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2. 

Introduction. 

The statistical procedure of analysis of variance 

was invented by R.A. Fisher during his stay as 

statistician at Rothamsted Rxperimental Station. His 

first, more or less tentative, discussion of the theory 

was set forth in a paper published in 1923 (11), and this 

was quickly followed up by the more assured and much more 

complete exposition in his book "Statistical Methods 

for Research 4vorkers" (12), which revolutionised previous 

ideas on the principles of scientific experiment. 

Little additional work was published on the sllbject 

until 1933, but since then many workers, among whom 

may be mentioned M.S. Bartlett, W.G. Cochran, J. Wishart, 

and above all F. Yates, the present chief statistician 

at Rothamsted, have developed the theory on the lines 

laid down by Fisher. impetus was given to this 

development especially by the publications of Yates 

and of Fisher himself (13), in which the new methods 

of factorial design, confounding, and covariance 

introduced at Rothamsted were first made more generally 

known. Fisher's theories met with spasmodic opposition 

from statisticians such as "Student ", Neyman, and others, 

but have triumphed over all opposition and today are the 
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basis of almost all scientific experimental work amenable 

to statistical treatment. 

Nevertheless one would look in vain throughout 

the literature for any rigorous and at the same time 

reasonably simple mathematical treatment of the theory 

of analysis of variance. Fisher's own exposition is 

for the most part seemingly intuitive, being designed 

for the non- mathematical reader, as are for the most 

part the papers of Yates. Modern text -books such as 

Snedecor's "Statistical Methods" (28) present the 

methods without the theory behind them and appeal to 

the intuition of the reader. Where proofs are 

attempted, vital points are usually glossed over or 

assumed, as being beyond the scope of an elementary 

book. Among the very few British mathematical papers 

on analysis of variance are those of Irwin (15,16), but 

his treatment is complicated and unwieldy. Cochran (6) 

realised the advantages of matrix notation in a subject 

of this sort, and many of his theorems are equivalent 

to the lemmas of this thesis, but Cochran left the 

application of his method undeveloped. 

The present thesis constitutes an attempt to put 

forward a progressive mathematical theory of analysis 
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of variance as applied to the various situations met 

with in agricultural research in particular, but the 

applications are, of course, perfectly general. Matrix 

notation has been used throughout to simplify a subject 

which would otherwise prove rather unwieldy for 

mathematical treatment. The basic theories are those 

of Fisher, Yates, etc., and are now so generally 

accepted as to require no special references. 

Acknowledgment by reference is therefore made only in 

the case of specific points where this has seemed 

necessary. 
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Lemmas 

The following lemmas will be required in the 

mathematical discussion of analysis of variance. 

No explicit proof has been given if the result is 

a familiar one from statistical text -books. 

1...ta=15-1. 

Any variates x, y, z,, are independent if 

their moment generating function (m.g.f.) G(4) A a5 
is resolvable into factors G, (-L) ,G,(), G3(3), 

or, equivalently, if the multivariate probability 

differential O(x,y,z,....) dxdydz. is 

resolvable into j l 
t x102(y)lÓ,(zl, ...dxdydz 

This follows from the law of compounding the generating 

functions associated with independent events. 

Lemma 2. 

If x, y, z,......(not necessarily independent of 

each other) are variates which are all independent 

of some other variate u, then any function f (x,y,z,, ) 

of x, y, is also independent of u. 

Proof,: Since x, y, z,... are all independent of u, 

the differential element of probability of x, y, 

is, by Lemma 1, of the form 0, (x,y,z,....) Ibz (u) 

dxdydz ° ° du. `thus, the joint m.g.f. of f(x,y,z,... ) 
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and u is fff -_ -- exp oCf(xyz) + u] Jb,(x,y,z.... ) 

62(u)dxdydz....du which factorises into 

JIf expLo(,f(x,y,z,... )(x,yzf...) dx_dydz... f exp(14u) 
(u) dui i.e. the product of two separate m.g.f ?s. 

Hence, by Lemma 1, f(x,y,z,....) is independent of u. 
Lemma 3. 

If u(x,y,z, .) and v(x,y,z,....) are two functions 
of n variates x, y, z,...., then u and v are independent 

if their joint m.g.f. G(o,g) f exp (du + ,v) f6 (x) dx 

[where J 6 (x) dx represents in matrix notation 
ff.. 0 (x,y,z, .) dxdydz.]i.s factorisable into G(04.,o) G(o,4) 

Likewise they are independent if their compound 

probability density fb (u, v) is equal to 0, (u) 162.(v) 

for all values of x, y, z,,:... 
Lemma 4. 

Uncorrelated normal variates are independent. 

Proof; The multivariate normal m.g.f, is exp (i d V d) , where 

GI, is the vector foL, - - - a.1 and V is the variance 

matrix of the variates. If the variates are 

standardised and uncorrelated, V I (the unit matrix) 

and the m.g.f. = exp 04/4) - exp (1-c4,1" - °4 ; á , ) 
exp (1 o- ) exp (1 0(i ) . - ... exp(2 c4) , or the product of 

the m.g.f's of the separate variates. Hence, by Lemma 1, 

the variates are independent. 
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The converse, independent variates are uncorrelated, 
is of course, true for any variates. 

Lemma 5. 

If the set of variates xi in a vector x has variance 
matrix V, and a new set yz. or L is formed by the 
linear transformation y = Hx (H being in general a 

rectangular matrix, not necessarily square), then 
the variance matrix of the y¿ is HVH' . 

Proof: 

V = The mean value of xx , - x x, xL x, x3 .. . 
Le. of 4 

X1x, 

X, x, 

t 

xi 

x, x1 

t 

xlx? 

x=? 
, 

t 

...etc 

.,. 
t 

t 

Transform to the new variates y =Hx. Then the variance 

matrix of the y is the mean value of yyt 

= Mean (Hxx t H') = HVH' . 

Corollary If the linear combinations 

h,x, +h2xz +.,,,+hx, (i.e. hex) and ktx,+ k,xÿ 
+ kx,, ( i.e. k'x ) are uncorrelated(the xj being 

independent), then htk ü, i.e. h and k are orthogonal. 

Proof 
E_ht , 

Here H = x' , H' _ [ h ; k, , and V = I if we 
, 

standardise the variates 
hth h'k 

HVH'- HH'- 
k'h k'k 
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But since the new variates are uncorrelated h'k= k'h =0. 

Hence, if the xj are independent normal variates, 

h'x and k'x are also normal variates, and being 

uncorrelated are (by Lemma 4) also independent. 

Thus the condition h'k = 0 is necessary and sufficient 

for the statistical independence of the new normal 

variates h'x and k'x. 

Lemma 6 

If x, , y, , z, , (not necessarily independent of 

each other) are variates which are all independent of 

xz Yz a Zz a (also not necessarily independent of 

each other) , then any function f, (x, , y, ,z, , ) of 

x, y, , z, , ... is independent of any function of 

fl (xz a y,. , z, , . ) of xz , ye s z, 

Proof: 

Since x, , y, , z, ..are all independent of x, , y= , z1 

the differential element of probability of 

x, y, , z, ,..., x,., y, , Zz, .... is of the form 

0, (x, 1y, l z, a ....) 0,, (x a y, z . . . . ) dxdydzi... dxdyd ,e 

(by Lemma 1) 

Thus the joint m.g.f. of f, and f1 is 

Jfexp(ocf, +gf1) 0, (x,) 0, (,x..,,) d x, d x2 

Factorisable into 

f exp (ocf,) 0, ( x , )dx, f exp 0,) 0,.(X,) 2 



9. 

the product of the two separate m. g. f .' s. 
Hence f, and fz are statistically independent. 

Lemma 7. 

If f, (x, ,y, ,Z, ,....) and f1 (xz,Yz,Z3_,...) are 

independent functions of two sets of variates of 

which the variates of one set are all independent 

of the variates of the other set (but not necessarily 
of those in the same set) , and if f,+ f, , the sum 

of these functions, is independent of a function of a 

third set of variates f, (x3 ,y, ,z, ,....) where x3 ,y3 ,z3 ,.... 
are not necessarily independent of each other, then 

each set of the of 

the other two sets. 
Proof: 

Since f+ f is independent of f3 , their joint 
m. g. f . must be of the form 

I f exp[cc (f, 4- f , ) J 0(x, ,x1) dx, d x 1 fexp(,6f3 ) Y3 (x 3) dx3 

But, by Lemma 1, since the x, are independent of the 

x, , this must be of the form 

fexp(oÍ )0, (x, )dx, fexp(of )f (x=)dxi fexp(it )T'3 ($3 )dx3 

Le. the differential element of probability of 

X, ,y, ,zi , sxz as- ,z,_ ,....x, ,y= ,Z3,.. is of the form 

0, (1_,)02_(xy)03(x,)dx,dx,,dx3 

. . By Lemma 1, the three sets of variates are 
independent of each other. 
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The extension to any number of sets of variates 

is evident. 

