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Abstract 
 

While the search for models and explanations of cognitive phenomena is a growing 

area of research, there is no consensus on what counts as a good explanation in 

cognitive science. 

This Ph.D. thesis offers a philosophical exploration of the different frameworks 

adopted to explain cognitive behaviour. It then builds on this systematic exploration 

to offer a new understanding of the explanatory standards employed in the 

construction and justification of models and modelling frameworks in cognitive 

science. Sub-goals of the project include a better understanding of some theoretical 

terms adopted in cognitive science and a deep analysis of the role of representation in 

explanations of cognitive phenomena. Results of this project can advance the debate 

on issues in general philosophy of cognitive science and be valuable for guiding 

future scientific and cognitive research.  

In particular, the goals of the thesis are twofold: (i) to provide some necessary 

desiderata that genuine explanations in cognitive science need to meet; (ii) to identify 

the framework that is most apt to generate such good explanations. 

With reference to the first goal, I claim that a good explanation needs to 

provide predictions and descriptions of mechanisms. With regards to the second 

goal, I argue that the neurocomputational framework can meet these two desiderata. 

 In order to articulate the first claim, I discuss various possible desiderata of 

good explanations and I motivate why the ability to predict and to identify 
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mechanisms are necessary features of good explanations in cognitive science. In 

particular, I claim that a good explanation should advance our understanding of the 

cognitive phenomenon under study, together with providing a clear specification of 

the components and their interactions that regularly bring the phenomenon about. 

I motivate the second claim by examining various frameworks employed to 

explain cognitive phenomena: the folk-psychological, the anti-representational, the 

solely subpersonal and the neurocomputational frameworks. I criticise the folk-

psychological framework for meeting only the predictive criterion and I stress the 

inadequacy of its account of cause and causal explanation by engaging with James 

Woodward’s manipulationist theory of causation and causal explanation. By 

examining the anti-representational framework, I claim that the notion of 

representation is necessary to predict and to generalise cognitive phenomena. I reach 

the same conclusion by engaging with William Ramsey (2007) and Jose Luis 

Bermudez (2003). I then analyse the solely subpersonal framework and I argue that 

certain personal-level concepts are indeed required to successfully explain cognitive 

behaviour. Finally, I introduce the neurocomputational framework as more 

promising than the alternatives in explaining cognitive behaviour. I support this 

claim by assessing the framework’s ability to: (i) meet the two necessary criteria for 

good explanations; (ii) overcome some of the other frameworks’ explanatory limits. 

In particular, via an analysis of one of its family of models — Bayesian models — I 

argue that the neurocomputational framework can suggest a more adequate notion of 

representation, shed new light on the problem of how to bridge personal and 

subpersonal explanations, successfully meet the prediction criterion (it values 

predictions as a means to evaluate the goodness of an explanation) and can meet the 

mechanistic criterion (its model-based methodology opens up the possibility to study 

the nature of internal and unobservable components of cognitive phenomena). 
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Introduction 
 

The subject of the thesis can be summarised by the following questions and answers: 

 

Q1: Which norms and values are used to construct, evaluate and justify models and 

explanations in cognitive science? 

A1: Currently there are at least four different frameworks that try to explain 

cognitive phenomena. Each of these frameworks adopts different values and 

standards. 

Q2: What are the necessary desiderata of a good explanation of cognitive behaviour? 

A2: A good explanation in cognitive science should be predictive and 

mechanistic. 

Q3: How can we make progress in our understanding of cognitive behaviours? 

A3: Adopting the neurocomputational framework is one way to make progress 

in our understanding of cognitive behaviours and their underlying processes. 

 

Clarifying these questions and justifying these answers are, in essence, the goals of 

this thesis. 

In this thesis, I will call cognitive those behaviours that result from the 

processing of some kind of information. Examples of cognitive behaviours are: the 

ability to perceive, to reason, to decide and to remember. Cognitive behaviours are 
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different from reflexes, which are, instead, straight pathways from stimuli to 

responses that don’t require any information processing. 

On the one hand, understanding the processes underlying cognition is the 

primary goal of many disciplines of study, but, on the other hand, there is no 

consensus on what counts as a good explanation in cognitive science. 

It is unclear whether cognitive behaviours need to be explained by adopting a 

mental or intentional vocabulary, and whether, and to what extent, the dynamics 

between brain, body and world are required to understand our cognitive life. 

There are currently at least four different frameworks that try to explain 

cognitive behaviour: 

 

1. The folk-psychological framework focuses on mental states and their 

rationalising connections. According to this framework, a cognitive agent’s 

decision to order a glass of water is explained in terms of her desire to have a 

drink and her belief that water can quench her thirst 

2. The anti-representational framework. This framework focuses on dynamical 

loops between brain, body and world. An anti-representational explanation of 

an animal’s wings beating behaviour identifies the dynamic interplay 

between external feedback from the wings movements (i.e. the couplings 

between the animal and the environment) and internal regulatory factors as 

the responsible process for the behaviour 

3. The physiological subpersonal framework. This framework focuses 

exclusively on the physical makeup of brains. According to this framework 

social memory is explained by specifying the roles of a certain neural area 

and of a specific protein that can be found in it 

4. The neurocomputational framework. This framework focuses on the 

informational transactions among neural states. Explaining perception 

consists in showing how certain Bayesian algorithms are implemented in 
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specific brain areas and how activities in populations of neurons can transmit 

relevant information within the cognitive system 

 

It is not clear whether these frameworks are incompatible ways of accounting for 

cognitive phenomena or whether they (or at least some aspects of them) should be 

seen as somehow complementary attempts to gain a better understanding of the 

mind.  

 What is required for a good explanation of cognitive behaviour in the first 

place? When is an explanation justified? These are crucial problems that I tackle in 

this thesis by drawing on the main philosophical positions on the nature of scientific 

explanation. While answers to the questions above depend, in part, on specific details 

about the phenomena under study, they also depend in large on the explanatory 

standards and goals that investigators adopt to determine when explanations succeed 

and when they fail. 

A first goal of the thesis is to examine the various frameworks to make these 

standards explicit and to show to what extent they depend on different views about 

the norms governing explanations. By looking at various models at work, the project 

identifies the norms that the different explanatory frameworks endorse. Results of 

this analysis provide a better understanding of the nature of the relations among the 

different frameworks of explanation and of some theoretical terms central in 

cognitive science, and, in particular, the notion of representation. 

A second goal of the thesis is normative. The thesis suggests two necessary 

features of good explanations of cognitive behaviour: the ability to make predictions 

and the ability to identify mechanisms. These two criteria are justified by looking at 

their application to the study of various cognitive capacities. I claim that the 

neurocomputational framework is the only current framework that can meet both 

criteria and advance our understanding of cognition. Results of this project are 

intended to: (i) advance the debate on the explanatory values and standards adopted 

to construct, evaluate, and justify explanations and models in cognitive science; (ii) 
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guide further research into the nature of cognitive phenomena. The past few years 

have witnessed an increasing amount of interest by scientists in the distinctive role 

that Bayesian neurocomputational models play in explaining cognitive phenomena. 

This has been made possible because of the mathematical advances in identifying 

predictions from complex probabilistic models. Despite this interest, there is still 

little philosophical analysis on the neurocomputational framework and its 

explanatory pay-offs. This thesis is intended to shed light on this framework and on 

its role in advancing our understanding of cognitive behaviour. 

Given the existence of various different perspectives on the study of cognition, 

it is important to specify what is included in the thesis and what is beyond its scope. 

The project is not concerned with the localisation of specific functions in the brain. I 

do not attempt to provide a taxonomy of cognitive versus non-cognitive behaviour. 

The project is not a conceptual analysis. I do not identify the precise relations that 

might hold between mental states and brain states. I briefly discuss mental causation, 

but only in the context of the causal dimensions of psychological explanations. The 

aim is not to understand how the domain of the mental can be accommodated in that 

of the physical. The project does not offer a new definition of mechanism. I am also 

neutral on whether we should be realist or anti-realist about neural mechanisms, 

whether the component parts of these mechanisms are real parts of the system or 

artefacts necessary to explain cognitive behaviour. These are all important topics, but 

they are not directly relevant to the main theme of the thesis. The project is an 

investigation of the various frameworks and methodologies currently employed to 

explain cognitive behaviour. My intention is to make their standards and goals 

explicit and to indicate necessary features of adequate explanations of cognitive 

phenomena. It is then not the truth of particular models that is defended in this thesis, 

but the possibility and the suggestion of a fruitful way of achieving adequate 

cognitive explanations. 
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Outline of the thesis 
 

The problem that the thesis aims to address concerns what is required for a good 

explanation in cognitive science. 

 The goals of the project are twofold: (i) to provide some necessary desiderata 

that explanations of cognitive behaviour should meet to count as good explanations; 

(ii) to make the goals and standards adopted by the investigators working within the 

different frameworks explicit, and to identify the framework that is most apt to 

generate good explanations. 

Chapter 1 introduces the problem and starts to motivate why predictability and 

identification of mechanisms are two necessary criteria for good explanations in 

cognitive science by examining the folk-psychological causal framework of 

explanation. 

I argue that folk psychology cannot provide good explanations of cognitive 

phenomena because it favours predictive power at the expense of mechanisms. In 

addition to this, I claim that folk psychology offers an inadequate account of cause 

and causal explanation by engaging with James Woodward’s manipulationist theory 

of causation and causal explanation (e.g. 2003, 2008). 

 I then conclude that the truth of psychological causal claims cannot be justified 

by remaining solely at the level of folk psychology, but can be evaluated by 

descending to the level of mechanism. 

Chapter 2 examines the anti-representational framework. In particular, two anti-

representational accounts are analysed: Dynamical Systems Theory (e.g. van Gelder, 

1995; Chemero, 2000) and Behavioural Systems Theory (e.g. Keijzer, 1998, 2005). 

 I identify predictability and unification as the main goals of anti-

representational explanations. I then claim that they are insufficient to distinguish 

descriptions from genuine explanations by drawing on general debates on the nature 

of scientific explanation. I also show that anti-representational explanations are 

grounded on a weak realisation relation between models and modelled systems, 

which makes the distinction between genuine explanations and descriptions even 
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more complicated. 

 I therefore conclude the chapter by arguing that: (i) the identification of 

localised mechanisms is necessary to complement the predictive power of anti-

representational descriptions; (ii) the notion of representation is required to make 

cognitive behaviour intelligible.  

Chapter 3 provides further reasons why representations are necessary to make 

cognitive behaviour intelligible and to allow generalisations by engaging with 

William Ramsey's (2007) partial eliminativist claim. 

I argue that we can consider a system as trafficking in representations when we 

explain its cognitive success in terms of internal models that the system employs to 

draw inferences about the world. 

Chapter 4 tackles the so-called "interface problem" (Bermudez, 2005) and analyses 

the explanatory goals, methodologies and vocabularies of personal- and subpersonal-

level explanations of mental phenomena. 

I argue that personal-level autonomy theorists' arguments do not succeed 

because subpersonal information can and sometimes does provide answers to 

constitutive questions and because a purely normative redescription of a 

phenomenon runs the risk of being only a hermeneutic but not an explanatory 

strategy. 

At the same time, I claim that purely subpersonal explanations cannot 

adequately account for cognitive behaviour: (i) certain personal-level concepts are 

often integral parts of successful explanations of mental phenomena; (ii) folk 

psychology is not a false theory, but a theory that needs to be enhanced. 

I then argue that the methodological autonomy of both personal and 

subpersonal accounts provides an insufficient starting point to properly explain 

cognitive phenomena and that both levels are needed. 

Chapter 5 discusses Jose Luis Bermudez's tripartite account of rational behaviour 

(2003) to further argue in favour of mechanistic explanations. In particular, I show 

that the two criteria for rational behaviour that Bermudez identifies (the behaviour 
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results from a range of alternatives and the behaviour matches some normative 

standards — i.e. the maximisation of some kind of utility) are inadequate to 

understand the nature of rational behaviour. Adequate explanations of rational 

behaviour are only possible when external behavioural criteria of analysis are 

complemented by internal mechanistic ones: details about how information is 

encoded and manipulated inside our brains, I claim, are essential to confirm or 

disconfirm hypotheses about the role and nature of reasoning processes and, 

ultimately, to evaluate hypotheses about how rationality is naturally possible. 

Chapter 6 examines the neurocomputational framework of explanation by analysing 

the application of Bayesian neurocomputational models to the study of different 

cognitive behaviours. 

I especially focus on various cognitive behaviours that appear to result from 

some sort of prediction-error minimisation process, which seems to be the main 

building block of a mechanism that allows agents to perceive what is in the 

environment, to learn how to predict the consequences of their behaviours, and to 

perform in a nearly-optimal way. 

I then discuss certain experimental data that speak in favour of the existence of 

some correlation between variables in the models and states in the brain. 

Chapter 7 argues that the neurocomputational framework can meet both necessary 

criteria for good explanations in cognitive science. 

In particular, I show that predictions play a central role in neurocomputational 

explanations and that the framework’s openness to an analysis of the possible 

implementation of cognitive processes together with the growing operationalisation 

of some of its central claims makes it the most adequate framework to progress in 

our understanding of various aspects of our cognitive life. 
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Chapter 1 - The Folk-Psychological Framework 
 

 

 

1.1 – Introduction 
 

In this chapter I will begin motivating two necessary desiderata in cognitive science: 

the ability to predict and to identify mechanisms. In the following chapters I will 

provide further arguments for this view. 

This chapter starts by examining the folk-psychological framework. The folk-

psychological framework is typically adopted to make sense of behaviour that cannot 

be accounted purely in terms of stimulus-response associations. The central idea of 

the folk-psychological framework is that beliefs, desires and other mental states 

explain behaviours because they cause them.  

I will then engage with James Woodward (e.g. 2003, 2008) who has developed 

an influential defence of the goodness of folk-psychological explanations. His 

manipulationist theory of causation and causal explanation can be used to vindicate 

the truth of folk-psychological causal claims and the adequacy of folk-psychological 

causal explanations. The main assertion to be considered is that folk-psychological 

explanations are good and appropriate explanations of cognitive behaviour because 

they show how a complex event (i.e. a certain combination of beliefs, desires and 

other mental states) stands in an explanatory relation to a particular behaviour by 
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satisfying certain counterfactuals. According to Woodward, mental states are real 

causes because they support true counterfactuals and folk-psychological causal 

explanations are good explanations because they answer what-if-things-had-been-

different questions. Throughout the chapter I will refer to Woodward’s strategy as 

the “same-level strategy”, given that he believes that no further information, beyond 

that found at the level of the agent, is needed to account for cognitive behaviour. 

I attack the view according to which folk-psychological explanations are good 

explanations of cognitive behaviour by drawing on an analysis of Woodward’s same-

level strategy. I will argue that: (i) causal claims couched in neural terms can support 

counterfactuals; (ii) causal explanations couched in neural terms can answer what-if-

things-had-been-different questions; (iii) counterfactuals are useful epistemic tools, 

but they are insufficient to establish the truth of causal claims and the goodness of 

causal explanations. 

At the end of the chapter, I briefly advance the proposal according to which 

explanations of cognitive capacities don’t need to be just predictive, but also 

mechanistic. I will argue that the identification of mechanisms is necessary to 

distinguish useful descriptions from good explanations. I will then highlight some 

pay-offs of lower-level mechanistic explanations with respect to folk-psychological 

ones and I will defend the thesis according to which the ability to predict is a 

necessary feature of a good explanation in cognitive science. 

 

 

 

1.2 – Explanatory desiderata 
 

A first step to tackle the question of which framework can offer good explanations of 

cognitive behaviour consists in identifying the necessary desiderata that such 

explanations need to meet. As I will show throughout the thesis, this question has no 

obvious answer. There is no agreement in the literature about which features make an 
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explanation a good one. Rather, there are various accounts of explanation, each one 

stressing some possible candidates. 

In this section I will briefly introduce two main families of philosophical 

theories on the nature of explanation. Although they have been originally elaborated 

to examine explanations in chemistry and physics, they are useful starting points to 

understand what explaining cognitive phenomena means. 

The first family of philosophical theories is that of the so-called ontic theories. 

According to these theories, a good explanation identifies the real aspects of the 

world that are in a special relationship with the explanandum phenomenon. This 

particular relationship is a causal relationship. According to ontic theories, a good 

explanation identifies the causes of the phenomenon under study (e.g. Salmon, 1984; 

Woodward, 2003) or its underlying causal mechanism (e.g. Craver, 2007; Bechtel, 

2008).  

The second broad family of philosophical theories on the nature of scientific 

explanations includes the so-called epistemic theories. According to these theories, a 

good explanation identifies a special link between what needs to be explained (i.e. 

the explanandum) and what does the explanation (i.e. the explanans). Such link has a 

special epistemic nature: a good explanation of a phenomenon x offers information 

about x that is beyond that already provided by the phenomenon x itself. In 

particular, a good explanation provides reasons to expect a certain phenomenon 

given specific circumstances. The deductive-nomological model of explanation (e.g. 

Hempel, 1965) advances this idea: to explain a phenomenon is to show that, given 

certain conditions, the phenomenon is to be expected. Rational expectation is here 

the mark of a good explanation. 

Other epistemic theories have emphasised different desiderata of good 

explanations, such as the ability of an explanation to unify apparently disparate 

phenomena (e.g. Friedman, 1974; Kitcher, 1981). According to this view, an 

explanation is a good explanation when it can show how the explanandum 
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phenomenon fits into a wider framework that can already account for some other 

familiar phenomena of the world.
1
 

This brief description of the current philosophical theories of the nature of 

explanation shows the lack of consensus on which features make an explanation a 

good one. The followings are some of the possible desiderata: 

 Unification 

 Predictability and possibility to control 

 Scope 

 Identification of causes 

 Identification of mechanisms 

This lack of consensus, however, doesn’t prevent us from identifying those criteria 

that can, better than others, guide research in methodologically adequate ways. 

Indeed, we are left with a strong belief that not every methodology or framework of 

explanation is compatible with our idea of good science. 

What are, then, the necessary desiderata of good explanations of cognitive 

behaviour? 

In this chapter I put forward the idea that explanations in cognitive science 

should be predictive and mechanistic. Explanations should be predictive because 

good explanations should provide a cognitive advantage, that is, they need to provide 

information beyond that already offered by the cognitive phenomena themselves. 

Many philosophers and scientists, with few exceptions
2
, indeed agree that predictive 

power (i.e. the amount of data that corroborates a certain hypothesis) is a necessary, 

                                                 

1
 These accounts are not necessarily exclusive; rather, some features highlighted by 

one account can also figure in another. 
2
 James Woodward (e.g. 2003) and Carl Craver (e.g. 2007) believe that good 

explanations in the life science do not need to be predictive because it is not possible 

to identify laws or regular interactions that are responsible for certain cognitive 

behaviours and that do not admit exceptions, that are not limited in scope and that 

apply in all times and spaces. For a more detailed discussion on the role of 

predictions in explanation, see section 1.6. 
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although not sufficient, feature of good explanations. When we observe that a 

phenomenon happens quite regularly under certain conditions, we usually tend to 

explain it by citing those conditions (i.e. whenever conditions X happen, 

phenomenon Y happens too). Adequate explanations should also be mechanistic, that 

is, they should identify the components and their interactions that regularly bring the 

behaviour about. The identification of mechanisms, I will argue, allows to 

distinguish adequate from inadequate explanations in cognitive science. 

 

 

 

1.3 – The folk-psychological framework 
 

The framework that is most commonly employed to explain why humans can 

perform cognitive behaviour is that of commonsense or folk psychology. 

Folk-psychological causal explanations employ certain concepts to make 

intelligible what someone is doing or did by behaving in a certain way.  In particular, 

they appeal to a class of mental states that are about things, events or states of affairs 

extrinsic to them, and that figure in explanations of human behaviour. Examples of 

mental states are beliefs, desires, intentions and expectations. They are often called 

“propositional attitudes” because it is possible to express them as propositions: belief 

that something, desire something, and so on. Folk-psychological explanations make 

reference to these mental states by treating them as causes of behaviour.
3
 

                                                 
3
 Not all folk psychologists believe that mental states are causes and that their 

connections with behaviour should be understood in causal terms. Some, in 

particular the so-called autonomy theorists, claim that mental states are reasons and 

that their connections with behaviour are rational connections (e.g. mental states 

must be consistent and their connections must be governed by familiar deductive 

principles of logic). I leave this interpretation of folk psychology aside for the 

moment. I will address it in more details in chapter 4. 
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A certain behaviour is explained in folk-psychological terms by employing a 

generalisation of the form “if a person A desires B and believes that by doing C she 

will get B, then, ceteris paribus, she will do C”. 

Imagine we want to explain why Sara applied for a job in academia. By 

employing a folk-psychological explanation, we could say that Sara applied for the 

job in academia because she desired a job in academia and believed that, by applying 

for it, she could eventually get it. What makes us able to explain Sara’s behaviour is 

the fact that we can rely on a generalisation of the form “a person A applies for a job 

because A wants that job and believes that by applying for it she will get it”.  

These kinds of generalisations have a certain degree of success in predicting 

future behaviour.
4
 If we know that Sara desires a job in academia and believes that 

by applying for jobs in academia she will eventually get one, we can predict that she 

will apply for them. This prediction can then be confirmed or disconfirmed by Sara’s 

future behaviour. 

A natural move at this point would be to motivate this degree of success in 

terms of the truth of folk-psychological causal claims: causal explanations involving 

mental states are often predictive because the causal claims figuring in those 

explanations are true (e.g. Woodward, 2008). Relatedly, folk-psychological causal 

explanations are good explanations of cognitive behaviour because they properly 

capture how we work: humans behave as if they are guided by beliefs, desires and 

other mental states because they are actually guided by them. 

In what follows, I will argue that we should resist these conclusions when they 

are based on folk psychology’s predictive power alone. The reason for this caution 

has to do with the fact that predictive power is necessary but not sufficient to validate 

the adequacy of causal explanations. Predictability is a necessary feature of a good 

explanation because a good explanation should provide us with information about 

                                                 
4
 Not everyone agrees that folk-psychological explanations are highly predictive. 

Churchland (e.g. 1981), for instance, stresses how folk-psychological explanations 

often fail to explain and predict many of our cognitive behaviours. I will say more 

about this in chapter 4. 
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the explanandum phenomenon that we couldn’t have before (i.e. I need to know that, 

given certain conditions, I should expect the cognitive behaviour). The ability to 

predict is, however, not a sufficient feature of a good explanation. Recalling briefly 

the critiques to the deductive-nomological (DN) model of explanation (e.g. Salmon, 

1984) will help me justify why predictability is not also a sufficient condition. 

According to the DN model of explanation, explaining an outcome is simply a 

matter of exhibiting nomologically sufficient conditions for it. A good DN 

explanation has the form of a valid deductive argument that provides one with a 

rational expectation. Consider the following example: 

1. All men who take birth control pills fail to get pregnant 

2. Jones is a man who takes birth control pills 

3. Therefore, Jones fails to get pregnant 

This argument is valid (i.e. if the premises were true, the conclusion would be true), 

but it is not explanatory. The argument is not explanatory because it cites 

nomologically sufficient but not causally relevant conditions. 

A legitimate question arises: given their degree of success, how can we judge 

whether folk-psychological causal explanations are genuine explanations that pick 

out the real causes of cognitive behaviour, rather than mere redescriptions of 

people’s behaviour that help us navigate the world? 

I will now examine a powerful proposal according to which folk-psychological 

explanations are indeed good causal explanations and mental states are real causes. 

 

 

 

1.4 – Woodward’s same-level vindication 
 

One possible way to justify the goodness of folk-psychological causal explanations 

consists in showing that the causal claims that figure in them support true 

counterfactuals. The belief that “by applying for an academic job she could get one” 
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caused Sara to apply for the job because, if Sara had believed or desired differently, 

she would have behaved differently. This form of justification holds that there is 

nothing more to the truth of the causal claims than the truth of their counterfactuals 

(e.g. Lewis, 1973). 

One of the major advocates of this idea is James Woodward. In Making things 

happen he develops a defence of same-level explanations in terms of counterfactuals 

by arguing that folk-psychological causal explanations are good explanations 

because they can answer what-if-things-had-been-different questions. He claims that 

mental states are genuine causes of cognitive behaviour because we can intervene 

and manipulate them successfully. 

Woodward affirms that many of the arguments typically employed to show that 

mental states are not causally potent rest on mistaken assumptions about what it is 

for a relationship to be causal and about what makes an explanation a good causal 

explanation.
5
 

When can we say that X is the cause of Y? According to Woodward, since a 

cause is something that must make a difference to its effect, X is the cause of Y if 

and only if were X to be different Y would be different.
6
 

                                                 
5
 Woodward admits that some philosophers draw a clear distinction between 

providing a causal explanation of a phenomenon and making true claims about the 

causes of that phenomenon. On his account, however, the two goals are closely 

related: providing a good causal explanation of a phenomenon requires making true 

claims about its causes. 
6
 The notion of “difference” is here understood in terms of interventions or 

manipulations, which are, again, causal notions. The fact that Woodward doesn’t 

provide a reductionist account of causation has raised various critiques. An 

influential one is put forward by Stathis Psillos (2007). He claims that an 

independent account of the truth-conditions of counterfactuals is required to make 

manipulationist causal explanations good causal explanations. Consider the 

following causal claim: 

• B0: X causes Y 

• For B0 to be true, the counterfactual C1 should be true:  

o C1: if X had changed by some intervention I, the value of Y would 

have changed 
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The notion of difference and the associated notion of difference-maker are 

central in Woodward’s account. Here, a relation between X and Y is a genuine causal 

relation if, were an intervention I changing X, the relation between X and Y wouldn’t 

change, while the value of Y would change. A causal relation is then an invariant 

relation. According to this account, it is possible to distinguish causal from merely 

correlational relations because only the former can be potentially exploitable for 

purposes of manipulation and control.  

Consider the relation between attending a private school in the U.S. and 

scholastic achievement (Woodward, 2008). People tend to believe that students who 

attend private schools score higher in their final exams than students who attend 

public schools. Is the attendance at private schools the cause of higher scholastic 

achievement? Is their relation merely correlational? Answers to these, and similar, 

questions are not obvious. We can imagine various other possible causes of higher 

scholastic achievement. For example, we could say that parents of private schools’ 

students tend to value more the importance of scholastic achievement and that this 

directly influences the students’ performances or that it is the parents’ social-

economic status that directly influences scholastic achievements. Let me redescribe 

the example by means of some variables: 

 P: student attending private or public school 

 S: measure of the scholastic achievement 

 E: parents’ social-economic status 

                                                                                                                                          

• For C1 to be true, the causal claim B1 needs to be true:  

o B1: the intervention I doesn’t change the value of Y directly (i.e. by a 

route independent of X) 

“Establishing that certain counterfactuals are true is [then] necessary for establishing 

that other counterfactuals are true or false.” (ibid., p. 101) According to Psillos, 

counterfactuals provide only an extrinsic way of identifying causal relations. Being 

causal is, instead, an intrinsic property of a relation. Accordingly, the truth of causal 

claims has to be judged on grounds at least partly independent from counterfactual 

statements. 
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 A: parents’ value of student’s scholastic achievement 

Within a manipulationist account of causation we can ask whether it is P that causes 

S by wondering what would happen to S if P were different. Under some 

interventions on P, if P were the actual cause of S, then S would change. If S does 

not change under interventions on P, then E or A might be the real cause of S. 

Which kinds of interventions or manipulations can we perform on P to judge 

whether it is the real cause of S? We could run the following experiment. We could 

divide a group of random students in two sub-groups, and then send one sub-group to 

attend a private school and the other sub-group to attend a public school. If, 

independently from the parents’ attitude and socio-economic status, the group sent to 

the private school achieves better results, then we could conclude that P is the cause 

of S. If this is not the case, we could run other experiments to test the roles of E and 

A. 

To be sure that P is the cause of S, we need to be sure that the intervention 

occurred on P and not on another variable. Both real and hypothetical interventions 

can prove the existence of causal relations. Only if interventions are “impossible for 

(or lack any clear sense because of) logical, conceptual or perhaps metaphysical 

reasons, then that causal claim is itself illegitimate or ill-defined” (Woodward, 2008, 

p. 225). 

When we conclude that P causes S, we are offering a type rather than a token 

causal claim. This means that, within Woodward’s manipulationist approach, we can 

justify the truth of the causal claim “attending a private school causes a higher 

scholastic achievement”, but we might not be able to justify the truth of the claim 

“Lisa’s attendance to Gonzaga private school causes her scholastic achievement to 

improve”.  

According to this account of causation based on counterfactuals and on the 

idea that causes are difference-makers, a good causal explanation can answer what-

if-things-had-been-different questions: we can explain an outcome by identifying 

conditions under which the explanandum-outcome would have been different; these 
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information are about changes and they can be used to manipulate or control the 

outcome. In Woodward’s own words: 

“[…] a successful causal explanation consists in the exhibition of 

patterns of dependencies (as expressed by interventionist counterfactuals) 

between the factors cited in the explanans and the explanandum — 

factors that are such that changes in them produced by interventions are 

systematically associated with changes in the explanandum outcome.” 

(ibid., p. 230) 

In order to distinguish causally relevant from causally irrelevant (or nomologically 

sufficient) information, then, we need to assess whether any change in them brings 

about a change of some sort in the explanandum phenomenon. If a change in the 

antecedent does not modify the consequent, then the antecedent cannot be considered 

a relevant cause of the consequent. Accordingly, the main reason why the deductive-

nomological (DN) model of explanation doesn’t offer a good causal explanation is 

that it states that certain conditions should figure as causally relevant for an 

explanandum although they are only nomologically sufficient for it; in other words, 

deductive-nomological explanations are not good explanations because they cannot 

answer what-if-things-had-been-different questions. 

Consider again the example of Jones discussed above. On Woodward’s 

account, the putative cause is not a real cause because an intervention on it (e.g. 

Jones doesn’t take control pills) doesn’t imply any change in the effect (Jones fails to 

get pregnant). A good causal explanation must, instead, account for counterfactual 

scenarios. 

From the notion of causes as difference-makers and from the claim that there is 

nothing more to the truth of causal relationships than the truth of the associated 

counterfactuals, it follows that mental states employed in folk-psychological 

explanations are the relevant causes of a certain behaviour if their associated 

counterfactuals are true. Woodward says: 
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“[…] all that is required for a change in a mental states M1 to cause a 

change in a second mental state M2 (or in a behaviour B) is that it be true 

that under some intervention that changes M1, M2 (or B) will change. 

Common sense certainly supposes that episodes like these are very 

widespread.” (ibid., p. 234) 

According to Woodward, the folk-psychological framework can provide causally 

relevant claims, while a reductionist framework often identifies only nomologically 

sufficient but not causally relevant information. 

 

1.4.1 – Nomological sufficiency and causal relevance 

 

Woodward argues that at the folk-psychological level it is clear that a difference in 

mental states makes a difference in the outcome behaviour, but that the same cannot 

be said of lower-level neural activations: a difference in certain neural activations 

does not always make a difference in the outcome behaviour. 

Suppose we want to explain why the pressure of an ideal gas increases from 

time t1 to time t2. We know that at t1 the gas has temperature T1, pressure P1 and that 

it is in a container with volume V1. We also know that, after applying heat to the gas, 

the gas has a new and increased pressure P2 at time t2. 

One possible explanation, which Woodward calls macroscopic explanation, 

consists in explaining the new pressure by employing the ideal gas law (PV=nRT). 

This law describes how the macro-variables T, V and P relate to each other and 

change accordingly. By following the law, if the volume of the gas remains stable 

while the temperature changes, the new pressure P2 can be explained by the formula 

P2= nRT2/V. 

We can also explain the new pressure by applying a microscopic strategy. We 

can analyse the molecular configurations and trajectories (G1) of the gas at time t1 

and its new configuration (G2) at time t2. We can then explain P2 in terms of the force 

that the new molecular configuration G2 transfers on the surface of the container.  
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Woodward argues that, even granting that these micro-level measures are 

possible, G2 can’t be considered the real cause of P2: given that there exist many 

other molecular configurations that could correspond to the same pressure, knowing 

just one of these configurations is not useful to explain why the gas has pressure P2 

rather than P3, P4, and so on. 

He applies the same argument to behaviour: we could employ a microscopic 

strategy to explain, for instance, reaching behaviour by citing the neural correlates of 

the subject’s intention to reach. But then again, given that the same intention could 

be associated with numerous and different neural configurations, these neural 

activations are only nomologically sufficient but not causally relevant for the 

reaching behaviour. The reason for this is that a microscopic explanation in terms of 

neural activations does not hold true counterfactuals: if the neural configuration had 

been different, the reaching movement wouldn’t have changed.
7
 On the contrary, a 

macroscopic explanation holds true counterfactuals: we can explain a certain 

reaching behaviour in terms of a specific intention (its cause) such that, if the 

intention had been different, the grasping behaviour would have been different. 

According to Woodward, then: 

 X causes Y if and only if an intervention changing X would change the value 

of Y and their relationship would remain invariant 

 There is nothing more to the truth of causal claims than the truth of the 

counterfactuals that hold 

 A good causal explanation can answer what-if-things-had-been-different 

questions and place the explanandum phenomenon into a web of 

counterfactual dependencies 

 A macroscopic causal explanation should be preferred to a microscopic 

(neural) causal explanation because: 

                                                 
7
 This example refers to some studies carried out by Richard Andersen and 

colleagues (Musallam et al., 2004). Woodward discusses them as empirical 

evidences in favour of his account. 
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o The microscopic causal explanation often contains extremely fine-

grained and causally irrelevant nomologically sufficient information 

o The microscopic causal explanation can’t usually answer what-if-

things-had-been-different questions 

In the next sections, I will argue that Woodward’s same-level strategy is inadequate 

to vindicate the goodness of folk-psychological causal explanations and the truth of 

their causal claims. In particular, I will show that not only folk-psychological 

explanations but also lower-level explanations can answer what-if-things-had-been-

different questions and that lower-level causal claims can support counterfactual 

statements too. In addition to this, I will argue that Woodward’s strategy is 

inadequate to establish the goodness of causal explanations because counterfactual 

statements are insufficient to justify the truth of causal claims. 

In the final section of the chapter I will then briefly argue in favour of lower-

level mechanistic explanations that can account for both functional and structural 

features of components whose regular interactions are responsible for various 

cognitive phenomena and I will show why good explanations of cognitive behaviour 

need to be predictive. 

 

1.4.2 – Criticism of Woodward’s same-level vindication 

 

It is said that, contrary to the deductive-nomological model of explanation, the 

relevant cause of a macroscopic behaviour belong to a level where the cause, if 

changed, would make a difference to its effect: if Sara’s belief that by applying for 

an academic job she will eventually get it were changed, her resulting behaviour 

would change too. 

In this section, I claim that the capacity to support true counterfactuals is 

indicative of the possible goodness of an explanation, but insufficient to establish it. 

Consider the example about the neural correlates of intentions to reach that I 

discussed above. This example is meant to show that a macroscopic causal 
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explanation in terms of mental states as causes and counterfactuals must be preferred 

to an explanation that contains only fine-grained details about the nomologically 

sufficient conditions for a grasping behaviour. Let us look at the example in more 

detail.  

Andersen and colleagues (see Musallam et al., 2004) ran experiments on 

macaque monkeys to identify the neural correlates of intentions to reach for an 

object. They recorded the electrical signals of individual neurons in the monkeys’ 

posterior parietal cortex and developed a program to correlate variations in the 

features of the aggregate firing neurons to differences in intention to reach. Such 

differences in intention where then observed in the monkeys’ overt movements.  

The correlations between neural features, associated intentions and consequent 

reaching movements turned out to be highly predictive: by observing the features of 

the neural firings, Andersen and colleagues could predict which reaching behaviour 

would have followed. 

Woodward examines these experiments and claims that the identification of the 

pattern of neural activation (A1) that corresponds to a specific intention (I1) to reach 

for an object (R1) is not sufficient to conclude that A1 is the real cause of R1. We are 

not allowed to conclude this because, according to Woodward, other neural patterns 

(A11, A12, A13, A14, …) might get activated in other occasions in correspondence to 

the same intention to reach for the same object. Knowing A1 can’t explain why a 

monkey performs the behaviour R1 rather than R2 (A1 doesn’t inform one about any 

counterfactual scenarios: were A1 different, R1 would still be the same), but it can be 

nomologically sufficient for R1. 

Despite Woodward’s belief that lower-level explanations often provide only 

nomologically sufficient conditions, a closer look at the methodology adopted in 

neuroscience reveals that similar experiments are designed to identify repetitive 

commonalities among neural activations. Once a certain neural pattern is identified 

as the possible cause of a behaviour, it can be used to test counterfactual scenarios. 
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Consider Ma and colleagues’ study on cue integration (2006). They run different 

experiments to tackle the following questions: 

 How could human perform cue integration of different sensory modalities? 

 How could neural activity cause cue integration?  

Their aim was to test whether humans performed cue integration by updating the 

belief about the cause of their sensory input on the basis of sensory information in a 

Bayesian way. If this were the case, neural activity should encode probabilistic 

representations of sensory stimuli and integrate them in a Bayesian fashion. 

By focusing on the integration of tactile and visual sensory stimuli, they found 

that cue integration was performed when the activities of cortical neurons, which 

varied highly from one trial to the next, could be described by Poisson-like statistics. 

To get clear on what a Poisson-like distribution is, consider the following example. 

Imagine you normally receive five phone calls each day. There will be days in which 

you receive less than five phone calls, other days in which you receive more than 

five phone calls, and days in which you receive none. If we assume that the process 

responsible for these variations is random, then a Poisson-like distribution tells you 

how likely it is that you receive a certain number of phone calls during a specific 

period of time. 

Ma and colleagues hypothesised that the presence of Poisson-like variability in 

certain cortical neurons could enable the brain to carry out Bayesian integration over 

them.  

This study allowed them to generate precise predictions about neural 

activations and outcome behaviours, and to consider counterfactual scenarios. They 

could predict that, if the variability of certain cortical neurons were Poisson-like, the 

subjects’ responses would be compatible with those of a Bayesian ideal observer. 

They could also imagine and test counterfactual scenarios: if the variability of neural 

activations were not Poisson-like, the performance of the subject in the task would be 

different from that expected. If, via interventions and manipulations on the activity of 
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certain neurons, they could observe a change in the outcome behaviour, then, by 

following Woodward’s account, a causal explanation of cue integration could cite 

certain Poisson-like neurons as causes. The explanation would be able to answer 

what-if-things-had-been-different questions and it would make true claims about cue 

integration’s causes.
8
 Woodward himself seems to agree with this conclusion: 

“[…] insofar as the aggregate profile […] of the firing rates that realizes 

or corresponds to the different ways […] of realizing I1, and [this 

aggregate] leads to R1 and [it] contrasts with whatever aggregate profile 

of neural activity A2 corresponds to the different intention I2, it will be 

equally appropriate to cite A1 as causing or figuring in the causal 

explanation for the monkey’s exhibiting R1.” (ibid., p. 245–246) 

If we were to remain within Woodward’s account, we would say that both folk-

psychological and lower-level explanations adequately explain cognitive behaviour 

when they can answer what-if-things-had-been-different questions and support true 

counterfactuals. For folk psychologists, this conclusion would already be a problem 

because they would have to provide further reasons for why their explanations 

should still be preferred to the ones couched in neural terms. However, a more 

pressing and distinct problem is that Woodward’s account cannot be adopted to 

justify the goodness of any causal explanation given the role he attributes to 

counterfactual statements. 

Counterfactuals are important methodological and epistemic tools to infer the 

existence of causal relations. They help to “rule out possibilities that are at first 

promising, or could be thought to be the cause” (Machamer, 2004, p. 31). Saying that 

                                                 
8
 More information is needed in order to conclude that these neurons are the real 

causes of cue integration. This is due to the fact that counterfactuals are informative 

but not sufficient to establish the truth of the related causal claims. What we could 

say, instead, is that neural causes can be explanatory useful even if neurons fire with 

high variability. Neural causes can be real and genuine causes of human behaviour 

even if they are somehow different every time. 
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“had X not occurred, Y wouldn’t have occurred either” is important because it 

informs us about the existence of a relation between X and Y, but the nature of this 

relation is not expressed via counterfactual claims. There is a “conceptual distinction 

between causation and invariance-under-intervention: there is an intrinsic feature of a 

relationship in virtue of which it is causal, an extrinsic symptom of which is its 

invariance under interventions” (Psillos, 2004, p. 302). 

