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Abstract

Major urinary protein (MUP) genes were isolated from C57 genomic 

libraries, characterized by restriction enzyme mapping and compared 

with MUP genes isolated from BALB/c genomic libraries (Clark et 

al, 1982; Bishop et al, 1982). The conclusions drawn from the 

characterization of this new set of MUP genes are in agreement with 

those previously drawn from studies on the BALB/c MUP genes.

Most MUP genes were found to share extensive homology in their 

transcription units and 5' and 3' flanking regions. Exceptions were 

those genes whose coding regions have been interupted by insertions 

and/or deletions. The MUP genes fall into two main groups based on 

hybridization criteria: group 1 and group 2 (Bishop et al, 1982). 

With the exception of one group 2 gene (BL-25/CL-2), restriction 

site homology was found to be greater within groups than between 

than. Restriction site homologies further divided the group 1 genes 

into two sub-groups. Sequence data revealed that the two sub-groups 

have different forms of an A-rich region located M0bp upstream of 

the TATA box.

Messenger RNA from tissues that express MUP was shown to be more 

homologous to group 1 coding sequences than to group 2 coding 

sequences. In the liver, two forms of MUP mRNA can be distinguished. 

Group 1 sequences hybridized preferentially to the abundantly 

transcribed long form of the mRNA, while group 2 sequences 

hybridized preferentially to the short and rarer form of the mRNA.



Genomic digests illustrated that two types of variation are 

found between the MUP genes of BALB/c and C57BL/Fa mice. The first 

relates to the presence of variant restriction fragments. Two cloned 

MUP genes carrying such fragments were identified. The second 

relates to variation in the intensity of common restriction 

fragments. Differences between the strains in the total number of 

MUP genes were not observed. Variation in the intensity of common 

restriction fragments are proposed to be the result of different 

homogenization events that took place in the mouse lineages from 

which BALB/c and C57BL/Fa were derived.
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Introduction

The structure of genes transcribed by RNA polymerase II

Many eukaryotic genes contain two distinct types of region, exons 

and introns. Exons encode the translated sequences as well as 5' 

and 3' flanking untranslated sequences of the messenger RNA. Introns 

are sequences present within the transcription unit but not 

represented in the messenger RNA. Both exons and introns are 

transcribed. However, the introns are excised or "spliced out" from 

the newly transcribed RNA and adjacent exons are joined to form a 

continuous messenger RNA.

Comparison of homologous genes from different species, and 

comparison of closely related genes within a single species, reveal 

that the size and coding sequences of exons are well conserved. With 

the exception of certain discrete regions, the non-coding sequences 

of exons are less conserved than the coding sequences, and appear to 

evolve at a similar rate to the silent site divergence of coding 

sequences (Perler et al, 1980). Introns can undergo considerable 

size changes during evolution due to insertions, deletions and 

duplication events (Konkel et al, 1979; Efstratiadis et al,

1980) . Where they can be aligned, homologous intronic sequences of 

the 8-globin genes have been found to evolve at a similar rate to 

the silent site divergence of the coding sequences (Efstratiadis et 
al, 1980).

Some genes may be alternatively spliced with the result that
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intronic sequences of one transcript become part of the translated

sequences of another transcript. Splicing may also give rise to

differences in the untranslated regions of the mRNA. This is usually

associated with the use of alternative polyadenylation or

transcription initiation sites, sites which define the beginning and

end of the mRNA respectively. Examples of alternatively spliced
instranscripts are: the aA and aA transcripts of the murine aA 

crystalline gene, which differ in their translated sequences (King 

and Piatigorsky, 1983); the alkali light myosin gene transcripts,

LCI and LC3, which differ in both their 5' untranslated and their 

translated sequences (Nabeshima et al, 1984); the transcripts 

coding for the membrane and secreted forms of IgM, which differ in 

both their 3' untranslated and their translated sequences (Alt et 

al, 1982) and the mouse a-amylase salivary and main liver 

transcripts which differ only in their 5' untranslated sequences 

(Hagenbuchle et al, 1981).

The function of intronic sequences that are not represented in 

mature mRNA appears to vary. For example, the immunoglobin heavy 

chain genes and the mature K light chain gene carry a tissue 

specific transcriptional enhancer in the intron that separates the 

joining region from the adjacent constant region (Banerji et al, 

1983; Queen and Baltimore, 1983; Picard and Schaffner, 1984). 

However, some introns might not carry sequences with essential 

functional roles. Thus natural loss of the second intron of the rat 

preproinsulin I gene has not affected its regulated expression 

(Lomedico et al, 1979), as judged from the rates of synthesis of 

insulin I and insulin II in isolated islets of Langerhans (Clark and
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Steiner, 1969 ). Also, not all genes transcribed by RNA polymerase 

II have introns. Known examples of such intronless genes are those 

that code for histones (Hentschel and Birnstiel, 1983), interferons 

(Nagata et al, 1980) and protamines (Anson, 1983). The reasons for 

the evolution of interrupted genes have therefore been the cause of 

debate.

Some introns appear to separate exons that code for different 

functional domains. Examples are the introns which define the 

sequences coding for the haem-binding domain of globin (Craik et 

al, 1980), the introns which separate immunoglobulin constant and 

hinge regions (Sakano et al, 1979; Early et al, 1979) and the 

intron which interrupts the C peptide that connects the A and B 

chains of mature insulin (Perler et al, 1980). This has led to the 

theory that novel transcription units may be formed by the bringing 

together of different functional sequences. It is hypothesised that 

such "exon shuffling" is made feasible by the separation of coding 

sequences by introns (Gilbert, 1979; Blake, 1979). Although exon 

shuffling takes place in the immunoglobulin producing cells (Maki 

et al, 1980), evidence for exon-shuffling as an important 

mechanism in the evolution of eukaryotic genes has only recently 

been provided. This support comes from unravelling the structure of 

the low-density lipoprotein (LDL) receptor gene (Sudhof et al, 

1985a; Sudhof et al, 1985b). The LDL receptor gene has been found 

to show a clear association between exons and functional domains, 

and different domains have been found to share homology with the 

epidermal growth factor (EGF) precursor gene and the complement 

factor C9 gene. Moreover, the positions at which the introns
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interrupt the genes are conserved between the homologous regions. 

Sudhof et al have therefore concluded that the LDL receptor gene 

is composed of a "mosaic of exons" derived from different genes.

Introns occasionally separate domains which are functionally related 

and which have a common evolutionary ancestor. Examples are the 

three functional domains of the ovomucoid gene, each capable of 

binding and inhibiting a serine protease (Stein et al, 1980) and 

the helical domain units of the collagen genes (Yamada et al,

1980; 1984; Chu et al, 1984). The predominant exon sizes of 

vertebrate collagen genes (54, 45, 99, 108 and 162 bp respectively) 

has led to the suggestion that these genes evolved by two types of 

recombinational events involving a 54 bp unit: (1) unequal crossing- 

over between the 54 bp units, (2) recombination between the genes and 

their transcribed sequences or cDNAs. Exon duplication may also be 

an important mechanism in the evolution of genes coding for new 

products. Thus the homologous region between the LDL precursor and 

C9 genes is represented seven times in the former gene.

Cis acting regulatory sequences of genes transcribed by RNA 
polymerase II

Sequences involved in transcription initiation, transcription 

regulation and mRNA processing have been identified using both cell- 

free systans and cultured cells. Different cell-free systems that 

accurately carry out transcription initiation have been developed, 

from mammalian cell extracts (Weil et al, 1979; Manley et al,

1980; Krainer et al, 1984) Reactions that appear to be coupled
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in vivo may be uncoupled in different cell-free systems, thus 

allowing the molecular mechanisms of different transcription and RNA 

processing steps to be studied. A disadvantage of cell-free systems 

is that certain factors may be missing that are required in vivo. 

This may partly explain the occasional discrepancies obtained 

between cell-free systems and cultured cells (Benoist and Chambon, 

1981; Mathis and Chambon, 1981).

Several SV40 vectors and a few other viral vectors (for example 

those based on adenovirus, BPV and retroviruses) have been developed 

for the introduction of cloned DNA into cells (see Gluzmann, 1983) . 

These vectors have been used for both transient expression studies 

and long-term expression studies. In transient expression studies, 

the infecting DNA may remain epigenic, while in long-term expression 

studies, with the exception of some BPV based vectors (DiMaio and 

Maniatis, 1982; Matthias et al, 1983), the infecting DNA becomes 

integrated into the genome. Long term studies require continuous 

selection for cells harbouring the introduced DNA. For this reason, 

many cell lines which lack functional marker genes (e.g. tk, 

hprt) have been developed. The marker gene usually forms part of 

the vector, although it may be co-transformed with the vector 

(Pellicer et al, 1980). Transient expression studies have two main 

advantages over long-term studies. The first is that inhibition of 

expression due to re-arrangements caused by integration of the 

transforming DNA into the genome are more likely to be avoided in a 

mixed population of transformed cells. The second is that studies 

are not restricted to certain cell lines and may even be carried out 

using primary cell cultures. Their disadvantages are the low levels
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of expression obtained and the short-term within which expression 

can be studied.

Much of our understanding of gene expression is derived from studies 

in cell culture. It must therefore be emphasized that these 

represent artificial systems which may occasionally give rise to 

artifactual results. This is borne out by the observation that 

cloned genes introduced into cultured cells are often expressed even 

though the cells are derived from tissues in which these same genes 

are normally inactive.

Comparison of sequence data from many genes transcribed by RNA 

polymerase II has revealed certain well-conserved regions that are 

present within or flanking the transcription units. Deletion 

mutation studies have been extensively used to identify whether such 

regions are necessary for transcription and RNA processing. Some 

artifacts may be obtained in deletion mutation studies due to the 

altered spatial relationships brought about by the deletions. To 

avoid such artifacts, McKnight and Kingsbury (1982) studied the 

effect of deletions within the HSV-tk promoter region by 

elegantly replacing the deleted HSV-tk sequences with linker DNA. 

However, deletion replacement studies may also give rise to 

artifacts due to the introduction of novel sequences within the 

regions under investigation. For these reasons point mutation 

studies serve to complement deletion mutation studies, when 

determining the functional roles of specific sequences.

Fusion genes have often been used to demonstrate the effect of



7

regulatory sequences that have been removed from their normal gene 

environment. In the most thorougly conducted studies, short 

sequences found to be important in the regulation of transcription 

have been artificially synthesized. The synthetic oligonucleotides 

are fused to the coding regions of genes which naturally lack these 

sequences; studies on the expression of the resultant fusion genes 

are then carried out and may provide final proof for the functional 

significance of the proposed regulatory sequences.

Sequences required for splicing. Despite the variability in the 

structure of introns, they share a conmon feature. With few 

exceptions, all begin with the dinucleotide 5' GT 3' and end with 

the dinucleotide 5' AG 3' (Breathnach et al, 1978). A consensus 

sequence compiled from ̂ 130 exon and intron boundaries yields the 

sequence (CA)AG/GT(AG)AGT for the 5' junctions and (TC)nN(CT)AG/G 

for the 3' junctions (Mount, 1982). These sequences are thought to 

be important for splicing since mutation of some positions abolishes 

correct splicing.

The effect of point mutations on the splice junctions of the large 

intron of the rabbit B-globin gene has been studied in cell culture 

(Wieringa et al, 1983). This was achieved by infecting HeLa cells 

with a vector containing the modified 3-globin gene linked to the 

SV40 transcription promoter. Mutation of the G residue at the first 

intronic position was found to abolish normal splicing and to result 

in the use of cryptic sites. Naturally-occuring mutations at this 

position have also been described. The splicing products of a



t?-thalassaemia gene carrying such a mutation have been studied _in 

vitro in cultured cells. As in the deletion mutation studies, 

processing of the transcripts involved the use of a cryptic splice 

site. Moreover, low amounts of mRNA were produced in which the first 

exon was directly spliced to the third exon (Treisman et al,

1982) .

Mutations that involve intronic sequences other than the splicing 

consensus sequences, and that lead to the creation of new splicing 

patterns, have also been described. A striking example of this is 

provided by a 3-thalassaemia gene which carries a mutation at 

position 745 of the second intron. Studies in cell culture showed 

that this gene produced mRNA with an extra exon: the 3-mutation was 

found to create a new 5' splice site which in turn leads to the 

activation of an internal 3' cryptic splice site. Hence, a 162 bp 

exon was produced between exons 2 and 3 (Treisman et al, 1983) . As 

well as leading to abnormal splicing, mutations at and around the 

splice junctions have been found to reduce splicing efficiency. This 

is reflected by the accumulation of unprocessed and semi-processed 

mRNAs (Busslinger et al, 1981).

The molecular mechanism by which splicing occurs is not fully 

understood. It has been proposed that the association of the small 

nuclear RNA Ul with the splicing sites is necessary for splicing. 

This is based on the following observations: (1) the association of 

□1 with hnRNA; (2) sequence between Ul and both splice

sites (Roger and Wail, 1980; Lerner et al, 1980); (3) the 

inhibition of splicing in vitro when anti-(Ul) RNP serum is
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added to whole cell extracts normally capable of accurate splicing 

(Lerner and Steitz, 1979; Yang et al, 1981; Padgett et al,

1983), and (4) preferential binding of Ul snRNPs to a 5' splice site 

in vitro (Mount et al, 1983). Recently, analysis of splicing 

intermediates in cell-free systems that process exogenously added 

labelled RNA (Padgett et al, 1984; Krainer et al, 1984) has 

indicated that introns are excised in the form of lariats (Grabowski 

et al, 1984; Padgett et al, 1984; Ruskin et al, 1984). A

lariat is formed by the joining of the 5' end of an intron to a site

close to its 3' end through a 2'-5' phosphodiester bond. The role of
% *Ul RNA in the formation of lariat structures is not known.

The effect of extensive deletions within the large rabbit 3-globin

intron has also been studied in culture cells (Wieringa et al,

1984). With deletions starting from the centre of the intron and 

extending in either a 5' or 3' direction, it was found that a 

minimum of the first six 5' base pairs of the intron or the last 

twelve 3' base pairs of the intron were required for efficient 

splicing. When deletions were extended in both directions, efficient 

splicing was carried out if the first six 5' base pairs and the last 

twenty-three 3' base pairs were separated by a minimum of 60 bp of 

heterologous DNA. From this it is concluded that while specific 

sequences at the 51 and 3' junctions are required for splicing, no 

strictly conserved internal intronic sequences are required, 

although a minimum sequence length does appear to be important.

Because the 2'-5' phosphodiester internal bond of the lariat 

structure is positioned 5' to the conserved 3' intron/exon junction,
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it also appears that the formation of the lariat structure does not 

require highly conserved internal sequences (Wieringa et al, 1984; 

Weissmann, 1984). Langford et al (1984) studied the effect of 

deletion mutagenesis on the splicing of yeast transcripts in yeast 

cells. This was achieved by transforming yeast cells with a yeast- 

Acanthamoeba hybrid actin gene, the transcripts of which could be 

distinguished from the wild type actin transcripts. Modification of 

the fusion gene, by a deletion between 35 - 70 base pairs 5' to the 

3' end of the yeast actin intron, was found to abolish splicing. 

Comparison of the deleted region with the sequences of sixteen other 

yeast introns revealed the presence of the sequence 5'TACTAAC3'.

This sequence was found to be positioned approximately 10 to 50 bp 

from the 3' exon-intron boundary.

Sequences similar to 5'TACTAAC3' have been found in the 3' regions 

of higher eukaryotic introns (Keller and Noon,1984). In the large 

rabbit B-globin intron this sequence coincides with the position 

where the 5' end of the intron is joined to an internal 3' residue 

(Wieringa et al, 1984). However, from comparisons of the 

5'TACTAAC31-like sequences in the 3'regions of the introns of higher 

eukaryotes (Keller and Noon, 1984), and from the deletion mutation 

studies of Langford et al (1984) and Wieringa et al (1984) , it 

appears that the nucleotide composition of internal intronic 

sequences used in splicing are less rigidly conserved in higher 

eukaryotic genes (Wieringa et al, 1984; Weissmann, 1984) .

The cap site. The 5' termini of eukaryotic mRNAs are modified 

with a "cap" structure M G(51)ppp(5')N. The consensus sequence
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PyA(Py)5 for the beginning of the mRNA at the cap site has been 

derived from a comparison of 22 genes (Breathnach and Chambon,

1981). The cap site is also thought to correspond to the position of 

transcription initiation. Evidence for this comes from SI mapping of 

precursor and mature mRNA transcripts (Weaver and Weissmann, 1979; 

Breathnach and Chambon, 1981). Further confirmation has come from 

the work of Bunick et al (1982) who used nucleotide triphosphate 

analogs with phosphohydrolase-resistant beta-gamma phosphate bonds 

to study cap site formation during the in vitro transcription of 

the adenovirus Ad2EIV gene. Fingerprint analysis of the gel- 

purified transcripts with 51 triphosphate ends revealed that the 5' 

terminal nucleotide triphosphate analog was present in the same 

oligonucleotide as the cap.

Recently Konarska et al, (1984) have suggested that the cap 

structure plays an important role in splicing, since the addition 

of cap analogs to HeLa whole-cell extracts inhibits in vitro 

splicing of mRNA. The exact role of the cap structure in splicing 

is not known, although it does not appear to be related to mRNA 
stability.

Sequences defining the end of the transcription unit and the end of 

transcription. iMost mature transcripts of RNA polymerase II 

terminate in a poly(A)-tail. The poly(A)-tail is added at a distance 

up to 30 bases 3' to the sequence AAUAAA (or a closely related 

version of this sequence) which is found at the 3' end of the mRNA 

(Proudfoot and Brownlee, 1976). The sequence AAUAAA appears to be 

important in determining the correct position of polyadenylation.
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Deletion of the AATAAA sequence in the SV40 late transcription unit 

was found to prevent polyadenylation. However, deletion of the DNA 

between the AATAAA sequence and the wild type polyadenylation site 

caused the addition of A residues to take place at a site further 

downstream, thereby maintaining a similar distance between the 

AAUAAA sequence and the poly (A)-tail to that found in wild type 

transcripts (Fitzgerald and Shenk, 1981).

Conservation of the sequence AATAAA appears to be necessary for 

defining the end of the mRNA. Thus point mutation of the AATAAA 

sequence of the adenovirus early transcription unit to AAGAAA, has 

been found to greatly reduce the levels of wild-type mRNA. Most 

transcripts observed extended into the next transcription unit, 

although in the few that were correctly cleaved, the accuracy of 

polyadenylation was found to be unaffected (Montell et al, 1983) .

Recently Gil and Proudfoot (1984) have identified other regions 

adjacent to the AATAAA sequence which may also be required for the 

formation of correct S-globin mRNA termini. They constructed a 

series of deletions 3' to the AATAAA sequence of the rabbit B-globin 

gene. The deleted S-globin genes were cloned into a SV40-pBR328 

expression vector and their transient expression was assayed in 

HeLa cells. These studies showed that a ̂ 35bp deletion which had 

been positioned 15 bp 3' to the AATAAA sequence, abolished the use 

of the AATAAA sequence present at the wild type position. Instead, a 

second AATAAA B-globin sequence was used. This second AATAAA 

sequence nad oeen introduced further downstream in the vector, and 

was flanked on its 3'side by 355 bp of S-globin 3'-flanking
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sequence. The deleted 35 bp sequence which appears to be required 

for the formation of correct 8-globin termini, contains a G+T rich 

sequence as well as the sequence CAYUG. This latter sequence has 

been found at a similar position in other eukaryotic genes (Berget, 

1984; Gil and Proudfoot, 1984).

Some genes have more than one MTAAA sequence at the end of their 

transcription units which are used alternatively. Examples are 

the mouse dihydrofolate reductase gene (Setzer et al, 1980; 1982) 

and the ovalbumin gene (Le Meir et al, 1984).

The point of transcription termination in higher eukaryotic genes 

that are transcribed by RNA polymerase II, is not well defined, and 

the nature of the sequences that are involved in this process are 

not known. Hofer et al (1982) found that elongation of labelled 

RNA in vitro from isolated nuclei did not extend beyond 1.3 kbp 

3'to the poly(A) site of the mouse B-globin major gene. Further 

studies, using SI mapping, showed that transcription terminated at a 

discrete position located ^1000 bases downstream of the poly(A) 

addition site (Salditt-Georgiff and Darnell, 1983). A different 

situation was observed when similar studies were performed on the 

amylase gene. In this case transcription was found to terminate at 

several sites located 2.5-4 kbp 3' to the polyadenylation site 

(Hagenbuchle et al, 1984). Whether one or both of these situations 

are common to eukaryotic genes with polyadenylated transcripts 

awaits further studies.

The 3' termini of histone genes and yeast genes differ from those of
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other eukaryotic genes that are transcribed by RNA polymerase II. 

Histone gene transcripts are unique in lacking both a poly(A)-tail 

as well as a 3' AAUAAA sequence. Transcription termination of the 

sea urchin H2A gene appears to be dependent on a well conserved 

palindrome and a short sequence ACCA found in the 3' untranslated 

region of the mRNA as well as ^ 0  base pairs of 3' non­

transcribed spacer DNA (Birchmeier et al, 1983). Yeast transcripts 

also lack the sequence AAUAAA although they are polyadenylated. A 

sequence TTTTTATA appears to be important in determining the end of 

transcription as well as the site of polyadenylation of some yeast 

genes transcribed by RNA polymerase II (Henikoff et al, 1983) but 

it is not ubiquitously found at the 3' ends of all yeast genes. In 

conclusion it appears that sequences defining the end of 

transcription for RNA polymerase II have not been rigidly conserved.

The TATA box. Most genes transcribed by RNA polymerase II have a 

7 bp sequence known as the 'TATA box', located at about 30 base 

pairs 5' to the mRNA cap site. A comparison of 60 eukaryotic 

genes yielded a consensus sequence TATA(AT)A for the TATA box 

(Breathnach and Chambon, 1981). In vitro deletion mutation studies 

involving the TATA box usually result in transcription initiating at 

many points besides the cap site. This has led to the conclusion 

that the TATA box promotes specific transcription initiation. 

Deletion of the TATA box or point mutations within the TATA box have 

also been found to result in a marked reduction in transcription 

efficiency. The SV40 early region promoter seems to be an exception, 

for although deletion of its TATA box results in multiple 

initiations, the transcriptional efficiency is not affected. This
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difference may be related to the fact that the SV40 TATA box is 

unusual in that it is immediately preceded by the AT-rich sequence 

TAATTTTTTT.

Grosveld et al (1982) studied the effect of 5' flanking deletions 

on the expression of the rabbit 8-globin gene by transforming HeLa 

cells with a vector containing the modified 3-globin gene coupled 

to the SV40 virus transcriptional enhancer. They found that deletion 

of the TATA box reduced transcriptional efficiency and resulted in 

the use of multiple initiation sites. These results contrast with 

those of Dierks et al (1983) who also studied the effect of 5' 

deletions on the expression of the rabbit 3-globin gene, this time 

by infecting mouse 3T6 cells with a vector containing the modified 

3-globin gene coupled to the polyoma virus transcriptional 

enhancer. This latter group found that although deletion of the TATA 

box reduced transcription efficiency, the transcripts were initiated 

at the wild type cap site.

It is possible that the differences between the two groups are due 

to differences in the expression systems used (e.g. between the 

polyoma and SV40 enhancers, see de Villiers et al, 1982) .

However, in both groups deletions upstream of the TATA box allowed 

the initiation of transcription at the wild type cap site. Also, in 

both groups, deletions downstream of the TATA box displaced 

transcription initiation in the 3' direction by a similar number of 

nucleotides as the deletions. Therefore, the differences are 

probably due to: (1) differences in the extent of the deletions; and

(2) differences in sequence composition introduced by constructing
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the deletions. The discrepancies in the results pinpoint some of the 

disadvantages of deletion mutation studies, which are best 

interpreted in conjunction with results obtained from point mutation 

studies.

The CAAT box. A region of homology shared between many genes 

transcribed by RNA polymerase II is located 70 to 80 base pairs 51 

to the cap site. This region is known as the 'CAAT box" and has the 

consensus sequence 5'-GG(CT)CAATCT-3' (Efstratiadis et al, 1980; 

Benoist et al, 1980; and Breathnach and Chambon, 1980) . By 

deletion mutation studies on the 5' flanking region of the rabbit 

g-globin gene in HeLa cells, Grosveld et al (1982) showed that 

deletion of the CAAT box did not affect transcription specificity 

although it did lead to a reduction in transcription efficiency. In 

contrast, deletion of the histone H2A gene CAAT box was found to 

stimulate this gene's rate of transcription in Xenopus oocytes 

(Grosschedl and Birnsteil, 1980). The observed difference could be 

an artifact of the deletion constructs and the different cellular 

systems used, or could reflect a genuine difference in the 

functional role of the CAAT box in these two genes.

The 21bp repeat of SV40. A G+C rich sequence, composed of two 

perfect 21 bp direct repeats and one imperfect direct repeat is 

located ̂ 80 bp 5' to the SV40 early transcription unit. This 

sequence is important for SV40 viability and controls the rate of 

transcription from the early transcription unit. The 21 base pair 

repeat forms the in vitro binding site of Spl, a transcriptional 

factor required for accurate transcription (Dynan and Tijan, 1983;
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Gidoni et al, 1984). Recently, sequence data on the 5' flanking 

sequence of the 'housekeeping' genes HMG CoA reductase and 

hypoxanthine phosphoribosyl transferase (hprt) has revealed G+C rich 

sequences in their promoter regions. These sequences show homology 

to the SV40 21 bp repeats (Reynolds et al, 1984; Melton et al,

1984) , suggesting that such G+C rich sequences may be important 

promoter elements in a number of cellular genes. However, the 

functional significance of the G+C rich regions in the HMG CoA 

reductase and hprt genes is yet to be demonstrated.

Enhancers. Enhancer elements are sequences that are able to 

enhance transcription initiation when placed in either orientation 

and in a number of different positions relative to the transcription 

unit. The most extensively studied of these elements are the two 72 

base pair repeats that are present between the early and late 

transcription units of the SV40 virus. These sequences have been 

found to retain an enhancing ability when isolated from their viral 

background and placed in cis relative to other genes. The first 

such study by Banerji et al (1981) showed that when the rabbit 

B-globin gene was linked to the SV40 enhancer element, correct 

transcription initiation of this gene was enhanced by two orders of 

magnitude. Since then, the SV40 enhancer element has been widely 

used in expression vectors to enhance the transient expression of 

cellular genes in cultured cells. Enhancers have been found in other 

viruses e.g. polyoma, BPV, ASV, adenovirus and many retroviruses 

(see Gluzman and Shenk, 1983.) . The retroviral enhancers have come 

under special scrutiny due to their role in activating cellular 
proto-oncogenes.
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A few cellular enhancer and enhancer-like elsnents have also been 

discovered, the best characterized of the former being the enhancer 

founnd in the first intron of scrae immunoglobulin (Ig) genes 

(Banerji et al, 1983; Queen and Baltimore, 1983; Picard and 

Schaffner, 1984). Studies on the mouse Ig heavy chain gene enhancer 

(Banerji et al, 1983), showed that this element could enhance the 

transient expression of the rabbit B-globin gene in mouse myeloma 

cells when placed 500-2000 base pairs 5' or 3' to the gene. Like the 

viral enhancers, it was also found to be orientation independent.

Some enhancers appear to show species or tissue specificity, in 

that transcription is more efficiently enhanced in cell lines 

derived from the tissues in which the enhancers are normally active. 

Thus the SV40 enhancer has been found to work more effectively in 

primate derived cell lines than in mouse derived cell lines (de 

Villiers et al, 1982; Laimins et al, 1982) , while the mouse 

immunoglobulin heavy chain gene enhancer has been found to enhance 

transcription in a B-lymphocyte derived cell line but not in HeLa 

cells (Banerji et al, 1983). Although enhancers do not show 

extensive sequence homology, a potential consensus core sequence, 

TGGTT, has been drawn up from 16 enhancer and potential enhancer 

elements (Laimins et al, 1983).

Regions that affect the rate of transcription initiation have been 

identified in sane cellular genes through deletion-mutation studies. 

Some of these regions contain or overlap with sequences similar to 

the consensus enhancer core sequence and may themselves turn out to
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be enhancers. Deletion-mutation studies have identified such regions 

%100 base pairs 5' to the transcription units of the HSV-tk and 

the rabbit 3-globin genes (McKnight and Kingsbury, 1982; Grosveld 

et al, 1982; Laimins et al, 1983). Both these regions contain a 

C-rich sequence: CC(CT)C(GA)CCC(CT)G. This sequence is similar to 

the in vitro Spl binding sites (CT)(CT)CCGCCC present in the 21 

base pair repeats of SV40 (see Dierks et al, 1983). The 

significance of this limited sequence homology is not known.

Steroid hormone receptor binding sites. Other sequences which 

influence transcription initiation and which are shared by 

evolutionarily unrelated genes are those that bind steroid hormone 

receptors. Of these, the glucocorticoid receptor binding sites have 

been the most extensively studied. Success in this area largely 

stans from the discovery that transcription of a natural vector, the 

mouse manmary tumor virus (MMTV), is glucocorticoid inducible, and 

from significant improvements in the quality of rat liver 

glucocorticoid receptor preparations.

Deletion mutation studies on MMTV have suggested that sequences 

within the LTR are able to enhance in vitro transcription 

initiation on dexamethasone administration (Lee et al, 1981; Hynes 

et al, 1983; Pfahl et al, 1983; Chandler et al, 1983) .

Receptor filter binding studies, DNase I footprinting studies and 

methylation protection studies (Payvar et al, 1981; Pfahl, 1982; 

Payvar et al, 1983; Scheidereit et al, 1983) have identified 

glucocorticoid binding sequences within the MMTV LTR which overlap 

with sequences found to be important for glucocorticoid regulation
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by deletion mutation studies in cultured cells. Taken together, 

these results suggest that functional glucocorticoid receptor 

binding sites are present within the LTR of MMTV. In vitro 

glucocoticoid receptor binding sites have also been found in MMTV 

outside the LTR. The functional significance of these sites is as 

yet unknown.

Chandler et al (1983) studied the dexamethasone induced expression 

of the tk gene in Rat XCtk- cells when MMTV LTR sequences were 

fused 5' to the tk promoter region. Detailed studies on an LTR 

region which contains an in vitro glucocorticoid receptor binding 

site, showed that the functioning of this sequence was relatively 

unconstrained positionally and was orientation independent. This 

has led to the suggestion that glucocorticoid response elements may 

be akin to enhancer elenents.

oSequences involved in the glucocorticoid regulation of a cellular 

gene, the human metallothionein II (hMTIIA) gene, have also been 

extensively studied. Karin et al (1984) constructed a fusion gene 

consisting of ,v800bp of 5' flanking and untranslated hMTII 

sequences linked to the HSV tk transcription unit. They then 

compared the transformation efficiency of Rat 2 tk- cells infected 

with the 5' hMTIIA/tk fusion gene with that of Rat 2 tk- cells 

infected with 5' deletion variants of the same fusion gene.

