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Lay Summary 
 

 

A major issue within chemistry is the use of expensive, non-renewable and toxic reagents 

or catalysts to carry out organic reactions. A lot of work has been carried out on the 

replacement of these with processes employing compounds that are inexpensive and 

abundant. This thesis presents two separate projects, but both of which aimed to develop 

sustainable procedures for use in organic transformations. 

 

The first project concerned the planned use of iron or copper catalysts for an oxidation 

reaction to convert simple and widely available aromatic compounds, such as phenol, 

into more complex molecules, with a wide range of applications. The aim was then to 

use this reaction in a total synthesis of the complex natural product fatouapilosin. 

Inspiration was taken from how we understand reactions to take place, and compounds 

to be made, within nature, ie. in a biomimetic manner. Although we did not achieve the 

initial aims of this project, the results obtained enabled us to further our understanding 

of the behaviour and reactivity of these types of compounds in nature and in the 

laboratory. 

 

The second project concerned the use of boron-containing catalysts to carry out a 

reduction reaction of ketone compounds in a selective manner. Some compounds exist 

as a pair of molecules, or enantiomers, that are mirror images of each other. Different 

enantiomers can have vastly different properties, but it can often be very difficult to 

separate them. This project developed a reaction using an enantioselective boron catalyst 

to reduce ketones, and give the alcohol product with a high ratio of one enantiomer over 

the other.   
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Abstract 
 

 

This thesis covers two separate projects, but both of which can be linked by the overall 

aim to develop sustainable catalytic methodology for use in organic synthesis. A 

concerted effort has been made to move away from procedures within organic chemistry 

that use non-renewable expensive and toxic materials as reagents and catalysts, 

particularly those containing second and third row transition metals, and instead to 

develop processes that utilise sustainable, abundant and inexpensive reagents, such as 

base-metals and main group elements.  

 

The first project was the attempted development of an oxidative ring contraction of 

aromatic compounds, with the goal of applying it in the biomimetic total synthesis of 

fatouapilosin. The second project concerned the development of the borane-catalysed 

enantioselective hydroboration and reduction of propargylic ketones. 

 

Chapter 1 is an introduction to the first project, giving details regarding the isolation and 

proposed biosynthetic route to fatouapilosin, as well as giving an overview of the area of 

biomimetic total synthesis. The oxidative ring contraction reaction, the use of iron and 

copper for oxidation of organic compounds, and the potential of phenols as a renewable 

source of carbon are also discussed. 

 

Chapter 2 describes the first total synthesis of the coumarin natural product brosiparin, 

an important precursor in the proposed synthesis of fatouapilosin, which was the planned 

substrate on which to develop a method of oxidative ring contraction. Brosiparin was 

successfully prepared in a three-step procedure from pyrogallol, with an initial double 

demethylation followed by an O-prenylation, then a tandem Wittig olefination/para-

Claisen rearrangement/lactonisation sequence.  

 

Chapter 3 focuses on the oxidation chemistry of brosiparin, and the efforts to develop a 

reliable method of oxidative ring contraction. Unfortunately trials with a wide variety of 

oxidising agents, including iron and copper catalysts, did not result in the desired 

transformation. The use of phenyliododiacetate (PIDA) enabled us to access a masked 

ortho-quinone compound, from which further reactions were attempted, including an 
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interesting aryl-aryl coupling reaction, but the unprotected ortho-quinone proved very 

unstable and difficult to work with.  

 

Chapter 4 covers the second project, and starts with a broad introduction to the area of 

hydroboration, followed by a more focused look at enantioselective hydroboration and 

reduction of ketones. The successful development of an enantioselective reduction of 

propargylic ketones using substoichiometric myrtanyl borane with stoichiometric HBpin 

is then described. The reaction was shown by 1H and 11B NMR studies to proceed via a 

transborylation mechanism, and was applied to other propargylic ketone substrates.  
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Chapter 1 – Introduction 
 

1.1 - Fatouapilosin  
 

1.1.1 – Coumarin Natural Products: Biosynthesis and Examples   

 

Coumarin natural products, of which hundreds of examples exist, are part of the 

phenylpropanoid family of naturally occurring organic compounds. These derive in 

nature from the amino acids phenylalanine and tyrosine, which in turn are formed through 

the shikimic acid pathway.3-4 The shikimic acid pathway is a metabolic pathway used by 

plants and microorganisms (but not by animals), to produce aromatic amino acids, 

namely phenylalanine, tyrosine and tryptophan. The pathway begins with the aldol 

reaction between erythrose-4-phosphate (1.1) and phosphoenol pyruvate (1.2), to give 3-

deoxy-D-arabino-heptulosonate-7-phosphate (DAHP, 1.3), a reaction mediated by the 

DAHP synthase enzyme (Scheme 1.1). The DHQ synthase enzyme then catalyses the 

conversion of DAHP (1.3) to 3-dehydroquinate (DHQ, 1.4) in a 5-step sequence.4 DHQ 

(1.4) is then dehydrated by the enzyme 3-dehydroquinate dehydratase to give 3-

dehydroshikimic acid (1.5), which subsequently undergoes reduction by shikimate 

dehydrogenase and NADPH to give the key intermediate shikimic acid (1.6), for which 

the pathway is named (Scheme 1.1).  

 

 

Scheme 1.1 – Biosynthesis of shikimic acid  
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Phosphorylation of shikimic acid (1.6) by shikimate kinase and ATP gives shikimic acid-

3-phosphate (1.7), which then couples with phosphoenol pyruvate (1.2), to give 5-

enolpyruvylshikimate-3-phosphate (EPSP, 1.8), using the enzyme EPSP synthase. A 

chorismate synthase-mediated elimination of the phosphate group results in the 

formation of chorismic acid (1.9), a key intermediate from which the pathway branches 

out to either form tryptophan, or phenylalanine and tyrosine. The route to the latter two 

amino acids proceeds by conversion of chorismic acid (1.9) to prephenic acid (1.10), by 

a chorismate mutase-mediated Claisen rearrangement. From prephenic acid (1.10) the 

pathway branches once more; conversion to phenylpyruvic acid (1.11) with prephenate 

dehydratase, via loss of CO2 and H2O, can be followed by transamination to give L-

phenylalanine (1.12). Prephenic acid (1.10) can also be converted to 4-

hydroxyphenylpyruvic acid (1.13) by decarboxylation with prephenate dehydrogenase. 

Subsequent enzyme-mediated transamination results in the formation of L-tyrosine (1.14) 

(Scheme 1.2).3-4  

 

 

 

Scheme 1.2 – Formation of amino acids via shikimic acid pathway   

 

Phenylalanine and tyrosine, as phenylpropanoid (C6C3) building blocks are precursors 

for a large variety of different types of natural products, including coumarins. The 
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frequent first step from the aromatic amino acids is the elimination of ammonia from the 

side chain, to give the appropriate trans-cinnamic acid; cinnamic acid (1.15) from 

phenylalanine, and 4-coumaric acid (1.16) from tyrosine. The coumarin framework is 

accessed from these cinnamic acids by ortho-hydroxylation, and subsequent trans-cis 

isomerisation and lactone formation, resulting in the formation of coumarin (1.21) or 

umbelliferone (1.22) (Scheme 1.3).3-4 

 

 

Scheme 1.3 – Formation of coumarins from aromatic amino acids 

 

Many examples of coumarin natural products have previously been studied, and they 

have a wide variety of applications. Particularly prevalent examples include 

umbelliferone (1.22), which absorbs ultraviolet light and is used in sunscreens, and the 

furanocoumarin compounds psoralen (1.23) and angelicin (1.24), both of which have 

been used in the treatment of skin conditions, and skin cancer (Scheme 1.4).5 A number 

of drug molecules have also been derived from naturally occurring coumarins, including 

the anticoagulant warfarin (1.27), which is derived from the condensation reaction of 4-

hydroxycoumarin (1.25) with benzalacetone (1.26) (Scheme 1.4),6 and is widely used to 

prevent blood clotting by inhibiting vitamin K production.7  
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Scheme 1.4 – Examples of coumarin natural products, and synthesis of coumarin-

derived drug molecule warfarin 

 

A number of dimeric coumarin natural products are known, including chimsalicifoliusins 

A and B (1.28 and 1.29), diseselin B (1.30) and jayantinin (1.31).8-10 The monomeric 

units are either connected via a direct C–C aryl-aryl bond (1.29 and 1.31), through a 

linking oxygen (1.28), or in the case of diseselin B (1.40), through a cycloaddition of the 

coumarin C=C bonds of each sub-unit, forming a cyclobutane group (Figure 1.1). 

 

 
 

Figure 1.1 – Examples of dimeric coumarin natural products  

 

A further example comes from the work of Reisch and co-workers,11 who carried out the 

synthesis of the naturally occurring dimeric coumarin compound cyclobisuberodiene 

(1.33), by a Diels–Alder type reaction between the diene side chains of each (E)-
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suberodiene (1.32) monomer, after reflux with ZnCl2 (Scheme 1.5a). The same authors 

also carried out the synthesis of another dimeric coumarin compound 1.35, by a Diels–

Alder reaction of (Z)-suberenol (1.34) and (E)-suberodiene (1.32), followed by 

dehydration (Scheme 1.5b).12 

 

 

Scheme 1.5 – a) Dimeric coumarin formation of cyclobisuberodiene; b) Synthesis of 

6’,6-[1,4(8)-p-Menthadiene-3,5-diyl]bis(7-methoxycoumarin), via Diels–Alder type 

reactions  

 

 

1.1.2 – Isolation  

 

Fatouapilosin (1.36) is a novel dimeric coumarin-derived natural product that was first 

isolated by Chiang and co-workers in 2010, from the Fatoua pilosa plant, a small herb 

that grows mainly in Taiwan.1 It was isolated alongside 18 other known compounds, 

which included simple coumarin compounds umbelliferone (1.22), scopoletin (1.37), and 

phellodenol-A (1.38), as well as pyranocoumarin compound xanthyletin (1.39), and six 

furanocoumarins (1.40-1.45) (Figure 1.2). Other isolates included, steroids, chalcone, 

quinone and triterpenoid derived compounds, all of which were analysed by 1H and 13C 

NMR spectroscopy, and characterised by comparison to authentic samples and literature 

values. 
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Figure 1.2 – Compounds isolated by Chiang and co-workers from fatoua pilosa 

 

Chiang and co-workers were able to elucidate the structure of fatouapilosin (1.36) using 

a range of different analytical methods. The molecular mass and formula were 

determined from HRMS, and UV absorption maxima matched known literature values 

corresponding to a phenolic 7,8-dioxygenated coumarin system.2 Signals from the IR 

spectrum indicated the presence of O–H and C=O lactone groups, while 1D 1H NMR 

spectroscopic data showed two sets of vicinal proton couplings, characteristic of a 

coumarin structure, along with peaks indicating the presence of a prenyl group. After 

extensive analysis of 2D NMR spectroscopic data, particularly the COSY, NOESY, 

HSQC and HMBC spectra, Chiang and co-workers proposed a unique dimeric coumarin-

derived skeleton.1 Partial substructures 1.36a, 1.36b and 1.36c were initially suggested, 

based on the COSY spectrum, with HMBC data subsequently used to link them together 

(Scheme 1.6). Key cross-peaks between H-9′ and C-4′, C-7′ and C-8′, showed that 

fragments 1.36a and 1.36b were linked together at C-7′ and C-8′, whereas cross-peaks 

between H-11 and C-6′, as well as H-13 proton and C-5′ showed that fragments 1.36a 

and 1.36c were linked at C-5′ and C-6′.1 NOESY experiments were used to determine the 

relative configuration of fatouapilosin, with no cross-peak observed between H-9′ and H-

13, which suggested that fragments 1.36b and 1.36c were anti to each other. 
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Scheme 1.6 – Elucidation of the structure of fatouapilosin (1.36) 

 

1.1.3 – Proposed Biosynthesis of Fatouapilosin 

 

When examining the structure of fatouapilosin (1.36), it is clear that there is a latent 

symmetry, with two prenyl-coumarin-derived subunits present. This indicated that the 

natural product may form in nature via a dimerisation reaction. A biosynthetic route to 

fatouapilosin (1.36) was proposed (Scheme 1.7), which centres around the pseudo-

dimerisation of two coumarin subunits (1.48 and 1.49), both derived from the naturally 

occurring 6-prenylcoumarin compound brosiparin (1.46). Diene 1.49 would form by the 

oxidation of the prenyl group of brosiparin (1.46). A proposed oxidation and ring 

contraction of brosiparin (1.46) could then afford the 5,7-bicycle 1.48. The cyclic 

anhydride of compound 1.48 would then undergo electrophilic aromatic substitution with 

the other monomeric unit 1.49, before rapid lactonisation of the resultant hydroxy acid, 

giving compound 1.50. Following this, an intra-molecular Prins reaction between the 

terminal alkene and newly formed ketone of compound 1.50 would form the central 7-

membered ring, with a subsequent domino-Prins sequence forming two new C–C bonds 

to give the final compound fatouapilosin (1.36).  
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Scheme 1.7 – Proposed biosynthetic route to fatouapilosin 

 

 

 

1.1.4 – Biomimetic Synthesis 

 

The total synthesis of a natural product in which reactions are carried out that are closely 

related to those in a proposed biosynthetic route, or that mimic known enzymatic 

transformations, is known as a biomimetic synthesis. The overall concept of biomimetics, 

or biomimicry, is defined as the imitation of nature to solve complex human problems, 

and has been utilised for hundreds of years, from Leonardo Da Vinci’s 15th century 

attempts to invent a flying machine inspired by the flight and anatomy of birds,13 to the 

modern-day design of bioinspired nanomaterials for tissue engineering and bone 

regeneration.14 Despite centuries of biomimetic research, the term itself was only coined 

in the 1950s by Otto Schmitt, who studied the nerves in squid, and attempted to engineer 

devices based on nerve propagation.13  

In the field of organic synthesis, the earliest reports of biomimetic synthesis included 

those of Collie, who synthesised orcinol (1.52) from dimethylpyrone (1.50) through a 

polyketide intermediate (1.51) (Scheme 1.8a),15 and Robinson, who prepared tropinone 

(1.53) by a three component condensation of succindialdehyde, methylamine and acetone 
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dicarboxylic acid (Scheme 1.8b).16 Neither of these landmark examples, however, are 

likely to have been initially planned out as biomimetic syntheses, but both helped to lay 

the foundations for future biomimetic study in total synthesis, and the eventual 

establishment of biomimetic synthesis as a distinct field in its own right.  

 

 

 

Scheme 1.8 – a) Collie’s synthesis of orcinol (1.52); b) Robinson’s synthesis of 

tropinone (1.53) 

 

In 1961, van Tamelen became the first to attempt to define this area of work, describing 

a synthesis that was “designed to follow, in at least its major aspects, biosynthetic 

pathways proved or presumed to be used in the natural construction of the end product” 

as a ‘biogenetic-type’ synthesis.17 Breslow in 1972 went a step further, and defined the 

whole area of biomimetic chemistry as “the branch of organic chemistry which attempts 

to imitate natural reactions and enzymatic processes as a way to improve the power of 

organic chemistry.”18 By carrying out a synthesis in a biomimetic manner, it is possible 

to learn more about the inherent reactivity and behaviour of naturally occurring 

compounds and to develop bio-inspired reactions and multi-reaction sequences that 

rapidly generate molecular complexity.18 Mimicking a biosynthetic pathway can often 

lead to a much shorter total synthesis in terms of step count, with the use of protecting 

groups and functional group-interconversions minimised. A particular example that 

showcases the power of biomimetic strategy is Heathcock and Piettre’s synthesis of 

proto-daphniphylline (1.57), in which a biomimetic Michael, Diels–Alder, aza-Prins 

cascade is used to form two C–N bonds, four C–C bonds, and generate five rings in one 

sequence (Scheme 1.9).19 This biomimetic approach was applied in the short synthesis 
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of the related compound methyl homodaphniphyllate, which had taken 19 steps to 

synthesise when using a standard retrosynthetic strategy.19 

 

 

Scheme 1.9 – Biomimetic total synthesis of proto-daphniphylline 

 

One of the main areas of interest within the Lawrence group is the biomimetic total 

synthesis of natural products by taking inspiration from biosynthetic pathways. The 

syntheses have typically involved a key biomimetic dimerisation step, and include the 

natural products incarviditone (1.58), incarvilleatone (1.59), (−)-angiopterlactone B 

(1.60) and thymarnicol (1.61) (Figure 1.3), all of which were synthesised in remarkably 

few steps.20-22 
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Figure 1.3 – Previous dimeric natural products synthesised in the Lawrence group 

 

We envisaged that by designing a synthetic route to fatouapilosin (1.36), based closely 

on the proposed biosynthesis (Scheme 1.7), it would be possible to carry out a short 

biomimetic total synthesis of this complex dimeric natural product. Oxidative ring 

contraction, one of the key steps highlighted in the proposed biosynthetic route, is an 

underdeveloped area in organic synthesis, so the potential to develop new, and applicable 

methodology for this transformation would be a significant area of interest within this 

project. 

 

 

1.2 - Oxidative Ring Contraction 
 

1.2.1 – A key step in the proposed biosynthesis of fatouapilosin (1.36) 

 

It was suggested in the proposed biosynthesis that the oxidative ring contraction of 

brosiparin (1.46) would occur by initial oxidation of brosiparin (1.46) to the quinone 

compound 1.47, that could then undergo a ring contraction via a 1,2-shift  forming a 5,7-

bicyclic compound (1.48). One of our main tasks therefore, would be to find the right 

conditions to carry out this oxidative ring contractive transformation of brosiparin. By 

following this biosynthetic hypothesis we hoped to achieve the generation of complexity 

and stereogenicity in one step, from a relatively simple starting material. 
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Scheme 1.10 – Proposed oxidative ring contraction of brosiparin (1.46) 

 

 

1.2.2 – Copper-mediated ring-contraction of phenol 

 

A highly significant result was reported by Rossi and co-workers, who carried out the 

oxidation of phenol in the presence of copper (25 mol%), pyridine, methanol and 

molecular oxygen.23 At room temperature, substituted benzoquinone 1.62 was formed, a 

result in line with previous reported oxidations of phenols.24 However, when the reaction 

was carried out at 70 °C an unexpected ring contraction of phenol was observed, giving 

a substituted cyclopentenone compound 1.63 (Scheme 1.11). Unlike the vast majority of 

phenolic oxidation reactions, this ring contraction introduced stereochemistry into the 

product, as well as functional group diversity, and Rossi proposed that this could 

potentially be an effective and facile method of producing cyclopentenone derivatives 

from an inexpensive and abundant starting material.23 The reaction was also carried out 

in ethanol, propan-1-ol and butan-1-ol, leading to subsequent variation in the R groups 

of the products. 

 

 

Scheme 1.11 – Ring contractive benzilic acid rearrangement of simple phenols  
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1.2.3 – Benzilic-acid rearrangement mechanism 

 

A further interesting observation from the work of Rossi and co-workers, was that when 

substituted benzoquinone 1.62 was resubmitted to the oxidation conditions, it cleanly 

underwent ring contraction to give the cyclopentenone derivative 1.63 (Scheme 1.11). 

As a result, it was speculated that benzoquinone 1.62 was an intermediate formed during 

the oxidative ring contraction of phenol. The reaction was therefore proposed to proceed 

by a benzilic acid rearrangement-type mechanism. The benzilic acid rearrangement is the 

base-mediated rearrangement of 1,2-diketones into α-hydroxy-carboxylic acids, and is so 

named for the reaction of benzil (1.64) with potassium hydroxide to form benzilic acid 

(1.67), which was first performed by Liebig in 1838.25-26 Initial addition of hydroxide 

into one of the benzil ketone groups to form alkoxide (1.65) is followed by a 1,2-aryl 

shift, giving, on acidic workup, the α-hydroxy-carboxylic acid 1.67 (Scheme 1.12).  

 

 

 

Scheme 1.12 – Mechanism of benzilic acid rearrangement 

 

 

1.2.4 – Examples of oxidative ring contractions in total synthesis  

 

Several notable examples of ring-contractions by benzilic acid rearrangement have been 

reported, including in the work of Wood and co-workers, who carried out the reaction on 

a pyranosylated indolocarbazole (1.68) (Scheme 1.13a).27 Grieco and co-workers also 

utilised ring contractive benzilic acid rearrangement as a key step in the total synthesis 

of (±)-shinjudilactone (1.71) and (±)-13-epi-shinjudilactone (1.72), which were formed 

as a 1:1 ratio from the benzilic acid rearrangement of a common precursor (1.70) 

(Scheme 1.13b).28  
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Scheme 1.13 – Applications of ring contractive benzilic acid rearrangement in the 

synthesis of a) pyranosylated indolocarbazole 1.70 and b) (±)-shinjudilactones 1.71 

& 1.72  

 

Further examples of the ring contractive benzilic acid rearrangement include Thorson 

and co-workers’ total synthesis of mccrearamycins A-D, in which a key step involves the 

formation of a 5-membered cyclopentenone compound from a hydroxyquinone.29 This 

transformation was metal-mediated and required 2 equivalents of cobalt chloride, with 

proposed oxidation of compound 1.73 to the corresponding ortho-quinone 1.74 followed 

by coordination of CoII to ortho-quinone 1.74 and benzilic acid rearrangement to form 

the cyclopentenone in mccrearamycin B (1.75) (Scheme 1.14). 

 

 

Scheme 1.14 – Cobalt(II)-mediated benzilic acid rearrangement in the total 

synthesis of mccrearamycins  
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The synthesis of norlapachol (1.79) by Eyong and co-workers also utilises a benzilic acid 

rearrangement step as part of an overall Hooker oxidation sequence.30 Epoxidation of 

napthoquinone compound lapachol (1.76) gave intermediate 1.77, which underwent 

benzilic acid rearrangement in basic conditions to give indane carboxylic acid derivative 

1.78 (Scheme 1.15). Subsequent oxidative diol cleavage and intramolecular aldol 

reformed the napthoquinone ring system, and decarboxylation gave norlapachol (1.79) 

in an overall one-pot Hooker oxidation reaction.   

 

 

Scheme 1.15 – Benzilic acid rearrangement in the total synthesis of norlapachol 

 

Although these examples of ring contraction of quinones by benzilic acid rearrangement 

exist in the literature, they have only been applied to specialised systems, and require the 

use of superstoichiometric reagents. Rossi’s copper-catalysed ring contraction of phenol 

seemingly represents the only substoichiometric ring contraction of an inexpensive and 

abundant aromatic starting material. If we could build on his work, and develop a 

catalytic methodology that could be both used in the total synthesis of fatouapilosin 

(1.36), and applied generally to a range of oxygenated aromatic compounds, it could 

represent an excellent method of generating complex stereogenic molecules containing a 

range of functional groups from readily available and renewable carbon sources. 
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1.3 – Base metal-catalysed oxidation reactions 
 

1.3.1 – Introduction 

 

This project, aiming to combine biomimetic total synthesis with the development of base-

metal catalysed methodology was designed as a collaboration between the Lawrence and 

Thomas groups. The Thomas group’s expertise lies in the development of new catalytic 

methodologies for organic synthesis, using renewable, inexpensive and non-toxic 

reagents and catalysts. Iron, cobalt, manganese and aluminium-catalysed 

hydrofunctionalisation reactions have all been reported by the group in recent years.31-34 

It was hoped that catalytic methodology could be developed and applied to the oxidation 

and subsequent ring contraction of oxygenated aromatic compounds. In nature, there are 

a number of enzymes that carry out oxidative transformations, and many of them contain 

iron or copper at their core.35-36 A particularly relevant example for this project is in the 

formation of L-dopaquinone (1.81), which is formed in nature by the oxidation of 

phenolic amino-acid L-tyrosine (1.14) to the catechol-containing L-DOPA (1.80), by an 

iron-centred hydroxylase enzyme. A copper-centred tyrosinase enzyme then catalyses 

the oxidation of L-DOPA (1.80) to L-dopaquinone (1.81) (Scheme 1.16).37 

 

 

Scheme 1.16 – Biosynthesis of L-dopaquinone (1.81)  

 

Given the Thomas group’s experience in developing iron-catalysed reactions, as well as 

the precedent set by Rossi’s use of copper (Section 1.2.2), use of catalysts containing 

these two metals seemed like an ideal starting point for investigations. 

 

 

1.3.2 – Iron-catalysed oxidation 

 

Iron-catalysed oxidation reactions are very common in nature.38 A large number of 

biological transformations are achieved by selective enzymatic oxidation of both 

activated and unactivated C–H bonds, by cytochrome P450 enzymes.39 Heme-containing 

oxygenases and both mononuclear and diiron non-heme enzymes have also been used 
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for this function.40-41 In recent years, investigation into iron-catalysed oxidation reactions 

in organic synthesis has significantly increased, often taking inspiration from processes 

that occur in nature.42 A number of catalysts have attempted to replicate the activity of 

cytochrome P450 by mimicking the heme structure, and incorporating multidentate 

porphyrin-type ligands around a metal centre.43 Recent insight into the nature of non-

heme iron oxygenase enzymes, however, has led to an increase in the use of non-heme 

ligands.40, 44 Iron complexes have been studied which use tetradentate nitrogen donor 

ligands, and have two coordination sites available for peroxide binding and activation, 

compared with only one in heme complexes.43  

White has developed a tetradentate amine Fe(PDP) catalyst (1.82) which, in combination 

with hydrogen peroxide, selectively oxidises aliphatic C–H bonds across a broad range 

of substrates (Scheme 1.17).45 Selectivity was achieved on the basis of the electronic and 

steric properties of the C–H bond, with carboxylate directing-groups used for the 

formation of 5-membered lactone products. Predictable oxidation of complex natural 

products and their derivatives, such as (+)-artemisinin (1.83) have been carried out, 

exemplifying the potential of this reaction for complex natural product and 

pharmaceutical synthesis (Scheme 1.17).45 White has also carried out iron-catalysed 

oxidations using the Fe(PDP) catalyst to form nortaxane structures (eg. 1.86) from 

taxanes (eg. 1.85), by a domino 3-exo-trig, retro-3-exo-trig reaction (Scheme 1.18).46  

This method offers great potential for the diversification of complex natural product 

derivatives.  

 

 

 

Scheme 1.17 – Iron-catalysed C–H oxidation scope and oxidation of (+)-artemisinin  
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Scheme 1.18 – Iron-catalysed synthesis of nortaxanes from taxanes, through a 

carbon-centred radical 

 

Further work from White has seen the use of Fe(PDP) catalyst 1.82 to oxidise cafestol, 

(a terpene found in coffee) to the diterpene natural product tricalysolide B (1.90) (Scheme 

1.19).47 The Fe(PDP) complex (1.82) acts as an enzyme mimic, and supports the 

hypothesis that this class of natural products are derived from cafestol through a 

cytochrome P-450-mediated furan oxidation. Cafestol diacetate (1.87) underwent iron-

catalysed epoxidation, to form compound 1.88, followed by further oxidation using 

NaClO2 to give the hydroxy-lactone product 1.89 as a single diastereomer. Acetate 

cleavage then resulted in the formation of tricalysolide B (1.90) 

 

Scheme 1.19 – Synthesis of tricalysiolide B using iron-catalysed epoxidation  
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The enzymatic oxidation of L-DOPA (1.80) has been proposed in the biosynthesis of 

melanin, with the catechol group of L-DOPA (1.80) undergoing oxidation to the 

corresponding ortho-quinone (1.92).48 However, an alternative pathway, often found in 

certain plants and fungi, involves the extra-diol cleavage of the catechol group by 

catechol-2,3-dioxygenase enzymes, to give compound 1.91, an intermediate in the 

biosynthesis of betalamic acid (Scheme 1.20).49  

 

 

 

 

Scheme 1.20 – Enzyme-catalysed oxidative transformations of L-DOPA  

 

Trauner carried out a biomimetic extra-diol cleavage of catechols using an FeBr2 and 

1,4,7-triazacyclononane (TACN) catalytic system, to give 2-methoxy-2-H-pyrans (eg. 

1.93)  The reaction was used in the 5-step synthesis of betanidin (1.94), which is formed 

using two separate derivatives of L-DOPA (Scheme 1.21).37  
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Scheme 1.21 – a) Iron-catalysed extra-diol catechol cleavage to form pyrans, and 

b) in the synthesis of betanidin (1.94)  

 

A number of examples of high oxidation state iron-species have been reported for the 

oxidation of C–H and C–O bonds.50-51 These include the work of Sen Gupta and co-

workers, who have developed a peroxidase-mimicking iron(V)-oxo complex (1.95) with 

a tetra-amido macrocyclic ligand (TAML), for use in the oxidation of a range of alkanes 

and alcohols (Scheme 1.22).52-53 The active iron (V)-oxo species was proposed to form 

in situ from the reaction of iron(III) chloride complex 1.96 with mCPBA.52  
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Scheme 1.22 – High-valent iron-oxo oxidation catalysis  

 

The generally accepted mechanism for enzymatic iron-catalysed hydroxylation, as well 

as by biomimetic iron-centred catalysts, is the oxygen rebound mechanism.39, 54 The first 

step is hydrogen atom abstraction from a C–H bond in the substrate by the high-valent 

iron-oxo species (Fen=O, n usually = IV or V), resulting in the substrate radical R· and a 

reduced iron hydroxide species (Fen-1 –OH) (Scheme 1.23). The rebound step then 

proceeds by the addition of the organic radical (R·) to the oxygen bound to the iron centre, 

forming an alcohol, which then dissociates from iron, generating the R–OH product and 

an iron(n-2) complex, which is subsequently oxidised and re-enters the catalytic cycle.  

 

 

Scheme 1.23 – Oxygen rebound mechanism for iron-catalysed C–H hydroxylation  
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1.3.3 – Copper-catalysed oxidation 

 

Copper catalysts have been used in a range of aerobic oxidations, often taking inspiration 

from the many copper-based oxidation enzymes. The ability of copper to easily access 

oxidation states from Cu0 to CuIII allows it to act through one-electron or two-electron 

processes, and to associate with a wide variety of functional groups. A number of reviews 

on copper oxidation chemistry have recently been published, covering the copper-

catalysed oxidation of a number of different reaction types, including, but not limited to 

the oxidation of hydrocarbons, alcohols, carbonyls, phenols, imines, amines and thiols.55-

57 Of particular interest for this project was the use of copper for the oxidation of alcohols 

and phenols. A number of reports on the copper-catalysed aerobic oxidation of alcohols 

have been developed, with several examples employing the use of the N-oxide compound 

TEMPO. Semmelheck and co-workers reported one of the earliest examples of this 

system, combining CuCl and TEMPO (10 mol% of each), with O2 as the oxidant, for the 

oxidation of a series of primary benzylic and allylic alcohols (Scheme 1.24).58 This 

system and others, including those reported by Sheldon, Knochel and Marko had limited 

applicability in traditional synthetic chemistry applications, either due to reduced activity 

with aliphatic alcohols, or because of the use of pure O2 or fluorinated solvents.59-61 Stahl 

and Hoover, however, developed a highly practical catalyst system using a CuI salt with 

a 2,2′-bipyridine (bpy) ligand and TEMPO. They were able to oxidise a wide range of 

primary (and unprotected secondary) alcohol substrates to the corresponding aldehydes 

or ketones, using ambient air as oxidant (Scheme 1.24).62 
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Scheme 1.24 – Examples of copper-catalysed alcohol oxidation reported by a) 

Semmelhack and b) Stahl  

 

As previously referred to (section 1.3.1), copper is present in tyrosinase enzymes that can 

carry out the oxidation of phenols to catechols and subsequently quinones.63 Catechol 

oxidase is another example of a copper-containing enzyme, that can oxidise catechols to 

quinones. The active sites of both of these enzymes contain a binuclear copper centre 

coordinated by six histidine residues. The enzymes have been shown to bind dioxygen in 

a bridging structure, where the CuI centres in the deoxy state are converted into CuII in 

the oxy state.63 A significant amount of work has been reported concerning the 

development of copper catalysts for the oxidation of phenols to ortho-quinones with O2 

as a stoichiometric oxidant, by mimicking the reactivity of these enzymes. Initially this 

was mainly limited to the use of stoichiometric copper reagents,64 with only a few reports 

of catalytic oxidation.65 Early examples of the use of substoichiometric copper catalysts 

for phenol oxidation included the work of Reglier and co-workers, who developed a 

dinuclear copper catalyst with a polydentate imine ligand (1.97), with Tuzcek and co-

workers later reporting a similar mononuclear copper(I) complex (1.98) (Scheme 1.25).66 

In both of these processes the catalytic reaction proceeded via an oxo-bridged active 

species, following the reaction of the complex with molecular oxygen, as shown in the 

general mechanism for phenol to quinone oxidation, as proposed by Stack, Herres-Pawlis 

and co-workers (Scheme 1.25).67 However, these examples were limited to small scale 

and incomplete conversion and used superstoichiometric triethylamine, so did not find 

practical application.  
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Scheme 1.25 – Early examples of tyrosinase-mimicking copper oxidation catalysts, 

and general phenol to quinone oxidation mechanism 

 

Recently, a significant amount of work in this area has been carried out by Lumb and co-

workers, who developed a practical catalytic aerobic oxygenation of phenols to ortho-

quinones, using a CuI complex, [Cu(CH3CN)4]PF6 along with di-tert-

butylethylenediamine , with very low catalyst loadings (Scheme 1.26).68 The resultant 

ortho-quinones have been shown to be very versatile intermediates, and Lumb was able 

to use this method to synthesise a range of polyfunctional heterocyclic compounds.69 

This work has also been applied to a range of primary and benzylic alcohols, to enable a 

catalytic oxidation that does not require use of an external N-oxide co-oxidant such as 

TEMPO.70  
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Scheme 1.26 – Lumb’s copper-catalysed oxygenation of phenols to ortho-quinones  

 

Limberg and co-workers reported a more unusual example, where they developed CuI 

complexes containing tripodal ligands with three pyridiyl/imidazoyl N-donor units (such 

as 1.103), that mimicked both monooxygenase and catechol dioxygenase enzyme 

activity.71 Dioxygenase enzymes are responsible for C–C bond cleavage of catechols, 

which is an important part of several metabolic pathways. Limberg’s complexes 

catalysed the oxidation of phenol 1.99 to the corresponding catechol (1.100) and quinone 

(1.101), which was then followed by an oxidative cleavage step to give dicarboxylate 

compound 1.102, which could lead to a number of different oxidation products (Scheme 

1.27).  

 

 

Scheme 1.27 – Oxidation and oxidative cleavage of phenolic compounds 

 

 

1.4 - Oxygenated aromatic compounds 
 

Among the many reasons for the interest in the oxidation of phenols is their vast 

abundance and potential for functionalization to useful materials, dyes, biologically 

active compounds and natural products.72 Phenols and other oxygenated aromatic 
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compounds (OACs) are often readily available feedstock chemicals, the bulk of which 

are synthesised from petroleum-derived hydrocarbons.73 Phenol was first discovered by 

Runge in 1834, who isolated it from coal tar,74 with subsequent work by Laurent and 

Kekule enabling the determination of its molecular structure by 1858.72 Until the end of 

the 19th century all phenol was extracted from coal, and mainly used as a disinfectant, 

but in the 1900s demand for phenol-based polymers and bisphenol compounds grew.72 

Subsequently, the benzenesulfonate process was developed to produce phenol on an 

industrial scale. This involved the reaction of benzene with sulphuric acid to give benzene 

sulfonic acid, with subsequent reaction with sodium hydroxide leading to sodium 

phenoxide, which was then converted to phenol using hydrochloric acid (Scheme 1.28).75 

 

 

Scheme 1.28 – Benzenesulfonate process to produce phenol 

 

Nowadays, approximately ten million tonnes of phenol are produced each year, the 

majority from the cumene process (also known as the Hock process), which has replaced 

the benzenesulfonate process, largely due to the fact that it produces less waste products. 

