling cannot be expected when using 

smoothing penalties. This is because compressing or expanding the data by different 

amounts in different directions qualitatively changes the surface shape needed to fit this 

data well. Thus, the fit cannot be expected to follow arbitrary data scalings unless the 

regularisation penalty is also changed to reflect these scalings. 

The next sections examine how rotation and translation affect fits obtained using 

roughness penalties or weight decay, to check whether they are invariant under these 

transformations. It is shown that standard weight decay is not invariant to translations, 

but that invariance can be obtained by making a simple change to the penalty. An 

example follows to show how translation invariance gives more intuitively appealing 

smoothing behaviour. 

3.5.1. Effect of rotating the predictor variables 

This section considers how rotating the predictor variables rigidly about the data origin 

affects the fit when using roughness penalties or weight decay. It is shown that both the 

thin-plate roughness penalty and weight decay penalty are invariant to this 

transformation, and thus satisfy one of the properties expected of these penalties. 

Rotation and roughness penalties 

The value of the thin-plate spline penalty does not change as the fit is rotated rigidly 

about the data origin[86]. Thus training a MLP with rotated data and thin-plate 

regularisation (with rotated smoothing data) results in a rotated version of the fit which is 

obtained using the original, un-rotated data. 
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Rotational invariance is not shared by the additive spline or Tikhonov penalties, however. 

This is not surprising given that the additive model (3.18) and the multivariable Tikhonov 

penalty assume that the regression function can be expressed a sum of functions which 

are aligned along the predictor variable axes. Rotating the axes thus changes the 

functions which must be learned by the additive MLP, and it may be impossible to learn 

the same fit after rotation. 

Rotation and weight decay 

The weight decay penalty also is invariant to rigid rotations of the predictor variables 

about the origin. To see why, first note that to keep the same fit shape after the rotation, 

the hidden unit activations must have the same values which they had before rotation. 

This can be achieved by applying an equal counter-rotation to the input-to-hidden-weight 

vector for each hidden unit, to nullify the effect of the predictor variable rotation on the 

activations. Rotating the weight vectors does not change their Euclidean lengths, 

however, and so the value of the weight decay penalty is unchanged. Hence a rotated 

copy of the original fit is obtained when training directly with the rotated data. 

3.5.2. Effects of translating the predictor and response data 

This section considers how translating the data origin affects the fit when using roughness 

penalty or weight decay smoothing. 

Translation and roughness penalties 

All roughness penalties discussed in this chapter are inherently invariant to translations of 

the training data. This arises from the fact that they are based only on various derivatives 

of the fit, which do not depend on its position relative to any arbitrary origin. 

Translation and weight decay 

Ridge regression is not invariant to data translations[1 10-112], hence neither is MLP 

regression when weight decay is used. This can be concluded by noting that a MLP with 

linear hidden units instead of sigmoidal hidden units is equivalent to a linear regression 

model, and that training this MLP using weight decay is thus equivalent to linear ridge 

regression. 

In terms of the weight decay penalty, the fit can be translated by varying only the bias 

weights. However, changing the values of these weights changes the weight decay 

penalty value, and this is why the fit is not invariant to arbitrary data translations. 
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3.53. Modifying weight decay for translation invariance 

A simple modification can be made to the standard weight decay penalty to achieve 

translation invariance. The change is to remove all bias parameters from the weight 

decay penalty; that is, to use only the weight vector Eucidean length for the weight decay 

penalty. The method has also been suggested recently for MLP regression in[67] and for 

ridge regression[l 10]. 

Removing the bias parameters from the penalty gives translation invariance because: 

To shift the MLP output along the y-axis, only the output bias must be changed. 

Thus removing this parameter from the weight decay penalty removes the associated 

variation in the penalty value. 

The MLP fit can be shifted to any position in the x-plane by changing the values of 

the hidden-unit bias parameters. Thus removing these parameters from the weight 

decay penalty removes the associated variation in the penalty value. 

A further motivation for the modified weight decay penalty 

A further reason for removing the bias parameters from the weight decay penalty is that 

there exist functionally equivalent MLPs (i.e. that give exactly the same fit) which have 

different bias vector Euclidean lengths but the same weight vector lengths[1 13, 114]. 

There is no obvious reason why a MLP with a long bias vector should be penalised more 

than a functionally equivalent MLP with a shorter bias vector. If two MLPs give the 

same fit, then the value of any penalty used to regulate the smoothness of that fit should 

also be identical for both MLPs. This is not true when standard weight decay is used, but 

is true for the modified version. 

3.5.4. Comparison of the old and new weight decay penalties 

Here is an illustration of how standard weight decay's lack of translation invariance can 

give undesirable fitting behaviour, and how the modified weight decay penalty gives 

better behaviour. 

Description of the experiment 

41 training data were created by sampling the function 

p(x) = 	sin(3,rx) 	 (3.23) 

at intervals of 0.05 over the domain -1 to 1 inclusive. For clarity and simplicity, no 

response errors were added to the data. 

To examine how translating this data along the x-axis could affect a IVILP fit to this data 

when using weight decay, two further training sets were created by translating the data in 
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the positive x-axis direction by 1.25 and 2.5 units respectively. The first of these 

translations is representative of the sort of differences in data position which may result 

from the various transformations that are often used to prevent saturation. The second is 

slightly more extreme, and was used simply to observe how sensitive standard weight 

decay can be to the data origin position. 

MLPs with 10 hidden units were fitted to the three data sets using standard and modified 

weight decay with A in the range 0 to 1. Figure 3.3 shows some typical results obtained 

using standard weight decay. Here the fits obtained with the shifted data have been 

shifted back along the x-axis so that they are superimposed over the fit to the unshifted 

data. The value of A was chosen to give slight oversmoothing with the unshifted data. 

This was done to indicate that the chosen value gives roughly the amount of smoothing 

that would be useful in practice; the lack of response errors making overfitting unlikely 

even for A =0. 

Since the training data are symmetric about their centre point on the x-axis, symmetric 

fits would be expected in all cases. However, in figure 3.3 only the fit to the unshifted 

data is symmetric. For the shifted data sets, the smoothing increases as x increases, 

giving oversmoothing at the right-hand side of the fit. This occurs because the hidden 

units which generate the fit in this region need larger bias values to translate their sigmoid 

transfer functions up the x-axis. However, the larger biases increase the value of the 

weight decay penalty, and so their input weights are reduced to compensate, causing the 

smoothing to increase with x. 

Fits obtained using standard weight decay (A = 0.0007) 
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Figure 3.3: MLP fits obtained using the three training sets and standard 

weight decay with A = 0.0007. 
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Figure 3.4 shows the fits obtained using the modified weight decay penalty. The three 

MLP fits are now identical when translated back along the x-axis. Thus the smoothing is 

now independent of the data origin, which is the type of behaviour that would be 

expected of a smoother. 

Fits obtained using modified weight decay (X = 0.002) 
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Figure 3.4: MLP fits obtained using the three training sets and modified 

weight decay with A = 0.0002. 

3.6. Chapter summary and conclusions 

This chapter has considered regularisation methods because of their importance in aiding 

the use of a technique which is described in chapter six. The main issues examined were: 

use of MLP regularisation penalties based on spline roughness penalties, 

how scaling, rotating or translating the training data may affect the MLP fit when 

regularisation is used during training. 

Roughness penalties 

Roughness penalties are useful in low-dimensional problems and give a more direct, and 

hence intuitively appealing, approach to smoothing than weight decay. However, some 

practical issues must be addressed if roughness penalties are to gain wider use: 

How to choose a suitable smoothing interval without allowing overfitting or 

requiring very long computer run times. 

Whether to use analytic or finite difference derivatives for the roughness penalty. 

• 	How to use roughness penalties for problems involving more than a few predictor 

variables. 
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The last of these issues is particularly important for the use of roughness penalties for the 

curl modelling problem. Since the available project time did not allow this issue to be 

examined in the depth necessary, roughness penalties were not used for developing the 

curl model. They are, however, used in some of the simulation studies presented in later 

chapters, where their computational demands could be kept under control. 

It is hoped that sufficient basic issues have been uncovered, and possible avenues of 

further research indicated, to stimulate further work in the area of roughness penalties for 

MLP regression. 

Regularisation and data transformation 

When using smoothing penalties, the shape of the fit should not depend on whether the 

data are rotated or the data origin shifted. It was shown that fits obtained using standard 

weight decay do depend on where the data origin is located. It was shown that removing 

the bias terms from the weight decay penalty removed the dependence of the fit shape of 

the data origin position. A simple example showed how this translation invariance gives 

a more intuitively appealing smoothing behaviour. 

Relevance to curl modelling problem 

In terms of the curl modelling problem, the overall conclusion of the work presented here 

is that only the standard and modified weight decay could be used for smoothing the curl 

fit. Roughness penalties cannot be used until the issues concerning how to apply these 

penalties to high-dimensional problems are addressed. 
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Background to the project modelling problem 

4.1. Introduction 

This chapter describes the curl modelling problem which provided the original motivation 

for this project. In particular, it discusses the characteristics of the data which were 

provided for this project in more detail than was given in chapter one, and describes the 

deficiencies of this data which led to the investigations which are presented in the next 

chapters. 

4.2. Coated paper production 

Tullis Russell is a Scottish papermaking company which manufactures a wide range of 

coated papers in weights ranging from light cards to heavy boards. This type of paper is 

most familiar as the smooth, glossy paper commonly used to make calendars, cards, 

posters and, to cite an example specific to Tullis Russell, the cover of the UK Yellow 

Pages telephone directory. Figure 4.1 overleaf shows a block diagram of the coating 

process which Tullis Russell use to produce much of their coated paper. 

In this process, each side of the paper is coated by applying a surface layer of a coating 

mix which is then dried and smoothed. The mix itself is a thick slurry usually comprised 

of chalk, latex, binders and possibly colourings; and the exact composition can be varied 

to control qualities of the finished paper such as its grammage, smoothness and gloss. 

Once the coatings have been dried and polished, the paper is cooled and then reeled up 

for storage. 

43. Curl 

One characteristic that the coated paper may exhibit is a tendency for sheets of the paper 

to form curved surfaces rather than lying naturally flat, as illustrated in figure 4.2. This 

deformation is known as curl, and is caused by differences in the contractions of each 

side of the sheet as the coatings and base paper dry[1 151. 

54 
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Figure 4.1: Block diagram of the Tullis Russell Truflo coater. Some possible 

predictor variables for a curl model are shown in bold italics. 

(a) Curl-free paper lies naturally flat. 	 (b) Paper exhbiting curl forms a curved surface 
and will lie flat only when restrained. 

Figure 4.2: A very simple illustration of curl. More complex types of curl, 

such as twisting, are also possible[1 16]. 

Curl is an undesirable paper quality for many reasons, some of which are: 

• 	It reduces the aesthetic appeal of the paper for use in products such as brochures and 

magazine covers. 

• 	It is the commonest cause of sheet feeding problems in non-impact printing 

processes such as photocopying and laser printing[ 117]. 
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Consequently, paper exhibiting high levels of curl has no market value and must be 

scrapped. Since scrapping the paper results in the loss of its manufacturing costs such as 

the processing time and energy, it is clearly desirable to control the coating process to 

prevent the production of paper with unacceptably large curls. 

4.3.1. Measurement and control of curl 

One obvious approach to keeping curl within acceptable limits during manufacture would 

be to use a closed-loop control system where 

curl is measured continuously as the coated paper is produced, and 

the machine settings are promptly adjusted in an attempt to minimise curl while 

maintaining other desired paper quantities such as grammage and gloss: 

However, standard curl measurement techniques cannot be used to measure curl 

continuously during manufacture[l 15]. These methods require a paper sample to be 

dried under controlled conditions to allow any inherent curl to develop, and this prohibits 

on line curl measurement since: 

Removing test samples will create unwanted holes in the final product, and 

puncturing the moving web (paper sheet) may cause it to break. If the web breaks 

then production will be halted while the broken material is removed and the coating 

machine is restarted. 

Even if a sample could be taken, the drying time causes a significant delay before 

the curl can be measured. During this time a large amount of paper may be coated, 

and this must be scrapped if the test sample curl is unacceptably high. 

4.3.2. Curl measurement and control at Truflo 

Since it is not possible to measure curl during manufacture, Tullis Russell currently 

assess curl after manufacture by taking only one test sample from the end of each coated 

reel. If the curl is too high then the entire reel is scrapped, and various heuristic rules are 

applied to establish which machine settings should be adjusted to reduce the curl for the 

next reel. For example, if the paper curls toward side one, then the side two surface 

moisture or coatweight may be increased in an attempt to reduce this curl. 

Though experienced machine crews can apply these rules with some success, there are 

some obvious problems with this method: 

Since each curl measurement can be used to test only one change in the machine 

settings, several reels may be wasted until curl is reduced to acceptable levels. 

Effective use of the heuristic rules is clearly dependent on the machine crews' skill 

and experience. 
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If production is to be switched to a different grade of paper, such as a heavier board, 

then the heuristic control process must be restarted. 

Due to the large scale of production involved, the cost of the reels wasted while trying to 

bring curl under control can be very significant. Consequently, Tullis Russell are 

interested in investigating methods for assessing curl which can be used on line and by 

inexperienced operators. 

4.3.3. Assessing curl on line using inferential estimation 

One method which may be applied to the problem of assessing curl on line is inferential 
estimation[8]. Here, it is assumed that the measured curl can be related to the values of 

other quantities which can be measured on line, such as the paper moistures and machine 

settings. If a model of this relationship can be obtained, then this model can be used to 

estimate curl on line from these other quantities. 

Some semi-empirical curl models have been reported previously[118], but applying these 

directly to the Tullis Russell process is very difficult because they are quite specific to 

their own processes. Thus it was decided to investigate whether a MLP could be used to 

model empirically the relationship between curl and other process variables for the Tullis 

Russell coating process. The MLP was chosen for this task because it was suspected that 

a nonlinear model would be required, and this is confirmed later in chapter seven. 

Obviously, other methods such as kernel regression could also be applied to this problem, 

and the MLP was chosen simply because the research group knew very little about these 

methods when the project was proposed. As more was learned about these methods 

during the project, no compelling reasons to use them in preference to the MLP could be 

found, and there was insufficient time to try them in addition to the MLP. A parametric 

model was also considered desirable since standard function optimisation techniques 

could then be used to find machine settings which minimise the predicted curl. 

4.4. Data problems and modelling issues 

At the beginning of this project, it was assumed that standard training methods such as 

LS backpropagation could be used to train the MLP curl model. However, when the first 

set of process data became available, it was found that most of this data could not in fact 

be used with these training methods due to missing entries in many of the reel logs. 

One obvious solution to this problem is to simply discard those records with missing 

entries, and to train the MLP with the remaining data. However, since the data set 

contained a very limited number of reel logs (318) and a large number of candidate 

predictor variables (29), it was desirable to retain as much data as possible to minimise 

dimensionality related problems. Unfortunately, once the incomplete cases were 
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discarded, typically only 100 to 125 complete cases remained; the exact number 

depending on the choice of predictor variables. 

Linear regression analysis of this data indicated that curl did appear to be related to some 

of the variables, but there was insufficient data to tell whether this relationship was 

significantly nonlinear. 

The problem of missing data has, however, been studied quite extensively in the statistical 

literature[105, 119-121]. Consequently, it was decided to investigate whether these 

methods could be used to fill-in, or impute, the missing data entries and thus increase the 

amount of usable data. 

Since many of these early investigations were rather naive, mostly due to initial 

unfamiliarity with MLP and regression methods, the details of these will not be discussed 

here. However, one question which arose when using unconditional mean 

imputation[ 120] to estimate the values of the missing predictors was whether or not this 

simple method was introducing many incorrect values into the data, and whether these 

could adversely affect the quality of the MLP fit. 

Again, an answer to this question was found in the statistical literature, namely that least 

squares parameter estimates may in fact be very sensitive to such gross errors in the 

data[122]. Indeed, Tresp et al. have recently demonstrated a problem where the use of 

simple mean imputation led to poorer generalisation than when the missing data was 

discarded; and this was due to the number of grossly incorrect values introduced into the 

data[123]. However, the most disturbing aspect of the discovery that least squares 

estimates may be sensitive to outliers was that these may already be present in the 

complete data, because of operator data logging errors for example. It should be noted 

that the data with the largest response errors need not have the largest or lowest response 

values, and so discarding these data may not remove any or all gross errors which may 

present. 

Thus the problems of training with missing data entries and possible gross errors in the 

data were identified as important to the curl modelling problem. Since these are general 

issues of data deficiency rather than being specific to this particular problem, it was thus 

decided that they should be investigated further in the context of MLP regression. 

4.5. The second data set and project directions 

At this time a second data set became available, and after an initial examination of this 

data it was decided not to pursue the problem of missing data further. The reason for this 

was that though this data contained only 504 reel logs, there were fewer missing entries 

than in the first set, and upwards of 356 complete records could be recovered. 
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Though this is obviously still a rather limited number of data, linear regression analysis of 

the complete data indicated that curl was nonlinearly related to some of the predictor 

variables. The results of this analysis will be discussed in more detail in chapter seven, 

but from these it was estimated that there was sufficient complete data to merit attempting 

to model this relationship using the MLP. 

It should also be noted here that the complete data from the first and second data sets 

were not combined to form a larger data set. The reasons for this were: 

The data in the first set was suspected to be of a low quality due to variations 

between machine operators when measuring variables such as the paper curl. Many 

of the measurement procedures were improved to reduce such variations before the 

second data set was collected. 

The second set contained four more predictor variables which were considered 

pertinent to the problem of modelling curl. 

The first data set contained data from many paper grades and provided very little 

data for each grade. The second set, however, concentrated on a few of the more 

important lighter grades, which also exhibit the highest curl. 

Thus though the first data set was eventually discarded because of the problems which it 

posed, it did bring several practical training issues to my attention which I felt should be 

investigated before attempting to use the second data set. Hence chapters five and six 

discuss the findings of these investigations before returning to the issue of developing the 

curl model in chapter seven. 
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Outliers and robust MLP regression 

5.1. Introduction 

So far, this thesis has considered only LS training (with optional regularisation) for 

MLPs. The reason for this is that LS is by far the most widely used estimation method in 

classical and MLP regression. However, a problem with LS estimation is that the fit can 

be very sensitive to one or more bad outliers in the data. This can result in a few 

observations pulling the fit away from the fit suggested by the majority of the data. 

Concern was thus raised about using LS training for the curl modelling problem because 

it was suspected that the Tullis Russell data may contain several gross errors. 

It is very difficult to identify and remove outliers by examining scatterplots of 

multidimensional data. A much more effective method for tackling problems where 

outliers are expected is to use robust estimators, which are much less outlier-sensitive 

than LS. Though these are becoming increasingly available in statistical software 

packages as their importance and benefits become more appreciated, few ANN 

researchers have considered the issue of outliers in MLP regression or the application of 

robust estimators to this problem. Those who have considered this problem often do not 

provide many guidelines to aid others in the practical use of these estimators in MLP 

regression. 

It was thus decided to investigate some of the important issues in choosing and using 

these estimators for MLP regression. While the main aim of this work was to determine 

which robust estimators would be most suitable for the curl modelling problem, the issues 

examined are quite general, and the work presented in this chapter can be applied to any 

MLP regression problem where outliers are expected. 

This chapter is structured as follows: 

Sections 3 and 4 introduce important basic robust estimation concepts which are 

used throughout the chapter. 

Section 5 reviews the robust estimators considered in this project. Practical issues 

pertinent to their implementation and ease of use for MLP regression are also 

considered here. 
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• 	Section 6 introduces the two issues in robust MLP regression which were examined, 

namely efficiency and the use of high-breakdown estimators, and explains why these 

are important. 

• 	Section 7 examines the efficiency of different estimators for MLP regression. It is 

shown that simple robust estimators are likely to give the best fits in MLP 

regression, and that most sophisticated estimators may actually give poorer 

estimates of the regression function. This section also discusses how under- and 

overfitting affect robust training methods, an issue which has caused some confusion 

in the robust training literature. 

• 	Sections 8 and 9 examine the effects of high leverage outliers and the role of high- 

breakdown estimators in MLP regression. It is shown that these estimators are not 

suitable for MLP regression, despite contrary claims in the literature. 

5.2. The popularity and properties of least squares estimation 

LS estimation is used very widely in regression because LS estimates are often amenable 

to relatively easy theoretical analysis and exhibit some important optimal properties[ 1241: 

For models which are linear in their parameters, closed-form expressions can be 

derived for the LS parameter estimates. The estimates can thus be computed 

directly without needing to use computer-intensive iterative optimisation methods, 

such as those required to train MLPs. 

• 	The ability to solve linear LS problems directly simplifies the development of 

inferential methods for linear LS problems and also nonlinear problems where linear 

approximations are possible[32, 125-127]. 

• 	When the errors are independent Gaussian deviates and the model is unbiased, the 

LS parameter estimates are then ML estimates, which have various optimal 

properties (see appendix A). 

• 	The Gauss-Markov theorem shows that the LS parameter estimates have the lowest 

variance among all possible linear estimators irrespective of the actual error 

distribution[124, 128, 129]. 

In MLP regression, relatively little attention has been given to the statistical properties of 

LS training methods until recently, when interest has focussed on the similarities between 

ANN and statistical methods. Here, the popularity of LS estimation appears to be due 

simply to its use in the earliest derivations of the backpropagation training method 

equations[57], and to a reputation for being a useful general fitting method. This lack of 

interest in the statistical properties of LS estimation and alternative estimators is probably 

the main reason why the effects of outliers have not received much attention in MLP 

regression. 
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5.3. Outliers and LS estimation 

What are outliers? 

In regression, outliers are data which have unusually large response errors and hence lie 

far from the majority of the data and the regression function. Their effect in LS 

regression is to pull the fit away from the trends suggested by the majority of the data, as 

figure 5.1 illustrates using a linear regression example. 

Illustration of how an outlier can pull a LS fit far from the true regression function 
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Figure 5.1: Illustration of a LS regression fit pulled away (upwards) from the 

general data trend by a single outlier. Outlier identification is easy in this 

example (by inspection), but can be a very difficult problem when there are 

many predictor variables[ 130]. 

How do outliers arise? 

Outliers occur more commonly than is usually appreciated, even in supposedly high-

quality data sets[129]. The two mechanisms which usually give rise to outliers are[131, 

132], 

• 	the error probability density function (pdf) is naturally long-tailed, making extreme 

data more likely than would be expected under, say, a Gaussian error distribution, 

and 

• 	gross errors may be introduced while measuring or logging the data. This can be 

considered a special case of a long-tailed error distribution where the gross errors 

increase the tail lengths of a shorter-tailed natural error distribution. 
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Outliers generated by the second mechanism are clearly bad data, while those generated 

by the first are in fact genuine data. However, irrespective of which mechanism generates 
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the outliers, LS estimates are sensitive to these distant data. 

How can outliers be handled? 

One obvious approach to this problem is to inspect the data and to remove suspected 

outliers before applying LS. However, this procedure has two serious shortcomings, 

it is very tedious for large data sets, and 

it can be very difficult to identify outliers in multidimensional data[41, 129]. As 

figure 5.1 shows, the data with the largest response values are not necessarily 

outliers in regression problems[130]. 

A different and generally superior approach to the outlier problem is to fit the model 

using a robust estimator[129, 133-137]. Two advantages of this approach are: 

Robust estimators are less sensitive to outliers and thus require little or no manual 

effort to identify and remove outliers. This can save the data analyst considerable 

time when trying to suppress the effects of any outliers. 

Some robust estimators can yield better estimates than applying LS to a censored 

data set. This is because they are more efficient estimators. 

5.4. What are robust and resistant estimators? 

Two of the most basic and important concepts in robust estimation are resistance and 
statistical robustness, particularly robustness of efficiency. Understanding these concepts 

is necessary to understand what most robust estimators aim to achieve, and hence to 

understand the aims of most of the work described in this chapter. 

5.4.1. Resistant estimators and estimator breakdown 

An estimator is said to be resistant if its value does not change by an arbitrarily large 

amount when one (or more) of the data to which the estimator is applied changes by an 

arbitrarily large amount. 

To see why resistance is important when considering the effect of outliers on an 

estimator's value, consider the sample mean, which is the LS estimator (see[102] or 

appendix A), 

= 	= argmin ± 
I 	91 2  = 	± yi . 	 (5.24) 

9 	i=I 
This estimator is not resistant, as seen by noting that making any one of the y, arbitrarily 

large causes the sample mean also to become arbitrarily large. Thus a single large outlier 

can pull the sample mean far from the value it would have if the outlier was not present. 
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In contrast, the sample median, which is the least absolute deviations (LAD) estimator 

argmin 
= 0 = 	 jy-0 , 	 (5.25) 

0 	i=1 

is resistant. This is because the value of the median depends on only the central values of 

the numerically ranked data, and so does not change if the most extreme data move 

further away from the median. At least half of the data (either all the data above or below 

the median) must change to affect the value of the median, and so the median is said to 

have a large-sample breakdown-point of 50%. 

Resistance is fundamentally important when considering how outliers may affect a given 

estimator. If an estimator is not resistant, then it is likely that a large outlier will shift its 

value far from the true value of its estimand. LS estimation is not resistant, due 

essentially to the fact that squaring the fit errors increases the relative contribution of the 

largest errors to the SSE, and so the fit is pulled towards the outliers when minimising the 

SSE during fitting. 