It was found that sequences lying between the 5' untranslated region 

and -268 of the hMTII gene were necessary for glucocorticoid 

inducibility. DNasel and methylation protection studies identified
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a glucocorticoid receptor binding site within this region at 

- 250. These results suggest that a functional glucocorticoid 

receptor binding site is present at 'v-250bp 5' to the cap site of 

this cellular gene.

Comparison of the in vitro hMIIA gene and MMTV LTR gluco­

corticoid binding sites gives the consensus 5'TGGTACAAATGTTCT3' 

(Karin et 31,1984). This sequence contains the hexamer 51TGTTCT3' 

found in other in vitro identified glucocorticoid receptor 

binding sites (Scheidereit et al, 1983; Renkawitz et al, 1984). 

However, it is not found in all potential in vivo glucocorticoid 

receptor binding elements. Thus the 5' flanking region of the 

lysozyme gene, between nucleotides -168 and -203, that is required 

for dexamethasone and progesterone induction, binds the gluco­

corticoid receptor only weakly and does not contain the above 

’nexanucleotide (Renkawitz et al, 1984). A sequence located between 

-30 and -74 of the lysozyme gene contains the hexanucleotide 

51TGTTCT3' in the antisense strand and strongly binds the 

glucorticoid receptor (Renkawitz et al, 1984). It is therefore 

possible that the weak and strong in vitro lyoszyme glucocorticoid 

receptor binding sites have different in vivo roles.

Regions involved in the regulated expression of genes by other 

inducing factors have been identified in several genes. Examples 

are: the upstream sequences required for heavy metal induction of 

the mouse and human metallothionein genes (Searle et al,1984,

Karin et al, 1984), the upstream sequences that regulate the 

expression of the rat prolactin gene by EGF and phorbol esters
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(Supowit et al, 1984) and the sequence responsible for heat-shock 

induction of the Drosophila heat-shock genes (Pelham, 1982; Pelham 

and Bienz, 1982).

This last example has been the most thoroughly characterized to 

date. The sequence that confers heat-shock inducibility was 

originally defined by deletion mutation studies on the Hsp70 heat- 

shock gene. Sequences of similar nucleotide composition were found 

to occur 5' to the transcription units of other Drosophila heat- 

shock genes, and a consensus sequence CTgGAAtnTTCtAGa was derived 

for the heat-shock response element (Pelham, 1982) . Pelham and

Bienz,(1982) synthesized oligonucleotide sequences similar to the
5consensus sequence of the heat-shock rafponse elanent and linked 

these synthetic sequences 5' to the TATA box of the HSV-tk 

structural gene. The expression of the HSV-tk gene was found to be 

heat-shock inducible in COS cells and Xenopus oocytes when the 

heat-shock response element was positioned 10 - 20 base pairs 5' to

the TATA box. Since the expression of the HSV-tk gene is not

normally induced by heat-shock, these results indicate that the 

synthetic sequences introduced 5' to the HSV-tk gene are 

sufficient for conferring heat-shock inducibility.

There are few examples of sequences that are known to regulate 

tissue-specific expression. Failure to identify such sequences may 

be because cis-acting sequences which are required for tissue- 

specific expression are not always closely associated with the

transcription unit. Another reason may be that cloned DNA does not

always take up the appropriate chromatin configuration when
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introduced into cells. Tissue-specific expression appears to be 

under both negative and positive control (Killary and Faurnier, 1984 

and references within). A further possible reason for failing to 

identify sequences that regulate tissue-specific expression may be 

the lack in cultured cells of the appropriate regulatory factors 

and/or the presence of factors that inhibit tissue-specific 

expression. This idea is supported by the following observations.

(1) Cultured cells lose their ability to express some genes that are 

normally expressed in the fully differentiated state of the cells.

(2) They sometimes express genes that are only or predominantly 

expressed during earlier developmental stages of the tissues they 

are derived from. Recent successes in obtaining tissue-specific gene 

expression in transgenic mice provide a way to circumvent the 

difficulties encountered when using cultured cells.

Despite the difficulties, a few regions that appear to be necessary 

for tissue-specific expression have been identified by studies in 

cultured cells. Walker et al (1983) identified 5' flanking 

sequences that are involved in the tissue-specific expression of the 

rat chymotrypsin B gene, the rat insulin II gene and the human 

insulin gene, in cell lines derived from pancreas. DNA sequences con­

taining the 5' flanking regions of the insulin and chymotrypsin 

genes were linked to the coding sequence of the chloramphenicol 

acetylase (CAT) gene. The effects of deletions within the 5' 

promoter sequences were assayed during transient expression in 

pancreas endocrine (HIT) and exocrine (AR4-2J) cell lines. These 

cell lines were chosen because insulin and chymotrypsin are normally 

expressed in pancreas endocrine and exocrine cells respectively. It
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was found that the CAT gene was expressed preferentially in HIT 

cells when linked to DNA sequences containing the 5' flanking region 

of the insulin genes and in AR4-2J cells when linked to DNA 

sequences containing 5' flanking regions of the chymotrypsin gene.

The deletion studies showed that sequences located somewhere between 

nucleotides -150 and -300 of the genes were required for efficient 

expression in the appropriate cell line. The nature of these 

sequences and their roles in determining tissue-specific expression 

are currently not known. These experiments of course do not exclude 

the possibility that sequences within or flanking the insulin and 

chymotrypsin genes are required for efficient tissue-specific 

expression in the intact pancreas.

Not all cis acting sequences involved in the regulation of gene 

expression during development and differentiation are necessarily 

found 5' to the coding sequences. For example a tissue-specific 

enhancer is located within the transcription unit of some 

iirmunoglobulin genes. Other evidence comes from studies on the 

expression of cloned globin genes in mouse erythroleukamia (MEL) 

cells (Spandidos and Paul, 1982). The expression of cloned human 

8-globin genes in MEL cells is induced when these cells are 

allowed to differentiate (Wright et al, 1983; Chao et al, 1983) . 

Cloned human al-globin genes however are expressed at^ equivalent 

levels in MEL cells before and after the cells are induced to 

differentiate. Charnay et al, (1984) studied the expression of 

various human al-globin/human 3-globin hybrid genes in MEL cells and



25

found that sequences 3' to the cap site, are involved in the induced 

expression of the human 8-qlobin gene. Sequences which allow the a- 
globin gene to be expressed equivalently before and after MEL cell 

differentiation are also located 3' to the cap site.

Wright et al (1984) also studied human 8-globin gene expression 

in MEL cells and obtained results which complement those of Charnay 

et al (1984). They constructed fusion genes containing the coding 

region of the human 8-globin gene linked to 5' promoter sequences 

of the mouse inmunoglobulin H-2k fcml gene or of the human Y-globin 

gene. Expression of these hybrid genes was found to be induced on 

MEL cell differentiation. Since expression of the H-2k fcml gene and 

the y-globin gene are not normally inducible in MEL cells, the 

results indicate that sequences 3' to the translational start point 

regulate the expression of the human 8-globin gene • By 

following the transcription rate of the hybrid genes in isolated 

nuclei, Wright et al (1984) showed that the induced expression is 

at least in part due to an increase in the rate of transcription, 

and not simply the result of globin mRNA stability.

In addition, this group of researchers investigated whether 

sequences 5' to the translation start point were involved in the 

regulated expression of the human 8-globin gene in MEL cells. A 

1.8 kbp fragment which is present immediately 5' to the translation 

initiation site of the human 8-globin gene was linked to the 

coding sequences of the H-2k fcml gene or the coding sequence of the 

Y-globin gene. Expression of these hybrid genes was also found to be 

induced in differentiated MEL cells, indicating that sequences which
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regulate the expression of the 6-globin gene are present 5' to the 

translation start point.

To summarize, sequences involved in the regulated expression of 

globin genes appear to be located both 5' and 3' to the cap site. 

Whether the regulatory sequences present 3' to the cap site are 

found within the transcription unit, or within the immediate globin 

gene 3' flanking sequences, has not yet been determined.

The structure of active genes

The work described in this thesis is largely concerned with the 

structure of cloned eukaryotic genes. However, for the sake of 

completeness, it is worth mentioning, briefly, two types of change 

of state that are associated with active genes in vivo. The 

first involves changes in chromatin structure. Active chromatin has 

been found to develop an increased sensitivity to DNasel and 

micrococcal nuclease (Weintraub and Groudine, 1976; Wu et al,

1979a; 1979b; 1980). Moderately DNasel sensitive sites may be found 

over a large region containing more than one gene. In the ovalbumin 

gene family the sensitive domain extends for M.00kbp and thereby 

encompasses all three members of the gene family (Lawson et al,

1982). Digestion of DNA with very low concentrations of DNasel 

causes cleavage to occur at specific sites. These sites may be 

mapped by purifying the digested DNA, cleaving it with a restriction 

enzyme and analysing the digestion products by the Southern blot 

method. Wu et al (1980) demonstrated that a number of sites within
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the transcription unit and 5' flanking regions of heat shock genes 

developed increased sensitivity to DNasel after induction by heat- 

shock. Since then the presence of DNasel hypersensitive sites within 

and flanking the transcription unit has been described for many 

expressing genes.

Studies on the chicken globin genes in tsAEV-transformed red 

blood cells (where globin synthesis is induced upon a temperature 

shift) have shown that the appearance of DNasel hypersensitive sites 

preceeds transcription (Weintraub et al, 1982) . DNasel hyper­

sensitive sites have also been found to be maintained after 

transcription has ceased. This phenomenon has been demonstrated in 

the major chicken vitellogenin gene (Burch and Weintraub, 1983) and 

the chicken globin genes (Groudine and Weintraub, 1982). It 

therefore appears that while DNasel hypersensitive sites are 

associated with expression, they are not a consequence of 

transcription. Chicken oviduct chromatin contains a tissue specific 

DNasel hypersensitive site within the vitellogenin transcription 

unit. Vitellgenin is synthesized in the liver but not in the 

oviducts of estrogen induced chickens. The oviduct-specific DNasel 

hypersensitive site may therefore relate to the inactivity of the 

vitellogenin gene in this estrogen regulated tissue.

DNasel hypersensitive sites are usually found within the 5' 

promoter region of actively transcribing genes (McGhee et al,

1981; Shermoen and Beckendorf, 1982; Sweet et al, 1982) . These 

hypersensitive sites are considered to represent receptor or enzyme 

binding sites, since many map to regions which are thought to
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contain sequences important for transcription initiation and 

regulation. For example, a DNasel hypersensitive site and many 

restriction endonuclease hypersensitive sites have been found 

within the promoter region of the HSV-tk gene (Sweet et al,

1982). In the rat insulin II gene, a hypersensitive site within the 

5' region has been found to coincide in position with the region 

required for the tissue specific expression of this gene (Walker et 

al, 1983). Also, Zaret et al (1984) have described a 

dexamethasone inducible hypersensitive site within the MMTV LTR 

which maps to an in vivo glucocorticoid receptor binding site.

More direct evidence comes from studies on the 5' region of the 

Drosophila heat-shock genes Hsp70 and Hsp83. Wu (1984) found that 

within the 5' DNasel hypersensitive regions of these genes, two 

short stretches of sequence were protected from endonuclease III 

digestion. One of these sites, which was protected in both heat- 

shocked and non-heat-shocked embryos, was found to contain the TATA 

box. The other site, which was protected only in heat-shocked 

embryos, was found to contain the region that is required for heat- 

shock induction.

Many actively transcribing genes and their flanking sequences have 

been found to be relatively undermethylated. Examples are the 

chicken globin genes (Weintraub et al, 1981; Haigh et al, 1982) , 

the human globin genes (van der Ploeg and Flavell, 1980) , the 

ovalbumin gene (Mandel and Chambon, 1979) and MMTV (Gunzburg and 

Groner, 1984). The extent of met'nylation is usually assayed by 

digesting the genomic DNA with restriction enzymes sensitive to CpG
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méthylation, and comparing the digestion patterns of DNA derived 

from expressing and non-expressing cells.

More direct evidence for the association of under-methylation with 

gene expression has come from studies on cloned genes introduced 

into cultured cells. Compere and Palmiter (1981) found that a non­

inducible cell line for metallothionein I gene expression was made 

inducible after treatment with 5-azacytidine, a cytidine analogue 

which cannot be methylated and which appears to block the 

méthylation of cytidine residues. In vitro méthylation of cloned 

genes prior to their introduction into Xenopus oocytes (Vardimin 

et al, 1982; Waechter and Baserga, 1982; Fradin et al, 1982) or 

mouse L cells (Stein et al, 1982) has been found to inhibit 

expression of these genes. Moreover, Busslinger et al (1983) have 

demonstrated that méthylation of the 5' region of the human y 

globin gene (nucleotides +100 to -760) prevents transcription, while 

méthylation of the coding sequences has no effect. This implies that 

specific CpG sites in the 5' region of the gene may be involved in 

regulation. Undermethylation however is not always associated with 

gene expression. An example of a gene which is not undermethylated 

when expressed is the Xenopus vitellogenin gene (Gerber-Huber et 

al, 1983).

Studies on the role of méthylation on gene expression have been 

limited by the fact that the resriction enzymes used only detect a 

small fraction of the potentially methylated CpG sequences. Genomic 

sequencing using the Church and Gilbert method (1984) should help 

to establish whether specific sites are demethylated in actively
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transcribing genes. However, this method does not appear to be 

suitable for studying the genomic variation in methylation between 

closely related members of a gene family due to cross hybridization 

of the sequencing probes to more than one gene.

Gene Families

Many eukaryotic genes are members of gene families. Gene families 

constitute evolutionarily related genes that share common, although 

not necessarily identical, functions. Different gene families may 

vary considerably in size. They may be composed of two or three 

genes or several hundred genes. The size of a gene family may also 

vary considerably between different species. This is illustrated 

quite dramatically by the histone genes of higher eukaryotes; here 

the number of genes constituting the gene family in some cases 

differs by two orders of magnitude.

Methods for the preparation of random and representative "gene 

libraries" have made it possible to clone genes that are present as 

a few copies or as single copies in the haploid genome. This has led 

to the identification of new gene families and of unsuspected 

menbers of gene families. Complex genomic blot patterns, from DNA 

digests cleaved with low frequency cutting restriction enzymes, have 

revealed that genes that were once thought to be single copy genes 

are in fact menbers of gene families, and that gene families which 

were once thought to be smaller, are in fact much larger. Such 

discoveries have commonly occurred where the products of a gene
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family are identical or very similar, or where the unsuspected genes 

are silent. Genes have also been discovered in cases in which the 

unsuspected genes are regulated differently from the genes whose 

products were traditionally studied.

There seen to be several different reasons for the evolution of gene 

families. Some RNAs and proteins that are required in great 

quantities during certain developmental stages are found to be 

encoded by several identical genes. It has therefore been suggested 

that the synthesis of large amounts of gene product may be 

facilitated by gene amplification. Experimental support for this 

suggestion comes from the amplification of appropriate drug 

resistant genes when cultured cells are maintained in medium 

containing high concentrations of specific drugs. For example, cells 

develop resistance to methotrexate by amplifying the dihydrofolate 

reductase (DHFR) genes and overproducing DHFR (Alt et al, 1978) . 

However, high intracellular RNA concentrations are attained in some 

cases by the transcription of a single gene copy (see Hentschel and 

Birnstiel, 1981). For this reason, increased gene dosage due to a 

requirement for large amounts of product, may not always be a 

correct explanation.

The members of a gene family often encode different products that 

fulfil related physiological roles. The different products may be 

required at different developmental stages. For example, co-ordinate 

expression of the a and g globin gene families gives rise to 

embryonic, foetal and adult haemoglobins, each with a different 

polypeptide composition. Different products of a gene family may
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also be expressed exclusively or preferentially in certain tissues. 

Among the better characterized gene families that show such tissue 

specific expression are those coding for the interferons, tubulins, 

a-amylases and histones.

Some members of sane gene families are pseudogenes. These non­

functional genes accumulate base substitutions, insertions and 

deletions within the transcription unit and flanking regulatory 

regions. Examples of sequenced pseudogenes harbouring such mutations 

are the rabbit pseudo-6 2 globin pseudogene and the human pseudo- 

ex 1 pseudogene (Lacy and Maniatis,1980; Proudfoot and Maniatis,

1980). Several pseudogenes have been isolated that lack the introns 

that are present in other members of the same gene family. Some of 

these pseudogenes have been found to contain structures which are 

present only in processed mRNA (Lee et al, 1983; Karin and 

Richards, 1982; Dudov and Perry, 1984). It has been suggested that 

such "processed pseudogenes" arise from retroviral reverse- 

transcription of mRNA into cDNA in the germ line. It is proposed 

that this cDNA either takes part in gene correction events with 

homologous genes or itself becomes integrated into the genome 

(Nishioka et al, 1980; Vanin et al, 1980). Another suggestion 

has been that gene correction events may take place directly between 

mRNA and homologous genes in the germ line (Leder et al, 1980). 

Finally, Lee et al (1983) have suggested that processed 

pseudogenes may arise most frequently in multigene families that are 
expressed in the germ line.

Generally speaking, different members of gene families are
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structurally homologous in both coding and non-coding sequences. 

Homologous exons often show extensive sequence similarity in their 

sequences and are usually of similar size. Introns are less highly 

conserved and may vary considerably in size. However their positions 

within the transcription unit are relatively well conserved. For 

example, silk moth chorion genes are interrupted at a homologous 

position by a single intron (Jones anf Kafatos, 1980; Iatron and 

Tsitilou, 1983); functional vertebrate globin genes are interrupted 

at homologous positions by two introns (see Jeffreys, 1982); the 

ovalbumin, X and Y genes are interrupted at homologous positions by 

seven introns (Royal et al, 1979; Heilig et al, 1980) and the 

vitellogenin Al and A2 genes are interrupted at homologous positions 

by ̂ 33 introns (Wahli et al, 1980). These examples also serve to 

show that conservation in structure may be maintained regardless of 

the number of introns that interrupt the coding sequence.

Nevertheless, differences in the structure of the transcription unit 

within members of gene families have been found. For example, the 

presence of different poly(A) addition sites in the ovalbumin gene 

family leads to variation in the size of the last exon. In the mouse 

major urinary protein (MUP) gene family, variation in both the size 

of the 3' exon and the number of exons results from the presence of 

different poly(A) addition sites and different splicing sites (Clark 

et_al, 1984a). In the collagen gene family, differences within the 

5' ends of the transcription unit are thought to be due to the 

presence of different splicing sites and different promoter regions 

(Chu et al, 1984). Variation in the number of introns can also 

result from the loss or gain of these sequences during evolution.
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Examples of such phenomena are provided by the rat preproinsulin 

gene family (Lomedico et al, 1979), the chicken histone gene 

family (Engel et al, 1982; Harvey et al, 1983) , the sea urchin 

actin gene family (Breathnach and Chambon, 1981) and the tick globin 

gene family (Antoine and Niessing, 1984).

Members of a gene family may be linked, or may be dispersed on 

different chromosomes. Seme gene families consist of both dispersed 

and linked members. For example, the members of the human ct- 

globin genes are linked and reside within an approximately 50 

kb cluster on chromosome 11, while the human 3-globin genes are 

present within an approximately 28 kb cluster on chromosome 16.

Genes within a cluster may be linked in a head to tail fashion, or 

in a head to head fashion. Examples of the former are the vertebrate 

globin genes (see Jeffreys, 1982), the ovalbumin, X and Y genes 

(Royal et al, 1979) and the sea urchin histone genes (Hentschel 

and Birnstiel, 1981). Examples of the latter are the heat-shock 

genes at 87A and 87C (Leigh Brown and Ish-Horowitz, 1981) , some 

Xenopus and chicken histone genes, the mouse class II MHC a and 8 

genes (Steinmeitz and Hood, 1983) the silk-moth chorion genes and 

two Drosophila yolk protein genes.

In the silk-moth, divergently orientated gene pairs, formed from 

different chorion gene subfamilies, are found to be co-ordinately 

expressed (Jones and Kafatos, 1980a, 1980b). This has led to the 

suggestion that the shared 5' sequences of these genes may determine 

their common developmental regulation (Iatrou and Tsitilou, 1983) . 

Co-ordinately expressed chorion gene pairs are also found to be
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closely linked. This has led Eickbush and Kafatos (1982) in turn 

to speculate that co-ordinately regulated chorion genes may 

constitute separate transcriptionally active domains.

Evidence for cis acting regulatory sequences that are shared by 

linked members of a gene family has come from the Drosophila yolk 

protein genes (Garabedian et al, 1985). The 5' ends of the 

transcription units of the divergently orientated Drosophila yolk 

protiens, ypl and yp2, are separated by 1225 bp. These closely 

linked genes were found to share two physically separatable elements 

that are required for their correct tissue specific expression. One 

of these elements is necessary for expression of the genes in the 

ovaries, while the other is necessary for expression of the genes in 

fat bodies. It will be interesting to identify the sequences that 

are necessary for expression of the yp3 yolk protein gene in 

ovaries and fat bodies: the yp3 gene lies approximatly 1000 kbp 

away from ypl and yp2 but is co-ordinately expressed with these 

genes in the ovaries and fat bodies (Barnett et al, 1980).

The organization of the globin gene families of some vertebrates 

reflects the developmental regulation and functional relatedness of 

the genes. Human globin genes in both the a and 8 clusters are 

arranged in an order which coincides with the temporal order in 

which the genes are expressed during development. Other mammalian 

globin genes and the chicken a-globin genes are also arranged in 

the temporal order in which they are expressed (Jeffreys, 1982; 

Dodgson et al,1981). However, adult chicken g-globin and adult 

Xenopus laevis globin genes are flanked by embryonic and larval
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globin genes respectively (Dolan et al, 1981; Hosbach et al, 1983). 

Furthermore, the globin clusters in Xenopus constitute linked a 
and 6 genes (Jeffreys et al,1981). It is therefore clear that the 

organization of genes within this gene family does not have any 

obvious functional basis. Whether it ever does and whether serial 

ordering of genes within a cluster is in some way advantageous is 

not known.

Manbers within gene families often show homology in their flanking 

sequences. Barring deletions and disruptions caused by insertions, 

the extent of these homologies depends on the extent of the 

duplication events. Linked products from one or more duplications 

may form a "duplication unit" that in turn may be amplified several 

times. Examples of such paired-gene and multigene duplication units 

are found in the silkmoth chorion gene family (Jones and Kafatos, 

1980; Iatrou and Tsitilou, 1983) and in eukaryotic histone gene 

families (Hentschel and Birnstiel, 1981) respectively. Unequal 

crossing-over in the germ line is believed to be a mechanism by 

which genes are amplified (Smith et al,1976; Zimmer et al,1980) . 

Evidence for unequal crossing-over as a mechanism by which gene 

families evolve comes from variation in the length of the rDNA 

repeats of Drosophila and X.laevis (Wellauer et al, 1976;

Wellauer and Dawid, 1977) and from rare alterations in the number 

and structure of globin genes within the human globin clusters (See 
Lewin, 1983).

Within a species, the degree of homology between members of a gene 

family can be remarkably high. The high sequence homology may be
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shared by all members or it may be confined to a specific region 

and shared by only two or three genes. In contrast, gene families 

often show substantial variation between species. For these reasons 

it is thought that mechanisms must act that lead to the 

homogenization of sequences within gene families. One of these 

mechanisms is unequal crossing-over (Smith, 1976). Independent 

amplification events of a gene family in different species, can 

result in the replacement of an ancestral array by different sets of 

genes in each species. Unequal crossing-over can also serve to 

exchange sequences between non-allelic genes, if the cross-over 

points take place within the genes. Examples of such chimeric genes 

are found in some g-thalasssnias (see Lewin, 1983) .

Another mechanism which leads to gene homogenization is gene 

conversion. Gene conversion is the non-reciprocal exchange between 

two homologous sequences. This phenomenon occurs when DNA strands 

from two allelic, or non-allelic but homologous genes, form a 

heteroduplex, and correction of mismatched bases takes place. Such 

events within the germ-line lead to heritable change. Gene 

conversion has been shown to take place in yeast and other fungi 

(Fink and Styles, 1974; Radding, 1978; Klein and Petes, 1981). In 

these organisms the molecular mechanism of gene conversion has also 

been extensively studied (Jackson and Fink, 1981; Klar and 

Strathern, 1984; Klein, 1984). In higher eukaryotes it has been 

suggested that gene conversion occurs in the globin genes (Slighton 

et_al, 1980), the mouse major histocompatibility genes (Weiss et 

al, 1983; McIntyre and Seiaman, 1984) , and the irrmunoglobulin genes 

(Bentley and Rabbitts, 1983; Olio and Rougeon, 1983; Baltimore,
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Limited sequence data often does not allow one to distinguish 

between the products of gene conversion and unequal crossing-over. 

This is made especially difficult by the fact that reciprocal 

exchange due to double cross-overs may take place between non­

allelic genes, albeit at lower frequencies than reciprocal exchange 

due to single cross-overs. For these reasons, the term "gene 

conversion" has often been loosely used to describe genetic exchange 

between non-allelic genes, where change in sequence length is not 

observed and where all the products of a single recombination event 

cannot be recovered.

MUP Genes

Studies on recently diverged gene families are fruitful for two 

reasons. The first is that subtle differences which lead to 

important changes in regulation are not obscured and may easily be 

identified. The second is that structural differences between 

menbers can contribute to our understanding of the mechanisms 

involved in eukaryotic genome evolution. This thesis describes the 

characterization of genes from a recently diverged gene family: the 

major urinary protein (MUP) gene family of the mouse.

The major, urinary proteins of the mouse are a family of closely 

related, small, acidic proteins (Mr ̂ 19,000) that are synthesized in 

large quantities in the liver. The MUP genes are also expressed in

1981).
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the mammary, lachrymal, submaxillary, parotid and sublingual glands, 

but at much lower levels than in the liver (Shaw et al, 1983). In 

vitro translation of liver mRNA shows that there are at least 

twelve different MUP species expressed in this tissue (Clissold and 

Bishop, 1982; Shaw et al, 1983; Shahan and Derman, 1984) . The in 

vitro translation products of the submaxillary, parotid, sublingual 

and mammary glands largely comprise different subsets of the liver 

products, while the lachrymal gland mRNA gives rise to a different 

set of MUP proteins (Shaw et al, 1983). The MUPs are under 

multihormonal control and variation in hormonal responsiveness is 

detected between MUPs that are expressed in the same tissue as well 

as between MUPs that are expressed in different tissues.

Liver MUPs are secreted into the plasma and excreted into the urine, 

where MUP excretion may be as much as 20 mg per mouse per day. 

Protein in the urine of mice was first described by Parfentjev in 

1932. Subsequent work demonstrated that the urinary protein was of 

hepatic origin and that both sex differences and strain differences 

were found in the amounts of urinary protein excreted (Finlayson and 

Baumann, 1958; Finlayson et al, 1963; Ruamke and Thung, 1964; 
Finlayson et al, 1965).

Agarose and acrylamide gel electrophoresis resolved the urinary MUPs 

into three components: MUPl, MUP2 and MUP3 (Finlayson and Baumann, 

1958; Finlayson et al, 1963; Finlayson et al, 1974). Inbred 

strains were found to fall into two classes: those excreting MUPl 

and MUP3, and those excreting MUP2 and MUP3. Hudson et al (1967) 

identified a genetic locus responsible for the observed strain
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variability which was linked to the brown locus on chromosome 4. 

Finlayson et al (1974) sequenced the N-terminal regions of the MUP 

components, MUPl, MUP2 and MUP3, and found that MUPl and MUP2 were 

nearly identical. These results led to the suggestion that MUPl and 

MUP2 represented the products of two allelic genes Mup-lc and Mup- 

1. located on chromosome 4.

Later it was shown that the pattern of urinary MUP excretion was 

more complex. First of all it was found that all strains 

investigated excrete the three MUPs (MUPl, MUP2 and MUP3) when 

induced by testosterone (Szoka and Paigen, 1978). This observation 

led Szoka and Paigen (1978) to propose that Mup-1 is a regulatory 

locus. Secondly, it was found that a much larger set of dis­

tinguishable MUPs is present in the urine of inbred mice (Hoffman, 

1982, Hainey and Bishop,1982). Thirdly, and more recently, IEF 

resolution of urinary MUPs and MUP mRNA translation products 

demonstrated that although variation between strains is 

predominantly quantitative, qualitative differences are also 

observed (Clissold and Bishop, 1982).

In BALB/c adult male mice, MUP mRNA makes up ̂ 8% of total liver 

poly(A) mRNA, this level being five times higher than that of adult 

female mice (Hastie and Held, 1978; Hastie et al, 1979). In BALB/c 

male mice, MUP mRNA is the most abundant class of liver mRNA, while 

in female BALB/c mice, serum albumin is the most abundant class of 

mRNA in the liver (Clissold and Bishop, 1981). Female mice show a 

simpler liver MUP pattern than male mice, although treatment with 

testosterone induces a male-like pattern and results in the
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synthesis of male-like levels of MUP mRNA (Finlayson et al, 1963; 

Szoka and Paigen, 1978; Clissold et al, 1984).

The expression of MUP in different tissues is under different 

developmental control. In the liver, MUP mRNA is first detected in 

3 week old male mice, full expression being reached only 6 - 7  weeks 

after birth. Derman, (1982) showed that the different levels of MUP 

mRNA in the livers of mice of different ages and sex, are reflected 

in differences in the rate of transcription. The lachrymal glands, 

like the liver, show sexual dimorphism, with male lachrymal glands 

having approximately five times as much MUP mRNA per cell as female 

lachrymal galnds. However, unlike the liver, adult MUP mRNA levels 

in this tissue are already established at two weeks of age. This 

corresponds to the earliest stage at which lachrymal glands can be 

identified for dissection. The submaxillary gland does not show 

sexual dimorphism with respect to MUP expression. MUP mRNA in this 

tissue is detectable in one week old mice, maximal levels being 

achieved between 4-7 weeks of age. MUP expression in the mammary 

glands is detected at the first pregnancy (Shaw et al, 1983; see 

Fig.1.1) .

The hormonal regulation of MUP is different in the different 

tissues. Liver MUP mRNA is regulated by testosterone, thyroxine, 

growth hormone and, in some strains, glucocorticoid (Knopf et al, 

1983; Norstedt and Palmiter, 1984) . Using thyroidectomized and hypo- 

physectomized female mice and mutant mice (little male mice and 

tfm/Y mice), Knopf et al (1983) have found that testosterone, 

growth hormone and thyroxine modulate MUP synthesis. Shaw et al
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(1983) have also found that different liver MUP components are 

regulated differently by testosterone, thyroxine and growth hormone. 

In the lachrymal glands, testosterone induction of MUP appears to be 

independent of growth hormone and thyroxine, while in the 

submaxillary gland, MUP expression does not appear to be under 

hormonal regulation. The hormonal regulation of the mammary gland 

MUP(s) has not yet been studied.

