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Introduction.

The statistical procedure of analysis of variance
was invented by R.A. Fisher during his stay as
statistician at Rothamsted Experimental Station. His
first, more or less tentative, discussion of the theory
was set forth in a peper published in 1923 (11), and this
was quickly followed up by the more assured and much more
complete exposition in his bock "Statistical Methods
for Research Workers®"™ (12), which revolntioniaed_previous
ideas on the principles of scientific experiment.

Little additional work was published on the subject
until 1933, but since then meny workers, among whom

may be mentioned M.S. Bartlett, W.G. Cochran, J. Wishart,
end above all F. Yates, the present chief statistiecian
&t Rothemsted, have developed the theory on the lines
laid down by Fisher. Impetus was given to this
development especially by the publications of Yates

and of Fisher himself (13), in which the new methods

of factorial design, confounding, and covearieance
introduced at Rothamsted were first made more generally
known, Fisher's theories met with spasmodic opposition
from statisticians such as "Student", Neymen, and others,

but have triumphed over all opposition and today are the
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basis of almost all scientific experimental work amenable
to statistical treatment.

Nevertheless one would look in vain throughout
the literature for any rigorous and at the same time
reasonably simple mathematical treatment of the theory
of analysis of variance. Fisher's own exposition is
for the most part seemingly intuitive, being designed
for the non-mathematical reader, as are for the most
part the papers of Yates. Modern text-books such as
Snedecor's "Statistical Methods" (28) present the
methods without the theory behind them and appeal to
the intuition of the reader. Where proofs are
attempted, vital points ere usually glossed over or
assumed, as being beyond the scope of an elementary
book. Among the very few British mathematical papers
on analysis of variance are those of Irwin (15,16), but
his treatment is complicated and unwieldy. Cochran (6)
realised the advantages of matrix notation in a subject
of this sort, and many of his theorems are equivalent
to the lemmas of this thesis, but Cochran left the
epplication of his method undeveloped.

The present thesis constitutes an attempt to put

forward a progressive mathematical theory of analysis
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of variance as applied to the various situations met
with in agricultural research in particular, but the
applications are, of course, perfectly general, Matrix
notation has been used throughout to simplify a subject
which would otherwise prove rather unwieldy for
mathematical treatment. The basic theories are those
of Fisher, Yates, etc., and are now so generally
accepted as to require no special references.
Acknowledgment by reference is therefore made only in
the case of specific points where this has seemed

necessary.
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Lemmas
The following lemmas will be required in the
mathematical discussion of analysis of variance.
No explieit proof has been given if the result is
a familiar one from statistical text-books.

Lemma 1.
Any variates X, ¥, Zsp...... 8re independent if
their moment generating function (m.g.f.l Gl 4y, ..... )
is resolvable into factors G, () ,G,(4), G,(2), eeees;
or, equivalently, if the multiveriste probability
differential P(x,y,z, +.Jdxdydz.;.....18
resolvable into P,(x)1@(ylflzl...0XdYAZceuernnes-
This follows from the law of compounding the generating
functions associated with independent events.

Lemma 2.
If x, y, Z,+e00+.ln0t necessarily independent of
each other) are variates which are all independent
of some other variate u, then eny function f£ix,y,z,,...)
of X, ¥, Z,*+++ is also independent of u.
Proof: Since x, y, Z,-+. &re all independent of u,
the differential element of probability of x, y, z,..u
is, by Lemma 1, of the form f, (x,y,z,...) b, (ul
dxdydz**°*du. Thus, the joint m.g.f. of £lx,y,z,...)
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and u is fff exp [o(.f(x,y,z,,_,_) + /3 u] Pilzewz - )
f,(u) dxdydz....du which factorises into |
| .//f exp[o{f(x,y,z,-...)}g{.(x,y‘z’._“) dedZ...fexp(ﬂul
P,lu) du,ie. the product of two separat; m.g.£)s.
Hence, by Lemma 1, f(x,y,z,....) is independent of u.
Lemma 3.
If ulx,y,z,-++-) and v{x,y,2,..+.) are two functions
of n variates x, Y Z,e++-, then u and v are independent
if their joint m.g.f. Gl«/4) = fexp (Ku+ Av) g (x) ax
[where j $ (x) dx represents in matrix notation
Jﬁl.ﬂ'(x,y,z,----)dxdydzeJis factorisable into Gl{«,0) G(0,4).
Likewise they are independent if their compound
probability density § (u,v] is equal to g, (u) g,(v)
for all vealues of X, ¥, Zjiisee
Lemma 4. .
Uncorrelated normal variates are independent.
Proof; The multivariate normsl m.g.f, is exp (#V«), where
& is the vector {«, «, --.. «.} end V is the variance
matrix of the variates. If the variates are
standardised and uncorrelated, V = I (the unit matrix)
end the m.g.f. = exp ($««<) = exp (3’ + 34 +2 7))
=exp (34 ) exp (3« )..... exp{%«.) , or the product of
the m.g.f*s of the separate variates. Hence, by Lemma 1,

the variates are independent.
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The converse, independent variates are uncorrelated,
is of course, true for any variates.

Lemma 5.
If the set of variates x; in a vector x has variance
matrix V, and a new set y; or y is formed by the
linear transformation y = Hx (H being in general a
rectangular metrix, not necessarily square), then

the variance matrix of the 'y; is HVH!,

Proof:
E
V = The meen value of gf%er SO - I A
-
X, X, X, X, X, ...ebcC

XX, Xx, X .
1 1  J
| ] 1

Transform to the new variates y=Hx. Then the variance
matrix of the y is the mean value of yy'
= Mean (Hxx'H') = HVH!.
Corollary ' If the linear combinations
h, X +hx,+«....+h,.x, (i.e. h'x) and k, x,+ kK, X+ ,,,,,

+k.x, ( i.e. k'x ) are uncorrelated(the x;being

independent), then h'k 0, i.e. h and k are orthogonal.
Proof:
L '
Here H= [ k7] , B'=[hik], anda v = 1 if we

standerdise the variates. _
h'h  ht k]

-

..Hml=HHt=_
*h  Evik
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But since the new variates are uncorrelated h'k=kth=(Q.
Hence, if the x; are independent normal variates,
h'x and k'x are also normel variates, and being
uncorrelated are (by Lemma 4) also independent.
Thus the condition h'k = 0 is necessary and sufficient
for the statistical independence of the new normal
variates h'x and k'x,
Lemma 6
If X,, ¥, 5 Z/5 eees. (DOt necessarily independent of
each other) are variates which are all independent of
X2 Y2 Z25 oesssl@lso not necessarily independent of
each other), then any function £, (x,,y, ,2Z., ) of
X, , Vi s Z;5» eee 18 independent of any function of
PUXF B v ) OF Xiy Vs Daa e vewas
Proorf:
Since X,, ¥, » %, ..2re all independent of Xx,, ¥, , Z,,..
the differential element of probability of
Kis Vi gy Byaessy Ty Ton B3 enss &8 0F the Lform
B (X, 35, 22, 1e0ee) B, (X, ,7, 5 2, 5000.) dxdydz...dxdydz...
(by Lemma 1)
Thus the joint m.g.f, of £, and £, is
N explat,+ft,) §,(x,) $.(x,)d x, 4 x,
Factorisable into

fexp («f, ) ¢ (x,)dx, fex:p (AL, ) P.(x.) dx.
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iw. the product of the two separate m.g.f.'s. :
Hence f, and f, are statistically independent,
Lemma 7.
IE L 0X 0 3% siannl B0A B (X, 5T, 35,5 s0s) BTO
independent functions of two sets of variates of
which the variates of one set are all independent
of the variates of the other set (but not necessarily
of those in the same set), and if f+ f,, the sum
of these functions, is independent of a function of a
third set of variates £;(X;,¥, ,2; jeeee) WheTe X, ,¥; 12; 55440
are not necessearily independent of each other, then
each set of variates is independent of the variates of
the other two sets.
Froof: j
Since f,+f, is independent of f;, , their joint
m.g.f. must be of the form
Jexsfeteet,)] d(x za)ax az. [exp(ge, ), (x.)4x,.
But, by Lemma 1, since the X, are independent of the
_ X,, this must be of the form
fexp(df. )¢ (x.)dx, /exp(dft )¢, (x.)Ax. /exp(ﬂf, )9, (£s)dx,
ie. the differential element of probability of
X 3V 3% seeeeaX, 3Vs 2% 3eeeeX ¥, 5250018 of the form
g (x,)8.(x.)8,(x,)dx, dx, dx,
.' . By Lemma 1, the three sets of variates are

independent of each other.
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The extension te any number of sets of variates
is evident.

Corollary 1 By Lemma 6, it follows that f,, f,,

end f, , are all independent.

Corollary 2 By Lemma 6, any other functions

LTl o2y swals ElX s T 32u500 by B (X0, 225000 ]
are also independent.

Lemma 8.
Ifk sets of n,, n,,+¢ n,. cbservations with
respective means lijand mesn square deviations s;
(j=1,2,..k | are pooled in an aggregeate of
nl=;)._il n; ) observations with mean M end mean -square
deviation s‘, then né‘%?ni(g}c; ) ;where c;=M-I; .
This follows from the fact that the mean square

deviation of the ™ set about M is spcj.

Lemma 9.

If v=2x'0x is a quadratic form in n independent
normal veriates X5, all with meen at the arigin
and equal variance o, and if v has gamma-type
probability distribution, then the number of
degrees of freedom of v is equal to n*', the rank of Q.
Proof':

The matrix Q, being symmetrical, is reducible

to diagonal canonical form A by meesns of the

transformation H'QH, where H is orthogonal.

If we introduce new variates y = H'X ,
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i.e. x = Hy, then v = § y* H'QHy = 3 y/\L y. The y's
are all normelly distributed with mesn at the origin,
end 1f V is the variance matrix of the x; , then the
variance watrix of the y; 1is ( by Lemma 5 ) H'VH.
But V= ¢I and H*' H = I. ., Ghe ¥; also have
variance ¢ end are independent. Since the y; are
independent normal veriates with the same mean and
varience , v( = § YAy = % E.ijf ) will heve gamma-
type distribution if the non-zero values of A, the
latent roots of § , are all equal, this condition being
both necessary and sufficient. .°. A necessary and
sufficient condition that V should have gamma-type
distribution is that the n' non-zero latent roots of
& should be equal.
It follows that, if v has gamma-type aistribution, then,
since it can be reduced to a "sum of squares"™ orthogonally
(32 A¥%" ), where all non-zero values of A , being equal,
are either all positive or all negative, X'Yx must Dbe
a definite form, either positive aefinite or negative
definite. Also, if 9 = the equal non-zero latent roots of
& , the characteristie equation must be N " (A=-9)" =0 ,
end by the Cayley - Hamilton theorem e =) w0
which is equivalent to & ( & —‘3] =0 or ¢* = © .« Hence
Q must = @ M, where i is idempotent, for ¢* = 8* M* = & M
= 8 Q.

Now W = %? is distributed according




il e

£ i 2 _ 2 5 ! L oy 1_£

o dp = o) ©Xp (=& w* ) dw, and therefore z= g W= 5 %=
is distributed according to dp = 'ﬁzj z e~ dz. We have

that s 0> Kf » Where there are n' terms. ».u = ﬁfl

is a combination of n' gamme-type distributions, 2+ 2+ Ty,
and its distribution is therefore given by dp :ﬁiﬁ,u@*'e“°au.
By comparison with the standard gamma-type distribution,

it is seen that the number of degrees of freedom of u

(eand hence of v , i.e. of § x'Qx ) is n*, the renk of .

Corollary 1 If ¢ is idempotent, the number of degrees

of freedom of X' Qx is equal to the trace of § , for then
the non~zero latent roots of § are all equal to 1 and
tr. @ = sum of latent roots = n*' = rank of ¢ = number

of degrees of freedom.,

Corollary 2 If Q is idempotent, en estimate of

6%, the varience of the X; , is given by the " meen square"
of x'¢x 1l.e. xX'4Xx diviuced by its number of degrees of
freedom.
Proof: The mean value of x'4x is ¢(tr.Q) , since the
mean value of all product terms is zero ( the X; being
uncorrelated), and the diagonal terms give

PR e, AR 0ot S s G P
Hence the mesn square of x'Gx is an unblassed estimate
of ¢~ (byCor .1l).

N.B. If x'Q x is reduced to canonical form v = yY\y,



13.
then, since there are n-n' zero latent roots of ¢ end
(if x'Q x has gamma-type probability distribution ) the
n' non=-zero latent roots are all equal, v is equal to
5 yj , where there are n' terms. Thus, if {x} represents
& point in n-dimensional "sample-space" , then, since
x'd x has been shown to represent a multiple of the
distence of a point from the origin in n*=-dimensional
space, it is evident that n-n' dimensions have been lost.
This is the statistical equivalent of n-n' linear
equations of constraint in dynamics. The rank of the
matrix of a quadratic form therefore corresponas exactly
to the definition of degrees of freedom given by Fisher
S e e [
10

Lemma

If A end B are matrices such that the rows of A are
orthogonel to the rows of B, end if A'A and C'C ( where
C'C = A'A+B'B) are idempotent, then B'B is also
idempotent.

Proof: (ctc)® ( A'A + B'B)*

(A'Af" + (B'BJ*+ A'AB'B+B'BA'A .
But AB®* = B'A = 0, eand (4'a)* = &'A ,
.+ (Cte) = A'a + (B'B)

= C'C , since C'C is idempotent,

A'A+DB'B

Hence (B'B)* = B'B , so that B'B is idempotent

Corollary If y'C'Cy = y'A'Ay+y'B'By (where
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the {y} are independent normel variates with variance ') ,
and if y'C'Cy and y'A'Ay have gamma-type probability
distribution with ¢ and a degrees of freedom respectively
(C'C and A'A being idempotent and A and B such that A'B=
B'A =0 ), then y'B'By has gamma-type distribution with
c-a degrees of freedom and its mean square is an estimate
of & which is independent of that derived from y'A'Ay.
Proof: By Lemma 10, B'B is idempotent. .. by Lemma 9
Corl, y'B'By has gamma-type distribution with degrees of
freedom equal to tr. (B'B). But tr.(C'C)=tr(4'A)+
tr.(B'B). Hemce the number of degrees of freedom of
y'B'By =tr.(C'C) - tr. (A*A)=c-a, and, by Lemma 9,Cor. 2,
its mean square yields an unbiassed estimate of ¢". To
show that this estimete is independent of that from
y'A'Ay, we have that A'B=B'A = 0, so that , by Lemma 5
(Cor.) , all the linear combinations Ay are independent
of all the linear combinations By . Hence, by Lemma 6,

their sums of squares, y'A'Ay and y'B'By are independent.
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Section I.

The Hypothesis of Uniformity.

Let us consider a matrix of (say) crop yields

AR R L o R o T PR e
y:.l yzz """" Y.I.r\
_ym. Ym-;_ ------ Ymn_j ]

the elements of which are independent normal veriates with
the same meen 4 and the ssme veriance 6. Let ¥ be the
general meen of these variates, ¥ Yo 5 - Ymo the
row-means, end YoiVess e sYox the column-means.

We have, by Leuma 8,
32ty ¥ =0 2im -F I+ gg(y.-_j o N e
i.e. the sum of all mn squared deviations from the general
meen is equal to n times the sum of squared deviations
of row-meens plus a residual sum of squares representing
squared deviations from respective row-means.

A deviation of a row-mean Ifrom the generel mesan,
e.2. ¥, -y , may be represented in vector notation &s a'y,
where y ( the column vector of yields ) is
T T Tt T B Balho tE o s e
end a' =m%-[mrl m-l...em=-1 E-l -l.h_.—l; ....... S R -ﬂ.

Both the column vector y and the row vector a' are

pertitioned into m sub-vectors of n elements each.

A deviation of & variaste from its row-mean,e.g.

Yo = Yie » may similerly
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be represented in vector notation as b'y , where y is

the vector of ylelds and b' is

R TR e SRR | e

all other
subvectors nullmj , b' being partitioned similarly to a'.
Now a'b = ;b [(nwll(n-ll - ln-l)(mrli] =0,
so that a and b are orthogonal, and hence, by Lemma 5
(Cor.), a'y and b'y are independent linear forms. 1In the
seme way it may be proved that the deviation of each Vi
from its respective row-mean is independent of the
deviation of each row-mean from y. lence if we write (1,1) as
y'At'Ay =y'B'By +y'C'Cy, S e (1,2)
the rows of B must be orthogonal to the rows of C. Also i
C*C is the "direct sum" of the m matrices each equal to
I~ M, thus:- ‘
[1,- M, |

where I,is the unit metrix of order n, end l,is the

matrix-h-i l.......l" 8f order nxn. C'C is therefore
l l.......l
(T R
v - ' '
. . : .
|-l l..t.tooo lJ

idempotent. Moreover A'A is equel to I =~ M, where I is the

unit metrix of order mn ,



and Me A-)1 1 ... 1| of order mn xmn, so that A'A
T VTS % |
B T )

is also idempotent.

The mean value of y'A'Ay is, by a well-known result,

(m-1) 6% To find the mean value of22 (Vo = Veo J 5 We
o

have thet the variance of y, - ¥,, = 0'¥Y is b*b ( by

Lemma 5 ) = %F [( n-l)L+-(n-l)j - ﬂﬁl y OF

(unstandardised) = - (n-1)o™. Thus the mean value
of the mn squered residuals is equal to m (n-1) 0% But
A'A end C'C are both idempotent matrices, so that, by
Lemma 9, Cor.2, the quadratic forms y*A'Ay and y'C!'Cy have
gamma-type distribution with mn-l snd m(n-l) degrees of
freedom respectively. lience by Lemme 10 (Cor), y'B'By also
hes gamma-type distribution, the degrees of freeaom being
m=-1 - m (n-1) = m-1, ana its mean square gives en estimate
of 6 which is independent of the estimate furnished by the
mean square of y'C'Cy. These two estimetes of ¢ may
therefore be tested (either by the ¥- test or Fisherts
Z - test) to ascertain whether they sre consistent with
heving been derived from the same normel papulstion.

A matrix of yields [y;] - such thet all elements

are single samples of normel varietes having the same
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meen and variance, satisfies "the hypothesis of uniformity".
In experimental work ( not necessarily agricultural) the
row suffixes 1,2,.....m may correspond to aifferent
treatments e.g. different varieties of a cereel, aifferent
fertilisers, different rates of application of the saume
fertiliser, etc., and it is desired to test whether
significant treatment aifferences are revealed by the
experiment, If each treatment is repeated n times ( n
replications), the conditions being presumed constent for
each replication, we have & matrix of order m x n, as above.
The "null hypothesis™ ( that there are no differences
between trestments), which in this case is identical with
the uniformity hypothesis, may then be tested by comparing
the estimate of variance derived from deviations of row-
meens from the general mean with that derived from
individual devietions from respective row-means, Should
the former estimate prove significently the grester, the
inference will be that the row-means cennot be consiaered
s having been formed from normel veristes with meen ¢
and varisnce ¢*. Retaining the hypotheses of normelity
and equal variance, we uust conclude that the mesns of
the varistes aiffer from row to row, a conclusion which
sgrees with the a priori conaitions of different trestments
being allotted to daifferent rows.

The ebove results may be illustrated by




19.
constructing en Analysis of Variance table thus:-

Analysis of Variance.

Source of Variation Degrees of Freedom | Sums of Squares F:.-Iaan Squares
Between treatment means T n);(y;; -y)* e
Residuals m(n - 1) 220V Ve 1T S,
J
Total m - 1 Z2Aye=F]) S5
J

If the hypothesis of uniformity holds, s, end s; are

. two estimates of o which do not differ significantly.
The total sum of squares (m-l)s; + m(n-l)s  may then
be considered equal to (mmn-1l)s;, yielding a mean square
which, being based on the greategt number of degrees of
freedom, is the best estimate of ¢“. 7The hypothesis is
egquivalent to the assumption that each variate yi; is
equal to m + i;}- » where §;3 is & rendom normal variate
with mean at the origin and variance o,
If s; is significantly greater than s , the sample of
yields can no longer be regarded as homogeneous.
We therefore proceed to the alternative hypothesis, that
the variates have different means from row to row,
estimated from the sample by y.e (i=1,2,..... m). The
hypothesis is now that each sample value Vi is equal to
Yio + Xi; = Yy +(yi -¥) = x; , where x}; 1s the sample
value of E; , the new rendom veriate, end 2‘2 x}; = o.

Or, equivalently, each variate Y is equal to‘/~+-p;+-g%
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where‘/b+p; is the population mean of the ith treatment,
p. being itself a veriate with mean at the origin.
The mean square S,is now meeningless, but s’ is still ean
estimate of the variance due to random experimental
errors ie the variance of the gg « The residual sum of
squares is therefore usually called the "error sum of
squeres", and s, "the error meen square". s, is the
standerd error per plot of the experiment, or simply the
"standard error of the experiment".
The differential effect of the treatments having thus
been established, it is now possible to compare
treatment-means by means of "Student's" t-test, using s,
as the estimeted standard error of a single yield.
This is legitimate since each y;, -y is independent of
each Vi, oo s and hence by Lemma 6, yi, -y -(¥,, =¥)=
Yio =¥;0 » the difference of any two row- (i.e. treatment-)
means, is independent of the estimate of error variance.
It will be shown later (Section 9) that the necessity for
establishing that s is significantly greater than s}
before comparing two treatment-means by the t-test
disappears, provided that the particular comparison
to be made was one determined beforehand. It is nog
permissible, for example, to select the highest and

lowest treatments after the experiment is completed and

declare them to be significantly different as the result
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of a t-test unless treatments as a whole are significant,
ie, s, is significantly greater tham s , though of
course, it is always possible to make such a comparison
by means of the t-test with en estimate of variance
derived from the yields of those treatments alone.

Section 2.

Conditions of uniformity in Agricultural Experimentation

It is the peculiarity of agricultural experiments that
the conditions for the testing of each treatment can
never be exactly the same, nor the same for replications
of any one treatment. The chief reason for this lies in
soil heterogeneity, the nature of which has been studied
by many investigators. A strip of land divided into
Plots cannot by any means be considered to have constant
fertility from plot to plot. If we consiaer the matrix
Of yields [yg] as representing the yields of certain
fixed plots on a field under the same treatment, the
infinite hypothetical population of yields under
identical conditions represented by the variate y,, ,

for example,will probably not have the same mean as the
similar variate y,, , nor can the yields of adjoining
plots be regarded as independent variates, since,
generally speaking, the factors which determine high or
low yield and influence tﬁe actual sample values of the
random variates 'Eq accordingly, are likely to be

similar for adjacent plots.
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On the other hand the assumptions of normal distribution
and constant variance are not rejected. Of these
assumptions, that of normal distribution need cause no
concern in ordinary crop experiments, since it is a matter
of common experience in experimental work involving
repetitions under identicel conditions. Non-normal
distributions, e.g. the Poisson, are, however, common in
experiments which involve, for instance, counts of
insects. The second assumption, that of constant
veriance, is also fundamental to the theory of analysis
of variance., It is not unreasonable to presume constant
variance when the treatments are similar, but cases
frequently arise when the varience bears some relationship
to the mean. If the two above conditions are not
adequately fulfilled, recourse must usually be made to
some functional transformetion of the variate, though
Eden and Yates (8) have demonstrated that the z-test
could be sefely applied to one actual case of
non-normal data.
Some light is thrown on the above matters by uniformity
trials, whereby & field is sown with a certain crop and
receives uniform treatment, but for harvest purposes is
subdivided into small equal plots, the yields of which
are separately recorded. It will be noticed that this
is not the same thing as our"hypothesis of uniformity"

as it stands at present, since, no matter how uniform
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in fertility the field may be, the plot-variates
cannot be considered to have equal means.
lMercer and Heall (17) found that the sample of plot-yields
thus obtained from a fairly uniform field showed good
agreement with the hypothesis of normal daistribution,
and this has been the experience of meny other workers.
Where the distribution has been found to be non-normal,
the reason probably lies in the fact that the population
Of yields is heterogeneous i.e. that the field shows a
significant deperture from uniformity. This suggests
that the components of yield due to differential plot
fertility, which we may call the "plot-fertility-
indices" with respect to & certain crop, have normal
distribution, of which the chosen field is a sample.
Were it not for the fact of veariation of external
conditions, it would be possible to imagine an almost
infinite normsl population of such indices, but owing
to the heterogeneous nature of such & population its
standard deviation would be large. ‘I'he necessity for
constancy of external conditions leads us to consider
the population of indices from a comparatively small
area such as a single.farm, where the standard
deviation will be much smaller, since, for example,

the soil-type will remain the same over the area.
For experimental purposes, however, this error will

still be much too large, snd so we take as a sample of
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plots those from a single field. Uniformity trisals
show thet on a fairly uniform field the combination of
plot-fertility-index plus the random variate Eglof
Section 1) does indeed produce a finite sample (though
not a random one) of some hypothetical normal population.
It is necessary therefore, in the theory of agricultural
experimentation to postulate a new random variate made up
of two independent components, that due to random error
Pure and simple, and that due to soil heterogeneity.
Of course, since the fertility map of a field does not in
general change suddenly from point to point, the
component of the random variate due to soil heterogeneity
will also be correlated between adjacent plots, so that
the random variates are not independent.

Lhis new hypothesis, th®t the plot yields are normal,
but not independent, variates with the same mean and
variance,will be illustrated by the results of two
uniformity trials with wheat, one due to Mercer and Hall
(17) and one due to Christidis (5). If Y is the matrix
of plot yields with rows and columns corresponding to
actual rows eand columns in the field, and if M is the
metrix with every element equal to §¥ (the estimate of
the mean), we may form the matrix Y-M. Then (Y-M)(Y-M)"®
has as its diagonsl and non-aiagonal elements sums of
squares of rows and sums of products between rows,

respectively, from which estimates of row-variances
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and of correlation-coefficients between
rows may be obtained. oSimilar results may be obtained
for columns from the metrix (Y-u)'(Y-M). As a simple
example let us consider an artificial matrix of yields
constructed as follows:~ Sequences of ten random
digits were examined and the number of digits less than
five in each sequence noted. The distribution is that
of the symmetrical binomial (3t+%)° , nearly normel,
with mean 5 and variance 2°5. The meatrix Y-M of order
8x8 was constructed, using the true mean 5 instead of the

sample estimate. In this case each variate is, of course,

independent.
Row
& JTotals
Y-M = i -3 1 =k 8 D -1 -1 -4
0 2 =3 -1 0 =1 -1 2 -2
-1 0 -1 i F 1 =1 1 -1 -1
-3 Q 0 -2 =2 1 2 -4 -8
2 -1 i ¢ @ © -1 -1 0
-1 0 -1 -1 O 5 2 0 2
-1 -1 =3 2 X B 0] 6] 0
1 0 2 -1 -1 -4 -1 -3]| _ =7
Column _
Totals -2 -3 =4 -3 =1 0 1 -8 =20

The greatest row or column total is -8 compared with
a standard error of 2J5 (4+5), and the grand total

is -20 compsred with & standard error of 4 JI0 (12+86).



(Y-M)(Y—M)'=Il4) -1 =3 1 8 =3 ;3 8

- D 0 (7) 4 =3 0 S 1
1 -9 4 (38) -4 12 -1 7
8 -6 -3 -4 (8) =5 -4 S

-3 -1 0 12 -5 (16) 8 -16
-3 ) S -1 -4 8 (2Q)=-18

| 8 6. 1 7 B ~16 ~18 (53]
The following matrix presents row-variances in the
diagonal and inter-row correlation-coefficients off the

diagonal, negative values being printed in red.