Corollary 1 By Lemma 6, it follows that f,, f,, 

and fl , are all. independent. 

Corollary 2 By Lemma 6, any other functions 

f11.(x, fy, ,z, s), fscxL,, ya ,z,, ) (x, ,y3 ,z, ,.. )f 

are also independent. 

Lemma 8. 

If k sets of n,, n,.. n,..observations with 

respective means Mj and mean square deviations 5 
) are pooled in an aggregate of 

n(= i n;) observations with mean Ni and mean square 

deviation S then nsi" =nj (s +c; ) ,where cj = . 
J 

This follos from the fact that the mean square 

deviation of the 
jta 

set about M is si-e.l . 

Lemma 9. 

If v =x'Wx is a quadratic form in n independent 

normal variates x- , all with mean at the origin 

and equal variance e, and if v has gamma -type 

probability distribution, then the number of 

degrees of freedom of v is equal to n', the rank of Q. 

Proof: 

The matrix Q, being symmetrical, is reducible 

to diagonal canonical form A by means of the 

transformation H' QH, where H is orthogonal. 

If we introduce new variates y = H'x , 
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i.e. x = Hy, thenv = - y' H'QHy= y'Ay. The y's 

are all normally distributed with mean at the origin, 

and if V is the variance matrix of the x) , then the 

variance matrix of the yj is ( by Lemma 5 ) 

But V = QI and H' H = I: :. the yj also have 

variance GL and are independent. Since the yy are 

independent normal variates with the same mean and 

variance , v( = y*J y A, yz ) will have gamma - 
.1 

type distribution if the non -zero values of ñ , the 

latent roots of , are all equal, this condition being 

both necessary and sufficient. A necessary and 

sufficient condition that v should have gamma -type 

distribution is that the n' non -zero latent roots of 

Q should be equal. 

It follows that, if v has gamma -type distribution, then, 

since it can be reduced to a "sum of squares" orthogonally 

(Ì 2, ÀJyl 1, where all non -zero values of A , being equal, 

are either all positive or all negative, x'x must be 

a definite form, either positive definite or negative 

definite. Also, if 9 = the equal non -zero latent roots of 

, the characteristie equation must be ) = o , 

and by the Cayley - Hamilton theorem ' " ( - )" - o , 

which is equivalent to ( 
Q. -i') = 0 or Qz = E ,. Hence 

Q must = M, where A is idempotent, for Q2- = 6- M1 = & M 

Now w = - is distributed according 
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to dp = y) exp (-2 wZ ), dw, and therefore z= j w== 2 z 
is distributed according to dp = ryi% 

z e'Z dz. úge have 

that v = g y.Z , where there are n' terms. u = 6777- 

is a combination of n' gamma -type distributions, ;1- z,,i -+- , , 
and its distribution is therefore given by dp = uÿ "' e w 

au. 

By comparison with the standard gamma-type distribution, 

it is seen that the number of degrees of freedom of u 

(and hence of v , i.e. of i xtQx ) is n' , the rank of ,. 

Corollary 1 If is idempotent, the number of degrees 

of freedom of x' Qx is equal to the trace of Q , for then 

the non -zero latent roots of Qr, are all equal to 1 and 

tr. Q = sum of latent roots = n' = rank of Q = number 

of degrees of freedom. 

Corollary 2 If Q is idempotent, an estimate of 

G1, the variance of the xj , is given by the " mean square" 

of x' jx i.e. x' ,x divided by its number of degrees of 

freedom. 

Proof: The mean value of x't c is At-r.) , since the 

mean value of all product terms is Lero ( the x; being 

uncorrelated), and the diagonal terms give 

°flue 4- - - - t Cron e- G-`( t r . Q. ) 

Hence the mean square of x'Ca is an unbiassed estimate 

of e (byCor .1). 

N.B. If x'6? x is reduced to canonical form v _ pity, 
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then, since there are n -n' zero latent roots of Q, and 

(if x'c, x has gamma -type probability distribution ) the 

nt non -zero latent roots are all equal, v is equal to 

BY. y.` , where there are n' terms. Thus, if 11x) represents 

a point in n- dimensional "sample- space" , then, since 

x00 x has been shown to represent a multiple of the 

distance of a point from the origin in n'- dimensional 

space, it is evident that n -n' dimensions have been lost. 

This is the statistical equivalent of n -n' linear 

equations of constraint in dynamics. The rank of the 

matrix of a quadratic form therefore corresponas exactly 

to the definition of degrees of freedom given by Fisher 

( 12, 13 ). 

Lemma 10 

If A and B are matrices such that the rows of A are 

orthogonal to the rows of B, and if A'A and C'C ( where 

0'0 = Á'A-s-B'B) are idempotent, then B'B is also 

idempotent. 

Proof:_ (C'C)2 = ( A'A +- BtB)2 

_ (A'A) + (B'B)f+ A'AB'B+B'BA'A . 

But AB' = B'A = 0 , and (A'A)2 = A'A , 

... (C'C)L = A'A + (B'B)'- 

= C'C , since C'C is idempotent, 

- A' A -a B' B 

Hence (BIB)1" = B'B , so that B'B is idempotent 

Corollary If y'C'Cy = y'A'Ay +y'B'By (where 
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the ty3 are independent normal variates with variance (3) , 

and if y'C'Cy and y'A'Ay have gamma -type probability 

distribution with c and a degrees of freedom respectively 

(C'C and A'A being idempotent and A and B such that A'B = 

B'A. = 0 ), then y'B'By has gamma -type distribution with 

c -a degrees of freedom and its mean square is an estimate 

ofc which is independent of that derived from y'A'Ay. 

Proof: By Lemma 10, B'B is idempotent. :.by Lemma 9 

Cor.1, y'B'By has gamma -type distribution with uegrees of 

freedom equal to tr. (B'B) . But tr. (C'C) = tr.(A'A) 

tr.(B'B). Hence the number of degrees of freedom of 

y'B'By =tr. (C'C) - tr. (0A)==c-a, and, by Lemma 9,Cor. 2, 

its mean square yields an unbiassed estimate of o To 

show that this estimate is independent of that from 

y'A'Ay, we have that A'B =EPA = 0, so that , by Lemma 5 

(Cor.) , all the linear combinations Ay are independent 

of all the linear combinations By . Hence, by Lemma 6, 

their sums of squares, y'A'Ay and y'B'By are independent. 
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Section I. 

The Hypothesis of Uniformity. 

Let us consider a matrix of (say) 

Y = [yj Y 

ya.i Y2.2. 

crop yields 

Y;n 

Yzti 

_YM, Ym2 YrnnJ f 

the elements of which are independent normal variates with 

the same mean /44.- and the same variance e. Let be the 

general mean of these variates, y,o ,y2° , ... .. Y.no the 

row -means, and yo5yoZ,,. ..Yoic the column- means. 

uúe have, by Lemma b, 

( Yz; 4 )1 = n (Y ..o - )2+ 
( Ye.; -Y;A ) 2 , (1,1) 

i.e. the sum of all mn squared deviations from the general 

mean is equal to n times the sum of squared deviations 

of row -means plus a residual sum of squares representing 

squared deviations from respective row- means. 

A deviation of a row -mean from the general mean, 

e.g. yo -ÿ , may be represented in vector notation as a'y, 

where y ( the column vector of yields ) is 

Y,t Y,z .... Y,, Y2, Y22 Yin 

and a' = Cm -1 m- l....m -1 ', 
-1 -1 .._._. -1 ! . ' -1 -1____ -d. 

Both the column vector y and the row vector a' are 

partitioned into m sub -vectors of n elements each. 

A deviation of a variate from its row- mean,e.g. 

Yi/ may similarly 
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be represented in vector notation as b'y , where y is 

the vector of yields and be is 

1/n n -1 -1 -1 -i ; all other 

subvectors null] , be being partitioned similarly to a'. 
Now a'b = [(m- 1)(n -1) - (n-1)(m-4] = 0 , 

so that a and b are orthogonal, and hence, by Lemma 5 

(Cor.), a'y and b'y are independent linear forms. In the 

same way it may be proved that the deviation of each 

from its respective row -mean is independent of the 

deviation of each row -mean from ÿ. deuce if we write (1,1) as 

y'A'Ay , = y'B'By+-y'C'Cy, .(1,2) 

the rows of B must be orthogonal to the rows of C. Also 

C'C is the "direct sum" of the m matrices each equal to 

In-hi thus:- 

I- Drin 

where Is is the unit matrix of order n, and Mois the 

matrix ñ 1 1 1 df order nsn. C'C is therefore 

1 1 1 
. 

r . 
; I II 

i 
`l 1.. 1_ 

idempotent. Moreover A'A is equal to I - M, where I is the 

unit matrix of order mn , 
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W1 I'S 

i 

1 

1 

1 

1 

1 

1 

of order mn x mn , so that A'A 

is also idempotent. 