The influence function of an estimator 

An important tool for assessing an estimator's resistance is its influence function (iF). 

This describes how much its value changes by when the data to which it is applied are 

perturbed, by creating outliers for example. 

Understanding the IF in MLP regression aids understanding of how high leverage outliers 

affect MLP fits (examined in section 9) and also how sensitive the fit is to perturbations 

of the data (important in chapter six). However, since most of the work in this chapter 

can be understood and used without detailed understanding of the IF in MLP regression, 

this material is discussed in appendix B. 

5.4.2. Statistical robustness and robustness of efficiency 

Knowing that two estimators are resistant does not tell whether one of them may be more 

sensitive to certain data perturbations; for example, its value may undergo a large (but 

bounded) change for only a small perturbation of the data. The concept of how sensitive 

an estimator is to such changes is encapsulated in the idea of statistical robustness. 

Statistical robustness 

An estimator is robust if its useful properties, such as low bias or variance, are not 

sensitive to violations of any assumptions underlying its use[133, 138]. For example, LS 

estimation often has optimal properties, such as low estimate variance, when applied to 

Gaussian data, but is not distributionally robust because these properties diminish quickly 

if the data distribution tail lengths are increased slightly. 
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Since outliers increase distribution tail lengths, such distributional robustness is the type 

of robustness usually sought in robust estimation. The estimator property of most interest 

is usually efficiency, which is now described. 

Estimator sampling variance and efficiency 

Efficiency is linked strongly to the idea of estimator variance. The concept of fit variance 

in MLP regression was introduced in chapter two, where it was stated that overfitting 

causes the fit to be sensitive to small perturbation of the data. 

However, the variance of a MLP fit depends not only on how complex the MLP is, but 

also on the estimator used to train the MLP. To illustrate how variance depends on the 

estimator, and to introduce the idea of efficiency, consider the sample mean and median 

again. Since overfitting is not possible with these estimators, their variance is solely a 

property of the estimator. 

Since the value of the sample mean, sample median, or indeed any estimator, depends 

upon the particular random data set to which it is applied, this value is itself a random 

variable. Thus if a given estimator is computed many times using different data sets 

drawn from the population of interest, then a collection of random estimator values will 

be obtained. Ideally these should all be close to the true value of the parameter being 

estimated, and their limiting distribution as the number of estimates tends to infinity is 

known as the sampling distribution of the estimator[ 139-142]. This concept is illustrated 

in figure 5.2, which shows estimates of the sampling distributions of the sample mean 

and the sample median, computed using 500 million data sets each comprised of 30 

observations from the Gaussian distribution N(0,1). 
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Figure 5.2: Examples of sampling distributions for the mean and median. 
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The most significant feature of figure 5.2 is that the sampling distribution of the mean has 

a smaller variance than that of the median. Consequently, the sample mean will generally 

(but not always) be closer to the unknown population mean than the sample median will 

be, and so is the preferred estimator for estimating the mean of Gaussian data. 

Estimator efficiency and robustness of efficiency 

Low estimation variance is desirable because low-variance estimators will usually give 

the most accurate estimate of the quantity being estimated. Estimators are thus often 

compared in terms of their relative efficiency[ 139, 142], 

relative efficiency = var(T
1  (F)) 
	 (5.26) 

var(T2 (F)) 

where estimator T2  has the higher sampling varianc&°. Efficiency depends on the 

distribution of the data to which the estimators are applied, and it is assumed that 

appropriate estimators are being compared. One reason why ML estimation is so 

important is that it often gives the most efficient estimator possible for the specific 

problem where ML estimation occurs[ 142]. For example, the sample mean is the ML 

estimator of the mean for Gaussian data, which explains why figure 5.2 shows the mean 

to have a lower sampling variance than the median. 

The variances shown on figure 5.1 show the median to be only 67% as efficient as the 

mean. However, the median becomes the more efficient estimator when the data are 

drawn from a long-tailed distribution, such as the Laplace or Cauchy distributions. In the 

context of robust estimation, it is desirable to find and use estimators which are efficient 

both for Gaussian data and for data from long-tailed distributions which are likely to be 

representative of those caused by outlier contamination. This ensures that the estimator 

performs well for 'well-behaved' data, but that unexpected increases in the tail-lengths 

due to outliers do not compromise the efficiency badly[129, 144]. Such estimators are 

said to show good robustness of efficiency. 

5.5. Robust estimators and regression 

Having introduced the basic concepts of resistance and robustness of efficiency, it is now 

possible to discuss the simple robust estimators examined during this project and their 

relative merits. 

10 For biased estimators, the MSE is usually used instead of the variance[140, 1431. Sampling 
variances are often computed using Monte Carlo methods when they cannot be computed using 
theory. 
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5.5.1. M-estimators 

M-estimators are arguably the most widely used robust estimators. They were first 

investigated by Huber as a generalisation of ML estimation, from which they derive their 

name[137, 144]. Most M-estimators attempt to maintain the highest possible minimum 

efficiency over a range of data distributions, usually including long-tailed distributions. 

This minimax approach attempts to provide the best possible efficiency under the 

assumption of a worst-case error distribution. 

In regression, M-estimates of the true parameter values are given by 

= armin±Yi _f(x i ; e)j 
71 

(5.27) 

where the function p(e) defines the estimator, and the purpose of the auxiliary scale 

estimator, ., will be explained shortly. 

The simplest M-estimators considered in this thesis are L a -Norm estimators[124,  145]. 

These are obtained by minimising 

(5.28) 

and require no scale estimate. This estimator family includes the LS (p = 2) and LAD 

(p = 1) estimators as special cases. 

For M-estimators, it can be shown (see appendix B) that the IF is proportional to the 

estimator score function, 

dp(e) 

de 
(5.29) 

Since the IF must be bounded for resistance, this implies that (5.29) must also be 

bounded for resistant estimators. L-Norm estimators are thus not resistant when p> 1 

because the score function always increases as e increases. However, for p in the range 

1.2 to 1.5, their efficiency may nevertheless be good for both Gaussian data and long-

tailed distributions likely to be encountered in practice[124, 145-148]. For this reason, 

and also because they are among the simplest M-estimators to compute, these estimators 

are used quite widely despite their non-resistance. 

In his original theses on M-estimators, Huber proposed the estimator defined by 

2 
p(e) 	I 

2  
= 	k2 	

IeI k 	
(5.30) 

kick--- Iei>k 
2 

for k typically in the range 1 to 2[133, 137, 144]. For simple location estimation, Huber's 

estimator is resistant and has good efficiency over the family of contaminated normal 
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(CN) distributions, which give a good approximation of Gaussian data contaminated by 

some gross errors[122]. The CN distribution with lOOa percent contamination at scale 

factor 6 has the cumulative distribution function (CDF) 

(1—a)(e)+aI-) , 	 (5.31) 

which is a combination of a predominant Gaussian CDF ((I(e)) with a fraction of a 

higher variance (8> 1) Gaussian to increase the tail lengths. 

Scale equivariance 

Unfortunately, most M-estimators (but not L a -Norm estimators) are not scale equivariant 

because 

p(ke) # p(k)p(e) 
	

(5.32) 

This is undesirable because it causes the estimates to depend on any arbitrary scaling of 

the data. 

For example, consider fitting a MLP using Huber's estimator. If the response data are 

scaled uniformly to small values, so that all fit errors lie in the quadratic section of p(e), 

then LS fitting results. Conversely, if the data are scaled up so that all fit errors fall on the 

linear region, then LAD fitting results. Thus simple, arbitrary data scaling leads to 

different types of estimation. 

To overcome this problem, an estimate of the error scale, ., is introduced into the 

estimator definition (5.27) to compensate for any data scaling[129]. Various robust scale 

estimates[149, 150] can be used, and for this work the median absolute deviation from 

the median (MADEV), 

MADEV(e 1 ,..,e) 
median{ Ie, - median{e,}I } 

0.6745 
(5.33) 

was used. It is not necessary here to know the properties of this estimator, other than that 

it is very resistant to outliers. 

Practical considerations when using scale estimates in MLP regression 

M-estimation is complicated considerably by introducing the auxiliary scale estimate, 

because computing each of d and & requires the value of the other to be known. Some 

solutions to this problem are proposed in[l44, 151] and the method used here was to first 

compute 9 using the MLP random starting parameter values, and then use this 9 to 

improve the O estimate by applying a few MLP training steps. Once new parameter 

estimates are obtained, . is computed again using the new parameters, and the process is 

repeated until Ô and 9 converge. 
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In the work reported here, & was updated every time the search direction of the conjugate 

gradient method used to train the MLPs was reset. Updating 9 at other times is clearly 

possible, but was not investigated because it was felt that this would interfere with the 

construction of the conjugate search directions. 

An important practical point was discovered when using Huber's estimator 11 . The 

auxiliary scale estimate is usually very large at the start of training, because the MLP 

does not fit the data well and so the fit errors are large. This causes many of the data, 

some of which may be outliers, to lie on the quadratic section of the Huber error function, 

and this can cause fast overfitting to the outliers. Once this has occurred, further training 

cannot correct it. The solution adopted here was to reduce the size of the quadratic 

section by multiplying the scale estimate by 0.01 for the first 20 scale estimate updates, 

though different problems will require different degrees of extra scaling. This approach 

effectively causes LAD estimation to be used at the start of training. An alternative 

approach that does not require empirical tweaking of the scale estimate simply uses the 

LAD fit as a starting point for Huber's method. 

The main point however is that to avoid rapid overfitting, it is advisable to avoid any LS-

type fitting until the main features of the regression function have been fitted. Overfitting 

is shown later to cause loss of estimator efficiency. 

Other M-estimators 

Many more M-estimators have been described in the literature[ 102, 129, 152], most of 

which are redescending estimators. These have IFs which return to zero for fit errors 

larger than a constant known as the rejection point, and so give no influence at all to data 

with large fit errors. While these can provide good efficiency over a range of long-tailed 

distributions, they were not considered here for two reasons: 

The LAD estimate (or a similar simple robust fit) is often required as the starting 

point for these estimators. This is because good data can lie in the rejection region 

at the start of training, and may never be fitted because they have no influence 

during training[129, 153]. Requiring a LAD starting point also complicates the 

issue of implementing stopped training, because this raises the question of when the 

initial LAD training should be stopped. 

It was suspected that redescending estimators may not give better fits than simpler 

robust estimators in many cases. This is discussed later, when the efficiencies of 

some M-estimators in MLP regression are compared. 

It is expected that this result applies to all M-estimators whose error functions are quadratic 
for small to medium-sized errors, though no other estimators of this type where tested here. 
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Training MLPs with redescending estimators is possible however; some simple examples 

are provided in[154]. 

5.5.2. L-estimators 

L-estimates are linear (L-) combinations of order statistics. That is, they are obtained by 

ranking the data (or some function of the data) into numerical order and then averaging 

part of this sequence. Since averaging is a LS estimator (see appendix A), this 

corresponds to trimming-away some of the data and then applying LS estimation to the 

data which remain. In L-estimation, the trimming is performed with the intent of 

removing outliers from the data. 

L-estimation is often not as efficient as M-estimation because trimming data removes 

information[132]. However, some L-estimators have other advantages in linear 

regression which are discussed later. 

L-estimation for regression 

The definition of a regression L-estimator is confused somewhat by the fact that there are 

two widely used but different definitions. Conditional-quantile type estimators are 

obtained by averaging fits obtained using various LAD-like estimators[136,  151, 1551. 

They were not examined during this project, but it is suspected that their major properties 

will be similar to those of the LAD estimator, which was examined. 

The L-estimators considered here are of the data-trimming type[130, 151, 155]. 

Least-trimmed-squares regression 

Least-trimmed-squares (LTS) estimates are obtained by discarding the data which give 

the largest fit errors and then applying LS to the remaining data[155]. This clearly 

requires some care to avoid trimming too many or too few data[132, 148, 156], though 

this issue is not considered in depth here. 

Note that LTS estimation is not the same as discarding the data with the largest response 

values. At each training step, LTS trims only the data which lie furthest from the fit and, 

as shown earlier, these need not be the data with extreme response values. 

Least-median-of-squares estimation for MLP regression 

Least-median-of-squares (LMS1 2)  estimation[ 130] is a close relative of LTS where the 

parameters estimates are chosen to minimise the median squared error (MedSE), 

MedSE = median { (y - f(; 9))2 } . 	 (5.34) 
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LMS estimation was devised to tackle the problem of multiple high-leverage data in 

linear regression, an issue which is examined later in the context of MLP regression. 

Practical implementation of LTS training 

Training MLPs using LTS presents some difficulties because 

The LTS error surface has valleys with sharp (V-shaped) floors where the data being 

trimmed changes. Fast line-searching optimisation methods become trapped in 

valleys with V-shaped floors. Unless the search direction points exactly along the 

valley floor, the search gradient points predominantly towards the opposite valley 

wall, causing successive searches to oscillate between the valley walls while making 

little progress down the valley floor. 

• 	Minimising the LTS error function using line-searching requires any necessary 

changes in which data are selected for trimming to be detected during the line 

search. The extra sorting and searching required to implement this increases the 

training time dramatically. 

Using backpropagation-type gradient descent avoids these problems because it does not 

use line-searching. However, a small learning rate is then required to keep the method 

stable, and this was found to result in very long training times even for simple regression 

problems. 

It was thus decided to investigate techniques for using the faster line-searching training 

methods. By changing which data are trimmed only after each line-search completes, 

sharp valley floors cannot be encountered, though the true LTS error function is no-longer 

being minimised. To check whether this approach would eventually lead to the true LTS 

estimates, downhill simplex optimisation[55, 62] was also used for training. The similar 

results obtained using both methods when the trim was small (less than 15% or so of the 

training data) suggested that this line-searching approach was suitable for training MLPs 

using LTS estimation. It is shown later that large trims are not useful for training MLPs, 

and so the training method performance with large trims is not important. 

5.6. Investigations into robust training of MLPs 

Existing works on using robust methods for training MLPs[21, 154, 156-1591 focus 

almost exclusively on resistance and demonstrating that gross outliers can be resisted by 

using a robust training method. While this is useful in bringing the issue of outliers to the 

attention of other users of MLP regression, often little practical guidance is given 

12 Cautionary note: This should not be confused with the use of LS estimation in control theory 
and signal processing, where it is often called least mean squares (LMS) estimation. 
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concerning issues such as choosing what estimator to use. Indeed, it is shown here that 

some robust estimators which have been suggested for training MLPs should not be used 

at all for this purpose. 

The work performed here extends existing robust MLP regression work by examining 

two important issues in particular: 

What affects the efficiency of different estimators in MLP regression? 

Many linear regression problems require special estimators known as high-

breakdown estimators. Are these estimators also necessary, or even useful, for MLP 

regression? 

Estimator efficiency in MLP regression 

Examining efficiency is important for the same reason that it is important in robust linear 

regression, namely to aid the choice of a suitable estimator for a given problem. The use 

of quite sophisticated estimators, such as re-descending M-estimators, is often suggested 

for MLP regression[21, 154]. These are considerably more difficult to use than simpler 

estimators, such as L u -Norm estimators. They also require more computation, resulting 

in longer training times. If little improvement in efficiency can be expected in practice 

when using these estimators, then simpler estimators should be used. 

Studying efficiency in MLP regression also gave important insight into how the fit 

complexity and complexity control used during training affect robustness. This has been 

a source of some confusion and misadvice in some previous work, where it has been 

thought that using only complexity control methods, such as weight decay, is sufficient to 

control the affects of outliers[159].  This work shows that complexity control is 

important, but that robust methods are still essential when the data contains outliers. 

Using high-breakdown estimators for MLP regression 

High-breakdown estimators, such as the LMS estimator, are particularly important for 

linear regression problems where the data may contain high-leverage outliers[130]. 

These can strongly influence the fit even when using some simple robust estimators such 

as L a -Norm estimators and Huber's estimator. This work examined whether these 

outliers posed as serious a problem in MLP regression as they do in linear regression, and 

whether high breakdown estimators are also necessary in MLP regression. 

5.7. Estimator efficiency in MLP regression 

This work examined the factors that affect efficiency in MLP regression. 
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An efficiency definition for MLP regression 

The definition of efficiency used commonly in linear and polynomial regression is not 

well-suited to describing efficiency in MLP regression. Thus the first issue to be 

considered was how to define efficiency in MLP regression. 

Efficiency in linear regression is usually defined on a per-parameter basis as the ratio of 

the variances or MSEs of the parameter estimates (see[1471 for example). Two reasons 

for using this definition are: 

the parameter values are the estimands of the fitting process and so any theory 

relevant to the estimation procedure used (e.g the asymptotic normality of MLEs) 

applies directly to them, and 

sometimes the parameter values are of more interest than the fit itself. For example, 

knowing the sign of a parameter may be very important. 

In MLP regression the parameter estimates are usually of little interest; instead it is 

almost always the fit that is of interest. It is thus more appropriate to use an efficiency 

definition based on the sampling variability of the fit instead of the variability of the 

parameter estimates. Figure 5.3 illustrates what is meant by the sampling variability of 

the fit. This figure shows 30 estimates of a sine-wave function obtained by applying LS 

and LAD MLP regression to 30 different training sets with contaminated normal errors. 

The LAD fits have the lowest variability in the sense that they cluster most tightly around 

the regression function. This means that LAD fitting will usually give a more accurate fit 

for this regression problem, and so is the more efficient estimator. 
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Figure 5.3: Estimates of fit sampling distributions for a simple regression 

problem. The graph on the left shows 30 fits obtained using LAD fitting, the 

graph on the right shows 30 fits obtained using LS fitting. The same 30 

training sets were used in both cases. 

In this work, combined fit bias and variability were measured using the mean square fit 

error over the domain of interest for the regression fit. The relative efficiency of different 

estimators is then 
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efficiency = MSE(fit obtained using estimator A) 

MSE(fit obtained using estimator B) 

where the MSE is the expected fit MSE over all possible training data sets. Other fit error 

measures, such as the mean absolute error, could also be used. However, using the mean 

absolute and median square errors gave little qualitative difference in the results and 

conclusions of the efficiency experiments, and so only the MSE is used here. 

A further motivation for using the fit variability to assess efficiency is that this definition 

applies directly to nonparametric regression. Thus direct comparison of MLP and 

nonparametric methods is possible, though not reported here. 

Efficiency study overview and investigative method 

Five estimators were compared in the efficiency study: LAD, L 12 , L 15 , LS and Huber's 
estimator with k = 1. 5. The LTS and LMS estimators were not included because a 

separate study, discussed later, found these to be inappropriate for MLP regression. Since 

it is not possible to derive the expected fit MSE for most MLP regression problems, 

Monte Carlo simulation was used to estimate the MSEs, and hence relative efficiencies. 

Each estimator was used to estimate some 2- and 3-dimensional regression functions. 

Using low-dimensional functions allowed the fits to be visualised to aid diagnosis of any 

strange results, and to allow the simulations to be performed in a reasonable amount of 

computer time. A 5-dimensional function was used to confirm the expected behaviour of 

the estimators for higher-dimensional problems. 

For each function, 3 different error distributions were used to generate the training sets. 

These were the Gaussian, Laplace and a contaminated normal distribution. The difficulty 

of estimating the regression function was varied either by varying the amount of training 

data (and hence the data sparseness) or by varying the error distribution variance. 

Complexity control was accomplished by varying the number of hidden units and by 

early stopping. 

For each combination of estimator, regression function, error distribution, problem 

difficulty and number of hidden units, 30 MLPs were trained. This was considered 

sufficient to obtain reasonably accurate estimates of the fit sampling distribution while 

allowing all simulations to be performed in a reasonable time. 

5.7.1. Some experimental results and discussion 

This section discusses one of the Monte Carlo experiments in detail to present the key 

results and conclusions of the efficiency study. Further, confirmatory results are 

presented in appendix C. 
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The results discussed in this section were obtained using the regression function[98] 

p(x 1 , x2 ) = exp(-4x 1  x2  - x - 3x) (5.36) 

sampled over the domain —1 ! ~ x1, x2  !!~ 1 on regular lO-by-lO and 7-by-7 grids. This 

scheme gave training sets containing 100 and 49 data; the smaller data set contains less 

information about u(x 1 , x2), and hence makes avoidance of under- and overfitting more 

difficult. For each sampling scheme, 3 training sets were created by adding response 

errors from 

a Gaussian distribution with mean 0 and variance 0.4, 

a Laplace distribution with mean 0 and variance 0.4, and 

a contaminated Gaussian distribution comprised of a Gaussian distribution with 

mean 0 and variance 0.4, 10% contaminated at scale factor 5 by drawing every 10th 

error from a Gaussian distribution with mean 0 and variance 2. 

Results from Gaussian errors experiments and discussion 

Figures 5.4 and 5.5 show the final (complete training) and best (early stopping) fit MSEs 

obtained for the training data with Gaussian response errors. The points plotted are the 

means of the 27 smallest fit MSEs out of the total 30 fits for each estimator. The error-

bars shown are ±1 standard deviation for each mean. 

The 10% error trimming was used to reduce the sensitivity of the results to occasional 

large MSEs resulting from hidden unit saturation or chronic overfitting. All estimators 

were found to suffer equally from these problems, and so no advantage is given to any 

estimator by this trimming procedure. 
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Figure 5.4: Estimator MSEs for the fits obtained using 100 training data with 

Gaussian errors. The left graph shows MSE at the completion of training, the 

right graph shows the best early stopping MSEs. 
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Figure 5.5: Estimator MSEs for the fits obtained using 49 training data with 

Gaussian errors. The left graph shows MSE at the completion of training, the 

right graph shows the best early stopping MSEs. 

Previous investigations of efficiency in linear regression found LS estimation more 

efficient than other L u-Norm or M-estimators when the response errors are 

Gaussian[145-147]. This result is unsurprising given that LS estimation gives ML 

parameter estimates when the errors are Gaussian. 

For the MLP fits, however, LS estimation gave the largest fit MSEs, and is hence the least 

efficient estimator. Figures 5.4 and 5.5 show that the LAD and Huber estimators are 

more efficient (lower MSE5), particularly when early stopping is used. 

This raises the question of why LS estimation was least efficient for this problem. The 

answer is that in previous linear regression work, the test function was also linear, and so 

under- and overfitting were not problems. Thus the efficiency was determined only by 

how well the estimator was matched to the response error distribution. In MLP 

regression, however, the fit MSE depends not only on how well the estimator is suited to 

the error distribution, but also on how much under- or overfitting occurs. The latter can 

affect the efficiency quite significantly. 

For example, figure 5.4 shows that when early stopping is used, even the least efficient 

estimator when using 4 hidden units is significantly better than the best estimator when 

using 2 hidden units. This is because 2 hidden units are not enough to model the 

regression function well and so underfitting occurs. The MSE is dominated by the fit bias 

caused by underfitting. 

Similarly, both figures 5.4 and 5.5 show that when training to completion, the MSEs 

increase as the number of hidden units increases above 4. This is because overfitting 

becomes worse as more hidden units are used. The resulting increase in fit variance 

increases the fit MSE, and so minimising overfitting is clearly a more important issue 

than choosing any particular estimator. 
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The key result illustrated by this example is that avoiding under- and overfitting can be as 

important as choosing an appropriate estimator for achieving the lowest fit MSE. The 

LAD and Huber estimators were more efficient than the LS estimator because overfitting 

occurs more slowly when using robust training methods 13 . When using early stopping, 

slower overfitting allows a better fit to be obtained before overfitting begins. This is 

shown clearly in figure 5.5, where the MSEs decrease as the L u -estimator used becomes 

more robust (p —p 1). This is exactly the opposite result to that obtained in previous 

linear regression studies. Here, the rate at which overfitting occurs to the sparse data set 

is more important than how well the estimator is matched to the response error 

distribution. 

The similarity of the Huber and LAD results is because, as explained earlier, the scaling 

method used with the Huber estimator results in LAD estimation being used for the first 

20 conjugate gradient constructions during training. Without reducing the Huber scale 

factor as recommended earlier, the Huber efficiency dropped to being similar to that of 

the L 15  estimator, because overfitting occurred quickly for the data lying on the quadratic 

section of the error function at the start of training. 

In other Monte Carlo experiments (such as the one using the sine function data used 

earlier to illustrate efficiency), the LS estimator efficiency was comparable to that of the 

LAD and Huber estimators only when there were many training data to define the 

regression function very well, and hence minimise the problems of under- and overfitting. 

Since MLP regression is often applied to sparse data sets, where under- and overfitting 

can be serious problems, this makes the issue of how they affect the efficiency very 

important. 

Results from Laplacian errors experiments and discussion 

Figures 5.6 and 5.7 show the end-of-training and early stopping MSEs obtained for the 

training data with Laplacian response errors. 

13 The likely reason for this is that robust training is not so disposed towards eliminating large 
fit errors as LS is. I am grateful to Duane DeSimio and Warren Sarle for some useful personal 
communications confirming this observation. 
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Figure 5.7: Estimator MSEs for the fits obtained using 49 training data with 

Laplacian errors. The left graph shows MSE at the completion of training, 

the right graph shows the best early stopping MSEs. 

These results are similar to those obtained with Gaussian response errors. The main 

difference is that the LS estimator has become noticeably less efficient than the other 

estimators both when training to completion and using early stopping. This is expected, 

because the longer tails of the Laplacian error distribution increase the importance of 

using an estimator that is efficient with long-tailed data to fit the MLP, in addition to 

minimising under- and overfitting. 