(1,71) 72 .39 .16 .82 .15 .18 .25 )
(e 79) .02 A5 At .03 15 .54
(0,98) ,21 JAL .02 .43 .01
(4,29) 8 .66 04 .00
(1,24) .45 .32 .55
(2,21) .45 %:
(2,86) .7¢
< (3.84)

The mean row-variance is 2°48, the greatest
deviation from Z°5 being 1+79 compered with the
theoretical standard error of 1l-3. Three values of
T are significant at the 5% point, whereas one would

expect only one or two in a random sample of this size,
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Matrices of row-variances and inter-row correlation-
coefficients are now presented for some actual
uniformity trials.
1. Uniformity trial on wheat, Mercer and Hall (17)
500 plots, each 35%*_acre, in 20 r~ws and 25 columns.
Yields of grain in 1lbs.
Table (2,1) shows the metrix of row variances and
inter-row correlation-coefficients for this trial.
Since the matrix is symmetrical, only elements above the
diagonal have been entered. The mean row-variance is
0+208, yielding an estimate of plot standard error
equal to 0-46, which compares exactly to this degree of
accuracy with Mercer and Hsll's figure obtained from all
plots. Values of Y attaining the 5% level of significance
(0°40) and the 1% level (0°51) are indicated by single
and double underlining respectively.
As before the negative values are in red.
Table (2,2) summarises the information concerning the
inter-row values of r .
Only the most cursory examination is necessary to
establish the high degree of correlation existing
between rows in this example. In any case where the
number of values of v significant at the 5% level does
not exceed one in twenty, the fact of significant
positive correlation is easily established by testing

the hypothesis that positive and negative values of r
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Distance | Humber No, of cases No, of cases Renge Number of
apart of significant gsignificent of negative
of rows cases at 5% at 1% values velues
(A11 positive) | (All positive)

Ad jacent 19 17 10 0,24 to 0,80 -

1 row 18 13 7 0,03 to 0,87 -

2 rows 17 i2 5 0,03 to 0,62 -

3 rows 16 ) 3 0,00 to 0,66 -

4 rows 15 5 2 0,15 to C,64 -

5 rows 14 - - -0,07 to 0,39 2

6 rows 13 = - -0,02 to 0,31 H

7 rows 12 2 1 ~0,10 to 0,51 2

8 rows 11 i = -0,18 to 0,48 1

8 rows 10 i - -0,10 to 0,40 3
10 rows 8 - - 0,00 to 0,36 -
i1l rows 8 - & -0,21 to 0,38 i
12 rows T 1 - 0,08 to 0,40 -
13 rows 6 1 - 0,06 to 0,50 -
14 rows 5 2 i -0,06 to 0,53 1.
15 rows 4 ik - 0,10 to 0,49 -
16 rows 3 2 i 0,27 to 0,57 -
17 rows 2 2 i 0,47 to 0,54 C=
18 rows i 1 1 0,56 =

TABLE mm.m )i
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are equelly likely.
For example, as few as two negative values in twelve
would occur only once in fifty cases on this hypothesis.
It is especially noteworthy that such large wvalues of r
should be recorded for rows 16 and 17 rows apart.

Tables (2,3) and (2,4) present similar results for
column-variances and inter-column correlation-coefficients.

The mean column-~variance is 0+15, which gives an
estimate of plot standard error equal to (0°*3%9. The
reason for the discrepancy between this velue and that
found from all plots will appear in the sequel.
The significance levels of the correlation-coefficient
are 0-44 (5%) and 056 (1%). |

Without meking any exact statistical tests, it is

evident that there is some positive correlation between
adjacent columns and between columns one column apart, f

For columns further apart than this the results dao not

contravene a hypothesis of no correlation. About half
of these values of r are negative, and the ranges are
fairly evenly disposed about zero. <There are zZ2 values

of T significant at the 5% level, almost double the

o —— = e

expected number out of a total of 253, if the samples
were random. ‘Lhis,.howeyer, is not so, and in addition
the number of positive significant values (12) is

balanced by 10 negative ones.
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TABLE (2,3).
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No, of cases

No, of cases

Distance | Number significant significent Range Number of
epart of of at 5% level at 1% level of negative
columns cases values values
momwwwdwﬂzmmm&wqm Positive| Negative

Ad jacent 24 7 - 3 - -(,29) to ,78 6

1 column 23 3 - 1 - ~{.26) to ,59 7

2 colums | 22 = 1 - - -(.53) to ,33 8
3 colums | 21 - i - 1 -(,70) to 40 11

4 ¢olums | 20 3 1 - - -{.54) to ,50 5
5 colums | 19 2 - - - -(,42) to ,54 10

6 colums | 18 B i - 1 ~{ ,67) to .37 6

7 colums | 17 1 3 - - -(,54) to ,49 i1

8 colums | 16 1 1 - - -(,46) to .45 6

9 colums | 15 1 - 1 - -(,35) to .59 7
10 coluwms | 14 il - - - -(,42) to .50 5
11 columns { 13 1 - 1 - -{.,41) to ,68 7
12 colwms | 12 1 - - - ~(,31) to ,50 7
13 colums | 11 - 1 - - -(,45) to ,29 6
14 colums | 10 - - - - ~(.38) to ,35 5
15 colums 9 - - = = -(,41) tu ,34 5
16 colums | 8 - i - - -(.54) to ,38 4
17 columns 7 - ~ = = -{.29) to .34 4
18 colums 6 - - = (= -(.30) to .33 5
19 colums 5] 1 = " = -(.20) to ,50 $
20 colums 4 o - - - -{,38) to .44 1
21 coliumms 3 1 = - - +17 Lo 45 -
22 colums 2 = = E. = -(.12) to ,38 i
23 colums 1 = = = = 0.11 =
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The following tables of analysis of variance are relevant.

(a) oource L.F, sums of Squares. | liean sSquares.| F.
Rows 19 6-0939 Geizl 1.6
Residuals 480 98.5783 0+205
Total 499 104.6722T 0+210
T Figure obtained by calculating back from Mercer and

Hall's estimate of variance.

(b) Source D.F. | Sums of squares Mean Squares F
Columns 24 3%.5956 1400 ge3*
Residuals 475 71-0766 0+150

Total 499 104-6722 0°+210

The value of F in Table (b) is highly significant, and

that in Table (a) is almost significant at the 5% level.

Thus, neither row nor column-means cen be regarded as

derived from a single homogeneous normal population. In

fact, the conaitions of uniformity do not hold, and it is

only by chence that the plot date are so well fitted by a

normal curme.

Anticipating the results of Section 3, we may combine

the above two tables into & single table of ansalysis of

variance :-



:jo-

source Pl sums of Squares Me&an Sguares F
Rows 19 6°0959 0321 g™
Columns 24 535956 1+400 g.g™*
Residuals 456 649837 0-143
Total 499 1046722 0210

In seeking to explain the very striking inter-row correlations
and the highly significant mean squere for columms, it is
pertinent to enquire, as did Christidis (5) in a different
connexion, whether the drilling was done along the columns.
This information is, however, not available from the original
paper, yet the explanation is clearly that the meain changes

of fertility occur in a direction parsllel to the rows,
Possibly the ploughing of the field may have always been done
parallel to the columns.

Wishart and Sanders (21) obtained yields for plots
3

50 acre in area from liercer eand Hall's uniformity trial data
by combining the yields of ten adjacent small plots (five
along the rows and two &crcss), thus obtaining plots of

the size recommended for experimental purposes. It is of
interest to obtain the corresponding results for these data.

(a) Matrix of row variances and inter-row correlation-coefficients
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(5.29) 0,61 0,45 0,67 0,28 0,66 0,51 0,72 0.68 0.74‘
(2,53)0,67 0,51 0,71 0,52 0,62 .G,66 0,26 0,26
(2.21)0.55 0,89 0,89 0,71 0,58 0,20 0,16
(7.19)0,71 0,82 0,14 0,21 0,01 0,06
(4,93)0,77 0,40 ¢,27-0,20-0,28
(3,20)0,52 0,49 0,25 0,26
(5,00)0,94 0,73 0,67
(12,25)0,86 0,84
(10,15
L (14,39)

The significance values of r are 0-88 (5%) end G-96 (1%).
The mesn row-veriance is 6°:71, compared with 6-26, the
variance obtained from all plots.
(b) Matrix of column-veriances snd inter-column
correlation~-coefficients.
(2.68) -0,14 0,42 =~0,59 0,42
(0,88) ©,57 0, 25 0,27
(3,59) -0,28 0,18
(9.12) 0,22
(2.52)

The 5 level of significance for ¥ is at 0:63. The
mean column-variance is 3:76. It is not to be expected
that there would be much evidence of positive inter-
column correlation even between adjecent columns, since
for the original small plots positive inter-column

correlation extends only as far &s columns seperated

by a single column.
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Analyses of Variance,

Numnber Source D.F, Sums of Sguares llean Squares %
1 Rows g 38,387 4,26
Regiduals 40 268,52 6,71
2 Columns 4 137,89 34,47 g 7**
Residueals 45 169,00 5,76
3 Rows g 98,37 4,26 147
Columms 4 137,89 34,47 9,50 **
Regiduals 36 : 130,65 2,63
Total 49 306,89 6,26

& Uniformity trial on wheat by B.G. Christidis (95):-
288 plots each 8 ins: x 7% ft: in 24 rows and 12 columms.
Yield of grain in grams.

The matrix of row-vaeriences and inter-row correlation-
coefficients is presented in Table (2,5). The mean
row-variance is 180.0, whereas the variance calculated from
all plots is 195.1. The significant valugs §f the
correlation-coefficient are 0.58(5%) end 0.71(1%).

The similar matrix for columns is set qut in
table (2,5). The mean column-variance is 130.1
compared with the exact figure of 130,18 derived by
analysis of variance and with the estimate of variance
derived from all plots of 195,1. The significant
values of r are 0.40(5%) end 0.52(1%),
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(131) .31 .41 ,41 .15 ,10 ,27 ,28 .45 .14 .10 il
(89) .61 .64 .33 .12 ,07 ,14 .16 .23 ,29 ,09
(92) .48 ,31 ,20 .23 ,36 ,22 ,24 ,08 ,17

(125) ,54 .27 .14 ,49 ,06 ,13 .87 ,26

(134) ,13 ,08 ,49 ,30 ,07 .60 .28
(61) 25 11 10 J29..36 11

(97) .02 ,39 ,58 .18 ,29

(273) ,08 ,14 ,43 ,29
(163) .83 .29 ,40

(227) .32 42

(75).39

(4)

o

TABLE (2,6)
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Analysis of Variance Tables

Number Source Do Sums of Squares |lfean Squares I

1 Rows 23 8,495 ,20 369,36 2,05 %
Residusls | 264 47,489,33 179,88

2 Columns 1% 20, 055,20 1826,26.  [s4.01 %*
Residuals | 276 35,929,33 130,18

3 Rows 23 8,495,20 369,36 Sudg * ¥

Columns 11 20,055,20 1825,20 . |1@,81 **
Residuals | 253 27,434 ,13 108,44

Total 287 55,984,553 195,07

The results derived from Christidis?

similar to those from lMercer and Hell's.

data are rather

However, in

this case the yields, considered as a single sample, show

a significant departure from normality in respect of

kurtosis.

Once agein there is very strong positive

inter~-row correlation, but there is no longer such an

equality of positive and negative inter-column correlation-

coefficients.

In this trial the information is available

that the drilling was done along the rows, and thus a

possible explanation disappe&ars.

However, it is clear

from the analyses of variance that once again the major

changes of fertility are paralled to the rows, though

there is a larger component then before parallel to the

columns, thus accounting for the significant velue of ¥

for rows and for the excess of positive inter-columm
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correlation-coefficients even for columns many columms
apart.

It is noteworthy that had Christidis, in seeking to
prove the superiority of long, narrow plots in respect of
lowness of standard error, happened to have placed his
long plots along the columns, he would have got different
results, in fact, results similer to those from Mercer
and Hall's trial, where long plots along the columns had
a negligible effect in reducing the standerd error. Long,
narrow plots can be superior only if they happen to lie
along the line of major fertility chenge, a point noticed
by Day (7) and Smith (19). In cereal experiments, where
it is convenient to have plots of only one drill-width,
there is the possibility of additional error due to

drilling variationmns.
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Section 3.
The Principle of Rendomisation

Fisher (12), (13) solved the problem of the non-independence
of the plot veriates by the stipulation of the Principle
of Randomisation. Suppose that a set of n treatments
is to be tested. If the n plots for each trestment

are allotted entirely at random by some process of
randomisation, then it becomes possible, as before,
under the hypothesis that treatments have no
differential effects, to regard the Y (the yield of
the jth plot of the il treatment) as independent

normal variates with the same mean and variance.

This is the same “hjpothesis of uniformity"™ as that
originally formulated, except that, in considering

each variate ¥ equal to/u.+ 25 , the random

variate Eﬁ now contains a component due to soil
heterogeneity. ‘The results of §l will therefore

hold good.

Such a type of experiment, however, would be rare
in agriculture owing to its lack of precision due to
high standerd error. loreover, the "fertility - map®
of a field can never be exactly known, for even a
previous uniformity trial can give only an approximate

idea of that. Hence, unless the field happens to be



fairly uniform, the possibility exists that the
chosen field will not, owing to its heterogeneity,
constitute a normal sample of plot-fertility-indices.
The experimentalist overcomes these difficulties by
local control. The field is divided into a number
of small areas called "blocks", each containing a
single replication of all the treatments under
.consideration, arranged in a different random order

in each block. We now consider the theory of such an

experimental design.
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Section 4.

Randomised Blocks

Let us consider a matrix of yields [y;,] of order
mXx n)in which the rows represent different treatments
and the columns different blocks, and let us examine
the matrix under the hypothesis of complete uniformity
throughout the experiment i.e. that the y.-J- are normal
independent variates with the same mean (i) and the
same variance (o¢%).
We have from (1,1)
£y ly;, ¥ = =ity -71*+§§_ty;j ¥ 1
‘GJonsidar the te:;mzb)}( 7 yis) @s the sum of squares

of mn variates arranged in a matrix thus:=-

r- yil i Yw yu, -y;o """ y( n -yc ()
y’a -‘- YM y”_ —Yzo ...... Yu -ylo
Yrm - Ymo sz. -Ymo = ymn —YME’

- -

The general mean of these variates:#;(}'%y‘.j’ "DE;Y:o ) =0
The mean of the jth column is ¥, -m1y,=V; -F.
Hence, applying Lemma 8 to %(yﬁ - ¥ ) with respect

to columm-means, we have:=-
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MG TR IR T G TR ?T«-;g:(y;j - Y - Yo * F);.d%,1)

and therefore

Ty 7= alim -7+ al(y -¥°

+7EEJ' (Y,-j e PO 2 o el RN R (4,2)
To show that the two sums of squares on thé

R.H.S5. of (4,1) are independent, let us write, for

exsmple, the residuel y, = Yo -V, + ¥, or

Via = -:");: ¥ :.,LZ‘.Y;,.-!-?-'F.);)% ¥, as

T.!i?\[l-m (m=1)(n =1) I-m....l—m'll =0 1 ...1

-———

I 1=n J....| E etc.] y::d&, where y is the same
vector as in § 1. A deviation of a column mean from
the general mean, e.g., ¥, - ¥, may be written as ct'y,

=fm[p1-1-1 a1 nlad ol a1 etel] y
Now c'drﬁﬁFﬁerJ(l-m)-(m-n[ﬁ—l]-(n-z)(l—m)+(mﬁ1)(n—l+
n—l-ﬁ:ﬁ)} = 0, so that ¢ and d are orthogonal, and
hence, by Lemma 5 (Cor), c¢'y and d'y are independent
linear forms. The same may be proved of any column-
mean deviation and of any residual. Hence, if we
write (4,1) as,

y€'Cy = y'D'Dy+y'E'Ey, . vosvraeseik % D)

the rows of D must be orthogonal to the rows of E. The
matrix C'C has already been proved idempotent (§|)

and D'D = mH'H, where

BH= #[I, - ML, - Mj..n sub-matrices] , 1, and
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M being as before, so that

A o 'L, - M,
e == el
el St Bt ;

_._....__..l_......_._i.__._._!_...__._

s M;ql:[n _Mn|"' !In = Mﬂ_d

of order mn x mn, which is clearly idempotent.
The mean value of y'D'Dy is found from the fact

the
that ,variance of y, =- ¥ = c'y is c¢'c (by Lemma 5)
n-i

=.:.'~";~[m(ﬁ—lj" + m(n-l)]= " . The required mean
value is therefore (n-1)6" (unstandardised). It
follows from Lemma 9, Gonl)that y'D'Dy has gamma~-type
distribution with n-1l degrees of freedom, and since
we have already proved that y'C'Cy has gamma-type
distribution with m(n-1) degrees of freedom, we have,
in consequence of Lemma 10 (Cor), that y'E'Ey also
has gamma-type distribution and has (m=l)(n-1l) degrees
of freedom. In addition, its mean square is an
estimate of@ which is independent of the estimate
derived from y'D'Dy, and also (by Lemma 7, Cor.l) of
that from y'B'By or ﬁ;kmq -§¥)" . Thus all three
component sums of squares on the right-hand side of
(4,2) have independent gemma-type distribution with

m-1, n-1, and (m-1)(n-1) degrees of freedom respectively,
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80 that their mean squares may be tested in the usual
manner,

The fore-going results are summarised in an
analysis of variance table, thus:-

Analysis of Variance

Source of Variation Degrees of Sums of Mean
Freedom Squares Squares

Between treatment-

means. m-1 ny (%, ¥ st
Between block-means, n-1 m?{%i ) sk
Residuals (m-1)(n-1) 7;};.( % o o D (R
Total mn-1 Iy, ~¥5 ~==-
[

It will be desired to compare S, , the estimate
of variance derived from treatment-means, with sj,
that from residuaels. It is easily seen that sj will
provide an estimate of random variance even when
neither block-means nor treatment-means can be
regarded as derived from the same population, within
the limits of sampling error. In that case the
)ﬂ\

yield of the (i, ] plot (yg ) may be considered

equal to T+ (ysy)+(yyy)+ =Y+ % -F + x5  (where
x% is a random component), since ¥, and y, are the
sample estimates of the mean of the i* row and f*
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column respectively. Hencé % Y% “Voy+ T = x% .

It would also be possible to compare s; with
s3 in order to see if the randomised-block layout
has been significantly effective in removing the.
effects of soil heterogeneity. However, the
significance of s] is really not in question, for
in the designing of the experiment we have in effect
assumed that block-means would be different.
Therefore, failing the significance of s, , there is
no justification for pooling the sums of squares for
blocks and residuals into a combined estimate of
error variance, even if s} should happen to be less
than s . Thus, thie hypothesis of complete uniformity
was in reality not the correct one. Each variate
yi; 1s equal to m +f3 + ’5'; , where (3;is the mean of
the jtkblock, estimated from the sample by Yog -,
so that each seample value yy is equal to
Tly -Fle x5 . /% is a normal independent variate
with mean at the origin and variance q:, but constant
for all variates relating to a given block, The
mean square for blocks is now an estimate of:?@mqi, where
o“is the variance of E; i.e. the random variance, The

orthogonality of the design of the experiment ensures that
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the other two mean squares continue to be (on a null
hypothesis) independent estimates of the random variance,
for the proof of their independence is unaffected by
the fact that the Y may have different means, and
since };_'_LJ( the sum of the sample values of A ) = 0,
};.[y..o -7} ana z}}(mj-yh-xf-i)‘ involve only deviations
due to the random component x%.

The effectiveness of the randomised-block design
is clear. In general s;> s; , which means that
o< o”, i.e, that the precision of the experiment has
been improved. Moreover, since the area of a single
block is more likely to be of uniform fertility than
the total area of all the experimental plots, the
plot-fertility-indices of a single block are more
likely to correspond with the theoretical requirements
of 'a sample from a population distributed normally
about the mean for the particular block,. Thus, for
an efficient experiment there is a limit to the size
of block, and therefore to the number of treatments
which may be tested in any one experiment, though

this disadvantage may be overcome by such a device as

confounding.
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Section 5.

Latin-Square Design

In the randomised-block design it was seen that
the effects of soil heterogeneity could be partially
eliminated and the precision of the experiment increased
by the division of the experimental area into blocks.
The Latin-square design enables the effects of soil
heterogeneity to be eliminated in two directions at
right angles, and in general still further increases
the precision of the experiment. Consider the field
divided into n~ plots by means of n rows and n
columns, the n treatments under test being assigned
by a process of randomisation so that each treatment
occurs once in each row and onee in each column.

There are thus n replications. The process of the
random allocation of treatments [described by Wishart
and Sanders (214]ensures that the variate elements of
the matrix of yields under the uniformity hypothesis
may be considered independent.

Let the matrix of yields of a Latin square of
order n be [?bk] ; where i refers to row, j to column,
and k to treatment, and let the means of rows, columns,
and treatments be respectively ¥, , Yojo 3 Yoou * The

general mean is §, and the y;« are, under the hypothesis
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of uniformity, independent normal variates, each with
mean a4 and variance ¢. Disregarding treatment suffixes,
we have by (4,1)
5T (¥ -§) = ng(x,,-?}‘+ ng(:,;,., +z>: “Yieo~Hyet TV
.........,.._._(5,1)
The residual sum of squares may now be further
subdivided; for consider the residuals
(qu'yho“yd&*?) arranged in rows according to
the suffix k. The mean of all these n" residuals
is given b (55 Yy, - e ~BYser ' F) = 0.
' The mean of row 1 =y - (zl-'}:'.oo‘b%y;jo -ny) = ¥, =V
Hence, applying Lemma 8, we obtain
T3 (T ~Viso ~Vege* T = T G T+ T (T Ti, =Yoo ~Taos*2F)
somnna e one (BB

Combining (5,1) and 5,2), we have

ZZ( Vi -5f = nz o =TI+ n%:(y;j, i+ né(xm -¥)
+ZE (Yw =Yoo IY,jo 'E«""Z?)L‘ cecepeeiconcandd8,3)
In order to exemplify a typical residual,
let us suppose that treatment 1 occurs in the first
three rows and columns as ¥, , Y , and y,, , the

treatment suffix being omitted, because in general the

suffix k of Vi may belong to any of the n treatments
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according to the particular randomisation of the

experiment. The residual, for example,

Ve ~Noo "Yoio ~Yoor* 2y

=Y "-:!-(Y,_“I-Yu ...-f-YM)-'r'f(Y,,+ 3;_‘+..:'-ym)—‘,.‘(y;3+ yu + T+

r3

which in vector notation may be written as

ﬁi[a-n 2 =N B s n -3n+2 2-n Solles cwo=n

!
1
1
2"'11 2"'1] 2 2-00-2 E etc.] y, or e'y,

where y 1s the column vector

1
1

I
{y“ }’;’_'na. n : y,.‘ Yn ---.y’“ ¢ o8 8 e : y;" X‘"_ ."'Yﬂﬂ} 9 B.Ild

e is similarly partitioned.

A deviation of a treatment-mean from the

general mean €.g. Y, -y , may be written as

1
o BRSO T TS R B S -1...-1:ethy |

o £y,

Since f'e

= &{-@n)(n-1) -2(n-2)(n-1)+(n-1) (r=30+2) + (2-n) (n-1]"

+(2-n)(n-l)}== 0, e and f are orthogonal, and if we

express (5, 2) in matrix notation as

y'E'M —_ yTF?FY <+ Y'G"GY..‘-.D‘Q .n'.anoo-o-(5}4]

and (5,3) similarly as

y'A'Ay = y'B'By+y'D'Dy +7' PPy +y'G'GY e (5,5

it follows as before that the rows of F are orthogonal
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to the rows of G,
It was proved in the previous section that

E'E is an idempotent matrix. F'F may also be
proved idempotent, since this matrix is equal to
nL'L, where
L=A[K, -4} K, M, | {K, - M,] , the K; bei

ALK MK M K - U j being
matrices of order n x n with one element in each
row and column unity, all other elements zero, and
such that, if k!, is the .Eﬂ'row of K; ,

¢ d
/
k;(e ki(c = 0. Hence

F'F =L | L= M) Kp= Maloooose | Knm My
f Kﬂ...'._M.r-:._ _‘_Mr'_..r.' IRE °..__:_ e M

Ko~ My, I_.Ku-: e en ,_.Kin"_ In.

s e i N i

where K; = K'E, and Kg= K.;;_ (i#£j). F'F is now

seen to be idempotent, since KG’Kﬁ = ;" and

K; K= K K K K, = K, K, = Ky (since X; K;=1).
_ To find the mean value of y'F'Fy or

n}:_‘[g“-?)", we have that for K=1 the variance

of £'y is given by f'f=;‘,ﬁ{(n—_1)n+(n-1)"n}= e s or

unstandardised, &z ¢ . The mean value of y'F'Fy is

therefore (n-1)6°, and , by Lemma 9, Cor, 2, it may be

deduced that y'F'Fy has
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gamma-type distribution with n-l degrees of freedom.
Hence, since it has already been proved that y'EtEy is
similarly distributed with (n-1)° degrees of freedom
(34), Lemma 10 (Coflmay be applied to show that y'G'Gy
also has gamma-type distribution, its degrees of freedom
being {(n-1)-(n-1) or (n-1){n-2). 1Its mean square is en
estimate of variance which is independent of similar
estimates derived not only from y*'F'Fy, but elso, by Lemma
7,Corl) from all the other gquadratic forms of (5,5).
Thus all the component sums of squares on the right-hand
side of (5,3) or (5,5) have independent gamma-type
distribution with n-1, n-1, n-1, and (n-1)(n-2) degrees
of freedom respectively, soO that their mean squares may

be compared by the usual tests for compatibility with

the uniformity hypothesis.
de heve the following table of analysis of variance:-

liean
Variation DB 50 Sums of Sguares Sqﬁares
Between rows. n-1 nz‘{y;“ -7 it
Between columns n-1 n§. (yoj, -‘Sr')" 8y
Retween treatments n-1i nfu_ (ym“?)’- 8
Residuals (n-1)(n-2) %(Y;,’,('Y;“"};j, Vool &7 i e
Total £ -1 2‘3}(3&_‘-,"? 5

The desired comparison of mean squares will be

between sg, the estimate of variance obtained from treatment-

meens, end s, the estimate obtained from residuals.
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The latter will still be an estimate of the random veriance
even when row-means, column-means, and treatment-means can
no longer be considered identicel within the limits of
random sempling, for then the yield of the (i ,J)ﬂ‘ plot with
treatment k (say) may be regarded as equal to
¥ + Vo T+ 50 ~F 1% Yoo =F) + x5
= Vioo® Yojot Yoox —2F + X 5
where xg is a random component. Hence the residual
- Yijue ~Vioo ~Yojo Yoo 2 is equal to X3 -

The significance of sz, and of S’; mey elso be tested
to ascertain the efficiency of the row and column arraenge-
ment in removing the effects of soil heterogeneity. Yet,
as in the case of the blocks mean-square of a randomised-
blocks experiment, their significance is not in question,
for the design of the experiment really presumes that the
row and column means will be different. Thus the uniformity
hypothesis is not the correct one, the hypothesis of the
Latin square being that each variate y;; 1is equal to «

IR i E:J , where p; is the meen of the ™ row (estimated
from the sample by y,, -¥) and y; is the mean of the b

column (estimated from the sample by Y, -¥). Both p;and

¥; ere normal independent veriates with meen at the origin,
their variences being oy and 6 respectively. p; is constant

for all i relating to the i“‘row, and ¥; is constant for

all Vi relating to thej"'column. The mean squares for rows

7, 1 L} ;.
and columns are now estimates of G+ noy and of 0*+ no.
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respectively, where o*is the variance

of s l.e. the random varience. Once again the

£)
orthogonality_of the design ensures that under a null
hypothesis (i.e. that treatments have no differential
effect) s; and s continue to be estimates of the random
variance. In the first place the proof of their independence
is unaffected by the fact that the Yy mey have different
means. Also !;q=§;c_;=a (the sample values of pi aﬁd,n
respectively), and therefore ggx”KJ?f' and
Z.§( P -y;jo-ymx-i—a?)" still involve only deviations due to
the random variete.

