
Programming Paradigms, Information Types andGraphial Representations: Empirial Investigations ofNovie Program ComprehensionJudith Good
T

H
E

U N I V E R
S

I T
Y

O
F

E
D I N B U

R
G

H

Ph.D.University of Edinburgh1999

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429729897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AbstratThis thesis desribes researh into the role of various fators in novie program ompre-hension, inluding the underlying programming paradigm, the representational featuresof the programming language, and the various types of information whih an be de-rived from the program.The main postulate of the thesis is that there is no unique method for understandingprograms, and that program omprehension will be inuened by, among other things,the way in whih programs are represented, both semantially and syntatially. Thisidea has impliations for the learning of programming, partiularly in terms of howthese onepts should be embodied.The thesis is foused around three empirial studies. The �rst study, based on theso-alled `information types' studies, hallenged the idea that program omprehensionis an invariant proess over languages, and suggested that programming language willhave a di�erential e�et on omprehension, as evidened by the types of informationwhih novies are able to extrat from a program. Despite the use of a markedlydi�erent language from earlier studies, the results were broadly similar. However, itwas suggested that there are other fators additional to programming notation whihintervene in the omprehension proess, and whih annot be disounted. Furthermore,the study highlighted the need to tie the hypotheses about information extration morelosely to the programming paradigm.The seond study introdued a graphial omponent into the investigation, and lookedat the way in whih visual representations of programs ombine with programmingparadigm to inuene omprehension. The math-mismath onjeture, whih suggeststhat tasks requiring information whih is highlighted by a notation will be failitatedrelative to tasks where the information must be inferred, was applied to programmingparadigm. The study showed that the math-mismath e�et an be overridden byother fators, most notably, subjets' prior experiene and the programming ulture inwhih they are taught.The third study ombined the methodologies of the �rst two studies to look at themath-mismath onjeture within the wider ontext of information types. Usinggraphial representations of the ontrol ow and data ow paradigms, it showed that,despite a bias toward one paradigm based on prior experiene and ulture, program-ming paradigm does inuene the way in whih the program is understood, resulting inimproved performane on tasks requiring information whih the paradigm is hypoth-esised to highlight. Furthermore, this e�et extends to groups of information whihould be said to be theoretially related to the information being highlighted.The thesis also proposes a new and more preise methodology for the analysis of stu-dents' aounts of their omprehension of a program, a form of data whih is typiallyderived from the information types studies. It then shows how an analysis of thisqualitative data an be used to provide further support for the quantitative results.Finally, the thesis suggests how the ore results ould be used to develop omputer basedsupport environments for novie visual programming, and provides other suggestionsfor further work. ii

AknowledgementsI am grateful to Paul Brna, my �rst supervisor, for his patiene, reativity, `speedingbullet' email replies and a number of shared laughs, margaritas and glasses of musadet.Thanks are also due to Rihard Cox, my seond supervisor, for making my researhmore statistially rigorous, and my thesis more lear. Helen Pain, initially my �rstsupervisor, has remained a very dear friend and a soure of exellent advie, optimismand enouragement.The AI & Eduation group (past and present) provided a wonderful environment inwhih to ondut researh: support and feedbak were always forthoming, and thefabulous soials were an added bonus.Expert advie was provided by Andy Bowles and Simon Perkins on omputer sieneissues, and Jean Carletta on oding shemes and Word maros. Numerous persons tookpart in the experiments and I am grateful to all of them for their help.Two institutions eased some of the pressure of funding myself through my PhD: �rst andforemost, the St. Andrew's Soiety of Washington, D.C., and the Crowther Fund. Workon �nal stages of the thesis was arried out within the ontext of the GRiP (GraphialRepresentations in Programming) Projet, funded by EPSRC grant GR/L36987.I am thankful to the following people for a wide range of useful and insightful ommentson earlier drafts: Eshaa AlKhalifa, M�ario Brand~ao, Maro Carvalho, Rafael Morales,Jean MKendree, Mike Ramsar, Jon Oberlander, Helen Pain, Pablo Romero, Chi-Chiang Shei and Shari Trewin. A speial thank you to Judy Robertson, who made itthrough an entire draft and managed to rekindle my initial enthusiasm at a time whenI really needed it.`The boys' (Simon Perkins, Peter Funk, William Chesters and Enrique Filloy) wereamusing fellow students, while Mark Burton gave me a home away from home in Leeds,fabulous meals and endless entertainment. Tim Taylor provided ommiseration over\teatime breakfasts" at Teviot, and friendly ompetition from Mike \spit on palm"Ramsar helped me make my deadline. Thanks to Jonathan Kilgour, Jean MKendreeand Carol Small for enouraging me to submit one my questions had reahed theappropriate degree of triviality. Thanks to Jean for helping me to get to that stage bysharing information, and more importantly, knowledge, about many �elds.I feel like Stevie Wonder aepting a Grammy here, but just a few more:Thomas Green has been an inspiration to me, as he has to many in the �eld, and I amhonoured that he agreed to examine this thesis.Mony Elka��m, a friend so dear that he's really family, provided help and support inways too numerous to mention. The fat that I even onsidered doing a PhD is a diretresult of his enouragement.Finally, to my husband, Bernard GoÆn, for love, humour and shared dreams: resiteundo. iii

DelarationI hereby delare that I omposed this thesis entirely myself and that it desribes myown researh.
Judith GoodEdinburghFebruary 25, 1999

iv

ContentsAbstrat iiAknowledgements iiiDelaration ivList of Figures xvList of Tables xviii1 Introdution 11.1 Novie Program Comprehension Reonsidered 11.2 Novie DiÆulties with Program Comprehension 21.3 Why is Program Comprehension DiÆult to Teah? 31.4 Previous Approahes . 51.5 A New Approah to Novie Program Comprehension DiÆulties 71.6 Main Thesis Questions . 91.7 Outline of the Thesis . 102 Program Comprehension 132.1 Introdution . 132.1.1 What is Comprehension? . 132.1.2 A Generi Model of Program Comprehension 142.1.3 Why is Comprehension Important? 162.1.4 The Rest of the Chapter . 182.2 Comprehension as a Temporal Proess 192.2.1 Top-Down Models of Program Comprehension 19v

2.2.2 Bottom-up Models of Program Comprehension 202.2.3 Mixed Theories of Program Comprehension 212.3 Comprehension as Strategy Deployment 232.3.1 Systemati vs. As-Needed Strategies 232.3.2 Positive Strategy Di�erenes . 242.4 Comprehension as Programming Knowledge 242.4.1 Semanti/Syntati Knowledge 242.4.2 Plans . 252.5 Comprehension as Mental Representations 282.5.1 Novie/Expert Di�erenes in Mental Representations 282.5.2 Mental Representations and Information Types 302.6 Comprehension as the Identi�ation of Program Entities 312.6.1 Beaons . 312.6.2 Information Types . 322.7 Comprehension Theories and Researh: Impliations for Novie Teahing 332.7.1 Comprehension Proesses . 352.7.2 Internal Representations . 362.7.3 External Strategies and Information Extration 372.7.4 Program Comprehension and Information Types: Summary andComments . 392.8 Information Types in Empirial Work 402.8.1 Pennington - Experiment 1 . 402.8.2 Pennington - Experiment 2 . 412.8.3 Corritore and Wiedenbek . 442.8.4 Ramalingam and Wiedenbek . 452.8.5 Bergantz and Hassell . 462.8.6 A Summary of Information Types Studies 472.9 Chapter Summary . 483 Interations between Comprehension and Programming Language 493.1 Introdution . 493.1.1 Claims for and against Prolog . 50vi

3.1.2 Impliations for the Study . 513.2 Method . 523.2.1 Design . 523.2.2 Subjets . 533.2.3 Materials . 533.2.4 Proedure . 543.3 Results . 553.3.1 Programming Experiene . 553.3.2 Comprehension Questions . 553.3.3 Correlation between Prior Programming Experiene and Perfor-mane . 583.3.4 Program Summaries . 593.4 Disussion . 593.4.1 Impurities of Prolog . 603.4.2 The Interation between Prolog Struture and Information Types 623.4.3 Proedural Tainting . 633.4.4 Teahing Praties . 643.4.5 Novie Prior Experiene . 643.4.6 Ease of Answering . 653.4.7 What is Programming? . 663.5 Chapter Summary . 674 The Math-Mismath Conjeture and Visual Programming Languages 694.1 Introdution . 694.2 The Math-Mismath Conjeture . 714.2.1 Development and Previous Work 714.2.2 Math-Mismath, Information Types and Paradigms 734.3 Visual Miro-Languages, Math-Mismath and Novie ComprehensionSupport . 754.3.1 Visual Programming and Visual Programming Languages De�ned 764.3.2 VPLs: Claims and Empirial Evidene 774.3.3 VPLs: Possible Advantages for Support 784.4 Chapter Summary . 81vii

5 Control and Data Flow Visual Programming Languages 835.1 Introdution . 835.2 Control Flow Languages . 845.2.1 A De�nition of the Control Flow Paradigm 845.2.2 Graphial Representations of Control Flow 855.3 Data Flow Languages . 865.3.1 A De�nition of the Data Flow Paradigm 865.3.2 Augmented Data Flow . 885.4 Historial Development of Data and Control Flow 895.5 Empirial Studies of Representations of Control and Data Flow 905.5.1 Empirial Studies of Visual Control Flow Languages 915.5.2 Empirial Studies of Visual Data Flow Languages 945.5.3 Comparing Control Flow and Data Flow Empirial Studies . . . 965.6 The Design and Development of the Miro-Languages 985.6.1 Development of the Miro Languages { Version 1 995.6.2 Development of the Miro Languages { Version 2 1095.7 Chapter Summary . 1186 A Preliminary Study on Control Flow and Data Flow Visual Pro-gramming Languages 1196.1 Introdution . 1196.1.1 Hypotheses . 1216.2 Method . 1226.2.1 Design . 1226.2.2 Subjets . 1236.2.3 Materials . 1236.2.4 Proedure . 1256.3 Results . 1266.3.1 Pre-test . 1276.3.2 Programming Experiene . 1276.3.3 Pratie Session . 1276.3.4 Information Math-Mismath . 127viii

6.3.5 Data Flow vs. Control Flow . 1296.3.6 Presentation Type . 1306.3.7 Interation between Main E�ets 1326.3.8 Qualitative results . 1326.3.9 Summary . 1376.4 Disussion . 1376.4.1 Questions of Methodology: Sreen Reording 1396.4.2 General Diagram Use . 1396.4.3 Familiarity and Previous Experiene 1406.4.4 The Data/Control Flow Relationship 1416.4.5 The Use of Additional Cues . 1426.4.6 The Nature of the Task . 1436.5 Conlusions . 1436.6 Chapter Summary . 1457 Data Flow and Control Flow Visual Programming Languages: AComparison 1477.1 Introdution . 1477.1.1 Advantages of the Combined Methodology 1487.1.2 Hypotheses . 1517.2 Method . 1527.2.1 Design . 1527.2.2 Subjets . 1527.2.3 Materials . 1527.2.4 Proedure . 1547.3 Results . 1577.3.1 Path�nding and Paperfolding Pre-tests 1577.3.2 Self-Report Questionnaire on Programming Experiene 1587.3.3 Language Study Time/Program Inspetion Time 1597.3.4 Response Lateny and Auray 1607.3.5 Corret Responses Only . 1647.3.6 The Math-Mismath Hypothesis 164ix

7.3.7 The Grouped Math-Mismath Hypothesis 1667.3.8 Summary of Results . 1677.4 Disussion . 1687.4.1 Questions of Methodology . 1687.4.2 Visual Programming: What Skills are Involved? 1697.4.3 Overall Results and Individual Information Types 1717.4.4 Math-Mismath and Beyond . 1727.4.5 Impliations for Teahing and Design 1737.5 Chapter Summary . 1748 A New Methodology for Program Summary Analysis 1778.1 Introdution . 1778.2 Pennington's Methodology for Program Summary Analysis 1798.2.1 Information Type Analysis . 1798.2.2 Level of Detail Analysis . 1808.3 Analysing Analysis Shemes . 1818.4 A Critial Analysis of Pennington's Methodology 1838.5 Alternative Shemes . 1898.5.1 Analysis by Summary . 1898.5.2 Linguisti Analyses . 1908.6 Proposal for a New Sheme . 1918.6.1 Information Types Classi�ation 1928.6.2 Objet Desriptions . 1988.7 A Critial Analysis of the Sheme . 2028.8 Chapter Summary . 2059 Results from the Program Summary Analysis 2079.1 Introdution . 2079.2 Program Summary Analysis: An Example 2089.3 A Critial Analysis of the Sheme Appliation 2099.4 Prolog Experiment . 2149.4.1 Word Count . 2149.4.2 Information Types Classi�ation 214x

9.4.3 Internal Validity of Program Summaries 2179.4.4 Relationship between Program Summaries and ComprehensionQuestions . 2189.4.5 Objet Desription Classi�ation 2199.4.6 Disussion and Impliations . 2199.5 Visual Programming Experiment . 2259.5.1 Word Count . 2269.5.2 Information Types Classi�ation 2269.5.3 Internal Validity of Program Summaries 2299.5.4 Objet Desription Classi�ation 2299.5.5 Relationship between Information Types and Objet Desriptions 2329.5.6 Relationship between Program Summaries and ComprehensionQuestions . 2339.5.7 Summary of Results . 2349.5.8 Disussion and Impliations . 2359.5.9 Chapter Summary . 24310 Conlusions and Further Work 24510.1 Contributions and Findings . 24510.2 Thesis Questions Revisited . 24710.3 Novie Program Comprehension Support: Ongoing Work 24910.4 Suggestions for Future Work . 25210.4.1 Languages . 25210.4.2 Programmers . 25310.4.3 Methodology . 25510.5 Conlusions . 256Bibliography 258A Materials: Prolog Experiment 271B Materials: VPL Pilot Experiment 281B.1 Prolog Pre-Test . 282B.2 The max Program (All Versions) . 288B.3 Comprehension Questions . 292xi

C Materials: VPL Experiment 295C.1 Pre-Tests: Paperfolding and Path�nding 296C.2 Programs used in the Experiment . 299C.3 Comprehension Questions . 304C.4 The Programming Self-Report Questionnaire 310D Program Summary Analysis: Coding Manuals 311E Coded Transripts 317

xii

List of Figures3.1 Perentage of Errors by Information Category 563.2 Perentage of Errors by Information Category (Quartiles) 585.1 An Example of a Flowhart, from Chapin (1970) 865.2 An Example of a Data Flow Graph, from Davis and Keller (1982) . . . 875.3 An Example of an R-Chart Control Struture, from Ushakov and Vel-bitskiy (1993) . 945.4 Control Flow Graph Representation for position 1025.5 Control Flow Tree Representation for position 1045.6 Data Flow Graph Representation for position 1075.7 Data Flow Tree Representation for position 1095.8 The passes Program: Control Flow Version 1125.9 The passes Program: Data Flow Version 1176.1 Pratie Session: An Explanation of the Data Flow Graph Language . . 1246.2 Data Flow Graph for the max Program with a Control Flow Question . 1266.3 Response Lateny and Perentage of Errors for Congruent and Inon-gruent Questions . 1286.4 Response Lateny and Perentage of Errors for Trees versus Graphs . . 1307.1 Explanation of Control Flow Nodes in the Pratie Session 1557.2 Explanation of a Data Flow Program in the Pratie Session 1557.3 The passes Program: Funtion Question 1567.4 Mean Response Lateny per Group and per Question Type 1637.5 Perentage of Corret Responses per Group and per Question Type . . 1647.6 Math-Mismath: Lateny and Auray for Data Flow and ControlFlow Questions . 165xiii

7.7 Proportion of Corret Sores on Grouped Question Types (Control andData Flow Groups) . 1678.1 Coding Panel for `Information Types' Classi�ation 1968.2 A High Level Program Summary . 1978.3 A Low Level Program Summary . 1978.4 Coding Panel for `Objet Desription' Classi�ation 2018.5 A Summary ontaining mainly Program Statements 2028.6 A Summary ontaining mainly Domain Statements 2029.1 An Example Program Summary . 2099.2 Information Statement Categories: Data Categorisation 2179.3 Information Statement Categories: Op/At Categorisation 2189.4 Information Statement Categories per Group 2289.5 `High' and `Low' Information Statements per Group 2299.6 Objet Desription Statements per Group 2319.7 `High' and `Low' Objet Desription Statements per Group 232B.1 Control Flow Graph Representation for max 288B.2 Control Flow Tree Representation for max 289B.3 Data Flow Graph Representation for max 290B.4 Data Flow Tree Representation for max 291C.1 Instrutions and a Sample Problem from the Paper-Folding Test (Ek-strom et al., 1976) . 296C.2 Instrutions for the Path�nding Test (Ekstrom et al., 1976) 297C.3 Two Sample Problems from the Path�nding Test (Ekstrom et al., 1976) 298C.4 The basketball Program: Control Flow Version 299C.5 The basketball Program: Data Flow Version 300C.6 The distane between Program: Control Flow Version 301C.7 The distane between Program: Data Flow Version 302C.8 The sunny Program: Control Flow Version 303C.9 The sunny Program: Data Flow Version 304D.1 Information Types Coding . 311xiv

D.2 Deision Proess for Information Types Coding 313D.3 Objet Coding . 314D.4 Deision Proess for Objet Coding . 316E.1 Information Types Coding: Prolog Experiment 318E.2 Information Types Coding: VPL Experiment, Control Flow Group . . . 319E.3 Information Types Coding: VPL Experiment, Data Flow Group 320E.4 Objet Desription Coding: VPL Experiment, Control Flow Group . . . 321E.5 Objet Desription Coding: VPL Experiment, Data Flow Group 322

xv

xvi

List of Tables2.1 A Comparison of Experimental Work on Information Types 483.1 Comprehension Questions and Corret Responses for Sample Problem . 543.2 Mean Sores and Standard Deviations for the 5 Comprehension QuestionTypes . 563.3 Results of Pairwise Comparisons . 573.4 Mean Sores and Standard Deviations for the 5 Comprehension QuestionTypes: Upper and Lower Quartile . 575.1 Control Flow Graph Nodes: Version 1 1015.2 Control Flow Graph Nodes: Version 1 (ontinued) 1025.3 Control Flow Tree Nodes: Version 1 . 1035.4 Data Flow Graph Nodes: Version 1 . 1065.5 Data Flow Tree Nodes: Version 1 . 1085.6 Control Flow Nodes: Version 2 . 1115.7 Data Flow Nodes: Version 2 . 1145.8 Data Flow Nodes: Version 2 (ontinued) 1155.9 Data Flow Nodes: Version 2 (ontinued) 1166.1 Results of Pratie Questions . 1276.2 Mean Response Lateny (in seonds) per Question Type 1296.3 Proportion of Corret Responses per Question Type 1296.4 Mean Response Lateny (in seonds) per Group per Presentation Type 1316.5 Response Auray (Proportion) per Group per Presentation Type . . . 1316.6 Strategies Reported in the Protool . 1356.7 Misunderstandings Reported in the Protool 1357.1 Mean Sores per Condition on Pre-tests 157xvii

7.2 Mean Response Latenies (in seonds) and Standard Deviations for the5 Comprehension Question Types . 1627.3 Proportion of Corret Responses and Mean Sores and Standard Devia-tions for the 5 Comprehension Question Types 1627.4 Proportion of Corret Responses and Standard Deviations for CombinedQuestion Types . 1669.1 Mean Proportion of Information Types Statements 2169.2 Mean Proportion of Information Types Statements per Group 2279.3 Pairwise Comparisons of Statement Types aross Data Flow and ControlFlow Groups: Results of unrelated t-tests 2279.4 Proportion of High and Low Information Statements per Group 2289.5 Correlations between Statement Types 2309.6 Mean Proportion of Objet Desription Statements per Group 2309.7 Proportion of High and Low Objet Desription Statements per Group . 2319.8 Mean Proportion of Objet Desription Statements per Group 233B.1 Questions for VPL Pilot Study: max . 292B.2 Questions for VPL Pilot Study: position 293

xviii

Chapter 1Introdution1.1 Novie Program Comprehension ReonsideredProgram omprehension is important, and yet diÆult. It is an integral part of theprogramming proess, playing a role in ativities suh as oding, debugging, and main-tenane. Unfortunately, novies often �nd it extremely problemati to understand aprogram, and the types of diÆulties they enounter have been well doumented (see(Mayer, 1988) for a summary of some of these).Novie problems may be ompounded by the fat that omprehension per se is oftennot an expliit part of the urriulum. This may be beause attempting to isolatethe skill of omprehension and teah it diretly an prove to be diÆult, as thereseems to be no universally agreed upon de�nition of what it is, and how it proeeds.This is unfortunate, as omprehension is an impliit �rst step in oding: learning a newlanguage almost inevitably starts with the teaher showing the students a short program(e.g. the ubiquitous `hello world') and then asking them to write similar programs.Thus, before even writing programs, students must be able to understand them.If teahing omprehension is diÆult, a number of other tehniques might be used toapproah program omprehension in a more indiret way, for example, by hoosinglanguages whih laim to make omprehension less painful, or by building learningenvironments to takle the program understanding diÆulties in novel ways. These arenot without their own problems however, and will be disussed briey in Setion 1.4.This thesis takes the view that novie program omprehension should be supported asa reognised ativity rather than as a by-produt of learning to program. It envisages1

2 CHAPTER 1: INTRODUCTIONan approah based on the ombination of a number of external fators, many of whihare present in some form in previous solutions to novie programmer diÆulties. Itis felt that a more detailed examination of the e�et of the semanti and syntatiproperties of a programming language on omprehension, ombined with a hange inthe oneptualisation of program omprehension itself, have impliations for the ways inwhih novie problems an be addressed: by moving from a traditional \proess" viewto one based on information entities, novel types of program omprehension support anbe envisaged. By ombining this oneptualisation with an approah whih takes intoaount potential novie diÆulties with partiular types of information display, thethesis lays the groundwork for a exible support system for program omprehension.This hapter provides an introdution to the thesis by �rst desribing novie ompre-hension diÆulties and explaining why omprehension is diÆult to teah. It thenexplores a number of potential solutions and examines their shortomings. Followingthis, it suggests a new approah, based on some of the attributes of previous solutions.Before this approah an be implemented however, empirial work is neessary, andthis work forms the ore of the thesis questions. Finally, the hapter onludes with anoutline of the thesis.1.2 Novie DiÆulties with Program ComprehensionProgram omprehension is a daunting task for novies: where should one start and,one a starting point has been hosen, what is the most appropriate plae to go to fromthere? How does one remember what one has looked at, and understood, and what onehasn't? One some fragments have been understood, how an they be �t together intoa oherent overview of the program? In short, what does it all mean?The amount and variety of information in a program an seem overwhelming: there isinformation about the data the program works on, the data the program produes, theway in whih it produes the data, and the reasons why it does so in the �rst plae.Add to this all the low-level details of having to remember what partiular keywordsmight mean in a program, the rules by whih these keywords an be ombined, waysof referring to di�erent types of objets and hanges in those objets, and it is notsurprising that novies frequently feel lost.

CHAPTER 1: INTRODUCTION 3These problems are likely exaerbated beause novies have not yet developed the\oping strategies" whih experts seem to possess. Experts are able to ontrol theamount of information they are onfronted with by hunking it into a smaller numberof meaningful, higher level groupings (MKeithen et al., 1981). Furthermore, expertsearh through a program is more foused, and is thought by some to funtion as a sortof hypothesis veri�ation proess (Brooks, 1983): based on their prior programmingknowledge, experts form hypotheses about what they are looking for and use the pro-gram text in order to verify these hypotheses. While performing the searh, they areable to take advantage of ues in the program, e.g. beaons (Brooks, 1983), in order todiret their searh most fruitfully.Without this knowledge and skill, novie program inspetion may seem to lak fous:faed with so muh information, an inability to onsolidate it into hunks, and bereftof a searh strategy, novies are not able to diret the deision making proess whihdetermines what would be the most appropriate thing to fous on next, or how to hangefous when appropriate. Anderson et al. (1988) give an example of the latter ase in theontext of novies learning reursion. They feel that diÆulty with the onept stemsin part from the fat that reursion an either be seen as data, or omplex operations,depending on one's viewpoint. The problem for novies is that they often perseverewith a partiular view of the problem and are blinded to a solution whih ould easilybe reahed via the other view, for example, they persist in traing the ontrol ow ofthe program rather than onsidering the output of a partiular reursive all, a remarkthat seems as appliable to program omprehension as to program onstrution.1.3 Why is Program Comprehension DiÆult to Teah?In looking for solutions to novie problems, a reasonable suggestion might be: why notlook at what expert programmers do, and then try and teah novies to emulate them?Indeed, there is a wealth of literature on program omprehension fousing essentiallyon the omprehension proess, in other words, on the steps by whih programmers usetheir knowledge about programming in order to make sense of the program and extratthe information they need.This approah is problemati for a number of reasons. Firstly, there is no one model

4 CHAPTER 1: INTRODUCTIONof program omprehension, and wide variation exists between the models whih havebeen proposed, partiularly with regard to the diretion in whih proessing ours.A number of theories postulate top-down proessing, e.g. (Soloway et al., 1988), whileresearhers suh as Pennington argue for a bottom-up proess of omprehension whihours in two stages (Pennington, 1987a). Models of iterative proessing have alsobeen put forward (Brooks, 1983), while von Mayrhauser and Vans suggest an \inte-grated meta-model" whih seeks to inlude both top-down and bottom-up elements(von Mayrhauser and Vans, 1994). Without a single normative model of program om-prehension, it is diÆult to see how to hoose a model for teahing, or even if it would beappropriate to do so. Indeed, Gilmore (1990) maintains that one of the distinguishingfeatures of expert programmers is the fat that they possess a repertoire of strate-gies, and are apable of hoosing an appropriate strategy based on the programmingsituation, task harateristis and language requirements.Furthermore, program omprehension is not a single, invariant ativity omprisingthe same ognitive proesses in all situations. Comprehension an be an ativity inwhih one takes an entire program and \omprehends" it, but in many situations,omprehension of a program is required at di�erent levels of granularity, for di�erentpurposes, and involving greater or lesser setions of the program. For example, onemay need to understand the inputs and outputs to a program in order to link it upwith another program, or understand a partiular low-level detail so as to modify it. Inthis ase, omprehension is grounded in a ontext and usually assoiated with a task.The ontext may also be ommuniative: obtaining the information needed to explaina program to a lient or to a fellow programmer who is to modify the ode will requirefousing on di�erent parts of the program and at di�erent levels of abstration.Finally, although muh has been made of the di�erenes between novies and expertsin terms of omprehension, little is known about the progression from novie under-standing to expertise, partiularly in terms of the nature of intermediate stages.To summarise:� there are a number of di�erent theories of the omprehension proess: how tohoose one to teah?� experts seem to vary widely in the strategies they use: again, how to deide whih

CHAPTER 1: INTRODUCTION 5would be the \best" one to teah?� omprehension is not a single ativity, it varies aording to task, ontext, pur-pose, et.� little is known about the stages through whih novies pass on their way tobeoming experts.1.4 Previous ApproahesThere are a number of ways in whih novie program omprehension problems mightbe takled: this setion desribes some possible solutions, and points out potentialproblems. Note that most of these approahes relate to learning to program in general,of whih program omprehension is seen as a subskill.Ignore: Although it may seem like a radial alternative, one approah to omprehen-sion problems might be to ignore them. After all, experts don't exhibit thesesame diÆulties, therefore it ould simply be a question of time and patiene.This is obviously risky: Soloway et al. (1992) desribe the steep learning urveassoiated with learning to program, with serious e�ort invested in the initialstages for little return, and signi�ant payo� realised only muh later. Out ofsheer frustration, students may never progress beyond the �rst stages to beomemore skilled at programming.Additionally, an inrease in end-user programming means that many individualshave no intention of beoming professional programmers, but would simply liketo write small programs whih serve their aims. As Soloway et al. point out,\. . . there will be a great number of people who will program omputers in ar-rying out their daily ativities. For suh asual programmers, initial diÆultiesin learning a programming language may beome a permanent barrier to theirontinuing interation with omputers" (Soloway et al., 1982, p. 28) . Althoughspei� end user languages and appliations are being developed, it seems mis-guided to think that any new programming language will allow users to bypassthe novie stage ompletely.

6 CHAPTER 1: INTRODUCTIONChoose the `best' language: Muh thought goes into the deision about whih lan-guage to teah �rst. Traditionally, the preferred strategy has been to teah stu-dents a `lean' or eduational language, suh as Pasal or Smalltalk, in order toonvey the basi onepts of programming. One this language was mastered,students were introdued to `dirty', but ommerially useful, languages suh asC or C++. Reent trends show that there appear to be two amps in this debate,with some maintaining that it makes no di�erene whih language students learn�rst, and therefore starting students out with the most potentially useful lan-guages for their areer, and others ontinuing the searh for the `best' language.All would probably agree though that no one language will be a panaea for allnovie programming diÆulties, both generally and with respet to omprehen-sion.Invent a new language: New languages are onstantly being invented, as are newways of representing existing paradigms (e.g. visual programming languages(VPLs) based on ontrol ow or funtional paradigms). These languages are in-variably aompanied by a series of laims, often the same for all languages (bothobjet-oriented and visual programming languages spring to mind), suh as, \thelanguage is more natural", \it makes data strutures/ontrol ow/exeution moreapparent", \it will allow novies/end users to beome experts in no time". Indeed,new languages often fall prey to what Green et al. (1991) term the `superlativist'laim. However, this initial enthusiasm tends to wear o� one the languages havebeen subjeted to empirial testing, as there is ample evidene to show that noone language is best for all situations, expertise levels, or tasks (omprehensioninluded).Use multiple representations: Given the wealth of information ontained in a pro-gram, another possible solution would be to present the student with multiplerepresentations of the program, eah of whih highlights a partiular aspet ortype of information present in the program. Certainly, there is evidene to suggestthat one harateristi whih distinguishes experts from novies is their ability touse multiple representations and move between them with relative ease so as toexploit the inherent advantages of eah one (Tabahnek et al., 1994).Petre et al. (1998) desribe the possible bene�ts of having to translate between

CHAPTER 1: INTRODUCTION 7representations as a sort of `useful awkwardness', postulating that it might enour-age deeper levels of ognitive proessing. However, the authors do aknowledgethat multiple representations may be \provoative" in some instanes, and \ob-strutive" in others. Indeed, although useful awkwardness might be exploitable inpartiular learning situations, one wonders how useful it might be when the noviedoes not have a lear grasp of the base representation to start with. Certainly, theadvie from other �elds, e.g. mathematis eduation, is to start by teahing onerepresentation in depth rather than super�ially teahing several forms simulta-neously (Moss and Case, pear). Furthermore, results from the physis eduation�eld suggest that unless the student has a mastery of all of the representationsused, they are likely to be a hindrane and lead more frequently to inorretsolutions (Sanlon and O'Shea, 1988).Build a tutoring system: Helping novies learn to program has in some ases in-volved the provision of speially designed environments in whih to learn pro-gramming before swithing to the language in question. This solution often re-ates additional problems as novies must �rst learn to use one environment, thennegotiate the transfer to the full-sale target language, whih may involve un-learning some onstruts and relearning others. For example, GIL (Merrill andReiser, 1994) is a graphial environment whih o�ers support of various types tonovies learning LISP. At some point however, the novie must transfer to LISP,a textual language o�ering very few of GIL's features.Additionally, the intensive nature of learning environment development meansthat often only a small portion of the programming urriulum an be inluded.For example, the Bridge system provided detailed support for learners to for-mulate their programming plans, but restrited novie support to a fragment ofPasal (Bonar and Cunningham, 1988). Similarly, GIL, mentioned above, was avery well thought out environment but did not o�er the LISP novie any helpwith reursion (see (Good and Brna, 1996b) for a disussion).

8 CHAPTER 1: INTRODUCTION1.5 A New Approah to Novie Program ComprehensionDiÆultiesThis thesis suggests a new approah to supporting novie program omprehension,whih is based on lessons learned from previous approahes. The proposed solutionrepresents in many ways an ideal one. It relies on a number of as yet unsubstantiatedsuppositions about ways in whih program understanding by novies might usefully befostered. This thesis undertakes a detailed exploration of some of these hypotheses,looking at the fators involved in supporting novie program omprehension, and theways in whih they interat. The results of the thesis should inform the design of anovie support system, the tenets of whih are desribed below:Choose a full-sale language: this avoids the problems assoiated with inventing anew language, and those of moving up to a full-sale language or transferringfrom a novie programming environment.1Replae proess with information types: this thesis puts forward the idea thatmany di�erenes in program omprehension models are not so muh related tothe information or knowledge neessary for program omprehension, but to theproesses used in searhing for/deploying this information and knowledge.Therefore, rather than fousing on the temporal aspets of program omprehen-sion, one an fous on the entities thought to be involved in omprehension. It ispostulated that the omprehension proess an be oneived of as ombinations ofsteps, where steps involve the searh for partiular types of information. Di�erentproesses (e.g. top-down, bottom-up) would therefore involve di�erent ombina-tions of steps. Rather than trying to determine a �xed ordering on the sets ofsteps arried out during omprehension, it might be more useful to fous on thesteps themselves, in other words, fous on the produt of eah partiular step,rather than the proess whih ombines them. This implies a less presriptiveapproah, whih leads to the following researh question: an we teah noviesabout the di�erent types of information present in a program, and how to loate1 Note that this point refers to the �nal solution: the empirial work neessary prior to implementingthis approah requires the use of saled down miro-languages in order to eliminate potential souresof onfound in experimental settings.

CHAPTER 1: INTRODUCTION 9this information, providing support for them as they do so, rather than limitingteahing to a single, invariant proess?Information types are a way of desribing di�erent types of information whih arepresent in the program text, whose detetion is neessary for program omprehen-sion (Pennington, 1987b). They inlude suh entities as funtional information,data ow, ontrol ow, et. Novie support ould be based on these types of infor-mation, �rstly, by teahing novies what they are, and seondly, by helping themto learn how to reognise information types in programs. Despite their poten-tial usefulness, unanswered questions remain, both on a theoretial and empiriallevel. In theoretial terms, Pennington sought to embed information types withina theory of program omprehension, based on Kintsh and van Dijk's theory oftext omprehension (Kintsh and van Dijk, 1978; van Dijk and Kintsh, 1983).This thesis examines whether information types an have a useful role outwiththis theory of omprehension.From an empirial perspetive, work on information types has foused on �ndingevidene for the omprehension theory desribed above, and on unovering thenature of programmers'mental representations (Pennington, 1987b; Corritore andWiedenbek, 1991). Issues suh as the e�et of the partiular language used in thestudy, the role of the task, the embodiment of information types in the partiularlanguage, and the interation between information type and task have not beeninvestigated in detail. However, all of these issues have important impliationsfor support.Fit this support onto the language itself: the aim is to provide support for pro-gram omprehension whih is essentially layered onto the representation of theprogram itself. This support would be optional and at as a sort of sa�oldingwhih ould be turned on and o� by the user at will. The idea is to end up with aprogramming language with support features, rather than a novie support envi-ronment whih inorporates a programming language. This would hopefully avoidproblems of transfer and saling up. Furthermore, this approah sidesteps novieproblems with multiple representations by operating on a single representation.

10 CHAPTER 1: INTRODUCTION1.6 Main Thesis QuestionsThe proposed support system entres on ativities suh as searhing for and identifyingpartiular types of information in a program. As suh, the features of the base languagemay play a role in determining the diÆulty (or ease) with whih the information anbe aessed. This suggests that preliminary work should fous on issues suh as therelationship between language features and the understanding of information types. Inlight of this aim, the thesis investigates the following issues:� How do partiular languages interat with the extration of information types,partiularly with respet to novies? Previous studies, whih showed a predomi-nane of low-level ontrol ow information in the initial stages of omprehension,used ontrol ow based languages. It is an open question whether this e�et holdsfor di�erent types of language, e.g. delarative, event driven.� Some language paradigms ould be said to mirror information types, e.g. ontrol-ow languages and ontrol-ow information. What is the relationship betweeninformation types and languages whose underlying paradigm mirrors a partiularinformation type? Will there be an inuene on the types of information extratedfrom the program?� How does the task interat with the information highlighted by the representa-tion?� Can errors in omprehension be ast uniquely in terms of information types?Spei�ally in the ase of VPLs, does the notation introdue diÆulties on asyntati level whih annot be aounted for by a semanti desription of thelanguage in terms of information types?� From a methodologial point of view, how an information extration be measuredmost e�etively, and in a way whih is eologially valid: what tehniques shouldbe used to gather and analyse the data?� What might support for omprehension based on information types look like, andon what type of language ould it be built?

CHAPTER 1: INTRODUCTION 111.7 Outline of the ThesisThis thesis examines the role whih di�erent types of information, hypothesised to bepresent in the program, play in program omprehension for novies. As suh it doesnot make the laim that any of the hypotheses or �ndings desribed are in any wayappliable to expert programmers. Furthermore, it onsiders primarily the notion ofprogram omprehension rather than program oding.Chapter 2 proposes a generi model of program omprehension, and then looks athow the most well-known models of omprehension �t into that model, based on theirprimary fous. It onsiders how these models might be relevant to novie programomprehension, and omprehension support. Finally, it looks at the notion of programomprehension as information extration, before going on to desribe experiments whihhave looked spei�ally at information types.Chapter 3 desribes a study arried out on Prolog novies using a similar methodologyto the information types experiments disussed in the previous hapter. Prolog, adelarative language, was used instead of the proedural languages traditionally usedin these experiments in an attempt to determine whether language paradigm has ane�et on the pattern of extration of information types by novies.Chapter 4 disusses the rationale behind a proposed omparative study of ontrol owand data ow VPLs. It looks at the math-mismath onjeture (Gilmore and Green,1984) in detail, and at various studies whih have tested it. It then onsiders thedeision to use VPLs as a vehile for studying the retrieval of information types.Chapter 5 de�nes the notion of ontrol ow and data ow, and looks at the historialdevelopment of ontrol ow and data ow VPLs, with examples from the literature.It then desribes the development of two miro VPLs, used in the studies reported inChapters 6 and 7.Chapter 6 reports on a pilot study whih looks at the interation between informationtype and language paradigm in more detail, using the methodology of the math-mismath onjeture. Using the two miro VPLs desribed in Chapter 5, it investigatesthe way in whih representations highlight or obsure the information required by thetask, and also at the types of strategies novies use to make sense of a VPL and the

12 CHAPTER 1: INTRODUCTIONmisunderstandings they harbour.Chapter 7 reports on an experiment whih uses a new methodology, ombining theinformation types approah used in the experiment desribed in Chapter 3 with themath-mismath approah used in the experiment desribed in Chapter 6.Chapter 8 looks at the question of program summary analysis. It �rst disusses prob-lems inherent in attempting to apply the program summary analysis desribed byPennington (1987b), and proposes a new approah based on �ner-grained, orthogonalanalyses.Chapter 9 presents the results from applying the program summary analysis shemeto the data obtained in the experiments desribed in Chapters 3 and 7. It inludes aomparison of the data aross experiments and a general disussion of the results.Chapter 10 summarises the main �ndings of the thesis, by relating them bak to theoriginal questions, and provides suggestions for further work.

Chapter 2Program Comprehension2.1 IntrodutionWhat is program omprehension and why is it so important? The introdution to thishapter will onsider these two questions in turn.2.1.1 What is Comprehension?Strangely enough, it turns out to be diÆult to �nd a de�nition of program omprehen-sion. Papers on omprehension tend not to de�ne omprehension expliitly, perhapsbeause it seems so intuitively obvious, in the same way that, say, researh paperson reading don't start out by asking what reading is. On the other hand, it maybe beause, like reading, omprehension overs a wide range of ativities, with subtledi�erenes between them.Pennington and Grabowski (1990), in desribing the tasks of programming, o�er anotable exeption:Understanding a program involves assigning meaning to a program text,more meaning than is literally `there'. A programmer must understand notonly what eah program statement does, but also the exeution sequene(ontrol ow), the transformational e�ets on data objets (data ow), andthe purposes of groups of statements (funtion) (Pennington, 1987b,a). Inorder to do this, the programmer will employ a omprehension strategythat o-ordinates information `in the program text' with the programmer's13

14 CHAPTER 2: PROGRAM COMPREHENSIONknowledge about programs and the appliation area. This results in a men-tal representation of the program meaning." (Pennington and Grabowski,1990, p. 54).One of the reasons a uni�ed de�nition of omprehension is not forthoming may resultfrom the sope of the ativity: it an involve trying to understand an entire programin detail, sanning a program to look for a partiular piee of information, or gaining ageneral overview of the program. Program omprehension is arried out by persons withdi�ering levels of prior knowledge and experiene, and an involve languages with verydi�erent harateristis. It omes into play whether one is reviewing one's own work,attempting to omprehend a program written by someone else, or trying to understanda program for a partiular task (debugging, maintenane, ommuniating some aspetof the program to another person, et.). As the nature of tasks themselves are wide-ranging, they will neessarily have very di�erent information requirements, in terms ofthe amount of information, the type of information, and the way it is ombined.Program omprehension has been studied extensively, and from various angles. Manyattempts have been made to derive a theory of program omprehension, fousing onthe proesses whih our when people try to make sense of programs, the sorts ofknowledge they have about programming, and the models they form of programs. Therole of information whih an be derived from the program has also been studied,although to a lesser extent.The following setion provides a \generi" model of program omprehension. Thereason for doing so is not to argue that this de�nition is superior to any others, but totry and enompass as many faets of omprehension as possible. The generi de�nitionan then at as a framework in whih to position theories and researh on programomprehension, allowing a better understanding of the relationships between the variousapproahes.2.1.2 A Generi Model of Program ComprehensionAt the most basi level, program omprehension an be de�ned as follows: given aprogram in a partiular language, program omprehension is a proess in whih theprogrammer uses prior knowledge about programming and information present in the

CHAPTER 2: PROGRAM COMPREHENSION 15program to form a dynami, evolving model of the program whih an then be appliedto a task.This de�nition makes use of a number of entities and proesses, whih are listed below:� knowledge about programming, in other words, information the programmer hasabout programming in general and about programs he/she has previously enoun-tered. The programmer's level of expertise is most likely the greatest inueneon his/her knowledge, both in terms of the amount and type of knowledge, butalso the ease with whih new knowledge an be assimilated. The form in whihthe knowledge is stored is widely debated.� a mental model or representation of the program. This represents the program-mer's urrent state of knowledge about the program being studied, and so maybe inorret and/or inomplete. The model is dynami and evolving.� information ontained in a program, either in read-o� or derivable form. Anexample of information present in the program is a data objet. Derivable infor-mation inludes the program's funtion, in the sense that it is diÆult to pointto it in the same way that one points to a data objet, but it is nevertheless de-terminable on the basis of the program ode. Program information is determinedin part by the programming notation.There is an interation between programming knowledge and information in theprogram in the sense that di�erent levels of knowledge allow one to \see" di�erentthings in the program.� the omprehension proess: the proess by whih the programmer extrats theinformation he/she needs from the program. This an vary in terms of the \dire-tion of approah", in other words, whether programmers start from a hypothesisabout the program and use the program ode to verify it (top-down), whether theystart from the onrete representation of the ode and build up an understandingof the program based on the elements ontained in the program (bottom-up), or(more likely), some ombination of the two.� omprehension strategies: an issue whih has not reeived as muh overage, asmany theories are built around a single model of omprehension. The work on

16 CHAPTER 2: PROGRAM COMPREHENSIONstrategies assumes that there are di�erent ways of understanding a program, andlooks at the irumstanes in whih these strategies are deployed.� a omprehension artefat, i.e. something produed after viewing a program andwhih provides evidene of omprehension. It ould take the form of a verbalor written explanation of some aspet of the program, a new piee of ode, amodi�ation to the ode, an answer to a question about the program, ommentsin the ode, et. Note that prodution of an artefat is optional, but it is, however,interesting from the point of view of researh into the psyhology of programomprehension.� a omprehension task or purpose, in other words, why the programmer is lookingat the program in the �rst plae, and what he/she wants to get out of it. Thiswill determine in turn the sope of the omprehension proess.Various issues whih are entral to theories of program omprehension an be groupedaround these main entities: hypothesis formation and level of expertise are related toprogramming knowledge and to proess, while issues of programming notation relateto the information in the language, and the ways in whih it an be haraterised.Although these entities have been separated out for the sake of disussion, they arehighly interrelated: general programming knowledge will inuene the model one buildsof a program, while programming strategy will also be inuened by programmingknowledge, and likely by task as well.2.1.3 Why is Comprehension Important?In the �rst hapter and in the above paragraphs, it was mentioned that program om-prehension plays a role in many of the tasks of programming. However, it is in someways an even more important part of learning how to program. Leturers often starta programming ourse by desribing a ompleted program, before going on to desribehow to write one. Programming textbooks frequently use an expository method ofintroduing new programming onepts based on an example, and then require stu-dents to produe similar programs as an exerise. Students often ontinue to adoptthis method, searhing through the textbooks to �nd an example program whih might

CHAPTER 2: PROGRAM COMPREHENSION 17serve as a good starting point for a new program. However, in order to suessfullyadapt/hange a program, it is neessary to �rst understand it.1Shneiderman and Mayer (1979) identify the tasks of programming as omposition, om-prehension, debugging, maintenane and learning. In this ategorisation, the last task,learning, would logially over the �rst four tasks as eah omprises a skill to be learnt.However, the extent to whih program omprehension is taught expliitly is an openquestion. Certainly, it is not highlighted in the literature: in a very interesting artileon teahing programming, du Boulay and O'Shea (1981) onsider novie diÆulties inthree main skill areas: planning, oding and debugging. Likewise, Studying the NovieProgrammer, by Soloway and Spohrer (1989), overs suh issues as transfer, learningprogramming, misoneptions and the design of programming environments, but again,does not onsider the teahing of omprehension. Debugging is frequently addressed asan issue in its own right, often in the form of tips for troubleshooting, but it is unlearwhether students are taught how to look at a orret program, make sense of it, andpik out and synthesise the information they need.The lak of instrution in program omprehension may be due to several fators, manyof whih may be theoretial. Firstly, as mentioned above, program omprehension ismulti-faeted, yet many theories seem to take a \single ativity" stane, and attemptto propose an invariant model for omprehending an entire program. This does nottake into aount the fat that, as von Mayrhauser and Vans (1994) point out, theproesses delineated by suh an approah may not be appropriate to situations inwhih partial understanding of the ode is required, e.g. trying to pinpoint an error ina very large piee of ode. Furthermore, it ignores the issue of novie/expert di�erenes:von Mayrhauser and Vans (1994) make the point that some omprehension proesses,top-down in partiular, require previous knowledge, and so would not even be availableto novies, at least in the �rst stages of omprehension. Finally, even given that mosttheories are based on omprehension of the whole program, they vary widely in termsof how they postulate that programmers go about understanding the program. Thismakes it diÆult to hoose the most appropriate model to teah.The above points notwithstanding, program omprehension is a proess: there is ade�nite temporal aspet to it, and it seems natural to desribe it in terms of a series1 Even if it sometimes looks as if students skip that �rst step . . .

18 CHAPTER 2: PROGRAM COMPREHENSIONof steps. However, given the issues of variability in proess, and the fat that theproess for general program understanding will not be appropriate in spei� instanes,it may make more sense to look at omprehension at a lower level of granularity.Rather than trying to desribe the entire proess of omprehension from start to end,perhaps one an identify whih types of information and whih ations are important toomprehension. This makes for a less preditive theory, but it also allows the \theory"to be more widely appliable, perhaps resulting in a more exible approah to programomprehension teahing.2.1.4 The Rest of the ChapterThe following setions desribe ways in whih program omprehension an be hara-terised, organising theories, researh and empirial work around the various entitiesmaking up the generi model desribed above. The aspets onsidered are:� omprehension as a proess (Setion 2.2);� omprehension strategies (Setion 2.3);� the role of the programmer's knowledge in omprehension (Setion 2.4);� the programmer's mental representation or model of the program (Setion 2.5);� omprehension as the searh for information in the program (Setion 2.6).Is it impossible to over all theories and researh in the spae of a hapter, thereforeseleted theories and researh will be used to highlight the issues involved in eah aspetof the generi model. Again, as mentioned above, these distintions are not mutuallyexlusive: theories about the proess of programming obviously relate to programmingknowledge. However, the theories have been organised aording to their pereivedmain fous. In some ases, theories and researh will be spread over more than oneategory: this is the ase for Pennington's work, whih has onsidered several of theaspets in question. Despite surfae di�erenes and di�erenes in fous, many theoriesare reassuringly similar: most, if not all, make some provision for the entities desribedabove. In many ases, it is the terminology hosen to desribe these entities whihvaries.

CHAPTER 2: PROGRAM COMPREHENSION 19Following the setions on program omprehension theories and researh, the hapteronsiders their impliations for providing omprehension support to novies. It dis-usses the usefulness of fousing on the external produts of program omprehension,rather than on the internal proesses, and disusses the idea of information types inthis ontext. The �nal setion will onsider empirial work on information types, andhighlight questions to be answered in this thesis.2.2 Comprehension as a Temporal ProessThe theories desribed in this setion will be onsidered as \temporal theories", as theirdesription of program omprehension relies heavily on a notion of sequene, desribingthe steps whih the programmer takes to understand the program, and the order inwhih they are taken.The temporal sequening in these theories is linked to the level of abstration: top-down theories postulate a progression from a high level of abstration to a lower levelveri�ation proess, whereas bottom-up theories hypothesise the building up of higherlevel abstrations from low level entities present in the program ode. Mixed theoriespostulate greater movement between levels of abstration. These theories are desribedbelow.2.2.1 Top-Down Models of Program ComprehensionA number of theories oneive of program omprehension in terms of top-down pro-essing, with Brooks (1983) proposing one of the �rst models. He desribes programomprehension as the inverse of oding: whereas oding involves a mapping from theproblem domain into the programming domain, often through a series of intermediatedomains, program omprehension requires the reonstrution of these mappings. Inontrast with the usual program/problem domain distintion used by many researhers,Brooks uses the term \domain" to refer to many aspets of the omprehension proess:a real-world objet/program objet mapping domain, the algorithmi domain, the pro-gramming language domain (embodying the partiularities of that language in termsof its data strutures and primitive operations), and an exeution domain, ouhed interms of memory loations and hardware.

20 CHAPTER 2: PROGRAM COMPREHENSIONComprehension is seen as a hypothesis veri�ation proess. Sometimes simply hearingthe name of a program will trigger the onstrution of a hypothesis about the program.This high level, funtional hypothesis leads to the development of a tree of subsidiaryhypotheses, generated in a top-down, depth-�rst manner, based on domain knowledgeand familiarity with similar programs. When the level of detail mathes that of theprogram text, hypothesis veri�ation ours by searhing for beaons (desribed inmore detail in Setion 2.6.1), de�ned by Brooks as \typial indiators of the use ofa partiular operation or struture" (Brooks, 1983, p. 548). The beaon whih atsto on�rm the urrent hypothesis will be triggered, as will any beaon whih stronglyindiates the presene of other strutures (this redues the need for several searhes).New subsidiary hypotheses may also be formed at this stage. Lines of ode whihon�rm the subsidiary hypothesis will beome bound to it, thus reating a tree-likestruture whose leaf nodes are atual ode segments. At this stage, omprehension isomplete.2.2.2 Bottom-up Models of Program ComprehensionIn bottom-up theories of program omprehension, programmers are hypothesised tobuild up an abstrat representation of the program based on the program text.Although an artile by Shneiderman and Mayer (1979) is often ited as one of the�rst bottom-up theories, it is the author's feeling that this is not neessarily the mostaurate ategorisation. Shneiderman and Mayer fous muh more on the struture ofthe programmer's knowledge than on the order in whih the omprehension proess o-urs, therefore, this theory will be desribed in Setion 2.4. This setion will instead usePennington's theory of program omprehension as a means for desribing the generalharateristis of the bottom-up model. As Pennington's theory appears throughoutthis hapter under various headings, it will be desribed only briey here.Pennington (1987b) based her work on the theory of text omprehension put forwardby Kintsh and van Dijk (1978) and van Dijk and Kintsh (1983). This theory postu-lates that text omprehension results in the prodution of two distint but interrelatedrepresentations of the text, the textbase and the situation model (desribed in moredetail in Setion 2.5.2). Aording to Pennington's adaptation of this theory to pro-gram texts, the textbase is �rst built, based on a proedural reading of the program,

CHAPTER 2: PROGRAM COMPREHENSION 21and ouhed in terms of the programming language. The situation model is built fromthis textbase (or \program model" as Pennington alls it), and highlights funtionalrelationships between domain objets.Pennington therefore hypothesises that program omprehension ours from the bottomup, starting with the program. Programmers �rst divide the program into small ontrolsegments, making inferenes about eah segment's proedural role. Funtion and dataow run through segments, therefore they are thought to be unovered through aproess of integration later in the omprehension proess.2.2.3 Mixed Theories of Program ComprehensionLetovsky's model (1986) an be onsidered to be a mixed theory in that program om-prehension is hypothesised to take plae using both top-down and bottom-up proesses.This model omplements the model desribed by Littman et al. (1986) in that the latterdesribes maro-sale events while Letovsky's model fouses on meso-sale events, i.e.events whih our over the spae of seonds and minutes. In many ways, this is oneof the most omplete and exible models of omprehension, hypothesising a range ofdi�erent types of knowledge and reasoning proesses.Letovsky's ognitive model entres around the idea of the programmer as knowledgebased understander. Knowledge based understanders (human or otherwise) onsist ofthree entities: a knowledge base, ontaining prior programming knowledge and exper-tise; a mental model, whih is the urrent understanding of the program in questionand therefore dynami; and an assimilation proess, whih onstruts the mental modelthrough interation with the program ode and doumentation, and the knowledge base.A number of di�erent types of knowledge are hypothesised to reside in the knowl-edge base: programming language semantis, goals, plans, knowledge about eÆieny,domain knowledge, and the rules of programming disourse.The mental model is a layered network onsisting of a spei�ation at the top, animplementation at the bottom, and annotation layers in the middle. The spei�ationdesribes the goals of the program, while the implementation desribes the ations anddata strutures. The intervening layers are explanations linking goals to ations andvie versa. The model will be inomplete during the omprehension proess, and nodes

22 CHAPTER 2: PROGRAM COMPREHENSIONand links an be added in either diretion. Starting from the spei�ation layer wouldindiate a top-down proess, while starting from the implementation layer would implya bottom-up proess. In Letovsky's view, the omprehension proess is opportunistiin the sense that humans an exploit any available ues.One of the interesting features of this model is that Letovsky analysed verbal protoolsof programmers working on a omprehension task, and attempted to isolate varioustypes of events whih our. He de�ned inquiries as a high-level struture ompris-ing questions, onjetures and searhes entring on the same topi. For example, aprogrammer might wonder about the importane of a partiular data struture in theprogram, hazard a guess as to what its role might be, and then searh the program foron�rmation. Letovsky disusses how to identify questions and onjetures, and pro-vides a taxonomy of eah based on ontent. Furthermore, for onjetures, he elaboratesthe idea of onjeture ertainty, ranging from fats to guesses.Finally, Letovsky \explains" onjetures and questions, by whih he means �ndingomputational mehanisms whih would produe the behaviours in question. Di�er-ent question types an be assoiated with the diretionality of proessing (e.g. \how"questions indiate top-down reasoning). The notion of \urgeny" is also introdued toexplain why some types of questions must be answered immediately while others anbe delayed, and this notion is linked to hypothesised memory limitations. In terms ofonjetures, the model postulates that di�erent reasoning proesses underlie the formu-lation of di�erent types of onjetures (e.g. slot �lling, abdution) and the knowledgeor artefats on whih these proesses operate. Inquiries an then be explained in termsof the proesses postulated for questions and onjetures.This model has a lot of sope for explaining novie programmer diÆulties. It iswidely aepted that novies annot use top-down omprehension as they are lakingthe knowledge to formulate the hypotheses in the �rst plae, and that they thereforeresort to a bottom-up proess based on the program ode. Letovsky's model allows fora �ner-grained view of the proess: analysing an individual novie's protools mightallow one to identify those moments in the omprehension proess where an impasseis reahed. It may then be possible to disern patterns suggesting diÆulties withpartiular types of reasoning, or that partiular types of knowledge whih are eithermissing, inomplete or inorret.

CHAPTER 2: PROGRAM COMPREHENSION 23Boehm-Davis (1988) proposes a model whih is, in many ways, a variation on Letovsky'smodel. She postulates an iterative segmentation, hypothesis generation and veri�ationproess in whih programmers use their knowledge along with the information presentin the program (e.g. plans, beaons) to segment the ode into manageable piees, for-mulate hypotheses about program funtion, and verify the urrent hypothesis withthe atual ode. The iterative proess is opportunisti. An integration stage oordi-nates hypothesis generation based on the programmer's knowledge base and urrentunderstanding of the program.2.3 Comprehension as Strategy DeploymentSo far the theories desribed have dealt with the omprehension of an entire program.von Mayrhauser and Vans (1994) point out that these models may not be appropriateto situations in whih partial understanding of a program is required, e.g. pinpointinga single bug in a very large piee of ode. However, models do not seem to exist whihdesribe the proesses involved in looking for partiular types of information, or atisolated ode segments for spei� reasons. The following study desribes di�erenes inomprehension strategy as they relate to debugging, but the message seems to be thatbest performane is nonetheless assoiated with one of the two strategies.2.3.1 Systemati vs. As-Needed StrategiesLittman et al. (1986) desribe two types of strategy used by experts in the ontext of amaintenane task: a systemati strategy, and an as-needed strategy. In the systematistrategy, the programmer attempts to make sense of the entire program before mod-ifying it. In the as-needed strategy, the programmer onentrates on the part in theprogram where the modi�ation should be made. The danger with this approah isobviously that the modi�ation will have e�ets on other parts of the program whihthe programmer did not antiipate.The authors suggest that two types of knowledge must be gleaned from the program:stati knowledge, whih onerns the objets, ations and funtional omponents ofthe program, and ausal knowledge, whih desribes the onnetions and interationsbetween the funtional omponents, aquired by mentally exeuting the ow of data

24 CHAPTER 2: PROGRAM COMPREHENSIONand ontrol between the omponents.Littman et al. maintain that the strategy used by the programmer has a diret inueneon the knowledge whih is aquired. This knowledge is stored in the programmer'smental model, whih may be of two types. Weak mental models are derived from theas-needed strategy and ontain stati knowledge only. Strong mental models are builtfrom the systemati strategy and ontain both stati and ausal knowledge.A few points are worth noting with respet to this study. Firstly, the omprehensiontask ours in a realisti setting (debugging a program), but the �ndings may not applyto ontexts other than debugging. Seondly, they state that subjets were not allowedto arry out a \test and debug" sequene, therefore, a systemati strategymay well havebeen more appropriate in that ontext; whether the \as needed" subjets would havebeen as disadvantaged in a situation more akin to most programmers' atual workingonditions is open to question.Finally, and this is a point that Littman et al. readily aknowledge, this type of approahis feasible for a program of moderate length suh as the one used in the study: for verylarge piees of ode, a systemati strategy will not be possible.2.3.2 Positive Strategy Di�erenesWhile the above study postulated that one of the two strategies observed was the moresuessful one, Gilmore (1990) suggests that having a wide repertoire of programmingstrategies available is one of the hallmarks of an expert programmer. Looking in moredetail at omprehension and debugging, he notes that many theories of omprehensionfous on the stati knowledge possessed by experts, while ignoring the fat that expertsalso possess strategies for making use of that knowledge. He maintains that di�erenesin strategy, in addition to di�erenes in knowledge, ontribute to the novie-expertdistintion in programming, and ites a study by Widowski (1987) showing that ex-perts, unlike novies, were able to hange omprehension strategy depending on the\typiality" (i.e. meaningfulness) of the program, and on its omplexity.