The mean value of y'A'Ay is, by a well -known result, 

(mn-1) 62". To find the mean value of Y (y- - yz0 r , we 

have that the variance of y - y,0 = b'y is b'b ( by 

Z n- I lemma 5 ) n El n-1) -1) +- (n -1) _ ., , or 

i z 
(unstandardised) = n to -1) a Thus the mean value 

of the mn squared residuals is equal to m (n -1)6: 13ut 

A'A and C'C are both idempotent matrices, so that, by 

Lemma 9, Cor. 2 , the quadratic forms yt A' Ay and y'C'Cy have 

gamma-type distribution with mn -1 and m(n -1) degrees of 

freedom respectively. hence by 1.emma 10 (Cor.) , y'B'By also 

has gamma -type distribution, the degrees of freedom being 

mn -1 - m (n -1) r. ra -1, ana its mean square gives an estimate 

of which is inaependent of the estimate furnished by the 

mean square of y'C'Cy. These two estimates of 6 may 

therefore be tested (either by the 2- test or fisher's 

z - test) to ascertain whether they are consistent with 

having been derived from the same normal population. 

A matrix of yields [yd _, such that all elements 

are single samples of normal variates having the same 
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mean and variance, satisfies "the hypothesis of uniformity". 

In experimental work ( not necessarily agricultural) the 

row suffixes 1,2, m may correspond to different 

treatments e.g. different varieties of a cereal, different 

fertilisers, different rates of application of the same 

fertiliser, etc., and it is desired to test whether 

significant treatment differences are revealed by the 

experiment. If each treatment is repeated n times ( n 

replications), the conditions being presumed constant for 

each replication, we have a matrix of order m x n, as above. 

The "null hypothesis" ( that there are no differences 

between treatments), which in this case is identical with 

the uniformity hypothesis, may then be tested by comparing 

the estimate of variance derived from deviations of row - 

means from the general mean with that derived from 

individual deviations from respective row- means. Should 

the former estimate prove significantly the greater, the 

inference will be that the row -means cannot be considered 

as having been formed from normal variates with mean etc. 

and variance e. Retaining the hypotheses of normality 

and equal variance, we )dust conclude that the means of 

the variates differ from row to row, a conclusion which 

agrees with the a priori conditions of different treatments 

being allotted to different rows. 

The above results may be illustrated by 
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constructing an Analysis of Variance table thus: - 

Analysis of Variance. 

Source of Variation Degrees of Freedom Sterns of Squares Mean Squares 

Between treatment means 

Residuals 

m - 1 

m(n - 1) 

n o v -7)2" 

XI (Ye -Y10 )2 
J 

S` 

S; 

Total. mn - 1 ' 5.( T. -ÿ)L S; 

If the hypothesis of uniformity holds, s; and s: are 

two estimates of ?which do not differ significantly. 

The total sum of squares (m -l) s; + m(n -1) s1 may then 

be considered equal to (mn -1)4, yielding a mean square 

which, being based on the greatest number of degrees of 

freedom, is the best estimate of o. The hypothesis is 

equivalent to the assumption that each variate y;, is 

equal to /u. -i- , where is a random normal variate 

with mean at the origin and variance e. 

If s; is significantly greater than s, , the sample of 

yields can no longer be regarded as homogeneous. 

We therefore proceed to the alternative hypothesis, that 

the variates have different means from row to row, 

estimated from the sample by yza (i=1,21. m) . The 

hypothesis is now that each sample value yz.i is equal to 

+(yi, 4)4- x , where x4 is the sample 

value of the new random variate, and E xt.) = o. 

Or, equivalently, each variate yci is equal to /u-+ 
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th 
where j.+ -+pz is the population mean of the i treatment, 

P. being itself a variate with mean at the origin. 

The 'mean square $3is now meaningless, but 4is still an 

estimate of the variance due to random experimental 

errors íe, the variance of the t . The residual sum of 

squares is therefore usually called the "error sum of 

squares", and "the error mean square". s the 

standard error per plot of the experiment, or simply the 

"standard error of the experiment ". 

The differential effect of the treatments having thus 

been established, it is now possible to compare 

treatment -means by means of "Student's" t -test, using sz 

as the estimated standard error of a single yield.. 

This is legitimate since each yz0 -ÿ is independent of 

each yej -y,o , and hence by Lemma 6, y,;. -ÿ -(yi0 -y). 

YYo -y;, , the difference of any two row- (i.e. treatment -) 

means, is independent of the estimate of error variance. 

It will be shown later (Section 9) that the necessity for 

establishing that is significantly greater than si 

before comparing two treatment -means by the t -test 

disappears, provided that the particular comparison 

to be made was one determined beforehand. It is not 

permissible, for example, to select the highest and 

lowest treatments after the experiment is completed and 

declare them to be significantly different as the result 
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of a t -test unless treatments as a whole are significant, 

is significantly greater than sl , though of 

course, it is always possible to make such a comparison 

by means of the t -test with an estimate of variance 

derived from the yields of those treatments alone. 

Section 2. 

Conditions of uniformity in Agricultural experimentation 

It is the peculiarity of agricultural experiments that 

the conditions for the testing of each treatment can 

never be exactly the same, nor the same for replications 

of any one treatment. i'he chief reason for this lies in 

soil heterogeneity, the nature of which has been studied 

by many investigators. A strip of land divided into 

Plots cannot by any means be considered to have constant 

fertility from plot to plot. if we consider the matrix 

Of yields [yzji] as representing the yields of certain 

fixed plots on a field under the same treatment, the 

infinite hypothetical population of yields under 

identical conditions represented by the variate y,1 , 

for example,will probably not have the same mean as the 

similar variate yiz , nor can the yields of adjoining 

plots be regarded as independent variates, since, 

generally speaking, the factors which determine high or 

low yield and influence the actual sample values of the 

random variates accordingly, are likely to be 

similar for adjacent plots. 
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On the other hand the assumptions of normal distribution 

and constant variance are not rejected. Of these 

assumptions, that of normal distribution need cause no 

concern in ordinary crop experiments, since it is a matter 

of common experience in experimental work involving 

repetitions under identical conditions. Non- normal 

distributions, e.g. the Poisson, are, however, common in 

experiments which involve, for instance, counts of 

insects. The second assumption, that of constant 

variance, is also fundamental to the theory of analysis 

of variance. It is not unreasonable to presume constant 

variance when the treatments are similar, but cases 

frequently arise when the variance bears some relationship 

to the mean. If th:_: two above conditions are not 

adequately fulfilled, recourse must usually be made to 

some functional transformation of the variate, though 

Eden and Yates (8) have demonstrated that the z -test 

could be safely applied to one actual case of 

non -normal data. 

Some light is thrown on the above matters by uniformity 

trials, whereby a field is sown with a certain crop and 

receives uniform treatment, but for harvest purposes is 

subdivided into small equal plots, the yields of which 

are separately recorded. It will be noticed that this 

is not the same thing. as our "hypothesis of uniformity" 

as it stands at present, since, no matter how uniform 
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in fertility the field may be, the plot -variates 

cannot be considered to have equal means. 

Mercer and Hall (1?) found that the sample of plot- yields 

thus obtained from a fairly uniform field showed good 

agreement with the hypothesis of normal distribution, 

and this has been the experience of many other workers. 

where the distribution has been found to be non -normal, 

the reason probably lies in the fact that the population 

of yields is heterogeneous i.e. that the field shows a 

significant departure from uniformity. This suggests 

that the components of yield due to differential plot 

fertility, which we may call the "plot- fertility- 

indices" with respect to a certain crop, have normal 

distribution, of which the chosen field is a sample. 

were it not for the fact of variation of external 

conditions, it would be possible to imagine an almost 

infinite normal population of such indices, but owing 

to the heterogeneous nature of such a population its 

standard deviation would be large. The necessity for 

constancy of external conditions leads us to consider 

the population of indices from a comparatively small 

area such as a single farm, where the standard 

deviation will be much smaller, since, for example, 

the soil -type will remain the same over the area. 