If, as usually happens, both sf and s: are greater
then s} , it is apperent that the precision of the
experiment has been increased as compared with the
corresponding randomised-blocks design, though this is
slightly offset by the loss of (n—lf'-(n*ll(n-Z}a n-1
degrees of freedom for error. The laying down of a Latine~
square experiment, too, frequently involves practical
difficulties. The design could not, for example, be
easily adapted to a cereal experiment where sowing and

manuring were done by drills. There is also a limitation

to the number of treatments that can be tested. If the
number is less than four, the error variance is not based
on a sufficient number of degrees of freedom; and if the
number is greater that about eight, the rows and columns

become too lang, with a consequent impairment of efficiency.
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Section 6.

The Comperative Efficiency of Randomised

Blocks and the Latin Square.

It has been seen (§2) that a set of plot-~fertility-
indices from a reasonably uniform field may be considered
as a homogeneous normal sample. Yet it was recognised
that in practice, as revealed by uniformity trials, such
conditions of uniformity must rarely exist when the area
of the field is large compared with the area of the ultimate
plots. The reason for this is the existence of "fertility-
gradients", or systematic changes of fertility, the origins
of which must lie in such causes as the varying chemical
constitution of the soil, the previous husbandry of the
field, etec. It has also been seen (§§4,5) how by means of
local control (rendomised blocks, the Latin square) the
total area of the experiment may be subdivided into smaller
areas within which the plot-fertility-indices are more
likely to approach the theoretical requirements of a
homogeneous normel sample. This raises the gquestion of
the relative efficiency of the various experimental designs
(different-sheped blocks, the Latin square) in eliminating
the systematic effects of soil heterogeneity and in laying
bere the residual varience associated with pure random error.
Actual data from uniformity trials cen be of little assistance

in the latter respect, since it is impossible to separate the
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the component of residual variance due to soil fertility
and that due to random error. This suggests the use of
models. Twenty-three "fertility-grids" were therefore
prepared, representing in an ideal manner various possible
types of fertility-gradients in 8 x 8 squares. On each
of these were superimposed two "random-grids" chosen at
random from a set of four, prepared and analysed so that
the residual variances were known. The 46 sets of
artificial data thus obtained were analysed in five
different ways:- (1) with rows treated as blocks (2) with
colums treated as blocks,(3) with adjacent half-rows
treated as blocks (4) with adjacent half-columns treated
as blocks,{ﬁ] as an 8 x 8 Latin square. Lach block thus
consisted of eight "plots"™, the blocks being allocated as

in the diagrams below:~-
Anelysis 1 Analysis 2

} Block|No. I

i I
Block|No. 2
1 ' P
Block No. B |
! o | | 4 o 5] <H w0 (2] - w0
Block (No., # {
: L L ol e o o (=) () o o
T = = = = = = = =
BH.ocl: No, P | ..: 24 | :4 ::c( & ; oY
T | o | ! L (2 ] (3] (3] 5] [5]
¥ o o o o o o o o
11 Fos | | =i - — - i i ~ —
Block |[No, 6 | B|lm|m]|m]| @] @] | @

Block No, 7

Rlock No. 8
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Melysis 3 Analysis 4
[t I r |
Block Bloc‘jc : 5
i No 1 No & 'i VT S T PSS TS0 T (7R L T (S
! IO o = ‘3 | [3) £ © [3) [3)
] : : o o o o o [} o o
! | | Lo L -0 O - =l o = =
| Block Block - m (5 m =
L |
| |
| No 2 No 6
Block Bloeclk
N VTR I ™ TS T o [
No & No 7 [3) o 7o) M ©
{ | L] (2} L&) o LS O O L)
| ] -l =l — = —
Block Block M M M =
No 4 No' 8

The percentage efficiency of each type of analysis
was estimated in the usual manner from the error mean
square and the variance of the particular random-grid used
(as ecalculated from the total sum of squares). This has
meant that occesionally, owing to the vagaries of sampling,
en efficiency greater then 100% hes been recorded. No
account was taken of the fact that the variance-estimate
of the Latin-square analysig is besed on fewer degrees of
freédom than those of the raadomised-blocks analyses.

The following were the selected "fertility-grids",
with a description of the type of fertility-gradient

represented in each case:=-
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0] 0JwoJoOo]|] O 0J10]| O TII
C C 10 6] 0 0110 0

(0] Q|10 o 0 |10 o

] o100 | ©C|] O] ©¢|1C) ©

(o 0 | B (5 e Jf A S 5 K6 4 156 K 1 (IS

8] 0|10 O 9] 0] 10 0

C|] 0J]10 ]| © - 0| 0110 ©

(58 | e T 1 o 1o 0 e 28 | ) e [

Two ridges of fertility

parallel to the columns

of the field,

ol s{10] 5] o] o] o o I
(@ 0 5 10 5 o 0 ¢
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Two ridges diagonglly across

the field

0f 5110 L B[R0 5
0] 5 |16 8 | & 8 |10| 5
C| 5|10 8 |8 8 |10}| &
0| 5|10 BoiliG 8 [&OE &
O] 5|10 | 8 | & 8 |10)| 5
Gl 65|10 81 5 8 | 10 5
0| 5|10 8| & 8 |10) 5
0] 5§10 8| & 8 |10] 5

Seme as I but

less sudden

with ridges

b BTLO 8N B e ol ©
2| 5 gali 8 1§ 2
QN[ 2 a5 B{10 | 8 & 2
GG 2N g |10 81 5
o e et 20 5 8 [ 10]" 8
(o [ ] (S 2 R o B R ) 8| 10
eI (o [0 (e (S 5 8
c| o6l 0| O] O] © 2| 5
A single diagonal ridge, not so

sudden as in

IT
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12 12| 12112 |12 |12 | 12| 12| TT|14| 13 [22] 12 l10]| 9ol s
10 |10 10|10 |10 |10 10| 10 153112 | 11| 10 S gl 7
8 8 8 8 8 8 8 8 121 11 | 10 g & 7 6
§) 6 6 6 6 6 6 6 11| 10 9 8 7 6 B
41 4| 4] 4| 4] 4] 4] 4 el I ) A I o | gt W)
i b N R o s R B gl &) T} 6. 6| & &
0 0 C| O 0 0] 0 © g 7 6 5 4 3 2
ol e sdt ] e e et 1 He ] | e /2 B (2] et (I ] e 8 bl |
A cradual, regular drift dow A gradual, regular drift
the field, For combinatorial diagonally across the field

purposes a down-drift may be
designated ¥(a), end a

cross=drift ¥(b).

12 | 12| 22| 12| 12| 12| 22| 12|vIIi|12|10|18| 6 | 4 | 2|10
10| 10| 20| 10| 10| 10| 20| 10 12|10]18]| 6 | 4 | 210
8| 8| 18| 8| 8| 8] 18] 8 12|20|18| 6 | ¢ | 2|20
6| 6116 6| 6| 6| 18| 6 1220|128 | 6 | 4 | 2 |10
a| 4|14 4| 4] 4| 14| 4 121018 | 6 | 4 | 2 |10
2| 20 agul 2| ‘gl 242 2 12|/10/18| 6 | 4 | 2|10
o/| oli0]| o} o] ©f 1o © 12| 10|18 6 | 4 | 2 |10
ol ol1wo| ol o of 10] o 121018 6 | 4 | 2|10

T combined with ¥(a) 5 T combined with ¥(b)
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1413|2211 |10| 9|18 7|X [ 12| 27| 22| 20| 17| 20| 22| 17
13 1221 |10| 9| 8| 17| s 10| 15| 20| 18| 25 | 18| 20| 15
12|12]20f 9| 8| 7] 16| 5 8| 13| 18| 16| 13| 16| 18| 13
12| 10} 19| 8| 7| 6| 15| 4 6| 11| 16| 14| 21| 14| 16| 11
10| 9| 28] 7| 6| 5| 14| 3 4| of 14| 22| 9of 12| 24| 9
gl sla7| &| 6| 4| 13| 2 2| 7y agl ol xlaol a2l 7
gl Tlze| sl &l 2] 12l 1 ol s5{ 20| 8| 5| 8| 1c| 5
71 slasil =4l 8] -2l st -0 ol 5| 20| 8| 5| 8] 10| 5
T combined with Y1 II combined with V(a )%
14| 18| 22| 19| 15| 47| 18| 12 |XTT | 12| 17| 22| 17| 12 [ 12| 12| 12
13| 17| 22| 28] 14| 26| 27 | 22 10| 10| 15| 20| 15 | 10| 20| 20
12| 16| 20| 17| 23| 15| 16 | 10 8| 8| 8| 13| 18|23| 8| 8
11| 15| 19| 16| 12| 14| 15| 9 11| 6| 6| 6|11|16| 11| 6
10| 14| 18| 15| 11| 13| 14| 8 14| 9| 4| 4| 4| 9|14 9
9| 15| 47| 14| 1012|213 | 7 o A0 I A B (O S
8|l 12| 16| 13| 9| 11| 12| 6 0| 51401 51 o ol of &
7|11|15|12| 8| 10| 12| 5 o| o| 5|40l 5| o] o] o

_ZL_;'_ combined with -_T{_,]_I_

% The combination of II with V(b) is omitted as not being

materielly different from II itself

III combined with V(a)
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121 15| 18] 11 4| 2| o| o|ZIw| 14| 18] 22| 16| 10] ¢
12| 10 13| 16| 9l 2| ol o 13|12 ] 16| 20| 14
- 121 10| 8| 11| 24| 7| o] 0 12 | 11| 10 | 24| 18] 12
17| 10| 8] 8| 9| 22| 5| o 1610 9| 8| 12| 16
22| 45| 8| 8| 4t 7l 20| 5 20 14| 8| 7| s 10

7120|235 6| 4| 2| 5] 10 14|18 12| 6] 5| 4

12| 28 | #8414 ] 4| 2] o 5 8l12| 16| 10| 4| 3
2)10]23]|18| 9| 2] o] o 7| 6|10] 14| 8| 2
IIT combined with ¥(b) III combined with VI
17| 20|22 20| 17| 14| 12| 12 | XVL | 27 | 28] 18] 14| 9| 4
12|15 | 18| 20| 18| 15[ 12| 10 14| 15| 16 | 16| 22
8|10 |13 | 26 | 18| 16| 13| 10 12 | 12| 13| 14| 14| 10
6| 6| 8|11 14| 16| 14| 11 12 | 10| 10| 11| 12| 12
4| 4| 4| 6| 9| 12| 14| 12 12 | to| 8| 8] @| 20
S e T B ] [ 12| 10| 8| 6| &
c|l ol of of of 2] 5| 8 12 30| 81 6] &
ol o ol o o o| 2} 5 12| 10| 8| 6| 4

IV combined with V(a) IV combined with ¥(b)
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19| 21| 22| 19| 15| 11| 8| 7[xvITH 14 12| 10| 8] 6| 4| 2] ©
15| 17| 19| 20| 17| 13| 9| 6 121 10| 8| 6| 6| 4| 2| 2
12| 13| 15| 17| 18| 15| 11| 7 10| 8| 6| 6| 6| 4| 4| 4
11110 12| 13| 15| 16| 13| 9 8l 6| 4| 6| 6| 6| 6| 6
10} 9| 8| 9|11 23]| 14| 11 6] 4| 4| 6| 6| 6| 6] 8
or 8| 7| 6| 71 9 14| 12 4| 2| 4| 4| 6| 6| 8| 10
81 7 8 B 4 Bl 7| 9 2| 2| 2| 4| 6| 8| 10] 12
vl el 54l 8] 2l &l B Ol 2| 4| 6| 8|10 12| 14
IV combined with I An extreme case quoted by

Wishart (20) as being

unsuiteble for a Latin square,

P4
I

10| 8| 6| 4| 6| 8|10]11|XX | 2| 2| 4| 6| 6| 7| 5| 4
12 |6| 76| 8| 9]10]12 o| 3| 5| 7| | o| 6| s
108|776 6| 7| 9|10 6l 6| 7| 8| ol12| 6] o
s8|7|le|s5)a]lsl| 8| o 12| of s|1o0f12| 6| 2| 2
g le|e|alolal]eles 10| 9| 8| 7| 6| al3]| s
R R O R slwo]| 8| 6] ol 2] 3| 4
6 |a|a|6]a|e]| ¢| 5 w0l el 6| ol ol 2|3 4
s |8 1'e 18l s &l ol 5 12 10| 8| 6| 4| 3| 2| 3

In grids XIX, ___—}{T{-_, and XX1 an attempt has been made to simulate

what uniformity trials show to be a common gsituation, i,e,

contours of equel fertility level surrounding high end low points of
Pertility., In these grids points of high (12), medium ( 8), and

low (0) fertility were allotted at rendom, the remaining plots being

. . % p 1 kY
given indices so as to produce smooth chenges from one plot to anothep
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9. 11011201 81 7] 7| &| B 61 3] 3] 6|10| 6| 3| 3
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Fan-shaped fertility-gradient,

It is, of course, recognised thet the above grids represent
fertility-gradients of a very ideal tyre indeed, unlikely
to be exactly realised in practice, but it is nevertheless
interesting to see with what degree of efficiency the
different types of amalysis eliminate their effects. No

attempt has been made to represent ridges or gradients
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crossing the field at angles other than d,45°, or 90°
This would be difficult within the limits of an 8x8 square,
and would disturb the simplicity of the scheme.

The following are the four "random-grids", two of
which, chosen at random, were superimposed on each of the
fertility-grids. 7The sample values were obteined in the
same menner as those in Section 2, page25, so that the

theoretical verisnce is 2°5.

Totals.
(1) -1 0 1 -1 =i =1 =2 3 -2
1 2 1 =2 2 2 =1 =2 3

1 -3 1 0 oyl -2 2 -2
2 -1 -4 3 RN =1 iy RS 0
5 -4 =g O =¢ 2 w1 =i =
& . e 4 =B lmik 200 Sk

Totals: 6 -4 0 =2 =5 =5 =6 -1 =16
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Analyses of Variance (Rendom-grid 1)

Number | Source D.F, Sums of Squares lMean Squares
1 Rows 7 i 5l ) 1,68
Resgiduals 56 158,25 2,83
2 Columns 7 13,25 1,89
Residuals | 56 156,75 2,80
3 Rows 7 11,75 1,68
Columns 7 16,25 1,89
Residuals 49 145,00 2,96
Total 63 170,00 2,70
Totals
(2) =1 =3 =1 (¢ 0 =1 =% =1 =10
o -1 -2 0 =1 2 —HE TR = 4
0 0 3 1 =3 =i 0 0 Y
& =f =i =5 "l 0 0 0 -3
2 o -1 =1 0 6] 1 0 1
4 =1 2 1 0 ! 1 4
2ol 0 0 =1 2 Q=1 = 14
-1 o -1 Qi k=g S=g 0 -1 g7
Wabaluyl B T e ity lSg pne advd R s ey | 323
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Analyses of Variance (Rendom-grid 2)

Number Source D.F, Suns of Squares MMean Squares
ik Rows 7 17 ,44 2,49
Regiduals 56 89,00 258
2 Columns 7 10,94 i 37
Residuals 56 95,50 171
3 Rows T 17 44 2,49
Colunns 7 10,94 1,56
Residuale A9 78,06 1,69
Total 63 106,44 1,69
Totals

(3) 0 =2 1 3 =1 4] 0 -2 -1

1 -1 0 1 =2 2 5§ © 4

g =& =% O =2 =L =% =0

2 3 gl 0 0 Q =3 1

TR S S [RSR < GR  « f E 5

2 0 -1 =3 2 g =i i ]
1 1 1=k o -2 2 2 4
Totals: g =7 1 =D -3 3 Bi=g i
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Anelyses of Variance (Random-grid 3)

Number Source D,F, Sums of Squares lfean Squares
1§ Rows 7 17,61 2.62
Residuals 66 1578 2,81
2 Colums i 21,386 3,06
Residuals 56 153,62 2,74
3 Rows 7 1761 2,52
Coluwms 7 21,356 3,085
Residuals 49 136,01 5]
Total 63 174,98 2,78
Totals

(4) -1 2 0 -1 0 -2 0 -4 -6

R 2 g =2 =1 0 =2 0

2 =% A R - v 2 0 1

i O =2 =L =3 L= 1 =6

-1 -2 3.0 =t QS0 -5

-2 0 =2 1 i GiEg i 6]

i 1 i 8] (6 i (¢ 0 4

0 =2 0 1 =2 1 v 2

Totals: 1 -4 1 5 -5 0 =~ =5] -10
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Anelyses of Variance
Number Source D,F, Sums of Squares lMfean Squares
1 Rows 7 13,19 1.88
Residuals 56 135,25 2.42
2 Colimns 7 5,94 0,85
Residuals 56 142,50 2,54
3 Rows 7 13,19 1,88
Columns 7 5,94 0,85
Residuals 49 129,51 2,64
Total 63 148,44 2,36
The results of the enalyses of the combined grids
are tabulated below:-
Fertility] Source of |Random llean Squares
Grid No, | Veriation |Grid No,| Analysis 1|Anal;2,|Anal:3|Anal:4 |Anal:5
2 Blocks 1 1,68 1,88 1,68
(rows) }4 1,88 3,42 1,88
Blocks 1 187 .61 56,93 | 167,61
(columns) } 4 176,56 61,21 | 176,56
1 25,54 2,80 | 23,52 16,63 2,96
Error “ 4 24,38 2,54 | 24,19 | 16,96 2,64
Percentage 1 11.54 96,47 | 11,57 | 16.2%| 91.2%
Efficiency } 4 9.,7% 92.9% | 9.8% 15,93; 89.4%
, A A 5 O
Mean Percent: Effic:{-lgaﬁ%ﬁtg% e 10-512.6%;;22_ 90,5%
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Pertility GSource of| Random Mean Squares
Grid No, | Variation| Grid No,j Analysis 1|Anal:2|Anal:3{Anal:4 Anal5
i Blocks 3 2,52 5,52 2,52
(o) } 4 1,88 5,21 1,88
Blocls 3 84,52 51,19 84,52
(columns) 4 92,65 58,85| 92,63
3 12,99 2,741 12,62 6,91] 2,78
Woniar 4 13,89 2.,54| 13,471 6,77] 2.64
Percentage S 21,47 101,5% | 22,07 ] 40,2%|100,0%
Efficiency 4 17,07 9zogz 17.5% 34.97, 89,47
19,27 97,27.{ 18,8%\ 37.6%
Liean Percont: Effict e s e
58,2% 28,2% 94,7%
Sy -
e Blocks 1 8,29 26,50 8,29
11
(rows) 4 5,99 33,96 5,99
B1o0ks | 1 7.25 30,32] 7,25
( colums) 4 8,35 23,35/ 8,36
1 16,55 16,68} 14,28} 13,80} 17,88
Error 4 18,46 168,17} 14,97) 16,28 19,91
Percentage 1 16.5% 16,27 18,9% 19,6/} 15,27
Efficiency 4 12,8% 13,0%| 15,80} 14,57} 11,9%
14,6% b ga,6%] 17,40 17,07
t Effl o mmlvlwﬂb‘ﬂ’liAh T
1 Percent: 1e
e 14 6% 17 ,2% 13,6%
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-Héartility; Source of Random Mean Squares B by e
Grid No, | Variation| Grid Noj Analysis 1|Anal:f|Anal:3}{Anal:4] Anali5
i Blocks 1 20,18 62,82 20,18

(rows) } 2 23,60 66,35 23,60
Blocks 1 13,29 66,89) 13,29
(colums) } 2 18,92 66,71} 18,92
1 15,15 16,00 9,82 9,51 15,42
Error i} 2 | 13.38 13,96 h_..i'.o"“ 7,99| 12,59
Percentage 1 1?,82“ 16,9”70 27,57% | 29,07 17,5%
Efficiency } 2 12,67 12,1%) 21,071 21,271 13.4%
 15,2% 14 6% 24,2%1 25 ,1%
iiean Perecent: BEffic: el i
14 ,8% 24,67 15 ,4%
IO — - 2
A Blocks |) 3 157,02 h51,12 157,02
(rows) 4 146,60 142 ,42 146,60
Blocks 3 5,05 120,62 3,05
(columns) } 4 0,8 218,35 0,85
3 2,81 22,086| 3,55| 7,37 2.78
Error 4 2,42 20,68 | 2,94| 5.,95| 2.64
Percentage 3 08,97 12,67} 78,37%] 37,75 100,0%
Efficiency 4 97.5% 11,4%| 79.,77] 39,77 89.4%
‘98,27  '12,0%| 7e.0% 38,77
lMean Percent: EFfie e el o se e
| 54 ,1% 55;3% 94 ,7%

e s
fa—
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Far.tilit.y‘ Source of | Reandom Mean Squares
Grid No, | Variation| Grid Noj Analysis ifAnal:2|Anal:3{Anal:4 Anali5
I B ocks i} 2 44,49 182,86 44 49
(rows) 4 39,51 81,13 39,31
Blocks } 2 52,42 78,78] 52,42
(columns) 4 54,56 83,24| 54,56
2 7,95 6,96 | 3,20 | 3,66] 1,59
Error } A 9,18 7.221 3,90 | 3,64 2,64
Percentage 2 I A 24,37.152,67 | 46 ,2%| 106,37,
Efficiency} 4 25,8% 32,7/ | 60,57 | 64,87 89,47
23,67, 28,5%] 56,6/ | 55,57,
iiean Percont: Effic: B e i i
26 ,07% 56 ,0% 97 8%
¥iI Blocks [} 1 163,96 160,43 163,96
(rows) } 3 157,02 151,12 157,02
Blocks 1 167,61 179,07 167,61
(colums) } 3 185,19 175,52] 185,19
1 23,54 23,08| 25,98] 21,65 2,96
Error } 3 25,56 22,06 | 26,31| 23,27] 2,78
Percentage 1 11,57, 11,7%| 11,37 12.5/ 01,27,
Efficiency} 3 10,97, 12.6%| 10,6/ 11,97 100,07
1127 12,2%| 11,0/, 12,2
Mean Percent: Effic: [rresnrt e
11,7% 11,6% 95 ,6%
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Fertil 1’oy‘ Source of

Rendom Mean Squares

Grid No, | Variation| Grid NoJ Analysis 1|Anal:2|{Anal:3}Anal:4 Anal,5
VIiT Blocks 1 3 2,52 129,27 2,52
(rows) } 4 1,88 142,74 1,88
Blocks } 3 296,84 134,52} 296 ,84
(colums) 4 292,74 147 ,35| 292,71
3 39,53 2,74 25,69| 25,03 2,78
Error } 4 38,20 2,54] 21,29] 20,741 2,64
Percentage 3 7.0% 101,57 11.7%| 12.4/| 100.0%
{EEf iciency } 4 6,17, 02,97%| 11,17 11,47 89.4%

6.,6% o7 .24 11,47 11,8

hesan Bawasnks BRRSaRSrmer T T e e
g @ 51,%% 11,6% 04 7%
it Blocks Jy 41 48,82 93,86 48,82
(rows) } 3 44,66 78,62 44,66
31ocks 1 203,04 99,79 203,04
(columns) } 3 213,34 88,30 213,34
3 27,97 8,690 22,34 21,6 2,96
s } 3 28,88 7 .80 24,61 25,48 2,58
g;'m-mge 1 9,77 31 12,47 12.8] 91,27
Efficiency} 3 9,6% 35.67] 11,3 11,9/ 109,97

9,67 33,47 11,7 12,2

Mean Percent: Eff i-c.m"V'W Aesitas a2
21 ,5% 12,07 100 ,6%
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Fertility Source of| Random liean Squares
Grid No, | Variation| Grid NoJj Analysis i|Anal:2[inal:3|Anal:d] Anals
z Blocks } 1 163,97 . -|161,14 163,97
rows 0, 144,21 146 ,6
( ) 4 146,60 44 .2 46,60
Bloclks 1 75,75 170,07 75,756
(colums) 4 92,63 174 ,56] 92,63
1 12,06 25,08 12,41 11.23 2,96
Error 4 13,89 20,63| 124,19 10,3 2,64
Percentage ik 22,47 11,77| 21.87| 23,9/ 91.2%
P 1oiency 4 17,07 11,47| 16,67] 22,7, 89,47
19,7% 11,67 19,27| 23.3/
o P ke TP S e T T e P e A
igan ‘ercont: Effic 15 .6% 21 2% 90,3%
¥ 4 Aoene. R 44,49 61,99 44,49
(rowe) 4 39,31 60,06 59,31
A
31ocks 2 80,92 75,44 80,92
r
lostumms) ) & } 88,06 sz.zé 88,06
N 2 11,51 6,9 9,54 T7.64 1,59
Benon J' 4 13,32 7,28 10,74 7.95 2,64
Percentage 2 14‘77"' 24'52 18, y 22, 106 ’32
° 5 2 °
BEficienoy 4 17,7/ 32.6) 22.0f 29,7 89,47
16,27 28,44 20.,0f 25.9
llean Percent: EFfi e s gt e s
\ 1e¢
lean srcenti ¢ 22.3% 23.0% 97'8%

. —ts - ——
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Fertility Source of| Random Mean Sguares 7 o
Grid No, | Variation| Grid Noj Analysis 1|Anal:2{inal:3|Anali4 Analis
XIL
XL Blocks 1 144,86 160,79 144,86
G 3 136,12 145,94 156,12
Blocks 1 7.25 120,32] 7,25
(colums) 3 5,37 112,30] 5,37
1 16,55 33,75 | 14,56 | 19,62| 17,88
Brror 3 15,94 32,28 | 14,70 | 18,98 ] 17,44
F‘ercentage ) 16,37 8,07| 18,57 | 13,8/| 15,17
Lfficiency 8 17 .47, 8.6%| 18,97 | 14,72 15,9%
16,87 8.3%] 18.7% 1 14,7
iiean Percent: Effic: e T e TS e £ i S e
12,6% 16 ,4% 15 .5%
e e
= 5 N 2 13,38 194,85 13,38
TI1T Blocks
Blocks 2 196,14 210,06] 196,14
booiiiine) 3 194,16 205,44 194,16
2 40,40 17,55| 17,74] 15,81] 18,15
- 5 59,53 16,18| 17,89| 15,02 17,44
Percentage 2 4'.2% 9.62» 9.52; 10.’f/o 9.3Z
Eeficiency|) O 7.0% 17,2%| 15,57%| 18,6%| 15,9%
5.67% '13,4%|42,5% 14,67
liean Percent! ic
9,5% 13,6% 12,64
——rTas wr— T wwm

Tas ey
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Fertil ity.. Source of

Rendom

Mean Squares

Grid No, | Variation| Grid NoJ Analysis 1|Anal:2{Anal:3]Anal:4 Anal ;5
X Blocks 1 44,00 124,21 44,00
(rows) & 31,99 117,38 31,99
Blocks i 76,96 113,18 76,96
(eolumns) 4 75,49 98,21 75,49
i 25,27 21,15 | 15,24 | 16,62 17,88
Error 4 26,61 21,42 | 15,95 | 18,35 19,01
Percentage i 10,77 12,8% | 17,77 | 16,27 15,17
[Eff iciency 4 8.97 11,07 14,87 12,97 11,97