CHAPTER 2: PROGRAM COMPREHENSION 252.4 Comprehension as Programming KnowledgeThis setion desribes theories whih fous on the knowledge possessed by the program-mer, and the ways in whih this knowledge inuenes omprehension. This is not tosay that there is no impliit or expliit temporal ordering in these theories, simply thatthe ordering is perhaps not the most important aspet of the theory.2.4.1 Semanti/Syntati KnowledgeShneiderman and Mayer (1979) proposed one of the �rst ognitive theories to over thewhole of the programming proess, inluding oding, omprehension, debugging, mod-i�ation and learning. The theory is grounded in the information proessing approah,and looks in detail at the role of various memory stores in programming (short-term,long-term and working). These stores motivate the main questions whih the theoryaims to answer, namely, what kind of knowledge does the programmer have in long-term memory, and what proesses does he/she use to onstrut a solution in workingmemory? The former question will be onsidered in detail here, as it is most appliableto program omprehension.Two types of programming knowledge are hypothesised to reside in long-term memory:semanti knowledge and syntati knowledge. Semanti knowledge onsists of gen-eral programming onepts whih are language independent. This knowledge rangesfrom low-level knowledge of what spei� program ations are, up to problem solvingknowledge for partiular appliation areas. Syntati knowledge is language dependent,making it at one more preise and more arbitrary (e.g. the use of partiular keywordsto denote loops).Shneiderman and Mayer hypothesise that syntati and semanti knowledge interat inprogram omprehension as follows: programmers use their syntati knowledge of theprogramming language to onstrut a multileveled, semanti representation of the pro-gram. The higher levels of the struture will inlude information about the program'sfuntion, while lower levels may inlude familiar algorithms or operations. Althoughthey hypothesise that program omprehension proeeds by suessively hunking groupsof statements into larger and larger hunks until the program is omprehended, theyaknowledge that high-level omprehension may our in the absene of full knowledge

26 CHAPTER 2: PROGRAM COMPREHENSIONof the low-level details, and vie versa, suggesting that diretionality of proessing wasnot the main fous of the theory.2.4.2 PlansPlans have played a very important part in the development of theories of programoding and omprehension, and have been studied extensively, most notably by Solowayand his olleagues. Researh has been arried out to establish the psyhologial realityof plans (Soloway et al., 1982; Soloway and Ehrlih, 1984; Soloway et al., 1988), andthey have been used as the basis for novie programming environments and tutors(Johnson and Soloway, 1985; Bonar and Cunningham, 1988).De�nitions of PlansIn some ways, the position of plans in the generi model desribed in Setion 2.1.2 isunlear: should they be seen as information whih an be identi�ed in a program, oras a programmer's internal representation of his/her programming knowledge? On theone hand, plans are de�ned as \program fragments that represent stereotypi ationsequenes in programming" (Soloway and Ehrlih, 1984, p. 595), while on the other,they are de�ned as \a proedure or strategy in whih the key elements of the proesshave been abstrated and represented expliitly." (Soloway et al., 1982, p. 30). Thelatter de�nition onsiders a plan as a knowledge struture, muh like a shema, whihis possessed by expert programmers. This thesis will use the latter de�nition, but itshould be remembered that, using the former de�nition, plans ould also be onsideredto be \information present in the program".As the last paragraph shows, there is onsiderable variation in the way plans wereinitially de�ned. In addition to the de�nitions given above, Soloway et al. (1982)de�ne three types of plans: strategi plans, tatial plans, and implementation plans.Strategi and tatial plans are language independent plans for solving problems, withstrategi plans operating at an algorithmi level, and tatial plans operating on smallerproblem segments. Implementation plans are language dependent tehniques whihallow strategi and tatial plans to be realised.Rist (1986) supplements this with global plans, a type of high-level plan whih andesribe a simple program in terms of its input, proess/alulation, and output. He

CHAPTER 2: PROGRAM COMPREHENSION 27also desribes the idea of foal lines whih are \key features" in a program whih onveythe gist of the program, and are the \driving fore of the plan". Aording to Rist, afoal line often appears deep inside the program, and will be identi�ed more easily byexperts than novies, who proess the ode in a sequential manner.Robertson and Yu desribe two types of plans: task related plans and global plans.Task related plans are subgoals expressed in what they term the \task language" (i.e.the domain) and are desribed at a funtional level, in that they speify what is tobe done, but not how. \Global plans" refer to \subgoals that are abstrations froma spei� task domain" (Robertson and Yu, 1990, p. 344) and may apply to severaldi�erent tasks. These are domain independent, but not program independent. In otherwords, these plans are ouhed in the language of programming onstruts, e.g. \iterateusing a loop". These global plans an be implemented via a single line of ode or severallines.It is diÆult to reonile the di�erent de�nitions of plans, even by the same authors,and to determine whether alternative de�nitions omplement the original de�nitions,or in fat slie up the domain in a di�erent way. Given the sope of many of thesede�nitions, it is not surprising that many studies found support for plans. One ofthe �rst studies to be arried out whih relates spei�ally to program omprehension(rather than oding) is desribed below.Plans: Empirial SupportSoloway et al. (1988) state that plans are only one type of knowledge available tothe expert programmer: the other type is rules of programming disourse, whih areonventions in programming, and are analogous to disourse rules in onversation.These rules are in some ways ommon sense oding onventions, e.g. \use meaningfulvariable names", \make sure the ode is atually used, but that it isn't doing non-obvious double duty". Aording to the authors, programs whih onform to the rulesof programming disourse are \plan-like", while those programs whih violate the rulesare \unplan-like".This theory was tested by presenting novie and expert programmers with two versionsof a program: one whih followed the rules of programming disourse, and one whih

28 CHAPTER 2: PROGRAM COMPREHENSIONviolated them. Subjets were asked to �ll in a blank in the program.2They found that subjets take longer to omplete unplan-like programs, and make moreerrors when doing so (some of whih orrespond to providing the plan-like answer). Inaddition, experts' behaviour is signi�antly impaired on these programs.Based on this experimental evidene and on the development of an AI simulation ofprogram understanding (Johnson and Soloway, 1985), program omprehension is hy-pothesised to our as follows: given that the program goals were not known, subjetsused a bottom-up proess, reading the program from the beginning. The reognition ofprogramming plans in the program triggered a top-down proess, with subjets usingshallow reasoning in order to math the plans to the atual ode. The unplan-likeprograms fored the use of bottom-up proesses suh as program exeution, and deepreasoning, or reasoning ausally about the relationship between the program ode andthe program's goals.Plans: Unanswered QuestionsAlthough plans have played an important role in studying programming, their status isunlear. Firstly, they su�er from the lak of a formal de�nition (Bellamy and Gilmore,1990), whih may have led to the proliferation of de�nitions available. Seondly, theirdegree of universality is unlear: although Robertson and Yu (1990) suggest that plansare language independent, Gilmore and Green (1988) provided evidene to the on-trary. Davies (1990) suggested that the observed language dependene may in fat bedue to di�erenes in prior experiene and ulture whih determine whether plans arereognised and/or used. Finally, the relationship between programming plans and rulesof disourse has never been fully explored. Although Soloway et al. (1988) showed thatviolating rules of disourse to produe unplan-like programs a�eted experts' ability tounderstand programs, it also had a marked e�et on novie performane. Comparingplan-like programs to unplan-like versions, experts showed a 53% derease in sores,while novie performane dereased by 41% (Soloway et al. do not say whether thelatter di�erene was tested for signi�ane). Whether this implies that novies alsohave a reasonable amount of knowledge about plans is a point whih does not seem to2 A tehnique very similar to the one used by Gellenbek and Cook (1991), exept that they werelooking for the existene of beaons, rather than plans . . .

CHAPTER 2: PROGRAM COMPREHENSION 29have been addressed.2.5 Comprehension as Mental RepresentationsThis setion desribes work whih has foused on the way in whih a partiular pro-gram is represented by the programmer, as opposed to the programmer's representationof general programming knowledge. Muh of the work on mental representations hasbeen empirially based: a number of studies have aimed to eliit a programmer's men-tal representation of a program, sometimes at distint intervals (e.g. before and aftermodi�ation/debugging), and to haraterise its struture and ontent. A seletion ofthis work is desribed below.2.5.1 Novie/Expert Di�erenes in Mental RepresentationsAdelsonAdelson (1984) was interested in the types of representations whih novies and expertsform of a program. She hypothesised that novies form onrete representations basedon how the program works, while experts form abstrat representations based on whatthe program does.Adelson tested this hypothesis by having novie and expert programmers answer on-rete and abstrat questions after examining short programs aompanied by either anabstrat owhart, a onrete owhart, or no owhart. Her results tended to bearout her hypothesis: experts sored higher on abstrat questions in all onditions, whilefor onrete questions, novies sored higher than experts, exept, strangely enough, inthe ase where they reeived a onrete owhart. In a further experiment in whih theowharts were replaed with tasks designed to \hannel" the subjet's understandingof the program in either an abstrat or onrete way, Adelson found muh the samee�et.A few points do seem worth noting:� the abstrat task required subjets to insert a missing line of ode into the pro-gram, whih surely requires quite low-level knowledge of how the program works.

30 CHAPTER 2: PROGRAM COMPREHENSION� in the seond experiment, the perentage of errors for experts on the abstratquestions was 13% when the task did not math the questions (i.e. when a on-rete task was used) as ompared to 38% when it did. This is a strange result,whih Adelson does not disuss.� Adelson states that the novies were taking a ourse in PPL (Polymorphi Pro-gramming Language), while the experts were the teahing fellows for the ourse.It may be that the problems were not familiar to the novies, who thereforeadopted a bottom-up proess, but were familiar to the experts, whih allowedthem to use a top-down proess, perhaps (erroneously) �lling in the low levelexeution details based on prior knowledge rather than on the ode.Holt et al.Holt et al. (1987) arried out an interesting study to investigate di�erenes in men-tal representations between student and professional programmers. The experimentrequired subjets to perform easy or diÆult modi�ation tasks on programs basedon three di�erent design approahes: serial (in-line ode), funtional deomposition orobjet-oriented.Subjets' mental representations of the program were eliited by asking them to reallprogram omponents and to speify the relationships between omponents. The repre-sentations were then analysed in terms of the number of omponents and relationships,the depth (longest hain of linked segments) and width (largest number of branhes)of the representation, and degree of onnetedness.Interestingly, they found no signi�ant di�erenes overall between students and pro-fessionals in terms of the struture of their mental representations. However, theyfound that the two groups were di�erentially a�eted by ertain variables: omplexmodi�ations were assoiated with more omplex mental representations for the ex-pert programmers, while the student programmers' representations were a�eted bythe struture of the program (serial, funtional, objet-oriented) and by the partiularprogram.

CHAPTER 2: PROGRAM COMPREHENSION 312.5.2 Mental Representations and Information TypesPennington (1987b) investigated mental representations using the idea of informationtypes, desribed in Setion 2.6.2. Her model of omprehension, desribed in Se-tion 2.2.2, postulates the existene of two types of mental representation of a program:the textbase and the situation model. The textbase, aording to Pennington, \inludes ahierarhy of representations onsisting of a surfae memory of the text, a mirostrutureof interrelations among text propositions, and a marostruture that organizes the textrepresentation", while the situation model is \a mental model of what the text is aboutreferentially" (Pennington, 1987a, p. 101). Pennington hypothesised that the textbasefor a program would largely inlude proedural relationships strutured in terms of theprogram text, while the domain model would ontain funtional relationships betweenreal world objets.Aording to this theory, the textbase is �rst built, based on a proedural reading ofthe program, and ouhed in terms of the programming language. The domain modelis based on this textbase (or \program model" as Pennington alls it), and highlightsfuntional relationships between domain objets. Pennington suggests a link betweenthe type of desription and the level of granularity: namely that funtional relation-ships are more \omprehensible" when ouhed in terms of real world objets, whileproedural relations will be expressed in programming language terms. There is alsoan impliit temporal ordering as the domain model is thought to be dependent on theonstrution of the textbase. The representations are, however, ross-referened, andPennington hypothesises that ross-referening is one of the requirements of e�etiveomprehension.This work was followed up by Corritore and Wiedenbek (1991), who investigatedthe mental representations of novies, and Ramalingam and Wiedenbek (1997), wholooked at the e�et of paradigm on mental representation. As the work desribed inthis thesis borrows extensively from the methodology used by all of these researhers,their work will be desribed in detail in Setion 2.8.

32 CHAPTER 2: PROGRAM COMPREHENSION2.6 Comprehension as the Identi�ation of Program En-titiesThis setion desribes researh whih fouses on the information said to be present in,or derivable from, a program. This is information whih the programmer attempts tounover during program omprehension, as opposed to knowledge whih he/she alreadyhas about programming.2.6.1 BeaonsBrooks (1983) used the term beaons to desribe \sets of features" whih signal theourrene of partiular types of strutures or operations. The mapping between stru-tures/operations and beaons is many-to-many: one struture or operation an besignaled by multiple beaons, while \the same feature may partiipate in beaons fora variety of strutures or operations" (Brooks, 1983, p. 348). Wiedenbek (1986) usedthe example of a beaon from Brooks (1983) in a program memorisation and realltask, and was able to show that experts reall these key lines better than other parts ofthe program, unlike novies, who orretly remembered more lines from the beginningof the program.3Gellenbek and Cook (1991) also studied the role of beaons in omprehension. Theyaknowledge that the onept of beaon is ill-de�ned, and attempted to look at howentities suh as proedure names, variable names, and key lines in the program (e.g. theswap operation) might at as beaons. While their researh is interesting in determiningwhere the e�et lies for eah of these hanges to a program, the notion of beaon remainsindeterminate.2.6.2 Information TypesInformation types have been de�ned as \di�erent kinds of information expliit `in thetext' that must be deteted in order to fully understand the program" (Green et al.,1980; Green, 1980) in (Pennington, 1987b, p. 299). Pennington desribed information3 Wiedenbek states that it is an open question why two-thirds of novies were able to orretly statethe program's funtion, even though they seemed to reall the program in a linear order. However, itis plausible that omprehension and memorisation of the program ourred as two separate proesses:students �rst inspeted the program for meaning (in whatever order), then set about trying tomemorise the program line by line.

CHAPTER 2: PROGRAM COMPREHENSION 33types in terms of internal, rather than external, abstrations of a omputer program. Inother words, they are not meant to be mental representations of the program, but are\based on formal analyses of programs developed by omputer sientists" (Pennington,1987b, p. 298), and an be ompared with the abstrations whih are made with respetto natural language, suh as referential or ausal abstrations.Pennington identi�ed �ve types of information: funtion, ontrol ow, data ow, stateand operations, de�ned as follows:Funtion: information about the overall goal of the program, essentially, \What is thepurpose of the program? What does the program do?". Funtion also inludesprogram subgoals, therefore goals and subgoals an be represented in a goal hier-arhy. Some information about whih events preede others an be inferred, butnot details of how the events are implemented.Control ow: information about the temporal sequene of events ourring in theprogram, e.g. \What happens after X ours? What has ourred just beforeX?" If the information is represented graphially, then the links will orrespondto the diretion of ontrol, rather than to the movement of data. Data owinformation an be inferred in a program by searhing for repeated ourrenesof data objets, but goal/subgoal information is harder to infer.Data ow: essentially onerned with the transformations whih data objets undergoduring exeution, inluding data dependenies and data struture information,e.g. \Does variable X ontribute to the �nal value of Y?" The data ow abstra-tion is linked to the funtion abstration in the sense that funtion informationan be partially reonstruted from a data ow abstration. Control ow infor-mation is also more readily inferable than from the funtion abstration.Operations: information about spei� ations whih take plae in the ode, generallyorresponding to a single line of ode or less, suh as \does a variable beomeinstantiated with a partiular value?" Although Pennington doesn't desribethese in great detail, they seem most linked to ontrol ow information, in thesense that desribing the ontrol ow of a program would lead to \stringingtogether" a series of operations.

34 CHAPTER 2: PROGRAM COMPREHENSIONState: time-slie desriptions of the state of objets and events in the program, e.g.\When the program is in state X, is event Y taking plae, or has objet Z beenreated/modi�ed?" This abstration is quite \distint" in the sense that othertypes of information are hard to infer from it, and likewise, state information isdiÆult to infer from the other types of representation.The ategories are orthogonal in terms of information overage. In terms of level ofgranularity, although Pennington doesn't address this point expliitly, the ategoriesvary: funtion an often over the entire program, while operations will onern only asingle line (or node, in the ase of a visual programming language).Pennington was interested not so muh in information types per se, but in the relation-ship between information types and what she alled programming knowledge strutures.She looked at two ompeting knowledge strutures: text struture knowledge, whih isorganised around ontrol struture primes, and plan knowledge, whih, aording toher, is primarily funtionally oriented. Pennington arried out two experiments toinvestigate these ideas, whih are desribed in Setion 2.8.2.7 Comprehension Theories and Researh: Impliationsfor Novie TeahingFrom the theories and researh examined in the preeding setions, it is obvious thatthere are di�erenes between novie and expert programmers. Results of programomprehension experiments omparing novie and expert behaviour (Adelson, 1981;MKeithen et al., 1981) show many of the same patterns found in other �elds (Chaseand Simon, 1973). The main di�erenes between the two groups seem to be in terms ofsyntati vs. semanti knowledge, and shallow vs. deep reasoning. In a very interestingpaper on novie/expert di�erenes, Mayer (1988) desribes four types of program-ming knowledge: syntati (language syntax), semanti (language meaning), shemati(ommon subroutines or funtional ode units), and strategi (how to use the availableinformation to ahieve a goal).Summarising novie/expert di�erenes, Mayer draws the following onlusions for eahtype of knowledge respetively:

CHAPTER 2: PROGRAM COMPREHENSION 35� experts, unlike novies, have automated their proessing of syntax, so are able tofous on higher levels of proessing;� in terms of semanti knowledge, experts have a more oherent oneptual model,but (or possibly \therefore") novies bene�t, more than experts, from instrutionfousing on oneptual models;� experts possess more shemati knowledge, as evidened by the fat that there isa di�erene in realling ordered vs. srambled programs for experts, but not fornovies (Shneiderman et al., 1977).� in terms of strategi knowledge, experts take a more top-down, breadth �rstapproah to omprehension than novies, attempting to understand the abstratgoals of the program.What are the impliations of novie/expert di�erenes for teahing? Some of the re-searh desribed in this hapter is diretly relevant. Mayer (1988) points out that mostprogramming instrution fouses on syntax, and that far more attention should be givento the other types of knowledge than is urrently the ase. Looking at the issue fromthe point of view of information types, Corritore and Wiedenbek (1991) state thatalthough many textbooks onsider the issue of ontrol ow in a program, they seldomonsider data ow or state. Furthermore, they do not explain how to derive funtioninformation from a program. These authors all for a urriulum in whih novies arenot only made aware of the spei� types of information, but are also taught how toextrat this information from a program when needed.However, many theories have not addressed the issue of teahing novies how to beomeexperts, whih is not surprising given that it wasn't the researhers' intention to do soin the �rst plae. It might be more sensible to ask whether program omprehensiontheories and researh an be interpreted as having impliations for teahing ompre-hension: this question will be the fous of the next few setions. Rather than onsidereah aspet of the generi model in a separate setion, they have been grouped togetherunder three main headings: omprehension as a proess, internal representations (i.e.programming knowledge and mental representations), and external manifestations ofinformation searh and/or strategy.

36 CHAPTER 2: PROGRAM COMPREHENSION2.7.1 Comprehension ProessesMany of the theories whih desribe omprehension in terms of proess aim for a uniquedesription of events whih our when understanding a program. In this sense, theyould be aused of being insensitive to di�erenes between task environments whihmight a�et the omprehension proess.Furthermore, there is no agreement as to whih proess theory is the \orret" one,whih leaves eduators with the dilemma of whih theory to pik. Top-down andbottom-up theories are diametrially opposed: either programmers start with highlevel hypotheses and use the ode to verify them, or they start with the ode and buildup hunks until a omplete understanding of the ode is reahed. They an't do both,unless of ourse, one opts for a mixed model. Lak of agreement on a single model isprobably healthy, as it is in some ways an impliit aknowledgement of the diÆulty ofharaterising omprehension as a unique, well-de�ned ativity. However, it does nothelp the teaher.Many models of omprehension are normative models: they desribe what happenswhen ompetent programmers orretly understand a program. The ase for novies isless lear: one of the biggest problems faing novies is their lak of prior programmingknowledge and experiene. Therefore, a top-down model of program omprehensionwould in priniple be out of their grasp, as the initial stages depend on informationthey don't possess. They may fare better with bottom-up omprehension (and manystudies seem to suggest this is what novies do), but when they ome to the atualhunking stage, they seem to hunk aording to the wrong riteria (e.g. when askedto group problems based on how they would be solved, novies group them togetheraording to the domain in whih they operate rather than the way in whih they work(Weiser and Shertz, 1983)).The sope of many models is also potentially problemati, as they assume that programomprehension implies a omplete understanding of the entire piee of ode. Firstly,it is diÆult to know what a \omplete" understanding might mean: is desribing theprogram's funtion suÆient, or must one know exatly how the program aomplishesits task? In terms of ode overage, some situations may require omprehension of asmall part of the program only, or a skethy overview of the program, or the retrieval

CHAPTER 2: PROGRAM COMPREHENSION 37of a spei� piee of information. Furthermore, the program may be so large that aomplete understanding of it annot be reahed.Indeed, many theories of program omprehension have attempted to over \ompre-hension", as opposed to \omprehension of short Prolog programs" or \omprehensionof full-sale C programs", or even \omprehension of a full-sale C program with a viewto performing a highly spei� hange in the ode". Enough attention has perhaps notbeen given to the parameters whih might hange the results observed, suh as howmarkedly di�erent languages interat with omprehension, or whether omprehensionis embedded in a task and, if so, how task fators might inuene omprehension.To summarise, an approah to teahing novie omprehension based on proess theorieswould require a unique, agreed upon theory whih an hart the progression fromnovie to expert (inluding \buggy" sideshoots), and is detailed enough to aount forvariations in omprehension \setting", inluding language and task fators. This seemsunrealisti, at least in the near future, whih suggests that provisions for novie supportmight be more usefully examined from another angle.2.7.2 Internal RepresentationsThis setion onsiders the relevane of internal representations of programming knowl-edge and mental representations of programs to supporting omprehension.An obvious di�erene between novies and experts is the amount of knowledge theypossess, in whatever form it is postulated to reside in memory. The impliations of thison the omprehension proess were disussed in the previous setion.Aording to Gilmore (1990), proponents of knowledge-based theories take the viewthat novie diÆulties arise from a lak of knowledge, and that teahing programminginvolves a passing on of expert knowledge. Unfortunately, studies show that this isnot the whole story: novies often have the neessary knowledge, but fail to use itwhen appropriate (Perkins and Martin, 1986). Gilmore alls for a more expliit fouson programming strategies, rather than stati knowledge, a proposal whih will beonsidered in the next setion.In ontrast to programming knowledge, mental representations are more ephemeral innature, and represent in some sense the end produt of program omprehension: they

38 CHAPTER 2: PROGRAM COMPREHENSIONare the internalisation, in some form, of an external program. Desribing the exatnature and struture of internal representations is a diÆult and thorny issue, namelybeause there is no diret aess to them. It is often suggested that mental representa-tions are neatly organised in memory, taking the form of a network of linked propositionsor shemas. These strutures sometimes seem more appropriate to mahines than tohumans: it an be hard to imagine, based on performane measures, that information isstored in suh an organised fashion. Many theories of program omprehension make animpliit supposition that the mental representation is available in \read-o�" form, withperformane being simply an outward display of an internalised model. Very few, ifany, onsider that task performane might require the reonstrution of a model of theprogram based on fragments of information. Perhaps mental representations are morelike external representations in that they omprise some information whih is readilyavailable, and some whih an be inferred, for example, by applying general purposereasoning mehanisms and prior knowledge.In any ase, there seem to be a number of reasons why mental representations mightnot be the ideal basis for novie omprehension support. Firstly, as mentioned above,there is a great deal of inertitude surrounding the form that they might take. Seondly,mental representations would need to be equated with performane measures in orderto determine if one partiular type of mental representation is \best" in partiular om-prehension situations (some researhers have attempted to do this, e.g. Pennington'sdesription of ross-referened mental representations (Pennington, 1987b), desribedin Setion 2.8.2). Finally, it is unlear how one would go about teahing a novie tohave a partiular mental representation of a program.2.7.3 External Strategies and Information ExtrationAs desribed above, Gilmore (1990) maintains that di�erenes between novies andexperts have as muh to do with programming strategy as with knowledge. He laimsthat experts are able to hoose from a range of omprehension strategies based on theharateristis of the partiular situation, inluding task requirements and the program-ming language in question. One outome of their use of di�erent strategies, aordingto Bellamy and Gilmore (1990), is their ability to make multiple representations ofa program (Pennington, 1987b). In other words, experts have the ability to extrat

CHAPTER 2: PROGRAM COMPREHENSION 39di�erent types of information from a program.Empirial evidene of this is provided by Holt et al. (1987), who found that the abil-ity to extrat information from the ode was a ruial determinant in performing amodi�ation task. Additionally, they found that student programmers are partiularlya�eted by external fators suh as the struture and ontent of the program whenattempting to do so.Fousing on the identi�ation of information in the ode as a basis for providing om-prehension support for novies has a potential advantage in that it is easier to emulateexpert behaviour in searhing for information in a program, than to attempt to teahstati expert knowledge representations to novies.The onept of information types is interesting from this perspetive in that, of the at-egorisations of the external features of a programming language whih were examined,information types seem to o�er the most omprehensive aount of information presentin, or derivable from, a program. The ategorisation o�ers onepts at varying levelsof granularity, and the funtion and ontrol ow ategories over information whih isentral to many other theories, namely, what a program does and how it does it.Information types would also appear to be language independent, in that onepts offuntion, data ow, et. our in most, if not all, programs, regardless of the languagein whih they are written.4 In other words, they relate more to the semantis of aprogram than to its syntax. From a pedagogial point of view, this is important:Shneiderman and Mayer make the point that \it is apparently easier for humans tolearn a new syntati representation for an existing semanti onstrut than to aquirea ompletely new semanti struture" (Shneiderman and Mayer, 1979, p. 222). Thiswould explain then, why the teahing of the �rst programming language is so ruial(or why the teahing of the seond and following languages are less ruial, dependingon how one looks at it). Providing support for information types, rather than forpartiular programming languages, fouses attention on semanti issues rather than onsyntati ones. In priniple, this should allow students to build up a semanti struturewhih is transferable between languages.Of ourse, information extration ours within the ontext of a strategy: it is important4 Although this would need to be orroborated with data from studies using a number of paradigms.

40 CHAPTER 2: PROGRAM COMPREHENSIONto know not only how to aess the information one needs, but when to aess it, andfor what purpose. Although strategy will not be the spei� fous of this thesis, it isaknowledged that strategi aspets must neessarily form a part of any well-roundedtheory of omprehension, and would also need to be addressed expliitly in teahingsituations.2.7.4 Program Comprehension and Information Types: Summaryand CommentsIn summary, it is felt that information types o�er a good basis for providing noviesupport: they are external, rather than internal, entities, whih makes them easierto identify and manipulate. Furthermore, they over a range of di�erent types ofinformation, and they fous on the semanti aspets of programs, making them languageindependent.To date, information types have primarily, if not exlusively, been used to investigateprogrammer's mental representations, and so onsidering applying them to teahingraises a number of questions. One issue to be onsidered is that of paradigm: if supportfor omprehension is to be based on the idea of piking di�erent types of informationout of a program representation, then it is worthwhile knowing if di�erenes in repre-sentation alter the diÆulty of the information extration proess. Di�erent paradigmsstress di�erent programming onepts, at least in theory. Even if information types areassumed to be language independent, there is likely to be an interation between theinformation type and the programming representation. The e�et of notation on infor-mation extration was onsidered in detail by Gilmore and Green , who state that \thestruture of a notation a�ets the ease with whih information an be extrated bothfrom the printed page and from reall" (Gilmore and Green, 1984, p. 47). Therefore,di�erent programming paradigms, to the extent that they highlight di�erent types ofinformation at the expense of others, should play a role in the extration of informationtypes. This idea has been partly investigated by Ramalingam and Wiedenbek (1997)in work that postdates the work desribed in the following hapter, however, morevaried forms of data would serve to on�rm their �ndings.Note that the reason behind an investigation of paradigm and information types is notone of \naturalness" or attempting to �nd the \right" programming language. Pe-

CHAPTER 2: PROGRAM COMPREHENSION 41tre and Winder (1988) make the point that when designing programs, experts devisesolutions in a personal pseudo language. One an algorithm has been developed, itis \translated" into the programming language to be used. Although this is a validritique of studies whih attempt to �nd \the" language whih will solve all of a pro-grammer's problems, it does not onit with researh on program omprehension: indesign situations, the designer is at liberty to hoose any design language whih he/shedeems appropriate or make up a personalised language. In program omprehension, arepresentation is imposed on the programmer, whose reasoning must start from thatrepresentation. If the representation had no e�et on reasoning proesses, then themath-mismath e�et (desribed in Chapter 4) would not be observed, and muh lessenergy ould be expended on �nding suitable/eÆient/useful representations.2.8 Information Types in Empirial WorkThis setion desribes a series of experiments based on the idea of Pennington's las-si�ation of information types desribed in Setion 2.6.2. Although the aim of all ofthese studies was an investigation of mental representations, their use of informationtypes as a basis for investigating omprehension is of interest. The work reported inthis thesis looks stritly at the inuene of programming paradigm on omprehension,and makes no laims about the nature of the programmer's internal representations.However, it uses the onept of information types in order to do so, and borrows fromthe methodology used in previous studies, therefore, they are desribed in detail below.2.8.1 Pennington - Experiment 1In a �rst experiment, Pennington gave 80 programmers (40 COBOL and 40 Fortran)short program segments to study. Between brief periods of study, they were requiredto perform one of the following tasks:� answer yes/no questions orresponding to the various information types;� write down as muh of the program as they ould remember (free reall);� on�rm whether they had seen a partiular program snippet or not. These wereprimed, either with snippets originating from the same ognitive unit aording

42 CHAPTER 2: PROGRAM COMPREHENSIONto the text struture (TS) analysis of the program, or the plan knowledge (PK)analysis, where text struture knowledge is organised around ontrol strutureprimes and plan knowledge is primarily funtionally oriented.Her results showed that TS primed items were answered more quikly, thus supportinga ontrol ow view of the program. Furthermore, in terms of the information typequestions, there was a signi�ant di�erene between ategories, with the lowest errorrates ourring on operations and ontrol ow questions. However, there are interestingdi�erenes aross languages. The error rates (from lowest to highest) for the FORTRANsubjets were:operations { ontrol ow { funtional { data ow { statewhile for COBOL programmers they were:operations { data ow { ontrol ow { state { funtionalIn other words, it appears that COBOL programmers make fewer errors on data owquestions than on all other types of questions apart from operations. Additionally,their data ow sores are higher than those of the FORTRAN programmers. Thus,there seems to be an interesting e�et of language, whih Pennington addresses tosome extent.2.8.2 Pennington - Experiment 2In Pennington's seond experiment, she used the top and bottom quartile omprehen-ders from her �rst study (with equal numbers of COBOL and FORTRAN program-mers).Subjets studied a moderate length program (with half of the subjets asked to \thinkaloud" while they worked), then summarised the program and answered a series ofomprehension questions. After performing a modi�ation task (again, with half of thesubjets verbalising), they summarised the program again, and responded to a seondlist of omprehension questions.

CHAPTER 2: PROGRAM COMPREHENSION 43Pennington found that error rates on the omprehension questions preeding the modi-�ation task were lowest for ontrol ow and data ow questions, and lowest for funtionand data ow questions after the task, partiularly for the \think aloud" group.In terms of the program summaries, Pennington was only able to analyse those ob-tained before the modi�ation task, as one they had ompleted the task, \program-mers tended to refer to their earlier summaries and then to onentrate on desribingtheir modi�ations rather than giving omplete program summaries as instruted."(Pennington, 1987b, p. 331).The summary statements were ategorised aording to type (data ow, ontrol ow,funtion), and level of detail (detailed program, domain, vague5). Pennington founda predominane of ontrol ow statements (57%) ompared to data ow (30%) andfuntion (13%). The perentages in terms of level of detail were: program level, 38%;detailed, 18%; domain, 23%; vague, 21%. Comparing upper and lower quartiles, Pen-nington found that lower quartile subjets made more statements whih were eithermore detailed, or more vague. In addition, the majority of funtional statements wereexpressed in terms of the domain, while the majority of proedural statements wereexpressed in terms of program objets. As mentioned above, it was not possible to om-pare the summaries written before program modi�ation with those written afterwardto see if there was a hange in statement type and level aross summaries.In a further analysis of the program summary data, Pennington (1987a) divided sub-jets into groups aording to the proportion of statements at di�erent levels of detailontained in their summaries, as follows:� Program level summaries: mainly operational and program level statements;� Cross-referened summaries: ontaining a more even distribution over operations,program and domain levels;� Domain summaries: ontaining a majority of domain and vague statements.She found that the majority of the upper quartile omprehenders produed summarieswhih were ross-referened, and that error rates were lower for the ross-referened5 Vague statements are de�ned by Pennington as statements without spei� referents, e.g. \thisstatement reads and writes a lot of �les" (Pennington, 1987a, p. 105).

44 CHAPTER 2: PROGRAM COMPREHENSIONgroup. She onludes that best performane is assoiated with representations whihare rihly ross-referened, utilising the relationships that hold between the real worldand the program world.One issue relating to this ategorisation is however open to question. The domainsummary group ategorisation ould potentially be skewing the results in favour ofross-referened summaries. Domain summaries are those ontaining either domain orvague statements. Although Pennington does not give exat �gures, the perentage ofvague statements in the domain group is over 50, while they appear to be around 10%for the program and ross-referened groups. Domain statements aount for just over20% of statements in the domain group, ompared to over 30% in the ross-referenedgroup. Vague statements would seem, given the information provided, to be statementswhih are harateristi of a lak of understanding of the program. The existene of adomain group in whih the predominant statement is of type vague, and the fat thatthe proportion of domain statements is lower than in one of the other (non-domain)groups, must surely have an unwanted e�et on the results. If program level statementsare harateristi of the �rst stages of omprehension, and funtional understandingfollows (and if one agrees that funtion and domain go hand in hand), then presumablya domain group should show good program understanding, as this would signify thatthey have reahed the seond stage of the situation model. It would be interesting tosee the omparison if only a majority of domain statements haraterised the domainsummaries, rather than a majority of vague ones: it may well be that the performaneof the domain group would have been found to be muh higher.Finally, Pennington analysed the verbal protools obtained from half of her subjets,both at a propositional level, and in terms of episodes, whih are formed by series ofpropositions. Of the episodes she identi�ed, she reports on onnetion episodes in whiha \trigger event" auses a hypothesis about the domain world to be formed. In lookingat three subjets, one from eah group, she found that the program level summarysubjet made almost no onnetions, staying at the level of program simulation, theross-referening subjet made regular onnetion episodes, with attempts to relate theprogram text to domain funtion, while the domain summary subjet shows numerousonnetion episodes, but these are 1) based on minimal triggers and 2) not veri�ed.Pennington onludes that the results provide evidene for a two-stage omprehension

CHAPTER 2: PROGRAM COMPREHENSION 45proess, whereby a textbase and then a domain model are onstruted.2.8.3 Corritore and WiedenbekCorritore and Wiedenbek (1991) arried out two studies similar to Pennington's seondstudy but using novie Pasal programmers. They were interested in �nding out hownovies di�ered from experts, and also whether the upper quartile performers were inany way like experiened programmers.In their �rst experiment, they asked 80 subjets to study small programs, and then towrite a program summary and answer �ve omprehension questions orresponding tothe �ve information types. The program was not visible while subjets ompleted thetwo tasks.Corritore and Wiedenbek found signi�ant di�erenes between question types in termsof the number of errors made. The order of error rates by question, from lowest to high-est, was: operations, ontrol ow, data ow, funtion and state. They also omparedthe performane of upper and lower quartiles, and found that the overall pattern wassimilar, but that the greatest disparity between quartiles ourred for state and funtionquestions.Program summaries were lassi�ed in aordane with Pennington's ategories, i.e. interms of type (proedural, data ow, funtion), and level of detail (detailed, program,domain, vague). They found 50% proedural, 27% data ow, and 23% funtional state-ments. No signi�ant di�erenes were found for quartile, nor was there an interationbetween quartile and statement type, however, there was a trend for more funtionalstatements in the upper quartile. In terms of level of detail, they found signi�antlymore detailed and program statements (aounting together for over 80% of the state-ments) than domain or vague statements.They onluded that the novie omprehension proess works from the bottom up,starting with a detailed onentration on operations and proedural information.In their seond study, Corritore and Wiedenbek looked at the performane of theupper and lower quartile omprehenders from the �rst study on a longer program (85lines).

46 CHAPTER 2: PROGRAM COMPREHENSIONIn terms of omprehension questions, they found inreased errors overall, and greaterdi�erenes between groups (for the lower quartile, the number of errors, from lowest tohighest was: ontrol ow, data ow, operations, state and funtion; for upper quartilesubjets, this was: operations, state, data ow, ontrol ow, funtion), with lowerquartile subjets performing surprisingly badly on operations questions.Examining the program summaries, they found that data ow statements made up thehighest proportion of statements, followed by proedural and then funtional. Withrespet to the lower perentage of proedural statements observed, ompared to the�rst study, they hypothesised that novies \lost ontrol" of the low level, proeduralinformation as the program inreased in size. In terms of level of detail, most statementswere detailed. Corritore and Wiedenbek hypothesise that the inreased length of theprogram made it more diÆult for novies to progress beyond a detailed, onreteaount of the program, and that they therefore miss out on the funtion of the program.At the same time, they feel that the problems with operational questions might alsoderive from the inreased program length.Finally, Corritore and Wiedenbek divided subjets into groups aording to their sum-mary strategies, as did Pennington. Rather than a predominane of ross-referenedstrategies among the upper quartile omprehenders, they found that the majority ofsubjets in both quartiles tended to use a program strategy. However, more upperquartile than lower quartile subjets used a domain strategy. It should be noted how-ever that a ross-referened strategy, as de�ned in this researh, is not neessarily onein whih the di�erent types of information are well integrated and oordinated: itmay simply denote a proedural statement followed by a funtional statement, withoutexpliit links between the information.2.8.4 Ramalingam and WiedenbekRamalingam and Wiedenbek (1997) arried out a very similar study to that of Cor-ritore and Wiedenbek, but foused on how di�erent languages might a�et novies'mental representations. They gave C++ novies programs written in either an impera-tive or an objet-oriented style. Again, subjets answered questions about the programorresponding to the �ve information types.Overall, the error rate was higher on objet-oriented programs than on imperative

CHAPTER 2: PROGRAM COMPREHENSION 47programs. However, they found quite striking di�erenes between the two types ofprogram. For imperative programs, the error rates per question, from lowest to high-est, were: ontrol ow, operations, state, data ow, funtion. For the objet-orientedprograms, the order was: funtion, data ow, operations, state and ontrol ow.On the basis of this data, the authors laim that the objet-oriented group formed adomain model of the program, while the imperative group formed a program model.Interestingly enough, this seems ounter to Pennington's two-stage theory, in that theobjet-oriented group appear to be developing a domain model in the absene of theprogram model on whih she postulates the domain model is based.Ramalingam and Wiedenbek go on to laim that the objet-oriented style is more\natural". While the evidene is ertainly intriguing, the laim seems over-on�dent.The data omes from one soure only: binary hoie questions, as no program sum-maries were olleted during the experiment. Additionally, given the higher overallerror rate of the objet-oriented group, it seems unlikely that this paradigm is more\natural" (assuming that suh a question is a useful one to ask). Nevertheless, thisstudy does point to the role of representation in program omprehension.2.8.5 Bergantz and HassellBergantz and Hassell (1991) used information types within a very di�erent methodologyin order to examine non-proedural languages, in their ase, Prolog. Their researhentred on a detailed analysis of a very small number of verbal protools made byindustrial programmers as they examined a medium length program with a view tomodifying it. The protools were analysed in terms of the frequeny of ourreneof information types (their information types di�ered slightly in that they onsideredfuntion, ontrol ow, data ow and data struture6), as well as their temporal ordering.Bergantz and Hassell found a high frequeny of funtion statements, and a shift fromdata struture to funtional statements as omprehension proeeded. They onludedthat this provided support for a two-stage model as postulated by Pennington. Thisould be debated, depending on whether one feels that data struture relationships doindeed reet a proedural understanding of the program: an alternative interpretation6 The latter being de�ned by Bergantz and Hassell as \the type and number of program objets thatare transformed during the ourse of program exeution" (Bergantz and Hassell, 1991, p. 318).

48 CHAPTER 2: PROGRAM COMPREHENSIONis that understanding is di�erentially inuened by language. Repliation of this studywould be insightful, as only three subjets were studied, and di�erenes in experienelevel between the three appear to have led to di�erenes in performane. Nevertheless,this type of methodology, whih takes an in-depth look at the proess of omprehension,o�ers inreased eologial validity ompared to other studies.2.8.6 A Summary of Information Types StudiesTable 2.1 provides an overview of the program omprehension researh arried outusing the information types approah. The researh is haraterised and omparedalong a number of fators. Note that beause the methodology used by Bergantz andHassell (1991) was so di�erent from that used by the studies reported above, it ouldnot usefully be inluded in the omparative table.

CHAPTER 2: PROGRAM COMPREHENSION 49Charateristis StudiesPenn1 Penn2 C&W1 C&W2 R&WSubjets experts experts novies novies noviesLanguage(s) Cobol Cobol Pasal Pasal C++Fortran Fortran7 (imperative orOO style)Program Length 15 200 12-15 85 \brief"(in lines)Comp. Questions yes yes yes yes yesFree Reall yes no no no noof ProgramReognition test yes no no no noProg. Summaries no yes yes yes noVerbal Protools no yes (half) no no noModif. Task no yes no no noTable 2.1: A Comparison of Experimental Work on Information Types2.9 Chapter SummaryThis hapter proposed a generi model of program omprehension, and onsidered anumber of theories of program omprehension and empirial work in terms of the om-ponents of the generi model. It then onsidered the impliations of eah approahfor providing support for novie omprehension, and alled for a fous on the externalfators a�eting program omprehension. It desribed reasons why the idea of infor-mation types might be useful in this ontext, and highlighted unanswered questions,namely the issue of how information types interat with paradigm in omprehension.Finally, previous empirial work on information types was reviewed.The next hapter reports on an experiment whih looks at the retrieval of informationtypes from a very di�erent programming language from the ones used in previous work:Prolog, whih is based on the delarative paradigm.
7 Although di�erenes between languages were not ompared.

50 CHAPTER 2: PROGRAM COMPREHENSION

Chapter 3Interations betweenComprehension andProgramming Language3.1 IntrodutionIn the last hapter, a review of the results from experiments by Pennington (1987b)and Corritore and Wiedenbek (1991) suggested that program omprehension ould beharaterised essentially in terms of ontrol ow and low-level operations (at least inthe initial stages of omprehension). This was evidened both by responses to programomprehension questions and written summaries of the program.However, the point was also made that this largely ontrol ow-oriented view of om-prehension stems from studies whih used ontrol ow languages suh as FORTRAN,COBOL and Pasal to test theories of omprehension. In that sense, the notation usedmay have had a onfounding e�et on omprehension, in other words, omprehensionof ontrol ow relative to other types of information was best beause the program-ming language being used was, by de�nition, highlighting the ontrol ow aspets ofthe program.One question whih stems from this researh is the extent to whih the style of languageinterats with the way in whih programs are omprehended. It is quite likely that thereis no generi method for omprehending a program, and that it will be dependent, atleast in part, on the language paradigm in whih the program is represented.The experiment desribed in this hapter investigates this issue using a language whih51

52 CHAPTER 3: COMPREHENSION AND PROGRAMMING LANGUAGEis radially di�erent from traditional proedural languages. A non-proedural lan-guage was hosen (Prolog), and an experiment broadly similar to that of Corritore andWiedenbek's was arried out.3.1.1 Claims for and against PrologProlog is a delarative language based on prediate logi. As suh, it is very di�erentfrom languages suh as Pasal or COBOL. Cloksin and Mellish (1981) state that it isdesriptive as well as presriptive, in other words, programming in Prolog is as muhabout stating what is known to be true about a given problem, than it is trying to�nd a step-by-step solution to the problem, a point ehoed by Kreutzer and MKenzie(1991). Aording to Cloksin and Mellish, the Prolog interpreter is dependent only inpart on the ontrol ow information whih the programmer spei�es.Early proponents of Prolog stressed the bene�ial nature of Prolog's delarativeness,partiularly for novies. In an introdution to Prolog for teahers, Ennals (1981) onsid-ers some of the many advantages of Prolog as being easily understandable by \ordinarypeople", and a good representational medium for real world problems and information.He stresses that users are able to write and understand simple programs immediately,and, in his words, quikly beome \promoted" to programmers. Kowalski (1979) sharesthis view: he states that logi based omputer languages are both mahine indepen-dent and human oriented, in ontrast with onventional languages, whih express thebehaviour whih the mahine is expeted to manifest. For this reason, he feels thatlogi based languages are, \easier to onstrut, easier to understand, easier to improve,and easier to adopt to other purposes' (Kowalski, 1979, prefae).Similar laims were made by Baron et al. (1985) for non-proedural languages in general.They feel that non-proedural languages are more appropriate, and even \natural" forproblem solving, as \any problem an be stated in terms of the onstraints to besatis�ed" (Baron et al., 1985, p. 127). There is an impliit assumption that if onefouses on the strutural aspets of the problem, the omputer will somehow take areof the proedural aspets.The strength of many of these laims was later tempered, both by empirial work andby the experiene of teahing Prolog: novies were found to have immense problems

CHAPTER 3: COMPREHENSION AND PROGRAMMING LANGUAGE 53learning Prolog. Apart from the omplexities of trying to translate problem spei�a-tions into a formal, logial language, many novies found Prolog's exeution ba�ing,partiularly the use of baktraking and uts. Taylor (1988) laimed that many novieproblems with Prolog ould be attributed to two soures: the logial struture of thelanguage, whih means that many oneptual diÆulties and problems of expressionin logi are also present in Prolog, and exeution, as novies �nd Prolog's automatiexeution mehanisms suh as baktraking diÆult to ontrol. Indeed, many Prolog\stories" (Pain and Bundy, 1987), suh as AND/OR trees or Byrd box models, and pro-gramming environments foused on exeution, as Dihev and du Boulay (1988) pointout. However, van Someren also desribes diÆulties in mathing data strutures, oruni�ation (van Someren, 1990a,b), and Dihev and du Boulay's data traing systemfor Prolog also suggests that novies have diÆulties in areas other than exeution.3.1.2 Impliations for the StudyThe use of Prolog as the vehile for a program omprehension study has various impli-ations: �rstly, the fat that it di�ers substantially from proedural languages shouldmean that di�erent types of information are made more salient (or onversely, are ob-sured). Seondly, the laims for and against Prolog will lead to di�erent preditionsabout the pattern of responses one might expet to observe: these are onsidered inturn below. Before doing so, however, it should be noted that the most spei� laimstend to refer to program onstrution rather than omprehension, even though mostauthors also ontend that Prolog programs are easy to understand. Additionally, manyof the laims are quite general, and slightly vague. They do not map diretly ontoinformation types, therefore some speulation is alled for.Based on the laims in favour of Prolog, one might expet to �nd higher error ratesfor ontrol ow, given that novie programmers will have been taught to fous on thedelarative aspets of the program, and leave the proedural aspets to the interpreter.Errors for operations questions should remain low, if only beause by de�nition theyfous on small segments of ode (one line or less aording to Pennington (1987b)).Likewise, it ould also be hypothesised that performane on data ow questions willbe quite good, as the presene of expliit arguments to \hold" data, and the lak ofmultiple assignment to the same variable, ould mean that data ow is more lear and

54 CHAPTER 3: COMPREHENSION AND PROGRAMMING LANGUAGEhene better understood by novies.Finally, the notion of state is relatively straightforward in Prolog in the sense thatprediates an, in priniple, be understood in isolation from other prediates. However,given the small size of the programs used in the experiment (usually only one prediate),this de�nition of state is not really appliable. State seems to have been de�ned ona more narrow sale by Pennington to orrespond to a time-slie desription of theprogram, e.g. \when proedure X is exeuted, does variable Y have a value?". Usingthis de�nition of state, it is unlear how performane on state questions will di�erbetween Prolog and proedural languages.If, on the other hand, one bases preditions for performane on the laims againstProlog, one might also expet an overly high error rate for ontrol ow questions, givendiÆulties with baktraking and other ontrol strutures. One might expet similarproblems with data ow questions: mathing data strutures, partiularly in reursiveprograms, is known to be problemati, therefore, this may o�set any bene�ts for dataow questions as desribed above. Assuming that novies ome to an understandingof the program's funtion via omprehension of lower level strutures, then problemswith ontrol ow and data ow may well have negative reperussions for performaneon funtion questions. Following this line of reasoning then, one might expet a highoverall error rate, with even higher error rates on ontrol ow, data ow and possiblyfuntion questions relative to the overall mean error rate. In terms of the programsummaries, one should �nd a di�erent pattern of distribution of statements of eahtype, with ontrol ow statements less frequent than in previous studies.To explore these issues, Corritore and Wiedenbek's methodology was taken and mod-i�ed for use with Prolog. Additionally, beause the fous of the experiment was on thee�et of di�erent programming languages on performane, rather than an attempt toapture novie mental representations of programs, there was a orresponding shift inemphasis away from memory based tasks to tasks whih required searhing throughthe representation for the neessary information.

CHAPTER 3: COMPREHENSION AND PROGRAMMING LANGUAGE 553.2 Method3.2.1 DesignThe experiment was a within-group, repeated measures design. Partiipants were pre-sented with �ve di�erent types of omprehension questions: funtion, data ow, ontrolow, operations and state questions. The questions (and the programs to whih theywere referred) were presented in random order aross subjets.3.2.2 SubjetsSeventy four subjets took part in the experiment. All subjets were �rst year un-dergraduate students at the University of Edinburgh, and were nearing the end of ahalf year ourse in Arti�ial Intelligene (AI1Bh) in whih Prolog had been taught.They had reeived approximately ten letures on Prolog, and had ompleted variousprogramming exerises, most of whih made use of reursive onstruts.3.2.3 MaterialsThe experiment took the form of a paper and penil exerise. Six programs wereused (the �rst being a pratie program). All programs were between 6{12 lines longand all were reursive. The programs used were hosen beause they implementeddi�erent types of reursion and inluded reasonably omplex passing of values be-tween arguments. In everyday use (with Prolog and with other languages), meaning-ful prediate and variable names provide information about the program's funtione.g. reverse(List, ReversedList), making it relatively easy to onstrut a \pseudo-funtional" aount of the program (e.g. \This program takes a list, reverses the orderof the elements and returns a reversed list). In order to avoid a potential funtionalbias, prediates and variables were purposely given meaningless or ambiguous names.Eah program was aompanied by �ve omprehension questions, orresponding to the�ve information ategories identi�ed in (Pennington, 1987b). These questions werepresented in random order, and followed by a request for a summary of the program.In order to be onsistent with Corritore and Wiedenbek's study, this question was

56 CHAPTER 3: COMPREHENSION AND PROGRAMMING LANGUAGEfuntionally oriented1, asking subjets to \write a summary of what this program does".A sample problem used (along with a line showing how it is alled) is shown below,while Table 3.1 shows the aompanying omprehension questions, answers and relevantinformation types:?- adjust([1, 3, 2, 7℄, Res).adjust(X, R):-adjust_sub(X, 0, R).adjust_sub([℄, _, [℄).adjust_sub([X|Xs℄, Y, [Z|Zs℄):-Z is X + Y,adjust_sub(Xs, X, Zs).Type Question Responsedata Is the variable Y always set to 0? Noops Is Z initially instantiated to 0? Noontrol Does the program reurse over all of the elements of the list? Yesstate When X is instantiated to 3, is the value of Y equal to 2? Nofuntion Does this program total the numbers in the list? NoTable 3.1: Comprehension Questions and Corret Responses for Sample ProblemThe programs were shown one to a page, along with the aompanying omprehensionquestions and request to summarise the program.A self-report questionnaire was also devised to determine subjets' prior programmingexperiene and familiarity with other programming languages.A full listing of the instrutions to subjets, all problems, aompanying omprehensionquestions, and the self-report questionnaire an be found in Appendix A.3.2.4 ProedureThe experiment was arried out during a one hour pratial session. Subjets weregiven a paket ontaining a short desription of the experiment, instrutions, a pratie1 Corritore, personal ommuniation.

CHAPTER 3: COMPREHENSION AND PROGRAMMING LANGUAGE 57problem, the remaining �ve programs in random order and the self-report questionnaire.After reading the desription and instrutions, subjets were given �ve minutes toomplete the pratie problem. Subjets then had the opportunity to ask questions oflari�ation before the experiment began.Subjets had �ve minutes to study eah program, answer the aompanying questionsand write a program summary before being asked to turn to the next program. Asmentioned above, beause the experiment was designed to look at the e�et of di�erentprogramming languages on performane rather than on their mental representations,it was deided that programs should be visible to the partiipants while they wereanswering the questions and writing the program summaries. If subjets �nished beforethe �ve minutes had elapsed, they were instruted to wait before turning the page untiltold to do so. Likewise, subjets were requested not to return to previous questions.Finally, subjets were asked to �ll out the questionnaire on programming knowledge.The experiment lasted approximately 40 minutes.3.3 Results3.3.1 Programming ExperieneOn the self-report questionnaire, 80% of subjets reported knowing three or more lan-guages2. 5% of the subjets knew only one language (Prolog).Of the subjets, 58% had studied a programming language in shool (prior to startinguniversity), with Basi, Comal (a language with a Pasal-like struture added to Basi)and Pasal being the most popular languages. 73% of the subjets were studyinganother language in addition to Prolog at university level: C was by far the moststudied language. All subjets apart from the four who knew only Prolog had someknowledge of a proedural language.2 Note that the questionnaire asked them to rate their level of understanding at either anovie/intermediate/expert level, so their \knowledge" of a language may not have been more thana passing familiarity in some ases

58 CHAPTER 3: COMPREHENSION AND PROGRAMMING LANGUAGE3.3.2 Comprehension QuestionsEah subjet answered �ve questions about �ve programs (25 questions in total). Eahquestion represented one information type (FUNC, CF, DF, OPS, STA), therefore,there were �ve separate measures for eah information type.Figure 3.1 shows the perentage of errors per information type. The fewest errorsourred for ontrol ow questions (CF), followed by operations (OPS), state (STATE)and funtion (FUNC), with data ow questions (DF) having the highest rate of errors.
Figure 3.1: Perentage of Errors by Information CategoryTable 3.2 shows the mean sore (out of 5) for all subjets per question type, along withstandard deviations.Ss (n=74) Question TypesFUNC CF DF OPS STMean 3.47 4.49 2.84 3.97 3.92Std Dev 1.08 0.67 1.18 1.10 1.06Table 3.2: Mean Sores and Standard Deviations for the 5 Comprehension QuestionTypesA one-way ANOVA for repeated measures revealed that there was a signi�ant di�er-ene in the number of errors between information ategories (funtion, ontrol ow,data ow, operations, state), F(4,292)=35.10, p < .001. Post-ho pairwise omparisonsbetween mean errors were made using the Bonferonni adjustment as reommended for

CHAPTER 3: COMPREHENSION AND PROGRAMMING LANGUAGE 59within-subjets repeated measure designs in (Tabahnik and Fidell, 1983). Therefore,only probabilities of less than .005 were onsidered to be signi�ant.Table 3.3 summarises the results of the paired t-tests.Info Type DF FUN ST OPS CFDF - t=-4.31 t=-7.00 t=-7.53 t=11.51p<.001 p<.001 p<.001 p<.001FUN - - t=-2.75 t=-2.83 t=7.14- - ns ns p<.001ST - - - t=.36 t=4.49ns p<.001OPS - - - - t=4.43p<.001CF - - - - -Table 3.3: Results of Pairwise ComparisonsThere was a signi�ant di�erene between data ow questions and questions relating toall other information types, and between ontrol ow and all other types. The remainingomparisons (funtion-state, funtion-ops, and state-ops) were not signi�ant.In line with Corritore and Wiedenbek (1991), the sores of the lower and upper quartilesubjets were examined separately to investigate whether there were di�erenes in thepattern of response. Table 3.4 shows the mean number of errors per question type forsubjets in the top and bottom performing quartiles, with standard deviations.Quartile Question TypesFUNC CF DF OPS STUpper Quartile (n=18)Mean 4.50 4.78 4.17 4.56 4.78Std Dev 0.62 0.43 0.79 0.62 0.55Lower Quartile (n=18)Mean 3.00 3.94 1.83 2.72 3.00Std Dev 1.24 0.87 0.99 1.13 1.19Table 3.4: Mean Sores and Standard Deviations for the 5 Comprehension QuestionTypes: Upper and Lower QuartileA omparison of upper and lower quartile mean perentage of errors is shown in Fig-ure 3.2.3 Standard error bars have not been inluded for reasons of readability, however,3 Note that a histogram would be, stritly speaking, more appropriate for ategorial data, however,it is felt that this method illustrates the relationship between information types both within andaross groups in a more salient manner

60 CHAPTER 3: COMPREHENSION AND PROGRAMMING LANGUAGEstandard deviations for mean sores on question types for the upper and lower quartilesan be found in Table 3.4.
Figure 3.2: Perentage of Errors by Information Category (Quartiles)The two quartiles show roughly the same response pattern. Compared to upper quartilesubjets, lower quartile subjets make relatively more errors on data ow questionsompared to other question types. On ontrol ow, in ontrast, lower quartile subjets'performane approahes that of the upper quartile subjets (Table 3.4).A one-way ANOVA for repeated measures performed on eah group (lower, upper quar-tile) revealed a highly signi�ant di�erene in the number of errors between questiontypes for the lower quartile (F(4,68)=7.99, p < .001), and a signi�ant di�erene forthe upper quartile (F(4,68)=2.70, p < .04).None of the post-ho pairwise omparisons between question types were signi�ant forthe upper quartile. For the lower quartile, ontrol ow and data questions had thelowest and highest number of errors respetively. Therefore, the means on ontrol owquestions and data ow questions were ompared against the means of all other ques-tion types, again using the Bonferonni adjustment. Both omparisons were signi�ant(ontrol ow omparison: t=5.41, p < .001, data ow omparison: t=-4.92, p < .001).