Thinking in terms of counterfactuals is then important to design and run 

experiments, to develop and modify hypotheses and, ultimately, to discover causal 

relationships, but counterfactuals alone are insufficient to establish causal 

connections.
9
 

If we reconsider our initial question, by relying on counterfactuals alone, we 

cannot judge whether we are dealing with a genuine explanation or with a useful 

redescription of a cognitive behaviour. My suggestion, which I will only briefly 

consider in the next section and explore more thoroughly in the rest of the thesis, is 

that in order to understand why folk-psychological explanations have a certain 

degree of success and whether mental states can cause cognitive behaviour we need 

to abandon the level of folk psychology and descend to the level of mechanisms. It is 

the existence of certain underlying physical scattered chains of causal influences that 

grounds the truth of certain counterfactuals and not vice versa (Clark, 2001). 

 

 

 

1.5 – Mechanisms 
 

There is no consensus in the literature concerning what a mechanism really is.
10

 I 

here consider a mechanism to be a set of components whose interactions regularly 

bring an explanandum phenomenon about. 

                                                 
9
 See section 1.5 for more details on this. 

10
 The definition of mechanism I will work with is influenced by Stuart Glennan (e.g. 

1996, 2005), Carl Craver (e.g. 2007) and William Bechtel (e.g. 2007, 2008). 
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What is peculiar of a mechanism and becomes necessary to justify the 

goodness of an explanation is the fact that its components are identified both 

functionally (i.e. with reference to the function they play in producing the cognitive 

behaviour) and structurally (i.e. with reference to certain brain components, their 

location, shape, size, connections, and so on). This, I argue, consists in identifying 

what Andy Clark (2001) calls the “real and grounded” causes. 

In what follows, I start providing some reasons for why the identification of 

mechanisms can complement the predictive power of an explanation, thus 

establishing its adequacy. Consider the following quote: 

“When I claim that some event causes another event, say that my turning 

the key causes my car to start, I do not believe this simply because I have 

routinely observed that turning the key is followed by the engine starting.  

I believe this because I believe that there is a mechanism that connects 

key-turning to engine-starting.  I believe that the key closes a switch 

which causes the battery to turn the starter motor and so forth.  

Furthermore, this is not a "secret connexion".  I can look under the hood 

and see how the mechanism works.” (Glennan, 1996, p. 50) 

Mechanisms are composed of real parts that can be empirically discovered. I am 

therefore justified in saying “if X hadn’t occurred, Y wouldn’t have occurred either” 

if I can point to a mechanism that regularly connects X and Y. 

 There are various explanatory pay-offs related to the identification of 

mechanisms underlying cognitive abilities. A mechanism can: 

i. Explain why a certain counterfactual holds  

ii. Provide further evidence that a system is indeed operating a certain process 

(i.e. it can distinguish mere descriptions from genuine explanations) 

iii. Shed new light on cognitive phenomena 

With respect to (i), Woodward claims that the truth-conditions of counterfactuals 

should not be specified via abstract metaphysical relations of similarity among 
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possible worlds (see Lewis, 1973) or via actual or hypothetical experiments. This, as 

Psillos (e.g. 2004) notes, leaves open the question concerning the truth-conditions of 

counterfactual statements. 

 Psillos explores two possible options. The first option, which Woodward does 

not endorse, consists in collapsing the truth-conditions of counterfactuals on the 

evidence-conditions. The consequence of this move would, however, make 

counterfactuals lose their counterfactuality: they would become similar to future 

predictions and/or evidences in support of relevant laws. Consider Ohm’s law 

(Psillos, 2004, p. 296) according to which the voltage E of a current is equal to the 

product of its intensity I times the resistance R of the wire. Take the following 

counterfactual: 

(C) If the resistance were set to R=r at time t, and the voltage were set to E=e 

at t, then the intensity I would be i=e/r at t 

It t is a future time, then (C) provides an actual conditional, that is, a prediction. If t 

is, instead, a past time, then, given the existence of good evidence for Ohm’s law, 

(C) provides evidence for the law. 

 The second option is to provide a story about what these truth-conditions are 

and how they are related to evidence-conditions. Psillos’ main critique of Woodward 

is that this story is not present in Woodward’s account. This is where mechanisms 

can enter the picture. As Glennan (e.g. 1996) argues, it is the presence of a 

mechanism (e.g. thermostat) that explains why a certain counterfactual holds (e.g. if 

the temperature had risen, the furnace would have turned off) and not vice versa. In 

other words, the presence of a mechanism linking cause and effect is sufficient to 

support the truth of certain counterfactual statements: 

“If, for instance, we want to show that smoking causes cancer, the best 

way to do so would be to discover the mechanism by which tar, nicotine, 

etc. interact with the body to produce cancerous cells. We might provide 

overwhelmingly statistical evidence to show the correlation between 



CHAPTER 1 

 

 

28 

 

smoking and cancer, but so long as we do not understand the mechanism 

in question, we can still wonder whether or not the correlation indicates 

that smoking causes cancer.” (Glennan, 1996, p. 66) 

When an explanation of a system’s capacity must be provided, it is the behaviour of 

the system that is presented first of all, and not how the behaviour varies or how it 

would have changed under different conditions. Although it is readily agreed that, 

when one presents an explanation, one is also committed to a set of counterfactual 

claims concerning what would have happened if the cause had been different, this is 

not the same as saying that explanations just consist in exhibiting patterns of 

counterfactual dependencies. Counterfactual statements play an important role in 

searching for explanations of cognitive capacities insofar as they help to uncover 

their mechanisms through experimentations. Not only mechanisms are discovered 

via experiments, “the rise of mechanical philosophy was closely associated with the 

rise of experimental science. The observable phenomena of the natural world are to 

be explained in terms of hidden mechanisms, and these mechanisms are to be 

inferred using well controlled experiments” (Craver & Darden, 2005, p. 236). 

 Given that folk-psychological explanations do not aim at providing 

mechanisms, the existence of certain counterfactual statements is insufficient to 

validate the truth of their related causal claims and the goodness of their causal 

explanations. 

With respect to (ii), let me briefly introduce an example offered by Gualtiero 

Piccinini and Carl Craver (2011). They discuss Fodor’s position with respect to the 

explanatory primacy of functional descriptions: 

“If I speak about a device as a “camshaft”, I am implicitly identifying it 

by reference to its physical structure, and so I am committed to the view 

that it exhibits a characteristic and specifiable decomposition into 

physical parts. But if I speak of the device as a “valve lifter”, I am 
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identifying it by reference to its function and I therefore undertake no 

such commitment.” (Fodor, 1968, p. 113) 

The description of the valve lifter is a functional description: the valve lifter is a 

component of an engine that lifts the valve. Given that, from a structural point of 

view, there can be many different valve lifters (i.e. multiple realisations of the valve 

lifter), the description of the camshaft and the description of the valve lifter are, 

according to Fodor, independent from each other. The same argument applies to the 

generalisations and laws that we find in psychology: these generalisations are not 

reducible and cannot be captured by those of the lower implementational level. 

To argue in favour of a deep relationship between functions and structures, 

Piccinini and Craver claim that: 

“[…] the “valve lifter” job description puts three mechanistic constraints 

on explanation: first, there must be valves (a type of structural 

component) to be lifted; second, lifting (a type of structurally 

individuated capacity) must be exerted on the valves; and third, there 

must be valve lifters (another type of component) to do the lifting. For 

something to be a valve lifter in the relevant respect, it must be able to 

exert an appropriate physical force on a component with certain 

structural characteristics in the relevant direction. This is not to say that 

only camshafts can act as valve lifters. Multiple realizability stands. But 

it is to say that all valve lifters suitable to be used in an internal 

combustion engine share certain structural properties with camshafts.” 

(Piccinini & Craver, 2011, pp. 301–302) 

Why should an explanation of a cognitive behaviour identify the internal 

components, their structural properties, their functional capacities and their 

organisation responsible for a given phenomenon? The answer I put forward here is 

that the identification of components’ structural features offers further evidence that 

a system is operating a certain process instead of another. This, I argue, is necessary 



CHAPTER 1 

 

 

30 

 

to complement the predictive power of an explanation and to demarcate adequate 

from inadequate explanations of cognitive behaviour. As Piccinini and Craver clearly 

point out: 

“[…] if a sub-capacity is a genuinely explanatory part of the whole 

capacity as opposed to an arbitrary partition (a mere piece or temporal 

slice), it must be exhibited by specific components or specific 

configurations of components. In the systems with which psychologists 

and neuroscientists are concerned, the sub-capacities are not 

ontologically primitive; they belong to structures and their 

configurations. The systems have the capacities they have in virtue of 

their components and organization.” (ibid., p. 293). 

With respect to (iii), components identified both functionally and structurally appear 

to shed new light on known phenomena. If we hypothesise, for instance, that certain 

neurons, characterised spatially and temporally, interact in ways that bring about 

behaviours that are commonly considered of different types (e.g. motor action and 

motor imagery), we can test what happens at the neural level in correspondence with 

both behaviours. If the neural mechanisms that we believe are responsible for motor 

action are also responsible for motor imagery, then we can say that the two 

behaviours are related because they are governed by neural components that share 

important structural, morphological and organisational features. This prediction and 

the resulting validation would also result in a reconceptualisation of our 

commonsense thought according to which motor action and motor imagery are two 

distinct phenomena. 

At this lower-level of analysis, we could then have an explanation such that, 

when the firing is of the type A1 rather than A2, we should expect the reaching 

behaviour B1 rather than B2. We could then test our prediction by observing the overt 

behaviour. The results of this prediction could shed light on novel phenomena (e.g. 
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certain features of neurons, such as their firing rates, their relations with other 

neurons and with the resulting behaviour). 

Understanding which framework is more suitable to uncover mechanisms is 

the goal of the current project. The putative framework needs to offer explanations 

that are both predictive and mechanistic. Achieving this goal requires understanding 

the relationships between explanations formulated at more or less detailed levels of 

analysis. This, in turn, yields the inevitable problem of clarifying the relationships 

between different theoretical notions (i.e. functional and structural/neural), between 

theories formulated on the basis of different theoretical notions and, more in general, 

between different disciplines of studies. In chapter 4 I will analyse a version of this 

problem by making reference to the relationship between personal and subpersonal 

styles of explanations. I will argue that a co-evolutionary approach (e.g. Churchland, 

1986) that favours the integration of information coming from different levels of 

analysis is required to adequately tackle these problems. 

Before concluding this chapter, in the next section I will discuss why good 

explanations should be predictive. 

 

 

 

1.6 – Predictability 
 

Some people (e.g. Woodward, 2003; Craver, 2007) claim that generalisations in the 

special sciences (e.g. cognitive science, neuroscience and biology) admit exceptions 

and that the existence of exceptions doesn’t affect their explanatory purchase. This 

thesis undermines the idea, which is central in the deductive-nomological model of 

explanation, according to which the explanans of a good explanation has to predict 

the explanandum. 

 In what follows, I argue in favour of the ability to predict as a necessary, 

although not sufficient, feature of a good explanation in cognitive science. 
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 Various areas of research in cognitive science aim at offering explanations of 

cognitive capacities in the form of generalisations that can be empirically tested. 

Given that these explanations are offered in the form of generalisations, it is 

plausible to expect that they might not hold for specific organisms, that is, that there 

could be a number of factors — related to the environment or to the features of the 

specific organism under consideration — that might cause the failure of these 

regularities. If we want to explain the behaviour of a specific organism, then it seems 

that we have to admit that the regularity that we are considering is not exception-

free. 

 It is possible to criticise this conclusion in at least two ways. One way would 

be to say that it is at least theoretically possible to reformulate the generalisation in a 

way that it becomes exception-free. We could, for instance, list a number of 

conditions that have to be present for the generalisation to hold. Another way to 

avoid the conclusion that regularities admit exceptions would be to add to the 

generalisation a ceteris paribus clause (i.e. “in normal circumstances”). 

 Despite the difficulties of both strategies
11

, some believe that it is not even 

necessary to avoid exceptions. Woodward argues that a generalisation that admits 

exceptions can still be explanatory. By accepting this position, we then need to 

abandon the idea that a generalisation has to allow the prediction of the 

corresponding explanandum behaviour. 

 Craver strongly supports this thesis with respect to mechanistic explanations in 

biology. He claims: 

“[…] explaining a phenomenon need not require showing that it was to 

be expected. […] In neuroscience (and, in fact, also in physics, 

chemistry, and almost everywhere) improbable things happen, and when 

                                                 
11

 It is often claimed that adding ceteris paribus clauses, which is a strategy that is 

adopted in various areas of scientific research (see Earman et al., 2002), yields 

vacuous and non-empirically testable claims: the content of “ceteris paribus, all Fs 

are Gs” can be interpreted as “all Fs are Gs, unless the contrary holds”. 
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they do, mechanisms can explain them as well […].” (Craver, 2007, p. 

39) 

It is important to stress that the thesis according to which the ability to predict is not 

a necessary feature of a good explanation is distinct from the thesis according to 

which the ability to predict is not a sufficient criterion for a good explanation. As I 

have described in section 1.3, a derivation from premises to conclusions can satisfy 

the criteria of the deductive-nomological model of explanation and yet not yield an 

adequate explanation because it cites only nomologically sufficient but not causally 

relevant conditions with respect to the explanandum phenomenon. The claim I am 

examining here is different: the ability to predict is not even a necessary desideratum 

of good explanations. Both Woodward and Craver affirm that a good explanation 

doesn’t have to offer reasons to expect the explanandum phenomenon. 

 Consider the behaviour of place cells (O’Keefe & Conway, 1978) discussed 

by Edoardo Datteri and Federico Laudisa (2012). In searching for the possible 

mechanisms underlying spatial memory in rats, in 1970s investigators found that 

certain cells in the area CA1 of the hippocampus of rats fire whenever the animal 

moves through a particular location in space. The generalisation is, in this case, the 

following: 

(G) Each place cell fires only if the rat is located at a particular spatial position 

This generalisation is considered explanatory to the extent that it identifies the 

features that generate the relevant behaviour. Given that the generalisation (G) is 

considered explanatory, (G) is used by investigators to predict the behaviour of place 

cells and to test the predictions on the basis of experimental results. If there are 

discrepancies between predictions and data, investigators are in a position to 

reconsider the adequacy of the generalisation that motivated those predictions. 

Denying that generalisations should have predictive power means, somehow, that 

generalisations are not even explanatory. 

 Another problem related to the claim that predictability is not a necessary 
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desideratum of a good explanation concerns the empirical control of the hypothesis. 

In Datteri and Laudisa’s own words: 

“This generalization [G] gives rise to a prima facie testability issue that 

has frequently been discussed in the philosophical literature (Earman et 

al., 2002). Suppose we are able to monitor the activity of a rat place cell, 

pc, while the animal is running in its environment. We are free to make 

predictions about the rat based on [G]: for example, we can predict that 

the next time pc fires, the rat will be in the vicinity of position <x,y> 

(where <x,y> is the centre of the receptive field). However, given the 

assumption that [G] is conditional to the absence of several perturbing 

factors, and if we have no idea of what these perturbing factors are, such 

a prediction is not much worth betting on: the behaviour of pc in “real-

world” settings could well be perturbed by some unknown factor, and the 

prediction is likely to fail.” (Datteri & Laudisa, 2012, p. 603) 

Affirming that an explanation can admit exceptions and that it doesn’t have to be 

predictive, then, generates testability problems that depend on the conventional 

methodology to compare predictions with experimental results. When should 

prediction failures count against the hypothesised generalisation? If we follow 

Craver and Woodward and, more in general, if we believe that adequate explanations 

of behaviour don’t need to be predictive, we don’t have a straightforward answer to 

this question. Discrepancies between predictions and data might be due to the fact 

that the generalisation itself is incorrect or they might depend on the presence of 

some unknown perturbing condition in the experimental setting. 

 Let us reconsider for a moment Woodward’s criteria for identifying good 

explanations. According to Woodward, explaining is a matter of showing patterns of 

counterfactual dependencies; a good explanation is able to answer what-if-things-

had-been-different questions and a causal relation is an invariant relation.
12

 This 

                                                 
12

 For more details on Woodward’s account, see section 1.4. 
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means that the ability to predict is central in Woodward’s manipulationist model of 

explanation. However, he explicitly criticises the idea that predictability is a 

necessary feature of good explanations and affirms that explanatory generalisations 

can admit exceptions. He discusses two examples to argue in favour of this idea. The 

first example concerns the relationship between untreated syphilis and paresis. Given 

that only 25% of people with syphilis get paresis, the existence of untreated syphilis 

doesn’t allow us to predict the development of paresis. Nevertheless, Woodward 

argues that the following is a good explanation of why Jones has paresis:  

Jones’ paresis is caused by his untreated syphilis 

The second example concerns a subject hitting the edge of a table with her knee, thus 

turning over an ink-bottle whose content ruins the carpet. The following claim is 

considered an adequate explanation of the fact that the ink-bottle turned over: 

Knocking over the table with the knee caused the ink-bottle to turn over and 

ruin the carpet 

In both examples, the premises of the explanations (i.e. Jones’ untreated syphilis and 

knocking over the table) don’t provide the basis to predict the conclusions (i.e. 

Jones’s paresis and ink-bottle turned over) in the absence of other circumstances.  

Nevertheless, according to Woodward, both explanations are adequate explanations, 

hence good explanations don’t have to predict the explanandum phenomenon. 

 This claim seems to be in contrast with Woodward’s account according to 

which a good explanation should answer what-if-things-had-been-different 

questions. By answering these questions, an adequate explanation provides ways to 

control and intervene on the explanandum phenomenon. If the correct explanation of 

Jones’ paresis is his untreated syphilis, then one should be in a position to answer the 

following question: if Jones had had (or hadn’t had) latent syphilis, would have he 

developed paresis? It doesn’t seem that the above explanation can provide an answer 

to this question. At the same time, were the explanation to be adequate, one should 

be able to intervene on the cause (Jones’ syphilis) to modify the effect (Jones’ 
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paresis). The above explanation, however, doesn’t provide us with adequate 

strategies of control and intervention. In particular, the explanation doesn’t allow us 

to prevent other people with untreated syphilis to develop paresis. Nevertheless, 

being able to control a phenomenon by knowing the conditions under which it is to 

be expected is an important pay-off of good explanations: adequate explanations 

should allow us to know that, under certain conditions, a phenomenon is to be 

expected. Knowing this, one can work out ways to modify the conditions so that the 

phenomenon doesn’t come about. For all these reasons, it is difficult to see how the 

claims above can actually figure as good explanations with respect to Woodward’s 

model of explanation. 

 Along the same lines, Craver argues that a good explanation should identify a 

mechanism, which is composed of parts that causally interact to bring the 

explanandum phenomenon about. Craver’s notion of causality is borrowed from 

Woodward’s account: a casual relation is an invariant relation under intervention. 

The description of a mechanism, then, allows us to answer what-if-things-had-been-

different questions. 

 According to Craver, in order to explain “[…] one needs to know how the 

phenomenon changes under a variety of interventions into the parts and how the 

parts change when one intervenes to change the phenomenon” (Craver, 2007, p. 

160). It is therefore difficult to justify Craver’s claim that “explaining a phenomenon 

need not require showing that it was to be expected”. On the contrary, he seems to be 

saying that a good explanation identifies the conditions — the parts and their 

activities — under which a certain phenomenon is to be expected. If these conditions 

are known, we can intervene on them to change the explanandum phenomenon. 

 It is therefore reasonable to conclude that the ability to predict is central to both 

Woodward’s and Craver’s accounts. More generally, the necessity to predict is 

required to study behaviours and phenomena. Denying the necessary role of 

predictions generates, as I have just shown, important testability problems, which, in 

turn, could yield explanatory failures or inadequacies. 
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1.7 – Conclusion 
 

In this chapter I began to tackle the question concerning the necessary desiderata of 

good explanations of cognitive behaviour. I suggested that the ability to predict and 

the ability to identify mechanisms are two necessary desiderata of good explanations 

in cognitive science.  

I argued that the folk-psychological framework is ill-suited to generate good 

explanations because it favours predictive power at the expense of mechanisms. I 

claimed, contrary to Woodward, that counterfactuals statements are insufficient to 

validate the truth of causal claims and the goodness of causal explanations: 

counterfactuals are important epistemic tools insofar as they can help to uncover 

mechanisms. 

I argued that the truth or falsity of folk-psychological causal claims cannot be 

justified by remaining at the level of folk psychology, but that it can be evaluated by 

descending to the level of mechanisms. I then briefly addressed the explanatory pay-

offs of mechanistic and predictive explanations that go beyond their ability to 

distinguish genuine explanations from mere descriptions of cognitive phenomena. 
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Chapter 2 - The Anti-Representational Framework 
 

 

 

2.1 – Introduction 
 

In the previous chapter, I introduced the ability to predict and to identify mechanisms 

as two necessary desiderata of good explanations in cognitive science and I argued 

that the folk-psychological framework cannot provide such explanations mostly 

because it favours predictive power at the expense of identification of mechanisms. 

In this chapter I will examine the so-called anti-representational framework. This 

framework aims at explaining cognitive behaviour without invoking the notion of 

representation. 

 In what follows, I will analyse two anti-representational accounts: Dynamical 

Systems Theory and Behavioural Systems Theory. I will show that the anti-

representational framework is ill-suited to properly explain cognitive behaviour and I 

will claim that: (i) the identification of localised mechanisms is necessary to 

complement the predictive power of Dynamical Systems Theory’s formal 

descriptions; (ii) the notion of representation is important to make cognitive 

behaviour intelligible. 
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2.2 – Dynamical Systems Theory 
 

According to Dynamical Systems Theory (DST), explanations of cognitive 

behaviour don’t require the appeal to the notion of representation. Abandoning the 

notion of representation is seen as a first necessary step to radically change the way 

in which cognitive scientists think and study how the brain carries out cognitive 

tasks. 

 Dynamicists (e.g. van Gelder, 1995; Chemero, 2000) put forward various 

reasons why we should reject “sophisticated internal representations” (van Gelder, 

1995, p. 346) and embrace a radically new framework of explanation. Their basic 

complaint is that physical systems can engage in many or all of the various cognitive 

tasks for which cognitivists have postulated internal representations without 

employing internal representations. 

A prototypical example of a system performing a cognitive task, according to 

dynamicists, is the Watt’s centrifugal governor for the steam engine (ibid.). Watt 

designed the governor to solve the problem of maintaining constant speed for the 

flywheel of a steam engine. The governor consists of a vertical spindle attached to a 

flywheel that rotates with a speed proportional to the speed of the flywheel. Two 

arms with metal balls on their ends are attached to the spindle and are free to move 

with a force that is proportional to that of the speed of the governor. Thanks to a 

mechanical device, the angle of the arms changes the opening of a valve, thus 

controlling the amount of steam driving the flywheel. If the flywheel turns too fast, 

the arms will rise and the valve will partially close. This closure will then reduce the 

amount of steam available to turn the flywheel, thereby slowing the flywheel down. 

If, instead, the flywheel turns too slowly, the arms will drop, thus causing the valve 

to open. This opening will make more steam available, hence it will allow the speed 

of the flywheel to increase. 

Advocates of DST typically employ the Watt governor example to show that 

cognitive tasks can be carried out without employing internal representations. Their 
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central claim is that the Watt governor can solve problems for which people might be 

tempted to posit a representational solution (e.g. we might be tempted to interpret the 

present and desired speed of the flywheel and/or the opening and closing of the valve 

in representational terms) without processing any representation. van Gelder offers 

various arguments to show why we should resist this temptation. 

The first argument consists in noticing that the existence of causal relationships 

between certain parts of the governor (e.g. the causal connections between the arm 

angle and the engine speed) is not sufficient to conclude that the former is a 

representation of the latter (e.g. that the arm angle represents the engine speed). 

The second argument has to do with the explanatory pay-offs that a 

representational story, if needed, should provide. van Gelder argues that treating the 

governor as a device that manipulates representations doesn’t provide any specific 

explanatory pay-off. 

The third argument concerns the notion of representation itself. Advocates of 

DST claim that the notion of representation is not rich enough to account for the 

highly complex dynamics that exist between the arm angle and the engine speed. 

Here the idea is that the governor and its environment (the steam engine) are so 

closely linked that considering one of them as representing the other wouldn’t give 

an adequate explanatory purchase with respect to the behaviour of the system in 

question. 

Port and van Gelder extend the above arguments to all kinds of cognitive tasks. 

They argue that cognitive behaviour can be adequately explained in purely DST non-

representational terms because explaining a cognitive behaviour is a matter of 

identifying its relevant parameters and their coupled dynamics in the course of the 

physical system’s evolution over time: 

“The cognitive system is not a discrete sequential manipulator of static 

representational structures; rather, it is a structure of mutually and 

simultaneously influencing changes. The cognitive system does not 

interact with other aspects of the world by passing messages or 
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commands; rather, it continuously coevolves with them. [...] To see that 

there is a dynamical approach is to see a new way of conceptually 

reorganizing cognitive science as it is currently practiced.” (Port & van 

Gelder, 1995, p. 24) 

Cognitive systems can, therefore, be adequately explained, according to DST, by 

means of mathematical descriptions in terms of feedback loops. These formal 

descriptions can predict how cognitive behaviours unfold over time. 

To better understand the explanatory pay-offs of DST, let me consider its main 

features and goals in more detail. 

 

2.2.1 – Mathematical descriptions 

 

A mathematical description of a dynamical system, which is called system’s state, is 

a formal description that consists in a n-dimensional mathematical space, whose 

dimensions correspond to the state variables of the system. These state variables are 

measured quantities that supervene on the behaviour of the system’s lower 

constituents and that do not correspond to any particular part of the system. State 

variables are often called lumped parameters, that is, parameters that are equal or 

proportional to some average value of the corresponding distributed ones. The 

mathematics employed typically specifies a dynamical law that determines how the 

values of the state variables evolve through time. 

 According to a dynamical systems analysis, cognition can be explained as a 

multi-dimensional space of all possible thoughts and behaviours, which is traversed 

by a path of thinking, where certain environmental and internal pressures, which are 

captured by mathematical equations, influence the path that a subject follows in the 

space.  

 The set of all trajectories is called the flow and its features are the objects of 

study of DST. To help determine the shape of the flow, DST relies on a number of 

constructs, which include the notion of “attractor” (i.e. a point or a region in the state 
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space where all the trajectories that pass close to it get sucked into it), the notion of 

“basin of attraction” (i.e. the area of influence of an attractor), and “bifurcations” (i.e. 

points in the system’s state where a small change in the state values can modify the 

flow). 

 Thanks to this mathematical apparatus, which doesn’t posit any role for 

representations, DST is said to adequately explain all phenomena that unfold over 

time, cognitive phenomena included. 

 Consider the case of coordinated finger movements. The dynamical HKB 

model (Kelso, 1995) — named after its originators (Haken, Kelso and Bunz, 1985) 

— has become a paradigmatic example of a successful application of DST tools. The 

HKB model is based on the observation that, when asked to oscillate with the same 

frequency both index fingers back and forth, people produce only two basic patterns. 

One pattern consists in both fingers moving to the left or to the right at the same 

time. This pattern is called “in-phase” motion. In the second pattern, one finger 

moves to the left and the other finger moves to the right. This is called “anti-phase” 

motion. 

The HKB model characterises the temporal evolution of one purely 

behavioural variable (i.e. the relative phase of the fingers) as a function of another 

purely behavioural variable or control parameter (i.e. the fingers’ oscillation 

frequency). Both variables do not correspond to any internal state that represents the 

frequency of the movements or the state of the fingers’ coordination with respect to 

one another. Interestingly, if people in anti-phase motion are asked to increase the 

frequency of oscillation, they will spontaneously switch to the in-phase mode at a 

certain frequency of movement (the so-called “critical region”). If, instead, people 

start with in-phase motion, they won’t exhibit such switch. In other words, the in-

phase motion will remain stable through and beyond the critical region. In the 

language of dynamics, there are two stable attractors at low frequencies and a 

bifurcation at a critical point, leading to only one stable attractor at higher 

frequencies. 
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The features of the HKB model can be captured using the mathematics of 

Dynamical Systems Theory.  The model describes how one collective variable (i.e. 

relative phase) varies depending on the control parameter (i.e. frequency of 

oscillation). The variable  in the model is an abstract mathematical magnitude that 

corresponds to the oscillation phase, which is instead a concrete behavioural 

quantity. The coordination law can be expressed as: 

 = −sin − 2ksin2 

The parameter k in the model corresponds to the inverse of the oscillation frequency 

in the experiment, such that an increase in frequency corresponds to a decrease in k.  

 It is important to note two features of HKB model. First, the model accounts 

for the data without positing any kind of “inner switching mechanism”; rather, the 

switch results from the self-organising evolution of the system. Second, the model 

makes novel predictions that were unknown at the time the model was developed. 

The model can, for instance, predict the consequences of selective interference by 

applying an electrical pulse to the subject’s hand so as to disrupt the normal 

coordination of movements. 

 Interestingly, the HKB model works because there is a correspondence 

between the quantitative properties of an abstract variable and the quantitative 

properties of its concrete counterpart. This is to say that the concrete system 

instantiates the mathematical system. 

 

2.2.2 – Unification 

 

The importance that dynamicists attribute to mathematical descriptions doesn’t 

depend only on the fact that formal descriptions are useful tools for explaining 

behaviour that unfolds over time, but also on their ability to shed light on the real 

nature of dynamical processes, as it has already happened in other sciences, primary 

in physics. By providing dynamic explanations, advocates of DST can unify multiple 
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phenomena under a common generalisation. The dynamical equations of the HKB 

model, for instance, can be used to describe similar coordination patterns 

implemented across physically disparate systems.
13

 As Chemero claims: 

“HKB model is an example of a general strategy for describing 

constraints on behavior. First, observe patterns of macroscopic behavior; 

then seek collective variables (like relative phase) and control parameters 

(like rate) that govern the behavior; finally, search for the simplest 

mathematical function that accounts for the behavior. Because, HKB 

argue, complex systems (like the one involving the muscles, portions of 

the central nervous system, ears, and metronome in the finger-wagging 

task) have a tendency to behave like much simpler systems, one will 

often be able to model these systems in terms of extremely simple 

functions, with only few easily observable parameters, which reflect the 

dynamic behavior.” (Chemero, 2001, p. 141) 

Dynamicists believe that the use of mathematics is necessary not only to unify 

disparate phenomena, but also to naturalise cognition (e.g. Chemero, 2000; Swenson 

& Turvey, 1991; Turvey & Carello, 1981): if we can understand cognition by using 

the same method and mathematical apparatus that we already use in other sciences, 

we will be in a position to offer a proper naturalised account of cognitive behaviour. 

 

2.2.3 – Dynamics 

 

The use of mathematical equations for explaining cognitive phenomena also brings 

to the foreground the importance of real-time dynamics: cognition is active and 

cognitive processes are influenced by time and by changes in the environment. 

                                                 
13

 Coordination patterns that can be modelled with HKB are: certain aspects of motor 

skill learning, interpersonal coordination, speech perception and visual perception 

(see Kelso, 1995). 
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 The primary role attributed to real-time dynamics is an important novelty of 

the DST approach that puts it immediately in contrast with other theoretical 

frameworks. The natural competitor is the Classical Computational Theory of Mind 

that considers cognitive tasks as the result of processes operating on discrete symbols 

in atemporal manner.
14

 According to DST, adequate explanations of cognitive 

behaviour need to consider cognition in its complexity, as strongly dependent on 

time and system-environment interactions. This is the so-called strong coupling 

thesis that leads up to anti-representationalism: cognitive agents are embedded in an 

environment with which they strongly interact. This means that the states of a system 

that are responsible for its cognitive activity are dynamically coupled with external 

environmental states and features, with the consequence that any change in the 

former brings about, simultaneously, changes in the latter. At the same time, the 

affected states of the environment influence the change in the states of the system. 

These influences are sometimes called closed-loop control processes. 

 Given these close couplings and influences between the system and its 

environment, only DST tools, and not representational or computational tools, are 

considered adequate to explain cognition. 

 To sum up, according to DST advocates: 

 Mathematical descriptions are: 

o The most suitable tools for analysing cognition and for predicting 

cognitive behaviour unfolding over time 

o Sufficient for explanations, hence there is no need to state the 

existence of internal representations 

o Successful strategies for understanding dynamical systems in other 

sciences, so they might offer a good methodology to arrive at a 

naturalised account of cognition 

                                                 
14

 For a discussion on the Classical Computational Theory of Mind, see chapter 3. 
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 Cognition needs to be considered in its complexity, as a phenomenon that 

unfolds over time and that is influenced by system-environment interactions 

 

 

 

2.3 – Critical discussion 
 

2.3.1 – The explanatory inadequacy of formal mathematical methods 

 

A DST description of a cognitive process is a formal mathematical description whose 

main building blocks are the system’s variables. These variables constitute the state 

space of the system and are called lumped parameters because they do not 

correspond to any particular constituent of the system.  

 Given that it would be impossible to consider all the variables involved in the 

generation of even a very small reflex, the choice of which variable should be 

included in the formal mathematical model is crucial to correctly model the 

explanandum phenomenon. 

 Within a DST model, this important choice is made independently from the 

substrate that realises the explanandum cognitive process. Indeed, as I have claimed 

above, implementational details are not seen as necessary for good explanations. 

 In this section, I defend the claim according to which predictability is the main 

goal of dynamical systems explanations. In Port and van Gelder’s own words: a 

dynamical model “yields not only precise descriptions […] but also predictions 

which can be used to evaluate the model” (Port & van Gelder, 1995, p. 15), and for a 

dynamical model to be predictively adequate, it doesn’t necessary have to include 

implementation-dependent variables. Let me elaborate on this point.  

 In his 1998 paper, van Gelder considers various possible objections to DST. 

One of these objections concerns the distinction between description and 

explanation: can DST provide genuine explanations of behaviour? The thought 

behind this objection is that, given any set of data, one can construct a line that 
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connects them, and any line can be approximately described by some equation or 

another. The risk for DST is that of “curve fitting”, that is, connecting the data, 

formulating an equation that describes the connecting line, and then seeing the result 

as the explanation of the phenomenon that generated the data. van Gelder himself 

admits that: 

“A poor dynamical account may amount to little more than ad hoc ‘curve 

fitting’, and would indeed count as mere description.” (van Gelder, 1998, 

p. 625) 

According to van Gelder, the fact that some dynamical accounts are poor doesn’t 

depend on them being dynamical. Indeed, van Gelder notes that genuine 

explanations similar to the dynamical ones are found in many other sciences. In 

addition to this, DST explanations are not mere descriptions because they can 

formulate novel predictions and support counterfactuals (see Clark, 1997). Consider 

the following quotes: 

“Dynamical modelling […] involves finding […] a mathematical rule, 

such that the phenomena of interest unfold in exactly the way described 

by the rule.” (Port & van Gelder, 1995, p. 14) 

“[…] taking some novel phenomena and showing that it is the behavior 

of a dynamical system is always a significant scientific achievement.” 

(ibid., p. 11) 

“Such models specify how change in state variables at any instant 

depends on the current values of those variables themselves and other 

parameters. Solutions to the governing equations tell you the state that 

the system will be in at any point in time, as long as the starting state and 

the amount of elapsed time are known.” (ibid., p. 19) 

According to DST, then, cognitive phenomena are explained by citing the laws (e.g. 

differential equations) and certain initial conditions that govern the target systems. 
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The central role of predictions in DST explanations and the lack of logical distinction 

between an explanation of a given state and its prediction make DST explanations a 

case of deductive-nomological explanations.  

In line with the claims I made in the previous chapter, predictive success, in 

this case the predictive success of dynamical models, is not sufficient to provide 

good explanations of cognitive phenomena. While dynamicists believe that we can 

dispense from decomposition and localisation (Bechtel, 1998) and still obtain an 

adequate explanation of a cognitive capacity, I argue that information concerning the 

nature and the role of the internal physical components responsible for a certain 

behaviour are necessary to explain it. In particular, the identification of the 

responsible mechanism offers strategies of control and testability that allow us to 

distinguish a mere description from a proper explanation. This, in turn, requires a 

deep analysis of the material substrate that brings about the cognitive process.  

A mechanistic approach is not only necessary to distinguish predictive 

descriptions from genuine explanations, but it is also needed to avoid problems 

related to certain dynamical claims. Consider the following quote: 

“[…] the relationship at the heart of the nature hypothesis [i.e. the 

hypothesis that tells us what cognitive agents are by specifying the 

relation they bear to dynamical systems] is not identity but instantiation. 

Cognitive agents are not themselves systems (sets of variables), but, 

rather, objects whose properties can form systems. Cognitive agents 

instantiate numerous systems at any given time. According to the nature 

hypothesis, the systems responsible for cognitive performance are 

dynamical. […] Another noteworthy fact about these models is that the 

variables they posit are not low level (e.g. neural firing rates), but, rather, 

macroscopic quantities at roughly the level of the cognitive performance 

itself.” (van Gelder, 1998, p. 619) 
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A cognitive system is, then, a real dynamical system when it changes over time and 

when it instantiates a mathematical dynamical system that correctly describes some 

aspects of its change:  

“[…] for every kind of cognitive performance exhibited by a natural 

cognitive agent, there is some quantitative system instantiated by the 

agent at the highest relevant level of causal organization, so that 

performances of that kind are behaviors of that system: in addition, 

causal organization can and should be understood by producing 

dynamical models, using the theoretical resources of dynamics, and 

adopting a broadly dynamical perspective.” (ibid., p. 622) 

How should we interpret the claim that “all cognitive systems are dynamical 

systems”? Marco Giunti (1995) suggests that we could read the claim as saying that 

all dynamical systems are real dynamical systems, that is, systems that change over 

time. Such interpretation, however, would yield a trivial thesis given that any 

concrete object can be said to change over time, in some sense. We could instead 

interpret the claim as saying that all dynamical systems (e.g. mathematical dynamical 

systems) are real dynamical systems, in which case the thesis will be an absurd: a 

cognitive system, which is a real object, cannot be identical to a mathematical 

dynamical system, which is, instead, an abstract formal structure. A third reading, 

Giunti says, could make more sense. It would interpret the claim as “all cognitive 

systems instantiate dynamical systems”, which means that the study of mathematical 

dynamical systems can help us to understand something about cognitive systems. 

The specific sense of “instantiation” becomes clear in van Gelder’s own words: 

“The scientist furnishes an abstract dynamical system to serve as a model 

by specifying abstract variables and governing equations. Simple models 

can be fully understood by means of purely mathematical techniques. 

More commonly, however, scientists enlist the aid of digital computers to 

simulate the model (i.e. compute approximate descriptions of its 
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behavior). The simulation results are compared to experimental data from 

the target. To the extent that the correspondence is close, the target 

system is taken to be similar in structure to the abstract dynamical 

model.” (van Gelder, 1998, p. 620) 

A mathematical dynamical model, then, allows to simulate certain aspects of the 

behaviour of a cognitive system by first implementing the model and then assigning 

to the model a task similar to the one assigned to the cognitive system. In carrying 

out the task, the simulated model goes through a changing process. It is then this 

process that counts as a description of the real cognitive process given that it is 

similar to the cognitive process in some relevant respect. This makes sense for 

dynamicists who are interested in how things change in the first place and have little 

interest in those states that are the medium of change (ibid., p. 621). However, as 

Giunti notes (1995), the instantiation relation insures, at most, a certain similarity 

between the changes that the model aims at describing and what counts as a 

description of them. Accordingly, DST explanations depend on models that are 

instantiated in real systems in a weak sense: the instantiation/simulation relation 

insures only similarity between a certain cognitive process and the corresponding 

simulating process. Setting up correspondences on the basis of predictions between 

numerical sequences contained in the model and those of the real system’s data is not 

sufficient to successfully explain the data. Rather, mathematical variables need to be 

identified in the physical substrate of the system for us to say that they have real 

counterparts in the system’s performance. To do this, we need to study the material 

substrate that implements the cognitive process. 