Results from contaminated normal errors experiments and discussion 

Figures 5.8 and 5.9 show the end-of-training and early stopping MSEs obtained for the 

training data with contaminated normal response errors. 

0.09 

0.08 

0.07 

0.06 

0.05 

0.04 

0.03 

0.02 

0.0! 

0.08 

LS training 

	

0.07 
	

L15 training 
L12training 
LAD training l-i(---1 

	

0.06 
	

Hnber training 	-I 

0.05 
Lit 

0.04 

0.03 

0.02 



Chapter 5 
	

79 

M5t at compietton or 
	

Lowest MSE during training 
0.18 

LS training 101 

L,training H4 
	

0.16 
L,2training 
LAD training Fit—I 	

0.14 
Huber training 

0.12 	
L1 training '--- 

LS training F01 

Lt2training Fts-1 
0.1 	 LAD training 

Huher training 
0.08 

0.06 

0.04 

0.02 
2 	3 	4 	5 	6 	7 	 8 	 2 	3 	4 	5 	6 	7 

	
8 

	

Number of hidden units 	 Number of hidden units 
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Figure 5.9: Estimator MSEs for the fits obtained using 49 training data with 

contaminated normal errors. The left graph shows MSE at the completion of 

training, the right graph shows the best early stopping MSEs. 

Again the results are qualitatively similar to those obtained with Gaussian and Laplacian 

errors, but now both the LS and L1.5  estimators are much less efficient than the other 

estimators. This is because the contaminated normal error disthbution has the longest 

tails of the 3 error distributions used here, and so now using both a very robust estimator 

and good complexity control are necessary to obtain a food fit. 

5.7.2. Efficiency study conclusions 

The results of the Monte Carlo efficiency studies are that, 

as expected, robust estimators can be much more efficient than LS estimation when 

the error distribution has long tails, but 

the estimator efficiency is also influenced strongly by under- and overfitting. 

The second result is the key result of this work in terms of deciding which types of robust 

estimators to use for MLP regression. 
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Some previous works have suggested that sophisticated M-estimators, notably 

redescending estimators, should be used to obtain the best fit when using robust training 

methods[21, 154]. This recommendation appears to be based on the fact that these 

estimators can be very efficient for location estimation, where under- and overfitting are 

not issues. 

However, the results of this work suggest that in MLP regression, once a simple robust 

estimator is used to resist any gross outliers, then limiting the degree of under- and 

overfitting is likely to be the most important problem when trying to maximise efficiency. 

In fact, since most redescending estimators have quadratic error functions for small- to 

medium-sized fit errors, overfitting is likely to be a considerable problem when using 

them, as overfitting was found to occur quickly for LS-like estimators. 

In summary, the results given here suggest that whenever some under- or overfitting is 

unavoidable (which is very often the case in MLP regression), then simple robust 

estimators are likely to be as, if not more, efficient than more sophisticated M-estimators. 

Given this, and their advantage of being much simpler to compute, simple estimators 

such as L a -Norm estimators appear to be most suitable for robust MLP regression. 

As a consequence of these results, it was decided to use only L u -Norm estimation for the 
curl modelling problem. 

Future robust regression work 

Limited time and computer facilities restricted the number and complexity of Monte 

Carlo experiments that could be performed. Using new, faster computers, future studies 

should include sparser, high-dimensional data-sets, as these 

present greater difficulties in avoiding under- and overfitting, and 

• 	are more representative of the type of data to which MLP regression is usually 

applied. Using such data will hence confirm (or refute) the applicability of the 

present study's results to real regression problems. 

Another issue requiring investigation is how outliers in the validation data may affect 

complexity control. The early stopping results given here used error-free data, both to 

limit the issues to be considered to training issues only, and 

to show the best possible efficiencies under the assumption that the best early 

stopping point (or best regularisation method) can be found. 

In practice, the validation data is also likely to contain outliers, and so a robust error 

measure should be used for validation[45]. However, robust validation errors may be 

insensitive to overfitting, because a large error caused by overfitting is indistinguishable 

from an outlier1 . Inability to identify overfitting clearly may make overfitting more 
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likely, causing an efficiency loss. 

During this project, use of the absolute fit error for validation did not appear to lead to 

serious overfitting, but no serious comparisons were made between validation using error-

free and outlier-containing validation data to assess whether significant overfitting could 

occur. It was also found that monitoring the weight decay penalty value (even if not 

using WD for training) and the validation-set SSE can provide good indication of the 

onset of overfitting, as both errors increase rapidly at this point. However, no attempts 

were made to assess the general effectiveness of this method, and further examination of 

these issues is required. 

5.8. Leverage in linear and MLP regression 

A well-known and important problem in robust linear regression is that a single outlier 

can still strongly influence some robust estimators when the outlier occurs at an extreme 

value of one or more of the predictor variables. This is illustrated in figure 5.10, which 

shows breakdown of both a LS and a LAD linear regression fit to some data containing 

such an outlier. 

Illustration of how a high leverage outlier can affect a LAD and LS fit 
0.6 
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0.2 
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large residual 
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Figure 5.10: Demonstration of LS and LAD estimator breakdown due to a 

high leverage outlier in linear regression. 

Although the LAD estimator has a bounded score function, the IF for the slope parameter 

also depends linearly on x (see appendix B for a proof), and so outliers with large x can 

still strongly influence the slope estimate. Such outliers are known as high leverage 

14 I am grateful to Warren Sane for bringing my attention to this problem, and for useful dis-
cussion concerning possible ways of avoiding it. 
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outliers in analogy with how increasing the length of a lever (x) increases the torque 

(influence this point has in determining the slope of the fit) which can be applied. 

A consequence of the influential nature of high leverage data is that the fit is forced to 

pass through or close to these data, as can be seen in figure 5.10. This makes spotting 

these outliers using the data residuals (fit errors) difficult, because the largest residuals 

can belong to good data. 

To address this problem, various high-breakdown and bounded-influence estimators have 

been devised. Two examples of such estimators are the LMS and LTS estimators 

discussed earlier, which can resist high leverage outliers by trimming them from the data 

during training[130, 155, 160]. Other commonly-used estimators include generalised M-

estimators (GM-estimators), which are based on standard M-estimators but additionally 

down-weight the error function contributions from any data which lie far from the centre 

of the predictor variable distribution[129, 153, 161, 162]. 

5.9. Leverage and high breakdown estimators in MLP regression 

Given the serious problem that high leverage outliers pose in linear regression, namely 

their ability to dominate the overall fit, it was decided to investigate 

• 	whether high leverage outliers posed the same problem in MLP regression, and 

• 	whether high breakdown estimators would be necessary or useful for MLP 

regression. 

This investigation was further motivated by reports in the literature[156, 1581 in which 

LTS and LMS were found to be useful in MLP classification problems' 5 , and the 

suggestion that the good results obtained in some of this work were due to the ability of 

LMS and LTS to resist high leverage outliers[ 158]. 

5.9.1. Typical effect of high leverage outliers in MLP regression 

It soon became apparent that high leverage outliers are not as serious a problem in MLP 

regression as they are in linear regression. In MLP regression, a high leverage outlier will 

typically have high local influence, causing localised overfitting, but will not control the 

overall fit. 

The reason high leverage outliers typically distort the fit only in the region near the 

outlier is that, as explained in chapter two, MLP regression is similar to nonparametric 

15 Regression estimators are often used to train MLP classifiers. However, this generally will 
not work well unless the distribution of the data to be classified looks like a regression error distri-
bution[25, 41]. It is thus difficult to compare results obtained from these experiments directly to 
MLP regression. 
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regression in terms of its curve-fitting flexibility. In nonparametric regression, the fit at 

any point is determined only by the data in the vicinity of that point. Since a high 

leverage outlier lies far from the other data, it will thus have little affect on the fit to most 

of the data. For example, a high leverage outlier will have little affect in kernel 

regression if it lies more than a few kernel bandwidths away from the other data. 

Appendix B discusses in more depth the influence of high leverage outliers and their 

typical effect on the fit in MLP regression. 

Can high-leverage outliers be ignored? 

Though high leverage outliers will not affect the overall MLP fit, this does not mean that 

they do not present a problem in MLP regression. In the same way that they cannot affect 

the fit to most of the data, most of the data cannot affect the fit at the outlier either. This 

means that the fit near the outlier is determined almost completely by its own response 

value. If this datum is a genuine (response) outlier, then the fit will be pulled far away 

from the regression function even if robust training methods are used. It is thus necessary 

to identify these unreliable regions of the fit after training, and chapter six addresses this 

issue further. 

5.9.2. Usefulness of high breakdown estimators for MLP regression 

Given that high leverage outliers do not cause overall fit breakdown in MLP regression, 

this posed the question of whether the high breakdown estimators developed to address 

this problem in linear regression have any use in MLP regression. Some experiments 

which examined the performance of LTS for simple regression problems soon indicated 

that the answer to this question is 'no', as the next sections illustrate and discuss. 

5.9.3. A simple regression problem illustrating the pitfalls of LTS 

To demonstrate and explain why LMS, highly-trimmed LTS or other high breakdown 

estimators should not be used for MLP regression, consider the relatively simple problem 

of estimating the regression function for the motorcycle impact data shown in figure 5.11. 
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Figure 5.11: Whiplash acceleration versus time data for a motorcycle impact, 

with LS and LAD nonparametric estimates of the regression function. 

Though the true regression function is obviously unknown here, this data is widely used 

to benchmark nonparametric regression methods[30, 871, and the 11-point running mean 

and running median shown in the figure correspond to typical LS and LAD estimates of 

this function. The main difference between these estimates is caused by the possible 

outliers below the peak near time 30 milliseconds, but they agree well everywhere else. 

The regression function was next estimated by training MLPs with 3 to 6 hidden units 

using LTS estimation with trims of 20, 30, 40, 50, 60, 70 and 90. For each hidden unit 

and trim combination, 10 MLPs with different initial weight and bias values were trained 

to indicate the typical fit shape which would be obtained. Though some of the trims may 

seem quite large, it should be remembered that using LMS estimation would require all 

but one of the data to be trimmed at every training step (in this case, the datum with the 

66th largest squared fit error). Overfitting was found to become quite bad when more 

than four hidden units were used, and so all results given in this section are for MLPs 

with four units. 

For small trims of 20 to 40 or so, the MLP fits were very similar to the running median 

smooth. Figure 5.12 shows the 10 fits obtained using a trim of 30. Both variables have 

been standardised by subtracting the mean and dividing by twice the standard deviation, 

to prevent hidden unit saturation during training. 
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Training data and 10 fits obtained using 4 hidden units and trim 30 
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Figure 5.12: 10 MLP fits obtained using four hidden units and LTS 

estimation with a trim of 30. The fits match the running median fit shown in 

figure 5.11 very well. 

As the trim increased however, the MLP fits began to flatten by pulling in from the data 

peak near time 0.25 and the trough near time -0.2. This is illustrated in figure 5.13, which 
shows the 10 fits obtained using a trim of 60. 
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Figure 5.13: 10 MLP regression estimates obtained using four hidden units 

and LTS estimation with a trim of 60. The regression function is poorly 

estimated in all cases. 
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It can be seen clearly that the fit does not show a peak in the regression function near the 

standardised time of 0.25. Additionally, the minimum near time -0.2 has not been 

estimated well despite the fact that it is quite clearly defined by the data. As the trim 

increased towards 70 this minimum was estimated very poorly, as all the fits become very 

flat. 

Discussion 

The MLP fits obtained using lightly trimmed LTS compared well with the running 

median smooth, and also fits obtained using LAD estimation (not shown). However, 

LAD training has at least two advantages over LTS training: 

LTS training requires much more computer time because of the large amount of 

sorting required. The best sequential sorting algorithms have worst case time 

complexity of order nlog(n), where n is the number of data, and so LTS training can 

be very slow for training sets comprised of more than a few hundred data 16 . 

The test problem involved dense data and so complexity control was not a serious 

problem. As shown earlier, however, LS-like estimators require good complexity 

control to obtain good efficiency when training with sparse data. 

As the trim was increased, increasingly poorer fits were obtained because too much good 

data was being trimmed at each training step, and training focussed on the remaining 

untrimmed data. This increased the difference in the fit errors between these groups of 

data, and hence caused this situation to worsen as the trim was biased more strongly 

towards the already low error data. A similar problem is discussed in[162-164], where 

the authors consider the use of high-breakdown estimators for fitting polynomials to 

good-quality data containing few or no outliers, and examining the residuals from high-

breakdown linear fits for signs of systematic nonlinearity indicating the need for a 

nonlinear model. In all cases they concluded that high-breakdown estimators were 

inadequate for this task compared to simpler robust estimators, because they could reject 

too much data. 

Basically, when using flexible regression methods in problems where the shape of the 

regression function is unknown, rejecting large amounts of data can cause some genuine 

trends within the data to be ignored during training. In the case of LMS regression, 

training can stop after only half of the data has been fitted reasonably well, even if the 

other half are not outliers. 

16 Significant speed-up may be possible by using the sorted error ordering at each training step 
and an initial ordering for the next step sort. However, even a time overhead of, say, 20% corn-
pared to LAD estimation can still be excessive when considering training runs requiring one or 
more weeks of computer time. 
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Some situations where high-breakdown estimators may focus on only a reduced sample 

of the training data include: 

Problems where the error distribution is heteroscedastic, in which case training may 

focus solely on the observations with the lowest error variances. 

Problems where the data are densely clustered in some regions. This may lead to 

the LMS estimator focusing on these regions, giving poor fits in other regions with 

sparser data. 

Problems where the regression function includes strong near-discontinuities, such as 

steps in the regression function. This could place groups of data far from the main 

data cluster, which would be completely trimmed and hence never fitted, even 

though they are not outliers, but indicate a genuine trend in the data. 

In summary, despite previous recormnendations for their use, strongly trimmed LTS, 

LMS and other high-breakdown estimators appear to be unsuitable for MLP regression. 

5.10. Summary and conclusions 

This chapter has looked at the use of robust regression methods for training MLPs with 

data which may contain outliers. The emphasis in this chapter has been towards practical 

issues which affect how to choose and use these estimators for MLP regression, with the 

mostly theoretical material placed in the appendices. 

The two major issues examined were: 

What affects estimator efficiency in MLP regression, and hence the choice of 

appropriate estimators for MILP regression? 

Are high-breakdown estimators necessary, or even useful, in MLP regression? 

Understanding these issues is important for choosing and using appropriate robust 

estimators for MLP regression. 

Key efficiency study results 

The key result of the Monte Carlo efficiency studies was the realisation that simple 

L u -Norm estimators with p = 1 were likely to give as good, or even better, fits in most 

MILP regression problems as more sophisticated estimators such as re-descending M-

estimators. 

The reason for this is that the fit accuracy depends on both 

• 	how well the estimator used to train the MLP is suited to the error distribution, such 

as resistance to outliers, and 

• 	how well the fit complexity is controlled to avoid over and underfitting. 
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In the studies performed, it was found that once a simple robust estimator had been used 

to resist any gross outliers, avoidance of under- and overfitting quickly became the most 

important problem when trying to obtain the best fit. Overfitting was found to occur 

more slowly for the simple LAD-like estimators, and this had a greater affect on the fit 

accuracy than how well the LAD estimator was matched to the true response error 

distribution. 

Choosing an estimator which is very well-matched to the error distribution is likely to be 

important only when overfitting and underfitting are not serious problems. This is 

unlikely in most MLP regression problems because MLP regression is commonly applied 

to sparse data, which makes avoidance of overfitting difficult. 

The overall conclusion of this study was that L-Norm estimation with p = 1 will give 

good efficiency for many MLP regression problems, while also requiring less computer 

training time than more complicated estimators. 

Using high breakdown estimators for MLP regression 

This investigation was motivated by the importance of using high breakdown estimators 

in linear regression when high leverage outliers occurs. 

The key results of this investigation were 

• 	the demonstration that high breakdown estimators are not necessary in MLP 

regression because high leverage outliers can only cause local overfitting, and 

• 	the demonstration that, despite previous recommendations for their use, high 

breakdown estimators should not be used for MLP regression. 

High breakdown estimators were found to be unsuitable for MLP regression because they 

can ignore a large proportion of the training data. This can result in failure to fit 

important features of the regression function during training if the whole feature is 

rejected as a large group of outliers. 

Overall conclusion 

The overall conclusion of this work is that, when using robust estimators because data 

outliers are suspected, then simple robust estimators such as L u -Norm estimators with 

1 :!~ p :!~ 1. 5 are likely to give the best results in MLP regression. More sophisticated 

estimators are unlikely to give better fits because of the extra complexity control issues 

that their use involves. 

It was thus decided only to use L-Norm estimation for the curl modelling problem. 
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Using leverage to identify overfitting and cross-validate MLPs 

6.1. Introduction 

The previous chapter and appendix B considered the likely effects of training MLPs with 

data which contains high-leverage outliers. There it was shown that the fit usually will be 

very unreliable near these data because of local overfitting. 

For most effective use of the fit for prediction, this unreliability must be signalled to the 

model user so that remedial action can be taken or suitable care exercised when using 

predictions from overfitted regions. Since wide confidence intervals indicate low 

certainty in the fit accuracy, one method for identifying local overfitting is to examine 

confidence intervals for the MLP fit, which can be obtained using bootstrapping[64, 1651. 

Bootstrapping is, however, very computer-intensive and so it was decided to investigate 

whether existing methods for computing leverage in linear regression could be extended 

to MLP regression. This is a much less computer-intensive approach to identifying 

overfitting, and so would speed-up model development. 

While investigating the relationship between underfitting, overfitting and leverage, it was 

realised that the MILP leverages could be used to reduce greatly the amount of 

computation required to estimate the MLP generalisation ability using the method of 

leave-one-out cross-validation. The particular advantage of this technique over the data 

splitting method considered so far is that it allows all the available data to be used for 

training, and is thus very useful when working with a limited amount of data. The curl 

modelling problem a prime example of such a task, and provided the primary motivation 

for investigating this application of leverage in MLP regression. 

Chapter structure 

Sections 2 and 3 of this chapter examine linear estimators as a template for understanding 

leverage in general and also for illustrating the relationship between leverage and 

overfitting in MLP regression. The two methods which were investigated for computing 

MLP fit leverages are introduced and discussed. 

In section 4, some simple examples are given which illustrate how leverage can be used 

to identify local overfitting. Some properties of the leverages and how these can affect 
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the interpretation of the leverage values are also discussed. The advantages and 

disadvantages of using leverages to identify overfitted regions of the fit rather than using 

the computer-intensive bootstrapping method is also discussed. 

Sections 5 to 10 discuss how to use leverage for fast cross-validation of MLP regression 

fits. An explanation of how this method works is given and two examples are given 

which illustrate the usefulness of this technique. The second example uses the curl data 

both to show a real application of the fast cross-validation estimator and to highlight and 

discuss practical issues to be considered when using this estimator. 

6.2. Leverage in linear estimation and MLP regression 

So far leverage has been discussed only in terms of outliers and the highly influential 

nature of high leverage outliers. In this section leverage is examined from the more 

general viewpoint of linear estimation as preparation for work presented in later sections. 

This approach gives clear insight into the relationship between leverage and overfitting in 

MLP regression. 

6.2.1. Linear regression estimators 

Linear regression estimators derive their name from the fact that the value of the fit at 

each training datum position, x,, is a linear sum of the response data, 

9, = 	 (6.37) 

where the values of the coefficients h,k depend only on the predictor variable data, 

{x, 1[38]. Common examples of linear estimators include LS kernel regression, where 

the coefficients in (6.37) are the normalised kernel weights, and LS linear regression. 

The following sections relate the values of the coefficients to local influence; for both LS 

linear[153] and kernel[30] regression 0 !! ~ hk !!~ 1 and 

h. = 1 . 	 (6.38) 

6.2.2. Leverage and overfitting in linear estimation 

In the context of the work presented here, the most important consequence of (6.37) is 

that if y, is perturbed by Ay, and the model re-fitted, then the fit at x, changes by 

= h,Ay . 	 (6.39) 

If h,, = 1 then the fit closely follows the perturbed datum. In chapter two it was stated 

that this is what happens when overfitting can occur in MLP, kernel and other types of 

flexible regression, and so a large h 1  can indicate local overfitting near x1. 
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In kernel regression for example, h,, = 1 indicates that when the kernel centre is 

positioned near x, the other training data lie far away in the kernel tails. The fit near x, is 

thus determined almost totally by the single datum y,. Indeed, it has been noted in the 

linear regression literature that[144, 153] 

effective number of data determining the fit at x, 	
hij  

If y, is an outlier then the fit will be a poor estimate of the regression function. This 

problem cannot be addressed by using a robust estimator such as taking the median of the 

weighted kernel data instead of the average. This is because the sampling variances of 

the mean, median and all the other robust estimators discussed in chapter five become 

infinite as the number of data decreases to 1. Thus the fit will always have high variance 

(wide confidence intervals) where it is based on only one or two data, as the lack of data 

conveys little information about the regression function[38, 40].  When fitting to data, the 

fit at any point should ideally be determined by many data so that it is truly representative 

of general trends in the data, but not local random variations. 

Nomenclature 

In this thesis, the coefficients hij  are called the fit leverages. This is because high 

leverage outliers in LS linear regression can be identified by the fact that they have large 

h, (h,1  > 0.5 is generally considered a high leverage)[144].  The coefficients are not 

conventionally called leverages in general linear estimation. 

6.3. Leverage in MLP regression and nonlinear estimation 

Following the intuitive relationship between leverage, overfitting and the fit confidence 

intervals in kernel regression outlined in the last section, it was realised that if similar 

leverages could be computed for MLP fits then this could provide a method for detecting, 

for example 

local overfitting at isolated data points such as high leverage outliers, or 

local overfitting when using the spline penalty described in chapter three, caused by 

using smoothing intervals which are too wide. 

This ability to diagnose local overfitting would have several uses: 

It could provide a method for detecting overfitting which may not be otherwise 

detected when validation data is limited. 

When training with sparse data, even the fit with the lowest validation error may still 

be unreliable due to overfitting where the data is most sparse. This overfitting could 

be identified quickly after training by examining the fit leverages. 
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Leverage in nonlinear estimation. 

In MLP regression it is not possible to write the fitted values in the form (6.37) where the 

coefficients depend only on {x, }. However, for small response perturbations, it is 

possible to define leverages for which 

A5' 1  - h,Ay . 	 (6.40) 

A high leverage here indicates high sensitivity of the fit to perturbations of the data. 

Since this is a characteristic of overfitting, these leverages could thus be used to indicate, 

after training, where overfitting has occurred. Avoidance of overfitting is always an 

important problem in MLP regression, and so this would be a very useful tool. 

The small perturbation limitation arises from the fact that the leverages depend on both 

{x,) and {y, } in nonlinear estimation, and so change as the response data is perturbed. 

Equation (6.40) gives accurate estimates of A9 only if the leverage remains 

approximately constant as y, changes. The examples given later discuss some 

consequences of this limited range of leverage validity. 

The next sections discuss two methods which can be used to compute leverages for MLP 

fits. Both methods assume that training has proceeded until the training error is 

minimised, and consequently I realised that they could not be used in conjunction with 

early stopping to prevent overfitting. Instead, either adjusting the number of hidden units 

or regularisation penalties of the type examined in chapter three must be used to prevent 

overfitting. In fact, it does not even seem possible to assess leverage sensibly if training 

is not complete. To see why, suppose that y1  is perturbed after early stopping is used to 

stop training. If training is then resumed to assess the change in the fit caused by this 

perturbation, then it is impossible to distinguish between change due to the perturbation 

and that resulting simply from further training. If training is completed first then any 

change in the fit is due only to the perturbation of y,. 

6.3.1. Tangent plane leverage 

The tangent plane method assumes that the nonlinear regression model f(x; 0) can be 

approximated by 

fc; Q) - fc; ) + V9 f(x; ê)T(O - ) 	 (6.41) 

for 9 in a close enough vicinity of 0[127, 166, 1671. 

It is relatively simple to show (see appendix D) that if the model approximated by (6.41) 

is fitted using weight decay penalised LS then the leverages are the diagonal elements of 

the matrix 

H 
= 22T1J)2T 	 (6.42) 
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where I is the identity matrix and 2 is the Jacobian matrix with (i, J)th  element 

=(6.43) 

Methods for deriving tangent plane leverages for models fitted using non-LS estimation 

are discussed in[168, 169]. 

6.3.2. Jacobian leverage 

Another approach to estimating leverage in nonlinear regression is to compute the 

quantity 

9i 
I,  '-Jy j  

(6.44) 

directly without assuming a tangent plane approximation. This is known as a Jacobian 

leverage[166, 170]. 

Methods for computing Jacobian leverages are discussed in[166, 171, 172]. These are 

considerably more complicated than the tangent plane method, however, and so will not 

be discussed in detail here. 

The mean-shift perturbation method described in[171] has been used by Schall and 

Gonin[173] to derive an expression for the Jacobian leverage matrix for a nonlinear 

model fitted using L u -Norm estimation with p> 1. Their work can be extended easily to 

MLP regression where training is performed using L a-Norm estimation with a 

regularisation penalty, J(9). The resulting Jacobian leverage matrix is 

H = p(p - 1)D2[P(P - l)2 D22 - Bp J+ AV 2OJ]2T D 	(6.45) 

where D is the matrix 

D = diag[1r11"2', . . , Ir,I" 2 '] 	 (6.46) 

with residual r, = y, - 9,, and 

B = 
	

IrI' 2r1Vf(x; ) . 	 (6.47) 

Only L a -Norm training was examined in depth because this method was chosen in 

chapter five for developing the curl model. However, the mean-shift perturbation 

approach can be applied easily to other estimators. 
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6.3.3. How do tangent plane and Jacobian leverage differ? 