CHAPTER 3: COMPREHENSION AND PROGRAMMING LANGUAGE 613.3.3 Correlation between Prior Programming Experiene and Per-formaneMeasures of previous programming experiene were orrelated with performane onthe experiment. Given that the questionnaire was relatively simple, muh of the in-formation olleted was not deemed to be disriminating enough for further testing.However, two measures were hosen for investigation: the number of languages known,and self-ratings of \expert" for knowledge of any programming language.4There was a highly signi�ant orrelation between number of languages known andsores on funtional questions (rs = .33, p < .005).Likewise, a self-rating of \expert" orrelated positively with total sore (rs = .27, p <.03) and with sores on funtional questions (rs = .32, p < .005).Neither measure (number of languages known or expert rating in a language) orrelatedsigni�antly, either positively or negatively, with any of the other question types.3.3.4 Program SummariesAnalysis of the program summaries presented a number of problems, related primarilyto the fat that the methodology used in previous studies was not reported in suÆientdetail to allow it to be repliated. A new methodology was required, in partiular, adetailed oding sheme for analysing program summary statements. The methodologywhih was developed is presented in Chapter 8, along with a full disussion of therepliability issue. The results of the analysis for this study are provided in Chapter 9.3.4 DisussionThe results of the experiment are surprising in many ways: partiipants sored higheston ontrol ow and operations questions, while data ow and funtion questions werethe most problemati. The results were broadly similar for the upper and lower quar-tiles: ontrol ow questions showed the lowest rate of errors, with data ow showingthe highest. Therefore, a \proedural bias" seemed to manifest itself as muh in thisexperiment as in previous experiments whih used proedural languages.4 Later versions of the questionnaire, e.g. the one used in Chapter 7, olleted more �nely-grainedinformation, allowing for a number of other orrelations.

62 CHAPTER 3: COMPREHENSION AND PROGRAMMING LANGUAGEFurthermore, when examining sores within quartiles from the upper and lower quartilesubjets separately, there were no signi�ant di�erenes between question types for theupper quartile. On the other hand, for the lower quartile subjets, ontrol ow errorswere signi�antly lower than all other types, while data ow errors were signi�antlyhigher, suggesting that programming skill is an additional fator.At �rst sight, these results seem to provide evidene for the proedural mental rep-resentation postulated by Pennington, at least in the initial stages, and exhibited bynovies (Corritore and Wiedenbek, 1991).From an eduational point of view, �ndings suh as these seem to suggest that the hoieof teahing language (partiularly, the �rst language) isn't as important as might bethought: it doesn't seem to inuene the type of information on whih people fous toa great extent. Seen from the perspetive of urriulum planning, this is reassuring:hoie of language will not \damage" students in some way, or prevent them fromreahing a general understanding about programming whih goes beyond the languagein whih a program is implemented. From the representational point of view, the resultsare more omplex: there seem to be other fators at work apart from the proess ofattending �rst and foremost to the partiular information that is highlighted by therepresentation in question.Given the sale and the sope of the experiment, it seems wise to onsider possiblealternative explanations for the results observed, and the impliations these mighthave. These are disussed in the following setions.3.4.1 Impurities of PrologAs disussed in Setion 1, the advantages for novies of Prolog's delarative paradigmand its novel oneptualisation of what de�nes a program were muh touted. However,empirial work aused novie diÆulties with Prolog to be well doumented. ThesediÆulties may result in part from the fat that a delarative reading of Prolog is notalways suÆient to produe well formed and eÆient programs.For example, students beginning Prolog are often introdued to the \family database"in the �rst week, with a very neat delarative reading of the relationships whih holdbetween family members. Shortly after this, they begin to learn that programming in

CHAPTER 3: COMPREHENSION AND PROGRAMMING LANGUAGE 63a delarative way does not always produe the desired results, and that, for example,inorret lause plaement in one's �rst reursive program to �nd a person's anestorsmay ause the program to loop inde�nitely. The fous thus shifts to ontrol ow, orhow to lay out programs in suh a way that things happen in the desired order. Cutsonly reinfore this emphasis on ontrol ow. The lak of expliit ontrol ow in theprogram may have a paradoxial e�et: rather than allowing students to not worryabout proedural details, it may fore them to fous on it even more and to highlight itas a entral issue so as to avoid unwanted behaviours and outomes. Therefore, Prolognovies may already have expended muh e�ort on understanding ontrol ow to thepoint where it is not problemati for them.Data ow questions are a di�erent matter. In one senario, one ould laim that dataow is in some ways easier to apture: arguments are expliit, and named in all lauses,and one an follow the ow of data by traing argument names through the program.Apart from \assert" and \retrat" operations, inputs and outputs are learly visible.However, this would not explain the diÆulties with data ow whih were observed.The ontrol ow argument (that beause ontrol ow is diÆult, novies spend moretime getting to grips with it) breaks down when applied to data ow: if it is similarlydiÆult, then why would one observe low rates of errors for one and not the other?A speulative answer to this question onerns the interrelatedness of data and ontrolow. Firstly, the ontrol ow in the programs used in the study was quite straightfor-ward: no uts were used, and exeution required almost no use of baktraking. Thedi�erent types of reursion used in the programs (e.g. non-tail reursion, embeddedreursion) were the only aspets of ontrol ow whih were potentially problemati,and admittedly, reursion has long been reognised as being oneptually very diÆultfor novies to master.When disussing data ow earlier, it was stated that diÆulties with data ow mani-fested themselves in uni�ation, or a lak of understanding about how data struturesmathed with eah other. Misoneptions about uni�ation will be exaerbated whenprograms are reursive, as reursive programs often involve extensive uni�ation in or-der to build up an output list. In fat, George (1996) ontends that many diÆultiesommonly thought to be assoiated with reursion are in fat a result of other diÆul-ties, among them, misunderstandings about variable updating. He gives an example

64 CHAPTER 3: COMPREHENSION AND PROGRAMMING LANGUAGEof `delayed invoation update' in whih students erroneously think that the return ofontrol to a suspended proess auses a variable's value to be hanged to the parametervalue of a previous invoation.In the experiment reported here, it may be that the design of the programs and ques-tions were suh that, on the one hand, the ontrol ow questions were tapping into gen-eral sequening information about reasonably simple exeution patterns, rather thanspei�s about the working of reursion. On the other hand, the data ow questionsmay have been tapping into the diÆulties with understanding reursion, via questionswhih asked about uni�ation at various points in the reursive proess, thus leadingto a high frequeny of \data ow" errors.3.4.2 The Interation between Prolog Struture and InformationTypesIn addition to Prolog's \impurities" or diÆulties, there is an issue of how the sur-fae struture of the Prolog language might interat with information types. Green(1989) �rst oined the term \ognitive dimensions" to refer to a framework for ate-gorising various ognitive aspets of a wide range of notations, inluding programminglanguages. In an appliation of ognitive dimensions to Prolog, Green (pear) makes anumber of points whih are appliable to program omprehension and/or onstrution.One of the ognitive dimensions most relevant to Prolog is role expressiveness, whih, asGreen and Petre (1996) put it, desribes how easy it is to answer the question, \Whatis this bit for?". Role-expressiveness will inuene the degree of diÆulty involved inbreaking a program down into its omponent parts and determining the relationshipsbetween parts. Role-expressiveness is presumed to be high when a notation inludesfeatures suh as meaningful identi�ers, beaons, and grouping mehanisms (with thelatter inluding modularity and seondary notation). Green starts from the premisethat omprehending a program involves parsing the program bak into its \ognitiveomponents", and draws on theories of natural language parsing to argue that parsingrelies on lexial ues.Aording to Green, programming in Prolog involves ombining a relatively limited setof notational elements in a variety of ways, as opposed to other programming languageswhih have a larger initial voabulary. The result is that programs with very di�erent

CHAPTER 3: COMPREHENSION AND PROGRAMMING LANGUAGE 65behaviour may look remarkably similar, beause they ontain the same basi elements,arranged di�erently (a point whih will be onsidered again in Chapter 9).This implies that the lak of lexial ues, suh as ontrol ow keywords or the use ofindenting, will make it harder to parse a Prolog program than a similar program inanother language, a hypothesis whih was borne out in an unpublished study by Green.The impliation for omprehension is that Prolog may be based on a di�erent semantimodel of programming than Pasal or Basi, but Prolog's surfae struture does notmake these di�erenes salient in a way whih allows for easy retrieval.Prolog's lak of role expressiveness would explain why it is generally found to be diÆultto understand, but there may also be an interation between role expressiveness andinformation types. Given that information types are a way of desribing informationwhih is present in the ode (but may need to be inferred), then it may be possibleto link various \roles" with the information types they signal. One might hypothesise,�rstly, that languages ontaining role expressive features whih an be mapped toa given information ategory should failitate the retrieval of that information typefrom the program, and seondly, that information types with the greatest number ofrole distintions (within limits, of ourse) in a single information ategory may likelyfailitate retrieval. Given that Prolog will have a very limited number of roles perategory (or perhaps none at all in some ases), then one would expet to �nd that theextration of information types from a Prolog program is diÆult (and perhaps moreso, aording to the information type). The idea of mathing roles to information typesis purely speulative however, and would require further thought and testing.3.4.3 Proedural TaintingAnother possible explanation for the results obtained is in terms of \proedural taint-ing": only four of the seventy four students had not learned any other language thanProlog, and for the other seventy, at least one of the languages learned had been pro-edural.Furthermore, for those students who knew more than one language, those who learnedProlog before a proedural language were quite rare, if not non-existent5. Certainly all5 It is impossible to tell with preision, as students who reported that they taught themselves alanguage did not reord when that language had been learned.

66 CHAPTER 3: COMPREHENSION AND PROGRAMMING LANGUAGEstudents who had learned Prolog in seondary shool were also learning a proeduralprogramming language onurrently.These fators may have led students to regard Prolog through a proedural �lter, andto fous on proedural information as a priority. The fat that novies bring a ertainamount of unwanted baggage from other languages with them to new languages is welldoumented (an aount of this an be found in (van Someren, 1990a), partiularlywith respet to transferring from Pasal to Prolog). It may be that sine students areprimarily exposed to proedural languages, they bring this bias with them to Prolog,attempting to map Prolog onto a proedural superstruture, with the result that thisinformation is looked for as a �rst step.Unfortunately, �nding subjets who have learned a delarative language but not aproedural one is extremely diÆult, and will probably beome more so.3.4.4 Teahing PratiesAnother issue is the question of teahing praties, or what the dominant ulture,in this ase the university, deides is important. In a post-experiment questionnaireadministered to students who took part in a later study on program omprehension andinformation types (Good and Brna, 1998a), students remarked on what they were taughtto attend to, and the types of responses that leturers were looking for on open-endedquestions, or in program omments. Students taking joint degrees in omputer sieneand arti�ial intelligene (68% of those taking part in the study), noted that they weretaught in omputer siene ourses to explain exatly how a program worked, thusslanting their pereption towards a proedural view of the program. Prolog teahingmay not be immune from this either: students an (and do) use meaningful prediateand variable names to fudge a reasonable desription of the program, therefore theyare often enouraged to provide evidene of in-depth understanding by explaining thehow of the program in addition to the what.3.4.5 Novie Prior ExperieneWhen looking at novie programmers in a partiular language, it is worth rememberingthat they often have some experiene in other languages. Although the self-report

CHAPTER 3: COMPREHENSION AND PROGRAMMING LANGUAGE 67questionnaire provided only a glimpse of subjets' prior knowledge, it is interestingthat both the number of languages known and subjets' self-ratings of \expert" inany language orrelated positively with both their overall sore, and their sore onfuntional questions. This suggests that subjets with more experiene were better ableto infer the funtion of the program. These results ould also lead to speulation as tothe relationship between level of knowledge and diretion of proessing (e.g. perhaps abottom-up strategy is being used, but only subjets with more programming experienereah the stage of integrating low-level information into a more abstrat, funtionalview), but more investigation would be needed in order to test this hypothesis.3.4.6 Ease of AnsweringOne issue whih does not seem to have been onsidered by either Pennington or Cor-ritore and Wiedenbek is the relative ease with whih eah of the questions an beanswered. It may be that questions are easier to answer not beause the informationrequired to answer the questions happens to have been stored as the dominant mentalrepresentation, but simply beause reonstruting the answer to the question from themental representation of the program (whatever it may be), requires fewer steps.It seems likely that one's mental representation of a program is not a single entity,but a loose bag of onepts and ideas in some form, and that answering a question, ortrying to write the program from memory, involves a reonstrution proess omprisinga variable number of steps, an idea whih is shared by diSessa (1988).This issue is slightly di�erent for the urrent study, due to di�erenes in methodology:Corritore and Wiedenbek's study was very muh dependent on memory, with studentsrequired to use what they had remembered about the program to try and answerquestions about the program. The present study, where the programwas always in view,was more foused on the searh aspet: students ould searh through the program toidentify the relevant part(s) of the program with respet to the question. However, thismay in fat make the problem easier to address: it is more straightforward to identifythe neessary reasoning steps on an external representation than it is to hypothesisewhat might be the state of the student's mental representation and the steps neededto formulate an answer to a given question.The most pertinent example here is that of operations, whih aording to Pennington

68 CHAPTER 3: COMPREHENSION AND PROGRAMMING LANGUAGE(1987b) orrespond to a single statement or less. Answering a yes/no question on op-erations would seem to entail identifying the appropriate line of ode. Questions whihfous on data ow in a program may involve identifying several points in the ode wherea data objet has gone through a transformation, and attempting to reonstrut theentire transformation proess in a oherent manner, a proess whih seems ognitivelymuh more intensive. Therefore, questions whih have low rates of errors may reetmore about the omplexity of the steps involved in answering the question.3.4.7 What is Programming?This is a fundamental question whih is at the heart of this researh. The questionentres on the nature of programming, or more importantly, the ways in whih program-ming is oneptualised. Do people, partiularly novies, pereive programs as ativeentities whih ditate how to do things, and in what order to do them? Or do theylook at programs as being desriptions of an overall goal, with data being transformedin order to ful�ll this goal?Pair (1990) would maintain the former, laiming that most people equate programmingwith desribing alulations. He goes on to say that programming for most beginnersinvolves mental exeution, or a mental image of all of the alulations involved, ratherthan abstrat funtion de�nitions. Likewise, researh by Eisenberg et al. (1987) on pro-edures in Sheme, whih are in fat \�rst-lass objets", suggests that novies werevery relutant to onsider proedures as objets. Rather, they saw them as ative en-tities whih are ready to operate on stati data, or as the authors so dramatially putit, \as bundled-up `omputational energy' waiting to be unleashed" (Eisenberg et al.,1987, p. 20). Although this desire to see proedures as ative entities aused ompre-hension problems for the novies, it may be a deep-seated one, with its anteedents ineveryday life.This point is niely illustrated by Pennington (1987b), who desribes a reipe, normallythought of as a set of proedural instrutions omplete, in some ases, with parallelisa-tion (\while the ustard bakes, make the raspberry oulis . . . "), in terms of data ow.In the ase of a reipe for fettuini arbonara, the heese moves out of the refrigerator,is grated, and divided into two parts. One part goes to the table, while one goes intoan egg mixture. Likewise, the noodles go into a pot of boiling, salted water, et. (one

CHAPTER 3: COMPREHENSION AND PROGRAMMING LANGUAGE 69an imagine a desription of the egg transformation from raw to beaten to ooked . . .).The point about this is that while a data ow desription of ooking is an auratedesription of the hanges in the ingredients over time, it is not neessarily a useful onefor the ook.The same may be true in programming: while data objets obviously undergo trans-formation, from a ognitive point of view, it makes more sense to think in terms of theations whih aomplish this. The bene�ts in doing so may be so great that hangingthe representation of a program (e.g. from proedural to delarative) will not hangethe oneptualisation of what a program is. Researh on query languages shows thatusing a proedural language allows subjets to write diÆult queries more easily thanwith a nonproedural language (Welty and Stemple, 1981). There is also evidene tosupport the view that requiring people to think proedurally an help them to solvealgebra word problems (Soloway and Ehrlih, 1982), although it is not lear whetherproedural thinking refers to using a proedural paradigm or simply the at of pro-gramming itself. Furthermore, this e�et has not been onsistently observed (Olsonet al., 1987).3.5 Chapter SummaryThis hapter reported on a study whih investigated the relationship between program-ming paradigm and omprehension, using the onept of information types in order tomeasure omprehension. The study used a methodology very similar to that used byCorritore and Wiedenbek (1991), but looked at Prolog, a delarative language, inthe plae of a proedural language. It was shown that even when a non-proedurallanguage is used, a proedural bias still seems to exist, with students showing lowererror rates for proedural and operations questions. Reasons for why this might beso were disussed, inluding partiular features of the non-proedural language, issuesof teahing ontext and experiene, prior knowledge, ognitive fators, and questionsabout the nature of programming itself. An analysis of the program summary data,obtained by asking students to write a free-form aount of the program, is presented inChapter 8, and suggests that novie omprehension is more subtle than their answersto the omprehension questions might imply.

70 CHAPTER 3: COMPREHENSION AND PROGRAMMING LANGUAGEOne issue not onsidered in the hapter was the \math" between the language and theinformation being represented. While it might be assumed that proedural languageshighlight proedural information in some way, it is not lear whih types of informationare highlighted by Prolog, as there is no diret math between information types anddelarativeness. Better results ould likely be ahieved by investigating languages whihare more losely tied to one or more information types: this issue is desribed in thefollowing hapter.

Chapter 4The Math-Mismath Conjetureand Visual ProgrammingLanguages4.1 IntrodutionThe experiment reported in Chapter 3 used information types to look at a languagewith an underlying delarative paradigm. In Chapter 6, we will examine data ow andontrol ow visual programming languages (VPLs) using the math-mismath onje-ture. The two studies have similar objetives in that they aim to shed light on therole played by the programming paradigm in omprehension. This goal of this shorthapter is to provide a methodologial and theoretial bridge between the experimentsby explaining shifts in the methodology and fous of the studies, their empirial basisand underlying theory, and any onsequenes arising from these deisions. The hapterfollowing this one will review the literature relevant to the experiment to be desribedin Chapter 6 in more detail, and desribe the design of the materials.The Prolog study desribed in Chapter 3 highlighted a number of experimental andmethodologial issues, one of the primary ones being that generi laims for the bene�tsof a language do not neessarily lead to testable hypotheses. When investigating theways in whih the delarative paradigm (embodied here in Prolog) might inuene theextration of information types during program omprehension, it appeared that laimsabout Prolog's bene�ts on the one hand, and results from empirial studies of Prologon the other, led to very di�erent hypotheses, and that these hypotheses were bothdiÆult to reonile and to re�ne to a degree suitable for testing.71

72 CHAPTER 4: MATCH-MISMATCH AND VPLSFurthermore, it beame lear that it is diÆult to ompare results from two studies(the Prolog study and the study by Corritore and Wiedenbek (1991)), even if theyshare a very similar methodology. Unless the two experiments are administered bythe same person who pays areful attention to minimising the di�erenes betweenstudies, they are likely to di�er in ways whih, however subtle, will have some e�eton the results. In addition, a di�erene in the overall fous of the study may leadto hanges in the proedure. In this ase, the subjet of interest moved from theprogrammer's mental representation of a program and a veri�ation of the two-stagetheory of program omprehension to an interest in the e�et of the representation onprogram omprehension. Not using exatly the same experimental materials will lead toa reinterpretation of the priniples the materials are designed to embody, for example,deiding exatly what data ow is in pratial terms, and how it an best be measured.To summarise these points:� there is a need for testable hypotheses about information extration from pro-gramming languages, and these hypotheses are diÆult to derive from generalknowledge about a language;� there are problems with omparing results aross studies;� a main fous of interest in this researh is in the e�et of a programming paradigmon omprehension.Given the above, it seems sensible to work within a framework whih allows for theformulation of hypotheses relating more diretly to representation and omprehen-sion, and in whih within-study omparisons of representations an be made. Themath-mismath onjeture, put forward by Gilmore and Green (1984), o�ers a way ofaddressing these needs.The onjeture, whih will be explained in detail in Setion 4.2 along with relatedwork, has ertain requirements. The primary ondition is the use of two (or more)relatively onstrained languages whih vary only along the dimension of interest, so asto avoid possible onfounds. Given that it would be virtually impossible to �nd twoommerially available languages whih meet this riterion, miro-languages an bedesigned and implemented, a solution whih has been used in previous studies (Green,

CHAPTER 4: MATCH-MISMATCH AND VPLS 731977; Gilmore and Green, 1984). Setion 4.3 disusses the use of miro-languageswith respet to the ultimate aim of providing omprehension support for novies, andonsiders how the requirements of the experiment and the aims of the support systemmight be reoniled.4.2 The Math-Mismath Conjeture4.2.1 Development and Previous WorkThe math-mismath onjeture �rst appeared in a paper by Gilmore and Green (1984),where it was laimed that \the struture of a notation a�ets the ease with whihinformation an be extrated both from the printed page and from reall" (p. 47).Green et al. (1991) provide a restatement of the hypothesis as follows: \the onjetureis simply that performane is best when the form of the information required by thequestion mathes the form of the program" (p. 125). The general onept that �ttingthe representation to the task is bene�ial for problem solving is widely aepted,and many ommon examples of the math (or otherwise) between representation andtask are niely illustrated by Norman (1993). Although the idea may seem intuitivelyobvious, it has little explanatory or preditive power when expressed at this level ofabstration, and must therefore be de�ned in operational terms. This has been donein pratie by Green and his olleagues, whose empirial work has tended to fous onpreise notations and omprehension tasks.The math-mismath onjeture grew out of work by Green (1977) on di�erent rep-resentations of onditional statements in proedural miro-languages. Gilmore andGreen (1984) extended this work to investigate various ompeting hypotheses aboutprogram omprehension, namely 1) that some languages are universally \ognitivelyunwieldy", and would hene lead to omprehension diÆulties aross tasks; 2) thatprograms are translated into a unique mental representation, and that some languagesmake this translation proess easier than others, or 3) that the mental operations re-quired by ertain tasks are made easier or harder by some notations (the so-alledmath-mismath e�et).Gilmore and Green (1984) investigated two types of textual notations: proedural no-tations, whih an be thought of as having an \if then" struture, and delarative

74 CHAPTER 4: MATCH-MISMATCH AND VPLSnotations, whih they feel are more similar to prodution systems. Based on Green'sprevious work on proedural languages, they hypothesised that proedural notations fa-ilitate aess to sequential information (e.g. \when ation X is performed, what mightthe next ation be?"), while delarative notations highlight irumstantial information(e.g. \in what irumstanes will ation X be performed?"). They further hypothe-sised that mathed pairings, i.e. a proedural program with a sequential question ora delarative program with a irumstantial question, will lead to better performanethan unmathed pairings. This hypothesis was largely supported by the data, at leastfor the questions they onsidered.The math-mismath onjeture was then extended to visual languages in an experi-ment whih looked at textual and visual representations of proedural and delarativemiro-languages, pairing them again with sequential or irumstantial questions (Greenet al., 1991; Green and Petre, 1992). A math-mismath e�et appears to have beenfound, both overall and for the textual and graphial languages.Moher et al. (1993) repliated this study using Petri Nets as VPLs. They found thatthe math-mismath held for the textual representation, but not for the graphialrepresentation, suggesting that there are perhaps other fators at work.In a parallel line of researh, the onept of \ognitive �t" has been investigated byVessey and her olleagues in a number of domains (Vessey and Weber, 1986; Vessey,1991; Sinha and Vessey, 1992). Sinha and Vessey desribe ognitive �t as an emer-gent property of a model for problem solving. The model \views problem solving asthe outome of the relationship between the problem (or external) representation andthe problem-solving task, whih are haraterized for the purposes of this analysis bythe type of information eah emphasizes" (Sinha and Vessey, 1992, p. 369). A mathbetween the information highlighted in the representation and task leads to the use ofsimilarly mathing problem solving proesses (and a mathing mental representation).In the mismath ase, the mental representation will be formed either on the represen-tation or on the task. In either ase, mental transformations of the information will beneessary in order to solve the task.The ognitive �t hypothesis has been applied to various domains: Vessey (1991) om-pared the use of tables and graphs for symboli versus spatial reasoning, based on thehypothesis that tables support analyti proesses while graphs support pereptual pro-

CHAPTER 4: MATCH-MISMATCH AND VPLS 75esses. Support for the ognitive �t theory was found based on analysing the studiesreported in the tables and graphs literature.In the psyhology of programming �eld, Vessey and Weber (1986) arried out an ex-periment similar to that of Gilmore and Green (1984), looking at irumstantial andsequential questions using strutured English, deision tables and deision trees. De-ision trees were best for irumstantial questions, while deision trees and struturedEnglish were equally good for sequential questions. Sinha and Vessey (1992) later ap-plied the notion of ognitive �t to the domain of reursion and iteration. Using Lisp andPasal as the programming languages in their investigation, they found the languageitself had a muh stronger e�et on subjets' performane than did ognitive �t. Thisstudy di�ers from the math-mismath studies of Green and his olleagues in that itlooked at oding rather than omprehension: it may be that this hange in senariointrodues a number of other variables whih dilute the math-mismath or ognitive�t e�et.The onept of ognitive �t is interesting, �rstly, beause it has been extended to on-sider not only the �t between the problem representation and task, but also betweenthese fators and the problem solving tool. Seondly, it has looked at both omprehen-sion and onstrution tasks in various �elds, e.g. program understanding and programoding.4.2.2 Math-Mismath, Information Types and ParadigmsChapter 3 showed that looking at di�erenes in language paradigms through di�erentinformation types `lenses' is not straightforward. New paradigms tend to be aompa-nied by general laims for the bene�ts of the language, rather than laims whih arespei�, and more importantly, testable. These general laims do not relate to infor-mation types in ways whih allow preditions to be made: more detailed statementsare neessary.One possible way of takling this problem is to investigate paradigms whih ould besaid to relate more diretly to information types. Pairing a paradigm with its orre-sponding information type should make it possible to formulate more spei� hypothe-ses as to the relative bene�ts of the pairing. Furthermore, looking at two paradigms inthe same study avoids the diÆulties of omparing results from two separate studies (as

76 CHAPTER 4: MATCH-MISMATCH AND VPLSwas the ase with the Corritore and Wiedenbek (1991) study and the study reportedin Chapter 3). Within-study omparisons of programming paradigm ould eliminate toa large extent extraneous variables, and allow one to ensure that onditions are similarfor both groups.Looking at the math between paradigm and information type is e�etively a pratialrestatement of the math-mismath onjeture, although it makes various assumptionsabout the nature of the relationship between paradigm and information type. Pen-nington's work on information types stemmed from her notion of program abstrations(Pennington, 1987b). Program abstrations are reated by analysing a sample programin terms of one type of information. The abstrations an be represented graphially,with the resulting representation highlighting one set of relationships present in theprogram while obsuring others. These other relationships are nonetheless derivable,e.g. by looking for repeated data objet names, data ow an be inferred from a on-trol ow abstration. Pennington stresses that the abstrations are based on formalanalyses developed by omputer sientists.In order to ompare two paradigms based on information types, it is neessary to makethe assumption that a given paradigm ats in some way as a program abstration, inother words, that a paradigm highlights the information type orresponding to it. Thisis very muh an assumption, even if it appears to make intuitive sense. Therefore,in a language based on ontrol ow, it is assumed that ontrol ow information willdominate over other types of information. Likewise, a language based on the dataow paradigm is assumed to make data ow information easier to aess. Of the �veinformation types, those whih seem to be most amenable to a omparative study areontrol ow and data ow: funtional languages would appear to rely on a de�nitionof funtion in terms of inputs and outputs, while the information types de�nition de-sribes funtion as a high level aount of the program's overall goals. Similarly, theinformation types de�nition of state does not neessarily orrespond to the de�nitionof state as embodied in a paradigm suh as a state transition mahine. Finally, oper-ations ould be ontrasted with a higher-level representation of information, but it isnot immediately obvious whih paradigm ould provide a higher-level ounterpart toa representation of operations, or for that matter, whih existing paradigm would bestembody operations.

CHAPTER 4: MATCH-MISMATCH AND VPLS 77It was therefore deided to develop an experiment to test the math-mismath onje-ture using representations of data ow and ontrol ow paradigms: this experiment isdesribed in Chapter 6. The onjeture was tested on visual miro-languages, and thejusti�ation for doing so is desribed in the next setion.4.3 Visual Miro-Languages, Math-Mismath andNovie Comprehension SupportThe last setion desribed the math-mismath onjeture, and mentioned the fat thatexaminations of the onjeture have almost invariably used miro-languages or, in thease of the studies reported in (Green et al., 1991; Green and Petre, 1992), a notationalsubset of a pre-existing language (two alternative graphial representations available inLabVIEW).The reasons for doing so are quite lear: �nding two ommerial languages whih varyonly on the dimension(s) of interest would likely be impossible. Furthermore, evenif they did exist, it would be diÆult to �nd a subjet population with equal priorexperiene of eah language. Cirumventing this by using ompletely novie subjetswould mean teahing them the two languages, again, a prospet whih is not feasiblein a typially short experimental timesale. In addition, many properties of a full-sale language are not neessary in an experimental setting, and may in fat be ahindrane. Therefore, it was deided to develop miro-languages for experimental use,as had been done in the past. Critiism has been levelled at miro-languages for beingtoo far removed from full-sale languages to allow for any omparison, however, this isa onsious trade-o�: experimental setups neessarily lose in realism in the hope thatontrol over extraneous variables present in real-life situations will allow the experimentto establish a ausal relationship between independent and dependent variables.The miro-languages whih were designed for the researh reported in this thesis willbe desribed in detail in Chapter 5. The languages were designed with a dual purposein mind: �rstly, to be used to test the math-mismath onjeture, and seondly, to beused as the basis for testing out ideas for novie omprehension support. One importantimpliation of this dual usage was the deision to make the languages visual, ratherthan textual.

78 CHAPTER 4: MATCH-MISMATCH AND VPLSVisual programming languages are an interesting subjet of study in their own right,partiularly given the gulf between the laims and the empirial results. In additionto this primary interest, it will be argued that the properties of visual programminglanguages may make them more suitable to the addition of support of the kind en-visaged in this thesis than textual programming languages. This setion �rst de�nesvisual programming languages and visual programming, looking at some of the assoi-ated laims and empirial work, before going on to desribe why visual programminglanguages might provide a good basis for information types support.4.3.1 Visual Programming and Visual Programming Languages De-�nedThe terms \visual language" and \visual programming" have been used and misused,referring to a variety of environments and ativities. At their most ontentious, theyhave been used to desribe Mirosoft's Visual Basi and Visual C++, neither of whihwould be onsidered to be VPLs by purists, given that the underlying languages aretextual.Some authors use \visual programming" in its widest sense, suh as Shu, who de�nesit as \the use of meaningful graphi representations in the proess of programming"(Shu, 1988, p. 9). This de�nition inludes environments allowing the visualisationof programs, exeution, data, information and system design, and languages whihproess visual information, support visual interations and allow programming withvisual expressions (Shu, 1988). Others prefer a more restrited meaning: Myers (1986)uses the term to desribe any system allowing a user to speify a program in more thanone dimension. He exludes textual languages from this de�nition by virtue of the fatthat they are proessed by a ompiler as a one-dimensional stream.1 For the purposesof this thesis, \visual programming" will be taken to mean the use of visual expressionsin the proess of program onstrution and modi�ation. Visual expressions are de�nedas graphis, drawings and/or ions whih must be meaningful, exeutable and involvesome notion of ontrol and/or data ow.Aording to this de�nition, the following will not be onsidered to be visual program-ming: the use of visual program spei�ation and/or design tools, beause they are1 Although it is not obvious to the author that his de�nition, as it stands, expliitly exludes them.

CHAPTER 4: MATCH-MISMATCH AND VPLS 79used before writing the program, software visualisation tools and graphial traers, be-ause they are used after writing the program, programming languages for buildinggraphial user interfaes (GUIs), programs for visualising data or information aboutdata (e.g. graphial database query languages) or programming languages for handlingvisual information, i.e. images.4.3.2 VPLs: Claims and Empirial EvideneThe belief that graphial representations an have a positive e�et on programmingand learning to program is a widely held one. Claims have often been made that visualprogramming languages are at least a positive step forward, if not downright revolu-tionary, and this belief is evidened by a plethora of visual programming languagesand environments. The laims whih have been made for visual programming are oftenrather optimisti, and seem to be preoupied with a hypothesised \brain underuse",for example:\Various reasons have been ited for the interest in visual programming.Many of them pertain to the better use of the right half of the brain, whihis needlessly at rest and underutilized for the purpose of omputing." (Shu,1988, p. 1)\Visual programming languages allow a programmer to use a oneptualmodel that is lose to her own mental model." (Golin, 1991, p. 5)\The human visual system and human visual information proessing islearly optimized for multi-dimensional data. Computer programs, however,are presented in a one-dimensional textual form, not utilizing the full powerof the brain." (Myers, 1986, p. 60)In a more realisti, i.e. veri�able, vein, laims have been made that visual program-ming languages will be easier to use than their textual ounterparts beause visualrepresentations support forward and bakward reasoning (Anjaneyulu and Anderson,1992; Trafton and Reiser, 1991), at as a memory aid (Merrill et al., 1993), and makeertain strutures, e.g. ontrol and/or data ow, more apparent (Cunni� and Taylor,1987).

80 CHAPTER 4: MATCH-MISMATCH AND VPLSHowever, experimental studies to asertain the bene�ts of VPLs have met with mixedresults. For example, studies omparing a visual language with a textual one werearried out by Anjaneyulu and Anderson (1992), who found no signi�ant di�erenesin performane between the two, and Pandey and Burnett (1993), who found thatprogram generation in the visual language Forms/3 was \at least as easy" as in thetext-based OSU-APL and Pasal languages. Whitley (1997) has provided the mostthorough summary of empirial studies using VPLs to date, and arefully onsiders theevidene both for and against them. Although she alls for more experimental work inorder to provide evidene of the bene�ts of visual programming languages, one reason alear piture may not yet have emerged with respet to visual programming languageshas to do with the sope of the onjetures. Some researhers seem to want to makethe laim that visual languages are simply \better" than textual languages, withoutonsidering di�erenes aross users, aross tasks, and the interation between the two.It is likely though that these and other fators play a role, and the graphial nature ofvisual programming annot be onsidered in isolation.However, one might also question whether what is missing from the �eld are more�nely-grained studies, or whether visual programming languages will simply fail toshow promise. The next setion takes a di�erent look at VPLs: rather than askingwhether they are \good" in and of themselves, it asks whether VPLs might be wellsuited to providing the basis for the forms of novie omprehension support envisagedin this thesis.4.3.3 VPLs: Possible Advantages for SupportOne point whih has often been made, perhaps less by VPL designers than by thoseinterested in their ognitive properties, is that there is no suh thing as a purely tex-tual or purely graphial programming language. Fitter and Green (1979) made themore general distintion between pereptual and symboli oding, pointing out that apurely symboli or purely pereptual notation would not be very usable. Thus, textuallanguages are not simply a string of symbols: they make use of layout, indenting andother spatial mehanisms by whih information is onveyed. In the same way, visuallanguages ontain text, suh as keywords, variable names, program names, et. Ratherthan existing in separate amps, textual and graphial languages ould more aurately

CHAPTER 4: MATCH-MISMATCH AND VPLS 81be depited as oupying distint loations on textual and spatial ontinua.The fous on the spatial harateristis of graphial notations is evidened in Petreand Green's onept of `seondary notation' (Petre and Green, 1992, 1993). Theydesribe it as \the use of layout and pereptual ues whih are not formally partof the notation (elements suh as adjaeny, lustering, white spae, labelling, andso on) to larify information (suh as struture, funtion or relationships) or to givehints to the reader" (Petre and Green, 1993, p. 57), and postulate that it might bethe main distinguishing harateristi of graphial representations. Raymond (1991)also provides a very interesting view of the spei� ase of layout, using Goodman's(1976) distintion between notational and analog languages. Aording to this theory,a language is onsidered to be a notation if it exhibits a number of properties, one ofwhih is �nite syntati di�erentiation. Non-notational languages violate one or moreof the properties. For example, one of the features of analog languages, a partiularlass of non-notational languages, is that they do not exhibit syntati di�erentiation,in other words, they are syntatially dense. Notational systems an be haraterisedby disreteness, while analog systems are haraterised by density. Raymond maintainsthat a visual programming language's \visualness" derives from its layout, whih is ananalog (i.e. syntatially dense) property.However, the textual/spatial distintion doesn't seem to apture all of the di�erenesbetween textual and visual languages: textual languages obviously ontain text, butgraphial languages ontain more than simply spatial layout, by de�nition they ontaingraphial symbols as well, for example, ions, nodes and ars. And although textuallanguages may make use of spatial layout, they tend not to ontain graphial symbols.This is not to imply that previous authors have ignored this, simply that it hasn'treeived muh attention, perhaps beause it seems so evident.This does suggest that rather than desribing textual and visual languages as over-lapping entities, with text and spatial layout as shared harateristis, it might bemore aurate to see graphial languages as a superset of textual languages, ontaininggraphial harateristis (e.g. ions, nodes, ars) in addition to textual and spatial ones.This reharaterisation is of interest from the point of view of deiding whether textualor graphial languages might provide a better platform for novie program omprehen-sion support based on information types. If textual languages ontain text and spatial

82 CHAPTER 4: MATCH-MISMATCH AND VPLSlayout, while graphial languages ontain graphial symbols, text and spatial layout,then graphial languages will provide not only more dimensions, but more relationshipsbetween dimensions. As suh, the number of di�erent types of information they ouldpotentially represent is greater. Given that the goal is to use a single base representa-tion on whih various types of support an be overlaid (not simultaneously of ourse,but through the use of seletive hiding or highlighting), then the number of di�erentdimensions is of great relevane.The graphial, textual and spatial harateristis of a VPL ould be used to expressdi�erent types of information at any given time. However, another advantage is inallowing for redundant reoding (Fitter and Green, 1979), in other words, expressingthe same information in more than one way. The example the authors give is the useof indentation to represent the nestedness of onditional strutures in the program.The program ode provides this information through the use of keywords, e.g. begin,end, if, then and else, and therefore, although indenting is not stritly neessary, itmakes a big di�erene in terms of program readability. In a graphial language, redun-dant reoding, represented symbolially and spatially above, an also be representedgraphially. The same keywords and spatial layout may be used, but now, for example,onditional onstruts may also be signaled by an ion of a distint shape (and usuallyolour) ontaining the onditional keywords. Given the diÆulties whih novies havein piking out the relevant information in a program, one might argue that redundantreoding is even more important.In some ways, hypothesising that graphial representations o�er more possibilities forexpressing information may seem to run ounter to the theory of spei�ity put for-ward by Stenning and Oberlander (1995). Aording to these authors, many graphialrepresentations exhibit spei�ity in that they allow the expression of some, but notall, abstrations. In a situation where several models are possible, a single graphialrepresentation an typially only represent one of these (e.g. imagine a representationof the sentene \my dog's fur is either snow white or overed in mud"). However,speial onventions an be introdued into the representation for handling abstrationor indeterminay. Graphial representations di�er in this respet from non-graphiallanguages suh as natural or logial languages (or omputer languages for that matter)where abstration and indeterminay are more easily expressed. The bene�t of weak ex-

CHAPTER 4: MATCH-MISMATCH AND VPLS 83pressiveness is its ognitive tratability, and the authors maintain that this, rather thanthe visual nature of graphial representations per se, makes graphial representationsrelatively easy to proess.However, VPLs are di�erent from many other types of graphial representations on-sidered by Stenning and Oberlander (1995), in that they tend to be based on semantinetworks. The authors onsider semanti networks to fall at the most linguisti end ofthe graphial ontinuum: as suh, they enfore few spei�ities. Visual programminglanguages bear little resemblane to pitorial representations: their origins have tendedto be textual languages, and early versions have sometimes been little more than tex-tual languages enased in boxes. They use graphis to onvey abstrat ideas suh asreursion, iteration, onditionals, et. and as suh, make heavy use of abstration.Although their orresponding high level of expressivity may explain to some extent themixed results whih have been observed in empirial studies of visual programminglanguages, it does not weaken the argument that graphial representations ould be ofuse in representing di�erent types of information for novie program omprehension: ifanything, it suggests that their powers of abstration are similar to that of a textualprogramming language, and that, in addition, they possess additional dimensions ontowhih various types of information an be mapped.4.4 Chapter SummaryThis hapter overed various issues pertaining to the relationship between the exper-iments reported in Chapters 3 and 6. It desribed why the idea of information typeson its own makes it diÆult to look at the issue of paradigm, and why a method-ology whih allows for omparison between paradigms within a single study is moreappropriate. It disussed the math-mismath onjeture within this ontext, look-ing at prior empirial work, before going on to examine the onsequenes following onfrom this hoie: namely the development and use of miro-languages. It disussedthe additional role whih miro-languages ould play in testing ideas about programomprehension support, and why graphial languages might provide a better basis fornovie omprehension support than would textual languages.

84 CHAPTER 4: MATCH-MISMATCH AND VPLS

Chapter 5Control and Data Flow VisualProgramming Languages5.1 IntrodutionThis hapter de�nes the notion of data ow and ontrol ow paradigms, desribesthe harateristis of both types of language, and summarises the di�erenes betweenthem. It then harts the development of ontrol ow and data ow visual programminglanguages from a historial point of view, providing examples of eah. This is followedby a short disussion of empirial studies whih have foused on these paradigms.The seond part of the hapter outlines the design of the miro visual programminglanguages used in the experiments desribed in this thesis. In the �rst VPL experiment,desribed in Chapter 6, the languages were designed around the type of informationthey provided (ontrol or data ow) and the format of that information (either trees orgraphs). Later experiments, one of whih is desribed in Chapter 7, onentrated solelyon the informational aspets of the programs, and used graph-based data and ontrolow languages. These languages di�ered slightly from the graph languages in the �rstexperiment, partly as a result of feedbak from the �rst experiment, and partly dueto advanes in loally available tehnology: the revised languages will be desribed inSetion 5.6.2.Before de�ning data and ontrol ow paradigms, it is worth mentioning that repre-sentations are rarely purely data ow or ontrol ow. For one thing, the onepts areinterrelated: the ow of data is often governed by some notion of ontrol, either in theform of onditionals or iterative strutures, and program ontrol habitually involves85

86 CHAPTER 5: CF AND DF VPLSthe utilisation and transformation of data objets. Furthermore, visual programminglanguages must be exeutable, therefore, they annot exlude information for the sakeof purity. However, even though eah representation ontains elements of the other,one type of information will predominate. Hene, data ow representations will betaken to mean representations whih highlight data ow over ontrol ow, rather thanrepresentations whih inlude only data ow information.5.2 Control Flow Languages5.2.1 A De�nition of the Control Flow ParadigmImperative, or ontrol ow, languages were the �rst programming languages, and werebased on the von Neumann model. Aording to Agerwala and Arvind (1982), thismodel has two main features: a global addressable memory and an instrution ounter.The instrution ounter provides the mahine with a sequene of instrutions to exe-ute, ating as a single lous of ontrol. The memory is a vast olletion of storageloations whih hold program and data objets, and its ontents are updated by pro-gram instrutions during exeution. Wadge and Ashroft (1985) desribe data as beingfethed one by one from memory and sent to the CPU. A omputation is performedand data are then returned to their loations. Data is therefore normally \at rest".The development of imperative languages was heavily inuened by the von Neumannarhiteture. Statements representing ommands (or imperatives) are exeuted sequen-tially. Variables are used to represent memory loations, and assignment ats to hangethe values of variables. Therefore, programmers using imperative languages must nees-sarily onern themselves with issues of ontrol suh as memory alloation and variabledelaration.A distintion is sometimes made between proedural languages and imperative lan-guages, e.g. Jenkins et al. (1986) maintain that proedural languages supplement im-perative languages with means for expressing ontrol onstruts suh as seletion anditeration. They state further that proedural languages o�er the power of a von Neu-mann arhiteture without the diÆulty of having to speify the details of eah parti-ular omputer. Many ommonly used languages today are proedural languages, suhas Pasal and C.

CHAPTER 5: CF AND DF VPLS 87However, the terms proedural and imperative are used interhangeably in many pro-gramming textbooks, and where distintions are made, they are often not onsistentaross texts. Given the limited subset of programming onepts whih will be overedby the experiments desribed in this thesis, the distintion is not important, thereforeimperative, proedural and ontrol ow paradigms will be taken to refer to the sameonept.5.2.2 Graphial Representations of Control FlowControl ow representations, in the form of owharts, have a long history. In fat,Chapin (1970) ites von Neumann as being the \intelletual father" of owharting.Given this history, it is understandable that owharts were designed around imperativeprogramming languages as an aid for understanding ontrol ow. Furthermore, theirearly appearane in the history of programming aounts for the fat that, rather thanbeing exeutable representations of the program, they were designed to aompanytextual programs, and to serve as a support mehanism for design or debugging, or asdoumentation.There are many formalisms for owharts. These result, in part, from the e�orts ofompanies to \make their mark" by developing onventions whih were best suited totheir own purposes, and whih distinguished them from their ompetitors at the sametime. However, most owharts share some general harateristis, and have been welldoumented in texts suh as (Chapin, 1970).Flowharts onsist of nodes linked together by ars. Ars represent the ow of ontrolbetween nodes. As ow of ontrol ours in a sequential manner, there is only ever onear between two nodes. Nodes represent tests and ations on data. Test nodes ontainquestions whih an be of a boolean or a ase variety. Boolean tests will ontain twooutput ars (depending on whether the test is true or false), while ase tests will haveas many output ars as there are ases. Data in owharts is represented textually,usually as variables within nodes, rather than by any graphial symbol. There is anobvious temporal sequene to ontrol ow, as only one ar an be followed at any time.An example of a simple owhart an be seen in Figure 5.1.Flowhart onventions have varied over time beause of advanes in software arhi-teture whih in turn hanged the nature of programming. Researhers in the �eld

88 CHAPTER 5: CF AND DF VPLS
Figure 5.1: An Example of a Flowhart, from Chapin (1970)attempted to provide improved, and more eÆient notations for owharts, e.g. Nassiand Shneiderman (1973). Rather than using arrows to onnet boxes, they redesignedowharts so as to embed a series of proesses within a single box. However, they werestill envisaged as aids to programming, rather than programs in their own right.5.3 Data Flow Languages5.3.1 A De�nition of the Data Flow ParadigmData ow languages are in stark ontrast to the traditional von Neumann approah inthat they share few of the latter's harateristis. They are de�ned by Davis and Keller(1982) as any appliative language whih is based on the idea of data owing betweenfuntion entities.From a tehnial, implementational point of view, Agerwala and Arvind (1982) statethat data ow an be distinguished from ontrol ow in that it has neither a globalupdatable memory nor a single instrution ounter. The lak of a global memory meansthat data ow models deal with values, rather than addresses. The instrution ounteris not needed as instrutions are enabled when all of the required input values areavailable. Thus there are no sequening onstraints other than the ones imposed by

CHAPTER 5: CF AND DF VPLS 89data dependenies in the algorithm. Similarly, the lak of instrution ounter meansthat there is no single lous of ontrol, rather there are many loally ontrolled events.In the data ow model, omputation an be represented as a direted graph, with eahnode in the graph representing a funtion. Nodes are linked by ars, whih representthe ow of data between funtions, and hene, the data dependenies between nodes.Tokens are units of data whih ow along ars from the output port of the node whihprodued it to the input port of the node whih requires the value. When a node has allthe values it requires, it beomes enabled and an then �re. It therefore onsumes thedata input(s) arriving on its input ar(s), exeutes (absorbing the inputs), and plaesan output token on eah output ar. These tokens are then sent to other operatorswhih require these values. Therefore, there are as many ars linking nodes as thereare objets whih are produed, used and/or transformed by the nodes.An example of a data ow graph for alulating X2 � 2 � X + 3 an be seen in Fig-ure 5.2. The \phantom" nodes (X and Result) indiate input from and output to otherprograms.
*

-

*

2

3

+

RESULT

X

Figure 5.2: An Example of a Data Flow Graph, from Davis and Keller (1982)Dennis (1986) summarises data ow exeution suintly in the following rules:1. an node is enabled iff there is a token on eah of its input ars;

90 CHAPTER 5: CF AND DF VPLS2. an enabled node may be �red. This determines the next state of the omputation;3. when a node �res, a token is removed from eah of its input links, and a token isplaed on eah of its output links.There are no other side-e�ets and no sequening onstraints apart from those whih,as mentioned above, result from the data dependenies of the program. Akerman(1982) desribes a number of additional properties of a data ow representation:� Loality of e�et, in other words, the e�ets are limited in sope. Davis andKeller (1982) make the point that subprograms an therefore be understood invauo, without the need for information about the program's environment.� An \equivalene of instrution sheduling onstraints with data dependenies"(Akerman, 1982, p. 15), meaning that program ontrol is synonymous with datadependenies. A node �res when the input data it requires is available, ratherthan beause it is instruted to do so by a entralised ontrol mehanism.� A \single assignment" onvention, meaning that a variable may be assigned avalue only one in that part of the program in whih it plays a role.� A lak of history whih results from a lak of state variables. As no data isretained between invoations, the proedures do not \remember" in some sense.This an be problemati for omputations whih rely on values other than theurrent input values.In ontrast to the idea of \resting" data in the von Neumann approah, whih arealled from memory only when needed and then replaed, data are dynami, and areproessed while in motion, i.e. while they ow through a data network (Wadge andAshroft, 1985).Given the de�nition of data ow, i.e. tokens of data owing through a graph omposedof nodes and ars, it is diÆult to dissoiate a data ow language from its graphialrepresentation. In fat, Agerwala and Arvind (1982) state that data ow languages werede�ned at the outset as graphial languages. Likewise, an artile by Davis and Keller(1982) explored the advantages of graphial representations for data ow programs,

CHAPTER 5: CF AND DF VPLS 91with a view to \dispensing entirely with the text and viewing the graph itself as aprogram" (p. 27).5.3.2 Augmented Data FlowA pure data ow model is de�ned as one in whih there are no added ontrol owonstruts. There is no spei�ed exeution order and a node �res when all of itsinputs are available. Pure data ow models are suitable for some types of omputation,however, in many ases, it is neessary to introdue the idea of \seletive routing ofdata tokens" (Davis and Keller, 1982), in other words, to inlude onditional strutures,a ommon feature of proedural languages. This involves \augmenting" the pure dataow model. In the ase of onditionals a two-step proess is used, whereby a booleantoken produed by a node whih implements a deision proedure is passed to one oftwo seletive routing nodes, seletors or distributors. These are desribed in (Davisand Keller, 1982) as follows: seletors aept a true or false data token, and use it todetermine whih of two inputs will be propagated along the output ar. Distributorsuse a true or false token to pik an output ar on whih to plae their data. Similarstrutures an also be found in other data ow models: Dennis (1986) talks of T-gates,whih pass an input through if the value is true (and absorb it if the value is false), andswithes, whih pass their input onto the output ar whih is designated by the ontrolvalue. Similarly, many of the data ow visual programming languages in use todayhave either implemented variations on seletors and distributors, or invented speialnodes to deal with deision proedures.Likewise, ontrol mehanisms suh as iteration and reursion an be implemented indata ow languages in various ways. For example, reursion an be implemented asa direted ayli graph, with iterative onstruts expressed in terms of tail reursion(Dennis, 1986). One node in the graph, referred to in some models as the \apply" node,but usually having the same name as the entire graph, will ause a new opy of theprogram graph to be reated. Davis and Keller (1982) aution that the implementationof the program should ensure that these expansions of a node into a subgraph donot arry on in�nitely, although this applies equally to reursive programs in textuallanguages. Iteration has also been added to many data ow languages, often using aspeial onstrut, suh as Show and Tell's iteration box (Kimura et al., 1990).

92 CHAPTER 5: CF AND DF VPLS5.4 Historial Development of Data and Control FlowFrom a historial point of view, ontrol ow and data ow graphial representationsdeveloped in very di�erent ways.Control ow based languages were the �rst dominant form of programming paradigm.The tehnology of the time ditated that programming languages be expressed textu-ally. Control ow representations, or owharts, developed in onjuntion with textual,ontrol ow languages. The primary purpose of the owhart was to supplement a tex-tual language and to serve as an aid for understanding during various programmingproesses, suh as design, debugging, et.On the other hand, data ow graphial representations developed muh later, probablyaround the late 1970s. Davis and Keller (1982) made the point that the very natureof data ow made it amenable to being represented exlusively by graphs. Data owrepresentations were designed as atual programs, rather than to be used as doumen-tation or as a omprehension aid for a textual program. Thus, data ow languages are,almost by de�nition, graphial languages: Luid (Wadge and Ashroft, 1985) is a rareexample of a textual data ow language.Interestingly enough, the few ommerial visual programming languages widely in usetoday are based on the data ow paradigm, suh as LabVIEW (Santori, 1990) andPrograph (Cox and Pietrzykowski, 1990). Control ow representations do not seem tohave made the transition from textual language aids to stand-alone visual programminglanguages, as evidened by the lak of ommerially available ontrol ow VPLs.5.5 Empirial Studies of Representations of Control andData FlowThe historial di�erenes between ontrol ow and data ow graphial representationshave also arried over into the empirial studies whih have examined their use. Studiesof owharts have investigated their utility as an aid to onstruting or omprehend-ing a textual program, while data ow studies have investigated graphial data owrepresentations as languages in their own right.The question under investigation in owhart studies has typially been, \Does the

CHAPTER 5: CF AND DF VPLS 93owhart provide support for program omprehension?" where the program was, forexample, a Pasal or Basi program. Data ow studies, in ontrast, have tended toonentrate on the graphial/textual omparison, although there are admittedly fewstudies whih have been arried out, and the data ow issue has often been peripheralto the study's main aims.This setion desribes some of the empirial studies whih have been arried out withgraphial ontrol and data ow representations, before onluding with a summary ofthe di�erenes between the two and some autions on the onlusions whih an bedrawn from these studies.5.5.1 Empirial Studies of Visual Control Flow LanguagesThis setion onsiders two types of ontrol ow studies: those in whih a graphialontrol ow representation was used in onjuntion with a textual language for somepart of the programming proess, and those where the ontrol ow representation tookthe form of a visual programming language and, hene, was used as the sole soure ofinformation.Flowhart StudiesThere is a wealth of studies on owharts, investigating their usefulness as an aidto a language, and also omparing them to other forms of representation, suh aspseudoode, design languages, et. The results of these studies have been mixed.A study by Ramsey et al. (1983) ompared owharts against program design languagesfor produing a program design and for translating a design into an implementationin PL/1. They onluded that program design languages were superior to owharts,based on the quality of the designs produed. However, they found no di�erenesin program omprehension or in the properties of the implementation (inluding theirquality). The authors onluded that owhartsmay have an adverse e�et in the designphase as they fore designers to adopt spae saving measures suh as abbreviations,thus ompromising readability.A series of studies by Shneiderman et al. (1977) are often ited as damning evideneagainst owharts, and have been given partiular redene sine they investigated the

94 CHAPTER 5: CF AND DF VPLSuse of owharts in onjuntion with several aspets of programming: omposition,omprehension, debugging and modi�ation. The authors laimed that produing orusing owharts in addition to a program listing did not o�er signi�ant advantagesin any of these irumstanes. However, their results seem ursory in some ways giventhe number of experiments they arried out and the large amounts of data whih theymust have generated. There may well be issues lurking in the data whih have not beendiretly addressed, for example, familiarity: in a study requiring the use of owhartsby two groups of subjets, one whih normally used them and another whih didn't,they found that the groups not used to using owharts performed worse when theywere given a owhart. However, the group whih had used owharts in the pastperformed substantially better when they were allowed to use owharts (both whenompared to their sore without owharts, and to the non owhart group's sorewithout owharts).Other authors, suh as Sanlan (1989), have stated that this work may also su�erfrom methodologial aws whih make it diÆult to draw lear-ut onlusions, andertainly to make the sorts of generalisations whih Shneiderman et al. did. Brooke andDunan (1980) point out that beause owharts were used in parallel with programlistings in Shneiderman et al's studies, it is not lear whether subjets atually onsultedthe owharts in all ases, partiularly given the fat that subjets were experienedprogrammers who may have been ontent simply with the program listing.A study arried out by Sanlan (1989) aimed to address some of these methodologialproblems. A omparison of strutural owharts and pseudoode showed signi�antadvantages for owharts, partiularly as the algorithms inreased in omplexity, a�nding whih ehoed that of Wright and Reid (1973). Sanlan's onlusions are verymuh pro graphis, but again, he sees owharts as \graphial doumentation", ratherthan as exeutable program representations per se.However, methodologial diÆulties do not in themselves seem to explain the di�erenesbetween �ndings, at least for program debugging. Brooke and Dunan (1980) foundno di�erenes between a owhart and a program listing for the orret identi�ationof bugs, a �nding similar to Gilmore and Smith (1984), who ompared owharts withprogram listings and Bowles struture diagrams. Gilmore and Smith suggest thatowhart utility is not a lear-ut issue, and provide an interesting framework for

CHAPTER 5: CF AND DF VPLS 95determining performane in studies of this type whih takes into aount the featuresof the program itself, the ontext (i.e. task fators), and the programmer's individualharateristis.Studies of Control Flow Visual Programming LanguagesFPL FPL (First Programming Language) is a proedural, visual programming lan-guage developed at Columbia University, where it has been used, in tandem with Pasal,as a teahing tool for novie programmers. Programs are represented through the spa-tial arrangement of eleven di�erent ions representing ations. The authors maintainthat FPL \provides a visual map of the program that diretly emphasizes its logialstruture" (Cunni� and Taylor, 1987, p. 116).A study of program omprehension was arried out to ompare FPL with Pasal. Com-prehension questions were designed to test for the ability to reognise simple strutures,ontrol ow and input/output, and to make simple evaluations based on the latter two.Reation time and auray of response were measured, and it was found that FPLreation times were signi�antly faster than Pasal. This di�erene was most marked inquestions dealing with the evaluation of ontrol ow and/or input and output. Auraywas also better using the FPL program segments. Although ontrol ow errors werethe most frequent type of error in both languages, fewer ourred with FPL than withPasal.The authors onlude with a speulative laim that graphial representations lead tothe reation of mental images and support multiply linked representations, whih inturn aounts for a rapid reation time.R-harts R-harts appear to be one of the few proedurally based visual program-ming languages used on a wide sale, at least in the former Soviet Union. The repre-sentation is in fat a sort of `visual template' whih an be overlaid onto pre-existinglanguages suh as C/C++, Pasal, Assembler, Fortran, and other proedural languages.Ushakov and Velbitskiy (1993) also made the point that the R-hart notation is moreompat than many graphial alternatives, whih is an advantage in the sreen realestate stakes.