A further reason why DST advocates treat mathematical formal models as 

adequate explanations of cognitive behaviour has to do with the fact that these 

models have already been proven explanatorily successful in other branches of 

science. I have claimed above that an important goal of DST is that of unifying 

phenomena under a same description and that the achievement of this goal is 

considered an important step to naturalise cognition. Nevertheless, one can agree that 
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an important pay-off of dynamical modelling is to reveal the existence of widespread 

patterns (e.g. the core equation of the HKB can be used to describe similar 

coordination patterns in other physical systems) and, at the same time, deny that the 

mere fact that dynamical descriptions apply to various physical systems bears on 

whether they explain the phenomena in question or not: 

“If we want to know why humans exhibit the phenomenon described in 

the HKB model, it is merely suggestive to note that a similar pattern is 

observed in a variety of other systems. Given the pattern alone we have 

no better idea than we had as to how it is that humans (or any other 

system for that matter) behave in compliance with the model. If anything, 

then, the broad scope of certain dynamical models merely indicates that 

many other similar phenomena require explanations as well, and perhaps 

these explanations will be similar.” (Kaplan & Bechtel, 2011, p. 441) 

A naturalistic account of cognition, I will argue, doesn’t necessarily have to dispense 

with notions that, prima facie, don’t belong to the natural world (e.g. the notion of 

representation). As I start arguing in the rest of the chapter and more in detail 

throughout the thesis, there are cases where appealing to representation is inevitable 

to make cognitive behaviour intelligible. 

 

2.3.2 – Rethinking the format of representations 

 

According to DST, a cognitive behaviour can be properly explained in terms of 

lumped parameters and differential equations without the need to posit 

representations. In particular, the abandonment of the notion of representation is 

intended to facilitate the study of complex phenomena that unfold over time.  

 In this section I argue that a complex behaviour that unfolds over time can be 

explained in representational terms too. This undermines the DST claim that the 

abandonment of representations is necessary to account for dynamics in the study of 

cognitive phenomena. On the contrary, both anti-representational and various 
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representational approaches share the idea that timing and dynamics are essential in 

cognition.  

 Consider connectionist approaches. They constitute an important category that 

anti-representationalists fail to adequately address: they are deeply representational 

although they do not employ the traditional classicist notion of representation 

according to which representations are “quasi-linguistic” structures whose contents 

are strings of symbols operated on by a read/write/copy architecture (Churchland, 

1989; Clark & Toribo, 1994). Rather, connectionists consider internal representations 

to be vectors of activations in neural networks, whose processes are vectors’ 

transformations in high dimensional state spaces. As Andy Clark and Josefa Toribo 

clearly show (1994), the main disagreement between classicists (e.g. Smolensky, 

1988; Fodor & Pylyshyn, 1988) and connectionists lies in the identified format of 

internal representations rather than in the existence of representations in the first 

place. 

 Connectionist representations are less transparent and sequentially manipulable 

than classicist representations. While quasi-linguistics forms of representation 

operated upon sequential processes seem inadequate to account for dynamics and 

couplings (i.e. Clark, 1993), the same cannot be said for connectionist forms of 

representation. Indeed, there are “kinds of fast, efficient coupling often achieved by 

connectionists neural network style solutions […]; solutions which are nonetheless 

recognised as falling into a more generally representationalist camp” (Clark & 

Toribo, 1994, p. 412). Paul Churchland, for instance, treats connectionist networks as 

representational systems embodying knowledge structures in the form of prototypes. 

Prototypes are points or small volumes that can be depicted in abstract state spaces of 

possible activation vectors and that can be given a dynamical description in terms of 

“attractors”. 

Rather than attacking the notion of representation as such, then, the DST seems 

to criticise a specific type of explicit and linguistic-form representation. If this is the 

case, then, there is room for genuinely representational systems that employ non-
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sophisticated forms of representation to perform their tasks successfully. In the next 

chapter (see also chapters 6 and 7) I will examine examples where this more 

plausible reading of representation, together with its explanatory pay-offs, becomes 

clearer. At present, the current discussion suffices to say that embracing a dynamical 

perspective doesn’t force us to give up on representationalism; rather, it opens up the 

possibility to rethink and enrich the notion of representation, in particular with 

respect to its format and its role in the cognitive economy. 

DST also forces us to examine which tasks do indeed employ representations 

and which don’t: not all behaviours need explanations that posit representations. The 

behaviour of the Watt Governor, for instance, can be explained by employing a 

purely causal story about its workings. Nevertheless: 

“The success of a non-representational analysis of a device like the Watt 

governor […] fails to argue for a more generic anti-representationalism. 

For since the dimensions of the relevant state space were 

straightforwardly physical (available without significant computational 

effort from the ambient environmental input), the result is effectively 

trivial. By contrast, as soon as we are dealing with state spaces whose 

dimensions are more abstract, and hence cover a superficially very 

disparate range of patterns of physical stimulation (as in e.g., responding 

to an item as “valuable”, or even detecting the presence of a given 

phoneme (see Seidenberg & McClelland, 1989)), the dynamical system 

story becomes a representational one (too). Thus, unless you believe that 

human cognition somehow operates without recording gross sensory 

inputs so as to draw out the more abstract features to which we 

selectively respond, you will already be committed to a story in which 

the states spaces themselves are properly seen in representational terms.” 

(Clark & Toribo, 1994, p. 423) 
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In the last section of the chapter I will introduce examples from the so-called 

“representation-hungry” problem domain to show how the behavioural examples that 

DST considers might not require a representational gloss, while others do. 

 To summarise what I have claimed so far, my arguments against the 

explanatory goodness of DST explanations are the followings: 

 Formal mathematical models are useful for making predictions about the 

unfolding of a system’s behaviour over time, but insufficient to explain it. I 

claimed that a genuine explanation of cognitive behaviour requires the 

identification of its responsible mechanism too. This, in turn, requires a 

deeper analysis of the implementational substrate that realises the cognitive 

behaviour 

 Formal mathematical methods can be employed to unify disparate physical 

phenomena under common generalisations, but they are not sufficient to 

explain the phenomenon in question 

 DST instantiation relationships between formal models and physical systems 

are based on models’ predictive powers alone, hence they are insufficient to 

explain the real processes responsible for behaviour 

 Naturalising cognition doesn’t require the abandonment of the notion of 

representation; rather, complex cognitive phenomena can be adequately 

accounted for by employing a non-classicist notion of representation. 

 

 

 

2.4 – Behavioural Systems Approach 
 

Fred Keijzer (e.g. 1998, 2005) takes a different route to show that cognition and 

cognitive behaviour can be properly explained without positing internal 

representations. 
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 He argues that cognition needs to be reconnected to the world, and that, to do 

this, a necessary first step consists in rejecting the idea that cognitive systems employ 

representations as stands-in for things in the environment. Indeed, a major tenet of 

anti-representational accounts is the claim that many cognitive processes are closely 

and intrinsically dependent on external ones and on the dynamical interplay between 

internal processes and bodily and environmental characteristics. Work in robotics 

(e.g. Brooks, 1991) is often used to explicate this claim. Robots function properly 

when there is a specific control structure, a specific embodiment and a specific 

environment. The internal control structure itself is not sufficient to make sense of 

the workings of the robot; rather, the body and the environment are essentials to 

generate intelligent behaviour.  

Within Keijzer’s Behavioural Systems approach, a behavioural system is 

understood as a neural, bodily and environmental interaction system. In contrast to 

behaviourism that points out only the functional regularities of behaviour
15

, 

Behavioural Systems explanations of cognitive phenomena also require the 

identification of internal (structural) mechanisms. In particular, from a Behavioural 

Systems perspective, a good structural characterisation (i.e. a structural-anatomical 

description of the physical behaviour itself) is necessary to uncover the mechanisms 

underlying cognitive behaviour: 

                                                 
15

 “In psychology, the behaviorist solution of behavioral description can be described 

as function without structure. Structure has been shifted out as irrelevant for operant 

behavior. For example, changes in the feeding behavior in insects and rats can be 

functionally equivalent while the structural properties of the behaviors are hugely 

different. […] Such functional aspects remain the dominant way of characterizing 

behavior. Movements tend to be treated as ‘motor behavior’, another functional form 

of behavior. In contrast, there is little elaboration of the idea that movements—or 

rather sensorimotor couplings in the embodied view—ought to be taken as the 

general and basic structural components of behavior’s functional regularities.” 

(Keijzer, 2005, p. 131) 
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“[…] functionality emerges from the system, and is not a basic feature. A 

structural characterisation stresses (neural, bodily and environmental) 

subsystems and the generation of behavior.” (Keijzer, 2005, p. 132) 

Consider an insect’s wing beating behaviour. According to Keijzer, insect wing 

beating is a cognitive behaviour that can be explained by appealing to on-line and 

off-line components: it is controlled by both on-line external feedback from the 

wing’s beating movements and by off-line internal oscillators that set a basic rhythm 

independently from such feedback. The on-line components are crucial to the 

insect’s behavioural success and correspond to the couplings between the insect and 

its environment; the off-line components refer, instead, to certain processes internal 

to the insect that are simultaneous with the on-line ones. 

 The centrality of the on-line components and the importance attributed to the 

dynamics of the system are the main building blocks of the Behavioural Systems 

approach, as clarified in the following quote: 

“Cognition to a large extent depends on, or, some would hold, even 

consists of perception-action loops that build organism and environment 

together in a continuous reciprocal interaction.” (ibid., p. 124)  

Cognitive processes depend on external factors and on the dynamics governing the 

complex interactions between the system and its environment so deeply that, 

according to Keijzer, we can say that cognition consists of perception-action loops 

and dynamics.  

 Here again, we recognise the peculiarity of this approach with respect to the 

Classical Computational Theory of Mind: the Behavioural Systems approach 

attributes a central role to bi-directional, circular, loopy structures of sensorimotor 

and perception-action couplings in the explanation of cognitive behaviour. The 

cognitive behaviour itself is not seen as the result of an internal process, but as an 

intermediate step in an ongoing series of perception-action loops. There is therefore 

no need to posit internal representations: off-line components are internal states with 
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no representational content.
16

 The wing-beating behaviour can then be explained as a 

joint set of adaptations (i.e. the insect wing beating gets modified according to the 

external circumstances) and dynamics (i.e. the behaviour of the insect unfolds in time 

and consists of a series of events that occur over time). 

 Since the notion of internal states applies widely — Keijzer speaks of 

“universal presence of neural and other regulatory factors that modulate all ongoing 

behavioural processes” (ibid., p. 139) — on-line and off-line processes characterise 

any low-level as well as high-level cognitive behaviour. Consider the following 

quote: 

“Given these considerations it makes no sense to cast perception-action 

coupling as on-line and cognitive processing as off-line […]. And, it 

would be a case of representational overstretch if the traditional notion of 

representation is applied to all kinds of internal states required to account 

for different aspects of the whole spectrum of behaviour, from bacterial 

behaviour to the most complex cognitive tasks.” (ibid.) 

The behaviour is cognitive simply because: (i) its outcome is adaptive; (ii) it results 

from the dynamic interplay between the organism and the environment. 

 Showing that cognition results from processes and components which are not 

“special” compared to any other natural process is an important goal for Keijzer and, 

more in general, for anti-representational approaches. Achieving this goal would 

imply that there exists a framework to study and explain cognition as a purely natural 

phenomenon. Keijzer is confident that such a naturalistic account of cognition is 

                                                 
16

 It is interesting to note here, as I will clarify later on in the chapter, that the role of 

these off-line processes operating on internal non-representational states is different 

from other roles typically attributed to off-line processes in the representational 

literature. The latter usually characterises as off-line those processes that stand-in for 

something that is outside in the environment or for something that is currently 

absent. This more common usage of the notion of off-line processes is clearly related 

to a representational function of such processes. For more details on this second 

reading of off-line, see Rick Grush’s emulation theory of representation (2004). 
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possible and that the rejection of the notion of representation is a necessary step 

towards it. Internal states do not stand-in for aspects of the environment. They are 

essentially enabling and regulatory components of cognitive processes: 

“Rejecting or criticizing the use of representations is then taken to imply 

a view that solely relies on the immediately present environment for 

guiding perception-action couplings. However, within a behavioural 

systems approach one can, and must, acknowledge the need to 

incorporate internal states as relevant factors in the off-line guidance of 

perception-action couplings. […] Acknowledging internal states does not 

require a commitment to a representational interpretation of these 

internal states. […] At first sight, one may tend to equate the 

behaviourally relevant internal states of a cognitive system with 

something like intentional states or cognitive representations.” (Keijzer, 

2005, pp. 138–139) 

How can a Behavioural Systems approach deal with classic cognitive topics, such as 

playing chess (ibid.)? Keijzer’s answer consists in showing that rejecting 

representations doesn’t imply valuing only the on-line components of cognitive 

behaviour. Rather, appealing to internal states is necessary to explain on-line 

behaviour. 

 

 

 

 2.5 – Criticisms of Behavioural System Approach 
 

To sum up, Keijzer uses the following arguments to argue against representations: 

i. A cognitive behaviour consists of on-line and off-line processes (i.e. neural 

and other regulatory factors) 



CHAPTER 2 

 

 

59 

 

ii. Explanatory power is achieved once it is possible to highlight the universal 

features that cognitive processes, and consequently cognitive systems, share 

with other natural processes and natural systems 

iii. Cognition depends to a large extent on perception-action loops, which are 

interpreted as on-line components 

Let me consider each of these points individually.  

The idea that cognitive behaviours depend on both on-line and off-line 

processes (i) is widespread even among representationalists, who usually argue that 

cognitive systems need to rely on internal processes to support and complement on-

line processes. This is particularly evident when the explanandum phenomenon 

doesn’t depend closely or directly on available environmental states (e.g. imagery, 

memory, planning or reasoning). In these cases, priority is given to internal features 

rather than to perception-action loops: advocates of representationalism say that 

systems can behave cognitively even in the presence of reduced or absent relevant 

information from the environment because they employ internal representations. An 

account that cited only on-line and off-line processes over regulatory states wouldn’t 

be sufficiently explanatory. The role played by off-line components and processes in 

representational accounts is different from the role they play in a Behavioral Systems 

account: off-line components are not only used by the system to regulate on-line 

dynamics, but function as surrogates for certain on-line features. Consider Rick 

Grush’s account of mental imagery (2004). Mental imagery is a cognitive behaviour 

whose explanation requires considerable attention to its off-line components and 

processes. How could this behaviour be explained within Keijzer’s account? Could 

we say that it is the result of perception-action loops? Could we treat its internal 

states as purely regulatory neural states? A representational story seems to be more 

explanatory here: the agent can imagine an event without performing any overt 

behaviour because the underlying process, which is not a perception-action loop in 

Keijzer’s sense, is based on the internal manipulation of states that function as 

surrogates or stands-in for some (absent) environmental features (see also Jeannerod, 
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1995). As I will briefly argue in the last section of the chapter and more in the next 

chapter, behaviours that require off-line representational components are more 

common than we might imagine at first. 

Following the same kind of reasoning and considering now point (ii), I believe 

that in order to identify what is typical of cognitive behaviour we cannot only 

highlight features that are common among all physical systems interacting with the 

environment. If we want to explain decision-making processes, for instance, we want 

an explanation that doesn’t only show what is in common between a decision process 

and, for example, a motor process; rather, we want an explanation that can show how 

a system can perform decision processes in the first place and what distinguish these 

processes from others. In other words, we do not have a good explanation of a 

cognitive phenomenon when we show how it is similar to other physical phenomena, 

but when we can identify its responsible mechanism — see my criticism of DST in 

2.3.1. 

Let me now consider point (iii) and the idea that cognition depends to a large 

extent on perception-action loops.  

 This is another claim that I think misses the mark, as almost every 

representationalist would agree with it. Indeed, many advocates of 

representationalism (e.g. Bechtel, 1998; Clark, 1997; Grush, 2003) understand 

perception and action as cognitive. Extending the cognitive domain so as to include 

also lower-level behaviours is surely an important pay-off of anti-representational 

and dynamical approaches, as I argued above with respect to DST, but not a claim 

that can be used to argue against representationalism in general. Indeed, Keijzer 

himself recognises that the importance of loopy structures is not confined only to 

anti-representational accounts of cognitive abilities, but widely adopted in cognitive 

science (Keijzer, 2005, p. 134). On the one hand, focusing on dynamics and loops 

does not force us to reject the notion of representation as explanatorily useful and, on 

the other hand, the importance attributed to perceptual and motor processes and to 

system-environment interactions does not require a commitment to the thesis 
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according to which every behaviour is representational. Considering again the wing-

beating behaviour discussed above, saying that it depends on perception-action loops 

and on insect-environment dynamics doesn’t force us to conclude that it also results 

from processes operating on internal representations. Showing that certain 

behaviours, which result from dynamics and perception-action loops, can be 

explained in non-representational terms is not sufficient to claim that every cognitive 

process doesn’t require representations to be adequately explained. 

 

 

 

2.6 – Representation-hungry problems 
 

One substantial trouble affecting DST and Behavioural System approach is that the 

kinds of problem-domain invoked are just not sufficiently “representation-hungry” 

(Clark & Toribo, 1994, p. 418). Rather, they are, without exception, domains where 

environmental stimuli can be used in place of internal representations.  It is therefore 

unfair to use these cases to illustrate a more general anti-representational claim. 

Clark and Toribo name a “representation-hungry” problem domain any domain 

where one or both of the following conditions apply: 

 The problem involves reasoning about things or states of affairs that are not 

directly present, non-existent or counterfactuals 

 The problem needs the system to be sensitive to environmental parameters 

that are complex or ambiguous 

The ability to track the distal or the non-existent, for instance, requires, prima facie, 

the use of some inner resource that can be employed to allow appropriate 

behavioural coordination without the constant guide of inputs from the environment. 

Domains where this ability is required are less rare than we might expect.  Reasoning 

about absent environmental features or counterfactual scenarios is central in many 

behaviours. Non-language animals, for instance, seem to anticipate the movements 



CHAPTER 2 

 

 

62 

 

of pursued preys and to engage in counterfactual reasoning when selecting how to 

grasp food. 

 Behavioural success in animals, including humans, often depends also on the 

ability to compress or dilate input space. In some cases, animals need to interpret 

inputs that are quite similar as deeply different and inputs that are quite different on 

their immediate coding as deeply similar. This suggests that animals are able to 

isolate only that information contained in the inputs that is relevant to their 

coordination with the current environment. The internal states developed to serve this 

end are, according to Clark and Toribo, just internal representations whose contents 

concern the states of affairs thus isolated. 

 Even basic visual abilities (e.g. object recognition) may require the use of 

similar strategies, as recent neuroscientific research has shown. The ability to 

recognise the object from any one of a number of distances, angles, settings, and so 

on is best explained by supposing that the system first transforms the input into a 

canonical representation frame and only then matches this transformed product to its 

stored knowledge to carry out the identification task. 

 All these cases are, interestingly, more widespread than we might have 

originally supposed. Given that they all require the employment of representations, it 

is hard to agree with the general anti-representational framework I have considered 

thus far. 

 

 

 

2.7 – Conclusion 
 

In this chapter I analysed the anti-representational framework by examining two anti-

representational accounts: Dynamical Systems Theory and Behavioural Systems 

approach. I then offered various reasons why the anti-representational framework 

cannot provide good explanations of cognitive phenomena. 
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 According to the authors I considered, a good explanation of cognitive 

behaviour is a naturalistic explanation that shows the place of cognition in the natural 

world. I argued that, despite being an important pay-off of anti-representational 

explanations, this goal does not free us from the need to give an analysis of the 

mechanisms underlying cognitive behaviour. In particular, I showed that 

predictability and unification are not sufficient criteria for good explanations, and I 

argued that they need to be complemented with the identification of mechanisms. 

Such additional component allows to distinguish descriptions from explanations and 

to identify a clearer bridge between models and modelled systems. 

 In addition to this, I claimed that a naturalistic account of cognitive behaviour 

doesn’t need to reject the notion of representation. Rather, such notion appears to be 

inevitable to explain a wide range of cognitive phenomena that belong to the so-

called “representation-hungry” domain and that do not result from direct couplings 

with the environment. 
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Chapter 3 - William Ramsey and the Partial 
Eliminativist Account of Representation 
 

 

 

3.1 – Introduction 
 

In the previous chapter, I examined two anti-representational proposals and their 

arguments against the usefulness of the notion of mental representation in explaining 

cognition. In the current chapter I will discuss a different attack on the notion of 

representation put forward by William Ramsey (2007). 

 According to Ramsey, a genuine representational account explains the 

cognitive success of a system in terms of internal representations and operations over 

them. For a state to be a representation, he says, it needs to satisfy certain desiderata. 

The result of his analysis is a partial eliminativist thesis according to which only the 

Classical Computational Theory of Cognition (CCTC), but not the newer accounts 

(i.e. connectionism and cognitive neuroscience), is genuinely representational. The 

structure of the chapter is as follows. 

 I will first define what Ramsey calls the job description challenge that sets the 

standards that a theory needs to meet to be representational. According to Ramsey, 

the notion of representation employed in the CCTC can meet this challenge, while 

the so-called receptor notion employed in connectionism and in cognitive 
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neuroscience cannot. Receptor states are reliable causal relays rather than 

representations. 

 I will resist Ramsey’s partial eliminativist thesis by drawing on various 

arguments. I will first claim that the central distinction that Ramsey correctly 

highlights between theories of representation and theories of content does not apply 

in the case of the CCTC. In particular, I will show that the CCTC is representational 

because it explains the cognitive success of a system in terms of internal models that 

the system can employ to draw inferences about the world (i.e. it is model-based), 

and not because it adopts an isomorphism-based theory of content. In addition to 

this, I will argue that the isomorphism-based theory of content is inadequate. 

 I will then claim that connectionist and cognitive neuroscientific explanations 

are genuinely representational because they often explain the success of a cognitive 

system in terms of the exploitation of an internal model, whose representational 

components and relations allow the system to reason about the world. 

 

 

 

3.2 – The job description challenge 
 

The first step in Ramsey’s argument consists in identifying a list of minimal criteria 

for something to be a representation; the second step involves the use of this list as a 

benchmark to judge whether cognitive theories are justified in talking about 

representation. Ramsey argues that if a theory employs a notion of representation 

that doesn’t match these criteria, then that theory is not representational. 

Connectionist and cognitive neuroscientific accounts are not representational because 

they employ a notion of representation — the so-called receptor notion of 

representation — that doesn’t meet these criteria and that doesn’t yield any 

explanatory benefits over and above that of a reliable causal relay. 

Folk psychology provides the list of minimal criteria for something to be a 

representation. As I have already described in chapter 1, the folk-psychological 
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framework of explanation characterises human cognition in terms of propositional 

attitudes (e.g. beliefs, desires and intentions, whose content can typically be 

expressed in propositions) and their causal relations.  

Within folk psychology, the notion of representation is defined not only in 

terms of its content, but also in terms of the functional role it plays within the 

system: for a state to be a representation, the state should have content and it should 

use that content in a way that is consistent with deductive principles. Accordingly, 

Ramsey identifies the following minimal criteria for something to be a genuine 

representation: 

1. A representation has non-derived intentional content 

2. A representation plays a causal role 

To these two features, Ramsey adds a third one: 

3. The causal role that a representation plays is dependent on its intentional 

content 

Ramsey’s main thesis is that only a theory that invokes representations whose 

features match these minimal criteria can be considered representational in a genuine 

sense. This is called the job description challenge. 

 A theory can meet this challenge when it offers reasons for why certain internal 

elements are genuine internal stands-in for external features. This means that a 

theory that only accounts for how certain internal states gain their content or a theory 

that only accounts for how internal states function as stands-in is not a genuinely 

representational theory.
17

 Consider a compass. Ramsey claims that a compass is a 

non-mental representational object because the position of its needle informs 

cognitive agents about directions (i.e. the position stands-in for possible directions). 

                                                 
17

 Nevertheless, Ramsey seems to believe that a theory that can show how certain 

internal states function as representations is more likely to be genuinely 

representational than a theory that can only provide a story about how internal states 

gain their content. 
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The position of the needle entails facts about the world because it is nomically 

dependent on magnetic north (i.e. it acquires its content through a certain nomic 

dependency). To explain why a compass functions as a representational device, 

Ramsey argues, we need both stories. Simply knowing how the needle acquires its 

content wouldn’t suffice: a person might understand the needle’s nomic dependency 

on magnetic north without knowing how the compass actually functions as a 

representational object. At the same time, merely knowing that the needle’s position 

informs about direction is not enough to be able to use the compass as a 

representational device. 

 

 

 

3.3 – The Classical Computational Theory of Cognition 
 

Ramsey believes that there is only one theory in cognitive science that meets the job 

description challenge, that is, a theory that can offer not only a theory of content but 

a genuine full-blown theory of representation. This is the Classical Computational 

Theory of Cognition (CCTC). In what follows, I will examine how the CCTC is 

committed to representations. 

 

3.3.1 – IO-representations 

 

The first kind of CCTC representational commitment depends on the compositional 

nature of computations. 

 A computational task is generally understood as a sum of smaller 

computational sub-tasks, each one characterised by its own inputs, operations and 

outputs. Consider a computational process that transforms numbers into products 

(multiplication). Ramsey says that: 

“Although we say various mechanical devices do multiplication, the 

transformation of numbers into products is something that, strictly 
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speaking, no physical system could ever do. Numbers and products are 

abstract entities, and physical systems can’t perform operations on 

abstract entities.” (Ramsey, 2007, p. 68) 

Given that numbers and products are abstract entities, they can be used by a system 

only if they are treated as representations of numbers and products: a system can 

multiply numbers only if it has something internal that stands-in for those numbers. 

To make sense of this computational process we then need to posit the existence of 

representations of numbers and representations of products, respectively in terms of 

inputs and outputs. A cognitive theory that wants to explain how multiplication 

happens in the brain should therefore account for how the brain can transform 

representational inputs into representational outputs. 

Consider another example. If we want to explain how a cognitive system 

recognises faces, we need to treat the inputs to the system not as actual faces, but as 

“some sort of visual or perhaps tactile representation presented by the sensory 

system. The outputs are also representations – perhaps something like the recognition 

‘That’s so-and-so’, or perhaps a representation of the person’s name” (ibid., p. 69). 

Generally speaking, Ramsey believes that cognitive theories should aim at 

explaining cognitive processes not in terms of physiological changes between events, 

but in terms of how certain events, which represent for instance faces, get 

transformed to allow the system to perform successfully in its task. 

Within the CCTC, the brain is understood as an information processor: we are 

“justified in treating a cognitive system’s inputs and outputs as representations 

because, given what we know about cognitive systems, we are justified in 

characterizing many of their operations as having certain types of starts and finishes; 

namely starts and finishes that stand for other things” (ibid., p. 70).  

 In addition to the assignment of representational status to inputs and outputs of 

the overall process, the CCTC also considers the inputs and outputs of its sub-

processes to be representational: 
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“If there is an inner sub-system that is an adder, then its inputs must be 

representations of numbers and its outputs representations of sums. If 

these internal structures are not serving as representations in this way, 

then the sort of task-decompositional analysis provided by the CCTC 

doesn’t work.” (ibid., p. 72) 

Within the CCTC, Ramsey notes, treating sub-computations as representational is 

necessary to explain why cognitive systems can do multiplication, recognise faces, 

and so on. As these representations are internal to the system and characterise the 

inputs and outputs of sub-computations, Ramsey calls them IO-representations. He 

then points out that their content is essential for the causal role they play in the 

cognitive system: they need to be about the relevant computational arguments or 

values to allow the sub-computations to do their job in the overall computational 

process. Although these representations “don’t accord with our commonsense 

understanding of mental representations, they nevertheless play a functional role that 

is intuitively representational in nature. Their role is intuitively representational 

because we recognise that the systems doing addition, or comparing chess moves, 

treat their inputs and outputs as symbols standing in for things like numbers or chess 

game scenarios. […] the CCTC invokes a notion of internal representation that […] 

is actually built into the fabric of its explanatory framework and thereby does 

essential explanatory work” (ibid., p. 74). 

 

3.3.2 – S-representations 

 

The second CCTC representational commitment is via S-representations or 

Structural-representations. These representations are the components of internal 

models that cognitive systems employ to successfully perform in cognitive tasks. 

 Ramsey calls these components “structural” representations because they 

stand-in for structural features of the target domain by mirroring or by being 

isomorphic to them. The isomorphism here doesn’t characterise the relationships 
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between specific internal states and specific aspects of the target domain. Rather, it is 

the overall internal model that is isomorphic to the states of affairs and that, as a 

whole, represents. On this point Ramsey argues that: 

“A map illustrates this kind of representation. The individual features on 

a map stand for parts of the landscape not by resembling the things they 

stand for, but by participating in a model that has a broader structural 

symmetry with the environment the map describes. […] some sort of 

structural or organisational isomorphism between two systems can give 

rise to a type of representational relation, whereby one system can be 

exploited to draw conclusions about the other system.” (ibid., p. 78) 

A map represents certain structural features of the landscape that a cognitive system 

can use to draw inferences about the world (e.g. finding out the distance between two 

places). When I visit a city for the first time and I need to get from the station to the 

hotel, I usually read the map of the city to find out the distance between the station 

and the hotel and the best direction to take. The map helps me to get to my hotel 

successfully because it appropriately resembles (i.e. represents) the most crucial 

structural features of the city, thus allowing me to draw conclusions about the target 

system (i.e. the city and the location of the hotel). 

 Ramsey argues that, in the same way in which a cognitive system can use the 

map of a city to draw inferences about the city, a cognitive system can perform 

successfully by relying on an internal model of her environment. Isomorphism 

applies both to concrete external models, such as the map, and to internal models. 

 Internal models are important features of CCTC style explanations because 

they allow a kind of surrogative model-based reasoning: a cognitive system can 

successfully draw inferences about the structure of the world by reasoning about the 

structure of her internal model of the world. If I am in my hometown and I need to 

buy some bread, I can successfully satisfy my goal by relying on an internal map, 

whose components and relations mirror (are isomorphic to) those of my hometown. 
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Mindless Bob 

Consider Bob, a cognitive agent who is trying to discover whether and how members 

of a numerous family are related. He knows the family, but finds it difficult to 

remember all their kinship relations.  

 One way in which Bob could succeed in the task is by drawing the family tree 

on a paper and then connecting the different names with lines. This strategy would 

allow him to draw inferences about the various kinship relations on the basis of a 

concrete and visible diagram of the whole family, whose elements would represent 

the family’s members and relations. 

 Bob could also succeed in the task by employing a different strategy: rather 

than drawing a diagram, he could form “if-then” propositions. These propositions 

would stand-in for the relevant elements of the family tree and their connections (e.g. 

“if X is Y’s sister, then X is Y’s daughter aunt”) and they would allow Bob to find 

out all the various kinship relations. In this case, we would explain Bob’s success in 

terms of the exploitation of an internal model of the family, whose components and 

relations mirrored, or were isomorphic to, those of the family. These components 

would be genuinely representational because they would stand-in for the elements of 

the target domain.  

 According to Ramsey, in the same way in which we do not doubt the 

representational status of names and connecting lines in the diagram, we should not 

doubt the representational status of the elements of Bob’s internal model given that 

their content is essential for the causal role they play in the cognitive processing (e.g. 

they need to stand-in for the relevant faces and relations of the target domain). At 

this point, Ramsey believes we could ask two questions. 

 We could ask whether Bob succeeds because he relies on an internal model and 

because he knows the meaning of its elements. Ramsey affirms that the answer to 

this question would be negative: Bob performs appropriately because he can follow 

the structure of the symbols and operate on them in a purely mechanical way. There 

would then be no explanatory gain in calling the elements of the internal model 
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representations. A syntactic story about how the symbols get compared and about 

which rules get applied on them would be sufficiently explanatory.  

 We could instead wonder why those specific symbols and their use make Bob 

perform successfully. Ramsey says that a syntactic story here would not provide a 

sufficiently explanatory answer. Rather, we need to understand the symbols as 

representational elements that stand-in for features of the diagram, and the operations 

among them as instantiating a sort of surrogative reasoning. 

 Bob’s success in the task can then be explained in a syntactic and purely 

mechanical way if we want to understand how the process works, and in a 

representational way if we want to understand why Bob manages to perform 

successfully by exploiting those processes. In Ramsey’s own words: 

“[…] we can’t fully understand how mindless-Bob performs the 

operation of figuring out how two people are related unless we 

understand his operations as involving the implementation of a model. 

And to understand his operations as an implementation of a model, we 

need to look at the elements of these operations – in particular the marks 

on the page – as representations of people and kinship relations.” (ibid., 

p. 85) 

Ramsey’s point here is that Bob’s internal model is representational although Bob 

doesn’t understand the meaning of the symbols (i.e. that the letters stand for family’s 

members and that their connections stand for their relations). Having the model in 

place, Bob can succeed in his cognitive task by mechanically following certain rules. 

He claims, though, that it is necessary that the content of representation gets fixed by 

isomorphism: representations need to stand-in for something else for the model to 

work, and they can be stands-in for external features if they share structural 

similarities with them. 

 Accordingly, a notion of representation can be explanatory useful even in a 

purely mechanical problem-solving system and even when it is part of a framework 
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that is not committed to any kind of implementational characterisation of the states 

and processes that traffic in representations. Implementational details, Ramsey says, 

might be important to actually construct a machine able to perform computational 

processes, but not to understand the sense in which a cognitive process is 

computational. 

 

3.3.3 – CCTC and the job description challenge 

 

Ramsey argues that the CCTC is committed to representations and that the notion of 

representation it employs meets the job description challenge; hence the CCTC 

vindicates our folk-psychological understanding of representation. Let me briefly 

summarise the arguments he addresses to show this. 

 As described above, Ramsey points out two ways in which the CCTC is 

committed to representations. 

 The first commitment is via IO-representations: 

 They derive from the compositional nature of computational processes, which 

are typically considered in terms of their sub-parts, each one understood as a 

sub-computation 

 The content of IO-representations is essential for the causal role they play in 

the computational processing because they need to stand-in for the relevant 

computational arguments or values 

IO-representations are then part of the CCTC explanatory framework although they 

are not similar to our folk conception of representation. 

 The second representational commitment is via S-representations: 

 A cognitive system performs successfully in a cognitive task by relying on an 

internal model of its target domain, whose components are isomorphic 

stands-in for those of the target domain 



CHAPTER 3 

 

 

74 

 

 By exploiting an internal model, an agent can perform a sort of model-based 

surrogative reasoning  

 A cognitive agent performs appropriately by exploiting the structure of the 

internal models’ components in a purely mechanical way. Nevertheless, in 

order to explain why those specific components and the operations upon them 

enable the agent to perform successfully, we need to understand the 

components as representations of elements of the target domain, and the 

operations as instantiations of surrogative reasoning 

Once more, because CCTC explanations are model-based, the notion of S-

representation is a natural element of this theoretical framework. 

 We can now ask whether the CCTC vindicates our folk-psychological notion 

of representation. If this were the case, then the CCTC would not be committed to 

representations in general, but to representations whose features match the minimal 

criteria (i.e. for something to be a representation it should have non-derived 

intentional content and it should play a causal role similar to that of beliefs, desires 

and intentions in folk psychology). 

Ramsey claims that IO- and S-representations do share many features of our 

folk notion of representation: they both have the kind of intentionality that we 

attribute to thoughts and the discreteness that folk psychology assigns to beliefs and 

desires. Consider Sherlock Holmes’ reasoning process employed to find out how a 

victim died (Fodor, 1987). Holmes uses a folk-psychological reconstruction of his 

thoughts, observations and beliefs. His reasoning process has an argument-form, 

with premises that yield certain conclusions. Ramsey claims that, since the CCTC is 

good at explaining these kinds of arguments in computational terms by relying on 

IO-representations, the CCTC can be seen as a scientific framework that can 

vindicate folk psychology. 

 This would be possible also on a different reading of the process, this time 

involving S-representations: Holmes finds out how the victim died by exploiting 

some kind of internal model, whose components and relations mirror the events that 
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yield to the victim’s demise. Here the solution is found by mentally reconstructing 

the setting of the crime, its relevant events and their connections. Accordingly, 

Ramsey says, folk-psychological explanations can be cashed out in terms of models 

and surrogative reasoning and “If this is correct, then folk notions of mental 

representations may well be very close to the notion of S-representation proposed by 

the CCTC. […] While it is hard to see how beliefs could turn out to be mere 

syntactic states with an unspecified representational role (as suggested by the 

Standard Interpretation), it does seem they could turn out to be representational 

components of models that our brains use to find our way in the world” (ibid., p. 

116). 

 

 

 

3.4 – The receptor notion of representation 
 

Ramsey’s central claim is that the CCTC is the only genuine representational theory 

and that the newer accounts (i.e. connectionism and cognitive neuroscience) do not 

employ any genuine notion of representation: their so-called receptor notion can be 

considered simply in terms of reliable causal relay. 

In what follows, I will first characterise the receptor notion and I will then 

consider two separate objections to it. 

 

3.4.1 – Nomic dependency 

 

Connectionism and cognitive neuroscience apply the notion of representation to 

states that reliably get activated and co-vary with some external features of the 

environment. 

 Accordingly, a state X (internal) is called a receptor representation for Y 

(external) if the occurrence of X is nomically dependent on the occurrence of Y. 

Consider this example. Cognitive neuroscientists often say that certain brain cells 
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represent features of the environment when they reliably fire in correspondence to 

them. This is for instance the case of the so-called “edge cells”, that is, neurons in the 

visual area of the brain that fire whenever agents see edges in the environment. 

Claiming that some cells reliably fire in response to certain external stimuli is like 

saying that their activities are nomically dependent on those external stimuli. 

 Nomic dependency relations are often equated to representational relations in 

the newer accounts. Ramsey’s first critique to the receptor notion lies exactly in this 

equation: something can be nomically dependent on something else, he claims, 

without carrying information about it. A cell can fire reliably and co-vary in 

accordance with certain features of the world without being, at the same time, a 

representation of those features of the world. Assigning a representational status to 

this kind of internal states should be avoided because explanatory useless. 

Ramsey’s first step in attacking the reception-style notion consists in criticising 

Fred Dretske’s naturalistic account of content (1988) as a theory of representation. 

This move is motivated by the fact that many defenders of the receptor notion of 

representation agree, at least to a certain degree, with Dretske on what should count 

as a genuine representational state. 

 Dretske aimed at offering a purely causal account of what it is for a state to be 

a representation. His account, however, seemed to leave no room for 

misrepresentation or falsehood: if X represents Y whenever X reliably co-varies with 

Y, then it becomes difficult to imagine cases where this nomic dependency does not 

hold. 

 To handle this problem, Dretske introduced a teleological component to his 

account (e.g. Millikan, 1984): an internal state X is a genuine representation of Y not 

only when it is nomically dependent on Y, but also when it becomes incorporated 

into the system’s processing because of this nomic dependency. States that, for 

instance, are employed as causes of motor outputs because they indicate, or stand-in 

for, certain external conditions are genuinely representational states. Here, the 

informational content of such states is essential to explain why they get incorporated 
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into a system’s functional architecture. Misrepresentation can then be explained in 

the following way: a state misrepresents when it gets recruited in a system for 

playing a functional role that is different from the one it has been selected for either 

through learning or natural selection. Coming back to Ramsey’s example, if the 

needle reacted to something different from the magnetic north, the compass would 

misrepresent, that is, it would respond to something different than what it was 

recruited for.  

 The teleological character of representation is for Dretske and his followers not 

only important for dealing with the problem of misrepresentation, but also for 

explaining why a certain representation with certain content gets incorporated into a 

system’s processing. 

 To summarise, Dretske believes that an internal component X is a 

representation of Y if: 

 X is nomically dependent on or reliably co-varies with Y 

 X becomes part of the system’s processing because it is nomically dependent 

on Y 

Ramsey criticizes Dretske’s account on different grounds. 