For experimental purposes, however, this error will 

still be much too large, and so we take as a sample of 
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plots those from a single field. Uniformity trials 

show that on a fairly uniform field the combination of 

plot -fertility -index plus the random variate '1.j(of 

Section 1) does indeed produce a finite sample (though 

not a random one) of some hypothetical normal population. 

It is necessary therefore, in the theory of agricultural 

experimeimtation to postulate a new random variate made up 

of two independent components, that due to random error 

Pure and simple, and that due to soil heterogeneity. 

Of course, since the fertility map of a field does not in 

general change suddenly from point to point, the 

component of the random variate due to soil heterogeneity 

will also be correlated between adjacent plots, so that 

the random variates are not independent. 

l.his new hypothesis, that the plot yields are normal, 

but not independent, variates with the same mean and 

variance,will be illustrated by the results of two 

uniformity trials with wheat, one due to Mercer and Mall 

(17) and one due to Christidis (5). If Y is the matrix 

of plot yields with rows and columns corresponding to 

actual rows ana. columns in the field, and if iv is the 

matrix with every element equal to ÿ (the estimate of 

the mean) , we may form the matrix Y -M. Then (Y-M) (Y -M)' 

has as its diagonal and non- aiagonal elements sums of 

squares of rows and sums of products between rows, 

respectively, from which estimates of row -variances 
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and of correlation- coefficients between 

rows may be obtained. Similar results may be obtained 

for columns from the matrix (Y -M)' (Y -Iv) . As a simple 

example let us consider an artificial matrix of yields 

constructed as follows:- Sequences of ten random 

digits were examined and the number of digits less than 

five in each sequence noted. The distribution is that 

of the symmetrical binomial (2t +2)'° , nearly normal, 

with mean 5 and variance 2.5. The matrix Y -M of order 

8x8 was constructed, using the true mean 5 instead of the 

sample estimate. In this case each variate is, of course, 

independent. 
Row 

-Totals 
Y -M = 1 -3 1 -1 0 0 -1 -1 -4 

0 2 -3 -1 0 -1 -1 2 -2 

-1 0 -1 1 1 -1 1 -1 -1 

-3 0 0 -2 -2 1 2 -4 -8 

2 -1 1 0 0 0 -1 -1 0 

-1 0 -1 -1 0 3 2 0 2 

-1 -1 -3 2 1 2 0 0 0 

1 0 2 -1 -1 -4 -1 -3 -7 
Column' 
Totals -2 -3 -4 -3 -1 0 1 -8 -20 

The greatest row or column total is -8 compared with 

a standard error of 2.1-T (4.5), and the grand total 

is -20 compared with a standard error of 4 115 (12.6). 
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(Y -M) (Y -í)'= (14) -10 -3 1 8 -3 -3 8 

-10 (20) 0 -9 -6 -1 3 -6 

- 3 0 (7) 4 -3 0 5 1 

1 -9 4 (38) -4 12 -1 7 

8 -6 -3 -4 (8) 5 -4 8 

-3 -1 0 12 -5 (16) 8 -16 

-3 3 5 -1 -4 8 (20) -18 

8 -6 1 7 8 -16 -18 (33).., 

The following matrix presents row -variances in the 

diagonal and inter -row correlation -coefficients off the 

diagonal, negative values being printed in red. 

(1.71) .7 , _. ,82 . .: ,25 

(2.79) .C' .45 .4£ .03 ,15 ';;1. 

(0.98) .21 .41 .02 .43 .01 

(4.29) .66 .04 .00 

(1,14) .45 .32 .55 

(2,21) .45 .7L 

(2,86) .7c 

(3.84) 

The mean row -variance is 2.48, the greatest 

deviation from 2.5 being 1.79 compared with the 

theoretical standard error of 1.3. Three values of 

r are significant at the 5o point, whereas one would 

expect only one or two in a random sample of this size. 
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Matrices of row -variances and inter -row correlation - 

coefficients are now presented for some actual 

uniformity trials. 

1. Uniformity trial on wheat, Mercer and Hall (17) 
1 

500 plots, each 500 acre, in 20 rr,w^ws and 25 columns. 

Yields of grain in lbs. 

Table (2,1) shows the matrix of row variances and 

inter -row correlation -coefficients for this trial. 

Since the matrix is symmetrical, only elements above the 

diagonal have been entered. The mean row -variance is 

0.208, yielding an estimate of plot standard error 

equal to 0.46, which compares exactly to this degree of 

accuracy with Mercer, and Hall's figure obtained from all 

plots. Values of r attaining the 5% level of significance 

(0.40) and the 1% level (0.51) are indicated by single 

and double underlining respectively. 

As before the negative values are in red. 

Table (2,2) summarises the information concerning the 

inter -row values of r . 

Only the most cursory examination is necessary to 

establish the high degree of correlation existing 

between rows in this example. In any case where the 

number of values of r significant at the 5% level does 

not exceed one in twenty, the fact of significant 

positive correlation is easily established by testing 

the hypothesis that positive and negative values of r 
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are equally likely. 

For example, as few as two negative values in twelve 

would occur only once in fifty cases on this hypothesis. 

It is especially noteworthy that such large values of r 

should be recorded for rows 16 and 17 rows apart. 

Tables (2,3) and (2,4) present similar results for 

column -variances and inter -column correlation- coefficients. 

The mean column- variance is 0.15, which gives an 

estimate of plot standard error equal to 0 *39. The 

reason for the discrepancy between this value and that 

found from all plots will appear in the sequel. 

The significance levels of the correlation- coefficient 

are 0.44 (5jß) and 0.56 (ljo). 

üdithout making any exact statistical tests, it is 

evident that there is some positive correlation between 

adjacent columns and between columns one column apart. 

For columns further apart than this the results ao not 

contravene a hypothesis of no correlation. About half 

of these values of r are negative, and the ranges are 

fairly evenly disposed about zero. 'there are 22 values 

of it significant at the 5%0 level, almost double the 

expected number out of a total of 253, if the samples 

were random. This, however, is not so, and in addition 

the number of positive significant values (12) is 

balanced by 10 negative ones. 
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The following tables of analysis of variance are relevant. 

( a, 1 Source L.F. bums of Squares. i ;lean Squares. F. 

Rows 19 6.0939 0.01 1.6 

Residuals 480 98.5783 0.205 

Total 499 104.6722fi 0.210 

fi Figure obtained by calculating back from Mercer and 

Hall's estimate of variance. 

) Source D.F. Sums of squares Mean Squares F 

Columns 24 33.5956 1.400 9.3!' 

Residuals 475 71.0766 0.150 

Total 499 104.6722 0'210 

The value of F in Table (b) is highly significant, and 

that in Table (a) is almost significant at the 5';0 level. 

Thus, neither row nor column -means can be regarded as 

derived from a single homogeneous normal population. In 

fact, the conditions of uniformity do not hold, and it is 

only by chance that the plot data are so well fitted by a 

normal curte. 

Anticipating the results of Section 3, we may combine 

the above two tables into a single table of analysis of 

variance :- 
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Source L.+'. Sums of Squares Mean Squares F 

Rows 19 6.0939 0.321 ,2* 

Columns 24 33.5956 1.400 9.80* 

Residuals 456 64.9827 0.143 

Total 499 104.6722 0.210 

In seeking to explain the very striking inter -row correlations 

and the highly significant mean square for columns, it is 

pertinent to enquire, as did Christidis (5) in a different 

connexion, whether the drilling was done along the columns. 

This information is, however, not available from the original 

paper, yet the explanation is clearly that the main changes 

of fertility occur in a direction parallel to the rows. 

Possibly the ploughing of the field may have always been done 

parallel to the columns. 

Wishart and Sanders (21) obtained yields for plots 
1 

50 acre in area from. Mercer and Hallt s uniformity trial data 

bY combining the yields of ten adjacent small plots (five 

along the rows and two across), thus obtaining plots of 

the size recommended for experimental purposes. It is of 

interest to obtain the corresponding results for these data. 

(a) Matrix of row variances and inter -row correlation -coefficients 
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0,61 0,45 0,67 0,28 
(2,53)0,67 0,51 0.71 

(2.21)0,65 0.89 

0,66 
0.52 
0.89 

0,51 
0.62 
0.71 
0,14 
0,40 

0.72 0.68 0.74 
Q.66 0.26 0,26 
0,58 0.20 0.16 
0.21 0.01 0.06 
0.27-.,,.-G?;: 

(7.19)0,71 0.82 
(4.93)0,77 

The significance 

(3.20)0.52 0.49 0.25 0.26 

(5.00)0.94 0.73 0,67 
(12.25)0.86 0.84 

(10.15/..22 
(14.39) 

values of r are 0.88 (5%) and 0.96 (1%). 