96 CHAPTER 5: CF AND DF VPLSR-harts have a very simple syntax based on a series of vertial arrows whih denotetransition from one state to the next. Text is added to the arrows, with onditionsshown above the arrows, and statements (ations) below them.Figure 5.3 shows an example of a standard ontrol struture and its equivalent in R-harts notation.if (expr) statementelse if (expr) statementelse statement
Figure 5.3: An Example of an R-Chart Control Struture, from Ushakov and Velbitskiy(1993)Ushakov and Velbitskiy (1993) report that R-harts have been studied empirially, andthat good results were reported, partiularly with students and novie programmers,who showed improved understanding and shorter program development time. Unfor-tunately, the full results of this study were reported in a Russian language PhD, whihmakes it partiularly diÆult to obtain more details.5.5.2 Empirial Studies of Visual Data Flow LanguagesDRLPAnjaneyulu and Anderson (1992) developed a visual data ow language (DRLP, orDataow Representation Language for Programming) whih they onsider to be a \vi-sual isomorph" of LISP. The language has various types of nodes (input, funtion,prediate, et.) through whih data ows.

CHAPTER 5: CF AND DF VPLS 97A study was arried out on subjets with little or no programming experiene to om-pare learning and problem solving with DRLP versus LISP (with subjets in the latterondition having aess to a struture editor).The authors found little in the way of signi�ant di�erenes between the two groups.The DRLP group worked its way faster through one of the three hapters whih bothgroups studied, and averaged signi�antly fewer iterations on the aompanying pro-gramming exerises. Time taken to omplete a post-test and mean sore were notsigni�ant.The authors found that the DRLP group had few errors in the ategory relating toLISP syntax, an observation whih hardly seems surprising. In their defene, thesyntax/semantis distintion is sometimes hard to make: `use of variables' omes underthe heading of syntax, whih may mean that DRLP is e�etively shielding subjets froma reognisedly diÆult semanti onept. This notwithstanding, the authors felt thatDRLP did not have an impat on the oneptual diÆulties assoiated with the LISPfuntions, a �nding ehoed by Carroll et al. (1980).Overall, this study does lead to speulation about the extent to whih the results aredue to the graphial nature of the language, or whether eliminating LISP syntax andallowing funtions to be de�ned in order of evaluation have in fat played a moreimportant role.LabVIEW Green et al. (1991) performed a detailed study on program omprehensi-bility whih ompared LabVIEW, a visual data ow language, with a textual notation.The study inluded three tasks:� Question answering, involving onditional strutures expressed in four notations:text or graphis rossed with sequential or irumstantial.� Program omparison, in whih subjets were presented with two programs inone of the four di�erent notations and asked to say whether they were the sameprogram or not.� Tahistosopi program reognition in whih, given a hoie of two program spe-i�ations and a pair of programs (both textual or graphial), subjets had todeide whih spei�ation mathed whih program.

98 CHAPTER 5: CF AND DF VPLSGreen et al. put forth various hypotheses, some relating to the struture of the pro-gram and the math-mismath onjeture (Gilmore and Green, 1984) and desribed indetail in Chapter 4, and others relating spei�ally to the omparison between text andgraphis. The math-mismath onjeture was not supported, while the text/graphisomparison showed that question answering using the graphial notation took signif-iantly longer than using the textual notation. They had also hoped that, in thetahistosopi program reognition task, answers would be based on ross-referenedreasoning, i.e. reasoning about the relationships between program struture and do-main struture. It turned out that subjets often based their deisions on a single ue.Thus, although they were not able to show that graphial representations promotereognition of program struture, their results did on�rm the �nding of Cunni� andTaylor (1987) that they do aid reognition of individual elements.5.5.3 Comparing Control Flow and Data Flow Empirial StudiesAs an be seen from the previous setions, it is extremely diÆult to draw any un-equivoal onlusions about data ow and ontrol visual programming languages. Thediversity of tasks and of subjet populations makes omparisons unwise, even withinparadigms.Likewise, di�erenes in the development of graphial representations of data and ontrolow, and the resulting di�erenes in empirial studies, make ross-paradigm ompar-isons unworkable. For example, researh on the utility of owharts led Shneidermanet al. (1977) to make the provoative omment that \sine the detailed owhart maybe merely an alternative representation of the syntax of a program, it should not behelpful to programmers familiar with a programming language. Having a Frenh reipein addition to an English version of the same reipe would not be helpful to a ookknowledgeable in both languages" (p. 381). One possible objetion to this statement isthat Frenh and English reipes, muh like textual and visual programs, will not nees-sarily be informationally equivalent due to di�erenes in representation and underlying`ulture'. This objetion notwithstanding, it is lear that the aim of most owhartstudies was to investigate the utility of owharts in onjuntion with a textual lan-guage, not as languages in their own right. It seems unjust to rule out ontrol owvisual programming languages, or even visual programming languages generally, on the

CHAPTER 5: CF AND DF VPLS 99grounds that studies of owharts as an aid to textual programs were inonlusive.Furthermore, the relation of some owhart studies to programming is not alwaysstraightforward. While some of the studies were designed to investigate whetherowharts were of use in the programming proess, either during design, debugging,et., others ompared owharts in a more general way with graphial and non-graphialmethods of representing information. Despite this, many of the materials used, bothin programming and non-programming studies, are quite similar.For example, a study by Wright and Reid (1973) used a deision proess to ontrast dif-ferent alternatives for \expressing the outomes of omplex ontingenies", omparing\bureaurati style prose", to logial trees (whih the authors all \algorithms"), shortsentenes or tables. An example of these ontingenies, expressed in short senteneform, is as follows:Where only time is limitedtravel by roket.Where only ost is limitedtravel by satellite if journey more than 10 orbs.travel by astrobus if journey less than 10 orbs.Sanlan's study omparing strutured owharts with pseudoode for programmingtasks, desribed above, used short programs whih were very similar to Wright andReid's \omplex ontingenies". Likewise, the study by Green et al. (1991) on Lab-VIEW, also desribed above, used problems of the same type.It is understandable to some degree that it is diÆult to distinguish between whatounts as a program and what doesn't: in Wright and Reid's desription of the bu-reaurati prose version, one an see the parallel between qualifying lauses suh as,\If . . . then . . . , unless . . . in whih ase . . . " and traditional programming ontrolonstruts suh as \If . . . then . . . , else if . . . then. . . ". Programs are in many waysno more than a omplex set of instrutions. However, the programs desribed aboveare programs only in a limited sense: boolean values are passed through the program,but there are no variables, no data values being hanged or updated, and there are no

100 CHAPTER 5: CF AND DF VPLSiterative onstruts, all of whih are ommon features of most programs, even in therelatively small, simple programs whih novies will have enountered.Fitter and Green (1979) make the point, in disussing possible reasons for the di�eringlaims for owharts at the time, that the owhart studies with positive results tendedto use owharts whih were e�etively deision trees, with only one path from rootto leaf. On the other hand, the owharts used in studies with less positive resultsexpressed loops and jumps, thus resembling networks rather than trees. In order tounderstand what is happening at a given point in representations of this type, it isneessary to searh through multiple possible paths, and to ensure that the ontexthas been understood, inluding any preonditions. This sounds very like the ritiismslevelled at proedural languages in general, and it may be that the results of unsu-essful owhart studies are in fat due more to the underlying paradigm than to therepresentation used.In any ase, in order to fully investigate the issue of paradigm in visual program-ming languages, more studies are neessary, partiularly ones whih ompare paradigmswithin the same study, even if this means that the studies are small and of only lim-ited generalisability. The next two hapters report on studies of this kind, while thefollowing setions desribe the development of the miro-languages whih were used inthese studies.5.6 The Design and Development of the Miro-LanguagesIn order to test hypotheses about the relationship between di�erent visual programminglanguage paradigms and task, a number of \miro-language" variations were developed.Miro-languages are, as their name implies, small languages whih ontain a subset ofthe funtionality of a full-sale language. They are not always exeutable, and areusually designed for a spei� purpose. Their main advantage in an experimentalsetting is that they allow the experimenter to ontrol for extraneous variables. In thease of the experiments reported in this thesis, �nding two full-sale languages, onebased on the data ow paradigm, and one based on the ontrol ow paradigm, whihwere identially mathed on features other than the ones the experimenter wished tomanipulate would have been impossible.

CHAPTER 5: CF AND DF VPLS 101The main requirement for the languages to be used in the experiments was that theyshould be as simple as possible. There were many reasons for this: �rstly, the experi-ments were to be arried out with novie programmers. Given the short timesale, thesubjets needed to be able to learn the languages relatively quikly. In addition, thenumber of onstruts in the language needed to be manageable and not ause mem-ory problems over the ourse of the experiment. Finally, keeping the languages simpleallows one to ensure that extraneous variables have not been introdued.Furthermore, the distintions between paradigms should be as salient as possible,namely:� for the ontrol ow language:{ ars should indiate ow of ontrol;{ only one ar should be followed at any given time;{ multiple assignment an our;{ side-e�ets are possible.� for the data ow language:{ ars should indiate the ow of data;{ multiple, simultaneous paths are possible;{ only single assignment is allowed;{ no side-e�ets should our.In the follow desriptions of the miro-language development, \version 1" refers to thelanguages used in the experiment desribed in Chapter 6, while \version 2" refers tothose used in the experiment reported in Chapter 7. The general harateristis ofthe miro-languages will �rst be desribed, followed by a de�nition of eah type ofnode omprising the language. The desriptions are, for the most part, similar to thedesriptions given to subjets in the experiment, with additional omments added asneessary. They are followed by an example program showing how the nodes ombineto form a program.

102 CHAPTER 5: CF AND DF VPLS5.6.1 Development of the Miro Languages { Version 1The experiment desribed in Chapter 6 used four miro-languages in total: a ontrolow graph, a ontrol ow tree, a data ow graph, and a data ow tree.1All of the representations began with a line of text giving the name of the program, andthe program's inputs and outputs. In the ontrol ow versions, the variable names werepurposely non-desriptive, although the seond line of the program provided furtherinformation as to their type and role:position_3 - inputs(A,B), outputs(C)A: Element, B:List, C:Position of ElementIn the data ow versions, the inputs were desribed as arguments, e.g. :position_3 - inputs(Element, List), outputs(Position)This distintion between versions was made beause variables are not used at inter-mediate positions in data ow programs: subjets must refer to the beginning of theprogram to asertain the names of data objets. In the ontrol ow version, variablenames appear throughout the program, and it was felt that ontrol ow subjets wouldbe at an unfair advantage if those variable names expliitly mentioned the type and/orrole of the data objet in the program.Control FlowControl Flow Graph Control ow graphs are representations whih use the arsbetween nodes to represent the program's ontrol ow. Reursion is represented by anode in the graph whih e�etively ats as a reursive all to the program.Tables 5.1 & 5.2 show eah node used in the ontrol ow graph, along with a shortdesription of its funtion.1 In terms of data ow, trees are something of a misnomer in the sense that any operation requiringmore than one data objet at the outset will have more than one root. A more orret name for thedata ow trees would be ayli graphs (as distinguished from yli graphs, suh as the data andontrol ow graphs used in the experiment). However, the similarity between the two terms provedto be rather onfusing, therefore the terms tree and graph were maintained.

CHAPTER 5: CF AND DF VPLS 103Shape Explanation
position_3(A,E)

A program node represents an entire program.It ours as a all to a program from within aprogram (if both nodes have the same name, thisexpresses reursion).
empty(B)?

A test node, in the shape of an ellipse, on-tains a binary hoie question. The node alwayshas two output ars, orresponding to either a\true" or a \false" value. These ars e�etivelydiret the program's ow of ontrol. Examplesof test nodes are `> ?' and `= ?'.
E=tail(List)

D=head(List)

A binding node is a rounded box ontainingall variable bindings. Note that variables an bebound to values or to the result of an operationsuh as addition, multipliation, seletingthe head of the list, et. In the example,D=head(List), E=tail(List), D will take thevalue of the head of the list, while E takes thevalue of the tail of the list.
Exit

An exit node indiates suessful terminationof the partiular all to the program.
Fail

A fail node indiates unsuessful terminationof the program.A solid line indiates the ow of ontrol fromone node to the next. Only one ar will onnettwo given nodes.Table 5.1: Control Flow Graph Nodes: Version 1

104 CHAPTER 5: CF AND DF VPLSShape ExplanationA dotted line indiates ow of ontrol betweenprograms (as opposed to nodes).Table 5.2: Control Flow Graph Nodes: Version 1 (ontinued)Figure 5.4 shows an example of a ontrol ow graph for the position program.
D=head(List)

E=tail(List)

C=F+1 Exit

Fails

Exit

position_3 - inputs(A, B), outputs(C)

A=D?

true

false

false

A:Element, B:List, C:Position of Element

true
C=1

F=position_3(A,E)

empty(B)?

Figure 5.4: Control Flow Graph Representation for positionControl Flow Tree Control ow trees di�er from graphs in several respets:� By de�nition, there are no loops in the graph (and hene no dotted lines betweenprograms): eah level of the representation represents a all to the program;� As eah level of the tree represents a separate all, variable renaming does notour aross levels;� There are only three types of nodes: program nodes, and fail and exit nodes.Program nodes ontain all ations and bindings whih our during that partiularall.

CHAPTER 5: CF AND DF VPLS 105The entities making up the ontrol ow tree are desribed in Table 5.3.Shape Explanation
position_3

D=head(B)

A=D?

C=1

A program node represents a single all to aprogram (named on the �rst line). If it is alledby a program with the same name, this indiatesreursion. At eah level in the tree, the programnode ontains all of the program events for thatpartiular all, namely, tests and variable bind-ing.
Exit

Exit node: see Table 5.2.
Fail

Fail node: see Table 5.2.A solid line indiates the ow of ontrol fromone level (i.e. one invoation) to the next.\And" ars indiate that both branhes of thetree must sueed for exeution to sueed.Table 5.3: Control Flow Tree Nodes: Version 1Figure 5.5 shows the ontrol ow tree representation for the position program.

106 CHAPTER 5: CF AND DF VPLS

Fail Exit

Fail Exit

position_3

empty(B)?

position_3

empty(B)?

position_3

position_3

D=head(B)

A=D?

C=1

position_3

D=head(B)

A=D?

C=1

position_3

D=head(B)

A=D?

C=1

position_3 - inputs(A, B), outputs(C)
A:Element, B:List, C:Number

empty(B)?

position_3 position_3 position_3

position_3position_3

position_3position_3

B=tail(B) F=F+1

B=tail(B) F=F+1

B=tail(B) F=F+1Figure 5.5: Control Flow Tree Representation for position

CHAPTER 5: CF AND DF VPLS 107Data FlowThe basi model of data ow omprises funtion nodes (similar to the ation nodes inthe ontrol ow language), whih ompute a value. However, ars now denote ows ofdata, with data travelling along the ars in the form of tokens. Thus, instead of one arjoining nodes, there are as many ars as there are data objets required by that node.Control onstruts suh as \if . . . then . . . else" are implemented in the form of a testbox whih e�etively ombines Davis and Keller's notion of seletors and distributorswith the test whih produes the boolean output that the seletors and distributorsrequire.Data Flow Graph The data ow language omprises the entities shown in Table 5.4.

108 CHAPTER 5: CF AND DF VPLSShape Explanation
position_3

Funtion nodes indiate a all to a programor to a partiular ation, e.g. all position re-ursively or take the head of a list.
empty_list?YES NO

FAIL

Test nodes ontain a test in the middle andYES and NO boxes on either side. Datarequired by the test ows into the middle, anddata a�eted by the test ows into and out ofthe YES or NO setions of the node. If a datatoken is not output as a result of the test, asmall box attahed to the bottom of the YESor NO box indiates exit from, or, in this ase,failure of, the program.
1 2

Ports are shown at the entrane to programs,allowing the inputs and outputs to be identi�ed.
1

A new objet node indiates the reation of anew data objet. Its value is shown in the node.A solid line indiates data ow. Eah line rep-resents a path along whih a di�erent data tokenan ow.Table 5.4: Data Flow Graph Nodes: Version 1

CHAPTER 5: CF AND DF VPLS 109Figure 5.6 show how these nodes �t together to form the data ow graph version of theposition program.
21 3

Position

headtail

NO YES=
1 2

3

ListElement

empty_list?YES NO

FAIL

1

position_3 +1

position_3 - Inputs(Element, List), Outputs(Position)

Figure 5.6: Data Flow Graph Representation for positionData Flow Tree The data ow tree representation is essentially an \unfolded" ver-sion of the data graph. Instead of being represented as a node in a graph of the samename, the graph is unfolded into a number of opies of the program, so that dataows through the �rst all to the reursive program, and ontinues to ow down therepresentations of subsequent alls, shown below the initial alls as dotted outlines.The nodes used in the data ow tree are essentially similar to the data ow graph, andare desribed in Table 5.5.

110 CHAPTER 5: CF AND DF VPLSShape Explanation
position_3

Funtion nodes: see Table 5.4.
empty_list?YES NO

FAIL

Test nodes: see Table 5.4.
1

New objet node: see Table 5.4.A solid line indiates data ow. Eah line rep-resents a path along whih a di�erent data tokenan ow.Dotted outlines of objets: nodes and arswhih are dotted indiate that the all to theprogram may ontinue, depending on the dataprovided.Table 5.5: Data Flow Tree Nodes: Version 1Figure 5.7 shows the data ow tree version of the position program.

CHAPTER 5: CF AND DF VPLS 111
position_3 - Inputs(Element, List), Outputs(Position)

position_3
PositionElement

List

Element List Position

FAIL

tail

NO YES=

head 1

empty_list?YES NO
+1

1head

FAIL

NO YES=

empty_list?YES NO

tail

Figure 5.7: Data Flow Tree Representation for position5.6.2 Development of the Miro Languages { Version 2This setion desribes the seond version of the data ow and ontrol ow miro lan-guages.The languages di�er in several respets. From a purely syntati point of view, thelanguages make use of olour. The �rst version of the languages were implementedin Hyperard whih, at the time, had diÆulties integrating olour with other desiredfuntionalities. The version 2 languages were implemented in Maromedia Diretor,whih provides not only failities for olour, but also serves as a potential platformon whih further features ould be added. For example, the representations ould be

112 CHAPTER 5: CF AND DF VPLSanimated, allowing experiments on program omprehension and/or debugging to bearried out with a dynami representation. Furthermore, the basi language de�nitionould be extended so as to allow program onstrution experiments to be onduted inaddition to omprehension experiments.In version 2, only two languages were reated: a ontrol ow graph and a data owgraph. It was deided to fous on these two types of representation as they were themost likely andidates to at as the basis for an atual visual programming language: asdisussed in (Good and Brna, 1996a), the tree representations have unwanted visosityand di�useness, two of the `ognitive dimensions' identi�ed by Green (1989).Changes to the atual nodes will be disussed under the ontrol and data ow headingsbelow.Control FlowThe ontrol ow language is similar to the �rst version of the ontrol ow graph de-sribed in Setion 5.6.1 in that both have program nodes, test nodes and exit (orstop) nodes. However, the language has moved away from elements whih previouslygave it an air of \visual Prolog" by eliminating fail nodes. Finally, the onept ofthe binding node was generalised to an ation node to enompass any type of ationwhih ours in a program (usually as a result of a test).The nodes used in the ontrol ow language are desribed in Table 5.6.Figure 5.8 shows how the nodes �t together to form the passes program.

CHAPTER 5: CF AND DF VPLS 113Shape ExplanationA test node tests whether a ertain onditionholds, for example, whether two values are equalto eah other, or whether a list is empty (asin this example). A test always �nishes with aquestion mark, and a test node has a true arand a false ar direting the ow of ontrol. Thefollowing tests are used in the experiment:� = (equals)� > (greater than)� < (less than)An ation node performs an ation, for exam-ple, assigning a value to a variable. The follow-ing ations are used in the experiment:� set X to Y - sets a variable X to Y, whereY an be a value, or the result of the fol-lowing operations:{ tail(A) - returns the tail, (i.e. all ele-ments exept the �rst one) of list A.{ head(A) - returns the head (the �rstelement) of list A.{ - (subtration){ * (multipliation){ + (addition)� print X - prints a variable� join X to Y - inserts element X into thefront of the list Y.A program node represents an entire program.When a program node appears in a graph, italls a program. If the program node has thesame name as the graph it's in, it means that itis alling the program reursively. If it doesn'thave the same name, then it is alling anotherprogram.An exit node indiates that the program termi-nates suessfully.Table 5.6: Control Flow Nodes: Version 2

114 CHAPTER 5: CF AND DF VPLS

Figure 5.8: The passes Program: Control Flow Version

CHAPTER 5: CF AND DF VPLS 115Data FlowThe data ow language underwent more hanges relative to the �rst version of thedata ow graph desribed in Setion 5.6.1. The hanges were designed to add moregenerality to the language and more larity, based on feedbak from the experimentusing the �rst version.The hanges an be summarised as follows:� The onept of funtion node from version 1 was separated into ation nodesand program nodes. This is to distinguish between the at of alling a fun-tion and alling a program (this also eliminates unneessary di�erenes with theontrol ow representation);� Program input and output are now represented as expliit nodes;� The omposite test node from version 1 was separated into a test node followedby either a seletor or distributor node. The latter served to diret the owof data depending on the result of the test. It was deided to use this two stageproess, desribed in (Davis and Keller, 1982), as subjets found the working ofthe omposite node diÆult to understand.� the new objet node was subsumed under the funtion node, as a partiularinstane of a general funtion.Tables 5.7, 5.8 and 5.9 illustrate and desribe the nodes used in the data ow language.

116 CHAPTER 5: CF AND DF VPLSShape ExplanationAn input node shows the input to a program(one node per input).Likewise an output node shows the output ofthe program (again, one node per output).A program node represents an entire program.When a program node appears in a graph, italls a program. If the program node has thesame name as the graph it's in, it is alling theprogram reursively. It if doesn't have the samename, then it is alling another program.A test node tests whether a ertain onditionholds, for example, whether two values are equalto eah other, or whether a list is empty (asin this example). A test always �nishes with aquestion mark. The result of a test will eitherbe a value of true or false. The following testsare used in the experiment:� = (equals)� > (greater than)� < (less than)Test nodes are always assoiated with two typesof nodes: Seletors and Distributors.Table 5.7: Data Flow Nodes: Version 2

CHAPTER 5: CF AND DF VPLS 117
Shape ExplanationSeletors have an input ar on the sideof the node. This represents the resultof the test (and so an be either trueor false). Seletors have two other in-puts at the top of the node and oneoutput ar at the bottom of the node.If the result of the test is true, the inputar marked \T" will be hosen, and thedata on that ar (for example, a num-ber or a list) will ow through to theoutput ar. If the result of the test isfalse, the input ar marked \F" will behosen, and that data will ow throughto the output ar.Distributors also have an input aron the side of the node. Distributorshave only one other input ar at thetop of the node, but two output arsat the bottom. If the result of the testis true, the data on the input ar willow through to the output ar marked\T". If the result of the test is false, thedata on the input ar will ow throughthe node and out along the output armarked \F".Table 5.8: Data Flow Nodes: Version 2 (ontinued)

118 CHAPTER 5: CF AND DF VPLSShape ExplanationA funtion node performs an ation, for ex-ample, splitting a list and only letting the tail(i.e. every element exept the �rst one) passthrough. The following ations are used in theexperiment:� tail - splits the input list, taking o� the�rst element and only letting the tail passthrough.� head - splits the input list, disardingthe tail and only letting the head passthrough.� print - prints a value.� join - takes two inputs, an element and alist, and inserts the element into the frontof the list.� subtrat - takes two numbers and sub-trats the element on the right from theone on the left.� * - multiplies two numbers together.� [℄ - reates an empty list (whih is thenusually used to build up the results of areursive all).� + 1 - adds 1 to the input number.Table 5.9: Data Flow Nodes: Version 2 (ontinued)Figure 5.9 shows a data ow version of the passes program.

CHAPTER 5: CF AND DF VPLS 119

Figure 5.9: The passes Program: Data Flow Version

120 CHAPTER 5: CF AND DF VPLS5.7 Chapter SummaryThis hapter de�ned ontrol ow and data ow paradigms. It desribed graphial rep-resentations of eah and explained that, for historial reasons, graphial representationsof ontrol ow (e.g. owharts) have typially been developed to at as aompanimentsto textual programs, in ontrast to graphial data ow languages. It then desribedempirial work whih examined ontrol ow and data ow representations. In a disus-sion of this researh, it was autioned against using owhart studies as evidene forrejeting ontrol ow VPLs out of hand.Finally, the hapter desribed the development of two versions of ontrol and dataow miro VPLs. The next two hapters desribe the experiments in whih the miro-languages were used.

Chapter 6A Preliminary Study on ControlFlow and Data Flow VisualProgramming Languages6.1 IntrodutionThis hapter reports on a study whih tested the math-mismath onjeture (desribedin Chapter 4) using two miro visual programming languages based on the data andontrol ow paradigms (desribed in Chapter 5). Green (1997) provides an interestingdesription of the math-mismath onjeture as follows:Extrating information about a program is orrespondingly easy whenthe information mathes the notation and hard when there is a mismath.A good parallel is swimming upstream or downstream: sequential informa-tion is easy to determine from a Basi program, beause one is swimmingdownstream, but hard to determine from say an event-driven program, be-ause one is trying to swim in the opposite diretion from the language.(Green, 1997, pp. 1-2)In terms of data ow and ontrol ow languages, this onjeture would predit that dataow languages will highlight data ow, therefore tasks requiring data ow informationwill be omparatively easier to perform than if one were using a ontrol ow language.Conversely, ontrol ow languages will make ontrol ow more salient and failitatetasks requiring ontrol ow information. 121

122 CHAPTER 6: A PRELIMINARY VPL STUDYThe investigation of paradigm relates to ontent, in other words, to a deision aboutwhat information to represent. However, that hoie does not ompletely ditate thesyntati representation: the same semantis an be represented in various ways. Thereexist a number of taxonomies of external representations based, for example, on theempirial study of how people lassify representations (Lohse et al., 1994), or on thespatial properties of the representation (Engelhardt et al., 1996), and Blakwell andEngelhardt (1998) attempt to bring this work together in a \taxonomy of diagramtaxonomies." In the visual programming domain, Shu (1988) makes the distintionbetween diagrammati systems (e.g. harts and graphs), ioni systems, and tables orform based systems. The distintion is useful, but does not seem to have preditivepower in the sense of helping one determine whih type of representation might be bestfor partiular tasks, situations, et.Indeed, it is often not lear what the onsequenes of a syntati hoie might be, orwhy one representation is easier to use or more e�etive than another one. Althoughit ould be argued that di�erenes between representations are due to the fat thatthe representations are informationally but not omputationally equivalent (Larkin andSimon, 1987), this distintion is not always useful in the sense that the omputationalproperties of the diagram may not neessarily lie with the diagram itself, but in theinteration between the user and the diagram.In the programming domain, a number of early studies looked at the e�et of informa-tion presentation in design and omprehension tasks, and the results of a number ofthese studies were presented in Chapter 5 (Ramsey et al., 1983; Sanlan, 1989; Wrightand Reid, 1973). The wide range of results obtained from these studies points to theimportane of the partiular task and setting in determining performane.In the study desribed here, it was deided to further investigate the relationship be-tween representation and problem solving by representing programs in either tree orgraph form. This partiular hoie of representations was diretly related to the useof reursive programs in the experiment. Reursive problems were used as the fousof this study beause, �rstly, the psyhology of programming literature douments thediÆulty involved in both learning and using reursion (Anderson et al., 1988; Bhuiyanet al., 1991, 1992; Kahney, 1989; Kurland and Pea, 1983; Pirolli and Anderson, 1985;Pirolli, 1986), with one of the major problems identi�ed being one of seeing reursion

CHAPTER 6: A PRELIMINARY VPL STUDY 123as \looping". Seondly, the nature of reursion is suh that diÆulty is not a funtionof size: small, ompat programs are often more diÆult to understand, and it was feltthat a graphial representation of suh programs would provide a good opportunityfor observing the types of diÆulty disussed in (Green et al., 1991; Petre and Green,1993)Various hypotheses were entertained as to the e�et that trees and graphs might haveon the omprehension of reursive programs: trees may represent a larger searh spaein the sense that eah reursive all, rather than being represented impliitly as a\loop" in the graph, generates an additional level in the tree. Thus, even though muhof the information ontained in the tree is a repliation of other levels, reovering fromerroneous paths may be more time-onsuming than for graphs. On the other hand,graphs (and partiularly yli graphs suh as the ones used in the study), while beingmore ompat visually, lak the advantage of trees in that they do not provide a visualreord of states previously visited in the form of a path from the root to the urrentnode. This is partiularly relevant in the ase of reursion, where representing it as anode in a yli graph does little to distinguish it from iteration.Thus, this hapter investigates two graphial ways of abstrating information in pro-grams and two spei� ways of presenting this information. The hypotheses whihrelate these issues to task performane are stated in the next setion.Finally, the study was designed so as to gather qualitative data on how people navigatethrough diagrams. Although laims have been made for visual programming languages(Shu, 1988; Golin, 1991), they have not always been supported by empirial evidene.Green et al. (1991) and Green and Petre (1992) highlight some of the diÆulties involvedin using graphial representations of programs; this study provides further informationon the types of strategies used and the misunderstandings whih our when attemptingto use a visual representation of a program.6.1.1 HypothesesTwo main hypotheses were investigated in this study: the math-mismath hypothesisand the presentation hypothesis.The math-mismath hypothesis was formulated as follows: when the question type

124 CHAPTER 6: A PRELIMINARY VPL STUDY(data ow or ontrol ow) requires information whih is highlighted by the diagram(again, data ow or ontrol ow) then performane will be enhaned, as measured bya lower response time and fewer errors. Conversely, a mismath between the questiontype and the information ontent of the diagram (e.g. a data ow question oupledwith a ontrol ow diagram) should result in a derease in performane, as manifestedby a greater number of errors and an inrease in time taken to omplete the task.1The seond hypothesis onerned the presentation type, i.e. the partiular way in whihthe information ontent is externally represented. In this study, two types of presen-tation were investigated, trees and graphs. It was expeted that diagram type woulda�et performane, with one or the other favouring problem solving, measured again interms of speed and auray. However, this was a bidiretional hypothesis: as desribedabove: there were opposing tensions as to the advantages of eah type of diagram, andit was unlear how these would interat. In addition, the author is unaware of similarstudies whih ompare these two types of presentation in the area of programming andthus empirial or experimental results on whih to base preditions were not available.The �nal objetive of the study onerned the possible interation between informationtype and presentation type, and the e�et, if any, of ombining a partiular type ofrepresentation (data or ontrol) with its physial manifestation (tree or graph).6.2 Method6.2.1 DesignThe experiment was a two-fator randomised mixed design, with eah fator havingtwo levels. The independent variables were the information ontent of the diagram (inthe form of ontrol ow or data ow diagrams), whih was a between-subjets fator,and presentation type (in the form of trees or graphs), whih was a within-subjetsvariable. Subjets were randomly assigned to either the ontrol ow or the data owondition, and the presentation order of trees and graphs was ounterbalaned arossand within subjets so as to ontrol for order e�ets.1 Note that in a previous report of this study (Good, 1996), the terms \ongruent" and \inongruent"were used to refer to situations of \math" and \mismath". \Congruent" and \inongruent" shouldbe taken to be equivalent to \math" and \mismath" respetively.

CHAPTER 6: A PRELIMINARY VPL STUDY 125Although a pure within subjets design has the advantage of minimising the e�et ofany individual peuliarities, doing so would have made the experiment overly long, afator whih would probably have outweighed any potential bene�ts. Additionally, abetween subjets design was unfeasible given the small number of subjets in the pilotstudy.6.2.2 SubjetsTen subjets took part in the experiment. All exept one were MS students in eitherArti�ial Intelligene or Cognitive Siene at the University of Edinburgh.2 All tensubjets had taken, or were in the eighth week of, a ten-week introdutory Prologourse whih inluded extensive use of reursive programs. Subjets were hosen fromthis ourse as it was important that they had some knowledge of reursive onstrutsin order to omplete the experiment.6.2.3 MaterialsThe materials used onsisted of a paper based pre-test, a Hyperard stak whih inor-porated the pratie materials and the experimental stimulus, and a sreen reordingutility to reord the subjets' interations with the system.3 The pre-test, programsused, and orresponding omprehension questions are shown in Appendix B.The Pre-TestThe paper and penil pre-test onsisted of �ve multiple hoie questions designed totest subjets' understanding of both tail and non-tail reursion. This was to ensure thatsubjets' knowledge would be suÆient to allow them to take part in the experiment.Given that all subjets knew Prolog, the questions were based on short Prolog programs.The questions required subjets to reognise orret versions of a partiular program,determine the behaviour of a standard but unnamed piee of ode, orret a pieeof buggy ode, determine and distinguish between the e�ets of two di�erent typesof reursive list building, and predit the invoation order of lines of ode, given apartiular query.2 The remaining subjet had already ompleted the MS ourse in Arti�ial Intelligene.3 Farallon In.'s `SreenReorder' utility, part of the `MediaTraks' pakage.

126 CHAPTER 6: A PRELIMINARY VPL STUDYIn addition to the reursion questions, the pre-test also inluded a question on thesubjets' knowledge of various programming languages, i.e. whih languages they hadlearned, how long they had used them, and to what extent (e.g. \took a ourse on it",\used extensively in my job", \used o� and on").The ExperimentThe experiment was implemented as a Maintosh Hyperard stak, and onsisted ofa familiarisation stage and the experimental trials. The �rst sreen showed a shortdesription of the various stages of the experiment. This was followed by the familiari-sation session, whih began with a sreen showing a graph diagram, and a desriptionof eah of the omponent parts of the diagram in terms of their shape, meaning andfuntion (the data ow graph version is shown in Figure 6.1). The subsequent sreenshowed the same diagram and a sample question similar to those asked in the experi-ment proper. This was repeated for tree diagrams, i.e. eah subjet saw a tree diagramaompanied by an explanation of its omponent parts, followed by a sample questionaompanied by the same tree diagram.

Figure 6.1: Pratie Session: An Explanation of the Data Flow Graph Language

CHAPTER 6: A PRELIMINARY VPL STUDY 127The experimental trials followed the pratie questions: after a short textual desriptionof a program in terms of input, output and a onrete example of both, subjets werepresented with either a tree or a graph representation of the program ode along with amultiple hoie question. The question either mathed or \mismathed" the diagram.The next stimulus showed the same diagram and a new question: if the �rst questionmathed the information highlighted by the representation, the seond question did not,and vie versa. This sequene of textual desription, followed by diagram plus question,then the same diagram plus a new question, was repeated for a seond program. Thuseah subjet answered a total of four questions, two per diagram.Trials di�ered for ontrol ow and data ow groups in that the ontrol ow group used aontrol ow tree and a graph, while data ow subjets used a data ow tree and a graph.For both groups, the order of presentation of tree and graph was ounterbalaned, aswas the order in whih the problems were presented (both groups reeived the samequestions: a data ow question and a ontrol ow question for eah diagram).The programs used were position and max. The four versions of the position pro-gram, ontrol ow graph, ontrol ow tree, data ow graph, and data ow tree, wereshown in Figures 5.4, 5.5, 5.6, 5.7 respetively (Chapter 5). Corresponding versions ofthe max program are shown in Appendix B. The position program takes an element,and a list ontaining that element, and returns the position of the element in the list,while max takes a list of numbers and reursively sans the list to �nd the maximumnumber. The problems were hosen beause, although they are not unommon, theyboth have partiular properties: max involves the swapping of values between variables,while a non-tail reursive version of position was seleted as results from Kurlandand Pea (1983) show that performane on tail reursive problems do not allow one todistinguish between a orret model of reursion and a model of reursion as iteration.Figure 6.2 shows one sreen of the experimental setup, in whih a data ow graph formax is presented with a ontrol ow (mismathed) question.6.2.4 ProedureSubjets were �rst given the pre-test and allowed to spend as muh time on it as theywished.

128 CHAPTER 6: A PRELIMINARY VPL STUDY

Figure 6.2: Data Flow Graph for the max Program with a Control Flow QuestionSubjets then worked through the experiment, again at their own pae. All sub-jet/system interations were logged and time-stamped using the SreenReorder util-ity.After �nishing the experiment, subjets were asked to view a replay of the sreenreording of their session and talk the experimenter through it, i.e. on the basis of themouse movements, explain what they were in the proess of doing at any given time, atehnique used previously by Cox (1996). Subjets used the SreenReorder playbakfailities to fast forward and/or pause the reording as needed, and this part of theexperiment was audio taped.6.3 ResultsThe study was designed so as to allow for the examination of two main e�ets, infor-mation math-mismath and presentation type, and the interation between the two.Following a brief disussion of the pre-test results, this setion looks at results in terms

CHAPTER 6: A PRELIMINARY VPL STUDY 129of the main e�ets and their interation, and then goes on to disuss some qualitativeresults from the retrospetive protool analysis.6.3.1 Pre-testThe mean sore on the pre-test was 3.9 (out of 5), with a standard deviation of 0.88.With the exeption of one question, whih all subjets answered orretly, inorretresponses were evenly distributed over questions and multiple hoie options. Themeans of both groups were largely similar (ontrol ow group: 4.0; data ow group:3.8).6.3.2 Programming ExperieneSubjets' self-report questionnaires allowed rude measures of previous programmingexperiene to be olleted. Overall, subjets reporting knowing an average of 3.2 lan-guages, a �gure whih was idential for both groups.All subjets knew Prolog, with the next most popular languages being C and Pasal,followed by C++ and Fortran.In terms of number of years of experiene, subjets had used C for the longest periodsof time, followed by Basi and Assembler.6.3.3 Pratie SessionAll subjets saw two questions during the pratie session (one aompanied by a treediagram, and one by a graph diagram). Although these questions were not part of theexperiment per se, the results were ompared so as to ensure that there were no majordi�erenes between the data and ontrol ow groups, and are summarised below:Condition Mean Response Lateny Auray(in seonds)Data Flow 259.8 70% orretControl Flow 274.2 80% orretTable 6.1: Results of Pratie Questions

130 CHAPTER 6: A PRELIMINARY VPL STUDY6.3.4 Information Math-MismathThe math-mismath hypothesis, i.e. the hypothesis that performane would be im-proved when the information required by the task mathed that present in the diagram,was examined in terms of both response lateny and error rates.4Eah question was sored simply as either orret (1 point) or inorret (0 points), and itwas expeted that the error rate (in terms of the perentage of inorret answers) wouldbe lower in ongruent situations. Overall, the error rate for ongruent questions was50%, as opposed to 35% for inongruent situations. This di�erene between onditionsgoes in the opposite diretion to that predited (i.e. the error rate was lower whenthe information type and question were not ongruent). As the auray data wasdeemed to be ordinal rather than interval, non-parametri statistis were employed.Using a Wiloxon signed ranks test, the di�erene between ongruent and inongruentonditions was not signi�ant (T+=24, N=8, ns).Mean response lateny was 182 seonds for ongruent questions and 165.5 seondsfor inongruent questions, a trend whih again goes in the opposite diretion to thatpredited. The time data was sreened to ensure that requirements for parametristatistis were met. The di�erene between onditions was not signi�ant (t-test, t=.59,ns).Figure 6.3 shows the plotted means for speed and error rates (with 95% on�deneintervals).
congruent incongruent

Question/information type

0

50

100

150

200

250

T
im

e
(i

n
se

co
nd

s)

congruent incongruent

Question/information type

0

25

50

75

100

Pe
rc

en
ta

ge
 o

f
er

ro
rsFigure 6.3: Response Lateny and Perentage of Errors for Congruent and InongruentQuestionsThus, the null hypothesis, that ongrueny between question type and information4 These were orrelated to hek for speed-auray trade-o�s, however the orrelation was not signif-iant (Spearman rank-order orrelation oeÆient, rs=.051, ns).

CHAPTER 6: A PRELIMINARY VPL STUDY 131ontent in the diagram does not lead to di�erenes in performane, ould not be re-jeted. In fat, there was a trend for ongruent situations to be assoiated with a longersolution time and a greater number of errors.6.3.5 Data Flow vs. Control FlowAnalysing the data in terms of whether the questions are ongruent or inongruentwith the information highlighted by the representation obsures the issue of the typeof information being investigated. In other words, the relatively high performane inases where the representation does not math the task may in fat be due to one ofthe representations in question being generally better for all of the situations studied.To test this hypothesis, the data was reexamined in order to look at the auray andresponse lateny on ontrol ow and data ow questions for both groups. The resultsare shown in Table 6.2.Condition Question Types OverallCF DFControl FlowMean 158.30 163.10 160.70Std Dev 90.67 51.11 54.23Data FlowMean 167.90 205.90 186.90Std Dev 86.82 28.78 49.40Table 6.2: Mean Response Lateny (in seonds) per Question TypeWhen the data ow and ontrol ow onditions are ompared, it an be seen that theresponse lateny for both types of question is higher for the data ow group, as isresponse lateny overall. These di�erenes are not however signi�ant.Likewise, response auray shows the same trend, with subjets in the ontrol owondition showing more aurate responses overall (Table 6.3). Again, these di�erenesare not signi�ant.Overall, auray rates for ontrol ow questions are higher than for data ow questionsaross both groups, showing that the apparent \inongrueny e�et" is in fat largelyunidiretional.

132 CHAPTER 6: A PRELIMINARY VPL STUDYCondition Question Types OverallCF DFControl FlowMean .70 .60 .65Std Dev .45 .22 .22Data FlowMean .70 .30 .50Std Dev .27 .45 .31Table 6.3: Proportion of Corret Responses per Question Type6.3.6 Presentation TypeThe seond hypothesis onerned the e�et of varying presentation type on perfor-mane. Eah subjet reeived two questions aompanied by graphs and two aom-panied by trees. Their sores on eah were ompared. The error rate for tree questionswas 55% as opposed to 30% for graph questions. This di�erene was not signi�ant(Wiloxon signed ranks test, T+=24, N=7, ns).In terms of speed, the mean time taken to answer questions using trees was 198.9seonds, as opposed to 148.7 for questions using graphs. Again, this result is notstatistially signi�ant (t-test, t=1.277, ns) due to large variation between subjetsand within groups.Figure 6.4 shows the plotted means for speed and error rates (with 95% on�deneintervals).
trees graphs

Diagram type

0

50

100

150

200

250

300

T
im

e
(i

n
se

co
nd

s)

trees graphs

Diagram type

0

25

50

75

100

Pe
rc

en
ta

ge
 o

f
in

co
rr

ec
t a

ns
w

er
sFigure 6.4: Response Lateny and Perentage of Errors for Trees versus GraphsIn summary, trends in the results suggest that graphs are assoiated with more aurateresponses and an improved response time, although the data do not reah statistialsigni�ane.

CHAPTER 6: A PRELIMINARY VPL STUDY 133Breakdown of Presentation Type by ParadigmIt was deided to subdivide trees and graphs further by type: ontrol ow tree, dataow tree, ontrol ow graph and data ow graph. This was done in order to investigatewhether the e�ets lay more with one partiular type of tree or graph, rather than arossboth types equally. The mean response lateny for trees and graphs by ondition isshown in Table 6.4. Condition Question TypesGraphs TreesControl FlowMean 128.10 193.30Std Dev 40.69 117.09Data FlowMean 169.30 204.50Std Dev 87.39 69.78Table 6.4: Mean Response Lateny (in seonds) per Group per Presentation TypeThe di�erene in time between groups is more marked for the graph representation asompared to the tree representation (41 seonds and 11.2 seonds respetively). Withingroups omparisons show that for the ontrol ow group, the di�erene between graphsand trees is almost double that of the data ow group (65.2 seonds as opposed to35.2 seonds). None of these results were statistially signi�ant, although the trendindiates that while graphs are assoiated with the lowest response latenies, ontrolow graphs in partiular show the lowest lateny overall.This is further reinfored by the auray data shown in Table 6.5, where it an beseen that ontrol ow graphs show the highest auray, while for the data ow group,auray remains the same over both types of presentation.A Mann-Whitney U test omparing sores aross onditions for the graph question wasnot signi�ant (U=4.5, p < .10).A Wiloxon Signed-Ranks Test omparing tree and graph sores within groups wassigni�ant for the ontrol ow group (T+=15, N=5, p < .05).

134 CHAPTER 6: A PRELIMINARY VPL STUDYCondition Question TypesGraphs TreesControl FlowMean .90 .40Std Dev .22 .22Data FlowMean .50 .50Std Dev .35 .35Table 6.5: Response Auray (Proportion) per Group per Presentation Type6.3.7 Interation between Main E�etsAn analysis of variane on the time data was run to determine the signi�ane, if any,of the main e�ets (group, presentation type and ongrueny) and their interations.None of the main e�ets or interations were signi�ant due to low sample sizes andlarge amounts of variane. Nevertheless, rank ordering the size of the e�ets suggeststhat the e�ets of presentation type were more onsistent than the e�ets of informationongrueny.6.3.8 Qualitative resultsThis setion presents the qualitative data obtained from the retrospetive verbal proto-ols. The verbal protools were taken by audiotaping subjets as they explained theirsreen reording to the experimenter after the experiment. The analysis of the protoollooked at two types of information: the strategies used by subjets as they reasonedusing the diagram, and the misunderstandings5 whih arose. This ategorisation issimilar to Mulholland's (1994) with the exeption that two of Mulholland's three ate-gories, information types and strategies, were ollapsed into one on the assumption thatinformation types are impliit in the strategies used by subjets. Additionally, apartfrom strategies involving the ontrol ow, data ow and goal of the program, whih areappliable to a large number of programming ativities, the remaining ategories weredevised spei�ally for this study.Note that this is an initial attempt at lassifying protool data from a study of this5 Like Mulholland (1994), the term misunderstanding will be used rather than misoneption as it isbelieved that problems observed were due in part to an unfamiliarity with the notation as opposedto any deep-seated oneptual diÆulties.

CHAPTER 6: A PRELIMINARY VPL STUDY 135kind, therefore the method is not overly sophistiated: the ategorisation was developediteratively on the basis of Mulholland's (1994) sheme. When examining the protools,only those utteranes whih were instanes of a strategy or misunderstanding werelassi�ed (i.e. some utteranes were left unlassi�ed). Classi�ation was arried out bythe author only.The strategies and misunderstandings are de�ned below, followed by a table indiatingthe number of ourrenes of eah type per ondition. Further disussion of the meritsof this type of analysis an be found in Setion 6.4.StrategiesCF: Reasoning about the ontrol ow of the diagram.CORRES: Mathing something desribed in the question (often in the form of hy-pothesised behaviour) to a partiular part in the diagram whih represents it (asopposed to, say, starting at the beginning of the diagram and working to thatpoint).CV: \Code visualisation" is an attempt to mentally visualise the orresponding textualrepresentation of the program ode.DF: Reasoning about the data ow of the diagram.GOAL: Reasoning about the goal of all or part of the program.META: Rather than using the diagram to reason about the problem, subjets useinformation from the following soures, or a ombination thereof: desriptionof program behaviour, example of program behaviour, program names (whihwere meaningful in the study and hene led to expetations about the node's be-haviour), and information ontained in the answers to the multiple hoie ques-tions.META PART: This is similar to META but applies only to a subset of the diagram,e.g. using knowledge of a partiular proedure to predit the meaning or value ofa partiular part of the diagram.

136 CHAPTER 6: A PRELIMINARY VPL STUDYMisunderstandingsMisunderstandings inlude erroneous inferenes, or inorret navigational ativities.However, a number of the misunderstandings desribed are derived from the inorretuse of a orret strategy, e.g. CORRESM, METAM and META PARTM.CORRESM: A variation on CORRES whih involves making an inorret orrespon-dene between a situation desribed in the question and the diagram itself, e.g.equating part of the exeution desribed in the question with the wrong level ina tree diagram.DFM: The subjet does not understand the origin of a partiular data objet, or howthe objet arrived at a partiular node in the diagram.FMM: Subjets report that they forget the meaning of a partiular onstrut, e.g.that a triangular shape denotes the reation of a data objet. This does not initself desribe the ation whih then followed: either the meaning was orretlyguessed, or the onept was ignored (ICM) or misinterpreted (WMM).ICM: Subjets do not take a partiular diagrammati onstrut into aount whenreasoning with the diagram, whih is espeially important if it has an e�et onthe data, e.g. a node whih takes the �rst element o� a list and returns the restof the list, as opposed to returning the list intat.METAM & META PARTM: These are erroneous versions of the META andMETA PART strategies desribed earlier. Although these strategies are usedhere, the inferenes made on the basis of the various soures are inorret.MISUNDM: This is an underspei�ed ategory in the same sense as FMM, as itis unlear what ations follow from it. Although the subjet reported that themeaning of a partiular objet was not understood, he/she did not go on to saywhether the objet was ignored or its meaning reinterpreted.NOCORRESM: The subjet is unable to determine, on the basis of a situation givenin the question, the orresponding point in the diagram.SKIPM: Subjets are at a point in the diagram and skip to another, inorret, point.This may arise, for example, from an inorret evaluation of a hoie point, whih

CHAPTER 6: A PRELIMINARY VPL STUDY 137auses them to jump to the wrong node.STARTM: Investigation of the diagram starts at an arbitrary point rather than atthe start, with the subjet ignoring all proessing ourring before that point.For example, in a diagram whih depits one proedure alling another reursiveproedure, the �rst proedure, whih transforms the input data in some way, isignored.WMM: The wrongmeaning is attributed to a onstrut, or the onstrut is assumed tohave a behaviour whih it does not have. This may be due in some ases to short-term memory limitations (e.g. the subjet forgets the meaning of the onstrutand attributes an erroneous one) rather than to a deeper misunderstanding. Ifso, it may be possible to redue these errors by a hange in experimental design.Table 6.6 shows the frequeny of ourrene of eah strategy in total and per group(ontrol or data), while Table 6.7 shows the frequeny of ourrene of eah type ofmisunderstanding in total and per group.Strategy Group TotalControl Flow Data FlowCF 6 4 10CV 1 4 5CORRES 14 3 17DF 4 3 7GOAL 3 0 3META 5 5 10META PART 2 0 2Total 33 19 52Table 6.6: Strategies Reported in the ProtoolLooking at the breakdown per group, the ontrol ow (CF) group showed more report-ing of strategies than the data ow (DF) group: 33 as opposed to 19. At the sametime, the reporting of misunderstandings per group was similar (18 CF group, 22 DFgroup). In the light of the report from many DF subjets that they found the dataow diagrams very onfusing and diÆult to follow, it may be that DF subjets wereless able to artiulate a strategy, whereas CF subjets ould proeed more methodiallyand report on strategies used.

138 CHAPTER 6: A PRELIMINARY VPL STUDYMisunderstanding Group TotalControl Flow Data FlowCORRESM 4 0 4DFM 0 1 1FMM 0 2 2ICM 3 1 4META PARTM 2 0 2METAM 0 5 5MISUNDM 0 4 4NOCORRESM 4 0 4SKIPM 2 1 3STARTM 1 2 3WMM 2 6 8Total 18 22 40Table 6.7: Misunderstandings Reported in the ProtoolThe results also show that the types of misunderstandings reported varied betweengroups. While CF subjets reported more diÆulty in mathing up parts of the ques-tion with parts of the representation (4 ourrenes eah of CORRESM and NOCOR-RESM in the CF group), DF subjets reported no ourrenes of either. The DF groupreported more diÆulty with attributing meaning to onepts (FMM, MISUNDM,WMM) rather than navigational diÆulties.However, it is diÆult to make a lear distintion between errors whih might be termed\errors of reasoning" and those whih would be onsidered as \errors of navigation". Inother words, is DFM, a misunderstanding about the origin and trajetory of a partiulardata objet, due to erroneous reasoning about how the program deals with data objets,or is it simply a ase of having got lost while traing through the diagram? For thisreason, and in the absene of data whih ould lend further support to these issues,it was deided not to attempt to lassify error types into higher level groupings or toperform more sophistiated analyses on the data.One speulative omment is worth making, nonetheless: the CORRES strategy standsout as being one whih is used muh more by the ontrol ow group than the data owgroup, and whih aounts for 42% of the strategies used by the ontrol ow group.In addition, as noted above, CORRESM and NOCORRESM errors appear only in theontrol ow group. This may indiate that di�erent types of task ativity are ourringaross groups: it would appear that ontrol ow subjets spend time trying to map

CHAPTER 6: A PRELIMINARY VPL STUDY 139parts of the task to the representation, an ativity whih data ow subjets engage inless frequently. It may be that rather than sanning the entire representation in anattempt to understand it, ontrol ow subjets are attempting to fous on only thoseparts of the representation whih they feel are neessary for the task. In other words,ontrol ow subjets may be using an \as-needed" rather than a \systemati" strategy(Littman et al., 1986) (but with better results than in the original study . . .). A studyfousing on diagram navigation, with onurrent verbalisation, might allow possibledi�erenes in strategy, and the role played the representation in failitating them, tobe eluidated.In brief, the qualitative analysis resulted in a lassi�ation of the strategies used, andthe diÆulties involved in diagram navigation and attribution of meaning to the variousdiagrammati onstruts. In addition, it provided some indiation that the diÆultiesexperiened by subjets vary aording to the type of information present in the dia-gram. This issue requires further investigation however.6.3.9 SummaryThe following points provide a summary of the main �ndings of the study:� With respet to the hypothesis that performane is omparatively better if thereis a math between the information ontent of the representation and the informa-tion required by the question, the data did not permit the null hypothesis (thatthere will be no di�erene between ongruent and inongruent representations)to be rejeted;� There is a (non-signi�ant) trend for some representations to enhane perfor-mane more than others, regardless of the task. Control ow representationswere assoiated with the lowest times overall and on both types of task (dataow and ontrol ow), as well as the lowest error rates overall.� With regard to the representation format hypothesis, although there was a trendoverall for graphs to lead to more aurate responses and a faster reply time, thedi�erene was not signi�ant.� However, an examination of trees and graphs aording to type (data ow orontrol ow), showed that overall, ontrol ow graphs were assoiated with the

140 CHAPTER 6: A PRELIMINARY VPL STUDYlowest response latenies and error rates. The di�erene between ontrol owgraphs and ontrol ow trees (within group) was signi�ant.� Finally, a qualitative analysis of the strategies and misunderstandings involvedin visual program omprehension and diagram navigation showed di�erenes be-tween groups, with the ontrol ow group experiening more diÆulties in math-ing parts of the task to parts of the representation, and the data ow group havingmore oneptual diÆulties.6.4 DisussionThis setion looks at the results not only in terms of how they an be aounted for ona theoretial basis, but also onsiders the inuene of elements within the experiment.As shown above, the math-mismath hypothesis was not upheld. This hypothesispredited that task performane would be relatively better if the information requiredby the question was of the same type as that highlighted by the diagram (omparedto a situation where the information required is obsured by the diagram). In fat,the math-mismath issue seems to mask an issue of \ontrol ow supremay", wherebest performane is assoiated with ontrol ow tasks and ontrol ow representations,regardless of the task. Thus, the issue of semantis per se seems to take preedeneover the semanti-task math.On the other hand, the results from omparing trees and graphs show that the syntax ofthe representation does not have the same degree of inuene: although graphs provedmore bene�ial than trees, syntax on its own was not signi�ant. Syntax and semantisdid interat though, in that ontrol ow graphs were most e�etive for problem solving,both in terms of speed and auray.These results seem to suggest that one partiular type of representation is best inall situations (at least in the situations examined here), a �nding whih goes againstprevious work looking at the math between task and representation (Gilmore andGreen, 1984) or the notion of ognitive �t (Vessey, 1991).However, it seems more likely that neither situation tells the whole story: no onerepresentation is probably best for everything, but on the other hand, the math-

CHAPTER 6: A PRELIMINARY VPL STUDY 141mismath onjeture is only one fator in determining an e�etive representation forproblem-solving. In some ases, other fators may interat to diminish, or even override,its e�et. For example, Sinha and Vessey (1992) applied the notion of ognitive �t tothe domain of reursion and iteration in programming, using Lisp and Pasal as theprogramming languages in their investigation. They found the language itself had amuh stronger e�et on subjets' performane than did ognitive �t. Similarly, in theurrent study, other fators may have ontributed to the results obtained.The following setions will �rstly make some general methodologial omments, andgo on to disuss the main experimental �ndings, starting with general diagram use,and followed by a onsideration of some of the fators whih may have ontributedto the results obtained, inluding familiarity and previous experiene, the relationshipbetween data and ontrol ow, the oneptualisation of programming, and elements ofthe experimental setup whih may have ontributed to the results obtained.6.4.1 Questions of Methodology: Sreen ReordingBy reording subjets' mouse movements over the ourse of the experiment and askingthem to omment on the reording after the event, the intention was to obtain 1) dataon the method used by subjets to searh through the diagram and 2) some indiationof the inferene proesses they were engaged in at partiular points.However, the tehnique proved to be only partially suessful as a ueing mehanism,as one most subjets saw a partiular diagram on the sreen, they began to use themouse in real time to demonstrate their problem solving to the experimenter, ratherthan following the pre-reorded mouse movements. For those subjets who did tryto oordinate their explanations with the pre-reorded mouse movements, there wasevidene that this proess was very diÆult, judging by the number of requests to eitherstop the reording, redue the playbak speed, or rewind the reording. This suggeststhat visually following the mouse movements, attempting to reall what was happeningat that partiular time and verbalising this to the experimenter may simply be toodemanding, in whih ase, the methodology should be re�ned for future experiments.