9,.8% 11,97%( 16,2% 1 14,67

tisan Pereents Bfficil[ T YT TSN e
10,8% 15 ,4% 13,5%
R f rieess N B 272,31 FO?.GS 272,31
(rows) } 3 270,96 315,18 270,96
Blocks 2 18,92 263,85| 18,92
(oolimne) } 3 19,53 275,000 19453
2 13,38 45,05| 8,96| 14,44 12,59
Eeror } 3 14,86 46,29 9,33| 14,35 14,19
Pe.rcentage 2 12,67 5.8%| 18,9/| 11,7| 13,47
Efficiency|) 9 18,7% 6.0%| 49.87| 19,47 19+8%

15,6% ' 4,94 24,47 15,67

D | S g SEP

lean Percent: Eff'ic

10,2% 20,0% 16,5%

A e e ey S
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Fsrtility‘. Source of | Rendom - Mean Squarses
Grid No, Variation| Grid NojJ Analysis 1jAnal:2{Anal:3|Anal:4 Angl,5
Xt Blocks 2 23,60 119, 92) 23,60
(rows) } 3 17,32 115,03 17,32
Blocks 2 81,35 127,14 61,35
(eolumne) } 3 81,18 130,54 61,18
2 21,18 13,96 9,14 8,24 12,59
Error ;} 3 22,56 14,58 10,35 6,44 14.19
Peroentage 2 8,0% 12,14 18,5%| 20,54 13.4%
Efficiency 3 12,3% 19,1% 26,94 33,14 19,6%
10,2% 15,67 22,7%' 26,8
iiean Fercent: Effic: e G i ] T
12,9% 24,67 1657
TR e "
X0IT | Blocks | 1 123,32 165,11 123,32
(rows) } 3 115,46 156,11 115,46
Blocks 1 15,57 145,18 15,57
(columns) } 3 14,59 141,76] 14,53
1 15,44 28,94 10,21] 12,71} 15,42
Error 3 14,23 26.81 9,15 10,94] 14,19
Percentage 1 17,5% 9,374 26,4%) 21,2% 17.5%
Efficiency 3 19,5% 10,4% 30,5%| 25,4% 19,.6%
18,5% 9,89 28,4% 23,37
liean Percent: Effie mfﬂ;{:é;{f - -“2;.”8?% 18,6%

e == ——— — e
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i
)

Fertility' Source of| Random Mean Squares-—““w LG
Grid No, | Variation| Grid No,J Analysis 1|Anal:2{Anal:3}Anal:4] Anagl 5
XVIII| Blocks 2 0,46 61,39 0,46
(rows) } 4 3,82 86 ,64 3,82
Blocks 2 525 66,52 5,25
(columns) } 4 ‘ 2.7 78,93 2,71
2 13,37 12,77{ 5,75} 5,18] 14,53
Error { 4 16,20 16,34 5,75‘ 6,81] 18,13
Percentage 2 12,6% 13,2%| 29,4% | 32,9%| 11.6%
Eff‘iciencyl} 4 14,6% 14 ,4% | 40,3%{ 34,7%] 13,0%

13,6% 13.8%| 34,8% "' 33,8%

iiean Percent: Effic h""‘“"”_”—j_‘f;":"—gh{h“”ﬂ""”—“jgﬁa 1 12,35%
;}:_ Blocks 1 22,39 22,82 22,39
(rows) } 4 21,87 18,55 21,87
Bloclés 1 | 13,28 24,78 13,28
(columns) [} 4 7,05 27,80 7,05
1 6,86 g,00| 6.81] 6,5 5,95
Error 4 8,35 10,20| 8,76f 17,60 8,53
Percentage 1 39,4% 35.8%| 39,67 41,24 45.4%
Efficiency } 4 28,%% 23,1%| 27,04 31,14 27,7%
33,84  28,4%| 35,3% 36,

: ' . e

Mean Percent: Effie: mﬁ?f:-ffr h-_---‘:gz.%----- 36 ,6%

s v T
o
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h;sft?lity' Source of { Rendom Mean Squarss §

Grid No. | Variation| Grid No, Analysis 1fAnal:2{Anali3|Anali4 Anal,s
Do Blocks ﬂ 3 12,53 33,96 12,53
(rows) 4 10,46 35,93 10,46
Blocks } 3 24,93 47,53| 24,93
(colums) 4 26,14 41,591 26,14
} 3 13,08 11,53 10,40 | 8,70 11.39
Error 4 10,46 6,50 | 7.28 | 6,59 8,22
Percentage 3 21,%% 24,1% 1 26,7% {51,9% | 24,4%
Efficiency } 4 22,8% 27,8% | 32,4% |35,8% 1 268,7%

22,04 126,0% |29,6% '33,8%

ilean Percent: Effic B G s
§ i 24,0% 31.7% 26 ,6%
XKL Bloeks |\ 1 15,50 40,14 15,58
(rows) } 3 16,00 44,21 16,00
Blocks 1 15,04 46,46 15,04
(columns) } 3 11,03 44,32| 11,03
1 12,24 [12,29| 9,16 8,37| 11,84
Error } 3 10,53 11,15 7.00| 6,99] 10,47
Percentage 1 22.0% 122,06 129,5%) 32,35 22.8%
Efficiency } 3 26 ,4% 24,9% { 39,7% | 39,8%| 26,6%

24,2% ' 23,4% | 34,67 36,0%

Hodn Tassenti BERted] T T
23 ,8% 35,3% 24,7%

SRS
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Fertility Source of| Rendom Mean Squares ’s M
Grid No, | Variation{ Grid NoJ Analysis ijAnal:2|&nal:3jAnal:4d Anal;5
podii Blocks 1 39,53 36,24 39,53
(rows) } 4 45,61 44 57 45,61
Bloclks ’} i 18,53 47 .85 18,53
(columns) 4 23,32 53,321 23,32
1 7.58 o,24 | 8,00 ] 6,54 6,02
Error } 4 8,54 |11,33 | 8,67 | 7,58] 6,43
Percentage 1 35,6% |26,4% |33,8% |41,3% | 44,9
Eff iciency } 4 27,6% |20,8% {27,2% {31,214} 36,7%
31,6% '23.6% |30,5% '36,2%
liean Percent: Effic: "“““’”*;;:g%m/\fggg;f:”“’ 40, 5%
T L.
pisanng Blocks N 2 49,44 48,02 49,44
(rows) } 4 48,75 49,21 48,75
Blocks 2 2,91 39,50 =2.91
(columns) } 4 4,03 44,43 4,03
2 2,84 8,65 | 3,02 4,20] 2,83
Frror } 4 3,53 9,12 | 5,48} 4,07 3,46
Percentage 2 59.5% |19.5% |56.0% | 41,2%| 59.7%
Efficiency } 4 66,9% 25.9% |67,.8% | 58.,0%| 68.2%
65,26 22,74 [61,9% 49.6%
Mean Percent: Effic
43 ,0% 55 , 8% 64 ,0%

: e e
= = p—




75,

The average percentage efficiencies over the 23
different grids are: Long blocks, bs-ljﬁ 3 Short blocks,
2697 ; Latin square, 51:5/,, and while no great
significence is attachable to such mean percentages, the
generally superior efficiency of the Latin-square design
is manifest. Clearly the Latin square can be inferior

to a blocks design which uses either the rows or columns
as blocks only when either the row or column mean square
(or both) is less than the error meen square, and then
not by very much. The means of the smaller and larger
percentages for the long blocks are 14°4Z and 35-8%
respectively, and for the short blocks 24-17, and ZQ-BZ .
These figures give some indication of the greater
reliability of the more compact blocks, for it must be
rememberea that the experimenter usually knows little or
nothing about the fertility-gradients of the field and at
best can only guess. Similar considerations suggest that,
if long narrow plots are used, it would be advisable to

place the blocks in a line perpendiculer to the length of

the plots, thus:-

Blpcq AN Block 2 Block 3 Block 4
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In this manner, should the plots prove to have been
placed transverse to the main fertility-slope, then
at least some of the effects of soil heterogeneity will
have been removed, but presumably less efficiently than
if the main fertility-slope had been parallel to the
length of the plots, aActually, the above type of layout
1s stendard practice for simple experiments requiring
cultivation or drilling.

As regards the individual fertility-grids, the
following observations may be made:-
I and IT : As expected, the long blocks provide the
most end leest favourable analyses. The wider blocks
are not sufficiently éensitive to deal efficiently with
such sudden fluctuations within the width of a single
plot, even when the ridges are psrallel to their longer
sides ; but their efficiency improves when the ridges
are less sudden.
11T and IV : Long blocks could have no effect on a
uniform ridge running diagonally ecross the field from
corner to corner. In Grid I11 they would partially
remove the effects of either of the two ridges alone, but
the two together serve to even up Tow end column totals.
The Latin square therefore also fails, and the short
blocks are little better. In Grid IV there is a single

but less sudden ridge which is best dcalt with by the
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short blocks.

¥ : The results sre similer to 11 , except that the
short blocks show up better, as they usually will when
it is & question of fertility-slope and not ridges.
Y1 : As in IV , but the efficiencies are higher and
the Latin square especially good considering the moderate
efficiencies of both types of long block.

Y11 : No type of block can cope with this type of
simultaneous variation at right angles, but the Latin
sqguare again registers a high efficiency.

V1il : In their most favourable case the long blocks
are highly efficient, but only the Latin square is
independent of pre-knowleage of the grid. 7The short
blocks fail to eliminate the ridge effects.

E : As for If_ﬂ;_ , €xcept thet the long blocks are

less efficient for their most favourable case.

X eand XL : Very similar to YII and 1X respectively,

but the short blocks show improvement because the ridges

are less suddens
11 , X111 , end X1V : As in IIT , no type of analysis

is better than moderately efficient.
IV, I¥I, end XVI1 : Similar to AlL, X111 and XIV
respectively, but the greater efficiency of the short

blocks in dealing with the less sudden ridge is noticeable.
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VL1l ¢

As expected, long blocks end the Latin square
all fail, but the short blocks are fairly efficient.
X1X, XX, end XXI : All types of analysis give moderate
results, the Latin square being only slightly better than
the long blocks. The short blocks are best, as is not
surprising when it 1s considered how these grids were
composed.,

ZXI1 end XX111 : The efficiencies for these two grids are

fairly representative of the all-over trend.
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Section 7.

A Multiple - Factor LXperiment.,

suppose that we have p replications in randomised
blocks of mn treatment-combinations, the latter
consisting of m +treatments of one type ( let us say
different varieties ) and n treatments of a second
type ( say different fertilisers ) in all possible
combinations. Let the yields Vi;« ( where i demotes
variety , j fertiliser, and K replication ) be arranged

in & matrix thus :=-
-
y:l.u YG?-I coe Yapy [ RESL N | YMu Ymm . 'ymm
I |
y:.lz. Y'u:. P Y,_,,,__ | oo - }rmu. ym:u. . 'Y-rmz.

Vi Y seee Vini :
|
’ . £ ! | i
I -
|
|
|

yru. lez, AL R Yma.

X ’ SR ot
“

|

.
|t
|
1

S 3 5 : . g ; $ :
__yllfu Y::.;v Lal B St Y"‘J“ yu,, Yu}. "se y‘:\nﬁ.l L YM(P y»u.}v “YMnh’

Let us first consider the p replications of the
m treatment-combinetions under a hypothesis of complete
uniformity. By (4,2) we have

e <7 = L -5) Z R _-i (in-I:J'O_ _'_?)"’
g.‘);_)‘;(y..,.( Y I=p22 (v -Fi+m 2y, y*-};JZ?(Zy .T.(?I,Lf)

the three component sums of squares on the right-hand
side having independent gamma?type distribution with
mn-1, p-1l, and (p-1)(mn-1l) degrees of freedom respectively.
Now consider the mn column-mesns of the above matrix. They

. : : o 2
are independent, normal variates with verience 7p (where ©

is the variance of the yy. ), and may be regerded as



80.
being erranged in & matrix of m rows end n columns.
Hence we have also by (4,2)
P FI =0T (o 7T+ 0Ty, -FIDUy, Foo 0T oenel7
and combining (7,1) end (7,2)

Eizzﬂ(mj,‘-—?l =npX (y, I + mp} (3, -y)+p).‘}ity

Lo

+ m 2 Ay, ~F) + 5;_)}}:_‘(3@“ o Yo 4TV s eoshTg

" -xjo*? ]’-

If we write (7,2) in metrix notation as

y'Gy = y*Hy + ¥*Jdy + 7Ky , + eesel7,4
where{F7} is the vector {3‘2.., SR 0 e R Lo v
we know from Section 4 that each of the matrices G,H,J,
and K is idempotent. lie may also write (7,3) as

VA =y'By+ y'Cy+y'Dy+ V' Ey+y'Fy sserkTsD

where y is the vector {ym Yz **Vp E ¥ i "Zz,g;----’:ym. x,m_..ymnl‘j
i.e. it is the vector y of previous sections, each element
of which is now further partitioned into p elements, so
that there are now mn subvectors of the Utype
{ ¥, %y, +++¥;.} - Mow if, for example, K is the symmetrical

matrix k" k“_ ku csse
Kz Kizz Kygeees

of order mn x mn, then the quadratic form §*Ky, when

referred to the veqtor. y, must be



-

v | |
Bk T S S
L g R S E
| P s A :" ;u._ku—- - E::
Kin Kpoeoobn | KukKp ook |
T Eix s k_, _: Eh '_u_;
L : .

where esch submatrix is of order pxp and has all elements

the same. DBut y'Dy = p¥'Ky, so that U must be idempotent,
since K is idempotent. Similarly the matrices B and C may
also be proved idempotent.

From the results of Section 4 we know that the meen
values of J'HY, §'JF and F'K¥ are (m-1)%, (n-1)-%, and
(mpl}(n-l)fgzresPectively, so that the mean values of
y'By, y'Cy amd y'Dy are (m-1)d, (n=1)6, and (m~-1)(n-1)G".
Since B,C, and D are idempotent, it follows from Lemma
9,Cor.2 that y'By, y'Cy, amd y'Dy heve gamma-type
distribution with m-1, n-1, and (m-1)(n-1) degrees of
Ifreedon respectively. It is obvious thet the independence
of the quadratic forms on the right-hand side of (7,4) is
not affected by referring them to the vector y. Hence,
applying Lemma 7, Coxrl to (7,1) end (7,2), we see that all
the quadratic forms on the rignt-hend side of (7,5) are

independent. Their mean sqgueres must therefore be

- . -
independent estimates of the varienceé C.
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An initial analysis of variance may be made as
in §4, thus:-

Analysis of Variance.

lean
Variation due to D.F, Sums of Squares Squares
it i
Blocks p-1 mnz%(g”‘—y) 8}
Treatment-
combinations mn~1 p}?;:(y;j,-ﬂ 5,
—
Error (p-1)(mn-1) izijg Tejne " Fiio T B 5’
T
Total mnp=1 Y (57

Reverting now from the hypothesis of uniformity to the
hypothesis of the randomised-blocks design l§4, P41), 8

is en estimate of ¢*+mo,, but on a null hypothesis s;
and s;’continue to be estimates of the random veriance
(nows™). At this stage, therefore, a test could be

made to see if treatments as a whole diverged significantly
from the null hypothesis. But this 1s unnecessary,

nor is it the object of the experiment. The sums of

squares and degrees of freedom are now further subdivided

as in (7,3).
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Analysis of Variance.

Variation due to D.F 1 e
o L Sums of Squares Squares
Blocks D=1, mn v =F)" 5
T Cowy) L
Treatment-
combinations
Varieties m-1 np L(y. -‘3?)2 B
ke LOO
| = L - mi T - B =
Fertilisers n-1 L_pJZ(JoJB T ) 8s
Residuals
- 3\ t‘t
("Interaction") (m=1)(n=1) '”z-; (Y:jn "Y-‘n"Yajo'*ﬁ =
—2 s>
Total mn=1 3 (5,7 B
i (= 1! 7 ) SL
Error (p~1)(mn~1) f;%fff:ju “Tso FoonT ) 3
Total | mp~1 TP (7T )

=

On a null hypothesis s , s_, and s, are all independent
estimates of the random variance and hence may be tested
against s;. By the tests with £ and 5; the significance
of variety and fertiliser means respectively is examined.

The residual sum of squares under treatment-combinations

is the sum of squares due to interaction between varieties
and fertilisers. The interaction, AB, between two sets of
treatments, A and B, is a measure of the variation in

(yieldr) response to treatments A when combined with the

different treatments of set B, the exact measure adopted

being a matter of definitionm. To show that the residual
sum of squares for treatment-combinations does indeed

provide a measure of the interaction between varieties and

fertilisers, let us define the response to, or *effect" of
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the i™ treatment of set 4 as YoooJ » OT what is the same thing,

g:(yq,-an). It is clear that a measure of the variation
of the response to the i™ treatment over the different
treatments of set B is given by the sum of squares

XATsjo ~Vios Ve + FI , s0 that for all treatments of set A

we have the sum of squares.z}j:(yﬁ, ~Vioo =Yojo+F) &S &
measure of the inxeraction AB, and this is identical with
the sum of squared residuals for treatment-combinations,
Also, since this expression is symmetrical in i and j, it
follows that interaction is a symmetricel relationship,
interaction between fertilisers and verieties being the
same as interaction between varieties and fertilisers.

If there is no interaction, the residuals (ygo ~Vioo™ Yojo+ ¥l
will be normally distributed with variance equal to
ﬁr(mrl)(n-l] times the rendom varience of the experiment,
this being so regardless of the significance of either

set of treatments. The usual test will therefore determine
whether the estimate of-variance, S, derived from the
interaction mean square is significantly different from
that of the error mean square. If so, the interaction

is said to be significant, end it becomes necessary to

study individual elements of the "interaction-table™ given

by the matrix [y;,] » It is note worthy that the residual

sum of squeres of a randomised-block experiment is really

the interaction between treatments and blocks.
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Section 8.

The Split-Plot Experiment.

Any type of experimental design in agriculture may
have an additional type of treatment comparison appended
merely by subdividing each plot (now known as a "whole-plot")
into & number of sub-plots equal to the number of sub-plot
treatments (unless there is confounding), which are as
usual randomised within each whole-plot. As an example,
let us consider & randomised-block experiment of m
varieties replicaeted n times, each whole-plot of which
is further subdived into p fertiliser treatments. Let
the yields be [yi;.], where i represents variety , ) block,
and k fertiliser, the matrix [ng] being of order mm X p.
By Lemma 8, we have

T T TR o BRI, T 5 . (851)
and under a hypothesis of complete uniformity throughout
the experiment we have by the results of §I the following
equation of mean values.

(mnp-1)¢* = m(p-1} 6"+ (m-1)6", ... (8:2)

where ¢*is the variance of a single sub-plot. Ve may

therefore perform an initial analysis of variance, thus:-
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Analysis of Variance.

R

el 5 Mean
Variation D.®, Sums of Squares Squares
Between whole-plots mn~=1 P il g

: 1:,?(3:;,0 ~y)

ithin ol L : e =

Within whole- plots mn{p=1) };%(y,j“ F-)‘oJ o
T i 21 Sy
Total mnp-1 gfjlg(gqx 7)

However, the mp treatment-combinations are not
randomised over the whole of each block owing to the
restriction imposed by the design of the experiment.

This restriction, that all combinations of a particular
variety with the different fertilisers should occur in

a single whole-plot, is the same with respect to the
sub-plot treatments as the blocgs restriction in a
randomised-blocks design. e must therefore replace

the hypothesis of complete uniformity with the hypothesis
(similar to that of §4, P41) that the whole-plots have,

a priori, different means, even if treatments are still
assumed to have no differential effect. Combining

this null hypothesis with the hypothesis of the randomised-
block design with respect to the whole plots, we have that
each variate y;, is equal to B+ Eio + Siyw » Where A
is & normal variate (constant over thej'“ block) with
mean at the origin and veriemce G , Egois the random

whole-plot variate (normal, consteant for ell sub-plots in

the (C,j)ﬂ'whole—plot, with mean &t the origin and variance o)
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and E'_j,( is the random sub-plot veriate (normal, with mean
at the origin and variancec;). Hence, in the above table
s, is an estimate of o .

We may now further subdivide the sum of squares between
whole-plots in accordance with the ordinary randomised-block
analysis of §4. By (4,2) we have
P2 Vo -¥) = np¥ v -F I+ mpX( Yejo =¥ + P22 Vijo ~Vieo ~ojo* T1 » ... (8,2)
the degrees of freedom of the components on the right-hand
side being, respectively, m~l, n-1, and (m~1)(n-1). The
final component, when divided by its degrees of freedom,
yields a mean square ( s::, below) which is an estimate of
4+, where 6 (= p0i+K ;) is the whole-plot random veriance,

ise. S; is an estimate of a§++o;*. The table is as follows:-

_Analysis of Variance —
Varistion D,F, Sums of Squares Sgllares
Between whole-plots
Blocks n-1 mpg( %Y ) g%
Varieties m=1 np[i( o -7 i
Error(1) (m=1){n=1) p};)j;(v;,-o Vo~ Tajot ) =
Within whole-plots mﬁ{p—i) };Jj:!;(y.-,—“-y;,-, " 62
Total mnp-1 Z)}“E (% T ™

The mean square for blocks ( &) is en estimate of o+ho, +md;

The varieties mean square ( s;) may be tested as usual

against that for error (1).
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The sum of squares for deviations from whole-plot
means,f%‘gy;j.‘ ~Vijo ) » may also be further subdivided, for

we may regard the deviations as & matrix of P rows and

mn columns, thus:-

YIII -yuo yn.t -Ylm Y.s. "Y.,‘, ‘‘‘‘‘‘ yl.'_f! -y’cjo _____ ymm _Ymno
Vir Ve Yoz Voo Yoz Vo . ..., Th T e Kt
y;lfu ~Vie ymj.. e 778 yu’., oo (T MRS S R Y‘”‘ Yo . :S]:"‘m‘&—y".l'm°

The general mean is “_‘l'q"(%};y‘i“ ’pcD_,':Y‘-"" )=0, and the mean of

row k is yt,“--..‘;;.)_:_%y;jo = Yoox =¥ . Hence, by Lemma 8, we have,

B E (Vi ~ijo J'= 0 (S TI+3TF (T Vo ~Your® T cxsons (k]

& further subdivision may now be made of the final sum of

squares on the right-hand side of (8,4). Consider the
residuals Y. =¥y, =Yty &arranged in rows according to

the suffix j. The general mean of such a matrix is

m"r{“i:'( Z")J'_E_ mj“—pzuz'j’;jn -mnzxx,o@ mp ¥)= 0. The general

column-mean 1is Vi« =Vieo =Yoo+ Hence, by Lemma 8,

2};-?;( Veju =Yejo Voot T = 1?2.:%(3’.'9.‘ =Vids YooY f"*%;i( Viie Vo ~Yoon* You) ,._(8,5)
and combining (8,4) and (8,5) we arrive at
E?E(y i< Vo /= (T =T L+ D22 Ficre ~Fino Too+F)

. §§§ (¥ =Tijo ~Veot Voo ) seecaee (8,6)
The first sum of squares on the right-hand side will be
recognised as that for fertiliser-means and the second as
that for interaction between varieties and fertilisers as in
Section 7, rage 34.

The next step is to examine the independence of
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the three component sums of squares of (8,6). A deviation
of a fertiliser-mean from the general mean, €.Z. Yoo, -y, NAY
be written as a'y, where y is the same vector as in ( 7,5)
and a'=qo[p=1 -1 =1... - Up-l-1-1...-1 {etc., m
sub-vectors in al;L] . A residual of type

YI'.DK —yivﬂﬂ -yco“""'?’ e.g. Yiﬂ'l. —y’.m —YOO:I'_-'-_Y-:’ may be written as
L]

by = ;E."P [l-m mp-m=p+l l-m...l-m i end n- lsimilar
subvectors‘;l..hl—p s A iin all (m-ln similer subvectors| y.
A residual of type ¥iu ~Vijo ~Vie*Vieo» Where we will as an
example take i=1l, j=2, k=3, may be written as c'y, where

c'=.:":§[m 0 M-mp M... 0§ 0-00 §-00 O+HEP-IN-mp L=O0...
m—mn'; m m m-mp M...m E and similarly up to the o
subvector, all the rest null].
a’ ba.:.e.‘,a—,,{flt l-m)(p- 3 -n(m-1)(p-1) -n(l-m)(p-2)
+n{p-1)(m-1) -n(1-p)(m-1) —n(p-2}(m—.l]=0. s, a and b are
orthogonal.
a'c='~_i'}f‘?[m(P"*xll'l) -m(p-2An-1) -u(1-p)(n-1)+ ul 1-n)(p-1)
~1{ 1-n)(p-2) -m(n-l)(p-ll]=0. /. a and ¢ are orthogonal.
ble =ﬁ~?[m( 1-m) (n-1) (p-2k m{n-1) (p-1) (n-1}+m( 1-p) (1-m) (n-1)
+n( L-n) (1-m) (p-2}+ (5-1) (p-1) (1-n) m#+mln -1)(p=1) (1-m) =0
‘* b and ¢ are orthogonal. Siimilar grthogonality may be

proved for all values of i, j, and k, so that from Lemmas 9

and 6 we deduce the independence of the three component

sums of squeres of (8, 6).

In order to find their mean values, we have
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e'a= w5 [(p- Wm ~(p-Ym]- =45 (p-1).

Lhe meen value of m2 (y,, -¥* is p-1, or,
unstandardised (p-1) of, since o is the random veriance of
a single sub-plot yield.

Also b'b-.....,,[(l—m) (p-lnem-1{(p-1)*n+(p-1)(m-1)n

+( 1p)" (m-1) rﬂ“mp(m-ll(p—l . .. The mean value of

Il):%( Viok ~Vioo Toox*¥) 15 (m-1(p =1 = (m~1)p-1 Jo; (unstandardised).
and c'c= ,;;';t;,=[m"(p~ J(n- Y+mfl p)* (n- Y+ Tn)(p- 1
-l—m"'(p—ll"(n-l)z]= #(p-l}(n—l} , hence the mean value of the
residual sum of squares is m{n-1){p-1) or m(n-1)(p-1)c*
(unstendardised). We thus have the following equation of
mean values.

m(p- Yo =(p-Uoy + (m-1)(p-la+m(n-1(p-Ne- ...(8,7)

If we now write (8,6) in the form
V'Ay=y'By +y'Cy + y'Dy, issslB84s8)
it is evident that the matrices B and C may be proved
idempotent in the same menner &s B,C, end D of (7,5), using

I L] !
a vector {Ysm Yioz * ‘ymb ': Yaor Yaon * * 'Fioh: L3 'lymm Jmoz * ‘YMO!V}

Also D=K'K where K is "the direct sum" of m sub-matrices

each equal to L= M., - |¥, Y 1 O P P I"P
. Mp. IPIP I'P
) Rt

L is of order mp X np, and M,, is the matrix of order

np x np with all elements n'—p, I, is the unit matrix of

order p x p, etec. /
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L' =M+ 1 T st —2M , -
| I LeooLuf + I, -24, -2M,,

Yy I ReeoIp

= h% ljﬁ ik"hz_
+2M,y, + 20, - 2[M, A1, 1,..1]
My Ip Lp..3,

R

Hence K'K=K, and since K is symmetric it is also idempotent.
It follows that on a null hypothesis the three

quadratic forms on the right-hand side of (8,8) yield

independent estimates of qfwith degrees of freedom equal

to the respective coefficients of (8,7). It is also

apparent that the residual quadratic form, y'Dy will yield

an estimate of Os even if the null hypothesis can no

longer be regarded as velid. The following is the

complete table of anelysis of variance:-
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Veriation o - 2 Mean
Between whole-plots — N Bres Squares
Blocks n-i mp ?,: (Yoj.. LY )z- s;'
Varieties m={ “Y"};fm.‘?)l 5
Error(1) (m~1)(n-1) T"{?V.;,-o' e “Ynjo*?)‘ &
Total mn -1 pz.z;(y‘.jo -7 ) g
Within whole-plots
Fertil isers p-1i mn ¥ (y,.-F) &
Interaction (m=1)(p-1) n zig(y‘.“-h Voo ) &
Error(2) m{n=1){p-1) zagig(y..j“ “Vijo ~Viox*Vive ¥ &
Total m(p-1) 53TV ) o
Grand Total mnp-1 P (v T

ij
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Ehe varieties meen square { s) may be tested against
s;, S, and s} against 8 It may be desired to test G
against s in order to see if there is any significant
component of whole-plot variance. This is valid, since
S; is independent of S, and hence, by Lemma 7, Conl, of 8.
In general S, will be greater than S, , but sometimes it
will be less, indicating that the estimate of variance of
whole~-plot means is less than would have been expected
from ordinary random-sampling of the population of sub-plot
random variates. This can arise from accidents of
sampling, or it may mean that there is competltion between
the sub-plots within each whole-plot.