A key feature of the cumene process is that both phenol and fellow commodity chemical 

acetone are produced from inexpensive, petroleum-derived hydrocarbon starting 

materials benzene and propylene (Scheme 1.29).76 Initial Friedel-Crafts alkylation of 

benzene by propylene, using an acid catalyst (generally phosphoric acid) leads to 

formation of cumene (1.104). Cumene hydroperoxide (1.105) is formed by oxidation of  

cumene (1.104) in air, which proceeds by initial benzylic proton abstraction from 

cumene, then reaction of the resulting cumene radical with molecular oxygen. The 

following step is the acidic hydrolysis of cumene hydroperoxide (1.105), which results 

in formation of phenol and acetone, via a Hock rearrangement mechanism (Scheme 

1.29).76 
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Scheme 1.29 – Cumene process to form phenol and acetone 

 

The co-production aspect of the cumene process can be a major advantage, but only if 

both products are in similar demand. Overproduction can decrease the economic viability 

of the process, and as a result co-product free routes to phenol have been explored, 

including direct oxidation of benzene to phenol, but none of these processes have thus 

far been commercialised on a large-scale.72 

In recent years the recovery of OACs from renewable sources such as plant biomass 

(particularly from lignin) has received increased attention.73, 77 However, these aromatic 

compounds generally have flat structures that lack functional diversity and 

stereochemical complexity. The development of oxidative chemistry to functionalise 

phenols and OACs would introduce a renewable starting point for the synthesis of more 

complex molecules for use in the synthesis and production of fine chemicals.77 
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1.5 - Project Aims 
 

 

The main aim of this project was to develop a sustainable and biomimetic method of 

oxidative ring contraction of phenolic compounds, enabling the generation of complex 

molecules from simple and abundant aromatic starting materials (Scheme 1.30). We 

aimed to use earth-abundant and sustainable transition metals as catalysts, and to test the 

reactions with a large variety of oxygenated aromatic compounds, with the objective of 

developing a general procedure for the oxidative ring contraction of phenols and 

oxygenated aromatic compounds. The typical development paradigm for catalysis is to 

develop the system using simple substrates, then increase complexity to increase the 

robustness and scope of the catalysts. However, this project will take an alternative route, 

by starting with brosiparin, a complex substrate, which we strongly suspect to undergo 

the targeted oxidative ring contraction in nature. It was hoped that this reactivity could 

be exploited, and the catalysts tailored for this type of reaction, and demonstrate high 

robustness and functional group tolerance from the start. In this way, a number of 

potential issues can be overcome early on, and a method of catalysis that is applicable to 

a vast range of complex substrates and tolerant to a number of functional groups can be 

established. We would then hopefully also be able to achieve a short, biomimetic total 

synthesis of fatouapilosin (1.36) (Scheme 1.31). 

 

 

Scheme 1.30 – Envisaged biomimetic oxidation of OACs 

 

 

 

 

 

 



43 

 

 

Scheme 1.31 – Proposed biosynthesis of fatouapilosin via oxidative ring-contractive 

benzilic acid rearrangement  
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Chapter 2 – Synthesis of Brosiparin 
 

 

2.1 – Brosiparin 
 

2.1.1 - Introduction 

 

As described previously, an important intermediate in the proposed biosynthesis of 

fatouapilosin (1.36) (Scheme 2.1) is the monomeric coumarin, brosiparin (1.46). 

Brosiparin (1.46), itself a natural product that has never previously been synthesised, 

contains a coumarin backbone, with a prenyl group at the 6-position, a methoxy group at 

the 7-position and a hydroxyl group at the 8-position (Scheme 2.1). The key step in the 

proposed route to fatouapilosin (1.36) involves the oxidation and benzilic acid 

rearrangement of brosiparin (1.46) to compound 1.47, with a 6- to 5-membered ring 

contraction similar to that previously described in Scheme 1.11, Chapter 1.   

 

Scheme 2.1 – Brosiparin oxidation and subsequent benzilic acid rearrangement 

 

It was decided that the start point of the project would be the synthesis of brosiparin 

(1.46), as it is both an important precursor in the total synthesis of fatouapilosin (1.36) 

and an ideal initial substrate to develop a catalytic method of oxidative ring contraction 

by benzilic acid rearrangement. Starting with simple phenols and building up complexity 

could lead to problems down the line, but the use of a more complex substrate, such as 

brosiparin (1.46), which contains multiple functionalities, could avoid any potential 

issues. Another major factor in this decision is the fact that if the biosynthetic proposal 

is correct, we can aim to mimic the ring contraction that occurs in nature, as brosiparin 

(1.46) should be predisposed to this kind of reactivity.  
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2.1.2 – Isolation  

 

Brosiparin (1.46) was first isolated in Brazil in 1971 by Braz Filho and co-workers. It 

was extracted from the bark of the Brosimum rubescens plant, along with a number of 

other similar coumarin derived compounds (Figure 2.1).78 Brosimum rubescens is a 

member of the Moraceae family and its heartwood, which is often used in carpentry, 

contains a large proportion of the known coumarin xanthyletin 1.39, along with minor 

amounts of other known coumarins, 7-demethylsuberosin 2.1 and luvangetin 2.2. Two 

novel coumarins were also isolated, namely brosiparin 1.46 and brosiprenin 2.3. Both 

contain prenyl side chains at C-6 hydroxy- and methoxy- groups at the C-7 and C-8, with 

brosiprenin 2.3 displaying an addition prenyl group at C-5.  

 
 

Figure 2.1 – Coumarins derived from Brosimum rubescens  

 

Tests were carried out on the novel compounds brosiparin (1.46) and brosiprenin (2.3) in 

order to elucidate their structures and confirm the positions of each functional group. 

Both compounds were acetylated and the resulting UV spectra showed peaks typical of 

7-alkoxycoumarins. A Gibbs test was carried out on brosiparin (1.46) with a positive 

result, leading the isolation chemists to suggest that the hydroxyl group was para to the 

unsubstituted aromatic position. The Gibbs test is used to determine the presence of 

phenols, by the reaction of Gibbs reagent (2.4) with a phenol unsubstituted at the 

para-position. The Gibbs reagent adds to the para-position of the molecule to form an 

indophenol (eg. 2.6), which results in a dramatic colour change with pH (Scheme 2.2).79 

Although the Gibbs test was widely used for this purpose at the time, subsequent 

literature has suggested that many para-substituted phenols do indeed react with Gibbs 

reagent, and form indophenol products. 
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Scheme 2.2 – Gibbs test, used to confirm the presence of phenols 

 

A strong suggestion that the methoxy group was adjacent to the prenyl group was given 

by the acid-catalysed cyclisation of the prenyl group only occurring after cleavage of the 

methoxy group (Scheme 2.3a).  The structure of brosiprenin (2.3) was confirmed by 

comparison of the isolated sample with a synthetic sample prepared by prenylation of 

brosiparin (1.46), then para-Claisen rearrangement of the resultant O-prenylated 

compound 2.9 to give brosiprenin (2.3) (Scheme 2.3b). 

 

 

 

Scheme 2.3 – a) Studies carried out to determine the structure of brosiparin (1.46); 

b) to determine to structure of brosiprenin (2.3)  
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2.2 – Design of synthesis  
 

2.2.1 – Coumarin formation methods  

 

The key step in the synthesis of brosiparin (1.46) would be the formation of the coumarin 

framework. A number of different methods have been reported for the synthesis of 

coumarin and coumarin-derived compounds.80 A well-established and particularly 

prevalent method is the Perkin reaction, which was first reported in 1868.81 

Salicylaldehyde (2.10) was heated with acetic anhydride and sodium acetate, with an 

intermediate O-acetyl salicylaldehyde (2.11) formed, which underwent an intramolecular 

aldol-type condensation to form coumarin (1.32) (Scheme 2.4).  The Perkin reaction has 

been used to form a number of substituted coumarins, but a major drawback is the 

difficult formation of 2-hydroxybenzaldehyde starting materials from substituted 

phenols.80  

 

Scheme 2.4 – Perkin reaction to form coumarin 

 

Other reported coumarin formation methods include the use of Claisen, Wittig and 

Knoevenagel chemistry.80, 82-84 However, we initially considered that the most promising 

method for the synthesis of brosiparin (1.46) would be the Pechmann condensation, first 

reported in 1884.85 The Pechmann condensation involves the reaction of phenols with β-

keto esters using Lewis acids, such as AlCl3, to catalyse the transesterification, followed 

by a Friedel-Crafts type cyclisation to form the new ring system.  

 

Scheme 2.5 – Formation of 4-methylcoumarin (2.12) by Lewis acid-catalysed 

Pechmann reaction     
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A drawback of this reaction is the fairly harsh conditions required, typically at 

temperatures between 100-130 °C, though it has been shown that Pechmann reactions of 

highly-activated phenols can occur at room temperature using ethyl acetoacetate and 

catalytic sulfuric acid (Scheme 2.6a).86 To form coumarins unsubstituted at the 4-position 

(such as brosiparin (1.46)), however, requires the use of formylacetic acid or esters. 

These compounds are unstable, so must be prepared in situ from malic acid and super-

stoichiometric sulfuric acid at temperatures above 100 °C, such as in the formation of the 

natural product umbelliferone 1.22 (Scheme 2.6b).87 

 

Scheme 2.6 – Pechmann reactions using sulfuric acid to form a) 7-hydroxy-4-

methylcoumarin and b) umbelliferone  

 

More recently, a synthesis of 7,8-dihydroxycoumarin (2.16) was reported by Curini as 

part of the total synthesis of the coumarin derived natural product collinin (2.17) (Scheme 

2.7).88 The reaction of pyrogallol (2.14) and propiolic acid (2.15) in solvent-free 

conditions with a catalytic amount of concentrated sulphuric acid gave coumarin 

compound (2.16) in a reasonable yield of 59%. This straightforward formation of a 7,8-

disubstituted coumarin was ideally suited for the synthesis of brosiparin (1.46).  
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Scheme 2.7 – Curini’s synthesis of 7,8-dihydroxycoumarin (2.16) in the total 

synthesis of collinin (2.17) 

 

2.2.2 – Retrosynthesis and planned routes  

 

When examining the molecule retrosynthetically, it became clear that there were two 

obvious points of disconnection, leading to two main synthetic strategies. The first would 

involve the synthesis of the main coumarin backbone, to give compound 2.18 followed 

by selective prenylation at the 6-position on the ring whereas the alternative is to form 

the coumarin as the final step, with earlier prenylation of an aromatic ring to give a 

compound such as 2.19 (Scheme 2.8).   

 

Scheme 2.8 - Retrosynthetic strategies for the formation of brosiparin (1.46) 

 

The initial plan was to focus on the early-stage coumarin formation route to brosiparin 

(1.46). The first step would be formation of 7,8-dihydroxycoumarin (2.16) from 

pyrogallol (2.14) by Curini’s protocol, using a Pechmann condensation.88 The second 

step would involve reverse prenylation of the hydroxyl group at the C-7 position, using 

a Tsuji–Trost allylation reaction. Subsequent Claisen rearrangement would then give 

compound 2.7, with the prenyl group now at the C-6 position. In the total synthesis of 

angelmarin, Hamada has used this two-step sequence to install a prenyl group on a similar 

coumarin system.89 Using carbonate reagent 2.20 and catalytic Pd(PPh3)4, the reverse 
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prenyl group was installed, then the product heated to 130 °C to give a mixture of 6- and 

8-prenylated compounds (Scheme 2.9).     

 

 

Scheme 2.9 – Two-step prenylation in Hamada’s synthesis of angelmarin 

 

After prenylation, a selective methylation of the C7-hydroxyl group would need to be 

achieved to give brosiparin (1.46) in a planned four-step synthesis (Scheme 2.10). 

 

 

Scheme 2.10 – Planned four-step route to brosiparin  

 

 

2.3 – Early-stage Coumarin Formation Route 
 

2.3.1 – Coumarin Formation then Reverse Prenylation 

 

The synthesis started with the formation of 7,8-dihydroxycoumarin (2.16) from the 

reaction of pyrogallol (2.14) and propiolic acid (2.15), catalysed by one drop of 

concentrated sulphuric acid, with the reaction proceeding fairly smoothly at 120 °C. After 
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unsuccessful attempts to purify the product by recrystallisation and column 

chromatography, we eventually found that trituration with Et2O afforded the pure product 

(2.16), albeit in moderate yield. Back-extraction from the aqueous phase with Et2O 

increased the yield to 50%, which compared favourably to the 59% yield reported in 

literature.88 Subsequently, compound 2.16 was subjected to the reverse prenylation 

reaction using carbonate 2.20 and Pd(PPh3)4. Carbonate 2.20, the same reagent used for 

reverse prenylation in Hamada’s synthesis of angelmarin, was formed by the reaction of 

isobutyl chloroformate (2.26) and 2-methyl-3-buten-2-ol (2.27), a procedure reported in 

literature (Scheme 2.12).90 It was hoped that the selective alkylation of the hydroxyl at 

C-7 would occur, however, the reaction gave an inseparable mixture of compounds 

exhibiting reverse prenylation at both the C-7 and C-8 hydroxyl groups (2.23 & 2.24) 

(Scheme 2.11), as well as bis-prenylated compound 2.25. Unfortunately, altering the 

reaction time, order of addition and catalyst loading had no effect on this result. NaHCO3 

was added in to the reaction in an attempt to selectively form a sodium phenoxide from 

the C-6 hydroxyl group and therefore direct the alkylation to that position, but 

disappointingly the same mixture of compounds was observed.     

 

Scheme 2.11 – Coumarin formation followed by attempted reverse prenylation  
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Scheme 2.12 – Synthesis of carbonate reagent 2.20 

2.3.2 – Coumarin formation then direct prenylation  

 

Given that selective reverse prenylation at the C-7 hydroxyl group seemed unlikely, an 

alternative approach was envisaged utilising a direct prenylation, by formation of a new 

C–C bond on the coumarin ring system, rather than the initial selective reverse 

prenylation of the C-7 hydroxyl and subsequent Claisen rearrangement. Rather than 

carrying out this reaction using 7,8-dihydroxycoumarin (2.16), coumarin 2.18 was 

prepared using the same Pechmann reaction conditions described previously, but starting 

from 3-methoxycatechol (2.28) rather than pyrogallol (2.14) (Scheme 2.13). This would 

avoid the selective methylation required later on in the originally envisioned synthesis 

(Scheme 2.10).  

 

Scheme 2.13 – Proposed direct prenylation route to brosiparin (1.46) 

 

A promising method to achieve this was reported by Niggemann and Meel, who 

developed a calcium-catalysed Friedel–Crafts alkylation of arenes with secondary or 

tertiary benzylic, allylic and propargylic alcohols.91 These reactions were carried out 

under mild conditions; at room temperature with no addition of strong acids or bases 

required. A particularly relevant result was the addition of allylic alcohol 2.30 to 1,3-

dimethoxybenzene (2.29) to give prenylated compound 2.31 (Scheme 2.14).  
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Scheme 2.14 – Calcium-catalysed Friedel–Crafts addition of alcohols to arenes  

 

It was envisaged that subjecting coumarin 2.18 to these conditions would lead to the 

formation of brosiparin (1.46), however, no reaction was observed. Increased 

temperature, reaction times and catalyst loading did not change the outcome, with only 

unreacted starting material observed on each occasion (Scheme 2.15). As Niggemann 

had reported a wide range of arenes that reacted successfully and in high yield, it was 

quite surprising that no reaction at all occurred with coumarin (2.18). Attempts to repeat 

the literature reaction of dimethoxybenzene (2.29) and allylic alcohol were carried out, 

but disappointingly only gave the product (2.31) in low yields, between 10-20%, 

compared to the 72% reported in the paper. Again, increased temperature, catalyst 

loading and reaction time did not significantly improve this. 

 

 

Scheme 2.15 – Attempt to carry out Friedel-Crafts addition to coumarin 2.18 

 

Boron trifluoride diethyl etherate has also been reported to mediate the prenylation of a 

variety of aromatic compounds, including a coumarin, with either allylic alcohol 2.30 or 

prenyl alcohol 2.32.92 These approaches were both trialled, using coumarin 2.18 and 1.5 

equivalents of BF3∙Et2O. However, no reaction took place, with only unreacted starting 

material observed even when the temperature, reaction time, and equivalents of alcohol 

and BF3∙Et2O were increased (Scheme 2.16). 
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Scheme 2.16 – Attempted BF3∙Et2O-mediated prenylation of coumarin 2.18  

 

 

2.4 - Late Stage Coumarin Formation Route  
 

2.4.1 – Design of Synthetic Route 

 

At this juncture it was decided to attempt the early stage prenylation route instead. This 

route would begin with protection of two of the hydroxyl groups on pyrogallol (2.14), 

ideally as an acetal. This would leave one hydroxyl group free, thus avoiding any 

selectivity issues in the next step – reverse prenylation. Claisen rearrangement would 

then install a standard prenyl group at the position adjacent to the once-again free 

hydroxyl group, which would subsequently be methylated. Deprotection of the diol 

would give compound 2.19, which would be primed to undergo a Pechmann 

condensation to form the coumarin ring system of brosiparin (1.46) (Scheme 2.17). 

 

Scheme 2.17 – Proposed route to brosiparin via diol protection  
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2.4.2 – Orthoester Protection Strategy 

 

The first step of the synthesis would be protection of two of the hydroxyl groups using a 

known procedure to react pyrogallol 2.14 with triethyl orthoformate (2.33), thus 

protecting the diol as an orthoester (Scheme 2.18).93 Compound 2.34 was formed in a 

moderate yield – but on a large enough scale (2.5 g prepared from 5 g of starting material) 

to justify moving forward to the next step. This time the reverse prenylation of the 

remaining free hydroxyl group proceeded smoothly, giving compound 2.35 in high yield.  

 

 

Scheme 2.18 – Orthoester protection followed by reverse prenylation and Claisen 

rearrangement 

 

When the subsequent Claisen rearrangement was attempted, however, a mixture of 

products 2.36 and 2.37 was formed, seemingly due to unwanted migration of the 

orthoester. (Scheme 2.19). Attempts to prevent the transorthoesterification and resultant 

formation of 2.37, by either adding base (K2CO3) or lowering the reaction temperature 

to 90 °C, had no effect, and compound 2.37 was still observed as the major product, 

rather than target compound 2.36. Although the two products could be separated fairly 

easily, and methylation of the free hydroxyl group of compound 2.36 was successfully 

carried out on a small scale, the low yield compared to the migration product 2.37 meant 

that a different approach would have to be taken. 



57 

 

 

Scheme 2.19 – Proposed mechanism of protecting group migration 

 

2.4.3 – Attempted Silane Protection  
 

Different protecting groups were trialled with the aim of preventing any migration in the 

subsequent Claisen rearrangement. Initial attempts focused on diisopropylsilane, the use 

of which as a protecting group had been reported by Corey in the total synthesis of 

isoproterenol.94 However, after extensive analysis of 1H and 13C NMR, and particularly 

mass spectrometry, it was concluded that rather than the expected silane protected 

compound 2.39, compound 2.38, containing a 7-membered siloxane ring, had been 

formed instead in fairly high yield (Scheme 2.20). This may have been the result of the 

reaction not being kept completely anhydrous.  

 

Scheme 2.20 – Attempted silane protection of pyrogallol (2.14) 

 

Although the expected protecting group had not formed, siloxane-protected compound 

2.38 was still taken forward to the reverse prenylation step, which formed compound 

2.40 in moderate yield. The subsequent Claisen rearrangement, despite proceeding 

without migration of the protecting group, was particularly sluggish, with only 49% 

conversion to compound 2.41 after 9 hours. (Scheme 2.21). However, the siloxane 

protecting group proved capricious, and when subjected to higher temperatures or 

column chromatography would unpredictably be cleaved. These issues made it 
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impossible to reliably scale up the reactions, so once again, a different protecting group 

method would need to be used. 

 

Scheme 2.21 – Reverse prenylation and Claisen rearrangement of siloxane 

protected compound 

  

2.4.4 – Diphenyl Acetal Protection 

 

Examples of a diphenyl acetal diol protection exist in the literature, so this option was 

pursued, due to reagent availability and the relative simplicity of the procedure.95 The 

initial protection was carried out with dichlorodiphenylmethane using diphenyl ether as 

solvent (Scheme 2.22a). Although the target compound was formed in a reasonable yield, 

it proved very difficult and laborious to remove the high-boiling solvent, and therefore 

decreased the amount of product isolated. As a result, the much lower-boiling diisopropyl 

ether was used, with the reaction giving the protected compound 2.42 in higher yield, 

though with a longer reaction time required. Although the yield was fairly moderate, the 

reaction was easily scalable, so large amounts (~5 g) of product could be prepared in a 

single batch. The reverse prenylation of compound 2.42 with carbonate 2.20 proceeded 

efficiently, giving compound 2.43 in high yield, before the Claisen rearrangement was 

attempted once more. With this protecting group, only very small amounts of migration 

were observed, with the target compound 2.44 isolated in a 90% yield. The methoxy 

group was installed successfully using methyl iodide and potassium carbonate, with 
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compound 2.45 formed in 67% yield. At this point a one-pot deprotection-coumarin 

formation was attempted. Ideally the concentrated sulfuric acid would both deprotect the 

diphenyl acetal and catalyse the coumarin formation, via a Pechmann condensation 

(Scheme 2.22a). However, analysis by NMR spectroscopy showed a complex mixture of 

unwanted compounds, including those resulting from demethylation and cyclisation of 

the alkenyl side chain. Consequently, these two steps were tackled separately, with 

deprotection occurring via the use of acetic acid, to afford the diol product 2.19 in a 

moderate yield (Scheme 2.22b).96 Unfortunately, when compound 2.19 was subjected to 

the standard coumarin formation conditions used previously, cyclisation of the prenyl 

side chain was always observed. To avoid this, a Pechmann condensation procedure 

using milder conditions was needed, but the vast majority of coumarins unsubstituted at 

the 4-position had only been synthesised this way using strong acids as catalysts. 

However, a recent publication reported a range of substituted coumarins formed by a 

ytterbium triflate-catalysed Pechmann condensation with propiolic acid under 

microwave conditions.97 
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Scheme 2.22 – a) Diphenyl acetal protection route to brosiparin (1.46) b) - 

Deprotection, then envisaged coumarin formation with Yb(OTf)3  

Due to the differences between the microwave used in the literature and the one at our 

disposal, reaction conditions were optimised using 3-methoxycatechol 2.28, to make 7-

methoxy-8-dihydroxycoumarin 2.18 (Table 2.1). It was found that the size of MW vial, 

the reaction temperature, time and the amount of propiolic acid all had significant effects 

on the reaction. The best conditions were found to use a 2-5 mL (recommended volume) 

vial, with a large excess (5 equivalents) of propiolic acid at a higher temperature than 

quoted in literature, 120 °C rather than 80 °C. Increasing the reaction time (20 mins, entry 

4 vs 5) did not seem to affect the conversion, and using an even larger excess of propiolic 

acid (20 equivalents, entry 10 vs 11) also did not make any difference. With these 

conditions, complete conversion was achieved with a 92% isolated yield of compound 

2.18 (Entry 12, Table 2.1).  
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Table 2.1 – Optimisation of MW coumarin formation using Yb(OTf)3  

 

 

Entry Scale 

(mg) 

Yb(OTf)3 

(mol %) 

Vial 

(mL) 

Temp 

(°C) 

Time 

(min) 

Propiolic Acid 

(eq.) 

Conv 

 

a 200  10 2-5  80 2 1.1  15% 

b 200  10 2-5  80 10 1.1  22% 

c 200  10 2-5  80 20 1.1  43% 

d 200  10 2-5 80 10 5  80% 

(75%) 

e 200  10 2-5  80 20 5  80% 

f 10  10 0.5-2  80 10 5  11% 

g 50  10 2-5  80 10 5  30% 

h 200  10 2-5  120 10 1.1  37% 

i 200  10 2-5  180 10 1.1  63% 

j 50  10 0.5-2  80 10 5  70% 

(67%) 

k 50  10 2-5 80 10 20  62% 

l 200  10 2-5  120 10 5  100% 

(92%) 

*isolated yield in brackets 

 

The reaction was then attempted using compound 2.19, in order to form brosiparin (1.46). 

However, despite successful formation of the coumarin ring system, unwanted 

cyclisation of the prenyl side chain was consistently observed, with NMR spectra 

indicated a mixture of unwanted compounds 2.47 and 2.48, which were not isolated.  

These resulted either from demethylation and subsequent 6-membered ring formation 

onto the now free C-7 hydroxyl group, or from formation of a 5-membered ring by 

cyclisation onto the C-5 ring carbon. When the reaction was trialled at lower temperatures 

and with shorter reaction times, the cyclisation was still always observed. With no Lewis 



62 

 

acid catalyst present, no reaction took place. Literature searches have shown that 

Pechmann condensation reactions to form coumarins from substituted phenols invariably 

require acid catalysis, so once again, a new strategy was needed. 

 

Scheme 2.23 – Attempted Pechmann condensation of 2.19 using Yb(OTf)3 

 

 

 

2.5 – Construction of Coumarin from Benzaldehyde Derivatives 
 

2.5.1 – Planned route to Brosiparin 

 

After the difficulties encountered with both the early and late stage coumarin formation 

routes, a third approach was designed. This would involve building the coumarin ring 

system on to a substituted benzaldehyde, such as compound 2.49 (Scheme 2.24).  This 

would ideally take place by carrying out a Wittig reaction to install an α,β-unsaturated 

carbonyl, then a cyclisation to form the right hand side of the coumarin. (Scheme 2.24).  

 

Scheme 2.24 – Planned route to brosiparin (1.46) from a benzaldehyde derivative 
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2.5.2 – Attempted Vilsmeier–Haack formylation 

 

The first step of this planned synthesis was attempted by carrying out a Vilsmeier–Haack 

formylation on compound 2.19 (Scheme 2.25).98 However, the reaction proved 

unsuccessful, and despite varying the temperature and stoichiometry of the reaction, only 

unreacted starting material was returned in every case.  

 

 

Scheme 2.25 – Attempted Vilsmeier-Haack reaction of compound 2.19 

 

2.5.3 – Route from trimethoxybenzaldehyde 

 

It was at this point that we came across a report by Mali et al. that showed that the 

synthesis of similar 6-prenylcoumarins could be achieved in two steps from the 

corresponding hydroxybenzaldehyde. Prenylation of the hydroxybenzaldehyde using 

prenyl bromide (2.50) to give compounds such as 2.51, was followed by a very 

interesting one-pot tandem Wittig olefination, para-Claisen rearrangement and 

lactonisation to give the prenylated coumarin product 2.52 (Scheme 2.26).99 

 

 

Scheme 2.26 – Mali’s general route to 6-prenylcoumarins  

 

A route to brosiparin based on Mali’s synthesis was proposed. As the dihydroxy 

benzaldehyde 2.54 is not commercially available, it would be necessary to prepare it from 

the inexpensive starting material trimethoxybenzaldehyde (2.53). The prenylation step 

would need to be selective at the C-2 hydroxyl group to give compound 2.55, which 
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would then undergo the tandem Wittig/para-Claisen rearrangement/lactonisation to give 

brosiparin 1.46 (Scheme 2.27).  

 

 

 
 

Scheme 2.27 – Proposed route to brosiparin (1.46) from trimethoxybenzaldehyde 

(2.53) 

 

 

2.5.4 – Double demethylation of trimethoxybenzaldehyde 

 

The first step of the synthesis was the selective double demethylation of the inexpensive 

starting material trimethoxybenzaldehyde (2.53), which was carried out according to a 

literature procedure using two equivalents of boron trichloride.100 Initially the reaction 

was carried out at 0 °C for 48 hours, but an approximately 50:50 mixture of single and 

double-demethylation products was observed. However, when attempting the reaction at 

room temperature and extending the reaction time to 72 hours, the conversion to the 

desired compound 2.54 was increased and it was subsequently isolated by column 

chromatography in a 74% yield. It is proposed that the reaction is selective in this manner 

due to initial coordination of the BCl3 to the aldehyde, followed by demethylation at the 

C-2 methoxy group. The boron would then coordinate to the resultant free oxygen, before 

demethylation takes place at the C-3 methoxy group.101 When the reaction was carried 

out using a larger excess of BCl3 (6 equivalents) the 1H NMR spectrum showed some 

formation of trihydroxybenzaldehyde, as a result of triple demethylation was observed.  
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Scheme 2.28 – Impact of temperature, reaction time and stoichiometry on selective 

double demethylation of trimethoxybenzaldehyde 2.53 

 

2.5.5 – Selective alkenylation using prenyl bromide 

 

Following this step, the selective prenylation of the C-2 hydroxyl group was investigated. 

The general procedure described in the literature used one equivalent of prenyl bromide 

(2.50) along with potassium carbonate and was heated to reflux for 4 hours in acetone. 

The reaction was initially carried out using compound 2.56, which resulted from a single 

demethylation, in order to test the protocol. As there were no issues of hydroxyl group 

selectivity using this compound, a larger excess of prenyl bromide was used (2.6 

equivalents), and the reaction proceeded smoothly with complete conversion and very 

high isolated yield (Scheme 2.29a). When the double demethylated compound 2.54 was 

used, with one equivalent of prenyl bromide (2.50), a mixture of products from both 

prenylation of solely the C-2 hydroxyl group, and also both hydroxyl groups, was 

observed (Scheme 2.29b). Thankfully the ratio of products was approximately 2:1 in 

favour of the single prenylation product, and purification was possible by column 

chromatography using a 4:1 mixture of petroleum ether and ethyl acetate, to give the 

compound in a 58% yield. Analysis using 2D NMR techniques, particularly HSQC and 

HMBC, helped to confirm that prenylation had taken place at the C-2 rather than the C-

3 hydroxyl group. The cross-peak between the ring proton adjacent to the formyl group 

(at C-5), and the carbon at C-1, as well as that between C-1 and the prenyl CH2, were 

particularly important in elucidating the structure (see section 5.5 for annotated spectra). 
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Scheme 2.29 – Initial prenylation of a) compound 2.56 and b) 2.54 using prenyl 

bromide 

However, the ratio of products was improved by decreasing the reaction time to 2.5 h, 

and carrying out dropwise addition of prenyl bromide, and the isolated yield of compound 

2.55 increased to 73%. The reaction proved easily scalable, with approximately 7 g of 

product formed in one batch. (Scheme 2.30).  

 

 

Scheme 2.30 – Optimised selective prenylation of compound 2.54  

 

 

2.5.6 – One pot Wittig/para-Claisen/lactonisation  

 

The final step in the synthesis would be the one-pot Wittig reaction/para-

Claisen/cyclisation rearrangement to simultaneously form the coumarin ring system, 

while moving the prenyl group to the 6-position. It was proposed that the Wittig 

olefination to install the α,β-unsaturated carbonyl group would occur first to form 

compound 2.59, followed by Claisen rearrangement of the prenyl group from the 

hydroxyl group, to form a reverse prenyl group on the same carbon as the olefin (Scheme 

2.31, compound 2.60). The prenyl group will then undergo a second [3,3]-sigmatropic 

rearrangement, this time a Cope rearrangement, to give compound 2.61. The tandem 
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Claisen and Cope rearrangement steps are collectively known as a para-Claisen 

rearrangement, as the prenyl group ends up in the para-position to the hydroxyl group.102 

After tautomerisation, compound 2.62 is then proposed to undergo an E to Z alkene 

isomerisation and lactonisation to form the coumarin ring system of brosiparin (1.46) 

(Scheme 2.31).  

 

 

Scheme 2.31 – Proposed mechanism of one-pot Wittig/para-Claisen 

rearrangement/lactonisation 

 

The tandem Wittig olefination/para-Claisen/lactonisation step was initially trialled on 

the dimethoxy compound 2.57, using the conditions described by Mali. Compound 2.57 

and phosphorane 2.59 were heated at 210 °C for 16 hours in N,N-dimethylaniline. Much 

to our delight, the reaction proceeded very smoothly, with the successful formation of 

the 6-prenylcoumarin compound 2.60 (O-methylbrosiparin) observed (Scheme 2.32).  

Purification by column chromatography gave the product in a 75% yield. Analytical data 

for this compound matched previously reported data.103 
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Scheme 2.32 – Formation of coumarin 2.60 

 

Buoyed by this success, the reaction was carried out on compound 2.55 in an attempt to 

form brosiparin (1.46) (Scheme 2.33). Analysis of the 1H NMR spectrum of an aliquot 

taken after 16 hours strongly suggested formation of brosiparin (1.46), with complete 

conversion from starting material. However, issues started to arise during purification. 

Despite the literature procedure stating that the solvent was simply removed under 

vacuum, in practice this proved to be very difficult, due to the high boiling point of the 

solvent (194 °C). It was possible to remove very small amounts of solvent (<1 mL) from 

aliquots on a rotary evaporator, but removing larger amounts proved incredibly difficult, 

even using a higher temperature water bath (~80 °C). Washing the crude reaction mixture 

with 1M aqueous HCl was effective in terms of solvent removal, but had the unwanted 

side effect of washing some of the product into the aqueous layer, thereby reducing the 

isolated yield. It was eventually found that the most successful method was vacuum 

distillation of the crude mixture in order to distil off the vast majority of the solvent, with 

any remaining amount separated from the product by column chromatography. Using 

these purification methods brosiparin (1.46) was isolated as a white solid in a 75% yield. 

The process proved easily scalable, with up to 4 g of product being formed in one 

reaction.   

 

Scheme 2.33 – Formation of brosiparin (1.46) using one-pot Wittig/para-

Claisen/lactonisation 
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2.5.7 – Confirmation of the structure of brosiparin  

 

The structure of the product of the tandem Wittig/para-Claisen rearrangement was 

confirmed to be that of brosiparin (1.46) using several different analytical methods. 1H 

NMR spectroscopy data matched the peaks reported in the isolation paper. Both the 1H 

and 13C NMR spectra showed the characteristic signals of a coumarin ring system, with 

COSY, HSQC and HMBC giving further evidence that it had been formed. The coumarin 

ring protons at the C-2 and C-3 positions give a coupling constant of 9.5 Hz, a typical 

value for a (Z)-alkene, while HMBC spectrum shows cross-peaks between the C-2 proton 

and the carbonyl carbon, as well as the C-3 proton and C-5 carbon.  HMBC and NOESY 

also helped to confirm the presence of the prenyl group at the 6-position of the ring. The 

nOe correlation between the CH2 protons of the prenyl side chain and the CH3 protons 

of the 7-methoxy group particularly supported this, along with the cross-peak between 

the prenyl CH2 and H-5 on the coumarin ring (Figure 2.2) (See experimental section for 

full 2D NMR data). 

 

Figure 2.2 – Significant COSY (bold red bond) and NOESY (double-headed arrow) 

correlations of brosiparin (1.46) 

 

HRMS and IR also suggested brosiparin (1.46) had been formed. The molecular ion in 

the mass spectrum (ESI+) registered at m/z 261.10, which is consistent with the molecular 

formula of brosiparin (1.46), C15H17O4, and the expected peaks in the IR spectrum, 

corresponding to C=C (1560-1620 cm-1), C=O (~1700 cm-1) and C–O (~1250 cm-1) 

bonds were observed.78  
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2.6 - Conclusions  
 

The first total synthesis of the coumarin natural product brosiparin (1.46) has been 

achieved in a three-step synthesis, all with high yields and easily scalable. Starting from 

inexpensive trimethoxybenzaldehyde, selective double demethylation gave compound 

2.54, before selective prenylation with prenyl bromide gave compound 2.55. This 

compound then underwent a tandem Wittig olefination/para-Claisen/lactonisation 

rearrangement reaction at high temperature, to afford brosiparin (1.46). The synthesis 

was completed on a 4 g scale, in 42% overall yield. 

 

 

Scheme 2.34 – Three-step synthesis of brosiparin (1.46) 

 

As this synthesis enabled the preparation of large quantities of brosiparin (1.46), we were 

able to move on and use brosiparin (1.46) as a testing ground to develop a method of 

oxidative ring contraction, both to apply to a range of substrates, but also to continue 

towards the synthesis of fatouapilosin (1.36).   
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Chapter 3 – Oxidation Chemistry of Brosiparin and 

Attempted Ring Contraction 
 

 

3.1 Introduction 
 

3.1.1 Aims 

 

Following the synthesis of brosiparin (1.46), attention turned to the key step of the project 

– the oxidative ring contraction. In this step, it was envisioned that the oxidation would 

occur as shown in Scheme 3.1, with oxidation proceeding via formation of ortho-quinone 

intermediate 1.47, with hydroxylation at C-9. This would then be followed by a benzilic 

acid-type rearrangement of the molecule, with migration of the C-4–C-9 bond onto the 

C-8 carbonyl carbon, forming a 5-membered ring fused to a 7-membered ring (compound 

1.48).  