If the tangent plane approximation is exact or if every training datum is interpolated by 

the fit, then B = 0 and the tangent plane and Jacobian leverage matrices are identical. 

However, if B cannot be neglected, then the tangent plane and Jacobian leverages can 

differ significantly[166]. Hence the question of which leverages may estimate most 

accurately changes in the fit cause by perturbing the data must be considered. 

While the tangent plane method uses a linear approximation of the true regression model, 

the Jacobian leverages are based on a higher-order approximation which also accounts for 

some of the intrinsic nonlinearity of f(x; O)[172, 174]. Consequently, the Jacobian 

leverages would be expected to give more accurate estimates of how far the fit will shift 

when a response datum is perturbed. This was confirmed by experiment and so Jacobian 

leverages were used for most of the work reported here. 

6.4. Investigating the relationship between leverage and overfitting 

Various simulation studies with artificial training data were performed 

to check that the (rather complicated) leverage programs gave leverages which 

accurately predicted how a MLP fit would respond to small response data 

perturbations, and 

• 	more importantly, to investigate the relationship between leverage and overfitting in 

MLP regression. 

This section focuses on the second of these using two simple examples which illustrate 

how leverage can be used to identify local overfitting and to estimate approximately the 

extent of overfitting. 

6.4.1. Illustrating the relationship between leverage and overfitting 

Twelve training data were created by sampling the function 

p(x) = 2x+l 
	

(6.48) 

at intervals of width 0.05 over the range x = —0.2 to x = 0.35 and adding a high leverage 

outlier at (1,0). Response errors were generated using the Gaussian distribution 

N(0,0.3). 

MLPs with 8 hidden units were fitted to this data using LS training with the spline 

roughness penalty described in chapter three. The roughness was sampled at intervals of 

width Ax = 0.025 over the interval x = —0.6 to x = 1.3. Figures 6.1 and 6.2 show some 

MLP fits and their Jacobian leverages obtained for different smoothing parameter values, 

A. 
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Figure 6.1: Training data and some MLP fits obtained using different 

amounts of smoothing. The fit interpolates every training data when A. = 0. 
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Figure 6.2: Leverages for the fits shown in figure 6.1. Curves have been 

drawn through the leverages to highlight trends. 

When A. = 0 the MLP is badly overfitted. Even without viewing the fit, this could be 

deduced from the fact that all the leverages are 1. When all leverages are 1, the fit can 

follow small perturbations of any of the training data exactly. This occurs because the 
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MLP has sufficient flexibility to interpolate all the data, in the same way that a 

sufficiently complex polynomial could be forced to pass through each data point 

irrespective of their response values. 

As A increases, the overfitting is reduced and this is indicated by the decreasing 

leverages. The leverages for the data near x = —0. 2 and x = 0. 35 are higher than for the 

data which lie between them because they lie at the edges of the central data cluster, and 

so the fit is determined only from one side. The same effect is cormnonly seen in kernel 

regression, where the fit confidence intervals widen at the data edges[38, 40]. 

The leverage of the datum at x = 1 always remains near 1 indicating that all fits are 

locally overfitted in this region. As stated before, this is because the fit in this region is 

essentially determined by one datum and so must pass near it, even if it is an outlier. This 

overfitting may not be detected in practice even if data splitting is used because high 

leverage outliers, by definition, occur far away from any other data and so there may be 

no other data in the vicinity with which to test the fit. Even if validation data is available 

and gives a reasonably low prediction error estimate for the local fit, examining the 

leverages provides notification that the accuracy of the fit near x = 1 is still questionable. 

The diagnostic usefulness of the leverages is further illustrated by the fit obtained with 

A = 10_6  . This is badly overfitted for x < 0 because the spline smoothing interval is too 

wide to prevent overfitting. This failure is indicated clearly by the fact that the leverages 

are all close to 1 for this data, and this gives a further method for testing for this problem 

in addition to the methods discussed in chapter three. 

This simple example has illustrated that leverages near 1 indicate local overfitting has 

occurred, and that the leverages can thus be used to identify unreliable regions of the fit. 

What is a safe leverage and what should be done with high leverage data? 

In the above example, identifying overfitting was easy because the relevant leverages had 

values close to 1. In practice, however, the fit which minimises the validation error may 

have a range of data leverages. This then raises the question of what constitutes an 

acceptably high leverage (i.e. safe from overfitting) and what is too high. 

During this work, it was noted that 

leverages above 0.7 indicate that overfitting may have occurred, and 

leverages below 0.5 appear to be safe from overfitting, though some overfitting may 

still occur around data with leverages near 0.5. 

While these limits were derived empirically, their values seem reasonable in that at least 

two data contribute to the local fit when the leverage is less than 0. 5 while only just over 

1 datum contributes when the leverage is greater than 0.7. 
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When high leverage data result after fitting, further investigation is required to determine 

if the high leverages are due to overfitting at a remote datum or, for example, because of a 

spline penalty failure as illustrated in the previous example when A. = 10. In the former 

case, little can be done to reduce the leverage other than to gain more information 

(usually in the form of more training data) about the regression function near the high 

leverage data. 

6.4.2. A further example illustrating the properties of leverages 

The previous example illustrated how leverage can be used to diagnose possible local 

overfitting and hence locate unreliable sections of the MLP fit. This section gives a 

further example which illustrates how high leverage indicates low fit reliability. A 

comparison is also made between using leverages and bootstrapping to detect different 

types of fit unreliability. This example also highlights some properties of leverage in 

non-LS MLP regression, and how these affect the interpretation of the fit leverages. 

A simple training data set was constructed by sampling the function 

p(x) = x(x + 1. 5)(x —0. 5) 	 (6.49) 

at 25 random locations in the interval x = —1.5 to x = 1.5. Response errors from the 

distribution N(0, 0.25) were added to 20 of the data and errors from N(0, 1.5) were added 

to the remaining data to generate outliers. L1 .2  estimation was used to give resistance to 

outliers while fitting the MLP. The spline smoothing penalty was used to control the fit 

complexity with 31 sample points spaced at Ax = 0. 1 in the interval x = —1.5 to x = 1.5. 

The smoothing parameter value A. = 0.0005 was chosen by increasing A. from zero until a 

visually good, smooth fit was obtained. In practice, the true regression function would, of 

course, be unknown and so A. would be set to minimise a prediction error estimate. 

However, the method used for choosing A. is not important here. 

Figure 6.3 shows the MLP fit. The data with the largest leverages and their leverage 

values are also indicated in this figure. Though the fit approximates p(x) well, the high 

leverages indicate that it is in fact quite poorly defined by the data in some regions. This 

is confirmed by figure 6.4, which shows 40 fits obtained by the method of bootstrapping 

points[64, 175]. This method approximates the sampling distribution of the regression fit, 

and so can be used to obtain confidence intervals for the fit. The fit confidence interval is 

narrowest where the bootstrap fits are most tightly clustered. 
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MLP fit obtained using L 1.2  estimation and X = 0.0005 
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Figure 6.3: Training data, regression function and MLP fit for the second 

leverage example. 
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Figure 6.4: 40 fits obtained by bootstrapping points and re-fitting the MLP. 

The fit confidence interval is widest where the bootstrap fits are most variable. 

Figure 6.4 shows that the fit is very unreliable near the high leverage datum near x = 1.4. 

In fact, the original fit at this point was good only because the datum had a low response 

error. When the response value was increased and decreased by 2 units and the MLP re-

trained, the fit followed the point. Thus, had the original response error been large, the fit 

would have given a poor estimate of the regression function here. The bootstrap fit 

variability is also high near the medium leverage data at x = —1.5 and x = 0.6. Both 
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methods again indicate the high fit variability, and hence low reliability, in these regions. 

While both bootstrapping and examination of leverages can be used to detect overfitting, 

examining leverages has two advantages: 

It is much less computer-intensive because repeated re-fitting is not required. Thus 

remedial action can be taken quickly to reduce overfitting if necessary. 

High leverages specifically indicate local overfitting while wide confidence intervals 

do not necessarily imply overfitting has occurred. For example, localised high 

response error variance will cause the fit variability to increase even if overfitting 

does not occur. 

Thus, examining leverages provides a faster method for identifying overfitting during 

model development. As mentioned above, it does not, however, detect all causes of 

localised high fit variance, such as localised high response error variance. Thus, 

bootstrapping should be used after the model is developed if an overall assessment of fit 

reliability, such as confidence intervals, is required. 

Properties of the leverages for non-LS fits 

The above example also highlights an important relationship between the fit leverages 

and the change of value function (see appendix B). It can be seen that the fit at the high 

leverage datum near x = 0. 25 is much less sensitive to response perturbations than the fit 

at the high leverage datum near x = 1. 4. The reason for this discrepancy becomes 

apparent when the leverages are plotted against the fit residuals, see figure 6.5. 

Figure 6.5 shows that the leverages are large only for those data with very small residuals. 

The reason for this is that L u -Norm estimates obtained with p  <2 are most sensitive to 

the data with the smallest residuals. This can be seen by examining these estimators' 

change-of-value functions and noting that the largest shift sensitivity occurs for data with 

small residuals (see appendix B). 

One consequence of this property of L a-Norm estimators is that data with very small 

residuals always have high leverages when p  <2. If the fit passes close to a datum in a 

dense section of data then the leverage will be high even though the fit will not change 

much if a large perturbation is applied to this datum. In this case, the high leverage 

indicates high sensitivity only to very small perturbations, and should not cause concern 

about the local fit reliability. Data flagged as having high leverages when using L u -Norm 

training with p  <2 should thus be perturbed and the MLP re-fitted to identify those data 

sensitive to large perturbations, such as high leverage outliers. Unlike bootstrapping 

however, only one or two re-fits will be necessary to confirm genuine high fit variability 

flagged by the fit leverages. 
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Scatterplot of Jacobian leverage versus residual for the MLP fit 
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Figure 6.5: Scatterplot of leverage versus residual for the fit shown in figure 

6.3. 

This second example has again illustrated the use of leverage to identify unreliable 

regions of a MLP fit and has also shown 

how the behaviour of L u -Norm estimator leverages can be related intuitively to their 

influence functions, and 

that this behaviour can cause high leverages in some reliable regions of the fit when 

p < 2. The genuinely unreliable can be identified by perturbing all data reported as 

having high leverages and then re-fitting the MLP. 

6.5. Leave-one-out cross-validation for MLP regression 

So far, only an intuitive relationship between leverage and overfitting has been presented. 

In practice, however, it is the effect of over- and underfitting on the fit prediction error 

estimate which is of most interest. It would thus be useful if this effect could be related 

to the leverages, and this is considered in the remaining sections of this chapter. 

Using leverages for cross-validation 

While examining the relationship between the fit leverages and complexity in MILP 

regression, it was realised that one very important possible use of leverage was in 

estimating the generalisation ability (prediction error) of a MLP fit using the method of 

leave-one-out cross-validation (CV). 

Leave-one-out cross-validation, usually just called cross-validation, is a form of data 

splitting where only one test datum is reserved at any time[176-178].  This allows more 

data to be used for training than does conventional data splitting, and is thus preferable 
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when the available data are distributed sparsely and it is wished to use as much data as 

possible for training[64, 1791. As explained in chapter two, this situation arises 

commonly when there are many predictor variables. The curl data is one example of such 

a data set, and for this reason it was decided to pursue further the possibility of using 

leverages for cross-validating MLP regression fits. 

What is cross-validation? 

Suppose (x,, y,) is reserved as single test datum and the MLP is trained using the 

remaining n - 1 data. The L u -Norm leave-one-out estimate of the fit prediction error is 

then 

prediction error = Iy1 - Y(i)' 	 (6.50) 

where (i)  denotes the estimate of the regression function at x 1  given by the fit to the data 

set which excludes this datum. Reserving only one test case clearly will not provide a 

good estimate of the overall prediction error, and so leave-one-out CV requires this 

process to be repeated n times, once for each datum. The overall estimate of the 

prediction error is the average of the individual prediction errors 

1 
cross - validation error = CV1 (2) = - Iy1 - Y 1 	(6.51) 

fl ,=i 

and is called the cross-validation error or score. Here, 2 is a quantity which controls the 

fit complexity, such as the number of hidden units or the value of a regularisation 

parameter. The cross-validation error is shown as a function of 2 to emphasise the fact 

that we usually wish to find the value of 2 that minimises the prediction error. 

Though averaging errors based on a single test datum may seem an unlikely estimator of 

the prediction error, cross-validation does give statistically consistent prediction error 

estimates for a number of regression methods[176, 177, 180, 181]. The consistency of 

cross-validation in MLP regression is discussed in[179]. 

Computational aspects of cross-validation 

When using cross-validation, none of the n MLPs trained for computing the cross-

validation error are actually used as the final regression model. They are used only to 

estimate the prediction error for the MLP trained using all the available training data, and 

so n + 1 MLPs must be trained overall. Leave-one-out CV is thus a very computer-

intensive technique, and the time required to train these n additional MLPs may prohibit 

its use. This is especially true given that the process must be repeated for various values 

of 2 when trying to minimise the CV error. 

One way to reduce this time is to use k-fold CV[64, 182]. Here, the data are split into k 

roughly-equally-sized sets, where k - 1 of these sets are used for training while one set is 
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reserved for testing. The prediction error is estimated by leaving each set out in turn and 

by averaging the individual test set errors in the same manner as leave-one-out CV. If the 

data are relatively sparse, however, then it may be necessary to use a large k to maximise 

the number of training data, and so the speed-up will be limited. 

6.6. A fast cross-validation error estimator for MLP regression 

The main goal of the following work was to investigate a technique for greatly reducing 

the amount of computation required to compute the cross-validation error for a MLP, and 

also to examine the properties of the resulting estimator. The advantages of the approach 

described here are: 

It allows the number of training data to be maximised, because a validation set is not 

required to estimate the prediction error. 

It does not require additional validation MLPs to be trained, and so allows the cross-

validation error to be computed very quickly after training. 

6.6.1. Deriving the MLP cross-validation estimator 

The technique used here to estimate the cross-validation error for MLPs is a direct 

extension of Craven and Wahba's fast method for cross-validating linear estimators[ 1831. 

Though this method gives the true CV error only for linear estimators, it was realised that 

it could be extended easily to give an estimate of the true CV error for MLP regression 

using the tangent plane or Jacobian leverages. 

This section discusses the principle behind Craven and Wahba's method, to explain how 

it can be extend to MLP regression. 

Craven and Wahba's fast cross-validation method 

Consider a parametric regression fit obtained using the fit error function E(9) with the 

regularisation penalty J(0), 

training error = E(6) + 2J(9) . 	 (6.52) 

Let Ô( , )  denote the parameter values obtained when (x,, y,) is omitted from the training 

data. The crux of Craven and Wahba's exclusion lemma is to show that Ô (j)  can also be 

obtained by replacing this datum with (x1, 9(i))  rather than by excluding it from training; 

and this fact can be used to derive a useful expression for the CV error. 

To see how Craven and Wahba's lemma works, consider the fit obtained when (x 1 , y,) is 

excluded from training. Assuming that training has proceeded until the training error is 

minimised, the gradient of this function must be zero at 

V9 E(O() ) + AV 6J(O(,)) = 0 . 	 (6.53) 



Chapter 6 
	

103 

Now suppose that the pseudo-datum (x,, 9(i))  is introduced into the training data and that 

training is restarted from O. If the regularisation penalty does not depend upon the 

training data, as is true for the weight decay and spline-type penalties discussed earlier, 

then introducing this new datum will not affect the value of this penalty or its gradient 

vector. Similarly, since this new datum is fitted exactly by the MLP, a lower fit error is 

not possible, and so the fit error gradient is still zero. Thus the overall gradient, (6.53), 

must be zero when training is restarted and so Ô ( , )  minimises the penalised error function 

both when (x,, y,) is excluded from training and when it is replaced with (x,, 9(i)).  Stated 

in a more useful form, this means that the same regression fit will be obtained for both 

sets of training data. 

This relationship between exclusion and perturbation can be used to calculate the CV 

score using only a single fit to the complete training data set. Perturbing y, by ,y,  will 

cause 9, to change by 

	

= 
	

(6.54) 

Now for the fit obtained using all the data, consider the effect of perturbing y, to 

Craven and Wahba's lemma shows that if the model is re-fitted then the estimate of the 

regression function at this point must also become 9(j). Substituting these changes back 

into (6.54) gives 

	

Y(i) - 9, = h,(9() - y) , 	 (6.55) 

which can be re-written by adding y, to each side and re-arranging as 

	

Y-9() = 
	. 	 (6.56) 

This expression can be substituted into (6.51) to calculate the L CV error directly 

'p 

	

CV 1  (2) = - 	- 9i I (6.57) 

	

n 	1—h,, 

without the need for n additional CV fits. 

This formula is exact for linear estimators because the leverages depend only on {, }, 

which are fixed, and so (6.54) is exact for any response perturbation. However, this does 

not disallow the use of this method for estimators for which (6.54) is only approximately 

true for all perturbations of interest. It was thus proposed that (6.57) could be used to 

compute the CV score for MLP regression estimators by using the tangent plane or 

Jacobian leverages 17 . The accuracy of this method for computing the true CV error 

17 Shortly after this work was completed, I discovered that similar work using tangent plane 
leverage had been reported by Wahba[184]. My work extends areas of Wahba's work by compar -
ing the tangent plane leverages with the more accurate Jacobian leverages, and by considering 
practical issues in the use of this method for MLP regression and for non-LS regression. 
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would be limited by the accuracy of the MILP fit leverages for estimating changes in the 

fit due to large perturbations. 

A brief note on using Bishop's Tikhonov penalty with the fast CV estimator 

Since Craven and Wahba's method requires the gradient of the error function to be 

unchanged after introducing the pseudo-datum, the Tikhonov smoothing penalty cannot 

be used in the form presented in chapter three. The reason for this is that the weighting 

function will change as data are excluded from training, causing the penalty gradient to 

depend on the training data. If it is wished to use the Tikhonov penalty, then a fixed 

weighting function should be used, such as the empirical density function of the complete 

training data set. 

6.7. Relationship to other work 

Two other fast estimators of the cross-validation error have been reported in the MILP 

literature, namely Moody's generalised prediction error (GPE[74]) and Liu's use of one-

step updating methods to compute the cross-validation score[1 85]. This section discusses 

these estimators and makes some simple comparisons between them and the leverage-

based cross-validation error estimator. 

The generalised prediction error 

The GPE is a generalisation of Mallow's C 1  statistic[186] which Moody obtained from a 

truncated Taylor series expansion of the mean square prediction error for a MILP 

regression model. The prediction error estimate is 

GPE = Etrain  + 20 	 (6.58) 

where E tra in  is the training data SSE divided by the number of training data, n. Peff is the 

trace of the Jacobian leverage matrix, which Moody calls the effective number of 

parameters in the MLP, in analogy with a corresponding term in the C 1  statistic which is 

the number of model parameters. 

Moody provides results from a simple experiment with controlled data which 

demonstrate the effectiveness of the GPE estimator[74]. However, this estimator does 

have some potential shortcomings. 

One problem is that use of the GPE requires an estimate of the true response error 

variance, â. Obtaining this may be difficult, such as when the fit is always biased due eff

to an important predictor variable being absent from the data[64, 187]. 

Another issue is that the GPE uses the mean square training error and so is sensitive to 

outliers. This may lead to a MLP of the wrong complexity being used if the GPE is used 
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for model complexity selection. It is not valid simply to replace E tra in  with a more robust 

error measure unless it can be shown that this results from truncating the Taylor series 

expansion of a proper robust prediction error estimate. 

One-step estimation of the cross-validation error 

Liu estimates the cross-validation error for a MLP regression model by first obtaining 

one-step estimates, Ô (, ) , of the MLP parameters when each datum is excluded from 

training, and then using these to compute the 9 ( , )  required to compute the CV score. One-

step estimates are so-called because they use only one iteration of a training algorithm to 

estimate the change in the parameter values rather than fully re-training each time a 

datum is excluded[188, 189]. 

Liu uses a slight variant of the Newton one-step estimator 

0(e)  = q _[vE()()] '  V 9 E()() 	 (6.59) 

to compute the MLP cross-validation score, and has shown that the one-step estimate of 

the mean square prediction error is asymptotically equivalent to Moody's GPE as the 

number of training data increases[190]. E(, )  is the value of the training error function 

when datum i is omitted. 

Computing the cross-validation score using one-step estimation is more computer 

intensive than the fast CV method suggested here. However, there are many ways to 

accelerate this procedure, such as using the less accurate first-order Gauss-Newton 

method for the one-step estimation[188], using matrix inverse updating techniques to 

reduce the cost of computing the matrix inverses for each i[188, 189],  and using the faster 

one-step estimators which can be derived when LS estimation is used[189, 191, 192]. 

Comparison of the different prediction error estimators 

It is difficult to compare the properties of the GPE, Liu's estimator and the cross-

validation estimator developed here from theory alone, and this issue was not considered 

sufficiently important to merit experimental investigation for now. However, for large n, 

it is possible to show a relationship between the GPE and a close relative of leave-one-out 

CV known as generalised CV (GCV)[38, 183]. 

The GCV estimate of the mean square prediction error is 

2 1 fl( 

1 - 

r 
GCV(2) = - 	

iiJ 	
(6.60) 

fl i=I 

which is similar to the CV estimate of this error, but here the individual leverages are 

replaced by the mean leverage 
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tr(H,) = 	
(6.61) 

n 

Using the MacClaurin expansion for (1 - x), the GCV score can be written as 

1 it 	 I 
GCV = - r 1 + h + 	I . 	(6.62) 

ni=1 	 ) 

For a given MILP the mean leverage decreases as n increases 18  and (6.62) can be further 

simplified for small h to 

l 	2h 
GCV 	- r + 	r,. 	 (6.63) 

fli=I 	fl j=1 

The first term in (6.63) is the mean training set SSE, which also provides an estimate of 

the noise variance, a 2 , under the assumption that the fit is unbiased. Substituting these 

into (6.63) and re-arranging yields 

SSE 	2 tr(H 
GCV - + 2a 	

) 	
(6.64) 

n 	n 

which is Moody's GPE with the noise variance estimated from the fit. 

This relationship clearly cannot be used to directly compare Moody's GPE and the CV 

estimator without further understanding of the relationship between the GCV score and 

the CV score for MLPs. However, GCV and CV often behave similarly for linear 

estimators[38], and this suggests that the CV and GPE error estimates may behave 

similarly for some problems. 

6.8. An experiment to test the validity of the fast CV estimator 

Some simple tests were performed to check that the fast CV estimator could provide 

reasonably accurate estimates of the true leave-one-out CV error. This section discusses 

one of these experiments. 

The regression function to be modelled is based on Duncan's chemical reaction rate 

model[ 193] 

p(x) = 0. 90235 e 42324x - e_8.8328xJ . 	 (6.65) 

A set of twenty four training data was generated by sampling the regression function four 

times at x = 0.025, 0.05, 0.1, 0.2, 0.4 and 0.8 and adding response errors from the 

Gaussian distribution N(0, 0.05). A MLP with four hidden units was trained to estimate 

p(x) by using LS estimation with the spline regularisation penalty discussed in chapter 

three. The model curvature was sampled for the cubic spline penalty at twenty points 

18 Since a single datum exerts less influence on the fit as the number of data increases. 
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distributed uniformly from x = 0 to x =0.95 at spacings of 0.05 and 2 was set at 0.00002 

since this gave a visually good, smooth fit. The training data, 4u(x) and the MLP fit are 

shown in figure 6.6. 

Regression function, training data and MLP fit for CV estimator test 
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Figure 6.6: Training data and fit for the cross-validation estimator test. The 

fit was obtained using LS estimation with cubic spline regularisation. 

The fit residuals and appropriate leverages were substituted into equation (6.51) with 

p = 2 to calculate both the Jacobian and tangent plane CV MSEs for the MLP. Since the 

data set and MLP model used in this test were small, it was computationally feasible to 

re-train the model the twenty-four times required to compute the true CV score. Table 

6.1 gives the estimated and measured cross-validation errors, along with two true mean 

square prediction errors. The local prediction MSE is the MSE between the fit and the 

regression function at the points where the training data exist. The global prediction 

MSE is the error over the whole fit shown in figure 6.6. 

Training set error 0.00199 

Tangent Plane CV score 0.00303 

Jacobian CV score 0.00305 

True CV score 0.00306 

Local true prediction MSE 0.00334 

Global true prediction MSE 0.00377 

Table 6.1: Training set MSE, true prediction MSE and different CV MS 

prediction error estimates for the cross-validation estimator test. 
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It can be seen that the true and estimated CV scores agree very well. The Jacobian 

estimate of the CV error is slightly more accurate than the tangent plane estimate, as 

would be expected, but the difference is small in this case. 

It can also be seen that the CV errors give better estimates of the local and global 

prediction errors than the training error does. Testing that this is generally true, or that 

the CV error is a consistent estimate of the local prediction error would, of course, 

require Monte Carlo repetition of this experiment with changing response errors. The 

local error estimate is most accurate because it does not require the fit accuracy between 

the training data to be estimated. 