The MUPs are the products of a large gene family consisting of ̂ 35 

closely related genes (Bishop et al, 1982) clustered on chromosome 

4 (Bennett et al, 1982; Bishop et al, 1982; Krauter et al,

1982). The predominant duplication unit of the MUP genes appears to 

consist of two genes, linked in a head to head fashion and separated 

by 15 kbp of DNA (Clark et al, 1984b). The divergently orientated 

paired genes with their 3' flanking sequences, encompass 45 kbp of 

DNA and constitute a huge imperfect palindrome. The paired genes 

within the duplication unit are members of two different groups, as 

originally defined by hybridization criteria (Bishop et al, 1982). 

MUP expression appears to be largely the result of transcription 

from group 1 genes, and sequencing data has suggested that most, if 

not all, group 2 genes are pseudogenes, sharing a common mutation 
(a stop codon in the seventh amino acid of the mature protein).

From genomic blot analyses, it has been estimated that group 1 and 

group 2 consist of ̂ 15 genes each and that there is a similar 

number of 45 kbp duplication units within the genome of the BALB/c 

mouse (Bishop et al, 1982; Clark et al, 1984b). Several group 1 

and group 2 genes have been isolated (Clark et al, 1982; Clark et



al, 1984b). A few genes that do not fall into either group 1 or 

group 2 have also been isolated. Some of these are pseudogenes that 

have resulted from a number of different rearrangements.

The transcription unit of MUP genes is 3.9 kbp long and contains 

seven exons (Clark et al, 1984a). The first six exons contain the 

coding region sequences, while the last exon consists entirely of 

non-coding sequences. Three different splicing configurations have 

been found, which result from the presence of alternative splice 

sites within the untranslated region of exon 6 (Clark et al,
1984a; A.Chave-Cox, unpublished results). The most abundant liver 

transcripts contain part of exon 6 and all of exon 7. The less 
abundant and smaller liver transcripts entirely lack exon 7.

Several partially cloned group 1 cDNA clones have been isolated from 

cDNA libraries prepared from the livers of different mouse strains 

(Hastie et al, 1979; Clissold and Bishop, 1981; Derman, 1982; Kuhn 

et al, 1984). The sequences of four nearly full-length cDNA clones 

are known (Kuhn et al, 1984; A.Chave-Cox, unpublished results).

The sequences of the mRNA-specifying regions of four different 

BALB/c group 1 genes are also known (Clark et al, unpublished 

results). These appear to code for a signal peptide, 18 amino acids 

long, and a mature protein, 162 amino acids long. Although 

nucleotide homology between the different group 1 sequences is on 
average 99.6%, they nevertheless specify different proteins. At 

present it is not known which genes code for which proteins.
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Two non-group 1 cDNA clones, pl99 and MUP 15, have been isolated
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(Kuhn et al, 1984; A.Chave-Cox, unpublished). These are 

identical in their overlapping cloned sequences (707 bp), and are 

thought to correspond to transcripts of a low copy number gene 

(possibly single copy) within the mouse genome. pl99, isolated from 

a C57BL/6J male liver cDNA library (Kuhn et al, 1984), and MUP 15, 

isolated from a BALB/c female liver cDNA library (A.Chave-Cox, 

unpublished), specify a protein which is considerably different in 

amino acid composition from the proteins specified by the group 1 

genes. The pl99/MUPl5 protein sequence contains a potential 

glycosylation site. MUPs, generally, have not been found to be 

glycosylated (Szoka and Paigen, 1978), although a protein component 

whose mRNA is preferentially selected by a pl99 5' subclone, may be 

glycosylated. This component is synthesized in the livers of both 

male and female mice.

The transcription units of a group 1 gene (BS-6) and a group 2 gene 

(BS-2) have been sequenced, and the homology between the two genes 

has been found to be 90% at the nucleotide level. Although there 

are several insertions and deletions within the introns, the overall 

structures of the two transcription units are very similar. Sequence 

data from the 5' flanking regions of BS-6 and BS-2 has also shown 

that these regions are generally quite similar. Both genes carry a 

TATA box and an A-rich region at ̂ -80. The length and sequence 

composition of the A-rich region, however, differs between the two 

genes. Another significant difference is the absence in BS-2, of one 

of the glucocorticoid consensus sequences found in the 5' flanking 

region of BS-6 (J.Clark, unpublished results).



The locations of DNasel hypersensitive sites within the 45 kbp 

duplication unit have been mapped in the livers of male and female 

mice at various stages of development (J.Clark, unpublished 

results). Eight hypersensitive sites are arranged in similar 

positions around the group 1 and group 2 genes. These are present 

0.5 kbp 3' to the poly(A) addition sites and 0.75, 2.25 and 7 kbp 5' 

to the cap sites of the group 1 and group 2 genes. Two non- 

symmetrical hypersensitive sites have also been found. These are 

present 0.5 kbp and 5.5 kbp 5' to the cap sites of the group 2 

genes. The hypersensitive sites are only fully established in the 

livers of 3-week-old mice and are not present in the kidney, a 

tissue which does not express MUP. Because DNasel hypersensitive 

sites are associated with gene expression, it is thought that at 

least some of these sites are involved in the tissue-specific 

expression of the MUP genes.

Differences in the ratio of group 1 like sequences and pl99/MUPl5 

like sequences are found within the genomes of the wild mouse 

strains M.musculus, M.castaneus, M.hortulanus, M.caroli and 

M.cervicolor (Sampsell and Held, 1984). The differences may 

reflect variation in copy number of group 1 and pl99/MUPl5-like 

sequences, and/or variation in homology to the group 1 and 

pl99/MUPl5 probes. Differences in the hepatic mRNA ratio of group 1- 

like sequences and pl99/MUPl5-like sequences have also been found 

among the wild mouse strains. These may be due to a combination of 

differences in regulation, sequence homology and gene dosage. More 

detailed studies on the MUPs of wild mice may give us some 

interesting insight into the evolution of the MUP gene family in the

46
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mouse.

In the rat, a homologous gene family codes for the a^globulins 

(Kurtz, 1981; Dolan et al, 1982) . (^globulins are synthesized in 

the liver in male rats (Laperche et al, 1983). Hepatic c^globulin 

is regulated by testosterone, glucocorticoid, thyroxine, growth 

hormone, insulin and estrogen, unlike submaxillary c^globulin 

which does not appear to be under hormonal regulation (Motwani et 

al, 1980; Lynch et al, 1982; Ray et al, 1983; Laperche et al,

1983). Dexamethasone-induced expression of a2uglobulin genes 

introduced into Ltk" cells has been reported (Kurtz, 1981).

The a^globulins are thought to be encoded by % 20 genes (Kurtz et 

al, 1981) . Comparison of a rat ot^globulin gene (207) and a mouse 

group 1 gene (BS-6) has revealed that their transcription units are 
similar in structure and that their exonic sequences are 81% 

homologous.

Assuming that the mouse-rat divergence took place 30 million years

ago, the silent site and replacement site divergence rates between

the a^globulin gene and the group 1 MUP gene are estimated to be

0.33 M years and 1.3 M years respectively (Clark et al, 1984a).

From these divergence rates, it is concluded that while the genes

are undergoing rapid evolution, the protein sequences are being

conserved. The functions of the MUPs and the ct globulins are not¿u
known. Based on their sites of expression, Shaw et al (1983) 

suggested that the MUPs may be involved in behavioural 

communication. Recently it has been found that MUP genes share
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significant homology to 3-iactoglobulin, a secretory protein 

found in the milk of ruminants, and microglobulin, a low 

molecular weight human plasma protein of unknown function.

Aims of project

In the above section I have described our current knowledge of the 

MUP gene family and the proteins it encodes. The project described 

in this thesis is largely concerned with the characterization of 

cloned MUP genes by restriction enzyme mapping. In the following 

section I will first briefly describe our knowledge of the MUP gene 

family at the time the project was initiated. I will then outline 

the main aims the project wished to achieve.

In 1981, BALB/c MUP genes were isolated from a liver genomic library 

and a sperm genomic library (see Clark et al, 1982). These were 

found to fall into two main groups, based on their hybridization 

reactions to the sub-clones, BS-6-5-5 and BS-2-2-2, which contain 

homologous fragments of the MUP genomic clones BS-6 and BS-2 

respectively. Isolated MUP genes which formed stable hybrids with 

BS-6-5-5 at 0.2 x SET, 68°C, were classified as group 1 genes while 
those which formed stable hybrids with BS-2-2-2 were classified as 

group 2 genes. The hybridization studies coupled with restriction 

enzyme mapping showed that four different group 1 genes (BS-6/ 
BL-14/BL-7, BS-5, BL-1, BS-1), three different group 2 genes 

(BS-2/BS-3/BS-4, BL-25, BL-15), and three genes belonging to 

neither group (BL-2, BL-8, BL-6) had been isolated. BL-6, one of the

9



clones which did not forra a stable hybrid with either the group 1 

probe or the group 2 probe, was classified as a pseudogene. This was 

based on its interrupted pattern of hybridization to two overlapping 

cDNA clones.

A high degree of restriction enzyme homology in the coding regions 

and 5' and 3' flanking regions was found between the isolated MUP 

clones. Restriction site homologies were found to extend into the 

flanking region for at least 7 kbp in both directions (Clark et 

al, 1982). Hybridization of genomic blots with the group 1 and 

group 2 probes showed that there were approximately 35 MUP genes in 

the haploid BALB/c genome consisting of ̂ 15 group 1 genes, ̂ 15 group 

2 genes and genes belonging to neither group (Bishop et al,

1982).

In 1981, Bennett et al found that variation in the urinary MUP 

phenotype between inbred mouse strains was paralleled by variation 

in the genomic restriction patterns of the MUP genes. Strains with 

the same urinary MUP phenotype also had the same MUP restriction 

enzyme pattern. By comparing the urinary MUP phenotype and MUP 

genomic restriction fragment patterns of two different sets of 

recombinant inbred strains (CXB and AKXL), Bennett et al also 

showed that the MUP structural locus was linked to the proposed 

regulatory locus Mup-1 (Szoka and Paigen, 1980). These results 

suggested that at least some of the variation in MUP phenotype 

between inbred strains may be due to differences in the structural, 

genes.
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The inbred mouse strains BALB/c and C57BL/Fa have Mup-lC and 

Mup—1 genotypes respectively. Using solution hybridization,

Clissold and Bishop (1982) estimated that BALB/c and C57BL/Fa mouse 

genomes carried an equal number of MUP genes. IEF resolution of the 

unprocessed in vitro translation products of hybrid selected MUP 

mRNA revealed that an equal number of distinguishable components 

(%20) ware synthesized in the livers of BALB/c and C57BL/Fa male 

mice. The number of MUP components synthesized in the livers of 

BALB/c and C57BL/Fa mice was found to be similar to the estimated 

number of group 1 genes present in the haploid genome of BALB/c 

mice. Because liver mRNA formed stable hybrids with a group 1 cDNA 

clone at high stringency, it was concluded that most of the liver 

MUP components were probably the products of group 1 genes (see 

Clark et al, 1984). The in vitro translation studies also 

revealed that although the differences between the inbred strains in 

the liver MUP components were mainly quantitative, some qualitative 

differences were found. Taken together the results of Bennett et 

al (1982) and Clissold and Bishop (1982) suggested that some 

variant genes were expressed in inbred mouse strains with different 

Mup—1 genotypes.

The MUP clones isolated from the BALB/c genomic libraries 

represented ̂ 1/4 of the estimated number of MUP genes in the 

haploid genomes of inbred mouse strains. The first aim of the 

project was to increase the pool of isolated and characterized MUP 

genes. This was done for two reasons, (a) It would allow the 

identification of subtle variations between different MUP genes, 

which potentially lead to differences in their hormonal and tissue
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specific regulation, (b) It would give a more comprehensive 

understanding of the evolution of the MUP gene family.

The second aim of the project was to isolate a functional variant 

MUP gene that was present in one strain but not the other. Such a 

gene would be used to study the regulation of MUP genes in the 

mouse. A variant gene from one strain would be micro-injected into 

the pronuclei of fertilized eggs of a mouse strain lacking the 

variant gene. The product of the variant gene would be 

distinguishable from the products of other MUP genes in the 

transgenic mice and studies on the expression of the variant gene 

would be facilitated by developing a specific probe to its mRNA.

The introduction of deletions or point mutations within specific 

regions of its coding and flanking sequences, and fusion of its 

coding sequences to different promoters from other MUP genes, would 

allow the definition of MUP regulatory elements. Because controlling 

elements are sometimes found within the transcription units of 

genes, the use of a natural variant would be superior to the use of 

a synthetic fusion gene. Also, due to potential species differences, 

the use of a natural variant would be superior to the use of a rat 

c^globulin gene.

For the reasons outlined above, C57 MUP genomic clones were isolated 

and characterized.
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Methods

Preparation of C57 unamplified library: Ligation and Packaging

EcoRI cut Charon 4A arms were first annealed in 66mM Tris pH 7.6, 

lmM EDTA pH 7.0, 10mM MgC^ and 40 mM NaCl for three hours at 42 C.

A total of 0.125 units of BRL T4 Ligase was used to ligate 1.8pg 

of mouse EcoRI* fragments with 4pg of Charon 4A arms. Ligation was 

carried out at 10°C, overnight, in a reaction buffer containing 50mM 

Tris pH 7.6, 0.8mM EDTA pH 7.0, 8mM MgC^, 32mM NaCl, 100jugml_1 
BSA, 10mM DTT and 0.2mM ATP.

The amount of T4 ligase needed to give optimum ligation had been 

previously determined by a series of test ligations. Successful 

ligation was identified as described by Maniatis et al (1978).

Packaging was carried out as described by Grosveld et al (1981) 

using packaging extracts prepared by Melville Richardson in John 

Bishop's laboratory.

J
Plating Charon 4A and its recombinant derivatives.

The host used was E. coli ED8654 [supE, supF, hsd R M+S ,
ZiA

met , trpR (Murrâ , 1977)]. A 1:50 dilution of stationary phase 

cells to LB was prepared and the cells allowed to grow with shaking 

to an O*D540nm of ÏÏ.5. Cells were pelleted by centrifugation and 
resuspended in an equal volume of cold 10mM MgSO^.
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0.5ml of bacteriophage suspended in phage buffer was incubated 

with 0.5ml of the prepared host cells for 20 minutes at 37°C. 3ml 

of LB top at 42 °C made 10mM in MgSO^ was added after the 

incubation period and the mixture poured onto 9cm diameter, 0.5cm 

deep, LB bottom plates. After the top agar had set, the plates were 

inverted and incubated at 37°C overnight.

All volumes were scaled up when using larger plates.

X-gal plates

To estimate the number of non-recombinant bacteriophage in Charon 4A 

genomic libraries, the bacteriophage were plated on a lawn of E. 

coli lac z (C344) grown on an X-gal indicator plate (Blattner et 

al, 1977) .

X-gal: 5 chloro 4 bromo 3 inodolyl-B-galactoside 

C3344: thr, leu, Bl, supE, tonA, hsdR M , lacZ.

Storage of bacteriophage as plate lysates

Bacteriophage from a single plaque were plated at a density of ̂ 10 
-2pfu cm to give confluent lysis.

4



The top agar was scraped into 2 volumes of phage buffer, 1/50 

volume of CHCl^ added and the mixture vortexed, to ensure 

complete lysis. Cell debris was pelleted by centrifugation (10,000 

rev. min  ̂4°C) and the clear phage suspension decanted into a 

fresh container and stored at 4°C.

Isolation and Purification of nucleic acids.

Quick bacteriophage DNA preparations.

These were prepared as described by Cameron et al (1977).

Analysis by electrophoresing restriction digests of these DNA 

preparations allowed early identification of identical phages picked 

from amplified genomic libraries.

Pure bacteriophage DNA preparations.

These were prepared as described by Clark et al (1982) .

DNA from these preparations was used for restriction enzyme mapping 

procedures.

Plasmid DNA preparations.

HB101 was transformed with recombinant derivatives of the plasmid 

pPH207 (Bishop and Davis, 1980) and grown with the appropriate
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plasmid selecting antibiotic.

Transformation and isolation of plasmid DNA were carried out as 

described by Bishop (1977), except that the plasmid was put over a

Sepharose 2B column as a further purification step.

HB101: F-, hsdS20(R~M~), recAl3, ara-14, proA2, lacYl, 

galK2, rpsL20(Smr), xyl-5, mtl-1, supE44

Genomic DNA.

DNA from male mouse liver nuclei was prepared as described by 

Clissold and Bishop (1982).

Preparation of E.coli DNA.

The carrier DNA used in genomic library screening hybridizations was

that of the E.coli host ED8654.

Stationary phase bacteria were subcultured into six, 1 litre flasks 

each containing 200ml LB made 1% in glucose and grown overnight, 

with shaking, at 37°C.

The cells were pelleted by centrifugation for 15 minutes at 10,000 

rev. min  ̂and resuspended in 400ml of 10mM Tris, ImM EDTA, pH 

7.4.

The cells were pelleted again and resuspended and homogenized in



100ml of sucrose mix. Lysozyme was added to a final concentration 

of 2.3mgml  ̂and the solution incubated for 15 minutes on ice.

30ml of 0.5M EDTA pH 8.1 was added and incubation continued for 5 

minutes. 270ml of triton mix was added, and after a further 10 

minute incubation period on ice, the nucleoids were pelleted by 

centrifugation for 30 minutes at 25000 rev. min-1.

The pellets were taken up in 50ml of 10mM Tris, 0.1M EDTA, pH 8.0 

and incubated for 30' on ice with RNase at a final concentration of 

0.2mgml 10ml of pronase was added and the solution incubated 

on ice for four hours. 1 volume of phenol was added and the phases 

gently shaken overnight at room temperature. 0.5 vol. of CHCI^ was 

added, the phases separated and the aqueous phase reextracted once 

or twice with CHCl^.

0.1 vol. 3M NaCl and 1 vol. cold ethanol were added and the DNA 

spooled out and dissolved in 50ml of 10mM Tris pH 8.0. The DNA 

solution was made 0.3M in NaCl, sonicated and ethanol precipitated.

Isolation of mRNA

7-10 week old BALB/c male mice were sacrificed for the preparation 

of submaxillary gland and lachrymal gland RNA. Eight week old 18 day 

pregnant female BALB/c mice were sacrificed for the preparation of 

mammary tissue RNA. RNA was extracted as described by Chirgwin et al 

(1975) , including the CsCl ultracentrifugation step to separate DNA 

from RNA. Poly(A) mRNA was isolated as described by Aviv and Leder 

(1972) except that LiCl was substituted for NaCL.
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Agarose gel electrophoresis

1/ Mapping MUP recombinant bacteriophages

Two types of gel were prepared:

(A) 0.4% agarose horizontal gels made 1 x in TA. DNA samples of 

0.25pg - 0.5pg were applied to 5mm deep, lnm thick, 2mm wide wells 

and electrophoresed at 3Vcm  ̂for 16 hours.

(B) 0.8% agarose vertical gels made 1 x in TB. DNA samples of 0.5pg 

were applied to 8nm thick, 5mm deep, 5nm wide wells and 

electrophoresed at 2.2Vcm  ̂for 16 hours.

2/ Electrophoresis of genomic DNA.

0.7% - 2.0% vertical agarose gels made 1 x in TB were used. Up to 

20pg of DNA was applied to 8mm thick, 5mm deep, 10itm wide wells. 

Electrophoresis was carried out at 1.9Vcm  ̂for 20 - 24 hours.

3/ Electroelution of DNA from agarose gels.

0.6% - 1% vertical agarose gels made 1 x in TB were used. Up to 10pg

of DNA was applied to 8nm thick, 5rtm deep, 20mn wide wells, and
electrophoresed at 2.2VatT'1" for 16 hours. After staining (see 

below) the gel was placed horizontally and a trough cut directly in 

front of the band to be eluted. The trough was filled with



electrophoresis buffer and a piece of sterile dialysis membrane was 

placed in the trough over and under the band. Electrophoresis of the 

band onto the dialysis membrane was carried out at 12 Van 1 for 

1 hour. With a voltage still being applied, the membrane was then 

removed into a small volume (2 - 3ml) of buffer and the DNA allowed 

to wash off the dialysis membrane. To purify the DNA from agarose 

derived enzyme inhibitors, the DNA was passed over a Schleicher and 

Schuell Elutip-d Column and recovered by ethanol precipitation.

Visualization of electrophoresed DNA

lpgml  ̂ethidium bromide was added to TA horizontal agarose gels 

before being cast. TB vertical gels were stained after 

electrophoresis in 1 x TB, containing lpgml-1 ethidium bromide, 

for 30 - 60 minutes. The DNA bands were visualized under a short 

wavelength UV transilluminator.

RNA denaturing gels

Two types of vertical gel were used.

(A) 1.4% formaldehyde agarose gels made 1 x in MOPS. These were 

prepared as described by Clissold and Bishop (1982). Poly(A) RNA 

samples, denatured with formamide and formaldehyde as described by 

Rave et al (1979), were applied to 8mn thick, 5mm deep, 5mm wide 

wells and electrophoresed at 1.9Vcm  ̂for 20 hours.
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(B) 1.4% formaldehyde agarose gels made 1 x in PBS. The gels were
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prepared and run exactly as in (A) except that PBS buffer was 

substituted for MOPS.

Screening genomic libraries

Plaque transfers were prepared by the method of Benton and Davis 

(1977) as modified by Maniatis et al (1978).

The prehybridization and hybridization steps were carried out as 

described by Maniatis et al (1978) except that 150jjgml  ̂of 

sonicated E.coli DNA (ED8654) was substituted for sonicated salmon 

sperm DNA in the prehybridization and hybridization steps and 10% 

Dextran Sulphate was added at the hybridization step (Wahl et al, 

1979) .

Preparation and hybridization of Southern transfers

The methods used for the transfer of DNA to nitrocellulose and its 

subsequent hybridization were essentially those of Wahl et al (1979) 

and Maniatis et al (1978), respectively. The modifications are 

described by Clissold and Bishop (1982).

Low stringency washes were in 1 x SET, 68 °C. High stringency washes 

were in 0.2 x SET, 68°C. 1 x SET = 150 mM NaCl, 30mM Tris, ImM EDTA 

pH 8.0.
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Preparation of Southern transfers for rehybridization

It was often desirable to rehybridize Southern transfers with 

another probe. To prepare Southern transfers for rehybridization, 

the filters were wetted in 4 x SET for 20 minutes at roan 

temperature, and the hybridized probe removed by dipping the filters 

in 0.IN NaOH, 1.5M NaCl for 30 seconds. The filters were then 

neutralized by dipping in 0.2M Tris, pH 7.5 and 2 x SSCP for 20 

seconds, blotted, and dried by baking at 80°C in a vacuum oven for 

30 minutes.

Northern transfers

Northern transfers were prepared essentially as described by Thomas 

(1980).

Schleicher and Schilll nitrocellulose membrane filters (0.45pm pore 

size) were used to transfer RNA from MOPS/formaldehyde agarose gels. 

These were hybridized exactly as Southern transfers (see above).

Pall Biodyne A nylon membrane filters were used to transfer RNA from 

PBS/Formaldehyde agarose gels. These were hybridized as outlined 

below. Filters were pre-treated for four hours at 42°C in 50% 

formamide, 2.5 x Denhardts, 2.5 x SSPE, 0.25% SDS and 250pgml  ̂
of sonicated and denatured, salmon sperm DNA. They were then 

hybridized overnight at 42°C in a solution identical to that used in 

the prehybridization step except that 10% Dextran Sulphate and the 

denatured probe were included. The prehybridization and 

hybridization steps were carried out in sealed plastic bags 

submerged in a shaking water bath. After hybridization, the filters 

were washed four times in 2 x SSC, 0.1% SDS at room temperature for
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15 minutes. Stringency washes were carried out by washing the 

filters in 0.5 - 0.2 x SET at room temperature for 15 minutes 

followed by washing in 0.5 - 0.2 x SET at 68°C for 30 minutes.

Restriction diaests-... ............  ■ ■ r'—_ . .

Restriction of DNA with EcoRI, BamHI, HindIII, PvulI, PstI 

Sail and SstI were carried out in EcoRI buffer (10mM Tris 

pH 7.5, 10mM MgCl^r 100mM NaCl, 10mM B-mercaptoethanol) at 37°C. 

Restriction of DNA with other enzymes was carried out in the buffers 

and at the temperatures recommended by the manufacturers. In double 

digests with enzymes requiring different buffers, restriction was 

first carried out with the low salt requiring enzyme, the buffer re­

adjusted and restriction continued with the high salt requiring 

enzyme.

Digestion was terminated by adding 1/5 volume of FDE (30% Ficoll, 

0.05% bromophenol blue, 10mM EDTA pH 7.0).

Digests of lambda derivatives were heated for five minutes at 68 °C 

to melt the cohesive termini before electrophoresis.

Extra care was taken to ensure the complete digestion of genomic 

DNA. Several small samples (0.5pg) of the reaction were removed 

during the course of the incubation. These were run on a test-gel 

and full digestion assumed if the pattern of the final two samples 

was identical.
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Labelling DNA by nick translation

DNA was nicked using DNase I under conditions that gave

approximately one nick per 500 - 1000 bp. Dilutions of DNase I were

prepared in 50mM Tris pH 7.4, 100pgml-1 BSA. Nicking reactions,

with different concentrations of DNase I, were carried out in 66mM
Tris pH 7.5, 6mM MgCl2, 20pgml-'*' BSA for 7 minutes at 20 °C.

The reactions were terminated by adding EDTA, pH 7.5, to a final

concentration of 4mM and the DNA recovered by phenol/chloroform

extraction and ethanol precipitation. To identify the most

favourably nicked DNA, a sample from each of the reactions was run

on a 0.8% agarose gel. Nick translation was carried out using

E.coli Polymerase I as described by Bishop (1979) except that the
32T4 DNA ligase step was omitted. [ P]dCTP was the sole labelled 

nucleotide.

Hybridization probes were labelled by nick translation. Table (M.l) 

summarizes the specific activities achieved for each type of 

hybridization.

DNA sequencing

DNA fragments to be sequenced were cloned into Ml3mp9 (Messing and 

Viera, 1982). The dideoxynucleotide sequencing method of Sanger et 

al (1977) was used to sequence the single stranded templates 

essentially as described by Coulson and Winter(1982).

"jo 32[ PjdCTP was substituted for [ P]dATP and the synthetic
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"universal" primer (17 nucleotides long) was purchased from 

Uniscience.

General methods

TCA precipitation and scintillation counting of labelled DNA

DNA samples were added to 1.3ml of 0.2M Na^PPi, 115jjgml-l BSA,

15% W/V TCA and precipitated on ice for 15 minutes. The precipitated 

DNA was recovered on GF/C filters by vacuum filtration and the 

filters rinsed free from any residual unincorporated nucleotides 

with 5% TCA. Dried GF/C filters were counted in PPO/POPOP toluene 

counting fluid.

G50 Spun Columns

To separate unincorporated nucleotides from labelled DNA, spun 

Sephadex G50 columns as described by Maniatis, Fritsch and Sambrook 

(1982) were used.

Phenol/Chloroform extraction

This was carried out as described by Maniatis, Fritsch and Sambrook 

(1982) .
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Composition of solution and media not specified in text,

LB : 1% Difco Bacto tryptone, 0.5% Difco Bacto yeast extract, 1% 

NaCl.

LB top : LB + 1% Difco agar 

LB bottom : LB + 1.5% Difco agar

Phage buffer : 0.3% KF^PC^, 0.7% Na2HP04 (anhydrous)

0.5% NaCl, 10mM MgSO^, ImM CaCl.,, 0.001% gelatin.

1 x TA : 50mM Tris, 20mM NaOAc, 10mM NaCl, 2mM EDTA, pH 7.9.

1 x TB : 90mM Tris, 90mM boric acid, 2mM EDTA, pH 8.3.

1 x MOPS : 20mM MOPS (Morpholinopropanesulphonic acid), ImM EDTA, 

5mM NaOAc, pH 7.0

1 x PB : 12mM Na2HP04 (anhydrous), 8mM NaH2P04.2H20.

1 x Denhardts : 0.4% Ficoll, 0.4% Polyvinylpyrrolidone, 0.4% bovine 

serum albumin.

1 x SSCP : 120mM NaCl, 15mM KH2P04, 2mM EDTA, pH 7.2.

1 x SSPE : 180mM NaCl, 10mM Na2HP04 (anhydrous), ImM EDTA,



66

pH 8.3.

1 X SSC : 150mM NaCl, 15mM NaCitrate, pH 7.0.
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Results

Section 1 ; Screening C57 genomic libraries for MUP genes.

Screening amplified pools Al and A2. The library used was 

prepared by John Bishop by the method of Kemp et al (1979) from 

male C57 genomic DNA using Charon 4A as a vector. In brief, liver 

DNA was methylated to completion using EcoRI methylase to protect 

canonical EcoRI sites. The DNA was then partially digested with
•k

EcoRI under EcoRI conditions so that the recognition 

specificity was reduced to the tetranucleotide NAATTN'. The DNA was 

sized on sucrose gradients, and fractions containing o!5 kbp
kEcoRI genomic fragments were ligated into Charon 4A EcoRI 

arms (Maniatis et al, 1978), and packaged by the method of 

Grosveld et al (1981).

5Two pools, each of 2.4 x 10 recombinant bacteriophages (0-1.2

genome equivalents) were separately amplified in the host ED8654
4(Murray et al, 1977) to give libraries Al and A2. 8.5 x 10 and

51.5 x 10 recombinant bacteriophages from the respective libraries 

were screened with the MUP cDNA plasmid LVA325 as a probe. LVA325 

consists of the 3' half of exon 4 and all of exons 5 and 6 as well 

as intron 5 of a group 1 gene cloned into the plasmid pPH207 

(Clissold and Bishop, 1981).

The hybridization washes were carried out at low stringency (1 x SET,
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68°C) so as not to discriminate against any members of the gene 

family. Seven positive plaques from library pool Al and eight 

positive plaques from library pool A2 were picked and the 

bacteriophage purified. On characterization by restriction mapping 

and Southern blotting (discussed in the next section) it was found 

that several of the bacteriophages were identical in all aspects of 

cloning and mapping and that only 3 out of 7 bacteriophages from 

pool Al and 1 out of 8 bacteriophages from pool A2 were different.

Screening of unamplified C57 library. The non-randomness of 

library pools Al and A2 was attributed to preferential replication 

of certain recombinants at the amplification steps. It was therefore 

decided that an unamplified pool of the library should be prepared 

and screened.

1.8 pg of ̂ 15 kbp size-fractionated C57 genomic DNA was ligated to 

4 pg of EcoRI Charon 4A arms, the DNA packaged and aliquots 

assayed by plating on the host ED8654. A total of 8.8 x 10~* 

recombinants were obtained CM.4 genomic equivalents) giving a high 

efficiency of 4.9 x 105 recombinants per pg of eukaryotic DNA 

(Maniatis et al, 1978). The probability of finding a single copy 

sequence was calculated by the method of Clarke and Carbon (1976) 

and found to be 0.98 (Table R.1.1).