 

Scheme 3.1 – Proposed biosynthetic oxidative ring contraction of brosiparin (1.46)  

 

The other objective of the project was to apply the developed oxidative ring contraction 

methodology to a vast range of phenol-derived substrates, ideally using renewable, 

inexpensive and abundant metals as catalysts.  
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3.2 Initial Oxidation Trials 

 

3.2.1 Cu(0)-mediated Oxidation 

 

The initial oxidation trials would utilise the conditions reported by Rossi in his copper-

catalysed ring contraction of phenol (Scheme 3.2).23 

 

Scheme 3.2 – Rossi’s copper-catalysed oxidative ring contraction of phenol 

 

We initially repeated the reaction Rossi reported using phenol, copper powder, oxygen 

gas and pyridine (Scheme 3.3). Despite the reduced oxygen pressure in our set-up 

compared to that of Rossi, the substituted cyclopentenone compound 3.1 was 

successfully formed in a comparable yield (measured from 1H NMR spectra of crude 

reaction mixture). 

 

Scheme 3.3 – Repeat of Rossi’s copper-catalysed oxidative ring contraction of 

phenol  

 

Encouraged by this result, the oxidative ring contraction of brosiparin (1.46) was 

attempted under the same conditions. Unfortunately, degradation of the starting material 

was observed when the reaction was carried out at 70 °C, and no reaction was observed 

at room temperature (Scheme 3.4).  
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Scheme 3.4 – Attempted copper-catalysed oxidative ring contraction of brosiparin 

(1.46) 

As these conditions had proved unsuccessful, we decided to investigate the reactivity of 

brosiparin (1.46) with a range of other oxidising agents that had previously been used for 

phenolic oxidations. Once the behaviour of brosiparin (1.46) had been established, we 

would be better equipped to identify suitable base metal catalysed conditions. We 

speculated that we may have needed to separate the oxidative ring contraction into two 

steps, with initial oxidation to the quinone followed by a ring contraction step.  

 

3.2.2 Attempted oxidation using Ce(IV) 

 

In the total synthesis of mccrearamycins A-D, Thorson and co-workers carried out a ring 

contraction of 6-membered para-quinone 3.3 to cyclopentenone 3.4 by trialling both a 

range of basic conditions and Lewis acid catalysts (discussed further below in section 

3.5.1).29 para-Quinone 3.3 was prepared by oxidation of precursor 3.2 using ceric 

ammonium nitrate (CAN) as an oxidising agent (Scheme 3.5). CAN is widely used in 

organic synthesis as an oxidant for functional groups such as alcohols, ethers, thioethers, 

as well as for the synthesis of quinones from oxygenated aromatic compounds.104-106 

 

 

Scheme 3.5 – Use of CAN by Thorson to prepare para-quinone and subsequent ring 

contraction 

 

Thorson’s conditions were trialled on brosiparin (1.46), in an attempt to oxidise to the 

ortho-quinone compound 3.5 but analysis of the 1H NMR spectrum showed a complex 

mixture of unidentifiable products (Scheme 3.6). 
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Scheme 3.6 – Attempted oxidation of brosiparin (1.46) using CAN 

 

 

3.3 - Use of hypervalent iodine reagents  
 

3.3.1 Background 

 

In recent years, the use of hypervalent iodine reagents for oxidation chemistry has 

become more prevalent as an alternative to reagents based on toxic heavy metals.107-108 

They are attractive oxidising agents due to their stability, selectivity, low toxicity and 

ease of handling. Compounds exist with iodine in the +3 oxidation state (iodinanes) or 

the +5 oxidation state (periodinanes). Hypervalent iodine reagents can be used to carry 

out a number of different transformations, including C–C and C–heteroatom bond 

formations. A number of established procedures have also been developed for the 

oxidation of alcohols to carbonyls, and the oxidation of phenols, which is particularly 

relevant to this project.107-110 

Examples of ubiquitous periodinane compounds include 2-iodoxybenzoic acid (IBX) 

(3.7), which is synthesised from 2-iodobenzoic acid (3.6) and is commonly used to 

oxidise alcohols to aldehydes,111-112 and Dess–Martin periodinane (DMP) (3.8), an IBX 

derivative with increased reactivity and solubility in organic solvents. It can be formed 

from IBX (3.7) using acetic anhydride and tosic acid (Scheme 3.7).113 

 

Scheme 3.7 – Preparation of establiblished iodinane reagents 

Many examples of iodinane reagents are derived from iodobenzene, including 

iodosobenzene (3.9), (dichloroiodo)benzene (3.10) and (difluoroiodo)benzene (3.11). 

Two iodinane reagents that have been extensively reported to oxidise phenols to quinones 
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are (diacetoxyiodo)benzene (PIDA, 3.13) and [bis(trifluoroacetoxy)iodo]benzene (PIFA, 

3.14) (Figure 3.1).109, 114-116 

 

Figure 3.1– Iodinane reagents  

 

The oxidations of phenols using the hypervalent iodine reagents described above have 

been extensively studied, including Pettus’s use of IBX to directly oxidise electron-rich 

phenols to ortho-quinones (Scheme 3.8).117 Another particularly relevant example is the 

work of Kita, who used PIFA to form para-quinones,118 a reaction which was applied by 

Barret in the total synthesis of juglone (3.15) (Scheme 3.8).119  

 

 

Scheme 3.8 – Previous examples of phenol oxidation using hypervalent iodine 

reagents 

 

Iodine(V) oxidation of alcohols, for example with DMP (3.8), proceeds as shown in 

scheme 3.9a. Initial ligand exchange from the iodine centre gives a 

diacetoxyalkoxyperiodinane species 3.16, releasing an acetate anion, which can then act 

as base and deprotonate the α-hydrogen of the alcohol. This results in the breakdown of 

species 3.16 to give the carbonyl compound, iodinane compound 3.17 and acetic acid. 
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The mechanism of iodine(III) oxidation of 1,4-dihydroxyphenol using PIDA is also 

shown, and begins with a similar ligand exchange step, with coordination of the 1-

hydroxy group to the iodine to form intermediate 3.18. Delocalisation of the lone pair 

from the 4-hydroxy group onto the ring then leads to para-quinone formation, and loss 

of the iodine species as iodobenzene (Scheme 3.9b). Numerous examples of this kind of 

oxidative dearomatisation using reagents such as PIDA (3.13) or PIFA (3.14) exist, often 

involving addition of a nucleophilic species para- to the hydroxyperiodinane group.120-

121  

 

 

 

Scheme 3.9 – a) Mechanism of oxidation by I(V) (DMP) and b) I(III) (PIDA, 3.13) 

species  

 

3.3.2 Initial oxidation of brosiparin with periodine reagents  

 

The oxidation of brosiparin (1.46) with a number of different hypervalent iodine reagents 

was attempted (Table 3.1). Subjecting brosiparin (1.46) to two equivalents of DMP and 

sodium bicarbonate, following a protocol reported by Beaudry and co-workers,122 

resulted in no reaction at room temperature, with only unreacted starting material 

observed (entry a). The temperature was therefore increased to 70 °C and the solvent 

changed from dichloromethane to the higher boiling dichloroethane. This time a reaction 

did occur, but attempts to purify and analyse the resulting complex mixture proved 

unsuccessful (entry b). Oxidation of brosiparin (1.46) with IBX (3.7), using conditions 
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described by Beaudry at room temperature and 70 °C (entries c and d) also resulted in a 

complex and inseperable mixture of products.122 

 

 

Table 3.1 – Reactions of brosiparin (1.46) with DMP (3.8) and IBX (3.7) 

 

 
Entry Reagent(s)  Solvent  Time (h) Temp (℃) Result  

a DMP, NaHCO3 CH2Cl2 16 rt No reaction 

b DMP, NaHCO3 (CH2Cl)2 4 70 Complex mixture 

c IBX  EtOAc 16 rt Complex mixture 

d IBX EtOAc 16 70 Complex mixture 

 

 

3.3.3 Oxidations to masked ortho-quinone using PIDA  

 

At this point, our attention turned to the use of iodinane reagents, containing iodine in 

the +3 oxidation state. PIDA (3.13) and PIFA (3.14), shown in Figure 3.1 above, have 

been used extensively for the oxidation of phenols to quinones and related compounds.107 

The reaction of brosiparin (1.46) with 1.1 equivalents of PIDA (3.13) was initially carried 

out at room temperature using dichloromethane as solvent, following a procedure 

described by Poupon and co-workers.123 The 13C NMR spectrum showed that an extra 

peak corresponding to a carbonyl group was present, suggesting that an oxidation 

reaction had indeed occurred. Further examination of NMR data, along with mass 

spectrometry, identified the formation of a mixed ketal, giving a masked ortho-quinone 

compound 3.19 (Scheme 3.10). The formation of the mixed acetal group meant that C-7 

was now a stereogenic centre, causing the methylene protons of the prenyl group to be 

diastereotopic and show as two separate peaks in the 1H NMR spectrum. Unfortunately 

the masked ortho-quinone 3.19 was formed in a low yield, and also proved unstable to 

silica gel column chromatography, and therefore difficult to purify.  
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Scheme 3.10 - Formation of mixed-acetal masked quinone compound 3.19 

We proposed that the reaction proceeded in a similar manner to the known PIDA 

oxidation mechanism (see Scheme 3.9). Initial coordination of the hydroxyl group to the 

iodine, is followed by intramolecular addition of the acetate group at the C-7 position to 

form the mixed acetal (3.19), as well as the carbonyl at C-8, with the iodine species lost 

as iodobenzene. 

 

Scheme 3.11 - Proposed mechanism of oxidation of brosiparin with PIDA in CH2Cl2  

 

Previous work in the Lawrence group had found success with a protocol reported by 

Novak and Glover - using an acetonitrile:water mixture (1:1) as solvent, so we applied 

these conditions to the oxidation of brosiparin (1.46).124 Unexpectedly, however, the 

reaction resulted in the demethylation of brosiparin (1.46), to give the prenylated 

coumarin diol compound 2.7. The reaction took place in reasonable yield and the product 

proved straightforward to isolate by column chromatography, though unfortunately is not 

at the oxidation level required for our synthesis. This result is likely to be due to the 

coordination of the I(III) centre to the methoxy group to give intermediate 3.20 (Scheme 

3.12), then hydrolysis of the methoxy group by water. Compound 2.7 is itself a natural 

product, fipsomin, recently isolated by Akihara and co-workers from the the fruits of 

Ficus nipponica, and this is, to the best of our knowledge, the first total synthesis of this 

natural product.125  
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Scheme 3.12 – Demethylation of brosiparin (1.46) to produce fipsomin (2.7) using 

PIDA (3.13) in MeCN:H2O 

 

Fipsomin (2.7) was then subjected to Poupon’s conditions, oxidation with PIDA (3.13) 

in dichloromethane, and gave tricyclic compound (2.8), where the prenyl group had 

cyclised onto the oxygen at C-7 to form a 6-membered ring (Scheme 3.13). The tricylic 

coumarin-derived backbone of 2.8 was similar to that of luvangetin (2.2) and xanthyletin 

(1.5), both coumarin-derived natural products isolated alongside brosiparin (1.46) (see 

section 2.1.2). We speculated that this result was due to the initial oxidation of fipsomin 

(2.7) to ortho-quinone 3.5, which would undergo tautomerisation to give compound 3.21, 

before 6π-cyclisation to form cyclised compound 2.8 (Scheme 3.13). The presence of the 

methyl group on brosiparin (1.46) seemingly prevents this cyclisation from occurring.  

 

Scheme 3.13 – Oxidation and 6𝛑-cyclisation of fipsomin (2.7) to give tricyclic 

compound 2.8 
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Taylor and co-workers reported the synthesis of scyphostatin analogues from 4-

bromoguiacol (3.22), in which the oxidation of the starting material was carried out using 

PIDA (3.13) in methanol. This resulted in formation of a dimethyl acetal masked quinone 

(3.23), which was purified by column chromatography, which indicated its greater 

stability than the mixed ketal (3.19) that we had previous synthesised. This selective in 

situ protection enabled functionalisation of the carbonyl position, before eventual 

cleavage of the acetal group to reveal the second carbonyl group (Scheme 3.14).  

 

 

Scheme 3.14 – PIDA (3.13) oxidation in methanol in the synthesis of scyphostatin 

analogues 

 

These conditions were then applied to the oxidation of brosiparin (1.46) (Scheme 3.15). 

Initially the reaction was left overnight, where a colour change from colourless to yellow 

was observed, and TLC analysis of the reaction mixture indicated that there was no 

starting material remaining. Analysis of the crude reaction mixture by 1H and 13C NMR 

spectroscopy showed a similar oxidation to the reaction in dichloromethane, with a 

carbonyl group at the C-8 position, but this time a dimethyl acetal was observed at C-7, 

giving a similar masked ortho-benzoquinone compound (3.24) to that reported by Taylor. 

Complete conversion of the starting material was observed and the product was isolated 

in very high yield (95%), following purification by column chromatography. Further 

experimentation showed that the reaction was complete within two hours. The reaction 

was also able to be carried out on a multi-gram scale with no decrease in the isolated 

yield.  

 

Scheme 3.15 – PIDA (3.13) oxidation of brosiparin (1.46) in methanol to form 

masked ortho-benzoquinone compound 3.24 
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In summary, the oxidation conditions trialled, using cerium, copper and iodine reagents 

did not lead directly the the desired ortho-quinone compound, and subsequent ring 

contraction. Other unsuccessful oxidising agents trialled on small-scale included Fremy’s 

salt and iron chloride. However the use of the hypervalent iodine reagent PIDA (3.13) 

allowed us to oxidise brosiparin (1.46) to a masked ortho-quinone compound, the nature 

of which varied depending on which solvent was used. In dichloromethane mixed acetal 

compound 3.19 was formed, but proved unstable and difficult to isolate, whereas in 

methanol dimethoxyacetal-containing masked ortho-quinone 3.24 was successfully 

formed in high yield and on large scale.  

 

 

3.4 – Attempted Acetal Cleavage 
 

3.4.1 – Use of Lewis Acid catalysts  

 

With practical quantities of masked ortho-quinone 3.24 available, attention turned 

towards the planned ring contraction. The initial step would be to attempt to cleave the 

dimethyl acetal group to reveal the ortho-quinone 3.5. Subsequent hydroxylation at the 

C-9 position is needed to give compound 1.47, which would be primed to undergo the 

ring contraction by a benzilic acid-type rearrangement (Scheme 3.16)  

 

Scheme 3.16 – Proposed route to ring contraction from masked ortho-benzoquinone 

3.24 

A number of different methods for the cleavage of dimethyl acetals have previously been 

reported in the literature. The most common method is via acid-catalysed hydrolysis, 

using Brønsted acids such as toluenesulfonic acid, trifluoroacetic acid, acetic acid and 

Montmorillonite K10.126-129 In recent years, however, a number of examples have been 

published describing the use of lanthanide-based Lewis acid catalysts to cleave acetal 
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groups.130-131 These reactions can be carried out under very mild conditions and have 

been shown to be more environmentally friendly than previous methods.130 Lanthanide 

triflates have been shown to effectively cleave alkyl and cyclic acetals, so erbium and 

ytterbium triflates (which were readily available within the lab) were initially screened, 

along with other Lewis acids (bismuth iodide and indium triflate) for the acetal cleavage 

of compound 3.24.132-134  

 

Table 3.2 – Attempted cleavage of acetal of 3.24 using lanthanide triflates  

 

Entry Reagent Equiv. Solvent Temp Time Product 

a Er(OTf)3  0.1 MeCN/H2O rt 16 h No rxn  

b Er(OTf)3  0.1 MeCN/H2O rt 16 h No rxn  

c Yb(OTf)3 0.1 MeCN/H2O rt 72 h No rxn 

d Yb(OTf)3 0.1 MeCN/H2O rt 72 h No rxn 

e Er(OTf)3 0.1 MeCN/H2O 80 °C 12 h 2.8  

f Yb(OTf)3 0.1 MeCN/H2O 80 °C 12 h 2.8  

g BiI3 0.05 H2O 100 °C 20 h 2.7/2.8  

h In(OTf)3 0.1  acetone rt 24 h 2.7/2.8 

 

As can be seen in table 3.2, the results were similar for all the different Lewis acids used. 

At room temperature, with 0.1 equivalents of catalyst in acetonitrile/water, no reaction 

was observed after 16 hours (entries a and b), or even when the reaction was left for 

several days (entries c and d). The reaction was repeated, but the mixture was heated to 

80 °C  (entries e and f), and it was clear from TLC analysis that the elevated temperature 

enabled consumption of the starting material, with a new spot appearing. From extensive 

analysis of the 1H and 13C NMR spectra, it was clear that a cyclisation reaction of the 

prenyl side chain had occurred, giving tricyclic compound 2.8, the same product 
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observed from the PIDA oxidation of fipsomin (2.7). This cyclisation is proposed to 

occur by the same 6π-cyclisation mechanism as in the oxidation of fipsomin (2.7), with 

acetal cleavage resulting in ortho-quinone 3.5, which can undergo tautomerisation, 

followed by cyclisation (Scheme 3.13, above). The key indicators from the NMR analysis 

was the loss of the prenyl alkene and methylene peaks, but the presence of a new pair of 

cycloalkene peaks with J = 9.9 Hz, characteristic of a (Z)-alkene.  When using either 

indium triflate and bismuth iodide (entries g and h) as the catalyst, a mixture of 

compounds was observed. Cyclised compound 2.8 had formed, again presumably via 6π-

cyclisation of the ortho-quinone, but a significant amount of an unexpected reduction 

had also occurred following cleavage of the acetal, as the dihydroxy coumpound 

fipsomin (2.7) was also observed.134-135  

 

3.4.2 – Use of Brønsted acids  

 

Brønsted acid conditions were also screened for the acetal cleavage. When the reaction 

of masked ortho-quinone 3.24 with acetic acid, water and one drop of concentrated HCl 

took place, a mixture of compounds 3.25 and 3.26 were formed, both of which contained 

a chloro- group at the 5-position of the coumarin ring system. Compound 3.25 was the 

major product of the two, containing a methoxy group at C-7 and a hydroxyl group at C-

8, the result of partial hydrolysis of the dimethyl acetal. The NMR spectra suggested 

substitution of the 5-position on the ring, and the use of mass spectrometry indicated the 

presence of a chloro group, therefore enabling elucidation of the structure. The yield was 

low, as a significant amount of demethylated dihydroxyl compound 3.26 had also formed 

(in a 1:4 ratio to compound 3.25).  

 

 

Scheme 3.17 - Acetal cleavage and C-5 halogenation of masked ortho-quinone 3.24 
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We proposed that the reaction proceeded via initial cleavage of the acetal to give the 

ortho-quinone type oxonium intermediate 3.27. Subsequent nucleophilic chloride 

addition to the C-5 position, followed by tautomerisation and re-aromatisation, would 

lead to the product (Scheme 3.18).  

 

Scheme 3.18 – Proposed mechanism of acetal cleavage and C-5 chlorination of 

masked ortho-quinone 3.24 

 

Looking back at our proposed mechanism for the oxidative ring-contraction (Scheme 3.1 

above), the ideal step following formation of the ortho-quinone was hydroxylation at the 

C-9 position of the coumarin ring system. It seemed from the result in Scheme 3.18 that 

nucleophilic addition to the coumarin system preferentially occurs at the C-5 position, 

however, so it was necessary to devise a plan to circumvent this issue. It was envisioned 

that a compound with a substituent at the C-5 position, therefore blocking it from 

nucleophilic addition, may undergo the desired functionalisation at C-9. Ideally, we 

would then be able to remove the C-5 substituent later in the synthesis. Our hypothesis 

was tested using the C-5 halogenated compound 3.25. Oxidation with PIDA (3.13) in 

methanol, using the conditions described above, was carried out to give the C-5 

chlorinated masked ortho-quinone compound 3.28 in high yield (Scheme 3.19). 

Compound 3.28 was then submitted to the acetal cleavage conditions using acetic acid, 

water and HCl, which we hoped would cleave the acetal and chlorinate the C-9 position 

in a single step. Unfortunately the reaction proved unsuccessful, with only a complex 

mixture of degradation products formed. 

 

 

Scheme 3.19 – Attempt to direct hydroxylation to the C-9 of the coumarin 
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3.5 – Attempts to carry out ring-contraction of masked ortho-quinone 

3.24 
 

3.5.1 – Thorson’s use of Metal Salts and Basic Conditions 

 

An example of the use of the benzilic acid rearrangement in total synthesis was published 

by Thorson in 2017, in the synthesis of mccrearamycins A-D, which were isolated from 

abandoned coal mine microbes, along with geldanamycins B-G.29 These natural products 

contain a cyclopentenone unit which is derived from the benzilic acid rearrangement of 

the 19-hydroxy geldanamycin quinone core.  The conditions Thorson described for the 

preparation of para-quinones using CAN were previously trialled in section 3.2.2,29 but 

now we wanted to focus on the subsequent ring contraction step. Thorson proposed a 

metal-mediated mechanism for this transformation (Scheme 3.20) and trialled the use of 

a number of different transition metal salts on a model quinone system, as well as bases 

known to promote benzilic acid rearrangements.  

 

Scheme 3.20 – Proposed benzilic acid rearrangement mechanism in Thorson’s 

synthesis of mccrearamycins A-D  

 

Thorson found that the optimum conditions trialled were cobalt(II) chloride (2 

equivalents), in methanol with the reaction heated to 80 ℃ for 16 hours (Table 3.3). This 

successfully gave the cyclopentenone product 3.4a in a high diastereomeric ratio and 

yield. Other metals salts used were copper(II) chloride and nickel(II) chloride, which 

both gave an “undefined mixture” of products, and silver(I) triflate, which produced a 

higher ratio of the undesired isomer. Other relatively successful results were obtained 



86 

 

with bases such as DBU, triethylamine and Hünig’s base, which all gave compound 3.4a 

in reasonable yield, but with less stereoselectivity than CoCl2 

Table 3.3 – Thorson’s benzilic acid rearrangement model studies 29 

 

Entry Additive (2 eq) Solvent Temp Ratio 

(3.4a:3.4b) 

Yield 

a CoCl2  MeOH/CH2Cl2 50 °C >10:1 73% 

b* CoCl2 MeOH 50 °C >10:1 82% 

c CoCl2 MeOH 80 °C >10:1 85% 

d CuCl2 MeOH/CH2Cl2 50 °C - ‘Undefined 

mixture’ 

e NiCl2 MeOH/CH2Cl2 50 °C - ‘Undefined 

mixture’ 

f AgOTf MeOH/CH2Cl2 50 °C 1:5 39% 

g DBU MeOH/CH2Cl2 50 °C 2:1 51% 

h Triethylamine MeOH/CH2Cl2 50 °C 5:1 60% 

i DIPEA MeOH/CH2Cl2 50 °C 4:1 55% 

*Run for 40 hours, all other reactions 16 hours. 

 

3.5.2 – Application of Thorson’s conditions to our system 

 

Thorson’s conditions were trialled on our system, the masked ortho-quinone compound 

3.24, in the hope that we could effect a ring contractive benzilic acid rearrangement 

reaction. However, when the reaction was carried out at 50 °C and at 80 °C only 

unreacted starting material was observed. Even when another 2 equivalents of CoCl2 was 

added, no reaction took place. This is likely due to the nature of the substrate, as Thorson 

was able to form the required ortho-quinone compound, whereas the attempted methoxy 

acetal cleavage of 3.24 did not successfully form the ortho-quinone. If the reaction does 

indeed progress with metal coordination to the two carbonyl groups, this may explain 
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why no reaction takes place. It is possible that a one-pot reaction, using the acetal 

cleavage conditions described previously (Table 3.3), along with CoCl2 may enable the 

formation of the ortho-quinone, followed by chelation by the metal, which may prevent 

the previously observed cyclisation of the prenyl group. The reaction was also carried 

out with copper chloride, but as with Thorson, only a complex mixture of compounds 

was produced (Scheme 3.21).  

 
 

Scheme 3.21 – Reaction of 3.24 with metal salts using’s Thorson’s conditions 

 

 

A very different result was observed when the reaction was carried out using the basic 

conditions Thorson reported, with two equivalents of triethylamine used, in a 

methanol/dichloromethane solvent mixture. After analysis by 2D NMR spectroscopy and 

mass spectrometry it was concluded that the product formed was compound 3.30, formed 

by ring-opening of the coumarin lactone with methanol (scheme 3.22). A key piece of 

evidence for the ring-opening was the coupling constants (J = 16 Hz) of the alkene now 

indicating the presence of an (E)-alkene rather than a (Z)-alkene, which would not be 

possible in a 6-membered ring. 

 

 

 

Scheme 3.22 – Ring opening of 3.24 using triethylamine in MeOH/CH2Cl2  
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3.6 - Synthesis and Reactions of a ring-opened brosiparin derivative 
 

3.6.1 – Design of synthetic route based on ring-contraction prior to coumarin formation  

 

Although it was not the product we were hoping to form in this reaction, isolating the 

ring-opened form of brosiparin 3.30 led us to re-think our route to the product of the ring 

contraction of brosiparin (Scheme 3.1, compound 1.48). We speculated that the 

formation of an ortho-quinone 3.31 (at C-8 and C-9) from compound 3.30 may be much 

more likely than the ortho-quinone compound targeted from brosiparin (1.46). Thorson’s 

proposed mechanism suggests this may then be able to undergo benzilic acid 

rearrangement. If the desired compound 3.31 could be formed, Thorson’s and other 

benzilic acid rearrangement conditions would be trialled, in the hope of achieving the 

ring contraction to give compound 3.33. A subsequent ring closing of the ester would re-

form the lactone, giving compound 3.34. The coumarin formation occurs at high 

temperatures in the initial synthesis of brosiparin (1.46), so it was proposed that heating 

compound 3.33 would enable this similar ring-closing step (Scheme 3.23).  

 

Scheme 3.23 – Proposed route to ring contraction from ring opened compound 3.30 

 

3.6.2 – Synthesis of ring-opened brosiparin 3.35 

 

The formation of the ring-opened form of brosiparin (3.30) using NEt3 proved to be 

difficult on large scale, due to the formation and subsequent removal of unwanted 

triethylamine salts. We therefore developed an alternative approach, by altering the 

original synthesis of brosiparin (1.46) to successfully synthesise ring-opened equivalent 

3.35 in high yield, which contained an ethyl ester rather than the methyl ester in 
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compound 3.30. The first two steps, double demethylation, and prenylation, to give 

compound 2.55 were the same as in the synthesis of brosiparin (see section 2.6). The 

para-Claisen rearrangement was then carried out neat at 130 °C, using the same 

conditions reported by Hamada, and trialled in early attempts to form brosiparin (1.46) 

(Chapter 2, Scheme 2.9), to give compound 2.19, in which the position of the prenyl 

group on the ring was confirmed by 2D NMR analysis. HMBC data showed cross-peaks 

between the proton at the unsubstituted position of the aryl ring and both the aldehyde 

carbon and the prenyl CH2 carbon. The NOESY spectrum showed cross-peaks between 

the methoxy and prenyl CH2 protons, and between the aldehyde proton and the aryl 

proton, which enabled us to confirm the structure (see section 5.6 for spectra). Wittig 

olefination of the aldehyde of compound 2.19 was then carried out at room temperature 

using the same phosphorane reagent 2.59, resulting in compound 3.35 in high yield. The 

lower temperature of the reaction meant we could replace the high boiling solvent N,N-

dimethylaniline with dichloromethane and prevented the closing of the lactone ring, 

which was key to the synthesis of brosiparin (1.46). The synthesis of 3.35 was easily 

scalable, with the last step carried out on a five gram scale.  

 

Scheme 3.24 – Synthesis of ring-opened brosiparin equivalent 3.35 

 

3.6.3 – Oxidation reactions of ring-opened brosiparin (3.35) 

 

There are numerous examples of oxidation reactions of catechols to ortho-quinones, and 

a number of these were trialled on the substrate 3.35 (Table 3.4). Oxidising agents such 

as ortho- and para-chloranil, silver oxide, CAN and IBX have been reported to oxidise 

catechols to quinones,123, 136-138 so these were initially tested (entries a-c). 

Disappointingly, all gave either no reaction or a complex mixture of inseperable 

compounds. Rossi’s copper(0) and oxygen conditions were trialled, but once again these 

attempts resulted in a complex mixture of products (entries d-g) . A different copper-

catalysed phenolic oxidation procedure has been reported by Lumb, which used CuPF6 

along with a N,N′-di-tert-butyl  ethylenediamine (DBED) ligand in the presence of 
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molecular oxygen.139 However, when these conditions were used with substrate 3.35, no 

reaction occurred, with only unreacted starting material observed (entry h). We turned 

next to our optimised conditions for the oxidation of brosiparin (1.46) (see Scheme 3.15), 

using PIDA (3.13), which had also been previously shown by Kita to be capable of 

oxidising a 1,2-catechol to the respective ortho-quinone (entry i).107 The reaction was 

carried out at room temperature, using 1.2 equivalents of PIDA in methanol, and TLC 

analysis seemed to indicate the clean formation of a new product after 40 minutes, so the 

reaction was quenched. However 1H NMR analysis of the crude material after work-up 

showed a complex mixture of degradation products. 

 

Table 3.4 – Oxidation condition trialled on substrate 3.35 

 

Entry Reagent(s) Equiv. Solvent Temp Time Result 

a p-chloranil  1.2 Et2O −20 °C 16 h complex 

mixture  

b o-chloranil 1.2 Et2O −20 °C 16 h complex 

mixture 

c Ag2O 2.5  CH3CN rt 16 h complex 

mixture 

d IBX 2 CHCl3/MeOH 

(9:1) 

rt 30 min complex 

mixture 

e CAN 2 CH3CN/H2O 

(1:1) 

−10 °C 25 min complex 

mixture 

f 

 

Cu(0), O2 0.25 Pyr/MeOH rt 90 min complex 

mixture 

g 

 

Cu(0), O2 0.25 Pyr/MeOH 70 °C 90 min complex 

mixture 

h CuPF6, 

DBED, O2 

  

0.2, 0.4 CH2Cl2 rt 16 h no reaction 

i PIDA 1  MeOH rt 40 min complex 

mixture 

 

As the TLC analysis had suggested clean formation of a new product in the reaction of 

compound 3.35 with PIDA (3.13), we decided to investigate further. The reaction was, 

therefore, carried out in deuterated methanol, with regular aliquots taken for analysis by 
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1H NMR spectroscopy. After 10 minutes, the 1H NMR spectrum showed clear formation 

of another product in 42% conversion, with similar, slightly shifted peaks as would be 

expected if the ortho-quinone formation had occurred (Table 3.5, entry a). 13C NMR of 

the aliquot gave a clearer indication that this was the case, showing two new signals 

corresponding to carbonyl groups (δ 177.9 and 175.8 ppm). However, when further 

aliquots were taken over time, the NMR spectra showed less of the quinone with respect 

to the starting material, which indicated that the product was unstable, and broke down 

easily (entries b and c). Many ortho-quinone compounds have been previously reported 

to be unstable due to their high electrophilicity and they are known to readily undergo 

reactions including Diels–Alder-type dimerisations.140-142 Quenching the reaction after 

10 minutes did not help, as the product has seemingly broken down by the time it was 

analysed after work-up, despite the aliquot NMR showing some conversion. Reactions 

with a larger excess of PIDA (3.13) showed increased conversion, but the stability issues 

remained (entries d and e). When the reaction was carried out at −78 °C, the rate of 

formation of quinone 3.36 was slower (29% conversion after 1 hour), but the compound 

was stable over a longer time period (entries f-h). However, when the sample was warmed 

to room temperature, a complex mixture was once again observed.  

 

Table 3.5 – Further investigation into the oxidation of substrate 3.35 with PIDA 

 

Entry Reagent(s) Eq. Solvent Temp Time Conversion* 

a PIDA 1 MeOH rt 10 min 42% 

b PIDA 1 MeOH rt 30 min 33% 

c PIDA 1 MeOH rt 60 min 14% 

d PIDA 5 MeOH rt 5 min 65% 

e PIDA 5 MeOH rt 20 min complex 

mixture 

f PIDA 5 MeOH −78 °C 30 min 19% 
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g PIDA 5 MeOH −78 °C 60 min 29% 

h PIDA 5 MeOH −78 °C 120 min 29% 

*with respect to starting material 

Due to the instability of the ortho-quinone at room temperature, we speculated that it 

may be possible to carry out the ring contraction at low temperature in situ, by adding in 

sodium methoxide. However, initial studies, in which sodium methoxide was added to 

the reaction mixture when TLC analysis showed formation of the quinone, only resulted 

in a complex mixture, from which it was not possible to identify any products of a ring 

contraction. Other methods trialled to attempt to trap the ortho-quinone 3.36 included the 

addition of 2,3-dihydrofuran, in the hope of carrying out an inverse electron demand 

Diels–Alder reaction. However this approach also proved unsuccessful (Scheme 3.25), 

with no evidence from NMR spectroscopy that we had been able to trap ortho-quinone 

3.36. 

 

Scheme 3.25 – Attempts to trap unstable quinone 

 

 

3.7 – Alternative Biosynthetic Approach 
 

3.7.1 – Example of BF3-mediated aryl-aryl bond formation 

 

All attempts to progress with the synthesis of fatouapilosin (1.36) had thus far been 

following our proposed biosynthetic pathway (Scheme 3.26), in which the oxidative ring 

contraction step was followed by a C–C bond formation between the ring contracted 

compound 1.48 and brosiparin derivative 1.49 (which contains an oxidised prenyl group), 
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to give compound 1.50. It was proposed this step could occur by electrophilic aromatic 

substitution, followed by lactonisation.  

 

Scheme 3.26 – Proposed biosynthesis of fatouapilosin (1.36) 

However, a recently published article by Peddinti came to our attention, in which they 

developed a synthesis of oxygenated biaryl compounds by coupling methoxyphenols 

with electron-rich arenes (Scheme 3.27).143 The first step is analogous to the oxidation 

of brosiparin (1.46) with PIDA in methanol, where the methoxyphenol starting material 

3.38 is oxidised to the masked ortho-benzoquinone 3.39. An electron-rich arene (eg. 

dimethoxybenzene (2.29))  (2 equivalents) and BF3⋅Et2O are subsequently added at −30 

℃, and a new C–C aryl-aryl bond is formed at the 2-position, adjacent to the carbonyl 

group of the masked ortho-benzoquinone. A range of different biaryl compounds were 

formed in this way.  

 

Scheme 3.27 – BF3-mediated coupling of methoxyphenols  
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3.7.2 – Alternative proposed biosynthetic pathway to fatouapilosin 

 

By reordering the steps in our proposed biosynthesis (Scheme 3.28), it was proposed that 

this C–C bond forming transformation could be applied to the synthesis of fatouapilosin 

(1.36). After oxidation of brosiparin (1.46) to masked ortho-quinone 3.24, Peddinti’s 

aryl-aryl coupling step would be used to react compound 3.24 and the brosiparin 

isoprene-derivative 1.49 to give compound 3.41, which would then be subjected to 

benzilic acid rearrangement conditions in an attempt to undergo a selective ring 

contraction to give compound 3.42. The same Prins reaction initially proposed could then 

occur, leading to fatouapilosin (1.36).  

 

Scheme 3.28 – Modified proposed route to fatouapilosin 

 

 

3.7.3 – Formation of new C–C bond from coumarin ring 

 

A test reaction was carried out using a simplified substrate (Scheme 3.29a), which 

successfully formed the same biaryl product 3.40, in comparable yield to that reported 

by Peddinti.143 Following this, a coupling reaction of masked ortho-quinone 3.24 with 

brosiparin 1.46 as the electron-rich arene was attempted – the objective being to form a 

new C–C bond at the C-9 position adjacent to the carbonyl group of the masked ortho-
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quinone 3.24 (Scheme 3.28 above). This would ideally undergo electrophilic aromatic 

substitution onto the one free position on the aromatic ring of brosiparin (1.46) (C-5). 

Unfortunately, no reaction took place, with only unreacted starting material observed by 

1H NMR analysis, even when reaction times and equivalents of brosiparin (1.46) were 

increased (Scheme 3.29b). 