The first critique is against Dretske’s claim that the teleological component is 

sufficiently explanatory for cases of misrepresentation. Ramsey observes that 

misrepresentation can’t be equated with malfunctioning: a device or a state can play 

a role different from the one it was supposed or designed to play without being a 

representation. A television, for instance, can malfunction and its malfunctioning can 

be explained in non-representational terms; the same can be said for many biological 

processes. We therefore don’t have an account of misrepresentation by appealing to 

teleology alone. Rather, we first have to assume that the state is a representation in 

order for it to misrepresent, that is, we first need to know in virtue of what that state 

is representing instead of doing something else. Once we know that we are dealing 

with a representational state, we can ask how the state has the specific content it has 
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and how it has a different and false content in other occasions. Dretske, however, 

“limits what a state represents by appealing to what it ought to represents, leaving the 

first question about whether the state in question represents at all untouched” (ibid., 

p. 132). 

A second problem concerns the relationship between “being nomic dependent 

on” and “carrying information about” something. Advocates of the receptor notion 

believe that a state carries information about something when it is nomically 

dependent on it. But if being an indicator that carries information means for a state to 

be a reliable responder, then every time we talk about information carrying we could 

talk about nomic relations between states. Indeed, Ramsey claims that these relations 

would be such that they could be used by the system to learn about the current states 

of affairs. If, for instance, we want shade on our back porch at a certain time in the 

afternoon, we might think of planting a tree at a certain distance from our porch 

because we know that its shadows will fall exactly where and when we want. In this 

case, Ramsey affirms, we would exploit the nomic relation that exists between the 

tree, its shadows and the sun to assign to the tree the job of shading our back porch. 

It would, however, seem inappropriate to interpret the shadows as representations of 

the position of the sun in the sky or of the hour of the day because the information 

that the shadows carry is not relevant to the job they perform: we plant the tree in 

that position to shade our porch and not to learn about the position of the sun or the 

hour of the day. We therefore need some additional reasons to conclude that 

something is employed because of the information that is carried by a certain nomic 

relation rather than just because it is functional to our purpose. According to 

Ramsey, one problem with the receptor notion is not that it is explanatory irrelevant 

in itself, but that the information that results from its law-like relation with external 

events is explanatory irrelevant. 

For all the above reasons, Ramsey claims that for a state X to be nomically 

dependent on a state Y it does not mean that X carries information about Y. It 

suffices to say that X functions as a reliable causal relay for Y: 
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“A structure can be employed qua nomic-dependent or qua reliable-

respondent without being employed qua information-carrier or qua 

representation.” (ibid., p. 138) 

The receptor notion of representation is, therefore, explanatory useless because it 

doesn’t provide any additional explanatory pay-off over and above that of reliable 

causal relay. 

 

3.4.2 – Distributed representational format 

 

Ramsey’s second major objection to the receptor notion concerns the causal role that 

a state should play to count as a representation. 

 Ramsey claims that having a discrete format is necessary for a state to play the 

causal role typically attributed to a propositional attitude. One of the problems in the 

newer accounts is that their representations don’t have such a discrete format. The 

clearest examples can be found in connectionist modelling studies. 

Although it employs the notion of computation, connectionism is often 

considered an alternative to the CCTC because it explains computational processes 

in terms of distributed rather than localised operations over networks of nodes and 

connections. Connectionist research has been introduced to better understand how 

our brains carry out cognitive tasks and, to this end, neural networks have been 

designed to resemble some aspects of our cerebral neurons and cortical activations. 

Connectionist networks consist of layers of nodes similar to cerebral neurons. These 

nodes play different roles and have different values within the overall network. Their 

values are defined in terms of their “weights”: a high weighted connection between 

nodes has more value than a smaller weighted connection. Neural activations are also 

characterised on the basis of “thresholds”: if the connection’s weight between two 

nodes, A and B, is above a certain threshold, then the activation passes from A to B, 

and B gets excited. Weights between connections play an important role in the 
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network’s economy because it is through their modulation and adjustment that the 

network learns how to perform a task.  

 An important feature of connectionist networks is that the information that 

passes and gets transformed is not identifiable in any specific node; rather, 

information is distributed across nodes’ activations. This means that the semantics of 

the network depends on relations of similarities and differences among activation 

patterns through time. If two networks get activated in similar ways, then they 

encode similar information, and if a same network gets activated in a similar way at 

time t1 and t2, then the network encodes similar information at both times. 

 Since neural networks compute over information that is encoded in a 

distributed way, computational processes in connectionism can’t be defined in terms 

of their inner sub-computations. 

 Importantly, the reason why researchers moved away from the CCTC was to 

suggest more neurally-constrained explanations of cognitive capacities. CCTC 

explanations, for instance, are said not to account for the plasticity shown by neural 

networks. While in artificial neural networks the overall networks can carry out 

cognitive tasks with only few output problems even in cases of malfunctioning or 

loss of individual nodes, in the CCTC the disruption of only one symbol has a much 

more widespread effect on the overall functioning of the system. However, since 

cognitive systems typically manage to perform cognitive tasks even when their 

underlying processes are somehow disrupted, connectionist explanations have been 

considered more appropriate for modelling and explaining real cognitive behaviour. 

The constraints that the implementation level imposes on connectionist explanations 

are stringent. A first constraint is dictated by the nature of the brain itself: a very 

complex net of neurons, connections and activations that vary through time under 

many different internal and external conditions. To test biologically plausible 

hypotheses about how the brain manages to carry out complex computational tasks, a 

first necessary condition is to treat neurons and their connections as the main 

building blocks of cognitive systems’ success. The main motivation behind this shift 
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in format is then based on the connectionist attempt to gain some neural 

plausibility.
18

 

 Distributed formats, however, prevent connectionism from meeting the job 

description challenge: connectionist representations are not causal in the same way in 

which propositional attitudes are causal in folk psychology.  

For cognitive neuroscience, the situation is even more complicated. Although 

there is no consensus over the format of neural representations (e.g. single cells’ 

activations, grouping of cells, and so on), most neuroscientists and cognitive 

neuroscientists believe that representations in the brain do not have a discrete format. 

 Before discussing Ramsey’s critiques concerning the receptor notion of 

representation, let me briefly summarise them: 

 A receptor representation is an internal state X that co-varies or that is 

nomically dependent on an external state Y 

 Nomic relations should not be equated to representational relations: 

something can be nomically dependent on something else without carrying 

information about it 

 A state can be an indicator of another state by depending nomically on it. But, 

if being an indicator that carries information means for a state to be a reliable 

responder, then every time we talk about information carrying we could talk 

about nomic relations between states 

 The receptor notion of representation has a distributed format, hence it cannot 

play the causal role attributed to representation in folk psychology 

 Theories that employ the receptor notion do not meet the job description 

challenge. This means that the representational talk should be avoided and 

                                                 
18

 There is clearly much more to say about connectionism, but for the current 

discussion we only need to stress the representational format in connectionist 

networks. 
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that the notion of representation should be substituted with the notion of 

reliable causal relay 

In the next section I will examine whether we are justified in concluding, as Ramsey 

does, that connectionist accounts are not representational. I will argue that some of 

Ramsey’s reasons in favour of CCTC representationalism can be also applied to 

connectionism and cognitive neuroscience. In the last section of the chapter I will 

then claim that, while a distinction between a theory of content and a theory of 

representation is essential, we do not have enough reasons to embrace Ramsey’s 

partial eliminativist thesis. 

 

 

 

3.5 – Internal models and representational commitment 
 

Ramsey defends the CCTC as a genuine theory of representation on the basis of two 

main reasons: CCTC’s commitment to IO-representation and CCTC’s commitment 

to internal models and S-representations. 

The first commitment has to do with the compositional nature of CCTC 

explanations: complex computations are explained in terms of simpler sub-

computations and, given that each computational process is characterised by non-

mental representational inputs and outputs, inner sub-computations need to be 

characterised in terms of their inner mental inputs and outputs. These inner 

computational symbols have to stand-in for external features of the environment.  

The second commitment is via S-representations. Ramsey shows that the 

CCTC explains the success of agents in cognitive tasks by positing the presence of 

internal models, whose elements (S-representations) and causal connections can be 

exploited to implement surrogative reasoning. This form of reasoning enables 

systems to draw inferences about the world. However, for these internal models to 

implement surrogative reasoning, their elements need to be representations of 
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features of the target domain and need to acquire their content by being isomorphic 

to them. By employing S-representations (and also IO-representations), the CCTC 

can be considered a genuine theory of representation. 

 There are two points that I want to raise here. The first point is that S-

representations are not peculiar of the CCTC only. Representations are elements of 

internal models and are isomorphic to elements of the world even in some 

connectionist networks. The second consideration is that a theory can employ S-

representations without embracing the isomorphism theory of content. 

 

3.5.1 – S-representations in connectionism 

 

A commitment to S-representations is not unique to CCTC-style explanations. 

Connectionism, for instance, employs them too. I consider here only two examples 

that help clarify this point. 

Paul Churchland (1998) studied two identical feed-forward networks trained on 

the same corpus of 100 photos of each of the 100 members of 4 extended and 

multigenerational families. The networks were trained so that they could distinguish 

any input photo as a member of one of the 4 families. After the training period, the 

two networks were able to generalise successfully to any new example of the 4 

families with a degree of accuracy higher than 90%. Churchland explained the 

behaviour of these two networks in the following way. The networks became able to 

distinguish each new example as belonging to a specific family because the 

activation-space of each network became partitioned in a way that, for each of the 25 

faces of the first family, there was a specific number of points that tended to be 

assembled in a given sub-volume within the overall space. This process is often 

called clustering. The same cluster, this time in different sub-volumes of the 

activation space, characterised the faces of the other 3 families. The clustered and 

recognisable points of the two networks characteristic of a specific family were 

called prototypes or concepts. Prototypical positions encoding information about 
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family members identified the standard causal response to a typical face that 

belonged, for instance, to family 1. This means that the activation pattern that was 

said to represent a given member as belonging to a specific family was nomically 

dependent on (or reliably co-varied with) the member it stood-in for. The notion of 

representation employed here clearly was the receptor notion. 

 In discussing the results of the study, Churchland pointed out that the two 

networks managed to successfully solve the problem although they relied on 

different coding strategies. The reason for this is that there were similarities in the 

relative positions of the points (nodes) in the two networks that stood-in for a 

specific family. What explained how the two networks succeeded in the cognitive 

task was then some kind of structural feature: the two networks used the degree of 

similarity or of difference recognised among faces of members of different families 

to associate a new face to the appropriate family. Indeed, the hidden spaces of the 

networks got partitioned through training so as to reflect, in a systematic way, the 

structure of the environment: systematic distance measures stood-in for important 

family relations. 

Following Ramsey’s definition of S-representation (i.e. internal states that 

acquire their content by being isomorphic to their target domain), connectionist 

explanations can rely on S-representations, hence they can be genuinely 

representational. 

I would like to consider a second example that has been recently offered by 

Oron Shagrir (2012). Shagrir claims that oculomotor control can be explained by 

referring to S-representations, internal models and recurrent neural networks: the 

brain controls the eyes by implementing an internal model in the form of a recurrent 

neural network with multistable states, one for each eye position. This means that the 

brain controls the oculomotor system by employing a short-term memory of the 

current eye position, which is understood in terms of a recurrent neural network with 

multiple states (S1, S2,…, Sn), each representing an eye position (E1, E2,…, En). The 

dynamics of this network are such that, whenever the eyes move from position E1 to 
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position E2, there is a transition from state S1 to state S2 in memory. Certain 

computational processes operating on the input representing the eye position make 

these dynamics possible. In particular, for every eye position, there is a 

corresponding stable pattern of activation in memory. No single cell in memory, or 

state in the network, represents; rather, it is the collective activation of states that 

represents a specific eye position: whenever a new stimulus arrives, it perturbs the 

memory network, thus moving it from the stable pattern of current activated points to 

a new one. This new stable position represents the current eye position. Interestingly, 

the distance between two stable patterns of activations in the memory network 

mirrors that between the two corresponding eye positions. Shagrir claims that the 

memory functions as a kind of internal map that the system can go and “look up” for 

solving problems. Accordingly, the explanation of how the oculomotor system 

controls the eyes refers to the fact that it internally implements and uses a model of 

the dynamics and positions of the eyes. 

In this case it seems that we can conclude that the explanation of how the 

memory network controls the eyes is genuinely representational: the network 

performs successfully by employing an internal model, whose elements stand-in for 

those of the target domain (i.e. the eye positions) and whose connections stand-in for 

those of the target domain (i.e. the distance between two eye positions). It then 

follows that these internal representations can be said to be isomorphic to the 

elements of the target domain. All this is possible, though, in a non-CCTC 

framework that employs distributed representations. 

 

3.5.2 – The inadequacy of isomorphism-based theory of content 

 

The second consideration concerns isomorphism as a theory of content. As Mark 

Sprevak (2011) has pointed out, one can embrace S-representations without 

embracing the isomorphism-based theory of content; the latter is inadequate for 

representations. 
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 While a representational relation is an asymmetrical relation (i.e. a state can 

represent another state of affair without that latter representing the former), an 

isomorphic relation is a symmetrical relation (i.e. a similarity in structure between 

two objects or two states is symmetrical — if the word “dog” is isomorphic to the 

word “god”, then the word “god” is also isomorphic to the word “dog”). An internal 

state can then represent an external feature without being isomorphic to it. 

Isomorphism brings indeterminacy in content: the words “dog” and “god” are 

isomorphic although they identify very different states of affairs.  

If we say that a state is a representation when it is a component of an internal 

model that the system uses to draw inferences about the world, then we are making a 

claim about the role that the state plays in the overall cognitive economy of the 

system. It is a separate question that concerning how the state gains the content it 

has. The arguments Ramsey addresses in favour of S-representations should then be 

separated from those used to argue for an isomorphism-based theory of content. 

Once we separate the two arguments, we are in a position to recognise that many 

connectionist and cognitive neuroscientific explanations of cognitive performances 

do employ S-representations, without necessarily embracing also the isomorphism-

based theory of content. Consider once more the edge cells example discussed above. 

In explaining the success of cognitive systems in recognising (i.e. drawing inferences 

about) edges between light and darkness in their visual field, researchers typically 

interpret the activity of certain cells in the visual cortex as representing distal edges. 

By interpreting the activity of these cells in this way, they can account for how a 

cognitive system manages to perform successfully: these cells represent distal edges 

and they are part of a wider internal model that the system can “look up” for its 

environmental success. 

A theory can then be representational without embracing isomorphism. As 

Ramsey correctly points out, it is important to show that a theory is actually 

committed to representations. Ramsey’s critique of Dretske’s account of 

representation consists in showing that a theory of content is not sufficient for a 
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theory of representation: we first need to say why a state is a representation in order 

to say that it has a certain content and that it can misrepresent. A state can therefore 

be labelled as a representation rather than as a reliable causal relay if it plays an 

explanatory role in explaining successful behaviour. In this specific case, if a theory 

employs representations to talk about the components of an internal model that the 

cognitive system uses to perform successfully in the environment (i.e. if a theory is 

committed to S-representations without the isomorphism story), then that theory is 

representational. 

A less ambiguous term than S-representation, which immediately suggests the 

idea of structural isomorphism, could be of help here. I therefore suggest we could 

talk about M-representations or Model-representations to identify those states of 

internal models that a system can employ to draw inferences about the world. Saying 

that a theory is committed to M-representations means that the theory can explain a 

cognitive ability in terms of the exploitation of an internal model. The states of this 

internal model are representations, no matter how they acquire their content.  

 Accordingly, every theory that posits models as surrogates of (aspects of) the 

world in reasoning is a representational theory. Connectionism is then committed to 

genuine representations. If we consider again Churchland’s example, the networks 

are able to perform the task because, through training, they form an internal model of 

their target domain. In the same way in which Bob’s success in the task cannot be 

explained only by relying on a syntactic story about the assembly and use of internal 

symbols, we wouldn’t be able to explain the success of the two networks without 

seeing their clustering processes as representational. 

Claiming that a theory of content is not sufficient to offer a full-blown theory 

of representation is then not enough to argue in favour of representational 

eliminativism in the newer accounts.  

The reasons for this conclusion are twofold. First, Ramsey himself does not 

deny the receptor notion as a theory of content, or the explanatory relevance of 

nomic dependencies; rather, he denies the receptor notion as a theory of what makes 
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something a representation. Second, a receptor state can count as a representation 

because of its explanatory role in explaining the success of agents in drawing 

inferences about the world. 

 

 

 

3.6 – Conclusion 
 

In this chapter, I discussed William Ramsey’s recent attack to the explanatory 

usefulness of the notion of representation in connectionism and cognitive 

neuroscience and I argued for its inadequacy. 

 I examined Ramsey’s defence of the representational status of CCTC 

explanations (via IO-representations and S-representations) and his partial 

eliminativist thesis towards the receptor notion of representation employed in the 

newer accounts. I then resisted Ramsey’s partial eliminativist thesis by showing that: 

 Connectionism and cognitive neuroscience often employ S-representations 

because they both typically explain the success of cognitive systems in terms 

of: 

o Structural isomorphism between the internal structure of the system 

that gets activated and the target domain 

o Internal models that the system uses to draw inference and reason 

about the world 

 A theory can employ the notion of S-representation without embracing the 

isomorphism-based theory of content 

 The isomorphism-based theory of content is inadequate because isomorphism 

is a symmetrical relation that entails great indeterminacy in content 

 If a theory is committed to representations when it employs internal models 

(and M-representations) in explaining cognitive abilities, then it is 
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representational. The newer accounts are, therefore, genuinely 

representational 

 Even if the receptor notion only offers a theory of content, there are still good 

reasons to consider these internal states as representations 

To conclude, I want to stress that, although it is difficult to come up with necessary 

and sufficient conditions for a state to be a representation, its is often possible to 

identify cases where a representational talk is applicable and cases where 

explanations of behaviour cannot avoid appealing to such a notion without losing 

important explanatory power. I argued that the newer accounts fall into this category 

although they cannot (yet) offer a full-blown theory of representation. 
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Chapter 4 - The Personal-Subpersonal Distinction 
 

 

 

4.1 – Introduction 
 

In this chapter I analyse the explanatory aims, methodologies and vocabularies of 

personal and subpersonal explanations of mental phenomena. 

 In the first part of the chapter I discuss personal-level explanations and the 

autonomy theorists’ position with respect to it. In the rest of the chapter I address and 

critically discuss two purely subpersonal accounts: Churchland’s eliminativism and 

Bickle’s reductionism. 

 I examine these accounts and show that none of them succeeds in providing 

appropriate explanations of mental phenomena: purely personal-level and purely 

subpersonal-level explanations cannot properly account for cognition. 

 

 

 

4.2 – The distinction 
 

We believe that we normally can and do explain other people’s behaviour in 

appropriate ways. If I see my friend Sara applying for a job and I want to know why 

she is doing it, I can explain her behaviour by making reference to her beliefs and 
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desires: Sara is applying for a job because she desires a job and believes that by 

applying for it she can get it. And if I see my flat-mate wearing a thick coat and a 

warm scarf and I want to explain why, I can easily say that she is wearing warm 

clothes because she believes that it is cold outside and she desires to be warm. 

 In explaining people’s behaviour we also often, correctly, assume that their 

behaviour is not simply triggered by environmental conditions. Whether it is really 

cold outside or not, if I see my flat-mate wearing a thick coat, I explain her behaviour 

by saying that she believes that outside it is cold and that she desires to be warm. I 

then manage to explain her behaviour by making reference to her mental states, and, 

in particular, to her belief and desire. 

 The content of a mental state doesn’t simply depend on how the world is 

(whether it is cold or not outside), but also on how the agent takes the world to be 

(outside it is cold). For this reason, mental states are called intentional: they are about 

something. 

 Another important feature of mental states is that they are not physical objects. 

If they were, they would mirror the real states of affairs out in the world and we 

know that sometimes they don’t: my flat-mate can believe that outside it is cold, but, 

in fact, it is not. What characterises the nature of a mental state is that its content can 

be expressed with a proposition: she believes that outside it is cold. We explain 

behaviour by making reference to mental states with propositional content and the 

same propositional content can be linked to different mental states. The propositional 

content “that outside it is cold” can, for instance, be paired with a belief (believe that 

outside it is cold), with a hope (hope that outside it is cold), with a desire (desire that 

outside it is cold) or with any other mental state. The resulting pair of mental state 

and propositional content gives rise to the so-called propositional attitude. 

 To properly explain people’s behaviour we also make reference to the 

connections between mental attitudes. In particular, we can explain behaviour 

because we know that propositional attitudes are often rationally related to give rise 

to behaviour. Being rationally related means that propositional attitudes are related to 



CHAPTER 4 

 

 

92 

 

each other in accordance with principles of rationality (e.g. propositional attitudes 

should be consistent and they should follow the rules of logic or probability theory). 

 The fact that everyday explanations of people’s behaviour make reference to 

rational principles introduces a normative dimension into the picture. We can explain 

behaviour because we compare them with how an agent, with that combination of 

propositional attitudes, ought to have acted: 

“[We] explain intelligent behaviour by interpreting it as the behaviour of 

rational agents. The principles of rationality regulating the interpretation 

of rational agents are normative principles rather than descriptive 

generalizations (principles that describe how people ought to behave, as 

opposed to description of how they generally do behave).” (Bermudez, 

2005, pp. 42–43) 

Given the central role of normativity in our everyday explanations of people’s 

behaviour, propositional attitudes are often called reasons for actions. 

 We commonly rely on this kind of explanations in our life and this seems to 

suggest that we often can properly explain other people’s behaviour in an intuitive, 

easy and unscientific way. To explain why my flat-mate is wearing a warm scarf I 

don’t need technical instruments or knowledge of her internal wirings. 

 Explanations that, instead, make reference to people’s brains, their internal 

wirings and the mechanical descriptions that can be given of them, are commonly 

called subpersonal explanations. 

Daniel Dennett (1969) coins the terms “personal” and “subpersonal” to clarify 

the distinction between “the explanatory level of people and their sensations and 

activities” and “the subpersonal-level of brains and events in the nervous system” 

(ibid., p. 93). 

 While the personal level makes reference to whole persons qua rational agents 

(e.g. Hornsby, 2000), the subpersonal level makes reference to parts of persons, their 

brains, their activities and components. Descending from the level of persons (i.e. the 
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personal level) to a lower level of explanation consists in decomposing persons into 

parts, mainly brain parts, and in identifying how the organised operations of these 

parts can bring about personal phenomena. Explanations at this lower level are 

descriptive rather than normative because they identify the explanandum’s causal 

history or the “sequences of events that can be subsumed under general causal law” 

(ibid., p. 38). Personal and subpersonal explanations appeal then to different 

vocabularies, to different sets of norms and to different principles. 

 Dennett introduced this distinction to clarify the explanatory domains of 

different disciplines. The practice, however, has shown that this distinction has 

created more confusion than clarity. 

 There are various reasons for this. The main reason, I believe, has to do with 

the difficulty in integrating, comparing and contrasting knowledge coming from 

different explanations of the same explanandum phenomenon. Jose Luis Bermudez 

refers to this problem as the interface problem (Bermudez, 2005), that is, the 

problem of how folk psychology, the main type of personal-level explanation, 

interfaces with scientific psychology, cognitive science and neuroscience. 

 According to Bermudez, personal-level explanations are horizontal 

explanations that aim at explaining a particular state or event in terms of distinct and 

often temporally antecedent states and events. He says: 

“Suppose we ask why the window broke when it did. An horizontal 

explanation of the window’s breaking might cite the baseball hitting it, 

together with a generalization about windows tending to break when hit 

by baseballs travelling at appropriate speeds.” (ibid., p. 32) 

These kinds of explanations are not suitable to answer other kinds of questions. What 

if I want to know why the window broke when the baseball hit it? How can we know 

why certain generalisations hold? According to Bermudez, vertical explanations are 

suitable to answer these why-questions because “the project of vertical questions can 
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be broadly characterised as explaining the grounds of horizontal explanations” (ibid., 

p. 33). 

 In the rest of the chapter I will analyse three different answers to the interface 

problem. As I will show, they are all answers that, in different ways, consider the 

interface problem as a non-problem. On the contrary, I will argue that both the 

personal level and the subpersonal level are required to adequately explain cognitive 

phenomena. 

 I will begin by examining the arguments used to vindicate the explanatory 

independence of the personal level with regard to the subpersonal one. 

 

 

 

4.3 – The autonomy of the mental 
 

Advocates of the autonomy of the mental (e.g. Hornsby, 2000; McDowell, 1994; 

Davidson, 1963) hold that explanations of mental phenomena become intelligible 

and can be explained only in the context of our human life (McDowell, 1994, p. 

204). They want to show that “what is explained at the personal level cannot be 

explained over and again at a lower level” (Hornsby, 2000, p. 8) because “when we 

abandon the personal level in a very real sense we abandon the subject matter of 

[persons’ mental states] as well” (Dennett, 1969, p. 38). 

Jennifer Hornsby (2000) argues that we need to focus on mental states if we 

want to explain the behaviour of a person qua rational agent. A different approach 

would simply put the person out of the picture: 

“[…] there is no prospect of finding a person intelligible in terms of 

physical goings on inside her. If one speaks impersonally, one is barred 

from the sort of normative account that might show a person’s doing 

something to be understandable. [At the same time] there remains a 

perfectly good question about how it is that persons have the aptitudes 
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and capacities that we take for granted when we see mental causation at 

work. These are capacities to move one’s arm when one wants to, to 

understand another’s words and say some of one’s own, to see and hear, 

to recognize faces and expressions […]. How can we do such things? 

What properties are there of our brains and nervous systems in virtue of 

which […] we can do them? […] Sub-personal psychology has plenty of 

tasks in its own. It addresses ‘How’- questions which proceed from 

empirical ignorance […].” (ibid., pp. 8–9) 

Subpersonal explanations are, therefore, important, but they can provide adequate 

answers only to “how” questions. The personal level is the only level that deals with 

“why” questions. 

 Among the reasons why, according to Hornsby, the personal level should be 

kept distinct from the subpersonal level we find: 

 Lower-level explanations don’t target people’s behaviour 

 Subpersonal-level explanations can answer how-questions, while personal-

level explanations concern why-questions 

 A normative account is needed to make a person’s behaviour intelligible and 

this account is found only at the personal level 

John McDowell (e.g. 1994) argues along the same lines by comparing the personal-

subpersonal distinction to the constitutive-enabling distinction. 

 He discusses the personal-level phenomenon of visual experience. Subpersonal 

explanations of visual experience, he says, make reference to a series of information 

processes that take place in a subject’s visual system. They tell us, for instance, that 

arrays of intensities and wavelengths are computed by the visual system to yield a 

sort of image of a part of the environment. Personal explanations, instead, are 

concerned with what defines the nature of a visual experience as an encounter with 

an object. McDowell acknowledges that both explanations are needed for a full 
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explanation of visual experience and still maintains that the role of the visual system 

(i.e. a subpart of a person) is not to inform the person of something.  

 To make the point clearer, McDowell comments on a famous paper entitled 

“What the Frog’s Eye Tells the Frog’s brain” (Lettvin et al., 1959). He claims that 

“in the metaphor, our parts talk to one another; they do not, at least in general, talk to 

us” (McDowell, 1994, p. 195). In the frog’s case, the frog’s visual system doesn’t tell 

the frog anything beyond the fact that there is a bug-like object in a certain position. 

The role of the frog’s visual system is not to process information, but to react to 

moving objects in the environment: 

“One sub-froggy part of a frog transmits information to another: the 

frog’s eye talks to the frog’s brain, not to the frog.  […] What tells the 

frog things is the environment, making things of itself apparent to the 

frog. […] What the frog’s eye does for the frog is to put it in touch with 

moving specks in its spatial environment.” (ibid., pp. 197–198) 

According to McDowell, then, visual processes enable a certain kind of encounter 

with moving objects by putting the frog in contact with its environment. What the 

visual system doesn’t do, instead, is shed light on what is constitutive of visual 

experience. In other words, subpersonal explanations can only account for the factors 

that enable personal-level phenomena to come about, but they cannot offer 

constitutive explanations for them. 

 How exactly should we understand the difference between constitutive and 

enabling conditions? 

 

4.3.1 – Enabling and constitutive conditions 

 

If we look, for instance, at the way in which Hornsby and McDowell treat the 

distinction, it seems as if the constitutive nature of a certain mental phenomenon can 

be uncovered solely at the level of folk psychology. Nevertheless, there are cases 

where enabling information, as autonomy theorists would call them, does make a 
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contribution to our understanding of the constitutive nature of certain personal-level 

phenomena. 

Consider the case of elementary learning developed by Eric Kandel and 

colleagues (e.g. Hawkins & Kandel, 1984) and discussed by Gold and Stoljar (1999) 

as an example of purely neuroscientific subpersonal explanation. This theory aims at 

explaining two kinds of learning — simple learning and associative learning — by 

making reference to properties of neurons and, in particular, to changes in synaptic 

strength due to the production of neurotransmitters in sensory neurons. We can 

understand these forms of learning as personal-level phenomena because they 

characterise the behaviour of whole organisms and not of sub-parts of them. 

 The theory employs a basic model that can be adapted to explain a number of 

different forms of learning, from habituation to sensitisation and classical 

conditioning. Habituation and sensitisation are two forms of simple learning. 

Habituation is a form of learning through which an animal gradually ignores a 

stimulus when it doesn’t bring reward or harm, while sensitisation is a form of 

learning that develops when an animal starts experiencing a harmless stimulus as 

noxious after the stimulus has been associated with an aversive one. Kandel and 

colleagues studied these forms of learning in a simple organism, the marine snail 

Aplysia californica. 

 They found that the Aplysia’s innate gill-withdrawal reflex, which followed a 

neutral tactile stimulus to the tail, could be habituated by reducing the quantity of 

neurotransmitter released by siphon sensory neurons on the motor neurons. 

 In the case of sensitisation, instead, they discovered that the responsible 

process involved an enhancing change of the neurotransmitter released by the 

sensory neuron on their target cells. Here, while a mild stimulus to the tail produced 

a mild gill-withdrawal reflex, a shock to the tail activated facilitator interneurons that 

synapse near the synapse formed by the siphon sensory neurons on the motor 

neurons. The role and the activity of these interneurons was that of making the 

siphon sensory neuron release more neurotransmitter after the stimulation. The next 
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time the siphon sensory neuron was mildly stimulated, more neurotransmitter was 

produced and released on motor neurons and a stronger gill-withdrawal reflex 

occurred. This process, which is called presynaptic facilitation, consisted in making 

the siphon sensory neurons more active via the activity of facilitator interneurons. 

 Kandel and colleagues found that the process of classical conditioning was 

quite similar to that of sensitisation. In classical conditioning, an unconditioned 

stimulus (US) and a conditioned stimulus (CS) became paired such that the response 

that would normally follow US occurred even in the presence of CS alone. They 

tested Aplysia’s behaviour during repeated experiments where they presented a 

shock at the tail (US) and a mild tactile stimulus at the tail (CS). These two stimuli 

were contiguous in time, that is, they occurred one after the other within a precise 

temporal interval. While in the first experiments Aplysia’s gill-withdrawal reflex 

occurred only after the presentation of US, Kandel et al. found that, after repeated 

experiments, the CS caused the same reflex. The ability of the CS to cause the gill-

withdrawal reflex seemed to depend on a process of presynaptic facilitation due to 

the neural pathway activated by the US: as a result of the activation of facilitator 

interneurons, the activity generated by US caused a greater facilitation of the sensory 

neurons responding to CS. 

 These results provided empirical evidence that the processes underlying 

sensitisation and classical conditioning were similar. Both depended on a process of 

presynaptic facilitation that, in the case of sensitisation, consisted in the greater 

production of neurotransmitter by siphon sensory neurons, while, in the case of 

classical conditioning, depended on the temporal pairings of US and CS, which, in 

turn, enhanced the presynapses of siphon sensory neurons.
19

 

 Why are these studies important to show the role that subpersonal explanations 

play in the conceptualisation of personal phenomena? 

                                                 
19

 For a more detailed discussion on the types of learning in Aplysia, see Gold & 

Stoljar (1999) and Hawkins & Kandel (1984). 
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 Once we analyse carefully these experimental results, we recognise that the 

information gathered about the internal processes responsible for the various kinds of 

learning under consideration show that these types of learning are not as different in 

nature as previously supposed. In particular, the analysis of neurons, neural pathways 

and connections in the animal highlighted that classical conditioning is rather close 

in nature to one of the two kinds of learning usually considered simple learning: 

sensitisation. Here, certain subpersonal information offered evidence for a change in 

the constitutive nature of these personal-level categories, a result that wouldn’t have 

been possible by observing the behaviour of the animal from a merely “outside 

perspective”.  

 Cases like this one shouldn’t be surprising to those who, differently from the 

autonomy theorists, believe that:  

“It is this sort of contribution that philosophers and neuroscientists expect 

neuroscience to offer in the future: a contribution to the way we think 

about the basic phenomena of the mind.” (Gold & Stoljar, 1999, p. 826) 

Tyler Burge in his Origins of Objectivity (2010) offers some additional compelling 

reasons for why we shouldn’t think that constitutive information could only derive 

from personal-level explanations. 

 What is the nature of perception? Which are the constitutive conditions 

necessarily for a subject to perceive the world (i.e. to attribute physical features to 

specific physical particulars)? These are some of the questions Burge tackles in his 

book. However, differently from McDowell, Burge believes that scientific 

psychology can and does shed light on these questions: 

“Philosophy can help sharpen distinctions (such as that between 

perception and sensory discrimination, or between different conceptions 

of representation) that in scientific work are not as sharp as they might 

be. Science, in turn, provides applications, empirical content, and cases 
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that enrich philosophical understanding and places limits on tenable 

philosophical positions.” (ibid., p. 26) 

Burge distinguishes perception from mere sensory registration or sensory 

discrimination. In particular, he argues, perception is a form of objectified 

representation, that is, it is the capacity of a system to represent mind-independent 

features of the environment in a more or less accurate way: 

“Objective representation need not be derived, rationalised, validated by 

the individual. The most elementary forms of empirical objectivity are 

the products of conditions that the individual has no perspective on. 

Subindividual conditions are unconscious, automatic, relatively modular 

aspects of perceptual systems and belief forming system. Environmental 

conditions are twofold. They are the actual properties and relations in the 

environment that the individual interacts with and discriminates. And 

they are the patterns of causal relations between the environment and the 

individual’s perceptual and cognitive capacities […].” (Burge, 2010, p. 

24) 

Sensory states are those states that register or encode information from the 

environment to contribute to an organism’s fitness. A sensory state is, for instance, a 

state that encodes the information that in the environment there is a predator. This 

encoded information, then, initiates a process that affects the responses of the animal 

in such a way that they contribute to its fitness. When these states make their 

contribution, “it is not the accuracy per se that makes the contribution. The 

tendencies of the state to produce efficient responses to needs or, more precisely, 

tendencies to produce evolutionary fitness — not the veridical aspects of the state —

make the contribution” (Burge, 2010, p. 302). 

 Organisms like bacteria and amoebae, for instance, discriminate particulars in 

the environment, such as light and heat. These discriminations, then, initiate a 

process that is good for the organism’s fitness or survival. 
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 A perceptual state is, instead, a representational state that can be veridical or 

non-veridical: 

“[…] a perceptual state is the type of state that it is partly by virtue of 

being a state that purports to pick out various particulars in a scene and to 

attribute to those purported particulars such attributes as being cube-

shaped, being green, being in certain directions and at certain distances. 

If there are particulars causing the perceptual state in the right way and 

those particulars have the attributes that are attributed, the perceptual 

state is veridical.” (ibid., p. 308) 

Perceptual accuracy doesn’t necessarily or constitutively enhance biological success; 

rather, it is a constitutive part of representational success. Perception is therefore a 

type of veridical representation. To define veridical representations, subpersonal 

information from the sciences becomes necessary:  

“Where there is perception, there is sensory information registration. 

That is, where there is perception, there is functional, causally based, 

usually high, statistical correlation, between a type of state impacted by 

surface stimulation (and that encodes surface stimulation), on one hand, 

and a type of stimulation, on the other. Sensory information registration 

per se is not a type of perception […]. Perception is a sensory capacity 

for objectified representation.” (ibid., p. 317) 

Burge offers the notion of objectified representation as a solution to the 

underdetermination problem: how can we explain the fact that an organism often 

represents the environment veridically given the fact that the encoded sensory 

information underdetermines environmental conditions? 

“To arrive at a representational state that privileges as representatum one 

of many possible environmental antecedents of the registration of 

sensory inputs, the system must have default settings, or a default range 

of possibilities for learning.” (ibid., p. 344) 
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According to Burge, formation laws, which describe the law-like regularities of the 

environment, help to overcome the underdetermination problem by transforming 

pure sensory states into representational states, whose contents are, at least, highly 

veridical. Burge describes the case of convergence as an example of transformation 

of sensory information in the visual system. 

 Convergence is one way the visual system determines the distance (i.e. the 

location) of an object in the environment. The lines of sight of the two eyes fixated 

on an object form an angle that is dependent on the distance between the subject and 

the object. A closer object corresponds to a wider angle, while a more distant object 

corresponds to a narrower angle. The fixation point and the middle point between the 

two eyes form a third angle and others can be identified using certain geometrical 

principles (see ibid., pp. 348–349). Burge claims that: 

“Experiments have shown that visual systems rely on proximal 

information regarding [these] angles, together with the distance between 

the eyes to determine the distance and location of distal causes of 

proximal information.” (ibid.) 

Accordingly, a system can form representational states of an object in the 

environment because it can apply such principles. A perceptual representation then 

results from the conjunction of sensory information and geometrical principles and a 

constitutive explanation of perceptual experience needs to account for both. These 

two elements, when taken together, yield a form of objectified representation, which 

is what makes a state a perceptual state rather than something else. Note, however, 

that sensory information is clearly not a personal-level component and that formation 

laws are provided by scientific psychology. 

 If there are at least some cases where we need subpersonal information to 

explain what constitutes a personal-level phenomenon, then what about the 

autonomy of personal-level explanations over subpersonal-level explanations? 
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“Perceptions and perceptual states that are attributed to an individual are 

always also attributable to the individual’s perceptual system, a 

subsystem of an individual. Any visual perceptual state of an animal, for 

example, is also a state of the animal’s visual system. Many processes 

that occur in perceptual systems, however, are not attributable to 

individuals. Transformations of sensory information into perceptions and 

transformations among perceptions are almost never attributable to the 

individual. The individual does not make them occur; they are not 

conscious or accessible to consciousness, they are not exercises of 

individual’s central capabilities. But, necessarily and constitutively, 

individuals perceive. […] Individuals perceive as a result of perceptual 

states’ being formed in their perceptual systems. Perceptual states are 

realizations of individuals’ capacities.” (Burge, 2010, p. 369) 

The constitutive relation between perception and individual depends then on the fact 

that perceptual states constitutively figure in individual functions, that is, in fulfilling 

individual’s needs and goals.  

 As I have shown, the distinction between personal and subpersonal 

explanations is not straightforward: subpersonal information can, and sometimes 

does, shed light on the nature of certain personal phenomena by saying something 

about what makes a certain personal-level state what it really is. 

 

4.3.2 – The ideal of rationality 

 

I will focus now on a second reason that is generally appealed to in order to argue for 

the autonomy of the personal-level of explanation with regard to the subpersonal-

level of explanation: people’s behaviour can be made intelligible once they are 

confronted with an ideal of rationality, and this ideal belongs only to the personal 

level. 
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Donald Davidson (1980) argues that personal explanations depend on what he 

calls the ideal of rationality, that is, explaining people’s behaviour consists in 

making behaviour intelligible in light of the rational principles that govern them: 

“When we ask why someone acted as he did, we want to be provided 

with an interpretation. […] When we learn his reason, we have an 

interpretation, a new description of what he did which fits into a familiar 

picture. The picture certainly includes some of the agent’s beliefs and 

attitudes.” (Davidson, 1963, p. 691) 

Along the same lines, Jennifer Hornsby claims that it is “a normative account that 

might show a person’s doing something to be understandable” (Hornsby, 2000, p. 8). 

 Autonomists argue that a personal-level explanation of a behaviour is a 

normative explanation that cites the agent’s reason (i.e. belief or attitude) for acting. 