8 x 104 bacteriophages of this unamplified library were plated 

and screened. Eight positive plaques were isolated and characterized 

as before. Six of the recombinant MUP bacteriophages were found to 

be different and two pairs of identical clones were recovered. This
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indicated that amplification alone was not responsible for the 

observed non-randomness.

The recombinant MUP clones isolated from the C57 libraries were 

compared to clones isolated from a similarly constructed BALB/c 

genomic library (Clark, Clissold and Bishop, 1982) and the results 

are summarized in Table R.1.2.

Out of 20 clones which should have arisen from different molecular 

cloning events (i.e. excluding duplications within amplified pools) 

four different duplicate pairs were obtained. Three of these pairs 

included one bacteriophage from a C57 library and one from a BALB/c 

library: CL-2/BL-25, CL-4/BL-8, CL-l/BL-14 (Figs.R.1.1 and R.2.2).

It is therefore concluded that the BALB/c library as well as the C57 

libraries is non-random and that the cause of the non-randomness is 

common.

Library non-randomness. Possible reasons for the non-randomness of 

the libraries were suggested by the high number of reconstituted 

EcoRI sites at the insert/bacteriophage boundaries: 40% compared 

with the expected 20%. This could have arisen in a number of 

different ways as discussed below.

•k
- Incomplete methylation. Under EcoRI conditions the enzyme 

specificity becomes reduced from the full hexamer GAATTC to the 

central tetramer NAATTN1. The most rapidly cleaved sequence under 

these conditions is the canonical EcoRI site. Undermethylation 

however results in rapid cleavage of the unmethylated EcoRI sites.
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Undermethylation probably did not occur during the construction of 

the C57 and BALB/c libraries because after methylation, the DNA 

samples were incubated with excess EcoRI under normal EcoRI 

conditions and found to be unaffected. Furthermore, the 

reconstituted EcoRI sites at the ends of the inserts do not 

coincide with any of the EcoRI sites mapped on the MUP genes, 

except perhaps in the case of CL-8/CL-9.

- Preferential cleavage of a sub-population of NAATTN1. Polisky et
★al (1975) examined the cleavage of EcoRI sites by analysing 

nearest-neighbour data obtained from ASV polymerase repair-
k

synthesis of EcoRI termini, and concluded that there was a 

hierarchy of recognition. Goodman et al (1977) explored this point
kfurther and found that the hierarchy for N in the EcoRI 

recognition sequence NAATTN1 was C»T>A»G. This means that the most
krapidly cleaved EcoRI site after the canonical EcoRI site 

is GAATTT = AAATTC. If the mouse DNA was cleaved mainly at these 

sites, then we would expect around 50% of all the termini to 

reconstitute EcoRI sites, in close agreement with the data.
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The sequence GAATTT=AAATTC is expected to occur every 1029 bp in 

60% AT-rich DNA. Let us suppose that MUP clones can be produced by 

one cleavage within a 9 kbp region to one side of the gene and a 

second cleavage within a 2 kbp region to the other. Given that 

cleavage occurs only at GAATTT sites, each gene would be found in 

about 36 different fragments. If there are 8 distinguishably 

different group 1 genes (see later) and an equal number of 

distinguishably different group 2 genes, we would have a potential



pool of about 576 clonable fragments. The probability of picking a 

duplicate clone from a sample of 8 (out of an unamplified library) 

would be 1/85. This calculation assumes a random distribution of 

sites and would easily be distorted, especially in a closely related 

gene family, if certain members were unexpectedly rich or poor in 

GAATTT sites or if sequences flanking these sites affected their 

rate of cleavage. However, the calculation gives a probability of =< 

1/11400 for obtaining two or more pairs out of a sample of 8. Since 

two pairs were obtained from the unamplified library, it appears 

that while preferential cleavage at GAATTT may be a contributory 

cause to library non-randomness, additional factors must be involved 

in order to explain the results satisfactorily. Possible candidates
kare the rapid cleavage of non-conventional EcoRI sites and 

the occurrence of certain sequences within the ligated fragments 

that influence the viability of the recombinant bacteriophage. These 

are discussed below.

- Cleavage of sequences other than NAATTN1. Woodbury et al (1980)
•kreported that under EcoRI conditions the hexanucleotide GGATTT

*was cleaved in preference to conventional EcoRI sites. Gardner

et al (1982) sequenced the genome of CaMV (strain CM184) by
★cloning CaMV EcoRI fragments into Ml3mp2. By comparing the

★
full sequence of CaMV with the ends of the CaMV EcoRI cloned

★
fragments, they were able to deduce the sequences of the EcoRI

sites that had been cleaved and successfully ligated. Cleavage at

GGATTT was not confirmed by these authors although they detected
★

other non-conventional EcoRI sites: G(GC)ATTC and GA(CG)TTC.
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•kThe non-conventional EcoRI sites G(GC)ATTC and GA(GC)TTC detected

by Gardner et al, had been ligated with the EcoRI cut vector and

true EcoRI sites had often been reconstituted by mismatch-repair

in the E.coli host. The frequency of recovery of these sites at

the junctions of cloned fragments was much less than that of
★

conventional EcoRI sites. It therefore seems unlikely that 

these sequences would have contributed significantly to our observed 

reconstituted EcoRI sites. However, if cleaved, they could 

contribute to the non-randomness of the libraries by forming 

fragment ends with a low cloning efficiency. The effect of cleavage 

of these sites is impossible to estimate quantitatively since there 

is no available data on their relative rates of cleavage.

- Chi sites. The four pairs of identical clones: BL-8/CL-4; BL-25/ 

CL-2; CL-6/CL-13 and CL-8/CL-9, were also found to be identical with 

respect to the orientation in which they were cloned into the 

vector. This suggested that these recombinant bacteriophage may 

carry Chi sites. A Chi site is a short non-palindromic sequence 

(5'GCTGGTGG31) that has been shown to stimulate recombination in 

derivatives of lambda. Chi recombination is specific to and 

dependent on the RecA, RecBC pathway of E.coli (Stahl, 1979). It 

is orientation dependent in that if an active Chi site is inverted, 

its activity is greatly reduced (Faulds et al, 1979). This means 

that when a fragment containing a Chi sequence is cloned into a 

lambda vector, the Chi sequence is much more effective in one of the 

two possible cloning orientations. The orientation dependency of Chi 

is due to interaction between the non-palindromic sequence and other 

lambda sequences, notably the cos site (Kobayashi et al, 1983) .
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Chi test. Bacteriophages that are red gam are dependent on 

the Rec system of E.coli to form infective particles and to lyse 

their host, gam bacteriophages do not enter the rolling circle 

mode of replication (since the RecBC product, Exonuclease V, is no 

longer inactivated) and the only substrate for packaging is the 

double stranded bacteriophage genome derived from theta replication 

followed by recombination. This process is normally inefficient and 

very small plaques are obtained on a Rec+ host. The presence of a 

Chi site enhances recombination so that large, normal sized, 

plaques are obtained on the Rec+ host (Stahl, 1979).

Since all our mouse genomic libraries were plated on a Rec+ host and 

because the vector Charon 4A is Chi , some of the non-randomness of 
the libraries could be due to selection of bacteriophage carrying 

functional Chi sites in the cloned fragment. This was tested by 

plating the clones on a Rec+ host and comparing the sizes of the 

plaques to control bacteriophage identical to each other except for 

the presence (positive control) and absence (negative control) of a 

Chi site. To demonstrate that any variation in plaque size was due 

to recombination deficiencies, the bacteriophage were also grown on 

a recB~sbcA~ host. The sbcA~ mutation activates the RecE 

pathway so that the strain has a Rec+ phenotype and the recB 

mutation allows the transition to the rolling circle mode of 

replication. Therefore large plaques are formed on this host by red" 

gam" bacteriophage whether or not they carry active Chi sites.

Both hosts used for the test were supF as the vector Charon 4A 

carries the genetic markers Aam32, Baml, in its left arm.



TABLE R.1.3 Chi test.

T

X phage
E. coli host

JM1 (recB2-]_/SbcA20,supF) QD5003 (rec+,supF)

MMS 659 (b/453,cI857) L S
MMS 885 (b/453,cl857,x+D) L L

C57 liver library
CL-1 M M
CL-3 M M
CL-6 M M
CL-13 M M
CL-5 M M
CL-10 M M
CL-8 M M
CL-9 M M
CL-11 M M
CL-12 M M

BALB/c liver library
BL-1 M M
BL-2 M M
BL-8 S S
BL-15 M M
BL-25 M M
BL-7 M M

BALB/c sperm library
BS-2 M M
BS-6 M M
BS-5 M M
BS-1 M M
BS-107 M M

Key:- L = large plaques,
M = medium plaques, 
S = small plaques.
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Recombinant MUP bacteriophage from the BALB/c liver, the C57 liver
\

and BALB/c sperm libraries were grown on the two bacterial strains 

at concentrations that allowed single plaques to be distinguished. 

Plaque sizes were compared with those of the controls and the 

results are summarized in Table R.1.3. All the recombinant 

bacteriophage that were tested produced plaques which were larger 

than those produced by the bacteriophage lacking a Chi site 

indicating that they probably carry Chi sites. The medium sized 

(as opposed to large) plaques given by these bacteriophages is 

thought to be due to the presence of two amber mutations in the 

vector whose effects are not completely overcome by the supF 

hosts. Bacteriophage BL-8 gave very small plaques on both hosts 

indicating that it is likely to have acquired a mutation unrelated 

to Chi and of unknown nature, sometime after the initial screen.

On average, a Chi site occurs every 70 kbp in eukaryotic DNA, and 

for a library composed of 12 kbp inserts one might expect one fifth 

of the recombinants to carry Chi sites . However, the MUP 

recombinants do not represent a random sample since they originate 

from a closely related gene family. Also selection for MUP 

recombinants carrying Chi sites would have taken place during 

library amplification, while in the case of the unamplified library 

the very small plaques produced by Chi MUP recombinants would have 

made them difficult to detect during screening. If some MUP 

fragments are Chi^ while others are Chi , then this could partly 

explain the strong bias in recoveries that was found.



Selection for Chi+ recombinants, coupled with the non-randomness 
★

caused by EcoRI sequence recognition in the case of the liver 

libraries, may explain why from a total of 25 clones (isolated using 

the same probe: LVA325) 3 distinguishably different group 2 MUP 

genes were isolated compared to 13 group 1 genes, when it has been 

estimated that there are equal numbers of group 1 and group 2 genes 

in the mouse genome.
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Section 2: Restriction Analysis

The same restriction enzymes which had been used to map the MUP 

bacteriophages isolated from the BALB/c libraries (Clark et al,

1982 and Bishop et al, 1982) ware used to map the C57 clones. When 

additional restriction enzymes were used, both the C57 and the 

BALB/c derived clones were mapped. Restriction sites were mapped by 

running single and double digests of the DNA on agarose gels. Most 

of the analysis was carried out on low percentage (0.4%) agarose 

gels. Where the restriction fragments of interest were under 2 kbp, 

0.8% agarose gels were used. Different clones were run in parallel 

so that small deletions/insertions (100 bp - 500 bp) in what 

appeared to be homologous fragments could be detected. Southern 

blots of the gels were hybridized to MUP cDNA clones (Clissold and 

Bishop, 1982) and to subclones previously prepared from the BALB/c 

MUP bacteriophages (Clark et al, 1982 and Bishop et al, 1982).

The cDNA clones and subclones used and their origins are illustrated 

in Fig.R.2.1. The restriction maps of C57 and BALB/c genomic clones 

characterized with eight 6 base-pair restriction enzymes are shown 

in Fig.R.2.2. The structure of the transcription unit as determined 

for BS-6 (Clark et al, 1984a) is shown above the (bacteriophage) 

maps.

Some of the C57 clones are identical to each other and most are 

identical or similar to bacteriophages isolated from the BALB/c 

libraries. Thus CL-1 is identical in all respects to BL-14 and both 

these bacteriophages show no differences from BL-7, BS-6 and CL-3 in 

the regions where the clones overlap. Similarly CL-6 and CL-13 are
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identical to eachother in all respects and identical to BL-1 in the

region of overlap. BS-1 is identical to BS-107 in the region of

overlap and CL-10 is identical to 01-5 in the region of overlap.

CL-8 and CL-9 are identical in all respects, BL-25 and CL-2 are 

identical in all respects and BL-8 and 01-4 are identical in all 

respects. Identical clones isolated from the same strain may 

represent different clones of the same gene or closely related 

manbers of the gene family. They may also represent genes which 

differ from each other in uncloned regions.

In a further attempt to detect differances between the 

bacteriophages, the DNAs were restricted with MspI, a 4 base-pair 

recognition enzyme. The rare doublet CpG is present in the

recognition sequence of this enzyme, making the frequency of MspI

sites similar to that of 6 base pair recognition enzymes.

Polymorphism in restriction sites carrying CpG in their sequences is 

more common than in those lacking CpG (Barker et al, 1984) . It has 

been proposed that this may be partly attributed to the high 

methylation frequency of CpG to mCpG. Methylation could increase 

the mutation rate by a number of mechanisms, including de-amination 

of methylcytosine to thymine (Salser, 1977; Barker et al, 1984).

MspI sites were mapped onto the entire cloned regions of most of 

the bacteriophages (Fig.R.2.3). BL-7 was found to have a unique 

MspI restriction site and is therefore not a clone of the same 

gene as BS-6 and/or BL-14. However, this does not exclude it from 

being an allele of a MUP gene isolated from the C57 library (for 

example CL-3 and/or CL-1, see Fig.R.2.2). Thus from a total of 

twenty-four clones that were characterized with MspI and eight o
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base-pair recognition restriction enzymes, fourteen were 

distinguishably different. From this point on, the following 

abbreviations are used when referring to sets of MUP clones:

MUPC1 for BS-6, CL-3, BL-14, CL-1

MUPC2 for BL-1, CL-6, CL-13

MUPC3 for BS-1, BS-107

MUPC4 for CL-5, CL-10

MUPC5 for BS-2, BS-3, BS-4.

Also, a slash will often be used (for example CL-8/CL-9) when 

discussing the properties of clones which have the same restriction 

map and which are identical in all respects of cloning.

Identification of group 1 and group 2 genes

Group 1 and group 2 genes were distinguished by hybridization to the 

group 1 probe, BS-6-5-5, isolated from BS-6, and by hybridization to 

the homologous group 2 probe, BS-2-2-2, isolated from BS-2 (Bishop 

et al, 1982), Fig.R.2.4.

Duplicate filters of restricted bacteriophages were prepared and 

hybridized to either the nick translated group 1 or group 2 probe.
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Probes were nick translated to equal specific activities and an 

equal number of counts were sealed into the hybridization bags. The 

filters were washed down to 1 x SET, 68°C (low stringency) and laid 

down for autoradiography. They were then washed to 0.2 x SET, 68°C 

(high stringency) and again laid down for autoradiography.

Comparison of the autoradiographs revealed that after the high 

stringency wash, most of the clones retained stable hybrids with 

either the group 1 probe or the group 2 probe. Cloned MUP genes that 

retain stable hybrids with BS-6-5-5 at 0.2 x SET, 68°C are 

classified as group 1 genes, while those that retain stable hybrids 

with BS-2-2-2 at 0.2 x SET, 68°C are classified as group 2 genes 

(Bishop et al, 1982).

The clones that react poorly with both the group 1 and group 2 

probes at high stringency do not fall into either group and are 

referred to as group 3 genes. Different group 3 genes are not 

necessarily more closely related to each other than to other members 

of the gene family. An example of such an experiment is shown in 

Fig.R.2.5. The group 1 internal control is CL-3 which has an 

identical hybridization behaviour and a similar restriction map to 

BS-6. The group 2 internal control is BS-2 itself. A comparison of 

the hybridized blots with the ethidium bromide stained gels 

indicates that the observed differences in hybridization between the 

two filters are not an artifact of loading. Table R.2.1 is a summary 

of the classification of MUP genomic clones isolated from the BALB/c 

and C57 libraries based on these hybridization studies.
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Table R.2.1 Classification of MUP genes based on hybridization 
criteria.

Group 1

MUPC1 (BS-6, CL-3, BL-14/CL-1)
BL-7
BS-5
MUPC2 (CL-6/CL-13, BL-1)
MUPC3 (BS-1, BS-107)
MUPC4 (CL-5, CL-10)
CL-8/CL-9 
CL-11

Group 2

MUPC5 ( BS-2, BS-3, BS-4)
BL-25/CL-2
BL-15

Group 3

BL-8/CL-4
BL-2
CL-12



Comparison of the restriction maps of MUP genes
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The coding region. Many of the restriction sites mapping to 

within the transcription unit of BS-6 are common to different cloned 

manbers of the gene family: the EcoRI site that maps to exon 2 is 

present in all group 1 and group 2 genes with the exception of genes 

identical and similar to CL-6; the PstI site mapping to intron II 

is common to all group 1 and group 2 genes; the PstI site mapping 

to intron III is common to all isolated MUP genes with the exception 

of BL-25/CL-2 and BL-8/CL-4; the PvuII site mapping to exon 4 is 

only lacking in BL-25/CL-2; the Kpnl site mapping to intron V is 

only lacking in BL-8/CL-4 and the HindiII site mapping to the 3' 

end of exon 6 is present in all group 1 and group 2 genes, although 

it is not present in the group 3 genes BL-2, CL-12 and BL-8/CL—4.

In addition, group 1 genes share a BamHI site mapping to intron I 

(the BamHI site located at a similar position in BL-25/CL-2 is not 

homologous), and group 2 genes with the exception of BL-25/CL-2, 

share a PvuII site mapping to intron IV. The group 3 genes BL-2, 

CL-12 and BL-8/CL-4 all share a SstI site mapping to exon 4.

All MUP clones which were isolated hybridized to the three probes 

spanning the seven exons of BS-6 (BS-6-2, BS-6-5 and BL-1-4) unless 
they were truncated through cloning. This coupled with the homology 

of the restriction sites within the transcription unit of BS-6 

suggests that most MUP genes have a similar structure.
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The 5' flanking region

No differences in hybridization are detected between group 1 genes 

when hybridized to 5' flanking region probes, BS-6-2 and BS-5B-3. 

Restriction site homology in the 5'-flanking regions of the isolated 

group 1 genes extends to the bacteriophage arm boundaries, so that 

homology between CL-l/BL-14 and BS-5 is observed 6 kbp upstream of 

the cap site and is extended a further 2 kbp between BS-5 and 

BS-107. In some cases the homologies are interrupted by the presence 

of small insertions or deletions. A small insertion/deletion of ̂ 200 

bp is present in group 1 genes between the beginning of the 

transcription unit and the Hindlll site positioned 2 kbp upstream 

from the cap site (Clark et al, 1982). This results in BL-7, BS-5 

and MUPC1 having a "small" 5' HindiII fragment as opposed to the 

"large" 5' HindiII fragment present in all the other isolated 

group 1 genes. Homologies may also be interrupted by the 

accumulation of point mutations in a specific region. Such regions 

were not detected. However it must be pointed out that the detection 

of these is dependent on the presence of appropriately positioned 

restriction sites, since the extent of hybridization to a probe is 

determined by the proximity of flanking restriction sites to the 

homologous area. If such regions are present 5' to the group 1 genes 

then they are likely to be quite small, bearing in mind the homology 

of the restriction sites.

To summarize, the 5' flanking regions of group 1 genes are well 

conserved over a distance of at least 6 - 8  kbp upstream of the cap 

site.
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The group 2 clones BL-25/CL-2 and BS-2 hybridize to the subclone 

BS-6-2, demonstrating homology within this group and between group 1 

and group 2 genes in the 5' flanking region. BL-25/CL-2 also 

hybridizes to BS-5-B3. Thus although restriction enzyme polymorphism 

is observed between BL-25/CL-2 and isolated group 1 genes,

51 flanking homology between group 1 and some group 2 genes must 

extend at least 3.5 kpb upstream of the cap site. This has now been 

confirmed by electron microscope studies on the two more recently 

isolated MUP bacteriophages BS-102 and BS-109, each showing 51 

linkage of a group 1 and a group 2 gene. Self annealing within each 

bacteriophage results in a stem of ̂ 4 kbp corresponding mainly to 

the homologous regions at the 5' ends of the group 1 and group 2 

genes (Clark et al, 1984). This 5' flanking region therefore 

appears to be ancestral to the divergence of group 1 and group 2 

genes and to the duplication event.

Whether or not the homologies found between group 1 and group 2 

genes in the 5' flanking region are shared by the group 3 genes is 

not known since the corresponding regions of these genes have not 

been cloned.

The 3' flanking region.

Homologies in the 3' flanking region also extend over a large 

distance away from the transcription unit. Amongst group 1 genes, 

homology is observed for at least 7 kpb between BS-6 and CL-6/CL-13. 
Homology breaks down approximately 0.5 kbp 3' to the poly(A) addi­



tion site (as defined for BS-6) between genes with a 3' flanking 

region similar to BS-6 (MUPC1, MUPC2, BS-5, CL-8/CL-9, CL-11) and 

those with a 3' flanking region similar to BS-1 (MUPC3, MUPC4). It 

is regained at least 1 kbp 5' to the region that hybridizes with 

BS-6-3 (the precise point could not be accurately determined with 

the probes used). The distance from the poly(A) addition site to the 

HindiII site of the region homologous to BS-6-3 is shorter in 

genes similar to BS-1 (4 kbp) than in genes similar to BS-6 (5.7 

kbp). This suggests that an insertion and/or deletion has taken 

place in the intervening region (Fig.2.6).

Homologies are also shared between group 1 and group 2 genes in 

the 3' flanking region (Clark et al, 1982). Thus, group 2 genes 

hybridize to the group 1 3'flanking region probes BL-1-4 and 

BS-6-3. The region homologous to BS-6-3 in MUPC5 is positioned at a 

distance from the end of the transcription unit equal to that in 

MUPC3 and MUPC4. However, heteroduplexes observed under the electron 

microscope between BS-1 and BS-2, show that the intervening regions 

are not homologous. Heteroduplexes formed between BS-2 and clones 

with a 3' region similar to BS-6 show that homology is maintained 

along the entire region that hybridizes to BL-1-4, while 

heteroduplexes formed between BS-1 and clones with a 3' region 

similar to BS-6 show that homology breaks down at^0.5 kbp from the 

end of the transcription unit (Bishop et al, unpublished). It 

therefore appears that the events that led to the equal positioning 

of the BS-6-3 homologous region in MUPC5 on the one hand and MUPC3 

and MUPC4 on the other, are not the same.
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Figure R.2.6. The 3' flanking region of MUP genomic clones. 

The regions shown extend from the end of the sixth exon (as 

determined for BS-6) to the 3' hybridization limit of BS-6-3 

to BS-6. The heavy lines indicate the limits of hybridization 

of BS-6-3 to each of the clones. For symbols see Figure 

R.2.2.
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BL-15, a group 2 gene, hybridizes to both BL-1-4 and to BS-6-3. The 

distance from the poly(A) addition site (as determined for BS-6) to 

the Hindlll site in the region homologous to BS-6-3 is unique, 

viz. rv5.1 kbp. Heteroduplexes formed between BL-15 and BS-4 (Bishop 

et al, unpublished) suggest that MUPC5 and BL-15 are partially 

homologous in the region where MUPC3 and MUPC4 diverge from MUPC5.

The exception is a 1 kbp insertion/deletion which makes up the 

difference in size observed between the two types of intervening 

regions found in group 2 genes (Fig.R.2.6).

BL-25/CL-2 does not hybridize to BS-6-3 and therefore does not share 

the same 3' structure as MUPC5. It is not known whether BL-25/CL-2 

has a region homologous to BS-6-3 located ̂ 5.1 kbp 3' to the poly(A) 

addition site as found in BL-15. BL-25/CL-2 does not share any 

restriction sites in the 3' flanking region with other group 2 

genes. It also does not have the EcoRI site present ̂ 1 kbp 5' to 

the Hindlll site of BS-6-3 shared by BL-15 and all group 1 genes 

cloned. A heteroduplex formed between BL-25 and BS-2 (Bishop et 

al, unpublished) indicated that homology at the 3' end breaks down 

between BL-25 and other group 2 genes approximately 1 kbp 3' to the 

poly(A) addition site (as determined for BS-6). This result however 

may not be totally accurate, at least in respect of the position of 

the breakdown in homology, since only 1 heteroduplex of this type 

was observed.

Homologies in restriction sites are found between BL-2 and CL-12 

over their entire cloned 3' ends. Homologies in restriction sites 

are also found between these two genes and group 1 and group 2 genes
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in the regions that hybridize to the probes BL-1-4 and BS-6-3. The 

distance from the poly(A) addition site (as determined for BS-6) to 

the HindiII site in the regions homologous to BS-6-3 is identical 

to that observed in MUPC1 and MUPC2. BL-8/CL-4 have unique 3' 

restriction sites and do not hybridize to BS-6-3.

To sunmarize, homology in the 3' flanking regions is often 

interrupted. The points of breakdown in homology are usually 

different and the distance of the poly(A) addition site (as 

determined for BS-6) from the well-conserved region that hybridizes 

to the subclone BS-6-3 is variable. It is therefore concluded that 

interruption of homology in the 3' flanking region is largely due to 

a number of different insertion/deletion events. Such a large 

breakdown in homology is not observed in the more conserved 51 

flanking region.
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Section 3: Sequencing the 5' ends of some group 1 genes.

The 5' ends of three MUP clones: BL-7, CL-8 and 01-11 were 

sequenced. The region sequenced in each case consisted of the first 

exon and 80 - 100 bp of 5' untranscribed flanking DNA. The cloning 

strategy is outlined in Fig.R.3.1. The vector used was Ml3mp9 cut 

with HindiII and BamHI.

BL-7 was digested with BamHI and the 12 kbp BamHI fragment 

extracted by electroelution from a gel and purified as described in 

the Methods section. This fragment was then digested with HindiII, 

and the resulting BamHI-Hindlll fragments (2.4 kbp and 5.5 kbp) 

were ligated with the vector using a 3 molar excess of fragments.

CL-8 was digested with BamHI and the 8.5 kbp fragment was 

extracted and digested with HinduI. The resulting BamHI- 

Hindlll fragments (6 kbp and 2.6 kbp) were ligated with the 

vector.

CL-11 was digested with Hindlll and the 4.8 kbp fragment was 

extracted and digested with BamHI. After purification, the BamHI- 

Hindlll fragments (2.1 kbp and 2.7 kbp) were ligated with the 

vector.

The ligation mixes were separately used to transform competent 

JM101 cells. Single-stranded templates were prepared and clones of 

the appropriate sizes identified by electrophoresis in agarose 

gels, and sequenced by the method of Coulson and Winter, (1982). The
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Figure R.3.2. 5' sequences of group 1 genes.

BS-6 GAAGAGGGAA AAAAAAAAAA ACAAAACAAA CAACAACAAC .AAAAAAAAA
BL-7 GAAGAGGGAA AAAAAAAAAA ACAAAACAAA CAACAACAAC .AAAAAAAAA
BS-5 GAAGAGGG.. .AAAAAAAAA ACAAAACAAA CAACAAGAAC AACAAAAAAA
BL-1 GGAAGAGGG.......................... AAAAA AAAAAAAAAA
CL-8 GGAAGAGGG........................... AAAA AAAAAAAAAA
CL-11 GGAAGAGGG............................AAA AAAAAAAAAA

BS-6 AAA.CCCGCT GAACCCAGAG AGTATATAAG GACAAGCAAA GGGGCTGGGG
BL-7 ...CCCCGCT GAACCCAGAG AGTATATAAG GACAAGCAAA GGGGCTGGGG
BS-5 AAA.CCCGCT GAACCCAGAG AGTATATAAG GACAAGCAAA GGGGCTGGGG
BL-1 AAA...CGCT GAACCCAGAG AGTATATAAG GACAAGCAAA GGGGCTGGGG
CL-8 AAA...CGCT GAACCCAGAG AGTATATAAG GACAAGCAAA GGGGCTGGGG
CL-11 AAA.CCCGCT GAACCCAGAG AGTATATAAG GACAAGCAAA GGGGCTGGGG

cap site 
*

BS-6 AGTGGAGTGT AGCCACGATC ACAAGAAAGA CGTGGTCCTG ACAGACAGAC
BL-7 AGTGGAGTAT AGCCACAATC ACAAGAAAGA CGTGGTCCTG ACAGACAGAC
BS-5 AGTGGAGTGT AGCCACGATC ACAAGAAAGA CGTGGTCCTG ACAGACAGAC
BL-1 AGTGGAGTGT AGCCACGATC ACAAGAAAGA CGTGGTCCTG ACAGACAGAC
CL-8 AGTGGAGTGT AGCCACGATC ACAAGAAAGA CGTGGTCCTG ACAGACAGAC
CL-11 AGTGGAGTGT AGCCACGATC ACAAGAAAGA CGTGGTCCTG ACAGACAGAC

m etlysmetle uleuleuleu cysleuglyl 
BS-6 AATCCTATTC CCTACCAAAA TGAAGATGCT GCTGCTGCTG TGTTTGGGAC
BL-7 AATCCTATTC CCTACCAAAA TGAAGATGCT GCTGCTGCTG TGTTTGGGAC
BS-5 AATCCTATTC CCTACCAAAA TGAAGATGCT GCTGCTGCTG TGTTTGGGAC
BL-1 AATCCTATTC CCTACCAAAA TGAAGATGCT GCTGCTGCTG TGTTTGGGAC
CL-8 AATCCTATTC CCTACCAAAA TGAAGATGCT GCTGCTGCTG TGTTTGGGGC
CL-11 AATCCTATTC CCTACCAAAA TGAAGATGCT GCTGCTGCTG TGTTTGGGGC

euthrleuva lcysvalhis alaGluGluA laSerSerTh rGlyArgAsn 
BS-6 TGACCCTAGT CTGTGTCCAT GCAGAAGAAG CTAGTTCTAC GGGAAGGAAC
BL-7 TGACCCTAGT CTGTGTCCAT GCAGAAGAAG CTAGTTCTAC GGGAAGGAAC
BS-5 TGACCCTAGT CTGTGTCCAT GCAGAAGAAG CTAGTTCTAC GGGAAGGAAC
BL-1 TGACCCTAGT CTGTGTCCAT GCAGAAGAAG CTAGTTCTAC GGGAAGGAAC
CL-8 TGACCCTAGT GTGTGTCCAT GCAGAAGAAG CTAGTTCTAC GGGAAGGAAC
CL-11 TGACCCTAGT CTGTGTCCAT GCTGAAGAAG CTAGTTCTAC GGGAAGGAAC

PheAsnValG luLys 
BS-6 TTTAATGTAG AAAAGGTATG ATCACTGAAT AGTAGCTTCT GACTCAGAAT
BL-7 TTTAATGTAG AAAAGGTATG ATCACTGAAT AGTAGCTTCT GACTCAGAAT
BS-5 TTTAATGTAG AAAAGGTATG ATCACTGAAT AGTAGCTTCT GACTCAGAAT
BL-1 TTTAATGTAG AAAAGGTATG ATCACTGAAT AGTAGCTTCT GACTCAGAAT
CL-8 TTTAATGTAG AAAAGGTATG ATCACTGAAT AGTAGCTTCT GACTCAGAAT
CL-11 TTTAATGTAG AAAAGGTATG ATCACTGAAT TGTAGCTTCT GACTCAGAAT



sequences are given in Fig.R.3.2 along with the sequences of 

homologous regions from three other group 1 genes (Peter Ghazal and 

John Clark, unpublished). To confirm observed differences, parallel 

sequencing reactions of the two clones in question were run as 

illustrated by Fig.R.3.3. This was possible since the sequences of 

the 5' ends of all the genes were derived by cloning the 5'

Hindlll-BamHl fragment into Ml3mp9 and Ml3mp8. For the 

comparative gels the Ml3mp9 recombinants were used.