 

 

Scheme 3.29 – a) Attempted aryl-aryl coupling reactions using Peddinti’s substrate 

(3.38) and b) using brosiparin 

 

We decided to further explore the reaction by attempting to couple masked ortho-quinone 

3.24 with a model nucleophile – electron-rich arene, 1,3-dimethoxybenzene (2.29). The 

result of this was a complex mixture of compounds including a significant amount of 

unreacted starting material, but through column chromatography it was possible to isolate 

the major product in a 22% yield (Scheme 3.30). From initial analysis it was clear that 

the newly formed compound was indeed as a result of aryl-aryl coupling, with a new C–

C bond formed, and it was assumed that the desired reaction may have occurred. 

However, upon further analysis of the 2D NMR spectroscopy data, it was clear from the 

chemical shifts of the carbons at C-9 and C-7 that rather than the desired C–C bond 

formation at C-9 to give compound 3.43, we had instead observed aryl-aryl coupling at 

C-7, effectively substituting one of the methoxy groups to give biaryl compound 3.44. 

An important indicator that compound 3.44 had been formed, rather than 3.43, was the 

presence of the additional carbonyl signal in the 13C NMR spectrum. Additionally, the 
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prenyl CH2 appeared to be diastereotopic, in the same manner as seen earlier for mixed 

acetal compound 3.19 (section 3.3) suggesting a stereogenic centre at C7. Analysis of the 

HMBC spectrum helped to confirm this, as cross-peaks were observed between the C7-

carbon and the C7 methoxy protons (Hi), as well as C7 and Hc on the coumarin ring, and 

C7 and Hf on the aryl ring (all indicated in red in Scheme 3.30, see section 5.6 for 

spectra). 

 

Scheme 3.30 – Formation of mixed acetal 3.44 

 

NMR analysis of the crude reaction mixture provided no evidence of any other products 

resulting from C–C bond formation. As with the previous reactions of the masked 

ortho-quinone compound 3.24, the main issue seemed to be that it does not seem to be 

predisposed to react at the desired C-9 position under any conditions. As a result, we 

decided not to proceed further with this reaction using the masked ortho-quinone 

substrate 3.24. Although we had not achieved the coupling reaction we had aimed for, 

this was still an interesting result, and this type of aryl-aryl coupling using a coumarin 

ring system is a novel transformation that has the potential to be further explored in the 

future. 
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3.8 – Conclusions and Future Work 
 

The main aim of this part of the project was to carry out the key step in the total synthesis 

of fatouapilosin (1.36), an oxidative ring contraction. We hoped to develop methodology 

for oxidative ring contraction by a benzilic acid rearrangement-type rearrangement, using 

brosiparin (1.46) as the substrate, and ideally using base metal catalysis (Scheme 3.31). 

Initial trials based on Rossi’s ring contraction of phenol proved unsuccessful, yielding 

only a complex inseparable mixture, so other oxidising agents known for preparing 

quinone-type compounds were explored. 

 

Scheme 3.31 – Proposed oxidative ring contraction of brosiparin 

 

The use of hypervalent iodine reagents, such as PIDA (3.13), led to the successful 

formation of a masked ortho-quinone containing a dimethyl acetal (3.24). Attempts to 

cleave the acetal and reveal the ortho-quinone predominantly resulted in unwanted 

cyclisation of the prenyl group onto the newly exposed oxygen, however C-5 

halogenation was observed in the presence of acetic acid, water and HCl to give 

compound 3.25. Unfortunately, attempts to tune the substrate and the reaction conditions 

did not result in successful functionalisation at C-9. An alternative route to fatouapilosin 

(1.36), with a C–C bond formation step before the ring contraction, was attempted and 

although the oxidised form of brosiparin (3.24) was successfully coupled to another aryl 

substrate, we were not able to selectivity form the new bond at the C-9 position. As most 

of the issues seemed to lie with the reactivity of the coumarin ring system of the substrate, 

particularly in attempting to carry out reactions at the C-9 ring junction, a ring-opened 

form of brosiparin (3.35) was synthesised in four steps and used as a substrate for 

oxidation reactions. An altered biosynthetic pathway was proposed, with the ring 

contraction step taking place before cyclisation (Scheme 3.32) Unfortunately, the 

resulting quinone compound was unstable and could not be isolated, despite a number of 

attempts to trap the intermediate or to carry out a ring contraction in situ. 
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Scheme 3.32 - Proposed reaction pathway from the ring-opened form of brosiparin 

(3.35) 

 

Future work within this project would likely further explore the proposed biosynthetic 

pathway from the ring-opened form of brosiparin (3.35). Further methods of trapping the 

ortho-quinone compound 3.36 could be explored, such as the addition of a metal species 

into the previously trialled oxidation with PIDA (3.13), which may be able to coordinate 

to and therefore stabilise the observed ortho-quinone species (Scheme 3.32 above). 

Another route that could be investigated is the formation of a ring-opened variant of 

brosiparin containing a free carboxylic acid on the alkene side chain (3.45), and a 

methoxy group at the C-9 (Scheme 3.33). It is speculated that upon oxidation of 

compound 3.45 with PIDA (3.13), the free acid may act as a nucleophile, and cyclise to 

form compound 3.46, which would be functionalised at the C-9 position, and potentially 

primed to undergo a ring contraction in basic conditions (Scheme 3.33). 

 

Scheme 3.33 – Proposed one-pot oxidation and cyclisation of ring-opened compound 

3.45 
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Overall, despite the lack of success with regards to the targeted ring contraction reaction 

of brosiparin (1.46), we were able to carry out a number of interesting oxidative 

transformations which gave us significant insight into the reactivity of the coumarin 

derived substrate. As stated above, a key strategy moving forward is the oxidation and 

ring contraction of a ring-opened brosiparin derivative, followed by cyclisation. This may 

be a better strategy for the thus far unsuccessful functionalisation of the C-9 position.  
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Chapter 4 – Borane-catalysed Enantioselective Reduction by 

Transborylation 
 

 

4.1 - Introduction  
 

4.1.1 – Organoboron Chemistry  

 

In 1979, Herbert C. Brown was awarded the Nobel Prize for the ‘development of the use 

of boron-containing compounds into important reagents in organic synthesis.’144 His 

pioneering work in this field established organoboron chemistry as a fundamental area 

of organic chemistry. The ease of synthesis, and the flexibility, reactivity and 

stereochemical control of organoboron reagents, has led to the development of a wide 

range of transformations in synthetic chemistry. Key examples include hydroboration 

and allylboration - both of which form an organoborane intermediate from which a range 

of a functional groups can be introduced - as well as the reduction of ketones with 

borohydrides, and cross-coupling reactions (Scheme 4.1).145-146 Specific cross-coupling 

transformations include the Suzuki-Miyaura reaction, in which new C–C bonds are 

formed by the palladium-catalysed coupling of organoboronic acids with halides, and the 

Chan-Lam reaction, where secondary aryl amines or aryl ethers are formed by the copper-

catalysed reaction of aryl boronic acids with an alcohol or amine (Scheme 4.1).147-149 

Both of these reactions are widely used in pharmaceutical synthesis.150 The Petasis 

reaction, a variation of the Mannich reaction in which substituted amines are formed from 

the reaction of amines and aldehydes with an alkenyl- or arylboronic acid, is another 

important transformation involving the use of organoboron reagents.151 

 

Scheme 4.1 – Examples of organoboron reactions used in organic synthesis  



102 

 

 

4.1.2 – Hydroboration  

 

The addition of a B–H bond of an organoborane compound to a C=C, C=O, C=N or C≡C 

bond is known as hydroboration, a transformation initially developed by Brown in 

1957.145 The reaction proceeds in a concerted manner, to give the anti-Markovnikov 

product, the opposite to an addition of HX to an alkene. The alkene adds at the least-

substituted (and therefore less hindered) carbon into the vacant p-orbital of the 

electrophilic boron, and the B–H hydrogen adds to the more substituted carbon of the 

alkene. The transition state structure (4.1) shows a partial negative charge on boron, with 

a partial positive charge being supported by the more substituted alkene carbon (Scheme 

4.2). BH3 is commonly used in hydroboration reactions, and will react with three 

molecules of the alkene to give a trialkylborane species. 

 

 

Scheme 4.2 – Hydroboration and subsequent oxidation of olefins 

 

The intermediate organoborane compound can go on to form a number of different 

compounds containing a variety of functional groups. The most common reaction of this 

type is the hydroboration-oxidation sequence, in which the intermediate is reacted with 

basic hydrogen peroxide, leading to the formation of anti-Markovnikov alcohols 

(Scheme 4.2).152 The analogous addition of amines or halides to the organoborane 

intermediate has been shown to result in amines or alkyl halide products.153-155 This 

transformation can also take place on alkynes, resulting in the formation of aldehydes 

(from a terminal alkyne), or ketones (from an internal alkyne).156  

 

4.1.3 – Asymmetric Hydroboration 

 

The hydroboration of alkenes has been carried out in an asymmetric fashion, using a 

number of different enantiopure organoboron reagents. Brown developed mono- and 

diisopinocampheylborane (IpcBH2 (4.2) and Ipc2BH (4.3), respectively), by the reaction 

of α-pinene with BH3, then prepared enantiomeric allylic boranes from olefin substrates 

that were readily oxidised to the corresponding alcohols in high enantiomeric excess 
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(Scheme 4.3).157 A drawback of these boranes was that IpcBH2 (4.2) only favours 

enantioselective hydroboration of (E)-alkenes and Ipc2BH (4.3) favours (Z)-alkenes, and 

neither are effective with trisubstituted alkenes, or 1,1-disubstituted alkenes.158 Ipc2BH 

(4.3) also has a tendency to disproportionate to IpcBH2 (4.2) in certain solvents, which 

leads to a decrease in enantioselectivity of the reaction as the two boranes give products 

with opposite stereochemistry during hydroboration.157  

 

Scheme 4.3 – Asymmetric hydroboration of alkenes using a) IpcBH2 and b) Ipc2BH  

 

Masamune reported C2-symmetric borane 4.4 (2,5-dimethylborolane), which 

successfully mediated the enantioselective reduction of (E)-, (Z)- and trisubstituted 

alkenes, giving the corresponding alcohol products in very high enantioselectivity.159 1,1-

Disubstituted alkenes once again proved very challenging, with very poor ee values 

reported. This is rationalised by the transition-state structure (Figure 4.1), which shows 

that the alkene hydrogen occupies the position closest to the methyl of the borolane, and 

the selectivity is lost when R=H.  Masamune’s borane (4.4) has not been widely used due 

to the 9-step synthesis, which involves both the difficult separation of diastereomers and 

the resolution of the racemic trans-borolane.159 Vedejs and co-workers developed a 

tetrahydroazaborine complex, which was able to hydroborate (Z)-alkenes with high 

enantioselectivity (84-86% ee) in the presence of TMSCl, which abstracted a hydride to 

give active species 4.5. However, this system proved to be far less effective for the 

asymmetric hydroboration of (E)-alkenes and, once again, 1,1-disubstituted alkenes 

(>5% ee)  (Figure 4.1). The development of borane 4.6 by Soderquist, derived from B-

H-9-BBN (4.7), went some way to improving the issue of enantioselective hydroboration 

of 1,1-disubstituted alkenes, with substrates reduced with moderate to high 
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enantioselectivity.160 The reason for this is due to steric factors, as the alkene will 

approach in a manner so that its larger substituent will be remote from the C-10 

substituent on Soderquist’s borane (Figure 4.1). Despite this significant step forward, the 

reliable reduction of 1,1-disubstituted alkenes in high enantioselectivity remains a work 

in progress.158 

 

Figure 4.1 - Asymmetric hydroboration of alkenes with Masamune, Vedejs and 

Soderquist’s boranes  

 

Transition metals have been reported to catalyse the asymmetric hydroboration of 

alkenes. Lu and co-workers have developed a cobalt complex with enantiopure 

iminopyridine oxazoline ligands (4.8), which has been used for the regio- and 

enantioselective reduction of 1,1-disubstituted aryl alkenes (Scheme 4.4).161 Other 

examples include the work of Hayashi and co-workers, who reported the use of a 

rhodium-BINAP complex for the asymmetric hydroboration of styrenes, and Luna and 

co-workers, who developed a chiral iridium catalyst for the hydroboration of meso-

substrates.162-163 Major drawbacks of these systems include the use of expensive, 

unsustainable and toxic metals, and well as the need to develop and synthesis chiral 

ligands. Moving forward, an analogous transformation using less expensive, more 

abundant and non-toxic catalysts would be highly desirable.  

 

Scheme 4.4 – Cobalt-catalysed asymmetric hydroboration 
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4.1.4 – Boronic Esters 

 

The difficulties in the handling and storage of organoborane compounds, due to their air- 

and moisture sensitivity has led to the development of air and moisture-stable boronic 

esters as alternative synthetic building blocks.164 The Lewis acidic boron centre is 

stabilised by the oxygen atoms of the ester, which can donate electron density into the 

empty p-orbital of the boron atom (Figure 4.2a). Particularly well-studied examples of 

boronic esters include catecholborane (HBcat) (4.10) and pinacolborane (HBpin) (4.9) 

(Figure 4.2b).165-167 Studies have shown that HBpin (4.9) has increased stability 

compared to HBcat (4.10), in which the oxygen lone-pair can also delocalise onto the 

conjugated π-system, therefore competing with donation to the boron centre.  

 
 

Figure 4.2a) – Stabilisation of boron centre of boronic ester b) Examples of boronic 

esters  

 

 

4.1.5 – Hydroboration of Carbonyls  

 

4.1.5.1 – Metal Borohydrides 

 

A further important transformation that can be carried out using boron reagents is the 

reduction of carbonyl-containing compounds such as ketones, aldehydes and amides. The 

use of inorganic borohydride compounds for this purpose is very well established and 

ubiquitous within organic chemistry. Commonly used reagents include sodium 

borohydride, which reduces ketones, aldehydes and acid chlorides, and lithium 

borohydride, a stronger reducing agent that can also reduce esters and amides to alcohols 

and primary amines respectively (Scheme 4.5).168 Further examples include LiBH(Et)3 

(Super-Hydride), which is stronger still, and will reduce difficult substrates such as 

sterically hindered ketones, and metal-selectrides, which can reduce 1,2 or 1,4-enones, 

lactones and ketones with high selectivity (Scheme 4.5) .169-170 



106 

 

 

Scheme 4.5 – Metal borohydride reagents used for the reduction of carbonyls 

 

4.1.5.2 – Organoboranes 

 

Numerous examples also exist of commercial borane compounds being used for the 

reduction of carbonyl compounds, such as aldehydes, carboxylic acids and nitrile groups 

to the corresponding alcohols or amines using diborane, which was reported by Brown 

and Rao (Scheme 4.6a).171 Diborane was generated in situ, from NaBH4 and BF3.OEt2. 

Borane adducts have also been commonly used; with H3B·SMe2 and H3B·THF having 

been shown to effectively reduce carboxylic acids and amides (Scheme 4.6b and 4.6c).172 

When coordinated to amines, such as pyridine, NEt3 and H2Nt-Bu, BH3 has been shown 

to reduce imines, oximes and enamines.173 

 

Scheme 4.6 – a) Use of diborane to reduce carbonyl groups; b) use of H3B·SMe2 to 

reduce carboxylic acids; c) use of H3B·THF to reduce amides  
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Brown has also reported the reduction of a range of aldehydes, ketones, carboxylic acids, 

esters and lactones by the organoborane compound 9-borabicyclo[3.3.1]nonane (4.7) (B-

H-9-BBN) (Scheme 4.7b).174 This compound was initially prepared by the reaction of 

1,5-cycloctadiene (4.11) with H3B·THF, but is now commercially available. It is 

generally present as the hydride-bridged dimer (4.7) (Scheme 4.7a). 

 

Scheme 4.7 – a) Synthesis of B-H-9-BBN (4.7) and b) use in carbonyl reduction  

 

 

4.1.5.3 – Asymmetric Ketone Reduction – Ipc-based reagents 

 

As with alkenes, a number of enantioselective borane reductions of carbonyl compounds 

have been reported. Midland and co-workers developed a procedure for the 

enantioselective reduction of carbonyls (mostly ketones) to alcohols using the Ipc-

derived reagent Alpine borane (4.12) (Scheme 4.8). Alpine borane (4.12) is synthesised 

by heating the inexpensive starting materials α-pinene (4.13) and B-H-9-BBN (4.7) in 

THF.175 The Midland reduction proved sluggish with simple ketones such as 

acetophenone, and gave products in low ee, but when a less sterically demanding group 

such as a propargylic- or nitrile-substituted ketone was used as the substrate, the 

enantioselectivity and reactivity were vastly increased.176 Alpine borane (4.12) does not 

contain a B–H bond, so the hydride must be delivered from elsewhere on the molecule. 

As a result of this, the reaction proceeds through a 6-membered chair-like transition state, 

in which the carbonyl oxygen is coordinated to the boron (transition state structure 4.14). 

This mechanism is analogous to a Meerwein-Pondorf-Verley reduction, where a hydride 

is transferred from an aluminium alkoxide species. As the boron-oxygen bond forms, the 
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α-pinene C=C bond reforms, and the hydrogen adjacent to the boron is simultaneously 

delivered to the electrophilic carbon of the carbonyl group. This results in the 

enantioselective formation of a borinic ester (such as 4.15), and the regeneration of α-

pinene (4.13), which can be recovered and recycled.  

 

Scheme 4.8 – Midland’s asymmetric reduction of carbonyl compounds with Alpine 

borane (4.12) 

 

Brown has also developed a series of boranes based on diisopinocampheylborane, 

including Ipc2BCl (4.16) and Eap2BCl (4.17) (Scheme 4.9).   The presence of an 

electronegative chloride on boron rather than hydrogen helped to make the boron centre 

more Lewis acidic, thereby enabling the compound to be a stronger reducing agent. These 

sterically hindered R2BCl derivatives were also more stable to dissociation, resulting in 

compounds such as borinic ester (4.18), when compared to R3B derived compounds.177 

As a result the reaction times were much faster compared to those using Alpine borane 

(4.12), and both Ipc2BCl (4.16) and Eap2BCl (4.17) were successfully able to reduce a 

much wider range of carbonyl compounds with very high enantioselectivity. Ipc2BCl 

(4.16) was particularly effective for the asymmetric reduction of cyclic and aromatic 

ketones (98% ee for both), but less so for acyclic ketones (32% ee). Replacing the methyl 

group on the α-pinene (4.13) in Ipc2BCl (4.16) with an ethyl group, to give Eap2BCl 

(4.17), increased the enantiomeric excess to >99% for the reduction of the same cyclic 

and aromatic ketones (along with heterocylic and α-halo ketones) but, significantly, 

showed improved enantioselectivity when reducing acylic ketones (95% ee).177-178  
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Scheme 4.9 – Brown’s diisopinocampheylborane based boranes for carbonyl 

reduction 

 

4.1.6 – Catalytic Hydroboration of Carbonyls 

 

4.1.6.1 – Transition-Metal Catalysts 

Several examples exist of transition metal complexes being used as catalysts for the 

hydroboration of ketones and aldehydes. Early examples of this include the use of 

titanium alkoxides. Building on their use of stoichiometric TiCl4 to accelerate ketone 

reduction,179 DiMare and co-workers discovered that Ti(OiPr)4 could be used in a 

substoichiometric amount (5 mol%) for the hydroboration of acetophenone with BH3 or 

HBcat (4.10) (Scheme 4.10). They also used titanium-TADDOL complex 4.19 to 

develop an asymmetric ketone reduction, however the ee was fairly low (24%).180  

 

Scheme 4.10 – DiMare’s use of titanium alkoxides to catalyse hydroboration of 

acetophenone 
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Independent work carried out by the groups of Wandrey and Frejd improved the 

enantioselectivity of this transformation, as they were able to develop enantioenriched 

titanium catalysts 4.20 (scheme 4.11a) and 4.21 (Scheme 4.11b) respectively, which 

were generated in situ from the reaction of Ti(OiPr)4 with TADDOL-analogous 

ligands.181-182 The hydroboration of acetophenone (4.22) using HBcat (4.10) in the 

presence of 10 mol% of either titanium catalyst 4.20 or 4.21 resulted in the successful 

formation of 1-phenylethanol (4.23) with high enantioselectivity (Scheme 4.11).  

 

Scheme 4.11 – a) Wandrey and b) Frejd’s titanium-catalysed enantioselective 

hydroboration of acetophenone 

 

An iminooxazoline (IMOX) zinc(II) complex 4.24 has been developed by Umani-

Ronchi, Cozzi and co-workers by mixing Zn(OTf) and an IMOX ligand, and used to 

catalyse the hydroboration of a range ketones by HBcat, giving the alcohols in high 

conversion and ee (82%).183 Cozzi then developed zinc complex 4.25, which improved 

the enantioselectivity of the reaction (93% ee).184 Several other zinc(II) complexes have 

been reported, including one derived from Zn(II) monohydride and stabilised by an NHC 

ligand to give zinc complex 4.26, which has been used for the hydroboration of 

benzophenone with HBpin (4.9) (Figure 4.3).185 
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Figure 4.3 – Zinc-catalysts used for enantioselective hydroboration of ketones 

 

The ruthenium-based Shvo catalyst has previously been shown to be effective for the 

hydrogenation of alkenes, carbonyls and imines.186 A boron substituted derivative 4.28 

was prepared in situ by addition of HBpin (4.10) to ruthenium dimer 4.27 (Scheme 

4.12a). Borylated complex 4.28 was reported to effectively catalyse the hydroboration of 

aldehydes, ketones and imines. The proposed mechanism involves concerted formation 

of the new C–H and O–B bonds (transition state structure 4.29) (Scheme 4.12b), with the 

catalyst subsequently regenerated by HBpin.187  

 

 

Scheme 4.12 – a) Preparation of boron-substituted Shvo’s catalyst (4.28); b) Use of 

catalyst 4.28 in the hydroboration of ketones 

 

4.1.6.2 – Main-Group Catalysts  

The replacement of toxic and expensive transition metal catalysts with cheaper and more 

abundant main group elements has been a major area of research across chemistry in 

recent years, and a number of systems have been developed using p-block compounds 

for the catalysis of hydroboration reactions.188 LiGa(MTB)2 (4.30), generated in situ from 

LiGaH4 and 2-hydroxy-2’-mercapto-1,1’-binapthyl was reported to catalyse the 
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reduction of prochiral ketones in high yields and enantioselectivity.189 Hill and co-

workers developed a magnesium-based complex (4.31), which was proposed to react 

with HBpin (4.9) to form dimeric magnesium-hydride active species 4.32.190 The 

hydroboration of aldehydes and ketones was carried out in high yields (91-99%) with 

very low catalyst loadings (0.1-0.5 mol%). Jones and co-workers used germanium(II) 

and tin(II) hydrides to catalyse the hydroboration of aldehydes and ketones with HBpin 

(4.9).191  

 

 

Scheme 4.13 – Main-group compounds used for hydroboration of aldehydes and 

ketones     

 

Kinjo and co-workers developed a metal-free catalytic hydroboration of carbonyl 

compounds. The hydridic P–H bond in 1,3,2-diazophospholene (4.35) had previously 

been shown to react with carbonyl compounds.192 The reaction of benzaldehyde (4.34) 

with diazaphospholene 4.35 gave benzyloxydiazaphospholene 4.36, which upon reaction 

with stoichiometric HBpin (4.9) gave the hydroborated aldehyde 4.37 and regenerated 

diazaphospholene 4.35. Subsequently it was shown that sub-stoichiometric amounts of 

diazaphospholene 4.35 (0.5-10 mol%) and HBpin (4.9) could be used to catalyse the 

hydroboration of aldehydes and ketones (Scheme 4.14).193  

 

Scheme 4.14 – Phosphorus catalysed hydroboration of carbonyls  
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Mechanistic studies, both experimental and computational, have been carried out on the 

above transformations, which generally suggest a common initial insertion of an M–H 

hydride to the C=O bond, followed by σ-bond metathesis (transition state structure 4.38) 

between the alkoxide and HBpin (4.9), to give the O-borylated alcohol and regenerate 

the catalyst (Scheme 4.15).  

 

 

Scheme 4.15 - General σ-bond metathesis mechanism for the hydroboration of 

carbonyls  

 

4.1.6.3 – Borane Catalysts - CBS reduction 

 

Possibly the most well-known example of enantioselective main-group catalysed 

hydroboration of carbonyl compounds is the Corey-Bakshi-Shibata (CBS) reduction, 

sometimes also known as the Corey-Itsuno reduction. Itsuno first reported the use of an 

enantiopure alkoxyamine-borane complex for the asymmetric reduction of ketones in 

1981.194 The (S)-valine derived reagent 4.39 was pre-mixed with H3B·THF to prepare 

the oxazaborolidine compound 4.40 in situ, before addition of the ketone (Scheme 4.16a). 

Itsuno’s reagent (4.40) was shown to stoichiometrically reduce ketones with defined 

large and small groups, to give alcohols in very high enantioselectivity, as well as oxime 

ethers to give amine products (Scheme 4.16b).  
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Scheme 4.16 – a) Formatiom of Itsuno’s reagent (S)-4.40; b) Use of (S)-4.40 in the   

asymmetric reduction of ketones and oxime ethers 

 

In the subsequent years, Corey and co-workers built upon the work carried out by Itsuno 

to prepare an oxazaborolidine compound Me-CBS (4.41), derived from proline (both (R) 

and (S) enantiomers were synthesised), that could be used in sub-stoichiometric amounts 

for asymmetric ketone reduction in the presence of stoichiometric H3B·THF  (Scheme 

4.17).195-196 The proline-based rigid bicylic structure of the catalyst leads to higher ee 

values of the alcohols formed compared to the more flexible ring system of Itsuno’s 

reagent (4.40). The high yields and enantioselectivity obtained in the reaction, along with 

the high stability (due to the B–C bond vs B–H) and ease of preparation of the catalyst, 

have enabled the CBS reduction to be widely utilised within organic chemistry, both in 

industry and in a number of natural product syntheses.196-198  

 

 

Scheme 4.17 – CBS reduction of ketones  

 

Corey proposed that the mechanism of CBS reduction proceeds initially by coordination 

of BH3 to the nitrogen of the CBS catalyst (4.41), which enhances the Lewis acidity of 
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the CBS boron, and therefore activates the coordinated BH3 as a hydride donor. The CBS-

borane complex then binds to the ketone at the lone pair closer to the smaller ketone 

substituent, which is more sterically accessible, thus determining the selectivity of the 

reaction. Face-selective hydride transfer from borane to the ketone then occurs through 

a six-membered transition state (Scheme 4.17, transition state structure 4.42). CBS 

reduction has been shown to successfully reduce a wide range of different substrates, 

including aryl-alkyl ketones, diaryl and dialkyl ketones, cyclic and acyclic enones, 

ynones, and ketones containing heteroatoms.199-200 

 

 

4.1.7 – ‘Transborylation’ in borane-catalysed hydroboration 

 

Hoshi, Shirakawa and co-workers, using substoichiometric dicyclohexylborane (4.43) 

and stoichiometric HBpin (4.9), have also reported the use of boron compounds as active 

catalysts for the hydroboration of alkynes (Scheme 4.18a).201 The proposed mechanism 

suggested hydroboration of the alkyne with dicyclohexylborane to give alkenyl borane 

4.44, which then underwent σ-bond metathesis with HBpin (4.9), to form the boronic 

ester compound 4.45 and regenerate dicyclohexylborane (4.43). Oestreich and co-

workers have reported the boron-catalysed hydroboration of alkene substrates using 

tris[3,5-bis(trifluoromethyl)phenyl]borane (BArF
3) (4.46) (Scheme 4.18b),202 while 

Melen and co-workers have carried out the hydroboration of aldehydes, ketones and 

imines using tris(3,4,5-trifluorophenyl)borane (4.47) as a catalyst (Scheme 4.18c).203 The 

use of microwave irradiation enabled the hydroboration of alkenes and alkynes with the 

same borane catalyst (4.47). 
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Scheme 4.18 – Boron-catalysed hydroboration of alkynes and alkenes by a) Hoshi 

b) Oestreich and c) Melen  

 

Work previously carried out within the Thomas group has shown that the hydroboration 

of alkene and alkyne substrates with HBpin (4.9) can be catalysed by 10 mol% BH3.
204 

The proposed mechanism is analogous to that of Hoshi and Shirakawa, with initial 

hydroboration of the unsaturated carbon-carbon bond to form a trialkylborane, which 

subsequently undergoes boron-carbon σ-bond metathesis with HBpin (4.9), to form an 

alkyl pinacolboronic ester and regenerate the BH3 catalyst (Scheme 4.19).  
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Scheme 4.19 – BH3-catalysed hydroboration of alkenes by HBpin 

 

The transfer of the substrate from one boron species to another by σ-bond metathesis was 

termed ‘transborylation’. As the use of boron-catalysis had proven successful in the 

racemic hydroboration of alkenes and alkynes, it was proposed that the use of 

enantioenriched boron catalysts and prochiral substrates could enable the development 

of the catalytic asymmetric hydroboration of alkenes and carbonyls with HBpin (4.9), to 

prepare enantioenriched boronic- and borate-ester containing compounds.  

 

 

4.1.8 – Attempted alkene and ketone hydroboration using transborylation   

 

Initial investigations within the Thomas group focused on the use of established 

enantiopure borane reagents as catalysts for both hydroboration of alkenes and carbonyl 

compounds.  Ipc2BH (4.3) was shown to have some success catalysing the hydroboration 

of terminal alkenes, but unfortunately not with prochiral substrates, such as secondary 

alkenes. Attempts to catalyse the hydroboration of alkenes using Soderquist’s borane 

(4.6) have also thus far proven unsuccessful, with further studies still in progress. 

Stoichiometric amounts of Ipc2BCl (4.16) showed successful hydroboration of carbonyl 

substrates to form a borinic ester intermediate, but the subsequent σ-bond metathesis with 

HBpin did not occur, meaning the process could not be made catalytic. Alpine borane 

(4.12), previously shown to enantioselectively reduce propargylic ketones, was the next 

compound investigated. The hydroboration of a prochiral propargylic ketone 4.48 to the 

borate ester 4.50 (then the corresponding alcohol) using stoichiometric Alpine borane 

(4.12) in the presence of HBpin (4.9) proceeded with high conversion (>95%) and 

enantioselectivity (87% ee) at 0 °C, and 11B NMR studies gave strong evidence that 

transborylation was occurring (Scheme 4.20). A clear peak indicating formation of the 

borinic ester intermediate 4.49 was observed upon addition of the substrate to Alpine 
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borane (4.12). When HBpin was added, the borinic ester was consumed and a new peak 

appeared corresponding to the borate ester 4.50 appeared.205 

 

 

Scheme 4.20 – Successful enantioselective hydroboration of propargylic ketone 4.48 

with stoichiometric Alpine borane (4.12)  

 

4.1.9 – Project Aims  

 

Preliminary work within the Thomas group showed the proof of concept that the 

enantioselective hydroboration of propargylic ketones can be carried out using an 

enatiopure borane and HBpin (4.9).205 The aim at this point was to carry out the 

enantioselective hydroboration of a ketone substrate using a substoichiometric amount 

of the chiral borane reagent (Scheme 4.21). Turnover of the borane catalyst would be 

achieved by the addition of stoichiometric HBpin (4.9), enabling a boron-boron 

exchange, or transborylation type mechanism (transition state structure 4.52), giving a 

boronate ester (4.53). Enantioselectivity would be retained from borinic ester (4.51), and 

the enantiopure catalyst would be regenerated. The enantioselectivity of the 

hydroboration would be measured by conversion of the boronic ester to the respective 

alcohol, and analysis by chiral HPLC. Once a procedure had been optimised, the aim was 

to explore the reaction scope, by trialling a range of different carbonyl compounds. 

Insight into, and confirmation of, the reaction mechanism would be sought using 1H and 

11B NMR spectroscopy. As the initial results were obtained using Alpine borane as the 

enantiopure borane source, the optimisation would begin at the same point, however a 

number of chiral borane reagents would be trialled if necessary. The propargylic ketone 

4-phenyl-3-butyn-2-one (4.48) would continue to be used as the model substrate for 
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optimisation. Work into the analogous borane-catalysed hydroboration of alkenes would 

also be carried out separately within the research group. 

 

Scheme 4.21 – Project aims  

 

 

4.2 - Alpine Borane 
 

As earlier discussed, the Alpine borane-mediated reduction of simple ketones such as 

acetophenone was very sluggish compared to the reduction of aldehydes, with reactions 

taking several days to go to completion. Carrying out the reaction under reflux shortened 

the reaction time, but also lowered the enantioselectivity. Midland proposed that this 

sluggishness could be explained by the transition state structure. For ketones, an alkyl 

group occupies a pseudo-axial position, resulting in a steric clash with the methyl group 

of Alpine borane (4.12), which slows the reaction (Figure 4.4b).175-176 This is avoided 

with aldehydes, as the hydrogen is pseudo-axial (Figure 4.4a). Less sterically 

encumbered ketone species, such as propargylic ketones, were successfully reduced 
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however (Figure 4.4c), as the alkyne does not clash with the methyl group of Alpine 

borane (4.12). 

 

 

Figure 4.4 – Transition states for reduction of a) aldehydes, b) acetophenone and c) 

propargylic ketones with Alpine borane (4.12)  

 

A range of these substrates were trialled by Midland, including 4-phenyl-3-butyn-2-one 

(4.48) which was to be reduced to the respective alcohol 4.54 in >95% yield and 78% ee 

(Scheme 4.42).175 This was the substrate used in the successful reduction with 

stoichiometric Alpine borane (4.12) and HBpin, so we continued with it for further 

studies. 

 

Scheme 4.22 – Alpine borane-mediated reduction of 4-phenyl-3-butyn-2-one (4.48) 

 

Due to the small quantities in which propargylic ketone 4.48 was commercially available, 

as well as its lengthy delivery period, we decided to synthesise according to a literature 

procedure reported by Dos Santos and co-workers.206 Phenylacetylene (4.55) was 

deprotonated using n-butyllithium at −70 ℃, before zinc(II) chloride and acetyl chloride 

(4.56) were added to the reaction mixture, which was stirred at room temperature for 40 

minutes. Small amounts of an impurity arising from the ring opening of THF by n-BuLi 

were present in the crude reaction mixture, and proved difficult to remove by column 

chromatography. However, by controlling the temperature more carefully during the n-

BuLi addition, this problem was solved. The isolated yield was 46%, which was lower 
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than reported in literature, but the reaction was able to be scaled up, with up to 3 g of 

product formed each time. 

 

Scheme 4.23 – Formation of 4-phenyl-3-butyn-2-one (4.48) 

 

The studies into the catalytic reduction of propargylic ketone 4.48 with Alpine borane 

(4.12) began with repetition of the stoichiometric reaction, with 100 mol% of Alpine 

borane used, along with 1.2 equivalents of HBpin at 0 ℃, before a range of different 

conditions were trialled, altering the catalyst loading, time and temperature of the 

reaction (Table 4.1).  Each reaction was quenched by opening to the atmosphere and 

addition of SiO2, the conversion was measured by NMR yield using 20 mol% of 1,3,5-

trimethoxybenzene as internal standard, then the alcohol product purified by column 

chromatography before analysis by chiral HPLC.  
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Table 4.1 – Studies into the catalytic reduction of propargylic ketone 4.48 with 

commercial Alpine borane (4.12)  

 

Entry Catalyst (mol%) HBpin (eq.) Time (h) Temp 

(℃) 

Yield (%) ee (%) 

a 100 1.2 16 0 79 38 

b 30 1.2 16 0 69 20 

c 100 1.2 40 0 86 30 

d 30 1.2 40 0 95 25 

e 100 1.2 16 −40 49 15 

f 30 1.2 16 −40 18 24 

g 100 1.2 16 −10 74 31 

h 30 1.2 16 −10 24 13 

i 30 1.2 40 −10 61 15 

 

Repetition of the conditions previously trialled in the group, using stoichiometric Alpine 

borane (4.12) (Table 4.1, entry a) gave a very different result; a comparable yield, but 

the alcohol was obtained in significantly lower enantiomeric excess (38% compared to 

87%). Going from stoichiometric to substoichiometric catalyst loading (30 mol%), the 

yield dropped slightly to 69%, and the enantioselectivity also decreased. An increase in 

reaction time from 16 h to 40 h (entries c and d) saw an increase in yield, but no 

significant change in ee. Concerned by the lack of enantioselectivity in the reaction, we 

decreased the temperature and carried out reactions at −10 °C and -40 °C (entries e-i). 