Should the variety aﬁd'fertiliser effects prove to
be significant, it will be necessary to compare the

varietal means (Ybo} among themselves, and likewise the

fertiliser meens (¥oox). Also should the interaction

between varieties and fertilisers prove significant, we
will wish to compare means of the individual treatment-

combinations (yiex). We therefore proceed to allot

stendard errors for the various types of comparison.

The interaction table is as follows:=-
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Fertilisers ' Varietal
-ﬁ“ E L N E LN N

Varieties : = i i lieans
V, yIOI ymz Lt YHJK s ym;., Y;.,g
‘.[:r. ?zo: :'{a.oz e YzoK S Yzo!- yz.oo
:9 ?u’m :?’m:.'. ) ?iou o Ji'io}\. j-c'oo
Vm : Ym YMO}. PO YMOK LY Ymaﬁ YMW

Fertiliser

Me&ns yﬂol Yﬂﬂi. -8 320“ L] Y‘,‘,ﬁ_ R

The standerd error for comparing varietal means
] % :

(¥ieo) is fop » since s; is en estimate of p times the
error variance of a whole-plot mean. For comparing
fertiliser means it is T%':. For the comparison of
single means in the same row of the interaction-table
the standard error is _12_:_’ and the same standard error
(adjusted to suit the numbers in the groups) applies to
groups of means in the same row (e.g. ¥+ V., compared
With y,.+%. ) Or to groups in different columns but
comprising the same rows (e.g. ¥+ ¥,,+ %, » compared
with Vios+ Yoo+ Ysos 1 All the above types of comparison
may be made by the t-test with the appropriate number of

degrees of freedom, but any other type of comparison

involves the component of error variance due to



95.

whole-plots, namely o;, and, as has been shown by Nair (18)
the exact test for such a comparison is the Fisher-Behrens
test, named by Sukhatme (20), who has tabulated significeance
levels, the d-test. Tables of "d" are also reproduced in
Fisher and Yates (14). The sample estimate of o, is '51’;’
for a single whole-plot, or E-;';,%': for a whole-plot mean.
Thus for comparing single means not in the same row (e.g.
Vier @nd y,,o, or y endy ) the standard error is

.I E’..i Jaqu(p-l s,+s. , and for compering groups of

meeans from two different rows (e.g. the mean of ¥ + ¥+ Vs

with the mean of ‘gma-gna-g)s the standard error is :sfﬁ i’.:.,—':" y

where g is the number of means in the group. The whole-
plot component in this formula remains constant whatever
the value of g, provided only single rows ere involved.
If the t-test is used with such a combined estimate of
standard error in order to meke an epproximate test, the
number of degrees of freedom will be that of sg 1.e.

(m-1)(n-1). If s,;Ss., the question of & component of

error due to whole-plots does not arise.
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Section 9.

Orthogonal Subdivision of Sets of Legrees of Freedon

Let {y} be & vector of treatment-means. Since, in
the calculation of the treatment sum of squares in the
analysis of variance, adjustment is made for the number of
replications of the experiment, we may for simplicity and
without loss of generality consider each element, y, of
this vector as being the yield of a single replication.,
1¥} may be divided into sub-vectors according to the
number of factors in the experiment and the respective
levels of each factor. For example, in & three-factor
experiment with p, g, and r levels, we may arrange {y}
as pq subvectors of r elements each.

Any subdivision Ay, where A is an orthogonal matrix
of order n x n (n being the total number of treatment-
combinations) and the elements of its first row are all
unity but normelised by division by Ju ,subdivides the
n-1 degrees of freedom into n-1 separate orthogonal degrees

of freedom by means of the linear functions of the last

n-1 rows of A. Such a subdivision is called a complete

orthogonal set. If the variates {y} are standardised,
the varisnce metrix of the yields is I, so that the variance
matrix of the transformed variates Ay is, by Lemma 5, also

I. This proves that each lineer function is statistically
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independent of all the others, and hence in the case of
more thaen one repliceation their squares are, by Lemma 7,
Cor. 1, independent of all the other sums of squares in
the analysis. It also proves that each of the squares
of the linear functions has a mean value equal to the
intrinsic or random.variance of the experiment. Moreover,
the rank of the matrix of the quadratic form corresponding
to any such square is one, since the matrix is of the form
,QQ, , where £’ is a row vector. It follows that each of
the squares of the normaslised linear functions has gemma-
type distribution with one degree of freedom and may be
tested for significance ageinst the error mean square of
the experiment, or, since only one degree of freedom is
involved, the t-test may be applied directly to the
normelised linear function itself.

Since Az[a;] is or‘chogonal,%a;ja,(fo (i#k), and since
each element of row 1 is Jm ,Zj_a;j=0 (if1). Also 7‘1;&:_,'= 1.
In other words, in addition to the condition ZJa‘.j 8,;=0 (i#k),
the coefficients of each linear function must sum to zero and
must be normalised. Algebraically, the sum of the squares
corresponding to each individual degree of freedom of a
complete orthogonal set must always equal the total sum of

squares for the treatments under consideration. This is

easily proved. The column-vector of a complete orthogonal
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set is Ay (including row 1, though this is not one of the set).
Now y'A'Ay = '}:_()i:aij v
= The sum of squares of the orthogonal set + (Ey)’/,,
But y'A'Ay = y'y (since 4 is orthogonal)= R
Hence the sum of squares of the orthogonsl seb
= Iy ~(Iylfa=Ly* 5%y = ¥ (y-3)
= treatment sum of squares,

It may be observed that since |A|= 1#0, the n-1
linear functions are linearly as well as statistically
independenﬁ, but that if an n™ linear function were
chosen according to the same conditions, it would not
be independent of the others (Aitken, 1) and would in
fact merely repeat one of the functions already chosen.

On the other hand an orthogonal set need not be complete.
Suppose A) were a matrix of order pxn (p<n), the first row
of which must be as before a normalised vector of unit
elements (representing the degree of freedom taken up in
fixing the general me-n). Then, if A, possesses the
orthogonal property A,,,A}., =1, the treatment sum of squares
is subdivided into p-1 single degrees of freedom, each
independent of the error sum of squares, the proof being

similer to that above for the complete orthogonal set.

If we denote by A4. . the matrix Ay without its first row ,

i isin
then A% An.» the matrix of the quadratic form compr g
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the sum of squares of the p-l1 linear functions, has the
same rank as A,_, , namely p-1l. A%, A, is also
idempotent, since A% A, A%, Ay, = AL Ay DY the
orthogonal property. Hence, since the quadratic form
has p-1 degrees of freedom, both the trace and rank of

its matrix A%, A4., , must be p-l. Also the matrix of
the quadratic form comprising the total treatment sum of
squares is known by past results to be idempotent with
both trace and rank equal to n-1. If A is the matrix

of the complete orthogonal set corresnonding to

Ay and A=[§'Y], then, since A'A = AL Ay + AL A, L,

it follows Tbﬂ‘ilat A% 4 A pyp must be the matrix of the
residual quadratic form. But Ag., and A,., ere such that
A% A, =A% K, =0, so that it follows by Lemma 10
(Cor.) that the residual sum of squares has n-p degrees of
freedom and its mean square yields an estimete of variance
independent of each of those of the orthogonal set and
hence, by Lemma 7, Cor.l, of all the other mean squares of
the analysis.

There is an infinite number of complete orthogonal
sets for any given set of degrees of freedom, but any such
subdivision of the treatment sum of squeres should conform

. to a predetermined plan ef analysis consistent with the

design of the experiment, or it will not be stetistically
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useful. Indeed, provided this condition is satisfied

a set of degrees of freedom may be subdivided non-
orthogonally, for any normalised row-vector when applied

to the vector of treatment-means, provided that it is
independent of the error sum of squares of the experiment,
gives rise to a t-test or to an F~-test with one degree of
freedom. As en example suppose that in a simple
randomised-blocks experiment we wish to compare treatment 1
with both treatment 2 and treatment 3. The vector
corresponding to the comparison of treatments 1 and 2 is,
after the manner of §4, and ignoring the normelising factor,
i} Fove X E -1 =1l...-1 iremaining sub~vectors null}sad,

and that for the comparison of treatments 1 and 3 is

[1 165 é 0 Oess O E—l o PO & E the rest null} = e,
Both d and e (and, in fact, the vector of any linear
function of the treatment means) may easily be proved

independent of the vector of any residual, but they are

not orthogonel to one enother.
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Section 10.

Interactions in General

Let us consider an experiment with three factors
A,B,C at m, n, and p levels respectively. As in the
previous section we regard the treatment means {yﬁx},
where i, j, k represent levels of A, B, C respectively,
as being the result of a single replication.
By (7,3) we have
DT T = 007 T+ moZ 50 “FT+ DTy Voo Voot T
+ I Yeoe 1+ DT Ve Yo 2T R e

The sums of squares on the right-hend side represent in

order the "main effect" of A, main effect of B, interaction
AB, main effect of C, and residuals. Their degrees of
freedom are m-1, n-1, (m-1)(n-1), p-1, and {(p-1)(m=-1)
respectively. ixactly as:h1§8, Page88 , we now

arrange the mnp residuals of (10,1) in a matrix of order

n x mp with rows according to the suffix j, and deduce (iai3
aae »

S - - 2
el B Yeix TV Toow +¥) = 02 L (Vo ~Yioo 'Ym?'y]*):-%(yajn Vo L o
where the sums of squares on the right-hand

side have been seen to correspond to the interaction AC eand

residuals with (m-1)(p-1) and m(n-1)(p-1) degrees of freedom
respectively.

Now consider the residuals ¥ ~Vio ~Yiok™Jico arraenged

in a matrix of order m X 1P with rows corresponding to the
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suffix i, thus:-

3

Vi “Vio" Yo+ Vieo X'I-x'o-y;nlﬂ.ywo e ’EGIK—XJ'QHY:“"'E“ CHE 3(-;-'35.0’3(0;:" Yioo

A _Elo-yu;"y:ao s:rui._y:.ra-y;o: Yoo v 0o Y=V . =Y ""'Ym .o -Y,,.,,‘Y“,,"S‘;;Y,m

Z)K “zjo “zok

-.Y”‘"-y""’-y'““;‘-y”‘” Eﬂ':y"": ynw:.‘.-x‘ﬂ’ 2y yﬂj: Mjo— y;la:(‘-y“‘” e 'ym —xnno—ynﬂ?: Ymoo

The general mean of this array:.;‘q()}}}?‘;yij“ .pf_:%: Vijo “BE Viaw
+1p2y, )=0. The general column mean= ¥ =Yoo ~¥.»¥»
so that an application of Lemma 8 gives
IE RS RS AR Y G S R 90001 S AR e A AR AR AR A A
canba kil 8)
where the first sum of squares on the right-hand side is
seen to be that due to the interaction BC with (n-1)(p~1)
degrees of freedom, as may be proved by the same method
as that used for the sumsof squares due to the interactions
AB and AC.
A residual of type Vi ¥ Viow Yoyt Vios Voot Yoo Y
(taking es an example i=1, j=2, k=3) may be written as a'y
where a'--.-T'..';._[m—l m-l m+p-mp-1l ;n-l...m-l": ( men~-m-~1)
(m¢n-mn-1) (m+n+p+mp-m-np-mp-1)(ms+n-m-1)... (m n—mn-l)::
then repeating the first sub-vector up to the " su‘ovector'i'i
-1 -1 p~1 -1,..-1 ‘E n~-1 n-1 n+p-np-l n-l...n-1 E -1 «1 p=1 =1_
‘and so on up to the 2n™ subvector, the remainder repeating
the (n+1)™ to the 2.n**‘]
A residual of type m;k-xj,-y“ﬁ (eegs T, ~You—Y.+y) may be
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written as b'y where

b‘ = I‘ﬂl\F [(D.-l} (P-l.l l"ﬂ l—n - s e l"Il = l_p l l-coll: l-p l loclE
] ] ]

till n*" subvector, then repeating the lst to the ot up

to the mnﬂ‘]

Now m*n*p*a'® = (m-1)(n-1)(p-1) ~(m-1)(n-1)(p-2)+(m-1
(n_l)(p—l)+(MFl}(n—l)(P-l}-(mrl}(ﬂ-l)(P“$J+(m§Lj3éElffp£?) )

~{o-1)(p-1)(n-2)+(m-1)(n-2) (p=2)~(m~1] (p-L) (n-2) ~(m~1){n=1) (p-1)
*(m‘li(n‘l)(P“ﬁj“(m-li(ﬂ-l)(p-li-{iu-l;(n-lnp-—l)a-(m-l)m—“
(p-2)-(m-1)(n-1) (p-1)+(m=1)(p-1)(n-2)~(m-1)(n=-2)(p-2)+(m-1]
(p~-1)(n-2]=0
. a and b are orthogonal, =nd this may similarly be proved
for any residual a'y and eny residual b'y. Hence,
writing (10,3) as
y'A'Ay = y'B'By + y'C'Cy , seses (10,4)
we deduce that the rows of B are orthogonal to the rows
. L —
of C. The residual sum of squares };}}ZK{}{.1-“—31;’-0-—3«;“—3;’.“4-yw-.-xjoa-y;“-y)
is thus independent of YX (y.-¥y.-y +¥), eand by Lemma 7,
J%w o)K “oj0 “Oow
Cor.l, of all other sums of squares in the analysis. Also,
by Lemma 10 (Cor.), the residual sum of squeres has m(n=1Yp-1)
- (n=1)(p-1) = (m-1)(n-1}(p-1) degrees of freedom and
the residuel mean square is on a null hypothesis an estimate
of the intrinsie variance of the experiment, |
In Section 7 the intersction of two factors A end B
was defined as a measure of the veriation in the response to
A at the different levels of B, this measure being provided
; . o =
by the sum of squares 5;.}}(3!’.-;, o e ). Thus, a messure

of the interaction AB at any given levels i and j is provided
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by the linear expression Yijo = Vios ~Yoo * ¥ o

A second order interaction is defined &s a measure
of the variation in the first order interaction AB at
the different levels of C. S5ince yy=3,,~¥,+7= Z(y Voo T L) »
such a measure is given by the sum of squares ZZ{'xy;xm‘xﬁ“
Ve = 0 Tiai W TI] T OF T (VW ViV Vs o e -1
which is the sum of squered residuals of (10,%). This sum
of squares is symmetrical with respect to 1i,j, anda k, so
that the interaction ABC may eqgually be defined as a measure
of the variation in the interaction AC at the different
levels of B, or as & measure of the variation in the
interaction BC at the different levels of A. The process
may be continued by the eddition of a fourth factor U, when
the residual sum of squaeres for treatments will be the third
order interaction ABCD, and so on.

Combining (10,1),(10,2), end (10,3) we have the
algebraic relationship
EZE(}{,“—Y = anlY...-ylsﬂ- mp);.(y--?T*"ﬁln%(S’m 5% l‘**P?}“&;:&.,
Yo+ T+ 1 ZZ (Voo Vior Sont T 1 + mZZ(Y,;J‘%i" —y,,,,g-‘jf')n););_‘é( Tl “Teod
o G FA A A J, Wk T (}0,5)
where esch component sum of sguares has been shown on & null
hypothesis to have gemme-type distribution with the appropriate

number of degrees of freeaom from the table below, each

mean squeare yielding an independent estimate of the error
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variance of the experiment. The treatment sum of squares
has therefore been subdivided as follows:-

Anelysis of Variance

Varistion due to L.F sums of Squares
Main effect of 4 m-1 np 5;. (Vo =71
Megin effect of B n-1 mp )}(y,,j, -7
Mein effect of C p-1 mn 2}(qu'?r—
Intersction AB (m-1)(n-1) pZL)J: (xjo s Yt v/
Interaction BC (n-1)(p=-1) m);.'?:.(}:,j,‘ A Yoo+ T
Interaction CA (-1)(p-1) n g;(&&w ~Tico ~Toox* T
Interaction ABC |(m~1)(n-1)(p-1) %g(xjxﬂy;;i§:*%§+¥”+mo
Total mnp=1 'i‘_?i:?‘:h:-_i,‘ -7

Lthe effect of the lst level of B, i.e. Yoo =¥, may be
written as c'y where :
TP SRR R e e
the o™ sub-vector,then repeating lst to nﬂ‘]

The eifect of the lst level of C, i.e. Yoo -V, may
similarly be written as d'y where
d'=ap[p-1 -1 -1 ...-1}p-1 -1 -1 .e.-l!ete., m
i subvectors in all] .

Now the vector b of the residuesl b'y above, which
measures the interaction B C et the lstlevels of both

B and C, is seen to have as elements ( except for a

common factor) the products of corresponding elements
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of € and d, which are the vectors determining the effects
of cthe first levels of B snd C.

This property is a general one end is specially
exemplified in the case of factors at only two levels (Section
12). To see how it arises, let us consider the treaetment
means Yi; of an experiment with all combinations of two
factors A and B at m and n levels respectively, the surfix
i representing the ilevel of A and the suffix Jj the f*
level of B. Let a'{y,} be any lineer function of the
mean yields for the levels of factor A. IU neea not
necessarily belong to an orthogonal subdivision of the
level-mesns of A, but if it is to be of any use statistically
it must be independent both of the error mean square of
the experiment end of the vector of unit elements which
constitutes the correction for the mean. Since in the case
of a residusl vector the sum of its elements corresponding
to any particular value of 1 or of must be zero ( or else
it would not be inaependent of all the level-mean devieations),
any vector whatsoever when appliea 1O {Ya} will determine &
linear function independent of the error mean squere, but
to satisfy the second requirement L mist be zero. Written
in terms of the vector y= {_Y.. ot L Y,;”X.—-l';""'.y-,..&;“ Y...,.}:
a' in becomes

_"’7[3.&“-. a.l: a,a,_...'a,‘i....':amam... a,,,] ¥ sees (10,6)

At eny particular level of B, i.e. for any particular value
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of § , say j=l1, the value of the linear function is
e 1 1 i

n[na‘....' : na’.' .l": .I.lllna.m‘ ...‘] y" bv-v(lO’?)
The deviation of this value from the meen value is

1%[(n—l)a, -8, .. -a,E(n—l)axua,.. —axf...i(nleamﬁam..—&%]y,
i e (B058)

and the sum of the squares of such deviations is the sum
of squares for the interaction between the given linear
function and the factor B. The deviation of the meen
of the lst level of B from the general mean is given by
AR R L Sy sty -1] y..(10,9
It is evident from the fact that ‘;a.‘ = 0 that the
vectors of (10,6),(10,8), and (10,9) are orthogonal
to one another, so that in general the sum of squares
for the interaction of two effects is independent of the
sums of squares for the effects themselves., It is also
evident that the elements of the vector of (1l0,8) are,
except for a common factor, the proaucts of corresponding
elements of the effects vectors of (10,6) end (10,9).

By a slight extension of definition we may now
define the interaction of two linear functions eassociated
with different classifications of the variates. Let us,
for example, as ebove consider all combinations VA of two
factors A and B at m end n levels respectively, and let
a' iyﬁ} be any linear function of the level-meens of

factor A and b' {y,) eny linesr function of the level-means
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of factor B, subject to ‘éa; =§bj = 0 . Kkxpressed in

terms of the vector y = {3}, these linear functions are
'-{'[a‘a,... a, ': AL En ek a,!...': 8.8 s a,,,] y _,_,(10,10)

and %[, b, oo Dl b, b, 00 Bees B, D, ... b] ¥, ..-(20,11)

end it is obvious that they are independent. Their intersaction
is defined in accordence with the previous paregreph as
k;é:a;bjyﬁ, i.e. the trensforming vector has as elements,
apert from a common factor k, the products of corresponding

elements of the effects vectors. The interaction is therefore

] ] 1
k[e b &b, ..abtab &b ..8bl.8b ab..gbly

oowe, 12}
and its vector is clearly orthogonal to those of (10,10) and
(10,11). As for the value of k, it will depend on the
actual definition of the linear function taken to measure
the interaction, as will be seen in Section 12, For instance,
in satisfying the condition that the effects snd their
interaction shoulda be independent, the three appropriate
lineer functions, if normelised, also sabisfy the conditions
that they should belong }o the same orthogonal set. Hence
k could be taken as ,Ig%la;pﬂ , anu the vector of (10,12)
woula be normalised. Higher order interactions may be
similaerly defined, all vectors being further partitioned
to correspond to the additional classification.

In the special case when all the elements of the
effects vectors ( not normelised) are £1 , as in designs

with factors st two levels only, the operstion of multiplying
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correspondaing elements of A end B to get 4B is reversible

in that, if we apply it to A and AB,we shell get B. In other
words the two vectors so treated need not be associated
exclusively with different factors or classifications as

in the generel cese. The main effects and interections of

a 2" factorial design thus constitute a finite group with

identity I , since & =FB'=.... =I (Finney,9)
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Section 1l.

Analysis of Varisnce and Least Squares.

Yates (24) pointed out that the process of snalysis
of variance, as applied to a set of orthogonal data such
as those obtesined from the regular experimental designs,
is equivalent to fitting constants representing the effects
of rows, columns, treatments, etc. (according to the
particular cesign in question) by the method of least squares.
An explicit proof of this, using metrix notation, is given
below,

Let y = [y;«] , where the y's ere independent normal
varistes with variance 6", be the matrix of yields for an
n x n Latin square, which we may teke as the most general
of the elementary designs, and let us consider fitting to
the dsta by least squares constants representing the mean,

rows, columns, and trestments - namely, X,,;%003%200500

Lnoo > %o 3%oz0 3o e 3Xon0y Loof 2 X002 3+ +Xoon 2 Squect to the

conditions Il.x;”=§x,j‘;:-);xm‘= 0 , which are necessary to ensure
that row, column, and treatment totals show only the effects
due to the particular row, column, or treatment concerned,
and also thet the gemeral mean of the ylelds 1s en unbiassed
estimate of the population lean.

The observationsel equations ere AX =y, where X is

e X
the vector {xm Koo Faso ** *Fnoo Kore Koze® *Fono Foor Fooz eon) ?



s

cap is the vector {Y..K MAPSUTED AV T A ST Ve b # " Ve Ko wie y,.,.,‘}
( the suffix k representing the particular treatment allotted

by rendomisation to each plot), anda 4 is of the form

! } |
-{_l —J—L_E _l_gL
[ | !

-—J — —Ji-i_.I._ T 1.?.".
PSR e
(S O e
RSy

where J is the column vector {1 1 .... l} with n
elements, J¢ 1is a matrix of order n x n with all elements
in the k™ column unity and all other elements zero, 1 is-
the unit matrix of order n, end the K; are matrices of
order n x n with one element of each row and column unity,
all other elements zero, and such that, if k&z is the
nﬂth row of K; , k&a kKB==0 , L.e. corresponding rows are
orthogonal.

The normal eguations are A'Ax=A'y, where

A'A = I I R TPl g R R |
el S il S S e Bl o
n |l I |
nol om [ M ! M
: l
| = .__,___l____l ______
n | ‘
n M Tt ) M
L | |
_n o SRl Dol 8 e T T J! i et
Sl | |
n |
n | M i M | nl
. , ,
h-n! : II 2
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a matrix of order (3n+l) x (2n+l). The matrix M, being
of order n X n with all elements unity, may, owing to

the linear constraints %x{,‘,:JZxojo =§Xm¢ = 0, be
replaced by a null matrix in every case. Similarly

the vectors [n }§ s n] of the first row of A'A may
be replaced by null vectors. The vector A'y is seen to
be {6 R Roeeo Ru GG oeiG T L .. T} , where G is the
grand total of yields, R, = total of yields in the i row,
C; = total for the jt‘" column, and T, = total for the xh
treatment.

The above set of %n+l equations are orthogonal in
that the equation for x,,, may be solved independently of
the other constents which may in turn be found independently
of oné another. The solutions are X, = Vs Xwo= Yieo ~¥>
Xoio= Yoso ~Fs FToox= Yoo =T+

The residual sum of squares ke _a*
=335 T Ve ~T) =T T (ST
IJ ¥

G
=D (Vijuc ~Yioo ~Vejo ~Joox +25)°,

as in the‘l analysis of variance of the Latin squere (P44).
But the residual sum of squares also = (y-Ax)'(y-4x)
= y'y - x'A'y., 1In orainary notastion this is Z.-EJ:YE;K & Wooo B
= th;oo R, - %xoj, G; = gxm T« « The Term X, G :Ls
the "gorrection for mesn"™ of eanalysis of varlence, and
the remaining terms give by reason of the orthogonalily

mentioned above the reduction from the sum of sguared
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residuals due to fitting each constant. The sum of squares

for rows, for example,

nou

Z[% e nym)]

n[z:- Yoo —F Z; Ycoo]

e (Z‘ Yoo =¥ z Yeoo + BF )
o Xy, ¥ B

n

Similarly, that for columns = n };_ (Yaj. '3")", andl that fan
treatments = n EK_ ( Vooue -7
As for degrees of freedom, the number for the
residual sum of squares is from the theory of least squeares
(Aitken, 3) equal to
(No. of observationa-@o. of constants fi*tte@*-&lo.of linear
restraints)
= n* -(3n+l)+3 = (n-1)(n=-2).
The number of degrees of freedom for rows, columns,
end treatments is n-1 in each case, as may be seen from
the simple consideration that there is one linear restraint
on each set of c_onstants, or a proof based on the traces
of idempotent matrices may be given, using Lemma 9,Corl.
In fitting the constants by least squares we
have assumed that the [y;j,] are independent normal
varistes each with the seme variance 6, but not
necessarily with the same mean, and that each veriate is
made up of a set of independent components thus: Y.,

::xooo 1 X o xO,w Koox ™ xl’ju ¥ where the Looo 3Lien ’x°-i° » oo
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represent, respectively, mean, row, column, and treatment
effects, and X, is a rendom normel variate with mean at
the origin ena veriance o°. But these assumptions are
exactly those of the eanalysis of varience of a Latin square
( Section 5,P48 ), and we have seen above how the ordinary
process of analysis of variance corresponds exactly to the
fitting of constants by least squares in respect of the
isolation of the components of varience and degrees of
freedom deriving from the various experimental controls.
The two processes are thus identical, but the method of
fitting constants may still be used when an experiment,
either by accident or design, lacks orthogonality, so that
the ordinary procedure of enalysis of varience is unavaileble
or needs modification (Yates,24). It is also seen from
the theory of least squeres that the residual sum of

squares is a minimum, This is the basis of many formulee

for estimating the yields of missing plots, etc.



Section 12,

Factorial Experiments at Two Levels Only. -

The statistical analysis of exXperiments with factors
at only two levels lends itself admirebly to algebreaic
treatment. The definitions and notations used are, except
where indicated, those of Yates (26).