All six 5' group 1 sequences were found to be nearly identical.

The 7 bp TATA box, present in almost all sequenced eukaryotic genes, 

was positioned 25 bp upstream of the cap site and was found to have 

an identical sequence (TATATAA) in all six group 1 genes. None 

were found to have the sequence GG(CT)CAATCT, which is located 70- 

80 bp upstream from the transcription unit of many eukaryotic genes. 

Instead an A-rich region was found at this position (see Fig.R.3.2).

The length and/or sequence composition of the A-rich region varied 

in all six genes causing the sequences to diverge at this point.

Further upstream of the A-rich region, precise homology was 

regained. The points at which the sequences of CL-8 and BS-6 diverge 

and come together again are marked on the sequencing gel illustrated 

by Fig.R.3.3. The major differences between the group 1 gene 

sequences were found to fall within the A-rich region. It is 

possible that some of the variation in expression between different 

monbers of the MUP gene family, may be attributed to variation 

within this region, bearing in mind its position relative to the cap 

site.
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Figure R.3.3. Sequencing gel comparing the 51 flanking 

sequences of BS-6 and CL-8. Samples were sequenced according 

to Coulson and Winter (1982) , and run on a 6% sequencing gel 

(pH 8.8) for five hours. Lanes from left to right, are:

CL-8, G track; BS-6, G track; CL-8, A track; BS-6, A 

track; CL-8, T track; BS-6, T track; CL-8, C track; BS-6, 

C track. The point where the sequences diverge is indicated 

by arrow (a) . The points where sequence homology is regained 

are indicated by arrows (b) and (b1).





Section 4: Phylogenic relationships of MUP genes based on 

restriction data

In the following section an attempt is made to draw up a phylogeny, 

based on restriction enzyme data, for some of the cloned MUP genes. 

This serves as an aid to understanding the evolution of the MUP gene 

family. The phylogenic relationships described here were derived 

using a parsimony method.

Parsimony methods find the evolutionary trees that would have been 

constructed through the least evolutionary change (see Felsenstein, 

1982). Restriction enzyme data are best analyzed by the Dollo 

parsimony method (Felsenstein, 1983), which is based on the theory 

that in evolution complex structures are less likely to be gained 

than lost (Farris, 1977). To analyze the restriction data by the 

Dollo parsimony method, a computer program obtained from 

J.Felsenstein was used. The program is suitable for analyzing 

discrete two-state characters (0,1) where "0" indicates the absence 

of a character and "1" indicates its presence. If the character 

state is unknown, "?" may be substituted. The program is based on 

two main assumptions: (1) the ancestral state is 0, (2) the 

probability of a change of the form l->0 is small but the 

probability of a change of the form 0->l is even smaller. Other 

assumptions are that different characters evolve independently, and 

that lineages evolve independently. The algorithm allows up to one 

forward change (0—>1) and as many reversions (l->0) as necessary.

The program minimises the number of reversions (l->0) . In these 

terms, the most parsimonious tree is that requiring the minimum
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number of reversions.

The program constructs a tree as follows. The first two species in 

the input data are arranged into a bifurcating tree. The third 

species is added to one of three possible positions that maintain a 

bifurcating tree in such a way as to give the most parsimonious tree 

with three species. The fourth species is then considered, and its 

addition to one of the 5 possible positions that still result in a 

bifurcating tree is evaluated. Again the most parsimonious tree is 

chosen. The program continues in this manner except that after the 

addition of each new species a number of possible local re- 

arrangsnents of the internal segments of the tree are tried in an 

attempt to improve it. Because of the nature of the program , it is 

necessary to perform several runs changing the order of input of the 

same set of data. It is possible that the most parsimonious tree is 

not found, although the probability of this is small if only one or 

two forms of the tree are constructed, and if the data set is small. 

It is also possible to obtain more than one equally parsimonious 

tree. To choose between these, other data may have to be considered.

Finally, it must be pointed out the most parsimonious tree is 

not necessarily the most evolutionärily correct tree, since the 

assumptions may not always hold. For example, gene conversion could 

lead to the exchange of sites between members of the family which 

are not very closely related, but which share sufficient homology 

for conversion events to occur. The advantage of the method, 

however, is that it is possible to develop an objective phylogeny 

based on well defined assumptions which are thought to approximate
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Restriction enzyme data used to construct 
Dollo parsimony phylogenies-

Figure R-4-1
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most closely to the biological state.
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The restriction site data which was analyzed by the Dollo parsimony 

method is given in Fig.R.4.1, and a table of characters is shown in 

Fig.R.4.2. The probe used for screening the mouse genomic libraries 

was LVA325. This means that at least the 3' end of the transcription 

unit is present in every clone isolated, although the extent of the 

flanking sequences present is variable. It was therefore necessary 

to choose a representative region for analysis. The region chosen 

consists of the transcription unit, 3.7 kbp of 5' flanking sequences 

and 2.5 kbp of 3' flanking sequences, giving a total of 10 kbp. Only 

cloned genes that are known to have sequence polymorphisms are 

included in the analysis. Some may be alleles. To include a 

representative number of group 2 genes, BS-102 and BS-109 were fully 

characterized with eight 6 bp restriction enzymes in the region 

considered. BL-8/CL-4 was not included in the analysis since this 

clone is believed to contain re-arranged MUP gene sequences 

(discussed in section 6).

Where one of the characters considered is not known a "?" was used. 

"?" was also used where large deletions/insertions may have resulted 

in the loss of restriction sites present in other menbers. In this 

way a gene that has lost a number of restriction sites through a 

possible deletion/insertion event is not scored equivalently with a 

gene that does not have the sites due to nucleotide substitutions 

(as judged from hybridization studies and E.M. mapping). Where small 

deletions/insertions of 200 bp or less have resulted in a 

displacement of sites, and where homology is otherwise maintained



(as judged from E.M. mapping), the site(s) are scored as new ones

(see Fig.R.4.1). Scoring the group 1 sites that had been displaced

by the proposed insertion/deletion event at the 5' flanking sequence 

as new sites did not affect the relationship of group 1 genes to 

other members of the gene family. This is because these sites are 

not shared by other members and because they represent a small 

proportion of the total number of group 1 restriction sites 

considered.

A minimum of 10 runs were considered for each set of data.The output 

format of the program is that of a rooted tree that "grows" from the 

bottom left hand corner of the diagram. The lengths of the branches 

are not proportional to evolutionary time. The total number of 

reversions required to construct the tree is given, as well as a 

table of the number of reversions experienced by each character.

Using all 39 characters, two equally parsimonious trees, A and B,

were obtained (Fig.R.4.2 and R.4.3). These differ mainly in the

position of the branch leading to BL-2 and CL-12, genes which 

hybridize equally poorly to group 1 and group 2 probes. In tree A,

BL-2 and CL-12 are more closely related to group 1 genes. In tree B,

BL-2 and CL-12 are more closely related to group 2 genes. In both 

trees A and B, the branch leading to BL-25, a group 2 gene, 

separates away from the rest of the gene family at the first fork.

A less parsimonious tree requiring one extra reversion is given in 

C (Fig R.4.3). In this case, BL-25 is associated more closely with 

other group 2 genes, while the branch leading to BL-2 and CL-12
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forks away from the rest of the gene family.
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The evolution of the two most parsimonious trees A and B is 

difficult to explain. The sequences of the first exon of eight 

group 1 genes and four group 2 genes, including BL-25, are known 

(Ghazal et al, 1985 and this thesis). Comparison of the sequences 

shows that while BL-25 has diverged away from other group 2 genes, 

it is still more closely related to these than to group 1 genes. If 

an early duplication separated the branch leading to BL-25 from the 

rest of the gene family, an explanation is needed for its greater 

similarity to the group 2 pseudogenes. One possible explanation is 

that group 1 genes underwent accelerated evolution compared to group 

2 genes, and that group 2 genes are not pseudogenes (for example the 

hexapeptide encoded by group 2 genes could be functional, or group 

2 genes could be spliced differently from group 1 genes). Another 

explanation would involve postulating that the stop codon common to 

all sequenced group 2 genes, positioned at amino acid 7 of the 

mature protein, was introduced after the fork between the branch 

leading to BL-25 and that leading to other group 2 genes but spread 

from one branch to the other by a rare gene conversion event. There 

is no evidence to support either of these hypotheses.

The slightly less parsimonious tree (C) is in agreement with all 

presently available data. Examination of the reversion tables for 

trees A, B, and C reveals that more than half of the reversions are 

experienced by characters 3' to the poly(A) addition site (A and B, 

8/16; C, 11/17). This is the region (discussed earlier) that has 

diverged considerably in the gene family, possibly through a series



of different insertions and/or deletions.
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If the 3' flanking region restriction data is omitted and only 5' 

flanking restriction sites and restriction sites present in the 

coding region are used for analysis, a single most parsimonious 

tree, D, is obtained (Fig.R.4.4). D has the same form as C: BL-25 

does not separate away from the other group 2 genes before the split 

between group 1 and group 2 genes takes place, and BL-2 and CL-12 

diverge away at an early stage from the rest of the gene family. 

Similarly, when the 5' 30 characters are used and BL-2 and CL-12 are 

omitted from the data set, only a tree of the form illustrated in E 

(Fig.R.4.4) is obtained. When BL-2 and CL-12 are emitted from the 

data set and all 39 characters are considered, two equally 

parsimonious trees, F and G, are obtained (Fig.R.4.5). F has the 

same general form as trees A and B, while G has the same form as C.

Examination of restriction sites present at the 3' end of the 

genes shows that BL-25 shares sites 33 and 38 (PstI and PvuII 

respectively) with group 1 genes. Site 38 is also shared by BL-2 and 

CL-12. It is not possible to determine whether this is simply the 

result of coincidence or the result of an event such as gene 

conversion. Sequencing of this region may allow us to distinguish 

between these possibilities.

In all the trees described so far, local re-arrangements within 

group 1 and group 2 sub-branches that do not affect the number of 

reversions or the general form of the trees, are observed. The two 

different arrangements observed between group 2 genes involve the
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branching point of BL-15, as demonstrated by phylogenies H and I 

(Fig.R.4.6). Due to the absence of sequence data on BL-15 and due to 

the small amount of overlap between the cloned regions of BL-15 on 

the one hand and BS-102(2) and BS-109(2) on the other, it is not 

possible to distinguish between these phylogenies.

In all the phylogenies drawn where group 1 genes have been included, 

these divide into two sub-groups: those having the "large" 5'

HindiII fragment and those having the "small" 5' HindiII 

fragment (discussed previously). All local re-arrangements take 

place within the sub-group of genes containing the large 5'

Hindlll fragment. Addition of MspI restriction site data to the 

character sets (Fig.R.4.7) still results in 3 equally parsimonious 

trees being drawn (Figs. R.4.7 and R.4.8).

The alternative phylogenies J,K and L are the result of a shared 

PstI site (character 20) between CL-5 (a probable allele of BS-1), 

and CL—11. Substitution of "?" at this position in either CL-11 or 

CL-5 gives rise to a single most parsimonious tree identical in form 

to K. The possibilities are therefore: (1) that the reversions 

illustrated by one of the phylogenies J,K and L took place, (2) a 

gene conversion event has taken place, and (3) the occurrence of the 

PstI site in both CL-5 and CL-11 is due to coincidence. The third 

possibility is improbable when we consider that substitution between 

group 1 genes is less than 1%. BS-1 and CL-5 share a 3' deletion/ 

insertion not common to other members.of the gene family. This 

deletion/insertion event must have taken place after the split 

between the group 1 genes into the two sub-groups and is not
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ancestral to the 3' region shared by all other group 1 genes. On 

this basis phylogeny J may be rejected (the characters within the 3' 

deletion were scored for by "?" in BS-1 and CL-5).

To choose between phylogenies K and L we must turn to sequencing 

data. The sequences of the 5' ends of group 1 genes (Fig.R.3.2) 

reveal that genes sharing the small 5' HindiII fragment also 

have in common an A-rich region that is %42bp long, 10 bp upstream 

of TATA. On the other hand CL-11, CL-1 and CL-8 share an A-rich 

region of ̂ 17 bp, and BS-1 has an A-rich region of ^55 bp (the 5' 

region of CL-5 has not been sequenced). This data is in agreement 

with both phylogenies K and L. Other shared homologies are: (1) a 2 

bp substitution immediately 3' to the A-rich region common to CL-8 

and BL-1 and (2) a silent substitution in the 10th amino acid 

(glycine) of the signal peptide common to CL-11 and CL-8.

Phylogeny K is in agreement with the first shared homology but not 

with the second. If we assume that the alternative glycine codon 

usage was not gained independently in CL-8 and CL-11, then in order 

to accept this phylogeny one must postulate that BL-1 has reverted 

back to the ancestral sequence of the glycine codon, or that a gene 

conversion event involving that codon has taken place. Phylogeny L 

is also consistent with the first homology but not with the second.

In order to accept this phylogeny without suggesting that the 

alternative glycine codon arose independently in CL-8 and CL-11, one 

must postulate that both BL-1 and BS-1 have reverted to the 

ancestral glycine codon usage or that once again a gene conversion 

event involving that codon has taken place.
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In the H-2 locus, a gene conversion event involvng a minimum of 13 

and a maximum of 32 bases has been convincingly described (Weiss et 

al, 1983). If a gene conversion event has taken place between CL-8 

and CL-11 then it would involve a maximum of 154 bases. However, due 

to the high homology between group 1 genes ( >= 99% ) it is not 

possible to prove or disprove whether such a 'micro' conversion 

event has taken place between the two group 1 genes.

The GGG glycine codon for amino acid 10 of the signal peptides of 

CL-8 and CL-11 could have arisen independently, particularly if 

there was a preference for glycine codon usage in MUP genes. An 

examination of the coding sequences of BS-6 and MUP15 shows that 

there is no significant difference from the random expectation of a 

frequency of 0.25 for each of the four codons. However the sample 

number is small. [ BS-6 shares identical glycine codons with three 

other sequenced group 1 genes (J.Clark, unpublished) and with the 

liver group 1 cDNA clones p499 and pl057 (Kuhn et al, 1984). MUP15 

is a group 3 liver cDNA clone (isolated by A.Chave-Cox and discussed 

in following sections).]

In summary, the Dollo parsimony phylogenies are in agreement with 

the hybridization results, in that the three groups established by 

hybridization to the 1 kbp group 1 and group 2 probes are also 

distinguishable on the basis of restriction enzyme homology covering 

a much larger region. In addition, the group 1 genes are found to 

form two sub-groups based on restriction site polymorphisms in their 

5' flanking sequences. BL-25 appears to have diverged from other
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cloned group 2 genes as confirmed by a limited amount of sequencing 

data.

The results argue against extensive "homogenization" events between 

group 1 and group 2 genes. However, that such events may occur 

between groups is suggested by some restriction sites located 3' to 

the transcription unit. Also the possibility exists of gene 

conversion between group 1 genes sharing the large 5' HindiII 

fragment.

The phylogenies also suggest that BL-2 and CL-12 have diverged 

equally from group 1 and group 2 genes, although further 5' 

sequences are necessary to confirm this.



Section 5: Hybridization of group 1 and group 2 probes to mRNA 

isolated from different tissues.

Shaw et al (1983) reported the transcription of MUP genes in five 

tissues other than liver: lachrymal, submaxillary, sublingual, 

parotid and mammary. None expressed MUP at a level equivalent to 

that found in adult male liver. Estimates for the more abundantly 

transcribing glands at developmental stages where MUP expression was 

at a maximum, indicated that 1/10th, l/24th and l/30th of the steady 

state level was achieved in lachrymal, submaxillary and marrmary 

glands respectively compared with male adult liver. In their sexual 

and developmental patterns and in their hormonal regulation of MUP 

mRNA, these three tissues were found to be different from the liver.

In vitro translation of hybrid-selected mRNA in the presence of 

dog pancreas membranes indicated that different MUP proteins were 

expressed in different tissues. Hybrid-selected mRNA from the 

submaxillary gland appeared to code for a MUP protein(s) that co­

migrated with one from male liver, while hybrid-selected mRNA from 

mammary tissue coded for a protein(s) that co-migrated with the most 

predominant female liver protein, also detected in male liver.

Unlike other tissues, the lachrymal gland exhibited a new set of MUP 

proteins which had higher pis ( 5.6 - 6.5 ) than those of the liver 

( 4.4 - 4.8 ) suggesting that these were coded for by a different 

set of MUP genes. Since there was no evidence at the time to suggest 

that the group 2 genes are pseudogenes, it was of particular 

interest to determine whether the lachrymal gland proteins were 

coded for by group 2 genes. It was also of interest to determine
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whether the manmary gland and submaxillary gland proteins were coded 

for by group 1 genes as liver mRNA appeared to be predominantly 

the product of group 1 gene expression (Clissold and Bishop, 1982 

and unpublished results).

Poly(A) mRNA extracted from the lachrymal and submaxillary glands of 

7 - 1 0  week old male mice and from the mammary tissue of eight-week 

old eighteen-day pregnant female mice was electrophoresed against 

poly(A) mRNA extracted from the livers of 7 - 10 week old male mice 

(gift of A. Duncan). All mRNAs were derived from BALB/c mice. 

Duplicate filters were hybridized with either nick translated 

BS-2-2-2 (group 2) or BS-6-5-5 (group 1). The probes were nick 

translated to the same specific activity and equal amounts of 

radioactivity were added to the hybridization bags. After the 

hybridization period, the filters were washed at high stringency 

(0.5 x SET, 68°C). Hybridization signals were detected for the 

lachrymal gland, maitmary gland and submaxillary gland mRNA samples 

only when they were hybridized with the group 1 probe, indicating 

that expression in these tissues was predominantly from genes more 

homologous to the group 1 probe (Figs. R.5.1 and R.5.2).

The results do not exclude the presence of low levels of mRNA 

homologous to group 2 genes in these tissues. In view of the 

differences between the pis of the lachrymal and liver MUP proteins, 

the filters were washed at the higher stringency of 0.2 x SET, 68°C. 

It was not possible to determine whether there was a difference in 

the signals from the marrmary gland and submaxillary gland samples, 

due to the low amounts of MUP mRNA expressed in these tissues and
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Figure R.5.1. Northern blots of liver and lachrymal gland 
poly (A) mKNA probed with either the group 1 or the group 2 
probe. Lanes a - f were probed with the group 1 probe, 
BS-6-5-5; lanes g - 1 were probed with the group 2 probe, 
BS-2-2-2. Filters were washed down from 0.5 x SET,68°C to 
0.2 x SET,68°C and exposed to X-ray film after each wash. 
Samples in their respective lanes are given below.

a and g 2|ig
b and h 3 Mg
c and i 5ug
d and j 1 Mg
e and k 0.5p,g
f and 1 2 Mg
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H
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due to under-exposure of the autoradiograph. A significant 

difference was detected, however, in the hybridization signals of 

the long and short liver mRNA (Fig.R.5.1). This result indicates 

that unlike the group 1 probe, the group 2 probe hybridizes 

preferentially to the short mRNA. Also, judged from a densitometer 

scan of the autoradiograph, some signal appeared to have been lost 

from the lachrymal gland samples relative to the liver samples after 

the higher stringency wash.

Kuhn et al (1984) have reported significant levels of sequences

homologous to the male liver derived cDNA, pl99, in lachrymal mRNA.

Hybridization of lachrymal mRNA and liver mRNA to a 5' subclone of 

this cDNA (Fig.R.5.3.B) indicated that at a washing stringency of 

0.5 x SET, 68°C, sequences homologous to pl99 are comparatively more 

abundant in the lachrymal gland than in the liver. The size of the 

lachrymal mRNA was also judged to be in between that of the long 

and short liver mRNA when probed with this subclone. Signal from the 

lachrymal gland samples was lost relative to the liver samples on 

washing down to the higher stringency of 0.2 x SET, 68°C.

When the 5' subclone of the group 1 cDNA, p499, was hybridized to 

liver and lachrymal gland mRNA and washed under the higher 

stringency (0.2 x SET, 68°C), signal from the lachrymal gland

samples was again lost relative to the liver samples (Fig.R.5.3.B).

From its sequence, p499 is known to represent the transcript of a 

group 1 gene. The 5' subclone of p499 extends from amino acid -10 

(of the signal peptide) to the PvuII site in exon 4. 3S-6-5-5 and 

the p499 5' subclone overlap over 52 bp in exon 4.
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Figure R.5.3.

(A) Northern blot of liver and lachrymal gland poly(A) 
mRNA probed with the 5' p499 subclone. The hybridized 
filter was washed down from 0.5 x SET,68°C to 0.2 x SET, 
68°C and exposed to X-ray film after each wash. Samples 
in their respective lanes are given below.

1 and 5
2 and 6
3 and 7
4 and 8

1 ug liver poly (A) mRNA
0.5ug
5pg lachrymal gland poly(A) mENA 
3ng

(B) Diagram showing hybridization limits of BS-6-5-5, 
the 5' p199 subclone and the 5' p499 subclone to the iMDP 
transcription unit.



A 1 2 3 4  5 6 7 8

B

— BS-6-5-5 —
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The pl99 5' subclone hybridization results suggest that a large 

proportion of lachrymal mRNA is contributed by sequences that 

share some homology with this subclone and that have a size in 

between that of the long and short liver mRNA. The higher stringency 

wash (0.2 x SET, 68°C) suggested that most of the homologous 

sequences are not transcripts from the same gene origin as pl99. The 

results of the hybridization with the p499 subclone suggest that the 

predominant lachrymal gland mRNA is due to group 1 genes that have 

diverged in exons 1, 2 and 3 from the majority of the cloned group 1 

genes. This is because sequence data from the coding region of six 

cloned group 1 MUP genes indicates that these genes are >= 99% 

homologous. However, due to the low levels of signal obtained, the 

hybridization results with the pl99 and p499 5' subclones need 

further confirmation. These results are compatable with those of 

Shahan and Derman (1984) as described in detail in the Discussion 

section. [ The 5' pl99 and 5' p499 subclones were gifts from the 

Held laboratory.]

In summary, the predominant MUP mRNA was not found to be homologous 

to the group 2 probe in any of the tissues examined. Whether MUP 

mRNA homologous to the group 2 probe is found in the lachrymal, 

submaxillary and manrnary glands is not known. In the liver, the 

short mRNA hybridizes preferentially to the group 2 probe, while the 

long mRNA hybridizes preferentially to the group 1 probe. Whether 

the liver mRNA that is homologous to the group 2 probe represents 

transcription from any of the group 2 pseudogenes characterized or 

from a gene(s) more homologous at its 3' end to the group 2 probe is
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not known. Significant levels of MUP mRNA homologous to the group 1 

probe were detected in all tissues at a washing stringency of 0.5 x 

SET, 68°C.

Finally it should be mentioned that the levels of MUP mRNA detected 

in the lachrymal, submaxillary and mammary glands were lower than 

the maximum levels reported (Shaw et al, 1983) judging from the 

strength of the signal relative to the liver controls. This could be 

the result of any one or a combination of the following:

1/ Differences in the hybridization stringencies. The most stringent 

wash used by the Held laboratory in these experiments was 1 x SSC,

65°C. The Tm is^80°C at the Na+ concentration of 1 x SSC. The 

stringent washes used in the experiments described here were 0.2 x 

SET, 10.02 M tetra-sodium pyrophosphate, 68°C; and 0.5 x SET, 10.02 

M tetra-sodium pyrophosphate, 68°C. The Tm values under these Na+ 

cation concentrations are 70°C and 74 °C respectively. [ Tm values 

were calculated by assuming 40% GC in the sequence and by assuming 

that DNA-RNA duplexes have a Tm 5°C below that of an equivalent DNA- 

DNA duplex in aqueous solution.]

2/ Differences in the ages of the animals.

3/ Differences in strains. BALB/c mice were used as opposed to 

C57BL/Fa mice.
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Section 6: Hybridization of the liver cDNA clone p!99 to isolated 

MUP genes.

Kuhn et al (1984) isolated a cDNA clone, pl99, which was found to 

be only 85% homologous in its nucleotide sequence to group 1 cDNA 

clones. It was therefore of interest to determine whether any of the 

cloned MUP genes were closely related to pl99.

Examination of the nucleotide sequence of pl99 revealed the presence 

of a SstI site located 3 nucleotides 3' to the PvuII site in

exon 4. This suggested that the four group 3 clones BL-8/CL-4, BL-2

and CL-12, were the most likely candidates to share close homology 

with pl99 since all have a SstI site that maps to the homologous

PvuII site. Because no sequence data on group 2 genes was

available at the time, it was also thought probable that pl99 could 

represent a transcript from a group 2 gene.

To investigate this, cloned MUP genes were hybridized to the 

available 5' pl99 subclone and the hybridization signals of a low 

stringency wash (1 x SET, 68 °C) and a high stringency wash (0.2 x 

SET, 68°C) compared. The autoradiographs showed that none of the 

isolated clones form stable hybrids with pl99 at high stringency 

and demonstrated that the group 2 clone BL-25/CL-2, and the group 3 

clone CL-12 (and therefore most probably BL-2) vere not closely 

related to pl99. However, due to the small amount of overlap of 

BL-8/CL-4 and BL-15 with the 5' pl99 subclone it was not possible to 

draw a conclusion for these genomic clones.



Fortunately MUP15, a cDNA clone containing the entire translated 

sequences, and which is identical to pl99 where the two sequences 

overlap, was recently isolated from a female BALB/c liver library 

(A. Chave-Cox, unpublished), Fig.R.6.1(A). The hybridization 

experiment was therefore repeated with MUP15, and for comparison, a 

duplicate filter was hybridized with the almost fully cloned group 1 

cDNA, MUPll. MUPll, which was also isolated from a BALB/c female 

liver cDNA library (A.Chave-Cox, unpublished), is a transcript of a 

group 1 gene, as shown through hybridization studies and confirmed 

by sequencing. The relative hybridization signals after low 

stringency and high stringency washes were compared (Fig.R.6.2).

Both MUP15 and MUPll were cloned into Ml3mp9: this vector contains a 

200 bp insertion of pBR322 sequences and so hybridizes to the pCM2 

markers. The autoradiographs demonstrated that only BL-8 maintained 

a stable hybrid with MUP15 under the high stringency wash. However, 

this clone also maintained a stable hybrid with MUPll under the high 

stringency wash. Moreover, with both probes, the same restriction 

fragments were labelled and in each case stable hybrids were main­

tained with the 9 kbp Hindlll fragment.
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The results suggested that BL-8 may represent a clone containing 

linked MUP genes. For the purposes of further investigation, BL-8 

was mapped with the subclone U5. U5 consists of most of the first 

intron and most of the second exon of the group 1 genomic clone BS-6 

(Fig.R.6.1). The results of this latter study suggest that truncated 

MUP gene sequences are present within the 4.4 kbp SstI fragment 

that lies 3' to the hybridization limits of pBL-1-4. The exact 

organisation of these sequences is unclear. They do not include
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exons 4,5,6 and 7 since the 4.4 kbp SstI fragment does not 

hybridize with subclones containing these exons only. Fig.R.6.2(B) 

surrmarizes the results of the hybridization studies on BL-8.

The strong hybridization of the 9 kbp HindiII fragment of BL-8 to 

both MUP15 and MUPll is not thought to be an artifact of cloning. 

This is because CL-4, a bacteriophage identical to BL-8 in all 

respects, was independently isolated from a C57 library. 

Unfortunately due to the lack of time, it was not possible to 

investigate this intriguing clone further. Fine mapping with 

subclones of MUP15 and specific exonic and intronic subclones of 

group 1 genes, coupled with E.M. mapping, should in the future shed 

light on the nature of the MUP sequences found within the 4.4 kbp 

SstI fragment of BL-8/CL-4.

When the PstI digest of CL-3 is hybridized to MUPll and washed 

under low stringency conditions, three fragments are labelled: a 2.1 

kbp fragment which contains exons 4,5,6 and 7; a 1.1 kbp fragment 

which contains exon 3; and a vL2 kbp fragment which contains exons 

1 and 2. When the PstI digest of CL-3 is hybridized to MUP15 under 

low stringency conditions, only the 2.1 kbp fragment is strongly 

labelled, and a faint a.12 kbp fragment is observed. The MUP15 

hybridization results are at first sight surprising since both MUPll 

and MUP15 span most of the transcription unit. However, sequence 

data has revealed that the nucleotide divergence between group 1 and 

MUP15 is 20% for exons 1 - 3  and 11% for exons 4-7. The nucleotide 

divergence for the 3rd exon, which is contained alone in the 1.1 kbp 

PstI fragment, is 28%. The hybridization results are therefore



Table R.6.1. Nucleotide divergence between the group 1 consensus 
sequence and MLJP15

Exon(s) Size(bp) Nucleotide divergence(%)

1 125 8.8
2 134 24.6
3 74 28.3
4 111 9.9
5 102 6.9
6 44 2.3
7 253 13.0
1-3 333 14.1
4-7 510 19.5
1-7 843 10.6

Sequence data were obtained from A.Chave-Cox and J.Clark



thought to be a consequence of the differences in homology of the 5' 

and 3' exons to the probes. The 3' exons of MUP15 and BS-2 also 

share greater homology than do their 5' exons (see Table R.6.1). It 

is hypothesised that the 3' exons of MUP15 may have been involved in 

a conversion event with a gene that was ancestral to the group 1 and 

group 2 genes or with a gene that is equally diverged from group 1 

and group 2 genes (A.Chave-Cox, unpublished).

In summary, pl99 and MUP15 do not represent transcripts derived 

from any of the MUP genomic clones isolated, although some truncated 

MUP sequences that hybridize preferentially to these cDNA clones are 

present in BL-8/CL-4.
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Section 7: Variation in the MUP structural genes of BALB/c and 

C57BL/Fa mice.