Disappointingly no increase in enantioselectivity was observed at lower temperatures for 

reactions with either stoichiometric or sub-stoichiometric Alpine borane (4.12). An 

alternative approach was investigated, with Alpine borane (4.12) formed in situ from α-

pinene (4.13) and B-H-9-BBN (4.7) rather than the commercial catalyst used (Scheme 

4.24). Again, reactions were trialled using differing amounts of catalyst, as well as 

different reaction temperatures. In all cases α-pinene (4.13) and B-H-9-BBN (4.7) were 
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stirred together in THF for 2 hours, before the addition of substrate and HBpin, and the 

pre-mix temperature was also altered (Table 4.2). 

 

Scheme 4.24 – Synthesis of Alpine borane (4.12)  

 

Table 4.2 – Studies into the catalytic reduction of propargylic ketone 4.48 with 

Alpine borane (4.12) formed in situ  

 

Entry B-H-9-BBN 

(mol%) 

α-pinene 

(mol%) 

HBpin 

(eq.) 

Time 

(h) 

Temp 

 (℃) 

Yield 

(%) 

ee (%) 

a 100 100 1.2 16 0 84 24 

b 30 30 1.2 16 0 78 21 

c 100 100 1.2 16 0 74 3 

d 30 30 1.2 16 0 87 9 

e 100 100 1.2 16 25 58 9 

f 30 30 1.2 16 25 75 9 

Before addition of substrate, B-H-9-BBN and α-pinene pre-mixed for 16 hours at 0 ℃ 

(entries a, b, e, f), or 25 ℃ (entries c and d) 

 

Unfortunately, results proved very similar to those obtained with commercial Alpine 

borane (4.12), with the alcohol product being formed in high yield but with low 

enantioselectivity (Table 4.2, entries a and b). The ee was lower still when the catalyst 

was pre-mixed at room temperature (entries c and d), and when the reaction was carried 

out at room temperature (entries e and f). It was hypothesised that the low enantiomeric 

excess could be due to the reduction being carried out by an achiral borane; ie. HBpin 

(4.9) or B-H-9-BBN (4.7). To investigate this possibility, control reactions were carried 

out, as detailed in Table 4.3. 
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Table 4.3 – Control reactions to investigate low enantioselectivity of reduction  

 

Entry Catalyst. 

(mol%) 

HBpin 

(eq.) 

B-H-9-

BBN) (eq.) 

Time 

(h) 

Temp 

(℃) 

Yield 

(%) 

ee (%) 

a 100 0 0 3 0 43 81 

b 100 1.2 0 3 0 75 39 

c 0 1.2 0 3 0 26 - 

d 0 0 1 3 0 37 - 

*all reactions carried out by Joanne Dunne 

 

The reaction of propargylic ketone 4.48 with stoichiometric Alpine borane (4.12) in the 

absence of HBpin (4.9) was carried out (Table 4.3, entry a), giving the product in a lower 

yield than previously observed, which can be explained by the shorter reaction time and 

the absence of HBpin (4.9), but crucially, in a much higher enantiomeric excess of 81%. 

This reaction was run in parallel with entry b, with the only difference being the addition 

of 1.2 equivalents of HBpin (4.9) (as in table 4.2, entry a), which as before, gave a 

relatively high yield but a much lower ee (39% compared to 81%). A control reaction 

with HBpin in the absence of Alpine borane (4.12) was carried out (entry c), and resulted 

in 26% conversion to the alcohol 4.54 in 3 hours. This was evidence that a non-

enantioselective ‘background reaction’ of hydroboration of substrate 4.48 with HBpin 

(4.9) was taking place, resulting in the decrease in the ee of the product. Control reaction 

with one equivalent of B-H-9-BBN (4.7) in the absence of Alpine borane (4.12) and 

HBpin also led to significant conversion (entry d), suggesting that the non-

enantioselective reduction of the substrate with free B-H-9-BBN (4.7), formed during the 

reaction, could also be contributing to the decrease in enantioselectivity (Scheme 4.25). 

From these results, we hypothesised that the regeneration of the catalyst was slow, which 

led to the enantioselective reduction by Alpine borane (4.12) being outcompeted by 

background HBpin (4.9) reduction, as well as allowing for B-H-9-BBN (4.7) to directly 

hydroborate the ketone substrate (4.48). We decided to explore the use of alternative 

chiral borane compounds as catalysts in order to prevent these issues. 
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Scheme 4.25 – Background reduction of ketone due to slow regeneration of catalyst 

 

 

4.3 - Itsuno’s Catalyst 
 

As previously discussed (see section 4.1.5.3), Itsuno reported the synthesis and use of an 

(S)-valine-derived chiral alkoxyamine-borane complex (4.40) for the asymmetric 

reduction of a range of carbonyl containing compounds, including ketones. Itsuno’s work 

was further developed by Corey and co-workers in the CBS reduction; in which a similar 

oxazaborolidine reagent (4.42) is used sub-stoichiometrically and regenerated with BH3. 

Itsuno’s reagent (4.40) has previously only been reported in the stoichiometric reduction 

of carbonyl compounds, but we proposed that it could potentially be used sub-

stoichiometrically along with HBpin (4.9), and could undergo a similar transborylation 

type mechanism to that earlier proposed (Scheme 4.26).194-195  

 

 

Scheme 4.26 – Proposed catalytic use of Itsuno’s catalyst with HBpin in asymmetric 

ketone reduction 

 

Itsuno’s reagent is commonly formed in situ, by mixing the ligand 4.39 with an excess 

of H3B·THF for 3 hours, prior to the addition of the carbonyl substrate. Ligand 4.39 was 

formed in one step by the reaction of (S)-valine methyl ester hydrochloride (4.57) with a 

large excess of phenyl magnesium bromide (Scheme 4.27).  
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Scheme 4.27 – Synthesis of ligand 4.39 and formation of Itsuno’s reagent 4.40  

 

We proposed that reduction using Itsuno’s reagent 4.40 and HBpin (4.9) would initially 

proceed by a mechanism analogous to the CBS reduction, with coordination of BH3 to 

the nitrogen of the oxazaborolidine (which activates BH3 as a hydride donor) followed 

by coordination of the endocylic boron to the ketone substrate at the most sterically 

accessible oxygen lone pair. Hydride transfer through a six-membered transition state 

structure (4.57) would then be followed by transborylation with HBpin, to form a boronic 

ester and reform the active catalytic species (Scheme 4.28). 

 

 

Scheme 4.28 – Proposed reduction of ketones by substoichiometric Itsuno’s reagent 

(4.40) and HBpin  
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Table 4.4 – Studies into the catalytic reduction of ketones with Itsuno’s reagent 

(4.40) 

 
Entry Substrate Ligand 

(4.39) 

(eq.) 

H3B·THF  

(eq.) 

Time 

(h) 

Temp 

(℃) 

Yield 

(%) 

ee (%) 

a 4.48 1.25 2.5 16 25 >95 30 

b 4.48 1.25 2.5 16 0 88 43 

c 4.48 1 1 16 25 <10 - 

d 4.48 1 0.5 16 25 <10 - 

e* 4.48 1 1 16 25 <10 - 

f* 4.48 1 0.5 16 25 <10 - 

*4.48 and H3B·THF pre-mixed for 8 hours  

 

The reduction of propargylic ketone 4.48 was attempted using conditions reported by 

Itsuno, with 1.2 equivalents of ligand 4.39 mixed with 2.5 equivalents of H3B·THF and 

stirred for 3 hours, before the addition of the substrate. Conversion to alcohol (4.54) was 

very high (Table 4.4, entries a and b), but the enantioselectivity was fairly low relative 

to that reported by Itsuno. It was hypothesised that the BH3 could be contributing to the 

reduction, and decreasing the enantioselectivity, so the number of equivalents of BH3 

was reduced to 1 (entry c) or 0.5 (entry d) in an attempt to prevent this. Unfortunately, in 

both these cases the conversion to alcohol 4.54 decreased to less than 10%. The use of 

less BH3 seemed to prevent background reduction of the ketone, but also may have 

prevented the formation of Itsuno’s reagent (4.40). The pre-mix time for the ligand and 

H3B·THF was extended to 8 hours (entries e and f) but unfortunately there was no 

difference in the result. 
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Table 4.5 – Attempted reduction with Itsuno’s reagent and HBpin 

 

 
Entry Ligand 4.39 

(eq.) 

H3B·THF  

(eq.%) 

HBpin 

(eq.) 

Time 

(h) 

Temp 

(℃) 

Yield 

(%) 

ee (%) 

a 1.25 5 0 16 25 43 40 

b 1.25 5 0 16 0 30 60 

c 1.25 5 1 16 25 82 7 

d 1.25 5 1 16 0 68 15 

To solve this problem, we attempted to synthesise Itsuno’s reagent (4.40) first, by mixing 

ligand 4.39 with a larger excess of H3B·THF  (5 equivalents), before removing any excess 

BH3 under vacuum, then adding the substrate and THF to the catalyst, which was kept 

under inert atmosphere. Reaction at room temperature between substrate (4.48) and 

Itsuno’s reagent, gave a low conversion (Table 4.5, entry a), but slightly higher ee than 

the analogous reaction where Itsuno’s reagent (4.40) was formed in situ (Table 4.4, entry 

c). When the temperature was decreased to 0 ℃ (entry b), the conversion was slightly 

lower, but the ee of the product increased to 60%. Encouraged by this, one equivalent of 

HBpin (4.9) was added to the reaction, in an attempt to increase the conversion while 

maintaining enantioselectivity (entries c and d). Although a significant increase in the 

conversion was observed, the ee of the product was much lower than the analogous 

reactions without HBpin (4.9) (entries a and b), suggesting that background reduction of 

the substrate by HBpin (4.9) was occurring at a faster rate than reduction by Itsuno’s 

reagent (4.40), and therefore the reduction was not enantioselective.   
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4.4 - Binol  
 

An example of the use of borane complexes containing binapthol (BINOL) derived 

ligands for the asymmetric reduction of ketones has been reported by Yang and co-

workers, who developed a complex containing polyether ligand (4.58) with H3B·THF. 

This complex, formed in situ, was used to reduce a wide range of substituted pro-chiral 

ketones.207 

 
 

Scheme 4.29 – Previous use of BINOL-derived borane reagents for asymmetric 

ketone reduction  

 

We thought it may be possible to replicate Yang’s conditions, and to carry out the 

reduction of acetophenone (4.22) using catalytic (S)-BINOL (4.59) along with 

stoichiometric H3B·THF, with the borane complex (4.60) formed in situ. If this was 

successful we would investigate reducing the amount of BH3 used, and adding 

stoichiometric HBpin (4.9) in an attempt to carry out transborylation (Scheme 4.30). 

 

 
 

Scheme 4.30 – Proposed asymmetric reduction of ketones with a BINOL-borane 

complex (4.60) and HBpin (4.9) 
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Table 4.6 – Studies into catalytic reduction with BINOL-borane complex and HBpin 

 

Entry (S)-BINOL 

(eq.) 

H3B·THF  

(eq.) 

Solvent HBpin 

(eq.) 

Time 

(h) 

Temp 

(℃) 

Yield 

(%) 

ee 

(%) 

a 0.1 1 Toluene 0 16 25 82 - 

b 0.1 1 THF 0 16 25 52 - 

c 0.1 1 Toluene 0 16 0 70 - 

d 0.2 1 Toluene 0 16 25 89 - 

e 0.2 1 Toluene 0 16 0 75 - 

f 0.1 0.1 Toluene 1.2 16 25 15 - 

g 0.1 0.1 Toluene 1.2 16 0 5 - 

 

Despite very high yields, all reactions carried out using 10 mol% (S)-BINOL and 

stoichiometric BH3 unfortunately gave no enantioselectivity in the alcohol product, either 

at room temperature (Table 4.6, entry a) or at 0 ℃ (entries c and e). Doubling the catalyst 

loading made no difference, with the ee values obtained still extremely low (entries d and 

e). We speculated that the high conversions observed were due to background reduction 

with BH3. The amount of H3B·THF was therefore reduced, and one equivalent of HBpin 

added to the reaction, but the same low enantioselectivity was observed, and the 

conversion also significantly decreased. This further suggested that H3B·THF or HBpin, 

rather than the chiral borane species, was carrying out the reduction. It may have been 

the case that the BINOL-borane is not being formed, with the rate of H3B·THF reduction 

of the substrate being faster than the rate of BINOL-borane (4.60) formation. We decided 

to move on to other borane catalysts, but later became aware of another reported use of 

BINOL-borane type complexes by Thormeier and co-workers, which suggested that 

when unsubstituted BINOL (4.59) was complexed with BH3, ‘propeller’ compounds 

(4.61) were formed (Scheme 4.31).208 If this were the case, excess BH3 would be 

available to carry out the reduction in a non-enantioselective manner. Future work could 

potentially explore this further, by altering the ratio of BH3 to ligand, or by investigating 

the coordination of primary amines to the boron, which was also reported by Thormeier 
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and prevented formation of propeller complexes, but only resulted in moderate 

enantioselectivity.  

 

Scheme 4.31 – Formation of bis-borate propeller complexes from BINOL  

 

 

4.5 - Myrtanyl borane 
 

As well as Alpine borane (4.12), Midland reported the preparation and use of myrtanyl 

borane (4.63) as a reagent for the asymmetric reduction of ketones, particularly hindered 

acetylenic ketones such as 2,2-dimethyl-4-nonyn-3-one (4.64), and 4,4-dimethyl-1-

ocytn-3-one (4.65), both of which were reduced to give the respective (R)-alcohols (4.66 

and 4.67) in high yield and enantiomeric excess (Scheme 4.32b). Myrtanyl borane (4.63) 

is synthesised in the same manner as Alpine borane (4.12), but with β-pinene (4.62) rather 

than α-pinene (4.13). (Scheme 4.32a)209  

 
Scheme 4.32 – a) Synthesis of myrtanyl borane (4.63) and b) use in asymmetric 

ketone reduction 
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The alkene in β-pinene (4.62) is exocylic, making it more accessible than the endocyclic 

alkene of α-pinene, which suggests myrtanyl borane (4.63) may be able to re-form at a 

faster rate during the reaction than Alpine borane (4.12), therefore preventing any 

reduction by free B-H-9-BBN. If the catalyst did re-form faster, this would also likely 

reduce the amount of background reduction by HBpin (4.9), which is known to proceed 

slower than the rate of reduction by the chiral borane (Scheme 4.33).   

 

Scheme 4.33 – Predicted rates of hydroboration of α-pinene (4.12) and β-pinene 

(4.62), as well as background reduction 

If our hypothesis was correct, use of myrtanyl borane (4.63) should lead to the reduction 

proceeding with much higher enantioselectivity. Reactions would be carried out using 

the same conditions as for those when Alpine borane was formed in situ (table 4.7), with 

β-pinene and B-H-9-BBN (4.7) pre-mixed before the addition of the substrate 4.48 and 

then HBpin (4.49).  
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Table 4.7 – Studies into catalytic reduction of ketone 4.48 using myrtanyl borane 

4.63 and HBpin  

 
Entry B-H-9-BBN 

(mol%) 

β-pinene 

(mol%) 

Mix time 

(h) 

HBpin 

(eq.) 

Time 

(h) 

Yield 

(%) 

ee 

(%) 

a 100 100 2 0 16 35 75 

b 100 100 2 1.2 16 93 74 

c 20 20 2 1.2 16 88 68 

d 20 20 6 1.2 16 90 66 

e 20 20 16 1.2 16 95 72 

f 20 100 16 1.2 16 92 71 

g 10 20 16 1.2 16 42 72 

h 20 20 16 1.2 6 44 70 

*Temperature 0 ℃ for all reactions 

 

The initial reaction, carried out using stoichiometric B-H-9-BBN (4.7) and β-pinene 

(4.62), pre-mixed for 2 hours, saw the successful reduction of ketone 4.48 to alcohol 4.54 

in low yield, but in good enantioselectivity (entry a). When 1.2 equivalents of HBpin 

(4.9) were added the yield increased significantly to 93%, but crucially the ee was 

maintained (entry b). The catalytic reaction, using 20 mol% B-H-9-BBN (4.7) and β-

pinene (4.62) with 1.2 equivalents of HBpin (4.9) (entry c) showed high conversion and 

retention of the high enantioselectivity seen in the stoichiometric reaction. This result 

supported our predictions that the catalyst formation (and therefore regeneration) was 

much faster for Myrtanyl borane (4.63) than for Alpine borane (4.12), preventing any 

background reduction of the substrate with B-H-9-BBN (4.7); ie. the asymmetric 

reduction by the catalyst was outcompeting any reduction by HBpin (4.9) or B-H-9-BBN 

(4.7). Increasing the catalyst pre-mix time saw no significant change in results, with 

conversion and enantioselectivity still high, again suggesting the rate of catalyst 

formation was faster than the formation of Alpine borane (4.12) (entries d and e). Use of 

excess β-pinene (4.62) with respect to B-H-9-BBN (4.7) (to potentially mop up any free 

B-H-9-BBN (4.7), thus preventing background reduction) (entry f) also had no significant 

effect on the results. To ensure the enantioselectivity was retained from the borinic ester 
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intermediate 4.49 through the transborylation step, a reaction was carried out in which 

an aliquot was removed from the reaction prior to the addition of HBpin (4.9), then both 

solutions were stirred for 16 hours and quenched at the same time. Similarly high ee 

values were observed for both products, confirming retention of enantioselectivity 

(Scheme 4.34). 

 

Scheme 4.34 – Comparison of ee of alcohol from intermediate 4.49 and alcohol from 

borate ester 4.50 

 

 

4.6 - Mechanistic Studies 
 

In order to obtain further mechanistic insight into the transformation, we carried out a 

study on the stoichiometric reduction of propargylic ketone 4.48 using 11B NMR 

spectroscopy. Use of 11B NMR spectra after the catalyst formation, after addition of the 

substrate, and after addition of HBpin, would allow the observation of the formation and 

disappearance of each relevant boron-containing species in the reaction, as in each 

compound the boron is in a significantly different environment and would show up as a 

distinct peak (Figure 4.5). 
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Figure 4.5 – Mechanistic study of Myrtanyl borane catalysed reduction of ketones 

 

The 11B NMR spectrum, taken after the hydroboration of β-pinene with B-H-9-BBN (4.7) 

(Figure 4.5a), to form the catalyst, showed a very clear peak at 88 ppm, corresponding 

to myrtanyl borane (4.63). Trialkyl borane species characteristically appear between 80-

90 ppm, and B-H-9-BBN is known to appear at 28 ppm in CDCl3, so the NMR gives 

strong evidence that the catalyst has been formed, with only a small amount of B-H-9-

BBN (4.7) observed.210-211 After addition of the ketone substrate (Figure 4.5b), almost 

total consumption of the catalyst is observed, along with a new peak at 58 ppm - in the 

region where borinic esters are usually observed - corresponding to the borinic ester 4.49, 

formed by hydroboration of ketone 4.48 by myrtanyl borane (4.63).211 After addition of 

HBpin (4.9), a new peak at 21 ppm was observed, corresponding to boronate ester 4.50, 

formed from borinic acid 4.49 by boron-boron exchange, with the peak again 

corresponding with NMR data previously reported for borate ester species (Figure 

4.5c).211 The observed peak at 88 ppm indicated regeneration of the myrtanyl borane 

catalyst (4.63), and the absence of a clear B-H-9-BBN (4.7) peak suggested the rate of 

re-formation of the catalyst was fast, therefore reducing the possibility of background 

reduction, as any liberated B-H-9-BBN (4.7) had already been used up. This study gave 

us the evidence we needed to confidently suggest that the proposed transborylation 
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mechanism, and catalyst regeneration from β-pinene (4.63) and liberated B-H-9-BBN 

(4.7) were indeed occurring. The full proposed catalytic cycle (Scheme 4.35), shows 

catalyst formation, hydroboration by a Meerwein-Pondorf-Verley type mechanism, 

transborylation with HBpin, then regeneration of the catalyst. 

 

 

 

Scheme 4.35 – Proposed catalytic cycle for ketone reduction by Myrtanyl borane 

4.63  

 

 

 

4.7 - Substrate Scope 
 

Once the reaction conditions had been optimised (see table 4.7, entry e), and the 

mechanism determined (Scheme 4.35), we aimed to increase the substrate scope. As 

discussed earlier (see section 4.2), the very sluggish reduction of sterically encumbered 

compounds, such as acetophenone (4.22) by Alpine borane (4.12) and myrtanyl borane 

(4.63), meant that we were restricted to propargylic ketones. However, by altering the 

groups adjacent to the alkyne, and adjacent to the ketone, it would still be possible to test 

the reduction with a variety of different functionalities, and hopefully to show a high 

functional group tolerance for the reaction. Midland reported the reduction of a wide 
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range of propargylic ketone substrates with stoichiometric Alpine borane (4.12) and 

myrtanyl borane (4.63), including those containing alkyl- and aryl-groups, as well as 

alkenes and esters, both of which were not reduced by the borane reagent.212 The 

compounds trialled differed from the original propargylic ketone substrate (4.48) by 

inclusion of an electron-donating methoxy- (4.70) or an electron-withdrawing fluoro- 

(4.71) group on the phenyl ring, para- to the alkyne (Scheme 4.36a). The two propargylic 

ketone substrates were synthesised using the same route previously described (see section 

4.2), in comparable yields to that of 4-phenyl-3-butyn-2-one (4.48). Using the same 

method, we attempted to synthesise substrates containing different groups on the alkyne, 

such as an iso-propyl substituent (4.72), and hexyl-substituent (4.73), however both of 

these reactions were unsuccessful (Scheme 4.36b and 4.36c). Alternative methods for the 

synthesis of both of these have been reported in the literature, so these could potentially 

be investigated in the future.213-214  

 
 

Scheme 4.36 – a) Attempted formation of propargylic ketone substrates containing 

para-substituted aromatic rings; b) containing an iso-propyl substituent; c) 

containing a hexyl-substituent 
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Table 4.8 – Reduction of propargylic ketones with Myrtanyl borane (4.63) 

 

 
 

Entry Substrate 

(mol%) 

Catalyst 

(mol%) 

Mix 

time 

(h) 

HBpin 

(eq.) 

Time 

(h) 

Temp 

(℃) 

Yield 

(%) 

ee 

(%) 

a 4.70 100 2 1.2 16 0 89 70 

b 4.71 100 2 1.2 16 0 81 67 

c 4.70 20 2 1.2 16 0 52 56 

d* 4.71 20 2 1.2 16 0 68 66 

e 4.74 100 2 1.2 16 0 0 - 

*reaction d carried out by Kieran Nicholson 

 

Reduction of ketones 4.70 and 4.71 was carried out using the optimised Myrtanyl borane 

conditions, initially with stoichiometric catalyst and HBpin. The methoxy-substituted 

ketone 4.70 was successfully reduced in high yield and ee (Table 4.8, entry a), as was 

the fluoro-substituted ketone (4.71) (Entry b). When the catalyst loading was reduced to 

20%, both substrates were successfully reduced enantioselectively, though with a 

decrease in yield. For the methoxy-containing alcohol product (4.75) the ee also 

decreased slightly between the stoichiometric and catalytic reactions, giving an 

enantiospecificity (or es) of 80% (entry c). The ee of fluoro-substituted alcohol (4.76) 

however, was retained from the stoichiometric to the catalytic reaction with a very high 

es value (>95%). These results show that the transformation was tolerant of both electron-

donating and electron-withdrawing groups on the aromatic ring. Commercially available 

propargylic ketone 4.74, containing a terminal alkyne, was also trialled, but reduction 

was unsuccessful, with none of the alcohol product observed. Within the group a number 

of other propargylic ketone substrates have now successfully been reduced (Figure 4.6, 

work carried out by Joanne Dunne and Kieran Nicholson). These include compounds 
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bearing a tertiary butyl group para-to the alkyne (4.77), with chloro- (4.79) and methoxy- 

(4.82) groups in the meta position of the ring, and a methyl group in either the meta (4.80) 

or para (4.81) position on the ring. Ethyl-substituted ketone (4.78) was also reduced, 

where the group on the other side of the ketone was altered. Further substrates are 

currently being investigated, including compounds without aryl groups, and compounds 

containing amine groups.  

 

 

Figure 4.6 – Further substrates successfully reduced within the Thomas group  
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4.8 - Conclusions and Future Work 
 

In conclusion, a process to carry out the chiral borane-catalysed asymmetric reduction of 

propargylic ketones, using stoichiometric HBpin (4.9) to enable turnover of the catalyst 

by boron-boron exchange, has been successfully developed and optimised. Investigations 

into the use of Alpine borane (4.12), Itsuno’s catalyst (4.40), and a BINOL-borane 

species (4.60) all resulted in either low, or a complete lack of enantioselectivity. This was 

mainly due to inefficient or slow catalyst formation, which led to the non-

enantioselective background reduction by either HBpin, B-H-9-BBN or BH3 

outcompeting reduction by the chiral species. Myrtanyl borane (4.63) however, prepared 

in situ from β-pinene (4.62) and B-H-9-BBN (4.7), proved to be an effective catalyst, as 

the 1,1-disubstitued exocyclic alkene of β-pinene (4.62) was hydroborated at a much 

faster rate than the endocyclic alkene of α-pinene, which prevented significant 

background reduction by HBpin (4.9) or B-H-9-BBN (4.7).  20 mol% of the catalyst was 

used alongside stoichiometric HBpin to successfully carry out the reduction of 

propargylic ketone 4.48 in high yield (95%) and high enantioselectivity (72% ee), which 

compared well with previous literature reductions using Myrtanyl borane (Scheme 4.37). 

Importantly, high retention of enantioselectivity was observed from the stoichiometric 

reduced to the catalytic reduction.  
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Scheme 4.37 – a) Asymmetric Myrtanyl borane (4.63)-catalysed reduction of 

propargylic ketones by transborylation with HBpin (4.9) and b) Mechanism of the 

reaction 
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Mechanistic studies using 11B NMR spectroscopy strongly suggested hydroboration of 

the ketone substrate by myrtanyl borane (4.63) to form a chiral borinic ester, was 

followed by transborylation with HBpin (4.9), giving a borate ester and releasing B-H-9-

BBN (4.7), which regenerated the catalyst. A range of propargylic ketone substrates, 

containing alkyl-, methoxy- and halide- substituted aryl groups, have been reduced in 

high conversion and enantioselectivity. Future work aims to extend the substrate scope 

to propargylic ketones containing ether-, thioether- and amine- substituted aryl groups, 

as well as substrates with alkyl groups on the alkyne. The propargylic ketones shown in 

Figure 4.7 have been prepared, and investigations into their reduction is ongoing. Further 

future work aims to show that the reduction can be widely applied to substrates bearing 

a range of functional groups. The application of our system, along with other chiral 

borane catalysts, to other unsaturated compounds such as ketones and imines will be 

investigated. 

 

Figure 4.7 – Substrates synthesised to be trialled in the future 
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Chapter 5 - Experimental Procedures & Characterisation 
 

 

5.1 - General Experimental 
 

 

Experimental Procedures, Glassware and Reagents 

Unless stated otherwise, reactions were carried out under anhydrous conditions, under a 

positive pressure of nitrogen, using flame-dried glassware and with magnetic stirring. 

Reagents and solvents were purchased from commercially available sources and utilised 

without further purification, unless stated otherwise.  

 

 

NMR spectra 

1H NMR spectra were recorded at 600 MHz, 500MHz, and 400 MHz using a, Bruker 

AVANCE 600, Bruker AVANCE 500, Bruker PRO 500 or Bruker AVANCE 400 

spectrometer. Residual solvent peaks were used as an internal reference for 1H NMR 

spectra (CDCl3 δ 7.26 ppm, CD3OD δ 3.31 ppm). Multiplicities are indicated by app. 

(apparent), br. (broad), s (singlet), d (doublet), t (triplet), q (quartet), quin. (quintet), sext. 

(sextet), sept. (septet). Coupling constants (J) are quoted to the nearest 0.1 Hz. 

Assignment of proton signals was assisted by 1H-1H COSY, HSQC and HMBC 

experiments. 13C NMR spectra were recorded at 125 MHz, using a Bruker AVANCE 

500, or Bruker PRO 500 spectrometer. Solvent peaks were used as an internal reference 

for 13C NMR spectra (CDCl3 δ 77.2 ppm, CD3OD δ 49.0 ppm).  13C NMR peaks are 

generally reported to 1 decimal place. Assignment of carbon signals was assisted by 1H-

1H COSY, HSQC, HMBC and NOESY experiments.   

 

IR spectra 

Infrared spectra were recorded using a Shimadzu IR Affinity-1 fourier transform IR 

spectrophotometer as neat samples, using Pike MIRacle ATR accessory. Absorption 

maxima (νmax) are quoted in wavenumbers (cm–1). 

 

Mass spectrometry 

High resolution mass spectra were recorded on a Bruker microTOF instrument using 

Electrospray Ionisation (ESI+). 
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Chromatography 

Reactions were monitored by thin-layer chromatography (TLC), using silica gel plates 

(Merck Kieselgel 60 F254). Visualisation was effected by quenching of UV fluorescence 

(λmax = 254 nm) and by staining with a standard solution of p-anisaldehyde, vanillin or 

KMnO4 followed by heating. Merck silica gel 60 (230-400 mesh) was used for flash 

chromatography. Petroleum ether refers to petroleum ether 40-60. Analytical chiral 

HPLC was conducted using an Agilent 1100 series system using a G1313 autosampler, 

a multiwavelength detector and a binary pump. A Chiralcel ODH column was used for 

all samples, with column length 250 mm, internal diameter 4.6 mm and particle size 5 

μm. For all runs the solvent flow rate was 1 mL/min and the run time 20 minutes.  

 

Melting Point  

Melting points were measured on a Gallenkamp Melting Point System or a Stanford 

Research Systems OptiMelt MPA100. 
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5.2 – Chapter 2 Experimental Procedures 
 

5.2.1 – 7,8-Dihydroxycoumarin  

 

 
 

Prepared using a literature procedure.88 H2SO4 (1 drop) was added to a mixture of 

pyrogallol (2.14) (1.00 g, 7.94 mmol) and propiolic acid (2.15) (1.00 mL, 15.9 mmol) 

and the resulting red/brown suspension stirred for 2 hours at 120 °C, before cooling and 

dissolving in EtOAc (50 mL). The mixture was then washed with 5% NaHCO3 (6 × 10 

mL), dried (Na2SO4) and concentrated under reduced pressure. The crude orange/brown 

powder was triturated several times with Et2O to remove soluble impurities, to give the 

product 7,8-dihydroxycoumarin (2.16) as an off-white powder (0.78 g, 4.38 mmol, 55%). 

All spectroscopic data matched literature values.88 

1H NMR (500 MHz, CD3OD) δ 7.84 (d, J = 9.5 Hz, 1H, ArH), 7.00 (d, J = 8.5 Hz, 1H, 

ArH), 6.83 (d, J = 8.5 Hz, 1H, ArH), 6.19 (d, J = 9.5 Hz, 1H, ArH) ppm; 

13C NMR (125 MHz, CD3OD) δ 162.0 (C), 149.7 (C), 145.2 (CH), 143.6 (C), 132.1 (C), 

118.8 (CH), 112.4 (C), 112.3 (CH), 110.7 (CH) ppm. 

MP – 253-255 °C (lit88 255-256 °C) 
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5.2.2 – Isobutyl 2-methylbut-3-en-2-yl carbonate 

 

 

Prepared using a literature procedure.90 To a suspension of methylmagnesium chloride 

(3 M in THF, 7.80 mL, 23.4 mmol) in diethyl ether (36 mL), was added 2-methyl-3-

buten-2-ol (2.27) (1.88 mL, 18.0 mmol) in diethyl ether (6 mL), and the mixture stirred 

at 0 °C for 30 minutes. A 0 °C solution of isobutyl chloroformate (2.26) (3.30 mL, 27.0 

mmol) in diethyl ether (36 mL) was then added dropwise, and the reaction mixture stirred 

at room temperature for 15 hours before being quenched with NH4Cl (50 mL) and the 

aqueous layer extracted with diethyl ether (3 × 50 mL). The combined organic layers 

were dried (Na2SO4), filtered and the solvent removed under reduced pressure to afford 

isobutyl 2-methylbut-3-en-2-yl carbonate (2.20) as a clear liquid (2.78 g, 14.9 mmol, 

83%). All spectroscopic data matched literature values.89-90 

 

1H NMR (500 MHz, CDCl3) δ 6.13 (dd, J = 17.5, 10.9 Hz, 1H, HC=CH2), 5.24 (dd, J = 

17.5, 0.8 Hz, 1H, C=CHaHb), 5.15 (dd, J = 10.9, 0.8 Hz, 1H, C=CHaHb), 3.88 (d, J = 

6.8  Hz, 2H, O–CH2), 1.98 (dp, J = 13.4, 6.7 Hz, 1H, CH(CH3)2, 1.58 (s, 6H, 2 × CH3), 

0.96 (d, J = 6.8 Hz, 6H, CH(CH3)2) ppm; 

 

13C NMR (126 MHz, CDCl3) δ 153.6 (C), 141.9 (CH), 113.5 (CH), 82.0 (C), 73.4 (CH2), 

27.8 (CH2), 26.3 (2 × CH3), 19.0 (2 × CH3) ppm. 
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5.2.3 – 2-Ethoxy-4-hydroxybenzo[1,3]dioxole 

 

 

Compound 2.34 was prepared using a modified literature procedure.215 TsOH (0.37 g, 

1.98 mmol) was added to a solution of pyrogallol (2.14) (5.00 g, 39.7 mmol), 

triethylorthoformate (2.33) (10.0 mL, 59.5 mmol) and 4Å molecular sieves in benzene 

(100 mL). The mixture was heated under reflux for 3 days with the red/purple liquid 

turning black. The reaction mixture was then cooled and filtered through celite before 

being purified by column chromatography (1:1 DCM:Hexane) to afford orthoester-

protected compound 2.34 as a dark red oil (2.50 g, 13.7 mmol, 34 %). All spectroscopic 

data matched literature values.215-216  

 

1H NMR (500 MHz, CD3OD) δ 6.85 (s, 1H, O(3)–CH), 6.70 (dd, J = 8.4, 7.8 Hz, 1H, 

ArH), 6.45 (dd, J = 8.4, 1.0 Hz, 1H, ArH), 6.42 (dd, J = 7.9, 1.1 Hz, 1H, ArH), 3.73 (q, 

J = 7.1 Hz, 2H, O–CH2), 1.24 (t, J = 7.1 Hz, 3H, CH3) ppm; 

 

13C NMR (126 MHz, CD3OD) δ 147.2 (C), 132.9 (C), 121.4 (CH), 118.7 (CH), 110.5 

(CH), 106.9 (C), 99.7 (CH), 58.7 (CH2), 13.8 (CH3) ppm;  

(minor impurities at 140.5 and 145.8 ppm from starting material) 

 

IR (Neat, cm−1) 3365(br), 2982, 2940, 2718, 2357, 1700, 1616, 1506, 1477, 1376, 1250, 

999; 

 

HRMS (ESI+) m/z = 183.0652 (calculated [M+H]+ (C9H11O4) 183.0657).  
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5.2.4 – 2-Ethoxy-4-((2-methylbut-3-en-2-yl)oxy)benzo[1,3]dioxole 

 

 

Compound 2.35 was prepared using a modified literature procedure.89 Orthoester 

compound 2.34 (0.10 g, 0.55 mmol) and isobutyl 2-methylbut-3-en-2-yl carbonate (2.20) 

(0.15 g, 0.82 mmol) were stirred in THF (10 mL), before addition of Pd(PPh3)4 (4.0 mg, 

6.0 μmol). The mixture was stirred at room temperature for 1.5 h then quenched with 

saturated aq. NH4Cl (20 mL) and extracted with ethyl acetate (3 × 20 mL). The combined 

organic extracts were washed with brine (3 × 20 mL), dried (Na2SO4), filtered and 

concentrated under reduced pressure. Column chromatography (6:1 hexane:ethyl acetate) 

gave reverse-prenylated compound 2.35 as a yellow oil (98 mg, 0.39 mmol, 70%). 