Matrix Representation of Mein mffects end Interactions.

Let us first consider one factor only, say nitrogen, at
two levels n end (1) , where (1) represents the plots
receiving control epplications of nitrogen. Without
ambiguity the yields corresponding to these treatments may
be represented by the same symbols, and since in the
calculation of the treestment sum of squares adjustment is
made for the number of replications of the experiment, we
need only consider the case of a single replication and
no generality will be lost. We have the symbolic

relationship

I n+1l [l l 1 i (;2,1)
N n-1 3 - 1 nl 5

where n+l ‘symbolises the total of yields (represented

il

on the left-hand side by I ) and n-1 the superiority

of nitrogen over control, i.e. the "main effect"™ of n
cepresented on the left-hend side by N ). Similarly, for
any other single factor, e.g. potash, we have the symbolic

relationship
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- Lo e

Proceeding now to two factors, n and k, we have the
following treatment combinations :=- (1) ;2,k,nk.
The main effects eand interection (omitting Yates'
conventional factor) are given by N = (n-1) + (nk-k), K
= (k-1) + (nk-n), NK = (nk-k)-(n-1). Ve therefore have
thé following symbolic equations :=- ,

I = (n+l)(k+1) (total effect)

N

I

(n-1)(k+1)

K = (ao+1)(k-1)
K = (n-1) (k-1)
or {I § K k}= [(n+1)(ked)]
(n-1) (k+1) von (12 43)
(n+1)(k-1)
[ (n-1) (k-1) |

But the vector on the right-hend side is the vector

formed from [k-l-l} and [n+l] by meking ordered
k-1 n=-1

binery products, end is therefore the "direct-product" of

the two simple vectors, a process denoted by the symbol

"xX" thus:~- kel]l y|n+ll _ (n+l) (lerl)
[k—l n-1] = En-i-JEi:*}‘)

n+ -

(n-l{(k-l
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It therefore becomes necessary to consider the algebra of
direct-product vectors and matrices.
Direct-FProduct Vectors end Matrices. Let us consider
[Ys . [a" 8,2 [ x,} end [t7] _ [o, b, B,
y,_] = e, au] % [t,] g [bm b,_,] [s,_].

The vector of products {X. 5 X,8 X,8 X,s.§ is transformed

into the corresponding vector of products {y. (NS A T ) y’_t,,}

according to the relationship

Y, tl =~ ay b!l a, bn. &u.b!l au.bu. £y 8,
y! t’. alt bil . aﬂ‘ b:.l. au..bl-.l' au.b.l.‘:. Kl SJ-
Y ti al.l b“ aﬂpu ax-l-bu axz_b,u. x:. S,
Y t&- 84Dy, 84,04, B*::.bm au.bu_ L2 8,

The vector on the left-hand side is defined as the
direct-product vector of y and t and may be written

[Y'] X [t,] , or more simply (yxt). Similarly, the

- r

vVector on the right-heand side is the direct-proauct vector
of X and s , or ( xxs ). If y=Ax and t=Bs, then the
direct-product matrix (AxB) is defined by the relationship
(yxt) = (AxB)(xxs). In general, if y= '{y, Y iniwe y..,}=Ax,
where x = ix, e e x,} and A is in general rectangular
end of order (mxn), end if t={%, t, ... tx} = Bs, where
8 = {S. S .v} and B is in genersl rectangular and of
order pxq , then the direct-product vectors of x end s

and of y and t are



118,

(xxs] = {m, 8 x5 ..x By K8 XBses BBy X0 5}
(Yxt)f-{}". b Ve U NES Bt v 2 TR y,,.t,,},

end the direct-product metrix (AxB} of 4 end B is aefined

by ( yxt ) = (AxxBs ) = (4xB)( xxs) R SR B N

(AxB) 1is of order mp xng, since (y xt) is of order mpx 1
and ( xxs) is of order ngx1l., If A = [e;] , then (A xB) cem

be formed as follows:-

(AxB) = 8y B 8, B .. a, B
a, B 8,8 ... g, B

aam B am:.B Lo XG aamB

Hence (Ix A) = [A » Where I is of order nxn

and A recurs n times down the diegonal; end (I xI),
where the I's are of order nxn end mxm respectively,
is I of order mm x mn. Also (A x1) = 4, for, putting
B=1 in (12,4), we have

(Ax1)(xxs) = (Axxs) = A(xxs) , s being scalar.

Multiplication Theorem The fundamental multiplicative

law for general direct-product matrices is (AxB)(Cx D)
=(ACXBD). For by definitiom (AxB)(xxs) = (AxxBsj ,
where x and s are arbitrary conformable vectors. Hence
| (AxB)(CxxDs| {by definition]

i lefinition)
ACX xBDs) sgain by definitior
éAC ng)[x x s) (also by definition) .

(AxB)(CxD)(xxs)

oy
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. (AxB)(CxD) = (ACXBD), since x and s are arbitrary
vectors.

Transposition of a Direct~-Product Matrix. What is
(AxB)*?

(AxB) = ﬁa,,B &R .ui ‘aR
a,B aB ... 8B
-a”“B aM:'B L %ﬁ"B .- .
(AxB)*= [a,B* gB' ... aB'| = (A'xB').
a,B* a.b* ..« aB*
a,B' 8B' .. &B

First Theorem on Orthogonality. If M end N are both

orthogonal matrices, then the direct-product matrix
(MxN) is orthogonal. For
(M* x N*) (MxN)

(M*M x N'N) ( by the multiplication
theorem)

(MxN)*(MxN)

(IxI) = I.

"Direct-Square" of a Matrix. If we have a direct-product

matrix(4ix B) and put B=4A, we obtain (Ax A), the"direct-

23
square" of A, which we may write as Ai .
For example, if A =[sa, a,| , (though in general
8, &,
A is rectengular),
{z} = z
A % a, B“ a‘l:. as i_aﬂ 8.

aila’l.l a’n a‘n— Bh.au au. .
g8, 8.8, 88, a8,
a:l a-u a‘z:. a':u.azr &:’- ¥
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e matrix of order 4x 4. The process may be repeated

. 3
to obtain the "direct-cube" of A,‘g » & watrix of order
2.3%23 , 8nd so on.

Second Theorem on QOrthogonality. If M is an

: _is}
orthogonal matrix, then M "is also orthogonal. This
follows immediately from the previous theorem on
LEY]
orthogonality, for if we put N=M, we have that is

orthogonal, and the proof follows by induction.

Interaction Trensformations. e have, by (12,1),
symbolically Il =11 1 1| . Suppose now
N =L 1 n

that we normalise each of the row vectors of the

matrix on the right-hand side end write

= Bl Rl

The metrix M is orthogonal so that the linear

il

expressions for I eand N constitute a complete

orthogonal set. Similarly, we may write

Il =11 1 1l = M Ji
[K] 'E[-l 1} [k:l [k
for eny other single factor, potash.

Now, for a 2 X2 experiment with n and k we

have by (12,3), ignoring normalising factors,

I N k Nkl=[(n+1)(k+1)] = M+ 1] x[n+1]={1 x}xix
t } (n -1){ic+ 1) B [n -1]
(n+1)(k -1)
(n -1)(k -1)



121.

It is thus apparent that the Tollowing symbolic operations
hold good := Im= I, (IxN)=N, (IxK)=K, (N x K)=NK,
where the symbols (representing vectoré)on the left-hand
side of each equation refer to single factors, those on
the right-hand side to the 2-factor experiment.
Introducing normalising factors, we have

i1 ¥ & §g}= {I K} x {1 N}
= {1 k} x M {1 n}
= ({1 X} <1 n} ) ( by detinteien
{l o nk} of multiplication)

Il

The "interaction matrix" transforming yields into main
effects and interactions is therefore M%G for a 2x2
experiment. By the second theorem on orthogonality
above, we know that M is orthogonal. It is, in fact,
5 x 1 X 1

-1 1 .=k 1

-1 -1 1 1

3 =ks ek XA
Thus the main effects and interactions constitute a
complete orthogonal set and mey be testea for significance
in the menner exiplained in section 9.

If a third factor, say d, is now introduced,
main effects and interactions are aefined by the products
of the preceding (n+1)(k+1), (n-1j(k+1), (n+1)(k-1),
(n-1)(k-1) with the factors (d+1) end (d-1) in turn,

subject to normalisation as before. But this is
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forming a direct-product vector with the adaitional
vector WL {1 at » SO that we have, symboliceally,

{I N K NK D ND XD NKDJ
{I D} x {I N K IK}
m{l a} x 8P {1 0 x ok}
('{1 aj Xilnknk})

= 1 n k ok d nd kd nkd J

The interaction matrix for three factors at two levels
each is therefore mﬁﬂ , Which is orthogonal, so that once
again the degrees of freedom for treatments have been
orthogoneally subdividea into single degrees of freedom.,
Written in full the transformetion of yields into main

effects and interactions for a & X2 x2 experiment is

— - - — ey

o= e R R AR A i
N T I (R SRR DR A (R R | n
K A TR T s ol i ™ L LT Kk
NK 1, =& «I-2 3 1 =F =71 .1 nk
D PR T e s ol . T ISR e U e a
ND Tiwk, 1 osk =k o=t 1 nd
KD T I eliah SRR 3 ) kd
| NKD =k 2 1=k A=k sk L] Slnkd

By the introduction of further factors it may be
proved that in an s- factor experiment with each fector
at two levels, the interaction matrix is Nﬁﬂ} which is
orthogonal, showing thet there is one degree of freedom
for each main effect and interaction, each of which is
independent of the others and of all other sums of sgquares
in the enalysis of verisnce. This property and its

corollaery, that each main effect and interaction is
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expressible as a linear function of the yields, the
square of which appears in the analysis of varience, is
confined to experiments with two factors only.

As shown in Section 10, the following symbolic
equetions are true (subject to normelisation), using the
definition that, if A=1'y end B=m'y, then AB=Y1 my, :=
I"=I, IN-N, INK=NK, N'- K'= D*=1I, D.ND=ND'= NI-K,
KD.NKD =D, etc. Hence I is known as the identity of
the "effects group".

Since the linear expressions corresponding to each
main effect and interaction ere all independent of one
enother, it follows, by Lemma 6, that the mean square for
each main effect or interaction is independent of the
meen square obtained by pooling the degrees of freedom
and squares corresponding to any of the other members
of the orthogonal set. By the additive law of geamma-
type veriates such & pooled sum of squares hes on the
null hypothesis gamma-type distribution with degrees of
freedom equal to the sum of the individual degrees of
freedom, and its mean squere is an unbiassed estimate
of 6", the random veriance, This is the Jjustificetion,
in experiments with a single or even fractional

replication, for combining the degrees of freedom and
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squares corresponding to high order interactions
(normelly expected to be null) into an estimate of
experimental error ageinst which other meen squares may
be tested. The particuler degrees of freedom to be used
as the estimate of error must be chosen beforehand from
the interactions of the second of higher order which, on
the basis of past experience or by reason merely of their
high order, are predicted to be negligible. Naturally,
should eny of the chosen interacvions prove to be apprecisable,
it is not permissible to remove them from the estimate
of error. The result must be deemed & chance one, though
it may be noted for reference in respect to future work.,
Also, should a main effect or interaction not among those
chosen as estimate of error prove to be not significaant,
it is not a valid procedure to combine such a dagree
(or degrees) of freedom into a new pooled estimate of
error, for such an estimate would be biassed. The
following proof is this is sdapted from & proof due to
M.H., Quenouille,

Suppose that we have two varience estimates,
u and v, of 6* with n, and n, degrees of freedom
respectively. Let «v Dbe the level of significance
such that, if u < « v, it is proposed to form a

nu + n,v
new variance estimate “n,+n, . £OT simplicity
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we take the special case of n,= 2, Then the mean

value of u for u < & v
LA ke ap (35 ) ks
j f"“- Lng=1 n’.(f' o

I

‘[”u’-f-u-%(_ ){a-'r o 24h (~oku) - O'a{tr%(.gu-)}da-
b ek ) {0 - 0T et cad ] e

*[@).(3)* - oIt ﬂ*) G - o i ()
GLKL;?) (’%‘ 9;_’ - ) (n.,-rzdu‘.i' )—‘

alp el ){(n.«rzd.a- ; =1
A0 \n,+ 1:!(0'
= a-| + - ( nazzee®)! (";—r zntcr")%‘ =1
kN, g =1

]

l

N, U+2t
Hence the meen value of “w,+z ‘ for w <o will
3 24-! 2y =
ic L LT At V=
be too low by an amount NatZ (o‘-“"’ 7:) [(’* . ) *'J

which > o0 as n, > oo.

In 1935 Yates (25) first published the theory of
factorial experiments, though they had actually been in
use at Rothemsted Experimental Station for several yeers.
Then, and subsequently, meny criticisms on vearious
grounds were levelled at such experiments, most of them
One such

being effectively countered by Yates (25,26).

ecriticism, by Wishart (23), may be mentioned here.
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Wishert contended that, owing to the comparative
unreliability of estimates of variance based on only
one degree of freedom, it was dangerous to accept meen
squares which were significent at the 5% level as being
evidence of some real effect when they were very likely
only chance effects. Thus, the treatment sum of squares
should be examined for significance first ( just as in

an ordinary randomised-block experiment), and only if
significance were established would it be legitimate to
test individual degrees of freedom, such tests being,
after all, only individual t-tests of two particular
treatments, These contentions are easily refuted. If
the S% level of significence is used, only one in twenty
of the effects end interactions should be significant

by pure chence, whether based on one or several degrees
of freedom. Realising that by adopting the 5% level

he may be in error once in every twenty times, the
statistician does not assert thet any effects which reach
this significence-level are necessarily genuine. He
waits for confirmatory evidemce . Then, factorial design
is such thet it is unnecessery to prove the significance
of the treatments sum of squares as a whole before
examination of individuel degrees of freedom. For

example, the main effect of any factor at Two levels
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(say n ) is measured by comparing half the plots of

the experiment with the other half. Thus, so far as

the main effect of n is concerned, the design is
equivaelent to a simple experiment with two treatments
only - the two levels of n - y @nd in such a cese it is
obviously legitimate to use the t-test before the F-test,
since the two tests are exactly equivalent.

In this section, maintaining consistency with
Section 9, the linear responses of main effects or
interactions have been defined by certein normalised
vectors. Such a definition is not in accord with that
of Yates (26), whose definition of the effect of a
linear combination of the yields, ﬁ'y, is given by ;:—zl\%t ’
where by convention A=+%Z for factors at two levels only
and A=f in all other cases.

The definition of a linear response as a
normalised vector of yields has many theoretical
advantages, Such vectors may be assembled into a complete
Or incomplete orthogonal set, anc the significance or
non-significance of the responses is immediately apparent
by comperison with tx(s.E. of the experiment), where t
has the value corresponding to the number of degrees of
freedom of the error mean squere and to the level of

Significance required. Also their squares may be entered
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directly in the enalysis of verience table without any
division. (In the case of more than one replication,
the square root of the number of replications is
incorporated in the normalising raetor;E%%- in the
denominator if the vector y is of treatment totals, in
the numerator if the vector is that of treatment means),
The normalised definition is also completely practical
in working with a single experiment or with a set of
experiments all of the same design. In point of fact,
in these circumstances no normalising factor is required
at all, provided adjustment to the squares is mede in
the analysis of veriance by the proper divisor (the
square of the normalising factor) emnd provided the
standard error for the t-test is also suitably adjusted.
Thus, the original definitions given by Yates (25) for
the main effects and interactions of factorial experiments
at two levels only were sums and differences of ylelds
of treatment-combinations without the conventional factors
he introduced before the paper was actually published.
However, if linear responses are to be made
comparable for experiments with different designs, they
must be reduced td a per plot basis, otherwise, for

example, the interaction between two factors n and k of

a three-factor experiment will, other things being equal,
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be less then the interaction of these same factors in a
five-factor experiment. With the normalised vector
definition it wbuld be approximately half. It was

to correct this anomaly that Yates altered his original
definitions. For similar reasons, therefore, we now
introduce a practical measure of the response on &a per
plot basis of a linear combination of yields, £y, -
namely EF" This definition is the same as that of Yates
except for his conventional factor A , i.e. the two
definitions are the same except for factors &t only

two levels., There is, however, the additional condition
which must now be imposed on the elements of the vectorjﬂ,
that they must be integral or zero and have no factor in
common .

The new definition presents other advantages
besides faciliteting comparisons between different
experiments. For example, we shall seein the next
section how, if we fit a multiple polynomial

2,38, )= 0 re, Xhis Fib 0, 8 e s
=t gw3y+amwx24-ammy2+u.c+%mhﬂﬂ toaeees
by least squares to the yields of an experiment with
factors X,y,z,... at two levels only, the coefficients

are the linear responses, as now defined, of the main

effects end interactions, e.g. 8, =the interaction YZ.
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Of course, the items in the "sums of squares" column in

the eanalysis of variance are no longer the squares of the

linear responses, but the adjustments are easily made,

as are those required to the standard error for application

of the t-test. It is clear that the results obtained with

the normalised definition still hold, since the factor if@*

is detachable as required. Where it is theoretically

preferable the normalised definition will still be used,

but, if so, the fact will be specifically mentioned.
Yates' adoption of the conventional factor A=%

for factors at two levels is more difficult to justify.

It is true thet for main effects his definition gives

the mean response, but it does not give the mean

interaction, which would reguire the factor A=z%,

where r is the order of the interaction concerned.

The complications brought about by verying A within

a single experiment probably caused Yates to define

A\ as 3 for all main effects and interactions, but why

introduce the factor A at all? There seems to be no

perticular adventage (other than the very slight one

elready mentioned) in having any factor additionel %o

Eﬁ?, the necessity for which in certain circumstences

has been shown., The effect is merely to introduce

additional complication. For example, the formulae
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for deriving the yields of the various treatment-
combinations from the main effects and interactions
lose simplicity. For a 2 x 2 x 2 experiment in
n,k, and d
(Yates’ }
nk = Mean +%( -N+K-NK+D-ND+KD-NKD) (definition
= T5 (I-N+K-NK+D-ND+KD-NKD) (normalised definition)

=lMean -N+K-NK+D-ND+KD-NKD (response per plot
definition)

The signs in each case come from the transpose of the
k
matrix M{ ]of Pizz, The improved simplicity of the

last formula is apparent.
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Section 13.

Orthogonal Polynomials and Factorial Experiments

It has been seen (§ll] that analysis of variance is
equivalent to fitting by least squares to the yield data
certain constants, including one for every treatment. If
fhe treatments consist of a single factor at equally-spaced
intervals (levels), we may fit a curve of regression to the
treatment-constants by least squares and orthogonal
polynomials., In agricultural experiments, where the
factors are conveniently arranged at equally-spaced levels,
we are chiefly intereste& in the linear and quadratic
effects of the factor, and these may be determined by
fitting a quadratic polynomial of .type a;ra.pjx)+§gﬁx)='u,
where the functions p(x) are orthogonal. Suppose that
we have a factor at five equally-spaced levels and assign
metric values -2,-1, 0,1,2 to the veriate x , thus:-

x | 2 -+ 0 % 2
u U, U, U, U u,,
where uw,, u,, etc. are the treatment constents fitted by

least squares. Since these constants are deviations of

treatment means from the general mean, the u's may be

taken as treatment means or treatment totals (the required
adjustments in either case being easily made), thus

allowing the change of ordgin from the general mean
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to zero to be absorbed in the constant term, a,. As
previously, we shall in this section take the u's as
being the treatment yields of a single replication.

With the metric values adopted it is apparent that
we may teke p(x) as x and p(x) as X -«, for these functions
can be made orthogonal be assigning & suitable velue for
ol , The observational equations are Pa=u, wnere the rows
of P are [1 x, x -ot] . In our example 4=2, amd the

equations are

o ~

1 -2 2 a, | =nu
4 -1 -1 a,
X 0 -2 a,
1  § -1
| 1 2 2 |

Because of the orthogonal relations, P'P is a diagonal
matrix. In general, P'P= diag[n Yp(x) Eﬁlx)] , where
n =the number of levels of x. The normal equations are
P'Pa =P'u, where P‘u:{iu Sup(x) }__upjx)} , So that the
Tup® o ppys

. . . e 3
a; are determined independently as &; T R

in the present example

ag =l dta, 2oL s LI e
s -1 0 1 2)

8, w(2 -1 -3 -1 2]
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At the same time the residual sum of Squares, since the
u's are independent and have the same intrinsic variance,
is equal to (u-Pa)'(uyPa)==u'u - a'P'Pa. In ordinary
notation this is equal to Yu* -)}a}épj"(x) , and because of
the orthogonality the reductions from the treatment sum
of squares due to the linear and quadratic effects are
a,Ip (x) and at¥p}(x). The reduction due to the fitting
of the constant term is S‘L,:"r, which is the correction for
the general mean.

It is evident that P'u, with the vectors normalised,
is an incomplete orthogonal set subdividing the degrees of
freedom for treatments. fach individual degree of freedom
may therefore be tested either by the F-test (comparing
its mean square, 8y }; pj"lx) , Wwith the error meen squeare),
or by applying the t~test directly to the linear function.
The significance of the linear and quadratic effects is
thus rigidly tested. It will also be noticed that a,
and a, are the linear responses per plot (as defined in
the last section) of the linear and quadratic effects
respectively.

The orthogonal polynomial values as obtained above
are particular cases of the Tchebycheff polynomials. If

it is desired to ascertain the cubic, quartic, quintiec,

etc. effects of x, the appropriate orthogonal polynomial
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values may be found in Fisher and Yates' tables (14).
The new terms may be fitted without alterations to any
previous terms and their contributions to variance are
purely additive.

If the design consists. of two factors at equally-
spaced levels of each, we may fit a bi-variate polynomial
by least squares and orthogonal polynomials. Allotting
metric values to x and y as before so that Yx=)y = 0,
it follows that the functions x and y are orthogonal to
one another since Yxy=2x2y=0. Also we see at once
thet the function Xy is orthogonal to both x and y.
Hence for the fitting of the bivariate polynomial
£ (x,y)= g, +8,%x+8,, y+8, Xy, &, must be by the results
of §10 (Pi08) the interaction of the linear effects of
the two factors. In particuler, if x and y are at two
levels only, a,is the interaction XY. As an example,

in a 5 x 4 experiment we have the scheme

x —3 -2 -1 0 1 2

y o o [ u,, u,, g i

L x n. Ujza , U,y Uz
i v, Uzs Ugs Uys By
‘% Wi Yag YUy Uis U sy
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so that

e TR R TR B S T B TRESR TR
fe<ggl2-1 0 1 2 2-101 2 ~2-1 012 -2-4 0 4 2|u

3] u

ay=300[ 6 3 0-3-6 2 1 0-1-2 -2-1 0 1 2 -6 -5 0 & 6] u

6, =iEo|-3 <3 =3 3-8 -1-1-1-1-1 1 1 4 11 5 5 8

(=]

Where u={ w, u, u, v, v u_uw...u.. v, w, w0, u g

It has saslready been seen how & can be fixed so as
to make the function x*-o orthogonal with x and 1, and
therefore with all members of the orthogonel set P'u.
Similarly, y*-# may be made orthogonal by fixing /2.

If this is done, it follows that the functions (x -4)y,
x(y*-p), (x*~&)(y* -A) are all orthogonal with the
functions 1, x, y, Xy, x =&, ¥ -4, and to each other.
Hence, if {ve fit by least squares the bivariate polynomieal
f(:x_,y)= 8o+ 8,0 X+ 8 (X &)+ 8,748, x7+ g, (X ~4) ¥

l o g,y -8) + a_xly" -Blra, (4 (v -4),

I- 8,, » 8, , 8z, represent respectively the interactions
between gquadratic effect of x and linear effect of y,
between linear effect of x and quadratic effect of y,
and between the two quadratic effects. If the factors
are A and B, these interactions may be denoted by A"B',
A'B" | and A"B", the single and double dashes representing
linear and quadratic effects respectively. 1In a 3 X 9

design the ebove subdivision of treatment yields would



L3525

give a complete orthogonal set, but with either factor at
more that three levels the subdivision is incomplete and
there will be a residual treastment sum of squares.,
However, as in the case of a single factor, additional
terms mey be added representing cubic etc., effects and
their interactions, the required values of the orthogonal
polynomials being available in Fisher and Yates (14). As
before the significance of each a;; may be tested against
the error mean square.

The fitting of a multiveriate polynomial f(x,y,2,...)
to the treatment yields of a design with more than two
factors is a simple extension of the above process.

The matrix P'of the equations a=P', with its
vectors normalised so that P'P=1I, is what we have
called in discussing factors at two levels (§12,R11|} an
interaction matrix. Such matrices were constructed by
means of forming direct-products, and an extension of
this method may be used to construct the interaction

matrix for factors at more them two levels, For example,

consider our 5 x 4 design. Teaking the first factor A

alone and using the normalised definition, the interaction

transformation is:~-



A
A"
B!

A'B!

A"B!
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A'B"
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Jio
b Yyo
ity Uo
Eactd

where the interaction matrix (M, say) is orthogonal, but,

of course, with only a single factor there are no

interactions, only linear and quadratic effects.

second factor B alone the transformation is

[}

I = '/a. }-1‘- %— -z W,
£ =i [ u,
B Jzo 70 Tao Ti’a %%

“a
B ¥ e ek SR [0l s

with orthogonal interaction matrix N (say).

These two

trensformations may be combined by direct-multiplication

with the convention that Wy & = wy . We have

st 1 & 2 1 2 % 24 1
F(2-1 0 1 2 -2-1 0 1 2
Dl 21 -2-1 2 2-1-2-11
(-3 -3 -3 -3 =3 -1 -1 -1 -1 -1
(6 3 0-3-6 2 1 0-1-2
(-6 3 6 3-6 -2 1 2 1-2
ali 2 1 4 3 Sl-h-i-ied

wop(-2-1 0 1 2 2 1 0-1-2

TRl 2-1-2-1 2 -2 1 2 12

1 4 1 4 1
2=-1 0 1 2

2i=grmp =1 2

-1 -1-1-1-1
2 1 -1 2

=2 1 2 1 =

1

-2

G 5T b
=1 0 1
=1 =2 =1

3 & 3
-3 0 &

=3 =6 =3

-1 0 1

-1 -2 -1

1)
2)
2)
3)
6)
6)
1)

2)

2)

For the
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By the first theorem on the orthogonality of direct-
product matrices {§12, P.119), we know that (N x W)

is orthogonal, so that the above matrix is orthogonal

end each vector is normalised. It is apperent that the
vector of an interaction (say A"B') is (apart from
normalising factors) the result of multiplying corresponding
elements of the effects vectors (A" and B'), thus agreeing
with previous results.

Tables of Orthogonal Polynomials Tables of orthogonal

polynomial values for some simple factorial designs will
now be appended. Only linear and quadratic effects will
be tabulated, since cubic or higher effects are rarely
required. In the notetion used a,, for example, would
represent the coefficient of xy*z in our fitted

polynomial f£(x,y,z), i.e. it would be the interaction

A'B"C' on a response per plot basis.