Bennett et al (1982) demonstrated, through probing restriction 

digests of genomic DNA with MUP cDNA, that despite the overall 

similarity, some variation in the structural MUP genes is present 

between inbred mouse strains. However, under the washing conditions 

used, it was not possible to distinguish whether most of the 

variation was present in pseudogenes, or whether variation was also 

found in the abundantly transcribed group 1 genes. Triplicate PstI 

and EcoRI digests probed with the group 1 probe BS-6-5-5, the 

group 2 probe BS-2-2-2 and a homologous fragment isolated from BL-2 

(Bishop, unpublished), indicated that variation between BALB/c and 

C57BL/Fa was not restricted to a single group of MUP genes and that 

variant group 1 genes, variant group 2 genes and variant genes which 

hybridized preferentially to the BL-2 subclone were all present. It 

therefore seeded possible to isolate an expressed variant MUP gene 

by comparing the restriction maps of a large number of characterized 

genes with the restriction patterns of the genomic DNAs of different 

inbred mouse strains.

Contamination of the C57 strain. After the bulk of the restriction 

mapping had been completed, it was found that the C57 strain was 

contaminated. The C57 mice were alleged to be BC15-albumin congenics 

and had been originally derived by back-crossing the Petras albumin 

variant (Petras and MacLaren, 1976) to C57BL/6J mice, for eight 

generations (T. Roderick, personal communication). There were 

therefore no reasons to believe that the MUP genotype of the BC15-



albumin variants would be different from that of C57BL/6J mice. The 

contamination was brought to my attention on discovering that in 

1980, the strain had been segregating for coat colour in that white 

and agouti mice were produced. Isolation of C57 MUP clones from the 

C57 libraries was initiated in 1981. By this time no variation in 

coat colour was observed due to the fact that black mice had been 

selected for breeding purposes. IEF resolution of urinary proteins 

from 14 mice by S.Hainey revealed that there were differences in 

both the presence and the intensities of bands between individuals.

Also, most of the mice had an extra band, not present in C57BL/Fa, 

that migrated close to pH 4.6 and none showed a pattern similar to 

that of C57BL/Fa (C57BL/Fa is the C57BL mouse strain kept at the 

Edinburgh Animal Breeding House; the male urinary protein IEF 

pattern of this strain differs from that of C57BL/6J only in the 

intensity of the most basic band).

To shed light on the nature of the contamination, a comparison of 

four known genetic markers, by isoelectric focusing of blood 

samples from 16-18 C57 (BC15) individuals, was kindly carried out by 

Graham Bullfield. The markers used were Gpi-1 (glucose-6-phosphate 

isomerase-1, chromosome 7), Alb-1 (serum albumin variant, 

chromosome 5), Hbb (haemoglobin beta-chain, chromosome 7) and 

Hba (haemoglobin alpha chain, chromosome 11). The results of this 

analysis coupled with segregation for c (albino, chromosome 7) and 

A (agouti, chromosome 2) observed in 1980 suggest that the 

contamination was by BALB/c.
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To determine whether the MUP structural locus had been contaminated,



a sample of C57 genomic DNA from the same pool which had been 

originally used to prepare the C57 library was digested with BamHI 

and HindiII. Similar digests were prepared from BALB/c and 

C57BL/Fa DNA. The three samples were electrophoresed in parallel, 

transferred to nitrocellulose and probed with BS-6-2. The 

autoradiograph showed that the restriction patterns of the C57 

(BC15) and C57BL/Fa samples were identical, except for the presence 

of a minor M.3 kbp fragment in the latter (Fig.R.7.1). However a 

minor M.3 kbp fragment was also present in the BALB/c sample.

Therefore the absence of the 4.3 kbp fragment in the C57(BC15) 

sample either represents a difference between C57BL/Fa and C57BL/6J 

mice or contamination of the C57(BC15) stock by a strain other than 

BALB/c. In view of the fact that C57BL/Fa and C57BL/6J were 

separated 50 years ago, the former possibility is quite likely.

The search for variant MUP genes was conducted by comparing the 

restriction patterns of the cloned BALB/c and C57 MUP genes to the 

restriction patterns of BALB/c and C57BL/Fa genomic DNAs. C57BL/Fa 

DNA was used as opposed to C57(BC15) genomic DNA due to the 

possible contamination of the C57(BC15) MUP structural locus.

Restriction digests and probes were chosen that would demonstrate 

whether a particular fragment unique to one of the cloned MUP genes 

was represented in the genomic DNAs of both inbred strains. It was 

primarily of interest to identify fully cloned variant genes, and 

for this reason genomic blots were designed to identify variant 

fragments within the regions which hybridized to the subclones 

BS-6-2, BS-6-5 or BL-1-4.
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Figure R. 7.1. Southern blot of Hind III + BamHI genomic

digests probed with BS-6-2. The digested samples were 

electrophoresed on a 1% agarose gel prior to transfer. 

Samples in their respective lanes are given below.

1. 20pg BALB/c genomic DNA digested with HindiII + BamHI.

2. 20(j.g C57BL/Fa

3. 20pg C57(BC15) "

4. 30pg of each of the digests CL-1/Kpn 1, CL-1/Hindlll,

CL-1/Pvu.II, CL-1 /PvuII + EcoRI.

5. 150pg of each of the digests loaded in lane 4.

6. 300pg " " " " " " " " "
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Wherever possible, subclones that lay within the boundaries of the 

fragment in question were used as probes. This reduced the 

probability of non-homologous MUP genomic fragments co-migrating 

with the restricted recombinant MUP bacteriophage marker. It was 

also important to use probes that did not contain repetitive 

elements, as such elements would contribute to the background signal 

and obscure low copy number genomic fragments. The subclones used 

as probes were all derived from the group 1 gene BS-6, and to allow 

the identification of potential group 2 and group 3 variants, most 

of the hybridized blots were washed at low stringency (1 x SET, 68 

°C). Agarose gels between 0.7% - 2% agarose were chosen as 

appropriate, depending on the sizes of the bacteriophage markers.

Brief descriptions of the results from the hybridized Southern blots 

follow.

MspI digests probed with B5-6-2 Fragment A is a 2.5 kbp MspI 

fragment, unique to BL-7 among the cloned genes (see Fig.R.7.2). Its 

strain distribution was investigated by probing MspI digests with 

BS-6-2. In each of the genomic digests, a 2.5 kbp fragment was found 

to co-migrate with fragment A (Fig.R.7.3). A densitometer scan of 

the autoradiograph showed that the 2.5 kbp BALB/c genomic fragment 

had been labelled 3.5-4 times more intensely than the 2.5 kbp 

C57BL/Fa fragment. Differences in copy number were not found to be 

restricted to this fragment. Some of the differences in the MspI 

restriction patterns could result from the methylation of MspI 

sites at positions which inhibit their cleavage by the enzyme.

However, MspI is able to cleave the sequence (CCpGG). Because 

methylation at CpG represents more than 90% of methylated residues
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Figure R.7.2. Unique restriction fragments of isolated 

MUP clones and the probes used to investigate their strain 

distribution. For symbols, see Figure R.2.2.
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Figure R.7.3. Southern blot of MspI genomic digests probed

with BS-6-2. The digested sairples were electrcphoresed on a 

1% agarose gel prior to transfer. Samples in their respective 

lanes are given below.

1. 150pg pCM2 marker

2. 60pg

3. 30pg

4. 17p.g C57BL/Fa genomic DNA digested with MspI.

5. 17|ig BALB/c

6. 15^g C57HL/Fa

7. 15pg BALB/c

8. 30pg of BL-7 cloned DNA digested with MspI.

9. 150pg "

10. 600pg "
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in eukaryotic genomes (Razin and Riggs 1980; Ehrlich and Wang, 1981) 

the differences are more likely to be due to sequence polymorphisms.

SstI digests probed with BS-6-5-5. Fragment B is a 6.0 kbp 

SstI fragment unique to BS-5 (see Fig.R.7.2). Its strain dis­

tribution was investigated by probing SstI digests with BS-6-5-5.

In each of the samples a heavily labelled ^6.0 kbp genomic fragment 

was found to co-migrate with fragment B.

Hindlll digests probed with BS-6-1-1. Fragment C is a 3.3 kbp 

HindiII fragment, unique to BS-5 among the cloned genes (see Fig.

R.7.2) . Its strain distribution was investigated by probing 

HindiII digests with BS-6-1-1. In each of the genomic digests, a

3.3 kbp fragment was found to co-migrate with fragment C 

(Fig.R.7.4.A). The same autoradiograph revealed the presence of a 

minor 6 kbp fragment confined to the BALB/c samples. This is thought 

to correspond to fragment D, a 6 kbp HindiII fragment unique to 

the partially cloned group 2 gene BL-15 (see Fig.R.7.2). The 

autoradiographs also revealed that fragment E, a 1.5 kbp fragment 

unique to BL-25/CL-2 (see Fig.R.7.2), was represented by a low copy 

number band in the DNAs of both strains.

EcoRI + HindiII digests probed with BS-6-5-5. To determine 

whether the absence of an EcoRI site in exon 2 was common to many 

MUP genes, or unique to BL-1, it was necessary to digest the genomic 

DNAs with EcoRI and one other enzyme. The digest and probe chosen 

were EcoRI+Hindlll and BS-6-5-5 respectively. Earlier digestion 

samples not normally included were run onto the gel which was
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II II
II II

(A) Southern blot of Hind III genomic digests probed with 
BS-6-1-1. The digested samples were electrophoresed on a 1% 
agarose gel prior to transfer. Lanes 1-8, ten day exposure of 
the autoradiograph; lane 9, one day exposure of the autoradio­
graph. Samples in their respective lanes are given below.

1. 500 pg of BS-5 cloned DNA digested with Hind III.
2. 300 pg
3. 60 pg
 ̂ 3Q pg » » » '» " 11 '» »

5. 18 p.g of BALB/c genomic E3MA digested with Hind III.
6. 12 ng of C57BL/Fa "
7. 12 |ig of BALB/c
8. 18 ng of C57BL/Fa "
9. 0.5 ug of pCM2 marker.

(B) Southern blot of EcoRI digests probed with BS-6-1-1.
The digested samples were electrophoresed on a 0.8% agarose gel 
prior to transfer. Lane 1, one day exposure of the autoradio­
graph ; lanes 2-7, ten day exposure of the autoradiograph. 
Samples in their respective lanes are given below.

1. 0.5 pg of pCM2 marker
2. 12 |ig of C57BL/Fa genomic CNA digested with EcoRI
3. 12 ng of BALB/c " " " " " "
4. 18 ng of C57BL/Fa " " " " " "
5. 18 ug of BALB/c " " " " " "
6. 30 pg of BS-1 digested with EcoRI
7. 60 pg "

Figure R.7.4.
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subsequently blotted. This was done in order to determine whether 

partial digestion was likely to contribute to the hybridization 

signals from the bands of interest. The hybridized genomic blot 

showed that all the BALB/c and C57BL/Fa samples contained a minor 

fragment which co-migrated with the 5.3 kbp 5' HindiII fragment of 

BL-1 (fragment F in Fig.R.7.2). The labelling intensities of the 5.3 

kbp genomic fragments were found to be the same in the different 

incubation samples (see Fig.R.7.5). These fragments are therefore 

unlikely to be the result of partial digestion. The 5.3 kbp genomic 

fragments were estimated to be represented by 1-2 genes in each of 

the strains. This implies that the absence of an EcoRI site within 

exon 2 is uncommon in MUP genes carrying a ̂ 5.3 kbp 5' HindiII 

fragment.

EcoRI digests probed with BS-6-1-1. Fragment G is a 6.3 kbp 

EcoRI fragment unique to MUPC3 (see Fig.R.7.2). Its strain 

distribution was investigated by probing EcoRI digests with 

BS-6-1-1. In both the BALB/C and C57BL/Fa samples, a minor 6.3 kbp 

fragment was found to co-migrate with fragment G, and in each case 

it was estimated that the genomic fragment was represented by a single 

gene (Fig.R.7.4). BS-1 and BS-107 are identical over their co- 

extensively cloned regions. The estimated copy numbers of the 6.5 

kbp genomic fragments therefore imply that BS-1 and BS-107 are 

probably clones of the same gene. The C57-derived clones, CL-5 and 

CL-10, are also identical over their co-extensively cloned regions 

and differ from MUPC3 by a single restriction site. Thus it is 

likely that MUPC3 and MUPC4 represent alleles of a single gene. The 

same autoradiograph illustrates the presence of a 4.5 kbp fragment
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digests probed with BS-6-5-5. The digested samples were

electrophoresed on a 0.8% agarose gel prior to transfer.

Samples in their respective lanes are given below.

1. 60 pg of pCM2 marker

2. 30 pg " "

3. 15 ug of C57BL/Fa genomic DNA digested with HindiII

+ Eco RI for 60 min.

4. 15 ug of C57BL/Fa genomic CNA digested with Hindlll

+ Eco RI for 120 min.

5. 15 ug of C57BL/Fa genomic DNA digested with Hind III

+ Eco RI for 180 min.

6. 15 ug of BALB/c genomic CNA digested with Hindlll +

EcoRI for 60 min.

7. 15 ug of BALB/c genomic CNA digested with Hindlll +

EcoRI for 120 min.

8. 15 ug of BALB/c genomic DNA digested with Hindlll +

Eco RI for 180 min.

9. 30 pg of each of the digests BS-5/EcoRI + Hindlll,

BS-5/Eco RI , BL-1 /Hind III.

10. 150 pg of each of the digests loaded in lane 9.

Figure R.7.5. Southern blot of Hindi 11 + EcoRI- genomic
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in the DNA of each strain. This fragment has been shown (by a 

different blot) to co-migrate with fragment H, a 4.5 kbp EcoRI

fragment unique to BL-2 and CL-12.

PstI digests probed with Fl. MUPC3 and MUPC4 are distinguishable 

by the presence and absence respectively of a PstI site in their

fourth introns. A PstI site is also found in the fourth intron of

CL-11. MUPC4 and CL-11 are therefore unique in possessing a 0.3 kbp 

PstI fragment (fragment la) and a 0.7 kbp fragment (fragment lb) 

within their transcription units (see Fig.R.7.2). To determine the 

strain distribution of fragments la and lb, PstI digests were run 

on a high percentage agarose gel (2%), blotted, and probed with Fl. 

Fragments which co-migrated with fragments la and lb were found to 

be present in the digested DNA of each strain. It is therefore 

presumed that some BALB/c MUP genes contain a PstI site in their 

fourth intron. The presence of a PstI site in the fourth intron 

of some BALB/c MUP genes does not discount the possibility that 

MUPC3 and MUPC4 are allelic clones. In connection with this, note 

that the Dollo phylogenies (described in Section 4 of the Results) 

suggested that this restriction site may have been involved in a 

gene conversion or similar event.

PstI digests probed with BS-6-5-5. Fragment K is a 2.7 PstI 

fragment unique to CL-8/CL-9 (see Fig.R.7.2). To investigate its 

strain distribution, BALB/c and C57BL/Fa genomic DNAs were digested 

with PstI, hybridized with the group 1 probe BS-6-5-5 and washed 

at high stringency (0.2 x SET, 68°C). The autoradiograph 

demonstrated that fragment K was represented by a minor band only



in the C57BL/Fa samples (Fig.R.7.6). Fig.R.7.7 shows a different 

blot (prepared by Melville Richardson) of PstI digests probed with 

BS-6-5-5 and washed at high stringency. This blot serves to 

illustrate that the observed strain variation is not an artifact 

caused by over-loading the C57BL/Fa samples. Fragment K appears to 

be represented by a single gene in the C57BL/Fa genome which implies 

that CL-8 and CL-9 are probably clones of the same gene. The PstI 

restriction site unique to CL-8/CL-9 does not lie within the coding 

region. This is concluded from comparing the restriction map of 

CL-8/CL-9 with that of BS-6, a fully sequenced group 1 gene. PstI 

digests probed with BS-6-1-1 also showed a 2.7 kbp fragment only in 

the C57BL/Fa samples, while PstI digests probed with Fl showed no 

such fragment in either the BALB/c or C57BL/Fa samples. These 

results are consistent with the proposition that the C57BL/Fa 2.7 

kbp genomic fragment corresponds to the 2.7 kbp fragment of 

CL-8/CL-9.

Fragment J, is a 3.8 kbp PstI fragment unique to BL-25/CL-2 (see 

Fig.R.7.2). The PstI digest probed with BS-6-5-5 showed that a 

fragment similar in size to fragment J was present in the digested 

DNA of each strain.

BamHI digests probed with BS-6-5-5. Fragment L is a 3.5 kbp 

BamHI fragment unique to CL-11 (see Fig.R.7.2). To investigate its 

strain distribution, BamHI samples were probed with BS-6-5-5. In 

both the BALB/c and C57BL/Fa samples a 3.5 kbp fragment was found to 

co-migrate with fragment L (Fig.R.7.8). A densitometer scan of the 

autoradiograph revealed that the C57BL/Fa 3.5 kbp genomic fragment
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Figure R.7.6.

(A) Restriction naps of the transcription units and 3' flanking 
regions of BS-6 and CL-8. The extent of hybridization of BS-6-5-5 
to BS-6 is shown. For symbols, see Figure R.2.2.

(B) Hybridization of some MOP genomic clones to the group 1 probe 
BS-6-5-5. 0.5ug DNA samples of the Charon 4A clones were digested 
with PstI and electrophoresed on a 0.4% agarose gel. The Southern 
transfer was washed under low stringency conditions (1 x SET,68°C) 
after hybridization. Lanes 1-11, ENA from Charon 4A clones BL-25
(1), BS-2 (2), BS-5 (3), BS-107 (4), CL-3 (5), CL-5 (6), CL-6 (7), 
CL-10 (9), CL-11 (10) and CL-12 (11).

(C) Southern blot of genomic DNA, digested with PstI and probed 
with the group 1 probe, BS-6-5-5. Digested samples were electro­
phoresed on a 0.8% agarose gel prior to transfer. The filter was
hybridized to BS-6-5-5 and washed under high stringency conditions
(0.2 x SET, 68°C). Samples in their respective lanes are given 
belcw.

1. 300 pg of CL-8 cloned DNA digested with PstI.
2. 150 p g ......... .
3. 30 pg .........
4. 15 pg "
5. 19 ug of C57BL/Fa genomic ENA digested with PstI.
6. 14 ug "
7. 14 ug of BALB/c genomic DNA digested with PstI.
8. 19 ug " " " " " " 11
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Figure R.7.7. Southern blot of PstI genomic digests 

probed with BS-6-5-5. Samples were electrophoresed on a

0.8. agarose gel prior to transfer. The filter was washed 

under high stringency conditions (0.2 x SET, 68°C) after 

hybridization. Samples in their respective lanes are 

listed belcw.

1. 65 pg of pCM2 marker.

2. 32.5 pg "

3. 10 ug of JU genomic DNA digested with PstI.

4. 10 ug of BALB/c " " " " " "

5. 10 ug of C57BL/Fa genomic DNA digested with PstI.
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Figure R.7.8. Southern blot of BamHI digests probed with 

BS-6-5-5. The digested samples were electrophoresed on a 0.8% 

agarose gel prior to transfer. Samples in their respective 

lanes are given below.

1. 150 pg of pCM2 marker

2. 30 pg " "

3. 3 pg " "
4. 15 ug of C57BL/Fa genomic DNA digested with Bam HI.

5. 15 ng of BALB/c

6. 18 \ig of C57BL/Fa " " " " " "

7. 18 ng of BALB/c " " " " " "

8. 15 pg of each of the digests BS-105/Bam HI, CL-11/BamHI,

BL-25/BamHI (over loaded) .

9. 30 pg of each of the digests loaded in lane 8.

10. 150 pg "
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had been labelled'V4 times as heavily as the BALB/c 3.5 kbp genomic 

fragment.

HindiII+BamHI digests probed with BS-6-2. Fragment M is a 4.8 

kbp HindiII fragment unique to CL-11 (see Fig.R.7.2). Other 

cloned group 1 genes have a 5.1 kbp or 5.3 kbp 5' HindiII 

fragment. Due to the similarity in size of the three fragments a 

HindiII digest was not suitable for investigating the strain 

distribution of fragment M. To maximize separation, the genomic DNAs 

were digested with HindiII and BamHI, run on a 0.8% agarose gel, 

blotted and probed with BS-6-2. The autoradiograph showed that 

fragment N (the 2.1 kbp Hindlll-BamHI fragment of CL-11 in 

Fig.R.7.2) co-migrated with a genomic fragment present in both 

strains. The 2.1 kbp genomic fragment was ̂ twice as heavily labelled 

in the BALB/c sample. Once again differences in copy number were not 

restricted to this fragment.

Kpnl digests probed with BS-6-5-5. Fragment 0 is a 3.4 kbp 

Kpnl fragment unique to BL-25/CL-2 (see Fig.R.7.2). Its strain 

distribution was investigated by probing Kpnl digests with 

BS-6-5-5. A Kpnl fragment similar in size to fragment 0 was 

present in the digested DNA of each strain.

BamHI digests probed with BS-6-2. Fragment P is a 4.5 kbp 

fragment unique to BL-25/CL-2. Its strain distribution was 

investigated by probing BamHI digests with BS-6-2. In both the 

BALB/c and C57BL/Fa samples a 4.5 kbp fragment was found to co- 

migrate with fragment P.
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PstI digests probed with BS-6-1-1. PstI digests probed with 

BS-6-1-1 revealed a weakly hybridizing 1 kbp fragment in the 

digested DNA of each strain. This fragment is likely to be 

contributed to by fragment Q, a 1 kbp frament unique to BL-2 (see 

Fig.R.7.2).

To sunrmarize, a fully cloned variant group 1 MUP gene (CL-8/CL-9) 

and a partially cloned variant group 2 MUP gene (BL-15) have been 

identified between the two mouse strains, BALB/c and C57BL/Fa. Some 

of the other MUP genes isolated may be variants between the two 

strains but have not been identified as such due to the limitations 

of the method.

The densitometer scans of the autoradiographs were not suitable for 

estimating the copy number of individual bands. This was due to the 

contribution of adjacent bands to the integrated areas of the peaks 

of interest. However, it was possible to determine whether there are 

equal numbers of MUP genes in both strains that hybridize to the 

group 1 probe under low stringency conditions. The EcoRI+Hindlll 

double digest was found to be most suitable for the analysis for the 

following reasons: (1) the double digest reduced the possibility of 

obtaining a discrepancy due to poorer transfer efficiency of large 

genomic DNA, (2) three 15pg samples could be compared and (3) no 

differences in the sample loadings were observed in the ethidium 

bromide stain of the gel. A comparison of the areas under the peaks 

(Fig.R.7.9) was obtained by weighing cut-out shapes of the total 

scans (Table R.7.1). The mean ratio of the areas of the BALB/c scans
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F i g u r e  R . 7 . 9 .  S k e t h c h e s  o f  t h e  d e n s i t o m e t e r  s c a n s  o f  t h e  Hi  nd 111 +

E c o R I g e n o m i c  d i g e s t s  p r o b e d  w i t h  B S - 6 - 5 - 5  ( a u t o r a d i o g r a p h  i l l u s t r a t e d  

i n  F i g u r e  R . 7 . 5 ) .  3 -  8 : n u mbe r  o f  l a n e  s c a n e d .

I i
I \
J \

C57BL/Fa BALB/c

Table R.7. 1 .

I n c u b a t i o n  t i m e  ( rain)  r a t i o  o-f B A L B / c ; C 5 7 B L / F a  s c a n

60 0.  9 9 8

120 0 . 9 9 4

I S O 1 . 0 0 4

mean r a t i
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to the C57BL/Fa scans was 0.999, indicating that there are equal 

numbers of MUP genes in both strains that hybridize to BS-6-5-5 

under low stringency conditions.

These results are consistent with the results of Bishop and Clissold 

{1982), who identified equal numbers of MUP genes in C57BL/Fa and 

BALB/c mice, based on solution hybridization of genomic DNA to the 

cDNA LVA325. Differences in the signal intensities of specific 

genomic fragments were observed in seme of the genomic blots. These 

could be brought about by one or a combination of the following:

(1) differences in the copy number of a particular MUP gene,

(2) differences in the copy number of different MUP genes that share 

a particular restriction fragment,

(3) differences in homology to the probe, between the genes that 

contribute to a particular fragment.

The organisation of the 3' flanking region of MUP genes.

The HindiII genomic blot probed with BS-6-1-1 showed two heavily 

labelled fragments which were ̂ 6.5 kbp and v5.0 kbp long (Fig. 

R.7.5). These fragments reflect the conmon organisation of the 3' 

flanking region of the MUP genes. The 6.5 kbp fragment is 

contributed to by genes with a 3' flanking region similar to BS-6. 

The 5.0 kbp fragment is contributed to by genes with a 3' flanking



region similar to BS-2 and those with a 3' flanking region similar 

to BS-1. In the BALB/c samples a minor 6.0 kbp fragment co-migrated 

with fragment D of BL-15. Bearing in mind the conservation of 

restriction sites found between the MUP genes, this suggests that 

the organisation of the 3' flanking region of BL-15 may be unique to 

this gene. Fragment E of BL-25/CL-2 was represented by a minor band 

in the digested genomic DNA of each strain. This suggests that the 

3' flanking organisation of BL-25/CL-2 is probably uncommon.

The EcoRI genomic digests probed with BS-6-1-1 showed two heavily 

labelled fragments, which were ̂ 4.0 kbp and V7.0 kbp long. The ̂ 4.0 

kbp fragment is thought to represent the common EcoRI fragment of 

the group 1 genes, while the ̂ 7.0 kbp fragment is thought to 

represent the common EcoRI fragment of the group 2 genes (see 

Bishop et al, 1982). The genomic fragment which co-migrated with 

fragment G of BS-1 was estimated to be represented by a single gene 

in both BALB/c and C57BL/Fa.

BamHI digests probed with BS-6-5-5 also showed that the 9.0 kbp 

BamHI fragment of BS-1 (fragment R in Fig.R.7.2) does not 

contribute to a major genomic fragment in either strain. In view of 

the strong conservation of restriction sites within the regions that 

hybridize to BS-6-3 (see Fig.R.2.2), the results of the BamHI and 

EcoRI genomic digests support the conclusion that the organisation 

of the 3' flanking regions of MUPC3 and MUPC4 is not common among 

the group 1 genes. The results also support the suggestion that this 

3' flanking organisation arose by insertion and/or deletion event(s) 

that took place within a gene which originally had an organisation
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similar to that found in other group 1 genes. The major 5 kbp 

fragment seen in the HindiII genomic blot is therefore likely to 

be predominantly contributed to by group 2 genes, which have a 3' 

organisation similar to BS-2.
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Discussion

The cloning of high molecular weight eukaryotic DNA

The cloning of high molecular weight eukaryotic DNA is readily 

achieved using derivatives of the bacteriophage lambda and in 

vitro packaging extracts (Hohn and Murray, 1977; Grosveld et al, 

1981). More recently, refinement of cosmid vectors and the methods 

for screening cosmid libraries have also made these vectors popular, 

especially where fragments greater than 20 kbp need to be cloned.

Efficient cloning of high molecular weight eukaryotic DNA in a

lambda vector was originally achieved by Maniatis et al (1978) .

Although this method is known to give representative libraries, it

entails a number of steps that could potentially prove problematical

and lead to low cloning efficiency. One of these steps involves

blunt end ligation of linkers to the fragmented DNA to be cloned,

followed by digestion with the enzyme that recognizes the

palindromic sequence in the linker. Kemp et al (1979) reported a

simpler method for cloning eukaryotic DNA which gave similar cloning

efficiencies to the Maniatis method, but eliminated the necessity of

using linkers (Fig.D.l). This method takes advantage of the reduced
★recognition specificity of EcoRI from 6 bp to 4 bp under EcoRI 

conditions, and random and easily ligatable genomic fragments are
■k

theoretically generated by partial digestion with EcoRI . Prior
★

methylation of the genomic DNA with EcoRI methylase ensures that
★the most readily cleaved EcoRI sites, the canonical EcoRI 

sites (GAATTC), are protected; cleavage of these sites would



Figure D.1. Cloning of high molecular weight DNA by the methods 
of Maniatis et al. (1978) and Kemp et al. (1979).

Method of Maniatis et al. (1978) Method of Kemp et al. (1979)

High mol. wt. ENA

Fragment by partial digestion with 
Haelll + Alu I or shearing + SI

Size fractionate for 
15 - 20 kbp DNA

+
Methylate with EcoRI methylase to 

protect Bco RI sites
I

Blunt-end ligate to synthetic EcoRI 
linkers

High mol. wt. DNA
1

Methylate with EcoRI to 
protect EcoRI sites

+
Fragment by partial 
digestion with EcoRI

Size fractionate for 
15 - 20 kbp DNA

Digest with Eco RI

Ligate to vector: Charon 
4A, package and transform 

E. coli host

3.8 x 10 pfu/pg rabbit DNA 
5.6 x 10“’ pfu/|ig silkmoth DNA

46.0 x 10 pfu/pg Drosophila ENA
0.4 x lO*7 - 5 x lO*7 pfu/pg of 

uncut vector.

1.3 x 10 pfu/pg methylated 
mouse DNA

74 x 10 pfu/pg of uncut 
vector
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otherwise result in a non-random population of fragments.

Because of the relative ease with which genomic libraries can be 

produced by the Kemp method, many of the MUP genes have been
k

isolated from EcoRI libraries (Clark et al, 1982 and this 

thesis). Unfortunately the method does not give totally random 

libraries. The evidence presented here relates to the isolation of 

identical MUP clones both from an unamplified library pool and from 

different libraries prepared frcm different mouse DNA samples. The 

non-randomness is thought to be the result of cleavage of non-
kconventional EcoRI sites and differences in the rates of cleavage 

of different sites. Selection for Chi+ bacteriophage may also have 

contributed to the non-randomness of the libraries and could have 

been prevented by plating on a recBC~ host.

Since the publication of the Maniatis and Kemp methods, several 

BamHI vectors have been constructed that allow the use of Mbol 

and Sau3A (4 bp recognition enzymes that produce sticky ends 

ligatable to BamHI cleaved DNA). The enzymes Mbol and Sau3A 

have not been reported to have preferential cleavage hierarchies and 

their use for constructing genomic libraries is preferable to the
kuse of EcoRI . Most of the newly constructed BamHI vectors have 

the added advantage of discriminating against non-recombinants by 

Spi selection. When using this type of selection, it is important to 

avoid the preferential growth of Spi Chi+ recombinants over 

Spi+ Chi- recombinants, and to this end Chi sites have been 

engineered into the arms of some of these vectors (Loenen and 

Braitmar, 1980) .
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Many of the new vectors also allow cloning into other sites besides 

BamHI. [This is convenient when a gene that is to be cloned is 

known to be contained within a particular restriction fragment.]