 

1H NMR (500 MHz, CD3OD) δ 6.87 (s, 1H, CH), 6.73 (app. t, J = 8.1 Hz, 1H, ArH), 

6.61 (ddd, J = 7.9, 6.4, 1.1 Hz, 2H, 2 × ArH), 6.16 (dd, J = 17.6, 10.9 Hz, 1H, HC=CH2), 

5.17 (dd, J = 17.6, 1.1 Hz, HC=CHaHb), 5.08 (dd, J = 10.9, 1.1 Hz, 1H, HC=CHaHb), 

3.71 (qd, J = 7.1, 0.8 Hz, 2H, O–CH2), 1.44 (s, 6H, 2 × CH3), 1.23 (t, J = 7.1 Hz, 3H, 

CH2CH3) ppm; 

 

13C NMR (126 MHz, CD3OD) δ 147.2 (C), 143.5 (C), 138.7 (C), 138.3 (C), 120.5 (CH), 

118.7 (CH), 118.3 (CH), 112.7 (CH), 103.4 (CH), 81.2 (C), 58.9 (CH2), 25.6 (CH3), 25.5 

(CH3), 13.8 (CH3) ppm; 

 

IR (Neat, cm−1) 2980, 1630, 1485, 1460, 1350, 1250, 1125, 1060, 1001; 

 

HRMS (ESI+) m/z = 250.1200 (calculated [M]+
 (C14H18O4) 250.1205).  
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5.2.5 – 2-Ethoxy-5-(3-methylbut-2-en-1-yl)benzo[1,3]dioxol-4-ol (2.36) and 2-

ethoxy -7-(3-methylbut-2-en-1-yl)benzo[1,3]dioxol-4-ol (2.37) 

 

 

 

Compounds 2.36 and 2.37 were prepared using a modified literature procedure.89 

Compound 2.35 (75 mg, 0.30 mmol, neat) was heated to 130 oC for 1.5 hours, before 

being cooled to RT and the resulting dark red/brown solid purified by column 

chromatography (5:1 hexane:ethyl acetate) to afford both the desired product 2.36 (9 mg, 

0.037 mmol, 18%), and compound 2.37 resulting from migration of the orthoester 

protecting group to the newly free hydroxyl group (21 mg, 0.084 mmol, 36%).  

 

Compound 2.36 - 1H NMR (500 MHz, Methanol-d4) δ 6.86 (s, 1H, CH), 6.56 (d, J = 

8.0 Hz, 1H, ArH), 6.33 (d, J = 8.0 Hz, 1H, ArH), 5.28 (t, J = 7.3 Hz, 1H, HC=C), 3.72 

(q, J = 7.3 Hz, 2H, CH2CH3), 3.26 (d, J = 7.3 Hz, 2H, ArCH2), 1.72 (dd, J = 9.0, 1.4 Hz, 

6H, 2 × CH3), 1.24 (t, J = 7.1 Hz, 3H, CH2CH3) ppm; 

 

13C NMR (126 MHz, CD3OD) δ 145.1 (C), 137.7 (C), 133.3 (C), 131.2 (C), 124.0 (C), 

123.0 (CH), 121.0 (CH), 118.9 (CH), 99.0 (CH), 58.6 (CH2), 25.5 (CH2), 22.3 (CH3), 

15.3 (CH3), 13.0 (CH3) ppm; 

(impurity peaks between 14-32 ppm likely due to hexane) 

 

Compound 2.37 - 1H NMR (500 MHz, CD3OD) δ 6.88 (s, 1H, CH), 6.51 (d, J = 8.5, 

1H, ArH), 6.37 (d, J = 8.5, 1H, ArH), 5.27 (ddt, J = 8.8, 6.0, 1.4, 1H, HC=C), 3.71 (q, J 

= 7.1, 2H, CH2CH3), 3.22 (m, 2H, ArCH2), 1.73 (d, J = 1.2 Hz, 6H, 2 × CH3), 1.24 (t, J 

= 7.1, 3H, CH2CH3) ppm;  

 

13C NMR (126 MHz, Methanol-d4) δ 144.7 (C), 138.2 (C), 132.5 (C), 131.7 (C), 122.0 

(CH), 121.5 (CH), 118.6 (CH), 114.1 (C), 110.2 (CH), 58.6 (CH2), 27.0 (CH2), 24.4 

(CH3), 16.4 (CH3), 13.9 (CH3) ppm. 
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5.2.6 – 2,2,4,4-Tetraisopropylbenzo[1,3,5,2,4]trioxadisilepin-6-ol  

 

 

Compound 2.38 was prepared according to a literature procedure.220 Diisopropylsilyl 

bis(trifluoromethanesulfonate) (0.375 mL, 1.27 mmol) was added to a stirred solution of 

pyrogallol (2.14) (100 mg, 0.19 mmol) and 2,6-lutidine (0.275 mL, 2.37 mmol) in 

tetrahydrofuran at 0 °C over 10 minutes, before the mixture was stirred for 45 minutes. 

The reaction was warmed to room temperature before the solvent was removed under 

reduced pressure. Purification by column chromatography (20:1:1 petroleum 

ether:toluene:MeOtBu) gave the siloxane protected compound 2.38 as a colourless oil 

(209 mg, 0.57 mmol, 71%). 

 

1H NMR (500 MHz, CDCl3) δ 6.78, (app. t, J = 8.2 Hz, 1H, ArH), 6.62 (dd, J = 8.1, 1.6 

Hz, 1H, ArH), 6.52 (dd, 8.2, 1.6 Hz, 1H, ArH), 5.48 (s, 1H, OH), 1.15-1.09 (m, 28H, 4 

× CH(CH3)2, 24 × CH(CH3)2) ppm; 

 

13C NMR (126 MHz, CDCl3) δ 148.1 (C), 144.8 (C), 133.1 (C), 122.0 (CH), 113.5 (CH), 

108.4 (CH), 17.0 (8 × CH3), 13.1 (4 × CH) ppm; 

 

IR (Neat, cm−1) 3241(br), 2945, 2868, 1587, 1491, 1468, 1358, 1290, 1225, 1188, 1052, 

1011; 

 

HRMS (ESI+) m/z = 369.1929 (calculated for [M+H]+ (C18H33O4Si2) 369.1917). 
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5.2.7 – 2,2-Diphenylbenzo[1,3]dioxol-4-ol 

 

 

Compound 2.42 was prepared using a modified literature procedure.217 

Dichlorodiphenylmethane (13.7 g, 11.5 mL, 57.7 mmol) was added to pyrogallol (2.14) 

(5.00 g, 38.2 mmol) in diisopropyl ether (600 mL) and the reaction mixture was heated 

at 100 °C for 30 min. The solvent was removed under vacuum, before purification by 

column chromatography (9:1 petroleum ether:ethyl acetate) to give protected compound 

2.42 as a dark red/brown oil (5.02 g, 0.45 mmol, 45%). 

 

1H NMR (500 MHz, CDCl3) δ 7.63-7.58 (m, 4H, 4 × ArH), 7.42-7.38 (m, 6H, 6 × ArH), 

6.75 (app. t, J = 8.1 Hz, 1H, ArH), 6.56 (dd, J = 7.9, 1.0 Hz, 1H, ArH), 6.51 (dd, J = 8.4, 

1.0 Hz, 1H, ArH), 4.75 (s, 1H, OH) ppm; 

 

13C NMR (126 MHz, CDCl3) δ 148.2 (C), 140.0 (2 × C), 139.3 (C), 133.8 (C), 129.2 (2 

× CH), 128.3 (4 × CH), 126.4 (4 × CH), 122.1 (CH), 117.3 (C), 110.8 (CH), 102.0 (CH) 

ppm; 

 

IR (Neat, cm−1) 3354(br), 3061, 1703.1, 1641, 1614, 1496, 1469, 1449, 1358, 1319, 

1252, 1206, 1055, 1045, 1015; 

 

HRMS (ESI+) m/z = 291.1028 (calculated for [M+H]+ (C19H15O3) 291.1021). 
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5.2.8 – 4-((2-Methylbut-3-en-2-yl)oxy)-2,2-diphenylbenzo[1,3]dioxole 

 

 

Compound 2.43 was prepared using a modified literature procedure.89 To a stirred 

solution of protected compound 2.42 (60 mg, 0.21 mmol) and isobutyl 2-methylbut-3-

en-2-yl carbonate (2.20) (57 mg, 0.31 mmol), in THF (10 mL), 

tetrakis(triphenylphosphine)palladium(0) (4.8 mg, 4.1 μmol) was added. The mixture 

was stirred at room temperature for 2 h, then quenched with saturated aq. NH4Cl (20 

mL). The reaction mixture was extracted with ethyl acetate (3 × 20 mL). The combined 

organic extracts were washed with brine (3 × 20 mL), dried over Na2SO4, filtered, and 

concentrated under reduced pressure. The residue was purified by silica gel column 

chromatography (n-hexane:ethyl acetate = 2:1) to give compound 2.43 (74 mg, 0.21 

mmol, 57 %) as a light brown oil.  

 

1H NMR (500 MHz, CDCl3) δ 7.63-7.59 (m, 4H, ArH), 7.41-7.36 (m, 6H, ArH), 6.70 (t, 

J = 8.1 Hz, 1H, ArH), 6.66 (dd, J = 7.8. 1.5 Hz, 1H, ArH), 6.59 (dd, J = 8.1, 1.5 Hz, 1H, 

ArH), 6.17 (dd, J = 17.5, 10.9 Hz, 1H, HC=CH2), 5.12 (dd, J = 17.5, 1.0 Hz, 1H, 

HC=CHaHb), 5.00 (dd, J = 10.9, 1.0 Hz, 1H, HC=CHaHb), 1.46 (s, 6H, 2 × CH3) ppm; 

 

13C NMR (126 MHz, CDCl3) δ 148.5 (C), 143.8 (C), 140.4 (2 × C), 140.0 (CH), 139.0 

(C), 129.0 (2 × CH), 128.1 (4 × CH), 126.4 (4 × CH), 120.8 (CH), 118.9 (CH), 117.4 

(C), 113.5 (CH), 104.2 (CH2), 81.4 (C), 26.6 (2 × CH3) ppm; 

 

IR (Neat, cm−1) 2980, 1741, 1628, 1483, 1450, 1356, 1248, 1251, 1128, 1073, 1016; 

 

HRMS (ESI+) m/z = 359.1619 (calculated for [M+H]+ (C24H23O3) 359.1647). 
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5.2.9 – 5-(3-Methylbut-2-en-1-yl)-2,2-diphenylbenzo[1,3]dioxol-4-ol 

 

 

Compound 2.44 was prepared using a modified literature procedure.89 Compound 2.43 

(135 mg, 0.376 mmol) was heated neat to 130 oC for 30 minutes, before being cooled to 

rt, then purified by column chromatography (8:1 petroleum ether:ethyl acetate) to afford 

the desired product 2.44 as a yellow oil (122 mg, 0.340 mmol, 90%). 

 

1H NMR (500 MHz, CDCl3) δ 7.62-7.59 (m, 4H, ArH), 7.41-7.37 (m, 6H, ArH), 6.59 

(d, J = 8.0 Hz, 1H, ArH), 6.46 (d, J = 8.0 Hz, 1H, ArH), 5.31 (t, J = 7.2 Hz, 1H), 4.99 (s, 

1H, OH), 3.30 (d, J = 7.2 Hz, 2H, CH2), 1.53 (s, 6H, 2 × CH3) ppm; 

 

13C NMR (126 MHz, CDCl3) δ 146.6 (C), 140.2 (2 × C), 137.9 (C), 133.7 (C), 129.1 (2 

× CH), 128.2 (4 × CH), 126.4 (4 × CH), 122.7 (C), 122.4 (CH), 121.7 (CH), 118.4 (C), 

117.4 (C), 101.1 (CH), 28.9 (CH2), 25.8 (CH3), 17.8 (CH3) ppm; 

 

IR (Neat, cm−1) 3451(br), 2913, 1638, 1476, 1449, 1317, 1258, 1206, 1136, 1061, 1043, 

1018, 947, 851, 760, 701, 640; 

 

HRMS (ESI+) m/z = 359.1618 (calculated for [M+H]+ (C24H23O3) 359.1647). 
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5.2.10 – 4-Methoxy-5-(3-methylbut-2-en-1-yl)-2,2-diphenylbenzo[1,3]dioxole 

 

 

Compound 2.45 was prepared according to a literature procedure.218 Methyl iodide 

(0.350 mL, 5.58 mmol) was added to a stirred solution of 2.44 (100 mg, 0.279 mmol) 

and potassium carbonate (771 mg, 5.58 mmol) in acetone (15 mL), and the reaction 

heated to 80 °C for 2 hours. The mixture was cooled, filtered, then purified by column 

chromatography (10:1 petroleum ether:dichloromethane) to give methylated compound 

2.45 as a clear oil (89 mg, 0.24 mmol, 67%). 

 

1H NMR (500 MHz, CDCl3) δ 7.63-7.59 (m, 4H, ArH), 7.41-7.36 (m, 6H, ArH), 6.60 

(d, 1H, J = 8.0 Hz, 1H, ArH), 6.53 (d, J = 8.0 Hz, 1H, ArH), 5.24 (t, J = 7.3 Hz, 1H, 

HC=C), 4.08 (s, 3H, OCH3), 3.24 (d, J = 7.3 Hz, 2H, CH2), 1.73 (s, 3H, CH3), 1.71 (s, 

3H, CH3) ppm; 

 

13C NMR (126 MHz, CDCl3) δ 147.2 (C), 141.4 (C), 140.4 (2 × C), 136.4 (C), 131.9 (C), 

129.0 (2 × CH), 128.2 (4 × CH), 127.1 (C), 126.4 (4 × CH), 123.1 (CH), 121.5 (CH), 

116.6 (C), 102.5 (CH), 59.7 (CH3), 28.5 (CH2), 25.8 (CH3), 17.7 (CH3) ppm; 

 

IR (Neat, cm−1) 3205, 2912, 1628, 1470, 1449, 1375, 1360, 1256, 1207, 1070, 1045, 

1020; 

 

HRMS (ESI+) m/z = 373.1782 (calcd. for [M+H]+ (C25H25O3) 373.1804). 
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5.2.11 – 3-Methoxy-4-(3-methylbut-2-en-1-yl)benzene-1,2-diol 
 

 

Compound 2.19 was prepared according to a literature procedure.219 A solution of 

compound 2.45 (20 mg, 0.054 mmol) in glacial acetic acid (0.75 mL) and water (0.15 

mL) was heated to reflux for 6 hours. After cooling, the mixture was concentrated under 

reduced pressure, before purification by column chromatography afforded the 

deprotected product 2.19 as a clear oil (11 mg, 0.053 mmol, 48%).  

 

1H NMR (500 MHz, CDCl3) δ 6.68 (d, J = 8.4 Hz, 1H, ArH), 6.63 (d, J = 8.4 Hz, 1H, 

ArH), 5.27 (t, J = 7.3 Hz, 1H, HC=C), 3.83 (s, 3H, OCH3), 3.30 (d, J = 7.3 Hz, 2H, CH2), 

1.73 (s, 3H, CH3), 1.71 (s, 3H, CH3) ppm; 

 

13C NMR (126 MHz, CDCl3) δ 145.5 (C), 142.9 (C), 136.5 (C), 132.5 (C), 126.3 (C), 

123.1 (CH) 120.6 (CH), 111.4 (CH), 61.3 (CH3), 27.9 (CH2), 25.9 (CH3), 18.0 (CH3) 

ppm;   

 

IR (Neat, cm−1) 3377(br), 2936, 1616, 1506, 1466, 1267, 1202, 1050, 986; 

 

HRMS (ESI+) m/z = 208.1071 (calculated for [M]+
 (C12H16O3) 208.1099). 
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5.2.12 – 8-Hydroxy-7-methoxy-2H-chromen-2-one  

 

 

 
 

Compound 2.18 was prepared according to a modified literature procedure.97 A sealed 

microwave tube containing a mixture of 3-methoxycatechol (2.28) (200 mg, 1.43 mmol), 

propiolic acid (2.15) (0.440 mL, 7.15 mmol), and Yb(OTf)3 (88.7 mg, 0.143 mmol) was 

put in the MW apparatus and irradiated at 200 W (120 °C) for 10 min. The crude solid 

obtained was diluted with Et2O and the resulting suspension filtered under vacuum to 

separate the catalyst, the precipitate washed several times with Et2O. The filtrate was 

washed twice with a 5% aq. NaHCO3 solution (10 mL) dried over MgSO4 and evaporated 

to dryness under vacuum yielding the 7-methoxy-8-hydroxycoumarin (2.18) (253 mg, 

1.32 mmol, 92%) as a light brown solid. All spectroscopic data matched literature 

values.97 

 

 
1H NMR (500 MHz, CDCl3) δ 7.65 (d, J = 9.6 Hz, 1H, ArH), 7.04 (d, J = 8.6 Hz, 1H, 

ArH), 6.89 (d, J = 8.6 Hz, 1H, ArH), 6.29 (d, J = 9.5 Hz, 1H, ArH), 4.01 (s, 3H, OCH3) 

ppm; 

 

13C NMR (126 MHz, CDCl3) δ 160.2 (C), 149.6 (C), 143.8 (CH), 142.1 (C), 132.9 (C), 

118.8 (CH), 113.7 (CH), 113.6 (C), 107.8 (CH), 56.6 (CH3) ppm. 

 

MP – 167-170 °C  (Lit221 169-171 °C)  
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5.2.13 – 2-Hydroxy-3,4-dimethoxybenzaldehyde (2.56) and 2,3-dihydroxy-4-

methoxybenzaldehyde (2.54) 

 

 
 

The reaction was carried out according to a modified literature procedure.100 Boron 

trichloride (1 M in CH2Cl2, 20.4 mL, 20.4 mmol) was added dropwise to a solution of 

trihydroxybenzaldehyde (2.53) (2.0 g, 10.2 mmol) in dichloromethane (40 mL) at 0 °C. 

The resulting mixture was stirred for 3 days at 0 °C to give a brown solution, before being 

quenched with water (40 mL) and extracted with dichloromethane (2 × 100 mL). The 

combined organic extracts were washed with brine (2 × 100 mL), dried (Na2SO4) and the 

solvent removed under vacuum to give a purple solid. This was purified by column 

chromatography (3:1 petroleum ether:EtOAc) to give two major products. 2.54 (0.55 g, 

3.27 mmol, 32%) was isolated as a yellow/white solid, and 2.56 (0.67 g, 3.68 mmol, 

36%), which was a white solid. All spectroscopic data matched literature values.100 

 

2.56 - 1H NMR (500 MHz, CDCl3) δ 11.21 (s 1H, OH), 9.78 (s, 1H, CHO), 7.31 (d, J = 

8.7 Hz, 1H, ArH), 6.63 (d, J = 8.7 Hz, 1H, ArH), 3.98 (s, 3H, OCH3), 3.93 (s, 3H, OCH3) 

ppm; 

 

13C NMR (126 MHz, CDCl3) δ 194.9 (CH), 159.4 (C), 155.8 (C), 136.2 (C), 130.2 (CH), 

116.6 (C), 104.0 (CH), 60.8 (CH3), 56.3 (CH3) ppm. 

 

MP - 72-75 °C (lit222 70-80 °C)  

 

2.54 - 1H NMR (500 MHz, CDCl3) δ 11.13 (s, 1H, OH), 9.78 (s, 1H, CHO), 7.17 (d, J = 

8.7 Hz, 1H, ArH), 6.64 (d, J = 8.7 Hz, 1H, ArH), 5.47 (s, 1H, OH), 4.01 (s, 3H, OCH3) 

ppm; 

 

13C NMR (126 MHz, CDCl3) δ 195.2 (CH), 153.0 (C), 149.1 (C), 133.1 (C), 126.1 (CH), 

116.1 (C), 103.7 (CH), 56.4 (C) ppm. 

 

MP - 90-91 °C (lit100 93-95 °C)  

 



158 

 

5.2.14 – 2,3-Dihydroxy-4-methoxybenzaldehyde 

 

 

 
 

Boron trichloride (200 mL, 202.5 mmol) was added dropwise to a solution of 

trihydroxybenzaldehyde 2.53 (20.0 g, 102 mmol) in dichloromethane (600 mL) at 0 °C. 

The resulting mixture was stirred for 2 days at room temperature to give a brown solution, 

before being quenched with water (500 mL) and extracted with dichloromethane (2 × 

600 mL). The combined organic extracts were washed with brine (2 × 500 mL), dried 

(Na2SO4) and the solvent removed under vacuum to give a purple solid. This was purified 

by column chromatography (3:1 petroleum ether:EtOAc)  to give 2.54 (12.7 g, 75.5 

mmol, 74 %), which was isolated as a yellow/white solid. All spectroscopic data matched 

literature values.100 

 

2.54 - 1H NMR (500 MHz, CDCl3) δ 11.13 (s, 1H, OH), 9.78 (s, 1H, CHO), 7.17 (d, J = 

8.7 Hz, 1H, ArH), 6.64 (d, J = 8.7 Hz, 1H, ArH), 5.47 (s, 1H, OH), 4.01 (s, 3H, OCH3) 

ppm; 

 

13C NMR (126 MHz, CDCl3) δ 195.2 (CH), 153.0 (C), 149.1 (C), 133.1 (C), 126.1 (CH), 

116.1 (C), 103.7 (CH), 56.4 (C) ppm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



159 

 

5.2.15 – 3,4-Dimethoxy-2-((3-methylbut-2-en-1-yl)oxy)benzaldehyde  

 

 
 

Compound 2.57 was prepared according to a literature procedure.99 Prenyl bromide 

(2.50) (0.825 mL, 1.79 mmol) was added dropwise to a stirred solution of compound 

2.56 (500 mg, 2.74 mmol) and potassium carbonate (470 mg, 3.40 mmol) in acetone (30 

mL), and the mixture heated to reflux for 3 hours. The resulting dark yellow solution was 

filtered and the solvent removed under vacuum, before the resulting solid was taken up 

in Et2O (10 mL), washed with NaOH (2M, 10 mL) and water (10 mL). Drying with 

Na2SO4, and evaporation of solvent under vacuum gave compound 2.57 as a yellow solid 

(617 mg, 2.46 mmol, 90%). All spectroscopic data matched literature values.99 

 
1H NMR (500 MHz, CDCl3) δ 10.26 (s, 1H, CHO), 7.63 (d, J = 8.8 Hz, 1H, ArH), 6.78 

(d, J = 8.8  Hz, 1H, ArH), 5.54 (t, J = 7.5 Hz, 1H, HC=C), 4.72 (d, J = 7.5 Hz, 2H, CH2), 

3.96 (s, 3H, OCH3), 3.92 (s, 3H, OCH3), 1.78 (s, 3H, CH3), 1.69 (s, 3H, CH3) ppm; 

 

13C NMR (126 MHz, CDCl3) δ 189.2 (CH), 159.0 (C), 155.9 (C), 142.0 (C), 140.0 (C), 

124.2 (C), 119.9 (CH), 119.4 (CH), 107.5 (CH), 71.1 (CH2), 60.9 (CH3), 56.2 (CH3), 25.8 

(CH3), 18.0 (CH3) ppm.  
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5.2.16 – 3-Hydroxy-4-methoxy-2-((3-methylbut-2-en-1-yl)oxy)benzaldehyde  

 

 
 

Compound 2.55 was prepared according to a modified literature procedure.99 Prenyl 

bromide (2.50) (4.80 mL, 41.6 mmol) was added dropwise to a stirred solution of 

compound 2.54 (7.00 g, 41.6 mmol) and potassium carbonate (5.7 g, 41.6 mmol) in 

acetone (400 mL), and the mixture heated to reflux for 3 hours. The resulting dark yellow 

solution was filtered and the solvent removed under vacuum, before purification by 

column chromatography (4:1 petroleum ether:EtOAc)  to give compound 2.55 as a 

yellow solid (7.12 g, 30.2 mmol, 73%).  

 
1H NMR (500 MHz, CDCl3) δ 10.24 (s, 1H, CHO), 7.44 (d, J = 8.7 Hz, 1H, ArH), 6.77 

(d, J = 8.7 Hz, 1H, ArH), 5.68 (s, 1H, OH), 5.56 (t, J = 7.5 Hz, 1H, HC=C) 4.72 (d, J = 

7.5 Hz, 2H, CH2) 3.99 (s, 3H, OCH3), 1.78 (s, 3H, CH3), 1.67 (s, 3H, CH3) ppm; 

 

13C NMR (126 MHz, CDCl3) δ 189.3 (CH), 152.6 (C), 148.7 (C), 140.5 (C), 138.5 (C), 

124.0 (C), 120.3 (CH), 119.3 (CH), 106.5 (CH), 71.0 (CH2), 56.4 (CH3), 25.8 (CH3), 18.0 

(CH3) ppm; 

 

IR (Neat, cm−1) 3173(br), 2970, 2937, 1661, 1587, 1572, 1497, 1462, 1281, 1244, 1221, 

1080; 

 

HRMS (ESI+) m/z = 237.1121 (calculated for [M+H]+
  (C13H17O4) 237.1127); 

 

 

MP 63–66 °C. 
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5.2.17 – 7,8-Dimethoxy-6-(3-methylbut-2-en-1-yl)-2H-chromen-2-one 

 

 
 

Compound 2.60 was prepared according to a literature procedure.99 A solution of 

prenylated compound 2.57 (50 mg, 0.21 mmol), and phosphorane 2.59 (84 mg, 0.24 

mmol) was heated for 12 hours at 200 °C in N,N-dimethylaniline (4 mL). The resulting 

dark brown solution was cooled, and the solvent removed under vacuum, before water 

(10 mL) and ethyl acetate (10 mL) were added. The aqueous layer was further extracted 

by EtOAc (2 × 10 mL), before the combined organic extracts were washed with HCl 

(1M, 10 mL) and water (10 mL), dried (Na2SO4) and the solvent removed under vacuum, 

to give the crude product 2.60 as a brown oil (43.2 mg, 0.16 mmol). All spectroscopic 

data matched literature values.99  

 
1H NMR (600 MHz, CDCl3) δ 7.62 (d, J = 9.5 Hz, 1H, ArH), 6.85 (s, 1H, ArH) 6.31 (d, 

J = 9.5 Hz, 1H, ArH), 5.26 (t, J = 7.5 Hz, 1H, HC=C), 4.03 (s, 3H, OCH3), 3.99 (s, 3H, 

OCH3), 3.35 (d, J = 7.5 Hz  2H, CH2), 1.78 (d, J = 1.3 Hz, 3H, CH3), 1.74 (s, 3H, CH3) 

ppm; 

 

13C NMR (151 MHz, CDCl3) δ 160.5 (C), 146.9 (C), 143.7 (CH), 140.0 (C), 133.4 (C), 

131.9 (C), 129.6 (C), 122.1 (CH), 121.9 (CH), 115.3 (C), 114.4 (CH), 61.4 (CH3), 59.3 

(CH3) 28.4 (CH2), 25.8 (CH3), 16.2 (CH3) ppm. 
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5.2.18 – 8-Hydroxy-7-methoxy-6-(3-methylbut-2-en-1-yl)-2H-chromen-2-one 

 

 
 

Compound 1.46 was prepared according to a modified literature procedure.99 A solution 

of prenylated compound 2.55 (5.00 g, 21.2 mmol), and phosphorane 2.59 (8.30 g, 23.8 

mmol) was heated for 12 hours at 200 °C in N,N-dimethylaniline (250 mL). The resulting 

dark brown solution was cooled, and the solvent removed under vacuum, before water 

(200 mL) and ethyl acetate (200 mL) were added. The aqueous layer was further 

extracted by EtOAc (2 × 200 mL), before the combined organic extracts were washed 

with HCl (1M, 200 mL) and water (200 mL), dried (Na2SO4) and the solvent removed 

under vacuum, to give the crude product as a brown oil. Column chromatography was 

carried out, to give brosiparin (1.46) (4.31 g, 16.55 mmol, 78%) as an off-white solid.  

 

 
1H NMR (500 MHz, CDCl3) δ 7.65 (d, J = 9.5 Hz, 1H, ArH), 6.85 (s, 1H, ArH), 6.32 (d, 

J = 9.5 Hz, 1H, ArH), 5.99 (s, 1H, OH), 5.28 (t, J = 7.2, 1H, HC=C), 3.99 (s, 3H, OCH3), 

3.39 (d, J = 7.2 Hz, 2H, CH2) 1.78 (s, 3H, CH3) 1.75 (s, 3H, CH3) ppm; 

 

13C NMR (126 MHz, CDCl3) δ 160.1 (C), 148.1 (C), 144.0 (CH), 141.4 (C), 136.2 (C), 

133.5 (C), 131.9 (C), 121.9 (CH), 118.4 (CH), 114.7 (C), 114.4 (CH), 60.9 (CH3), 28.3 

(CH2), 25.8 (CH3), 17.9 (CH3) ppm; 

 

IR (Neat, cm−1)3363(br), 3092, 2990, 2911, 2832, 1711, 1607, 1570, 1447, 1418, 1257, 

1180, 1087, 995; 

 

HRMS (ESI+) m/z = 261.1121 (calculated for [M+H]+ (C15H17O4) 261.1127); 

 

 

MP 74–76 °C  
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5.3 – Chapter 3 Experimental Procedures 
 

 

5.3.1 - 7-Methoxy-6-(3-methylbut-2-en-1-yl)-2,8-dioxo-7,8-dihydro-2H-chromen-7-

yl acetate 

 

 

 
 

The reaction was carried out using a modified literature procedure.123 

(Diacetoxy)iodobenzene (372 mg, 1.15 mmol) was added to a solution of brosiparin 

(1.46) (200 mg, 0.77 mmol) in dichloromethane (8 mL) at room temperature, and the 

reaction stirred for 16 hours. The resulting red/brown solution was quenched with 

saturated aq. NaHCO3 (10 mL) and extracted with ethyl acetate (2 × 20 mL). The 

combined organic layers were dried with Na2SO4, filtered and the solvent removed under 

vacuum. Purification by column chromatography (6:1 petroleum ether:EtOAc) gave 

compound 3.19 as a brown oil (51 mg, 0.16 mmol, 14%).123   

 

1H NMR (600 MHz, CDCl3) δ 7.34 (d, J = 9.5 Hz, 1H, Hb), 6.63 (d, J = 9.5 Hz, 1H, Hc), 

6.07 (t, J = 1.9 Hz, 1H, Ha), 5.19 (ddp, J = 7.2, 5.7, 1.4 Hz, 1H, HC=C), 3.47 (s, 3H, 

OCH3), 2.99 (dd, J = 18.1, 7.2 Hz, 1H, CHaHb), 2.87 (dd, J = 18.1, 7.2, Hz, 1H, CHaHb), 

2.14 (s, 3H, OC(O)CH3), 1.80 (d, J = 1.4 Hz, 3H, CH3), 1.65 (s, 3H, CH3) ppm; 

 

13C NMR (150 MHz, CDCl3) δ 183.1 (C), 169.8 (C), 158.6 (C), 145.1 (C), 142.4 (CH), 

137.4 (C), 135.9 (C), 123.3 (CH), 122.1 (C), 118.8 (CH), 118.5 (CH), 95.1 (C), 51.2 

(CH3), 28.4 (CH2), 25.8 (CH3), 20.3 (CH3), 17.7 (CH3) ppm;  

 

IR (Neat, cm−1) 3370, 1713, 1624, 1572, 1449, 1408, 1335, 1123, 910; 

 

HRMS (ESI+) m/z = 319.1170 (calculated for [M+H]+
  (C17H18O6) 319.1182). 
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5.3.2 – 7,8-Dihydroxy-6-(3-methylbut-2-en-1-yl)-2H-chromen-2-one 
 

 
 

The reaction was carried out according to a modified literature procedure.124 

(Diacetoxy)iodobenzene (142 mg, 0.440 mmol) was added to a solution of brosiparin 

(1.46) (100 mg, 0.400 mmol) in acetonitrile:water (1:1, 4 mL) at room temperature, and 

the reaction stirred for 16 hours. The resulting red/brown solution was quenched with 

saturated aq. NaHCO3 (5 mL) and extracted with ethyl acetate (2 × 10 mL). The 

combined organic layers were dried with Na2SO4, filtered and the solvent removed under 

vacuum. Purification by column chromatography (4:1 petroleum ether:EtOAc) gave 

compound (2.7) as a white solid (44 mg, 0.18 mmol, 41%). All spectroscopic data 

matched literature values.125  

 
1H NMR (500 MHz, CDCl3) δ 7.65 (d, J = 9.5 Hz, 1H, ArH), 6.85 (s, 1H, ArH), 6.22 (d, 

J = 9.5 Hz, 1H, ArH), 5.33 (t, J = 7.3 Hz, 1H, HC=C), 3.39 (d, J = 7.3 Hz, 2H, CH2), 

1.79 (s,, 3H, CH3), 1.75 (s, 3H, CH3) ppm; 

 

13C NMR (125 MHz, CDCl3) δ 160.9 (C), 145.9 (C), 144.8 (CH), 141.0 (C), 133.9 (C), 

129.6 (C), 125.5 (C), 121.2 (CH), 119.0 (CH), 112.1 (CH), 111.3 (C) 27.9 (CH2), 25.8 

(CH3), 17.8 (CH3) ppm; 

 

IR (Neat, cm−1) 3345(br), 1685, 1625, 1605, 1582, 1508; 

 

HRMS (ESI+) m/z = 247.0965 (calculated for [M+H]+ (C14H15O4) 247.0971). 

 

MP – 162-164 °C (Lit99 161.7-161.9 °C) 
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5.3.3 – 10-Hydroxy-8,8-dimethyl-2H,8H-pyrano[3,2-g]chromen-2-one 
 

 
 

The reaction was carried out using a modified literature procedure.124 

(Diacetoxy)iodobenzene (17 mg, 0.053 mmol) was added to a solution of 

demethylbrosiparin 2.7 (12 mg, 0.049 mmol) in dichloromethane (0.5 mL) at room 

temperature, and the reaction stirred for 16 hours. The resulting red/brown solution was 

quenched with saturated aq. NaHCO3 (1 mL) and extracted with ethyl acetate (2 × 2 mL). 

The combined organic layers were dried with Na2SO4, filtered and the solvent removed 

under vacuum to give compound 2.8 as a brown oil (7 mg). The material was not fully 

purified, but the spectra obtained were enough to fully characterise the compound. 

 

1H NMR (500 MHz, CDCl3) δ 7.60 (d, J = 9.5 Hz, 1H, ArH), 6.72 (s, 1H, ArH), 6.36 (d, 

J = 10.0 Hz, 1H, ArH), 6.26 (d, J = 9.5 Hz, 1H, ArH), 5.72 (d, J = 10.0 Hz, 1H, ArH), 

1.51 (s, 6H, 2 × CH3) ppm;  

(Impurities present at 7.75, 7.31 and 7.12 ppm due to iodobenzene) 

 

13C NMR (125 MHz, CDCl3) δ 160.3 (C), 143.9 (CH), 143.1 (C), 142.7 (C), 132.0 (C), 

131.2 (CH), 121.0 (CH), 118.3 (C), 115.5 (CH), 113.2 (CH), 112.8 (C), 78.3 (C), 28.3 (2 

× CH3) ppm; 

(Impurites present at 137.6, 130.4, 127.6, 94.7 due to iodobenzene) 

 

IR (Neat, cm−1) 3395(br), 2922, 2853, 1717, 1651, 1620, 1582, 1452, 1234, 1134, 1038; 

 

HRMS (ESI+) m/z = 245.0819 (calculated for [M+H]+ (C14H13O4)
 245.0814) 
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5.3.4 – 7,7-Dimethoxy-6-(3-methylbut-2-en-1-yl)-2H-chromene-2,8(7H)-dione  
 

 

 
 

The reaction was carried out using a modified literature procedure.126 

(Diacetoxy)iodobenzene (6.80 g, 21.2 mmol) was added to a solution of brosiparin 1.46 

(5 g, 19.3 mmol) in methanol (200 mL) at room temperature, and the reaction stirred for 

16 hours. The resulting red/brown solution was quenched with saturated aq. NaHCO3 

(250 mL) and extracted with ethyl acetate (2 × 250 mL). The combined organic layers 

were dried with Na2SO4, filtered and the solvent removed under vacuum. Purification by 

column chromatography (6:1 petroleum ether:EtOAc) gave compound 3.24 as a light 

brown solid (5.31 g, 18.3 mmol, 95%).  