Only a normative interpretation makes a person’s behaviour intelligible in a way that 

“the redescription […] places the action in a wider social, economic, linguistic, or 

evaluative context” (Davidson, 1963, p. 691). 

 An action gets explained when it is placed within a wider pattern and we 

should accept the idea that personal-level phenomena cannot be further explained by 

going deeper than the level of persons. The fact that persons are rational agents is a 

sufficient reason to keep the personal-level and the subpersonal-level of explanation 

separate and independent from each other. 

 Let me try to uncover the nature and the role of these principles of rationality a 

bit more. 

 Principles of rationality regulate the explanation of agents’ behaviour and, for 

this reason, they are normative rather than descriptive. This means that these 

principles describe how people ought to behave rather than how they actually 

behave. 
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 A natural question might arise: do we explain a behaviour when we show that 

it is, or it is approximate to be, as rational as it ought to be? Consider the following 

quote: 

“[…] a person can have a reason for an action and perform the action, 

and yet this reason not be the reason why he did it. Central to the relation 

between a reason and an action it explains is the idea that an agent 

performed the action because he had the reason.” (ibid., p. 691) 

Accordingly, an action is properly explained once the reason why a subject acted is 

identified; this reason really explains the action and it doesn’t simply justify it. 

Nevertheless, when we redescribe an action we are not always in a position to do so 

because “what emerges, in the ex post facto atmosphere of explanation and 

justification, as the reason frequently was, to the agent at the time of action, one 

consideration among many, a reason” (ibid., p. 697). 

 Normative explanations then run the risk of being nothing more than 

hermeneutic strategies in the sense that they explain intelligent behaviours by 

interpreting them as behaviours of rational agents (Bermudez, 2005, p. 42). 

 Rational interpretations, however, might not be good explanations. Imagine I 

see my friend Anna walking towards the department on a Saturday morning. I know 

that she is working on a chapter and that she has a close deadline. I then explain her 

behaviour by saying that she desires to finish the chapter and that she believes that it 

is easier for her to work in the office rather than at home. As a matter of fact, though, 

she simply passes by the department and walks straight ahead. My rational 

interpretation of Anna’s behaviour is then not a good explanation of her behaviour 

although it makes it rational, appropriate and intelligible given what I know of what 

she wants (i.e. she desperately wants to finish her chapter) and of what she believes 

(i.e. she complained many times about how noisy her flat was during weekends). 

Indeed, an interpretation is a rational reconstruction of a behaviour that maximises its 

rationality: given that Anna needs to finish the chapter quickly and that her flat is 
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always noisy during weekends, she ought to work in the office on Saturday morning. 

There are plenty of situations where we have a rational interpretation of someone’s 

behaviour (or even of our own behaviour) that is not an explanation of it. Consider 

psychological and psychoanalytical literatures. These literatures are full of examples 

of people who believe they act for a certain reason, but that, actually, are moved by 

beliefs and desires that are consciously inaccessible to them. Some psychological 

studies (e.g. Nisbett & Wilson, 1977, 1978), for instance, show that we often 

construct stories that seem to make sense to us, and that sometimes we come up with 

reasons for our actions that, even if plausible, are demonstrably false. These cases are 

called confabulations (Hirstein, 2005): when we rationalise an action, we don’t state 

the reasons that actually lead the agent to act in a certain way. A rational ex post 

facto description can be offered to make a subject’s action intelligible even when we 

are ignorant about the course of events that led the subject to act in that way. 

 We are then left with a worry as to whether we should consider rational 

redescriptions to be genuine explanations rather than mere strategies to make 

behaviour intelligible. How can we justify personal and normative explanations? Is 

our only option for explaining behaviour that of asking people about their real 

reasons? If the answer to this question is affirmative, then a new problem arises since 

it has been long recognised that introspection is an unreliable method to establish the 

truth or falsity of explanatory claims (e.g. Nisbett & Wilson, 1977). 

 How can we then be sure that our rational redescription is an actual explanation 

of a certain behaviour?  

“[…] we can show […] that an action is rational if the acting subject can 

come up with a narrative that reconstructs how a given piece of 

behaviour fits into the agent’s overall world view and character. What 

decides whether an action is based on reasons or not, then, is not whether 

these putative reasons have been always already in place, albeit 

subconsciously, but whether the behaviour in question can plausibly be 

made to fit into and cohere with the agent’s overall system of desires, 
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intentions, goals and values. […] It conflates the distinction between post 

hoc reasoning and confabulation, and makes episodes of explicit reason-

giving which are accurate indistinguishable from cases in which subjects 

merely come up with a “coherent fiction.” (Snow, 2006, p. 559) 

If we remain at the personal level we run the risk of not being able to distinguish 

proper explanations from pseudo-explanations of cognitive behaviour. Personal-level 

explanations need to be supplemented by information from lower-level of analysis, 

both to uncover what is constitutive of personal phenomena, and to explain, rather 

than redescribe, cognitive behaviour. 

 Before turning to purely subpersonal-level explanations, let me summarise the 

arguments I endorsed to claim that purely personal-level explanations are not good 

explanations of mental phenomena: 

 Subpersonal information can, and sometimes does, provide answers to 

constitutive why-questions about the nature of certain personal-level 

phenomena:  

o Kandel’s studies on learning have shown that the nature of 

sensitisation and classical learning are more similar than expected 

o Burge’s explanation of human perceptual experience needs to account 

for the capacity of objectified representation, which is understood as a 

conjunction of formation laws (defined by scientific psychology) and 

sensory data 

 Purely normative explanations run the risk of being nothing more than 

hermeneutic strategies 

o They can make people’s behaviour intelligible by placing it into a 

wider social, linguistic or evaluative context. Making people’s 

behaviour intelligible, however, doesn’t always mean explaining it, 

that is, identifying the real reasons for the behaviour 
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 Personal-level normative explanations can turn out to be pseudo-explanations 

of people’s behaviour 

 

 

 

4.4 – Subpersonal explanations 
 

In contrast to personal-level explanations, which are typically couched in the 

vocabulary of folk psychology, subpersonal-level explanations come in various 

forms. Subpersonal explanations can be expressed in the vocabulary of cognitive 

psychology, in terms of brain components and their activities, or in terms of 

biological and chemical functions. 

 In the remainder of this chapter, I analyse two subpersonal views with regard 

to mental phenomena: eliminativism and reductionism. I first consider Paul 

Churchland’s eliminativism and then John Bickle’s reductionism. I address the 

arguments for the goodness of explanations of mental phenomena couched purely in 

subpersonal neuroscientific terms, and I discuss whether these arguments are 

justified or not.  

 

4.4.1 – Churchland’s eliminativism 

 

“Our vocabulary of propositional attitudes should be viewed as a 

simplification of the underlying multidimensional-reality, a conceptual 

framework whose predictive and explanatory utility indicates not its 

accuracy, but the extent to which it abstracts away from and compresses 

the underlying complexity.” (Churchland, 1981, p. 129) 

Churchland’s famous paper “Eliminative Materialism and the Propositional 

Attitudes” is a manifesto for those who take an eliminativist stance towards folk 

psychology and believe that it should be replaced by neuroscience. 
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 The paper sets up a naturalistic methodological position: a person interested in 

understanding mental phenomena needs to recognise that the mind is a physical 

object and that a proper explanation of mental phenomena should place them within 

the natural realm.  

 Given this methodology, Churchland’s first and main critique of the goodness 

of folk-psychological explanations is that folk psychology doesn’t pick out anything 

real. Since mental states are not physical states, they are empty notions and, because 

folk psychology is based on mental states, folk psychology is false. This, in a 

nutshell, is Churchland’s eliminativist argument. 

 Churchland’s metaphysical position is materialism: mental states, like beliefs 

and desires, are non-physical entities. Only physical entities really exist in the natural 

world, hence we should eliminate the folk notions from the vocabulary we adopt to 

explain mental phenomena. There is nothing more to the understanding of the mind 

than understanding the brain. 

 The starting point in this debate consists in treating folk psychology as a 

theory. If folk psychology is a theory, then “it is at least an abstract possibility that its 

principles are radically false and its ontology is an illusion” (ibid., p. 72). 

 According to Churchland, however, for folk psychology this is not an abstract, 

but a very concrete possibility. Folk psychology is unable to explain many different 

cognitive phenomena, such as mental illnesses, creative imagination, individual 

intelligence differences, sleep, the ability to perform motor actions, memory, 

perceptual illusions and also learning. Failures in accounting for these phenomena 

show that folk psychology cannot explain all of mental life. 

 According to Churchland, the status of folk psychology should be reconsidered 

not only in light of its explanatory failures, but also in light of its stagnancy: folk 

psychology “is no part of [the] growing synthesis” (ibid., p. 75) because it hasn’t 

progressed since the ancient Greek times and, in contrast to other sciences such as 

evolutionary theory, biology, neuroscience and physiology, folk psychology’s 
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intentional concepts haven’t evolved since. Considering these and other features, folk 

psychology is an appealing candidate for elimination. 

 There are two immediate objections to this position, which Churchland 

considers in turn. 

 A first objection draws on the normativity of personal-level folk-psychological 

explanations: folk psychology is a normative theory and not an empirical theory. 

According to autonomy theorists, beliefs, desires and other mental states do not 

cause cognitive behaviour; rather, they are the reasons for them. Only empirical 

causal theories can be falsified by empirical data. Folk psychology is not an 

empirical theory, hence it cannot be empirically falsified. 

Churchland’s counter-argument consists in showing that the normative 

dimension of folk psychology should be understood from a naturalistic perspective. 

He argues that the existence of certain regularities among propositional attitudes 

doesn’t show that there is something normative about these regularities. In the same 

way in which we don’t attribute a normative character to the gas law’s regularities, 

we shouldn’t give a normative gloss to the folk-psychological ones. Indeed:  

“[…] logical relations between propositions are as much an objective 

matter of abstract fact as are arithmetical relations between numbers. […] 

A normative dimension enters only because we happen to value most of 

the patterns ascribed by FP.” (ibid., p. 82) 

The second line of critique that Churchland considers has to do with the abstract 

character of folk psychology.  

 Functionalists, like Fodor, claim that folk psychology should be understood as 

an abstract theory that doesn’t need to be informed by the nature of the brain. 

According to this view, folk psychology refers to states that are internal and that are 

characterised by what they do, by their reciprocal relations and by how they are 

connected to the inputs and the outputs of a given cognitive process. Given that each 

psychological state can be realised in multiple ways in the brain, we should maintain 
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that a functional characterisation plays an important role in explaining people’s 

behaviour even if it doesn’t mirror the structure and functioning of individual brains. 

 Churchland’s reply to this objection stresses the dependence of functional 

characterisations on implementational details. He argues that, if we highlight the 

functional role of mental states as a way of claiming that explanations of mental 

phenomena are independent from knowledge of the brain, then we are on the wrong 

track because this would amount to say that functional categories could never be 

false, which would be absurd. On the contrary, Churchland strongly believes that a 

good theory has to leave room for the possibility that the categories it identifies 

might be wrong. The explanatory failures of folk psychology make it a real 

possibility or at least provide reasons for remaining skeptical about its truth. 

 Churchland compares the folk-psychological functional concepts with the 

concepts employed in the past by alchemy. According to Churchland, in the same 

way in which alchemy was replaced by modern chemistry, folk psychology will be 

replaced by modern neuroscience: 

“[…] the correct account of cognition, whether functionalist or 

naturalistic, will bear about as much resemblance to [folk psychology] as 

modern chemistry bears to four-spirit alchemy.” (ibid., p. 82) 

To sum up, Churchland argues that: 

 Mental states are empty notions that do not belong to the natural world 

 Folk psychology can’t explain many cognitive phenomena, so it is not so 

predictive as we normally think it is 

 Folk psychology is stagnant and unproductive, and these are not features of 

good theories 

In the next section I will claim that Churchland’s arguments don’t justify the 

endorsement of eliminativism. 
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4.4.1.1 – Why not eliminativism? 

 

Churchland claims that folk-psychological concepts fail to refer. Given that mental 

states are the main components of the theory of folk psychology and that they are not 

real, folk psychology is false. Neuroscience, instead, identifies real entities and 

processes in the brain, hence it will provide proper explanations of mental 

phenomena. 

 As others have already noted (e.g. Gold & Stoljar, 1999), without a clear 

empirical confirmation for this claim, eliminativism risks remaining only an 

interesting but hypothetical position. Indeed, there are cases where folk psychology 

does not only play an important heuristic role in driving further research into the 

nature of cognitive phenomena (i.e. having a clear behavioural description of a 

cognitive behaviour is important to look for the possible neural mechanisms 

underlying it), but also a constitutive role in their explanations. 

 Consider the example of learning that I have discussed above with respect to 

the distinction between constitutive and enabling conditions. The first thing to notice 

is that Kandel’s low-level theory did not develop in a vacuum. Rather, the theory 

makes use of some psychological works, and, in particular, it draws on the 

psychological model of classical conditioning (e.g. Rescorla, 1968). In addition to 

this, the example shows, on the one hand, that certain findings at the lower-levels can 

shed light on important aspects of the explanandum phenomena that might have gone 

unnoticed at the personal-level of analysis, and, on the other hand, that certain 

personal-level notions figure in explanations of cognitive phenomena. Let me 

elaborate on this last point. 

From one perspective, we could say that Kandel and Schwartz (e.g. 1982) offer 

a purely neurobiologial explanation of classical conditioning in Aplysia according to 

which conditioning is a process where the contiguity between the conditioned 

stimulus (CS) and the unconditioned stimulus (US) transfers the response from the 
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former to the latter. This characterisation, however, doesn’t seem to properly explain 

the data.  

 In Rescorla’s first experimental setting (1968), a rat was exposed to a tone 

during a 2 minute interval (CS) and to an electric shock (US) at a later time within 

the same interval. In the second experimental setting, the electric shock occurred 

when the tone was presented. The results showed that only the rat that participated in 

the second experiment learned the association between the tone and the shock.  

 Interestingly, these results couldn’t be explained by making reference to the 

notion of contiguity as the accepted view of classical conditioning suggested (i.e. two 

stimuli occurred within a certain temporal interval — 2 minutes) because the CS and 

the US satisfied the contiguity requirement in both experiments. Given that 

conditioning happened only in the second case, something more was needed to make 

sense of these results. 

 Rescorla claimed that the extra-ingredient in the second experiment was 

information: conditioning learning could be explained by making reference to CS 

and US, but also to the notion of information, that is, by saying that the tone was 

providing information about the coming of the shock: 

“[…] in order to explain this effect […] one needs to appeal to a notion 

of information that is richer than the notion of low-level mechanical 

process in which the control over a response is passed from one stimulus 

to another.” (Gold & Stoljar, 1999, p. 824) 

Indeed, learning is a process where the difference between the actual state of the 

world and the organism’s representation of that state is reduced, which is a way to 

say that the organism learns when it can reduce its surprise. 

 It is hard to see how the concept of synaptic plasticity can capture the 

conceptual complexity of the notions of information and surprise. These are 

personal-level notions that characterise the behaviour of the whole organism: it is the 

organism that can use information and that reduces surprise via certain synaptic 
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mechanisms. Certain personal-level notions, then, remain present even in lower-level 

theories: 

“No matter how much we know about the causal intricacies at the 

molecular level, there is always this further question to be asked, namely, 

what are the causal mechanisms for, what is it that these mechanisms 

[…] are supposed to accomplish?” (de Jong & Schouten, 2005, p. 480) 

Can Churchland’s eliminativist claims convince us that folk-psychological personal-

level notions and explanations should be eliminated? My answer has been negative 

and here are the reasons I provided: 

1. Folk psychology is useful in driving further research and in setting up 

experiments to understand the nature of mental phenomena 

2. Certain personal-level concepts can be part of successful explanations of 

cognitive phenomena (e.g. the notion of information and not the lower-level 

notion of contiguity is required to explain conditioning learning) 

In the next section I will consider John Bickle’s subpersonal account. He argues that 

folk psychology cannot explain mental phenomena because it plays a purely heuristic 

role. His aim is to show that the causal role of high-level folk-psychological 

explanations of a range of mental phenomena is dropped once lower-level 

explanations of the same phenomena are found. 

 

4.4.2 – Bickle’s reductionism 

 

John Bickle (e.g. 2003, 2006, 2007) argues in favour of reductionism within the 

philosophy of mind. His main claim is that psychological concepts and kinds should 

be reduced to molecular-biological mechanisms and pathways, and he is confident 

that the reduction of mind to molecules is forthcoming in contemporary 

neuroscience. He admits that philosophers have been unable to notice these 

reductions and motivates this failure by saying that they were too focused on the 
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relationship between higher-level and lower-level explanations and too little on 

advances in molecular and cellular neuroscience. In particular, Bickle says, 

philosophers haven’t analysed the neuroscientific experimental practices that “bridge 

molecular pathway levels directly; and this practices are common to all recent 

empirical successes” (Bickle, 2006, p. 414). 

 He argues that lower-level explanations can explain mental phenomena in 

terms of their observable manifestations and their dependencies on molecular 

modifications and interventions. Certain molecular interventions, he claims, clearly 

show that behaviours and behavioural changes can be properly accounted in terms of 

changes in molecular activity in the brain. In particular, we are justified in 

concluding that certain molecular mechanisms are the mechanisms of, for instance, 

memory consolidation when we can:  

“[…] intervene causally at increasingly “lower” levels of biological 

organization in animal models and then to track the specific effects of 

these interventions on behaviour in widely accepted protocols for the 

cognitive phenomenon under investigation.” (Bickle, 2007, p. 230)  

Within Bickle’s account, “one only claims a successful explanation, a successful 

search for a cellular or molecular mechanism, or a successful reduction, of a 

psychological kind when one successfully intervenes at the lower level and then 

measures statistically-significant behavioural difference” (Bickle, 2006, p. 420). 

 If the interventionist strategy works by producing the expected behavioural 

change, then, according to Bickle, we can confidently say that we have explained the 

behavioural data directly, with no need to make use of intermediate levels (e.g. 

cognitive neuroscience, information processing, and so on). 

 Direct explanations are distinguishable features of Bickle’s reductionism with 

regard to the more classical interlevel reductionism: interlevels are simply not 

necessarily to reduce the mental phenomena to the molecular level. The role of 

higher-level theorizing is solely heuristic in the sense that “once [they] have served 
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their heuristic function — once the appropriate higher-level tool, theoretical 

assumptions, and experimental results have identified candidate cellular or molecular 

mechanisms scientifically — they give way to the strategy of ‘intervening 

cellularly/molecularly and tracking behaviourally’” (ibid., p. 428). 

 Bickle’s reductionism differs also from other possible readings of “reduction” 

in that it doesn’t require, or assume, that it is possible to explain cognitive 

phenomena in terms of lower-level laws or generalisations. He argues that in cellular 

and molecular neuroscience there are very few explanations that appeal to laws or 

generalisations: molecular biologists know how specific molecules interact in 

specific contexts, but they don’t provide explanatory generalisations for these 

processes. 

 In brief, Bickle’s reductionist arguments can be summarised in the following 

way: 

 Philosophers have underestimated the importance of experiments in 

molecular neuroscience because they were too focused on understanding the 

nature of interlevel relations 

 Molecular and cellular neuroscience show that behaviours and behavioural 

changes can be explained in terms of molecular activities: once we have 

operationalised a behaviour, we can intervene on certain molecular variables 

we believe are responsible for the behaviour and then measure the effects 

 Molecular neuroscience shows that behaviours can be explained directly with 

no need to rely on intermediate levels of analysis 

A close look at neuroscientific findings, however, seems to suggest that the direct 

link between psychology and molecular neuroscience that Bickle addresses is not so 

obvious. 

 A direct molecular explanation of a mental phenomenon depends, in Bickle’s 

account, on how researchers operationalise it. However, practice in science shows 

that different researchers tend to operationalise the same behaviour in different ways, 
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thus yielding different explanations of the underlying molecular mechanisms 

responsible for it. These differences seem to undermine Bickle’s claim that 

contemporary neuroscience has already provided examples of reduction. 

 In what follows I will analyse the consequences of Bickle’s reductionism by 

drawing heavily on Jacqueline Sullivan’s descriptions of the multiplicity of 

experimental protocols in neuroscience (2009). 

 

 

 

 

4.4.2.1 – Do we really have reductionist explanations? 

 

To understand the consequences of Bickle’s position, Sullivan discusses one of 

Bickle’s case studies: social recognition memory in mice and, in particular, the role 

that a specific protein (CREB) plays in it. Social recognition memory is generally 

operationalised in terms of the ability to recognise another individual after an initial 

interaction with it. 

 Bickle considers the experiments run by Kogan et al. (2000) as examples of 

reduction. Kogan and colleagues intervened on CREB to have mutant mice that were 

deficient in two isoforms of CREB and that had a reduced amount of CREB in their 

brains. They trained a group of mutants with a group of normal mice using a 

modified behavioural protocol associated with a previously developed learning 

paradigm. In their experiments, a normal mouse was placed in a cage with a mutant 

adult or with a normal adult already habituated to the cage for 15 minutes for a first 

interaction of 2 minutes. The experiments were then followed by 24 hours delay. 

After this period, the adult mouse was observed while socially investigating the new 

mouse. The types of behaviour that were considered cases of social investigations 

included: direct contact with the new mouse while inspecting any part of the body, 

sniffing of the mouth, of the ears, of the tail, of the ano-genital area and close 

following of the new mouse (within 1 cm). 
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 Kogan and colleagues found that, differently from normal mice, the mutants 

examined the new mouse in the same way even after the 24 hours intervals. They 

interpreted these results as signs of the inability of the mutant mice to encode in 

long-term memory the information necessary for the recognition task. These failures 

were associated to the CREB mutation. 

 Examples like this one show that it is possible to track behavioural changes by 

intervening on molecular variables; Bickle calls this methodology reduction-in-

practice. 

 Despite the appeal of Bickle’s proposal, there are at least two problems with 

his interpretation of Kogan’s studies. A first problem is related to the claim that these 

studies are examples of reduction-in-practice of social recognition memory; a second 

problem has to do with the more general reductive claim he endorses. 

Concerning the first problem and in contrast to what Bickle claims, 

neuroscientific experiments of the same phenomenon (e.g. social recognition 

memory) are quite diverse. This diversity makes experimental results difficult to 

compare and integrate:  

“Reduction-in-practice is something that occurs in an individual 

experimental laboratory when an investigator operationalizes a 

psychological function […] by developing a protocol that specifies how 

to produce that function […] and detect when it occurs, by reference to 

observable changes in behaviour […].” (Sullivan, 2009, p. 517) 

The experimental protocols can vary in relation to the duration of the exposure of the 

mutant mouse to the new mouse, in the interval duration or in the behavioural 

features that are supposed to mark the acquired capacity of social recognition. In 

most of the cases, different molecular mechanisms can be used to directly explain the 

behavioural data of that particular experiment, in that particular laboratory, obtained 

by following a specific experimental protocol. Relatedly, it is still an open question 

whether the operationalisations are appropriate given that researchers simply 
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“assume that the operationalizations […] are actually indicative of the function of 

interest” (ibid., p. 518). 

 The second concern is about Bickle’s more general reductionist claims. Bickle 

takes the ability of molecular neuroscience to directly explain certain cognitive 

phenomena as a sign of its ability to explain all cognitive phenomena. This follows 

from his general claim that higher-level explanations and notions have only a 

heuristic role in the discovery of the proper molecular explanations. Nevertheless, 

given the difficulty that the reductionist methodology already shows in relation to a 

single phenomenon and the fact that “at best what Bickle has achieved by appeal to 

experiments in molecular and cellular cognition is a case for many local “within-lab” 

reductions” (ibid., p. 519), the conclusion that the future of neuroscience will provide 

reductions for all cognitive phenomena in non-humans and in humans is 

unwarranted. 

 While Bickle believes that direct explanations can be offered by looking at 

practice in science, and in particular in molecular neuroscience, I have discussed 

some drawbacks of his account. Once we recognise that, on the one hand, it is not 

easy to describe the relation between a certain mental phenomenon and its 

underlying molecular mechanism, and that, on the other hand, lower-levels 

explanations do often bear the stamp of the higher-level ones (see for instance 

Kandel’s study above), we are forced to admit that higher-level notions and theories 

are not superfluous or purely heuristic as Bickle (and Churchland) wants to make us 

believe.  

 To sum up, a reductionist account doesn’t succeed in undermining the 

importance of personal-level concepts and explanations because: 

 Reduction of mind to molecules is not forthcoming in neuroscience and the 

reduction-in-practice example of social recognition memory that Bickle 

addresses doesn’t constitute a case of real reduction: 
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o The way in which scientists operationalise an ability varies and, as a 

consequence, different molecular mechanisms can be discovered for 

the same capacity 

 Even once we have a reduction of a mental phenomenon at the molecular 

level, it doesn’t follow that all mental phenomena will reduce to molecular 

phenomena directly 

 

 

 

4.5 – Conclusion 
 

Three different answers to the interface problem have been examined in this chapter. 

 Autonomist theorists provide a first answer by claiming that personal-level 

explanations are autonomous from subpersonal-level explanations. They argue that 

the two types of explanation aim at accounting for different phenomena: personal-

level explanations answer constitutive why-questions, while subpersonal 

explanations answer enabling how-questions. I claimed that their arguments don’t 

succeed for two main reasons: (i) subpersonal information can, and sometimes does, 

provide answers to constitutive questions; (ii) a normative explanation of a 

phenomenon runs the risk of being purely hermeneutic, but not explanatory. 

 I then analysed the materialistic approach according to which folk psychology 

is a false theory and its concepts are empty concepts that should be replaced by 

neuroscientific ones. I argued against this proposal by claiming that certain personal-

level concepts can figure in successful explanations of mental phenomena and that 

folk psychology is not false but needs to be enhanced. 

 The third and last position that I have considered is a reductionist position 

according to which mind should be reduced to molecules and neuroscience is already 

providing examples of reduction-in-practice. I claimed that neuroscientific practice is 

very diverse and that this limits even the possibility of local reductions, that is, 
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reductions of single mental phenomena. As a consequence, the claim that all mental 

phenomena will get reduced to molecular mechanisms is unwarranted. 

 The analysis of the distinction between personal- and subpersonal-levels of 

explanation that I have just offered suggests that both levels are needed to adequately 

explain cognitive behaviour. 
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Chapter 5 - Jose Luis Bermudez on Rationality and 
Reasoning 
 

 

 

5.1 – Introduction 
 

In the previous chapters, I argued that adequate explanations of why systems perform 

cognitive behaviour require the employment of the notion of representation. I also 

claimed that normative personal-level explanations can make behaviours intelligible 

but cannot provide good explanations of them and I suggested that an identification 

of the subpersonal mechanisms underlying cognitive capacities is necessary to justify 

the validity of personal-level claims. 

 In this chapter, I will consider a different take on personal-level folk-

psychological explanations by engaging with Jose Luis Bermudez’s account of 

rationality (2000, 2003, 2009). 

 I will first highlight the differences between his notion of rationality and that of 

autonomy theorists and I will then examine his arguments in favour of three different 

levels of rationality. I will argue that the two criteria for rational behaviour that 

Bermudez identifies (i.e. the behaviour results from a range of alternatives and the 

behaviour matches some normative standards) are inadequate to understand the 

nature of rational behaviour. I will show how adequate explanations of rational 
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behaviour are possible only once external behavioural criteria are complemented 

with internal mechanistic ones. Details about how information is encoded and 

manipulated inside the brain, I will claim, are essential to confirm or disconfirm our 

hypotheses about the role and nature of reasoning processes and, ultimately, to 

evaluate our hypotheses about how rationality is naturally possible. Throughout the 

chapter, I will also distinguish between “objective” and “subjective” utility, between 

adaptive and individual goals, and between instrumental components (and selection 

processes) and instrumental beliefs (and decision processes). 

 

 

 

5.2 – Personal-level explanations 
 

Before engaging with Bermudez’s account of rationality and rational behaviours, let 

me briefly recall the main features of personal-level normative explanations.
20

 

 According to folk psychology in general and to the so-called autonomy theory 

in particular, an agent’s behaviour is explained once its responsible mental states are 

identified. These states, which are characterised by their propositional content, are 

related via rationalising connections. An agent whose behaviour can be explained in 

this way is a rational agent. 

 While propositional attitudes are seen as the reasons motivating agents’ action, 

rational constraints allow to cut down the number of possible variations associated to 

an agent’s psychological profile (i.e. the combination of the agent’s beliefs and 

desires — Bermudez, 2009) and her consequent action. In particular, a behaviour is 

considered rational when it maximises a certain utility with respect to an agent’s goal 

and current environment. A personal-level folk-psychological explanation of a 

behaviour a typically takes the following form: if an agent s desires p and knows that 

by doing a she will get p, then s will, ceteris paribus, do a. 

                                                 
20

 For more details on personal-level normative explanations, see chapter 4. 
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 For a folk psychologist, rationality is linked to the ability to entertain a 

conscious inferential process by constructing an argument from premises (beliefs and 

desires) to conclusions (behaviour). Recently, however, there have been some 

interesting suggestions to reconsider the argument-form attributed to these processes. 

Hugo Mercier and Dan Sperber (2011) claim that the term “inference”, as it is 

normally used in psychology, refers to processes where new mental states are 

generated from previously held mental states. When inference is understood in these 

terms, the production of new beliefs on the basis of previous beliefs, the production 

of expectations on the basis of perception and the elaboration of plans on the basis of 

beliefs and desires become all cases of inference. If inference doesn’t necessarily 

need to be associated with a deliberate and conscious process and with the 

consequent ability to construct a valid argument, then it can be seen as a building 

block of not only conceptual thinking, but also of perceptual and motor processes.
21

  

 As I will show throughout the chapter, Bermudez (2003) addresses a similar 

claim. Although he stresses the importance of normative rational explanations, he 

believes that a behaviour can be internally and externally rational even if it does not 

result from a conscious inferential process. According to him, rationality can be 

attributed to non-linguistic creatures as well as to low-level behaviours (e.g. 

perception). 

 

 

 

5.3 – Bermudez on rationality 
 

Rationality is usually considered a normative notion that defines the way in which an 

agent ought to behave, while reasoning is a descriptive notion that specifies the 

                                                 
21

 The possibility of considering perceptual and motor processes already as instances 

of rationality has important consequences that will be considered later on in the 

thesis (see chapters 6 and 7). 
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process performed by an agent to behave rationally. Rationality and reasoning are 

both notions that belong to the folk-psychological vocabulary. 

 A folk-psychological account of rationality considers a behaviour rational (and 

the agent performing that behaviour a rational agent) if it results from a conscious 

inferential process.  

 Bermudez draws on folk psychology, but claims that a behaviour is rational as 

long as: (i) it results from a range of alternatives; (ii) it matches some normative 

standards. Organisms or agents can engage in inferential tasks even by relying on 

simple rules and heuristics. 

 Bermudez suggests three different levels of rationality. One level is only 

externally rational, while the other two are also internally rational. In his own words: 

“[The] assessments of internal rationality are relative to an agent's 

doxastic and motivational states, taking those states as given, while 

assessments of external rationality include assessments of the doxastic 

states underlying the action. To say that an action is externally rational is 

to say that it is in some sense appropriate to the circumstances in which it 

is performed, where those circumstances include the agent's motivational 

states—with different theories of external rationality interpreting the type 

of appropriateness involved here in different ways. The internal 

rationalizing connection between beliefs, desires, and actions allows the 

attribution of thoughts and desires to be genuinely explanatory. Beliefs 

and desires cause behaviour qua beliefs and desires (that is to say, in 

virtue of their content) because their contents rationally dictate a single 

course of action—or a limited number of possible courses of action. In 

the absence of such a rationalizing connection, there would be no reason 

why a belief-desire pair with those particular contents should cause that 

particular action.” (Bermudez, 2003, p. 110) 
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I quoted this passage at full length because it clarifies the distinction between 

external and internal rationality. It also shows that Bermudez somehow equates 

rationality with appropriateness in behaviour: we can assess if a behaviour of an 

agent is externally rational, he says, by judging whether it is appropriate given the 

current circumstances and the goal of the agent. To judge whether a behaviour is also 

internally rational, instead, we need to focus on the nature of the intermediary 

processes that lead from desire/goal to behaviour. The components of these 

intermediary processes have to be mental states or propositional attitudes, and they 

have to be linked by rationalising connections. These connections are equivalent to 

the rationality constraints I mentioned above: rationalising connections among 

beliefs, desires and goals cut down the number of possible rational courses of action. 

In Bermudez’s account, the rationalising connections don’t simply cut down the 

number of possible rational actions, but they also usually dictate, depending on the 

content of mental states, a single rational action. More generally, an organism can 

behave rationally if it has a space of possible alternative actions available. 

 Following the distinction between internal and external rationality, Bermudez 

identifies three rational levels: level 0, level 1 and level 2 rationality.
22

 

 

5.3.1 – Level 0 rationality 

 

Level 0 rationality characterises those behaviours that, according to Bermudez, do 

not require a psychological explanation. These are all sorts of automatic stimulus-

response behaviours, from reflexes to innate mechanisms, that don’t traffic in 

representations mediating inputs and outputs. 

 Consider the following level 0 rational behaviour. Imagine you are in a given 

context x at time t1. There is a flame next to you and you decide to move your fingers 

                                                 
22

 In Thinking without words, Bermudez considers the possibility that also non-

linguistic creatures can perform rational behaviours. I believe that the same reasons 

he uses to address and justify this possibility can also be applied to humans, 

especially when the phenomena to be explained are low-level ones. 
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close to it. As soon as you reach the fire, you immediately move your fingers away. 

According to Bermudez, your behaviour is an instance of level 0 rational behaviour: 

it is automatic, it might have evolved to preserve your species and it doesn’t involve 

any decision process. 

 All members of a same species perform the same level 0 rational behaviour 

given appropriate environmental conditions. For this reason, Bermudez calls these 

behaviours “dispositions”: a level 0 rational behaviour is a disposition of a species as 

a whole, rather than of any individual organism. 

 These dispositions are sort of genetic dispositions and they are called rational 

because, by performing in conformity to them, single organisms can successfully 

perform in their environment. If the organism had acted in conformity to a different 

disposition, its behaviour would have been less rational. 

 The behaviour described above doesn’t result from a deliberate choice: if we 

get close to the fire, we move away very quickly, without considering any other 

possible course of action. Nevertheless, Bermudez affirms that even this simple kind 

of behaviour is an instance of rationality: it is rational because it is adaptive and 

because it is appropriate with respect to the environment and to the goal of the 

organism. 

 Another interesting example is that of foraging behaviour. According to 

Bermudez, foraging behaviour is a level 0 rational behaviour because it is externally 

rational, that is, it allows animals to maximise their search for food. Indeed, a 

specific foraging behaviour can be explained in terms of an optimal foraging theory: 

it is one of a set of possible foraging behaviours and it can be compared with a 

normative standard (i.e. the maximisation of energy that the animal can obtain from 

food).
23

 

 To summarise, level 0 rationality can be assessed in relation to a behaviour on 

the basis of external criteria of rationality, which means that a behaviour is rational 

because its outcome matches some normative standard. Considerations about the 

                                                 
23

 For more details on level 0 rationality, see Bermudez (2003, pp. 116–120). 
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underlying processes are not relevant. In particular, a level 0 rational behaviour is 

rational even if it doesn’t result from any internal operation over representations. 

 

5.3.2 – Level 1 rationality 

 

Level 1 rationality applies to those cases where there is a set of possible behaviours 

available here and now to a specific organism, among which just one is selected, and 

where the selection does not result from a decision process.  

 Consider the case of an animal that is confronting a dangerous animal and that 

has to choose one of two possible behaviours: fight or flee. Bermudez argues that, 

although we wouldn’t say that the animal is engaging in any genuine decision-

making process, “there is a clear sense in which one of the two possible courses of 

action could be more rational than the other” (Bermudez, 2003, p. 121). 

 One of the two behaviours carries a greater advantage for the animal because it 

maximises a certain expected utility with respect to its goal. According to 

Bermudez’s account, if the animal’s behaviour maximises the expected utility, then 

the behaviour is rational. It is rational although it doesn’t result from a decision-

making process.  

 To clarify the difference between selection and decision processes, Bermudez 

draws on the Gibsonian theory of affordances (Gibson, 1979): in a selection process, 

an organism is able to select the most appropriate behaviour by relying on direct 

perception. In the example above, the animal selects fight instead of flee because it 

just “sees” that fighting is the most appropriate course of action. This means that: (i) 

the animal performs rationally by relying on vision alone; (ii) in cases of level 1 

rational behaviour, perception is direct (i.e. the animal not only perceives that 

something is in its environment – a dangerous animal – but also what it can do in 

response to it); (iii) the content of the animal’s perception corresponds to both the 

presence of a dangerous animal and the possible actions. 
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 Bermudez argues that an organism doesn’t need to represent affordances in any 

complex way because they stand for possibilities of actions that are already part of 

the content of perception itself. The comparison of these simple representations 

doesn’t require any decision-making process, that is, it doesn’t need to follow any 

step-wise procedure. Consider Fodor’s model of practical decision-making (1975); 

this model consists in different steps: 

1- The organism is in a certain situation S 

2- The organism believes that there is a set of possible courses of actions A1, A2, 

A3, …, An available in that situation S 

3- The organism predicts which consequence C would probably follow from 

selecting and performing each of the possible courses of actions (i.e. action 

A1 in S will probably yield consequence C1, and so on) 

4- The consequences are ordered in accordance to their preferences 

5- The organism will choose the action with respect to the probability and 

preference of its consequence in situation S 

An animal that is confronting a dangerous animal does not apply this form of 

decision-making process; rather, it relies only on the content of its direct perceived 

environment and affordances. The animal only “sees” what to do: it does not need to 

consider all the possible courses of actions, calculate the probability of their 

outcomes in a given context, and then perform the action that, according to this 

calculation, is likely to maximise a certain kind of expected utility.  

 Given this characterisation of level 1 behaviour, there is a clear sense in which 

affordances differ from mental states (e.g. beliefs and desires) within Bermudez’s 

account. To highlight such differences, Bermudez calls affordances instrumental 

components.  For an animal to compare the action of fighting with the action of 

fleeing, it only needs “representations of actions” (ibid., p. 123), which are not very 

complex and, he says, can be understood at a purely perceptual level. These 
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representations, or affordances, enable the animal to behave rationally by selecting 

the action that maximises the current utility.  

 The range of behaviours is here assessed with respect to a specific organism in 

its ontogeny (i.e. organism’s development) and not phylogeny (i.e. species’ 

evolution), as it was for level 0 rationality, and it is closely dependent on the here 

and now of the organism’s interaction with its perceived environment. 

 Capacities that are typically considered to be non-cognitive and non-rational, 

such as perceptual abilities, are examples of level 1 behaviours. Indeed, Bermudez 

offers an account of rationality that can embrace high-level but also low-level 

processes. Perception is rational, he claims, because it enables the organism to select 

the action that maximises a certain kind of utility. Perception, in particular direct 

perception, is the process through which the animal chooses the “best” and most 

context-appropriate behaviour. 

 Although the range of alternatives is limited to those afforded by the 

environment, this limitation, Bermudez says, does not affect the applicability of the 

notion of rationality; rationality can be applied whenever the behaviour is selected 

within a range of other possible behaviours, no matter how extensive and numerous 

that range is. 

 

5.3.3 – Level 2 rationality 

 

Level 2 rationality is different from the previous two types of rationality in that it 

identifies behaviours that result from genuine decision processes. For a process to be 

a decision process it needs to select a particular course of action on “consequence-

sensitive grounds” (Bermudez, 2003, p. 124). 

 For a behaviour to be selected on consequence-sensitive grounds, it means that 

it is selected for a reason. The reason involved is associated to the probability of the 

action's outcome: an organism decides when it has reasons to assert, given its goal 
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and current context, that a specific course of action can, better than others, maximise 

its expected utility. 