142 CHAPTER 6: A PRELIMINARY VPL STUDY6.4.2 General Diagram UseIn terms of general observations of diagram use, there was some on�rmation of ear-lier �ndings, partiularly the idea of familiarity and the need for training. Greenet al. (1991) and Green and Petre (1992) dispute the idea of \graphial superlativism"whereby visual programming languages are \ognitively natural" and hene superiorto textual languages, and stress the importane of training and experiene in usinggraphial notations. This was partiularly evident in the ase of the only subjet toobtain orret answers to all questions, despite the fat that his sore on the Prologpre-test for reursive skills was one of the lowest. The subjet's verbal protool showeda good understanding of how to navigate through the representation and where to lookfor relevant information, with no errors of interpretation reported, and extensive use ofwhat Petre and Green (1992) term \seondary notation". That subjet later reportedthat he used graphial software engineering representations in his work and felt om-fortable onstruting and using many di�erent types of representations, inluding dataow diagrams and entity relationship diagrams.Green et al. also found that \ues imply meaning", in other words, that if a graphialelement was visible, it was expeted to have some relevane. This phenomenon did notour in the present study. On the ontrary, some subjets seemed to ignore onstrutspresent in the diagram (and neessary in order to orretly answer the question), in-luding any omputation whih ourred as a result of that onstrut. Reasons whythis might be so are disussed in Setion 6.4.5.6.4.3 Familiarity and Previous ExperieneOne explanation for the lak of support for the math-mismath hypothesis may be thatsubjets were more familiar both with ontrol ow based languages, and with graphialrepresentations of ontrol ow, and that a familiarity e�et therefore overshadowed themath-mismath e�et.In terms of language familiarity, proedural, ontrol ow based, textual languages werevery important historially, and ontinue to be extremely widely used today, thereforethis paradigm is likely to have been more familiar to subjets. Indeed, the data onprevious programming experiene shows that apart from Prolog, whih all subjets

CHAPTER 6: A PRELIMINARY VPL STUDY 143were familiar with (all were taking or had taken a ourse on it), proedural languageswere both best known by subjets in terms of years of experiene, and known by thegreatest number of subjets.Additionally, owharts have often been used to illustrate the workings of textual,proedural languages, and the experiment desribed here showed an e�et of \ontrolow supremay" whih was most marked with respet to graphs. Although the ontrolow diagrams were not stritly speaking owharts, the graphs in partiular borrowedheavily from the owhart tradition, and subjets may have been familiar with diagramsof this type. Unfortunately, the experiment did not ollet data whih ould supportor refute this laim.In any ase, it may be that the subjets were more familiar with this type of layout,both from a semanti and a syntati point of view. One way of investigating thefamiliarity issue might be to use a variation of the ER taxonomy task (Cox and Brna,1993), whih required subjets to sort and label a series of 87 graphial items (maps,skethes, tables, tree diagrams, graphs, et.). This task ould be adapted more to theprogramming domain by using a seletion of graphial representations of programs,inluding ontrol and data ow graphs and trees of the type used in the urrent study.Subjets ould then be asked to rate or group the representations in terms of theirfamiliarity, and the results ould be orrelated with subsequent performane measures.Anedotal evidene suggests, however, that the distintions of interest to the experi-menter may be too �ne-grained for the subjets. When running the experiment de-sribed in Chapter 7, the representations used were explained to the subjets in apost-experiment debrie�ng. Many in the data ow group erroneously jumped to theonlusion that the representations they had used were traditional owharts.Finally, time onstraints make it diÆult to inlude more than a minimum of pre-tests: the fat that the experiment requires students to learn a new (albeit \miro")programming language before answering omprehension questions makes for a relativelylong and intensive experiment, and the number of pre-experiment ativities whih anreasonably be inluded is limited.The issues of familiarity and prior experiene have links to the way in whih one on-eives of programming, an issue whih was introdued in Chapter 3. It was noted there

144 CHAPTER 6: A PRELIMINARY VPL STUDYthat programs may popularly be oneived of as ative entities whih input data ob-jets and, through a series of proesses, output new data objets. Separating the idea ofoneptualisation from the familiarity issue is not an easy task: do people think aboutprograms as ating on data beause they have been exposed to that type of paradigm,or does the issue go beyond prior experiene? Assuming a ontinued move away fromproedural languages in the future, it will be interesting to see whether novie program-mers who were initially exposed to a nonproedural language (e.g. an objet-orientedlanguage) will have a di�erent oneption of what programming involves.6.4.4 The Data/Control Flow RelationshipA major fator whih may have played a role in the results obtained is the interre-latedness of data and ontrol ow. Data ow and ontrol ow are intertwined: dataow diagrams neessarily omprise ontrol ow information and vie versa. Thus, itmay be that, for example, more data ow information was present in the ontrol owdiagrams (in the sense that less inferene was needed to aess it), while less ontrolow information was present in the data ow diagrams.One way to investigate this issue would be to devise a haraterisation of the ognitiveload in terms of the proedural steps involved in searhing the representations andperforming the neessary inferene upon the data obtained from them. This informationould then be inorporated into a ognitive model, a point whih is disussed furtherin Chapter 10.However, even if it is possible to determine the amount of information of varying typespresent in a given diagram, it may be that the nature of both the information and thetask leads us to think in terms of degrees of math rather than a more ategoriallyde�ned notion of math vs. mismath, or ongrueny vs. inongrueny. In other words,beause the information being onsidered is interrelated, and beause the task is suhthat inferene (as opposed to simple read-o�) is almost always neessary regardlessof whether the situation is ongruent or inongruent, it may be more useful to rankrepresentations in terms of their eÆay rather than simply ategorise them.

CHAPTER 6: A PRELIMINARY VPL STUDY 1456.4.5 The Use of Additional CuesThe use of \additional ues" in the experimental setting may have inuened the resultsand led to the use of meta-reasoning. Subjets in the experiment had aess to muhinformation about the program in addition to the graphial representation. First, theywere presented with a textual desription of the program in terms of input, output anda onrete example of both. Additionally, the programs themselves were reasonablyommon, and the program names were meaningful (max and position). By the timesubjets atually viewed the representations of the programs, they may well have for-mulated a priori ideas about what the programs did and how they worked, based forexample on expetations stemming from the program's name, its desribed behaviour,examples, or the answers proposed. This may have led them to a less thorough investi-gation of the graphial representation, using it more as part of a hypothesis veri�ationproess than anything else. This is similar to the situation reported by (Adelson, 1984),in whih the availability of program ode gave subjets an additional soure of infor-mation on whih to base their understanding of a program, whih were meant to havebeen based on an aompanying owhart desribing either the funtional or proeduralaspets of the program.This in itself doesn't neessarily explain why di�erenes between onditions were ob-served, both in terms of speed and auray. However, the familiarity issue may play arole here, making more familiar representations easier to searh. The size of the searhspae is also relevant, and one would expet that representations with fewer nodesand less repetition, or whih are more \terse" in Green's ognitive dimensions parlane(Green, 1989), would be searhed more quikly, as seems to have been the ase.Possible solutions to this problem of meta-reasoning inlude the use of non-meaningfulode names and less textual information about the ode, or the use of buggy programs,and fousing the task on omprehension with a view to debugging rather than solely onomprehension. This does not in itself prelude testing the math-mismath hypothesis:e.g. questions about the e�ets of a faulty ontrol ow representation on subsequentdata ow ould be devised. The potential bene�t of this approah is that it involves arealisti setting: part of a programmer's job often involves debugging ode written byother programmers.

146 CHAPTER 6: A PRELIMINARY VPL STUDY6.4.6 The Nature of the TaskOne further element whih is related in part to the use of additional ues stems from thenature of the tasks used. The multiple hoie questions were quite diÆult, while thedistrators ontained various subtleties, embodying suh misoneptions as the \o� byone" error. Many questions required both forwards and bakwards mental exeutionof the program using hypothetial data. This senario is very di�erent from taskswhih simply require subjets to loate information whih is available in read-o� formin a table or graph. Therefore, subjets may again have relied not so muh on therepresentation as on their own mental exeution of the program, the general workingsof whih were surmised from the textual desription of the program rather from theprogram itself.6.5 ConlusionsThe present study has suggested that the relationship between the task and the infor-mation required by the task is not a simple one. It is diÆult to imagine that a givenrepresentation an simply be deemed to be the \right" one for the task in the abseneof information on fators suh as the features of the representation (what informationit ontains and in what format), the nature of the task, the math between the two,and the user of the representation, in terms of both experiene with the representationand ognitive style preferenes.Trends have, however, been eluidated, pointing again to a ontrol ow bias, withontrol ow questions being easier to answer, and ontrol ow representation seeminglyeasier to use. The issue of representation format points to graphs as being superior totrees.This setion attempts to plae this researh in a wider ontext and onsider the impli-ations of this experiment for further work.One point about the researh reported here is that in some ways it addresses ease oflearning, rather than ease of use. Given the short time sale of the study, data isnot available on the use of the representations following the initial learning stages. Arepresentation may be diÆult to learn but prove useful one it has been mastered.

CHAPTER 6: A PRELIMINARY VPL STUDY 147For example, one might argue that the data ow representation is the more \om-plete" representation in the sense that it portrays data ow expliitly, but has alsobeen augmented to inlude ontrol ow onstruts. By ontrast, in the ontrol owrepresentation, data ow must be inferred.On the other hand, the very ompleteness of the data ow representation may alsomake it more omplex: it ertainly requires more nodes to represent the same program.Furthermore, data ow representations require following as many ars as there are dataobjets, thus neessitating, in the ase of more than one data objet, a parallel searhof the diagram, rather than the serial searh a�orded by the ontrol ow diagram. Thisin turn plaes more of a demand on memory as plaekeeping operations must ourfor some ars while searh is being direted down others. These operations may makedata ow diagrams intrinsially harder to use unless the program onsists solely oftransformations on a single data objet.The question arises as to whether it is better to start novies o� on representationswhih are familiar and easy to use, or whether it is worth investing more e�ort at theoutset in order to reap more bene�ts in a not-too-distant future (assuming that this isindeed the ase for data ow representations).There are obvious diÆulties with onduting long term studies using miro languages,however, one way of addressing this question is to look at the representations in abroader ontext, and to fous on how they a�et other types of understanding thansimply data and ontrol ow. From a pratial point of view, this ould be ahieved byattempting to integrate the methodology used by Pennington (1987b) and Corritore andWiedenbek (1991) with that of Gilmore and Green (1984). This would allow us to lookat the ways in whih the representations interat with various types of information, andalso to obtain a more open-ended measure of students' general program understanding.In addition, the issue of \ognitive style preferene" is worthy of further investigation.Although familiarity with one type of diagram may failitate performane using thatdiagram, some persons may simply perform better using graphial, as opposed to sen-tential, representations. The idea that \graphial readership" is an aquired skill (Petreand Green, 1993) is not disputed, however, there is evidene to support the laim thatsome individuals learn better than others from graphial teahing methods and thattheir skills in a given domain improve to a signi�antly greater extent when taught us-

148 CHAPTER 6: A PRELIMINARY VPL STUDYing a graphial teahing method than do those of \less diagrammati" reasoners (Coxet al., 1994; Stenning et al., 1995). How this issue relates to program omprehensionwill be investigated in the next experiment.6.6 Chapter SummaryThis hapter provided an initial investigation of ontrol and data ow visual pro-gramming languages using the math-mismath onjeture. Rather than �nding thata math between representation and task failitated performane, a \ontrol owsupremay" e�et was unovered: the error rate was lowest for ontrol ow questions re-gardless of the representation used, and furthermore, ontrol ow representations wereassoiated with rapid response rates on both types of question. In terms of informationpresentation (trees vs. graphs), ontrol ow graphs were assoiated with best perfor-mane. Finally, an initial qualitative desription of strategies and misunderstandingswas arried out based on retrospetive verbal protools. Possible explanations for the\ontrol ow supremay" e�et were disussed, fousing on issues of familiarity andprior experiene.

Chapter 7Data Flow and Control FlowVisual Programming Languages:A Comparison7.1 IntrodutionChapter 3 desribed an experiment using an information types approah whih resultedin a \ontrol ow supremay" e�et: despite using a language based on a delarativeparadigm in the experiment, subjets still performed relatively better on questionsrequiring ontrol ow and low-level operations information than on those requiringfuntional or data ow information. Another experiment, reported in Chapter 6, lookedat the relationship between visual representations of ontrol and data ow and taskusing the math-mismath onjeture. Again, the results showed a trend for ontrolow representations to be assoiated with lower error rates and faster responses forboth types of question, and for ontrol ow questions to be answered more quikly andaurately regardless of the representation.The experiment desribed in this hapter brings together the `math-mismath on-jeture' and `information types' strands of researh in order to investigate the issue ofrepresentation and task one again. At �rst sight, this may not seem like a wise move,given that both of the previous experiments seem to suggest that a ontrol ow e�et ismasking any potential e�ets of representation-task math. However, it is argued herethat doing so may allow the advantages of the `math-mismath' and the informationtypes approah to be ombined, while eliminating some of their disadvantages in theproess. 149

150 CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISON7.1.1 Advantages of the Combined MethodologyCombining the methodology of the information types studies with that of the math-mismath onjeture studies has the potential to apitalise on the positive aspets ofeah type of study.On its own, the math-mismath onjeture is stated in a way that allows for theformulation of relatively foused and preise hypotheses about the relationship betweennotation and task. However, it provides information about only a subset of programomprehension, namely, in a ross omparison, about the two types of informationhypothesised to be obsured or highlighted by eah of the two representations. Forexample, given a math-mismath study involving ontrol ow and data ow tasks andnotations, the onjeture overs the relationship between data ow and ontrol owrepresentations and tasks only: other information types whih may be important toomprehension, suh as funtion or operations, annot be onsidered. The hypothesisis more preise, but the sope is more limited.Information types studies, in ontrast, enompass a broader range of information abouta program (typially, �ve types). However, hypotheses do not follow as obviously fromthe onept of information types as they do from the math-mismath onjeture.They embody a partiular way of sliing up, or abstrating from, a program at aninformational level, but need to be ombined with preditive hypotheses. In the past,information types have been used in attempts to asertain the mental representationsof programmers of various levels, but this does not mean that they annot be appliedto other researh questions, suh as the interation between task and representation.Studying a range of information types, rather than only those whih are diretly relevantto the math-mismath onjeture, leads to a further question: what is the relationshipbetween a representation and tasks requiring information types not diretly highlightedor obsured by the representation? There may be no relationship between them, how-ever, desriptions of programming paradigms suggest otherwise, given that di�erenttypes of programming information are interrelated, at least from a theoretial pointof view. For example, the semantis of so-alled appliative, funtional languages arelaimed to be losely related to data ow graphs (Dennis, 1986). Aording to Davisand Keller (1982), data ow languages are in fat a subset of funtional languages

CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISON 151therefore, it ould be hypothesised that funtional tasks are also failitated by dataow representations.The way in whih the paradigm is represented may also lead to hypotheses about theinterrelationship between information types: when desribing data ow, Dennis (1986)makes the point that a node �ring de�nes the \next state" of the omputation. Giventhat any node an �re as soon as its inputs are available, nodes in data ow graphs anpotentially �re in parallel. Therefore, it seems likely that there will not be the samewell-de�ned, or at least easily loalisable, notion of state as in a ontrol ow represen-tation. In the same way, ontrol ow graphs essentially represent a series of sequentialoperations, with low-level operations implemented at a node level. Data ow, on theother hand, sometimes requires more than one node to perform a single operation andthe nodes may not be spatially ontiguous. Combining the math-mismath onjeturewith the information types approah should allow these theoretial laims to be tested:if interrelationships between information types do exist, e.g. information types X andY are related, then representations whih highlight information type X should maketasks requiring assoiated information type Y easier to perform. This is in e�et anextension of the math-mismath hypothesis to groups of related information.Although the math-mismath onjeture and the onept of information types providesome theoretial guidelines for experimentation, neither give hard and fast rules for theway in whih evidene of omprehension should be eliited from subjets. Question an-swering1 was used to test the math-mismath onjeture in a study of data ow visualprogramming languages (Green et al., 1991), however, alternative dependent measuresould presumably be used, for example, a debugging task. Likewise, information typesould be eliited through a number of di�erent means. However, ombining some ofthe eliitation methods used in the information types studies with those of the math-mismath studies should enable aess to a broad range of information: using multiplehoie questions (as in the math-mismath onjeture study) rather than binary hoiequestions (as in the information types studies) will in priniple allow �ner-grained in-formation about students' misoneptions to be olleted. Looking at response latenyin addition to auray, as was the ase for the math-mismath studies, should alsoprovide further insight into the nature of the omprehension proess. Finally, requir-1 presumably multiple hoie, although this is not lear from (Green et al., 1991).

152 CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISONing subjets to write a summary of the program (information types studies) allows forinvestigation of the di�erential e�et of notation on general program omprehensionand the way in whih that information is ommuniated to other parties. The open-endedness of the summary request ensures that the experimenter is not foring his/herview of program omprehension on the subjets, and provides a useful ontrast withthe more foused multiple hoie questions.From the design point of view, developing an experiment whih inorporates bothstrands of researh is relatively straightforward. From a theoretial point of view, doingso highlights the tension between internal and external representations, and leads toquite di�erent hypotheses. Aording to the math-mismath onjeture, performaneon data ow questions should be better for subjets using the data ow VPL ratherthan the ontrol ow one. Likewise, subjets using the ontrol ow VPL should performbetter on ontrol ow questions than their data ow ounterparts. The onjeture doesnot predit performane on other types of questions. However, based on previousinformation types studies with novies, inluding the study reported in Chapter 3,performane is predited to be best on proedurally based, ontrol ow type questionsregardless of the language. The study reported in Chapter 6 would also predit betterperformane in the ontrol ow ondition as a result of the observed \ontrol owsupremay" e�et. These hypotheses are listed in the next setion.An additional aim of the study reported here was to investigate the issue of \graph-ial skill" and its relation to omprehension performane with visual programminglanguages. In other words, just as previous programming experiene tends to orre-late positively with performane, do measures of graphial ability orrelate with visualprogramming skill? Previous investigations of visual programming languages (Cunni�and Taylor, 1987; Petre et al., 1995) have used the paperfolding test, part of the Kitof Fator-Referened Cognitive Tests (Ekstrom et al., 1976), but this test appears tomeasure the ability to mentally manipulate objets in 3-D spae, a skill whih does notseem neessary for reasoning with a visual program. It was felt that the path�ndingtest, part of the same set of tests, might be a more appropriate measure, as it requiressubjets to trae a path from a starting point to an end point, a behaviour whih isalso required in traing the exeution of a visual program. In order to investigate theutility of these measures, both of these tests were inluded in this experiment.

CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISON 1537.1.2 HypothesesThe hypotheses were stated as follows. Aording to the \ontrol ow supremay"hypothesis:� overall auray should be higher for the ontrol ow group ompared to the dataow group.� overall response lateny should be lower for the ontrol ow group as omparedto the data ow group.� time taken to \learn" the miro-language should be lower for the ontrol owgroup ompared to the data ow group, as should time taken to inspet eahprogram.Aording to the math-mismath hypothesis:� response lateny on ontrol ow questions should be lower for the ontrol owgroup as ompared to the data ow group, and vie versa for data ow questions.� response auray on ontrol ow questions should be should be higher for theontrol ow group as ompared to the data ow group, and vie versa for dataow questions.The following setions report on a study whih investigated the above hypotheses. Thestudy was in fat the seond of two idential studies whih foused on these hypotheses.Unfortunately in the �rst study, despite subjets' random assignment to onditions, itwas determined later that the data ow group was the more \skilled" group in termsof all pre-test measures: path�nding test, paperfolding test, Prolog pre-test and overallprogramming experiene (number of languages known, length of time known, and self-rating in terms of level of expertise). Although none of these di�erenes on its own wassigni�ant, the ombined di�erenes were felt to suggest that the samples had not beendrawn from the same population, therefore only the seond study will be onsideredhere.

154 CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISON7.2 Method7.2.1 DesignThe experiment was a two-fator randomised mixed design. The independent variableswere the visual programming language paradigm (either data ow or ontrol ow), abetween-subjets fator, and question type, a within-subjets fator with �ve levels:funtional, data ow, ontrol ow, operations and state. Subjets were randomly as-signed to either the ontrol ow or the data ow ondition, and the presentation orderof the programs and questions used was randomised so as to ontrol for order e�ets.7.2.2 SubjetsTwenty two subjets took part in the experiment. All subjets were in the �rst term ofthe seond year of a four year ourse in omputer studies at Napier University, and hadbeen taught C++ and COBOL. Subjets had some knowledge of reursion, primarilyat a theoretial level.In the results desribed below, data from twenty subjets are onsidered: data fromtwo of the subjets had to be disarded as they experiened diÆulties during theexperiment, whih were manifested either in the form of missing data, or by asking theexperimenter questions at points whih would have adversely a�eted the timing data.27.2.3 MaterialsThe experiment inluded two pre-tests: the paperfolding test and the path�nding test,both part of the Kit of Fator-Referened Cognitive Tests (Ekstrom et al., 1976). Thepath�nding test is usually administered in two parts, eah of whih lasts seven minutes,and ontains items of inreasing diÆulty. Beause of time onstraints, a split halfversion of the path�nding test was devised using odd items from one part and evenitems from the other, thus limiting the total time needed to administer the test to sevenminutes. Both tests are shown in Appendix C.2 An examination of the students' programming self-report questionnaires showed that neither hadtaken the �rst year ourse (one was a foreign student while the other had transferred from a tehnialourse). Thus both may have had insuÆient knowledge of reursion, taught in the �rst year, tounderstand the programs).

CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISON 155A self-report questionnaire was also devised to determine subjets' prior programmingexperiene and familiarity with various programming languages (shown in Appendix C).This questionnaire had previously been used in the unreported study, but was modi�edslightly so as to allow for a �ner-grained assessment of programming skill. In additionto asking for details about how subjets had learned the language in question (shool,university, self-taught or used in job), it also asked them to rate their level of pro-gramming expertise for eah language on a sale of 1 to 5, regardless of how they hadoriginally learned the language (in the original questionnaire, subjets were only askedto rate their knowledge if the language was self-taught).The experimental setup was implemented in Maromedia Diretor and ran on a Ma-intosh. Five programs were used (the �rst being a pratie program). The programswere hosen beause they were reursive and they inluded reasonably omplex passingof values between arguments. However, they were relatively short programs (equivalentto approximately 10-12 lines of ode in a textual language). In hoosing the programs,two issues were onsidered: program names needed to be meaningful in some real-worlddomain (e.g. a program about taxi sheduling or hoosing a basketball team), as one ofthe issues of interest was the level at whih subjets would hoose to desribe the pro-gram in their free-form summary (i.e. whether they desribed it at a domain, program,or detailed level). As a result, nonsensial or minimalist names (as used in the studydesribed in Chapter 3) ould not be used. Additionally, it was neessary for programnames to be relatively unmeaningful at a programming level, so as to avoid a situationsimilar to that desribed in Chapter 6 where subjets made use of the program nameto infer details about the program's funtion and behaviour rather than relying solelyon the graphial representation of the program.The �rst sreen of the program allowed the experimenter to hoose between the data orontrol ow versions of the experiment. The next sreen was the introdutory sreen forpartiipants, explaining the overall struture of the experimental session. The followingsreens provided an introdution to the language: eah suessive sreen introdued anew node, with an aompanying text desribing the node (Figure 7.1 shows a sreenwith several ontrol ow nodes and the aompanying explanation for the most reentlyintrodued node).Following this, a series of sreens showed a sample program, explaining eah stage in

156 CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISONthe program, and how eah node ontributed to produing the overall program output.Figure 7.2 shows a sreen desribing the workings of a simple data ow program.The last part of the pratie session gave subjets a simple example program andrequired them to �rst study it. The next sreen showed a blank text box and askedsubjets to type in a summary of the program. The program was not visible on thissreen. The subsequent �ve sreens showed a series of multiple hoie questions (oneper sreen), with the program shown alongside the questions.The experiment itself onsisted of four programs, whih were displayed (in a randomlygenerated order) as in the pratie session above: eah program was followed by a sreenasking subjets to write a summary of the program. The summary sreen was followedby �ve multiple-hoie omprehension questions, orresponding to the �ve informationtypes. These questions were presented in random order, one per sreen.Control ow and data ow versions of the passes program an be found in Figures 5.8and 5.9 respetively (both of whih are in Chapter 5). Finally, Figure 7.3 shows one ofthe omprehension questions (in this ase, the funtion question) with aompanyingmultiple hoie answers. Note that for all questions, there is only one orret answer(in the example shown, this is the answer seleted).The data and ontrol ow versions of all programs used in the experiment, along withthe aompanying multiple hoie questions3, an be found in Appendix C.The experimental program was designed so that it automatially generated a log of eahsubjet's session, inluding time spent on eah sreen, the ontents of the programsummary �eld, and responses to eah multiple hoie question. It also marked theresponses for orretness and reorded this information in the log �le.7.2.4 ProedureSubjets were run individually, and eah experimental session lasted between 1 and 1.5hours.3 Previous instantiations of the \�ve types" methodology used binary hoie questions, inluding(Pennington, 1987b), (Corritore and Wiedenbek, 1991), and the experiment reported in Chapter 3.Given the 50% hane of guessing the right answer, and the fat that wrong answers do not providemuh information on the types of misunderstandings whih students might harbour, it was deidedto develop multiple hoie questions for the experiment.

CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISON 157

Figure 7.1: Explanation of Control Flow Nodes in the Pratie Session

Figure 7.2: Explanation of a Data Flow Program in the Pratie Session

158 CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISON

Figure 7.3: The passes Program: Funtion QuestionSubjets were �rst given two paper and penil pre-tests: the paperfolding and path�nd-ing tests (the latter being a split half version of the full test). Both tests were timed.Following this, subjets were asked to �ll out the self-report questionnaire on their priorprogramming knowledge.Subjets then moved to the omputer and were told to work through the experimentat their own pae. Points where questions ould be asked were indiated on the sreen.Subjets read through the desription of either the data ow or ontrol ow languagedepending on the ondition. The desription spanned several sreens, and explainedeah omponent of the language, then showed how the individual omponents �t to-gether to form a program. Subjets were able to move both bakward and forwardthrough the explanations. After asking questions of lari�ation (if any) to the exper-imenter, subjets worked through a pratie problem sequene whih was idential instruture to those used in the experiment: a short program (slightly less omplex thanthose used in the experiment itself), followed by a request to summarise the program(the program was not visible at this time), and �ve omprehension questions, one perquestion type, whih were shown one to a sreen and aompanied by the program. Fol-lowing another opportunity to ask questions of lari�ation, subjets worked through

CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISON 159Condition Pre-testsPath�nding Paperfolding(out of 16) (out of 20)Control FlowMean 7.6 13Std Dev 4.58 3.86Data FlowMean 6.5 11.1Std Dev 3.66 4.25Table 7.1: Mean Sores per Condition on Pre-teststhe four problems.7.3 Results7.3.1 Path�nding and Paperfolding Pre-testsMean sores on the pre-tests per group are shown in Table 7.1.Although the mean sores for both tests were higher for subjets in the ontrol owgroup, the di�erenes were not signi�ant.Correlations were omputed between the pre-tests and between the pre-tests and ex-perimental sores. A summary of these orrelations follows:� Correlations between pre-tests: there was a signi�ant orrelation betweenthe path�nding and paperfolding pre-tests overall (rs = .55, p < .02), and alsofor the ontrol ow group (rs = .76, p < .01).� Correlations between pre-tests and overall sores: the only orrelationbetween a pre-test and overall performane was for the data ow group, wherethere was a positive orrelation between the paperfolding test and overall sore(rs = .73, p < .02).� Correlations between pre-tests and information types items: there was apositive orrelation overall between the paperfolding test and auray measureson state questions (rs = .49, p < .03). There was also a signi�ant negativeorrelation, for the ontrol ow group, between response lateny on ontrol owquestions and paperfolding sores (rs = -.76, p < .02).

160 CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISON7.3.2 Self-Report Questionnaire on Programming ExperieneSubjets reported knowing between 2 and 8 languages, with the mean being 3.95 overall(3.7 for the ontrol ow group, and 4.2 for the data ow group).All subjets knew C++ and COBOL as a result of their ourse. Basi and Pasal werethe next most popular languages both overall and per group.60% of the subjets, both overall and per group, had learned a language in seondaryshool, with the average number of ourses taken being 1.1 in the ontrol ow groupand 1 in the data ow group.50% of both ontrol and data ow subjets had taught themselves a language. Of those,the mean number of self-taught languages was 1.4 in the ontrol ow group and 2.2 inthe data ow group.When asked to rate their level of expertise on a sale of 1 to 5 (1 = novie and 5 =expert), 80% of ontrol ow subjets reported having at least intermediate knowledgeof one or more languages, ompared to 70% in the data ow group. The number oflanguages known at this level was equal for both groups (20 languages per group). Onlyone subjet (in the ontrol ow group) rated himself as having expert programmingknowledge.A summary of orrelations between prior programming experiene and other measuresis shown below. For eah, it is indiated whether these orrelations apply to all subjetsor to the ontrol or data ow group only.1. Correlations with languages learned in shool: the number of languageswhih were learned in shool (prior to starting university), orrelates both withthe total number of languages known (overall: rs = .55, p < .02, ontrol ow group:rs = .66, p < .04), and also with the subjet's rating of him/herself as havingintermediate/expert knowledge (a rating of 4 on the sale desribed above) of oneor more languages (overall: rs = .46, p < .05).2. Correlations with number of languages known: the number of languagesknown orrelates with subjets' self-rating of programming knowledge at an in-termediate level (overall: rs = .52, p < .02), and at an intermediate/expert level

CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISON 161(overall: rs = .80, p < .001; ontrol ow group: rs = .92, p < .001); data owgroup: rs = .77, p < .01). It also orrelates with subjets' sores on funtionalquestions (overall: rs = .58, p < .008; ontrol ow group: rs = .67, p < .04).3. Correlations between level of expertise and experimental measures: apositive orrelation between subjets' self-rating of intermediate/expert program-ming knowledge and funtional questions approahed signi�ane (overall: rs =.44, p = .05).In short, breadth of knowledge seems to be assoiated with depth of knowledge (asevidened by orrelations between number of languages known and level of expertisereported). The number of languages known and a relatively high level of knowledge(intermediate/expert) is also assoiated with high sores on funtional questions.7.3.3 Language Study Time/Program Inspetion TimeA measure was taken of the total time needed to \learn" the programming language, inother words, how muh time subjets spent reading and studying the explanations ofthe language omponents during the pratie session. The mean language study timewas 285.19 seonds for the ontrol ow group, and 463.54 for the data ow group.4This di�erene was highly signi�ant (t = -3.81, p < .005).Given that the data ow notation was slightly more omplex, it required more expla-nation than did the ontrol ow notation (16 sreens of information as opposed to 13).The times above were orreted for by working out a `mean time per sreen', whihwas 21.94 seonds for the ontrol ow group and 28.97 for the data ow group. Notethat this method is not fool-proof, given that subjets ould go bak and forth arosssreens as many times as they wished. However, it seems preferable to inorporatesome measure of orretion rather than simply use raw sores. The di�erene betweenthe orreted sores was signi�ant (t= -2.17, p < .025).Program inspetion time refers to the mean time whih subjets spent studying eahprogram. For the ontrol ow group, this was 108.58 seonds, while it was 155.41seonds for the data ow group. This di�erene was signi�ant (t= -1.77, p < .05).4 As language study time for one of the data ow subjets was missing, the mean group time wassubstituted.

162 CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISONFinally, time taken to write the program summary was heked: although there is noreason to expet this to di�er aross groups, there may have been a possibility thatsubjets used the program summary time to reet on and onsolidate their knowledgeabout the program following the program inspetion phase, and that, for example, ashort inspetion time may have been followed by a longer summary writing time. Themean time program summary writing time was 312.50 seonds for the ontrol owgroup, and 320.13 for the data ow group (t = -.11, ns). Furthermore, there was astrong positive orrelation between program inspetion time and program summarytime for both groups (rs = .87, p < .001 for the ontrol ow group, and rs = .85, p< .002 for the data ow group), suggesting that subjets were not using an \inspetquikly, and reet while writing the summary" strategy.57.3.4 Response Lateny and Auray� A Note on Analysis MethodologyDuring the experiment, eah subjet inspeted four programs and answered �vequestions about eah program (eah question representing one of the informa-tion types). Thus subjets answered four questions per information type. Thequestions were multiple hoie, with one orret answer and three distrator items(one of the items was always \None of the above", whih was the orret responsein 25% of ases).Ideally, it would have been possible to make use of a previously validated set ofquestions when performing the experiment, but these do not exist. Alternatively,a set of questions ould have been developed and validated prior to the experi-ment. This, however, is very time-onsuming, as it e�etively involves runningan entire experiment with the sole aim of testing the questions. Instead, it wasdeided to perform a qualitative item analysis on the questions used in order todetermine whih questions were the best indiators of performane, and whihwere potentially ontributing only \noise" to the data. Although many formalitem analysis tehniques exist, most were felt to go beyond the sope of the itemvalidation required for this experiment. Nonetheless, there are many oasionswhen simple item analyses suh as the one used in this study would bene�t the5 The analysis of program summaries themselves an be found in Chapter 8.

CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISON 163psyhology of programming �eld.When performing an item analysis, it is worth remembering that item analysisis distint from item seletion, and the former does not determine the latter. Inother words, item analysis tehniques may allow items to be rated aording tosome riteria, suh as diÆulty, but, apart from items whih are learly patho-logial (i.e. for whih no one hooses the orret response), they do not providehard and fast guidelines for hoosing to use an item or not. For example, a wellonstruted but easy item may be appropriate as a pratie item but not as anitem in the main experiment.In examining the questions used in this experiment, overall item diÆulty was�rst onsidered. Anastasi (1988) suggests that in order to ahieve maximumdi�erentiation between test takers, items should be hosen at the .50 diÆultylevel (i.e. 50% of persons taking the test answer the item orretly). Questionswhih produe oor or eiling level e�ets allow little di�erentiation. In addition,Anastasi suggests that for multiple hoie items, the desired proportion of orretanswers should be set slightly higher to ompensate for guessing.Multiple hoie questions also require analysis of the distrator items used inonjuntion with the orret answer in order to determine whether they are fun-tioning orretly. All distrators should preferably attrat responses (Thorndikeand Hagen, 1977), but it should be ensured that distrators do not distrat thebest subjets (Kline, 1986).Items were seleted for further onsideration based on the following riteria:{ the item reeived at least 35% and not more than 75% of the responses (i.e.around a mean of 50% but with a slight upward adjustment to aount forguessing (Anastasi, 1988));{ not more than one distrator reeived 0% of the replies;{ no distrator attrated more responses than the orret option.As subjets answered four items per question type (data ow, ontrol ow, fun-tion, operations and state), it was deided that this method would only be feasibleif at least two items for eah question type met the above riteria. This was thease for all information types, with the data ow type having three questions meetthe riteria. Therefore, only these questions are onsidered in the analysis. Note

164 CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISONCondition Question Types OverallFUNC CF DF OPS STAControl FlowMean 31.41 32.77 35.50 17.60 34.31 30.79Std Dev 9.79 7.26 22.57 10.88 10.96 9.22Data FlowMean 38.24 39.71 44.49 21.66 47.63 38.91Std Dev 24.98 22.92 16.06 7.90 19.59 9.37Table 7.2: Mean Response Latenies (in seonds) and Standard Deviations for the 5Comprehension Question TypesCondition Question Types OverallFUNC CF DF OPS STAControl FlowMean .50 .75 .57 .75 .65 .64Std Dev .41 .26 .39 .26 .41 .18Data FlowMean .65 .40 .77 .60 .45 .59Std Dev .24 .32 .22 .39 .37 .12Table 7.3: Proportion of Corret Responses and Mean Sores and Standard Deviationsfor the 5 Comprehension Question Typesthat the item analysis was arried out for all subjets as a whole, and thereforeshould not favour one group over the other.The mean response lateny for all questions was 30.79 seonds for the ontrol owgroup and 38.91 seonds for the data ow group. This di�erene was signi�ant (t=-1.95, p < .04).The overall mean number of orret responses (out of a total of 11) was 7 for the ontrolow group, and 6.5 for the data ow group (Mann-Whitney U test, U= 41.5, ns).Response lateny and auray were further partitioned by question type. Mean re-sponse lateny (and standard deviation) for eah group, both overall and per questiontype, are shown in Table 7.2.For response auray, the proportion of orret answers for eah group overall and perquestion is shown in Table 7.3.Figure 7.4 shows the mean response lateny per group and per question type. Although

CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISON 165response times for both groups follow the same general pattern, times for the data owgroup are onsistently higher.6
Figure 7.4: Mean Response Lateny per Group and per Question TypeFigure 7.5 shows the perentage of orret responses per group and per question type.In ontrast with the lateny data, there is a marked di�erential pattern of responsebetween the ontrol and data ow group, with data ow subjets soring omparativelyhigher on funtional and data ow questions, and ontrol ow subjets performingbetter on ontrol ow, operations and state questions.A mixed design ANOVA with group as a 2 level between-subjets fator and questiontype as a 5 level, repeated-measures, fator showed a main e�et for group whihapproahed signi�ane (F=4.22, df(1,18), p = .055), and a highly signi�ant e�et forquestion type (F=5.96, df(4,72), p < .001), but no group by question type interation(F=.24, df(4,72), ns).As the auray data was deemed to be ordinal, rather than interval, parametri testsould not be used. As there is no non-parametri equivalent for mixed, repeated mea-sures ANOVAs, the auray data ould not be tested in the same way.6 Stritly speaking, a bar hart would be a more appropriate way of representing this data, as it isategorial rather than ontinuous. However, it is felt that the di�erenes between groups aross theinformation ategories are more visually salient when represented in this way.

166 CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISON
Figure 7.5: Perentage of Corret Responses per Group and per Question Type7.3.5 Corret Responses OnlyA further analysis involved taking into onsideration the mean times for orret re-sponses only, to ensure that the lateny data was not being adversely a�eted by quik,but inorret, responses. The response lateny for orret responses only is 28.43 se-onds for the ontrol ow group and 38.88 seonds for the data ow group, whih isroughly similar to the overall response lateny reported above, and whih, again, issigni�ant (t=-2.04, p < .03).An examination of response latenies by question type shows largely the same pat-tern for orret responses as for all responses. However, further analysis ould not beperformed beause of the number of missing ases (i.e. subjets who had no orretanswers on the questions for a partiular information type).7.3.6 The Math-Mismath HypothesisThe appliation of Gilmore and Green's math-mismath hypothesis to this experimen-tal situation predits that performane on a data ow question should be better whenthe subjet is using the data ow VPL than the ontrol ow VPL and vie versa. Inorder to test this hypothesis, response lateny and auray for the ontrol ow and

CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISON 167data ow questions only were onsidered. This information is shown graphially inFigure 7.6.
Figure 7.6: Math-Mismath: Lateny and Auray for Data Flow and Control FlowQuestionsAs an be seen, no math-mismath e�et ours relative to lateny: lateny for thedata ow group is slower regardless of the question type (as for all types of questions:see Figure 7.4). However, a math-mismath e�et an be observed in the auraydata, an e�et whih is strongest for the data ow group. The signi�ane of this e�etwas tested, and the results are shown below. Beause the data are treated as ordinal,an overall test of signi�ane ould not be arried out, as there is no non-parametriequivalent for a mixed, repeated measures ANOVA.Aording to the math-mismath hypothesis, mean response auray will be:� higher for the ontrol ow group relative to the data ow group on ontrol owquestions (supported: Mann-Whitney U test, U= 22.5, p < .04);� higher for the data ow group relative to the ontrol ow group on data owquestions (not supported: Mann-Whitney U test, U= 35.5, ns);� higher for the ontrol ow group on ontrol ow questions relative to data owquestions (not supported: Wiloxon signed-ranks test, T+= 25.5, ns);� higher for the data ow group on data ow questions relative to ontrol owquestions (supported: Wiloxon signed-ranks test, T+= 50.5, p < .01);Therefore, the lateny data provided no evidene for the math-mismath hypothesis

168 CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISON(whih is to be expeted given the pattern shown in Figure 7.6), while the auraydata suggested a math-mismath e�et whih was, for some of the omparisons atleast, signi�ant.7.3.7 The Grouped Math-Mismath HypothesisAs desribed in the introdution to this hapter, di�erent types of programming in-formation are often thought to be assoiated with eah other, although these assoia-tions have usually been theoretially based rather than empirially tested. Informationtypes whih are not expliitly represented in the notation, but are linked with the in-formation whih is, ould be said to be grouped information types. This leads to the\grouped math-mismath hypothesis": if task X requires information X, and if infor-mation X is assoiated with information highlighted by the representation (informationY), then performane should be better as ompared to performane on tasks requiringnon-assoiated information (e.g. information Z and task Z).This hypothesis was tested by omparing ombined sores on data ow and funtionalquestions aross groups, and ombined sores on ontrol ow, operations and statequestions (again aross groups).Table 7.4 shows the results for eah.Condition Grouped Question TypesFUNC/DF CF/OPS/STAControl FlowMean Sore .54 .72Std Dev .25 .21Data FlowMean Sore .72 .48Std Dev .10 .24Table 7.4: Proportion of Corret Responses and Standard Deviations for CombinedQuestion TypesThis grouped math-mismath e�et is illustrated in Figure 7.7.Mann-Whitney U tests performed on the data were signi�ant for the ontrolow/operations/state grouping (U= 23.5, p < .03) and approahed signi�ane forthe funtional/data ow grouping (U = 30, p = .065).

CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISON 169

Figure 7.7: Proportion of Corret Sores on Grouped Question Types (Control andData Flow Groups)7.3.8 Summary of ResultsThe results of the experiment an be summarised as follows:Pre-Tests: there was a positive orrelation between pre-tests overall and for the on-trol ow group, and some evidene of positive orrelations between the paper-folding test and the experimental measures;Programming Self-Report Questionnaire: the number of languages and level ofknowledge orrelates positively with subjets' sores on funtion questions (ane�et also found in the experiment reported in Chapter 3);Language Study/Program Inspetion: data ow subjets spent signi�antlylonger learning the miro-language and inspeting the experimental programsthan did the ontrol ow subjets;Response Lateny and Auray: the mean response lateny was signi�antlylower for the ontrol ow ondition ompared to the data ow ondition. Re-

170 CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISONsponse lateny for orret responses only showed muh the same pattern. Therewas no signi�ant di�erene in overall auray however;The Math-Mismath Conjeture: the math-mismath onjeture was supportedto some extent, although not with respet to lateny. For auray, sores on dataow questions were signi�antly higher than ontrol ow questions in the dataow ondition, while sores on ontrol ow questions were higher for the ontrolow group when ompared with sores on ontrol ow questions for the data owgroup;The Grouped Math-Mismath Conjeture: in terms of response patterns arossindividual information types, ontrol ow subjets sored signi�antly higher onontrol ow, operations and state questions, while data ow subjets sored morehighly (although not signi�antly) on data ow and funtion questions.7.4 DisussionMany interesting �ndings arose from the study reported in this hapter. This setiononsiders them in more detail under the following headings:� Visual Programming: what skills are involved?;� Overall results and individual information types;� Math-mismath and beyond;� Impliations for teahing and design of VPLS;Before doing so however, it onsiders some methodologial issues.7.4.1 Questions of MethodologyOne methodologial deision whih may be questioned is that of taking measures ofboth response time and error rate. Green (1977) notes that aording to Poulton(1965), subjets an be persuaded to keep either their speed or auray onstant,meaning that the e�ets of that variable will appear in the other, making it muhmore sensitive. Previous tests of the math-mismath onjeture used this approah,

CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISON 171onsidering time as the variable of interest. Certainly, from a statistial point of view,this approah would have made sense: given that there is no non-parametri equivalentof a mixed ANOVA with repeated measures, an overall measure of the math-mismathe�et ould not be alulated. It is likely that if parametri statistis had been used, ane�et would have been found, however, it was neessary instead to look at di�erenesbetween individual variables rather than an overall e�et.Nevertheless, it an be argued that examining both time and auray allowed aninteresting e�et to be unovered: namely the fat that a math-mismath e�et oursat an auray level, but that a \ontrol ow supremay" e�et ours at a latenylevel. In other words, questions requiring information highlighted by the paradigmmay be answered more aurately than when the information must be inferred, butthe time taken to answer these and all of the other questions depends on the paradigmitself, rather than on the interation between task and paradigm. This e�et would beinteresting to explore further.7.4.2 Visual Programming: What Skills are Involved?One of the aims of the study was to investigate fators whih might be involved insubjets' suess (or otherwise) in using visual programming languages. Visual pro-gramming skill might be seen as having two main omponents: programming skilland graphial readership/aptitude skills. This skill distintion maps roughly onto asemanti/syntati distintion, with programming skill involving the semantis of theprogramming domain, and graphial skill orresponding to the syntati elements ofthe representation.Part of the investigation desribed here entred on trying to asertain, �rstly, whetherprogramming and diagrammati skill an be measured, and, seondly, whether either ofthese orrelated positively with suess in using the visual language. The investigationtehniques are fairly rude, but do give some initial pointers to issues whih ould befollowed up.Graphial SkillAs mentioned in the introdution to this hapter, one of the issues of interest in thisstudy was to look at measures of graphial skill, with the ultimate aim of determining

172 CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISONwhih skills might predit performane with a VPL. The paperfolding task, used in priorstudies (Cunni� and Taylor, 1987; Petre et al., 1995) appears to measure a subjet'sability to mentally simulate the manipulation of objets in 3-D spae, a skill that doesnot at �rst sight seem neessary for 2-D visual programming. Although it orrelates tosome extent with experimental measures, the overall pattern is not lear-ut.The path�nding test was hosen as a possible alternative to the paperfolding test. Itappears to be more representative of the ativities involved in traing the exeutionof a visual program of the node and ar variety, namely, following a path through aquite omplex representation.7 Nevertheless, the path�nding test did not orrelate ina meaningful way with experimental measures.Does this mean that measures of graphial reasoning are never good indiators ofsubsequent visual programming skill? Probably not, but it does all for a �ner-grainedapproah to try and identify the skills whih omprise visual programming skill, andthen to �nd or possibly even develop tests whih measure these abilities.However, before disarding tests suh as path�nding and paperfolding, it seems worth-while to study extreme sores, e.g. onsidering sores from only the top and bottomquartiles. The sores reported in this study do show some variation, but there are fewextreme sores. The paperfolding and path�nding sores from the �rst, unreported,study were substantially higher, but again, did not ontain suÆient variation. Unfor-tunately, ross study omparisons annot be made due to other, extraneous di�erenesbetween subjets (namely, large di�erenes in the ourses being taken, the objetivesof the ourse, and subjets' general aademi bakground).Programming SkillThe study also attempted to determine whether programming skill orrelates positivelywith overall performane. Programming skill was measured via a self-report question-naire, a less desirable option than atual performane measures, but in this ase, theonly viable one. Information suh as marks in programming ourses were not obtainedfor ethial reasons, while it was not possible to inlude a programming pre-test (suhas the one used in the unreported experiment) beause of time onstraints.7 Even if it ould be argued that the path�nding test requires only one path to be followed, unlikemost data ow programs.

CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISON 173Nevertheless, a positive orrelation was found between prior programming experiene,both in terms of breadth and depth of experiene, and sores on funtional questions.The fat that it does not orrelate with overall auray and response lateny suggeststhat one should not read too muh into the orrelation. On the other hand, the fatthat the orrelation involves funtional questions rather than other types of questionsis probably noteworthy: previous studies laim that a funtional understanding of theprogram is assoiated with greater expertise and/or deeper levels of omprehension(Adelson, 1984; Pennington, 1987b; Corritore and Wiedenbek, 1991).7.4.3 Overall Results and Individual Information TypesThe overall results of the study are intriguing: data ow subjets take longer to learnthe miro-language (ompared to ontrol ow subjets learning the ontrol ow miro-language), and they spend more time studying the programs. Although their responsesfollow the same pattern as for ontrol ow subjets in that questions that are answeredquikly for ontrol ow subjets are also answered omparatively quikly by data owsubjets, data ow subjets have slower response times, not only overall, but on everytype of question. This extra time does not seem to result in improved performane, infat, performane of the data ow group is slightly worse than the ontrol ow group.One question whih ould be asked was whether the programs used in the experimentwere biased toward ontrol ow, i.e. they were more easily represented in a ontrolow manner. This issue arose when deiding how to represent reursion: for someprograms, the programmer assisting with language design felt that ontrol ow repre-sentations were more amenable to representing reursion as tail reursion, while dataow representations were more appropriate for representing reursion as non-tail re-ursion. However, for the programs in question, it was deided to use a single type ofreursion in both representations, and to bias it toward the data ow representation,i.e. to use non-tail reursion for both representations. As the results show, this did nothave the e�et of improving the performane of the data ow subjets relative to theirontrol ow ounterparts.On the basis of the results, it ould be onluded that data ow is not really a ontenderin ontrol ow/data ow omparisons, given that it leads to longer response times forslightly less aurate responses.

174 CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISONHowever, auray, while not signi�antly di�erent overall, shows a markedly di�erentpattern when examined at the level of individual information types: a math-mismathe�et ours, with subjets in the data ow group soring higher on data ow questionsas ompared to the ontrol ow group (and also to the data ow group's sores onontrol ow questions). Similarly, subjets in the ontrol ow group sore higher onontrol ow questions relative to the data ow group (and to their own sores ondata ow questions). Thus, fousing only on overall performane ignores interestingdi�erenes whih are ourring at an information types level.7.4.4 Math-Mismath and BeyondAs mentioned above, math-mismath e�ets ourred in the auray data, some ofthem signi�ant. This seems to indiate that representations of ontrol and data owparadigms, at least the ones used in this study, do in fat highlight ontrol and dataow information respetively, an assumption whih was made in the introdution to thishapter. This is an important issue, as visual programming languages di�er from theprogram abstrations disussed by Pennington (1987b) in that they must, by de�nition,be exeutable. Therefore, although they might highlight some types of information byvirtue of the fat that they embody a partiular paradigm, they annot exlude infor-mation whih might be onsidered irrelevant in a \pure" abstration. The requirementfor ompleteness ould well have lashed with the requirement for highlighting, but itdoes not look like this was the ase.In addition to this simple math-mismath e�et, a grouped math-mismath e�et alsoseems to our, operating at the level of ombined information types. Informationthought to be assoiated with data ow or ontrol ow information, either from a theo-retial or a representational point of view, did in pratie seem to be highlighted by therepresentation with whih it was thought to be assoiated. Control ow representationsshowed a proedural grouping, inluding low-level operations and state information.Data ow representations appeared to highlight higher-level onepts suh as funtion.Therefore, the ontrol ow group sored highly on ontrol ow, operations and statequestions as ompared to the data ow group, who sored more highly on data owand funtional questions.An objetion ould be made to this interpretation whih annot be disounted. The

CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISON 175point was made in Setion 7.1 that the funtional information type was related to dataow from a theoretial point of view, while state and operations were related to on-trol ow from a representational point of view. Just as it was neessary to questionthe relationship between paradigm and abstration, one must also query that betweenquestion type and paradigm, in partiular, whether funtional questions relate to thefuntional paradigm in any meaningful way, or whether they simply share the samename. Funtional questions are onerned with the overall goals of the program. Fun-tional paradigms are based around the idea of evaluating funtions whih use inputvalues as arguments and whose value is the result of the omputation. In that sense,it is diÆult to say that funtion questions are e�etively tapping into the funtionalinformation assoiated with a data ow paradigm. This distintion does not seem tooperate in the same way for the other information types: state and low-level operationsdo appear to be information types whih are both expliit in the ontrol ow repre-sentation, and whose de�nitions orrespond to the type of information required by theorresponding question. One hypothesis is that representational assoiations are moresalient than semanti assoiations.In the data ow/funtion assoiation, an alternative explanation may be that the morediÆult and unfamiliar the representation, the more time must be invested in under-standing it. This in turn leads to a more omplete understanding of the program, andhene, to improved performane on abstrat questions suh as the funtional ones. Thispoint is returned to in Chapter 8.7.4.5 Impliations for Teahing and DesignThe �ndings of this study have a number of impliations, both from the point of viewof teahing visual programming, and of designing visual programming languages.Firstly, the way in whih a program is represented does make a di�erene to programomprehension. Data ow representations favour data ow omprehension, likewise forontrol ow representations and ontrol ow omprehension. There was an obviousproedural bias evident in the languages known by subjets, whih was probably rein-fored by the ourse of studies in whih they were engaged (a pratial, mainstreamomputing ourse, with little emphasis on alternative or experimental paradigms). Thisbias may have favoured response lateny for the ontrol ow representation, but the

176 CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISONpattern of response auray shows that the representation does have an e�et.The impliations are enouraging for teahers of omputing who wish to expose theirstudents to di�erent paradigms. This study suggests that hanges in paradigm leadto hanges in the information whih is aessed from the representation. Changingparadigm may in itself be a useful teahing aid when addressing the issue of programomprehension.Furthermore, the study seems to indiate that these e�ets still our when there isonsiderable \proedural bias", in other words, when students have been exposed eithersolely or primarily to proedural programming languages, and/or been taught from aproedural perspetive. Thus, students may not neessarily be \harmed" by initialexposure to proedural languages, as Wells and Kurtz (1989) and others have feared.Note that the topi of interest here is a representational issue related to program om-prehension by novie programmers. The author is not suggesting that paradigm in anyway inuenes program design, in the sense that learning a partiular paradigm willause students to think and to write programs in that paradigm. It has already beensuggested that programmers, at least experts, design programs in a personal pseudolanguage and an swith mentally between paradigms as required (Petre, 1996).In terms of language design, the basi impliation is that there is a mapping betweentasks requiring information of a partiular type, and language paradigms whih high-light that information. Additionally, the relationship between the semanti and repre-sentational levels goes beyond a single type of represented information, and enompassesinformation whih is semantially related to the information being represented. Thiso�ers an opportunity whih an be apitalised on when designing a representation.7.5 Chapter SummaryThis hapter reported on an experiment whih ompared small ontrol and data owVPLs. The study used a ombination of the math-mismath onjeture and the infor-mation types methodology in order to investigate the e�et of paradigm on omprehen-sion, both in terms of the information purported to be highlighted by the representation,and in terms of general omprehension. The results were split aross the hypothesesin the sense that ontrol ow subjets learned the languages and performed all tasks

CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISON 177more quikly than data ow subjets, regardless of the math between paradigm andtask (ontrol ow supremay hypothesis). However, the auray sores, largely sim-ilar overall aross groups, showed di�erential patterns of response for the questiontypes orresponding to the representation in question (math-mismath hypothesis).In addition, a \grouped math-mismath e�et" was found whereby tasks requiringinformation types thought to be related to the information type highlighted by therepresentation also appeared to be failitated.One aspet of the data analysis whih has not been overed in this hapter is that ofthe program summaries. As mentioned in Chapter 3, it was neessary to develop a newmethodology for analysing this data. Chapter 9 presents the analysis of the programsummary data, and shows that it lends further support to the �ndings disussed in thishapter.