3 x2 4 x 2
go=t[2 0 1 -2 0 1]=a" aci[-3-1 2 3-8-1 1 5)= A"
e =n[1-2 1 1-2 1]-ar o -t[1-1-1 1 1-1-1 1]=ar
a,,= 1';[-1 -1 -1 1 1 1]-B o 4f-1-1-1-1 111 1]=8
eu=8[1 0-1-1 0 1]-a"8 o= ialis 2t BT 3]=4's
o =nl-1 2 -1 1 -2 1]=A“B am="gl'[-i 1 1-=% 1<1=1 1]= A"B

i
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In the following three-factor tables the vectors are

applicable to a vector of treatment yields of the

form {1_1'“ U.:_" e e e .u“‘lll u,’-' U’-ll e e .ul"ﬂ.l" L)

Upp Ugpeo oo umﬁunﬁ...um,*]

E‘uw'“-%'[_:" 0 1
oo Ze[t -2 1

8= 1&[—»1 -1

Ayjo= %-[ 10

B240™ ﬁ ["" B

2

= =
oo™ '1["'1 -1

a,‘,,=*5';7[ 3 g
Bo=2 "L 2
am,=ﬂt[_1 1
8= .'3[-1 0
twcZe[ 1 -2
alo‘,:ﬁE-S —1. 1 3
a,,,:,—z?[i -1 -1 1
ao:oz'IJCl}l -1-1-1
fo=F5[5 1 -1 -3
fuosib[-1 1 1 -1
o= 7g|~1 -1 -1 -1
Bor= §'3[5 s e N
G Tg[-1 1 1 -1
Bon= i%[ v S s |
au=gs[-5 -1 1 3
a6 1 -1 -1 1
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Section 14,
Graduat@on of Bivariate Data b Orthogonal
Polynomials ang Least Squares,

The discussion of the pPrevious section suggests that

a general method of gradustion by means of orthogonal
polynomials for a set of m x n data, independent and of
equal weight, for X=0,1,2,,...n~1, ¥y=0,1,2,...n-1,
might be investigated, We therefore extend to the
bivariate case Aitken's method (2) of graduetion of a
set of univariate data. Were it not for the faet that
the theoretical and practical work becomes unduly
unwieldy, there seems no reason why the multivariate
case should not be similarly treated, and indeed those
cases of most common occurrence in agriculture, namely
three or four variates (factors) graduated by orthogonal

polynomials up to degree 2 in each variate should not

Present undue difficulty. 1t was seen in the preceding

section that the orthogonal polynomials determining e.g.

were obtained by multiplication of corresponding
. In the

aZI

polynomials in the sets determining a,,and &,

same way we find that in the present case the biveriate

orthogonal polynomials are obtained by similer
multiplications of the Tchebycheff polynomials of the

univariate case.
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In the following exposition we shall need to make use
of the calculus of finite differences for functions of two
variables. The various formulase required are set out
below A,_,Ex, £, denote operations with respect to x alone,
JAY ,}:,’,E,, operations with respect to y alone. In dealing
with the product function uv, the subscript 1 refers to

operations on w alone and the subscript 2 to operations on

v alone.

Differencing A :‘I\? U™ (B, -1){1:3 -1) Uy

(.E.‘}i.?-u —h.a-l-l) gy

= U™ Mgy " e+ Ly
Summat ion fiﬂﬂx,y) where #(x,y) =ﬂ_.&5’f(x,y),
=): [95(3: 1p(x,2)t ... +¢(x, nl]
= Z (lﬂ-;ﬂi.g, . +h.,, ) #(x,1)

xsi

= f lT"EE; (.L- «11 Tk, L sinceﬂx,lhﬁuﬂgﬁx,l)

=x==1

]

= (hi,‘-l](ha-*l) o (1055 )]
= £(m+l,neil) - £(mel,1l] = £(1,n+1) + £(1,1)

Indefinite Summation If ¢lx,y}=A,ﬂftx,y), then

end lower limits to both
'Z-_li’(x,y] =f(x,y) where upper

X and y may be introduced as &above.
Indefinite Summation of a Product
DD,y Uy = “3;. -ﬁ*u ~L) {2y, By -1 Uy, Uy
C By, Ay (il B, KL (L 805, ) sy
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In the following exposition we shall need to make use
of the calculus of finite differences for functions of two
variables. The verious formulae required are set out
below: A,,Y , E, denote operations with respect to x alone,
A,’}:’;E,, operations with respect to y alone. In dealing
with the product function uv, the subscript 1 refers to
operations on w alone and the subscript 2 to operations on
v alone.

Differencing A.4, Uy = (B =1)(Ey =1 uy
= (8,8, -5, 5,+1) tuy

= u'au-s&—n_ “'.m)a," uer' - lt.,‘,,r -
Summation )i};:?lx.,y_), where g(x,y) = ,a,A?f(x,y),
=f [¢(x 1P x,2)t... +¢(x, n}]
"Z ll+b,+r.,, ....+E,, ) #(x,1]
f ,L‘; i (Zy -1] £(x,1] sinceﬂx,l)=ﬁA}‘(x,l)
= (J:;,—l](mz-l) "l {0 )
= f(m+l,nel) - £(mel,l) = £(1,n+1) + £(1,1)
Indefinite Summation If p(x,y)=6,ﬂ;tx,yJ, then
Eh}._(x y) =f(x,y) where upper and lower limits to both
. i >

x and y may be introduced as &above.
Indefinite Summation of a Product
DD, (g g ) = Uy By 1) (B By =15
= E, A E ,.a,,(m.,.,a A )(1+E,,A,, ,,J Uy G
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}% o Ry = Dy %

- -1 -1 -1 L 3 -
=E L. E?’ﬂﬂ* (1B BN R AL - By D, A+ By Az'ﬂrt"“')“a;”;éf
=(E.A EALSE N ALEE S ELOLESAL A +E N KL E N
+E, AMA”E.J, DA ~ESNLEIN AL + . ... ) “nig Ve

= Y o
Sy 3y AT By By T ey

-
3 L2 3
Sty TRy BB, *z)% Byt By oga XL

u; - - -
y

Advancing Difference Formula.

u,, = (1+4, iy tl"ﬂy ),'um

= (1+xA +xgjﬁ,+ ----- )(l-u-yﬂaa— Ycz.;ﬂ;’""")u

(LexA, + yﬁy + quA:+ xyﬂxﬂaﬂ» %A‘;-o-,,,i u

9,
Reduced Descending Factorials. s = -;_&—

Axﬂn [IL.-] ¥5)] - A’L [ x(r;('_j —l)] ¥ J{i’- Iﬁs")
% YE Y T Rew Ysen
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Let the mn data corresponding to x=0 y1,8,00..m=1,
¥y=0,1,2,....n-1 Dbe represented by the vector
M= {u,P Moy Myra o v allon, A, Ay soed o Uy Moo o 0 n,,,_,),,_,}
The problem is to fit a polynomial U(x,y: m,n) of degree
(i,k) , where l.-:m, k<n, by the principle of least squares.,
Let us teke U in the form &, %, To, (X,¥)

+0,, T, (X, 7]+ v, T, (%, 7k T (x,y yhaJ (x,7)+ ...

o1 oK Ok
+0, T (X,7)+.. +ay, Tp (x,y) , where, for exemple,
11’,( (x,y) is a polynomial in x of degree not)ﬁand in y

of degree not d k. Also we impose on the T-polynomials the
m-i n-i

orthogonal cond:.tlons):ZT (X,Y} T (x,y)=0
for vfp or s#q,#0 whenv=p and s=q simultaneously.
The observational eguetions are u'=Ta, where the rows
of T are[l T, T....0. T, T .0 TenT,]
for x=o0, y=0; %X=0, y=1 ; X=0, y=&j... %X=0, y=n-1 ; X=1, y=0;

x=1, y=1%..0 X=1; y=n-1l;...., x=0-1, y=n-1, and

aﬂiaboao aoz“'abu 'l"'a“‘"'a"-“} =
T = diag. [ m L I‘[_ . 13 (x,y] ZZT (x,y]..ZZ Lx,w..{}:g”(‘x,yi

Hence the normal equatlons T'Ta.-.""u. give the a independently

T ou,, T, %y)
of each other as ay = = E. _rw(x’&‘) .....(14,11

Since the w's are independent and P e equal weight, the

residual sum of squares==(u-‘l'a) (w-Ta)=uwfu-a'l'la

..z_zu.- }'.Z[ LT L - (x,7]]

i1.8. of (14 l)]
_i_}'_u.‘_‘ -Z‘?[a;éx Numerator on R,H.S. © (14,
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the sum of squared residuals being reduced by a single term

for each agje

Derivation of the T-Polynomisels Thv X,y), & polynomial

of degree p in x, q in y, may be expressed as

Cpogy Tl 5T 1+ Oy, Tt 2y %yPﬁ":v(x’y)+‘ s 0o Fo o (%,Y)

where Faglx,y) is an arbitrary polynomial of degree

p in X, q In ¥

; T, fx,v) T,’,(x,y]=§§ T,,,(x,y)[c;.,vr;.,,,(x,yi+cw1’w,(x,y)+....
(x,9)] .

I
Hence the orthogonal conditions are equivalent to

1
00,0
m-1 ney

22 P lx,y) T.(x,7)=0

xzo nzg

for all values of psr, 9<% s , but not p=r, g=8

-

=g

simulteneously. If now in the formula for summation

of a product we put u,’:)‘:(x-l-pl” (y+q)(‘w , then since
‘x+p-a<)b_w——)0 when x=0 for a=1,2,...p and ly-rq-,b}w_‘j)o

when y=0 for k-1,2,...q, we have

m=i - m-1 n-i

LY, Woy%y = “mim LE G, = D, “"'*'"-'b;) = oy

R=0 Y=o o

Wyl fret gL
- Az T Zo (z) Ui cons

’. The orthogonal conditions are

(mep-1), (n+q-1)FL, Jx,y) ~(mep-2), ) (neq-1 &ﬂf}: T, (x,7)

-( m+p—lbv){n+q-22m_d‘-f-ﬁ'T,-,s (x,y)+ (m+p-3 {M(n-f.q-lg%fi T, (x,7]

#lmep-2) fara-g) FE Ty (17} + (a0 L] (are-g] FE T (57

...=0 , for all values of p<r, q<s, but not
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p=¥, ¢=s simultaneously. Taking these equations in

order from the lowest (p=0, g=0), we derive in succession

m=1 n-i

22 T.(x,y) =0T o, (x,y):3% " (x,y 0T (x,7)

=¥y 1,_.,(}:,31'){5:’1‘“ X,7)= cansy 2 T (x,7)=E % T (x,7)

-ZZT,, (x,y) where rand s are both positive. Putting
E:I:aT,.', (x,y}EG”_'“(x,y), a polynomial of degree (2r,2s),
we have that G, ,;(x,y) and its differences with respect

to x,AG,  (x,y),0\, ”“(x,y),....A,G“B(x,y) vanish at

x an23

Xx=0 and x=m, and hence that G,u;,‘,(x,yj contains the

factors x(x-1)(x~2)...(x-r+l)(x-m)(x-n-1)(x-m-2)...(x-m-rs+1).

Similarly G,.L,,,, (x,y) and its differences with respect to
Y,ﬂ Garpas (X,7) ﬂ, v“(x,y),...ﬁ:(}w‘(x,y} vanish at y=0
and y=n, and hence Gmgx,y.) contains the factors
yly-1)...(y-s+1)(y-n)(y-n-1l)...(y-n=-s+1). .. Except for

a numerical factor, Gl;x,y) is the product of these
(2r+2s) factors. Also A ﬂa, v“lx,y s (x,5), ~ T (x,¥)
=A A#xw(x m)w y@ y-n)g , the numerical factor being
chosen as @E)"because then X, , (x-m),, sy’ end (y-njs
are all integers, x and y being integral.

-
.

T.o(x,y) is an integer.
To obtain T, (x,y) we first express (x-m)(y-nj,

as a Gregory-Newton series thusie
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(x --m)@_J (y-nlsj = (x-r]@) (Y‘S{s) -lm—r)(x-r)u__,) (y-sts)
-(n-s) (x-rl, (y-s)Ls . Tlmer+1), (x-ri. 2 (¥=8)g,
+(m-r)(n-—s)(x r)(m)(y s)(s - + (n=-s +l.t (x r)w E 1}-
=] (m-l] (n-lJ(s)
We th - :
e then have X, (x-u), y ) (y-nly, = (arl@ (25}, x @n %)
-(m-r)(2r- -1, (25{5) X aret) Yasy -(n- s)(ar)‘n (2s- l{s) ar) Tasep
+ (m-p +1]'€~) (2r-2 )(“) (23)(5) Rar-1) Yag) + (m-)(n 5)@’__')@@5_ {s) Xt
+nms vl (20)g (28-2)g) Xoposy * oo €0 7T 670 Xertte

using the identities x(‘,j(x--r)wf(21‘)@,‘l Xiar)
and x@)(x-r)u__q=- (E'.r-l)w K1) * Hence, reducing the
suffixes of x and y by r and s respectively we have

.o

Tos (1) = KA [ (xmaly) v (70l
= (2r) © (2s)g, Xy y@)-—(m—rl (2r-1), lzs)@) b (o) 7 M
+ (-1 (m-1), (-1l , oeee(14,2]
the general term, the (h,k)ﬁ‘;being
(-lllu-l(

But (14,2) is a Gregory-Newton advencing-aifference

(ar-h}@ (2s—kl@) Xy-) Yigu) (m-r -1-11--1.)uiJ (n=s +k=1) ).

expension written in reverse, the term corresponaing to
that containing Kﬂ‘;"ﬂ,s (0,0) being the (I‘-P.S-q}th ’
i.e. A“‘AH T,.; (0,0)= T (r-!-p)w (s+alg
(m_p-l]&_m ‘n"l‘“ts-w P s L
Now (14,3) is simply the product of two univariate poly-
nomial values A}VT‘,(o] and Ast (o), so that tebles of

terminal velues end differences for the bivariate case



155.

may be constructed from the univariate case by appropriate
multiplications. For example, let us take the case m=7
r=3; n=6, s=3, We have the following univariate
tables in which ( as we shall see later) the usual

cancellations should bg made: =

m="7 n==6
r = 0 1 A 3 5 = 0 1 2 )
T, 1 =3 5 «i T, 1 =5 5 a8
AT, I <5 2 AT, CR T
AT, 2 =2 AT, 3 =15
NT, 1 AT, 10
Tz 7 28 8¢ 6 SS9 | e 7o ek im0

from which the corresponding biveriste table may be

constructed:-



(rys)

(0,0)(0,1)(0,2)(0,3)(1,0)(1,2)(1,2)(2,3)(2,0)(2,1)(2,2)(2,3)(3,0)(3,1)(3,2)(3,3)

ey 1 =5 5 =5 <3 15 =15 15 5 =25 25 =25 23 8 -5 . 8

AT, . 1 =5 6 =5 =5 25 =256 25 2 =10 10 -10

Dmaﬂ 2 =6 12 -6 18 =36 10 -30 60 ~=2 6 =12

sl B 2. =10/ 10 =10 =2 10 =10 . 10

P?eﬁ 2., =6 A= -10 30 =60 4 =12 24

By T 3 -15 -9 45 15 =75 -3 15

: AT iy W -

m D.”Dwaa 4 -12 24 4 A2 =24

Pbmeﬁ 3 =15 -15 75 8 =30

Aey 10 -30 50 -10

waeﬂ 2 6 1

AL T, 6 =30 -6 30

AN T, 10 -50 20

bwbw P 3 =18

KA T, 20 -20

waenm 10
MMHHL 42 490 583 1260 168 1960 2352 5040 504 5880 7056 15120 36

420 504 1080




157,

The values of ) ) T, (x,y] in the above table

k=0 u:o

are found as follows, In virtue of the orthogonal
relations, we may replace T,s (x,y] by its term of

highest degree and write ZE & re (X55)= 2 (2.1']U
X~y Ui

(as}@) ¥ Iygs (x,y). Sum.mng this product by parts,

using the fact that Z}:T.,_ls lx,y)z):"z T, .o (x,y)

- = A " Y4l 51 LF

= EE T (7)) = ensee= TUXT N0 (]35S e
™+ S-—l '

= YN ,.s (x,y)= 0, we obtain ;%_,Tﬁs (x,y)

™S ,.I_.’_-:V; T+ =S+l
=/ (1) Q§J Z. Z Lo (x,y.
r-a-s ]_\—L

=t) Q:L.)"ZZ "wu“"'iﬂk}a ",  (since Ew'g’ﬂ;[_\;: Z% ).

M

Applying now r summations by parts with respect to x

™~/
alone according to the formula 2 v, A, u, =1 x V) "
xeQ
- Z Wt [k,n ¥, , and noting that at each step one or
other of the factors in the partial integrate vanisaes

at X=0 or x=m , we get

e ] +s 27 & - m(m=t) ) '(""‘)
L3 T, (xyl= (-] cL'—:‘_LL;?L;oE_U (2o &F)(?'”)@l

=0 a:o

A further similar application of s summations by parts

with respect to y alone brings us to the result
m~ n- - H(H-I‘)["‘ ) U‘" r‘)n{n"-q")(h"-z‘)._.(h"—s")
I (x,y)= (zr+1) 0> (2s+1) (L2)?

= rs
AmD 3 -3 I -l

which is seen to be the product Z L | 2;0 B x),

so that again the univeriate tsbles may be used, this time

to obtain the velues of LY T, (x,y) in the teble

above., The usual cencellstions of the univariate tables

may therefore be made, and, in fact are essential if the

a are to be the same as the effects and interactions

s
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as already defined,
th
fhe (r,s) reduced bivariete factorial moment of the
)
data is LL:"E_,% = };% X, Xs) Uy o For evaluating &,
we have ars ZZTrs (X,Y) = ZE Tvs (x'Y)'uxv—
But T,.¢ (x,y) = T,5(0,0] + XA T,s (0,0l+¥ A? T.s (0,0)
+ Xy, A T,s (0,0l + xyA, AJT s (o,o)—l-ywA Ty (040 oo
& B }-_).__ 8 dngli=2 o, ol):):u + AR, (o o))Ixu
+A3T,.s (0,0) ):Zyu,? + A, «2y o o) o) ZZI@)u. +iuen
=T,. (0,0 ) +A,T,.. (0,0) Lo + AJT vs (0,0] m(.,,,)
+= A T (0 0) %_22 = CRCR S
Hence =a is found by combining the reduced factorial

v,s
moments of u,, o+ with the eppropriate entries in the columm
(r,s) of the table of terminal velues and differences for
the special values of m and n , and then dividing
by ¥¥T,s . The reduced bivariate factorial moments
are obtained by repeated summation on the values of ¥y
for each value of x and combining the results with a
table of values of X for x=0,1,2,...m~-1 @and r=o0,
1,2,0006 &
The terminal graduated values (z) and differences are

Zo® 8o * 8L @ o k00l ls, | Lo, (o,0l+a,, T, (0,0]
+a,, T,, (0,0l +a,, Tg, (0,0l + 8T (0,0) *ecrs
Az~ 8 ATfo,0) + 8,,0,%,(0,0] + & AT, (o, ol

a,,AT (0,0)+ covee
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A?zq, = 8,48, T, (0,0) + &, A} T,lo,0)+ amA& T, (0,0) +..

Doz, = 8, AT (o,0) + &;,t,A:T,‘,(o,oi*-.....

BAz,.= 8,007 (0,0)+......

ﬂ'a Z0= 8,4, T (0,0)+....
and so on, so that the table cen be used a second time,
using the entries in rows as multipliers in order to find
the terminal graduated values and differences, from which
all the graduated values may be found.

A similer check to that in the univariate case

could be made by calculating the remote terminal values
and differences, Zn .., o N % S Aa,zm_,,,,,,_, etc. Since
T {x,y)= T (x).T, (y) = (-1)" T (m~x-1).(-1) T, (n-y-1) [Ait};en(Eﬂ
‘which = (-1)™*° T, (m-x-1,n-y-1), we have that

-8, T, 0,0]-8 T (0,0) + g T (0,0) +.....

zﬂ‘l-l;n"l = a'o,o o O‘Jl
M
Also, AAUT (x,y) = & T.(x). AYT,(y)

= =11 B ® (mexeged). (<1 A;’ Tg (n-y-q-1)
= [t v e B, 8 ¢, (m-x-p-1,n-y-a-1],

so thet A,z,,.,= -8, AT (0n-2,0-1) + &, A, T (n-2,n-1]

+a, AT (n-2,0-1) -a,,0T (m-2,0-1}- ....

=e,,AT (0,0l-8,, AT (0,0)-8, A,T, (0,0) + &,A, T (0,0)+....

and so on for the other differences. This shows that by

reading all entries in the bivariate tables of orthogonal poly-

nomials with positive sign, we could calculate Bt 8
n 3 Shve s 111
Nz , Dz, ., . ,etc. However, since each z;; 1

A M'?-' n=i a
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any case calculated independently, such a check is
unnecessary.

Lxample of the lethod. Graduation of the following

bivariate data by means of a polynomial of degree (3,3)

x = 0 1 P 3 4 5] ) Totals.
y=gl.® I 1 ¥ & & & 51
138 20 1% I8 .16 5 2 78
2| 14 20 a7 26 20 X5 g 134
3| 10 10 24 32 24 3Q 13 143
4 5 13 18 16 24 29 22 127
S| 3 6 39 3 26 28 19 101
Totals | 51 72 116 111 109 102 73 634
Calculation of Reduced Bivariate Factorial Moments:-
x=0 LS R ey S T
$ 51 13 9%
10 42 103 10 59 162
34 32 .61 3ok 20 49 103 188
10 18 29 43 60 10 29 54 85 122
5 & 1k 24 A3 15 19 25 3L 5%

3 3 3 5] 3 G} 6 6 6 6
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x=2, Ty oy e,
11 116 7
17 105 310 18
27 88 205 397 26
24 61 117 192 286 32
18 37 56 75 94 16
19 19 19 19 19 12
x=4, : BT =0
5 109 3
16 104 324 5
20 88 220 436 13
24 68 132 216 _320 30
24 Gl 64 84 104 29
20 20 20 20 20 22
x=6. S I
3 13
2 70 252
14 68 182 375
13 54 114 193 291
22 41 60 79 o8
19 19 19 19 19

60 100 152 216

U Sl .
AL

104 290

86 186 338

a8 40 512 64
12 12 12 12
B Wt T
102

99 347

94 248 497

8l 154 249 366

51 73
22 22 a2

95 117

22

|
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These summations, may be combined into the following

table: -

T O
3 51 %2 116 211 l0¢ 102 93
" | 105 162 310 290 324 347 252
Y’ | 104 188 397 338 436 497 375

4
V2 60 122 286 216 320 366 291

Values of X, &re as follows:~

C R e S SRRy
ot W DI O T T S L e
1 ML QR S 6
2 1 8 6 10 35
3 I 4 0 20

Suitable combination of the above two tables gives the
reduced bivariste factoriel moments thus:=
Mo _gas,  u-g0z1, o =s2l8, T~ %027
Moo _ynes, Y- 6195, 52 =10374, %7=10096
o8P oss5, | peP-8475, ob-14622, Tip’=14552,
oD 1661, lP=6198, al-10878, TH75-10976

The computation is arrenged round the table of orthogonal

polynomial values as on the next page.

Il
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a,, =|15.005|0.829 [~0,940|-0.1C0|0.708|0.544]0.008 [-0,104 |-0.99C ~0,013]0,122|-0,025[-0,028 |-0.226 |0.127]| 0, 083
&, s3¥XTos=| 634] 406 -553| -120| 119 1067| 19| -523| -499| -79| 859| -379 T R T
rY.g = 0,0| 0,1 0,2 o &l 1;6] a.a) ik 1,3 2,0 R 2,3 3,0 3.1 8,201 082
Moments == — =
634 3 -5 5 -5 -3 15 =15 15 5 -25 25 -25 -1 5 -5 5 = 8,834
2021 1 -5 5 -5 -5 25| -25 25 2 -10 10| =10 P,u{ = 2,142
1788 2 -6 12 -6 18 -36 10| =30 60 -2 6| -12 4 250= 1650
3218 2 -10 10| =10 -2 1ol =10 10 R,m: -3,024
6195 2 -6 12 =10 30 -60 4| =12 24 mens- 40646
2335 3| =15 -9 45 15 =75 -3 15 mw_ ~1.503
3027 1 -5 5 -5 A NQ_. 1,322
10374 4| =12 24 -4 12| -24 || | 8+842,,~-1.680
8475 3 -15 -15 75 6| =30 DA Z, 7 34849
1661 10 -30 50 -10 By 25~ 0040
10096 2| -6 12 ALy 7, —0.218
14622 6 =30 -6 30 bum? Z,,~ 34210
6198 10 =50 20 AN, z,.= 1,870
14552 3l .15 R& Zou= ~00864
10879 20 -20 A8 2z, 7 2,164
10976 | . 10 N8 2,,~ 0,830
= —— — — — e ——
MMHM“ = 42| 490 588 | 1260| 168| 1960| 2352 | 5040 504 | 5880 | 7056 | 15120 36 420| 504| 1080




From the calculated values of 2z

0,0 ?
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N

1 “po 2

etlc. we may obtain the following graduated values:-

= 6}

1

2 3

&

o

6

5 o
AHZ*”' TAYE

Totals.

o

X
y=

[ T~ <

B8.834
10.484
10,631

9.315

6.576

2.454

10.976 10.094 7.510
17.272 19.356 17.840
18.216 22.627 23.886
15.718 21.527 25,648
11.688 17.676 23.126
8.036 12.694 16,320

4.546 2.524
13.828 B8.4c4
22.015 17.036
26.987 24.450
26.624 26,756
18,806 20.044

2.766

2.732
8.971
16.943
22,108
19.926

47.3
89.9
125.3
140.6
134.6
9843

Totals 48.3

81.9 104.0 114.3

112.8 99.2

93.5

634.0

A check on z,¢, derived alternatively as described on P59

gave 19.926, agreeing exactly with the result of the

above table.

the same as that of the ungraduated values.,

The residual sum of squares may be calculated

The grand total of the graduated values 1is

from the following table of 2z -uy; , in which signs are

ignored.

X = o] 1 2 3 4 5 6

y=0 0.166 2.024 0.906 0.510 0.454 0.476 0.234
1 0.484 7.272 2,356 0.160 2.172 3.424 0.732
2 3.%369 1.784 4,373 2,114 2.015 4.036 05.029
3 0,685 5.718 2.473 6.352 2.987 5.550 3.943
s 1.5%6 1,312 Ue324 7.126 2.624 2.244 0.108
S 0.546 2.036 6.306 4.320 1.194 1.956 Q.926

1=
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The residual sum of Squares may also be computed as

follows and each 8¢ tested for significance

E;giﬁive a,. X Numerator of (14,1) ?iziduals D 1 J

i}:t:g 12,242, the - e ¥
\E total 8.5, |=42~(r+1)(s+1) Squares|
0,0 9570,23 2671,77 41 65.47 | -
0,1 336,57 2335, 20 40 58,56 | 5.8%
c,2 519,82 1815,38 39 46,55 [ 11,2
0,3 12,90 1802 ,48 38 47,43 | 0,3
1,0 84,25 2587 ,52 40 64,69 | 1.3
1,1 580,45 1670,50 38 43,9 |13.2*
1,2 0,15 1150,53 36 31,9 | 0,0
1,3 54,39 1083, 24 54 31,86 | 1.7
2,0 494,01 1841,19 39 47,21 |10,8*
2,1 1,03 1175,46 36 32,65 | 0.3
2,2 104,80 550,69 53 16,69 | 6,3°
2,5 9,48 475,92 30 15,80 | 0.6
3,0 0,05 1841,16 38, 48,45 | 0,0
3,1 21,47 1153, 96 54 35,94 | 0.6
3,2 8,13 521,06 30 17,37 | 0,5
5,5 7,47 436,82 26 16,80 | 0,4
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The above teble assumes that, far example, the fitting of
au,and 8,, 1involves also the fitting of a&,, , SO that
it would not be correct to test 8,0, 8gainst the residual
left by subtraction of the sums of squeares due to a,,
and @&,, using 27 degrees of freedom. As expected, since
the data are approximately e normal bivariate sample, the
constants which prove significant are chiefly those
associated with second degree terms., The residual sum of
squares agrees reasonably well with that found otherwise.
The above tests of significence are, of course, only
approximate and in default of more exact knowledge about
the true variance of the veriates. In actual experimental
work the tests will be made against the error mean square.
As regerds degrees of freedom, if the curve fitted is of
degree (r,s), there are (r+1j(s+1) constants end this
is the renk of the matrix T. The vector of residuels is
u-Ta or [;-T(T'T)"i{] u, where the matrix I-T(T*T)™" T*
is symmetric, idempotent, and hence of rank mn-(r-+l)(s-hi).
The sum of squared residuals must therefore have
m-(r+1)(s+1) degrees of freedom, and its mean square is
on & null hypothesis an estimate of veriance which is
independent of the estimates derived from the linear
combinations {e&.s} = (z*T)”" Tu.
For the sake of comperison we will now graduate

the same set of data by the methoas of the previous section.
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For_the f?ctor X we heve the interaction transformation
Il=[#(2 1 1 1 1 1 5 S S R
| |pst-2 -2 <1 & 1 & 3
| @t s 0 =3 «4 <3 o 5
| x" B £ R R VR T, TP SR

—

where the values of the orthogonal polynomials for the
linear and quadretic effects are obtainable as in the last
section, or may be found,together with the cubic values,
in Fisher and Yates (14). For the factor y the

transformation is

—

r] = Rfta  xoua a n 8] el Gas
Y Tek=8 =3 =L 1 3 5]
" w5 -1 -4 -4 -1 5

L E o S A A ST S

Combining (14,4) and (14,5) by direct multiplication and
reverting from the normalised definition to the response
per plot definition, we havelthe transformation of Table
(14,1) where u is now the vector {9 15 11 7 5 3 B8
10 10 17 18 16 5 2 ‘14 20 27 26 20 13 14 ! 10
10 24 32 24 30 13{5 1% 18 16 24 29 22 ! 3 6
19 12 22 193

The values of the ag so obtained check exactly with the
previous results, as do the graduated values. The defect

of this method is that the transforming matrix is likely

to be unwieldy.
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(Table 14,1)
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Calculation of the Optimal Levels of Factors in Combination.