 Bermudez calls these reasons instrumental beliefs since they are 

representations of the contingencies that hold between a given action and its 

expected outcome and because they inform the cognitive system about how to 

behave to satisfy its goal in a given context. In this sense “to say that an action is 

being performed on consequence-sensitive grounds implies far more than it’s simply 

being performed because of its consequence” (ibid.). For a behaviour to be assessed 

at level 2 rationality, then, the organism needs to have a goal and instrumental beliefs 

(i.e. reasons to act in a certain way in order to satisfy a goal). 

 Level 2 rationality shares some features of personal-level explanations of 

rational behaviour. It considers an organism rational when it behaves in accordance 

with reasons, which link its beliefs and desires in rational and appropriate ways with 

respect to a given environment. An action is a level 2 rational action when there is a 

match between the action and the organism’s background beliefs. 

 In contrast to the folk-psychological account of rationality, however, Bermudez 

believes that representations of contingencies and their comparison do not 

necessarily have to be thought in terms of classical inferences. 

 Consider tool manufacture and tool-using behaviours. According to Bermudez, 

they are clear examples of level 2 rational behaviours because they depend on 

representations of contingencies between actions and their outcomes. Wild 

chimpanzees make wands for dipping into ants’ nests in one way and wands for 

dipping into termite nests in another way. The tool construction techniques involved 

in these two cases are different both in terms of the materials used and in terms of the 

processes adopted. Moreover, chimpanzees often decide how to construct their tools 

far away and well in advance with respect to where they are actually going to use 

them. This suggests that chimpanzees can predict the future and act in accordance 

with their predictions: tools that will be used to catch ants are different from those 

that will be used to catch termites. 
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 Although some people (Gould & Gould, 1998) think that even these 

behaviours are innate, as level 0 rational behaviours, Bermudez believes that they are 

good examples of behaviours that result from thinking processes, in which 

representations of contingencies are used. 

 Accordingly, instrumental beliefs and genuine decision processes enter the 

picture only when an animal can form a belief about the consequences that an action 

is likely to have. In particular, one of these two conditions needs to be met: 

 The organism should not be able to perceive directly the goal of the action 

 The organism should not immediately perceive that a certain action would 

yield the desired result (an animal can directly perceive a goal and still not 

know how to obtain it until it forms an appropriate instrumental belief for it) 

If neither of the above conditions is met, the organism does not need to rely on 

explicit beliefs but only on instrumental components, as it is in the cases of level 1 or 

level 0 rationality. 

 Bermudez maintains that the difference between level 1 and level 2 rational 

behaviours lies in the fact that in the first case instrumental components are the 

contents of perception already, while in the second case the organism has to create 

separate instrumental beliefs. This distinction becomes more evident when 

operational criteria are adopted. 

 

5.3.4 – The explanatory role of operational criteria 

 

Bermudez suggests that we can rely on operational criteria to prove that a behaviour 

is an instance of level 2 and not of level 1 rationality. 

 In operational terms, Bermudez says, a level 2 rational behaviour is typical of 

an organism that can modify its behaviour once contingencies in the environment 

change. If a given contingency between an action and its expected outcome ceases to 

exist, a level 2 rational animal should stop performing on the basis of that 

contingency and select a more context-appropriate behaviour. If, on the other hand, 
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an animal persists in behaving in a certain way even in the absence of a given 

contingency, then its behaviour belongs to level 1 and not to level 2 domain. 

 An example is the Rescorla and Skucy’s studies on rats (1969). This series of 

studies showed that rats trained to press a lever to get food ceased to press the lever 

if the food started to be delivered in correspondence to different circumstances. Rats 

were able to recognise that there was a contingency between lever-pressing and food 

delivery, and also that, from a certain time, that contingency didn’t hold anymore. 

According to Bermudez, rats performed level 2 rational behaviours. 

 Other examples of level 2 rational behaviours are those concerning actions that 

clearly go beyond the current available affordances. If an animal is able to decide not 

to act on the affordances that are directly available, it means that the animal is 

deciding on the basis of some kind of instrumental belief. This belief is such that the 

animal decides to take a different course of action than the ones afforded because the 

selected action is considered to yield the maximum expected utility with respect to 

its goal. In these cases, the instrumental belief (i.e. the representation of a 

contingency) informs the animal that if it performs a certain action it will probably 

get the maximum expected reward available.  

 Bermudez claims that these minimal operational criteria show when a 

behaviour is rational in terms of level 2 rationality and when it is rational in the sense 

of level 1 rationality. 

 

 

 

5.4 – Critical discussion 
 

5.4.1 – Level 0 non-rational behaviours 

 

I start discussing level 0 rationality that, according to Bermudez, applies to cases in 

which: 
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 We are considering an automatic stimulus-response behaviour: given the 

same input, the organism always responds with the same behavioural output 

 Level 0 rational behaviour doesn’t result from the manipulation of 

intermediary internal representations 

 Level 0 rational behaviour is a rational “genetic disposition”: the range of 

possible alternatives does not characterise a single organism, but a species as 

a whole that has adapted to follow rational rather than less rational 

dispositions with respect to the environment 

 Rationality at this level is external rationality as the focus is on behavioural 

outcomes 

 Rationality can be applied to a behaviour when there is a normative standard 

(i.e. the maximisation of some expected utility) against which it can be 

compared 

In what follows I will argue that level 0 rational behaviours are not instances of 

rationality by providing the following reasons: 

i. Level 0 rational behaviours do not require a psychological explanation 

ii. Level 0 rational behaviours maximise an objective kind of utility with respect 

to adaptive goals (i.e. survival and reproduction). This maximisation can be 

accounted for in terms of natural selection and adaptation 

For point (i), I argue that level 0 rational behaviours don’t require psychological 

explanations. As Bermudez himself affirms, psychological explanations are required 

only if behaviours cannot be predicted purely on the basis of sensory inputs: 

“[…] if one can identify a member of a given species and has some 

understanding of the innate releasing mechanisms characteristic of 

members of that species at the appropriate stage of development, then 

one will be able straightforwardly to predict what the creature will do 

when it registers stimuli of the appropriate type. Registering the relevant 

stimulus causes the appropriate response, and this can be fully 
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understood, explained, and predicted without any appeal to an 

intermediary between stimulus and response. Similar input-output links 

can be seen in the case of sensorimotor schemas and various types of 

conditioned behaviour. Psychological explanations of behaviour only 

become necessary when no such input-output links can be identified.” 

(Bermudez, 2003, p. 8) 

Since behaviours listed at level 0 rationality are behaviours that can be predicted on 

the basis of sensory inputs alone, they don’t require psychological explanations. If 

we are interested in understanding why we automatically move our fingers away 

from the fire when we get close to it, we don’t need to employ an explanation that 

refers to our belief that if we keep our fingers on the fire they will burn, nor to our 

desire to move away from there. We can “simply” explain our behaviour in terms of 

instincts: we move away our fingers quickly and automatically because our 

movements are guided by our natural instincts. This is a simple example of a hard-

wired behaviour (we know that, by observing another person getting close to the fire, 

that person will move away too) that is not peculiar to an organism, an animal or a 

person. A level 0 behaviour, therefore, doesn’t result from a space of alternatives 

available to the organism in the here and now of its interaction with the environment. 

The possibility of other courses of action can be appreciated only from a 

phylogenetic perspective: by observing the species’ evolution through time, we 

recognise that natural selection has provided the whole species with the foraging 

strategy that is adaptive for its survival in a certain environment. 

 With respect to point (ii), Bermudez argues that these behaviours are instances 

of rationality not only because they result from a range of possible other courses of 

action, but also because they match normative criteria. In particular, he claims, they 

maximise a certain kind of utility (e.g. the energy gained from food). 

 Utility is a quantity that depends on an organism’s goal. This means that 

understanding utility (as the normative criterion necessary to specify the nature of a 

given behaviour) requires getting clear on the nature of its corresponding goal. I 
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claim that the nature of utility in the case of level 0 behaviour makes it an inadequate 

benchmark to evaluate the rationality of behaviour.  

 Consider the case of an animal performing foraging behaviour. The animal’s 

goal is a typical adaptive goal: surviving. Achieving this adaptive goal requires the 

exploitation of natural tendencies that all living systems have. There is no clear sense 

in which we could understand this goal (and its related utility for the animal) as 

related to a space of alternatives and the performed behaviour as the result of an 

individual choice. Let us call the utility that is related to shared natural goals 

“objective utility”, and the utility that refers to individual specific goals (e.g. arrive at 

University as quickly as possible) “subjective utility”. 

 I argue that the first kind of utility cannot constitute a normative benchmark 

against which the rationality of behaviour should be evaluated: a behaviour that 

maximises an “objective utility” can be explained in terms of adaptation and natural 

selection. The notion of rationality would be explanatory redundant. Indeed, foraging 

behaviours are listed among the classical examples of adaptive behaviours. 

 Addressing the presence of adaptive trait is, instead, insufficient to explain 

behaviours that maximise “subjective utilities”. While natural selection can provide 

coarse-grained explanations of why animals have certain abilities, it can’t explain 

why a specific animal chooses a particular action instead of another in a particular 

context. Natural selection can account for why we have the ability to make decisions, 

but it can’t explain why it is the case that John chooses the shortest path to get to 

University. In other words, the notion of adaptation can explain and distinguish 

behaviours that are adaptive from those that are non-adaptive, but it doesn’t seem 

suitable to explain how a cognitive system behaves in specific circumstances. The 

achievement of individual goals often requires the animal to select a behaviour on 

the basis of an expected utility maximisation that depends both on her goal and on 

her background knowledge: the richer the knowledge and expertise, the wider the 

space of alternatives the subject can choose from. The bottom line is that for a 

behaviour to be rational it is not sufficient that it matches some normative standards 
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or that it is selected among a range of alternatives. It is first of all crucial to 

understand whether the standards are adequate benchmarks for comparison, and 

whether the space of alternatives is ontogenetically or phylogenetically determined. 

Given that external criteria are orthogonal to internal ones, I suggest that we are 

entitled to ask whether an adaptive behaviour is also a rational behaviour when: 

 The goal of an animal is not straightforwardly linked to survival or 

reproduction 

 The behaviour matches some normative standard 

 The utility that gets maximised depends on the animal’s goal and knowledge, 

hence it is subjective and not objective 

 The behaviour is one of a range of other possible behaviours available to the 

organism in a given context 

Drawing on the claims I have just made, my answer to Bermudez’s question: “are 

psychological explanations available all the way down the ladder of rationality, or is 

there a privileged level or levels of rationality below which psychological 

explanations is not possible?” (ibid., p. 128) is twofold. 

 First, I believe that the question already implies that it is possible to have 

rationality even when we are not dealing with behaviours that require a 

psychological explanation. As I have just argued, this assumption is misleading: if a 

behaviour does not require a psychological explanation and if it can be predicted 

solely on the basis of sensory inputs, then that behaviour is not a candidate of 

rational explanation. Rationality can enter the picture only when we are dealing with 

behaviours that cannot be predicted solely on the basis of information about the 

current environment. I have suggested elsewhere that explaining these behaviours 

often requires the employment of internal representations too (see chapters 2 and 3). 

 Second, I have provided arguments in favour of the idea that rationality cannot 

be applied to level 0 automatic, hard-wired, stimulus-response behaviours because 

they can be accounted for in terms of adaptive traits. 
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5.4.2 – Level 1 and level 2 rational behaviours: where is the 
difference? 

 

In contrast to level 0 behaviours, level 1 behaviours do require a psychological 

explanation and the space of alternatives is attributable to specific organisms. Level 

1 behaviours are: 

 Selected among a set of other possible behaviours 

 Closely dependent on the here and now of the organism in interaction with its 

environment 

 The result of selection processes 

 Selected on the basis of direct perception because the content of perception 

already contains information about possible courses of actions (the animal 

perceives affordances) 

In particular: 

 Selection among affordances is not decision among affordances  

 Selection among affordances is rational because it allows the animal to 

behave in a way that maximises a certain expected utility 

A case of level 1 rational behaviour is, as I have previously analysed, that of 

perception: it can’t be predicted from knowledge of sensory inputs alone because it 

results from a (limited) number of alternatives.  

 According to Bermudez, a behaviour is rational when it matches a normative 

standard and results from a range of alternatives, and a behaviour belongs to level 1 

domain when its underlying reasoning process traffics in representations of actions 

or affordances. When an organism perceives a scene, for instance, its perception is 

mediated by internal representations (i.e. internal instrumental components), which 

have a very simple content that already dictates a particular course of action.  

 The nature of the underlying process is central. Bermudez claims that, through 

a selection process that depends on the content of affordances, an animal chooses 
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which action should be performed to maximise the expected utility. Selection 

processes need to be kept distinct from decision processes because only the latter 

require the employment of beliefs. 

 With reference to the case of the animal confronting another animal, Bermudez 

claims that the choice between the two possible behaviours fight or flee “might […] 

be understood at a purely perceptual level. It is perfectly possible, and indeed highly 

likely, that the choice between such action-representations can be made on relatively 

simple and more-or-less noncognitive grounds” (ibid., p. 123). 

 My main concern here is on the nature of the processes underlying level 1 

behaviours. Bermudez claims that they result from selection and not from decision 

processes because they involve quite simple representations and do not necessitate 

the employment of any instrumental beliefs. To address this point, let me first 

summarise the main features of level 2 rational behaviours. 

 The central features of level 2 rational behaviours are the followings: 

 Behaviours that result from genuine decisions 

 Behaviours whose selection is made from a range of possible alternatives 

 Behaviours whose selection is made on reasons that are consequence-

sensitive  

 Reasons are called instrumental beliefs and they are representations of 

contingencies holding between an action and its expected outcome 

 The comparison of representations of contingencies is not inferential, but 

immediate and straightforward 

 These behaviours happen when organisms cannot directly perceive their 

goals in the environment or the courses of action that would yield the desired 

results 

 Operational criteria show that behaviours are level 2 rational behaviours 

when organisms change them with regard to changes in the contingencies 

between actions and desired results 
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Bermudez affirms that a genuine decision process does not need to confirm to 

Fodor’s step-wise model; rather, it needs to be made on consequence-sensitive 

grounds: an animal decides to perform an action because it has predicted that that 

action will lead to a greater utility (with respect to its goal and to the other possible 

actions). This means that the selection of an action in cases of genuine decisions 

depends on an organism’s ability to predict the consequences that different courses 

of action will have in a certain environment. 

 Making predictions, forming expectations and deciding in an anticipatory 

manner are peculiar features of organisms performing level 2 rational behaviours. 

Level 1 rational behaviours, on the other hand, do not involve instrumental beliefs 

because organisms immediately perceive how to satisfy their goals. 

 My first critique to the distinction between level 1 and level 2 rational 

behaviours concerns Bermudez’s assumption that affordances are not about 

contingencies between actions and their possible consequences in a given 

environment. Why does Bermudez claim that selection processes operating on 

affordances are made on non-consequence-sensitive grounds? Why can’t the 

distinction between the reasoning processes implicated in level 1 and level 2 rational 

behaviours be understood in terms of degree rather than kind? Indeed, selection 

among affordances seems to depend highly on the likely consequences of the 

different available behaviours. If the selection in a level 1 behaviour is goal-oriented, 

then it is also consequence-sensitive in the sense that the resulting behaviour will be 

the one that is expected to accomplish the goal. I therefore suggest that a level 1 

behaviour results from a selection that is sensitive to the goal of the animal and to the 

match between its expected consequences and the achievement of the goal. This 

process has to be explained in consequence-sensitive terms. So, where might the 

difference lie? 
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 Working within the Reinforcement Learning (RL) framework
24

, Daw and 

colleagues (2005) suggested that there are different neural mechanisms that 

contribute to action selection: model-based and model-free mechanisms. An animal 

working with a model-based approach can rely on its internal knowledge about the 

causal structure of the world to construct predictions on the fly of the long-term 

outcomes of various actions. This strategy, which can be computationally expensive 

in terms of the amount of memory and time required, allows the animal to react to 

changes in the environment in a straightforward way. A model-free strategy, instead, 

enables the animal to adjust to new contingencies only after it has acquired enough 

experience with the new environment. The difference between model-based and 

model-free strategies is similar to Bermudez’s difference between level 1 and level 2 

rational behaviours. 

 Daw and colleagues ran a series of experiments on rats trained to press a lever 

to obtain food. They found that they used different RL strategies in different 

circumstances: when animals were moderately trained on the task, their decisions 

were sensitive to outcome devaluation (i.e. reward value of food was reduced by 

either feeding the rats or by making the food poisoned), while their choice was 

insensitive to changes in contingencies when they were well trained on the task. 

Interestingly, the adoption of one of the two strategies varied on the basis of how 

time-demanding and complex the task was and on how trained the rats were on that 

task. 

 Generalising these empirical results, we can say that if an animal needs to 

choose an action in a time-demanding situation without previous extensive 

experience with that situation, then its selection will be based on instincts. In this 

                                                 
24

 The Reinforcement Learning (RL) framework offers models of optimal and 

approximately-optimal learning of which behaviour achieves a goal in face of 

uncertainty or rewards. In RL, the decision of which action to undertake is based on 

each of the possible available actions’ predicted values, which are defined in terms of 

the amount of reward that each action is expected to bring (see chapter 6 for more 

details on RL models). 
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case the animal’s behaviour is a level 0 non-rational behaviour. If, instead, an animal 

is not trained on the task but has time to select the action, as it is in the case of the 

rats in the example above, then it will be sensitive to changes in the contingencies 

(i.e. it will perform a level 2 (non-habitual) rational behaviour). 

 Other possible scenarios are those where an animal has been extensively 

trained in a given task. Here the complexity of the task is crucial. Daw and 

colleagues showed that if rats were adequately trained on a task where they didn’t 

have a wide range of possible actions to reach their goal (i.e. the task was quite 

simple), they remained insensitive to changes in contingencies until they acquired 

more experience with the new settings. Since they didn’t have a set of adequate 

habitual behaviours to bear on the situation, rats needed further training to learn that 

other responses to the environment were adequate with respect to their goal. If, 

instead, they experienced various possible courses of actions during their training 

period, all of which were adequate with respect to their goal, rats would be sensitive 

to devaluation. 

 Interestingly, level 1 behaviours do not correspond to any of the above 

scenarios: animals perform on the basis of model-based or model-free strategies in 

different circumstances and in relation to their degree of knowledge of those 

circumstances. The processes that are responsible for their behaviours are not 

different in kind; rather, they are different in the amount of time available, in the 

level of complexity and in the richness of the animals’ background knowledge. 

Contingencies between actions and their expected outcomes are in place in all the 

different situations, except when rats have no time to adequately consider the 

situation and no previous experience with the task. If operating on consequence-

sensitive grounds is what is required, in Bermudez’s account, for a behaviour to be a 

level 2 behaviour, then there seems to be no room left for level 1 rational behaviours. 

 Consider the following example. Imagine we plan to go to a park populated by 

many wild animals, some of which are bears. We decide to go with a friend who is 

familiar with the park. He tells us that we might encounter a bear and that, if this 
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happens, we shouldn’t be afraid: the bears living in the park are innocuous. We go 

and visit the park when, at a certain point, we turn around and find ourselves face to 

face with a bear. This is a situation where we clearly have little time to plan our next 

move. According to Bermudez, in this situation, we will select the action that, 

compared to others, is expected to maximise the current utility. We will probably 

have two alternative courses of action: confront the bear or run away. If our goal is to 

survive, we might select the running behaviour since it is the one that will maximise 

our expected utility. Our selection here, Bermudez would say, is not influenced by 

our background beliefs (e.g. our friend told us that the bears that live in the park are 

innocuous), but only by fear.  

 Consider now a slightly different scenario. We are in the park and we see a 

bear in the distance. We have some time to decide what to do before the bear gets too 

close to us. We might start thinking that, although we are scared and want to run 

away, our friend told us that these bears are not dangerous.  Instead of selecting 

between the two affordances, we might want to consider the possibility of letting the 

bear getting closer to take a memorable picture. 

 If we now compare the two scenarios, we see that they are similar in terms of 

their contexts, but different in terms of their goals. While in the first scenario the 

bear is too close for us to engage in a process where our background beliefs can 

actually make a difference, in the second scenario we can recall what our friend told 

us (i.e. the bear is not dangerous). In this second scenario, then, we could decide to 

wait and take a picture instead of automatically reacting to the situation by running 

away. Bermudez would explain the first case as involving a behaviour resulting from 

a selection among affordances, which are not consequence-dependent nor need to 

involve beliefs. Only the second case would be for him an instance of selection, 

hence of level 2 behaviour. Nevertheless, if we analyse the two scenarios, we notice 

that the difference between level 1 and level 2 behaviours (i.e. the difference 

between instrumental components, instrumental beliefs and processes operating over 

them) is more blurred than the one presented in Bermudez’s account. 
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 In the next section I will address some reasons why Bermudez might have 

misunderstood the distinction between level 1 and level 2 rational behaviours. 

 

5.4.2.1 – The methodological inadequacy of operational criteria 

 

Bermudez believes that the evidence that proves the difference between selection and 

decision processes comes from experimental results. He claims that the analysis of 

experimental data with the use of some minimal operational criteria, as he calls them, 

can distinguish a behaviour that results from genuine decision processes, hence a 

level 2 rational behaviour, from a behaviour resulting from selection processes, 

which is, instead, an instance of level 1 rationality.  

 He affirms that only a behaviour that changes once external conditions are 

different results from decision processes over instrumental beliefs about the 

contingencies between actions and their consequences. On the contrary, a behaviour 

that doesn’t change once external circumstances change is an instance of selection 

processes over instrumental components (but not instrumental beliefs). Interestingly, 

Bermudez claims that organisms operate over internal components in immediate and 

straightforward ways in both cases.  

 The point I want to make in this section is that external criteria are not 

sufficient to explain the nature of rational behaviour. In particular, I claim that 

behavioural criteria can guide the search for explanations of rational behaviour, but 

that additional information concerning the nature of the internal and underlying 

reasoning processes is necessarily to say whether a behaviour is similar or different 

to another one, whether two behaviours are of the same kind or not, and whether they 

are instances of rationality. 

 What operational criteria can show is that there are some differences in 

behavioural outcomes and that these differences might be due to distinct processes: 

one kind of process that operates on simple forms of representations and on a 

restricted set of alternatives (i.e. selection processes), and another type of process 
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that requires the comparison of more complex and numerous representations (i.e. 

decision process). Bermudez claims that the second kind of process happens when 

the goal is not immediately perceivable by the organism or when the organism does 

not immediately know which is the most appropriate action. 

 Nevertheless, we could explain these results without invoking the existence of 

two different underlying reasoning processes, but only a difference in terms of their 

complexity and in terms of the components used. In the same way in which 

Bermudez himself justifies the rational nature of a level 1 behaviour even if the range 

of alternatives is limited and the nature of the representations employed is simple, we 

could hypothesise that the difference between a level 1 and a level 2 behaviour is in 

terms of the number of actions available to an organism and of the complexity of the 

representations involved. Accordingly, they would not involve two distinct kinds of 

processes. As I argued in the previous section, it could be the case that when an agent 

needs to behave in a very fast way in reaction to the environment, her behaviour is 

more dependent on instincts than on background beliefs. If this were the case, then, 

the behaviour would simply be an instance of level 0 rationality: it would result from 

a hard-wired mechanism that natural selection has offered us to cope with the 

environment. 

 

5.4.3 – Only a terminological disagreement? 

 

Someone might think that my point of contention is purely terminological: since 

Bermudez has clarified the notion of rationality he employs in his analysis and since 

he is consistent with his definition, we can agree with his conclusions too. 

I want to resist the idea that my criticisms of Bermudez’s analysis of the notion 

of rationality are purely terminological. 

 First, I believe that to make progress in our understanding of rationality we 

need to agree at least on some minimal criteria for a behaviour to be rational. Having 

a space of alternatives and matching some normative standards, however, are too 
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general criteria for rational behaviour. We could, for instance, end up listing as 

rational a behaviour for which the notion of adaptation can do the explanatory work 

already. As I claimed in 5.4.1, applying the notion of rationality to hard-wired and 

instinctual behaviours does not offer any explanatory gain over and above that 

provided by evolutionary explanations in terms of adaptive processes. 

 I also believe that a clearer idea of what rationality might amounts to is 

necessary to avoid certain ambiguous conclusions about the nature of cognitive 

behaviour. Consider the conclusions that Bermudez draws from the idea that the 

reasoning processes involved in both level 1 and level 2 rational behaviours are not 

inferential in nature. Starting with this premise, Bermudez concludes that rationality 

does not have to be considered in terms of the ability to constructs arguments or in 

terms of the ability to employ strategies and inferences prescribed by rational 

theories. According to him, a behaviour is optimal because it can be modelled in 

terms of expected utility theory (and it can be compared to standards) even if it 

doesn’t result from its application. The foraging behaviour mentioned above is such 

an example: an animal behaves in a way that maximises the energy gain from food 

not because it has previously and internally calculated which action would have been 

optimal given its goal and the current environment, but because it follows simple 

(and innate) rules and heuristics. An example of a level 1 behaviour that is externally 

rational because it can be modelled according to a theory of expected utility, but 

whose outcome does not result from the application of such a theory, is the case of 

the animal that is confronting a dangerous animal. Here, Bermudez claims, the 

selection of one of the two courses of action, fight or flee, is based on direct 

perception, that is, on a simple heuristic that allows the behaviour to be fast and also 

appropriate. The animal does not calculate utilities. All the relevant information is 

already present in the context of perception. In these cases, appropriateness is 

understood as a matter of an animal straightforwardly acting on a given instrumental 

component or belief. 
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 From his analysis of the reasoning processes implicated in the different rational 

behaviours, he concludes not only that there are behaviours which are rational and, at 

the same time, non-cognitive or not based on decision processes, but also that we are 

able to apply models and theories to assess the rationality of a behaviour even though 

that behaviour does not result from the application of those models and theories at 

all. Rationality, Bermudez argues, can be achieved even if the behaviour in question 

does not conform to the strategies prescribed by classical rational theories. He then 

goes on to argue that rational calculations are too complex and demanding given 

humans’ cognitive limitations and that experimental data show how, in many 

reasoning situations, human performance deviates from that expected on the basis of 

classical rational theories. Humans, Bermudez (2000) claims, do not follow 

strategies and inferences prescribed by such theories. The reasoning processes used 

in these tasks are not imperfect applications or approximations of techniques 

prescribed by rational theories because they are not their application at all. 

 This claim is in line with the proposal according to which our rationality is 

bounded. Advocates of bounded rationality or of the so-called “ecological standards 

of rationality” (e.g. Gigerenzer et al., 1996, 1999, 2000; Evans & Over, 1996, 1997) 

offer an account of reasoning and rationality in terms of heuristics and biases. In 

contrast to classical rational analysis according to which rational explanations consist 

in the specification of a goal and the environmental and in the subject’s ability to 

derive an optimal solution to achieve that goal in that environment (Anderson, 1990), 

advocates of bounded rationality believe that cognitive systems are limited and 

unable to derive such optimal solutions; rather, they perform in ecologically 

successful ways by relying on fast and frugal heuristics. By stressing the effects of 

natural cognitive limitations on classical theories of rationality and reasoning, they 

argue that concepts of logic, decision-theory and probability do not match naturally 

with the strategies that humans employ in everyday reasoning tasks. The role of 
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inferences should be assessed in terms of their ecological success in dealing with the 

world.
25

 

 Bermudez’s proposal seems to be in line with these ecological accounts. He 

claims that once we pay attention to the nature of the underlying reasoning processes, 

we recognise that behavioural success can be achieved by employing strategies that 

are different from those prescribed by classical rational theories. Which are the data 

Bermudez relies on to draw this conclusion? 

 As I previously discussed, Bermudez argues that rationality is a matter of 

heuristics rather than inferential processes by relying on operational criteria: if the 

animal chooses differently once the circumstances are changed, then the animal can 

recognise and internally represent the presence or absence of specific contingencies 

between actions and their outcomes. Nevertheless, as I have argued above, relying 

only on operational criteria is a too weak strategy to justify the distinction between 

level 1 and level 2 rational behaviours. If my argument there was sound, then, the 

central distinction between affordances and instrumental beliefs and that between 

selection and decision processes can be put into question. 

 I have shown some possible consequences of drawing conclusions about the 

nature of behaviours and about their underlying processes before we actually have 

enough relevant information about them. We might end up claiming that all rational 

behaviours result from strategies that do not have anything in common with those 

prescribed by classical rational theories or that we have explained a behaviour once 

we are able to predict it. It is therefore important to recognise that explanations that 

                                                 
25

 However, consider the distinction between rational calculation and rational 

description (see Chater et al., 2003). In contrast to what advocates of ecological 

rationality argue, it is plausible to claim that classical rational theories do have an 

important explanatory role, but only as normative criteria. This would mean that, 

given that the complexity of optimal calculations would exceed cognitive systems’ 

real capacities, rational theories do not provide information about the computations 

actually carried out by cognitive systems. The real processes that operate in real-life 

reasoning processes only approximate those predicted by rational theories.  

Nevertheless, saying that classical theories can only be approximated does not deny 

their usefulness in accounting for rational behaviours. 
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derive only from external criteria cannot be considered adequate explanations. By 

adopting them we run the risk of interpreting behaviours in a way that is too 

dependent on our a priori commitments.  

 Accordingly, Bermudez’s three levels of rationality can’t be taken for granted 

and the explanatory power of purely personal-level stories about rationality and 

reasoning can be put into question. As seen in the previous chapter, autonomy 

theorists believe that personal-level folk-psychological explanations are necessary 

and sufficient for explaining and predicting others’ people behaviours as they 

approximate to an ideal of rationality. Their hypothesis is that we can understand and 

predict others’ behaviours to the extent that we can understand the inferential 

relations between their mental states and their actions (e.g. Davidson, 1980). 

According to autonomy theorists, only personal-level explanations can properly 

account for human rationality and we do not need to know much about the particular 

underlying machinery of such capacity. Once again, the evidence here comes from 

external observational criteria. 

 As claimed in chapters 1 and 4, good explanations of rational behaviours can’t 

proceed only at the personal or external observational level. Operational criteria and 

rational expectations are not sufficient for explanation. What makes a process a 

reasoning process can’t be simply derived from behavioural outcome. Rather, we 

need to complement the external perspective with an internal study of the processes 

in question. If there are indeed different components and if these different 

components are actually employed in different processes, then these differences 

should map onto the structure that makes them possible. Only once these differences 

are shown not only at the functional but also at the structural level, we can conclude 

that they actually exist. 

 Mechanisms are, therefore, necessary: a complete explanation of a capacity in 

terms of functional properties requires the identification of structures that possess 

these properties. This means that the distinction between instrumental components, 

beliefs and desires — if real — has to constrain the mechanism in the sense that 
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distinctions between these representations and distinctions between the ways in 

which they are processed should be found at the level of the brain. At the same time, 

the identified mechanism should constrain the functional analysis of the capacity: the 

representational formats and the operations on them should vary depending on how 

the mechanism handles their distinctions.  

 Accordingly, whether a system implements a certain process instead of another 

one and whether it contains instrumental components or instrumental beliefs is also a 

matter of its structural features. Information about structural components, their 

organisation and their activities have to be found at the subpersonal-level of analysis. 

It is only once we recognise that subpersonal-level states and events are important to 

understand rationality constraints that we start asking about those specific 

mechanisms that underlie the behaviours that we call, from a normative perspective, 

rational. Given that Bermudez’s three levels are characterised by the same rational 

standard — the maximisation of a certain kind of utility — what distinguishes them 

is the way in which “appropriateness” is calculated and achieved. Although 

Bermudez recognises this important distinction, the methodology he adopts is 

inadequate because it remains at a purely functional and behavioural level: he 

identifies internal components on the basis of their functions within the system and 

with respect to certain behaviours. He does not dig deeper into the structural nature 

of these components. Whether affordances and instrumental beliefs are the 

responsible components of different processes and whether they are actually 

processed in different ways can be ultimately proven only once we have information 

about the structural components that implement these supposedly different functions. 

Indeed, we already have some insights about rational processes in humans that do 

seem to follow the strategies prescribed by rational theories, and, in particular, 

Bayesian rational theories (see chapters 6 and 7). 
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5.5 – Conclusion 
 

To summarise, my main concerns with Bermudez’s accounts of rationality are the 

followings: 

 Level 0 rationality does not identify rational but only adaptive behaviours 

 The very distinction between level 1 and level 2 rationality is unclear: 

o Affordances, as well as instrumental beliefs, seem to be consequence-

sensitive 

o Bermudez justifies the distinction between affordances-based 

processes and instrumental beliefs-based processes solely on the basis 

of operational criteria 

 Operational criteria are not methodologically strong enough to establish the 

nature of reasoning processes since they consider only behavioural outcomes 

and how these outcomes are affected by environmental changes  

 Conceiving the nature of reasoning processes that yield rational behaviours in 

terms of fast and frugal heuristics on the basis of operational criteria is 

unwarranted 

 Claiming that in real-life reasoning situations humans do not follow strategies 

and inferences prescribed by rational theories because this is what some 

experimental results show is not enough to conclude that humans do not 

follow these strategies at all 

 A functional analysis of the capacity to perform in context-appropriate ways 

needs to be supplemented and constrained by information about the 

subpersonal states and events responsible for that capacity 

 Personal-level explanations cannot stand on their own. In order to offer an 

adequate explanation of a capacity, a mechanistic story is necessary too.  

For all these reasons, I think that Bermudez’s conclusions are too quick. I showed 

that he doesn’t have enough information to support the idea that human rationality is 

only a matter of heuristics and biases. I argued that information about subpersonal 
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mechanisms are required to genuinely explain why humans (and other animals) are 

often context-appropriate in their responses to the environment.  

 In the next chapter I will examine more closely the explanatory gain that 

derives from taking on board subpersonal information in the explanation of 

behaviour. 
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Chapter 6 - The Bayesian Neurocomputational 
Framework 
 

 

 

6.1 – Introduction 
 

So far I have analysed three different frameworks adopted to explain cognitive 

behaviour: the folk-psychological, the anti-representational and the physiological 

subpersonal frameworks. 

 With respect to folk-psychological explanations, I argued that: (i) their main 

goal consists in making behaviours intelligible rather than in explaining them; (ii) 

they appeal to an unclear notion of cause. 

 Regarding anti-representational explanations, I highlighted that they are more 

suitable to describe how a system’s behaviour changes over time rather than to 

explain how a system performs a certain behaviour in the first place. This results in 

mathematical formalisations of a system’s performance that bear little or no 

biological plausibility. Indeed, such plausibility, I argued, depends on the 

identification of localised mechanisms, which is not the focus of anti-

representational explanations. 

 Concerning physiological subpersonal explanations, I argued that they cannot 

adequately explain cognitive behaviour because certain personal-level notions are 
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required to explain cognitive phenomena and because neuroscientific practice 

doesn’t provide evidence for the possibility of reductions of mental phenomena to 

molecular phenomena. 

The goal of the current chapter is to examine the neurocomputational 

framework by analysing a family of models — the Bayesian models — that belong 

to it and their application to the study of different cognitive phenomena. 

 

 

 

6.2 – The neurocomputational framework 
 

Neurocomputationalism is a framework of explanation adopted to study human 

behaviour that considers the brain as a processor of information and cognition as a 

result of neural computations: humans perform cognitive tasks because they process 

internal representations in certain ways. 

 Neurocomputational explanations are special kinds of subpersonal explanations 

that try to explain why humans perform cognitively in light of the various ways in 

which the nervous system copes with its environment. This makes the 

neurocomputational methodology different from the standard procedures in 

psychology and cognitive psychology: rather than studying behaviour independently 

of knowledge of the brain
26

, the neurocomputational framework aims at uncovering 

the internal structure of the processes underlying various cognitive performances 

and, in particular, the internal biological components responsible for certain 

behavioural outcomes. Neurocomputationalism tries to achieve these results by 

suggesting mathematical models and by relying on simulations. It first identifies the 

task a subject needs to perform and it then suggests a possible way in which she can 

                                                 
26

 In standard psychology and cognitive psychology, experiments are designed to 

measure and identify only behavioural information (i.e. reaction times, patterns of 

errors, and so on). This information is then used to understand the nature of the 

underlying cognitive processes. 
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carry it out. This way is defined in terms of algorithms that, if executed, should yield 

the desired behavioural response. 

 The neurocomputational methodology follows the basic assumption that if a 

system has a certain property, then that property is not a basic fact about the system, 

but depends on the nature and organisation of its components parts (e.g. Glennan, 

2010). This methodology has benefited from the rise of new techniques for the study 

of the brain (e.g. fMRI and PET), which has allowed researchers to envisage a future 

where both functional and structural features (e.g. specific brain areas, neurons, 

populations of neurons, neurotransmitters, synaptic connections, and so on) of 

cognitive processes could be uncovered. The hope is that these (and other) 

techniques will help the identification of possible correspondences between stages of 

information processing responsible for a specific cognitive phenomenon and 

repeatable events at the level of the brain. 

 At present, only tentative bridges between neurocomputational models and 

brain processes have been suggested with respect to quite simple perceptual and 

motor tasks, but researchers expect that more bridges will be discovered in the 

future. 

The novelty of the neurocomputational framework can be better understood 

within the three-level framework laid out by David Marr (1982). Marr’s framework 

specifies the computational task that the system needs to solve together with a class 

of rules or algorithms that can be responsible for the system’s success in the task. It 

also suggests ways to uncover the implementational nature of the cognitive process 

by relating informational stages to biological transactions among neurons and 

population of neurons. As I will show in the current chapter and, especially, in the 

next chapter, the simultaneous focus on computational, algorithmic and 

implementational levels makes the neurocomputational framework apt for co-

evolution. This means that information at different levels can interact and constrain 

each other, eventually leading to modifications of some of the categories that we 

normally adopt to explain and understand cognition and behaviour. In the words of 
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Patricia Churchland (1986), co-evolution is a fruitful framework within which our 

understanding of brain and mind “may need to be revised, and the revisionary 

rationales may come from research at any level” (ibid., p. 746). 

 Neurocomputational explanations make reference to brain components and to 

the transformation of information among neural populations. They suggest possible 

ways in which neural processes might encode, use and transform information in 

terms of neural computations (i.e. transformations of neural spike trains according to 

algorithms). It is by describing how neural components encode information and how 

they interact with other components to transform this information that 

neurocomputational explanations aim at accounting for how cognitive functions and 

behaviours are generated within a cognitive system. 

 In the rest of the chapter I will examine the neurocomputational framework 

mostly by analysing one of its families of models —  Bayesian models —  and their 

way of accounting for various cognitive phenomena. 

 

 

 

6.3 – The Bayesian neurocomputational framework 
 

We access the world through our senses, which are our main sources of information. 

Sensory information, even though vital for successful interactions with the world, is 

often noisy and ambiguous. Not only is sensory information ambiguous, the world 

often presents itself in quite uncertain modes too. The same object seen from 

different perspectives, for instance, will yield different sensory information and the 

same sensory information can be caused by different environmental states. 

 How can we overcome these ambiguities and extract information about the 

state that obtains in the world? How can we select actions appropriate to the current 

circumstances and to our goals on the basis of noisy and uncertain data? 

 The task of the brain might seem impossible at first: it must infer information 

about the likely causes of its sensory inputs without any direct access to them. All 
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that the brain “knows” is the way in which its own states (e.g. spikes of neurons) 

flow and modify. 

 The Bayesian neurocomputational framework suggests a possible way in which 

this uncertainty can be handled, thus allowing agents to behave successfully in the 

world. The main hypothesis at the heart of Bayesianism is that cognitive agents use 

some rule (or approximate rule) when perceiving the environment, making decisions 

and performing actions. In particular, the claim is that the main goal of our nervous 

system is to infer the cause of its sensory inputs by relying on ambiguous and noisy 

sensory information and internal generative probabilistic models of the relevant 

variables in the environment causing the sensory stimuli. Internal probabilistic 

models are then tuned by learning and experience via the interactions of the agent 

with the environment. 

 The process of making informed guesses about the causes of sensory 

stimulation and updating those guesses based on new evidence is called Bayesian 

inference, and it results from the execution of Bayes’ rule: 

 

P(H|S) = P(S|H)P(H) 

               P(S) 

 

Bayes’ rule indicates a way in which the nervous system can update the (posterior) 

probability [P(H|S)] that a certain hypothesis (H) is true given the sensory data (S). 