The mean row -variance is 6.71, compared with 6.26, the 

variance obtained from all plots. 

(b) katrix of column-variances and inter -column 

correlation -coefficients. 

(2.68) -:' .... 4 C.42 
(C.88) 0,57 

(3.59) 

-0.7' 

0.23 

-L."' 
(9;12) 

0.42 
0,27 
0,18 
0,22 

(2.52) 

The 5% level of significance for r is at 0.63. The 

mean column- variance is 3.76. It is not to be expected 

that there would be much evidence of positive inter - 

column correlation even between adjacent columns, since 

for the original small plots positive inter -column 

correlation extends only as far as columns separated 

by a single column. 
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Analyses of Variance. 

Number Source D.F. Sums of Squares iean Squares F. 

i Rows .. 38.37 4,26 

Residuals 40 268.52 6,71 

2 Columns 4 137.$9 34.47 9.17* 

Residuals 45 169.00 3.76 

3 Rows 9 38,37 4.26 1.17 

Columns 4 137.89 34.47 
Iv 

9.50 
' 

Residuals 36 130.63 2.63 

Total 49 306.89 6.26 

2. Uniformity trial on wheat by B.G. Christidis (5) :- 

288 plots each 8 ins: x 7* ft: in 24 rows and 12 columns. 

Yield of grain in grams. 

The matrix of row -variances and inter -row correlation - 

coefficients is presented in Table (2,5). The mean 

row -variance is 180.0, whereas the variance calculated from 

all plots is 195.1. The significant values of the 

correlation -coefficient are 0.58(5%) and 0.71(1%). 

The similar matrix for columns is set out in 

table (2,6). The mean column- variance is 130.1, 

compared with the exact figure of 130.18 derived by 

analysis of variance and with the estimate of variance 

derived from all plots of 195.1. The significant 

values of r are 0.40(5%) and 0.52(1%), 
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.31 .41 41 .15 .10 ,27 ,23 .45 .J.4 ,'LG 

(89) .51 .61 .33 , .07 .14 .16 .23 .29 

(92) .48 .31 <ú .23 .36 , ,N1 .08 ..7 

(125) 54 .27 .14 49 .06 ,ï,D .37 .26 

(134) .08 .49 .30 .07 .60 .28 

(61) .25 .11 .10 .29 .36 .11 

(97) .02 .39 .58 .18 .29 

(273) .08 .i s43 .29 

(163) .63 .29 40 

(227) .32 .42 

TABLE (2,6) 
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Analysis of Variance Tables 

Nu1,'.,(1.° Source D,F, Sums of Squares can Squares F 

Rows 23 8,495,20 369,36 2,05 " 

Residuals 264 47,469,33 179,88 

Columns 11 20,055,20 1823,20 14,0i 4. 

Residuals 276 35,929,33 130,18 

RovF 23 8,495,20 369,36 3,41 

Ozio .;7 11 20,055,2C 1823,20 16,81 *` 

Residuals 253 27,434,13 108,44 

Total. 287 55,984,53 195,07 

The results derived from Christidis' data are rather 

similar to those from Mercer and Hall's. However, in 

this case the yields, considered as a single sample, show 

a significant departure from normality in respect of 

kurtosis. Once again there is very strong positive 

inter -row correlation, but there is no longer such an 

equality of positive and negative inter -column correlation - 

coefficients. In this trial the information is available 

that the drilling was done along the rows, and thus a 

possible explanation disappears. However, it is clear 

from the analyses of variance that once again the major 

changes of fertility are paralled to the rows, though 

there is a larger component than before parallel to the 

columns, thus accounting for the significant value of F 

for rows and for the excess of positive inter -column 
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correlation -coefficients even for columns many columns 

apart. 

It is noteworthy that had Christidis, in seeking to 

prove the superiority of long, narrow plots in respect of 

lowness of standard error, happened to have placed his 

long plots along the columns, he would have got different 

results, in fact, results similar to those from Mercer 

and Hall's trial, where long plots along the columns had 

a negligible effect in reducing the standard error. Long, 

narrow plots can be superior only if they happen to lie 

along the line of major fertility change, a point noticed 

by Day (7) and Smith (19). In cereal experiments, where 

it is convenient to have plots of only one drill- width, 

there is the possibility of additional error due to 

drilling variations. 



Section 3. 

The Principle of Randomisation 

Fisher (12), (13) solved the problem of the non -independence 

of the plot variates by the stipulation of the Principle 

of Randomisation. Suppose that a set of n treatments 

is to be tested. If the n plots for each treatment 

are allotted entirely at random by some process of 

randomisation, then it becomes possible, as before, 

under the hypothesis that treatments have no 

differential effects, to regard the y,i (the yield of 

the ith plot of the ith treatment) as independent 

normal variates with the same mean and variance. 

This is the same "hypothesis of uniformity" as that 

originally formulated, except that, in considering 

each variate y; equal to7. + , the random 

variate now contains a component due to soil 

heterogeneity. The results of §i will therefore 

hold good. 

Such a type of experiment, however, would be rare 

in agriculture owing to its lack of precision due to 

high standard error. Moreover, the "fertility - map" 

of a field can never be exactly Down, for even a 

previous uniformity trial can give only an approximate 

idea of that. Hence, unless the field happens to be 
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fairly uniform, the possibility exists that the 

chosen field will not, owing to its heterogeneity, 

constitute a normal sample of plot -fertility- indices. 

The experimentalist overcomes these difficulties by 

local control. The field is divided into a number 

of small areas called "blocks", each containing a 

single replication of all the treatments under 

consideration, arranged in a different random order 

in each block. We now consider the theory of such an 

experimental design. 



Section 4. 

7. 

Randomised Blocks 

Let us consider a matrix of yields 
Cyij of order 

m x nin which the rows represent different treatments 

and the columns different blocks, and let us examine 

the matrix under the hypothesis of complete uniformity 

throughout the experiment i.e. that the y are normal 
independent variates with the same mean ("4.) and the 

same variance (e). 

We have from (1,1) 

T./ (YY. nl(Y;,Q -Y )l+ L (Y ; -yo ) 

Lj 

Consider the term y- - yy ) as the sum of squares 

of mn variates arranged in a matrix thus:- 

yi0 

Y10 

Ymo 

-y'0 

The general mean of these variates= ñ (I,y;. -n)y0 ) = 0 

The mean of the jth column is yyj - MLy =yob y. 

Hence, applying Lemma 8 to L C yc - ;C )1 with respect 
ij 

to column- means, we have:- 
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L(Yc.l - Yco )1. = mz.(Ya, - )i-a - Yco * )2; ..(4,1) 
Z, 

and therefore 

E(Yzi -7.1 = n .(Y, - Y)14- mL(Y, - )i 
+5 (Y' - y0 - yd.) Y)1 

L i 

To show that the two sums of squares on the 

B.H.S. of (4,1) are independent, let us write, for 

example, the residual y,,, - yo - yo; A. y, or 

Y1,. - ñ Y - m I..y, t EE as 

Et -n. ( -')( n -s ) t- m.... t -mgt I -n t .... t 

t I-n t .... I etc.] y =dÿ, where y is the same 

vector as in 
§ 

1. A deviation of a column mean from 

the general mean, e.g., yo, - 3r, may be written as c'y, 

rhn 4n -1 -1 -1.... -1 ! n--1 -1 -1.... -1 1 etc J y 

Now c'd =M if( n- 1)( 1- m)-( m- 1)(11- 1)- (n- 2)(1- m) +(m- 1)(n -l+. 
n- 1 -n-2 )1 = 0, so that c and d are orthogonal, and 

hence, by Lemma 5 (Cor), c'y and d'y are independent 

linear forms. The same may be proved of any column - 

mean deviation and of any residual. Hence, if we 

write (4,1) as, 

YTC'CY = Y'D'DY +Y'E'EY, ..(4)3) 

the rows of D must be orthogonal to the rows of E. The 

matrix C'C has already been proved idempotent ( §I) 

and D'D = mH'H, where 

.(4,2) 

H w+[I - PJ I -Pli.....m sub -matrices] I,s and 
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;being as before, so that 

D'D = M I^ _ I 
I, - M _ . 

p I Mr. 

I^ Mn 
I I 

Mn 
I In 

- - I- - - - 
In - M In - Mn 

..... I In 

of order mn x mn, which is clearly idempotent. 