These may be obvious by inspection, but in any case

approximate calculated values are not difficult to obtaein.
As an example let us suppose that the deta of P.i16o
represent. the yields of an experiment with two factors
X end y at seven and six levels respectively. From the
graduated values of P.I64 we may select a square of nine
of them within which ranges the meximum value must evidently
lie. The chosen values are

23.886 22,015 17.036

25.648 26,987 24,450

23.126 26.624 26,756,

and by a chaenge of origin we denote them to be

Z...(,-; Zo,-: Zl,-r
Z—n,o Ze,e 2 e
Z-l)l Zo,: zf, !

By the advancing difference formula

= (L+xA,+ yﬂ; + J&)ﬂ‘; * XYA»A} o Y@,.% * {,,Ai“’ W‘B:ﬂa«
+ XX:!AxS; + 1&)&;* S Zo0

For a meximum value of Z”?’ we must have

32 = (B, + 2205y A, Ay.,. bxrrn -;-2:%_'_'3,&‘8 + 3().:3,_4’4----)2,0 =0
T"" (8~ 9785 +x8,0y+ PHGINS 2y AL+ B30y +--) 2
Approximate equations for x and y small are therefore
(Db 50.) 200 + X (BB 200 +p (Auly =5 0.0y ~54, 3)2":"_0} (14,6)
and ( By +h ) 200+ (Bl =5 Bl 5 M0N0 0+ 3 (By~E5) Z0pm0

Z,‘_’B’
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It is necessary to express these equations in terms
of differences which involvé values of z evenly ranged
about the origin. This is achieved by meens of the

substitutions
N, iz +ﬂz

P x40
A 25 = 0z, 0+A,z_w

Al %, 0 %, +Afz_,;‘,

8.8 z,,= Az, ,+ NNz,

end similar expressions for differences of y. The
equations (14,6) then become

3 J— J if- r
Al 0,0 z.A -:a" A oS sz_z,“‘-?ﬂ ‘2,0

-Bz,,- Bz )

+x( A, z, wZno~ Dz,

+ yi A..AZ.Z "’Lﬂ Aa s-A’ L&*A?,Zo 5 z&ﬂjzoﬂ ] =0
and Az, - Az, %l zM+"3A 2, +5002,, 3./_‘\3 .

+ x( &A ~-LA Aa -J_AAAaz,}_,-;_A,',A:z m’aa 2, )
+y( Apzo,—r '-Azzc,’_1 -A;zoﬁ 1=0
In the present example, where the fitted

polynomial is predominantly of the second degree, we may
ignore differences of x or y of the third and higher
orders, whereupon , expressed in terms of the z's, the
equations reduce to
{(Zr,o" z—-\‘,ol + x(Z:,o "'zzoo + 2, +y( iiz!,a"'ézo,f 2o X%, = 22,

4‘;‘:21 #%2,,1=0
end %( 2z,, = )-i-x(-‘iz +52,, 8,532,485, _+53 ,+52, )

+y(z‘-’" -Zzo’a 3,150
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or 3.876x - 2,301y = -0.599
whence x = 0.14, y=0.49.

The method is easily extensible to data with

more than two factors.
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Section 15. Confounding

The principles of confounding have been discussed

by Fisher (13), Yates (24,25,26), Barnard (4), and
Finney (10). Fisher describes confounding as an
artifice which "consists of increasing the number of
blocks..... beyond the number of replications in the
experiment so that each replication occupies two or
more blocks; and, at the same time, arranging that the
experimental contrasts between the different blocks
within each replication shall be contrasts between
unimportant interactions, the study of which the
experimenter is willing to sacrifice, for the sake

of increasing the precision of the remaining contrasts,
in which he 1s specially interested". Yates' description
is "a device whereby the necessity of including every
combination of the treatments of a factorial design in
each block (or row and column in a Latin square) is
avoided.....The treatment combinations of each replication
are divided into two or more groups (each group being
assigned to a separate block) in such a way that the
contrasts between the different groups represent
high-order interactions, which.....are usually of less

interest than the main effects and interactions between
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two factors only. Thus in any one replication the
contrasts.representing certain interactionsare identified,
or confounded, with the block differences".

Both these descriptions (they are hardly formal
definitions) are more restricted than they need be.
Two experimental contrasts are said to be confounded
when they are identified with one another with respect
to the unit plots making up the contrasts. For example,
in a split-plot experiment the whole-plot treatments
are confounded with whole-plots with respect to the
sub-plots as unit, but may obviously be estimated from
the whole-plot yields. Similarly, in a simple
confounding experiment in which the treatment-combinations
are divided into two blocks for each replication so that
a particular contrast is totally confounded ,the latter
is confounded with blocks but is capable of estimation
from comparisons of block-pairs. Nor is it necessary
that one of the contrasts confounded should be some
effect of soil heterogenelty, whether it be due to
blocks, whole-plots, or rows and columns of a Latin square.
In a half-replicate design, for example, every treatment

contrast is confounded with some other treatment contrast,
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the one being called the "alias" of the other.

However, the term "confounding" is most often
understood in the particular sense of an experimental
device for controlling the heterogeneity of the population.
Thus, in field experiments, if the number of treatment-
combinations is large, the blocks of an ordinary
randomised~block design become too big to exert an
effective control over soil heterogeneity. Confounding
~is the device most commonly used to counteract this.

Any treatment contrast f'y (where Y£0), corresponding
to a single degree of freedom, may be confounded by
allotting the treatment-combinations to different blocks
according to whether they correspond to positive or
negative elements of{f}. The only practical application
of this is when the elements of {£3 (not normalised)

are all*1, in which case, if each replication occupies
two blocks, every other treatment contrast belonging to
the same orthogonal set as % will be unconfounded.
This is evident since any other vector {m} of the
orthogonal set has its elements divided into two groups
corresponding to the positive and negative elements of

iﬂ}, and the sums of elements within these groups, being

equal must therefore each be zero. But this division

into groups is the same division by which the treatment-
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combinations are allotted to the two different blocks,
Hence in the linear function m'y, the coefficients of
the components of yield due to each block variate sum

to zero, and m'y is thus unaffected by block differences.
The designing of confounded experiments is therefore
seen to reduce in many cases to the search for suiteble
vectors with elements all £1. Suitability will usually
mean that the treatment contrast to be confounded should
be a high-order interaction, or at least an interaction
which may be predicted (perhaps from previous experiments)
to be negligible in comparison to the random variation.
In some cases of partial confounding, i.e. a design
where the contrasts confounded are not the same for

each replication, even main effects may be confounded

in order to secure a balanced design.

Confounding is especially simple for 2" factorial
designs, since every main effect and interaction is
determined byi&ector with all elements *1 (Section 12).
Finney has summarised the rules governing the structure
of such designs. In accordance with the notation of
section 12, capital letters A,B,C,D,..... AB,AC,BC,.....

ABC,ABD,..... etc. are used to denote main effects and

interactions of factors a,b,c,d,se..., While small letters

are used for the treatment-combinations, e.g. abd is the
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combination of the higher levels ("presence") of a, b, d
with the control levels ("absence") of the remaining
factors, It was seen at the end of Section 10 (P108)
that if we regard AB as the "product" of A and B, then B
is the product of A and AB. (Yates calls B the
"generalised interaction" of A and AB). It is useful to
define a similar symbolic product for the small letters,
e.g. the product of "abe" and "bee" is defined to be "ae".

In a 2" confounded arrangement the block containing
the control treatment (1), representing the absence of
all factors, is called the "principal block". This Jeads
to the first rule governing the structure of such a
design: that every treatment-combination in the
principal block contains an even number of the letters
occurring in any confounded interaction. This is
seen to be a simple consequence of the symbolic
representation of an interaction by the product
(axl)(bxl)(cxl)(d*1)...., the minus sign in the
bracket associated with a particular factor being
taken if that letter occurs in the interaction, e.g.
ABC is (a-1)(b-1l)(ec=l)(d+l).... The sign of (1) is

that of

clearly the same asjpany product of o0,2,4,....letters
from the brackets containing minus signs. When only a

single contrast is to be confounded, this rule alone
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enables the principal block to be written down without
actually working out the interaction matrix. Another
property of the principal block, that the product of
any two treatment-combinations which are members of the
principal block is also a member, follows from the
fact that the product will still have an even number of
the letters of any confounded interaction,

Still greater control over soil heterogeneity will
be given if each replication is divided into 4,8,16,.....
equal blocks, when the 3,7,15,.... additional degrees of
freedom, respectively, (per replication) now allotted
for block differences will entail the confounding of
5,7,15,.....treatment contrasts. These degrees of
freedom for blocks (within replications) may be
subdivided into single degrees of freedom with all
elements of the unnormalised subdividing vectors equal
to £1 by means of the matrices Nﬁq, Mﬁﬂ, Mﬁd,.....,
where M is the matrix [1 f] , and its direct square,
direet cube, etc. are, ignoring normalising factors, the
interaction matrices of Section 12. The rows of these
matrices, M ,l}ﬂ, M&}, Mﬁé,,..., being linearly

independent, determine for designs with each replication

divided into 2, 4,8,16,....blocks, respectively, all
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possible ways of forming block contrasts by means of an
equal number of additions and subtractions. But it
has been seen (Sections 10, 12) that any 2,3,4,... rows

(other than the first) or u° 1% 13

yeese, Trespectively,
generate all the others by means of multiplication of
corresponding elements, i.e. the other rows are interactions
of the given 2,3,4,... It follows that, if any set of
contrasts is simultaneously confounded, all possible
products ("generalised interactions") of these contrasts
are also confounded. Thus, if the replication is
divided into four blocks, only two treatment contrasts
may be selected for confounding, for the third contrast
confounded is automatically the product of the other two.
Hence, one would not choose for confounding the
interactions ABC and ABCD, for example, since this would
mean that the main effect D would also be confounded,
and in general this is not desirable. Keeping the
restrictions of this paragraph in view, the statistician
may easily derive the treatment-combinations for the
principal block of his design by applying the two rules
of the previous paragraph. _

Once the principal block has been written down,
another block of the design may be generated from 1t by

multiplication by any treatment-combination not a member



178.

of the prineipal block. A repetition of this process
will give all the blocks of the scheme. The reason

for this is easy to see when we consider that, when each
replication is divided into 2* blocks, the contents of
the blocks are determined by the 2'"*’treatment-combinations
corresponding to each of the 2ﬁ’different permutations
of positive and negative signs in corresponding elements
of the p vectors representing the treatment contrasts
selected for confounding. But any one such permutation
of signs means that the 2% treatment-combinations so
determined have either an even or odd number of ;etters
(depending on the particular sign in each vector;:w222ron
the letters of each confounded interaction. In other
words, their orthogonality (even number of letters in
common) or non-orthogonality to each of the confounded
interactions is fixed. Consequently, if in such a
permutation the sign in one vector is changed, the

new set of 2"'*'treatment—combinations now determined
differs from the former in respect of orthogonality to
the confounded interactions for only one interaction,
and, as has been seen, this is brought about by
multiplying by a treatment-combination which is
non-orthogonal to the interaction concerned. That is,

in the case of the principal block, such a multiplying
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treatment-combination is not a member of the principal
block. But in changing one sign of a particular
permutation we have obtained a new permutation which
determines the contents of a second block, and so the
rule is proved.

The contents of the blocks may also be obtained
in the case of a 2" experiment with 2# vlocks per
replication from the symbolic relationship

{Column vector of confounded interactions}

= méh}iColumn vector of block totals}
Hence [M&3]( {Vector of confounded interactions}

= {Vector of block totals}
Substitute for the vector of confounded interactions
the appropriate row vectors of the interaction matrix
post-multiplied by the column vector of treatment-
combinations

{(l) a b ab ¢ ac be abc......etc.}:iy},
and we obtain a relationship giving the contents of the
blocks. The matrix ﬁri, comprising the 2® rows of
the interaction matrix ﬁ”}, corresponding to the 2F-1
confounded interactions and the row of unit elements,

’
is of order zhx 2" , and when premultiplied by [ﬂ&&]

gives a product matrix of order 2Fx 2" with all elements

either o or 1l. Applying this product matrix to {y},
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we obtain the contents of each block. The unit
elements of [Mﬂhjjf[hdgf] correspond to particuler per-
mutations of signs of MS? » & fact noted in the previous
paragraph,

The subject of confounding in designs with all
factors at three levels and in designs with some factors
at three levels end some at two levels has been
exhaustively treated by Yates (26). With & factor
at four levels (or qualities), use is made of the
orthogonal subdivision into three aegrees of freedom
corresponding to the matrix h?}. The problem of
confounding in this case thus reduces to the case of
a 2" design, provided the other factors occur at two
or four levels. In such a design, if the factors have
four equally-spaced levels (not qualities), use miéﬁt be +
made of the fact that the quadratic effect of a four-
level factor is represented by a vector with all elements

+1, and therefore presents opportunities for confounding.

Confounded designs have been worked out for experiments

with all factors at five levels, but such applications

must be comparatively rare in practice.
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Section 16,

Analysis of Covariance

Part of the observed variation of a variate vy
(the dependent variate) may be due to its regression on
a number of concpmitant variates X, ,X,,+...X,, the
latter being known as the independent variates, though
they need not be, and in general are not, statistically
independent of one another. By making allowance for
this regression the precision of an experiment may be
greatly increased. This is done by means of a process
rather inadequately nemed the Analysis of Covariance.

In the first place, if we have a sum of squares
resolved into a number of component sums of squares in
accordance with some particular experimental design,
thus:- y'A'Ay=y'B'By+y'C'Cy+...#+y'N'Ny,
then not only does the same partitioning apply to the
sums of squares of all the concomitant variates, but
also to the sums of products (or covariances) of any
two variates, dependent or independent. For example,

V'A'Ax; = y'B'Bx + y'C'Cx+ ....#+¥y'NtNx

illustrates the partitioning of the sums of products of
Yy and x¢ . Hence, corresponding to each component set
of the partitioned degrees of freedom, we have the sums
of squares for all variates and the sums of products for

each pair of variates, from which it is possible to
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obtain in the usual manner the various partial regression
and correlation coefficients for each set, and the sums
of squares for y corrected for regression. Unless it

is desired to make the tests of significance of analysis
of variance for any of the x-variates, no restriction

is placed on their probability distributions.

Let a'y be any deviation of a class-mean from the
general mean or any residual of the type discussed in
the theory of analysis of variance, and let Ay be the
column vector representing the assembly of all similar
mean-deviations (or residuals), whose mean will be zero.
If we let a'y=D a'x,+b,a'x,+...... +bsa'X,, We have
a set of observational equations which may be written as

Ay = AXb, where b is the vector {b. b,_....b."s and X is the

matrix X > SIS S5
Xo S e
X|g x'.zlilc xl.(s

with the same number of rows as there are elements in

the vectors{y}, {x}, {xJ,.... ete., and x; represents

the _jﬂ' element of the vector x;. A may be a symmetric
matrix as in the case of an error residual, but, if it

is, it will be singular, being not of full rank. The
normal equations are X'A'Ay =X'A'AXb, so that b=(X'A‘A.XT'K'ﬁ'A3,

=1
The vector of residuals is [I-AX(X'A'AX] X'A']Ay,
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and the sum of squared residuals is
~1
y'A? [I-AX (X'A'AX) X'A{lAy. The latter may be

alternatively expressed as y'A'Ay [1~ﬁ; where ﬁvu“w

,!11..).’
is the sample estimate of the multiple correlation
coefficient, for, if {§3} is a regression estimate of v},
a ~ w A e ~Jg
B m DAy, (GRASE (A"
But §'A'AZ=b'X'A'AXD =b'X'A'Ay = §1A'Ay
ﬁl 2 “’A’A“
71123 ‘J’AA'JI
On a hypotheses of uniformity the vectors {bJ

, and the result follows.

obtained from each set of the partitioned degrees of
freedom would be sample estimates of a certain population
vectorﬂg}; However, in an analysis of variance no such
assumption is made concerning the different blocks, rows,
or columns used to control soil heterogeneity and the
treatments may or may not have a differential effect.

The object of the covariance analysis is to discover how
far the significance of treatments, as tested in the
analysis of variance of the variate y, is attributable

to the regression of y on the independent variates.
Attention is therefore confined to only two sources of

variation - treatments and error.

The regression and correlation coeffiedents obtained
from the error line of the analysis provide a measure of

the association between the random variation of y and
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the random veriation of the x’s. This is known és the
"error regression", and from it may be found how much of
the estimated veariance of y is due to regression. The
treatments regression, on the other hand, may be quite
different from the error regression owing to the
treatments having differential effects on the vaeriates.
Cochren (6) concluded that a test comprising & comparison
of the residual mean squeres of the trestments end error
regressions would not be suitable. He also investigated
the possibility of taking the error regression out of the
treatments sum of squares and testing this residual sum
of squares with the residual sum of squeres for error.

Iff the trestments and error sums of squeres for y .are
yrA*Ay and y'B‘ByT with p and q degrees of freedom
respectively, the matrices A'A and B'B are both idempotent
end such that A'B=B'A=0Q. The residual sum of squeares
for error after deducting the sum of squeres for regression
is y'B*[ 1-BX(X*B'BxJ" x'B'_]By with q-k degrees of
freedom (if there are k independent variates), emd, since

the metrix M'M of this quadratic form is idempotent, its

meen squere yields an estimate

*There is no connection between the vector b and the matrix
B as there is between a and A above. The notation b for a

regression coefficient is universal and is retained.
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of the intrinsic variance of Y. When the error regression
is applied to the treatment-means of Yy, the vector of
residuals is Ay-AXb, where b:=(X'B'BquX'B'By, or
A[I-X(X'B'Bxf4X'B'é]y, so that the sum of squared residuals
is y’[ I-B'BX(X'B'BX]" x’]A'A [ I-X(X*B*BX)"X*B*B];:,

or y'L'ly. Now

M'L= [B'—B'Bx(x'B'Bx)"x'B'][A—Ax (x'B'BX)"x'B'B]
= 0. Since B'A =0.

Hence, 88 seen in the proof of Lemma 10 (Cor.), the two
quadratic forms y* M'My and y'L'Ly are'independent.

But L'L=A'A{B'BX(X'B'BX) 'x'A' 4 ax(x'B'Bx)"x'B ']

+[B'BX(X'B'BX) X 'A'AX (X'B'BX) X'B'H,

so that (L'L)*=a'Aa Ax(x'B'BX)'x'B'B]
+[B'BX(x*B'BX)"X*A"AX(X'B'BX) x'B '-B 'BX(X'B 'BX) "X A14]
-l-[A'AX(X'B'BX)-'X'A'é[-[A'AX(X'B'BX)-’X'A'AX(X'B'BX)"X'B'B]
~[B'BX(x'B'BX) X'A'AX(X'B'BX] x'A"4]

+[B'BX(X'B'BX)' X*A'AX(X'B 'BX) X'A'AX(X'B'BX) X'B '}
F L'L.

The matrix L'L is therefore not idempotent. Hence the
mean square of the quadratie form y'L'Ly would not be an
estimate of the intrinsic variance of y. Cochran, in
fact, showed that such a quadratic form, not having a
matrix with equal non-zero latent roots, is not

distributed as a gamma-type variate. The F-test
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therefore fails.

The correct test, first published by Bartlett (27),
may be described as follows. The treatments and error
lines of the table are pooled so as to give sums of
squares and sums of products for "treatments +error"
with p+q degrees of freedom. The sum of squares due
to regression is now obtained from these, leaving a
residual sum of squares with p+q-k degrees of freedom.
From this is subtracted the residual sum of squares
for error, y'B'[I-BX(X*B'BX) X'B*]By with q-k degrees
of freedom, so that a new mean square with p degrees
of freedom is obtained for comparison by the F-test
with the residual sum of squares for error. We now
exémine the validity of this procedure.

It is perhaps not immediately obvious that this
test is suitable for the purpose on hand. Just as the
residual sum of squares for error is that due to the
intrinsic random variance of the dependent variate, so
the residual sum of squares for treatments+error is
that due to the intrinsic "random+ treatment" variance
of the dependent variate. Their difference is therefore
a sum of squares due to the intrinsic treatments variance
of y, so that a comparison with the intrinsic error

veriance by means of the F-test, if valid, is suggested.
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If the sum of squares for treatments+error is
Y'C'Cy=y'A'Ay + y'B'By with DP+q degrees of freedom,
where A'A and B'B are both idempotent and such that
A'B =B'A=0, it is easily proved in the same manner as
in Lemma 10 that C'C is also idempotent. The sum of
squared residuals for treatments +error is
y'c' [ 1-cx(x'crcxi'x'ct] oy, while that for error is
y'8' [ 1-Bx(x'B'Bx)"x'B'] By =y'M'My.  Their aifference is
b [C'G-B'B-C'CX(X'C'CXT'X'C'C+B'B(X'B’BXT"X'B'§]y
or y'N'Ny. Putting C'C =A'A+B'B, we have
NN =A'Af(A14+B'B)X(X"C 10X X/ (4 4488 )|+{B Bx(x "B 'Bx) ' X' B H.
Also M'M=B'B-E'BX(X'B'BX)-'X'B'B],
S M'M.N'N= -B'BX(X'C'CX)-'X'A'A - B'BX(X'C'CX)-'X'B'B

+ B'BX (X'B'BX)'X'B'B + B'BX(X'C'CX) 'X'A'A

4+ B'BX (X'C'CX)-'X'B'B - B'BX(X'B'BX)-'X'B'B

= 0,
which is the criterion for the independence of the two
quadratic forms y'M'My and y'N'Ny and is equivalent to
M'N = N'M=0,. Applying now Lemma 10 (Cor.), we see
that y'N'Ny must have gamma-type distribution with
(peq-k) - (g=k)=p degrees of freedom, and its mean
square is, on a null hypothesis (that the intrinsic
treatments variance is zero), an estimate of the intrinsiec

random variance of y independent of the estimate from
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exact.

The significance of the error regression may be
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tested by analysis of variance, thus:-

Analysis of Variance

The F-test is therefore valid and

. ; Mean
Source of Variation., D.F. | Sums of Squares Squares
Regression k | y*B'BX(L'B'BL) X'B'By s’

Deviations from o e o
Regression g-k y'B [I - BX(XBBX) XB’]Byf s
Total Q y'B'By 85

o S

The product of the matrices of the quadratic forms for

regression and for deviations from regression is zero and

the matrices are both idempotent.

The corresponding

mean squares are therefore independent estimates of the

variance of the y's, and are hence amenable to the F~test.

Should the test prove significant we will wish to assume

the amended hypothesis that part of the random variance

of the y's 1s due to regression, and that the residual

mean square s, is an estimate of what we have called the

intrinsiec variance of the y's, i.e.

after allowance for regression. Owing to the fact that

the b's are not independent of one another their

individual contributions to the sum of squares for

regression are not easily obtainable. However, each

the random variance
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b may be tested for significance by means of fhe t-test,
for {b}=(X'B'BXI4X‘B'By, 80 that the variance matrix of
the b's is, by Lemma 5, (X'B'BX) ', since the y's are
independent and of equal weight and B'B is idempotent,
Hence the variances of the b's are given by d;;6% where
d:: is a diagonal term of (X'B'Bqu, and the value of t
e .

is given by Ta.5 s s, being the estimate of variance from
the residual sum of squares for error with g-k degrees of
freedom. Numerator and denominator are easily seen to
be independent, for {b}=(X'B'BX) 'X'B'By =Ry and s;‘-:@‘_; g’M’M?
where M=B-BX(X'B'BX) X'B'E], so that RM=0, remembering
that, since B is the matrix of the error residuals, B is
idempotent as well as B'B., This was proved for the
error residuals of the split-plot design on Page 90, and
may similarly be proved for any regular design. It
arises from the fact that the matrix of the vector of
error residuals of an analysis of variance (here B) is the
same as the matrix of the vector of residuals after
fitting constants by least squares (Section 11), and
such & matrix is always idempotent.

Values of y adjusted for regression may be obtained
and, if the effect of treatments has proved significant

in the analysis of covariance, the adjusted treatment

means may be compared. Referred to the mean as origin,
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an adjusted treatment mean is aly - a}Xb, where b is
the vector of error regression coefficients and a} is
a row of A, The error regression coefficients are used
for this adjustment because they are a measure of the
regressions when block, etc. differences have been
removed. The means we wish to compare are independent
of block, ete. differences and for purposes of comparison
we are testing a null hypothesis in respect of treatments.
Hence the adjustment is made by means of the error
regressions. It remains to find the standard error of
the difference of two adjusted means and to prove that
the t-test is valid for such a comparison. The difference
between two adjusted treatment means is
(af -at'f) y-(a] -a}) Xb
= (af -a%) [ 1-x(x'B'BX)" x'B'B]y =8y
By Lemma 5, the variance of this difference ;
= (a7 -a) [I-x(x'B'B:c)"x'B-'B] [I-X(X'B'BX)-lX'B'B](a; -a)c”
= (af _a‘_".) [I-x’(X'B'BX)"'X’](a; -a)) 6"
(since aEB=a;B =0)
= %’: (af -aj-) X (X'B'Bx)"'x’(a;, -a‘;) G,
where vy =number of plot-yields per treatment mean. This

is equivalent to the results of Wishart (29). To show

that the difference of two adjusted means 1is independent

of the estimate of variance s;, we have that
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sM=(af -&) [1-x(x'B'Bx)"x'B'B ][ B-BxX(x'B 'BX] 'x'B'8]
-1 -1
={a’; -ag) [X (X*B'BX) X'B'B - X(X'B'BX) X'B'B]
= 0 , again since aEB==a§B==O and B is idempotent.

The validity of the t-test is therefore proved.
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