 

1H NMR (600 MHz, CDCl3) δ 7.35 (d, J = 9.5 Hz, 1H, Hb), 6.65 (d, J = 9.5 Hz, 1H, Ha), 

6.12 (t, J = 2.0 Hz, 1H, Hc), 5.26 (t, J = 7.3 Hz, 1H, HC=C), 3.29 (s, 6H, 2 × OCH3), 3.01 

(dt, J = 7.3, 2.0 Hz, 2H, CH2), 1.84 (s, 3H, CH3), 1.68 (s, 3H, CH3) ppm; 

 

13C NMR (150 MHz, CDCl3) δ 187.3 (C), 158.4 (C), 148.0 (C), 145.0 (C), 142.3 (CH), 

135.8 (C), 123.6 (CH), 122.4 (C), 119.3 (CH), 118.8 (CH), 95.4 (C), 51.0 (2 × CH3), 27.9 

(CH2), 25.8 (CH3), 17.8 (CH3) ppm; 

 

IR (Neat, cm−1) 3418, 1771, 1744, 1682, 1406, 1373, 1342, 1246, 1211, 1190, 1155, 

1128, 1105, 1088; 

 

HRMS (ESI+) m/z = 291.1239 (calculated for [M+H]+ (C16H19O5) 291.1227); 

 

MP – 88 °C (degradation). 

 

 

  

 

 



167 

 

5.3.5 – 5-Chloro-8-hydroxy-7-methoxy-6-(3-methylbut-2-en-1-yl)-2H-chromen-2-

one 

 

 

 
 

The reaction was carried out using a modified literature procedure.225 One drop of 

concentrated HCl was added to a solution of oxidised compound 3.24 (200 mg, 0.689 

mmol) in acetic acid (2 mL) and water (2-3 drops) and the reaction stirred at room 

temperature for 45 minutes, before the mixture was poured into ice water, and the 

resulting white precipitate filtered to give a crude mixture of compounds. These were 

subsequently separated by column chromatography (5:1 petroleum ether:EtOAc) to give 

compound 3.25 as an off-white solid (144 mg, 0.489 mmol, 71 %). 

 

1H NMR (600 MHz, CDCl3) δ 8.11 (d, J = 9.8 Hz, 1H, ArH), 6.40 (d, J = 9.8 Hz, 1H, 

ArH), 5.13 (t, J = 6.9 Hz, 1H, HC=C), 4.00 (s, 3H, OCH3), 3.56 (d, J = 6.9 Hz, 2H, CH2), 

1.83 (s, 3H, CH3), 1.72 (s, 3H, CH3) ppm; 

 

13C NMR (150 MHz, CDCl3) δ 159.3 (C), 148.4 (C), 141.96 (C), 141.20 (CH), 135.34 

(C), 133.05 (C), 130.77 (C), 121.31 (C), 120.74 (CH), 114.91 (CH), 112.23 (C), 61.21 

(CH3), 27.01 (CH2), 25.74 (CH3), 18.04 (CH3) ppm; 

 

IR (Neat, cm−1) 3423(br), 2974, 2920, 1669, 1584, 1458, 1373, 1306, 1198, 1155, 997; 

 

HRMS (ESI+) m/z = 295.0716 (calculated for [M+H]+
 C15H16ClO4 295.0737) 
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5.3.6 – 5-Chloro-7,7-dimethoxy-6-(3-methylbut-2-en-1-yl)-2H-chromene-2,8(7H)-

dione 

 

 
 

 

The reaction was carried out using a modified literature procedure.126 

(Diacetoxy)iodobenzene (126 mg, 0.39 mmol) was added to a solution of para-

substituted brosiparin derivative 3.25 (100 mg, 0.36 mmol) in methanol (10 mL) at room 

temperature, and the reaction stirred for 45 minutes. The resulting dark red/brown 

solution was quenched with saturated aq. NaHCO3 (10 mL) and extracted with ethyl 

acetate (2 × 20 mL). The combined organic layers were dried with Na2SO4, filtered and 

the solvent removed under vacuum. Purification by column chromatography (3:1 

petroleum ether:EtOAc) gave compound 3.28 as a light brown oil (102 mg, 0.33 mmol, 

93%).   

 

1H NMR (500 MHz, CDCl3) δ 7.91 (d, J = 9.8 Hz, 1H, Ha), 6.71 (d, J = 9.8 Hz, 1H, Hb), 

5.23 (t, J = 7.1 Hz, 1H, HC=C), 3.27 (s, 6H, 2 × OCH3), 3.21 (d, J = 7.1 Hz, 2H, CH2), 

1.76 (d, J = 1.3 Hz, 6H, 2 × CH3) ppm; 

 

13C NMR (101 MHz, CDCl3) δ 185.4 (C), 157.8 (C), 145.4 (C), 142.2 (C), 139.9 (CH), 

134.0 (CH), 124.8 (C), 122.9 (CH), 121.7 (C), 118.6 (CH), 96.3 (C), 51.4 (2 × CH3), 28.3 

(CH2), 25.7 (CH3), 18.0 (CH3) ppm; 

(Minor impurities between 20-35 ppm likely due to hexane) 

 

IR (Neat, cm−1) 3441, 1621, 1601, 1443, 1369, 1148, 1132, 980; 

 

HRMS (ESI+) m/z = 347.0636 (calculated for [M+Na]+
  (C16H17ClO5Na) 347.0662). 
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5.3.7 – Methyl (E)-3-(2,3-dihydroxy-4-methoxy-5-(3-methylbut-2-en-1-yl)phenyl) 

acrylate  

 

 

 
 

Compound 3.30 was prepared using a modified literature procedure.29 Compound 3.24 

(50 mg, 0.172 mmol) was dissolved in a mixture of methanol and dichloromethane (1:1, 

2 mL), before the slow addition of triethylamine (0.48 μL, 0.345 mmol). The resulting 

mixture was heated at 50 °C for 16 hours, before being cooled and quenched by addition 

of NH4Cl (10 mL). The aqueous layer was extracted with dichloromethane (3 × 10 mL), 

dried (Na2SO4), filtered and the solvent removed under vacuum to afford a compound 

3.30 as a red/brown oil. The material was not fully purified, but the spectra obtained were 

enough to characterise the compound. 

 

1H NMR (600 MHz, CDCl3) δ 7.94 (d, J = 16.1 Hz, 1H, HC=CH), 6.82 (s, 1H, ArH), 

6.53 (d, J = 16.1 Hz, 1H, HC=CH), 5.27 (t, J  = 7.3 Hz) 1H, HC=C(CH3)2), 3.85 (s, 3H, 

OCH3), 3.80 (s, 3H, OCH3), 3.30 (d, J = 7.3 Hz, CH2) 1.76 (d, J = 1.4 Hz, 6H, 2 × CH3), 

1.74 (s, 3H, CH3) ppm; 

 

13C NMR (150 MHz, CDCl3) δ 168.1 (C), 148.8 (C), 144.7 (C), 140.1 (CH), 136.2 (C), 

133.1 (C), 126.1 (C), 122.4 (CH), 121.0 (CH), 117.9 (CH) 117.8 (C), 61.3 (CH3), 51.6 

(CH3), 27.7 (CH2), 25.8 (CH3), 17.9 (CH3) ppm;   

 

IR (Neat, cm−1) 3365(br), 2976, 2928, 1691, 1612, 1490, 1368, 1263, 1175, 1034, 945; 

 

HRMS (ESI+) m/z = 293.1366 (calculated for [M+H]+  (C16H21O5) 293.1389) 
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5.3.8 – 2,3-Dihydroxy-4-methoxy-5-(3-methylbut-2-en-1-yl)benzaldehyde  

 

 

 
 

Compound 2.19 was prepared using a modified literature procedure.89 O-prenylated 

compound 2.55 (10.0 g, 42.0 mmol, neat) was heated to 130 oC for 3 hours, with the 

reaction followed by TLC, before being cooled to RT and the resulting dark red/brown 

solid purified by column chromatography (4:1 hexane:ethyl acetate) to afford the desired 

product 2.19 (6.62 g, 28.1 mmol, 67%) as a clear/yellow oil. 

 
1H NMR (500 MHz, CDCl3) δ 11.16 (s, 1H, OH), 9.77 (s, 1H, CHO), 6.94 (s, 1H, ArH), 

5.53 (s, 1H, OH), 5.27 (t, J = 7.3 Hz 1H, HC=C), 4.04 (s, 3H, OCH3), 3.31 (d, J = 7.3 

Hz, 2H, CH2), 1.78 (s, 3H, CH3), 1.74 (s, 3H3) ppm; 

 

13C NMR (150 MHz, CDCl3) δ 195.6 (CH), 151.5 (C), 148.6 (C), 136.6 (C), 133.3 (C), 

127.1 (C), 124.2 (CH), 122.05 (CH), 116.3 (C), 60.5 (CH3), 28.0 (CH2), 25.8 (CH3), 17.8 

(CH3) ppm. 

(Impurity at 30.9 ppm due to acetone) 

 

IR (Neat, cm−1) 3420(br), 2930, 2858, 1645, 1506, 1452, 1310, 1276, 1248, 1105; 

 

HRMS (ESI+) m/z = 237.1133 (calculated for [M+H]+
 (C13H17O4) 237.1121).  
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5.3.9 – Ethyl (E)-3-(2,3-dihydroxy-4-methoxy-5-(3-methylbut-2-en-1-yl)phenyl) 

acrylate 

 

 
 

Compound 3.35 was prepared using a modified literature procedure.224 Aldehyde 2.19 

(4.50 g, 19.08 mmol) was dissolved in dry dichloromethane (250 mL), before the addition 

of phosphorane 2.59 (7.32 g, 21.0 mmol). The reaction was stirred at room temperature 

for 16 hours, before the solvent was removed under vacuum, and the resulting residue 

purified by column chromatography (3:1 petroleum ether:ethyl acetate) to give 

compound 3.35 (5.13 g, 17.1 mmol, 88%) as a red/brown oil.  

 
1H NMR (600 MHz, CDCl3) δ 7.85 (d, J = 16.1 Hz, 1H, HC=CH), 6.86 (s, 1H, ArH), 

6.58 (d, J = 16.1 Hz, 1H, HC=CH), 5.72 (s, 1H, OH), 5.55 (s, 1H, OH), 5.26 (t, J = 7.3 

Hz, 1H, HC=C(CH3)2), 4.28 (q, J = 7.1 Hz, 2H, CH2CH3), 3.84 (s, 3H, OCH3), 3.30 (d, 

J = 7.3 Hz, 2H, CH2), 1.78 (d, J = 1.3 Hz, 3H, CH3), 1.75 (s, 3H, CH3), 1.36 (t, J = 7.1 

Hz, 3H, CH2CH3) ppm; 

 

13C NMR (150 MHz, CDCl3) δ 167.8 (C), 146.7 (C), 142.9 (C), 139.9 (CH), 136.3 (C), 

133.1 (C), 126.2 (C), 122.3 (CH), 120.9 (CH), 118.2 (CH), 117.8 (C), 61.3 (CH2), 60.4 

(CH3), 27.7 (CH2), 25.8 (CH3), 17.9 (CH3), 14.4 (CH3) ppm;  

 

IR (Neat, cm−1) 3366(br), 2976, 2932, 1690, 1612, 1497, 1462, 1368, 1263, 1175, 1131, 

1034, 988; 

 

HRMS (ESI+) m/z = 307.1499 (calculated for [M+H]+  (C17H23O5) 307.1540). 
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5.3.10 – 7-(2,4-Dimethoxyphenyl)-7-methoxy-6-(3-methylbut-2-en-1-yl)-2H-

chromene-2,8(7H)-dione 

 

 

The reaction was carried out using a modified literature procedure.143 Masked ortho-

quinone 3.24 (25 mg, 0.086 mmol) was dissolved in dry CH2Cl2 (2 mL), then 1,3-

dimethoxybenzene (25 μL, 0.172 mmol) and BF3.Et2O (21 μL, 0.172 mmol) were added 

at −30 ℃. The mixture was stirred at this temperature for 2 hours, and followed by TLC, 

during which time a colour change from yellow to red was observed. The reaction was 

quenched with saturated aq. NaHCO3 (5 mL) and extracted with CH2Cl2 (2 × 10 mL), 

before being dried (Na2SO4), filtered and the solvent removed under vacuum. This 

afforded a crude residue which was purified by column chromatography (2:1 petroleum 

ether:EtOAc) to give compound 3.44 (7.5 mg, 0.019 mmol, 22%) as a red/brown oil.  

 

1H NMR (600 MHz, CDCl3) δ 7.74 (d, J = 8.7 Hz, 1H, Hd), 7.47 (d, J = 9.6 Hz, 1H, Hb), 

6.65 (d, J = 9.5 Hz, 1H, ArHa), 6.58 (dd, 8.7, 2.4, 1H, ArHe), 6.35 (d, J = 2.4 Hz, 1H, 

ArHf), 6.24 (t, J = 1.8 Hz, 1H, Hc) 5.06 (ddp, J = 7.5, 5.8, 1.4 Hz, 1H, HC=C(CH3)2), 

3.82 (s, 3H, OCH3), 3.50 (s, 3H, OCH3), 3.25 (s, 3H, OCH3), 2.80 (dd, J = 18.2, 7.5 Hz, 

1H, CHaHb), 2.46 (dd, J = 18.2, 7.5 Hz, 1H, CHaHb), 1.74 (d, J = 1.4 Hz, 3H, CH3), 1.50 

(s, 3H, CH3) ppm;  

 

13C NMR (150 MHz, CDCl3) δ ppm; 193.2 (C), 106.7 (C), 159.1 (C), 155.8 (C), 147.5 

(C), 146.9 (C), 143.0 (CH), 134.9 (C), 128.6 (CH), 122.6 (C), 122.3 (CH), 121.6 (C), 

119.6 (CH), 118.7 (CH), 105.0 (CH), 98.8 (CH), 81.3 (C), 55.6 (CH3), 55.4 (CH3), 51.8 

(CH3), 29.0 (CH2), 25.7 (CH3), 17.6 (CH3) ppm; 

 

IR (Neat, cm−1) 2922, 2853, 1730, 1611, 1452, 1439, 1259, 1207, 907; 

 

HRMS (ESI+) m/z = 397.1632 (calculated for [M+H]+ (C23H25O6 ) 397.1646). 
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5.4 – Chapter 4 Experimental Procedures  
 

5.4.1 - General Procedure for the synthesis of propargylic ketones 

 

 

 

Propargylic ketones were synthesised according to the following modified literature 

procedure.206 A solution of the terminal alkyne (20 mmol, 1 equiv.) in THF (100 mL), 

was cooled to −78 oC under an argon atmosphere, before n-BuLi (15 mL, 1.6 M, 20 

mmol, 1 equiv.) was added dropwise using a syringe over approximately 5 minutes. The 

mixture was allowed to warm to 0 oC and stirred for 40 minutes, before being cooled to 

−78 oC and zinc(II) chloride (28 mL, 0.7 M, 20 mmol, 1 equiv) added dropwise using a 

syringe over approximately 10 minutes. The mixture was allowed to warm to room 

temperature over 15 minutes, before being cooled to −78 oC and acyl chloride (20 mmol, 

1 equiv.) added in a dropwise fashion. The solution was then warmed to room 

temperature and stirred for 1 hour, then diluted with n-hexane (25 mL) and washed with 

NaOH (2 M in H2O, 25 mL) and brine (3 x 25 mL). Subsequent drying with MgSO4, 

filtration and concentration under vacuum afforded the crude propargylic ketone, which 

was purified by flash column chromatography.  
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5.4.2 - General Procedure for preparation of racemic propargylic alcohols 

 

 

 

The relevant propargylic ketone substrate (0.5 mmol, 1 equiv) and NaBH4 (0.5 mmol, 1 

equiv) were stirred in ethanol (2 mL) at room temperature for 2.5 hours and the reaction 

followed by TLC. The reaction was quenched with water (2 mL) and extracted with ethyl 

acetate (2 × 5 mL). The crude product was purified by flash column chromatography, 

and the pure sample analysed by HPLC to provide reference retention times.  
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5.4.3 - General Procedure for stoichiometric hydroboration of propargylic ketones 

 

 

 

Stoichiometric reduction of propargylic ketones was carried out using the optimised B-

H-9-BBN procedure. (1 mL, 0.5 M, 0.5 mmol, 1 equiv) and (S)-β-pinene (78 µl, 0.5 

mmol, 1 equiv) were stirred under argon at room temperature for 2 hours. Propargylic 

ketone (0.5 mmol, 1 equiv) was added and the solution was stirred at 0 oC overnight. The 

reactions were quenched with SiO2 (0.3 g, 5 mmol, 10 equiv) and filtered then 

concentrated in vacuo. Conversion was measured using trimethoxybenzene as internal 

standard (16.8 mg, 0.1 mmol). The crude product was purified by flash column 

chromatography. 
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5.4.4 - General Procedure for sub-stoichiometric hydroboration of propargylic 

ketones 

 

 

 

Sub-stoichiometric reduction of propargylic ketones was carried out using the optimised 

B-H-9-BBN procedure. B-H-9-BBN (0.2 mL, 0.1 M, 0.5 mmol, 0.2 equiv) and (S)-β-

pinene (16 µl, 0.1 mmol, 0.2 equiv) were stirred under argon at room temperature for 2 

hours. Propargylic ketone (0.5 mmol, 1 equiv) and HBpin (87 µl) were added and the 

solution was stirred at 0 oC overnight. Conversion was measured using 

trimethoxybenzene as internal standard (16.8 mg, 0.1 mmol). The reactions were 

quenched with SiO2 (0.3 g, 5 mmol, 10 equiv) and filtered then concentrated under 

reduced pressure. The crude product was purified by flash column chromatography. 
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5.4.5 – 4-Phenylbut-3-yn-2-one 

 

 

According to the general procedure for preparation of propargylic ketones (5.4.1), phenyl 

acetylene (4.55) (5.5 mL, 50 mmol), n-BuLi (1.6 M in hexanes, 31.3 mL, 50 mmol), ZnCl 

(0.7 M in THF, 70 mL, 50 mmol) and acetyl chloride (4.56) (3.75 mL, 50 mmol) were 

reacted in THF (250 mL). The crude product was purified by flash column 

chromatography (hexane/diethyl ether 20:1) to give 4-phenylbut-3-yn-2-one (4.48), (3.3 

g, 23.0 mmol, 46%) as a yellow oil. All spectroscopic data matched literature values.206  

 

1H NMR (500 MHz, CDCl3) δ 7.62-7.58 (m, 2H 2 × ArH), 7.51-7.46 (m, 1H, ArH), 

7.44-7.38 (m, 2H, 2 × ArH), 2.48 (s, 3H, CH3) ppm; 

 

13C NMR (126 MHz, CDCl3) δ 184.6 (C), 133.0 (2 × CH), 130.7 (CH), 128.6 (2 × CH), 

120.0 (C), 90.3 (C), 88.3 (C), 32.8 (CH3) ppm. 
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5.4.6 – (R)-4-Phenylbut-3-yn-2-ol 

 

 

Prepared according to the general procedure for both stoichiometric (5.4.3) and sub-

stoichiometric (5.4.4) reductions. The crude product was purified by flash column 

chromatography (hexane/ diethyl ether 5:1) to give alcohol 4.54, 4-phenyl-but-3-yn-2-

ol, for both the stoichiometric (0.068 g, 0.46 mmol, 93%, 73% ee), and sub-

stoichiometric reaction (0.069 g, 0.48 mmol, 95%, 71% ee) as a colourless oil. All 

spectroscopic data matched literature values.229   

 

1H NMR (500 MHz, CDCl3) δ 7.47-7.43 (m, 2H, 2 × ArH), 7.35-7.32 (m, 3H, 3 × ArH), 

4.79 (qd. J = 6.6, 5.3 Hz, 1H, CH(OH)), 2.24 (d, J = 5.2 Hz, 1H, OH)  1.89 (d, J = 6.6 

Hz, 3H, CH3) ppm; 

 

13C NMR (126 MHz, CDCl3) δ 131.7 (2 × CH), 128.4 (CH), 128.3 (2 × CH), 122.6 (C), 

90.9 (C), 84.0 (C), 58.9 (CH), 24.4 (CH3) ppm. 

 

HPLC (IPA:hexane, 20:80) Stoichiometric reduction: Rt (major) = 5.05 min, 86.6%, Rt 

(minor) = 9.01 min, 13.4%; 73% e.e. Sub-stoichiometric reduction: Rt (major) = 5.04 

min, 85.7%, Rt (minor) = 8.89 min, 14.3%; 71% e.e. Retention times matched the 

reported literature values, as well as those observed for the racemic sample.230  

 

[α]D = +22.7 (c = 0.22, CDCl3) (Measured by Kieran Nicholson) 
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5.4.7 – (S)-2-Amino-3-methyl-1,1-diphenylbutan-1-ol  

 

 

Compound 4.39 was prepared according to a literature procedure.227 (S)-Valine methyl 

ester hydrochloride (4.57) (5 g, 29.8 mmol) was added portionwise to a solution of 

phenylmagnesium bromide (3.0 M, 60 mL, 239 mmol) in THF (30 mL) at 0 °C. The 

reaction mixture was then warmed to room temperature and stirred for 3 hours, before 

being poured slowly into ice-cold ammonium chloride solution (100 mL). Diethyl ether 

(50 mL) and ethyl acetate (50 mL) were added to the mixture, before the layers were 

separated, and the aqueous phase extracted with TBME (100 mL). The combined organic 

layers were acidified with HCl (35%, ~5 mL) at 0 °C. The resulting precipitate formed 

was filtered off, rinsed with TBME (20 mL) and taken up in dichloromethane (100 mL) 

and water (100 mL). The solution was then stirred at 0 °C and basified with sodium 

hydroxide (35%, ~6 mL). The layers were again separated, and the aqueous layer 

extracted with dichloromethane (100 mL), before the combined organic layers were 

washed with water (50 mL) and brine (50 mL). The mixture was dried with Na2SO4 and 

concentrated to give the product (S)-2-amino-3-methyl-1,1-diphenylbutan-1-ol (4.39) as 

a white amorphous solid (2.36 g, 9.25 mmol, 31%). All spectroscopic data matched 

literature values 228 

 

1H NMR (600 MHz, CDCl3) δ 7.64 (dd, J = 8.5, 1.3 Hz, 2H, 2 × ArH), 7.52 (dd, J = 8.5, 

1.3 Hz, 2H, 2 × ArH), 7.36 – 7.29 (m, 4H, 4 × ArH), 7.23 – 7.16 (m, 2H, 2 × ArH), 3.87 

(d, J = 2.2 Hz, 1H, CH(NH2)), 1.79 (spt, J = 7.0, 2.2 Hz, 1H, CH(CH3)2), 0.96 (d, J = 7.0 

Hz, 3H, CH3), 0.92 (d, J = 7.0 Hz, 3H, CH3) ppm; 

 

13C NMR (150 MHz, CDCl3) δ 147.8 (C), 144.8 (C), 128.4 (2 × CH), 128.0 (2 × CH), 

126.6 (CH), 126.3 (CH), 126.0 (2 × CH), 125.5 (2 × CH), 79.7 (C), 60.3 (CH), 27.8 

(CH), 23.0 (CH3), 16.1 (CH3) ppm. 
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5.4.8 – 4-(4-Methoxyphenyl)but-3-yn-2-one 

 

 

According to the general procedure for preparation of propargylic ketones (5.4.1), 4-

ethynylanisole (4.68) (0.2 mL, 1.5 mmol), n-BuLi (1.6 M in hexanes, 0.96 mL, 1.5 

mmol), ZnCl (0.7 M in THF, 2.2 mL, 1.5 mmol) and acetyl chloride (4.56) (0.11 mL, 1.5 

mmol) were reacted in THF (10 mL). The crude product was purified by flash column 

chromatography (hexane/ethyl acetate 10:1) to give 4-(4-methoxyphenyl)but-3-yn-2-one 

(4.70) (0.099 g, 0.57 mmol, 38%) as a pale solid. All spectroscopic data matched 

literature values.225  

 

1H NMR (500 MHz, CDCl3) δ 7.55 (dt, J = 9.1, 2.7 Hz, 2H, 2 × ArH), 6.92 (dt, J = 9.1, 

2.7 Hz, 2H, 2 × ArH), 3.87 (s, 3H, OCH3), 2.45 (s, 3H, CH3) ppm; 

 

13C NMR (126 MHz, CDCl3) δ 184.6 (C), 161.7 9 (C), 136.1 (2 × CH), 114.4 (2 × CH), 

111.7 (C), 91.5 (C), 88.3 (C), 55.4 (CH3), 32.6 (CH3) ppm. 
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5.4.9 – 4-(4-Fluorophenyl)but-3-yn-2-one 

 

 

According to the general procedure for preparation of propargylic ketones (5.4.1), 1-

ethynylfluorobenzene (0.17 mL, 1.5 mmol), n-BuLi (1.6 M in hexanes, 0.96 mL, 1.5 

mmol), ZnCl2 (0.7 M in THF, 2.2 mL, 1.5 mmol) and acetyl chloride (0.11 mL, 20 mmol) 

were reacted. The crude product was purified by flash column chromatography 

(hexane/ethyl acetate 10:1) to give 4-(4-fluorophenyl)but-3-yn-2-one (4.71) (0.092 g, 

0.57 mmol, 38%) as a yellow oil. All spectroscopic data matched literature values.228 

 

1H NMR (500 MHz, CDCl3) δ 7.60 (dddd, J = 8.7, 5.3, 2.7, 1.9 Hz, 2H, 2 × ArH)), 7.11 

(dddd, J = 8.7, 8.5, 2.7, 1.9 Hz, 2H, 2 × ArH), 2.47 (s, 3H, CH3) ppm; 

 

13C NMR (126 MHz, CDCl3) δ 184.4 (C), 164.0 (d, 1JCF = 253 Hz, C), 135.3 (d, 3JCF = 

9.0 Hz, 2 × CH), 116.3 (d, 2JCF = 22.3 Hz, CH), 89.2 (C), 88.2 (d, 4JCF = 1.5 Hz), 32.7 

(CH3) ppm;  

 

19F NMR (377 MHz, CDCl3) δ −106.3 (tt, J = 8.5, 5.3 Hz) ppm. 
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5.4.10 – (R)-4-(4-Methoxyphenyl)but-3-yn-2-ol 

 

 

Prepared according to the general procedure for both stoichiometric and sub-

stoichiometric reactions. The crude product was purified by flash column 

chromatography (hexane/diethyl ether 5:1) to give alcohol 4.75, 4-(4-

methoxyphenyl)but-3-yn-2-ol, for stoichiometric (0.078 g, 0.44 mmol, 89%, 70% ee) and 

sub-stoichiometric (0.046 g, 0.26 mmol, 52%, 56% ee) reactions as a colourless oil. 

Spectroscopic data matched literature values.231    

 

1H NMR (500 MHz, CDCl3) δ 7.39 (d, J = 8.8 Hz, 2H, 2 × ArH), 6.86 (d, J = 8.8 Hz, 

2H, 2 × ArH), 4.77 (q, J = 6.6 Hz, 1H, CH(OH)), 3.83 (s, 3H, OH), 1.60 (d, J = 6.6 Hz, 

3H, CH3) ppm; 

 

13C NMR (126 MHz, CDCl3) δ 159.7 (C), 133.1 (2 × CH), 114.7 (C), 113.9 (2 × CH), 

89.6 (C), 83.9 (C), 58.9 (CH), 55.3 (CH3), 24.9 (CH3) ppm.  

 

HPLC (IPA:hexane, 20:80) Stoichiometric reduction: Rt (major) = 5.90 min, 85%, Rt 

(minor) = 13.8 min, 15%; 70% e.e. Sub-stoichiometric reduction: Rt (major) = 5.86 min, 

78%, Rt (minor) = 13.6 min, 22%; 56% e.e.  Retention times matched those observed for 

the racemic sample. 

 

[α]D = +36.1 (c = 2.24, CDCl3) (measured by Kieran Nicholson) 
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5.4.11 – (R)-4-(4-Fluorophenyl)but-3-yn-2-ol  

 

 

Prepared according to the general procedure for both stoichiometric (5.4.3) and sub-

stoichiometric (5.4.4) reductions. The crude product was purified by flash column 

chromatography (hexane/diethyl ether 5:1) to give alcohol 4.76, 4-(4-fluorophenyl)but-

3-yn-2-ol, for stoichiometric (0.066 g, 0.41 mmol, 81%, 67% ee) and sub-stoichiometric 

(0.056 g, 0.34 mmol, 68%, 66% ee) reactions as a colourless oil.  Spectroscopic data 

matched literature values.231 

 

1H NMR (500 MHz, CDCl3) δ 7.42 (dddd, J = 8.7, 5.3, 2.7, 1.9 Hz, 2H, 2 × ArH), 7.05 

– 6.98 (dddd, J = 8.7, 8.5, 2.7, 1.9 Hz, 2H, 2 × ArH), 4.76 (qd, J = 5.3, 6.6 Hz, 1H, 

CH(OH)), 1.95 (br, d, J = 5.3 Hz, 1H, OH), 1.57 (d, J = 6.6 Hz, 2H, CH3) ppm; 

 
13C NMR (126 MHz, CDCl3) δ 162.6 (d, 1JCF = 253 Hz, 2 × C), 133.5 (d, 3JCF = 9.0 Hz, 

2 × CH), 118.7 (C), 115.6 (d, 2JCF = 22.3 Hz, CH), 90.7 (C), 83.0 (C), 58.8 (CH), 24.4 

(CH3) ppm; 

 

19F NMR (472 MHz, CDCl3) δ -110.9 (tt, J = 8.5, 5.3 Hz) ppm. 

 

HPLC (IPA:hexane, 20:80) Stoichiometric reduction: Rt (major) = 7.55 min, 83.5%, Rt 

(minor) = 10.2 min, 16.5%; 67% e.e. Sub-stoichiometric reduction: Rt (major) = 7.45 

min, 83%, Rt (minor) = 10.1 min, 17%; 66% e.e.  Retention times matched those observed 

for the racemic sample. 
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5.5 - NMR Spectra Chapter 2 – Brosiparin Synthesis  
 

5.5.1 1H NMR Spectrum of compound 2.16 (500 MHz, MeOD)  
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5.5.2 13C NMR Spectrum of compound 2.16 (125 MHz, MeOD)  
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5.5.3 1H NMR Spectrum of compound 2.20 (500 MHz, CDCl3)  
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5.5.4 13C NMR Spectrum of compound 2.20 (125 MHz, CDCl3) 
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5.5.5 1H NMR Spectrum of compound 2.34 (500 MHz, MeOD)  
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5.5.6 13C NMR Spectrum of compound 2.34 (125 MHz, MeOD)  
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5.5.7 1H NMR Spectrum of compound 2.35 (500 MHz, MeOD)  
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5.5.8 13C NMR Spectrum of compound 2.35 (125 MHz, MeOD)  
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5.5.9 1H NMR Spectrum of compound 2.36 (500 MHz, MeOD)  
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5.5.10 13C NMR Spectrum of compound 2.36 (125 MHz, MeOD)  
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5.5.11 1H NMR Spectrum of compound 2.37 (500 MHz, MeOD)  
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5.5.12 13C NMR Spectrum of compound 2.37 (125 MHz, MeOD)   
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5.5.13 1H NMR Spectrum of compound 2.38 (500 MHz, CDCl3)   
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5.5.14 13C NMR Spectrum of compound 2.38 (125 MHz, CDCl3)   
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5.5.15 1H NMR Spectrum of compound 2.42 (500 MHz, CDCl3) 
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5.5.16 13C NMR Spectrum of compound 2.42 (125 MHz, CDCl3)   
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5.5.17 1H NMR Spectrum of compound 2.43 (500 MHz, CDCl3)   
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5.5.18 13C NMR Spectrum of compound 2.43 (125 MHz, CDCl3)   
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5.5.19 1H NMR Spectrum of compound 2.44 (500 MHz, CDCl3)   
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5.5.20 13C NMR Spectrum of compound 2.44 (125 MHz, CDCl3)  
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5.5.21 1H NMR Spectrum of compound 2.45 (500 MHz, CDCl3)  
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5.5.22 13C NMR Spectrum of compound 2.45 (125 MHz, CDCl3)   
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5.5.23 1H NMR Spectrum of compound 2.19 (500 MHz, CDCl3)   
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5.5.24 13C NMR Spectrum of compound 2.19 (125 MHz, CDCl3)   
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5.5.25 1H NMR Spectrum of compound 2.18 (500 MHz, CDCl3)   
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5.5.26 13C NMR Spectrum of compound 2.18 (125 MHz, CDCl3)   
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5.5.27 1H NMR Spectrum of compound 2.54 (500 MHz, CDCl3)   
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5.5.28 13C NMR Spectrum of compound 2.54 (125 MHz, CDCl3)   
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5.5.29 1H NMR Spectrum of compound 2.56 (500 MHz, CDCl3)   
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5.5.30 13C NMR Spectrum of compound 2.56 (125 MHz, CDCl3)   
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5.5.31 1H NMR Spectrum of compound 2.55 (500 MHz, CDCl3)   
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5.5.32 13C NMR Spectrum of compound 2.55 (125 MHz, CDCl3)   
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5.5.33 1H-13C HSQC Spectrum of compound 2.55 (500 MHz, CDCl3)   
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5.5.34 1H-13C HMBC spectrum of compound 2.55 (500 MHz, CDCl3) 
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5.5.35 1H NMR Spectrum of brosipain 1.46(500 MHz, CDCl3)  

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



219 

 

 

5.5.36 13C NMR Spectrum of brosiparin 1.46 (125 MHz, CDCl3)   
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5.5.37 1H-1H COSY Spectrum of brosiparin 1.46 (500 MHz, CDCl3)     
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5.5.38 1H-13C HSQC Spectrum of brosiparin 1.46 (500 MHz, CDCl3)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hb – C3 

Hc – C5 

Ha – C2 

He – C10 

Hd – C11 



222 

 

 

5.5.39 1H-13C HMBC spectrum of brosiparin 1.46 (500 MHz, CDCl3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hb – C1 

Hb – C9 

Hc – C10 

Ha – C4 Ha – C1 



223 

 

5.5.40 1H-1H NOESY Spectrum of brosiparin 1.46 (500 MHz, CDCl3)   
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5.6 - NMR Spectra Chapter 3 – Oxidation Chemistry of Brosiparin 
 

5.6.1 1H NMR Spectrum of compound 3.19 (600 MHz, CDCl3)   
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5.6.2 13C NMR Spectrum of compound 3.19 (125 MHz, CDCl3)   
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5.6.3 1H NMR Spectrum of compound 2.7 (600 MHz, CDCl3)   
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5.6.4 13C NMR Spectrum of compound 2.7 (600 MHz, CDCl3)   
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5.6.5 1H NMR Spectrum of compound 2.8 (600 MHz, CDCl3)   
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5.6.6 13C NMR Spectrum of compound 2.8 (125 MHz, CDCl3)   
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5.6.7 1H NMR Spectrum of compound 3.24 (600 MHz, CDCl3)   
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5.6.8 13C NMR Spectrum of compound 3.24 (600 MHz, CDCl3)   
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5.6.9 1H NMR Spectrum of compound 3.25 (600 MHz, CDCl3)  
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5.6.10 13C NMR Spectrum of compound 3.25 (600 MHz, CDCl3) 
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5.6.11 1H NMR Spectrum of compound 3.28 (600 MHz, CDCl3)   
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5.6.12 13C NMR Spectrum of compound 3.28 (600 MHz, CDCl3)   
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5.6.13 1H NMR Spectrum of compound 3.30 (500 MHz, CDCl3)   
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5.6.14 13C NMR Spectrum of compound 3.30 (125 MHz, CDCl3)  
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5.6.15 1H NMR Spectrum of compound 2.19 (500 MHz, CDCl3)   
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5.6.16 13C NMR Spectrum of compound 2.19 (125 MHz, CDCl3)   
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5.6.17 1H-13C HMBC spectrum of compound 2.19 (500 MHz, CDCl3) 
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5.6.18 1H-1H NOESY spectrum of compound 2.19 (500 MHz, CDCl3)  
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5.6.19 1H NMR Spectrum of compound 3.35 (500 MHz, CDCl3)  
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5.6.20 13C NMR Spectrum of compound 3.35 (125 MHz, CDCl3)   
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5.6.21 1H NMR Spectrum of compound 3.44 (500 MHz, CDCl3)   
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5.6.22 13C NMR Spectrum of compound 3.44 (125 MHz, CDCl3)   
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5.6.23 1H-1H COSY spectrum of compound 3.44 (500 MHz, CDCl3)  
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5.6.24 1H-13C HSQC spectrum of compound 3.44 (500 MHz, CDCl3)  
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5.6.25 1H-13C HMBC spectrum of compound 3.44 (500 MHz, CDCl3)  
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5.7 - NMR Spectra Chapter 4 – Transborylation 
 

 

5.7.1 1H NMR Spectrum of compound 4.48 (500 MHz, CDCl3)   
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5.7.2 13C NMR Spectrum of compound 4.48 (500 MHz, CDCl3)   
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5.7.3 1H NMR Spectrum of compound 4.54 (500 MHz, CDCl3) 
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5.7.4 13C NMR Spectrum of compound 4.54 (500 MHz, CDCl3)   
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5.7.5 1H NMR Spectrum of compound 4.39 (500 MHz, CDCl3)   
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5.7.6 13C NMR Spectrum of compound 4.39 (500 MHz, CDCl3)   
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5.7.7 1H NMR Spectrum of compound 4.70 (500 MHz, CDCl3)   
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5.7.8 13C NMR Spectrum of compound 4.70 (500 MHz, CDCl3)   
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5.7.9 1H NMR Spectrum of compound 4.71 (500 MHz, CDCl3)   
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5.7.10 13C NMR Spectrum of compound 4.71 (500 MHz, CDCl3)   
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5.7.11 19F NMR Spectrum of compound 4.71 (377 MHz, CDCl3)   
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5.7.12 1H NMR Spectrum of compound 4.75 (500 MHz, CDCl3)   
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5.7.13 13C NMR Spectrum of compound 4.75 (500 MHz, CDCl3)   
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5.7.14 1H NMR Spectrum of compound 4.76 (500 MHz, CDCl3)   
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5.7.15 13C NMR Spectrum of compound 4.76 (500 MHz, CDCl3)   
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5.7.16 19F NMR Spectrum of compound 4.76 (472 MHz, CDCl3)   
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5.7.17 11B NMR of B-pinene + 9-BBN to give myrtanyl borane 4.63 
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5.7.18 11B NMR of Myrtanyl borane + substrate to give borinic ester 4.49 
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5.7.19 11B NMR of borinic ester 4.49 + HBpin to give borate ester 4.50 and 

regenerate myrtanyl borane 4.63 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



268 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



269 

 

Chapter 6 – References 
 

 

1. Chiang, C.-C.; Cheng, M.-J.; Peng, C.-F.; Huang, H.-Y.; Chen, I.-S. Chem.            

Biodivers. 2010, 7, 1728-1736. 