This simple experiment confirms that the fast, approximate CV estimator can give 

accurate estimates of the true CV error and that the CV error can give a reasonable 

estimate of the true prediction error. 

6.9. Application of the CV estimator to curl modelling 

The previous example demonstrated the validity of the fast CV method for a relatively 

simple regression problem. This section describes the application of the technique to a 

more difficult, real problem: the development of the curl model. 

The curl problem provides an excellent illustration of the usefulness of the fast CV 

estimator and also raises a number of practical issues. Details of the curl data are not 

required to understand this example. 

MLPs with 4 hidden units were used to estimate the curl regression function. Since 

outliers were expected in the data, L 12  and L 15  estimation were used in addition to LS 

estimation to fit the MLPs. To prevent overfitting when training to completion, the 

standard weight decay penalty discussed in chapter three was used with A = 0, 0.1, 0.2, 

0.3, 0.4, 0.5, 0.75, 1, 2, 3. Local minima in the training error were encountered 

occasionally when using the smaller values of A and so all MLPs were trained a further 

ten times with different initial parameters, to provide a representative result for each A. 

Only 318 training cases were available to fit the model. The data set included 28 

predictor variables and hence is an example of a very sparse data set, for which it is 

desirable to use as much data as possible for training. Nevertheless, some means of 

testing validity the CV scores was required and so the data were split into sets of 253 

training data and 64 validation data. 

Results from the MLPs trained using LS estimation 

Figure 6.7 shows the mean absolute training, validation and Jacobian CV errors for the 

MLPs trained using LS estimation with weight decay. The mean absolute error (L 1  error) 

was used instead of the mean square error because it is less sensitive to outliers. The 
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errors shown in this figure are the mean errors for the 8 MLPS with the lowest prediction 

errors out of the 10 MLPs trained for each 2; trimming was performed to filter out 

occasional large errors from MLPs which had become trapped in poor local minima. 

Training, validation and CV errors for the LS-trained MLPs 
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Figure 6.7: Mean absolute training, validation and CV errors for the MLPs 

trained using LS estimation with weight decay. The error-bars shown are the 

nominal 95% confidence intervals given by Student's-t for the 8 errors 

averaged for each A. 

Both the CV and validation data estimates of the prediction error indicate the same trends 

as 2 is varied, and with both estimates the minimum occurs near A. = 0.2 to 2 = 0.4. As 

expected, the training set error decreases monotonically as 2 decreases (complexity 

increases) and the prediction errors show that the minimum training error at 2 = 0 

corresponds to overfitting. 

The significant result of this experiment is that had there been insufficient data for a 

validation set, the prediction errors could still have been estimated using the fast cross-

validation estimator and a suitable value for 2 could be chosen. Thus the usefulness of 

the CV estimator for real problems with sparse data is confirmed. 

The tangent plane leverages were also used to estimate the CV error, but did not give as 

good prediction error estimates as did the Jacobian leverages. Figure 6.8 shows the 

training, validation and tangent plane CV errors for the LS-trained MLPs. 
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Training, validation and CV errors for the LS-trained MLPs 
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Figure 6.8: Mean absolute training, validation and tangent plane CV errors 

for the MLPs trained usingLS estimation with weight decay. 

The tangent plane CV errors estimate the magnitude of the prediction error reasonably 

well, but do not follow the shape of the validation error curve for small A. The minimum 

CV error occurs for A = 0. 1, but the validation error curve indicates that overfitting 

occurs for this value of A. This demonstrates the superiority of using Jacobian leverage 

instead of tangent plane leverage. 

Results from the MLPs trained using L 15  and L 12  estimation 

The results obtained using L 15  and L 12  estimation highlighted some weaknesses of the 

CV estimator, both in general and for L a-Norm estimation in particular. The results of 

these experiments are presented in this section and the subsequent sections discuss the 

various practical issues which they raised. 

Figure 6.9 shows the results obtained using L1.5  estimation with weight decay. The CV 

error estimate follows the validation error quite closely and both errors are minimised for 

almost the same value of A. Thus a MLP of suitable complexity could again have been 

selected had there been insufficient data for model validation. However, there is slight 

but noticeable downward bias in the CV error estimates for A <0.4. 
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Training, validation and CV errors for the L1 -trained MLPs 
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Figure 6.9: Mean absolute training, validation and CV errors for the MLPs 

trained using L 1 . 5  estimation with weight decay. 

This downward bias for small A. became more pronounced when L 12  estimation was 

used, as shown in figure 6.10. 
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Figure 6.10: Mean absolute training, validation and CV errors for the MILPs 

trained using L1 .2  estimation with weight decay. 

Here the CV error curve follows the training error curve more closely than the validation 

error curve and has a minimum near A. =0. 1. The validation error indicates, however, 

that the MLP is overfitted for this value of A. and so a MLP with too high complexity 

would have been chosen using the CV error. 
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It was not possible to compute the true CV errors for these MLPs because of the 

enormous amount of computer time that this would have required. Consequently, it was 

not possible to conclude whether the downward bias of the CV scores for the L 12 - and 

L 15 -trained MLPs is due to: 

CV beiiig a biased estimator of the prediction error when using L 12  or L 15  

estimation with weight decay. 

The approximations made by the fast CV estimator being invalid, resulting in the 

fast CV error being a poor estimate of the true CV error. 

Further investigation suggested that the second of these issues was likely to be 

responsible for the fast CV error bias. 

6.10. Limitations of the fast CV estimator 

There are several circumstances under which the fast CV estimator gives inaccurate 

estimates of the true CV score, some of which occurred in the previous example using the 

curl data. These are: 

Training is not complete; that is the error function has not been minimised. 

The leverages are not valid over the range required by Craven and Wahba's method. 

Certain types of ill-conditioning occur. 

These are discussed in the next sections, which also consider how their occurrence can be 

diagnosed and remedied if possible. It should be noted that the other prediction error 

estimators discussed earlier also suffer from these problems. 

6.10.1. Training to completion 

If training is not complete then the CV error estimate can be inaccurate because of: 

• 	Bias in the fit due to the fact that the fitting process has not completed. 

• 	The Jacobian and tangent plane leverages are incorrect due to violation of the 

assumption that O minimises the training error. 

In practice I found that the second of these is almost always the most important source of 

error when training is incomplete. Incomplete training often leads to spurious negative 

leverages and, more insidiously, leverages which look reasonable, but which differ 

significantly from those obtained when training is completed. The differences between 

these leverages can be quite large even when training is stopped close to the minimum of 

the error function. 

Fortunately this problem can be solved easily by allowing training to complete. This can, 

however, require long training times for some problems, as was the case for the 

L 12 -trained MLPs in the previous example when 2 was small. 
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6.10.2. Leverage range of validity 

When using the MLP leverages to compute the CV error, it is assumed that equation 

(6.54) gives exactly the change in the fit for all perturbations. However, this may not be 

true when large response and fit perturbations are required. 

To see why this is so, suppose that a large response perturbation, ay,, is applied as a 

series of small perturbations and that the MLP is re-trained to give an updated leverage 

after every small perturbation. If the leverage increases after each re-fit then 

= hijAyij 	 (6.66) 

underestimates the overall change in the fit because the leverage increase as the fit 

changes is not accounted for. Similarly, if the leverage decreases after each perturbation, 

then the overall fit perturbation will be overestimated by assuming that the leverage for 

the initial fit is valid over the full perturbation range. 

Underestimation of Ay', caused by leverage increase can explain the downward bias of the 

CV error estimates observed for the L 12 - and L 15 -trained MLPs in the previous example. 

Figure 6.11 shows a scatterplot of leverage versus residual for one of the LS-trained MLP 

curl models. 
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Figure 6.11: Scatterplot of leverage against residuals for one of the LS-

trained MLPs with A. = 0. 1. No strong relationship between the leverages 

and residuals is evident. 

The typical LS leverages appear to become slightly smaller as the fit residual increases, 

but no strong relationship between leverage and residual is evident. Thus a given datum's 

leverage is not likely to change much as the response is perturbed towards the fit, and so 

the fast CV error estimator should estimate the true CV error reasonably well. 
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Figure 6.12 shows a scatterplot of leverage against residual for one of the L 1  2 -trained 

MLPs. 
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Figure 6.12: Scatterplot of leverage against residuals for one of the 

L 12-trained MLPs with A. = 0. 1. Leverage depends strongly on the residuals, 

with the largest leverages occurring for the data with the smallest residuals. 

The leverages now depend strongly on the fit residuals with the largest leverages 

occurring for the data with the smallest residuals. This is another example of the high 

sensitivity of L u -Norm estimators to data with small residuals when p  <2. 

Craven and Wahba's step of perturbing each datum towards the fit reduces the fit residual 

towards zero. As figure 6.12 shows, this increases the leverage as the residual decreases 

and so the fit leverage underestimates the effective leverage for this step. Since the 

leverages are too small to estimate the real change in the fit, the terms 

1 	
(6.67) 

I - h ii  

in (6.57) are also too small. Consequently, the residuals are not inflated by large enough 

factors when computing the CV error and so it will be biased downwards. 

If weight decay is used during training then the leverages decrease towards zero as A. 

increases. This has been confirmed by experiment and can be seen intuitively by noting 

that as A. increases the weight decay penalty dominates the training error and so the 

influence (and hence leverage) of the training data in determining the fit decreases[194]. 

Since (6.67) becomes more sensitive to errors in the leverage as h, - 1, the bias caused 

by underestimating the effective leverage will be most severe for fits with larger typical 

leverages. Consequently, the largest downward CV error bias would be expected for 

smaller A. and this is what was observed. 
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Reducing the prediction error estimate bias for non-LS estimators 

A conclusion that can be drawn from the work just described is that the fast CV estimator 

will be biased when using non-LS estimators. This is because only the LS estimator 

leverages are (to a first order) independent of the size of the residuals. Since it was 

desired to use both fast CV and robust training for the curl modelling problem, some 

methods to address this problem were considered: 

Investigate the relationship between leverage and the estimator shift sensitivity in 

the hope that this work might yield leverage correction factors suitable for cross-

validation. 

Consider whether other prediction error estimators such as the GPE might perform 

better than the fast CV estimator for non-LS problems. 

Use least trimmed squares (LTS) estimation with a small trim to resist outliers. 

The first of these options was not pursued because it could not be guaranteed that this 

work would prove fruitful in the time available. 

The second option was also dismissed because neither the GPE or Liu's error estimator 

can be expected to perform much better that the fast CV estimator for non-LS estimators. 

This is because the accuracy of these estimators relies on the error function being locally 

quadratic near d . The GPE makes this assumption by truncating the Taylor expansion of 

the prediction error, and the Newton one-step estimator used by Liu is most accurate for 

near-quadratic error functions [189]. 

LTS leverages are relatively independent of the residual magnitudes because LTS 

estimation is effectively LS estimation using a reduced data set. However, as explained in 

chapter five, this method is more computer-intensive than L u -Norm training and may also 

be more susceptible to overfitting. Thus additional care is required when using LTS 

estimation to achieve resistance to outliers and valid CV error estimates. 

The issue of leverage range of validity and its affect on non-LS estimators clearly 

requires further work to assess which estimators and methods offer a good compromise 

between the accuracy of the fast CV estimate and other important issues such as 

computer time required to train the MLP and ease of avoiding under- and overfitting. 

For the purpose of developing the curl model, the adequacy of the fast CV method when 

LS training is used was considered sufficient to make the method useful even when using 

non-LS training. This is because a good correlation between the LS CV and validation 

prediction error estimates gives a good indicator of whether the validation data is 

sufficient for validating non-LS trained MLPs. Thus the fast CV method can be used to 

address the difficult problem of deciding which portion of the data should be reserved for 

validation. Non-LS fitting can be used once the adequacy of the validation data has been 

confirmed. 
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6.10.3. Problems due to ill-conditioning 

Ill-conditioning-related problems do not affect the validity of the fast CV estimator in the 

same way as does going beyond the leverage range of validity. They do however affect 

the number of significant digits which can be expected in the CV error estimate. In very 

ill-conditioned problems, the CV estimate can be useless (no significant digits) due to 

accumulation of numerical errors. 

Two types of ill-conditioning were encountered regularly during this work. These are: 

Ill-conditioning due to overparameterisation (usually caused by using a MLP with 

too many hidden units). 

A type of small-residual ill-conditioning which is specific to the L u -Norm 

estimators considered here. 

These are discussed below. A simple technique for greatly improving the numerical 

condition of most MLP regression problems is also discussed. 

Overparameterisation and nomdentifiability 

A parametric model is overparameterised if it contains more parameters than are 

necessary to approximate the regression function being estimated[35]. A simple example 

is using LS estimation to fit a cubic polynomial to 3 data points; there is an infinite 

number of possible fits with the same error (zero in this case). Since the training error 

does not have a unique local minimum under these conditions, the model parameters are 

said to be nonidentifiable. 

In near-nonidentifiable problems, where the error function has a wide, shallow minimum, 

the observed Fisher information matrix 

Observed Fisher information = S7E(ê) 	 (6.68) 

is ill-conditioned[32, 195]. E(0) is the training error function. 

The inverse of the information matrix is the central term in the Jacobian leverage 

expression (6.45). If the information matrix is ill-conditioned then a serious loss of 

numerical precision may occur during its inversion. Ill-conditioning can be identified by 

examining the condition number of the information matrix[195-l97]. Ill-conditioning 

due to identifiability problems can occur in MLP regression when overfitting occurs, 

when collinearities exist between the predictor variables, or when collinearities exist 

between the hidden unit outputs. A detailed discussion of sources of ill-conditioning in 

MLP regression is given in[198]. 

If the Jacobian leverages are affected by ill-conditioning then the tangent plane leverages 

will also be affected. This is because the tangent plane leverages are based on expected 

information while Jacobian leverages use observed information[166]. If one information 
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matrix is ill-conditioned then the other is too. 

Near division by zero in small residual problems 

This type of ill-conditioning occurs for L u-Norm estimation problems when p  <2 and 

some of the residuals are almost zero after training[199, 200]. For simplicity, the case 

where only one very small residual occurs will be considered first. It will also assumed 

that A is zero and that B is negligible in (6.45). 

When p < 2 the exponents of the diagonal elements of D in (6.46) are negative. If one 

residual is almost zero then the corresponding element in D is obtained by dividing by a 

small number and so will be very large relative to the other elements of this matrix. 

Making the substitution Q = D2 in (6.45), QTQ  must be nonsingular to allow the 

leverages to be computed. If the first residual, r 1 , is almost zero then the first diagonal 

element of D may be very large and this will inflate the first row of Q. Using b and s to 

denote big and small matrix elements, Q can be written in the very approximate form 

b 1 b2  

= 	 (6.69) 

ss 	S 

where w is the number of MLP weights and biases. Ignoring terms of order less than b2 , 

( 	(b 1 	(b 1 	... 	(b 1 I' 

2 i 
b2 	

b 
 bj ... 	Jb 	

(6.70) 
H QTQ 	b 1 	 I 	bi 	II 

L Lbh, J 	J 	JJ 
which is rank I and hence singular. 

Clearly many of these assumptions will not be true in practice. However, it was found 

that when p < 2 and a near-zero residual occurred which was significantly smaller than 

the other residuals, the singular value decomposition (SVD) of the information matrix 

typically exhibited one singular value (SV) which was significantly larger than the other 

SVs. This is consistent with a tendency towards singularity with rank 1. With large data 

sets the effective rank is usually greater than 1 because there are small residuals of 

varying relative magnitude and so the largest SV is usually not significantly larger than 

the next largest SVs. The information matrix is still ill-conditioned, however, if the ratio 

of the largest and the smallest singular values is large. 



Chapter 6 
	

118 

An example of ill-conditioning and how to improve conditioning 

Figure 6.13 shows the conditioning of the MLPs trained to estimate the curl function in 

the previous example. Each point in the graph shown is the median condition number for 

the 10 MLPs trained for each A. 

This graph illustrates both types of ill-conditioning discussed previously. All the MLPs 

are ill-conditioned when A = 0 due to overfitting-induced parameter identification 

problems. The L 12-trained MLPs are also notably more ill-conditioned than the other 

MLPs due to small-residual-induced ill-conditioning. For the IEEE 754 double precision 

arithmetic used to train the MLPs and compute the leverages, there is a danger of losing 

all the significant leverage digits when the information matrix 2-Norm condition number 

is greater than about 1012. 
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Figure 6.13: Median condition numbers for the MILPs trained to estimate the 

curl function. 

Figure 6.13 also indicates a very useful property of weight decay, namely that using even 

a very small amount of weight decay (less than enough to cause smoothing or prevent 

overfitting) can improve the information matrix conditioning dramatically. This property 

of weight decay is well-known in its classical regression counterpart, ridge 

regression[106, 107]. Thus using a small amount weight decay should be considered 

even when using other methods for complexity control, such as the spine smoothing 

penalties discussed in chapter three. A further benefit of improving the information 

mathx conditioning is that this can speed-up training when using standard optimisation 

techniques such as Newton's method[198]. This reduces the time required to train the 

MLP to completion. 
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6.11. Summary and conclusions 

The first sections of this chapter looked at 

• 	how to compute leverages for MLP regression models, and 

• 	how the fit leverages can be used to diagnose local overfitting. 

In the absence of well-tested, non-computer-intensive methods for generating MILP fit 

confidence intervals, examining the leverages allows unreliable sections of the fit to be 

found quickly and suitable care to be exercised when using the fit to estimate the 

regression function in these regions. 

The most important results of this work were discussed in the second part of the chapter, 

which looked at how the leverages could be used to reduce dramatically the amount of 

computation needed to compute the cross-validation estimate of the IvILP generalisation 

ability. This method is preferable to data-splitting validation for problems involving 

sparse training data, such as the curl problem, because it allows all the available data to 

be used for training. Given that maximising the amount of training data is one way to 

address the ever-important problem of avoiding overfitting, the importance of the fast CV 

method is obvious. 

The development of a simple curl model was used to illustrate both the usefulness of the 

fast CV estimator and also some situations where the estimator can give poor prediction 

error estimates, namely: 

When training is not complete. 

• 	When the leverage range of validity is exceeded. This is a serious problem for most 

robust estimators. 

• 	When ill-conditioning occurs. 

Some methods for improving the CV method performance when these occur were also 

considered. 

In the context of the curl modelling problem, the key result of this work was the 

demonstration that the fast CV method could be used to estimate the CV error when 

using LS training. Even though the problems associated with using the fast CV method 

with non-LS estimators have yet to be resolved adequately, a good correlation between 

the validation and CV errors when using LS training indicates that the validation data is 

likely to be adequate for estimating the prediction error for non-LS fits. The LS fast CV 

method thus provides a method for addressing the difficult problem of determining how 

much validation data to reserve. 
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Developing the curl model 

7.1. Introduction 

The curl modelling problem was introduced in chapter four. This problem involves 

attempting to model the degree of curl exhibited by a coated paper as a function of other 

process variables measured during the coating process. In chapter four, was stated that 

some problems, such as how to deal with outliers in the training data, required 

investigation before developing the IvILP curl model. These investigations and the further 

investigations which they stimulated were discussed in chapters five and six. This 

chapter now returns to the development of the curl model. 

While it has been common practice in MLP regression to simply 'throw the data at a 

MILP and see what happens', a more systematic approach to model development was 

considered appropriate. The model development was structured as follows: 

• 	Before performing any modelling, it was first necessary to select which process 

variables to include in the model as predictor variables. Section 2 discusses which 

variables where chosen and why. 

• 	Before engaging in the relatively time-consuming process of developing a MILP curl 

model, it was considered prudent to check first for signs of a nonlinear regression 

function within the data. Section 3 discusses the preliminary modelling work which 

was performed to check that the MLP was an appropriate model for curl. 

• 	Deciding how to split the available data into training, validation and test sets is a 

difficult problem. In section 4, the fast cross-validation method described in chapter 

six is used to address this problem. 

• 	Section 5 discusses the development of the first MLP curl models. 

• 	Section 6 discusses the testing of the MLP models, including preliminary work on 

the problem of identifying and removing irrelevant predictor variables from the 

models, and the results of field trials of one MILP curl model. 

• 	Section 7 gives a summary and presents the conclusions of the modelling work. 

120 
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7.2. Choosing the model variables 

The paper-curl data contained records for 504 rolls of paper. A record contains 40 

process variables, all of which were suspected to have some relationship to curl. 

The large number of variables relative to the number of records means that this is very 

sparse data and, to reduce the risk of overfitting, it was decided to limit the number of 

variables used in the model. The most important issues which affected the choice of 

predictor variables for the first models were 

• 	missing data, 

• 	collinearity between predictor variables, and 

• 	the use of nominal (non-numeric) values for some variables. 

The next sections discuss how these issues influenced the choice of predictor variables. 

Missing data 

The most immediate variable selection problem was posed by missing data entries. Until 

methods for dealing effectively with missing data could examined, it was necessary to 

discard all records with any missing entries. 

To maximise the amount of available training data, those variables which had most 

missing entries were considered for elimination. Unfortunately, the variables with most 

missing entries (155 missing per variable) were variables which were considered most 

likely to have a strong influence on curl. Hence it was necessary to discard many records 

in order to retain these variables in any curl models. 

Collinearity between predictor variables 

If the value of one predictor variable can be expressed accurately as a function of another 

variable, then these variables give essentially the same information about the regression 

function, and so one of them can be eliminated. Such variables are said to be collinear 

when their relationship is linear, though the term is used here to indicate any strong 

systematic relationship. 

Detecting systematic nonlinear relationships between variables is difficult, but linear and 

nonlinear monotonic collinearity can be detected easily by examining the Pearson, 

Spearman and Kendall correlation coefficients [20 1 ] for all variable pairings. 

Several of the predictor variable pairs had high correlations and were thus earmarked for 

elimination as collinear variables. However, on scatterplotting these variable pairs, it was 

decided to retain most of them for two reasons: 

• 	many of the highly correlated variables still exhibited significant independent 

variability, and 
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• 	more commonly, most high correlations were due to the presence of two weakly- 

correlated data clusters. 

Figure 7.1 shows two typical examples which illustrate these points. The left hand plot 

shows two variables which have a high overall Pearson's correlation, but are not strongly 

collinear for the larger moisture values. If curl depends on the difference between these 

variables (quite possible), then eliminating one variable may remove a significant amount 

of information about the regression function for high moistures. The right hand plot 

shows two variables which have a high overall Pearson's correlation, but which mostly 

reside in two weakly-correlated clusters (marked by dashed boxes). The high overall 

correlation arises simply because two clusters will always lie neatly on a straight line 

through their centres. Within each cluster there is little correlation between the variables, 

and so knowing the value of one variable does not allow the value of the other to be 

predicted accurately. 

6 

5.5 

5 

E 

0 

45 

4 

35 
45 

Scatterplot of side 2 total moisture versus final moisture 

0 
0 I Overall Pearson's I 00 	00 	0 

correlation —0.95 
00 

0 	0 	00 0 0 0 0 
0 00 	00 

0 	00000 	0 
0 0 0 	0000000 

0 
0 

000000000 
 00 	00000 

Variableshighly 000 	0 

collinearhere 	 0 0 
0 
0 

0 	000 
00 	0 

0 	000000 
0000 

00000 
0 0 

Nothighly 
0 

/000 0000000000 co tlinearhere 
0 	00 

00000 	0 
00000 

000 	0 
I I 

5 	5.5 	6 	6.5 	7 	7.5 	8 

ftnal moisture  

or tmat motsture versus nase morsture 

0 	10 	0 	
0 

	

0 0 
	

0 	
0 0 
	

0 

010 0 
	

0 	0 
V 0 	

000:08 	 0 	0 

	

0 	0 	0 

0 	
0 

: 0 	
r-:--0- --- -- - 

0 	
0 0 	 correlation--0.1 

0 	 : 	, 	 Overall Pson's 

: 	correlation —0.2 	correlation-0.81 

4 	 4.5 	 5 	 5.5 	 6 

base moisture 

75 

7 

6.5 

6 
o 
8 
'0 53 

4.5 

4 
3.5 

Figure 7.1: Illustrations of how some variables which have high overall 

correlation coefficients need not be highly correlated for all their values. 

After examining the scatterplots for all the highly correlated variables, it was decided to 

omit only one variable (HW1 refiner setting) on the basis of very high collinearity 

(Pearson's correlation > 0.99) with another variable (HW2 refiner setting). 

Nominal variables 

For the first curl models, it was decided not to use the pulp composition data as predictor 

variables. The reasons for omitting these were 

• 	there were many missing entries, with no record of whether this meant no pulp in 

the base composition, or un-logged pulp data, and 

• 	these variables must be scored (assigned numerical values) for use in a MLP 

regression model. Use of a poor scoring method can increase dramatically the 

nonlinearity of, and hence difficulty of estimating, the regression function. 
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It was decided that it would be easier to investigate the incorporation of the pulp data into 

the model after an initial MLP model had been obtained. 

Other nominal variables which were omitted were the hot-air and infra-red drier settings 

(values were 'on' or 'off'). While these were expected to have a significant affect on 

curl, their values were almost always the same, and so few records were available to 

assess the effect of changing these variables. It was also considered that more detailed 

data, such as drier temperature and air-flow would be useful, and so the use of the drier 

data was postponed until such data could be logged. 