For example XL47 can be used as a vector for BamHI, EcoRI,

HindiII, Bglll, Xhol and Sail fragments (Loenen and Brammar,

1980) and EMBL3 and EMBL4 can be used as vectors for BamHI,

Bglll, EcoRI and Sail fragments (Frischauf et al, 1983). In 

the case of the latter two vectors, the BamHI, EcoRI and Sail 

sites are present in linkers. These facilitate cloning without the 

removal of the internal fragment and may allow the recovery of the 

cloned fragments. A new derivative, EMBL3A, that has amber mutations 

in the A and B genes, can also be used in conjunction with the 

microplasmid ttV X  for the selection of specific sequences (Seed,

1983) . In this method of screening, a portion of the sequence of 

interest is cloned into the microplasmid which in turn is used to 

infect bacteria with amber mutations in their selective marker 

genes. Since the plasmid is supF, bacteria carrying it will be 

able to grow under the appropriate selection. These bacteria are 

then infected with an EMBL3A recombinant library. Because EMBL3A 

carries amber mutations in the genes A and B, only those 

bacteriophage which have recombined with the microplasmid will be 

able to multiply after a second plating on suppressor-free bacteria.

In conclusion, the development of a versatile range of BamHI 

vectors that accept fragments generated by Sau3A and MboII 

cleavage has led to considerable simplification in the methodology 

for constructing random genomic libraries and the isolation of
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specific sequences of interest.

Restriction site homologies between cloned MUP genes

MUP clones isolated from the C57 libraries were found to show 

extensive homology to each other and to the MUP clones isolated from 

the BALB/c libraries (Clark et al, 1982), implying that Mus 

musculus musculus MUP genes share a common structure. Exceptions 

were those genes thought to have undergone re-arrangements.

MUP genes fall into three groups based on their homology to the 

group 1 and group 2 probes (Bishop et al, 1982). Non-allelic group 

1 genes (from the BALB/c libraries) share most of their restriction 

sites in common. However they can be divided into two sub-groups 

based on the presence of an insertion and/or deletion at the 5' 

flanking region of the gene. Alignment of restriction sites suggests 

that the insertion and/or deletion is located 1.9 kbp or 2.1 kbp 5' 

to the cap site. It is possible that the insertion and/or deletion 

is the result of more than one event that took place in the 

ancestral group 1 genes leading to the current sub-groups. 

Clarification of this awaits further characterization of the genes.

The insertion and/or deletion is not the only common feature that 

distinguishes the two sub-groups. Genes with a small 5' HindiII 

fragment all have a SstI site not present in genes with a large 

5' HindiII fragment (this may be the result of the insertion 

and/or deletion event since it lies within the region to which the



event has been mapped), and all have a Kpnl site located 'W kbp 

from the beginning of the transcription unit. No restriction sites

that are common to all members of one sub-group were found

immediately 5' to the transcription unit, within the transcription 

unit or 3' to the transcription unit, and most restriction site 

polymorphisms were found to be confined to a single gene. The 

exceptions are: (1) the HindiII fragment located 3.8 kbp 5' to the 

cap sites of BL-7 and MUPC1 (group 1 genes with a small 5' HindiII 

fragment); (2) a MspI site located ^300 bp 5' to the cap sites of 

CL-8/CL-9 and MUPC2 (group 1 genes with a large 5' HindiII 

fragment); (3) a PstI site lying within the transcription unit of 

CL-11 and MUPC4 (group 1 genes with a large 5' Hindlll fragment).

MUPC2, CL-8/CL-9 and CL-11 are nearly identical to MUPCl over a 

range of 4.5 to 7.0 kbp downstream from the end of the transcription 

unit. The 3' sequence organization found in BS-6 is believed to be 

representative of that which is present in most other group 1 genes.

This conclusion is based on (a) the isolation of C57 group 1 genes

with 3' flanking sequences similar to that of BS-6 and (b) the

results of the EcoRI and BamHI genomic digests probed with 

BS-6-1-1 and BS-6-5-5 respectively. The 3! sequence organization 

of MUPC3 and MUPC4 does not appear to be common and must have arisen 

after the duplication that led to the division of the group 1 genes.

The Dollo phylogenies, which were obtained using restriction site 

data, suggest that the group 1 genes with a small 5' HindiII 

fragment are more homogeneous than those with a large 5' HindiII 

fragment. This is also borne out by the limited amount of sequencing
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data around the TATA box, where BS-1 is found to have a unique A- 

rich region (P.Ghazal, personal communication). BL-1, CL-8 and 

CL-11 all share an uninterrupted stretch of A residues, ^17 bp 

long, that is located 16 - 18 bp 5' to the TATA box. BS-6, BS-5 and 

BL-7 have a similarly positioned stretch of uninterrupted A residues 

that is ̂ 12 bp long. In these latter three clones the A residues are 

preceded by a ̂ 30 bp long A-rich stretch consisting of A residues 

interrupted occasionally by single C residues. BS-1 appears to have 

an A-rich region similar to, but longer than, genes with the small 

5' HindiII fragment.
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The differences in length of the A-rich regions may be the result of 

'polymerase slippage1 (Efstratiadis et al, 1980) within the mouse 

genome. They are not thought to be an artifact of replication within 

the M13 vector since different subclones of the same original clone 

give identical sequences. It would be interesting to determine 

whether the A-rich structure, which maps ̂ 18 bp 5' to the cap sites 

is of transcriptional importance, since deletion-mutation studies on 

several genes have identified sequences located at a similar 

position that influence transcriptional efficiency. Examples are the 

1st and 2nd distal signals located at ̂ -50 bp and 'v-80 bp from the 

HSV-tk gene (McKnight, 1982; McKnight et al 1984); the sequence 

conferring heat shock response located at ̂ -50 bp from the Hsp70 

heat shock-gene (Pelham, 1982; Pelham and Bienz, 1982); the 'CAAT 

box' and sequences located at -80 bp from the rabbit B_globin gene 

(Grosveld et al, 1982) and the regions lying within 100 bp 5' of 

the a and B interferon genes (Zinn et al, 1983; Ragg and 

Weissmann, 1983).
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Most group 2 genes isolated share extensive restriction site 

homology. An exception is BL-25/CL-2 which has diverged away from 

other manbers in the group, as illustrated by the Dollo phytogenies 

and confirmed by a limited amount of sequencing. Clark et al 

(unpublished) have recently completed sequencing the 'transcription 

unit1 of BS-2 (a group 2 gene) and have confirmed the structural 

similarity of group 2 genes to group 1 genes. From the available 

sequencing data it appears that group 1 and group 2 genes have 

diverged in their nucleotide sequences by 10%. BS-2 has a short 5' A 

residue stretch of 16 bp, similar to that of most group 1 genes with 

a large 5' HindiII fragment. The precise significance of this is 

unknown, although it may imply that the ancestral A rich region had 

such a form. This issue could be settled by more sequence data from 

the 5' flanking regions of group 2 genes.

The cDNA MUP15 and genomic clones BL-8/CL-4, BL-2 and CL-12 all 

share a common SstI site present in exon four, and none form 

stable hybrids with the group 1 and group 2 probes at high 

stringency. Based on their shared characteristics these clones form 

a separate group of MUP genes, group 3. CL-12 and the 5' halves of 

BL-8/CL-4 do not form stable hybrids with MUP15 at 0.2 x SET, 68°C 

and BL-2 and CL-12 share only very limited homology with BL-8/CL-4 

in the region where the latter are not thought to have undergone re- 

arranganent. [No homology is found in the 3' halves of the clones.] 

From these observations it is evident that group 3 is a diverged set 

of genes.



Homologies between genes from the three groups appear to extend into 

the 5' and 3' flanking regions. Homology between group 1 and group 2 

genes was found to extend for at least 3.5 kbp 5' to the cap site.

Whether group 3 genes are homologous at their 5' flanking sequences 

to other members of the gene family is not known, since these 

sequences were not cloned. A slight bias towards the cloning of the 

3' halves of MUP genes is probably due to (a) specific sequences 

within the regions cloned that resulted in their preferential 

selection and (b) the use of an incomplete cDNA clone, LVA325, to 

probe the libraries (this was done because the structure of the MUP 

genes was not known at that time). Homologies in the 3' flanking 

regions were found between all three groups to extend up to^7.5 kbp 

3' from the end of the transcription unit. These homologies were 

often found to be interrupted by postulated insertions and/or 

deletions of up to ^2 kbp.

The homologies in the flanking sequences, which extend for a few 

kilobases, suggested that the MUP genes were part of a large 

duplication unit. Although MUP clones contain up to 8 or 9 kbp of 5' 

and 3' flanking DNA sequences, linkage was not observed in any of 

the bacteriophages isolated from the libraries using the probe 

LVA325. In order to determine whether the MUPs were closely linked 

on chromosome 4, Clark et al (1984b) isolated a number of 

over-lapping clones by screening the BALB/c sperm genomic library 

with 5' and 3' flanking probes. From the screen using the 5' 

flanking probe, two clones each containing a group 1 gene linked to 

a group 2 gene were isolated. Restriction mapping of these clones 

showed that the group 1 and group 2 genes were divergently
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orientated and that their 5' ends were separated by ̂ 15 kbp of DNA.

Blots of BALB/c mouse genomic DNA, digested with appropriately 

chosen restriction enzymes, established that this is the predominant 

arrangement of group 1 and group 2 genes (Fig.D.2.A).

Divergent orientation of linked members has been found in many other 

gene families. Examples are the Drosophila heat shock genes at 87A 

and 87C (Leigh Brown and Ish-Horowitz, 1981), some Drosophila yolk 

protein genes (Garabedian et al, 1985), the Class II MHC ci and 3 

genes of the mouse (Steinmetz and Hood, 1983), the Chorion genes of 

the silkmoth (Jones and Kafatos, 1980a; 1980b) and same histone 

genes of Notophthalmus, Xenopus, Chicken and Man (Hentschel and 

Birnstiel, 1981). The divergent orientations of the genes in these 

families were most likely brought about by unequal crossing-over, or 

transposition events.

The relative orientation of various subclones in bacteriophages 

isolated using the 3' flanking probe, suggests that the 3' ends of 

MUP genes are also linked and are separated by ̂ 26 kbp or more of 

flankyiing DNA. Fig.D.2.B shows two bacteriophages from a much larger 

set of overlapping clones that are thought to represent 3' linkage 

(see Clark et al, 1984b). From the bacteriophages isolated it is 

not possible to determine the exact arrangement of this linkage and 

we do not know if the 3' ends of group 1 genes are linked to each 

other or to those of group 2 genes or both. It is possible that more 

than one arrangement is present as has been found for the He (high 

cysteine) chorion genes (Eickbush and Kafatos, 1982). Isolation of 

MUP genes from cosmid libraries should give the answer to this
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question.

e
Fig.D.2.B is a schematic diagram of one of the possible arrancffnents 

of MUP genes along chromosome 4 as determined by the 5' linkage and 

suggested by the 3' linkage illustrated in Fig.D.2.B. The regions 

defined by letters represent homology to subclones or isolated

fragments used in mapping. Since most group 1 and group 2 MUP genes
n- .are arraigned in a 'head to head1 fashion, and because homology at 

the 3' end between MUP genes extends for 10 - 12 kbp, it has been 

suggested by Clark et al (1984b) that the duplication unit of the 

MUP genes consists of ^45 kbp of DNA containing a group 1 gene 

paired to a group 2 gene, see Fig.D.2.C. (group 1 and group 2 genes 

are thought to account for the great majority of MUP genes, Bishop 

et al, 1982).

It is not known whether the paired linkage is also shared by MUP 

genes that do not belong to either group 1 or group 2 and which do 

not show re-arranged coding sequences. BL-2 and CL-12 extend M.5 

kbp and 1 kbp respectively 3' to the region that is homologous to 

the subclone BS-6-3. Whether this region hybridizes to (i) or to (k) 

and (1) (see Fig.D.l.C) has not been determined. No set of 

overlapping bacteriophages that have very similar 3' flanking 

restriction sites to BL-2 and CL-12 has been isolated. The linkage 

of these genes awaits the isolation of further clones. If MUP genes 

equally diverged from group 1 and group 2 genes are organized in a 

similar fashion to these genes, then this may imply that the 

amplification unit was established prior to the group 1 and group 2 

gene differences.
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In the chorion gene family, adjacent gene pairs constituting the 

duplication unit are more closely related to each other and appear 

to be expressed during a similar developmental period. Overlapping 

bacteriophages have revealed that the He (high cysteine) chorion 

gene pairs, expressed late in chorionogenesis, are clustered in a 

stretch of ̂ 130 kbp of DNA, and that this cluster is flanked by 

1̂00 kbp and M 0  kbp clusters of chorion genes expressed in the 

middle stage of chorionogenesis (Eickbush and Kafatos, 1982). More 

recently it was shown that the divergently orientated and closely 

linked Drosophila yolk protein genes, ypl and yp2, share cis 

acting regulatory sequences that are necessary for expression of the 

genes in the ovaries and fat bodies (Garabedian et al, 1985). It 

is therefore possible that closely linked MUP pairs may be under 

similar hormonal and/or tissue specific control. However, no 

universal pattern for the organization of genes within a family and 

their regulation has been established. This is demonstrated quite 

strikingly by the different linkage orders found in the globin gene 

clusters of vertebrates (Dudgson et al, 1979; Hoshbach et al,

1983), and by the different organization of histone genes within and 

between species (Hentschel and Birnstiel, 1982).

Hybridization, restriction mapping and sequencing studies on the 

group 1 and group 2 genes have shown that there is greater homology 

within the groups than between the groups. It is therefore proposed 

that homogenization events, if they occur, are more common within 

than between groups (Clark et al, 1984b).



Gene conversion between the divergently orientated hsp70 heat-shock 

genes has been suggested by Leigh Brown and Ish-Horowitz (1981) . In 

their conversion model for divergently orientated genes, these 

authors proposed that the rate of conversion would be inversely 

proportional to the distance between the genes. A relatively low 

rate of homogenization (if it occurs) between genes within a MUP 

duplication unit, could partly result from the relative orientation 

of the group 1 and group 2 genes coupled with the large distances 

between than (̂ 15 kb compared with 1.7 kb between Drosophila Hsp70 

divergently orientated genes). It has been speculated by Olio and 

Rougen (1983) that the frequency of gene conversion in sequences 

arranged in tandem may be inversely dependent on the distance 

between the sequences. If this is true, then unequal crossing-over 

could be the predominant method of homogenization within the MUP 

gene family. However, at present we know little about the sequences 

that influence gene conversion. Evidence for gene homogenization 

events within the MUP gene family comes from the nucleotide sequence 

of the cDNA clone MUP15 (discussed in section 6 of the Results). In 

a later section I will present further evidence for gene 

homogenization events between the members of the MUP gene family.

Finally, within the proposed 45 kbp duplication unit, certain 

regions are more conserved than others. The conserved regions 

include the group 1 and group 2 genes and the region homologous to 

BS-6-3, [(c) in Fig.D.2.C]. Regions (h) and (i), which flank (c), 

appear to show differences in the extent of their homology with the 

subclones used to map the 3' region of the MUP genes. The 

differences in region (h) have been discussed in the Results
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section. While conservation of the expressed group 1 genes may be 

due to functional selection, it is difficult to explain conservation 

between the group 2 pseudogenes, given that other regions within the 

duplication unit are diverging. The divergence of regions (i) and 

(1) may have been due to the presence of sequences within these 

regions that made than particularly susceptible to events such as 

deletion, insertion, and base substitution. The conservation of 

region (c) on the other hand may be due to some functional 

importance or may be fortuitous.

Truncated MUP genes

Three truncated MUP genes have been isolated from the genomic 

libraries. These are BL-6, BS-100 and BL-8/CL-4 (Fig.D.3). BL-6 

(Clark et al, 1982) does not hybridize to the subclone BS-6-2 and 

therefore lacks exon 1. It does not share restriction site homology 

with other isolated genomic clones in the region that hybridizes to 

the cDNA LVA325, and unlike other genomic clones, the regions that 

hybridize to LVA325 and LVA132 (cDNA clones that share the 5' half 

of exon 6) do not overlap.

BL-8/CL-4 appears to contain truncated MUP sequences within the

4.4 kbp SstI fragment, as discussed in section 6 of the Results.

The exact arrangement of these sequences is not known.

BS-100 contains a MUP pseudogene that presumably resulted from a re­

arrangement which caused the loss of exons 3 to 7 (Clark et al,
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1984) and led to the insertion of a 6 - 7 kbp fragment between the 

5' half of the gene and its 3' flanking sequences.

Some of these re-arrangements may be cloning artifacts in view of 

the fact that the libraries were propogated on a Rec+ host. This 

suggestion would be confirmed if expected restriction fragments are 

absent from genomic blots. None of the genomic blots described are 

suitable to test this and at least in the case of BL-6 the 

possibility remains unchallenged. The re-arranged MUP sequences of 

BL-8/CL-4 cannot be artifacts of cloning since two identical clones 

were recovered from different mouse libraries. The isolation of 

overlapping bacteriophages with restriction sites identical to BS- 

100 also argues against re-arrangement of this clone during cloning.

The linkage of BL-8/CL-4 and BL-6 with respect to other MUP genes is 

not known. The MUP sequences in the 5' half of BL-8/CL-4 (not 

thought to be re-arranged) appear to be linked to truncated 

sequences positioned 8 - 9  kbp 3' to the end of the transcription 

unit. BL-8/CL-4 does not hybridize to the subclone BS-6-3. BL-6 

does not hybridize to either BS-6-2 or BS-6-3 and the flanking 

regions show no restriction site homology to other genomic clones 

including BS-100 and BL-8/CL-4. This gene may be analagous to the 

histone family's orphons (Childs et al, 1981). Based on the 

characterization of a set of overlapping bacteriophages, Clark et 

al (1984b) have proposed that the 3' sequences of BS-100 are linked 

via ̂ 23 kbp to the 5' end of another MUP gene, BS-105. BS-105 

hybridizes poorly to probes derived from group 1 and group 2 genes 

although it shares some homology in its 5' flanking sequences to
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group 1 genes. This homology breaks down after ̂ 9 kbp. In summary, 

the MUP pseudogene BS-100 may be linked in a head to tail fashion to 

a group 3 MUP gene.

Processed pseudogenes have been found in many large gene families. 

Examples are the mouse a-globin pseudogene (Nishioka et al, 1980;

Vanin et al, 1980), the human 8-tubulin pseudogene (Wilde et al,

1982; Lee et al, 1983), a human immunoglobulin gene (Hollis et 

al, 1982) and the mouse ribosomal protein L32 (Dudov and Perry,

1984). Based on restriction mapping none of the isolated MUP clones 

contain processed pseudogenes.

Homologies between cloned MUP genes and cloned a2uglobulin genes

The sequences of 5 incomplete and 1 complete liver «^globulin cDNA 

clones (Unterman et al, 1981; Dolan et al, 1982) as well as the 

sequence of one c^globulin submaxillary cDNA clone (Laperche 

et al, 1983), have been reported. The sequence of the exonic 

regions of an ct-;uglobulin gene, 207, has also been reported 

(Dolan et al, 1982). Homology between all liver cu.uglobulin 

coding sequences is greater than 98% at the nucleotide level.

Homology between c^globulin salivary and liver coding sequences is 

^95% at the nucleotide level. Genomic blots probed with either the 

liver cDNA ̂ 7, or with a region of intron 6 from 207, were found to 

show a similar complexity in the banding pattern when washed at high 

stringency (0.1 x SSC, 65°C), Dolan et al (1982). It therefore 

seems that, as in the case of MUPs, the ct^giobulin liver
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Table D. 1. Nucleotide divergence between MUP and a2u9’lobulin 
sequences•

Sequences compared nucleotide
divergence

Liver globulin cDNA x submaxillary gland
ci2U globulin cDNA 4.7%

Liver ct2u globulin cDNA x BS-6 transcription
unit 19.0%

Liver globulin cENA x MUP15 19.6%

Submaxillary gland a 2 globulin cDNA x BS-6
transcription unit 18.9%

Submaxillary gland a2u globulin cENA x MUP15 19.2%

MJP15 x BS-6 transcription unit 13.6%



transcripts are mainly the result of the expression of a very 

homologous set of genes.

Sequence comparisons of the coding regions, excluding the signal 

peptide, of BS-6 (a group 1 MUP gene), BS-2 (a group 2 MUP gene) and 

the rat gene 207 (Ghazal et al, 1985 ), demonstrated that 207 is 

equally diverged from both group 1 and group 2 genes (replacement 

site divergence= ̂ 20%) and that group 1 and group 2 genes are more 

homologous to each other (replacement site divergence= M.0%) than 

they are to the a^globulin gene. If the a ̂globulin cDNA clones 

isolated are representative of the highly transcribed a9 genes in 

rat liver, then it would appear that these are equally divergent 

from the highly transcribed MUP genes in mouse liver as they are 

from the group 2 pseudogenes. A comparison of the nucleotide 

sequence of the a globulin liver mRNA, the a0 globulin submaxillary¿-U ¿.U
cDNA, the group 1 long messenger RNA and the cDNA MUP15 (a group 3 

gene) showed that the two MUP sequences were more closely related to 

each other than they are to the a~ globulin sequences, and that the¿-U
two a globulin sequences are more closely related to each other 

than are MUP15 and group 1 mRNA (Table D.l).

It was possible to compare restriction maps of the a globulin cDNA
¿-11

clones and the a? globulin gene 207, isolated by Unterman et al 

(1981) and Dolan et al (1982) , with the a^globulin genes 

isolated by Kurtz (1981), since four common restriction enzymes were 

used (EcoRI, Hindlll, BamHI and Aval). It appears that all 

the globulin cloned genes are closely related to each other.

Most sites are shared within the coding region. Homology in



restriction sites at the 5' flanking regions appears to extend for 

at least 3 kbp from the beginning of the transcription unit, while 

homology at the 3' flanking regions appears to extend for at least 1 

kbp from the end of the transcription unit. All available data so 

far indicate that the ou globulin genes may form a more closely 

related gene family than the MUPs.

The restriction maps of the isolated a^globulin genes are more 

similar to each other than they are to the restriction maps of any 

of the isolated MUP genes (Fig.D.4). A notable difference between 

the transcription units of the MUP genes and the reported 

transcription unit of an o^globulin gene (207) lies in the lengths 

of the introns (Fig.D.4). Such differences have been noted for many 

other gene families (see Breathnach and Chambon, 1982). Based on 

restriction site homologies, it is likely that the transcription

unit of 207 is representative of that which is found in other
e

globulin genes. A common diffe^hce in the structure of the genes 

between the two species could be brought about by different unequal 

crossing-over events (Smith, 1976).

It will be interesting to determine whether the rat a2uglobulin 
genes have a duplication unit similar to that proposed for the 

group 1 and group 2 genes. This would give an insight into the 

evolution of the rat and mouse gene families and possibly into 

their functional importance, if they turn out to have been 

independently amplified. So far all published cuuglobulin 

recombinant bacteriophage extend for a maximum of 9 kb 5' to the 

EcoRI site in exon 2. It is therefore not possible to speculate on
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the nature of their organization.

Expression of MUP genes

The hybridization of the group 1 and group 2 probes to mRNA from the 

liver, submaxillary gland and lachrymal glands of BALB/c male mice 

and from the mammary glands of pregnant BALB/c female mice, shows 

that the predominant MUP mRNA in all tissues is transcribed from 

genes which have homology to the group 1 probe.

Four forms of MUP mRNA have been identified. The region between the 

TATA box and exon 7 is strongly conserved in the group 1 genes (see 

Fig.R.2.2), and SI nuclease mapping and primer extension experiments 

strongly suggest that the different forms of mRNA share the same 

cap site (P.Ghazal, unpublished results). The commonest form is a 7 

exon mRNA, 838 nucleotides long, represented by the cDNA clones 

pl057, p499, MUP8 and MUPll (Kuhn et al, 1984; A.Chave-Cox, 

unpublished results). A second 7 exon mRNA, 921 nucleotides long, is 

defined by the cDNA clone MUP15. The extra length of this mRNA is 

due to two differences from the commonest form: (a) the signal 

peptide is 22 rather than 18 amino acids long, (b) the splice point 

at the 3' end of exon 6 is displaced, so that exon 6 is 31 

nucleotides longer than in the commonest form of mRNA.

Two short forms of mRNA lack exon 7 altogether. Exon 6 is 

considerably extended in these transcripts, and their poly(A) 

addition sites were identified by SI nuclease mapping (Clark et



al, 1984a). The transcripts define mRNAs 741 and 759 nucleotides 

long, based on the assumption that exons 1 - 5  are identical in 

structure to the same region of the longer forms. It is possible 

that some MUP genes give rise to the differently spliced mRNAs. 

Sequencing data suggest that a short mRNA cDNA clone (LVA325) may 

represent a transcript of BL-1, a gene believed to be present as a 

single copy in the BALB/c genome (see Fig.R.7.5). However, the cDNA 

clone LVA325 may represent a truncated and incompletely processed 

mRNA for two reasons: (a) the SI nuclease protection studies 

indicate that the short forms of mRNA terminate at nucleotides 158 - 

160 and 176 - 178 of exon 6; in contrast, LVA325 terminates at 

nucleotide 166 of exon 6. (b) LVA325 contains intron 5.

Alternative splicing in the 3' untranslated region, is also found in 

the transcripts of the a2uglobulin genes (Laperche et al, 1983).

The mRNA that is represented by the liver cDNA clones is spliced 

similarly to the predominant MUP liver mRNA. A submaxillary cDNA 

clone, however, represents an mRNA which contains an extra 121 

nucleotides of 3' untranslated sequence derived from the 3' region 

of intron 6.

Unlike the long liver mRNA, the short liver mRNA was found to 

hybridize preferentially to the group 2 probe. Whether the 

transcripts homologous to the group 2 probe represent transcripts of 

group 2 pseudogenes, transcripts of group 2 functional genes or 

transcripts of genes having a 3' structure homologous to group 2 

genes, is not known. The first suggestion is possible because all 

the splicing donor and acceptor sites follow the GT-AG rule

180



181

cu

5

•Hs
en
eu

fn

CM

exB
0X
en
T3
g
exa0
en
Cn

*4H
O

cn
<U
X
0

r Q

Eh

Eh

(U X
A 0

4H <
0 Eh

<
C Eh
o
cn cn

•H B

Ou

CM

Q
CUl-I
I

enc
O
o

en
eu -

S g£n.g
O  I
< o  ü  

U
0 °a 
Sh4-i x:

o
en rej 

m rS
S irt A. 
en eu T -S bi 00 o  cn o>
O ^  X-

O

!

O LO
CN

O

1

O r - (T\ es
CN

r-

1 O
CN

en
CN

o

O
co

O
CN

co CM

C en
LO

LO O -
co
en

CN
CN

O O

<
LO

LO O ro

Eh LO
LO

O O

< co
LO - - O

Eh es - eo

0

1

co LO CN
CO

O O O O
co

O'.

<
\

Eh O U
1

>i

§

Ba
se

LU

M
IX

en
eu

en

ex
3  cm O I 
m  en Ü CQ

<  <  

u u
<C

o o 

o o 

<  <

<  o  

Eh Eh

C  <  

Eh Eh 

<C <  

Eh

O O

C c 
o o



(Breathnach and Chambon, 1981) and in view of the fact that 

pseudogene transcripts have been represented in cDNA libraries (e.g. 

the leukocyte interferon cDNA clone LeIFN6, Goeddel et al, 1981).

The sequence TATATGA in BS-2 is located at an identical position to 

the TATA box in group 1 genes. This sequence is not identical to 

that of the group 1 TATA box, TATATAA, or to the consensus sequence 

TATA(AT)A(AT) drawn from 60 eukaryotic genes (Breathnach and 

Chambon, 1981; Table D.2). None of the 60 TATA boxes compared by 

Breathnach and Chambon (1981) contain G residues in their 6th 

positions, arguing for strong selection against a G residue at this 

site (see Table D.2). Point mutations within the TATA box have been 

found to result in a marked reduction in transcription efficiency 

(Dierks et al, 1983). Therefore, if BS-2 is transcribed at all, 

its rate of transcription initiation is likely to be low. The TATA 

boxes of three other partially sequenced group 2 genes (P.Ghazal, 

unpublished results) do not contain G residues. Thus the A to G 

transition found in the TATA box of BS-2 must have been acquired 

after the redundancy of an ancestral group 2 gene.

The possibility that most of the mRNA is contributed by 

transcripts of functional genes homologous to the group 2 probe 

could be tested by selecting liver mRNA with a synthetic 

oligonucleotide probe that does not cross-hybridize with group 1 

transcripts, translating the selected mRNA in vitro and 

challenging the translation products with MUP antibody.

Alternatively a cDNA library enriched in sequences corresponding to 

the short MUP mRNA may be screened with sequences specific to
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group 2 MUP genes and the isolated clones then characterized.
183

Kuhn et al, (1984) have prepared 5' subclones of the cDNA clones 

pl99 and p499 and have found that male lachrymal RNA and male and 

fsnale liver RNA of C57BL/6J mice contain significant amounts of MUP 

mRNA homologous to pl99. Translation products of liver mRNA 

selected with the 5' pl99 subclone gives a set of proteins that are 

slightly more acidic than those selected by the 5' p499 subclone 

(Kuhn et al, 1984). The full-length p499 cDNA selects all the 

liver MUP mRNA, i.e. both those species selected by the 5' pl99 

sequence and those selected by the 5' p499 sequence. When full- 

length p499 was used to select lachrymal sequences, the translation 

products were considerably more basic than other MUP proteins, and 

in particular did not coincide with the translation products of the 

liver mRNA selected by 5' pl99. Thus the lachrymal mRNA sequences 

that hybridize preferentially with 5' pl99 are similar but not 

identical to pl99. This observation is consistent with the observed 

loss of hybridization signal when 5' pl99 probed lachrymal mRNA was 

washed at high stringency.

It is useful to establish a phylogenetic relationship between 

manbers of a gene family since there is often a correlation between 

similarity in sequence and similarity in function. For example, 

leukocyte interferons are more homologous to each other than they 

are to a fibroblast interferon, although the interferon genes are 

thought to have originated from a common ancestor (Taniguchi et 

al, 1980 ). Thus approximately 60% of the amino acids are common



between leukocyte interferons compared with approximately 23% 

between leukocyte and fibroblast interferons. The globin gene family 

provide another example. Members that give rise to the o-like 

polypeptide chains are more homologous to each other than those that 

give rise to the 6-like polypeptide chains and vice versa. An 

extreme example within the same gene family are the human and a2 

genes that code for identical cupolypeptide chains even though they 

are thought to be the products of a duplication that took place 

prior to the mammalian divergence (Liebhaber et al, 1981; Zimmer 

et al, 1980). The rat a2uglobulin genes provide yet another 

example. The liver and submaxillary c^globulin translation products 

can be distinguished by isoelectric focusing. The sequence of a 

submaxillary cDNA clone differs from isolated liver cDNAs by 'V5% in 

its nucleotide sequence, while different liver transcripts only 

differ by M.% (Laperche et al, 1983).

That such a phenomenon is also true for the MUP genes has recently 

been suggested by the work of Shaw et al (1983) and Shahan and 

Derman (1984). Shaw et al (1983) found that processed lachrymal 

MUPs were considerably more basic than MUPs from other tissues.