The mean value of y'D'Dy is found from the fact 
the 

thatAvariance of yO1 - 3T = cay is c'c (by Lemma 5) 

+ m(n -1)J _ ., . The required mean 

value is therefore (n- l)ßi(unstandardised). It 

follows from Lemma 9, Cor.l,that y'D'Dy has gamma -type 

distribution with n -1 degrees of freedom, and since 

we have already proved that y'C'Cy has gamma -type 

distribution with m(n -1) degrees of freedom, we have, 

in consequence of Lemma 10 (Cora, that y'E'Ey also 

has gamma -type distribution and has (m- l)(n -1) degrees 

of freedom. In addition, its mean square is an 

estimate of d'`which is independent of the estimate 

derived from y'D'Dy, and also (by Lemma 7, Cor.1) of 

that from y'B'By or nZ(yo -5F)1 . Thus all three 

component sums of.squares on the right -hand side of 

(4,2) have independent gamma -type distribution with 

m -1, n -1, and (m- 1)(n -1) degrees of freedom respectively, 
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so that their mean squares may be tested in the usual 

manner. 

The fore -going results are summarised in an 

analysis of variance table, thus: - 

Analysis of Variance 

Source of Variation Degrees of 
Freedom 

Sums of 
Squares 

Mean 
Squares 

Between treatment - 
means. 

Between block- means. 

Residuals 

m -1 

n -1 

(m -1) (n -1) 

nn,( Y. -ÿ)i` w 

m1( yob -ÿ)' 

IX-( y -y. -y,y 

s1 

si 

s3 

Total mn -1 EE (ye; - ) - - -- 

It will be desired to compare 4', the estimate 

of variance derived from treatment -means, with s3 , 

that from residuals. It is easily seen that s: will 

provide an estimate of random variance even when 

neither block -means nor treatment -means can be 

regarded as derived from the same population, within 

the limits of sampling errör. In that case the 

yield of the (i, j 
)th 

plot (y :j ) may be considered 

equal to Y + ya Y )+ (Yo,°Y )+ x =Y;o+ Yo; -Y + 
x::i 

(where 

x; is a random component), since y0 and yob are the 

sample estimates of the mean of the its row and PI 
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column respectively. Hence yzi -ye -yak+ = xv . 

It would also be possible to compare s; with 

S3 in order to see if the randomised -block layout 

has been significantly effective in removing the 

effects of soil heterogeneity. However, the 

significance of sit" is really not in question, for 

in the designing of the experiment we have in effect 

assumed that block -means would be different. 
Therefore, failing the significance of s. , there is 

no justification for pooling the sums of squares for 

blocks and residuals into a combined estimate of 

error variance, even if s2 should happen to be less 

than s3 . Thus, tine hyoothesis of complete uniformity 

was in reality not the correct one. Each variate 

y ¿ is s equal to 4 + ., + , where is the mean of 

the tk block, estimated from the sample by yob 

so that each sample value yep is equal to 

+ ( -7)* . /3j is a normal independent variate 

with mean at the origin and variance Ug , but constant 

for all variates relating to a given block. The 

mean square for blocks is now an estimate of cKm 8 , where 

0. is the variance of i.e. the random variance. The 

orthogonality of the design of the experiment ensures that 
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the other two mean squares continue to be (on a null 

hypothesis) independent estimates of the random variance, 

for the proof of their independence is unaffected by 

the fact that the y;3 may have different means, and 

since L4(the sum of the sample values of /; ) = 0, 

( yo -fir r and (yyj -yo -yon +g )1 involve only deviations 

due to the random component D41. 

The effectiveness of the randomised -block design 

is clear. In general q> s3 , which means that 

cí'' c`, i.e. that the precision of the experiment has 

been improved. Moreover, since the area of a single 

block is more likely to be of uniform fertility than 

the total area of all the experimental plots, the 

plot -fertility- indices of a single block are more 

likely to correspond with the theoretical requirements 

of a sample from a population distributed normally 

about the mean for the particular block. Thus, for 

an efficient experiment there is a limit to the size 

of block, and therefore to the number of treatments 

which may be tested in any one experiment, though 

this disadvantage may be overcome by such a device as 

confounding. 
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Latin- Square Design 

In the randomised -block design it was seen that 

the effects of soil heterogeneity could be partially 

eliminated and the precision of the experiment increased 

by the division of the experimental area into blocks. 

The Latin- square design enables the effects of soil 

heterogeneity to be eliminated in two directions at 

right angles, and in general still further increases 

the precision of the experiment. Consider the field 

divided into n plots by means of n rows and n 

columns, the n treatments under test being assigned 

by a process of randomisation so that each treatment 

occurs once in each row and once in each column. 

There are thus n replications. The process of the 

random allocation of treatments [described by Wishart 

and Sanders (21)] ensures that the variate elements of 

the matrix of yields under the uniformity hypothesis 

may be considered independent. 

Let the matrix of yields of a Latin square of 

order n be CyK , where i refers to row, j to column, 

and k to treatment, and let the means of rows, columns, 

and treatments be respectively y00 , y0 0 , 
yc,ow. The 

general mean is ÿ, and the are, under the hypothesis 
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of uniformity, independent normal variates, each with 

meanie-and variance T Disregarding treatment suffixes, 

we have by (4,1) 

-: 1 = n ( Yo 
- 

1 + nd -Y+ Y)1. (if( oo 

The residual sum of squares may now be further 

subdivided; for consider the residuals 

(y..< -y40 -yowa ÿ) arranged in rows according to 

the suffix k. The mean of,all these n'' residuals 

is given by ñ, (f y -r Yoo -r .yoso+ n fir) = O. 

'The mean of row i = yo, ñ (Ly1Op +Lyoso -ny) = yno1 -ÿ. 

Hence, applying Lemma 8, we obtain 

Z.( Y,¡K -Yyoo rIS YooK 
-7),1-51 

( YIK -yy0 -y 0 - Took +2y ) 

Combining (5,1) and 5,2), we have 

EE( - 1- = ny.'00 ) + r ( x* -Y r+ r ( - )1 K 
L J K 

I- 
(YjK -Y. -Y3o- YKZ) ... .....(5,3) 

i 

In,order to exemplify a typical residual, 

let us suppose that treatment 1 occurs in the first 

three rows and columns as y3 , y21 , and Y3. , the 

treatment suffix being omitted, because in general the 

suffix k of Y: K may belong to any of the n treatments 

(5,1) 

.(5,2) 
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according to the particular randomisation of the 

experiment. The residual, for example, 

Yu -Yz.00 -Yaw -Yco,+ 2Y 

=y,., ñ(Sr, +yú ..;ryx,,)-ñÍy+yl,+..+y,)-ñ(Y3+Ys,+Y,ii )+ñizz,,,í 
which in vector notation may be written as 

, 

ñ4 2 -n 2 2 -n 2....2 n -3n +2 2 -n 2- n....2 -n; 

2 -n 2 -n 2 2....2 I etc.] y, or e'y, 

where y is the column vector 

Yu Yr:... Y,n Yi, Yu .... Yin .... 
Yn, Yn. .... 3r, } and n n 

e is similarly partitioned. 

A deviation of a treatment -mean from the 

general mean e.g. 36, -7 , may be written as 

C-1 -1 n-1 -1....-1: n-1 -1 -1...-1 -1 n-1 -1...-l;etc]y 

or f'y. 

Since f'e 

-2( n- 2) (n- 1) +(n- 1)(nZ3n +2)+- (2- n)(n -lr 

+ (2 -n) (n -0 = 0, e and f are orthogonal, and if we 

express (5, 2) in matrix notation as 

y'E'Ey = y'F'Fy + y'G'Gy (5,4) 

and (5,3) similarly as 

Yf A'AY = y'B'By+y'D'Dy +y'F'FY+YfG'Gyi (5,5) 

it follows as before that the rows of F are orthogonal 
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to the rows of G. 

It was proved in the previous section that 

E'E is an idempotent matrix. F'F may also be 

proved idempotent, since this matrix is equal to 

nL'L, where 

ñ K., -P -M K - Mn] , the Ki being 

matrices of order n x n with one element in each 

row and column unity, all other elements zero, and 

such that, 
k E k(Q = 

F' F - ! n 

if kitce is the 

O. Hence 

I - M I Ki- Mn I 

K,, - Mn Ì ÚIti 
1 

Kaz-MF+ --- 

,2 row of K , 

K a-_ M 

K,,,- M? - -I Kn r,1 - 
1<:-717,T K 1n 1nM iv, 

where K: K..1, and K6= K (i & j) . F'F is now 

seen to be idempotent, since Kg KL = I and 

KKK _ KL K K; KK = K Kg = K ( since 

To find the mean value of y'F'Fy or 

nL(y -ÿr, we have that for k =1 the variance 
n - 

of f'y is given by f'f= 4(n -1)n i- (n -1) !t n h} , or 

únstandardised, ñi a` . The mean value of y'F'Fy is 

therefore (n -1)G`, and , by Lemma 9, Cor. 2, it may be 

deduced that y'F'Fy has 
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gamma -type distribution with n -1 degrees of freedom. 