178 CHAPTER 7: A DATA FLOW { CONTROL FLOW VPL COMPARISON

Chapter 8A New Methodology forProgram Summary Analysis8.1 IntrodutionProgram summaries have played an important role in the information types methodol-ogy, and data of this type was olleted by Pennington (1987b), Corritore and Wieden-bek (1991) and in the experiments desribed in Chapters 3 and 7.A program summary is a free-form aount of a program whih a subjet produesafter studying the program. Instrutions given to subjets have tended to be relativelynon-diretive, leaving the ontent essentially up to them. Although Pennington doesnot provide details of the instrutions she gave to her subjets, Corritore reportedin a personal ommuniation that her instrutions were \funtionally oriented". Theexperiment reported in Chapter 3 followed Corritore's lead and asked subjets to \writea short summary of what this program does". Later experiments, e.g. the one desribedin Chapter 7, used a more open-ended wording, asking subjets the following: \Nowwrite a short summary of the program you just saw." The lak of expliit guidelinesfor the ontent of the summary allows for wide sope and variation in the responses.The advantages of the program summaries whih are produed is that they are valu-able soures of rih data. Furthermore, the program summary methodology neatlyirumvents the problems of `false positive' results often assoiated with binary hoiequestions, and the diÆulties assoiated with developing sensitive and reliable multiplehoie questions and orresponding distrator items. Program summaries allow sub-jets to express their view of a program, using their own words, at their hosen level of179

180 CHAPTER 8: PROGRAM SUMMARY ANALYSISabstration and providing as muh (or as little) detail as they feel is neessary.As always, the prie to pay for rih data is the diÆulty of analysing it: quantitativestatistis are not always appropriate, and qualitative methods must be devised. Thereare numerous ways of analysing written texts of this type, however, it is not simply aase of identifying the `orret' method in the same way one hooses the right statistialtest, partiularly when the semanti ontent of the text is of interest. Given di�erenesin researh aims between studies, it is almost impossible to hoose a sheme `o� theshelf' as it were, and Bakeman and Gottman (1997) are of the opinion that borrowing apre-existing analysis sheme is akin to \wearing someone else's underwear". Althoughthis may be strething the point, it does suggest that analysis shemes are not universal:they are both ontent and ontext sensitive, and must be developed through what isoften a lengthy, iterative proess.The omplexity of the analysis is related to the repliability of the analysis. Rih,omplex data may lead to omplex analysis shemes: extra are must be taken toensure that these shemes are in fat understandable and usable, and are no moreomplex than is neessary for the purpose of the analysis. Repliability an also beompromised by shemes whih are ill-de�ned. Shemes whih are not fully worked outand/or whih are not aompanied by expliit instrutions enabling them to be usedby persons other than the original researher are not of muh use: it is impossible toompare results reliably.Previous analyses of program summaries by Pennington (1987b), and Corritore andWiedenbek (1991) have su�ered from some of these problems. Pennington arried outher analysis by dividing the summaries into statements, and lassifying the statementsas being of one of three types: data ow, ontrol ow, or funtional. The data was usedto supplement that obtained from the multiple hoie questions. Although this maybe a worthwhile aim, reports of program summary analyses have been skethy, withlittle in the way of a methodology or instrutions for performing the analysis. This hasrendered previous analyses unrepliable, and therefore made it impossible to ompareresults aross studies.In an attempt to overome these diÆulties, this hapter �rst desribes the method-ology used in previous experiments (Pennington, 1987b; Corritore and Wiedenbek,1991), and looks ritially at the diÆulties whih were enountered when attempting

CHAPTER 8: PROGRAM SUMMARY ANALYSIS 181to reapply the sheme. Following this, it onsiders other methods for analysing programsummary data, and proposes a new analysis sheme based on a program hierarhy. Theadvantages and disadvantages of the sheme are then disussed.8.2 Pennington's Methodology for Program SummaryAnalysisAnalysing program summaries as a way of measuring program omprehension an betraed to an experiment arried out by Pennington (1987b). In addition to answeringbinary hoie questions about a program of moderate length, subjets were also askedto write a summary of the program. Although the exat wording of the request is notgiven, it is more than likely that the instrutions were brief and non-diretive withrespet to the type of information the summary should ontain.Summaries were requested at two points during the experiment: �rstly after a 45minute study period, and again after having arried out a modi�ation to the program.Pennington hoped to ompare the two in order to see how their fous hanged overtime. Unfortunately, she was unable to do so, as rather than writing a seond sum-mary, subjets tended to simply refer to their earlier summaries, and then desribe themodi�ation they had just arried out. This is an interesting example of how a hangein ontext resulted in a hange in behaviour even though the task remained the same.Pennington performed two analyses on the program summaries, lassifying eah state-ment by both information type and level of detail. The results of Pennington's analysisan be found in Chapter 2, the fous here is on the methods used in the analysis,desribed in the following two setions.8.2.1 Information Type AnalysisPennington states that the information types investigated inluded proedural, dataow, and funtion statements. The other ategories used in the program omprehen-sion tests, namely operations and state, do not seem to have been used: no results werereported for them in any ase. Why they were omitted from the analysis is not dis-ussed. Pennington's de�nition of eah ategory is very brief, and expressed primarilythrough examples. She de�nes the three ategories as follows:

182 CHAPTER 8: PROGRAM SUMMARY ANALYSIS� \proedural statements inlude statements of proess, ordering, and ondi-tional program ations." (Pennington, 1987b, p. 332);� \data ow statements also inlude statements about data strutures" (Pen-nington, 1987b, p. 332);� funtional statements are not de�ned by Pennington, merely illustrated withan example.Pennington provides the following summary exerpts to illustrate eah type of state-ment, all from (Pennington, 1987b, p. 332):Proedural: \after this, the program will read in the able �le, omparing against theprevious point of able �le, then on equal ondition ompares against the internaltable . . . if found, will read the tray-area-point �le for mathing point-area. Inthis read if found, will reate a type-point-index reord. If not found, will readanother able reord."Data ow: \the tray-point �le and the tray-area �le are ombined to reate a tray-area-point �le in Phase 1 of the program. Phase 2 tables information from thetype-ode �le in working storage. The parameter �le, ables �le, and the tray-area-point �le are then used to reate a temporary-exeed-index �le and a point-index �le."Funtional: \the program is omputing area for able aesses throughout a building.The amount of area per hold is �rst determined and then a table for ables anddiameters is loaded. Next a able �le is read to aumulate the sum of the ables'diameters going through eah hole."8.2.2 Level of Detail AnalysisIn terms of level of detail in program summaries, Pennington de�ned four levels:detailed : referenes to a program's operations and variables;program : referenes to a program's \proedural bloks";domain : referenes to real world objets;

CHAPTER 8: PROGRAM SUMMARY ANALYSIS 183vague : statements with no spei� referents.Pennington uses the example summary segments above as illustrations of the levelof detail: the proedural summary is the most detailed, the data ow summary isdesribed at the program level, the funtional summary is desribed at the domainlevel, and an example of a vague statement is, \this program reads and writes a lot of�les." (Pennington, 1987b, p. 333).Little detail is provided about the analysis: the above de�nitions omprise the desrip-tion of the sheme, while the oding proess itself it not mentioned.8.3 Analysing Analysis ShemesAt a joint workshop between researhers at the Computer Based Learning Unit of theUniversity of Leeds, the Department of Arti�ial Intelligene (University of Edinburgh),and the Human Communiation Researh Centre (also University of Edinburgh) on theanalysis of eduational dialogue, a preliminary desiderata for oding shemes was drawnup.The list was based on a large-sale exerise whih involved oding a range of eduationaldialogues using various shemes and omparing the results. The hope is that this listwill ontinue to be developed and eshed out so as to ultimately provide a useful toolfor judging the relative utility of a oding sheme, and also for omparing two or moreshemes.In the meantime, it was deided to selet the relevant points from this list1, to reviseand restruture it, and to use it to analyse Pennington's two oding shemes, alongwith the sheme whih is proposed in later setions. The main hanges to the initiallist were to separate the various questions into those onerning the sheme itself andthose onerning the appliation of the sheme. Also, at the workshop, a separate listwas drawn up whih overed omments arising from pratial experiene: these weretransformed into questions whih ould be asked of a sheme.Note that this approah is �rmly interdisiplinary in that it is taking ideas and methodsfrom disourse analysis and applying them in the psyhology of programming �eld. As1 Given that the framework was designed to look at oding shemes for analysing dialogue arising ineduational settings, not all of the points are appliable.

184 CHAPTER 8: PROGRAM SUMMARY ANALYSISsuh, it should not be read as a ritiism of work whih has previously been arriedout or as implying that the work is faulty or inomplete in some way. The aim is thatits appliation will highlight the need to onsider the methodologial issues involved indevising quantitative analyses for urrent and future work.Furthermore, the sheme is being applied to what is essentially a reonstrution ofPennington's program summary analysis based on the information ontained in (Pen-nington, 1987b). It may well be that Pennington's analysis has been spelled out morethoroughly in other douments, and therefore it should be borne in mind that it is thereonstruted program summary analysis sheme whih is being ontrasted with thesheme proposed in Setion 8.6.The revised list of questions is shown below:Analysis of the Sheme� What is the theoretial bakground of the sheme?� What are the aims of the sheme, in other words, what hypotheses does it allowone to test, either in atual fat, or potentially?� To what domain is the sheme appliable?� Does the sheme ome with a oding manual whih desribes how to apply it(thus ensuring an improved hane of reliability)?� Is the sheme aompanied by an example transript?� Categories:{ How many ategories does the sheme ontain?{ Is there a hierarhial struture to the sheme (i.e. ategories at di�erentlevels)?{ If there are di�erent levels, are they interdependent?{ What is the level of granularity of the ategories (e.g. segment, sentene,utterane, paragraph)?{ Are the ategories orthogonal?{ Are the ategories mutually exlusive?

CHAPTER 8: PROGRAM SUMMARY ANALYSIS 185{ Are oding examples provided for eah ategory in the sheme?� Does the sheme aount for non-ideal behaviour?Analysis of the Appliation of the Sheme� Is hindsight allowed in oding or must a dialogue/disourse be oded sequentially?� How many oders were used?� Were the oders trained?� If more than one, was the reliability reported?� Categories:{ Is the number of ategories manageable? (i.e. do some ategories end upbeing unused beause there are so many of them?){ Is it straightforward to make a ategory deision? Is there any deisionproess provided for doing so (e.g. a deision tree?){ Does the sheme inlude default ategories whih are misused (i.e. theybeome \buket" ategories)?� Is the sheme aompanied by analysis tools?� If there is ambiguity in applying the sheme, is it due to the sheme or to the realworld?8.4 A Critial Analysis of Pennington's MethodologyThis setion desribes the appliation of the ategories outlined above to Pennington'ssheme. Eah of the questions is restated, and its appliability to Pennington's shemeis disussed.Pennington's lassi�ation onsisted of two separate passes over the text, onsideringstatements �rstly in terms of information types, and then in terms of level of detail.Some of the questions apply to the sheme in general, suh as its theoretial basis,while others, suh as the number of ategories in the sheme, an only be answered by

186 CHAPTER 8: PROGRAM SUMMARY ANALYSISlooking at the information types sheme and the level of detail sheme in isolation. Ifthe latter is the ase, it will be indiated below.Analysis of the ShemeWhat is the theoretial bakground of the sheme?The sheme is part of a study whih investigates the nature of programmer's mentalrepresentations. It is based on theories of text omprehension elaborated by van Dijkand Kintsh (1983) and applied to program omprehension by mapping strutures intext omprehension theory onto a program's organisational struture (e.g. plan knowl-edge).What are the aims of the sheme, in other words, what hypotheses does itallow one to test, either in atual fat, or potentially?Pennington used the sheme to investigate programmers' mental representations, bothin terms of their nature and in terms of how they might hange over time as a result ofa hange in the programmer's task goals (although it proved to be diÆult to determinethe latter via the program summaries: see Setion 8.2 for a disussion of this).To what domain is the sheme appliable?Program omprehension.Does the sheme ome with a oding manual whih desribes how to applyit?No. This is unfortunate, as it would seem to be neessary in order to repliate Pen-nington's results. An operational de�nition of the entire oding sheme in the form of aoding manual would allow one to answer suh questions as what should be done �rst,how to proeed, whether oding should be sequential and/or whether one an go bakand hange things, at what level (if appliable) the oding should start, and if morethan one sheme is being applied, whether one should be applied before the other, et.Is the sheme provided with an example transript?Not an entire program summary, but summary exerpts of a few sentenes in lengthare provided.Categories:

CHAPTER 8: PROGRAM SUMMARY ANALYSIS 187� How many ategories does the sheme ontain?Information Types: 3Level of Detail: 4� Is there a hierarhial struture to the sheme (i.e. ategories at dif-ferent levels)?No. There is no subategorisation in either lassi�ation.� If there are di�erent levels, are they interdependent?As mentioned above, neither lassi�ation has levels, however, the two lassi�a-tions are interdependent to some extent. Pennington states that a relationshipbetween the two was observed in that a majority of proedural statements wereexpressed in terms of program objets, while funtional statements were expressedin terms of real world objets. This relationship between lassi�ations is some-what unlear nonetheless, as not all types of statements an be expressed at everylevel of detail. For example, a basketball team (domain) ould also be desribedas a list of numbers (program or detailed, depending on how one reads Penning-ton's lassi�ation). However, when the objet being desribed is a program,referenes will almost always be made in program terms, as it is hard to imaginewhih domain terms ould be used to refer to a program in general, or how areferene to a program ould be ouhed in detailed terms (the latter is usuallyreserved for the internals of the program). Likewise, a proedural statement willlikely be desribed at a detailed level, as the low-level details of a program oftenannot be desribed in domain terms.� What is the level of granularity of the ategories (e.g. segment, sen-tene, utterane, paragraph)?Pennington desribes the lassi�ation in terms of `statements' but unfortunatelydoes not de�ne the term. It ould be assumed that it is the smallest segment oftext to whih one ategory an unequivoally be applied. On the other hand, thestatements may have been larger, with more than one ode being appliable, andthe ode representing the \best �t' to the data being the one that was applied.With respet to the level of detail analysis, the granularity of lassi�ation wasunlear: did the lassi�ation refer to program ations, to program objets, orboth? It is likely to be both, but again, this is not stated.

188 CHAPTER 8: PROGRAM SUMMARY ANALYSIS� Are the ategories orthogonal?It would be more appropriate to say that the two lassi�ations (informationtypes and level of detail) are orthogonal.� Are the ategories mutually exlusive?Information Types: This is very diÆult to asertain without pratial experieneand will therefore be addressed in the setion on the appliation of the sheme. At�rst glane, the ategories do appear to be mutually exlusive: ertainly, notionsof funtion, ontrol ow and data ow are ommon parlane, and their de�nitionsdo make lear the distintion between eah.Level of Detail: Yes, these appear to be mutually exlusive.� Are oding examples provided for eah ategory in the sheme?Yes, for both shemes, although these are very vague. A marked-up summarysegment is not provided, rather Pennington shows segments whih \inlude" amajority of statements of a partiular ategory.Does the sheme aount for non-ideal behaviour?No, the sheme does not onsider errors.Analysis of the Appliation of the ShemeIs hindsight allowed in oding or must a dialogue/disourse be oded se-quentially?Not mentioned.How many oders were used?It is not stated whether Pennington herself lassi�ed the statements or whether anindependent rater was used. Likewise, there is no mention of there having been morethan one rater. It is quite likely that Pennington herself ated as the rater.Were the oders trained?Again, it is not lear, but assuming that Pennington both developed the shemes andoded the summaries, the question is not appliable.If more than one, was the reliability reported?

CHAPTER 8: PROGRAM SUMMARY ANALYSIS 189No report on reliability (but reliability annot be measured if only one oder is used).Categories:� Is the number of ategories manageable? (i.e. do some ategories endup being unused beause there are so many of them?)There are only 3 information types ategories and 4 level of detail ategories,therefore this isn't a problem.� Is it straightforward to make a ategory deision? Is there any deisionproess provided for doing so (e.g. a deision tree?)Category distintions are very hard to make in both lassi�ations, and no dei-sion proess is provided.As mentioned above, Pennington's ategory de�nitions are skethy, and based es-sentially on examples whih \inlude" these ategories. Also, it is not lear whyonly a subset of the information types ategories from the omprehension ques-tions were used in lassifying the summaries. Without a more preise de�nitionof eah ategory, and further examples, it is impossible to apply the ategories toother data.Obviously, terms suh as data ow and ontrol ow ertainly have some meaningwithin a omputer siene ontext, and are used frequently with, one hopes, ashared de�nition. One an assume that they denote onepts whih are agreedto exist at some abstrat level. However, lassifying statements requires preise,operational de�nitions of the terms, and unfortunately, these are not provided.Clear de�nitions are partiularly important in the ase of borderline statementsand ambiguous ases. Suh a ase arises in one of the examples provided byPennington. The following sentene is lassi�ed as proedural:If not found, will read another able reord.while the statement below is lassi�ed as a funtion statement (or at least it istaken from a summary whih Pennington says \ontains many funtion state-ments" . . .).Next a able �le is read to aumulate the sum of the ables' diametersgoing through eah hole.

190 CHAPTER 8: PROGRAM SUMMARY ANALYSISIt is diÆult to distinguish between these statements. It may be that it hingeson viewing the program as an ative or a passive agent: in the proedural ase,the program is ative, while in the funtional ase, the data is simply read in.This is only onjeture, as the information provided in the paper does not allowone to make this distintion. This does not mean that the distintion is invalid:it simply suggests that more preise de�nitions are neessary, along with a num-ber of expliitly marked up examples. Rather than giving exerpts of programsummaries, it would be helpful to provide several omplete, oded, program sum-maries. Finally, a deision proess, suh as a owhart or a deision tree, wouldfailitate oding.� Does the sheme inlude default ategories whih are misused (i.e. theybeome \buket" ategories)?:This is diÆult to judge without having managed to apply the sheme, but thereis no default ategory, and it seems unlikely that any partiular ategory wouldbe overapplied.Is the sheme aompanied by analysis tools?No, or at least it does not appear to be.If there is ambiguity in applying the sheme, is it due to the sheme or tothe real world?Information Types: There is onsiderable ambiguity in applying the sheme, probablydue both to the sheme itself (lak of lear de�nitions) and to the real world (interre-latedness of the di�erent ategories of information in programming).Level of Detail: This lassi�ation does not seem to su�er from the same sort of ambi-guity.SummaryThe primary ritiism whih an be levelled at Pennington's analysis is the lak ofdetail. This is not to say that the analysis sheme itself is neessarily inadequate insome way, but the absene of detail does not allow this to be asertained. In fairness,the program summaries are only one soure of data from the experiment rather than

CHAPTER 8: PROGRAM SUMMARY ANALYSIS 191the main fous, whih may explain to some extent why little information is providedabout their analysis. On the other hand, the distint lak of information as to how theprogram summary analysis was arried out makes it impossible to repliate.8.5 Alternative ShemesSeveral attempts were made to apply Pennington's sheme using one rater, two ratersand groups of raters. In the latter ases, reliability proved to be extremely low. Thiswas likely due to the lak of information and detail as to the oding sheme and itsappliation. Furthermore, the programs used in the urrent study were muh shorterthan those used by Pennington, whih has an e�et on the way in whih statementsare lassi�ed (e.g. a desription of a piee of ode whih produes an average may beonsidered quite low-level in a very large program, but when the program is only 10-15lines long, the desription may in fat represent the program's main funtion). Thisfator may also have had a negative e�et on attempts to apply the sheme.However, Pennington's distintions between information types are very pertinent, par-tiularly within the ontext of omparative studies: they have the potential to shedlight on the question of whether di�erenes in language (or representational style) leadto di�erenes in subjets' desriptions of their understanding of a program.In the ourse of trying to arry out analyses of the program summaries, it beame learthat a new sheme was neessary. A number of ideas were tried out, and rejeted forvarious reasons: they are desribed in the setions below.8.5.1 Analysis by SummaryAn initial attempt was made to haraterise an entire program summary rather thanlooking at individual statements, again using the following information types: fun-tion, data or ontrol. It was thought that this tehnique might be viable based on theassumption that the program summaries produed in the studies desribed here wouldbe more oherent, and represent more of a `�nished produt' than those analysed inthe study by Corritore and Wiedenbek (1991). As Corritore and Wiedenbek did notallow subjets to view the program they had studied when answering the omprehen-sion questions, the program summary may have played the role of an aide m�emoire,

192 CHAPTER 8: PROGRAM SUMMARY ANALYSISwith subjets jotting down anything of potential use in answering the questions. In thestudies desribed in Chapters 3 and 7, the programs were shown alongside the ompre-hension questions, therefore subjets did not need to rely on the program summary toanswer the questions. It was felt that this situation might allow subjets to `oordinate'their summaries, thus produing a more oherent aount of the program, rather thansimply a summary of things that might later prove to be useful.The primary disadvantage of looking at the entire summary is that it is too oarse-grained: it applies a single ategory to summaries whih may vary onsiderably inlength and detail, and whih ontain varying perentages of the three information types.Furthermore, it su�ers from the same problems as Pennington's analysis: namely, theategories are too ill-de�ned to be applied reliably and onsistently.8.5.2 Linguisti AnalysesTwo further analyses were arried out whih foused on the linguisti struture of theprogram summary rather than on the ontent: the identi�ation of ue phrases, and`keywords in ontext'. Both involved taking a lower-level, bottom-up approah andinvestigating the way in whih program summaries were strutured.Cue phrases are de�ned as \phrases whose funtion is to link spans of disourse to-gether" (Knott and Dale, 1994, p. 45). Examples of ue phrases are �rstly, after,or else, moreover. It was hoped that looking at the ourrene of ue phrases in thesummaries would lead to the disovery of di�erential patterns of use between the twogroups. The analysis involved identifying and ounting the ue phrases in eah sum-mary.Although interesting, analysing program summaries in terms of ue phrases presenteda number of problems: �rstly, they fous on very limited segments of the program sum-mary, therefore, they would need to be used in onjuntion with another type of anal-ysis. Seondly, not all of the ue phrases are meaning independent in the programmingdomain. For example, many ommon ue phrases are also ommon ontrol keywords inprogramming languages, e.g. if, then, else, otherwise. This onfusion meant that theanalysis ould, for some ue phrases, be mistaken for a semanti analysis, when thiswas not the intention.

CHAPTER 8: PROGRAM SUMMARY ANALYSIS 193The \keywords in ontext" indies provided a listing of eah word in the summary,surrounded by its ontext, i.e. the words whih preeded and followed it. Reframingthe data in this way was interesting in two respets: it highlighted the repeated useof partiular words of interest, e.g. data objets and verbs desribing program ations,and by showing them in their ontext, allowed us to hek how subjets were usingexpressions. Keywords in ontext provided an initial way of deteting patterns oflanguage use so as to begin to think about what they might mean in terms of aninformation types lassi�ation: this is disussed in the next setion.8.6 Proposal for a New ShemeAs disussed above, it is not feasible to apply Pennington's sheme as it stands, at leastnot on the basis of the information provided in (Pennington, 1987b). However, it isimportant to be able to lassify program summaries aording to their informationalontent: they provide useful information, perhaps about the way programmers men-tally oneptualise a program, but ertainly about how they hoose to express theirunderstanding of a program, and the possible role of program representation in theproess.Therefore, two new shemes for program summary analysis are proposed. The lassi�a-tion is similar to Pennington's in that it depends on two passes through the summaries:one based on information types and the other based on objet desriptions. The infor-mation types lassi�ation is a more �nely-grained and fully spei�ed re�nement ofPennington's sheme.The objet lassi�ation is essentially a more restrited version of Pennington's levelsof detail: it was deided to fous solely on data objets within the program, as desrib-ing program events in terms of level of detail was felt to entail an unwanted overlapwith the information types lassi�ation. For example, if one is desribing a programation, it is diÆult to di�erentiate between desribing that ation in proedural terms(information types) and program terms (levels of desription). Furthermore, lookingat objet desriptions allows one to fous on those objets whih an be desribed invarious ways (e.g. a basketball team, a list of heights, or a list of numbers) and toinvestigate the ways in whih subjets hoose to desribe program objets.

194 CHAPTER 8: PROGRAM SUMMARY ANALYSIS8.6.1 Information Types Classi�ationThe information types lassi�ation is used to ode summary statements on the basis ofthe information types they ontain. In the setions below, the ategories whih make upthe lassi�ation are �rst desribed, followed by a short disussion of the relationshipsbetween ategories, and the way in whih they �t together to form a program summary.Information Types Categories: Desriptions and ExamplesThe information types lassi�ation omprises eleven ategories, desribed below withexamples of eah. Note that the examples are taken from atual transripts, andspelling and puntuation have not been orreted. In some ases, segments preedingor following the segment of interest have been inluded to provide ontext and aidunderstanding (shown in square brakets).funtion: the overall aim of the program, desribed suintly. In the ase of the shortprograms used in the experiments desribed here, one funtion ode (and moreinfrequently, two) will be suÆient to desribe the program goals.{ The program is seleting all players over a ertain height and allowingthen to join the yeam.{ The program heks the heights of a list of basketball player to see whois over 180m tall.{ The program alulates the di�erenes between the input distanes . . .ations: events ourring in the program whih are desribed at a lower level thanfuntion (i.e. they refer to events within the program), but at a higher levelthan operations (desribed below). For example, an ation may involve a smallgroup of nodes rather than one node only. Alternatively, it may be desribedas operating over a series of inputs, or desribe ations in non-spei� ways, e.g.desribing tests in general, rather than the exat tests being arried out.{ This sub-program heks eah individual element of this list . . .{ `Sun Span' is then worked out.{ . . . omparing eah of the other elements . . .

CHAPTER 8: PROGRAM SUMMARY ANALYSIS 195{ The program makes two heks . . .{ . . . they are stripped in turn out of the list.operations: small-sale events whih our in the program, suh as tests, assignment,et. Operations usually orrespond to one node in a VPL, or one line of textualode.{ . . . then the program sets the height to head(height) . . .{ . . . then it inrements the ounter by 1 . . .{ A seletor heks to see if the set is equal to [℄ ie 0 . . .{ the head value and the previuse head value are then subtrated.state-high: a high-level de�nition of the notion of state. Pennington didn't inludea state ategory, but it was felt that one was neessary in order to aount forstatements whih desribe the urrent state of a program when a ondition hasbeen met (and upon whih an ation is dependent). State-high di�ers from state-low in terms of granularity: the former desribes an event at a more abstrat levelthan the latter (whih usually desribes the diret result of a test on a single dataobjet). The relationship between the two is akin to the relationship betweenations and operations.{ One all the elements have been proessed . . .{ [The program goes through a set℄ until it �nds 5 heights greater than180 . . .{ [The program takes a set and goes through it adding one to a ounter(originally set at 0)℄ if the value being examined at the urrent iteration isgreater than 65.{ [The program ontinues℄ until there are no player left unheked in theliststate-low: a lower-level version of the ategory desribed above. State-low usuallyrelates to a test ondition being met, or not met, and upon whih an operationdepends. Again, this ategory was felt to be neessary as many summary state-ments desribe not only the tests in the programs, or the operations following thetests, but also the results of the tests, in other words, the state of a partiulardata objet within the program.

196 CHAPTER 8: PROGRAM SUMMARY ANALYSIS{ If the head is greater than 180 . . .{ If the head is greater than 65 . . .{ . . . when the test is empty is true . . .{ . . . if empty distanes (eg[℄) . . .{ If the height test is true . . .data: inputs and outputs to programs, data ow through programs, and desriptionsof data objets and data states.{ The program aepted a list of numbers indiating sunhours.{ . . . it then passes a list of heights to a sub-program . . .{ . . . the heights over the height are sent ot the team . . .{ . . . the �nal result of the program is the number of players over the height180.{ . . . all heights are entered into an empty set and sent out as results.ontrol: information having to do with program ontrol strutures and with sequen-ing, e.g. reursion, alls to subprograms, stopping onditions.{ . . . and the sub-program is alled reursively.{ . . . the nested reursions begin to unwind.{ It exits the program and goes bak to the main program . . .elaborate: further information about a proess/event/data objet whih has alreadybeen desribed. This also inludes examples.{ [If the urrent mark is above a ertain pass level℄ (65 in this ase) . . .{ [The head(numbers) is assigned to one variable℄ (whih I'll all mark). . .{ . . . [the head value and the previuse head value are then subtrated℄ andthe di�erene taken.meta: statements about the partiipant's own reasoning proesses, e.g. \I'm not surewhat this does".{ I an't remember!{ Dhoo! forgot where that route went!!!

CHAPTER 8: PROGRAM SUMMARY ANALYSIS 197. . . [and then joins it to the other value it would if reated if he had donewhat i just said℄ (ompliated).unlear: statements whih annot be oded beause their meaning is ambiguous oruninterpretable. This ategory is not synonymous with an `error' ategory how-ever: statements whih are not orret within the program, e.g. \the programprodues a list" when it in fat produes a number, but whih an be ategorisedas being of a partiular type are lassi�ed.{ [If the height is greater than 180, 1 is added to the ounter℄ and theheight is reorded. It is not lear here whether `reorded' means `printed',`added to a list', `assigned to a variable' . . .{ [This program takes a number of sunny hours℄ and determines whetherthe amount of sunny hours is hi or lo. The program (whih is also thesubjet of the desriptions below) in fat alulates the range betweenthe highest and lowest numbers.{ The program is listing how many hours of sun there was only when thesun was High.{ [Then the results are sent to a set through a seletor proess℄ to makesure the results are HiLn . . .inomplete: statements whih annot be oded beause they are inomplete. State-ments whih fall into this ategory tend to be un�nished sentenes (exampleswere not felt to be neessary here). Note that this only ourred with the Prologexperiment, where subjets were timed.Information ategories are related to eah other in terms of level of granularity, whihan be envisaged as follows: at the top level, the program an be desribed in termsof a small number of funtions (in some ases, just one, given that the programs beingexamined were quite small). At a �ner level of granularity, these funtions are aom-plished by a series of ations. The ations may be dependent on ertain onditions,represented by state-high nodes. At an even �ner level of granularity, the ations them-selves are implemented in the program by operations whih, in a VPL, often orrespondto a single node. Likewise, state{low nodes desribe the state of a data objet, usuallyjust after a test.

198 CHAPTER 8: PROGRAM SUMMARY ANALYSISOne point worth noting is that the information types lassi�ation does not inludethe lassi�ation of erroneous statements: statements whih are not orret within theontext of the program but an still be lassi�ed aording to an information type areategorised as suh.The Coding ProessThe short examples shown above were designed to give a avour of the way in whihstatements are oded: the full oding proess in desribed in the oding manual (Ap-pendix D).A simple oding environment, using Word maros, has been designed to failitate theoding of both the information types lassi�ation and the objet lassi�ation, whihwill be desribed below.The program summaries are represented in table ells, with one summary segment perrow. The lassi�ation system is represented as a panel of buttons (see Figure 8.1), witheah button representing a ategory, and ategories grouped together as appropriate.The button ions do not bear a diret relation to the ategory, but they were useful invisually distinguishing between ategories when oding, and so were maintained.
Figure 8.1: Coding Panel for `Information Types' Classi�ation

CHAPTER 8: PROGRAM SUMMARY ANALYSIS 199With the ursor on the line to be oded (or the �rst line if one is oding sequentially),oding onsists of liking on the button with the desired ode. That ode is thenplaed in the ell next to the program segment, the entire row is shaded in a olourorresponding to that ode, and the next row is highlighted, ready for oding. Codingan already oded statement overwrites any prior ode, so reoding is simple.The olour shading is quite useful as a desriptive aid, and allows two summaries tobe ompared easily. For example, Figure 8.2 shows a relatively high level programsummary, with the program being desribed primarily in terms of its funtion and highlevel states.
Figure 8.2: A High Level Program SummaryFigure 8.3 shows a program summary whih ontains more low-level state and opera-tions statements, with some data ow statements at the end.
Figure 8.3: A Low Level Program SummaryIn addition to the information types and objet desription palettes, a palette was also

200 CHAPTER 8: PROGRAM SUMMARY ANALYSISdesigned to arry out basi oding and segmenting ations, suh as splitting segments,inserting/deleting new lines, et.8.6.2 Objet DesriptionsThe aim of this lassi�ation is to look at the way in whih objets are desribed.The basi question being asked is, \How do subjets, when not onstrained by spei�instrutions, hoose to desribe objets present in the program?". The most interestingases are those in whih there is a hoie of levels at whih the objet an be desribed.For example, an input to the program ould be desribed as a list of numbers, oralternatively, as a series of basketball player's heights.There are various points to note about lassifying objets:� some objets annot be lassi�ed at more than one level. For example, a programis, by de�nition, a program spei� objet: it is hard to imagine it as a desriptionof something existing in the real world domain (although it is in some asespossible, e.g. a alulator).� similarly, objets introdued within the program (i.e. not inputs or outputs), andwhih have a raison d'être only within a program, annot be lassi�ed in domainterms. An example is a ounter: it is used only within the program to keep trakof objets aross iterations or reursive alls.The main distintion being made is between program objets and domain objets.Pennington's program and detailed lassi�ations have been ollapsed into one \pro-gram" lassi�ation, while other �ner-grained distintions have been introdued andare desribed below.Objet Categories: Desriptions and ExamplesThe objet lassi�ation omprises seven ategories, whih are desribed below withexamples. Note again that the examples are taken from atual transripts, and spellingand puntuation have not been hanged.program only: refers to items whih our only in the program domain, and whihwould not have a meaning in another ontext, for example, a ounter. A useful

CHAPTER 8: PROGRAM SUMMARY ANALYSIS 201question for distinguishing this type of objet is to ask oneself whether the objetwould be required if one were solving the problem using paper and penil ratherthan a omputer.{ This program initially sets a ounter to zero . . .{ . . . then the ounter is not inremented and the sub-program is alledagain.program: an objet, whih ould be desribed at various levels, desribed in programterms. Program terms refer to the use of any program spei� data struture(e.g. a list) or variable (either indiated by the lak of an artile, or the word inquotes, apitalisation, et.){ . . . heking �rst whether the list is empty or not . . .{ If `Hight' is then equel to or less than 180 `Sub Team' is run again.{ If the urrent height variable is above . . .program { real-world: objet desriptions using terminology whih is valid in bothreal-world and program domains, e.g. results, numbers, values (the latter only if itisn't being used to desribe the value of a variable). The term real-world is beingused in ontrast to domain as follows: domain terminology refers to the problemdomain, e.g. basketball players' heights, exam marks, distanes between ities.All of these entities ould be represented in the real-world as numbers. Thesenumbers are not spei� to a problem domain (as seen here, they ut aross allof the domains), but they not spei� to programming either (if one were addingup exam marks by hand, one would also be manipulating numbers). Therefore,a referene to numbers would be lassi�ed as a program { real-world desription,while exam marks would be lassi�ed as a domain desription. Originally, a`real-world' ategory was also reated (similar to the domain/program { domaindistintion), but it turns out to be diÆult to determine whether the objetis being desribed in a way whih is ompletely free of the program ontext.therefore it was felt to be safer to have only a `program { real world' ategory.{ The program takes 2 numbers . . .{ The program gives out the 5 highest values that were input to the pro-gram.

202 CHAPTER 8: PROGRAM SUMMARY ANALYSIS{ It then passes a list ontaining numbers to a sub program whih �rstextrats . . .program { domain: objet desriptions whih ontain a mixture of program andproblem domain referenes, e.g. a list of marks (note that are must be taken toensure that domain referenes are not in fat being used as variable names), ora referene whih is equally valid in the program and the problem domains (e.g.di�erenes){ The �rst height beomes . . .{ This is proessing a list of marks . . .{ . . . it then passes a list of heights to a sub-program.domain: an objet whih is desribed in domain terms rather than by its representa-tion within the program, e.g. a mark, a distane, sunny days.{ This program heks a basketball players height from [the list given℄.{ This program takes a number of sunny hours and . . .{ This program alulate the number of studends who passed . . .indiret referene: an anaphori referene to a data objet. These referenes an bemathed to the objet by referring bak in the program summary, thus anotheroption would be to ount them as two instanes of the same ategory. However,this has the unwanted e�et of inating the ategory in question.{ . . . they are stripped in turn out of [the list℄.{ . . . if it is then the program returns to the main program.{ . . . and adds 1 to it.unlear: statements whih are ambiguous and annot be oded, either beause thestatement itself is unlear, or beause the objet whih is being referred to annotbe identi�ed.{ . . . then the amount of passes is inremented by 1.{ . . . is sent ti the pass marker . . .{ . . . [the head goes into℄ a folder.

CHAPTER 8: PROGRAM SUMMARY ANALYSIS 203Although not all of the ategories are related, some do have links between them. Pro-gram and domain ategories ould be referred to as `pure' ategories in the sense thatthey refer to one level of desription only. Program { real-world and program-domainare amalgamates of pure ategories. Program only is a speial ase: unlike the ate-gories just mentioned, it is used for objets whih are inherently linked to the programdomain and hene annot be desribed at other levels. Finally, indiret referene andunlear statements are independent ategories in the sense that they are not linked tothe others in any obvious way.Coding ExamplesThe oding proess is desribed in a short oding manual in Appendix D, however,examples of the oding proess are shown here.The environment used for oding is idential to the one desribed for the informa-tion types lassi�ation, with the exeption of the panel of buttons used (shown inFigure 8.4). This panel ontains buttons orresponding to the objet desription ate-gories, rather than the information types.
Figure 8.4: Coding Panel for `Objet Desription' Classi�ationAs mentioned in onjuntion with the information types lassi�ation, olour shadingis quite useful as a desriptive aid, and allows two summaries to be ompared easily.For example, Figure 8.5 shows a summary whih is primarily foused on program

204 CHAPTER 8: PROGRAM SUMMARY ANALYSISdesriptions, while Figure 8.6 shows a summary whih is largely domain oriented.
Figure 8.5: A Summary ontaining mainly Program Statements
Figure 8.6: A Summary ontaining mainly Domain Statements8.7 A Critial Analysis of the ShemeThis setion presents a ritial analysis of both new lassi�ations by applying the listof points desribed in Setion 8.3. As this hapter does not over the appliation ofthe sheme, only the sheme itself will be analysed here: the appliation of the shemewill be analysed in Chapter 9.What is the theoretial bakground of the sheme?The sheme is part of a study whih investigates VPL program omprehension bynovies, omparing the data ow and ontrol ow paradigms. The sheme is not baseddiretly on a theory as there is, to the author's knowledge, no theory of novie reasoning

CHAPTER 8: PROGRAM SUMMARY ANALYSIS 205with data ow and ontrol ow VPLs. The sheme is however based on Pennington'swork on information types (Pennington, 1987b).What are the aims of the sheme, in other words, what hypotheses does itallow one to test, either in atual fat, or potentially?Information Types: This sheme aims to look at the ways in whih novie program-mers ommuniate their understanding of a program, by lassifying their summarystatements aording to the types of information they highlight. The sheme shouldbe partiularly useful when arrying out ross-omparisons of language paradigms orrepresentations.Objet Desription: The sheme aims to investigate the level of abstration at whihnovies hoose to desribe the data objets in programs whih they have studied. Again,the sheme should be most informative in the ontext of omparative studies.To what domain is the sheme appliable?Program omprehension.Does the sheme ome with a oding manual whih desribes how to applyit?Yes, see Appendix D.Is the sheme provided with an example transript?Yes, transripts are shown in Appendix E.Categories:� How many ategories does the sheme ontain?Information Types: 11Objet Desription: 7� Is there a hierarhial struture to the sheme (i.e. ategories at dif-ferent levels)?Information Types: There is no hierarhial struture in the sense that one ategorywould be a sublass of another, however, there are di�erenes in the level ofgranularity between some ategories.Objet Desription: No.

206 CHAPTER 8: PROGRAM SUMMARY ANALYSIS� If there are di�erent levels, are they interdependent?Information Types: Yes, on a semanti level (e.g. `ations' are higher-level desrip-tions of `operations', and `state-high' is related to `state-low' in obvious ways),but this does not have reperussions for oding, in the sense that there are nonested ategories.Objet Desription: Not appliable.� What is the level of granularity of the ategories (e.g. segment, sen-tene, utterane, paragraph)?Information Types: Segments, whih orrespond to what Bales (1951) terms `unitsto be sored' in Interation Proess Analysis, an early language oding systemwhose methods have been well-tested. They are represented textually as single,simple sentenes with a subjet and prediate (either of whih may be implied).Objet Desription: Segments, whih are de�ned as a piee of the program sum-mary whih ontains exatly one referene to a data objet. Note that the dif-ferene in the de�nition of segment means that program summaries must besegmented twie: one for eah lassi�ation.� Are the ategories orthogonal?Again, it would be more appropriate to say that the two lassi�ations (informa-tion types and level of detail) are orthogonal.� Are the ategories mutually exlusive?Information Types: Yes, although again, this distintion beomes more lear oneoding is attempted.Objet Desription: Yes (see above omment).� Are oding examples provided for eah ategory in the sheme?Yes.Does the sheme aount for non-ideal behaviour?No, the sheme does not onsider errors.

CHAPTER 8: PROGRAM SUMMARY ANALYSIS 2078.8 Chapter SummaryThis hapter disussed a reonstrution of Pennington's original lassi�ation of pro-gram summary statements aording to information types and level of detail. It anal-ysed the lassi�ations used in the sheme in relation to a number of riteria, and wenton to propose two new lassi�ations whih fous on information types and objet de-sriptions. The lassi�ations are based on Pennington's, but are more omplete andwell-de�ned. These shemes were also analysed using the same riteria, whih allowsfor some omparisons to be made.Both lassi�ations are aimed at oding essentially the same types of information in thesame domain, however, the reasons for doing so di�er: Pennington et al. are interestedin mental representations, while the fous of the studies desribed in this thesis is thee�et of notations and representations on desriptions of programs.As ompared to Pennington's sheme, the shemes proposed in this thesis providemore onise de�nitions of ategories, inluding spei� types of elements whih arelassi�ed under eah heading, more extensive examples, ompletely oded transripts,and a oding manual. Furthermore, the relationship between the shemes is morelearly spelled out.The next hapter looks at the appliation of these new shemes, at the results ob-tained, and also looks ritially at the sheme itself, allowing it to be ompared withPennington's sheme on the issue of appliation.

208 CHAPTER 8: PROGRAM SUMMARY ANALYSIS

Chapter 9Results from the ProgramSummary Analysis9.1 IntrodutionProgram summaries provide an important soure of data in the so-alled `informa-tion types' studies, a point whih was disussed in detail in Chapter 8. Produing asummary allows subjets to desribe a program in their own words, so summaries ansupplement more narrowly foused questions in order to provide a fuller aount ofprogram understanding. Typially, program summaries have been analysed along twodimensions: the information ontained in the summary statement and the level of detail(Pennington, 1987b; Corritore and Wiedenbek, 1991). Although these ategorisationsdo not map diretly onto the �ve information types used in the program omprehen-sion questions, parallels an be drawn between the information types and the programsummary analysis in suh a way that the results from eah task an either provideon�rmation of the other, or highlight di�erenes in information type use/extrationaross tasks.A number of fators will undoubtedly inuene the prodution of program summaries.Corritore and Wiedenbek showed that program length may a�et the use of informa-tion types in the summary, but there are surely others, suh as the task, the nature ofthe program, the paradigm, the programming notation, level of understanding, exper-tise, et., all of whih seem interesting avenues to explore. These types of investigationsare well suited to the methodology of omparative studies, where it is easier to ontrolfor other fators and fous on the issue of interest.209

210 CHAPTER 9: PROGRAM SUMMARY RESULTSOne of the major problems assoiated with program summary data is that the method-ology used for analysing it has been ill-de�ned and, as a result, diÆult to apply. Thisled to the development of a new analysis sheme, as desribed in Chapter 8, and thishapter provides both a ritial look at the appliation of the sheme, and an overviewof the results obtained.A disadvantage of proposing a new approah is that it makes it diÆult to ompareresults with previous studies. However, it ould be argued, �rstly, that an underspe-i�ed methodology also makes omparisons problemati, as there is likely to be widevariation in the way in whih it is applied. Seondly, omparisons between studies arefraught with diÆulty in any ase, as very often there will be other fators, in additionto the fators of interest, whih result in unwanted di�erenes between the studies.This is ertainly the ase for the studies reported here (the Prolog study and the VPLstudy), where di�erenes in fators suh as whether the experiment was timed or notand whether the program was visible during the summary writing proess are likely tohave had an e�et on the summary produed. Therefore, any omparisons between thestudies reported here and previous studies will be made autiously and with the under-standing that they are speulative. The only reliable omparisons whih will be madeand desribed in detail are those between the ontrol ow and data ow languages inthe VPL study.This hapter has three main parts: the �rst provides a walkthrough of a oding examplein order to give the reader a feel for what is involved in oding a summary. The seondpart looks at the appliation of the sheme, and analyses it aording to the frameworkput forward in Chapter 8, Setion 8.3. The �nal part desribes the results of theprogram summary analysis for the Prolog experiment desribed in Chapter 3, thenlooks at the data from the VPL study in Chapter 6. The hapter onludes with ageneral disussion of the results and the main issues arising from the analysis.9.2 Program Summary Analysis: An ExampleThis setion provides a brief desription of how a statement is oded, so as to providea fuller understanding of the ritial analysis of the sheme in the next setion.Figure 9.1 shows a short program summary.

CHAPTER 9: PROGRAM SUMMARY RESULTS 211
Figure 9.1: An Example Program SummaryLine 1 shows a typial ation statement: it desribes something that happens in theprogram, but is not spei� enough to allow it to be oded as an operation. Forexample, \heking a basketball player's height to see if it is greater than 180"would be an example of an operation, while this is an instane of a non-spei�proessing ation involving the input list.Line 2 desribes the outome of an operation, in other words, it desribes the stateof a partiular data objet whose value has just been tested. It is lassi�ed asa high-level desription, while a orresponding low-level desription of the sameevent would be, for example, \if the number > 180".Line 3 desribes in essene the overall goal of the program, whih is to selet basketballplayers for a team.Line 4 again desribes the state of a data objet in high level terms (a state-lowequivalent would be \if the ounter = 5 test is true . . . ").Line 5 desribes program termination. Any ation suh as reursion, iteration, ontrolpassing to a subprogram, or the program stopping, failing or exiting would belassi�ed as suh.9.3 A Critial Analysis of the Sheme AppliationThis setion applies the questions desribed in Setion 8.3 of Chapter 8 to the applia-tion of the oding sheme (an analysis of the sheme itself having been arried out inChapter 9).

212 CHAPTER 9: PROGRAM SUMMARY RESULTSIs hindsight allowed in oding or must a dialogue/disourse be oded se-quentially?Hindsight is allowed, and even enouraged. Ensuring reliability within ategories seemsmore important than enforing a strit sequential oding order.How many oders were used?One.This sheds some doubt on the reliability of the sheme, and the issue of inter-raterreliability must be addressed in the future. However, the appliation of the sheme todata from di�erent experiments provides initial evidene of its feasibility. Both analysesrely on a low-level, ontent based investigation of the summaries. The fat that theyonsider the semantis of the domain requires oders to have an in-depth understandingof the programs whih the subjets studied, the di�erent ways in whih the programswere represented, the variable names used and the domains represented. Coders needto understand basi programming in general, but also the ways in whih programmingulture might inuene subjets' desriptions. For example, students from EdinburghUniversity, who had been taught Prolog, onsistently referred to lists as lists, whilestudents from Napier University, who had been taught COBOL and C++, referredto lists as `sets', whih, if taken in the mathematial sense, are not the same thing.However, they were treated as suh for the sake of the analysis, as it was lear that itwas a matter of terminology rather than misunderstanding.A further example from the objet desription sheme illustrates the subtleties of od-ing. The following three sentenes, taken from the summaries, all use the word results:{ . . . the number of results greater than 65.{ . . . one is added to the results whih is initially set at 0.{ . . . it then outputs the results.In the �rst sentene, the subjet is referring to a program whih looks at exam results,therefore results is being used in a domain ontext. In the seond sentene, the subjetis referring to a data node in the data ow representation whih is alled `results': thiswould be lassi�ed as a `program' referene. In the third, the subjet is referring to

CHAPTER 9: PROGRAM SUMMARY RESULTS 213the overall results, or output, of the program, and this would be lassi�ed as `program{ real-world'.In many ases, the distintion between a domain objet, say, a height, and its variablename within the program, Height, is very diÆult to make, and requires attention tovery subtle indiators of use.The need for in-depth knowledge in order to arry out oding di�ers from other shemes,for example, those whih require oders to mark onversational `moves' in dialogue(Carletta et al., 1997), where a thorough understanding of the domain is not as ruialand/or the `domain' in question is limited (in this ase, two versions of a simple maponsisting of a route via a small number of landmarks).This requirement means that although training a oder would be entirely possible, itwould also be quite time-onsuming.Were the oders trained?Not appliable, given that the author developed the sheme and oded the segments.However, if additional oders were to be used, they would require extensive training toapply the sheme reliably.If more than one, was the reliability reported?N/A.Categories:� Is the number of ategories manageable? (i.e. do some ategories endup being unused beause there are so many of them?)There are 11 information types ategories and 7 objet desription ategories.This allows for �ner-grained distintions than does Pennington's sheme, but thenumber of ategories is not overwhelming (previous versions of the sheme useda number of subategories in eah ategory, resulting in over 50 ategories, andwere substantially pared down with the goal of manageability in mind).� Is it straightforward to make a ategory deision? Is there any deisionproess provided for doing so (e.g. a deision tree?)

214 CHAPTER 9: PROGRAM SUMMARY RESULTSCategory distintions are not straightforward (see above for examples). However,it is felt that this is due to the nature of the oding task, e.g. diÆulties indisambiguating the use of similar or idential words, rather than with aws inthe oding sheme itself.In addition to a desription of the ategories, with examples, a deision tree isprovided for both lassi�ations (see Appendix D).� Does the sheme inlude default ategories whih are misused (i.e. theybeome \buket" ategories)?:Information Types: It does not appear to be the ase. The `unlear' ategoryaounts for 1.82% of statements in the Prolog study, and in the VPL study,4.07% and 1.36% for the ontrol and data ow groups respetively. All otherstatements were lassi�able in other ategories.Objet Desription: Likewise. This sheme was not applied to the Prolog data,however, the `unlear' ategory aounted for 0.39% and 1.03% of statements inthe VPL study for the ontrol and data ow groups respetively.Is the sheme aompanied by analysis tools?Yes, it is aompanied by a oding tool, implemented in Word, whih inorporates aseries of oding panels whih allow one to ode (and reode) a sheme by pressing thebutton orresponding to the desired ode.If there is ambiguity in applying the sheme, is it due to the sheme or tothe real world?Information Types: There is ambiguity involved due to the fat that the di�erent infor-mation ategories are interrelated in a program.Objet Desription: Again, there is some ambiguity involved, as a result of trying todetermine the level at whih subjets are using objet desriptors: it may be that it isnot lear to the subjets themselves, and that they are moving oneptually betweenthe problem domain and the task domain.

CHAPTER 9: PROGRAM SUMMARY RESULTS 215SummaryThe sheme aims to provide a more omprehensive, �ne-grained methodology foranalysing program summaries. This inevitably means that it has beome more de-tailed than Pennington's original sheme. The bene�t of this inreased detail is aorresponding inrease in larity. However, it may paradoxially exhange old diÆul-ties in oding for new ones: whereas before, distintions were hard to make beausethe sheme did not speify them very well, now the distintions may be so �ne-grainedthat they are tedious to make.However, it is diÆult to see how the problem an be avoided if one wishes to arry outthis type of analysis, as the aims of the sheme make oding a skilled proess. It wasalready mentioned that oding relies on in-depth and quite preise knowledge aboutthe programming domain and the task domain, in ontrast with other shemes whihallow one to ode on the surfae strutures of the text.Coding shemes are sometimes ritiised for not being usable `o�-the-shelf' as it were,in other words, beause they require substantial knowledge, pratie and experieneon the part of the oder. This is perhaps unjust: for example, one expets a personmarking exam sripts to have an in-depth knowledge of the domain, the questionsbeing asked, and in many ases, the marker reeives spei� guidelines for marking.It follows that the type of oding desribed here, whih is dependent in the same wayon a detailed understanding of the ontent of the subjet's reply and the domains towhih it relates would have the same requirements.On the plus side, the sheme appears at �rst sight to be widely appliable. It wasinitially devised on the basis of the ontrol ow VPL data, and then applied to thedata ow VPL summaries. Finally, the sheme was applied to the data from theProlog experiments. Thus, it has been shown that the sheme an be used with verydi�erent paradigms (ontrol ow, data ow, delarative) and representations (graphial,textual). An obvious question is whether the sheme will sale up beyond the simpleprograms whih have been used in these experiments: for the moment, that questionannot be answered.

216 CHAPTER 9: PROGRAM SUMMARY RESULTS9.4 Prolog ExperimentThis setion desribes an analysis of the program summary data from the Prolog ex-periment desribed in Chapter 3. Given the points made in the introdution, it isdiÆult to ompare the data obtained from this study with previous studies. However,the results are interesting in themselves, and furthermore, they provide support for theappliability of the sheme.Before desribing the results, it should be noted that the data from both the Prologand the VPL studies has large amounts of variane. This is likely to be inherent inthe nature of the task, as writing a program summary is very di�erent from answeringmore onventional experimental questions. Firstly, subjets were not given spei�instrutions as to what to put in their summaries, and seondly, there is no rightanswer to the request for a program summary.9.4.1 Word CountThe mean length of the summaries was 19.01 words. The relatively short length ofthe summaries may be due to the fat that subjets had a �xed time period in whihto study the program, answer the omprehension questions, and write the programsummary. The request for the program summary was the last item on the page, whihmay have limited even further the time they had to devote to the summary.9.4.2 Information Types Classi�ationProgram summaries were �rst segmented aording to the de�nition of a segment givenin Chapter 8 and then ategorised.The mean number of segments per summary was 2.38. Again, this is quite low, probablydue to time onstraints. The data annot be ompared with previous studies (Penning-ton, 1987b; Corritore and Wiedenbek, 1991), as this information was not reported andfurthermore, the segmentation may well have been arried out di�erently.

CHAPTER 9: PROGRAM SUMMARY RESULTS 217A Methodologial AsideUsing the information types lassi�ation with the Prolog data showed up an importantdi�erene between Prolog and other types of languages suh as the data and ontrolow languages desribed later in this hapter.In many languages, ations and operations on data are represented expliitly as suh,even in languages whih are not traditional, proedural languages. For example, inthe data ow language investigated in this thesis, an operation to take the head of thelist is represented as a single node, marked \head". In the ontrol ow language, thisoperation an also be traed to one node, whih usually assigns a value to a variableat the same time as taking the head, e.g. \set Distane to head(Distanes)".However, in Prolog, taking the head of the list is not so muh an expliit ation as away of representing the data. In the example below:adjust_sub([X|Xs℄, Y, [Z|Zs℄):-Z is X + Y,adjust_sub(Xs, X, Zs).The expression [X|Xs℄ is e�etively taking the head of the list, simply by virtue of theway the list is represented, but this is very di�erent from an operation as de�ned in mostlanguages. It is diÆult to know therefore, when speaking about Prolog, if referenes to\taking the head of the list" should be onsidered as data or as operations. Certainly,this representation has the same e�et as a node whih expliitly splits the list, but itis more impliit, and resides in the data struture itself. In fat, the same program anbe written for novies as suh:adjust_sub(List, Y, [Z|Zs℄):-List = [X|Xs℄,Z is X + Y,adjust_sub(Xs, X, Zs).in order to make this operation more expliit, and more like an operation in otherlanguages.

218 CHAPTER 9: PROGRAM SUMMARY RESULTSEvents suh as these, whih are diretly linked to data struture representation, fallsomewhere between the data and operations ategories. In the same way that operationsan be desribed at a more abstrat level in terms of ations, Prolog gives rise to ahigher level desription of program events whih ould be lassi�ed as either data orations: data ations as it were.Classifying these events as data ould lead to the ritiism that the analysis is skewedtowards the data ategory simply beause subjets have no other way of desribing theations and operations in the program. On the other hand, reating new ategoriessuh as data operation and data ation should be avoided unless a de�nite need an beidenti�ed. Therefore, an initial analysis was arried out by lassifying statements twiein order to determine whether this makes a di�erene to the overall results: �rstly,inluding these types of statements as data, and seondly, onsidering them as eitheroperations or ations. Table 9.1 shows the result of these lassi�ations, giving themean proportion of information types ategory statements, with standard deviations.Columns 2 and 3 show the results of lassifying data operations and data ations asdata, and olumns 4 and 5 show this data relassi�ed as operations and ations.Category Data Class. Op/At Relass.Mean Std Dev Mean Std Devfuntion 29.58 22.40data 27.71 17.84 18.40 15.83ation 15.52 13.26 19.03 15.45elaborate 6.30 9.09inomplete 5.13 9.54ontrol 4.98 8.61meta 3.05 13.70state-high 2.76 5.27unlear 1.82 4.51state-low 1.65 4.17operation 1.50 3.36 7.31 9.77Table 9.1: Mean Proportion of Information Types StatementsAs an be seen in the olumn entitled, \Data Class.", funtional statements predom-inate, followed by data ow statements. Ation statements are also reasonably well-represented in program summaries. All other types of statements our relatively in-frequently (less than 7%).Figure 9.2 represents the data oriented lassi�ation (olumns 2 and 3 of Table 9.1).