Accordingly, Bayesian inference is possible by multiplying the probability of the 

sensory data given the hypothesis (likelihood) with the probability of the hypothesis 

(prior), divided by the probability of the data. 

 Advocates of the Bayesian neurocomputational framework believe that the 

cognitive system combines uncertain information about stimuli with prior 

information in a way that accounts for their uncertainty. This means that the internal 

representations over which Bayesian computations are performed need to encode 

both the value and the uncertainty of the stimuli. The estimation of the uncertainty of 
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the sensory stimuli modifies the weighting of prediction-error, which, in turn, 

impacts the higher levels of the hierarchy (see 6.5). In other words, generative 

models must include what Jacob Hohwy calls “precision expectations”: context-

based assessments of the reliability and salience of the sensory information itself. 

Precision-expectations allow the system to require precise prediction-error signals on 

some occasions and less precise prediction-error signals on other occasions. In 

Hohwy’s words: 

“Prediction error that is unreliable due to varying levels of noise in the 

states of the world is not a learning signal that will facilitate confident 

veridical revision of generative models or make it likely that selective 

sampling of the world is efficient. Prediction error minimization must 

therefore take variability in prediction error messaging into consideration 

– it needs to assess the precision of the prediction error.” (Hohwy, 2012, 

p. 4) 

According to this framework, our cognitive system can be described as a 

combination of top-down and bottom-up signals. Top-down signals are the prior 

expectations about the state of the world before the system receives sensory 

information [P(H)], while bottom-up signals are the sensory information conditional 

on the priors [P(S|H)].  

 Priors heavily influence what agents perceive and represent by constraining the 

way in which sensory information is processed. Predictions about current 

environmental cues are then selected according to the best model the system has of 

the possible causes. 

Learning is driven by mismatches between bottom-up and top-down signals: if 

there is a mismatch between the prior expectation and the bottom-up sensory signal, 

the prior gets corrected using Bayes’ rule within a cascade of cortical processes 

where the higher levels attempt to predict the input at the lower levels on the basis of 

their current model of the causal structure of the environment. 
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 The signal of the mismatch is called prediction-error. Changing the priors via 

prediction-errors coincides with changing the predictions about the causes of the 

lower-level activities. 

 To get clear on Bayesianism, and on the neurocomputational framework more 

in general, consider the case of perception. 

 It is now widely accepted that perception takes place along a cascade of many 

processing stages over cortical areas arranged in a hierarchical structure. According 

to the Bayesian neurocomputational framework, neural activations produced by 

sensory inputs from the current visual scene belong to the lowest level of the 

hierarchy. These inputs are processed along a cascade of multi-level stages, where 

each level tries to predict the activity at the level below it via top-down (backward) 

connections. Top-down influences allow the activity at one stage to become input to 

a lower-level stage. As long as top-down signals successfully predict the lower-level 

activity, no update or modification is required. If, instead, the top-down predictions 

don’t match the activity at the lower level, a prediction-error signalling the 

inappropriateness of the prediction with respect to the current activity is generated 

and propagated to the higher levels. This is the situation where the hierarchical 

model needs to be updated: probabilistic representations at the higher levels are 

modified to allow the next top-down predictions to cancel the prediction-error and to 

yield an appropriate perceptual inference. 

 An example of these models at work is Rao and Ballard’s model of visual 

processes (1999). The visual cortex is here characterised in terms of top-down and 

bottom-up signals. In particular, it has been suggested that area V2 in the visual 

cortex might send top-down predictions of the activity in V1, and that V1 might send 

bottom-up error signals to V2. 

 These ideas have been tested on a hierarchical neural network, showing that it 

could successfully predict the external causes of the sensory inputs by computing 

algorithms that reduced prediction-errors within a cascade of processing stages. The 

network also showed that each level in the hierarchy could deal with different 
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features of the cause: lower-level stages could encode simple features of the stimulus 

(e.g. the object’s orientation), and higher levels could encode more general and 

abstract features of it (e.g. the object’s larger spatial configuration). 

 In this network, at the lowest level, there is some pattern of energetic 

stimulation produced by the patterns of light in the current visual scene. These 

signals are then processed via a multilevel cascade where each level attempts to 

predict the activity of the level below. The predictions allow the activity at one level 

to become the input to the level below. As long as the predictions are successful, no 

further action is required. If, instead, there is prediction-error, the error-indicating 

activity gets propagated higher up in the hierarchy. This process adjusts the 

probabilistic representations at the higher level so that the following predictions can 

cancel the prediction-error at the lower level. As Rao and Ballard put it: 

“The prediction and error-correction cycles occur concurrently 

throughout the hierarchy, so top-down information influences lower-level 

estimates, and bottom-up information influences higher-level estimates 

of the input signal. Lower levels operate on smaller spatial (and possibly 

temporal) time scales, whereas higher levels estimate signal properties at 

larger time scales because a higher-level module predicts and estimates 

the responses of several lower-level modules […].” (Rao & Ballard, 

1999, p. 80) 

Rao and Ballard specifically worked on a three-level hierarchical network of 

predictive estimators, which was trained on image patches extracted from five 

natural images (see Figure 1).  
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Figure 1: General architecture of the hierarchical predictive coding model. At 

each hierarchical level, feedback pathways carry predictions of neural activity at 

the lower level, whereas feedforward pathways carry errors between the 

predictions and actual neural activity. These errors are used by the predictive 

estimator (PE) at each level to correct its current estimate of the input signal and 

generate the next prediction. (Rao & Ballard, 1999, p. 80) 

 

 

Using learning algorithms that progressively reduced the prediction-error across the 

cascade of processes, the network successfully learned to use the responses of the 

first level to infer features of the natural scenes, such as oriented bars and edges. The 

second level, instead, learned to capture the various combinations of features 

represented at the lower level. These combinations corresponded to patterns 

involving larger spatial configurations (see Figure 2). This means that the network 

was able to construct a generative model of the structure of the sensory information 

by relying only on the statistical properties of such information. 

 These were early and relatively low-level results, but the learning model itself 

has proven useful and highly applicable. Further studies (Knill et al., 1996; Knill & 

Pouget, 2004; Friston & Stephan, 2007) have shown that people seem to perform in a 

manner similar to Bayesian models in a wide range of perceptual and motor tasks. 
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Figure 2: (a) First bottom level that represents basic features of natural scenes, 

such as oriented bars and edges. (b) Second higher level that represents larger 

spatial configurations of features of the stimuli. (c) Another image of the 

representing activity of level 1. 

 

 

6.3.1 – Binocular rivalry 

 

Hohwy and colleagues’ hierarchical predictive coding model of binocular rivalry 

(2008) is a particularly good example that doesn’t restrict to very low-level visual 

phenomena. 

 Binocular rivalry is a striking visual phenomenon that occurs in experimental 

conditions when the eyes are presented with two different images and the resulting 

subjective perception alternates between the two. The right eye might, for instance, 

be presented with the image of a house, while the left eye receives an image of a 

face. Under these conditions, subjective experience is “bi-stable”, that is, it alternates 

between the house and the face. 

 Although there have been many studies on the nature of this phenomenon, the 
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responsible mechanisms at play are not well understood. Hohwy et al. believe that 

adopting a different theoretical framework could help to make sense of apparently 

many different findings related to binocular rivalry, thus advancing our 

understanding of it. In particular, they argue, within this alternative framework the 

phenomenon becomes a reasonable response to an unusual stimulus condition. 

 The idea here is that the Hierarchical Bayesian framework can provide the 

computational mechanism that best explains binocular rivalry. Accordingly, the 

cognitive system tries to match top-down predictions with bottom-up signals, which 

are caused by the states of affairs in the environment. When the matching is good, 

the bottom-up signal is “explained away” (ibid., p. 694). In this context, the best 

hypothesis is the one that makes the best prediction and that, ultimately, determines 

the content of the resulting perception. Other possible hypotheses are effectively 

inhibited. In the case of binocular rivalry, this means that top-down predictions 

explain away only the elements of the bottom-up signal that conform to the current 

best hypothesis; however, bottom-up signals contain information of both images 

(house and face). When one of the two images is selected as the best hypothesis, 

there remain certain elements of the driving signals that the current winning 

hypothesis doesn’t predict. This results in an increase of prediction-error for the 

alternative hypothesis that gets propagated upward in the hierarchy. To suppress this 

prediction-error, the system needs to change hypothesis. But again, a large 

prediction-error signal emerges. 

 The persistent presence of prediction-error makes the perceptual inference 

unstable. This, in turn, causes perceptual alternation: 

“Alternation ensues in rivalry conditions specifically where there is a 

large unexplained but explainable error signal. In Bayesian terms, in this 

situation no one hypothesis has both high likelihood and high prior, and 

inference becomes unstable.” (ibid., p. 697) 

The reason why we do not perceive a combined image is that we have certain 
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hyperpriors, that is, “a priori, our brain has learnt that there can be only one cause of 

sensory input at the same place and time. This generic prior constraint reflects the 

way we sample the visual world; binocular vision, in primates, rests upon both eyes 

foveating the same part of visual space” (ibid., p. 692). 

 

6.3.2 – Cue integration 

 

People behave in a manner similar to that predicted by Bayesian models in many 

different perceptual and motor tasks. However, little is known about the nature of 

probability distributions in the brain (e.g. how they are encoded, how they are 

transformed, how neural circuits can represent Bayesian inference, and so on). 

 Ma and colleagues (2006) aimed at uncovering something about the neural 

basis of Bayesian optimality by exploring the following two predictions: 

 Neural circuits must represent probability distributions 

 Neural circuits must be able to combine probabilistic representations in a 

nearly-optimal Bayesian way 

The first challenge consisted in understanding how neurons could encode values of 

unique states of the world given their high variability. If neurons fire differently even 

in correspondence to the same state of the world, how can we understand which 

neuron encodes information about a specific environmental variable? 

 Ma et al. thought that one way to overcome this problem could be to study the 

firing profiles of population of neurons, rather than the activities of single neurons. If 

the stimuli are often noisy, then a plausible strategy that the brain might use to 

represent states of the world could be to encode the same stimulus’ feature with 

several neurons. In this way, information could get encoded redundantly among 

neurons and this, in turn, could help to avoid problems due to, for instance, the loss 

of one specific neuron: if information about a state of affair in the world is encoded 

across multiple neurons, in case one of these neurons die or stops functioning 
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normally, there won’t be negative consequences for the overall functioning of the 

system. For this reason, researchers usually consider populations of neurons denoted 

via vectors of firing rates as loci of representation: population averaging helps 

reducing the network noise (e.g. Butts & Goldman, 2006) by relying on the 

cooperative encoding of multiple close neurons. 

 The first part of their study consisted in identifying the population activity (r) 

of a certain number (n) of neurons in a certain brain area (MT). This population’s 

activity was then denoted by a vector r
MT

 = {r1
MT

, r2
MT

, …, rn
MT

}. The spike count of 

a given neuron i in a certain time interval () was formalised as ri
MT

(tn). When a 

stimulus (S) was presented, MT generated a series of patterns of activities that varied 

over time under the influence of neuronal variability. These patterns could be 

captured in terms of a probability distribution P(r|s). The optimal strategy for 

inferring the value of the stimulus from the probability distribution was to apply 

Bayes’ rule to obtain the posterior probability distribution P(s|r). 

 Different methods can be used to extract one single estimated value from the 

posterior distribution. The most common method is the Maximum-Likelihood 

Estimation (MLE). This method allows the maximisation of the probability of the 

observed data given the distribution. 

 The typical way to assess the variability of spike trains is provided by the 

variance/mean ratio
27

 of spike trains across trials. In the case of cortical neurons, 

such variability appeared to be described by Poisson-like statistics (i.e. the spike 

count’s variance was proportional to the mean). 

 Ma and colleagues found that this kind of variability allowed neurons to 

represent probability distributions in a way that reduced optimal Bayesian inference 

to simple linear combination of neural activities. 

 The target of their study was cue combination, a perceptual task where the 

system needs to infer the value of a stimulus (S = spatial location of an object) from 

                                                 
27

 The variance/mean ratio indicates how sparse the population’s activity is across a 

certain amount of time in relation to the area close to its pick. 
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noisy and ambiguous visual cues (C1) and auditory cues (C2). 

 According to Bayes’ rule, the posterior probability (i.e. the location of the 

object) can be found by performing the following computation: 

 

P(S| C1, C2) = P (C1|S)P(C2|S)P(S) 

 

Ma et al. found that, when the prior was flat (i.e. when the subject didn’t have prior 

expectations about the nature of the stimulus), the sum of the two Gaussian 

probability distributions P(C1|S) and P(C2|S), with variances and means  proportional 

to each other, was equivalent to Bayesian inference. This means that neurons with 

higher firing rates (i.e. neurons that produced more spikes in a given amount of time) 

had lower levels of noise. 

 They then wondered how, given this particular kind of noise observed in the 

cortex, optimal inference could be achieved. Their suggestion was that Poisson-like 

variability allowed the computation of optimal inference in a particularly easy way: 

optimal Bayesian inference was reduced to linear combination of neural activities (r3 

= r1 + r2). 

 Ma and colleagues’ study generated a number of predictions about neural 

activities and about behavioural performances, both of which could be tested via 

further experiments. One of these predictions was the following: if people behave in 

a Bayesian way in cue integration and their neural activity is Poisson-like, then the 

inference will result from a linear combination of neural activities. 

 The security of these predictions depends on both psychophysical studies and 

studies at the neural level (e.g. specific neural circuits must exhibit Poisson-like 

variability). The more secure these predictions are, the more information we have 

about the mechanism responsible for cue integration. 

 This and similar experiments seem to suggest that working within a 

neurocomputational framework allow to test models, to generate predictions that 

become more and more secure once knowledge of the brain is incorporated in them 
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and, ultimately, to bridge information-processing theories to activities at the level of 

the brain. 

 In the following section, I will consider another piece of neurocomputational 

machinery that is often used to explain why and how agents can choose actions 

appropriate to the circumstances and to their goals on the basis of probabilistic 

internal representations. 

 

 

 

6.4 – Decision-making processes: model-based and model-free 
 

As I have already showed in discussing some of the previous examples, prediction-

error minimisation seems to be the main building block of a mechanism that allows 

agents to perceive their environment. In this section I will claim that (reward) 

prediction-error minimisation seems also to be relevant to account for how agents 

learn to predict the consequences of their behaviours so as to optimize them.  

 Prediction-error stands for a signal of the mismatch between the expected and 

the actual outcome of a given action that an agent can use to update her expectations 

so as to make future predictions more accurate. 

The Reinforcement Learning (RL) framework offers models of optimal and 

approximately-optimal learning of which action to perform to achieve a goal in face 

of uncertainty and rewards. In RL, action-decision is based on each action’s 

predicted value, which is defined in terms of the amount of reward that the action is 

expected to bring. These predictions pose statistical and computational problems 

when the reward depends on a sequence of actions and when early actions only cause 

deferred rewards. 

 RL models, which have been extensively used in neuroscience to understand 

possible computational roles of certain neural signals within brain activity (Daw et 

al., 2005), come in two main families: model-free approach and model-based 

approach. 
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 One class of model-free RL approaches is the temporal-difference learning 

(TD). This learning is assumed to be responsible for habitual behaviours. TD 

learning considers the flow of experience that cannot be easily divided into discrete 

steps because the predictive stimuli and the rewards happen at different points in 

time. In this case, an action is selected on the basis of its associated scalar summary 

of long-run feature values. The goal of the system consists in predicting all the future 

rewards that are expected to occur given the current and the previous stimuli it 

receives. 

 TD learning is a variant of the Rescorla-Wagner model of classical 

conditioning, where the system is said to make predictions about the reward of a 

given future event, then to observe the actual event and, in case the expectation 

doesn’t match the observation, to update its knowledge to make future predictions 

more accurate.  

 The key computational quantity at the basis of this form of learning is reward 

prediction-error. The Rescorla-Wagner learning rule is the following: 

 

Vnew = Vold + (outcome - prediction) 

   Vold + (R - Vold) 

 

In the formula, Vold is the prediction of the future reward that the system makes at a 

certain point in time,  is the learning rate of the action plan that determines the 

degree to which each experience affects the prediction for the future, R is the actual 

reward obtained, and Vnew is the updated reward based on the reward prediction-

error. 

 According to the Rescorla-Wagner model, the rule is applied at the end of each 

conditioning trial to all stimuli present in the trial. On the contrary, TD learning takes 

into consideration the continuous flow of experience: predictive stimuli and 

rewarding outcomes occur at different points in time. At each point, the goal of the 

system is to predict all future outcomes given the current and the previous stimuli. 
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This means that, if the system predicts an incorrect reward value at time t, it will 

have a temporal difference prediction-error at time t + 1 due to the fact that the 

immediate reward plus the future expected rewards will be higher or lower than 

those originally predicted. 

 The prediction-error  at time t + 1 is formalised as: 

 

( t + 1) = outcome (t + 1) + prediction (t + 1) - prediction (t) 

 

The system uses this TD prediction-error to update its original prediction made only 

on the basis of the stimulus at time t. This update allows the system to learn the 

correct value of that stimulus: 

 

V(t)new = V(t)old +   ( t + 1) 

or 

V(t)new  = V(t)old + [ outcome (t + 1) + prediction (t + 1) - prediction (t)] 

 

How can this model help us to explain the computations performed by the brain to 

decide which action to take in a particular situation? 

 Interestingly, neuroscientists (Houk et al., 1995; Schultz et al., 1997; Schultz, 

2010) have identified certain neural substrates that appear to confirm to the TD 

mathematical model. In particular, they found that the majority of midbrain 

dopamine neurons (75–80%) in the substantia nigra pars compacta (SNc) and the 

ventral tegmental area (VTA) show a rather stereotyped phasic activation following 

unpredicted rewards, which indicates that they might encode a reward prediction-

error. This burst is supposed to play a crucial role in learning. 

 An example of these studies runs as follows. By examining subjects 

performing on a reward-guided decision task, investigators extrapolate the values of 

the parameters to be fitted into the TD model. In particular, they estimate the 

learning rate . The performance of the model is then compared to the subject’s 
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behaviour and to other rival models to evaluate its adequacy. Once parameters are 

chosen and set, the model starts making predictions about the reward prediction-error 

signals that the subject is expected to generate on each trial if she is operating on the 

basis of the TD model under consideration. The estimation of the amount of 

prediction-error signal in each trail is then compared to the variation in BOLD signal 

(i.e. the flow of oxygenated blood in the brain that can be measured via fMRI 

techniques) at each step of the task to establish whether there is a co-variation 

between the two. This methodology consistently finds reward prediction-error 

signals in the VTA and in areas of the striatum (Shea, forthcoming). 

 Dopamine neurons’ response occurs irrespectively of the sensory modality and 

of the spatial position of the stimuli. Rather, their activation depends only on the 

reward’s probability and magnitude such that: 

 If a reward is better than predicted, dopamine neurons get activated (i.e 

positive prediction-error) 

 If a predicted reward doesn’t obtain or if it is worse than predicted, dopamine 

neurons are depressed (i.e. negative prediction-error) 

 If a predicted reward obtains as expected, there is no response in dopamine 

neurons 

Neuroscientists interpreted these results by saying that dopamine responses appear to 

resemble the teaching signal of efficient temporal-difference reinforcement learning 

models. The same reward obtained by the system at different times does not activate 

dopamine neurons. Only increasing rewards provide continuing reinforcement via 

the dopamine mechanism. 

 It is important to highlight, though, that not all forms of learning and decision 

processes, as modelled by RL, are dependent on dopamine. There is both behavioural 

and neural evidence for a multiplicity of mechanisms for decision-making, some of 

which don’t seem to involve dopaminergic activity. Daw and colleagues (2005) have 

suggested that the dorsolateral striatum and its dopaminergic afferents could be the 



CHAPTER 6 

 

 

171 

 

locus for model-free strategies, such as the TD learning, while the prefrontal cortex 

might implement model-based strategies, thereby supporting goal-directed 

behaviour. 

 In contrast to the model-free approach, the model-based RL method doesn’t 

operate by representing the rewards associated to different possible actions. A system 

working with a model-based approach relies on a source of internal knowledge about 

the causal structure of the domain of action (i.e. the contingencies between actions 

and their possible outcomes) to construct real-time predictions of long-term 

outcomes. This is achieved by chaining together the predictions of the immediate 

consequences of each action and by using a particular desired outcome to flexibly 

determine the complex sequence of actions that are needed to achieve it. To do this, 

the system explores all possible future situations. The model-based strategy can be 

computationally expensive in terms of memory used and time required to do the 

searching. 

 Since predictions are made on the fly, the system can react to outcome 

devaluation in a more straightforward way than in the model-free approach: when 

contingencies change, predictions change too. A model-based method then results in 

more flexible, hence context-appropriate, behaviour, without needing extensive 

training. 

 Consider a classic experiment where hungry rats were trained to press a lever 

in order to get food in a food magazine. This sequence of actions was usually 

followed by a reward (i.e. food pellet). To successfully perform the task, rats needed 

to represent possible actions, the transitions between steps underlying possible 

actions and the reward that was available from an appropriate sequence of actions. In 

the next phase of the experiment, the reward value of the food pellet was reduced by, 

for instance, giving food to rats or by making the food poisoned. At this stage, rats 

were tested to see whether their behavioural choice would change in the presence of 

the devaluated reward outcome. 
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 Experimenters hoped to understand whether rats behaved on the basis of a 

model-free or a model-based strategy. If they acted on the basis of a model-free 

strategy, they would continue to behave in the same way even after the food was 

devalued. If, instead, they operated on the basis of a model-based strategy, they 

would change their sequence of actions in accordance to the new reward. 

 Interestingly, Daw and colleagues found that animals performed on the basis of 

both strategies in different situations. When animals were only moderately trained on 

the task, their decisions were sensitive to outcome devaluation. When animals were, 

instead, extensively trained on a given task, the selection became insensitive to 

devaluation. These results suggested that animals could change their selection 

strategies from model-based to model-free on the basis of training and experience in 

a certain environment and with respect to a given task. Lesions to dopaminergic 

inputs to dorsolateral areas of the striatum seem to block the transfer from model-

based to model-free strategies (Yin et al., 2004; Faure et al., 2005). 

 Daw and colleagues also found that the strategy employed depended on the 

complexity of the actions animals were supposed to perform and on the proximity of 

the actions to the rewards. In more complex tasks (e.g. animals were extensively 

trained but could perform various actions to get reward), they remained sensitive to 

devaluation. 

 Daw et al. concluded with a very interesting claim: given that animals switch 

between the two strategies on different circumstances and given that both strategies 

aim at rational goals, the two approaches are normatively similar. In some cases, the 

model-free strategy can more efficiently accomplish the goal with respect to the 

model-based one. 

In contrast to the model-free approach, the putative mechanism for model-

based strategies is not well understood. Some evidence seems to suggest the 

existence of distributed neural areas that might be implicated in it, such as the 

dorsomedial striatum, the prelimbic prefrontal cortex, the orbifrontal cortex, the 

medial prefrontal cortex and parts of the amygdala (Dayan & Niv, 2008). 
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 In line with Shea (forthcoming) and consistent with the claims I have made in 

previous chapters, these and other studies don’t show that the brain operates on 

prediction-error signals, represents rewards and uncertainties and computes over 

them with TD or model-based algorithms; rather, the results indicate that there are at 

least some quantities similar to prediction-error and to the expected values that are 

processed in the brain and that probably play an important role in generating 

decisions.
28

 Accordingly, instead of concluding that there is an identity between the 

TD model and the brain processes, we can say that some features of the phenomenon 

are captured by the model, but that their exact relationship remains still largely 

unknown. 

 

 

 

6.5 – Empirical evidence 
 

There are accumulating data indicating that the cortical network might implement 

Bayesian inference (Doya et al., 2007; Knill & Richards, 1996; Rao et al., 2002). 

Specifically, there are three main sources of evidence: psychophysical findings, 

computational models and known structural features of sensory systems. 

 Psychophysical experiments, which have motivated the search for correlates of 

Bayesian algorithms in the first place, are the most telling evidence for Bayesian 

                                                 
28

 “The ubiquitous problem with imaging methods that the brain activity 

being recorded may just be a side effect of, rather than the constitutive basis of, the 

information processing which gives rise to the behaviour in question has been partly 

addressed by obtaining converging evidence from a variety of sources 

(neurophysiology, fMRI, EEG, TMS, etc.).  A more important problem concerns the 

validity of model-based analysis of fMRI data […]. It is likely that a whole family of 

algorithmic models would show a reasonable match to the empirical data […]. It is 

hard to differentiate the particular temporal difference learning model that is used to 

account for trial-by-trial variations in neural activity from other reinforcement 

learning models in which prediction error signals play a role.” (Shea, forthcoming) 
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models (e.g. Berniker & Kording, 2008; Kording et al., 2007). The cue integration 

task I have considered above is one of these examples. 

 There are also a number of computational models that show how approximate 

Bayesian inference could be implemented in biological neural networks as well as 

some structural features of sensory systems that speak in favour of hierarchical 

Bayesian models. Indeed, sensory processes take place over a cascade of processing 

stages among hierarchical cortical areas. These areas are not only hierarchically 

organised, but they also present certain important asymmetries in their connections 

(see Friston, 2005, 2010). In particular, there seem to be forward connections 

running from lower to higher regions, and backward connections going the other 

way around. A possible functional interpretation of these asymmetries can be found 

in Friston’s model of cortical hierarchies according to which backward connections 

transport information about the expected causes of the activities at the lower levels 

(i.e. priors), and forward connections play a modulator role by transmitting 

prediction-error information higher up in the hierarchy. Perception would then result 

from the interrelation of these forward and backward signals. 

 An additional source of evidence comes from studies on mental disorders, such 

as schizophrenia and psychosis. The key idea in the case of schizophrenia is that 

understanding its positive symptoms requires understanding the disturbances in the 

generation and in the precision of the prediction-error signals. The hypothesis 

(Corlett et al., 2009; Fletcher & Frith, 2009) is that malfunctions in the working of 

the hierarchical models can yield continuous and persistent false prediction-errors, 

which then propagate all the way up into the hierarchy and, in severe cases, deeply 

modify and affect our model of the world. As a consequence, what should be 

experienced as improbable becomes the less surprising. Given that perception is 

influenced by a continuous cascade of top-down signals matching bottom-up signals, 

in these cases the cascade of misinformation reaches the lower-level processes, thus 

yielding false perception and wrong beliefs about the state of the world. In the case 

of psychosis, researchers have found that patients report a change in the intensity 
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with which they perceive the world (e.g. acknowledging a much louder background 

noise or brighter colours — Corlett et al., 2007, 2011) before becoming psychotic. 

Even normal everyday life experiences appear to be more vivid, novel and important 

(Kapur, 2003). 

 Among the symptoms of psychosis we can find: misrepresentation of reality, 

delusions, hallucinations and experience of one’s action as under the control of 

external agents. Some have suggested that all these symptoms could find an 

explanation within the Bayesian framework. 

 Consider the case of delusion of alien control (Hohwy, 2004, 2013; Hohwy & 

Rosenberg, 2005; Fletcher & Frith, 2009), that is, the false belief that someone else is 

controlling our actions. This delusion can be seen as a result of anomalous 

prediction-errors. When I am engaged in self-generating actions, the precision-

weighting on the relevant proprioceptive prediction-error must be set high. If the 

proprioceptive prediction-error is set high and my top-down predictions can resolve 

it, I feel that I am the agent of my own actions (Blakemore et al., 2002). Problems 

arise when there is no match between predictions and actual proprioceptive inputs. In 

these cases, an agent’s experience becomes surprising. These mismatches could 

depend on mistakes in the generation of prediction-errors or in their weighting. 

While the subject knows that she wanted to move and that she acted on that 

intention, the signals she receives, which are not attenuated, indicate that someone 

else made her move. A prediction-error that cannot get explained away by top-down 

signals emerges and gets propagated upwards in the cortical system. The system 

must now find another hypothesis that can account for the data, thus explaining away 

the prediction-error (e.g. “someone else made me move”). 

 These malfunctions, which at first arise as rational responses to unusual 

situations (Hohwy & Rosenberg, 2005), can result in persistent and highly false 

prediction-errors that force, in severe cases, extremely deep revisions in our model of 

the world. In these severe cases, what should appear as improbable (e.g. persecution) 

becomes the less surprising cause of our sensory signals. 



CHAPTER 6 

 

 

176 

 

 Within the Hierarchical Bayesian framework, hallucinations and delusions (and 

perception and belief), which are normally considered the result of two different 

processes, both involve a similar mechanism that allows top-down predictions to 

match sensory signals.  

 A Bayesian hierarchical model also makes explicit and testable predictions 

about the role of different neurotransmitters in signalling prediction-errors and their 

precision or uncertainty. There are studies indicating that dopaminergic activity 

might encode the degree of precision or uncertainty of certain prediction-errors, 

while errors could be carried by glutamatergic neurotransmitters (i.e. Corlett et al., 

2011). Much work still needs to be done, but, interestingly, the Bayesian 

neurocomputational framework seems to operationalise some of its central claims for 

future experiments. 

 

 

 

6.6 – Neural representations 
 

I have shown so far how (Bayesian) neurocomputational models can be used to make 

sense of some aspects of perception, decision-making and mental illness. In this 

section I will focus my attention on the nature of the internal neural representations, 

which are the building blocks of Bayesian inference. 

 Bayesian internal representations are understood as neural states that carry 

information about some variables in the word and about the past experience of the 

agent. 

 Neuroscientists usually identify representations in a certain brain region by 

working out how the response profiles of certain neurons (i.e. their patterns of action 

potentials, or spikes) connect to the agent’s behavioural outcome and to the state of 

affairs in the world. Since neural activity is often noisy and variable, the informative 

aspect of neural responses can only be captured in terms of probabilities over a 

population of neurons. Single neurons don’t represent features or micro-features of 
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any environmental state; rather, populations of neurons might represent probabilities 

of the possible values of the stimulus.
29

 The aim of the cognitive system is to infer 

the nature of the signal source on the basis of the probability distribution of the 

neural response and of the prior probability of the causal structure of the 

environment. 

 Neural representations could be individuated in terms of encoding-decoding 

mappings (Eliasmith, 2003). Neural encoding identifies the functional dependence of 

some neural property on some property of the stimulus. As argued above, action 

potentials could specify the neural encoding. Neural decoding, instead, refers to the 

process of inferring, or estimating, the property of the stimulus from the specific type 

of neural encoding, that is, from the property of some neural response. Physical 

features of neural populations’ firing responses might count as the basic units of 

neural decoding. The estimated value of the stimulus that results from the neural 

decoding process is then used by the system to carry out the cognitive task. 

 The way in which the decoding process could estimate the value of the 

stimulus that led to a certain firing pattern depends both on the prior information of 

the system and on the likelihood of stimulus, that is, the estimation depends on the 

generative model that the system could use, and on how prediction-error is weighted. 

Given a certain neural pattern of activation, then, the decoding process estimates how 

likely it is that a certain stimulus is indeed in the environment by relying on the 

activity of predictions carried by the activity of neurons from higher to lower levels 

in the hierarchy. 

 Consider Hubel and Wiesel’s (1962) experiment. They moved a bar of light at 

different angles across the region of the visual field where cells responded to light 

(i.e. the cells’ receptive field) to find out whether there were cells representing 

features of the stimulus. They observed that the number of cell’s action potentials 

                                                 
29

 As Eliasmith clearly puts it: “Neurons don’t ‘detect’ things [they don’t determine 

that there is an edge or there isn’t one], they respond selectively to input, the more 

similar the input, the more similar the response” (Eliasmith, 2005, p. 118). 
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that fired depended on the angle of orientation of the bar. In other words, they 

discovered that the response tuning curves of the cells (i.e. a plot of the average 

firing rate of the neuron as a function of the relevant stimulus’ feature) could be 

indicative of the orientation of the stimulus: the maximum average response of the 

cells corresponded to a specific angle orientation. They then called the angle that 

evoked the maximum average response “the preferred orientation” angle of the 

neuron. 

Within the Bayesian neurocomputational framework, the content of an internal 

representation is then characterised by the neural turning curve, by the maximum 

average response and also by the way in which the representation is used within the 

system. The content can then be adjusted within the generative model via the 

interaction of top-down and bottom-up signals, which makes it highly dynamic and 

context-sensitive.  

 If we grant that spikes of neurons can represent basic physical features, such as 

the orientation of a bar of light, we can expect larger populations of neurons to 

encode more complex and abstract representations at higher levels in the cortical 

hierarchy (see Eliasmith, 2003). Lower-level representations would then be 

influenced and shaped by higher-levels ones while remaining highly sensitive to raw 

incoming sensory information, and higher-level more complex representations would 

depend on the lower-levels ones via prediction-error signals. This way, the sensory 

system could incorporate statistical dependencies between representations at 

different levels of complexity and abstraction. 

 Saying that a system carries out cognitive functions in an optimal or 

approximately-optimal way means that the system can take into account the 

uncertainty in the available information to maximise the probability of understanding 

what is in the environment. Understanding the cause of its sensory inputs is, then, 

required to appropriately achieve the desired result. Optimality is, therefore, not a 

fixed universal property; rather, it depends on the prior and on the measurement of 

the likelihood. 
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 Referring to representations and representational content does explanatory 

work, as I will argue in the next chapter, because it shows “how the system connects 

with its environment: with the real-world objects and properties with which it is 

interacting, and with the problem space in which it is embedded” (Shea, 2013, p. 

499). 

 Neural evidence shows that actual neural variation is less disparate than it 

might appear at first. fMRI studies, for instance, seem to suggest that there are 

similarities in patterns of activation across individuals and trials such that a same 

representation can be realised in similar ways across subjects and trials. This, in turn, 

opens up the possibility to infer an agent’s psychological state from observations of 

certain brain properties and to predict, with reasonable accuracy, a subject’s 

performance in similar tasks. 

 Discovering correlations between components of Bayesian algorithms and 

neural signals is important because: 

 It points out that some kind of neural algorithm that computes over a specific 

component (or a similar one) is indeed realised in the brain (Mars et al., 

2012, p. 259) 

 It indicates that, when a certain component is neurally represented, it is 

possible to discover some similarities in the specific activation pattern 

produced 

As shown in the case of reward decision-making processes, fMRI techniques help to 

uncover the neural presence of prediction-error (or of a similar quantity) in neural 

circuits: specific BOLD signals seem to relate quantitatively to representations of 

prediction-errors in a quite linear way. 

Although many studies are now trying to specify the nature, role and format of 

neural representations, the exact way in which they are learnt, encoded and updated 

through neural activity is, at the moment, largely unknown. Researchers have only 

recently begun to study the possible neural basis of Bayesian computations for 



CHAPTER 6 

 

 

180 

 

relatively simple perceptual tasks (see section 7.5) and the way(s) the brain 

represents uncertainty and computes over it to perform Bayesian inference is still 

poorly understood. With respect to this, the Bayesian neurocomputational framework 

seems to offer some additional means to better understand the nature of internal 

representations. Leading figures of this approach (i.e. Griffiths et al., 2010; 

Tenenbaum et al., 2011) claim that Bayesian models allow researchers to explore the 

nature of representations, thus opening up the possibility for representational 

pluralism: 

“Probabilistic models […] provide a transparent account of the 

assumptions that allow a problem to be solved and make it easy to 

explore the consequences of different assumptions. Hypotheses can take 

any form, from weights in a neural network, to structured symbolic 

representations, as long as they specify a probability distribution over 

observable data. […] The approach makes no a priori commitment to 

any class of representations or inductive biases, but provides a 

framework for evaluating different proposals.” (Griffiths et al., 2010, p. 

358) 

There is much ongoing work devoted to uncover which algorithms the mind does use 

and how they are realised in neural circuits. Some studies indicate that the brain 

might use Monte Carlo or stochastic sampling-based approximations to approximate 

optimal Bayesian statistical inference. 

 Another big obstacle consists in understanding if and how structured symbolic 

knowledge, which is often considered essential for certain forms of cognition and 

thought, can be represented in the brain. In contrast to connectionism, which 

sidesteps these challenges by denying that the brain can actually encode this kind of 

knowledge, the Bayesian neurocomputational framework leaves room for the 

possibility that the brain might compute over more structured symbolic 

representations. These representations, however, would not be rigid, static or hard-
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wired; rather, they would grow dynamically in response to noisy data from the 

environment while remaining embedded in hierarchical generative models (e.g. 

Tenenbaum et al., 2011). 

 

 

 

6.7 – Conclusion 
 

In this chapter I examined the structure and the methodology of the 

neurocomputational framework of explanation mostly by analysing a family of 

models — the Bayesian models — that belongs to it. 

 By discussing various examples of these models in practice, I showed that 

neurocomputational explanations are a special kind of subpersonal explanations that 

aim at explaining cognitive behaviour in terms of the various ways in which the 

brain, which is seen as a processor of information that traffics in representations, 

copes with its environment. In particular, neurocomputational explanations look for 

correspondences between stages of information processing and biological 

transactions among neural populations. 

 I focused on various cognitive behaviours that appear to result from some sort 

of prediction-error minimisation process and I showed why this process seems to be 

a central building block of a mechanism that allows agents to perceive what is in the 

environment, to learn how to predict the consequences of their behaviours and to 

perform in a nearly-optimal way. I then discussed various empirical data that speak 

in favour of the existence in the brain of some quantities similar to the prediction-

error and to the stimulus’ expected values that appear to play important roles in 

various cognitive behaviours. 
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Chapter 7 - The Explanatory Virtues of the Bayesian 
Neurocomputational Framework 
 

 

 

7.1 – Introduction 
 

A good explanation of cognitive behaviour needs to be predictive and mechanistic. 

This is the claim that I made at the beginning of the thesis and that has accompanied 

our journey so far. 

 In this chapter I will examine whether the neurocomputational framework can 

provide explanations of cognitive behaviour that are better than those offered by the 

folk-psychological, the anti-representational and the physiological subpersonal 

frameworks. 

 I will argue that the neurocomputational framework can better account for 

cognitive behaviour and I will highlight the features that make it different and 

superior with respect to the other three frameworks. 

 I will claim that, in contrast to the folk-psychological and the anti-

representational frameworks, the neurocomputational framework successfully meets 

the predictive criterion and offers useful means to arrive at a full mechanistic 

identification of the responsible process(es) underlying cognitive phenomena. In 

particular, I argue that predictions play a central role in the neurocomputational 
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framework and that the framework’s openness to an analysis of the possible 

implementation of cognitive processes together with the growing operationalisations 

of some of its central claims make it the most adequate framework to explain various 

aspects of our cognitive life. In addition to this, I will argue that, in contrast to the 

purely subpersonal framework, the neurocomputational framework offers 

explanations of cognitive phenomena that incorporate both personal and subpersonal 

information about their responsible processes.  

 

 

 

7.2 – Predictions 
 

Predictive power is central in the neurocomputational framework and it is used to 

evaluate the goodness of explanations. 

 The important role attributed to prediction is first of all reflected in modelling 

design: neurocomputational models are designed to avoid the risk of being too 

sensitive to the peculiarities and noise characteristic of a given data set, which are 

unlikely to get generalised to other cases. One way in which models avoid being too 

sensitive to a given set of data is by being simpler (e.g. by containing fewer 

parameters) than other models used to account for the same data (see e.g. Chalk et 

al., 2010; Weiss et al., 2002). 

 Despite the centrality of predictions, the choice of ad-hoc parameters (e.g. 

priors and likelihoods in the case of Bayesian models) can limit neurocomputational 

models’ predictive power. If parameters are selected for their mathematical 

tractability (e.g. flat prior, Gaussian distributions, and so on) rather than for their 

empirical adequacy, models don’t incorporate real aspects of the biological 

mechanisms responsible for the phenomena under study. Assuming that people 

operate on the basis of flat priors, for instance, consists in assuming that people 

approach cognitive tasks without any prior expectation. This is an implausible 

assumption: people usually approach contexts and tasks that are, in some sense, 
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similar to others they have previously encountered, and, even when they approach 

new scenarios or face new tasks, expectations from their evolutionary and 

developmental history might be in place, thus affecting their performances (e.g. 

perceptual and motor systems are often already geared towards certain responses in 

specific contexts). 