Data available after removing variables 

After applying the above 3 procedures to eliminate variables, the data available for 

training comprised 317 complete records, each of which was comprised of 28 process 

variables. While the low ratio of the number of records to the number of variables may 

make avoiding overfitting difficult, it was decided not to attempt to remove any further 

variables until their importance could be assessed through initial model building; that is, 

to use a step-down variable elimination approach[202]. 

7.3. Justifying the use of the MLP for the curl model 

As discussed in chapter four, it was decided to use the MLP to model curl because 

it was believed that curl would be a nonlinear function of the other measured 

process variables, and 

the research group was inexperienced in the use of other modelling techniques, such 

as kernel regression. 

While it was believed that a nonlinear model would be required, it is appropriate to 

confirm this before attempting to develop a MLP model. Two questions asked in this 

regard were: 

Are there signs of any relationship between curl and the other variables? 

Is the MILP likely to model this relationship better than a simple linear regression 

model? 

The need for an affirmative answer to the first question is obvious. If no signs of a 

relationship can be found then it is pointless trying to fit any sort of regression model to 

the data. 

The second point is also important because if the regression function is almost linear, as 

was the case with the first data set which was eventually discarded, then there are good 

reasons why a MLP should not be used: 
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The linear model is simpler and hence easier to interpret using informal methods 

such as inspection of the parameters, or the formal inference methods which are 

discussed in most introductory regression texts[35, 1051. 

There is a risk of overfitting spurious nonlinearities in the data if the MLP is used. 

In response to the second point, it could be argued that the fit complexity could be 

strongly constrained, using regularisation for example, to prevent overfitting. Two 

arguments against this are: 

The principle of parsimony: why should a complex model be used where a simpler 

model will suffice? 

If using the cross-validation method discussed in chapter six, excessive use of 

regularisation could cause overparameterisation-induced ill-conditioning problems. 

7.3.1. Evidence for the need for a nonlinear model 

This section answers the two questions posed in the previous section by verifying that 

data does suggest a systematic relationship between curl and the predictor variables, and 

that this relationship is nonlinear. 

The techniques used are standard methods in linear regression. Both LS and LAD linear 

fits were used, the former because most formal inference methods assume LS fitting and 

the latter to check whether any outliers were affecting the LS fit significantly. All 

available data was used to fit the linear models, no validation and early stopping methods 

were used. 

7.3.2. Confirming the presence of a regression function 

An analysis of variance was performed for the LS fit to check the statistical significance 

of regression[141, 2021. Table 7.1 summarises the results of this test. 

Source SS error Degrees of freedom MS error F-value 

Total 92713 316 293 - 

Error 49244 288 171 - 

Model 43468 28 1552 9.07 

Table 7.1: Analysis of variance for LS linear fit to curl data. 

The 0.99 critical value for the F-distribution with (28, 288) degrees of freedom is 

approximately 1.8. The test F-value is much greater than this, giving better than 99% 

confidence that there is at least an approximately linear relationship between curl and one 

or more of the predictor variables. 
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The confidence level is, of course, not exact if the regression function is nonlinear, but 

this result nevertheless gives a strong indication that there is a systematic relationship 

between curl and the predictor variables. 

Further investigation to determine whether a nonlinear MLP model was more appropriate 

for this relationship was hence justified. Before devising a more complex curl model 

however, it was appropriate to check whether a linear fit gave good enough curl estimates. 

Quality of the linear fit 

Figure 7.2 shows the LAD linear fit estimated curls versus the measured curls. 
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Figure 7.2: Plot of measured versus estimated curl for the LAD linear fit. 

While the linear model seems to have captured a major trend in the data, the curl 

estimates are still spread quite widely around the line indicating where the measured curl 

is equal to the estimated curl. This wide variation limits the usefulness of the linear 

model for on-line curl estimation and control because figure 7.2 shows that paper with 

low curl may have a high predicted curl in some cases, and vice-versa. 

There is thus justification for investigating whether a nonlinear MLP curl model will give 

better curl estimates. 

7.3.3. Confirming that the regression function is nonlinear 

Having confirmed a systematic relationship between curl and the predictor variables, the 

next step towards developing a MLP curl model was to check whether this relationship is 

nonlinear. This is necessary because the inaccuracy of the linear fit may in fact be due to 

important predictor variables being missing, a situation that cannot be remedied by using 

a nonlinear model instead. 
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The standard technique for identifying the need for a nonlinear regression model is to fit a 

linear model to the data and then to look for systematic nonlinear trends in the fit 

residuals[39, 128, 143, 203, 204]. 

Testing for overall nonlinear mis-specification 

The regression function linearity was first assessed by scatterplotting the linear fit 

residuals against the predicted curls. Any statistically significant nonlinear trends on 

such plots are evidence that a nonlinear model is required. 

Figures 7.3 and 7.4 (overleaf) show residual plots for the LS and LAD fits. These figures 

also show 41-point running mean smooths[44]  of the plotted data with approximate 95% 

confidence intervals for the smooth. The parallel lines with slope -1 which can be seen 

on these figures are due to quantisation of the measured curls, and have no 

significance[205, 206]. 
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Figure 7.3: LS linear fit scatterplot of residuals versus estimated curl. 

Both smooths show nonlinear trends with one or more minima near estimated curls of 30 

to 40. These trends are statistically significant because the running means vary by more 

than the average confidence interval width (i.e. the means for different curl estimates are 

significantly different). Thus the trends are not likely to be random artifacts of the data, 

and so give good evidence that a nonlinear model is required. 
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Scatterplot of LAD fit residuals versus curl estimates 
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Figure 7.4: LAD linear fit scatterplot of residuals versus estimated curl. 

Examining the nature of the nonlinearity further 

The technique used in the last section indicated a slight but significant nonlinearity of the 

curl data regression function. Since that technique is insensitive to many types of 

nonlinearity, the residuals were also scatterplotted against the predictor variables to give a 

better indication and stronger evidence of the regression function nonlinearity. 

Several of these plots showed statistically significant nonlinear trends in the residuals. 

Figure 7.5 (overleaf) shows some plots for the LS linear fit. The LAD fit gave similar 

plots. 

The residual bins captioned 'A', 'B' and 'C' have means which alternate between being 

significantly greater than or less than zero. Thus the captions highlight statistically 

significant and also quite large bump- and bowl-shaped nonlinear trends in the residuals, 

giving strong evidence for the need for a nonlinear model. 

Interactions between variables can make it difficult to assess the true shape of the 

regression function using plots such as those shown in figure 7.5. Thus either further 

analysis is required to specify a suitable parametric model, or a more flexible regression 

method, such as MLP regression, should be used. The use of the MLP is hence justified 

for the curl modelling problem. 
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Figure 7.5: Plot of the LS linear fit residuals versus the coater blade angles 

and some refiner setting predictor variables. 

7.4. Creating the MLP training and validation sets 

Having decided to use a MLP to model curl, the first issue to be addressed was how to 

divide the data between training, validation and test sets. 

Owing to the limited number of curl records, it was decided not to create a test set to 

estimate the final model performance. Instead, the curl model accuracy would be 

assessed by field-trials at the coating plant. 

In creating the training and validation data sets, it was necessary to consider 

• 	how to split the data to ensure that the smaller validation set covers the same 

predictor variable range as the training set, and 

• 	how much data to reserve for model validation. 

Splitting for good validation set coverage 

Ensuring that the validation set covered the same range as the training set was relatively 

straightforward because the paper-reel logs were sorted by time of production. Thus long 

term changes in the machine settings vary smoothly between adjacent records, and so 

reserving, say, every 5th record for validation should ensure that these changes are 
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sampled and represented in the validation data. 

Deciding how much validation data to reserve 

Since there are no agreed methods for deciding how much validation data to reserve, it 

was decided to try reserving 20% of the total data. To confirm that this was sufficient 

data to obtain useful estimates of the prediction error, the fast LS cross-validation method 

described in chapter six was also used to estimate the prediction error for some MLP fits. 

If the validation and prediction error estimates agree reasonably well, then this suggests 

that there is sufficient validation data. 

Training and validation sets were created by reserving every 5th record for the validation 

set. The validation data sampling was started from the 2nd, 3rd and 5th records to give 3 

different training and validation set pairs (called 'A', 'B' and 'C' respectively). For each 

pair, MLPs with 4 hidden units were used to estimate the curl regression function using 

LS fitting. Standard weight decay and the modified weight decay discussed in chapter 

three were used to control the fit complexity. For each value of the complexity control 

parameter, A, 10 MILPs were trained and a 2-trimmed average of their prediction errors 

was taken as the estimate of the true prediction error. Trimmed averaging was used to 

prevent occasional large error estimates due to local minima from distorting the results. 

Figure 7.6 shows average training error, validation and cross-validation errors for some of 

the MLP fits. The error-bars shown are 95% confidence intervals for each trimmed mean. 
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Figure 7.6: Mean training, validation and CV errors for the validation test. 
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Each graph in figure 7.6 shows similar trends in the validation and CV errors as A varies. 

Though there is some variation between where the minima occur for each error curve, 

both curves show relatively flat minima and so a ±0. 1 variation in choosing the value of A. 

is not likely to cause serious under- or overfitting. 

This good agreement between the CV and validation errors shows that reserving 20% of 

the total data for validation gives sufficient validation data to estimate the fit prediction 

error, necessary to avoid under- or overfitting of the curl model. Owing to the relatively 

large amount of computer time required to run the CV test, no attempt was made to try 

different validation set sizes such as 10%, 15% or 25% or the total data. 

7.5. Developing the first MLP curl models 

Training and validation sets 'A' were used to develop most of the first MLP curl models, 

and so this discussion is limited to results obtained using these data sets. As explained 

earlier, all 28 predictor variables were included in the first curl models. While this may 

lead to some overfitting, it was hoped that the importance of most variables could be 

assessed by including them, and that the least important variables then could be excluded 

from later models. 

MLPs with 4, 6 and 8 hidden units were used to model the curl regression function. LS, 

L 15  and L 12  training were used for fitting and the fit complexity was controlled using 

standard and modified weight decay. Different numbers of hidden units were used 

because the smoothing given by both types of weight decay varies with the number of 

hidden units used, and so varying the number of units may be necessary to find the best 

fit. Early stopping was also used in conjunction with the weight decay to obtain the best 

fit. 

As done previously when setting the validation set size, for each combination of fitting 

estimator, weight decay type, weight decay parameter value and number of hidden units, 

10 MLPs were trained, and trimmed averaging of their validation errors was used to 

reduce the affect of any local minima on the results. Using many different training start 

points also increases the chance of obtaining a good fit when using early stopping. 

Results from training to completion 

This section discusses the results obtained by training all MILPs until the training error 

function had been minimised. 

Similar validation error curves were obtained for all estimators and data sets. Figures 7.7, 

7.8 and 7.9 show some typical results for MLPs with 4, 6 and 8 hidden units. 
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Figure 7.7: Trimmed mean training and validation fit errors for 2 of the sets 

of MLPs with 4 hidden units. 
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Figure 7.8: Trimmed mean training and validation fit errors for 2 of the sets 

of MLPs with 6 hidden units. 
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Figure 7.9: Trimmed mean training and validation fit errors for 2 of the sets 

of MLPs with 8 hidden units. 

For all combinations of number of hidden units, training estimator and weight decay type, 

the minimum mean absolute validation error at completion of training was approximately 

0.25. For reference, a LS linear fit to the data gave a validation error of 0.30. The fact 

that similar errors were obtained for LS, L 15  and L 12  training suggests that 
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there are few outliers in the data, or 

there is still significant model bias which is dominating the validation errors for all 

estimators (this effect is discussed in chapter five), or 

the curl regression function is not very nonlinear and so overfitting is not a serious 

problem (see chapter five). 

Results from early stopping 

Since some overfitting is still possible when using weight decay, early stopping was also 

combined with weight decay to reduce overfitting. Table 7.2 gives the minimum 

validation errors (mean absolute error and MSE) obtained using early stopping and the 

conditions under which they were obtained. The validation errors for a linear LS fit to the 

training data are also included for comparison with the MLP errors. 

Hidden units Estimator Weight decay type 2 value MAE MSE 

4 L 15  standard 0.2 0.231 0.094 

6 L 15  standard 0.1 0.210 0.081 

8 L 15  modified 0.3 0.214 0.089 

Linear LS N/A N/A 0.306 1 	0.141 

Table 7.2: Lowest mean absolute and mean square validation errors obtained 

using weight decay with early stopping. The LS linear fit validation errors 

are also given for comparison. 

Though L 15  training gave the lowest overall errors, the LS- and L 12-trained MLP 

validation errors were only slightly larger. Again, this suggests that outliers and 

overfitting are not serious problems, or that bias in the fit is dominating the validation 

errors. Testing for fit bias is discussed in the next section. 

All MLP validation errors are significantly lower than those obtained for the LS linear 

model fit, showing that the MLPs give better predictions than the linear model in addition 

to fitting the training data better: that is, the MLPs are not overfitted. 

7.6. Model testing and improvement 

Having developed some initial curl models, the next steps attempted were 

• 	to assess how well the best models fit the curl data and whether improvement could 

be expected by incorporating the unused pulp composition data, and 

• 	to improve the models by identifying and removing predictor variables which have 

little affect on curl, and 
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to provide Tullis Russell with some of these models for testing in production. 

These are discussed in the next sections. 

7.6.1. Assessing the model fit and adding the pulp variables 

This work aimed to assess 

whether the MILPs fit the data well, or if significant model bias remains, and 

whether incorporating the pulp composition data is likely to improve the fit. 

The method used to address both issues is that which was used earlier to assess the need 

for a nonlinear model, namely looking for systematic trends in the fit residuals. Any such 

trends indicate trends in the data which have not been captured by the MLP fit. 

Assessing how well the MLPs fit the data 

Figure 7.10 shows a plot of the measured curl versus the predicted curl for the best MLP 

fit with 6 hidden units. Compared to figure 7.2, the MLP fit is clearly better than the 

linear fit as the data clouds in this figure cluster more tightly around the line indicating 

perfect match between the measured and estimated curls (the axis scales differ from 

figure 7.2 because the MLP data was standardised to avoid saturation). 

Best MLP fit measured versus estimated curl 

Training data 
Validation data 0 0 

- Measured curl = estimated curl line 

+ 	0G 

0 	0 + 
- 	++o0+ 

0+ 
 OOF 

0 	0*+ 0 + * 
+ 	o,txx 0 

0 
- 	00++ 

-1.5 
-1 	-0.5 	0 	0.5 	1 	1.5 

Estimated curl 

Figure 7.10: Measured versus estimated curl for the best MLP curl data fit. 

Residual plotting also was used to check for any bias remaining in the best fits obtained 

using 4, 6 and 8 hidden units and early stopping. Figures 7.11, 7.12 and 7.13 show plots 

of the residuals from these fits versus some of the variables which were found earlier to 

be related nonlinearly to curl. 
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Best 4 hidden unit fit residuals versus side I blade angle 
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Figure 7.11: MLP fit residuals versus side 1 blade angle and HW2 refiner 

setting for the MLP with 4 hidden units 
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Figure 7.12: MLP fit residuals versus side 2 blade angle and HW2 refiner 

setting for the MLP with 6 hidden units 
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Figure 7.13: MLP fit residuals versus side 1 blade angle and DB furnish for 

the MLP with 8 hidden units 

In all cases the nonlinear trends found earlier when assessing how well the linear model 

fitted the data have been reduced. This is seen in the fact that the lines joining the means 

in each data bin are straighter, and that the mean residuals are now closer to zero. 
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The lack of significant trends in the residual plots suggests that there is little bias in the 

fits, and so the MLP models have captured much of the nonlinear relationship between 

curl and the other process variables included in the model. 

Incorporating the pulp data into the model 

Though the last section showed that there was little or no fit bias, it was decided to 

confirm that the fits would not be improved much, if at all, by incorporating the pulp 

composition data into the model. Plotting the fit residuals against variables not included 

in the model provides a method for assessing whether these variables should be included 

in the model[35, 207]. 

The pulp wood types were assigned arbitrary numeric scores, and missing data entries 

were assumed to mean no pulp rather than missing data and were assigned the value zero. 

Figure 7.14 shows plots of the fit residuals versus 4 of the 5 pulp composition variables 

for the best MLP fit with 6 hidden units. The MLPs with 4 and 8 hidden units gave very 

similar plots. Note that the pulp data has been standardised, and so zero pulp scores do 

not correspond to the zero on the x-axis. 

None of these plots show any significant non-random trends, and so adding the pulp 

variables to the model cannot be expected to improve the fit. The residual plot for 

hardwood pulp 1 (not shown) is very similar to the plot for softwood pulp 1. 
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Figure 7.14: Fit residuals versus (arbitrary) pulp scores for 4 of the 5 pulp 

composition variables, best 6 hidden unit fit. 
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7.6.2. Eliminating irrelevant predictor variables 

Having developed some MLP curl models which appeared to fit the data well, the final 

actions attempted were the identification of irrelevant predictor variables (i.e. variables 

which have little affect on curl) and their removal from the MLP model. Two reasons for 

doing this are 

since the MLP may overfit to irrelevant data, removing these data reduces the 

likelihood of overfitting, which may improve the fit slightly, and 

• 	more importantly here, removing the irrelevant variables may give better insight as 

to what affects curl most, and hence how to best control curl on-line. 

Variable selection is quite an empirical procedure in MLP regression, and so two methods 

were used to give better insight into which variables should be eliminated: 

weight decay and examination[103, 2081, and 

saliency measures similar to those used by optimal brain damage methods [2091. 

Formal methods for eliminating variables in MLP regression based on linear-regression-

hypothesis-testing methods have been suggested for MLP regression[210] but are rarely 

used. This is because a zero-valued hidden-unit-to-output weight causes 

nonidentifiability of the input weights to that unit, and hence these weights do not 

converge to any asymptotic distribution[23]. 

All results given in the following sections are for the MLP fits with 6 hidden units. 

Similar results were obtained however for the MLPs with 4 and 8 hidden units and for 

training and validation sets 'B' and 'C'. 

Weight examination and results 

If the predictor variables are standardised so that their values span approximately the 

same range, then the relative sizes of the input-to-hidden-layer indicate crudely how 

important each predictor variable is. A small weight indicates that the predictor variable 

makes little contribution to the hidden unit activation, and hence output. If the weight 

between that hidden unit and the output is also small, then the input variable has little 

affect on the fit via that hidden unit. If the weights leading from a given MLP input to all 

hidden units are small, then that predictor variable makes little contribution to the fit and 

is hence a candidate for elimination. 

Figure 7.15 shows input-to-hidden-layer weight distributions for some of the MLP fits 

obtained using 6 hidden units; estimator and weight decay details are given in the title of 

each plot. There are 6 points for each predictor variable, corresponding to the average 

(over the 10 MLPs trained) weight leading to each of the 6 hidden units. The solid line 

shows the overall average input weight value for that variable. 
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The absolute input weight values were averaged because it is possible for 2 MLPs to give 

the same fit, but to have input weights with opposite signs[1 13, 114]. Thus the average 

weight value for an important input may be small if almost half of the fits have input 

weights of opposite signs (the weight signs depend on the choice of random initial 

weights at the start of training). 

The weight disthbutions shown in figure 7.15 are for MLPs trained using slightly more 

weight decay than was found to give the best data fits. This is because assessing the 

importance of a predictor variable becomes easier as the amount of weight decay 

increases, because weight decay suppresses the sizes of unimportant weights and also 

provides some suppression of collinearity-induced weight-variance-inflation (c.f. ridge 

regression)[84, 2021. 
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Figure 7.15: Average input weight distributions for some MLPs trained to 

completion. Predictor variable number 29 is the input bias (fixed value of 1). 

For all MLPs giving reasonably good fits to the data, variables 1, 20 and 28 (grammage, 

top cobb and SW1 refiner setting) always show small weight values relative to the other 

input weights. Thus these variables were earmarked as the first to be eliminated. 

Variables 9 and 21 (final moisture and bottom cobb) also exhibited small input weights 
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Saliency measurement and results 

The second method used to assess predictor variable importance was to zero each 

predictor variable in turn and to note by how much this changes the training-data and 

validation-data fit errors (without re-training the MLPs). A similar idea is used 

commonly by MILP parameter pruning methods such as optimal brain damage, where is 

known as measuring the weight saliency[209]. If zeroing a variable causes little or no 

increase in the training and validation errors then it can be eliminated (which effectively 

fixes its value at zero). 

Figure 7.16 shows the training and validation errors when each input is zeroed, for the 

same MLPs whose weights are shown in figure 7.15. The errors shown are the average 

training and validation set mean absolute fit errors for the 10 MLPs trained for each 

estimator and weight decay value. The errors shown for variable zero are the training and 

test errors with no variables zeroed (i.e. those obtained from training). 
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Figure 7.16: Average input saliencies for some of the MLPs trained to 

completion. 

For all MLPs giving reasonably good fits to the data (including those not included in 

figure 7.16), zeroing variables 1, 9 and 28 caused at most a small increase in the training-

data and validation-data fit errors. Since these were the variables which were also found 

to have small input weights, this was further evidence that the first elimination attempts 
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should focus on these variables. 

Other variables which generally gave small error increases were 9 and 21, which often 

had small input weights, and also 15, 16 and 17 (caliper and top and bottom smoothness). 

It is not surprising that some variables such as grammage and caliper may have little 

affect on curl, because the curl data set covers only one grade of board (230 g1m 2  board), 

and so the grammage and caliper vary little between the reels. 

It is also clear from the saliency results that variable 9 (base paper moisture) is very 

important for estimating the paper curl. 

Deciding which variables to eliminate 

From consideration of the results of weight examination and saliency assessment, it was 

decided to try 3 sets of variable elimination, starting with elimination of the variables 

which were most likely to be irrelevant (1, 20 and 28). The 3 data-set names and 

variables which were eliminated are given in table 7.3. 

Data set Variables eliminated 

Al 1, 20, 28 

A2 1, 9, 20, 21, 28 

A3 1,9, 15, 16, 17, 20, 21, 28 

Table 7.3: Variable elimination combinations tried, based on weight 

examination and saliency assessment results. 

Results of the variable elimination experiments 

MLPs with 4 hidden units were trained to estimate the regression function for training 

sets 'Al' to 'A3'. Table 7.4 gives the lowest mean absolute validation errors obtained 

using early stopping. 

Data set Lowest validation error 

Al 0.233 

A2 0.225 

A3 0.233 

Table 7.4: Lowest mean absolute validation errors for the reduced variable 

data sets. 

The validation errors are very similar to the lowest validation error obtained using all 28 

predictor variables and 4 hidden units (which was 0.235). Thus it appears that weight 

examination and saliency assessment have identified successfully 8 predictor variables 
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which are not important for estimating curl. The fit accuracy is confirmed by figure 7.17, 

which shows a plot of the measured curl versus estimated curl for the best fit obtained 

with 20 predictor variables. The curl estimates are still more tightly clustered around the 

line showing where the measured an predicted curls are equal than those given by the 

LAD linear fit, shown in figure 7.2. 
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Figure 7.17: Measured versus estimated curl for the best MLP fit with 20 

predictor variables. 

Time did not permit further attempts at variable elimination. However, elimination of 

more predictor variables may be possible. For example, since curl depends on differences 

between the properties of the top and bottom sides of the paper, using differences of top 

and bottom side measurements as predictor variables may be an effective way of 

eliminating more variables. Work on this problem currently being undertaken by other 

members of the research group has confirmed that such an approach is effective in 

reducing the number of predictor variables, and hence giving more insight into how to 

control the coating process more effectively. 

The 2 elimination methods used here can also be ineffective for identifying groups of 

irrelevant predictors which are moderately- to highly-collinear with each other. Thus this 

offers further possibility for finding more irrelevant predictor variables. Again, time did 

not permit investigation of this issue. 

7.6.3. Results from field-testing a curl model 

While variable elimination methods were being examined, Tullis Russell were given a 

MLP curl model for field-testing. The model provided was the best MLP fit obtained 

with 4 hidden units, and was tested using 227 new records. 
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Testing gave poor results, with the MLP curl model predicting the lowest curls for paper 

with the highest measured curls. Figure 7.18 shows a plot of estimated and measured 

curls provided by Tullis Russell. Pearson's correlation coefficient for the data in figure 

7.18 is -0.215, indicating moderate anti-correlation between the estimated and measured 

curls. 
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Figure 7.18: Measured versus estimated curl results from the MLP curl 

model field-test. The MLP estimates the measured curl very inaccurately. 

It was not possible to determine why the MLP curl estimates were so poor because the 

new data set provided by Tullis Russell did not include 5 predictor variables used by the 

curl model (though these were not very important variables). However, the earlier 

assessment of the regression function linearity showed that a linear fit can give reasonable 

curl estimates. It was thus decided to compare linear fits to the old and new data to 

determine if the poor curl predictions were due to 

• 	a poor MLP curl model, which would be the case if the linear fit predicted the new 

data curls more accurately, or 

• 	a genuine difference between the regression functions for both data sets. 

LS was used to fit linear regression models to the new data and to a subset of the old data 

which excluded the predictor variables missing in the new data. Both fits predicted the 

curl for their own data sets reasonably well, as shown in figure 7.19. 
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U linear fit to old data, measured versus estimated curls 
	

U linear fit to new data, measured versus estimated curls 
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Figure 7.19: Measured versus estimated curl for linear fits to the MILP model 

development (old) and field-test (new) data sets. 