CHAPTER 9: PROGRAM SUMMARY RESULTS 219
Figure 9.2: Information Statement Categories: Data CategorisationA repeated measures ANOVA with statement type as an 11 level fator was highlysigni�ant (F=53.51, df(10,730), p < .001).Figure 9.3 shows the relassi�ation of this data (Table 9.1, olumns 4 and 5), withdata operations and data ation statements lassi�ed as operations and ations respe-tively. It an be seen that funtional statements still predominate, but the relassi�-ation has the e�et of more or less equalising ation and data ow statements. Therelassi�ation a�ets the operations statements to a muh greater degree than theation statements.Again, a repeated measures ANOVA with statement type as an 11 level fator washighly signi�ant (F=38.85, df(10,730), p < .001).9.4.3 Internal Validity of Program SummariesCorrelations were arried out between the di�erent types of summary statements inorder to determine whether ertain types had a tendeny to o-our. The orrelationswere performed for eah of the lassi�ations desribed in Table 9.1 to ensure that theyheld for both ategorisations of data ow, operations and ation statements (this wasthe ase). Rather than provide an exhaustive table of all possible orrelations, onlythose whih are signi�ant at p < .05 or higher will be desribed in the paragraph

220 CHAPTER 9: PROGRAM SUMMARY RESULTS

Figure 9.3: Information Statement Categories: Op/At Categorisationbelow.Funtional statements orrelated negatively with all statement types apart from dataow statements. Data ow statements orrelated negatively with ation and ontrolow statements. Both state-high and state-low statements orrelated positively withoperations and ontrol ow statements. Finally, ontrol ow and operations statementsorrelative positively.9.4.4 Relationship between Program Summaries and ComprehensionQuestionsIn order to investigate possible relationships between the two tasks used in the exper-iment, i.e. the binary hoie questions and the program summaries, orrelations wereperformed between statement types and question sores. This was done in order toinvestigate whether, for example, high sores on a partiular information type questionorrelated with the frequeny of that type of statement in the program summaries.Three signi�ant results were observed: a positive orrelation between operations ques-tions and funtion statements (rs = .29, p < .02), between ontrol ow questions and

CHAPTER 9: PROGRAM SUMMARY RESULTS 221operations statements (rs = .27, p < .03), and a highly signi�ant positive orrelationbetween funtion questions and elaboration statements (rs = .45, p < .001).The orrelation between summary length and overall sore was heked, and was sig-ni�ant (rs = .24, p < .04). It had previously been hypothesised that short summariesmight be assoiated both with low overall sores (as subjets have diÆulty in formu-lating their understanding of the program), and with high sores (as they understandthe program well enough to produe a less verbose, high-level aount rather than ablow-by-blow desription), thus produing a bell shaped urve. This was not borne outhowever: instead, it seems that high sores are assoiated with longer summaries, andvie versa.On a related note, the relationship between total sore (on the binary hoie ques-tions) and the di�erent types of statements present in the program summaries (fun-tion, data, operations, ation, ontrol, state-high and state-low) was investigated. Theonly signi�ant orrelation was between total sore and the perentage of `elaboration'statements, whih are statements whih provide further information about somethingalready present in the summary, or onrete examples of the program's behaviour (rs= .24, p < .04).9.4.5 Objet Desription Classi�ationThe objet desription lassi�ation was not arried out on the program summariesfrom the Prolog experiment as non-meaningful program and variable names were usedin order to avoid giving lues to subjets about the program's funtionality. However,this meant that subjets did not have the option of desribing objets in domain terms,and were essentially restrited to program only, program, and program { real-worldterms. As the main question of interest with respet to objet desriptions was whethersubjets hoose to use domain or program terms, it was deided not to lassify thesummaries using this sheme.9.4.6 Disussion and ImpliationsThe most striking result from the Prolog data is the high proportion of what mightbe termed `high-level' statements, partiularly funtional summary statements (almost

222 CHAPTER 9: PROGRAM SUMMARY RESULTS30%). Funtional statements are followed by data ow and ation statements in termsof frequeny (in di�erent proportions depending on the way in whih data ations arelassi�ed). On the other hand, statements relating to ontrol ow, low-level operationsand state our relatively infrequently.These results di�er from those of similar experiments in two respets. Firstly, this studyappears to be the only information types study to �nd that funtional statements werethe dominant type of statement, and onversely, that proedural (i.e. ontrol ow andoperations) statements were quite rare.Seondly, unlike the other studies, the results of the program summary analysis do notmap neatly onto the results from the binary hoie questions used in the experiment.The lowest rate of errors on the binary hoie questions ourred for ontrol ow,operations and state questions, with funtional and data ow questions having thehighest rate of errors (30.6% and 43.2% respetively). This is in ontrast both toprevious researh and to the VPL study reported in Setion 9.5, where the multiplehoie question and program summary data omplement eah other quite well.These results are quite intriguing, and the next setions onsider why they might haveourred. When the results from the omprehension questions were onsidered in Chap-ter 3, the disussion foused on an examination of some of the features of the Prologlanguage that may have ontributed to the results observed. Likewise, the following se-tions hypothesise that the patterns of information present in the program summariesmay revolve more around the features of the Prolog language than the underlyingdelarative paradigm. Before disussing this, it is worth noting that it is often diÆultto distinguish between what neessarily follows from a partiular paradigm in terms ofthe semanti and representational features of the language, and what is optional. Fur-thermore, it is sometimes diÆult to separate out the semanti and syntati featuresof the language, and distinguish between them, as the disussion will show.The following setions onsider �rstly hypotheses relating to the frequeny of our-rene of various information types in Prolog program summaries, and �nish with somethoughts on what makes for a `good' program summary.

CHAPTER 9: PROGRAM SUMMARY RESULTS 223Ation Statements: Familiarity?As reasons for the ourrene of eah of the three dominant statement types (funtional,ation and data) will be onsidered, this setion looks at ation statements. This ismore for the sake of ompleteness, so as to over all three information types, ratherthan any theoretial impliations, therefore, this setion will be brief.Distinguishing between operations or ations often revolves around the sope of theevent, in other words, whether it is desribed as being applied to one data objet (e.g.\it takes the �rst element of the list, adds it the ounter, and then reurses on the tailof the list") or to all objets (e.g. \it adds the value of eah suessive element to theounter").The high proportion of ation statements suggests that subjets had a good generalunderstanding of reursion, and did not feel it was neessary to disuss how the programated on eah element of the list, understanding that until the base ase is reahed, theation will be the same for all list elements. Given that reursion is Prolog's prinipalontrol struture, in ontrast to other languages, and therefore that subjets would havealready had muh exposure to reursive programs, this is not surprising. Data fromthe VPL study, in whih subjets had only a theoretial understanding of reursion,showed muh more evidene of desriptions of the program behaviour at an operationslevel, suggesting that they were `feeling their way through' the reursive onstrut foreah suessive element in the data struture.Dataow Statements: Expliitness of Data?One explanation for the high frequeny of data ow statements has to do with theexpliitness of Prolog's data representation: data is represented very learly in eahprediate as arguments, whih an either be input or output arguments (or both, de-pending on the irumstanes in whih the prediate is alled). Beause data objetsare more visible omponents of programs than they may be in other languages, dataow through a program an be traed relatively easily. This fous on data objetsseems to be reeted in desriptions of Prolog programs, with many of the statementslassi�ed as `data' statements desribing the program's inputs and outputs.

224 CHAPTER 9: PROGRAM SUMMARY RESULTSDataow Statements: is Prolog really a Data Struture Language?Although Prolog is onsidered to be a delarative language, and some have suggestedthat Prolog is in many respets a data ow language, this study suggests that Prologmight more aurately be desribed as a data struture language. Setion 9.4.2 pointedout that what might normally be onsidered ations and operations in other languagesare, in Prolog, embedded in the way in whih partiular data strutures are represented.The following example was used earlier in the hapter to show that taking the �rstelement from a list is an operation whih is embedded in the data representation [X|Xs℄.adjust_sub([X|Xs℄, Y, [Z|Zs℄):-Z is X + Y,adjust_sub(Xs, X, Zs).Using the same example, it an be seen that the operation of adding an element to alist is expressed as [Z|Zs℄, in other words, in exatly the same way as the operation totake the head of a list ([X|Xs℄). The way in whih these data struture representationsfuntion within the program will depend on their instantiation, and on other eventswhih our both before and after the exeution of that partiular line of ode. Thisexample serves to show that the distintions in other programming languages betweenwhat might be onsidered data on the one hand, and ations or operations on the otherhand, are blurred beause of a shared representation in Prolog.It seems quite likely that this feature of Prolog leads to the data ation anddata operations desriptions whih were observed. Certainly, Bergantz and Hassell(1991), who used an adapted information types methodology to examine verbal proto-ols of professional Prolog programmers, felt the need to introdue a new informationtype: that of data struture, in order to aount for subjets' initial understanding ofProlog.Funtional Statements: Time Limitations or Di�useness?Time Limitations One pratial explanation for the preponderane of funtionalstatements is the limited time whih subjets had to reply, as opposed to the VPL study,where subjets ould take as muh time as they needed to formulate their summaries.

CHAPTER 9: PROGRAM SUMMARY RESULTS 225It seems plausible that given time onstraints, subjets would opt to provide a onise,high-level view of the program, as they simply would not have time to give a low-levelsequential aount of the program's exeution. On a related note, this may explainwhy funtional aounts tend to be assoiated with expertise: given that experts areoften asked to examine programs of moderate length or longer, say 200 lines or more, itseems unlikely that they would be able to give a blow-by-blow aount of the program,and may therefore resort to shorter, funtional aounts.On the other hand, an explanation based on time onstraints would not explain theresults obtained by Pennington (1987b) and Corritore and Wiedenbek (1991): bothimposed time limits on their subjets, and neither observed high levels of funtionalstatements. It is more likely that the explanation lies elsewhere.Di�useness When disussing the fat that there was no di�erene, visually, betweentaking the head of a list and adding an item to a list, it was noted that a orretinterpretation depended on ations whih may have preeded or followed the line ofode in question. This suggests that Prolog is in some way \di�use". Unfortunately,the term \di�useness" is not used here aording to the de�nition given in Green andPetre (1996), where it is used in onjuntion with \terseness" to desribe the numberof symbols or graphial entities whih a notation requires to ahieve a partiular aim.Aording to Green and Petre's de�nition, Prolog would be onsidered to be quiteterse: Prolog programs tend on average to be shorter than equivalent programs writtenin proedural languages.The term `di�use' is used here to desribe the fat that events in Prolog whih mightbe seen as funtionally related, or related in terms of exeution, are often dispersed inthe program text. Events may appear in the program whih annot atually take plaeuntil an event further in the program auses the �rst event's data struture to beomeinstantiated.An example will hopefully make this learer: one might desribe the program shownabove by saying that a list is split into head and tail, Z is alulated and added to a list,and adjust_sub is alled again with the tail of the input list, a ommon desription.The ode ordering in this desription would be: beginning of line 1, line 2 (at whihpoint Z beomes instantiated), end of line 1, line 3. It beomes apparent that Prolog

226 CHAPTER 9: PROGRAM SUMMARY RESULTSdoes not lend itself to straightforward sequential desriptions of a program, proeedingline by line. Thus, it may well be that omprehending a program whih is di�use in thismanner requires more ognitive e�ort than understanding one in whih the ations arerepresented in a logial fashion in the program text. Rather than a line by line readingof the program, a program synthesis stage may be required, whih might then lead toa higher level, abstrat desription of the program, i.e. a funtional desription. It isinteresting to speulate as to whether spelling out eah variable instantiation expliitly,as was shown for the input argument of the adjust_sub prediate in Setion 9.4.2,would, beause it allows a more sequential reading of the program, result in fewerfuntional desriptions. In any ase, the issue of di�useness is disussed in relation tothe data ow VPL later in this hapter, where the same phenomenon ourred.Task FatorsOne question whih has not yet been answered is why the results from the programsummary data do not orrelate well with those from the binary hoie questions. Var-ious tentative hypotheses might be put forward to explain this: Chapter 3 desribedpossible reasons why the results from the information types questions were quite similarto those obtained with proedural languages, despite Prolog's obvious di�erenes. Onehypothesis was that the questions might not be tapping into the information types theywere designed to unover, for reasons having to do both with the design of the ques-tions, the interrelatedness of various information types, and the partiular programshosen. This fator might also explain the lak of orrelation with the informationtypes statements in the program summaries.However, it is also felt, as a general rule, that binary hoie questions may be neithersensitive nor realisti indiators of program omprehension: there is a 50% hane,with eah one, of guessing the orret answer. Certainly, Pennington reognised theirpotential lak of eologial validity, stating that, \The ability of programmers to answerour omprehension questions is a limited indiator of suess at more goal diretedprogramming tasks." (Pennington, 1987a, p. 112). Although multiple hoie questionswere used in later experiments, the quest for realisti tasks ould be taken further. Forexample, one ould investigate whether Prolog provides aess to funtion and dataow information in more realisti situations whih require that information, suh as

CHAPTER 9: PROGRAM SUMMARY RESULTS 227debugging or maintenane.This brings up the issue of what any given task might require in terms of information.With respet to the program summaries, it may be that the subjet feels that the type ofinformation asked about in the omprehension questions does not have any relevanein a summary of the program. In other words, it is one thing to be able to answerquestions about program operations with relative ease, but it does not neessarilyfollow that the same person will feel it is important to inlude operations informationin his/her program summary. The issue of how the subjet's pereption of the task ofsummary writing, inluding its goal, purpose, intended audiene, et., might inuenehis/her performane is onsidered in detail in (Good and Brna, 1998a).What should be in a Summary?The disussion above leads niely to questions about what a summary should ontain.The evidene from the Prolog experiment seems to suggest that the presene of anyone information type in program summaries is not assoiated with an inreased levelof understanding. Rather, the length of the summary seems to be important, as isthe tendeny to provide examples or restatements of events whih have already beendesribed. In fat, there is a signi�ant orrelation between the length of the summaryand perentage of elaboration statements (rs = .39, p < .001).Data suh as this does not provide support for a two-stage model of omprehension,whereby programs are �rst understood in terms of low-level operations before a fun-tionally oriented view is developed in the seond stage. If this were the ase, one wouldexpet program summaries with high levels of data ow and funtional statements toorrelate well with performane on omprehension. Instead, it seems that subjets whosore highly on the omprehension questions provide explanations whih ontain botha generi desription of the program (at whatever level of abstration they hoose)and a onrete example showing how the program transforms its inputs into outputs(\elaboration" statement).

228 CHAPTER 9: PROGRAM SUMMARY RESULTS9.5 Visual Programming ExperimentThis setion presents an analysis of the program summary data obtained in the exper-iment desribed in Chapter 6. As the experiment ompared the performane of twogroups, the ontrol ow group and the data ow group, the analysis desribed here willallow us to look at how the paradigm might inuene the way subjets ommuniatetheir understanding of the program.9.5.1 Word CountBefore being normalised for the between groups omparison, a word ount was takenof eah summary. The mean length of the ontrol ow summaries was 70.91 words, asompared to 48.85 words for the data ow summaries. Beause of the high degree ofvariane (ontrol ow standard deviation: 42.46, data ow standard deviation: 24.43),the di�erene was not signi�ant (t-test(unrelated), t= 1.42, ns).9.5.2 Information Types Classi�ationAs explained in Chapter 8, the information types lassi�ation onsisted of 11 ategories(although only 10 were used here, as the `inomplete' ategory was not neessary forthe data from this experiment). Program summaries were �rst segmented and thenategorised.The mean number of segments per summary was 9.5 for the ontrol ow group and 7for the data ow group, a di�erene whih was not signi�ant (t-test(unrelated), t=1.14, ns). Given the number of words and number of segments for eah group, thismeans that segments of the data ow group were slightly shorter in length than thoseof the ontrol ow group (7.46 words per segment for the ontrol ow group and 6.99for the data ow group).Table 9.2 shows the mean proportion of information types ategory statements, withstandard deviations, for the ontrol and data ow groups.Summaries from the data ow group ontain higher proportions of funtion, ation,state-high, and data ow information types than do the ontrol ow group. The ontrolow group's summaries ontain higher proportions of operation, state-low, and ontrol

CHAPTER 9: PROGRAM SUMMARY RESULTS 229Category Control Flow Data FlowMean Std Dev Mean Std Devfuntion 11.62 19.02 20.93 31.73ation 7.10 8.64 9.10 7.39operation 30.22 17.37 15.67 12.68state-high 6.22 8.07 8.23 7.36state-low 12.93 10.81 10.04 7.53data 13.10 13.45 24.68 12.97ontrol 14.10 9.68 5.33 4.22elaborate .49 .79 3.61 5.17meta .15 .49 1.05 2.57unlear 4.07 7.18 1.36 2.26Table 9.2: Mean Proportion of Information Types Statements per Groupow statements. In terms of other types of statements, data ow subjets tend touse more elaboration statements (often in the form of examples), and more meta-statements, while ontrol ow subjets made more statements whih were judged to beunlear.Figure 9.4 shows this information graphially.A mixed design ANOVA for repeated measures with groups as a 2 level between-subjetsfator and statement type as a 10 level, repeated measures, fator, showed a signi�ante�et for statement type (F=7.19, df(9,162), p < .001), and an almost signi�ant groupby statement interation (F=1.94, df(9,162), p = .05). Post-ho pairwise omparisonswere made using the Bonferonni adjustment. Four omparisons were made, therefore,only probabilities of less than .0125 were onsidered to be signi�ant.Table 9.3 summarises the results of the unrelated t-tests: only the ontrol ow om-parison was signi�ant.Statement Type Resultfuntion t= -.80 p= .219 nsoperations t= 2.14 p= .023 nsdata t= -1.96 p= .033 nsontrol t= 2.62 p= .011 sigTable 9.3: Pairwise Comparisons of Statement Types aross Data Flow and ControlFlow Groups: Results of unrelated t-testsOne issue of interest when investigating the ourrene of information types in programsummaries is the level of abstration of the information type (where, for example,

230 CHAPTER 9: PROGRAM SUMMARY RESULTS

Figure 9.4: Information Statement Categories per GroupCondition Info-High Info-LowControl FlowProportion 30.94 57.24Std Dev 29.51 36.35Data FlowProportion 53.83 31.04Std Dev 21.62 21.13Table 9.4: Proportion of High and Low Information Statements per Groupfuntion and data ow are onsidered to be higher level abstrations than operationsand ontrol ow).In order to examine di�erenes in abstration levels aross groups, two omposite mea-sures were devised: info-high, made up of funtion, data and state-high statements,and info-low, made up of operations, ontrol and state-low statements.1 The meanproportion of info-high and info-low statements per group is shown in Table 9.4.This information is shown graphially in Figure 9.5.A mixed design ANOVA with groups as a 2 level between-subjets fator and statement1 `Ation' statements were not inluded as they would appear to fall somewhere between the two.

CHAPTER 9: PROGRAM SUMMARY RESULTS 231

Figure 9.5: `High' and `Low' Information Statements per Grouptype (info-high, info-low) as a 2 level, repeated measures fator, showed an interationfor group and statement type whih approahed signi�ane (F=4.05, df(1,18), p =.06), but no main e�et for group (F=.42, df(1,18), p = .53), or for statement type(F=.02, df(1,18), p = .89).9.5.3 Internal Validity of Program SummariesOne question whih arose was the extent to whih summaries were internally onsistent,in other words, whether the usage of partiular types of summary statements orre-lated with others. The results of orrelating information types statements is shownin Table 9.5. It an be seen that so-alled high-level statements (funtion, data) donot orrelate positively with eah other. Low-level statements (state-low, operations,ontrol) orrelate positively with eah other, and negatively with high-level statements.9.5.4 Objet Desription Classi�ationIn order to lassify summaries aording to the way in whih program objets weredesribed, the summaries were resegmented in suh a way that one data objet ourred

232 CHAPTER 9: PROGRAM SUMMARY RESULTSFun Data Control Op Sta-Low AtionSta-High rs = -.45 rs = .34 rs = .15 rs = -.04 rs = -.04 rs = .55p < .05 ns ns ns ns p < .02Fun - rs = .10 rs = -.82 rs = -.55 rs = -.61 rs = .01ns p < .001 p < .02 p < .005 nsData - - rs = -.52 rs = -.67 rs = -.44 rs = .72p < .02 p < .001 p < .05 p < .001Ctrl - - - rs = .85 rs = .80 rs = -.32p < .001 p < .001 nsOp - - - - rs = .70 rs = -.47p < .001 p < .04Sta-Low - - - - - rs = -.37nsTable 9.5: Correlations between Statement Typesin eah segment.The mean number of segments per group was 11.6 for the ontrol ow group and 8.4for the data ow group. This di�erene was not signi�ant (t-test, t= 1.29, ns).Table 9.6 shows the mean proportion of objet desription ategory statements, withstandard deviations, for the ontrol and data ow groups.Category Control Flow Data FlowMean Std Dev Mean Std Devprogram only 4.07 3.75 3.81 3.62program 46.93 28.15 33.84 22.15program { real-world 11.21 8.52 18.55 7.28program { domain 4.52 3.75 5.29 7.77domain 22.78 30.74 20.46 15.08indiret 10.09 7.09 17.02 8.56unlear .39 .84 1.03 3.24Table 9.6: Mean Proportion of Objet Desription Statements per GroupSummaries from the data ow group ontain higher proportions of program { real-world, program { domain and indiret statements than do the ontrol ow group. Theontrol ow group's summaries ontain higher proportions of program only, programand domain statements. Finally, data ow subjets made more referenes to objetswhih were judged to be unlear than did ontrol ow subjets. Figure 9.6 shows thisinformation graphially.

CHAPTER 9: PROGRAM SUMMARY RESULTS 233
Figure 9.6: Objet Desription Statements per GroupObjet-High Objet-LowControl FlowProportion 27.30 51.00Std Dev 29.92 30.47Data FlowProportion 25.75 37.65Std Dev 21.17 22.89Table 9.7: Proportion of High and Low Objet Desription Statements per GroupA mixed design ANOVA with groups as a 2 level between-subjets fator and statementtype as a 7 level, repeated measures fator, showed a signi�ant e�et for statementtype (F=15.83, df(6,108), p < .001), but no group by statement interation.Finally, two omposite measures were devised: objet-high, made up of domain andprogram { domain statements, and objet-low, made up of program and program onlystatements.2 The mean proportion of statements per group is shown in Table 9.7, andgraphially in Figure 9.7.A mixed design ANOVA with groups as a 2 level between-subjets fator and statement2 Again, program { real-world statements were not onsidered, as it is not lear where exatly theyfall on the high { low ontinuum.

234 CHAPTER 9: PROGRAM SUMMARY RESULTStype (objet-high, objet-low) as a 2 level, repeated measures fator, showed a signif-iant main e�et for group (F=11.94, df(1,18), p < .005), but no e�et for statementtype (F=2.34, df(1,18), p = .143) or group by statement interation (F=.26, df(1,18),p = .618).

Figure 9.7: `High' and `Low' Objet Desription Statements per Group9.5.5 Relationship between Information Types and Objet Desrip-tionsWhen looking at the relationship between information type and level of detail, Pen-nington (1987b) stated that there was a tendeny for funtional desriptions to bedesribed in domain terms, while proedural statements were expressed in terms ofprogram objets. This suggests that desriptions at high levels of abstration will usemore domain based terminology, while lower-level desriptions will use program spe-i� terminology. In order to test this, the level of information type (high or low) andthe objet desription level (again, high or low) were orrelated. The results, shownin Table 9.8, learly support Pennington's hypothesis overall and for the ontrol owgroup: there is a strong positive orrelation between information types statements andobjet desription statements of the same level of abstration, and a strong negative

CHAPTER 9: PROGRAM SUMMARY RESULTS 235orrelation when the levels of the two types of statements do not math.However, this trend is not found in the data ow group: apart from a signi�antpositive orrelation between high level information types statements and high levelobjet desriptions, no signi�ant orrelations were observed.Group Category Info-Low Info-HighOverall Objet-Low .71 -.76p < .001 p < .001Objet-High -.64 .68p < .002 p < .001Control Flow Objet-Low .77 -.81p < .009 p < .005Objet-High -.75 .72p < .02 p < .02Data Flow Objet-Low .54 -.61ns nsObjet-High -.50 .67ns p < .04Table 9.8: Mean Proportion of Objet Desription Statements per Group9.5.6 Relationship between Program Summaries and ComprehensionQuestionsIn addition to exploring the relationship between statements within the summary, de-sribed in the previous setion, orrelations were investigated between statement typesand multiple hoie question sores. This was done in order to determine whetherhigh sores on a partiular information type question orrelated with the frequeny ofthat type of statement in the program summaries. There were, by and large, very fewsigni�ant results, either overall or per group.The orrelation between summary length and overall sore was heked, and was notsigni�ant (neither overall nor per group). It was hypothesised, as with the Prologstudy, that short summaries might orrelate positively with low multiple hoie questionsores, as evidene that subjets had problems formulating their understanding of aprogram, and with high sores, showing that they were produing a higher level, lessverbose aount of the program. A satterplot showed that this was not the ase.The relationship between total sore (on the multiple hoie questions) and the level

236 CHAPTER 9: PROGRAM SUMMARY RESULTSof desription was investigated, heking orrelations between total sore and high andlow level objet and information desriptions. Again, total sore did not orrelate withany of the measures, neither overall nor per group, apart from a positive orrelation,for the data ow group, between low-level information types statements and overallsore (rs = .66, p < .04).These desriptions (high-objet, low-objet, high-info, low-info) were then orrelatedwith sores on eah of the �ve information types multiple hoie questions (funtion,data, operations, ontrol, state). Overall, sores on operations questions orrelatednegatively with both info-high and objet-high summary statements (for both: rs =-.45, p < .05). Operations sores also orrelated positively with objet-low statements(rs = .56, p < .01).No signi�ant orrelations were observed for the ontrol ow group, however, the dataow group had a positive orrelation between ontrol ow sores and low-info state-ments (rs = .71, p < .02) and a negative orrelation between funtional statements andlow-info statements (rs = -.65, p < .05).Finally, sores on eah of the �ve information types multiple hoie questions (funtion,data, operations, ontrol, state) were orrelated with the di�erent types of statementspresent in the program summaries (funtion, data, operations, ation, ontrol, state-high and state-lo). Again, very few lear-ut results emerged from these orrelations.9.5.7 Summary of ResultsThe main results of the program summary analysis for the VPL study are as follows:� Program summaries from the data ow group were shorter than those of theontrol ow group by approximately 30%.� The information types ontained in the program summaries varied betweengroups: statements in the data ow summaries were more likely to be high-level statements (funtion, data ow, state-high), while those in the ontrol owsummaries were low-level (operations, ontrol, state-low).� The objet desriptions showed a di�erent trend: ontrol ow subjets tendedto desribe objets in programming terms, while data ow subjets, rather than

CHAPTER 9: PROGRAM SUMMARY RESULTS 237using more domain based terms, seemed to make more referenes to objets innon-domain, real-world terms, or to refer to them indiretly.� There was a strong orrelation between level of information and level of desrip-tion overall, with high-level desriptions of objets orrelating positively with theuse of high-level information types, and vie versa.� From a methodologial point of view, it was shown that the ategorisations ofinformation types and objet desriptions developed in Chapter 8 ould be ap-plied to the program summary data, and yielded results whih were onsistentwith the data from the multiple hoie omprehension questions also used in theexperiment.9.5.8 Disussion and ImpliationsThe following setions examine some of the issues arising from the analysis in moredetail, onsidering the e�et of paradigm on omprehension, along with the issue ofdi�useness and how it inuenes information type use and program omprehension.Paradigm and ComprehensionThe results of the program summary analysis provide support in many ways for thequantitative results disussed in Chapter 7. In terms of the information types presentin the program, subjets in the data ow group used a higher number of funtionaland data ow statements, while desriptions of state were also written at a more ab-strat level. Control ow subjets, on the other hand, provided more detailed programsummaries, with many more desriptions of low-level operations, state, and more men-tions of ontrol ow. Overall, data ow subjets produed shorter, more higher level,abstrat aounts of the program, whih plaed more emphasis on the data ow rela-tionships in the program. Control ow representations seemed to promote a fous onthe lower-level workings of the program, on the operations whih the program arriesout, and on the ontrol strutures embodied in the program. Why this might be so isonsidered in a later setion.In any ase, these results suggest that programming paradigm does inuene one'sunderstanding of a program. What is partiularly interesting about this result is that it

238 CHAPTER 9: PROGRAM SUMMARY RESULTSourred with visual, rather than textual, programming languages. One ould imaginean experiment using two textual languages ontaining very spei� keywords: it mightbe expeted that, for eah group, a higher ourrene of paradigm spei� keywordswould be found in subjets' program summaries. In ontrast, the VPLs used hereontained very few keywords of this type (the `set' operation springs to mind as beingthe most distinguishing feature between the ontrol and data ow paradigms). Instead,events were onveyed through the ombination of text, ions and spatial layout, andthis was reeted in the program summaries, in the sense that subjets had to devisetheir own textual desriptions of the program. The most salient example of this waswith respet to the ow of data through the program: it seemed to be relatively learto subjets in the ontrol ow ondition that ars represented ow of ontrol, whiledata ow subjets envisaged their ars as \sending" data to various plaes.Only one subjet in the ontrol ow ondition mentioned the data ow aross programs,stating that:it [the program℄ then passes a list of heights to a sub-program.Most of the ontrol ow summaries desribed the movement of the lous of ontrolthrough the program, but without aompanying data:{ . . . and the program goes bak to the start of the subprogram.{ The program passes sub is alled.{ The program part 'Sub Pass' is then run.{ 'Sub Pass' is ended as is the whole program.In ontrast, the data ow summaries onvey the notion of `ative' data, and in almostall ases, talk of `sending' data to various points in the program:{ . . . the heights over the height are sent ot the team.{ . . . a signal is sent to a ounter.{ . . . while the tail is sent to the distributor.{ . . . and then sends the tail to another opy of itself.The next setion looks at the relationship between the information types and objetdesriptions.

CHAPTER 9: PROGRAM SUMMARY RESULTS 239Information and Detail: How are they Related?Subjets' desriptions of objets did not show the same lear-ut trends as did theiruse of information types. Control ow subjets did tend to desribe objets morefrequently in program based terms, but data ow subjets did not, in ontrast, use moredomain desriptions than the ontrol ow group. They did use more program { real-world desriptions and slightly more program { domain desriptions. One interestingdi�erene was the use of `indiret' referenes (10% in the ontrol ow group as opposedto 17% in the data ow group). At �rst sight, the di�erene does not seem to havemuh redene, but it may well be related to one of the purported advantages of dataow programming for novies, namely the lak of intermediate variable names. Controlow subjets have a new objet name to use eah time a `set' operation ours, whiledata ow subjets only have available the initial input and output, whih may lead tomore indiret objet referenes, and possibly more non-domain, real-world referenesto things suh as `numbers' or `answers'.When omparing results aross onditions, there are few marked di�erenes in objetdesriptions, suggesting that data ow may lead to a more abstrat, funtional aountoverall, but it does not lead to more abstrat, domain based desriptions of objets.This provides an interesting twist to Pennington's laim that funtional desriptionsare ouhed in domain terms, and proedural desriptions in program terms. It appearsthat the two are related for the ontrol ow subjets: there are very strong orrela-tions between the level of abstration of information type statement and the objetdesription level, in that high level information types statements orrelate positivelywith high level objet desriptions, and vie versa. However, the situation was notobserved for the data ow group: only high level objet desriptions orrelated pos-itively with high level information types statements, with the remaining orrelationsbeing non-signi�ant. It is interesting that Pennington �rst postulated the relationshipbetween level of information and level of desription in the ontext of a proedurallanguage, and that the results from this study showed support for this idea only withinthe ontext of the ontrol ow language.

240 CHAPTER 9: PROGRAM SUMMARY RESULTSMixed Program SummariesIn Pennington's investigation of the behaviour of expert programmers (Pennington,1987b), she divided program summaries into three types: program level summaries, on-taining mainly operational and program level statements, ross-referened summaries,ontaining a more even distribution over operations, program and domain levels, anddomain summaries, ontaining a majority of domain and vague statements. She main-tained that best performane was assoiated with ross-referened summaries. Notwith-standing possible problems with Pennington's lassi�ation, disussed in Chapter 2, theresults from the VPL study do not seem to provide support for Pennington's laim, inthe sense that ross-referened summaries ontaining funtional or data ow statementsdo not our.When examining the types of statements whih make up a program summary, it wasseen that high-level statements, i.e. data ow, funtional and state-high statements,do not orrelate positively amongst themselves or with low-level statements. On theother hand, low-level statements suh as ontrol, operations and state-low orrelatepositively with eah other, and negatively with high-level statements, suggesting thatother subjets write summaries ontaining a mixture of low-level statement types, butfew high-level statements.Looking at this at the level of individual information types, statements orrelated neg-atively with other types of statements. This suggests that subjets who use funtionalstatements tend to write a summary ontaining essentially funtional statements, a�nding whih is onsistent with the Prolog study disussed earlier in the hapter, andalso with the �ndings of Bergantz and Hassell (1991).Di�useness RevisitedGiven the evidene from the VPL study, it ould be onluded that ontrol ow rep-resentations highlight ontrol ow, and data ow representations highlight data ow.Furthermore, sine ontrol ow and program ations and operations are related, theyare also highlighted, and given that data ow and funtion are related, funtion is alsohighlighted. In other words, eah paradigm highlights a ertain type (or even a `groupof types') of information over the other, and that the onsequenes of this will be ev-

CHAPTER 9: PROGRAM SUMMARY RESULTS 241ident both in tasks requiring the information in question (omprehension questions),and in situations whih require one to ommuniate about the program (the programsummary). Certainly, the results observed appear to be onsistent with what is knownabout di�erent programming paradigms and their purported strengths and weaknesses,however, it is worthwhile looking in more depth at why the results and trends may haveourred.This setion does just that, following the lead of the investigation of Prolog's repre-sentational properties, desribed earlier in this hapter. When onsidering Prolog, itwas hypothesised that some of the program summary results, namely the high leveldesriptions of the programs, might be due to the representational properties of theProlog language, whih may not neessarily be a logial onsequene of the paradigmitself.Apart from the obvious di�erenes between the data and ontrol ow VPLs, namelythat the ars between nodes represent the ow of data in the former ase, and the owof ontrol in the latter, the data ow representations an be distinguished from theontrol ow representations by their `di�useness'.When disussing di�useness with respet to Prolog, it was noted that the term was notbeing used in the same way as in (Green and Petre, 1996), where it is onsidered to beone of a series of ognitive dimensions, and denotes the number of symbols or graphialobjets used in a partiular language. Prolog's di�useness referred to its non-linearity,and a lak of grouping of events whih might logially be related. This setion willargue that one of the di�erenes between the ontrol ow and the data ow VPL usedin the study reported here is that the data ow language is doubly di�use, both in thesense used in (Green and Petre, 1996), and in the Prolog sense.Firstly, when investigating low-level operations in the ontrol ow and data ow VPLs,it beomes apparent that operations whih an be aomplished in one node in the on-trol ow representation may require two or more nodes in the data ow representation.This an be illustrated by referring bak to Figures 5.8 and 5.9 in Chapter 5. The�rst major event to our in the passes sub program is a hek to ensure that the listhas some elements in it. If so, the list is split into head (�rst element) and tail (theremaining list). In the ontrol ow version, these events require three nodes, while in

242 CHAPTER 9: PROGRAM SUMMARY RESULTSthe data ow version, they require four. This may not seem like a ruial di�erene,but when onsidering the ars between nodes, the ontrol ow version requires twoars, while the data ow requires no less than six. If Green and Petre are inludingars in their de�nition of `graphial entities', then it is lear that the languages are verydi�erent in terms of their level of di�useness/terseness.Di�useness in the Prolog sense, i.e. the lak of grouping of funtionally linked events, ora lak of exeution sequening, is also evident in the data ow language. Again, lookingat the programs in Figures 5.8 and 5.9, it an be seen that if a partiular mark is above65, a ounter is inremented. In the ontrol ow program, the test box (Mark > 65?)is immediately followed by an operation whih inrements the ounter (set Pass to(Pass + 1)). In the data ow version, a true token gets sent to the seletor, whih hasthe e�et of allowing the pass token to pass through the +1 node, thus inrementingit by one. There are examples of events whih are even more spatially and temporallydisjointed, e.g. traing the exat e�et of the `= [℄?' test throughout the program,where understanding the event requires one to loate nodes in disparate parts of therepresentation, and to trae bakwards in time to events whih have ourred but whoseoutputs were waiting to be used by the most reently ativated node. Reonstrutingdata ow program ations does not involve top-bottom, left-right sanning of the ontrolow version (a typial diagram searhing sequene for speakers of languages whih readfrom left to right Winn (1993)), and is in many ways an exaerbated example of thesanning involved in reonstruting the ations of the Prolog program examined earlierin this hapter.This spatial di�useness in data ow representations may be due in part to the parallelnature of data ow programs. For example, a node may produe two outputs, or tokens,eah of whih travels along a distint ar to two di�erent nodes, whih are spatiallydistant from eah other. The tokens then remain suspended on those ars until thearrival of the other inputs required by the node in question. One a node has theneessary inputs, it will �re and produe data outputs. From a ognitive point of view,this means that the user needs to maintain a mental list of those ars with tokenswaiting on them, and update this list eah time an event ours whih auses any owof data tokens to other nodes.The two types of di�useness present in the data ow representation (both the number

CHAPTER 9: PROGRAM SUMMARY RESULTS 243of symbols and the spatial di�useness), show up in di�erenes in data ow programsummaries, when ompared to ontrol ow summaries for the same program. Controlow, whih requires only one ar to be followed from node to node at any one time, in astraightforward manner with little baktraking, seems to ontribute to a \. . . and then. . . and then . . . and then . . . " style of program summary. In ontrast, ativities whihhappen in parallel in a data ow representation, perhaps requiring a ombination ofnodes, whih may be spatially distant, tend to be grouped together into a higher-leveldesription in a typial data ow summary. A frequent ourrene of this phenomenonis when a list is split into head and tail. The sequential nature of ontrol ow seems toenourage aounts whih follow the program through its exeution, for example:. . . the height variable is set to the front list variable. The height list is thenhanged to the tail of the list.whereas the data ow aount is muh more suint:. . . the set is split into its head and tail aspets.or even:The entered set are split up.One onjeture that should be entertained in light of the above disussion, and whihalso onurs with the Prolog results, is that the di�useness of a representation mightprovide a di�erent type of `useful awkwardness' than the one desribed by Petre et al.(1998) with respet to multiple representations. The proess of bringing together infor-mation whih is spatially di�use, and whih requires baktraking during a simulationof the exeution proess in order to understand the program (whih might explain thelonger time taken by the data ow subjets to inspet programs), has the possible ben-e�t of requiring subjets to \hunk" together nodes whih aomplish the same goal,and to desribe them at a higher level of abstration. Obviously, there are likely to belimits on the amount of di�useness whih is bene�ial: one an easily appreiate that aproliferation of symbols in a representation whih makes no use of seondary notationto group together funtionally related elements will rapidly beome unmanageable, tosay the least.

244 CHAPTER 9: PROGRAM SUMMARY RESULTSHowever, di�useness does seem like an interesting issue to explore further, as a paradigman be represented in various ways, and there is no reason to believe that di�usenessis inherent to data ow paradigms. It seems in any ase, on the basis of the evidenepresented in this hapter, that it spans textual and graphial languages. One way oforroborating what is urrently only speulation about di�useness would be to ontrolfor that aspet, by reating data and ontrol ow representations whih are equallydi�use, to see if this a�ets the nature of the program summaries.The relationship between the prodution of high-level program summaries and taskbehaviour on more realisti tasks would also be worth investigating. Although thereis no reason to believe that a high-level summary had an e�et on the omprehensionquestions task (as evidened by a lak of orrelation between the two), it was arguedthat these questions were perhaps not realisti measures of omprehension. It wouldbe more interesting to look at how these types of summaries might orrelate withbehaviour on, for example, debugging tasks.Trends and Signi�ane: Individual Di�erenes?Trends in the program summary analysis were quite lear-ut, showing di�erenes be-tween the ontrol and data ow groups in terms of the way in whih they ommuniatetheir knowledge of a program whih were in line with the initial hypotheses. However,few of the results were statistially signi�ant, due to a large amount of variane.This suggests that there may be individual di�erenes playing a role. Certainly, aperusal of the results suggests that individuals often have a \personal summary style",with partiular linguisti onventions used frequently. For example, some subjets,regardless of group, always begin their summary with a desription of the programinputs. Others desribe the program in terms of what it reates or outputs. Onesubjet often started summaries by stating the overall goal of the program, and thendesribing how the program aomplished its goal, leading to summaries with a patternof \This program does X. It does this by < a series of ations >".However, the issue of individual di�erenes may also be linked with the tasks thesubjets are required to do. Although the overall results of the VPL study showeddi�erenes between groups whih were onsistent aross tasks, when the results arelooked at on an individual level, results from the two tasks do not orrelate very well.

CHAPTER 9: PROGRAM SUMMARY RESULTS 245This suggests that individuals may be responding to task demands in di�erent ways,a point whih was touhed upon when disussing the Prolog results. Again, in theabsene of expliit instrutions, subjets will likely form their own ideas about what theprogram summary should omprise, and there will be variations between individuals,based on fators suh as what the summary might be used for, who the subjet thinksthe summary is being produed for, et.Although the issue of individual di�erenes has not been onsidered in depth in thisthesis, the results suggest that there is sope for doing so, partiularly within theontext of task demands, and the way in whih the subjet responds to them.9.5.9 Chapter SummaryThis hapter explored the appliation of the summary analysis shemes put forward inChapter 8, and desribed the results of the analysis. The analysis sheme seems to showpromise, in that it was able to apture di�erential patterns of statement use betweengroups and experiments. It showed quite learly that, depending on the programminglanguage used in the experiment, there are di�erenes in program summaries in termsof the perentage of statements of eah type. The Prolog language seems to lead toa high level of funtion, data ow and ation statements. The data ow VPL wasassoiated with high level statements (funtion, data, ation, state-high), while theontrol ow language was assoiated with low level statement types (operations, ontrolow, state-low). This suggests that the properties of the language inuene, at the veryleast, the way in whih one ommuniates one's knowledge of the program. Variousproperties of the languages were explored whih might aount for these di�erenes,e.g. the language's di�useness, its representation of operations, ations and data (andtheir interrelatedness), and its sequentiality.The following hapter onludes the thesis: in doing so, it onsiders the impliations ofthe results of this and other hapters for the provision of novie omprehension support.

246 CHAPTER 9: PROGRAM SUMMARY RESULTS

Chapter 10Conlusions and Further WorkThis �nal hapter summarises the primary ontributions of the thesis, and relates thembak to the main thesis questions put forward in Chapter 1 to examine if, how, andto what extent the questions have been addressed. It then onsiders briey some workwhih is ongoing, and onludes with suggestions for future work.10.1 Contributions and FindingsThe ontributions of this thesis an be summarised as follows:� a ritial overview of the main theories and researh in program omprehension,and an analysis of how they relate to novie program omprehension support andteahing;� a onsideration of how the onept of information types an be used to investigatethe inuene of programming paradigm on omprehension, leading to a studyusing Prolog;� a review of the harateristis of the ontrol ow and data ow paradigms, in-luding a desription of their historial development, and a summary of empirialwork;� the development and implementation of two visual miro-languages, based on thedata ow and ontrol ow paradigms;� an investigation of the ontrol ow and data ow visual programming languagesusing the math-mismath onjeture;247

248 CHAPTER 10: CONCLUSIONS� the development of a methodology whih ombines the math-mismath onje-ture with the information types methodology, thereby allowing for the preisionof the math-mismath onjeture and the wider overage of information types.This methodology was applied to a new version of the ontrol ow and data owvisual programming languages in a third study;� an extension of the math-mismath onjeture to inlude groups of math(whereby tasks requiring information assoiated with the information highlightedby a notation are also failitated);� the development of a methodology for oding desriptions of programs alongtwo dimensions, inluding a fully worked out oding sheme, a oding man-ual/desription, and a omputer environment for semi-automated oding;Findings an be summarised as follows:� an information types study using Prolog suggested that for tasks whih simplyrequire binary hoie omprehension questions to be answered, results mirrorthose obtained when proedural languages are used: namely a predominane ofproedural and operational information. However, more open-ended tasks showthe opposite, with data ow and funtional information �guring prominently insubjets' aounts of the program;� results from the math-mismath study using data ow and ontrol ow visualprogramming languages showed a \representational supremay" e�et in that onerepresentation was assoiated with better performane aross tasks, regardless ofwhether the representation and task were purported to math. A disussion ofthese results suggested that the math between representation and task may beonly one fator in determining omprehension performane, and onsidered issuessuh as representational familiarity and prior experiene.� a �nal study using data ow and ontrol ow visual programming languages with aombined information types/math-mismath methodology showed results whihsupported both the \ontrol ow supremay" hypothesis and the math-mismathhypothesis: for time taken to omplete omprehension questions, ontrol owrepresentations proved superior to data ow representations. A math-mismath

CHAPTER 10: CONCLUSIONS 249trend ourred in the auray data, although all interations are not signi�ant.In addition, a grouped math-mismath e�et was also observed, with improvedperformane for tasks requiring information thought to be related to the informa-tion highlighted by the representation: in the ase of data ow, this was funtionalinformation, while in the ase of ontrol ow, this was operations and state. Fi-nally, data from the program summaries supported these trends, with ontrol owsubjets highlighting ontrol ow and low-level operations in their summaries, anddata ow subjets fousing on data ow and funtional relationships.10.2 Thesis Questions RevisitedThis setion relates the ontributions and �ndings desribed above to the original thesisquestions.� How do partiular languages interat with the extration of information types,partiularly with respet to novies? Previous studies, whih showed a predomi-nane of low-level ontrol ow information in the initial stages of omprehension,used ontrol ow based languages. It is an open question whether this e�et holdsfor di�erent types of language, e.g. delarative, event driven.Language paradigm does seem to interat with the extration of information typesby novies: a study using Prolog suggested that when omprehension is measuredvia question answering, results mirror those obtained when proedural languagesare used: namely a predominane of proedural and operational information.However, when subjets are allowed to express their understanding in their ownwords, a trend in the opposite diretion is observed, with data ow and funtionalinformation �guring prominently in their aounts of the program.A study on visual programming languages, based on either a data or ontrolow paradigm showed an even stronger e�et: with the ontrol ow language,performane on operations and ontrol ow questions was best, a trend that wasreeted in subjets' aounts of the program. With the data ow language,performane on data ow and funtional questions was best, supported by a highfrequeny of these types of statements in free-form summaries of the programs.

250 CHAPTER 10: CONCLUSIONS� Some language paradigms ould be said to mirror information types, e.g. ontrol-ow languages and ontrol-ow information. What is the relationship betweeninformation types and languages whose underlying paradigm mirrors a partiularinformation type? Will there be an inuene on the types of information extratedfrom the program?Results from an initial experiment using data ow and ontrol ow visual pro-gramming languages were not lear-ut: the ontrol ow language was assoiatedwith improved performane regardless of the task, suggesting that other fatorsmight play a role in omprehension.In a later experiment, again using data ow and ontrol ow visual languages, therelationship between information types and paradigm was more obvious: the dataow visual language seemed to highlight data ow in a way that made it aes-sible for answering data ow questions, and allowed it to feature prominently insummaries of the program; likewise, the ontrol ow language highlighted ontrolow, with evidene found both in the data from the omprehension questions andfrom the program aounts.� How does the task interat with the information highlighted in the representation?This question was addressed above. Briey, task does interat with informationhighlighted by the program, but other fators, suh as previous experiene, alsoplay a role. In some ases, these fators obsure the task-representation intera-tion, as in the experiment reported in Chapter 6. However, the e�et was shownmore learly in a later experiment (Chapter 7).� From a methodologial point of view, how an information extration be measuredmost e�etively, and in a way whih is eologially valid: what tehniques shouldbe used to gather and analyse the data?This issue has been addressed in several hapters. There is an obvious trade-o�between tightly ontrolled experimental onditions and more realisti settings.Binary hoie questions are easy to devise and sore, but their eologial validitywas questioned in Chapter 3. Multiple hoie questions o�er a way of obtainingmore preise data on possible misoneptions, but it is very diÆult to developgood multiple hoie questions, and again, question answering may not be anappropriate way of measuring program omprehension. Open-ended requests for

CHAPTER 10: CONCLUSIONS 251information, used in obtaining program summary data, allow for rih data, butboth the development of an analysis sheme and the analysis itself are very time-onsuming. An even more eologially valid method, not used in this thesis, wouldbe to embed the omprehension ativity within a realisti task. This does meanthat the results obtained annot be generalised to other situations, but on theother hand, omprehension rarely takes plae outside of a task-oriented situation.� Can errors in omprehension be ast uniquely in terms of information types?Spei�ally in the ase of visual programming languages, does the notation intro-due diÆulties on a syntati level whih annot be aounted for by a semantidesription of the language in terms of information types?Work on error data was not onsidered in this thesis, for reasons of spae. How-ever, ongoing work, desribed briey in the next setion, suggests that while manyerrors an be desribed in terms of information types, it is not possible to hara-terise all errors in these terms. This is beause it is hypothesised that informationtypes desribe the semanti level of a program, rather than the syntati level.Errors suh as navigational errors our on a syntati level (even if the two levelsare neessarily interrelated), and these two types of error, syntati and semanti,have di�erent impliations for support.� What might support for omprehension based on information types look like, andon what type of language ould it be built?Chapter 4 argued that a visual representation was the best underlying platformfor information types support, and the next setion presents some initial stepstowards building a system.10.3 Novie Program Comprehension Support: OngoingWorkThe last two thesis questions foused on error data and on ideas for the provision ofnovie support. Based on data olleted from the experiment desribed in Chapter 6and from an experiment similar to the one desribed in Chapter 7, but not reportedin this thesis, work has begun on a system to provide novie omprehension support.The design of the system is presented fully in (Good and Brna, 1998b).

252 CHAPTER 10: CONCLUSIONSThe main idea behind the system is to overlay omprehension support onto the visualprogramming language itself, in this ase, the data ow visual VPL in Chapter 7(although it is felt that the idea behind the support ould equally be adapted to otherlanguages). This allows the novie to ontinue working with the representation withwhih he/she is at least partially familiar, rather than having to move to an additional,unknown representation. Support is o�ered in the form of features, with eah featurerepresented as a button on a panel: liking on a button toggles its feature either onor o�. When the feature is on, liking on the relevant part of the representation willapply the partiular feature. Examples of features will be desribed below,1 however,the next setion desribes the analysis whih motivated the support.Before looking at how to provide support, it is useful to look at the features of thelanguage for whih support is being proposed. Error data from the experiments wasanalysed and lassi�ed, and the language was also examined in terms of Green's og-nitive dimensions (1989). This allowed us to look at how errors relate to informationtypes, and also at possible problems in terms of the representational features of thelanguage. The results of this analysis suggested some permanent hanges to the repre-sentation, while others suggested non-permanent hanges, in other words, temporarysupport. These non-permanent hanges an be further divided into hanges whih areeither generi or task dependent. These are desribed below:� permanent hanges to the representation. These indiate \pathologial" featuresof the representation for whih it is diÆult to see a bene�t in any omprehensionsituation.For example, in the data ow language, all ars denote ow of data. However,the ow of ontrol in the program is e�eted by the ow of boolean tokens fromtest boxes to ation boxes. The sole purpose of these tokens is to either ativateor inhibit the ation node, after whih they are absorbed. In this sense, theyare di�erent from most other types of data whih are input to the program,transformed, and output. However, all of the data is represented in the same way.Distinguishing between the two may make ontrol and data ow more visuallyexpliit, and there are a number of other examples where it would make sense tohange the base representation rather than to provide support.1 A full listing of features an be found in (Good and Brna, 1998b).

CHAPTER 10: CONCLUSIONS 253� non-permanent, non-task variant hanges to the representation. A non-permanent hange indiates support whih an be added as needed, and doesnot vary on a task by task basis. These generi features are designed to providesupport for navigation through the representation, and to allow the student too�-load onto the representation some of the information whih must normally bekept in memory while trying to make sense of the representation.For example, students often lose trak of the paths they have traed and the pointat whih they have arrived. This is partiularly important in the ase of a dataow diagram, where eah data objet is represented by its own ar: it is oftenuseful to trae one objet to a partiular point, and then break o� to trae an-other data objet up to the same point in order to apture some of the sequentialnature of the program. With a path traing feature on, traing the path with themouse button down would ause it to hange olour up to the point at whih theuser releases the mouse button.� non-permanent hanges to the representation whih are task dependent. The im-pliation of the math-mismath onjeture for program omprehension supportis that various types of information ontained in the program will be relevant inpartiular ontexts, and so ould usefully be made salient in those situations. Inthe ase of task based features, eah feature is designed to highlight a partiularinformation type. The features aim to alleviate the errors and misunderstandingsenountered by students as they attempt to retrieve information from the repre-sentation.For example, students may be at a point in the diagram and skip to another,inorret, point, based on an inorret evaluation of a hoie point. The eval-uation feature (one of a number of ontrol ow features) would allow studentsto seletively display one output branh of a test box at a time, based on thehypothesised outome of the test.Features in the proposed support environment fall into either the seond or third ate-gory, in other words, hanges whih an be made to the representation on an as-neededbasis, either at any stage of the program omprehension proess or in relation to aspei� task.Work on the support environment is very muh ongoing, but will be subjet to empirial

254 CHAPTER 10: CONCLUSIONStesting one it has been ompleted.10.4 Suggestions for Future WorkMany issues were touhed upon in this thesis whih ould usefully be followed up. Thissetion onsiders some of the more interesting ones, at least from the author's point ofview, and makes suggestions for further work. These are grouped roughly under theheadings of languages, programmers, and methodology.10.4.1 LanguagesLanguage Design and StrutureOne aspet of visual programming languages whih would be interesting to explorefurther is the design of the languages themselves. The languages investigated in thisthesis were purposely kept simple, and very lose to pre-existing models, but it isobvious that there is great sope for improving their design. Although the previoussetion touhed upon an analysis of programming languages with a view to hangesin design, this work ould be taken further, based both on atual patterns of use, andtheoretial analyses of the languages.One way of going about this would be to ontinue an analysis of the languages interms of Green's ognitive dimensions (1989). Green and his olleagues have arriedout extensive work on this framework, and the idea seems to have been taken up bya number of researhers. It would be interesting to try and relate seleted ognitivedimensions to the idea of information types. This idea was desribed briey in Chap-ter 3, where the relationship between role expressiveness and information types wasspeulated upon. Would it be possible to design a language whih was role expressivein a way that highlighted information types? More importantly, would it have anye�et on omprehension?Language UseOne strand of work missing from this thesis is a �ne-grained examination of proessdata. This point was touhed in Chapter 6 with respet to possible di�erenes in

CHAPTER 10: CONCLUSIONS 255strategy employed by ontrol and data ow subjets, and the role of the representationin promoting one strategy over another. It would be very useful to obtain verbalprotools of subjets while they are trying to make sense of a visual programminglanguage, and to analyse these protools in terms of information types and errors ofnavigation.Designing ompelling graphial representations of programming languages is undoubt-edly very enjoyable, yet it sometimes appears as if little thought is given to the extentto whih the representations hosen will \make sense" to the users, and be usable bythem. Exeptions to this trend are Bell et al. (1991) and Modugno et al. (1996), butmore detailed work of this kind would be very bene�ial.One ould even go so far as to attempt to build a ognitive model of the proessesinvolved in navigating through a visual programming language. The model ould on-entrate on the proedural steps whih our when searhing the representations andperforming the neessary inferene upon the data obtained from them. The hara-terisation would need to inlude suh points as: 1) the exat information needed toanswer a omprehension question 2) how that information is derived 3) how muh ofthat information is present in the diagram in a \read-o�" form and how muh needs tobe inferred 4) how many steps are needed in the inferene proess and what these stepsonsist of 5) the information needed by eah step of the inferene proess, and 6) wherethat information is derived from (i.e. start at step 2 for eah piee of information).The main risk in deiding to build a ognitive model is that it an apture only arelatively limited subset of the phenomena under investigation. Furthermore, Greenet al. (1991) make the point with respet to using ognitive modelling tehniques tostudy visual programming languages that doing so may shift the fous away from theobjet of interest, in this ase, from the underlying logial struture of the language tothe representational format.10.4.2 ProgrammersConeptualisation of ProgrammingThe question, \What is programming?" was touhed upon at various points in thethesis. A novel reply is provided by Weinberg (1971), who feels that, \`Programming'

256 CHAPTER 10: CONCLUSIONS{ like `loving' { is a single word that enompasses an in�nitude of ativities" (p. 121),while Green (1990) onurs, in a omparatively autious manner, that \`Programming'is an exeedingly diverse ativity" (p. 22). However, the question here is not about�nding a normative de�nition for the onept of programming, but in exploring people'soneptions of what programming is, and what it involves. The reason for doing so is toinvestigate whether oneptions of programming inuene one's approah to learningprogramming, or to learning new paradigms. The point was made several times thatpeople, partiularly novie programmers, see programs as ative entities, rather thanas a struture through whih data ows, for example. It is an open question whetherthis has any e�et on their ability to pik up programming onepts ouhed in non-proedural terms.Graphial SkillAnother subjet of interest, whih unfortunately ould not be explored further, onernsthe nature of \graphial skill". There is not really a satisfatory de�nition of what itis, and what it implies. The question of whether standardised tests suh as path�ndingand paperfolding measure skills whih are useful for visual programming is an openone: looking at the VPL omprehension performane of persons with extreme soreson these tests may suggest whether this work is worth taking further.On the other hand, perhaps these tests simply do not measure the skill whih we hypoth-esise to be of interest, i.e. the ability to reason on the basis of graphial representations.In a study on Hyperproof, a multimodal teahing system for �rst order logi, Cox et al.(1994) and Stenning et al. (1995) found signi�ant interations between measures ofreasoning aptitude and teahing method (graphial or sentential). However, a distin-guishing feature of one of the measures of aptitude, determinate problems, was thatits premisses determined a unique (or nearly unique) model from whih a number ofonlusions ould be drawn. The existene of a unique model made graphial repre-sentations suitable for solving these problems. To the extent that visual programminglanguages, with their inherent abstration mehanisms, are very unlike graphial rep-resentations of this type, it is an open question whether a relationship between theseaptitude measures and visual programming skill would be found.It would also be worthwhile exploring the di�erene between graphial familiarity, the

CHAPTER 10: CONCLUSIONS 257importane of whih was highlighted by Petre and Green (1993), and \graphial skill":it may be that the latter an be reahed through graphial familiarity (obtained inturn, for example, via through the expliit teahing of graphis), will lead to measur-able graphial skill. As mentioned in Chapter 6, it would be interesting to take theER taxonomy task, whih was heavily logi based, and adapt it for use in the ontextof graphial representations in programming, asking subjets to group and label repre-sentations, in order to investigate whether, and how, this orrelates with performane.Perhaps the relationship between graphial skill and graphial familiarity ould beprobed by other measures, for example, by orrelating measures on graphial pre-testswhih ould be said to measure graphial skill, and self-rating measures suh as thetaxonomy task, whih tap into graphial familiarity. In any ase, muh more workneeds to be done to untangle the skills involved in suessfully reasoning with graphialrepresentations: the types of skills are likely to be numerous, and ome into play indi�erent situations, depending both on the nature of the representation and the natureof the task.10.4.3 MethodologyFinally, one issue whih arose in di�erent guises was the most appropriate way of obtain-ing sensitive and yet realisti measures of program omprehension, a familiar problem inexperimental settings. An inrease in eologial validity is often aompanied by a lakof ontrol over fators whih are not of diret interest. The shortomings of measur-ing omprehension by having subjets answer questions about a program was alreadyaddressed, as was the diÆulty of interpreting data obtained from more open-endedmeasurement tehniques.A searh for new methods of probing omprehension should ontinue: the eliitationtehnique used by Holt et al. (1987) is of interest, as it allows subjets to desribe theirunderstanding in a way whih is more open-ended than diret questioning, but whihimposes more struture on the data than a request for a program summary. What ispartiularly positive here is that this struture is subjet guided rather than experi-menter guided. Although Holt et al. analysed the struture of the representations, thisould be ombined with an analysis fousing more on the ontent of the representations,for example, information types. It would be interesting to see the results.