 If the predictive success of neurocomputational models depended solely on 

mathematical tractability, we wouldn’t have reasons to conclude that these models 

shed light on the real mechanisms responsible for cognitive performances. If this 

were the case, then Bayesian explanations would not be so different from folk-

psychological or anti-representational explanations. As I have shown in previous 

chapters, folk-psychological explanations are often more useful to predict behaviours 

than to explain them, and dynamical and anti-representational explanations can 

predict how a system evolves through time, but not why it has a certain capacity in 

the first place. 

 The claim I want to make in this chapter is that the neurocomputational 

framework can offer more than just predictions: by making “good” predictions, the 

Bayesian framework aims at providing mechanisms. 

 

 

 

7.3 – The search for mechanisms 
 

Researchers working within the neurocomputational framework are becoming 

increasingly aware of potential limits of the framework’s modelling design: models 

can explain cognitive behaviour only to the extent that they incorporate ecological 

and biological considerations in their construction. When models are adequately 

constrained, they can yield secure and informative predictions, and, ultimately, 

explain cognitive phenomena. 

 To this end, some investigators have started designing psychophysical 

experiments that can indicate the information subjects really have when performing 
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in certain tasks (e.g. Maloney & Mamassian, 2009). Knowing this information means 

being able to predict how subjects will perform in similar tasks. Let me briefly 

discuss this kind of experiments. 

 As I have examined in the previous chapter, according to the Bayesian 

neurocomputational framework, subjects face a task with a certain hypothesis space 

and priors. In the case of Hierarchical Bayesian models, the origin of the hypothesis 

space and priors is addressed by positing not just one single level of hypotheses, but 

multiple levels, each one generating a probability distribution on variables at the 

level below. The hypotheses and priors required for a specific task are learnt by the 

system via Bayesian inference across levels. Once the hypothesis space and the 

priors are learnt, a subject can perform a cognitive task by computing the correct 

posterior distribution via Bayesian operations. The acquired posterior distribution 

will then constrain, in the form of a new prior, the subject’s future performance in 

the same or in similar tasks. The subject is therefore expected to perform better and 

faster in tasks where this new prior is required. 

 Consider the case of perception. Imagine a subject who is learning how to 

perform two different tasks. In Bayesian terms, we would say that the subject is 

learning two combinations of priors and likelihoods that can account for the states of 

affairs in the world. Now, if perception is Bayesian, the subject will be able to use 

the knowledge acquired in the two perceptual tasks to perform in a new task that 

requires the combination of the previously encountered priors, likelihoods and 

posteriors. If the subject’s performance in the new task is close to optimal and in 

accordance with the model’s predictions without much practice, then we will have 

evidence that the subject performs on the basis of internal representations in a 

Bayesian fashion. 

 This form of “transfer learning”, which has already been useful in machine 

learning and artificial intelligence, is critical for humans as well (Tenenbaum et al., 

2011). Transfer learning is a methodology that allows us to envisage a future where 

(Bayesian) neurocomputational models will make predictions about behavioural 
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performances in psychophysical tasks based also on knowledge of the internal 

process (and its components) that leads a subject to behave in a way rather than in 

another. These predictions will be more secure than those based solely on 

psychophysical data. 

 Whether neurocomputational models can provide this kind of prediction for 

humans is still an open question. It might turn out that the quantities needed for a 

subject to perform in a certain task cannot be easily generalised to novel tasks. This, 

however, wouldn’t affect the explanatory goodness of the overall 

neurocomputational framework. The capacity of the framework to suggest 

predictions that can be experimentally tested to help uncovering the real components 

and their interactions responsible for certain cognitive performances is enough for us 

to consider the neurocomputational framework as more fruitful than the others in 

advancing our understanding of cognition. Indeed, its model-based approach 

provides tools to discover the unobservable nature of internal mechanisms for 

cognitive behaviour, by suggesting predictions, by operationalising claims, and by 

performing experiments to confirm or disconfirm them. 

 The cue integration study (Ma et al., 2006), which was originally motivated by 

psychophysical results, can be of help to clarify the point. This study aimed at 

uncovering the neural basis of subjects’ Bayesian nearly-optimal performance in cue 

integration tasks. By relying on neural data, Ma and colleagues suggested that the 

Poisson-like variability of certain cortical neurons allow a network of neurons to 

carry out cue integration using linear operations on population activities. This 

interpretation, far from being merely a description of the mechanism underlying cue 

integration, was important to generate novel and potentially informative predictions 

concerning features of neural activities and specific organisations of neural circuits 

that could turn out to be necessary to perform cue integration in a Bayesian nearly-

optimal way. Ma and colleagues could, for instance, predict that if subjects 

performed in a Bayesian fashion in cue integration tasks and if neurons have a 

Poisson-like variability, then we should expect the sum of the activations of these 
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neurons to be equal to the response of multisensory neurons. If correct, these 

predictions would be informative (i.e. they would uncover the nature of some aspects 

of the mechanism of which we were unaware) and secure (i.e. they would be based 

on reliable, well-evidential grounds).
30

 In particular, they would be secure as long as 

they would depend on both psychophysical studies (i.e. identification of the 

particular types of circumstances where people behave as ideal Bayesian observers) 

and on some features of neural circuits (e.g. Poisson-like variability). 

 

 

 

7.4 – Pay-offs of the Bayesian neurocomputational framework 
 

So far, I have argued that: 

 Predictive power is central in the Bayesian neurocomputational framework 

 Predictability is used to evaluate the goodness of explanations 

 The Bayesian neurocomputational methodology can be used to identify the 

mechanisms responsible for cognitive performances 

What about the Bayesian neurocomputational framework’s explanatory goodness, 

then? 

 Throughout the thesis I asked the same questions with respect to the folk-

psychological, the anti-representational and the purely subpersonal frameworks. Let 

me briefly recapitulate the results of my analysis so far. 

In chapter 1, I tried to understand why folk-psychological explanations, which 

are based on beliefs and desires (and their connections), are often predictive, and I 

concluded my analysis claiming that the folk-psychological framework cannot 

                                                 
30

 Secure predictions are based on solid, reliable grounds. A model can yield secure 

predictions when it specifies under what circumstances a phenomenon is likely to 

obtain. If a model identifies under what conditions, in virtue of which components 

and relationships among components a phenomenon is to be expected, then the 

model offers information about a candidate mechanism. 



CHAPTER 7 

 

 

188 

 

provide good explanations of cognitive behaviour. By analysing belief-desires 

models of explanations, I showed that the central notion of cause that they employ is 

problematic and I highlighted how this negatively affects our ability to distinguish 

rational re-descriptions from real explanations within the folk-psychological 

framework. In particular, I claimed that in order to justify that certain beliefs and 

desires cause a behaviour it is not sufficient to show that hadn’t they occurred, the 

behaviour wouldn’t have occurred either. Counterfactuals statements can be used as 

evidences for the existence of certain causal relations, but they can’t establish the 

truth of causal claims. Related to this, I argued that another problematic aspect of the 

folk-psychological framework is the purely functional characterisation of the causes 

of cognitive behaviour, and I suggested that causes need to be characterised both 

functionally and structurally. In chapter 4 I analysed folk-psychological normative 

explanations and I showed that they need to be supplemented by information from 

lower levels of analysis, both to uncover what is constitutive of personal phenomena, 

and to explain, rather than redescribe, cognitive behaviour. 

In chapter 2, I examined the anti-representational framework. According to this 

framework, it is possible to explain cognitive behaviour by studying the way in 

which cognitive systems interact with their environment. Anti-representationalists 

claim that a good explanation of a cognitive capacity is possible when brain, body 

and world are considered as a unique system that changes through time. I showed 

how this assumption makes the framework unable to account for why a system has a 

certain capacity in the first place. I highlighted some problems related to: (i) the use 

of lumped parameters that can’t be mapped onto any biological component; (ii) the 

weak relationship of instantiation between mathematical models and systems that 

doesn’t allow the identification of the responsible processes underlying cognitive 

behaviour. 

In chapter 4 I analysed the purely subpersonal framework and I argued that it 

cannot provide good explanations of cognitive behaviour because folk psychology 

doesn’t simply play a heuristic role in driving research, but it often plays a 
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constitutive role in explaining cognitive behaviour. An adequate explanation of 

cognitive behaviour requires both the personal and the subpersonal level of analysis. 

 In what follows, I will provide some reasons for why we should be optimistic 

about the explanatory pay-offs of the neurocomputational approach. If I can show 

that the Bayesian neurocomputational framework can offer an account of how 

subjects performs cognitively that doesn’t have, or that can overcome, some of the 

other frameworks’ limits, then I will be justified in concluding that this framework is 

the most apt to generate good explanations of cognitive behaviour. In particular, I 

will try to answer the following questions: 

 Can the Bayesian neurocomputational framework suggest a better account of 

cause? 

 Can the framework provide a better analysis of the relationships between 

different levels of analysis? 

 

7.4.1 – Functions and structures 

 

The methodology adopted within the Bayesian neurocomputational framework is 

based on the assumption that, if a system has a certain property, that property 

depends on the nature and on the organisation of its component parts. This 

methodology is different from that of folk psychology where explanations are based 

solely on behavioural data and little attention is devoted to the study of the inner 

workings of the brain. The neurocomputational methodology is also different from 

that of anti-representationalism that identifies lumped parameters independently from 

their biological counterparts. 

 Working within a neurocomputational framework implies a deep study of the 

functional (e.g. the ability to carry a certain type of information transaction) and 

structural (e.g. neural type, anatomical position, and so on) features that characterise 

components and processes responsible for cognitive phenomena. Structural and 

functional characterisations are here seen as partial and complementary in the sense 
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that each one draws on specific properties of the other: to get a comprehensive 

mechanism, activities must be localised in parts so that working parts can be 

established. This aspect of the neurocomputational methodology gets particularly 

clear if we consider the studies designed to discover the mechanism underlying 

reward-guided decision-making.
31

 

The case of reward-guided decision-making is a good example of how a 

model-based strategy, as the one offered by the neurocomputational framework, can 

help to specify unobservable components and important features of neural 

mechanisms. 

Neuroscientists studying habitual decision processes have shown that there are 

certain neural circuits that work in ways that resemble those of the temporal-different 

(TD) learning mathematical model. In particular, they argue that it is possible to 

establish a correlation between the reward prediction-error in a TD learning model 

and a BOLD signal in specific neural circuits. This signal, which corresponds to a 

specific activation of dopamine neurons, is understood as playing a crucial role in 

learning. Accordingly: 

“[…] when a correlation is found between a model components and a 

neural signal, that is taken as evidence that the brain implements an 

algorithm that involves calculating over that component.” (Mars et al., 

2012, p. 256) 

These data, despite not being the ultimate evidence that the brain is computing over 

internal representations and prediction-errors by employing a TD learning algorithm, 

at least suggest that some quantities of that algorithm are realised in the brain and are 

computed over to enable the system to perform appropriately. 

 The methodology adopted by the neurocomputational framework is full of 

potential for uncovering the mechanisms underlying cognitive phenomena, thus 

yielding good explanations. Despite being only recently adopted to study the brain, it 

                                                 
31

 For more details on reward-guided decision-making, see chapter 6. 
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has already been proven useful. This gives us sufficient reasons to believe that, in the 

future, its strategy will “yield conclusions about the class of algorithms that it is 

likely that the brain uses in performing a given task, including identifying neural 

structures that are involved in representing some of the quantities over which the 

algorithms compute” (ibid., p. 258). 

 

7.4.2 – Top-down approach 

 

A second reason why we are justified in considering the Bayesian 

neurocomputational framework superior to the other frameworks is that it employs a 

top-down approach to the analysis of how cognitive systems perform in various 

tasks. Thanks to this approach, the framework can allow testable predictions, leave 

room for exploring a broad range of different assumptions about how cognitive 

systems might perform certain cognitive behaviours and open up the possibility for 

representational diversity. 

 The neurocomputational top-down approach starts with defining possible ways 

in which systems can perform cognitively, and then generates experimentally 

testable predictions (e.g. Griffiths et al., 2010; Pellicano & Burr, 2012) to confirm or 

disconfirm the hypotheses. 

 As a matter of fact, there are “myriads of ways in which human observers 

behave as Bayesian observers” (Knill & Pouget, 2004). This has fundamental 

implications for neuroscience, particularly for how we conceive of neural 

computations and the nature of neural representations of perceptual and motor 

variables. Within the Bayesian neurocomputational framework, for instance, the fact 

that background knowledge is encoded in probabilistic generative models doesn’t 

mean that the hypotheses constituting this background knowledge need to be in a 

single format. Rather, by operating on a broad range of possible formats of 

representations, Bayesian models can search and evaluate different proposals within 

the same type of explanatory framework. A model can be defined and 
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representations in a particular format specified. If the model doesn’t fit the 

behavioural data, a different model with representations in a different format can be 

suggested and tested (Kemp & Tenenbaum, 2008). 

 Leaving room for assessing different hypotheses and for representational 

diversity are two positive features of the neurocomputational approach that show 

how the search for mechanisms can be potentially free from too strong a priori 

commitments. In this sense, hypotheses and priors can take any form, from weights 

in a neural network to structured symbolic representations, which are those that 

might be involved in the most complicated and demanded cognitive tasks. 

 

7.4.3 – Answers to the interface problem 

 

A third reason to prefer the neurocomputational framework is that it offers 

interesting means to understand the relationship between personal and subpersonal-

levels of analysis under a new light. This is a clear advantage with respect to the 

folk-psychological, the anti-representational and the purely subpersonal frameworks, 

and it is particularly crucial now that scientific disciplines studying the workings of 

the brain are rapidly growing. 

 In chapter 4 I discussed the relationship between personal and subpersonal 

explanations by adopting the lens of the interface problem, that is, the problem of 

how we should relate explanations couched in different vocabularies and belonging 

to different levels of analysis. I followed Bermudez’s (2005) in defining the interface 

problem as a problem about the relationships among various disciplines of study, 

such as folk psychology, scientific psychology, cognitive science and neuroscience. I 

argued that solely personal-level explanations and solely subpersonal-level 

explanations are not suitable to explain cognitive behaviour, and I concluded that a 

better understanding of the relationships between levels of explanation is needed. In 

this section I will explore the position of the neurocomputational explanations with 

respect to the interface problem. 



CHAPTER 7 

 

 

193 

 

 The peculiarities of this approach that, I believe, can clarify its position with 

respect to this problem are the followings: 

 It employs a top-down, function-first methodology 

 It adopts both the vocabulary of the brain (e.g. neurons, activations of 

neurons and neurotransmitters) and notions that commonly belong to the 

personal-level vocabulary (e.g. belief, expectation, internal representations, 

rationality and inference) 

 Some studies within this framework attempt to uncover something about the 

nature of the processes through which agents come to behave in a way that is 

Bayesian-rational 

I believe that these features make the neurocomputational framework a good starting 

point to shed new and potentially interesting light on the interface problem. Let me 

clarify this claim. 

 The framework incorporates quite naturally the methodological stance 

according to which neuroscience should ultimately offer some contribution to the 

way in which we think about the basic phenomena of the mind (see chapter 4). 

Employing a top-down approach means that, in order to allow neuroscience to say 

something about cognitive phenomena, we should first of all observe the phenomena 

and then hypothesise ways in which cognitive systems might perform them. This 

first step (i.e. a computational analysis for a specific cognitive task) is necessary to 

discover something potentially informative inside the brain. Having a top-down 

methodology allows the exploration of the possible connections between the 

functional level and the level of the brain because, with a description of the task at 

hand, we can consider which processes could approximate the required computations 

and then investigate the kinds of neural components and neural interactions needed 

for those approximations to be carried out. 

 Accordingly, the neurocomputational framework seems suitable for the co-

evolution among levels that Patricia Churchland suggested (1986), that is, the idea 
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that information at different level of analysis can interact and constrain each other. I 

have already discussed why co-evolution is a good strategy to understand cognitive 

phenomena previously. Here I intend to stress how the neurocomputationalism can 

allow it. 

 Someone might wonder whether the neurocomputational framework adopts a 

reductionist or materialist methodology: if scientists can tell us how cognitive 

processes are realised in the brain, then cognitive explanations won’t require 

personal-level folk-psychological notions anymore. I want to argue that this is not, 

and it doesn’t have to be, the methodology adopted within the Bayesian 

neurocomputational framework for even once we do have an implementational 

description of a cognitive behaviour, notions such as that of expectation and internal 

representation will still be required to make the cognitive behaviour intelligible. 

Indeed, it is peculiar to this approach the idea that cognitive behaviours are possible 

because cognitive systems can deploy internal generative models as surrogates of 

some aspects of the environment. These internal models are made out of internal 

representations, whose transformations allow cognitive systems to behave 

appropriately. The notions of internal models and internal representations are, 

therefore, central in neurocomputational explanations. What the framework can offer 

is, rather, a better (structural and functional) specification of the nature of these 

notions. As Patricia Churchland (2004, p. 49) claims “these discoveries begin to 

forge the explanatory bridge between the experience-dependent changes in neurons 

and the experience-dependence guidance of behaviours”. 

 From the personal-level of explanation, the (Bayesian) neurocomputational 

framework inherits, for instance, the notions of expectation and inference. Bayesian 

studies also show the existence of a much closer correspondence between optimal 

statistical inference and everyday cognition than commonly supposed: the brain 

seems to approximate quite neatly in fundamental aspects of its operations a certain 

kind of ideal, that is, the Bayesian rational ideal. This suggests that the Bayesian top-

down approach can shed light on how practical rationality might be enabled: 
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practical rationality is possible thanks to predictions made on internal representations 

and generative models in accordance with a rational norm — that of maximisation of 

expected utility. Working within the neurocomputational framework, then, allows us 

to say something about why — and not only how — people behave in certain tasks in 

a Bayesian-like fashion. 

 To sum up, the neurocomputational framework allows the personal level and 

the subpersonal level to interact in multiple ways: 

 The personal level guides and motivates the search for mechanisms and 

components in the brain and it offers important conceptual tools to 

understand the nature of cognitive phenomena 

 The subpersonal level offers grounds to justify personal-level claims, to 

uncover something about the constitutive nature of certain personal-level 

phenomena (e.g. mental illnesses, rationality and inference) and to identify 

the neural mechanisms responsible for them 

Consider the case of delusions analysed in chapter 6. Delusions are usually 

considered to be results of malfunctions in a putative belief-formation mechanism. 

Delusions are commonly distinguished from hallucinations, which are, instead, seen 

as consequences of breakdowns in the mechanism responsible for perception. 

Although there remain important differences between perceptual anomalies and 

delusions, the (Bayesian) neurocomputational model suggests an interesting link 

between perception and belief-formation mechanisms: they both involve the attempt 

to match the incoming sensory stimuli with top-down predictions about the causes of 

those stimuli. 

 Whether or not delusions and hallucinations result from the operation of very 

similar mechanisms, these studies show that working within the neurocomputational 

framework allows us to partially answer important constitutive questions about the 

nature of certain cognitive phenomena. 
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 By suggesting a new, multilevel and model-based account of the interactions 

between inferences, expectations and learning, we have reasons to hope that this 

framework will, one day, offer a better understanding even of our own agent-level 

experience than that afforded by folk psychology.  

 To summarise, the neurocomputational framework has the following 

explanatory pay-offs: 

 It values predictive power, which is adopted to evaluate the goodness of 

explanations 

 It has the potential to characterise the causes of certain cognitive phenomena 

both functionally and structurally 

 It leaves room for exploring a broad range of different assumptions about 

how people might solve certain tasks and it opens up the possibility for 

representational diversity 

 It aims at identifying neural mechanisms, that is, the components and their 

regular interactions responsible for cognitive performances 

 It can shed new light on the interface problem by letting the personal and the 

subpersonal levels interact in a fruitful way 

 

 

 

7.5 – Neural representations and behavioural intelligibility 
 

So far I have offered some reasons for why we should be optimistic about the 

explanatory pay-offs of the neurocomputational framework. In this section I will 

highlight that such explanatory purchase is also due to the central role that a special 

notion of representation, that of neural representation, plays in it.   

 My argument will be twofold. I will first show why neural representations are 

necessary for good predictions and I will then discuss why these representations can 

be considered real components of mechanisms responsible for cognitive 
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performances. The neurocomputational framework, I will claim, allows a better 

specification of the notion of representation and of it role in cognition. 

 Within the neurocomputational framework, neural representations are 

understood as neural states that carry information about some variable in the world 

and that retain information about the past experience of an agent. Neural 

representations enter into causal processes in ways that depend on their physical 

properties. 

 At the beginning of the chapter, I argued that the ultimate goal of the 

neurocomputational framework consists in establishing bridges between the personal 

(and functional) level and the subpersonal (and neural) level of analysis. By 

connecting the two levels, the framework aims at making the functional and the 

neural vocabularies symmetrical. For this reason, neurocomputationalists try to 

understand how representations are encoded by neural activities and transformed by 

neural operations.  

 In section 7.2 I showed that the search for bridges between levels is motivated 

by the need to gain not only predictions, but good predictions of people’s behaviour 

in cognitive tasks. By suggesting good predictions, I claimed, Bayesian models can 

aim at explaining cognitive phenomena in a genuine sense. I then suggested that 

predictions can be good (i.e. secure and informative) if they are based on knowledge 

of the brain too. By examining various applications of Bayesian models and 

empirical data, I claimed that there are reasons to believe that, in the future, 

neurocomputational models will make predictions about behavioural performances 

that will be secure because they will be based not only on behavioural data, but also 

on empirical data concerning the internal workings of the brain. In other words, good 

predictions will be possible when neural representations will be characterised both 

functionally and structurally: the level of the brain offers further evidence, control 

and testability that the system is indeed operating on a certain process and on certain 

components. This, in turn, allows more informative and precise confirmations (or 

disconfirmations) of possible explanations. The adoption of the methodology of 
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“transfer learning” (see section 7.3) is a starting point in this direction. The 

identification of the information that subjects really have when performing cognitive 

tasks provides an important further source of evidence that can tell us whether 

subjects perform on the basis of internal representations in a Bayesian way. Transfer 

learning indicates, then, the beginning of a process that will uncover more and more 

about the internal nature of the mechanisms that underlie our cognitive abilities. 

 The fact that important components of putative mechanisms can be 

characterised both structurally and functionally is probably most evident in the work 

on reward-guided decision-making. This work provides one of the best cases of 

convergence between a functional description and a description of what goes on in 

the brain: investigators found co-variation between the amount of reward prediction-

error predicted by the model and the BOLD signal in certain neural circuits of 

subjects performing on the same task (see chapter 6).  

 The rise of spatially-detailed imaging techniques (e.g. fMRI, PET) has indeed 

opened up the possibility to identify how certain functions are realised in the brain. 

There are already examples showing that there is a rather consistent effect on the 

measurements of BOLD signals, which are coupled to differences in neuronal firing 

rates, when a subject is representing the same content on different occasions 

(Mukamel et al., 2005). These preliminary results indicate that a same representation 

might get implemented in the brain in a similar way across individuals and trials. If 

this were the case, we might, one day, be able to generalise and predict behavioural 

performance on the basis of subjects’ neural activities.  

 Attributing content to certain neural activations is therefore required to explain 

the ability of an agent to generalise her correct performance to new tasks and to 

make sense of why a subject performs in a specific task in a way consistent with the 

performance of a Bayesian observer. I have previously shown that the existence of 

internal generative models, whose components are internal representations, is 

essential to account for how subjects can experience the world and not just sense 

data: cognitive agents perceive the world by meeting the incoming sensory signals 



CHAPTER 7 

 

 

199 

 

with a top-down cascade of representing interacting causes. The use of internal 

knowledge has several advantages: it enables us to hear what is said despite noisy 

surroundings, to adjudicate between alternative possibilities each one consistent with 

the stimuli, and so on. 

 If this is the case, then, we are justified in saying that neural representations are 

real in a very specific sense: they are real because they are explanatory inevitable 

when the explanandum phenomenon is formulated in functional or representational 

terms. In other words, neural representations are real elements of subjects’ internal 

models because invoking them is necessary to explain why they can perform in the 

ways predicted by the neurocomputational models. Invoking neural representations 

shows how cognitive systems are connected with their environments and with the 

tasks in which they are embedded (Shea, 2013). 

 This claim is in line with the conclusion that I have drawn in chapter 3 with 

respect to William Ramsey’s partial eliminativist proposal. There, I argued that we 

should understand a system as representational when there are enough reasons to do 

so, even in the absence of a full-blown theory of representation. If we can show that 

we can predict and generalise a cognitive system’s behaviour by attributing 

representations to it, then the system is employing representations: representations 

are genuinely real components of the mechanism that the system uses to perform 

successfully in its environment. Identifying mechanisms is, therefore, a necessary 

step to generate good cognitive explanations, which are explanations that need to 

account both for why cognitive systems behave in certain ways and for how they do 

so. 

 Accordingly, even if we constrain our theory of representation on the basis of 

explanatory usefulness, this is still consistent with representations being real internal 

entities. They are real, even if it is not clear yet how exactly they are realised within 

the system. 

 When representations are interpreted in this way, they are a departure from 

more classical views on representations: 
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 They don’t depend solely on the sensory inputs from the environment; rather, 

they are also influenced by inputs from within the brain, and, in particular, by 

inputs from other cortical areas 

 They are not static. The neuronal responses following a certain stimulus may 

vary according to the context and to the background knowledge a subject can 

bear on the task (in Bayesian models, this knowledge is in the form of the 

current winning top-down prior prediction). In this sense, even if the system 

makes use of structured symbolic representations, these representations don’t 

need to be rigid or hard-wired, but can grow dynamically in response to noisy 

data from the world 

Whether or not we will find one-to-one mappings between functional states and 

neural states, the study of the brain — motivated by the goal of finding bridges 

between the personal and the subpersonal levels — will still be useful to gain a better 

understanding of our mental life. As claimed above, by suggesting a model-based 

and multilevel account of the interactions between inferences, expectations and 

learning, the framework could, one day, offer a better understanding even of our own 

agent-level experience than the one afforded by folk psychology. 

 If mappings between functional states and states in the brain are identified, the 

framework will be able to offer predictive and mechanistic explanations of cognitive 

behaviour. The personal level of analysis will still be necessary to account for 

cognitive phenomena when these will be formulated in functional and 

representational terms. The subpersonal level of analysis, instead, will be adopted to 

explain phenomena formulated in neural or physiological terms or to achieve 

different epistemic or practical goals. The computer analogy might be of help here. 

The functional level of analysis is necessary when our aim is to program the 

computer, while the implementational level is required when we need to intervene on 

it to fix some problems. 

 Working within the neurocomputational framework, then, allows the 

construction of models that can be better confirmed by empirical results with respect 
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to the folk-psychological and anti-representational ones. If the best models, and, 

consequently, the explanations they can achieve, are those that can be best confirmed 

and justified through evidence, then the neurocomputational framework is the most 

apt to genuinely explain cognitive phenomena by integrating personal and 

subpersonal information about their underlying processes. 

 

 

 

7.6 – Conclusion 
 

In this chapter I argued that we can make progress in understanding cognitive 

behaviour by adopting the neurocomputational framework. I claimed that, although 

we don’t have any fully worked out mechanistic explanation at present, we have 

sufficient reasons to believe that neurocomputational explanations will be good 

explanations, that is, predictive and mechanistic. 

 I argued that a central component of neurocomputational explanations is the 

notion of neural representation. Such notion, that still needs to be properly 

understood, is necessary to account for how a cognitive system can approach the 

world, handle its uncertainty and perform cognitively. In particular, I showed that 

neural representations are necessary for an explanation of cognitive phenomena to be 

predictive and mechanistic. When representations are defined both functionally and 

structurally, the resulting neurocomputational model can generate more secure 

predictions. Neural representations are also necessary for an explanation to be 

mechanistic because they are the components over which inferences can be 

performed. In this sense, I argued that the notion of cause employed within the 

neurocomputational framework is more precise than that of other frameworks 

previously analysed. Accordingly, I showed how the Bayesian neurocomputational 

framework values the search of neural mechanisms by incorporating ecological and 

biological considerations in the modelling design. This allows researchers to test 
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predictions not only about behavioural performances, but also about internal 

mechanistic features. 

 In addition, I stressed the importance of the model-based top-down strategy as 

a means to explore a broad range of assumptions and hypotheses about the possible 

mechanisms underlying cognitive abilities. This advantageous methodology is also 

capable of shedding new light on the explanatory interface problem by uncovering 

something about the constitutive nature of certain mental phenomena. 

 For all these reasons, I conclude that working within the neurocomputational 

framework can help us to make progress in our understanding of cognitive 

behaviour. 

 I would like to stress that the goodness of the neurocomputational framework 

doesn’t depend on the success of a model or of a family of models that belongs to it. 

My analysis of Bayesian models has been instrumental to a broader discussion over 

the structural, methodological and explanatory features of the neurocomputational 

framework. In this sense, whether Bayesian models will explain the mechanisms 

underlying cognitive abilities or not, whether the brain does implement Bayesian 

inference and whether internal representations do encode probability distribution are 

issues that are not directly relevant to the main conclusion of the thesis. The project 

has aimed at identifying certain features of explanatory frameworks that could 

generate adequate explanations in cognitive science. With regard to this goal, I have 

argued that good explanations of cognitive behaviour need to be predictive and 

mechanistic. I then indicated a framework — the neurocomputational framework —

that can allow the search for this kind of explanations better than others. My 

conclusions are, therefore, not directly affected by the empirical success of Bayesian 

models. Rather, they depend on a different sense of “success” of the 

neurocomputational framework. For it to be able to identify proper mechanisms 

underlying cognitive behaviour, it needs to provide scientists with, for instance, a 

much clearer notion of what it means for an algorithm or for a specific quantity to be 

realised in the brain. The lack of a clear understanding of neural realisation 
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negatively affects the goodness of the overall framework and, in turn, the 

experiments and the interpretations that scientists are allowed to carry out. On the 

positive side, the framework clearly strives for such clarification, as I have 

exemplified in my analysis of various cognitive behaviours. 

 In conclusion, despite the open questions and the specifications that are still 

required, adopting the neurocomputational can make progress in our understanding 

of cognitive behaviours and their underlying processes. 
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Conclusion 
 

Various disciplines of study are devoted to understanding the processes underlying 

cognition, but there is still little consensus on the features that distinguish adequate 

from inadequate explanations of cognitive behaviour. There are currently four major 

frameworks that try to explain cognitive behaviour: the folk-psychological, the anti-

representational, the subpersonal physiological and the neurocomputational 

frameworks. The goals and standards adopted by investigators working within these 

different frameworks are, however, largely lacking explicit articulation. This makes 

it difficult to understand whether these frameworks offer incompatible rather than 

complementary attempts to explain aspects of our cognitive life, thus limiting the 

progress in this field. 

 I opened this thesis with the following questions and answers: 

 

Q1: Which norms and values are used to construct, evaluate and justify models and 

explanations in cognitive science? 

A1: Currently there are at least four different frameworks that try to explain 

cognitive phenomena. Each of these frameworks adopts different values and 

standards. 

Q2: What are the necessary desiderata of good explanations of cognitive behaviour? 
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A2: A good explanation in cognitive science should be predictive and 

mechanistic. 

Q3: How can we make progress in our understanding of cognitive behaviours? 

A3: Adopting the neurocomputational framework is one way to make progress 

in our understanding of cognitive behaviours and their underlying processes. 

 

I wish to conclude by showing the questions and answers in light of the claims 

addressed and defended in the chapters. 

 The first claim defended in this thesis is that the four frameworks pursue 

different explanatory goals and adopt different standards to evaluate the adequacy of 

cognitive explanations. Chapter 1 shows that the folk-psychological framework 

values predictability. Cognitive behaviour is explained by a generalisation of the 

form “if a person A desires B and believes that by doing C she will get B, then, 

ceteris paribus, she will do C”. Chapter 2 discusses the anti-representational 

framework and argues that its explanatory goals are predictability and unification. 

Anti-representational models aim at predicting systems’ behaviours — specifically 

how they vary through time — by importing theoretical, methodological and 

descriptive tools from other sciences. Chapter 4 examines purely folk-psychological 

rational explanations and purely physiological subpersonal explanations. The first 

part of the chapter shows how rational explanations aim at making behaviour 

intelligible. The second part of the chapter analyses solely subpersonal explanations. 

Explaining cognitive behaviour in purely neural physiological terms is shown to be 

the main goal of these explanations. Chapter 6 introduces and discusses the 

neurocomputational framework, which is based on the assumption that, if a system 

has a certain property, that property depends on the nature and on the organisation of 

its component parts. Chapter 7 argues that the neurocomputational framework aims 

at both predictability and identification of mechanism. Indeed, the framework values 

the ability to predict as a mark of a good explanation and it is open to the analysis of 
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the implementation of cognitive processes made possible by the operationalisations 

of some of its central statements. 

 The second claim advanced in this thesis is that good explanations of cognitive 

behaviour need to be predictive and mechanistic. Predictability is a necessary feature 

of an adequate explanation because a good explanation has to provide us with 

information about the explanandum phenomenon that we could not have before. We 

need, for instance, to know that, given specific conditions, we should expect a certain 

phenomenon. However, predictability is not, by itself, a sufficient criterion to 

distinguish adequate from inadequate explanations; rather, it needs to be 

complemented by the identification of mechanisms. 

 Chapter 1 starts by discussing the major positions on the nature of scientific 

explanation and begins justifying why the ability to predict and to identify 

mechanisms are two necessary desiderata of adequate explanations of cognitive 

phenomena. It argues that a predictive description is not necessary also a good 

explanation by drawing on the well-known critique to the deductive-nomological 

model of explanation (e.g. Salmon, 1984). The identification of mechanisms, which 

requires both functional and structural analysis, is here suggested as a way to 

distinguish predictive descriptions from good explanations of cognitive behaviour. 

Chapter 3 provides further arguments for why the ability to predict is insufficient to 

validate the goodness of an explanation. The chapter also shows that the 

identification of mechanisms is necessary to better specify the relationship between 

models and modelled systems. Setting up correspondences on the basis of predictions 

between numerical sequences contained in the model and those of the real system’s 

data is insufficient to explain these data. Rather, mathematical variables need to be 

identified in the physical substrate of the system for them to have real counterparts in 

the system performing a certain task. At the same time, revealing, as anti-

representational dynamical models do, the existence of widespread patterns that 

apply to various physical systems does not bear on whether these models explain the 

phenomena or not. Chapter 4 argues that, without further evidence provided by the 
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description of the responsible mechanisms, purely rational explanations at the 

personal level of analysis run the risk of being mere hermeneutic descriptions. The 

chapter also shows that solely physiological subpersonal explanations cannot 

adequately explain cognitive phenomena because they require the employment of 

certain personal-level notions (e.g. knowledge, information) to properly explain 

cognitive behaviour, and they need to start with a functional description of the 

cognitive process under study. Chapter 5 provides further arguments in favour of the 

identification of mechanisms by examining Jose Luis Bermudez’s tripartite account 

of rationality (e.g. Bermudez, 2003). The chapter shows that the analysis of cognitive 

performances based on external behavioural criteria has to be supplemented by a 

deep study of how information is encoded and manipulated inside the brain. This 

information is necessary to confirm or disconfirm possible explanations. 

 Drawing upon this descriptive and normative analysis, it is argued that 

progress with respect to our understanding of cognitive behaviour is possible thanks 

to empirical discoveries, mathematical advances and also to the adoption of a 

framework that can play a genuine heuristic role. The third claim defended in this 

thesis is that cognitive behaviour can be effectively understood within the 

neurocomputational framework, which aims at identifying the workings of the 

mechanisms underlying cognitive performances. Mathematical and conceptual tools 

from statistical decision theory and reinforcement learning have been increasingly 

used to account for data concerning the neural basis of various cognitive behaviours, 

ranging from perception to action, to decision processes. The simultaneous reliance 

on theoretical and empirical approaches has allowed investigators to address more 

complex empirical questions about how cognitive systems can perform certain 

behaviours in more reliable and precise ways. 

 In chapter 7 these motivations were addressed in support of the claim that our 

understanding of cognitive processes can advance by working within a 

neurocomputational framework. This framework plays an important heuristic role in 

providing guidance to formulate novel empirical questions and to test current 
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conceptual schemes. Looking for bridges between functional and neural explanations 

and aiming at making the functional and the neural vocabularies symmetrical by 

assessing the existence of correlations between mental states and neural states are, 

indeed, useful strategies in their own right, but they also provide ways to revise 

concepts at both levels of descriptions. In addition, the capacity of the framework to 

suggest predictions that can be empirically tested to uncover the components and 

processes responsible for certain cognitive behaviours makes the neurocomputational 

framework more progressive than the others in advancing our understanding of 

cognitive phenomena. If correct, these predictions would be informative (i.e. they 

would uncover something about the underlying mechanisms of which we were 

unaware) and also secure (i.e. they would depend on both psychophysical studies and 

on some features of neural circuits). 

 The thesis provides also a better understanding of some theoretical terms often 

adopted in cognitive science: cause and representation. Chapter 1 analyses the notion 

of cause within the context of causal explanations of cognitive behaviour and argues 

that causal statements cannot be grounded solely in counterfactual statements (e.g. 

Woodward, 2003, 2008). While counterfactuals are important epistemic tools, it is 

the identification and description of mechanisms that justify the existence of causes 

and causal relations. Chapter 3 examines the arguments used by advocates of the 

anti-representational framework against the usefulness of the notion of representation 

in explaining cognitive phenomena and shows that representations are required to 

explain a wide range of cognitive phenomena that do not result from a direct 

coupling between a system and its environment (i.e. representation-hungry 

problems). Chapter 4 discusses William Ramsey’s attack to the notion of 

representation in connectionism and cognitive neuroscience (Ramsey, 2007). It 

argues that we are justified in treating a system as trafficking in representations when 

we explain its cognitive success in terms of internal models that the system employs 

to draw inferences about the world. These kinds of explanations are common within 

connectionism and cognitive neuroscience, hence certain internal neural states can be 
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genuinely considered representational even in the absence of a full-blown theory of 

representation. Indeed, attributing representations to a system allows us to make its 

cognitive performance intelligible and predictable. Chapters 6 and 7 argue that the 

neurocomputational framework, thanks to its model-based methodology, allows the 

(empirical) exploration of various formats of representation. In particular, it leaves 

room for representational diversity and provides ways to deepen our understanding 

of the notion of representation in light of discoveries about the structure and 

functioning of the brain. 

 Good explanations of cognitive behaviour are, however, far from being simple. 

Given that models can explain to the extent that they incorporate ecological and 

biological considerations in their construction, two important challenges for 

neurocomputational models arise. First, if, as I suggested in chapters 6 and 7, neural 

systems carry out Bayesian and Reinforcement Learning algorithms to perform 

cognitively, then these algorithms must run quickly and efficiently. Yet, a system 

that implements Bayesian computations requires a significant amount of time and 

resources. This means that approximate forms of Bayesian computations have to be 

investigated and that new algorithms must be discovered. Second, for the framework 

to genuinely allow the identification of mechanisms underlying cognitive behaviour, 

it needs to provide researchers with a much clearer idea of what it means for specific 

neural circuits to realise an algorithm or some of its variables. The lack of a neat 

understanding of neural realisation negatively affects the goodness of the framework 

by limiting the effectiveness of the experiments and of the interpretations that 

scientists can make. On the positive side, the framework clearly strives for such 

clarification, as I have exemplified in my analysis of various cognitive behaviours in 

chapters 6 and 7. The top-down approach peculiar of the neurocomputational 

framework allows testable predictions, leaves room for exploring a broad range of 

different assumptions about how a cognitive system might perform a certain task and 

opens up the possibility for representational diversity. It also sheds new light on the 

possible bridges between functional and neural characterisations of behaviour: the 
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personal level guides and motivates the search for mechanisms and provides 

important conceptual tools to understand the nature of cognitive phenomena, and the 

subpersonal level justifies the validity of personal-level claims through mechanisms, 

thus uncovering something of the constitutive nature of cognitive phenomena. 
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