Hence, since it has already been proved that y' ' y is 

similarly distributed with (n -1)2 degrees of freedom 

( §4) , Lemma 10 (CoX }may be applied to show that y' G' Gy 

also has gamma -type distribution, its degrees of freedom 

being (n -1)i (n -1) or (n -1) (n -2) . Its mean square is an 

estimate of variance which is independent of similar 

estimates derived not only from y'F'Fy, but also, by Lemma 

7 , Corl) from all the other quadratic forms of (5,5). 

Thus all the component sums of squares on the right -hand 

side of (5,3) or (5,5) have independent gamma -type 

distribution with n -1, n -1, n -1, and (n- 1)(n -2) degrees 

of freedom respectively, so that their mean squares may 

be compared by the usual tests for compatibility with 

the uniformity hypothesis. 

tie have the following table of analysis of variance : - 

Tar iation 
, 

D.,. Sumo of Squares 
e`Li 

urry.s 

Between rows- 

Between columns 

Between treatments 

Residual 

-- i 

?i`Z 

(n°1)( n^2 ) 

/ -17)1' n 
Y1oe 

x 
nF. (y... -7) 

J 

cY ; 1 
7 

K OOK 

II( y.. °icoo o,o'''OOK 
2Y 

, 

1 

s2 
3 

Y J 
Total ri -1. iY¿K'v) j 

The desired comparison of mean squares will be 

between s' . the estimate of variance obtained from treatment - 

means, and sue, the estimate obtained from residuals. 
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The latter will still be an estimate of the random variance 
even when row -means, column -means, and treatment -means can 

no longer be considered identical within the limits of 

random sampling, for then the yield of the (i , j )th plot with 

treatment k (say) may be regarded as equal to 

Y * (Y,p, -7) +(Y0;o -9 )4. ( YooK -) 4 
= y 00+ YO;o+ YooK =2ÿ + 

where x is a random component. Hence the residual 

y -ytao -y, ;ö yK+ 2y is equal to y . 

The significance of s , and of s2 may also be tested 

to ascertain the efficiency of the row and column arrange- 

ment in removing the effects of soil heterogeneity. Yet, 

as in the case of the blocks mean -square of a randomised - 

blocks experiment, their significance is not in question, 

for the design of the experiment really presumes that the 

row and column means will be different. Thus the uniformity 

hypothesis is not the correct one, the hypothesis of the 

Latin square being that each variate y6 is equal tc, ,a 

+P,. 4-264- where is is the mean of the i.`4 row (estimated 

from the sample by y -y) and 6 is the mean of the jul 

column (estimated from the sample by yojo -ÿ) . Both p 

ái are normal independent variates with mean at the origin, 

their variances being c and e respectively. p is constant 

for all y;,.; relating to the Lt row, and ój is constant for 

all y j relating to thejtcolumn. The mean squares for rows 

and columns are now estimates of Qi +nccá and of c3 no-,1- 
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respectively, where ¿Lis the variance 

of 
L.) , i.e. the random variance. Once again the 

orthogonality of the design ensures that under a null 

hypothesis (i.e. that treatments have no differential 

effect) s3 and s4 continue to be estimates of the random 

variance. In the first place the proof of their independence 

is unaffected by the fact that the yj may have different 

means. Also Er =c,;_o (the sample values of (3. and 2G 

respectively) , and therefore T(ymm -ÿr and 

f yijK -y;oo -;o yooK +2y)Z 
still involve only deviations due to 

the random variate. 

If, as usually happens, both s¡ and si are greater 

than st , it is that precision 

experiment has been increased as compared with the 

corresponding randomised- blocks design, though this is 

L 
slightly offset by the loss of (n -1) -(n- ,)(n -2)= n -1 

degrees of freedom for error. The laying down of a Latin. 

square experiment, too, frequently involves practical 

difficulties. The design could not, for example, be 

easily adapted to a cereal experiment where sowing and 

manuring were done by drills. There is also a limitation 

to the number of treatments that can be tested. If the 

number is less than four, the error variance is not based 

on a sufficient number of degrees of freedom; and if the 

number is greater that about eight, the rows and columns 

become too long, with a consequent impairment of efficiency. 
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50 a 

The Comparative Efficiency of Randomised 
Blocks and the Latin Square. 

It has been seen ( §z) that a set of plot- fertility- 

indices from a reasonably uniform field may be considered 

as a homogeneous normal sample. Yet it was recognised 

that in practice, as revealed by uniformity trials, such 

conditions of uniformity must rarely exist when the area 

of the field is large compared with the area of the ultimate 

plots. The reason for this is the existence of "fertility - 

gradients ", or systematic changes of fertility, the origins 

of which must lie in such causes as the varying chemical 

constitution of the soil, the previous husbandry of the 

field, etc. It has also been seen M4,5) how by means of 

local control (randomised blocks, the Latin square) the 

total area of the experiment may be subdivided into smaller 

areas within which the plot -fertility -indices are more 

likely to approach the theoretical requirements of a 

homogeneous normal sample. This raises the question of 

the relative efficiency of the various experimental designs 

(different- shaped blocks, the Latin square) in eliminating 

the systematic effects of soil heterogeneity and in laying 

bare the residual variance associated with pure random error. 

Actual data from uniformity trials can be of little assistance 

in the latter respect, since it is impossible to separate the 
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the component of residual variance due to soil fertility 

and that due to random error. This suggests the use of 

models. Twenty -three "fertility- grids" were therefore 

prepared, representing in an ideal manner various possible 

types of fertility- gradients in 8 x 8 squares. On each 

of these were superimposed two "random ids" chosen at 

random from a set of four, prepared and analysed so that 

the residual variances were known. The 46 sets of 

artificial data thus obtained were analysed in five 

different ways:- (1) with rows treated as blocks (2) with 

columns treated as blocks,(3) with adjacent half -rows 

treated as blocks,(4) with adjacent half- columns treated 

as blocks,(5) as an 8 x 8 Latin square. Lach block thus 

consisted of eight "plots ", the blocks being allocated as 

in the diagrams below : - 

Analysis 1 

B.ock No. 11 1 

Bkocki No. 2 

i3Xoc?-. No. 6 

Block No. 14 

BP.oCr No. 

k 

B7_ o ck No. 

Block No. 7 
¡ -- 

Block No. 13 

Analysis 2 

T4 

--n- 
CV 

--- CJ-- 

t7 
0 

r2:, 

++ 

O F 

u) 

0 
cD 

O 
''' 

L 
O 
r4 

o0 

O 
'i-'-; 

- tT- 
` -0- _ 

'tS 0 0 0 Ú Ú 
O O O O 0 (3 O 0 

r--I H H H H H H H 
W CA q W C-7 CA rf) co 
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Analysis 3 

I B]kck 

No i 

Bloc 

No 

Block ¡ 

--} 

2 

Block 

No _, Vo 

Block rBlocl, . 

i o i Fo 3 

Block 

4 

Block 

No B 40 

Analysis 4 

` 

.= 
O 
.{j--_-A-- 
M 

ri 

-'; 

.!,1 
U 
O 

MI 

t+7 

O 

i `- 

N Lc) Ú i 

- O-- 1- O- 

M Z 

"' L` Û 
O O 

ca 
U 
o o 
H ',-:=.' M 

,,1 , 

Ú 
---o o- 
ri z 
as 

cC, 
U 

._-. . o 
H 
al 

w 
o 
o 0 
rl 
co 

The percentage efficiency of each type of analysis 

was estimated in the usual manner from the error mean 

square and the variance of the particular random-grid used 

(as calculated from the total sum of squares). This has 

meant that occasionally, owing to the vagaries of sampling, 

an efficiency greater than 100% has been recorded. No 

account was taken of the fact that the variance- estimate 

of the Latin -square analysis is based on fewer degrees of 

freedom than those of the raaadomised- blocks analyses. 

The following were tue selected "fertility -grids", 

with a description of the type of fertility -gradient 

represented in each case:- 
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o 0 10 e e 0 10 C 

C C 0 .. 0 10 0 

C; 0 10 C 10 C 

C C 10 0 0 l: 10 0 

0 0 10 0 0 0'1C 0 

G o 10 0 o 0 10 0 

C 0 10 0 0 0 10 0 

0 0 10 0 0 0 10 0 

Two ridges of fertility 

parallel to the columns 

of the field. 