258 CHAPTER 10: CONCLUSIONS10.5 ConlusionsThis thesis looked at the issue of program omprehension by novies, investigating waysin whih it might usefully be portrayed and studied, and fousing on the role whihparadigm and representation play in shaping novie understanding. The idea of infor-mation types was looked at in depth, both as a methodologial tool for experimentationand as the basis for support for novie omprehension.The work arried out in this thesis has a number of impliations:� Although the studies did not aim to investigate the development of mental modelsof program omprehension, the results from the visual programming languagestudy are relevant to the extent that they do not support a two-stage theory ofprogram omprehension, whereby funtional knowledge is built on the basis ofproedural knowledge. Instead, it appears that some languages allow novies toderive funtional knowledge without the proedural underpinnings, resulting inpseudo-expert omprehension;� Simple question answering tasks may not be tapping into the issues of greatestinterest and importane in program omprehension: their use seems to dependimpliitly on the idea of a stati mental representation whih is aessed a-ording to need. Therefore, answering an operations questions with ease, forexample, implies that the mental representation is strutured in terms of opera-tions. Questions with best response lateny/auray may simply require fewerognitive operations to reonstrut an answer based on the available knowledge.� Issues of importane in determining program omprehension likely ut arossthe textual/graphial distintion: di�useness is an example of a programminglanguage feature whih is hypothesised to lead to a more high level, abstratunderstanding of the program, regardless of whether it is embodied in a textualor graphial language;� Certain laims about visual programming languages require quali�ation, for ex-ample, the frequent assertion that VPLs makes data ow more expliit. Thisresearh showed that what is highlighted by a VPL depends, at least in part, on

CHAPTER 10: CONCLUSIONS 259what it was designed to highlight, and on its underlying properties, rather thanon its \visualness" per se.To onlude, this researh has foused on topis of interest in the domains of pro-gram omprehension and visual programming languages. In doing so, it has onsideredmethodologial issues relating to the way in whih novie program understanding mightbest be studied, and gone on to desribe how the results of the researh might be usedto provide useful support for novie omprehension. As suh, it has established apreliminary basis for future work in this area.

260 CHAPTER 10: CONCLUSIONS

BibliographyAkerman, W. B. (1982). Data ow languages. IEEE Software, pages 15{25.Adelson, B. (1981). Problem solving and the development of abstrat ategories inprogramming languages. Memory & Cognition, 9(4), 422{433.Adelson, B. (1984). When novies surpass experts: The diÆulty of a task may in-rease with expertise. Journal of Experimental Psyhology: Learning, Memory andCognition, 10, 483{495.Agerwala, T. and Arvind (1982). Data ow systems. IEEE Computer, pages 10{13.Anastasi, A. (1988). Psyhologial Testing. Mamillan Publishing Company, New York,sixth edition edition.Anderson, J. R., Pirolli, P., and Farrell, R. (1988). Learning to program reursivefuntions. In M. T. H. Chi, R. Glaser, and M. J. Farr, editors, The Nature ofExpertise, pages 153{183. Lawrene Erlbaum Assoiates.Anjaneyulu, K. S. R. and Anderson, J. R. (1992). The advantages of data ow diagramsfor beginning programming. In C. Frasson, G. Gauthier, and G. I. MCalla, editors,Intelligent tutoring systems: Seond International Conferene, ITS '92, pages 585{592.Bakeman, R. and Gottman, J. M. (1997). Observing Interation: An Introdution toSequential Analysis, Seond Edition. Cambridge University Press, Cambridge.Bales, R. F. (1951). Interation Proess Analysis: A method for the study of smallgroups. Addison-Wesley Press.Baron, J., Szymanski, B., Lok, E., and Prywes, N. (1985). An argument for non-proedural languages. In R. Hernigan, B. W. Hamill, and D. M. Weintraub, editors,The Role of Language in Problem Solving I, pages 127{145, Amsterdam. ElsevierSiene Publishers.Bell, B., Rieman, J., and Lewis, C. (1991). Usability testing of a graphial programmingsystem: Things we missed in a programming walkthrough. In Proeedings of CHI-91,pages 7{12, New Orleans, LA.Bellamy, R. K. E. and Gilmore, D. J. (1990). Programming plans: Internal or externalstrutures. In K. J. Gilhooly, M. T. G. Keane, R. H. Logie, and G. Erdos, editors,Lines of Thinking: Reetions on the Psyhology of Thought, Volume 2, pages 59{71.John Wiley & Sons. 261

262 BIBLIOGRAPHYBergantz, D. and Hassell, J. (1991). Information relationships in Prolog programs: howdo programmers omprehend funtionality? International Journal of Man-MahineStudies, 35, 313{328.Bhuiyan, S., Greer, J., and MCalla, G. I. (1992). Learning reursion through the useof a mental model-based programming environment. In C. Frasson, G. Gauthier, andG. I. MCalla, editors, Intelligent tutoring systems: Seond International Conferene,ITS '92,, pages pp. 50{57.Bhuiyan, S. H., Greer, J. E., and MCalla, G. I. (1991). Charaterizing, rationalizingand reifying mental models of reursion. In Proeedings of the Thirteenth AnnualConferene of the Cognitive Siene Soiety, pages 120{125. Lawrene Erlbaum As-soiates.Blakwell, A. F. and Engelhardt, Y. (1998). A taxonomy of diagram taxonomies. InProeedings of Thinking with Diagrams 98: Is there a siene of diagrams, pages60{70.Boehm-Davis, D. A. (1988). Software omprehension. In M. Helander, editor, Handbookof Human-Computer Interation, hapter 5, pages 107{121. Elsevier.Bonar, J. and Cunningham, R. (1988). BRIDGE: An intelligent tutor for thinkingabout programming. In J. Self, editor, Arti�ial Intelligene and Human Learning,hapter 24, pages 391{409. Chapman and Hall.Brooke, J. B. and Dunan, K. D. (1980). An experimental study of owharts as anaid to identi�ation of proedural faults. Ergonomis, 23(4), 387{399.Brooks, R. (1983). Towards a theory of the omprehension of omputer programs.International Journal of Man-Mahine Studies, 18(6), 543{554.Carletta, J., Isard, A., Isard, S., Kowtko, J. C., Doherty-Sneddon, G., and Anderson,A. H. (1997). The reliability of a dialogue struture oding sheme. ComputationalLinguistis.Carroll, J. M., Thomas, J. C., and Malhotra, A. (1980). Presentation and representationin design problem-solving. British Journal of Psyhology, 71(1), 143{153.Chapin, N. (1970). Flowharting with the ANSI standard: A tutorial. ComputingSurveys, 2(2), 119{146.Chase, W. G. and Simon, H. A. (1973). Pereption in hess. Cognitive Psyhology, 4,55{81.Cloksin, W. F. and Mellish, C. S. (1981). Programming in Prolog, First Edition.Springer-Verlag, New York.Corritore, C. L. and Wiedenbek, S. (1991). What do novies learn during programomprehension? International Journal of Human-Computer Interation, 3(2), 199 {222.Cox, P. T. and Pietrzykowski, T. (1990). Using a pitorial representation to ombinedataow and objet-orientation in a language independent programming mehanism.In E. P. Glinert, editor, Visual Programming Environments, Vol I: Paradigms andSystems, pages 313{322. IEEE Computer Soiety Press, Washington, D.C.

BIBLIOGRAPHY 263Cox, R. (1996). Analytial Reasoning with Multiple External Representations. Ph.D.thesis, The University of Edinburgh.Cox, R. and Brna, P. (1993). The relationship between external representations andanalytial reasoning performane: impliations for the design of a learning environ-ment. DAI Researh Paper 646, Department of Arti�ial Intelligene, University ofEdinburgh.Cox, R., Stenning, K., and Oberlander, J. (1994). Graphial e�ets in learning logi:reasoning, representation and individual di�erenes. In A. Ram and K. Eiselt, editors,Proeedings of the 16th Annual Conferene of the Cognitive Siene Soiety, pages237{242. Lawrene Erlbaum & Assoiates.Cunni�, N. and Taylor, R. P. (1987). Graphial vs. textual representation: An em-pirial study of novies' program omprehension. In G. M. Olson, S. Sheppard, andE. Soloway, editors, Empirial Studies of Programmers: Seond Workshop, pages114{131, New Jersey. Ablex Publishing Corporation.Davies, S. P. (1990). The nature and development of programming plans. InternationalJournal of Man-Mahine Studies, 32, 461{481.Davis, A. L. and Keller, R. M. (1982). Data ow program graphs. IEEE Computer,15, 26{41.Dennis, J. B. (1986). Models of data ow omputation. In Control Flow and Data Flow:Conepts of Distributed Programming, pages 346{354, London. Springer-Verlag.Dihev, C. and du Boulay, B. (1988). A data traing system for Prolog novies. Cog-nitive Siene Researh Paper CSRP 113, University of Sussex.diSessa, A. (1988). Knowledge in piees. In G. Forman and P. B. Pufall, editors,Construtivism in the Computer Age, pages 49{70. Lawrene Erlbaum Assoiates,Hillsdale, NJ.du Boulay, B. and O'Shea, T. (1981). Teahing novies programming. In M. J. Coombsand J. L. Alty, editors, Computing Skills and the User Interfae, Computers andPeople Series, pages 147{200. Aademi Press, London.Eisenberg, M., Resnik, M., and Turbak, F. (1987). Understanding proedures as ob-jets. In G. M. Olson, S. Sheppard, and E. Soloway, editors, Empirial Studies ofProgrammers: Seond Workshop, pages 14{32, New Jersey. Ablex Publishing Corpo-ration.Ekstrom, R. B., Frenh, J. W., Harman, H. H., and Dermen, D. (1976). Manual for theKit of Fator-Referened Cognitive Tests. Eduational Testing Servie, Prineton,NJ.Engelhardt, Y., de Bruin, J., Janssen, T., and Sha, R. (1996). The visual grammarof information graphis. In J. C. B. Damski and N. H. Narayanan, editors, Work-shop Notes Visual Representation, Reasoning and Interation in Design, Arti�ialIntelligene in Design '96.Ennals, J. R. (1981). Prolog: An introdution for teahers. Tehnial Report 81/7,Department of Computing, Imperial College.

264 BIBLIOGRAPHYFitter, M. and Green, T. R. G. (1979). When do diagrams make good omputerlanguages? International Journal of Man-Mahine Studies, 11, 235{261.Gellenbek, E. M. and Cook, C. R. (1991). An investigation of proedure and variablenames as beaons during program omprehension. In S. P. Koenemann, T. G. Moher,and S. P. Robertson, editors, Empirial Studies of Programmers: Fourth Workshop,pages 65{81, New Jersey. Ablex Publishing Corporation.George, C. G. (1996). Investigating the E�etiveness of a Software Reinfored Ap-proah to Understanding Reursion. Ph.D. thesis, Department of Mathematial andComputing Sienes, Goldsmith's College.Gilmore, D. J. (1990). Expert programming knowledge: A strategi approah. In J.-M. Ho, T. R. G. Green, R. Samur�ay, and D. J. Gilmore, editors, Psyhology ofProgramming, Computers and People Series, hapter 3.2, pages 223{234. AademiPress, London.Gilmore, D. J. and Green, T. R. G. (1984). Comprehension and reall of miniatureprograms. International Journal of Man-Mahine Studies, 21, 31{48.Gilmore, D. J. and Green, T. R. G. (1988). Programming plans and programmingexpertise. The Quarterly Journal of Experimental Psyhology, 40A(3), 423{442.Gilmore, D. J. and Smith, H. T. (1984). An investigation of the utility of owhartsduring omputer program debugging. International Journal of Man-Mahine Studies,20, 357{372.Golin, E. J. (1991). A method for the spei�ation and parsing of visual languages.Tehnial Report CS-90-19, Brown University, Department of Computer Siene.Good, J. (1996). The `right' tool for the task: An investigation of external repre-sentations, program abstrations and task requirements. In W. D. Gray and D. A.Boehm-Davis, editors, Empirial Studies of Programmers: Sixth Workshop, pages77{98. Ablex Publishing Corporation.Good, J. and Brna, P. (1996a). Novie diÆulties with reursion: Do graphial repre-sentations hold the solution? In Proeedings of the European Conferene on AI inEduation, Lisbon, Portugal, September 30 { Otober 2, 1996.Good, J. and Brna, P. (1996b). Sa�olding for reursion: Can visual languages help?In IEE Colloquium on Thinking with Diagrams, pages 7/1{7/3. IEE.Good, J. and Brna, P. (1998a). Explaining programs: when talking to your mother anmake you look smarter. In Proeedings of the Tenth Annual Meeting of the Psyhologyof Programming Interest Group (PPIG-10), pages 61{70.Good, J. and Brna, P. (1998b). Information types and ognitive priniples in pro-gram omprehension: Towards adaptable support for novie visual programmers. InProeedings of the Intelligent Tutoring Systems Conferene (ITS'98).Goodman, N. (1976). Languages of Art: An Approah to a Theory of Symbols. Bobbs-Merrill, Indianapolis, 2nd edition edition.Green, T. R. G. (1977). Conditional program statements and their omprehensibilityto professional programmers. Journal of Oupational Psyhology, 50, 93{109.

BIBLIOGRAPHY 265Green, T. R. G. (1980). Programming as a ognitive ativity. In H. Smith and T. R. G.Green, editors, Human Interation with Computers, pages 271{320. Aademi Press.Green, T. R. G. (1989). Cognitive dimensions of notations. In A. Sutli�e andL. Maaulay, editors, People and Computers V. Cambridge University Press.Green, T. R. G. (1990). The nature of programming. In J.-M. Ho, T. R. G. Green,R. Samur�ay, and D. J. gilmore, editors, Psyhology of Programming, Computers andPeople Series, pages 21{44. Aademi Press, London.Green, T. R. G. (1997). Cognitive approahes to software omprehension: Results,gaps and limitations. Extended abstrat of talk at workshop on Experimental Psy-hology in Software Comprehension Studies 97, University of Limerik, Ireland.at URL http://www.ndiret.o.uk/ thomas.green/workStu�/Papers/LimerikTalk1997/LimerikTalk.html (urrent on 30th January 1998).Green, T. R. G. (to appear). Building and omprehending omplex information stru-tures: Issues in prolog programming. In P. Brna, B. du Boulay, and H. Pain, editors,Learning to Build and Comprehend Complex Information Strutures: Prolog as aCase Study, Cognitive Siene & Tehnology. Ablex, Stamford, CT.Green, T. R. G. and Petre, M. (1992). When visual programs are harder to readthan textual programs. In G. C. van der Veer, M. J. Tauber, S. Bagnarola, andA. M., editors, Human-Computer Interation: Tasks and Organisation, Proeedingsof ECCE-6 (6th European Conferene on Cognitive Ergonomis), Rome. CUD.Green, T. R. G. and Petre, M. (1996). Usability analysis of visual programming en-vironments: A ognitive dimensions framework. Journal of Visual Languages andComputing, 7, 131{174.Green, T. R. G., Sime, M. E., and Fitter, M. J. (1980). The problems the programmerfaes. Ergonomis, 23, 893{907.Green, T. R. G., Petre, M., and Bellamy, R. K. E. (1991). Comprehensibility of vi-sual and textual programs: A test of superlativism against the `math-mismath'onjeture. In S. P. Koenemann, T. G. Moher, and S. P. Robertson, editors, Empir-ial Studies of Programmers: Fourth Workshop, pages 121{146, New Jersey. AblexPublishing Corporation.Holt, R. W., Boehm-Davis, D. A., and Shultz, A. C. (1987). Mental representations ofstudent and professional programmers. In G. M. Olson, S. Sheppard, and E. Soloway,editors, Empirial Studies of Programmers: Seond Workshop, pages 33{46, NewJersey. Ablex Publishing Corporation.Jenkins, M. A., Glasgow, J. I., and MCrosky, C. D. (1986). Programming styles inNial. IEEE Software, 3(1), 46{55.Johnson, W. L. and Soloway, E. (1985). Proust: Knowledge-based program under-standing. IEEE Transations on Software Engineering, 11(3), 267{275.Kahney, H. (1989). What do novie programmers know about reursion? InE. Soloway and J. C. Spohrer, editors, Studying the Novie Programmer, pages 209{228. Lawrene Erlbaum Assoiates.

266 BIBLIOGRAPHYKimura, T. D., Choi, J. W., and Mak, J. M. (1990). Show and tell: A visual program-ming language. In E. P. Glinert, editor, Visual Programming Environments, Vol. I:Paradigms and Systems, pages 397{404. IEEE Computer Soiety Press, Washington,D.C.Kintsh, W. and van Dijk, T. A. (1978). Toward a model of text omprehension andprodution. Psyhologial Review, 85, 363{394.Kline, P. (1986). A Handbook of Test Constrution: Introdution to PsyhometriDesign. Methuen & Co.Knott, A. and Dale, R. (1994). Using linguisti phenomena to motivate a set of oher-ene relations. Disourse Proesses, 18, 35{62.Kowalski, R. (1979). Logi for Problem Solving. Arti�ial Intelligene Series. North-Holland, New York.Kreutzer, W. and MKenzie, B. (1991). Programming for Arti�ial Intelligene: Meth-ods, Tools and Appliations. Addison-Wesley, Sydney.Kurland, D. M. and Pea, R. D. (1983). Children's mental models of reursive Logoprograms. In Proeedings of the 5th Annual Conferene of the Cognitive SieneSoiety, pages 1{5, Rohester, N.Y.Larkin, J. H. and Simon, H. A. (1987). Why a diagram is (sometimes) worth tenthousand words. Cognitive Siene, 11, 65{99.Letovsky, S. (1986). Cognitive proesses in program omprehension. In E. Solowayand S. Iyengar, editors, Empirial Studies of Programmers: First Workshop, pages58{79, New Jersey. Ablex Publishing Corporation.Littman, D. C., Pinto, J., Letovsky, S., and Soloway, E. (1986). Mental models andsoftware maintenane. In E. Soloway and S. Iyengar, editors, Empirial Studies ofProgrammers: First Workshop, pages 80{98, New Jersey. Ablex Publishing Corpo-ration.Lohse, G. L., Biolsi, K., Walker, N., and Rueter, H. (1994). A lassi�ation of visualrepresentations. Communiations of the ACM, 37(12), 36{49.Mayer, R. E. (1988). From novie to expert. In M. Helander, editor, Handbook ofHuman-Computer Interation, hapter 25, pages 569{580. Elsevier.MKeithen, K. B., Reitman, J. S., Rueter, H. H., and Hirtle, S. C. (1981). Knowledgeorganization and skill di�erenes in omputer programmers. Cognitive Psyhology,13, 307{325.Merrill, D. C. and Reiser, B. J. (1994). Sa�olding e�etive problem solving strategies ininterative learning environments. In L. Erlbaum, editor, Proeedings of the SixteenthAnnual Conferene of the Cognitive Siene Soiety.Merrill, D. C., Reiser, B. J., Merrill, S. K., and Landes, S. (1993). Tutoring: Guidedlearning by doing. Tehnial Report 45, The Institute for the Learning Sienes,Northwestern University.

BIBLIOGRAPHY 267Modugno, F., Corbett, A. T., and Myers, B. A. (1996). Evaluating program represen-tation in a demonstrational visual shell. In W. D. Gray and D. A. Boehm-Davis,editors, Empirial Studies of Programmers: Sixth Workshop, page ? Ablex Publish-ing Corporation.Moher, T. G., Mak, D. C., Blumenthal, B., and Levanthal, L. M. (1993). Comparingthe omprehensibility of textual and graphial programs: The ase of petri nets.In C. Cook, J. Sholtz, and J. Spohrer, editors, Empirial Studies of Programmers:Fifth Workshop, pages 137{161, New Jersey. Ablex Publishing Corporation.Moss, J. and Case, R. (to appear). Developing hildren's understanding of the rationalnumbers: A new model and an experimental urriulum. Journal for Researh inMathematis Eduation.Mulholland, P. (1994). The e�et of graphial and textual visualisation on the ompre-hension of Prolog exeution by novies: an empirial analysis. In Colleted Papers ofthe Sixth Workshop of the Psyhology of Programming Interest Group, pages 18{26.Myers, B. A. (1986). Visual programming: Programming by example, and programvisualization: A taxonomy. In CHI '86: Human Fators in Computing Systems,pages 59{66.Nassi, I. and Shneiderman, B. (1973). Flowhart tehniques for strutured program-ming. SIGPLAN Noties, 8(8), 12{26.Norman, D. A. (1993). Things that make us smart: Defending human attributes in theage of the mahine. Addison-Wesley Publishing Company.Olson, G. M., Catrambone, R., and Soloway, E. (1987). Programming and algebra wordproblems: A failure to transfer. In G. M. Olson, S. Sheppard, and E. Soloway, editors,Empirial Studies of Programmers: Seond Workshop, pages 1{13, New Jersey. AblexPublishing Corporation.Pain, H. and Bundy, A. (1987). What stories should we tell novie Prolog program-mers. In R. Hawley, editor, Arti�ial Intelligene Programming Environments. EllisHorwood, Chihester.Pair, C. (1990). Programming, programming languages and programming methods. InJ.-M. Ho, T. R. G. Green, R. Samur�ay, and D. J. Gilmore, editors, Psyhology ofProgramming, Computers and People Series, pages 9{19. Aademi Press, London.Pandey, R. K. and Burnett, M. M. (1993). Is it easier to write matrix manipulationprograms visually or textually? an empirial study. In Proeedings of the 1993 IEEESymposium on Visual Languages, pages 344{351.Pennington, N. (1987a). Comprehension strategies in programming. In G. M. Olson,S. Sheppard, and E. Soloway, editors, Empirial Studies of Programmers: SeondWorkshop, pages 100{113, New Jersey. Ablex Publishing Corporation.Pennington, N. (1987b). Stimulus strutures and mental representations in expertomprehension of omputer programs. Cognitive Psyhology, 19, 295 { 341.Pennington, N. and Grabowski, B. (1990). The tasks of programming. In J.-M. Ho,T. R. G. Green, R. Samur�ay, and D. J. Gilmore, editors, Psyhology of Programming,pages 45{62. Aademi Press.

268 BIBLIOGRAPHYPerkins, D. N. and Martin, F. (1986). Fragile knowledge and negleted strategiesin novie programmers. In E. Soloway and S. Iyengar, editors, Empirial Studiesof Programmers: First Workshop, pages 213{229, New Jersey. Ablex PublishingCorporation.Petre, M. (1996). Programming paradigms and ulture: impliations of expert pratie.In M. Woodman, editor, Programming Language Choie: Pratie and Experiene,pages 29{44. International Thomson Computer Press, London.Petre, M. and Green, T. R. G. (1992). Requirements of graphial notations for profes-sional users: Eletronis CAD systems as a ase study. Le Travail humain, 55(1),47{70.Petre, M. and Green, T. R. G. (1993). Learning to read graphis: Some evidene that`seeing' an information display is an aquired skill. Journal of Visual Languages andComputing, 4, 55{70.Petre, M. and Winder, R. (1988). Issues governing the suitability of programminglanguages for programming tasks. In D. M. Jones and R. Winder, editors, Peopleand Computers IV. Cambridge University Press.Petre, M., Prie, B., Fix, V., Sholtz, J., Wiedenbek, S., Netesin, I., and Yershov,S. (1995). Comparing program omprehension in di�erent ultures and di�erentrepresentations. In 7th Workshop of the Psyhology of Programming Interest Group(PPIG-7), page 94.Petre, M., Blakwell, A. F., and Green, T. R. G. (1998). Cognitive questions in softwarevisualisation. In J. Stasko, J. Domingue, M. Brown, and B. Prie, editors, SoftwareVisualization: Programming as a Multi-Media Experiene, pages 453{480.MIT Press.Pirolli, P. (1986). A ognitive model and omputer tutor for programming reursion.Human-Computer Interation, 2(2), 319{355.Pirolli, P. L. and Anderson, J. R. (1985). The role of learning from examples in theaquisition of reursive programming skills. Canadian Journal of Psyhology, 39(2),240{272.Poulton, E. C. (1965). On inreasing the sensitivity of measures of performane. Er-gonomis, pages 69{76.Ramalingam, V. and Wiedenbek, S. (1997). An empirial study of novie programomprehension in the imperative and objet-oriented styles. In Proeedings of 7thWorkshop on Empirial Studies of Programmers, Alexandria, VA USA.Ramsey, H. R., Atwood, M. E., and Van Doren, J. R. (1983). Flowharts versus programdesign languages: An experimental omparison. Communiations of the ACM, 26(6),445{449.Raymond, D. R. (1991). Charaterizing visual languages. In Pro. of the 1991 IEEEWorkshop on Visual Languages, pages 176{182, Kobe, Japan.Rist, R. (1986). Plans in programming: De�nition, demonstration and development.In E. Soloway and S. Iyengar, editors, Empirial Studies of Programmers: FirstWorkshop, pages 28{47, New Jersey. Ablex Publishing Corporation.

BIBLIOGRAPHY 269Robertson, S. P. and Yu, C.-C. (1990). Common ognitive representations of programode aross tasks and languages. International Journal of Man-Mahine Studies, 33,343{360.Santori, M. (1990). An instrument that isn't really. IEEE Spetrum, 27(8), 36{39.Sanlan, D. A. (1989). Strutured owharts outperform pseudoode: An experimentalomparison. IEEE Software, 6(5), 28{36.Sanlon, E. and O'Shea, T. (1988). Cognitive eonomy in physis reasoning: Impli-ations for designing instrutional materials. In H. Mandl and A. Lesgold, editors,Learning Issues for Intelligent Tutoring Systems. Springer-Verlag, New York.Shneiderman, B. and Mayer, R. (1979). Syntati/semanti interations in programmerbehavior: A model and experimental results. International Journal of Computer andInformation Sienes, 8(3), 219{238.Shneiderman, B., Mayer, R., MKay, D., and Heller, P. (1977). Experimental investi-gations of the utility of detailed owharts in programming. Communiations of theACM, 20(6), 373{381.Shu, N. C. (1988). Visual Programming. Van Nostrand Reinhold.Sinha, A. P. and Vessey, I. (1992). Cognitive �t: An empirial study of reursion anditeration. IEEE Transations on Software Engineering, 18, 368{379.Soloway, E. and Ehrlih, K. (1982). Tait programming knowledge. In Proeedings ofthe Fourth Annual Conferene of the Cognitive Siene Soiety, pages 149{151.Soloway, E. and Ehrlih, K. (1984). Empirial studies of programming knowledge. IEEETransations on Software Engineering, SE-10(5), 595{609.Soloway, E. and Spohrer, J. C., editors (1989). Studying the Novie Programmer.Lawrene Erlbaum Assoiates.Soloway, E., Ehrlih, K., Bonar, J., and Greenspan, J. (1982). What do novies knowabout programming? In A. Badre and B. Shneiderman, editors, Diretions in Hu-man/Computer Interation, pages 27{54. Ablex.Soloway, E., Adelson, B., and Ehrlih, B. (1988). Knowledge and proesses in theomprehension of omputer programs. In M. T. H. Chi, R. Glaser, and M. J. Farr,editors, The Nature of Expertise, pages 129{152. Lawrene Erlbaum Assoiates.Soloway, E., Guzdial, M., and Hay, K. E. (1992). Programming for the rest of us. In 5thWorkshop of the Psyhology of Programming Interest Group (PPIG5), pages 23{27.Stenning, K. and Oberlander, J. (1995). A ognitive theory of graphial and linguistireasoning: Logi and implementation. Cognitive Siene, 19(1), 97{140.Stenning, K., Cox, R., and Oberlander, J. (1995). Contrasting the ognitive e�etsof graphial and sentential logi teahing: reasoning, representation and individualdi�erenes. Language and Cognitive Proesses, 10.

270 BIBLIOGRAPHYTabahnek, H. J. M., Leonardo, A. M., and Simon, H. A. (1994). How does an expertuse a graph? A model of visual and verbal inferening in eonomis. In Proeedingsof the 16th Annual Conferene of the Cognitive Siene Soiety. Lawrene Erlbaum& Assoiates.Tabahnik, B. G. and Fidell, L. S. (1983). Using Multivariate Statistis. Harper Row,New York.Taylor, J. (1988). Programming in Prolog: An in-depth study of problems for beginners.Cognitive Siene Researh Paper CSRP 111, University of Sussex.Thorndike, R. L. and Hagen, E. P. (1977). Measurement and Evaluation in Psyhologyand Eduation. John Wiley & Sons.Trafton, J. G. and Reiser, B. J. (1991). Providing natural representations to faili-tate novies' understanding in a new domain: Forward and bakward reasoning inprogramming. In Proeedings of the Thirteenth Annual Conferene of the CognitiveSiene Soiety, pages 923{927, Chiago, Illinois. Lawrene Erlbaum.Ushakov, I. and Velbitskiy, I. (1993). Visual programming in r-tehnology: Con-epts, systems and perspetives. In East-West International Conferene on Human-Computer Interation: Proeedings of the EWHCI'93, pages 71{88. Intl. Centre forSienti� and Tehnial Information.van Dijk, T. A. and Kintsh, W. (1983). Strategies of Disourse Comprehension. Aa-demi Press, New York.van Someren, M. W. (1990a). Understanding students' errors with Prolog uni�ation.Instrutional Siene, 19, 361{376.van Someren, M. W. (1990b). What's wrong? understanding beginners' problems withProlog. Instrutional Siene, 19, 257{282.Vessey, I. (1991). Cognitive �t: A theory-based analysis of the graphs versus tablesliterature. Deision Sienes, 22, 219{240.Vessey, I. and Weber, R. (1986). Strutured tools and onditional logi: An empirialinvestigation. Communiations of the ACM, 29(1), 48{57.von Mayrhauser, A. and Vans, A. M. (1994). Program understanding | a survey.Tehnial report, Colorado State University.Wadge, W. W. and Ashroft, E. A. (1985). Luid, the Dataow Programming Language.Aademi Press, London.Weinberg, G. M. (1971). The Psyhology of Computer Programming. Computer SieneSeries. Van Nostrand Reinhold Company, New York.Weiser, M. and Shertz, J. (1983). Programming problem representation in novie andexpert programmers. International Journal of Man-Mahine Studies, 19, 391{398.Wells, M. B. and Kurtz, B. L. (1989). Teahing multiple programming paradigms: Aproposal for a paradigm-general pseudoode. SIGSCE Bulletin, 21(1), 246{251.

BIBLIOGRAPHY 271Welty, C. and Stemple, D. W. (1981). Human fators omparison of a proedural anda nonproedural query language. ACM Transations on Database Systems, 6(4),626{649.Whitley, K. N. (1997). Visual programming languages and the empirial evidene forand against. Journal of Visual Languages and Computing, 8(1), 109{142.Widowski, D. (1987). Reading, omprehending and realling omputer programs as afuntion of expertise. In Proeedings of CERCLE Workshop on Complex Learning.Wiedenbek, S. (1986). Proesses in omputer program omprehension. In E. Solowayand S. Iyengar, editors, Empirial Studies of Programmers: First Workshop, pages48{57, New Jersey. Ablex Publishing Corporation.Winn, W. (1993). An aount of how readers searh for information in diagrams.Contemporary Eduational Psyhology, 18, 162{185.Wright, P. and Reid, F. (1973). Written information: Some alternatives to prose forexpressing the outomes of omplex ontingenies. Journal of Applied Psyhology,57(2), 160{166.

272 APPENDIX A: MATERIALS: PROLOG EXPERIMENT

Appendix AMaterials: Prolog ExperimentThis appendix shows the experimental paket given to subjets in the Prolog experiment(desribed in Chapter 3), and inludes:1. the instrutions to subjets1;2. the experimental problems and omprehension questions;3. the programming self-report questionnaire.

1 As the experiment took plae within a pratial session, the instrutions for the experiment wereembedded within a desription of that day's pratial session.273

274 APPENDIX A: MATERIALS: PROLOG EXPERIMENTToday's PratialToday's pratial session investigates experimental design and methodology, partiu-larly regarding experiments with people. The aim is to give you a better idea of theissues involved in designing and running an experiment. Starting from the pratialimplementation of an experiment, we will see whether it is possible to unover thedesign deisions underlying the experiment, and whether we an make any preditionsabout the expeted outome.During the pratial session, you will be asked to take part in a short experiment. Themain aim in doing so is to give you �rst hand experiene of experimental methodologyand design. The experiment may also shed some light on the use of Prolog as a languagefor teahing programming, and help you onsolidate your knowledge of Prolog as youreet on it in di�erent ways.The experiment aims to investigate whether having learned Prolog (as opposed tolearning another programming language, say, Lisp or Pasal) a�ets the way you thinkabout programming. Of ourse, we ould simply ask you this question diretly, but asyou an probably guess, doing so wouldn't neessarily give us the types of answers whihmight be useful: for example, the answers might not be quanti�able in a onsistent wayand hene will be not suitable for any sort of statistial analysis.The experiment in question is not a \toy" experiment: we hope to ollet data whihan be analysed, and whih will either support work whih has already been done onthe subjet, or o�er new and possibly oniting evidene2.Before starting the experiment, you should be aware that:� this is in no way a test of your Prolog knowledge, and the data olleted will notbe used in any form as part of your assessment on the AI1 ourse3;� you are not expeted to get all of the questions right. What we're interested inhere are the types of questions whih people get wrong ompared to those theyget right;� the data obtained will be both anonymous and stritly on�dential.What to doAfter reading through these instrutions, your demonstrator will give you a booklet towork through. On eah page of the booklet (exept for the last page), there will be ashort Prolog program. For eah program, you will be asked to answer �ve questionsabout the program and write a short summary of it. You will have �ve minutes to workon eah page and your demonstrators will tell you when to stop work on one page andstart on the next.2 If you are interested obtaining more information on this researh, please let your demonstrator know.3 Please also note that the ontent of the experiment (i.e. Prolog) will not be examined in the degreeexam; however the issues of experimental design and methodology are examinable topis.

APPENDIX A: MATERIALS: PROLOG EXPERIMENT 275If you �nish a page before the �ve minutes are up, please DO NOT start working onthe next one until the demonstrators tell you to do so. Also, please DO NOT go bakto previous pages.There will be a total of six programs, however, the �rst program will be a pratie one sothat you an get a feel for what you are required to do. If you have any questions afterompleting this pratie program sheet, there will be time to ask the demonstratorsbefore going on to the other programs.The last page will have some questions asking you about your programming experiene.Please �ll this in, and then give the entire booklet to your demonstrator.Note that it will not be possible for the demonstrators to give you details of the experi-mental design, as knowing the hypotheses may inuene how you respond4. When youhave handed in your booklet to the demonstrators, you will reeive a summary of theissues involved in the experiment, and some questions to answer. These are designed tohelp you try and unover the design and methodology information underlying the ex-periment. On Friday, you will reeive an email explaining the design of the experiment,giving the experimental hypotheses, the variables manipulated, antiipated results andpossible onlusions.If you have any questions about these instrutions, please ask the demonstrators now.

4 For the same reason, please do not disuss your ideas on the experimental design with people whohave not yet taken part in this week's pratial session.

276 APPENDIX A: MATERIALS: PROLOG EXPERIMENT?- alter([i, like, my, bike℄, R).1a. alter([℄, [℄).1b. alter([X|Xs℄, [Y|Ys℄):-hange(X, Y),alter(Xs, Ys).2a. hange(my, your).2b. hange(i,you).2. hange(me,you).2d. hange(ours,yours).2e. hange(X,X).1. Will the output list ontain items in the input list?2. Does hange(X, X) output the same value it reeives as input?3. Does the variable X in lause 1b get bound to my before it gets bound to i?4. Is Xs always instantiated in the reursive all (i.e. in lause 1b)?5. Does this program hange singular nouns into plural ones?6. Now write a short summary of what this program does.

APPENDIX A: MATERIALS: PROLOG EXPERIMENT 277?- outer([1,2,3,4,5℄, [1,2,3,4,5℄, Holder).1a. outer([℄, _, [℄).1b. outer([I|Is℄, L, [Y|Ys℄):-inner(L, I, 0, Y),outer(Is, L, Ys).2a. inner([℄, _, Sum, Sum).2b. inner([J|Js℄, I, SumIn, Sum):-Temp is I * J,SumNext is SumIn + Temp,inner(Js, I, SumNext, Sum).1. Does the variable Temp a�et the value of the variable Y?2. Is the variable Temp initially instantiated to 0?3. Is the variable SumNext alulated before the variable Temp is alulated?4. When the variable J is instantiated to 5, is the variable SumIn equal to 0?5. Does the program output a list ontaining the sums of squares of all numbersbetween 1 and 5?6. Now write a short summary of what this program does.

278 APPENDIX A: MATERIALS: PROLOG EXPERIMENT?- math([9, 12, 10, 11℄, C).1a. math(L, C):-math_sub(L, 0, C).2a. math_sub([℄, C, C).2b. math_sub([X|Xs℄, C0, C):-X > 10,C1 is C0 + 1,math_sub(Xs, C1, C).2. math_sub([X|Xs℄, C0, C):-X =< 10,math_sub(Xs, C0, C).1. Is the seond argument of math_sub an input argument?2. Is C1 ever instantiated to the same value as C0?3. When X is bound to 10, is lause 2b of math_sub exeuted?4. When X is bound to 9, is C0 bound to 0?5. Does the program add up the numbers less than 10 in the input list?6. Now write a short summary of what this program does.

APPENDIX A: MATERIALS: PROLOG EXPERIMENT 279?- omb([1, 4, 6, 7℄, [2, 3, 8℄, R).1a. omb([℄, L, L).1b. omb(L, [℄, L).1. omb([X|Xs℄, [Y|Ys℄, [Z|Zs℄):-X < Y,Z = X,omb(Xs, [Y|Ys℄, Zs).1d. omb([X|Xs℄, [Y|Ys℄, [Z|Zs℄):-X >= Y,Z = Y,omb([X|Xs℄, Ys, Zs).1. Will the list that beomes bound to the variable R in the query ontain all elementsof the input lists?2. Is Z always instantiated to X or Y?3. When X is bound to 4 and Y is bound to 3, is lause 1 the next suessfullyexeuted lause?4. When the �rst list is empty, will the seond one also be empty?5. Does the program ombine the elements of the input lists in asending order?6. Now write a short summary of what this program does.

280 APPENDIX A: MATERIALS: PROLOG EXPERIMENT?- adjust([1, 3, 2, 7℄, Res).1a. adjust(X, R):-adjust_sub(X, 0, R).2a. adjust_sub([℄, _, [℄).2b. adjust_sub([X|Xs℄, Y, [Z|Zs℄):-Z is X + Y,adjust_sub(Xs, X, Zs).1. Is the variable Y always set to 0?2. Is Z initially instantiated to 0?3. Does the program reurse over all of the elements of the list?4. When X is instantiated to 3, is the value of Y equal to 2?5. Does this program total the numbers in the list?6. Now write a short summary of what this program does.

APPENDIX A: MATERIALS: PROLOG EXPERIMENT 281?- a([4, 8, 3, 2℄, R).1a. ([℄, 0).1b. ([X|Xs℄, C):-(Xs, CXs),C is CXs + 1.2a. s([℄, 0).2b. s([Y|Ys℄, S):-s(Ys, SYs),S is Y + SYs.3a. a(L, A):-(L, CL),s(L, SL),A is SL/CL.1. When the �rst argument of is an empty list, an the seond argument have avalue other than 0?2. Is S the di�erene between Y and SYs?3. Does the value of X a�et the value of C?4. Is there a part of this program whih alulates the sum of the list of numbers?5. Is SL alulated before CL?6. Now write a short summary of what this program does.

282 APPENDIX A: MATERIALS: PROLOG EXPERIMENT

Appendix BMaterials: VPL Pilot ExperimentThis appendix provides the materials used in the VPL pilot study (desribed in Chapter6),and inludes:1. the Prolog pre-test;2. the max program in the four versions used in the experiment: ontrol ow graph,ontrol ow tree, data ow graph, data ow tree (the position program, alsoused, was shown in Chapter 5);3. the omprehension questions for max and position.

283

284 APPENDIX B: MATERIALS: VPL PILOT EXPERIMENTB.1 Prolog Pre-Test QuestionnairePlease omplete the following questions. There is only one answer to eah multiple-hoie question: please irle the letter whih orresponds to your answer. If you haveany questions, please let me know. When you have �nished, please hand these sheetsin to me. Thank you.1. Given this query: rem_dup([d,a,r,,r,r℄, X). and the following ode,in what order will the lauses of rem_dup be (suessfully) alled?lause 1 rem_dup([℄, [℄).lause 2 rem_dup([H|T℄, X):-member(H,T), !,rem_dup(T, X).lause 3 rem_dup([H|T℄, [H|Final℄):-rem_dup(T, Final).auxiliary member(X, [X|_℄).prediate member(X, [_|T℄):-member(X, T).(a) 3 - 3 - 2 - 3 - 2 - 2 - 1(b) 3 - 3 - 2 - 3 - 2 - 3 - 1() 3 - 2 - 1 - 3 - 2 - 3 - 2(d) 2 - 2 - 3 - 2 - 3 - 2 - 1(e) None of the above.

APPENDIX B: MATERIALS: VPL PILOT EXPERIMENT 2852. Given the following piee of ode, what would be the value of N given thisquery: mystery([3, [4,5,6℄, 2, [1℄℄, N). ?mystery([H|T℄, N):-mystery(H, N1),mystery(T, N2),N is N1 + N2.mystery([℄, 0).mystery(X,1).(a) 21(b) 6() 2(d) 4(e) None of the above.

286 APPENDIX B: MATERIALS: VPL PILOT EXPERIMENT3. The prediate ount_up/1 should show the following behaviour:|?- ount_up(3).123yesHowever, there is a bug in this program whih prevents it from doing so. Whatneeds to be done to orret it?line 1 ount_up(0).line 2 ount_up(N):-line 3 N1 is N-1,line 4 write(N), nl,line 5 ount_up(N1).(a) The base ase (line 1) should be ount_up(N) instead of ount_up(0).(b) Swap lines 5 and 3.() Swap lines 5 and 4.(d) Line 3 should be N+1 instead of N-1.(e) None of the above.

APPENDIX B: MATERIALS: VPL PILOT EXPERIMENT 2874. Look at these two programs:Program Amake_list([℄, [℄).make_list([H|L1℄, [H|L2℄):-make_list(L1, L2).Program Bmake_list(L1, L2):-make_list(L1, [℄, L2).make_list([℄, X, X).make_list([H|L1℄, X, L2):-make_list(L1, [H|X℄, L2).If the query make_list([a,d,r℄, X). is given to both programs, what will theyreturn?(a) Program A will return X=[a,d,r℄.Program B will return X=[a,d,r℄.(b) Program A will return X=[a,d,r℄.Program B will return X=[r,d,a℄.() Program A will return X=[r,d,a℄.Program B will return X=[r,d,a℄.(d) Program A will return X=[r,d,a℄.Program B will return X=[a,d,r℄.(e) None of the above.

288 APPENDIX B: MATERIALS: VPL PILOT EXPERIMENT5. Whih version of append, when given the query append([1,2℄, [3,4℄, X).will return X = [1,2,3,4℄.?(a) append(L, [℄, L).append(L1, [H|L2℄, [H|L3℄):-append(L1, L2, L3).(b) append([℄, L, L).append([H|L1℄, L2, L3):-append(L1, L2, L3),NewL3 = [H|L3℄,append(L1, L2, NewL3).() append([℄, L, L).append([H|L1℄, L2, [H|L3℄):-append(L1, L2, L3).(d) append([℄, L, L).append([H|L1℄, L2, L3):-append(L1, [H|L2℄, L3).(e) None of the above.

APPENDIX B: MATERIALS: VPL PILOT EXPERIMENT 2896. Finally, please indiate the programming languages you know, and howmuh experiene you have with eah language, e.g.Pasal : 3 months - o� and onC : 6 years - used in my jobProlog : 1 year - did the MS ourse

290 APPENDIX B: MATERIALS: VPL PILOT EXPERIMENTB.2 The max Program (All Versions)
B=D

max_2 - inputs(A), outputs(B)

C=tail(A)
D=head(A)

A:List, B:Number

max_3 - inputs(C,D), outputs(B)
C:List, D:Number, B:Number

empty(C)?

E>D?
false

true

D=E B=max_3(F,D)

Exit

Exit

Exit

F=tail(C)
E=head(C)

B=max_3(C,D)

true

false

Figure B.1: Control Flow Graph Representation for max

APPENDIX B: MATERIALS: VPL PILOT EXPERIMENT 291
exit

max_3 - inputs(C,D), outputs(B)

max_2 - inputs(A), outputs(B)

C:List. D:Number, B:Number

A:List, B:NumberC=tail(A)

D=head(A)

max_2

E=<D?

E=head(C)

max_3

D=E

E>D?

E=head(C)

max_3

B=D

empty(C)?

max_3

C=tail(C)

E=<D?

E=head(C)

max_3

D=E

E>D?

E=head(C)

max_3

B=D

empty(C)?

max_3

C=tail(C)

B=D D=E

E>D?

E=head(C)

max_3max_3

E=<D?

E=head(C)

max_3

B=D

max_3

D=E

E>D?

E=head(C)

max_3

E=<D?

E=head(C)

max_3

C=tail(C)

empty(C)? empty(C)?

C=tail(C)
C=tail(C)

C=tail(C)
C=tail(C)

C=tail(C)Figure B.2: Control Flow Tree Representation for max

292 APPENDIX B: MATERIALS: VPL PILOT EXPERIMENT
max_3

21

3

1 2

headtail

max_3

1

3

1 2 3

max_2 - inputs(List), outputs(Max)

empty_list? YESNO

NOYES >

2

List Max

List MaxTemp Max

max_3 - inputs(List, MaxTemp), outputs(Max)

tail head

Figure B.3: Data Flow Graph Representation for max

APPENDIX B: MATERIALS: VPL PILOT EXPERIMENT 293
tail head

max_3

head

max_2 - Inputs(StartList), Outputs(Max)

Max
StartList

max_3 List

empty_list?NO YES

tail

> NO

List

empty_list?NO YES

MaxTemp

YES

>YES NO

tail head

MaxTemp

Figure B.4: Data Flow Tree Representation for max

294 APPENDIX B: MATERIALS: VPL PILOT EXPERIMENTB.3 Comprehension Questionsmax: ontrol flowIf max 2 were alled with the list [6,9,7,1,10℄ and at the urrent all to max 3 (i.e.prior to exeution of this all) List=[1,10℄ and MaxTemp=9, what were the last twounsuessful tests arried out (working bakwards from the urrent state)? 9>6?, empty list([7,1,10℄? 7>9?, empty list([7, 1,10℄)? empty list([1,10℄)?, 7>9? empty list([1, 10℄?, 1>9?max: data flowIf the input to max 2 is the list [1,5,4,6,2℄, what will be the values of the list andMaxTemp just after three "greater than" (>) omparisons (note that these omparisonsan be either suessful or unsuessful)? List=[6,2℄, MaxTemp=5 List=[6,2℄, MaxTemp=1 List=[2℄, MaxTemp=6 List=[℄, MaxTemp=6Table B.1: Questions for VPL Pilot Study: max

APPENDIX B: MATERIALS: VPL PILOT EXPERIMENT 295
position: ontrol flowposition 3 is given an element, e, and a list [a,x,e℄. What will be the following eventsafter the test "e=e?" is reahed? position 3 is alled with an empty list. Position returns 1 and the all to position 3 terminates. position 3 fails. Position=1 for that all, and as eah all to position 3 terminates,Position is augmented by 1.position: data flowposition 3 is alled with Element=g and List= [6,3,d,2,g,e℄. On a subsequent all toposition 3, List=[2,g,e℄ (before exeution of that all). What is the value of Positionwhen that partiular all terminates? [g,e℄. 2 2+1 It won't have a value.Table B.2: Questions for VPL Pilot Study: position

296 APPENDIX B: MATERIALS: VPL PILOT EXPERIMENT

Appendix CMaterials: VPL ExperimentThis appendix provides the materials used in the VPL experiment desribed in Chapter7,and inludes:1. Sample items from the paperfolding and path�nding tests (Ekstrom et al., 1976),used as pre-tests in the experiment;2. Data and ontrol ow versions of three of the four programs used: basketball,distane between and sunny (the fourth program passes, was shown in Chap-ter 5).3. Comprehension questions for all programs.4. The programming self-report questionnaire.

297

298 APPENDIX C: MATERIALS: VPL EXPERIMENTC.1 Pre-Tests: Paperfolding and Path�nding

Figure C.1: Instrutions and a Sample Problem from the Paper-Folding Test (Ekstromet al., 1976)

APPENDIX C: MATERIALS: VPL EXPERIMENT 299

Figure C.2: Instrutions for the Path�nding Test (Ekstrom et al., 1976)

300 APPENDIX C: MATERIALS: VPL EXPERIMENT
Figure C.3: Two Sample Problems from the Path�nding Test (Ekstrom et al., 1976)

APPENDIX C: MATERIALS: VPL EXPERIMENT 301C.2 Programs used in the Experiment

Figure C.4: The basketball Program: Control Flow Version

302 APPENDIX C: MATERIALS: VPL EXPERIMENT

Figure C.5: The basketball Program: Data Flow Version

APPENDIX C: MATERIALS: VPL EXPERIMENT 303

Figure C.6: The distane between Program: Control Flow Version

304 APPENDIX C: MATERIALS: VPL EXPERIMENT

Figure C.7: The distane between Program: Data Flow Version

APPENDIX C: MATERIALS: VPL EXPERIMENT 305

Figure C.8: The sunny Program: Control Flow Version

306 APPENDIX C: MATERIALS: VPL EXPERIMENT

Figure C.9: The sunny Program: Data Flow VersionC.3 Comprehension Questions

APPENDIX C: MATERIALS: VPL EXPERIMENT 307basketball: funtionChoose the statement whih best desribes the goal the program seeks to ahieve: It produes the average height of the basketball players on the team It assembles a team of up to �ve players by hoosing only those who are over 180 m It exludes persons under a spei�ed height None of the abovebasketball: ontrol flowIf Counter < 5, what happens next? It depends on the value of Heights Team gets set to [℄ Height gets set to the head of Heights None of the abovebasketball: data flowGiven the example input to the program, is the head of Heights present in the Outputof eah reursive all? Yes No Only if it is > 180 None of the abovebasketball: operationsWhat test is performed on Counter? Counter = 5 Counter = [℄ Counter + 1 None of the above

308 APPENDIX C: MATERIALS: VPL EXPERIMENTbasketball: stateWhen Counter = 5, what is the value of Heights? [℄ [192℄ [190, 145℄ None of the abovedistane between: funtionGiven a list of distanes whih represent, for example, the distane between a startingpoint and various ities along the route, does the program: Calulate the distane between neighbouring ities Work out the distane between the nearest and furthest ities Find the shortest route between the starting point and the furthest ity None of the abovedistane between: ontrol flowDoes distane between sub reurse over all of the elements of the list, or only some? All Some It depends on the input None of the abovedistane between: data flowHow does the value of Previous hange at eah reursive all? It takes on the value of the head of the list in the previous reursive all It has the same value as the urrent head of the list" It doesn't, it remains the same throughout exeution None of the above

APPENDIX C: MATERIALS: VPL EXPERIMENT 309distane between: operationsWhat alulation requires the values of both Dist and Previous? Equals Subtrat Multiply None of the abovedistane between: stateAt the point when distane between sub is alled with [70, 86℄, what will be the resultingvalue from the 'subtrat' operation? -7 16 7 None of the abovepasses: funtionChoose the statement whih best desribes the goal the program seeks to ahieve: The program returns a list of marks > 65 The program ompares pairs of student marks The program ounts the number of exam passes None of the abovepasses: ontrol flowIs Pass alulated before or after the reursive all? Pass isn't alulated, it is just passed through Before After None of the above

310 APPENDIX C: MATERIALS: VPL EXPERIMENTpasses: data flowIs Pass used in any tests? Yes, the > test Yes, the = test No None of the abovepasses: operationsWhat test is performed on Mark? Mark < 65? Mark = 65? Mark = [℄? None of the abovepasses: stateWhen Pass = 3, what is the value of Marklist? [℄ Given the input data, Pass never equals 3 [80℄ None of the abovesunny: funtionChoose the statement whih best desribes the goal the program seeks to ahieve: The program alulates the average amount of sun per day The program works out the di�erene between the sunniest and least sunny days The program �nds the day on whih there was the most sun and the dayon whih there was the least sun None of the above

APPENDIX C: MATERIALS: VPL EXPERIMENT 311sunny: ontrol flowDoes sunny sub reurse over every element of its input list (Sunhours)? No, it doesn't get to the end of Sunhours No, it reurses over every other element of Sunhours It depends on the input None of the abovesunny: data flowIn Sunny, where do the values of Hi and Lo ome from? One from the head of Sunhours and one from the tail of Sunhours Both ome from the head of Sunhours The �rst two elements of Sunhours None of the abovesunny: operationsWhat alulation is performed on Hi and Lo? Multipliation Addition Subtration None of the abovesunny: stateAt the time when sunny sub is alled with Sunhours = [7,9℄, what is the value of Hi? 8 9 It doesn't have a value yet None of the above

312 APPENDIX C: MATERIALS: VPL EXPERIMENTC.4 The Programming Self-Report Questionnaire

Appendix DProgram Summary Analysis:Coding ManualsInformation Types Coding ManualThe following setions desribe how to ode program summaries in terms of informationtypes. It is assumed that the oder has read through a desription of the informationtypes oding sheme (see Chapter 8) and is familiar with the general distintions be-tween the ategories.Furthermore, it is assumed that the oding tools desribed in Chapter 8 will be used,therefore, some of the steps below desribe how to prepare tha data in the formatrequired by the oding tools.The Coding ProessBefore oding, the program summary should be segmented, dividing the summary upinto short phrases onsisting of a subjet and a prediate (either of whih may beimplied). The segment to be oded should be plaed in the third olumn of a table:the ode itself will be inserted in the fourth olumn, as in Figure D.1 (although theseparameters an obviously be hanged).
Figure D.1: Information Types Coding313

314 APPENDIX D: CODING MANUALSCoding an either be arried out sequentially (line by line), or by ategory, i.e. byseveral passes through the ode in order to identify all segments of a partiular type.The latter probably guarantees higher reliability, given that ontent based oding is verydemanding, and swithing between ategory de�nitions inreases this load, however, itis time-onsuming. I personally feel that the ategory based method makes it easierto ensure onsisteny within ategories, but there is no reason that the step by stepmethod annot be used. The important thing is that the end result is as onsistent aspossible.Sequential oding is simply a proess of going through the summaries, line by line, andhoosing the most appropriate ode for eah line, based on the deision proess shownin Figure D.4. The ode an be inserted into the table using the appropriate buttonon the oding panel.Category based oding is arried out by going through the text and looking for instanesof the ategory. It may be easiest to start with the most straightforward ategories toode and, for eah ategory, look for instanes of that ategory, and use the odingbutton panel to label eah ase.The following representation shows a deision proess for disriminating between eahategory.Examples of eah type of ategory were provided with the ategory de�nitions in Chap-ter 8: further examples are not provided as Carletta1 suggests that oding shemesbased on the provision of extensive examples run the risk that oders ode only thoseinstanes whih are atually provided as examples.

1 personal ommuniation

APPENDIX D: CODING MANUALS 315

Figure D.2: Deision Proess for Information Types Coding

316 APPENDIX D: CODING MANUALSObjet Desription Coding ManualThe following setions desribe how to ode program summaries in terms of objetdesriptions. It is assumed that the oder has read through a desription of the objetdesriptions oding sheme (see Chapter 8) and is familiar with the general distintionsbetween the ategories.Furthermore, as with the information types sheme desribed above, it is assumed thatthe oding tools desribed in Chapter 8 will be used, therefore, some of the steps belowdesribe how to prepare tha data in the format required by the oding tools.The Coding ProessBefore oding, the program summary should be segmented, dividing the summary upin suh a way that there is one data objet desription per segment. Segmenting shouldnot our based on any other objets (e.g. the program, ations/events within theprogram, suh a reursive all, iteration). It is helpful to highlight the data objet inthe segment in some way so as to distinguish it from other objets, but this is notneessary. The segment to be oded should be in the third olumn of a table: the odeitself will be inserted in the fourth olumn, as in Figure D.3 (although these parametersan obviously be hanged).
Figure D.3: Objet CodingCoding an either be arried out sequentially (line by line), or by ategory, i.e. byseveral passes through the ode in order to identify all segments of a partiular type.The latter probably guarantees higher reliability, given that ontent based oding is verydemanding, and swithing between ategory de�nitions inreases this load, however, itis time-onsuming. I personally feel that the ategory based method makes it easierto ensure onsisteny within ategories, but there is no reason that the step by stepmethod annot be used. The important thing is that the end result is as onsistent aspossible.Sequential oding is simply a proess of going through the summaries, line by line, andhoosing the most appropriate ode for eah line, based on the deision proess shownin Figure D.4. The ode an be inserted into the table using the appropriate buttonon the oding panel.Category based oding is arried out by going through the text and looking for instanesof the ategory. It may be easiest to start with the most straightforward ategories to

APPENDIX D: CODING MANUALS 317ode. In this ase, these tend to be indiret and program only (as it is easy to drawup a list of objets whih only our within the program: for the programs desribedhere, the only `program only' objet was the ounter). Then, for eah ategory, lookfor instanes of that ategory, and use the oding button panel to label eah ase.The following representation shows a deision proess for disriminating between eahategory.

318 APPENDIX D: CODING MANUALS

Figure D.4: Deision Proess for Objet Coding

Appendix ECoded TransriptsThis appendix provides further oding examples using the shemes desribed in Chap-ter 8. The olour has been removed from the oding, as it is primarily used for obtainingan overview of a summary and/or omparing summaries.The following examples are shown:� Information Types Coding:{ Prolog Experiment;{ VPL Experiment: Control Flow Group;{ VPL Experiment: Data Flow Group.� Objet Desriptions Coding:{ VPL Experiment: Control Flow Group;{ VPL Experiment: Data Flow Group.The summaries from the Prolog experiment were based on the adjust program (shownin Appendix A), while the summaries from the VPL experiment are based on thebasketball program (shown in Appendix C).
319

320 APPENDIX E: CODED TRANSCRIPTS

Figure E.1: Information Types Coding: Prolog Experiment

APPENDIX E: CODED TRANSCRIPTS 321

Figure E.2: Information Types Coding: VPL Experiment, Control Flow Group

322 APPENDIX E: CODED TRANSCRIPTS

Figure E.3: Information Types Coding: VPL Experiment, Data Flow Group

APPENDIX E: CODED TRANSCRIPTS 323

Figure E.4: Objet Desription Coding: VPL Experiment, Control Flow Group

324 APPENDIX E: CODED TRANSCRIPTS

Figure E.5: Objet Desription Coding: VPL Experiment, Data Flow Group