2. Harborne, J. B. Plant Cell Environ. 1982, 5, 435-436. 

3. Bourgaud, F., Hehn, A., Larbat, R., Doerper, S, Gontier, E., Kellner, S., Matern, 

U. Phytochem. Rev. 2006, 5, 293. 

4. Maeda, H.; Dudareva, N. Annu. Rev. Plant Biol. 2012, 63, 73-105. 

5. Young, A. R. J. Photoch. Photobio. B. 1990, 6, 237-247. 

6. Wong, T. C.; Sultana, C. M.; Vosburg, D. A., A Green. J. Chem. Ed. 2010, 87, 

194-195. 

7. Freedman, M. D. J. Clin. Pharmacol. 1992, 32, 196-209. 

8. Wang, K.-W.; Li, D.; Wu, B.; Cao, X.-J. Phytochem. Lett. 2016, 16, 115-120. 

9. Joshi, P. C.; Mandal, S.; Das, P. C. Phytochemistry 1989, 28, 1281-1283. 

10. He, H.-P.; Shen, Y.-M.; Chen, S.-T.; He, Y.-N.; Hao, X.-J. Helv. Chim. Acta 

2006, 89, 2836-2840. 

11. Reisch, J.; Herath, H. M. T. B.; Kumar, N. S. Liebigs Ann. Chem. 1990, 931-

933. 

12. Reisch, J.; Herath, H. M. T. B.; Bergenthal, D.; Kumar, N. S. Liebigs Ann. 

Chem. 1991, 1233-1235. 

13. Vincent J., F.; Bogatyreva O., A.; Bogatyrev N., R.; Bowyer, A.; Pahl, A.-K. J. 

R. Soc. Interface 2006, 3, 471-482. 

14. Wang, X.; Schröder, H. C.; Müller, W. E. G. J. Mater. Chem. B 2018, 6, 2385-

2412. 

15. Collie, N.; Myers, W. S. J. Chem. Soc. 1893, 63, 122-128. 

16. Robinson, R. J. Chem. Soc., 1917, 111, 762-768. 

17. Van Tamelen, E. E., Fort. Chem. Org. Nat. 1961, 19, 242. 

18. Breslow, R. Chem. Soc. Rev.1972, 1, 553-580. 

19. Heathcock, C. H. Angew. Chem. Int. Ed. 1992, 31, 665-681. 

20. Brown, P. D.; Willis, A. C.; Sherburn, M. S.; Lawrence, A. L. Org. Lett. 2012, 

14, 4537-4539. 

21. De Silvestro, I.; Drew, S. L.; Nichol, G. S.; Duarte, F.; Lawrence, A. L. Angew. 

Chem. Int. Ed. 2017, 56, 6813-6817. 



270 

 

22. Thomson, M. I.; Nichol, G. S.; Lawrence, A. L. Org. Lett. 2017, 19, 2199-2201. 

23. Lanfranchi, M.; Prati, L.; Rossi, M.; Tiripicchio, A., J. Mol. Catal. A-Chem 

1995, 101, 75-80. 

24. Akai, S.; Kita, Y., Org. Prep. Proced. Int. 1998, 30, 603-629. 

25. Liebig, J., Ueber Annalen der Pharmacie 1838, 25, 1-31. 

26. Yamabe, S.; Tsuchida, N.; Yamazaki, S. J.Org. Chem. 2006, 71, 1777-1783. 

27. Stoltz, B. M.; Wood, J. L. Tetrahedron Lett. 1996, 37, 3929-3930. 

28. Grieco, P. A.; Collins, J. L.; Huffman, J. C. J. Org. Chem. 1998, 63, 9576-9579. 

29. Wang, X.; Zhang, Y.; Ponomareva, L. V.; Qiu, Q.; Woodcock, R.; Elshahawi, 

S. I.; Chen, X.; Zhou, Z.; Hatcher, B. E.; Hower, J. C.; Zhan, C.-G.; Parkin, S.; 

Kharel, M. K.; Voss, S. R.; Shaaban, K. A.; Thorson, J. S. Angew. Chem. Int. 

Ed. 2017, 56, 2994-2998. 

30. Eyong, K. O.; Puppala, M.; Kumar, P. S.; Lamshöft, M.; Folefoc, G. N.; 

Spiteller, M.; Baskaran, S. Org. Biomol. Chem. 2013, 11, 459-468. 

31. Docherty, J. H.; Peng, J.; Dominey, A. P.; Thomas, S. P. Nat.Chem. 2017, 9, 

595. 

32. Bismuto, A.; Cowley, M. J.; Thomas, S. P. ACS Catal. 2018, 8, 2001-2005. 

33. Carney, J. R.; Dillon, B. R.; Campbell, L.; Thomas, S. P. Angew. Chem. Int. Ed. 

2018, 57, 10620-10624. 

34. Greenhalgh, M. D.; Thomas, S. P. Chem. Commun. 2013, 49, 11230-11232. 

35. Bruijnincx, P. C. A.; van Koten, G.; Klein Gebbink, R. J. M. Chem. Soc. Rev. 

2008, 37, 2716-2744. 

36. Solomon, E. I.; Heppner, D. E.; Johnston, E. M.; Ginsbach, J. W.; Cirera, J.; 

Qayyum, M.; Kieber-Emmons, M. T.; Kjaergaard, C. H.; Hadt, R. G.; Tian, 

L.Chem. Rev. 2014, 114, 3659-3853. 

37. Guimond, N.; Mayer, P.; Trauner, D. Chem.– Eur. J. 2014, 20, 9519-9523. 

38. Plietker, B., Iron Catalysis in Organic Chemistry: Reactions and Applications. 

Wiley-VCH: 2008. 

39. Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. 2004, 104, 3947-3980. 

40. Costas, M.; Mehn, M. P.; Jensen, M. P.; Que, L. Chem. Rev. 2004, 104, 939-

986. 

41. Bordeaux, M.; Galarneau, A.; Drone, J. Angew. Chem. Int. Ed. 2012, 51, 10712-

10723. 

42. Bauer, I.; Knölker, H.-J. Chem. Rev. 2015, 115, 3170-3387. 



271 

 

43. Que Jr, L.; Tolman, W. B. Nature 2008, 455, 333. 

44. Abu-Omar, M. M.; Loaiza, A.; Hontzeas, N. Chem. Rev. 2005, 105, 2227-2252. 

45. Chen, M. S.; White, M. C. Science 2007, 318, 783-787. 

46. Bigi, M. A.; Reed, S. A.; White, M. C. Nat. Chem. 2011, 3, 216-222. 

47. Bigi, M. A.; Liu, P.; Zou, L.; Houk, K. N.; White, M. C. Synlett 2012, 23, 2768-

2772. 

48. Simon, J. D.; Peles, D. N. Acc. Chem. Res. 2010, 43, 1452-1460. 

49. Que, L.; Ho, R. Y. N. Chem. Rev. 1996, 96, 2607-2624. 

50. Shan, X.; Que, L.. J. Inorg. Biochem. 2006, 100, 421-433. 

51. Hohenberger, J.; Ray, K.; Meyer, K. Nat. Commun. 2012, 3, 720. 

52. Ghosh, M.; Singh, K. K.; Panda, C.; Weitz, A.; Hendrich, M. P.; Collins, T. J.; 

Dhar, B. B.; Sen Gupta, S. J. Am. Chem. Soc. 2014, 136, 9524-9527. 

53. Ghosh, M.; Nikhil, Y. L. K.; Dhar, B. B.; Sen Gupta, S. Inorg. Chem. 2015, 54, 

11792-11798. 

54. Huang, X.; Groves, J. T. J. Biol. Inorg. Chem. 2017, 22, 185-207. 

55. McCann, S. D.; Stahl, S. S. Acc. Chem. Res. 2015, 48, 1756-1766. 

56. Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Chem. Rev. 

2013, 113, 6234-6458. 

57. Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem. Int. Ed. 2011, 50, 

11062-11087. 

58. Semmelhack, M. F.; Schmid, C. R.; Cortes, D. A.; Chou, C. S. J.  Am. Chem. 

Soc. 1984, 106, 3374-3376. 

59. Gamez, P.; Arends, I. W. C. E.; Reedijk, J.; Sheldon, R. A. Chem. Commun. 

2003, 2414-2415. 

60. Ragagnin, G.; Betzemeier, B.; Quici, S.; Knochel, P. Tetrahedron 2002, 58, 

3985-3991. 

61. Markó, I. E.; Giles, P. R.; Tsukazaki, M.; Brown, S. M.; Urch, C. J. Science 

1996, 274, 2044. 

62. Hoover, J. M.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 16901-16910. 

63. Matoba, Y.; Kumagai, T.; Yamamoto, A.; Yoshitsu, H.; Sugiyama, M. J. Biol. 

Chem. 2006, 281, 8981-8990. 

64. Santagostini, L.; Gullotti, M.; Monzani, E.; Casella, L.; Dillinger, R.; Tuczek, 

F. Chem. – Eur. J. 2000, 6, 519-522. 



272 

 

65. Réglier, M.; Jorand, C.; Waegell, B. J. Chem. Soc. Chem. Comm. 1990, 1752-

1755. 

66. Itoh, S.; Kumei, H.; Taki, M.; Nagatomo, S.; Kitagawa, T.; Fukuzumi, S. J. Am. 

Chem. Soc. 2001, 123, 6708-6709. 

67. Hoffmann, A.; Citek, C.; Binder, S.; Goos, A.; Rübhausen, M.; Troeppner, O.; 

Ivanović-Burmazović, I.; Wasinger, E. C.; Stack, T. D. P.; Herres-Pawlis, S. 

Angew. Chem. Int. Ed. 2013, 52, 5398-5401. 

68. Esguerra, K. V. N.; Fall, Y.; Lumb, J.-P. Angew. Chem. 2014, 126, 5987-5991. 

69. Esguerra, K. V. N.; Lumb, J.-P. ACS Catal. 2017, 7, 3477-3482. 

70. Xu, B.; Lumb, J.-P.; Arndtsen, B. A. Angew. Chem. Int. Ed. 2015, 54, 4208-

4211. 

71. Arnold, A.; Metzinger, R.; Limberg, C. Chem. – Eur. J. 2015, 21, 1198-1207. 

72. Weber, Manfred., Weber, Markus., Kleine-Boymann, M. Ullmann's 

Encyclopedia of Industrial Chemistry 2012, 26, 503-519 

73. Koehler, J. A.; Brune, B. J.; Chen, T.; Glemza, A. J.; Vishwanath, P.; Smith, P. 

J.; Payne, G. F. Ind. Eng. Chem. Res. 2000, 39, 3347-3355. 

74. Poggendorff, J.C. Annalen der Physik und Chemie. Leipzig, J.A. Barth, 1834 

75. Weissermel, K.; Arpe, H.-J., Industrial Organic Chemistry. 4th ed. Wiley-VCH: 

Weinheim, Germany, 2003. 

76. Hock, H.; Lang, S. Ber. dtsch. chem. Ges. 1944, 77, 257-264. 

77. Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen, B. M. Chem. 

Rev. 2010, 110, 3552-3599. 

78. Braz Filho, R., Farias Magalhaes, A., Gottlieb O. R. Phytochemistry 1972, 11, 

3307-3310. 

79. Josephy, P. D., Van Damme A. Anal. Chem 1984, 56, 813-814. 

80. Sethna, S. M.; Shah, N. M. Chem. Rev. 1945, 36, 1-62. 

81. Perkin, W. H. J. Chem. Soc. 1868, 21, 53-63. 

82. Panetta, J. A.; Rapoport, H. J.Org. Chem.1982, 47, 946-950. 

83. Bogdał, D. J. Chem. Res-S. 1998, 468-469. 

84. Valizadeh, H.; Vaghefi, S. Synthetic Commun. 2009, 39, 1666-1678. 

85. Pechmann, H. v., Eur. J. Inorg. Chem. 1884, 929-936. 

86. Pang, G. X.; Niu, C.; Mamat, N.; Aisa, H. A. Bioorg. Med. Chem. Lett. 2017, 

27, 2674-2677. 



273 

 

87. Xie, S.-S.; Wang, X.-B.; Li, J.-Y.; Yang, L.; Kong, L.-Y. Eur. J. Med. Chem. 

2013, 64, 540-553. 

88. Curini, M. E., F.; Maltese, F; Marcotullio, M. C.; Prieto Gonzales, S.; 

Rodriguez, J. C. Aust. J. Chem. 2003, 56, 59-60. 

89. Jiang, H.; Hamada, Y. Org. Biomol. Chem. 2009, 7, 4173-4176. 

90. Plietker, B.; Dieskau, A.; Möws, K.; Jatsch, A. Angew. Chem. Int. Ed. 2008, 47, 

198-201. 

91. Niggeman, M.; Meel, M. J. Angew. Chemie. Int. Ed 2010, 49, 3684-3687. 

92. Jäger, S. N.; Porta, E. O. J.; Labadie, G. R. Mol. Divers. 2016, 20, 407-419. 

93. Yelamaggad, C. V.; Achalkumar, A. S.; Rao, D. S. S.; Prasad, S. K.  J. Mater. 

Chem. 2007, 17, 4521-4529. 

94. Corey, E. J.; Link, J. O., Tetrahedron Lett. 1990, 601-604. 

95. Li, N.-G.; Shi, Z.-H.; Tang, Y.-P.; Yang, J.-P.; Duan, J.-A. B. J. Org. Chem. 

2009, 5, 60. 

96. Karmakar, R.; Pahari, P.; Mal, D., Tetrahedron Lett. 2009, 50, 4042-4045. 

97. Fiorito, S.; Epifano, F.; Taddeo, V. A.; Genovese, S. Tetrahedron Lett. 2016, 

57, 2939-2942. 

98. Moreau, A.; Couture, A.; Deniau, E.; Grandclaudon, P.; Lebrun, S. Org. Biomol. 

Chem. 2005, 3, 2305-2309. 

99. Mali, R. S.; Joshi, P. P.; Sandhu, P. K.; Manekar-Tilve, A. J. Chem. Soc. Perk. 

T. 1 2002, 371-376 

100. Moon, I.; Kim, J.-K.; Jun, J.-G. B. Kor. Chem. Soc. 2015, 36, 2907-2914. 

101. Kaisalo, L.; Latvala, A.; Hase, T. Synthetic Commun. 1986, 16, 645-648. 

102. Curtin, D. Y.; Johnson, H. W. J. Am. Chem. Soc. 1956, 78, 2611-2615. 

103. Akihara, Y.; Ohta, E.; Nehira, T.; Ômura, H.; Ohta, S. Chem. Biodiv. 2017, 14 

e1700196. 

104. Waters, M. L.; Wulff, W. D. Org. React. 2008, 70, 121 

105. Jacob, P.; Callery, P. S.; Shulgin, A. T.; Castagnoli, N. J. Org. Chem. 1976, 41, 

3627-3629. 

106. Ho, T.-L.; Wang, J.; Li, C. Encyclopedia of Reagents for Organic Synthesis, 

Wiley, 2007. 

107. Tohma, H.; Kita, Y. Adv. Synth. Catal. 2004, 346, 111-124. 

108. Yoshimura, A.; Zhdankin, V. V. Chemical Rev. 2016, 116, 3328-3435. 

109. Morimoto, K.; Dohi, T.; Kita, Y. Eur. J. Org. Chem. 2013, 1659-1662. 



274 

 

110. Uyanik, M.; Ishihara, K. Chem. Commun. 2009, 2086-2099. 

111. Frigerio, M.; Santagostino, M.; Sputore, S. J. Org. Chem. 1999, 64, 4537-4538. 

112. Nicolaou, K. C.; Montagnon, T.; Baran, P. S.; Zhong, Y.-L. J. Am. Chem. Soc. 

2002, 124, 2245-2258. 

113. Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277-7287. 

114. Moriarty, R. M.; Chany, C.J.; Kosmeder J. W.; Du Bois, J. Encyclopedia of 

Reagents for Organic Synthesis, Wiley, 2006. 

115. Moriarty, R. M.; Kosmeder II, J. W.; Lobben, P. C.; Du, Y.; Zhang, X.; Zhao, 

K. Encyclopedia of Reagents for Organic Synthesis, Wiley, 2016. 

116. Moriarty, R.M.; Prakash, O. Org. React. 2001, 57, 327-415 

117. Magdziak, D.; Rodriguez, A. A.; Van De Water, R. W.; Pettus, T. R. R. Org. 

Lett. 2002, 4, 285-288. 

118. Tamura, Y.; Yakura, T.; Tohma, H.; Ki-kuchi, K.; Kita, Y. Synthesis 1989, 126-

127. 

119. Barret, R.; Daudon, M. Synthetic Commun. 1990, 20, 2907-2912. 

120. Pouységu, L.; Deffieux, D.; Quideau, S. Tetrahedron 2010, 66, 2235-2261. 

121. Harned, A. M. Tetrahedron Lett. 2014, 55, 4681-4689. 

122. Bartlett, S. L.; Beaudry, C. M. J. Org. Chem. 2011, 76, 9852-9855. 

123. Lachkar, D.; Denizot, N.; Bernadat, G.; Ahamada, K.; Beniddir, M. A.; 

Dumontet, V.; Gallard, J.-F.; Guillot, R.; Leblanc, K.; N'Nang, E. O.; Turpin, 

V.; Kouklovsky, C.; Poupon, E.; Evanno, L.; Vincent, G. Nat. Chem. 2017, 9, 

793. 

124. Novak, M.; Glover, S. A. J. Am. Chem. Soc. 2004, 126, 7748-7749. 

125. Akihara, Y.; Ohta, E.; Nehira, T.; Ômura, H.; Ohta, S. Chem. Biodiv. 2017, 14 

e1700196. 

126. Runcie, K. A.; Taylor, R. J. K. Org. Lett. 2001, 3, 3237-3239. 

127. Stern, A. J.; Swenton, J. S. J. Org. Chem. 1989, 54, 2953-2958. 

128. Colvin, E. W.; Raphael, R. A.; Roberts, J. S. J. Chem. Soc. Chem. Commun. 

1971, 858-859. 

129. Ellison, R. A.; Lukenbach, E. R.; Chiu, C.-W. Tetrahedron Lett. 1975, 16, 499-

502. 

130. Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W. W. L. Chem. Rev. 2002, 

102, 2227-2302. 

131. Steel, P. G. J. Chem. Soc., Perk. T. 2001, 2727-2751. 



275 

 

132. Dalpozzo, R.; De Nino, A.; Maiuolo, L.; Procopio, A.; Tagarelli, A.; Sindona, 

G.; Bartoli, G. J. Org. Chem. 2002, 67, 9093-9095. 

133. Dalpozzo, R.; De Nino, A.; Maiuolo, L.; Nardi, M.; Procopio, A.; Tagarelli, A. 

Synthesis 2004, 496-498. 

134. Gregg, B. T.; Golden, K. C.; Quinn, J. F. J. Org. Chem. 2007, 72 , 5890-5893. 

135. Bailey, A. D.; Baru, A. R.; Tasche, K. K.; Mohan, R. S.. Tetrahedron Lett. 2008, 

49, 691-694. 

136. Wriede, U.; Fernandez, M.; West, K. F.; Harcour, D.; Moore, H. W. J. Org. 

Chem. 1987, 52, 4485-4489. 

137. Nicolaou, K. C.; Wang, J.; Tang, Y.; Botta, L. J. Am. Chem. Soc. 2010, 132, 

11350-11363. 

138. Robbins, T. A.; Cram, D. J. J. Am. Chem. Soc. 1993, 115, 12199-12199 

139. Esguerra, K. V. N.; Lumb, J.-P. Angew. Chem. Int. Ed. 2018, 57, 1514-1518. 

140. Liao, C.-C.; Peddinti, R. K. Acc. Chem. Res. 2002, 35, 856-866. 

141. Arjona, O.; Medel, R.; Plumet, J.; Herrera, R.; Jiménez-Vázquez, H. A.; 

Tamariz, J.  J. Org. Chem. 2004, 69, 2348-2354. 

142. Bruins, J. J.; Albada, B.; van Delft, F. Chem. – Eur. J. 2018, 24, 4749-4756. 

143. Sharma, S.; Parumala, S. K. R.; Peddinti, R. K.  J. Org. Chem. 2017, 82, 9367-

9383. 

144. Vedejs, E. Science 1980, 207, 42-44. 

145. Brown, H.; Rao, B. C. J. Org. Chem. 1957, 22, 1136-1137. 

146. Lachance, H.; Hall, D.G. Org. React., 2009, 73, 1 

147. Miyaura, N.; Suzuki, A. J. Chem. Soc. Chem. Commun. 1979, 866-867. 

148. Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P. Tetrahedron Lett. 

1998, 39, 2933-2936. 

149. Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. 

M. T.; Combs, A. Tetrahedron Lett. 1998, 39, 2941-2944. 

150. Torborg, C.; Beller, M. Adv. Synth. Catal. 2009, 351, 3027-3043. 

151. Petasis, N. A.; Akritopoulou, I. Tetrahedron Lett. 1993, 34, 583-586. 

152. Brown, H. C.; Zweifel, G. J. Am. Chem. Soc. 1959, 81, 247-247. 

153. Rucker, R. P.; Whittaker, A. M.; Dang, H.; Lalic, G. J. Am. Chem. Soc. 2012, 

134, 6571-6574. 

154. Brown, H. C.; Lane, C. F. J. Am. Chem. Soc. 1970, 92, 6660-6661. 



276 

 

155. Brown, H. C.; Rathke, M. W.; Rogic, M. M. J. Am. Chem. Soc. 1968, 90, 5038-

5040. 

156. Brown, H. C.; Gupta, S. K. J. Am. Chem. Soc. 1972, 94, 4370-4371. 

157. Brown, H. C.; Desai, M. C.; Jadhav, P. K. J. Org. Chem. 1982, 47, 5065-5069. 

158. Thomas, S. P.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2009, 48, 1896-1898. 

159. Masamune, S.; Kim, B. M.; Petersen, J. S.; Sato, T.; Veenstra, S. J.; Imai, T. J. 

Am. Chem. Soc. 1985, 107, 4549-4551. 

160. Gonzalez, A. Z.; Román, J. G.; Gonzalez, E.; Martinez, J.; Medina, J. R.; Matos, 

K.; Soderquist, J. A. J. Am. Chem. Soc. 2008, 130, 9218-9219. 

161. Chen, J.; Xi, T.; Ren, X.; Cheng, B.; Guo, J.; Lu, Z. Org. Chem. Front. 2014, 1, 

1306-1309. 

162. Luna, A. P.; Bonin, M.; Micouin, L.; Husson, H.-P. J. Am. Chem. Soc. 2002, 

124, 12098-12099. 

163. Hayashi, T.; Matsumoto, Y.; Ito, Y. J. Am. Chem. Soc. 1989, 111, 3426-3428. 

164. Tucker, C. E.; Davidson, J.; Knochel, P. J. Org. Chem. 1992, 57, 3482-3485. 

165. Lennox, A. J. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43, 412-443. 

166. Veeraraghavan Ramachandran, P.; Subash Chandra, J.; Ros, A.; Fernandez, R.; 

Lassaletta, J. M. Encyclopedia of Reagents for Organic Synthesis, Wiley, 2014. 

167. Veeraraghavan Ramachandran, P.; Subash Chandra, J. Encyclopedia of 

Reagents for Organic Synthesis, Wiley, 2005. 

168. Barrett, A. G. M. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, 

I., Eds. Pergamon: Oxford, 1991; pp 235-257. 

169. Krishnamurthy, S.; Brown, H. C. J. Org. Chem. 1980, 45, 849-856. 

170. Kayser, M. M.; Breau, L.; Eliev, S.; Morand, P.; Ip, H. S. Can. J. Chem. 1986, 

64, 104-109. 

171. Brown, H.; Rao, B. C. J. Org. Chem. 1957, 22, 1135-1136. 

172. Braish, T. US5256791A, 26th October 1993. 

173. Burkhardt, E. R.; Matos, K. Chem. Rev. 2006, 106, 2617-2650. 

174. Brown, H. C.; Chen, J., Hydroboration. J. Org. Chem. 1981, 46, 3978-3988. 

175. Midland, M. M.; Graham, R. S. Org. Synth. 1985, 63, 57. 

176. Midland, M. M. Chem. Rev. 1989, 89, 1553-1561. 

177. Brown, H.; Ramachandran, P. V. Pure Appl. Chem. 1991, 63, 307-316. 

178. Brown, H. C.; Chandrasekharan, J.; Ramachandran, P. V. J. Am. Chem. Soc. 

1988, 110, 1539-1546. 



277 

 

179. Sarko, C. R.; Guch, I. C.; DiMare, M. J. Org. Chem. 1994, 59, 705-706. 

180. Lindsley, C. W.; DiMare, M. Tetrahedron Lett. 1994, 35, 5141-5144. 

181. Giffels, G.; Dreisbach, C.; Kragl, U.; Weigerding, M.; Waldmann, H.; Wandrey, 

C. Angew. Chem. Int. 1995, 34, 2005-2006. 

182. Almqvist, F.; Torstensson, L.; Gudmundsson, A.; Frejd, T. Angew. Chem. Int. 

Ed. 1997, 36, 376-377. 

183. Bandini, M.; Cozzi, P. G.; de Angelis, M.; Umani-Ronchi, A. Tetrahedron 

Letters 2000, 41, 1601-1605. 

184. Locatelli, M.; Cozzi, P. G. Angew. Chem. Int. Ed. 2003, 42, 4928-4930. 

185. Lummis, P. A.; Momeni, M. R.; Lui, M. W.; McDonald, R.; Ferguson, M. J.; 

Miskolzie, M.; Brown, A.; Rivard, E. Angew. Chem. Int. Ed. 2014, 53, 9347-

9351. 

186. Blum, Y.; Czarkie, D.; Rahamim, Y.; Shvo, Y. Organometallics 1985, 4, 1459-

1461. 

187. Koren-Selfridge, L.; Londino, H. N.; Vellucci, J. K.; Simmons, B. J.; Casey, C. 

P.; Clark, T. B. Organometallics 2009, 28, 2085-2090. 

188. Chong, C. C.; Kinjo, R. ACS Catal. 2015, 5, 3238-3259. 

189. Blake, A. J.; Cunningham, A.; Ford, A.; Teat, S. J.; Woodward, S.. Chem. – Eur. 

J. 2000, 6, 3586-3594. 

190. Arrowsmith, M.; Hadlington, T. J.; Hill, M. S.; Kociok-Köhn, G. Chem. 

Commun. 2012, 48, 4567-4569. 

191. Hadlington, T. J.; Hermann, M.; Frenking, G.; Jones, C. J. Am. Chem. Soc. 2014, 

136, 3028-3031. 

192. Gudat, D. Acc. Chem. Res. 2010, 43, 1307-1316. 

193. Chong, C. C.; Hirao, H.; Kinjo, R. Angew. Chem. Int. Ed. 2015, 54, 190-194. 

194. Hirao, A.; Itsuno, S.; Nakahama, S.; Yamazaki, N. J. Chem. Soc. Chem. Comm. 

1981, 315-317. 

195. Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987, 109, 5551-5553. 

196. Corey, E. J.; Bakshi, R. K.; Shibata, S.; Chen, C. P.; Singh, V. K. J. Am. Chem. 

Soc. 1987, 109, 7925-7926. 

197. Corey, E. J.; Roberts, B. E. Journal of the American Chemical Society 1997, 

119, 12425-12431. 



278 

 

198. Jones, T. K.; Mohan, J. J.; Xavier, L. C.; Blacklock, T. J.; Mathre, D. J.; Sohar, 

P.; Jones, E. T. T.; Reamer, R. A.; Roberts, F. E.; Grabowski, E. J. J. J. Org. 

Chem. 1991, 56, 763-769. 

199. Corey, E. J.; Helal, C. J. Angew. Chem. Int. Ed. 1998, 37, 1986-2012. 

200. Quallich, G. J.; Woodall, T. M. Tetrahedron Lett. 1993, 34, 785-788. 

201. Shirakawa, K.; Arase, A.; Hoshi, M. Synthesis 2004, 1814-1820. 

202. Yin, Q.; Kemper, S.; Klare, H. F. T.; Oestreich, M. Chem.–Eur. J. 2016, 22, 

13840-13844. 

203. Carden, J. L.; Gierlichs, L. J.; Wass, D. F.; Browne, D. L.; Melen, R. L. Chem. 

Commun. 2019, 55, 318-321. 

204. Ang, N. W. J.; Buettner, C. S.; Docherty, S.; Bismuto, A.; Carney, J. R.; 

Docherty, J. H.; Cowley, M. J.; Thomas, S. P. Synthesis 2018, 50, 803-808. 

205. Beaton Garcia, A. F. Enantioselective Boron-Catalysed Reduction of Olefins 

and Carbonyl. MChem Thesis, University of Edinburgh, 2018. 

206. Dos Santos, A. A.; Castelani, P.; Bassora, B. K.; Fogo Junior, J. C.; Costa, C. 

E.; Comasseto, J. V. Tetrahedron 2005, 61, 9173-9179. 

207. Zhang, A.-L.; Yu, Z.-d.; Yang, L.-W.; Yang, N.-F. Tetrahedron: Asymmetry 

2015, 26, 173-179. 

208. Thormeier, S.; Carboni, B.; Kaufmann, D. E. J. Organomet. Chem. 2002, 657, 

136-145. 

209. Midland, M. M.; McLoughlin, J. I. J. Org. Chem. 1984, 49, 4101-4102. 

210. Soderquist, J. A.; Roush, W. R.; Heo, J.-N. Encyclopedia of Reagents for 

Organic Synthesis, Wiley, 2004. 

211. Hermanek, S. Chem. Rev. 1992, 92, 325-362. 

212. Midland, M. M.; McDowell, D. C.; Hatch, R. L.; Tramontano, A. J. Am. Chem. 

Soc. 1980, 102, 867-869. 

213. Bakherad, M.; Keivanloo, A.; Bahramian, B.; Rajaie, M. Tetrahedron Lett. 

2010, 51, 33-35. 

214. Piers, E.; Tillyer, R. D. Can. J. Chem. 1996, 74, 2048-2063. 

215. Danishefsky, S.; Lee, J. Y. J. Am. Chem. Soc. 1989, 111, 4829-4837. 

216. V. Allen, J.; C. Horwell, D.; A. H. Lainton, J. Chem. Commun. 1997, 2121-

2122. 

217. Li, N.-G.; Shi, Z.-H.; Tang, Y.-P.; Yang, J.-P.; Duan, J.-A., Beilstein J. Org. 

Chem. 2009, 5. 



279 

 

218. Karmakar, R.; Pahari, P.; Mal, D. Tetrahedron Lett. 2009, 50, 4042-4045. 

219. Kelly, T. R.; Szabados, A.; Lee, Y.-J. J. Org. Chem. 1997, 62, 428-429. 

220. Corey, E. J.; Link, J. O. Tetrahedron Lett. 1990, 31, 601-604. 

221.      Azelmat, J.; Fiorito, S.; Taddeo, V. A.; Genovese, S.; Epifano, F.; Grenier, D. 

Phytochemistry Letters 2015, 13, 399 – 405 

222.      Mfuh, A. M.; Zhang, Y.; Stephens, D. E.; Vo, A. X. T.; Arman, H. D.; J. Am. 

Chem. Soc. 2015, 137, 8050-8053 

223. Ray, J. K.; Gupta, S.; Kar, G. K.; Roy, B. C.; Lin, J.-M.; Amin, S., J. Org. Chem. 

2000, 65, 8134-8138. 

224. Musolino, S. F.; Ojo, O. S.; Westwood, N. J.; Taylor, J. E.; Smith, A. D. Chem.–

Eur. J. 2016, 22, 18916-18922. 

225. Ye, L.-M.; Qian, L.; Chen, Y.-Y.; Zhang, X.-J.; Yan, M. Org. Biomol. Chem. 

2017, 15, 550-554. 

226. Li, Z.; Yu, H.; Liu, Y.; Zhou, L.; Sun, Z.; Guo, H. Adv. Synth. Catal. 2016, 358, 

1880-1885. 

227. Fontaine, E.; Namane, C.; Meneyrol, J.; Geslin, M.; Serva, L.; Roussey, E.; 

Tissandié, S.; Maftouh, M.; Roger, P. Tetrahedron: Asymmetry 2001, 12, 2185-

2189. 

228. Itsuno, S.; Nakano, M.; Miyazaki, K.; Masuda, H.; Ito, K.; Hirao, A.; 

Nakahama, S. Adv. Synth. Catal. 2013, 355, 1631-1639 

229. Zhang, Y.-M.; Yuan, M.-L.; Liu, W.-P.; Xie, J.-H.; Zhou, Q.-L. Org. Lett. 2018, 

20, 4486-4489. 

230.       Newcomb, E. T.; Ferreira, E. M. Org. Lett. 2013, 15, 1772-1775 

231. Schubert, T.; Hummel, W.; Kula, M.-R.; Müller, M. Eur. J. Org. Chem. 2001, 

4181-4187. 

 

 

 


	cover sheet
	Peter_DaBell_PhD_Thesis