Shahan and Derman (1984) studied the restriction enzyme patterns of 

cDNA prepared from different MUP expressing tissues and found 

different Haelll or MboII restriction patterns for each of the 

tissues they examined: liver, lachrymal, submaxillary and sublingual 

glands. They interpreted the results to show that different MUP 

genes are expressed in different tissues. Some caution must be 

exercised in the interpretation of these results since the cDNA 

pools used in the restriction analyses were not sized. However, the
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restriction patterns obtained in the liver agree with what would be 

expected from MboII and Haelll restriction digests of the 

sequenced group 1 cDNAs and genes (BL-1, BS-1, BS-6, BS-5, pl057, 

p499, MUPll, MUP8) and from the sequence of MUP15, if we assume that 

cDNA pools used were 2/3 - 3/4 the length of the full messenger RNA 

and were lacking in 5' sequences. Shahan and Derman (1984) noted 

that the differences are unlikely to be the result of alternative 

splicing since similar EcoRI+Aval restriction patterns were 

obtained in the different tissues.

The combined patterns of MboII and Haelll restriction digests 

suggest that the predominant mRNA species in the submaxillary, 

lachrymal and sublingual glands of Swiss white mice (NCS) are not 

homologous to the sequenced group 1 genes and cDNAs, or to MUP15.

BALB/c MUP mRNA of all tissues that have been examined, hybridizes 

preferentially to the group 1 probe. It is possible that Swiss white 

alleles of those isolated group 1 genes that have not been 

sequenced, CL-8/CL-9, 01-11, BL-7 and MUPC4, contribute to the 

different cDNA populations in tissues other than liver. However, 

CL-8/CL-9, 01-11, BL-7 and MUPC4 are closely related to the 

sequenced group 1 genes (BS-6, BS-1, BL-1, and BS-5) and are 

therefore more likely to contribute to the liver mRNA population.

MUP expression in the lachrymal and submaxillary glands appears to 

be the result of transcription from genes that hybridize 

preferentially to the group 1 probe, but which have diverged away 

from the group 1 genes isolated. BL-2 and 01-12 and the un­

rearranged MUP sequences of BL-8/01-4 are unlikely to contribute to

185



the predominant mRNA species in these tissues as they hybridize 

^equivalently to group 1 and group 2 probes at high stringency.

Shahan and Derman (1984) also analyzed the liver, lachrymal gland, 

submaxillary gland and sublingual gland precursors of MUPs by in 

vitro translation of hybrid selected mRNA in a rabbit reticulocyte 

lysate, followed by inmunoprecipitation and IEF or Laemmli gel 

electrophoresis. Like Shaw et al (1983) they obtained ̂ 12 

distinguishable liver components. However, unlike Shaw et al 

(1983) who obtained a single distinguishable component for the 

submaxillary gland and a single distinguishable component for the 

sublingual gland, Shahan and Derman (1984) obtained M  

distinguishable components for each of these tissues. The lachrymal 

products were found to be substantially more basic than the MUP 

components from other tissues, in agreement with Shaw et al 

(1983) , although only 3 components were distinguished. The • 

differences in the number of components observed in the lachrymal, 

submaxillary and sublingual glands between the two groups of workers 

may be due to one or a combination of the following:

(1) Differences in the in vitro translation systems. Shaw et 

al (1983) included dog pancreas membranes to process the protein 

products, unlike Shahan and Derman (1984) who used a rabbit 

reticulocyte lysate system devoid of membranes. Consequently, 

differences due to the signal peptide would not have been observed 

by Shaw et al (1983) while differences due to glycosylation and 

other such post-translational modifications would not have been 

observed by Shahan and Derman (1984).
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Table D.3. N-terminal sequence differences between MLJP1 ,
MUP2, MUP 3 and the cCNA, M3P15.

Comparison Difference
MUP1 - MCJP 2 0

MUP 3 - MUP 1 and MUP2 8/36

MUP15 - MUP1 and MUP2 11/36

MUP3 - MUP 15 3/36
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(2) Shaw et al (1983) used two dimensional electrophoresis while 

Shahan and Dernaan (1984) separately used one dimensional electro­

phoresis and IEF.

(3) Differences in mouse strains. Shaw et al (1983) used C57BL/6J 

mice; Shahan and Derman used Swiss white mice.

Finlayson et al (1974) determined the amino-terminal sequences of 

the major urinary components MUPl, MUP2 and MUP3 by isolating MUPl 

and MUP3 from the urine of BALB/c mice and MUP2 from the urine of 

C57BL mice. The region sequenced covers parts of exons 1 and 2: 'v 

fourteen C-terminal amino acids of exon 1 and % twenty-two N- 

terminal amino acids of exon 2. MUPl and MUP2 were found to be 

homologous if not identical, while MUP3 differed from MUPl and MUP2 

by 8/36 amino acids. Comparison of the amino acid sequences of MUPl
prc/<Luct,> o f  ihe

and MUP2 to those of the/.sequenced group 1 genes and cDNA clones, 
encoded

shows that they are ̂transcripts of group 1 genes. MUP3 appears to be 

more homologous to the cDNA MUP15 than it is to the group 1 genes 

(Table D.3). Since more than 3 components can be resolved by 

isoelectric focusing of the urinary MUPs of BALB/c and C57BL mice, 

the amino acid sequences of Finlayson et al (1974) for each of the 

components MUPl, MUP2 and MUP3 are likely to represent an average of 

more than one protein.

Two dimensional gel electrophoresis of the processed translation 

products of hybrid selected MUP mRNA from the livers of male
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C57BL/6J mice and of the urinary proteins of male C57BL/6J mice 

shows that there are up to "vL2 distinct components (Kuhn et al,

1984) . Fig.D.5 is a sketch representing the patterns observed. The 

four most acidic components show charge and size heterogeneity 

between the urinary products and translation products. These 

components are believed to be the products of MUPl5-like genes, 

since they are the only translation products obtained when MUP mRNA 

is selected using the 5' pl99 probe. It has been suggested by Kuhn 

et al that the four acidic components may correspond to a single 

protein at different stages of glycosylation. This is supported by 

the fact that the coding sequence of MUP15 is unique in carrying a 

potential glycosylation site (Kuhn et al, 1984). The BALB/c cDNA 

clone MUP15 (thought to be an allele of pl99) shows three 

differences from the BALB/c protein component MUP3. It is therefore 

likely that at least in BALB/c mice more than one MUPl5-like gene is 

expressed in the liver.

The processed translation products of hybrid selected MUP mRNA 

contain a set of low molecular weight components (17,000) tuhcae meMs are 

not selected by the 5' pl99 subclone or the 5' p499 subclone, 

although they are selected by the full p499 clone (the low molecular 

weight components are shown as component 7 in Fig.D.5). These 

components are not the result of transcription from any of the 

cloned group 1 genes since sequence comparisons show that all the 

sequenced group 1 genes are very similar to p499 and since all 

cloned group 1 genes form stable hybrids with the 5' p499 subclone.

Due to the hybridization of their mRNAs, it is possible that the low 

molecular weight components represent transcripts of BL-2 and CL-12



191



or MUP genes homologous to these clones. It is also possible that 

these components represent products of group 2 genes. However, the 

latter suggestion appears to be less likely since mRNA homologous to 

the group 2 probe represents a much smaller proportion of the total 

MUP mRNA than component 7 appears to represent of the total MUP mRNA 

translation products.

Most sequenced group 1 genes and cDNA clones potentially give rise 

to different mature proteins of the same size. The cDNA clone p499 

may represent an allele of BL-1, since both lack the EcoRI site in 

exon 2 due to a T to A transversion. However Table D.4 indicates 

that the cDNA p499 is as divergent from BL-1 as some non-allelic 

genes are from one another. It is therefore more likely to represent 

a transcript of an allele of an uncloned BALB/c group 1 MUP gene. If 

all the sequenced genes are transcribed in the liver then at least 

seven different group 1 protein products may contribute to the 

urinary MUP proteins and these would probably be represented by 

components 1,2,3,4 and 5. Tables D.5 and D.6 give the differences in 

basic and acidic amino acids of the sequenced group 1 genes and 

cDNAs from their consensus protein sequence. These results suggest 

that BS-6 and BS-5 probably contribute to the more basic MUPs, p499 

and MUPll to the intermediately charged MUPs and BL-1, pl057 and 

BS-1 to the more acidic MUPs of components 1,2,3,4 and 5. It is of 

course possible for different proteins of the same charge (and size) 

to contribute to one component.

Some of the more closely related group 1 genes that contribute

to the same liver MUP mRNA translation products are likely to be under
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Table D.5. Amino acid differences from the consensus group 1 
sequence.

Amino acid change

TTG GTS 
Leu ■+ Val

Charge change 

nonpolar -»■ nonpolar

Cloned gene/cDNA 

p499

GTA -»■ AGA 
Val Arg

nonpolar -»• + MUP11

AGA + AAA 
Arg -*■ Lys

+ -> + BS-5

AAT -► AAA 
Asn ->■ Lys

BL-1, p499

TTC -*■ GTC 
Phe + Val

nonpolar -> ncnpolar p1057

CAA + AAA 
Gin Lys

BL-1

GAG -»• AAG 
Glu Lys

— >■ + BS-1, p1057
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Table D.6. Charge differences of MOP protein sequences
relative to the consensus group 1 protein sequence.

Cloned gene/cDNA. Difference in charge Net difference in
 charge_____

BS-6 0 0

BS-5 0 0

p499 0 -> + +1

MLJP11 0 + + + 1

p1057 —  -V + +2

BS-1 — + +2

BL-1 0 -*• +, O 4 + +2



similar hormonal control. The hormonal regulation of different liver 

MUP mRNAs has been investigated by Knopf et al (1984) , by treating 

C57BL/Fa thyroidectomized female mice with different hormonal 

regimes. The total level of MUP mRNA was assayed by Northern blot 

analysis and the induced MUP mRNAs were identified by two- 

dimensional gel electrophoresis of the translation products.

The MUP mRNA level in the livers of thyroidectomized female mice was 

found to be ̂ l/10th of that found in the livers of normal female 

mice. Treatment of the surgically altered mice with growth hormone, 

resulted in a four fold increase in MUP mRNA. Two-dimensional 

electrophoresis of the translation products of growth hormone 

treated thyroidectomized mice showed a very similar pattern to that 

of normal mice: only component 3 and low levels of components 6 and 

7 ware present (see Fig.D.5). Treatment of the thyroidectomized mice 

with testosterone resulted in a ten-fold increase in MUP mRNA; 

components 6 and 7 were slightly induced, while components 2 and 4 

were substantially induced. As in the growth hormone treated mice 

and normal mice, component 3 was found to represent a major product. 

Treatment of the thyroidectomized mice with thyroxine resulted in a 

substantial increase in components 1,4 and 6 and once again 

component 3 represented a major product. These results illustrate 

that there is substantial variation in the hormonal regulation of 

different liver MUP components. To understand the hormonal 

regulation of the MUP genes, it will be necessary to identify the 

genes that contribute to the different components. As mentioned 

above, MUP15 (pl99) like sequences are thought to give rise to 

component 6.
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Shaw et al (1983) found that the major translation product(s) of 

the maimiary gland co-migrated with component 3 of the liver, and 

that the translation product(s) of the submaxillary gland co­

migrated with component 5 of the liver. MUP expression in the 

mammary gland is only detected after the first pregnancy. This 

implies that the regulation of component 3 must differ in the liver 

and mammary glands. MUP mRNA in the submaxillary gland is not 

modulated by hormones. Therefore regulation of component 5 must also 

differ in the liver and submaxillary gland. The more basic lachrymal 

gland MUPs appear to be regulated by testosterone. In hypo- 

physectomized female mice, lachrymal gland MUP mRNA can be induced 

by testosterone; testosterone induction of liver MUP mRNA is not 

observed in hypophysectomized female mice (Shaw et al, 1983).

These differences in hormonal regulation could relate to tissue 

specific differences or could be brought about by differences in the 

regulatory regions of different MUP genes. The results of Shahan and 

Derman (1984) and Shaw et al (1983) argue that at least in the 

submaxillary and lachrymal glands (where different sets of MUPs are 

expressed to the set which is expressed in the liver) some of the 

differences are likely to be gene specific.

Variation in the major urinary protein genes between inbred strains

Variation in major urinary proteins between inbred strains has long 

been established (Finlayson et al, 1963). This variation is of 

both a qualitative and quantitative nature, and could be brought
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about by transcriptional and post-transcriptional control (e.g. 

relating to mRNA stability) or post-translational events and/or 

differences in the MUP structural genes.

The processed translation products of p499-selected mRNA are almost 

identical in pattern to the urinary MUPs (Knopf et al, 1983). It 

is therefore unlikely that the differences in urinary proteins of 

inbred strains (Mus musculus musculus) are due to differences 

in the expression of MUP genes that are not detected by our probes 

under low stringency conditions. Further evidence comes from protein 

sequence data on the urinary proteins. Finlayson et al (1974) 

sequenced the 36 N-terminal amino acids of the classically 

identified major urinary protein components MUPl, MUP2 and MUP3. 

These components were purified by passing non-dialyzable material 

from the urine of BALB/c and C57BL mice through a sephadex G100 

column and then subjecting the pooled fractions of interest to 

chromatographic separation on DEAE-cellulose. The partial sequences 

of the pooled fractions representing MUPl, MUP2 or MUP3 show that 

at least the majority of the proteins constituting these components 

have 5' sequences very similar to those of cloned MUP genes and MUP 

cDNAs.

The in vivo rate of MUP synthesis in the liver and the rate of 

MUP excretion both vary in different mouse strains. The relationship 

between the two is not constant, and this led Berger and Szoka

(1981) to propose the existence of unknown post-translational 

effects.



The in vivo rate of MUP synthesis in the livers of C57BL/6J

female mice is twice as high as it is in C3H/HeJ female mice, unlike

the total concentrations of MUP mRNA, which are the same. Berger

(1983) interpreted this to show that post-transcriptional control 

contributes to the differences in the urinary MUPs of some inbred

strains. It is not known whether this type of control acts on all or

sane species of MUP mRNA.

Differences in the transcription of MUP genes between inbred strains 

have been examined by comparing the products of MUP-selected mRNA 

translated in a membrane-free rabbit reticulocyte lysate (Clissold 

and Bishop, 1982). The differences observed between C57BL/Fa and BALB/c 

mice using this type of analysis are again both quantitative and 

qualitative. Transcriptional differences could be due to 

physiological differences between the inbred strains (e.g. in the 

concentrations of circulating hormones or in the abundance of 

hormone receptors; see Mainwaring, 1983) and/or variation in the MUP 

genes.

That some of the differences are due to variation in MUP genes is 

strongly suggested by the fact that restriction enzyme differences 

in the MUP structural locus are observed between inbred mouse 

strains, and by the fact that the suggested MUP regulatory locus 

MUP-1 (Szoka and Paigen, 1978) is linked to the MUP structural 

locus (Bennett et al, 1982). Sane of the variation appears to be 

due to restriction enzyme differences in the group 2 pseudogenes as 

suggested by the isolation of BL-15. That all the restriction enzyme 

differences are unlikely to be the result of pseudogenes is
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demonstrated by the isolation of CL-8/CL-9, a MUP gene with a unique 

restriction fragment present in C57BL/Fa but not BALB/c mice. 01-8/

CL-9 shows no detectable re-arrangements compared to other group 1 

genes with a large 5' HindiII fragment and the sequence of the 

first exon and 5' flanking region containing the TATA box of 01-8 is 

very similar to that of other group 1 genes. Also all sequenced 

group 1 genes with a small or large 5' HindiII fragment have been 

found to have correct open reading frames that could potentially 

code for a MUP protein.

The variation in genomic DNA between BALB/c and C57BL/Fa mice 

consisted of: (1) the presence of variant restriction fragments,

(2) differences in the intensity of hybridization of individual 

restriction fragments.

Differences between the hybridization signals of co-migrating 

fragments of BALB/c and C57BL/Fa genomic digests could arise in a 

number of ways. Bearing in mind the conservation of restriction 

sites in the MUP gene family, most of the differences probably 

represent differences in homology to the probe and/or copy number of 

homologous restriction fragments. BALB/c and C57BL/Fa mice have the 

same total number of MUP genes. I therefore propose that differences 

in the hybridization signals of co-migrating genomic fragments 

between BALB/c and C57BL/Fa are due to different homogenization 

events that took place in the two mouse lineages from which BALB/c 

and C57BL/Fa mice were derived.
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Variation, between C57BL/Fa and BALB/c, in the concentrations of



different MUP mRNAs, has been illustrated by isoelectric focusing of 

unprocessed MUP mRNA translation products (Clissold and Bishop,

1982). This variation may correlate with the differences between 

sane of the co-migrating fragments of BALB/c and C57BL/Fa genonic 

digests. DNA coding sequences of group 1 genes are very homologous 

( >= 99% ) and it is therefore possible that, within a strain, some 

MUP genes give rise to the same protein. Divergence of non-allelic 

or allelic genes between strains could thus give rise to 

differences in the number of genes coding for the same protein 

without affecting the total number of genes. To date, however, all 

group 1 genes that have been sequenced and most of the sequenced 

cDNAs give rise to different proteins (Table D.4).

Bennett et al (1982) did not observe any variation in the 

hybridization signals of specific restriction fragments between 

C57BL/6By, C57BL/6J and C57L/J on the one hand and BALB/cBy,

C3H/HeJ, AKR/J and DBA/2J on the other, when the genomic DNAs of 

these strains were digested with HindiII. Such differences were 

also not observed in EcoRl digests of the genomic DNAs of AKR/J 

and C57L/J. The results of the BALB/c and C57BL/Fa HindiII and 

EcoRI genomic digests probed with BS-6-1-1 are in agreement with 

the results of Bennett et al (1982). These show no striking 

variation between the strains in the hybridization signals of 

individual fragments although a 1.5 kbp HindiII fragment is o- 

twice as heavily labelled in the C57BL/Fa samples (see Fig.R.7.4). 

Therefore what initially appeared to be a discrepancy between the 

results described in this thesis and those of Bennett et al (1982) 

can now be explained by differences in the choice of enzymes and
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probes.

Gene polymorphisms are often associated with particular restriction 

enzyme polymorphisms within or flanking the transcription unit. 

Examples are provided by the human (3-globin gene (Orkin et al,

1982) and genes within the mouse major histocompatability complex 

(Steinmetz et al, 1982; Steinmetz et al, 1984). Therefore 

variant restriction fragments between strains could represent genes 

that contribute to qualitative differences in the mRNA populations 

of C57BL/Fa and BALB/c mice.

Relationship of the C57 MUP clones to the BALB/c MUP clones.

Using eight 6 base-pair restriction enzymes, five group 1 genes 

(CL-5, CL-10, CL-8, CL-9, CL-11) and a group 3 gene (CL-12) were 

identified which have different restriction maps from those of the 

cloned BALB/c genes. Mapping with MspI also revealed that BL-7 had 

a unique restriction map. Due to contamination of the C57 mouse 

strain it is possible that some BALB/c genes have been isolated from 

the C57 library. However, this appears to be unlikely due to the 

following:

(1) a genomic blot comparing BALB/c DNA with the C57 DNA used to

construct the library, does not support extensive contamination, 

if any, of the C57 MUP structural locus with the BALB/c MUP 

structural locus;

(2) a clone (CL-8/CL-9) having a restriction fragment unique to



C57BL/Fa genomic DNA was isolated from the C57 library;

(3) clones with restriction fragments not represented in the 

C57BL/Fa genomic DNA were not isolated.

C57 and BALB/c clones that are identical to each other probably 

represent alleles or very closely related genes. It is possible that 

seme of the identical clones have sequence differences which could 

be distinguished by finer mapping. However, sequencing may be 

necessary to identify further variation, bearing in mind that 

homology between non-allelic group 1 genes is >=99%.

Some of the clones with restriction enzyme differences may represent 

alleles of MUP genes previously isolated. The Dollo Parsimony 

phylogenies suggest that CL-8 is most closely related to BL-1. These 

two clones differ from one another by three 6-base restriction 

sites and by one MspI site. This is comparable to the differences 

detected between other group 1 genes which are known not to be 

alleles: e.g. over the same cloned region, BS-6 and BS-5 (BALB/c 

clones that share a similar 3' flanking region structure to BL-1 and 

CL-8) differ from each other by two 6-base restriction sites and two 

MspI sites. This coupled with the facts that (1) the identical 

clones CL-6 and CL-13 show no differences in their commonly cloned 

regions from BL-1, and (2) the fragment unique to MUPC2 is 

represented ^equivalently in C57BL/Fa and BALB/c genomic DNAs, 

strongly suggests that CL-8 is not an allele of BL-1.

BL-7 is most closely related to CL-1 and CL-3 and differs from these



clones by two MspI sites. 01-1 and 01-3 show no restriction site 

differences from BS-6 and BL-14 over their commonly cloned regions, 

suggesting that they are allelic clones of BS-6 and BL-14. However 

the possibility exists that BL-7 is an allele of 01-3 and/or GL-1.

This is because the MspI fragment unique to BL-7 among the cloned 

genes is labelled 3 to 4 times more heavily in the BALB/c genomic 

DNA than in the C57BL/Fa genomic DNA, and because MspI site 

polymorphisms are known to be high in mammalian DNA (Barker et al 

1984). CL-11 is unlikely to be an allele of any of the MUP genes 

previously isolated because its relationship to other group 1 genes 

was variable in the phylogenies drawn by the Dollo Parsimony method 

and because it differs from these genes by a relatively large number 

of restriction sites. Also the restriction fragments unique to CL-11 

were present in both BALB/c and C57BL/Fa genomic DNAs.

MUPC3 and MUPC4 represent BALB/c and C57 clones respectively that 

differ in their restriction maps by a single 6-base restriction 

site. MUPC3 and MUPC4 share a common 3' flanking sequence 

arrangement not present in other group 1 genes isolated. MUPC3 

appears to be represented by a single gene in BALB/c (see Section 

7 of the results), and it is therefore likely that MUPC3 and MUPC4 

are allelic clones. The Dollo Parsimony phylogenies suggest that the 

restriction polymorphism between MUPC3 and MUPC4 may have resulted 

from gene conversion of MUPC4 by CL-11 or another gene that shares 

the polymorphic PstI site, although other explanations are equally 

likely.
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The considerable divergence of the group 3 genes would suggest that



BL-2 and CL-12 may be alleles. However a 1 kbp PstI restriction 

fragment present in BL-2 but not CL-12 was observed in both BALB/c 

and C57BL/Fa genomic DNAs. It is therefore impossible at this point 

to determine whether BL-2 and CL-12 represent allelic genes.

The partially cloned group 1 genes BS-109/1 and BS-102/1 show minor 

restriction site differences from each other and also from other 

BALB/c group 1 genes. Other differences are found in the sequenced 

region 5' to the BamHI site in intron 1 (P.Ghazal, unpublished 

results). BS-109/1 and BS-102/1 are not alleles of CL-8/CL-9, MUPC4 

or CL-11 since their restriction maps show that they both belong to 

the sub-group with a large 5' HindiII fragment.
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The sequences of most MUP cDNAs are found to differ from each other 

and from those of sequenced MUP genes. Reverse transcriptase 

misincorporates dCMP residues at a frequency of m0.07% when 

Poly d[A-T] is used as a template (Sirover and Loebb, 1977). Because 

of the high infidelity of reverse transcriptase in vitro, it is 

possible that some of the differences observed in the sequences of 

MUP cDNAs are due to errors introduced during cloning. The sequence 

divergence between group 1 cDNAs is the same as that found between 

group 1 genes. Therefore, given the multigene nature of the MUPs and 

the presence of 'v.20 different MUP mRNAs in liver cells it is quite 

likely that the differences are genuine.

Of the cDNA clones isolated only two (MUP8 and LVA325) are 

identical to a group 1 gene (BL-1) where their sequences overlap.

The cDNA clones p!057 and MUPll however could represent transcripts
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Table .D.7. Postulated relationships between BALB/c and C57 cloned MUP
sequences

BALB/c allelic clone C57 allelic clone

(1) BS-6,BL-14 CL-l,CL-3

(2) BL-7 CL-1(?),CL-3(?)

(3) BS-5 not cloned

(4) BS—1,BS-107 CL-5,CL-10

(5) BL-1 CL6/CL-13

(6) BS-109/1 CL-1(?) ,01-3 (?)

(7) BS-102/1 CL-1(?) ,01-3 (?)

(8) not cloned CL-8

(9) not cloned 01-11

(10) BS-2,BS-3,BS-4 not cloned

(11) BS-102/2 not cloned

(12) BS-102/2 not cloned

(13) BL-15 not cloned

(14) BL-25 CL-2

(15) BL-8 CL-4

(16) BL-2 CL-12(?)

(17) MUP8(cDNA) CL-6/CL-13(?)

(18) LVA325(cDNA) CL-6/CL-13(?)

(19) MUP11(cDNA) 7

(20) pl057(cDNA) ?

(21) not cloned p499(cDNA)

(22) MUP15(cDNA) pl99(cDNA)



of unsequenced group 1 genes. The C57BL/6J liver cDNA clone p499 is 

not a transcript of CL-8/CL-9, 01-5, CL-10 or CL-11 since it lacks 

the EcoRI site in exon 2. Due to the contamination of the 

C57(BC15) mouse strain, the possibility that p499 represents the 

transcript of an allele of one of these cloned genes cannot be 

completely excluded however. It is unlikely to represent a transcript 

of MUPC2 since these are probably alleles of BL-1 and as mentioned 

previously p499 is no more homologous to BL-1 than non-allelic group 

1 BALB/c genes are to each other. It therefore appears that p499 

represents a transcript of an uncloned gene.

strains ofi
The postulated relationships between the isolated MUP genomic clones 

and cDNA clones are summarised in Table D.7. If we assume that the 

relationships are correct, then it appears that a minimum of 10 

different group 1 sequences have been identified. This corresponds 

to a large proportion of the estimated number of group 1 genes ('v 

15) and implies that the majority of Mus musculus musculus 

group 1 genes are very similar in structure.

Finlayson et al (1958; 1963) originally resolved the urinary 

proteins of inbred mouse strains into three components: MUPl, MUP2 

and MUP3. Different inbred strains were found to have one of two 

patterns: MUPl + MUP3 (e.g. BALB/c mice) or MUP2 + MUP3 (e.g. C57BL 

mice). To a large extent mouse strains that are more closely related 

to each other have a similar MUP pattern. An exception is C57BR 

which has the urinary pattern MUPl + MUP3 unlike other C57 mice.

Szoka and Paigen (1978) followed up the work of Finlayson et al 

(1958; 1963) and showed that traces of MUPl and MUP2 are present in
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all strains studied. The MUPl and MUP2 components are known to 

represent the products of more than one gene since two dimensional 

isoelectric focusing of the urinary MUPs of C57BL/6J mice gives at 

least 7 distinguishable gene products (Kuhn et al, 1984) and 20 

MUP precursor proteins are translated from liver mRNA of both BALB/c 

and C57BL/Fa mice (Clissold and Bishop, 1982) .

Comparison of partial amino acid sequences of the N-terminal regions 

of components MUPl and MUP2 showed that these are very similar and 

that they are transcripts of group 1 genes. Although it is 

conceivable that MUPl and MUP2 have diverged in their C-termini, 

this seams unlikely for the following reasons: (1) clones which are 

homologous to group 1 genes in their N-termini and which diverge 

from group 1 genes in their C-termini have not been isolated; (2) 

all cDNA clones isolated from BALB/c and C57BL/6J liver libraries 

either represent group 1 genes or the MUP15 gene; (3) no differences 

have been found in the relative hybridizations of BALB/c and 

C57BL/Fa mRNAs to 3' exonic probes (LVA325, BS-6-5-5) when washed at 

low and high stringency conditions (P.Clissold, unpublished 

results).

With possibly one exception (JU) , all inbred strains examined

express MUP3 (Hudson et al, 1967; Szoka and Paigen 1978, 1979),

and are therefore likely to carry active MUP15 or MUPl5-like

sequences in their genomes. Polyacrylamide gel electrophoresis of

the urinary proteins of JU (which based on restriction enzyme
canalysis has the genotype Mup-1 ; Bishop et al, 1982) only 

reveals components that contribute to MUPl (see Hainey and



208

Bishop, 1982) . Iso-electric focusing, however, reveals minor bands 

that co-migrate with the MUP3 components of BALB/c (genotype 

Mup-lc ). In view of the observed difference in MUP3 expression, it 

would be interesting to determine whether MUPl5-like sequences in JU

differ from those of other inbred mouse strains.

To suitmarize, the major differences in the urinary proteins of 

inbred mouse strains appear to be due to differences in the

expression of closely related group 1 genes. Future studies on the

differences in expression between inbred strains will require the 

identification of the genes that contribute to MUPl and MUP2.

Finally, it is hoped that expression of the isolated MUP genes in 

tissue culture will identify variant MUP genes between BALB/c and 

C57BL/Fa. The introduction of variant MUP genes and mutated versions 

of these genes into mice may help us identify some of the sequences 

that contribute to the hormonal regulation and tissue-specific 

expression of manmalian genes. That such an approach is feasible has 

now been successfully demonstrated by the tissue-specific 

expression of the rat pancreatic elastase 1 gene in transgenic mice 

(Swift et al, 1984) and by the expression of a functionally re­

arranged heavy chain immunoglobulin gene in lymphoid tissues of 

transgenic mice (Grosschdel et al, 1984).
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Abbreviations used in text

AEV avian erythroblastosis virus

ASV avian sarcoma virus

ATP adenosine 5' triphosphate

BSA bovine serum albumin

BPV bovine papiloma virus

cAMP cyclic (31 - 5') adenosine monophosphate

cDNA DNA copy of RNA

CaMV cauliflower mosaic virus

cpm counts per minute

dATP deoxyadenosine triphosphate

dCTP deoxycytidine triphosphate

DEAE diethylaminoethyl

DNA deoxyribonucleic acid

DNase deoxyribonuclease

DTT dithiothreotol

EDTA diaminoethanetetra-acetic acid

GF/C glass fibre filter

HMG CoA 3-hydroxy-3-methylglutaryl coenzyme A reductase

HSV herpes simplex virus

IEF isoelectric focusing

kbp kilobase pair

LB L broth

LTR long terminal repeat

MHC major histocompatibility complex

MMTV mouse mammary tumor virus

MOPS morpholinopropane sulphuric acid
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mRNA messenger RNA

MUP major urinary protein

OAc acetate

0DX optical density at a wavelength of x nanometers

PEG polyethylene glycol

pfu plaque forming unit

pH -log [H+]

phage bacteriophage

PPO 2,5 - diphenyloxazole

POPOP 1,4-bis-2-(4-methyl-5-phenyloxazolyl)-benzine

poly(A) polyadenylic acid

poly(A) RNA polyadenylated RNA

SI single strand specific nuclease

rDNA DNA coding for ribosomal RNA

rev. min  ̂ revolutions per minute

RNA ribonucleic acid

RNase ribonuclease

rRNA ribosomal RNA

SDS sodium dodecyl sulphate

TCA trichloroacetic acid

Tris tris-[hydroxymethyl]-aminomethane

ts temperature sensitive

V volts

vol. volume

W/V weight per volume