Each fit was next used to predict the measured curl for the other data set. Figure 7.20 

shows the results of this test. It is clear that neither model predicts well the curl for the 

other data, and in both cases the estimated curls are again anti-correlated with the 

measured curls. 
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Figure 7.20: Measured versus estimated curl when using each linear fit to 

estimate curl for the other data set. 

Since each fit estimates curl well for the data used to obtain the fit, but not for the other 

data, it was concluded that both data sets had quite different regression functions relating 

curl to the predictor variables. Thus is it not surprising that the MLP curl model provided 

poor curl estimates. 

Since both data sets were collected around a year apart, it is suspected that the differences 

in the regression function are caused by changes in the coating process due to, for 

example 

• 	machine wear and component drift, or 

• 	changes in other variables which were constant in each data set but perhaps varied 

between them, such as a coating mix composition. 
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It was also noted that the new data had different base pulp composition codes, and it is 

not yet known whether changes in the base paper composition may be responsible for the 

different regression functions. 

Further collection of data and investigation is clearly required to determine why the 

regression functions differed between the data sets. In particular 

if the differences are due to drift of the process, then future curl models may need 

regular updating to follow process drifts, and 

if the differences can be traced to other causes, such as a change in coating mix or 

base pulp composition, then these variables should be included in future models. 

7.7. Future model improvements 

The curl modelling project is being continued by other members of the research group. 

Planned improvements for the model include adding prediction intervals, so that each curl 

estimate is assigned a range of curl values which are likely to be observed. This will also 

raise a number of interesting issues when using the model for curl control, such as should 

the machine settings be adjusted to minimise the predicted curl if this actually causes an 

increase in the maximum possible curl (i.e. moving into a region with much wider 

prediction intervals). 

7.8. Summary and conclusions 

This chapter presented the work performed to develop a MLP curl model. A systematic 

approach was used, where the quality of the model fit was checked at each point, and the 

MLP was used only once it had been confirmed that it could be expected to give a better 

fit than a linear curl model. 

Usefulness of the preliminary work 

In terms of the preliminary work discussed in chapters five and six, the fast cross-

validation method was found very useful for setting the size of the validation set. This 

method provided a faster methods for checking the validation set adequacy without 

having to try many different data splits. The use of robust methods actually turned out to 

be non-essential for the curl modelling problem. This was considered to be due to 

there being few gross outliers in the data, and 

overfitting not being a problem due to the fact that only a mildly nonlinear fit was 

required to estimate curl well. 

However, this conclusion was reached only because robust methods were used. If only 

LS had been used, then doubt would have remained about whether some data were 

outliers. 
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Variable elimination methods 

Some empirical variable elimination methods were also applied successfully to the 

problem of removing irrelevant predictor variables from the model. The most important 

reason for doing this here was to ease interpretation of which variables affect curl most, 

and hence how to best control the coating process for curl. Some possibilities for 

eliminating more variables were also discussed, and work on this problem is presently 

underway by other workers within the research group. 

Field testing 

The overall point of developing a curl model was to allow curl to be estimated, and hence 

controlled, on-line. Field testing of a curl model gave poor results, and on further 

analysis, it was considered that this was due to a major change in the way curl is affected 

by other process variables, rather than a failure of the MLP curl model. The reasons for 

this change are not yet know, but it may be due to process drift with time, or to hidden 

variables, such as changes in a coating mix, which changed between the collection of the 

model development and test data. This issue demands further research to ensure that this 

does not happen again, and that future curl models can predict curl for new paper 

accurately. 

Overall conclusion 

Overall, it was shown that curl could be modelled quite accurately using a simple MILP 

regression model. Consequently, future work should probably focus more closely on why 

the existing model failed on data collected many months later than the data used to 

develop the model, and how such events can be avoided in future. 
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Summary and Conclusions 

8.1. Project summary 

The overall aim of this project was to examine whether a MLP could be used to model 

the relationship between paper curl measured after coating and other process variables 

measured during coating at Tullis Russell & Co. Ltd.'s Markinch coating plant. This 

model would then be used for on-line estimation and hence control of curl. 

The data provided for modelling curl presented various problems, such as missing data 

and the possibility of outliers, and methods for dealing with these problems had not been 

examined in much depth in the existing MLP literature. However, it was appreciated that 

these problems could hinder the development of a curl model and were also general 

problems which may need to be addressed by many users of MLP modelling methods. It 

was thus decided that these issues should be examined first before focusing on the task of 

modelling curl. 

The methods used to address the data deficiency problems drew heavily on existing 

methods in the statistical regression literature for dealing with these problems. This 

approach was adopted because 

it was realised that the MLP and its existing training methods were simply a type of 

parametric regression model and estimation methods, and 

the methods in the regression literature were already well researched and 

understood. 

Most of the project time was devoted to examining practical issues in the application of 

existing robust regression methods to MLP regression, and the extension of cross-

validation (CV) methods to MLP regression. Once these issues had been addressed, it 

was felt that sufficient knowledge had been gained to tackle real modelling problems, 

such as curl modelling, effectively. 

Robust MLP regression: summary and conclusions 

Outliers were considered to pose the most serious obstacle to the development of a good 

curl model, and so the application of existing robust regression methods to MLP 

145 
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regression was considered first. 

The two key issues which were examined were 

• 	what affects estimator efficiency in MLP regression, and 

• 	whether high-breakdown estimators are necessary to minimise the affects of high 

leverage data in MLP regression. 

These are key issues because the answers to these problems largely dictate which kinds of 

robust estimators to use for most problems. 

Efficiency was found to depend as much on avoiding overfitting as matching the 

estimator used to fit the MLP as closely as possible to the error distribution. A 

consequence of this was that L-Norm estimation with p = 1 was likely to give the best 

results for many problems because in addition to resisting outliers, these estimators were 

found to be slow to overfit. The use of more sophisticated estimators which have LS 

behaviour for small errors actually gave poorer fits because the LS behaviour leads to fast 

overfitting, which can ruin the fit before the issue of optimising the training method to the 

error distribution becomes the key issue. 

High leverage outliers are an important problem in linear regression, but not in MLP 

regression. Chapter five shown that they may lead to localised overfitting, but usually 

will not cause the sort of global fit breakdown that they can cause in linear regression. 

Thus the high breakdown estimators devised to address this problem in linear regression 

are not necessary for MLP regression. In fact, it was illustrated and explained that the use 

of these estimators may actually lead to very bad fits to the data, and hence that they 

should not be used at all for MLP regression. 

The overall conclusion of this work was that, while the use of quite sophisticated robust 

estimators has been recommended previously in the MLP literature, there is in fact little 

reason to use them, and they may actually give poor fits compared to those obtained using 

simple robust estimators in many cases. 

Overfitting and CV: summary and conclusions 

Avoiding under- and overfitting is one of the most important and difficult problems which 

must be considered when using MLP regression. If either of these occurs then the fit 

cannot be expected to give good estimates of the regression function. 

The work on robust MLP regression led to an examination of leverage in MLP regression, 

the primary goal of which was to allow localised overfitting due to high leverage data to 

be identified and reported. It was found that high fit leverages did indicate local 

overfitting, and hence could be used in addition to the use of a validation set to warn of 

overfitting. 
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The most important work presented here then examined how the leverages could be 

applied to the problem of estimating the fit prediction error by estimating the leave-one-

out cross-validation error. The advantages of the method discussed here over direct 

implementation of leave-one-out or using a validation set to estimate the prediction error 

are 

it is much less computer-intensive to use than true leave-one-out CV, and 

unlike using a validation set, all data can be used for training, which reduces the 

likelihood of overfitting, and 

the problems associated with choosing the validation set size and coverage are 

avoided. 

The fast CV method was shown to work well for a real regression problem (the curl 

modelling problem), though a number of limitations of the method were also discussed. 

In particular, the method does not work well unless LS training is used, which renders it 

incompatible with the use of robust training methods. This issue requires further work. 

Other minor issues examined 

Since the fast CV method requires the MLP to be trained to completion, early stopping 

cannot be used to control the fit complexity. Regularisation is the obvious method to use 

instead, and roughness penalties based on spline-smoothing were examined as one type 

of useful smoothing penalty. It was found that these have a number of practical 

difficulties, however, and that much work is required before they can be used for all but 

the simplest MLP regression problems. 

Application to the curl modelling problem 

The curl modelling problem actually presented fewer problems than first anticipated, 

mainly due to the fact that the regression function linking curl to the values of the other 

process variables was not strongly nonlinear. 

There were few or no gross outliers in the data, and so robust methods did not give much 

more accurate fits to the data than conventional LS fitting. In this sense, the use of robust 

methods was unnecessary, but without having used them, it would have been more 

difficult to reach the firm conclusion that there were no gross outliers. 

The fast CV method was useful, however, for confirming that the validation split used for 

the curl modelling problem gave a suitable validation set. Without this quick method of 

checking the validation split, it would have been necessary to compare many different 

splits, a very computer-intensive (and hence slow) task. Use of a validation set was 

necessary because the present version of the fast CV method does not work with robust 

training methods. 
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A good curl model was obtained quite quickly with the aid of the methods developed. 

The most serious problem now appears to be ensuring that the model accounts for all 

factors that affect curl, since model field testing showed there to be other factors affecting 

curl which are not accounted for by the current curl models. 

8.2. Overall conclusions, practical guidance and future work 

This thesis has examined methods for dealing with two important problems in MLP 

regression, namely dealing with outliers and estimating the fit prediction error (often 

called the generalisation ability in the MLP literature). When this project was started, 

there was little or no existing practical guidance on dealing with these problems, and in 

the case of robust methods, some of the existing advice has been demonstrated to be 

wrong. 

Key-points summary of this work and recommendations for its use 

The following bullet points summarise the key results of this work presented in this thesis 

and give some practical advice for those wishing to use this work. 

• 	As in classical regression, robust training methods should be used in MLP 

regression when outliers may be present in the data. 

• 	Simple L u -Norm estimators with 1 !!~ p < 1.25 give good efficiency in MLP 

regression and are much easier to use than other common robust estimators. More 

sophisticated robust estimators require greater complexity control to avoid 

overfitting, and so overfitting usually occurs, giving worse fits than obtained using 

the simpler L -Norm estimators. 

• 	Even when outliers are not suspected, a robust fit should be tried for 2 reasons. The 

first reason is to confirm where there really are no outliers influencing the LS fit. 

The second reason is because robust L-Norm estimators can give better fits than LS 

even when there are no outliers; again this is because overfitting occurs more slowly 

for these estimators. 

• 	Even when using robust training, some data may still strongly influence the MLP fit; 

this may be due to overfitting at these data, or because they lie far from the other 

data and so completely determine the local fit. These influential data can cause the 

local fit to be a poor estimate of the regression function, and can be identified after 

training by their high leverages. If the high leverage is due to local overfitting, then 

better complexity control can be attempted to improve the fit. 

• 	The fast CV method provides a method for validating MLP fits without the need to 

reserve validation data; however, this method presently works only for LS fitting. 

This is not a serious limitation as comparing the CV and validation errors for a LS 
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fit (even if it is affected by outliers in the data) provides a method for checking the 

adequacy of the validation data set. If the CV and validation errors agree then it is 

likely that the validation data is suitable for validating robust MLP fits. 

It is recommended that some validation data is reserved if possible when using the 

fast CV method since both methods have limitations, and comparing the CV and 

validation prediction errors provides a good 'double-check' of the prediction error 

estimate given by the other. If the estimates disagree badly, then further 

investigation is required to assess why they disagree. 

The methods and results presented here are applicable to all IvLLP regression problems, 

not just curl modelling, and form part of a useful tool-box of methods for attacking future 

modelling problems. Other techniques are also required for this tool-box, such as 

methods for dealing with missing data and generating fit confidence intervals; there was 

no time to examine these in depth here, though there is currently much work in progress 

on these problems. 

Further work 

For the general techniques devised here, the most important issue in need of further work 

is the extension of the fast CV method work with non-LS training methods (notably, 

robust methods). In chapter six it was shown how the failure of the fast CV method could 

be related intuitively to the influence function of the estimator used for training, and this 

suggests one route to follow to tackle this problem. 

Further work on robust MLP regression should examine methods for validating MLPs 

when there are outliers in the validation data. In chapter five, it was stated that although 

using robust validation errors appear to address this problem, this method may also be 

insensitive to overfitting, leading to MLPs of the wrong complexity being used. Some 

preliminary work on addressing this problem using multiple validation errors was 

discussed, but further work is required to assess how serious the problem is, and which 

methods are most effective for tackling it. 

Further work in the curl modelling problem should firstly address why the existing model 

gave very poor curl estimates for new paper. Without addressing this issue, it is likely 

that future curl models will similarly fail if, for example, they lack some important 

predictor variable which caused the failure of the current model. 

Other work on the curl modelling problem should address the construction of prediction 

intervals for the fit so that the machine crews can assess how trustworthy the curl 

predictions are. Some preliminary work on this problem is presently underway by the 

another curl modelling researcher within the research group. 
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Appendix A 

Maximum likelihood estimation 

A.!. Introduction 

Maximum likelihood (ML) estimation is mentioned in chapters two and five in the 

context of least squares (LS) and robust MLP training methods. This appendix provides a 

brief review of the basic principles of this method and some of the important properties of 

ML estimates. 

Estimating parameters of probability distributions 

A probability density function (pdf) is often characterised by a number of parameters 

which specify the precise shape of this function[142]. For example, the univariate 

Gaussian density 

11 (y—p) 2 "\ 
P(Y=y;p,a2 ) = 	expi- 

aV 	
(A.1) 

2a J  
specifies a family of density curves where each member is characterised by a distinct 

population mean, p, and variance, a 2 . 

It is often that case that theory or experience suggests the type of distribution which 

describes the behaviour of a random variable, but not the values for the parameters of its 

pdf. Hence a common problem in statistics is that of estimating these values for a given 

random variable. 

Since information about the true parameter values can be gained by observing outcomes 

of the random variable, parameter estimates are usually functions of these outcomes. 

Methods for deriving suitable estimating functions are discussed in most introductory 

mathematical statistics textbooks, and ML is one of the more important methods since it 

often leads to estimators with good statistical properties[142, 211]. 

The sample likelihood function 

Suppose that the random variable V is known or assumed to have a particular pdf of the 

form 

P(Y = y) = f(y; 0) 	 (A.2) 

where 0 represents the parameters which characterise this density function. If Y is 
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observed several times giving the set of outcomes {Yi. 
.. , y, }, and if these outcomes are 

independent, then their joint probability is simply 

P(Y ) =y1 ,...,Y=y) = Hf(y;9) 	 (A.3) 

which follows from the basic properties of independent random variables[140]. 

Since this probability expresses how likely the observed outcomes are for different values 

of the parameters, it is known as the sample likelihood function, and is denoted L(9). 

Maximum likelihood estimation and log likelihood 

Returning to the problem of estimating the unknown parameter values of Y, the 

likelihood function shows that the probability of a given set of outcomes depends on 0, 

and these outcomes will generally be more likely for some values of 9 than others. 

Intuitively, then, it seems reasonable to use the parameter values which maximise the 

likelihood as the estimates of the unknown true parameter values, since these provide the 

most likely explanation of the data when the assumptions about the distribution of Y are 

correct. The estimates obtained in this manner are thus known as ML estimates (MLEs). 

If the likelihood function is a smooth function of 9, then standard differential calculus can 

be used to find the parameter values which maximise this function. However, 

differentiation of products is often a tedious process, and so the sample log likelihood 

1(9) = ln(L(9)) 
= 

is usually maximised instead since sums are easier to differentiate. Note the parameter 

values which maximise the likelihood and log likelihood functions are identical because 

the logarithm function is monotonic. 

Properties of MLEs 

Though ML estimators can be justified intuitively, as shown above, the main reason why 

the ML method is important is that it commonly leads to estimators with various good, 

and often optimal, statistical properties. However, a discussion of these properties and 

the conditions under which they arise would be too long and complicated for this brief 

overview, and details can be found in[140, 142, 211, 2121. 

For the purpose of this review, it will simply be stated that the most important properties 

of ML estimators are their large sample properties. Under a few mild regularity 

conditions, they can be shown to have asymptotically Gaussian sampling distributions 

and to be consistent and asymptotically efficient estimators[213, 214]. Hence the ML 

method leads to estimators with good properties for sufficiently large samples, and 

sometimes for small samples too. 
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A.6. Example - LS estimation 

A simple example will help to illustrate the principles of ML estimation, and also show 

the equivalence of the ML and LS estimates of the population mean of a Gaussian 

variable, which is stated in chapters two and five. 

Suppose that Y is known or assumed to have the Gaussian distribution 

1 	1 (Y_/1)2J P(Y = y; p, a2 ) = 	exp I - 	 (A.5) 
añ 	L 2a2 

where the values of p and a 2  are unknown and are to be estimated. The sample 

likelihood function is 

1 	n 	/ (y—p)2'\ 
L(p,a2) = 	Hexpi— 2a2 

J 	
(A.6) 

(crñ)' i=' 

and this can be simplified using the multiplicative properties of exponentials to give 

1 	/ n (yp)2"\ 
LCu,a2) 	

— 
= 	expI— 	

2a2 J 	(A.7) 
(aV)' 	L 

The log likelihood function is thus 

l(p, a2) 	
n 

= - - ln(2r) - 
n 
- In(a 2) - 1 - 	- p)2 	 (A.8) 

2 	2 	2a i  

and it may be noted that the right hand term is proportional to the (negative) sum of 

squares error which is minimised in LS estimation problems[2 151. Since the value of p 

which maximises the sum in this term is independent of the value of a 2 , it can thus be 

seen that the ML estimate of p is also the LS estimate of this parameter. 

Differentiating l(p, a2) with respect to p and equating the gradient to zero to find the 

maximum gives 

1 
- 	(yi - 1:1) = 0 	 (A.9) 
a 

which can be re-arranged to give an algebraic expression for the estimator ft. 

1 
ft = —y, . 	 (A.1O) 

fl i=i 

Thus the ML estimator of the population mean of a Gaussian random variable is simply 

the sample mean. Repeating this process for the variance parameter yields the estimator 

- 	1 0,2 = - (yi - ft) 2 	 (A.11) 
fl j=I 

which is the sample second moment about ft. 
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A.7. Practical ML estimation 

To complete this brief review of the ML method, this section outlines some of the 

problems which often must be addressed in practical ML estimation. All of these issues 

are relevant to the use of ML estimation to estimate MLP model parameters, and are 

discussed at various points throughout the thesis. 

No closed form estimators 

It is often impossible to derive closed form expressions for the estimators, such as those 

derived in the previous example. This problem usually occurs when the log likelihood is 

a complex nonlinear function of one or more of the parameters, and numerical methods 

such as iterative optimisation methods must then be used to maximise this function[55, 

56, 212]. This may require large amounts of computer time. 

Multiple likelihood maxima and minima 

Another common problem is that the log likelihood function may have many local 

maxima in addition to the global maximum. Gradient ascent optimisation methods can 

often become trapped in these maxima, and hence fail to find the global maximum. 

The presence of local maxima can often be detected by estimating the parameters a few 

times using different starting estimates, to see if these converge to different maxima. If 

many local maxima are present, then methods such as simulated annealing can be used to 

find the global maximum, or at least the vicinity of this maximum. These methods can be 

quite computer-intensive however. 

The likelihood function may also exhibit local minima, and these should also be avoided. 

Fortunately, gradient-based maximisation methods will always move away from minima, 

and so it is unlikely that these will cause problems. If doubt arises however, the second 

derivative or Hessian matrix can be tested to confirm that a given stationary point is a 

maximum. 

Estimate identifiability (uniqueness) 

Under some conditions, the maximum of the likelihood may not occur at a point, but 

along the top of a flat ridge or plateau of this function. If this occurs then there are an 

infinite number of possible values for the estimates, and the asymptotic estimator 

properties no longer hold[213]. 

In regression, nonidentifiability is often due to the use of an overparameterised model, 

though it can also be caused by certain deficiencies of the data used to estimate the 

parameters. It is usually manifest as numerical ill-conditioning problems when 

computing the estimates[ 195]. 
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Model validity 

A final point which should be noted is that the optimal properties of ML estimators can 

depend quite strongly on the assumed distribution of the random variable Y. Some 

estimators which perform well for one distribution may be poor estimators for 

corresponding parameters of slightly different distributions. Further discussion of this 

issue can be found in the robust statistics literature[129, 144]. 

Note that in the regression context, the (inadvertent) use of a biased model will often 

upset the assumptions about the error distribution because the model bias leads to 

systematic trends in the residuals. This is discussed further in[32, 216]. 
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Appendix B 

The IF and influence in MLP regression 

B.!. Introduction 

This appendix looks at the influence function (IF) in MLP regression to aid understanding 

of some material presented in chapters five and six. Chapter five looks at robust MILP 

regression, where the IF plays a key role in determining an estimator's resistance to 

outliers. Since this is one of the most important uses of the IF, this appendix focuses 

mainly on examining the IF in MLP regression to assess resistance to outliers. In chapter 

six, the IF explains how training a MLP using different estimators gives different 

relationships between the fit leverages and residuals. 

This appendix builds towards examining the IF in MLP robust regression as follows: 

A general IF is derived which covers all estimators of interest here. 

Some simple estimators are used to show how an estimator's IF can be used to 

determine if it is resistant to outliers. This review also looks at how the IF describes 

the estimator's sensitivity to small perturbations of the data, which is important in 

chapter six. 

The IF in simple linear regression is examined to show how the IF can be applied to 

regression. In particular, it is shown how leverage points can have high influence 

even when some robust estimators are used to fit the linear model. 

Having examined the IF in simple linear regression, the IF for MLP regression is 

examined. It is shown that robust MLP regression methods may be non-resistant 

when the training data contains high leverage outliers, but that it is difficult to assess 

the practical significance of this from theory alone. A simple example is used to 

show what is likely to happen in practice and discuss how important this is. 

B.2. Derivation of a general influence function 

In this section, a general IF is derived from which the IFs for all the types of estimators 

considered in this appendix can be derived easily. 

Let the parametric model f(x; 0) be used to model the regression function for the 

population with cumulative distribution function H(x, y). If penalised M-estimation is 

used to fit the model, and in the limit that the amount of data used to train the MLP 
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becomes infinitely large, the parameter values, ®H,  are found by minimising 

f p(y—f(x,9)) dH(x,y)+AJ(9) (B.!) 

where the function p(z)  defines the M-estimator as discussed in chapter five, and AJ is a 

régularisation penalty of the type described in chapter three. Minimising (B.1) is 

equivalent finding a suitable zero of the scores statistic, 

f i'(y — f(, H))V8f(, GH) dH(x, y) — AV 9J(911 ) = 0 . 

where w(z) is the derivative of p(z)  with respect to z. For simplicity, any scale parameter 

associated with the M-estimator is assumed to be a known constant and has been omitted. 

Now let a point mass contaminant, 	be added to H(x, y), giving the new distribution 

G(x,y) = H(xY)+e 5xoy0 _H(xY)J 	 (B.3) 

where e determines the mixing ratio between the original distribution and the 

contaminant. The influence function 

I 
IF(x0 , Yo  p, 2J, H) - 	 (B.4) 

—-;- 
IE=o 

describes the change in 	which is caused by adding an infinitesimal amount of 

contamination at (x 0 , Yo).  The estimator is resistant to outliers only if this change is 

bounded (i.e. the value of the IF is finite) no matter where the contaminant is placed[102, 

129]. 

Re-fitting the model under G(x, y), the new parameter values, G'  must satisfy 

f "(y — f( G))VQf(, 9G) dG(x. y) - AV O J(OG ) = 0 

which can be expanded using (B.3) and re-arranged to give the equality 

f v'(y — f( 	))Vf(, G)  dH(x, y) - AVOJ(OG) 

= — e f (y — f( 	))Vf(, G)  d5 00  — H(x, )J. 	(B.6) 

Differentiating with respect to e on each side gives 

f(, G))Vf(, QGT9f(, qG) T  DQG  + 

	

V(Y -  f( G))Vef(, G) ae) dH(x, y) - AVJ(9 G ) 	 (B.7) 
- 

for the LHS of (B.6), and 

f w( - 	G))VOf(, G) dH(x, y) - 
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— fCo, QG))Vef(o, G) + e[ other terms] 	 (B.8) 

for the RHS. Now letting e —* 0 so that G — H, (B.7) becomes 

M — - 

where M is the constant-valued matrix 

f v'(y — f(, ))Vf(, H) - 	- f(x, O))V 9f (x, OH)Vgf (x, OH)T  dH(x, y) 

—AVJ(9H) 
	

(B.1O) 

and (B.8) can be further simplified using (B.2) to give 

	

1V(Yo - f(o, H ))V e f(!o , OH) + AV9 J(OH) . 	 (B.1 1) 

Equating (B.9) and (B.11) and assuming M is non-singular, premultiplication by M 

gives the IF 

IF(x0 , Yo; p, )J, H) = — V'(Yo — f(o, H))" V9f(xo, H)  + 2M' V O J(O H ). (B.12) 

Since the smoothing penalties described in chapter three do not depend on the training 

data, the second term in the IF is a constant. Thus this term is ignored henceforth. 

However, training with these penalties affects the shape of f(x; OH)  and so they also 

affect the IF via the first term in (B.12). 

B.3. Location estimators 

Since the simplest IFs belong to single parameter location estimators, such as the mean 

and median, these will be used to show how the shape of an estimator's IF can be used to 

assess its resistance to outliers and sensitivity to small data perturbations. Only a brief 

overview is given here, and details can be found in[102, 129]. 

Single parameter location estimators[136, 214] can be considered a special case of 

regression where 

fc;o = 0 , 	 (B.13) 

that is, y does not depend on any x. Substituting this into (B.12) and ignoring the penalty 

term for now shows that a M-estimator's IF is proportional to its score function, 

IF(y0;p,H) ° V(YoÔ) , 	 (B.14) 

where are the parameters estimated without the outlier. 

(B.9) 
e=O 
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Relationship between resistance and the IF 

In the context of outlier resistance, the most important characteristic of the IF is its 

maximum absolute value, 

* 	sup 
= 	IIF(yo;p,H)! 	 (B.15) 

Yo 

which is known as the gross error sensitivity. This quantity is the largest (standardised) 

change in the estimator value that can be caused by introducing an outlier into the data. 

If y is finite then an arbitrarily large outlier can only cause a limited change in the 

estimator value and so the estimator is resistant. It follows from (B.14) that the score 

function must be bounded for a resistant estimator. Figure B. 1 illustrates this for the 

sample mean (w(z) = z, nonresistant) and the sample median (w(z) = sgn(z), resistant). 

Mean and median score functions 
3 

2 

-1 

-2 

-3 
-3 

Mean - 
Median 

-2 	-I 	0 	1 	2 	3 

)— o 
Figure B.1: Score functions for the sample mean and the sample median 

shown over the domain -3 to 3. The mean score function is unbounded. 

Relationship between the IF and sensitivity to data perturbations 

The derivative of the IF is known as the change-of-value function[102]. This function 

describes how sensitive the estimator value is to small perturbations of the data, such as 

those caused by numerical rounding. In chapter six the change of value function is used 

to explain how the fit leverages depend on the estimator used fit the MLP. 

The maximum sensitivity is given by 

— sup IIF(a;p,H)-1F(P;p,H)I 

IamBi 

and known as the local shift sensitivity (lss). If the IF is continuous then the iss is the 
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largest absolute value of its derivative. If the IF has discontinuities then the iss is infinite. 

The sample mean and median provide good examples of how the change-of-value 

function describes an estimator's sensitivity to data perturbations. Figure B. 1 shows that 

the sample mean IF is linear, and so the change-of-value function is a finite constant. 

This reflects the facts that 

perturbing any datum by a fixed amount causes the same change in the value of the 

mean no matter how far that datum lies from the mean (constant IF derivative), and 

the effect of perturbing only one datum is reduced as more data are averaged (finite 

lss). 

In contrast, the median's change-of-value function is zero, except at O, where it is infinite. 

This reflects that facts that 

the value of the sample median depends on only one or two data, surrounding O, and 

so is insensitive to small perturbations of the other data (zero derivative except at O), 
and 

because the median depends only on one or two data, its sensitivity to perturbations 

of these data does not decrease as the number of data increases (infinite lss). 

B.4. Simple linear regression and leverage points 

In problems involving more than one parameter, the IF is a vector quantity comprised of 

the individual influence functions for each parameter. To illustrate this, and to work 

towards examining the IF in MLP regression, consider first the simple linear regression 

model 

f(x;9) = 00 +0 1 x . 	 (B.17) 

For this model it can be shown easily that 

(XO
IF cc v'(yo-f(xo;O)) 	I (B.18) 

) 

by substituting (13.17) into (B.12) and ignoring AJ terms. The top component of this 

vector is the IF for the parameter Oo  and the bottom component is the IF for 01• 

Leverage and influence in linear regression 

Note that the IF for the gradient parameter is proportional to x 0 , and so now even if the 

score function is bounded (but non-zero), the influence of an outlier placed at an 

arbitrarily large x 0  may still be unbounded. Thus one of these high leverage outliers can 

strongly control the slope of the fitted line even if the majority of the data suggests a very 

different slope' 9 . The fact the IF can depend on both x and y is an important issue in 

19 An example of this, which also illustrates why these are called high leverage outliers, is 
given in chapter five. 
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classical robust regression, and has motivated the development of various high breakdown 

estimators, which can resist one or more high leverage outliers[130]. Chapter five 

considers the usefulness of these estimators for training MLPs. 

B.5. Influence in MLP regression 

Having reviewed how 

an estimator's resistance can be related to the shape of its IF, and 

how influence in regression can depend on both x and y, 

the remaining sections of this appendix look at the IF in MLP regression for a MLP of the 

type discussed in chapter two and used throughout this thesis. The aim of this 

examination is to determine if outliers, particularly high leverage outliers, can exhibit 

high influence in MLP regression, and if so, how seriously these outliers may affect how 

well the fit estimates the regression function. 

For clarity, the IFs for the hidden to output and input to hidden weights will be examined 

separately. Ignoring any constant terms due to smoothing penalties, 

IF oc  t(y0 —f(x 0 ,è))V9 f(x 0,) . 	 (B.19) 

It will be assumed that a bounded '(z)  is used in an anticipation of outliers, and so the IF 

for a given parameter can have a large magnitude only if the associated component of 

V8 f(x0 ; O) has a large magnitude. 

B.5.1. IFs for the hidden layer to outputs weights 

For the weight v, leading from hidden unit u to the linear output unit, the associated 

gradient component is 

f(o; 8)1 	= o.0 , 	 (B.20) 

where oru  is the hidden unit output. For the sigmoidal type of hidden unit considered in 

this thesis, the output always lies between zero and one, and so the IFs for the hidden 

layer to output weights will always be bounded. Hence introducing large outliers into the 

training data can only cause limited changes in the hidden to output unit weights from 

those that would be obtained when training with the outlier-free data. These parameters 

are thus resistant to any outliers in the training data. 
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B.5.2. ifs for the input to hidden layer weights 

The gradient component for the weight Wuq  leading from input q to hidden unit u is 

f(x0 ;O)I  

Wuq 	

- 
- VuOu'Xoq , 	 (B.21) 

where a,' is the derivative of the hidden unit output with respect to its activation. This 

output derivative depends implicitly on all the weights and inputs leading into the hidden 

unit, and this must be considered when determining the maximum possible influence. 

Maximum influence when only one input becomes large 

Liu notes that if sigmoidal hidden units are used, then robust MLP regression is resistant 

to a high leverage outlier caused by increasing (or decreasing) the value of only one 

input[151]. The reason for this is that a single sufficiently large input will dominate all 

hidden unit activations, and hence all hidden unit outputs and output derivatives. As the 

activation increases linearly, the output derivative goes to zero exponentially and so the 

product Cu 'Xoq  also goes to zero, thus bounding the IF. The IF may increase at first 

however, because the sigmoid derivative decays exponentially only for large activations 

(magnitude greater than about 2). Thus one question this raises is whether the maximum 

influence may still be large enough to affect the shape of the MLP fit seriously in some 

problems. 

Maximum influence when two or more inputs are large 

A further case which Liu does not consider is what happens if more than one input is 

increased (or decreased) to create a high leverage outlier. In this situation, any hidden 

unit output derivative can be kept constant (and non-zero) by changing the inputs in such 

a manner as to keep the hidden unit activation constant. Thus the IF for any input to 

hidden layer weight can be made arbitrarily large for some input variable combinations, 

and so the estimates of these weights are technically not resistant. Hence introducing 

large outliers into the training data could cause the weights to differ greatly from those 

which would be obtained when training with a similar data set without these outliers. 

B.5.3. Interpreting the IF in MLP regression 

The previous section demonstrated that outliers can still exhibit high influence in MLP 

robust regression when these occur at some extreme values of the predictor variables. 

However, assessing whether such outliers necessarily pose as serious a problem as they 

do in linear regression is difficult for two reasons. 
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Firstly, it must be remembered that the IF applies only to the model parameters, but it is 

usually the estimates of the regression function which are of primary interest in MLP 

regression[27]. To see why this makes assessing the importance of high leverage outliers 

difficult, recall that the output of a sigmoidal hidden unit always lies between zero and 

one. Thus large, outlier-induced changes in the hidden unit weights can only cause a 

bounded change in the MLP output. Whether this change is sufficient to render the 

model predictions worthless will depend on how many hidden units are affected, and 

what their overall contribution to the output is. 

Secondly, it should also be noted that obtaining very high influence required the hidden 

unit activation to remain constant so that the output derivative did go not to zero. 

However, when the inputs are large then changing only one hidden weight slightly may 

increase the activation sufficiently that the output saturates and hence the output 

derivative becomes very small. Thus large weight changes are not necessarily required to 

reduce the influence of high leverage outliers, and so the fit may not change much as a 

result of introducing such data. 

These difficulties in interpreting the effect of the parameter IFs on the fit are in fact quite 

general problems in regression when the fit is a nonlinear function of the parameters, and 

a more detailed discussion can be found in[217]. For this discussion, it is sufficient to 

conclude that high parameter influences are possible in MLP robust regression, but it is 

difficult to assess if and when these are likely to have an adverse effect on how well the fit 

estimates the regression function. 

B.6. Example illustrating influence in MLP regression 

The previous section showed that it is difficult to use the IF to assess the likely 

consequences of training a MLP with data containing high leverage outliers. Thus some 

simple experiments were conducted to investigate how such outliers may affect the fit in 

practice. This section discusses the results of one of these experiments and relates these 

results to the previous discussion of the IF. It also considers which results are most likely 

to important in practice. 

Figure B.2 shows some samples of the regression function 7x(x +0.6) + 1, to which 

Gaussian response errors with standard deviation 0.25 have been added. Two outliers 

have also been introduced into the data, one at x = —0. 1, and a second high leverage 

outlier at x = 1.2. This figure also shows a quadratic polynomial fit to the data obtained 

using least absolute deviations (LAD) estimation in an attempt to resist any outliers in the 

data.20  It is apparent that the fit is affected strongly by the high leverage outlier, to the 

20 LAD training, also known as L 1  estimation, is one of the robust regression methods dis-
cussed in chapter five. 
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extent of inverting the fitted parabola. This is confirmed by the fact that a much better fit 

is obtained when the high leverage outlier is removed, the LAD fitting method being able 

to limit the influence of the remaining low leverage outlier at x = —0. 1. 
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Figure B.2: The regression function and data for example one. A quadratic 

model fit to the data obtained by LAD estimation is also shown. 

To investigate whether this outlier could cause similarly poor fits in MLP regression, 

MLPs with six hidden units were trained to estimate the regression function using LAD 

training. To control overfitting and to allow the effect of using a regularisation penalty to 

be considered, the spline penalty discussed in chapter three was used to control the fit 

complexity. The penalty was used with 77 roughness sampling points, spaced equally at 

steps of ix = 0.025 over the interval [-0.6, 1.3]. 

Figure B.3 shows some typical fits obtained using different amounts of spline 

regularisation. The amount of regularisation is controlled by the parameter A in the 

manner described in chapter three, with larger 2 forcing the fit closer to the linear 

regression fit. 

The most interesting feature of this figure is that the outlier at x = 1. 2 appears to be quite 

influential for all fits. This is evident from the fact that the all the fits are pulled towards 

this datum quite strongly, especially when A is small. 

The next sections discuss this behaviour in terms of the MLP IF, and also comment on 

which of the above fits are likely to be most important in practice. 
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Example MLP fits with different amounts of regulansation 
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Figure B.3: Some typical MLP fits obtained using LAD training with 

different amounts of spline regularisation. 

Large 2 (very smooth fit) 

When 2 is large, the spline penalty forces the fit to be almost linear. This is achieved by 

constraining the input to hidden layer weights to small values so that the hidden unit 

activations are small. The results in only the approximately linear central section of the 

sigmoid curve being used to form the fit. 

Forcing the hidden units to be linear over the range x = —0.4 to x = 0.5 also means, 

however, that the outlier at x = 1.2 is on, or near the end of, the linear section of the 

sigmoid transfer function. Thus the output derivative is large at the outlier, and so the 

outlier has a large influence on the input to hidden layer weights. 

While this illustrates how a high leverage outlier can influence the overall fit in MLP 

regression, it is not likely to be important in practice. This is because forcing the fit to be 

almost linear will cause serious underfitting in most real problems, and so such fits will 

be rejected due to their large validation errors. 

Small 2 (less smooth fit) 

For small 2, the fit divides into two distinct regions: 

a fit to the bulk of the data in the interval [-0. 5,0. 5], and 

the fit at the high leverage outlier. 
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As 2 decreases, the fit to the bulk of the data improves (less underfitting) and the local 

influence of the high leverage outlier increases. The increase in influence causes the local 

fit near the outlier to be pulled closer to the outlier. 

In terms of the MLP IF, reducing A allows the hidden unit activations to increase so that 

the non-linear characteristics of some sigmoids can be used to improve the fit. This also 

means that their hidden unit activations will be large for the input x = 1.2, and so their 

outputs will be strongly saturated, reducing the influence of this datum. However, the 

same argument also applies to any hidden units which contribute to the fit at x = 1.2, 

namely the bulk of the data will have little influence on the values of the inputs weights 

leading from the MLP input to these units. Thus the fit near x = 1.2 is determined almost 

completely by the single outlier and so is forced to pass close to or through this point 

irrespective of its response value. 

Since the fit to the majority of the data is good, the generalisation ability on a validation 

set is likely to be good, and so such fits are likely to be chosen by model selection 

procedures. However, this does not mean that high leverage data are not a cause for 

concern, as the next section explains. 

Reliability of the fit near high leverage data 

Since the fit near a high leverage datum is determined almost solely by this single datum, 

which may be a gross outlier, it must be considered extremely unreliable. The reason for 

this can be illustrated easily using kernel regression. In kernel regression, local 

domination of the fit by a single datum corresponds to all other data lying far into the tails 

of the kernel, and so receiving very small kernel weights. Thus the kernel fit at this 

location is essentially the average of only one datum, and so will have very wide 

confidence intervals (infinitely wide when the other data have absolutely no influence). 

This result would instantly give the data analyst reason to suspect that the fit may not be 

as good over all the regions of interest as the generalisation error estimated using a 

validation set may at first suggest. 

Confidence intervals are not yet used widely in MLP regression, however, because they 

are more much difficult to generate than in kernel regression. Thus local overfitting near 

high leverage data may not be noticed in MLP regression. It was for the purpose of 

flagging such points to the data analyst that the investigation into estimating leverage in 

MLP regression discussed in chapter six was undertaken. 

B.7. Summary 

In this appendix, the IF was derived for a general nonlinear regression model and used to 

estimate the likely affects of outliers in robust MLP regression. 
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In particular, it was shown that high leverage outliers can still be very influential in MLP 

robust regression, but their influence will generally be limited to local control of the fit, 

rather than the type of global influence which causes breakdown in classical linear 

regression. This does not mean that these data do not pose serious problems in MLP 

regression. Since these data dominate the fit locally, the fit will be very poor in their 

vicinity if they lie far from the true regression function. 

Since any data which strongly influence the fit either locally or globally are of interest to 

the data analyst, it is useful if such data be detected and flagged. Chapter six looks at one 

method for estimating leverages in MLP regression that can be used for this purpose. 
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Efficiency in MLP regression: additional results 

Introduction 

This appendix presents additional results from the Monte Carlo efficiency experiments 

described in chapter five. These results are given only to illustrate that the conclusions 

drawn from the single experiment discussed in chapter five do apply to other regression 

problems. 

Additional results set A 

The results discussed in this section were obtained using the regression function[98] 

u(x 1 , x2) = 1. 37exp(-2. 5((x1 +0.4)2  + (x2 +0.4)2)) 

+ 1. 37exp(-2. 5((x 1  —0. 4)2  + (x2  —0. 4)2)) 	 (C.!) 

sampled over the domain —1 :! ~ x1, x2  :!~ 1 on a regular lO-by-lO grid. This is a harder 

function to estimate than used in chapter five. The response errors were drawn from 

• 	a Gaussian distribution with mean 0 and variance 0.4, 

• 	a Laplace distribution with mean 0 and variance 0.4, and 

• 	a Gaussian distribution with mean 0 and variance 0.4 contaminated at the 10% level 

by a second Gaussian distribution with mean 0 and variance 2. 

Results for data with Gaussian response errors 
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Figure C.!: MSE at end-of-training (left graph) and lowest MSE during 

training (right graph) for training data with Gaussian errors. 
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Results for data with Laplacian response errors 
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Figure C.2: MSE at end-of-training (left graph) and lowest MSE during 

training (right graph) for training data with Laplacian errors. 

Results for data with contaminated normal response errors 
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Figure C.3: MSE at end-of-training (left graph) and lowest MSE during 

training (right graph) for training data with contaminated normal errors. 

Discussion of results 

The trends shown by these results are similar to those shown in chapter five: 

• 	As expected, the robust estimators give the lowest fit MSEs (i.e. they are the most 

efficient estimators) when the response error distribution has heavy tails. 

• 	Good complexity control is required to achieve the lowest MSE (for example, 

compare the complete training and early stopping results). 

As in chapter 5, the LAD, L 15  and Huber estimators give better efficiency than LS even 

when the response errors are Gaussian, though the wide confidence intervals give little 

significance to these results. It is again suspected that the lower MSEs are due to the 

slower overfitting that occurs when using these estimators. 
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C.3. Additional results set B 

The results given in this section were obtained using the same regression function as used 

for the previous results, but with lower-variance response errors drawn from 

a Gaussian distribution with mean 0 and variance 0.2, 

• 	a Laplace distribution with mean 0 and variance 0.2, and 

• 	a Gaussian distribution with mean 0 and variance 0.2 contaminated at the 10% level 

by a second Gaussian distribution with mean 0 and variance 1. 

Results for data with Gaussian response errors 

MSE at completion of (mining 
	

Lowest MSE during training 

0.158 

0.156 

0.154 

0.152 

0.15 

LJ 
0.148 

0.146 

0.144 

0.142 

0.14 

0.138 

0.136 
6 	7 	8 	9 	10 	11 	12 	 6 	7 	8 	9 	10 	II 

	
12 

Number of hidden units 	 Number of hidden untts 

Figure C.4: MSE at end-of-training (left graph) and lowest MSE during 

training (right graph) for training data with Laplacian errors. 

Results for data with Laplacian response errors 
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Figure C.5: MSE at end-of-training (left graph) and lowest MSE during 

training (right graph) for training data with Laplacian errors. 
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Results for data with contaminated normal response errors 
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Figure C.6: MSE at end-of-training (left graph) and lowest MSE during 

training (right graph) for training data with contaminated normal errors. 

Discussion of results 

The trends shown in the above figures are very similar to those shown in section 2. The 

primary difference between these results is that now there is less MSE spread in each 

graph; it is easier for all estimators to achieve a good fit when the response errors are 

small. 

C.4. Additional results set C 

The results discussed in this section were obtained using the regression function[26] 

11.7 
3u(x 1 ,x 2 ,x 3 ,x 4) 	 (2. 	= 3log(x1)+0.61J---+0.3x+

20 	 x3 

3.2 log(x 1 )+ 0.8 log(x1) — 1.9 
	

(C.2) 

This is quite a difficult regression function to estimate because of the interactions 

between the terms and the rapid increase in the function values for small x 3 . Training 

data were generated by sampling the function 100 times at random positions within the 

interval 0 < x 1  , x2 , x3 , x4  < 1. This limited number of training points gives sparse 

sampling of the regression function, and hence increases the difficulty of estimating it. 

Response errors were drawn from 

• 	a Gaussian distribution with mean 0 and variance 0.4, 

• 	a Laplace distribution with mean 0 and variance 0.4, and 

• 	a Gaussian distribution with mean 0 and variance 0.4 contaminated at the 10% level 

by a second Gaussian distribution with mean 0 and variance 1. 
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Results for data with Gaussian response errors 
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Figure C.7: MSE at end-of-training (left graph) and lowest MSE during 

training (right graph) for training data with Gaussian errors. 

Results for data with Laplacian response errors 
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Figure C.9: MSE at end-of-training (left graph) and lowest MSE during 

training (right graph) for training data with contaminated normal errors. 

Results for data with contaminated normal response errors 
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Discussion of results 

The difficulty of estimating this regression function is evident in the high MSEs for all 

estimators. 

Again, the estimators show almost the same relative efficiencies as seen in chapter five 

and sections 2 and 3, with LS always being least efficient when using early stopping. The 

main difference from previous results is that Huber's estimator was slightly more efficient 

than the LAD estimator. The fits cannot be visualised because of the number of predictor 

variables, but some investigation suggested that the tendency of the Huber estimator to 

overfit more rapidly actually helps for this difficult problem, by allowing the peaks in the 

function near x 3  = 0 to be fitted quickly before overfitting to the errors occurs. 

Plotting the median-square errors instead of the fit MSEs also indicated that the MSE was 

being dominated by a small proportion of the validation data. These are mostly likely the 

data with large response values near x 3  = 0. The median-square errors were much 

smaller than the MSEs, showing that most of the MSE value is due to fit errors from less 

than half of the data. The median-square errors otherwise showed the expected relative 

estimator efficiencies. Figure C. 10 shows the median-square early stopping errors for the 

Laplacian data. 
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Figure C.10: Early stopping median-square errors for the Laplacian-error 

data. The median-square errors are much smaller than the MSEs. 

Even for this complex, high-dimensional problems, the relative estimator efficiencies 

agree well with the results and conclusions of chapter five. 
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C.5. Summary 

The results presented in this appendix confirm the general trends in estimator efficiency 

predicted in chapter five. In particular, it has again been shown that the rate at which 

overfitting occurs can affect efficiency as much as how well outliers can be resisted when 

the error distribution has long tails. This is why the most robust estimators (LAD, L 12 , 

and Huber's) were more efficient than LS even when the errors were Gaussian. 
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Appendix D 

MLP least squares tangent plane leverage 

D.I. Introduction 

This appendix contains a short derivation of the tangent plane leverage matrix given in 

chapter six for a MLP trained using least squares estimation with weight decay (LSWD). 

The leverages for weighted least squares (WLS) problems are also considered. 

D.2. The tangent plane model and leverage 

The tangent plane approximation[166, 172] for parametric models which are nonlinear in 

their parameters assumes that these models can be linearly approximated by 

	

o)T( - 	 (D.1) 

for small parameter variations around the estimated parameters, 00 . 

Suppose that the original vector of responses which was used to estimate 00  is now 

perturbed to give a new set of response data, Y = (Y )T  If the model is re-fitted 

using this data, then the new parameter estimates, O, must satisfy the LSWD criterion 

v [( 	JT(Y _t)+2T] = 0 	 (D.2) 

where i = (f(x 1 ; ) ... f(x ))T • Expanding and simplifying (D.2) gives 

—V0iT+V9fL+A = 0 	 (D.3) 

and if ê is sufficiently close to do  for the approximation (D.1) to be valid, then 	- 

£ = 	 (D.4) 

where Y o  is the vector of regression estimates obtained when 0 = ê0  and 2 is the 

Jacobian matrix with (i, J)th  element 

2ij 
= 	 . 	 (D.5) 

J 

Substituting (D.4) into (D.3) gives 

2TY+2T+z(ee)J+AO = 0 	 (D.6) 
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and this can be re-arranged to give the new parameter estimates, 

= 22 + 21) 2 T  + 	+ A!) 	- 	 (D.7)  f o  

The leverage matrix can now be found by substituting (D.7) back into (D.4). This gives 

= 
(2

+ 
 	

- Al) 
2T 

+ [ other terms] 	 (D.8) 

where the other terms do not depend on Y. Thus perturbations of the response vector, 

AY, will cause the regression estimates to change by 

Af  = 22T2AI)2TAY 	 (D.9) 

and so 

H = 	T2AI)2T 	 (D.1O) 

is the tangent plane leverage matrix. 

D.3. Leverage in weighted least squares estimation 

WLS estimation is a variant of LS where the squared error for each observation is 

weighted by a constant[35, 36]. In matrix notation, the WLS estimation problem with 

weight decay can be written as 

= 0 	 (D.1l) 

where W is the diagonal matrix of weights. Introducing this matrix adds little complexity 

to previous analysis, which can be repeated easily to give 

H = W222TW2 +AI) 2TWU2 	 (D.12) 

Since many fast and numerically stable methods are known for computing LS estimates, 

one of the commonest uses of WLS is to compute the values of non-LS estimates using a 

process known as iteratively re-weighted LS (IRLS)[102, 133, 135, 169].  Here, W is 

defined to convert the non-LS problem into a LS problem, which is then solved to give a 

set of parameter estimates. These estimates are then used to modify W and the process 

alternates between estimating the parameters and updating W until both the weights and 

parameters converge. 

For example, L u -Norm estimation can be implemented using the weight matrix 
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0 	0 

o 	Ir2I 2  w 	 •.. 	. 	 (D.13) = 	 . 	
... 	0 

o 	o 	•.. 	IrI 
p-2  

where r, = y, - f(x,; ) and Ô is the current value of the parameter estimates. 

Though IRLS is widely used for computing non-LS estimates, (D.12) generally cannot be 

used to obtain the correct leverages for these estimators. The reason for this is that the 

weights are not constants, but this is assumed in the derivation of (D.12). For example, 

comparing the WLS tangent plane matrix for L a -Norm with the correct Jacobian matrix 

given in chapter six shows that the WLS matrix lacks important p(p - 1) factors on some 

terms. 
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