G 5 10 5 0 0 0 0 

0 0 F 10 5 0 0 0 

C 0 0 5 10 5 0 0 

5 0 0 0 5 10 5 0 

10 5 0 0 0 5 1C 5 

5 10 5 0 0 0 5 10 

0 5 10 5 0 0 C 5 

, 0 5 10 5 0 0 0 

Two ridges diagonally across 

the field 

II 

IV 

0 5 10 8 5 8 10 5 

C 5 10 8 5 8 10 5 

U 5 10 8 5 8 10 5 

0 5 10 8 5 8 13 5 

u 5 10 8 5 8 10 5 

0 5 10 8 5 8 10 5 

o 5 10 8 5 8 10 5 

0 5 10 8 5 8 10 5 

Same as Ï but with ridges 

less sudden 

8 10 8 5 2 D 0 

2 5 8 10 8 5 2 

0 2 5 8 10 8 5 2 

0 0 2 5 8 10 8 5 

0 0 0 2 5 8 1C 8 

0 0 0 0 2 5 8 10 

0 O 0 0 0 2 5 8 

C 0 0 0 0 0 2 5 

A single diagonal ridge, not so 

sudden as in III 
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VII 
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12 12 12 12 12 12 12 12 

10 10 10 10 10 10 10 10 

8 8 8 8 8 8 8 8 

6 6 6 6 6 6 6 6 

4 4 4 4 4 4 4 4 

2 2 2 2 2 2 2 2 

0 0 0 0 0 0 0 0 

io 0 0 0 0 0 0 0 

A gradual, regular drift down 

the field, For combinatorial 

purposes a down -drift may be 

designated _-P(a), and a 

cross -drift ÿab). 

12 12 22 12 12 12 22 12 

10 10 20 10 10 10 20 10 

8 8 18 8 8 8 18 8 

6 6 16 6 6 6 16 6 

4 4 14 4 4 4 14 4 

2 2 12 2 2 2 12 2 

0 0 10 0 0 0 10 0 

C 0 10 C 0 0 10 0 

Ì combined with (a) 

VI 14 13 12 11 10 9 8 7 

13 12 11 10 9 8 7 6 

12 11 10 9 6 7 6 5 

11 10 9 8 7 6 5 4 

10 9 8 7 6 5 4 3 

9 8 7 6 5 4 3 2 

8 7 6 5 4 3 2 1 

7 6 5 4 3 2 1 0 

A gradual, regular drift 

diagonally across the field 

12 10 18 6 4 2 10 0 

12 10 18 6 4 2 10 0 

12 10 18 6 4 2 10 U 

12 10 18 6 4 2 10 0 

12 10 18 6 4 2 10 0 

12 10 18 6 4 2 10 0 

12 10 18 6 4 2 10 0 

12 10 18 6 4 2 10 0 

Ì combined with 1(b) 
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XI 

14 13 22 11 10 9 18 7 

13 12 21 10 9 8 17 6 

12 11 20 9 8 7 16 5 

11 10 19 8 7 6 15 4 

10 9 18 7 6 5 14 3 

9 8 17 6 5 4 13 2 

S 7 16 5 4 3 12 1 

7 6 15 4 3 2 11 0 

ÿ combined with X 

14 18 22 19 15 17 18 12 

13 17 21 18 14 16 17 11 

12 16 20 17 13 15 16 10 

11 15 19 16 12 14 15 9 

10 14 18 15 11 13 14 8 

9 13 17 14 10 12 13 7 

8 12 16 13 9 11 12 6 

7 11 15 12 8 10 11 5 

II combined with VI 

554 

X 

XII 

12 171 22 20 17 20 22 17 

10 15 20 18 15 18 20 15 

8 13 18 16 13 16 18 13 

6 11 16 14 11 14 16 11 

4 9 14 12 9 12 14 9 

2 7 12 10 7 10 12 7 

o 5 10 8 5 8 10 5 

0 5 10 6 5 6 10 5 

M. combined with V(a)* 

12 17 22 17 12 12 12 12 

10 10 15 20 15 10 10 10 

8 8 8 13 18 13 8 8 

11 6 6 6 11 16 11 6 

14 9 4 4 4 9 14 9 

7 121 7 2 2 2 7 12 

C 5' 10 5 0 0 C 5 

C 0 5 10 5 0 0 0 

M. combined with (a) 

1[- The combination of ÌI with 7b) is omitted as not being 

materially different from II itself 
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12 15 18 11 4 2 C O 

12 10 13 16 9 2 0 0 

12 10 8 11 14 7 0 0 

17 10 8 6 9 12 5 0 

22 15 8 6 4 7 10 5 

17 20 13 6 4 2 5 10 

12 15 18 11 4 2 0 5 

12 10 13 16 9 2 0 0 

III combined with V(b) 

17 20 22 20 17 14 12 12 

12 15 18 20 18 15 10 

8 10 13 16 18 16 13 10 

6 6 8 11 14 16 14 11 

4 4 4 6 9 12 14 12 

2 2 2 2 4 7 10 12 

C: 0 0 0 0 2 5 8 

0 0 0 0 0 0 2 5 

ÌV combined with V(a) 

XIV 

AD. 

14 18 22 16 10 9 8 7 

13 12 16 20 14 8 7 6 

12 11 1C. 14 16 12 6 5 

16 10 9 8 12 16 10 4 

20 14 8 7 6 10 14 E 

14 18 12 6 5 4 8 12 

8 12 16 10 4 3 2 6 

7 6 10 14 8 2 1 

III combined with VI 

17 18 18 14 9 4 0 0 

14 15 16 16 12 7 2 0 

12 12 13 14 14 10 5 2 

12 10 10 11 12 12 8 5 

12 10 8 8 9 10 10 8 

12 10 8 6 6 7 8 10 

12 10 8 6 4 4 5 8 

12 10 8 6 4 2 2 5 

Ñ combined with Ib) 
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XIX 
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19 21 22 19 15 11 8 7 

15 17 19 20 17 13 9 6 

12 13 15 17 18 15 11 7 

11 10 11 13 15 16 13 9 

10 9 8 9 11 13 14 11 

9 8 7 6 7 9 11 12 

8 7 6 5 4 5 7 9 

7 6 5 4 3 2 3 5 

W combined with VI 

10 8 6 4 6 8 10 11 

12 6 7 6 8 9 10 12 

10 8 7 6 6 7 9 10 

8 7 6 5 4 6 8 9 

6 6 6 4 0 4 6 8 

4 2 0 4 6 6 5 7 

6 4 4 6 12 8 4 5 

5 5 6 8 8 4 0 3 

IXVII 

XX 

I 14 12 10 8 6 4 2 0 

12 10 8 6 6 4 2 2 

10 8 6 6 6 4 4 4 

8 6 4 6 6 6 6 6 

6 4 4 6 6 6 6 8 

4 2 4 4 6 6 8 10 

2 2 2 4 6 8 10 12 

ü 2 4 6 8 10 12 14 

An extreme case quoted by 

Rdishart (20) as being 

unsuitable for a Latin square. 

2 2 4 6 6 7 5 4 

C 3 5 7 6 9 6 3 

6 6 7 8 9 12 6 0 

12 9 8 10 12 6 4 2 

10 9 8 7 6 4 3 3 

6 10 8 6 0 2 3 4 

10 8 6 4 0 2 3 4 

12 10 8 6 4 3 4 3 

In grids XÏX, XX, and an attempt has been made to simulate 

what uniformity trials show to be a common situation, i.e. 

contours of equal fertility level surrounding high and low points of 

fertility. In these grids points of high (12), medium ( 6), and 

low (0) fertility were allotted at random, the remaining plots being 

given indices so as to produce smooth changes from one plot to another 



I 

58. 

9 10 11 10 10 8 5 3 

1C 11 12 11 9 6 3 0 

6 10 10 8 7 7 6 3 

9 8 8 6 6 6 5 6 

7 6 8 12 8 4 5 7 

5 3 6 8 4 0 4 8 

3 0 3 6 5 4 8 12 

4 3 4 5 4 5 7 10 

XXII 

XII 0 3 6 10 6 3 0 0 

3 0 3 6 10 6 3 0 

6 3 3 6 10 6 3 3 

1C 6 3 6 10 6 3 6 

6 10 6 6 10 6 6 10 

3 6 10 6 10 6 10 6 

6 6 6 10 10 10 6 6 

10 10 10 10 10 10 10 10 

Fan -shaped ridges 

1 2 2 3 2 1 2 [ 1 

3 2 3 3 4 3 2 3 

, 5 4 4 41 5 4 3 4 

6 6 5 5 6 5 5 6 

5 7 7 6 7 6 6 7 

4 6 8 7 8 7 8 6 

5 6 7 9 9 9 7 6 

6 7 8 9 10 9 8 7 

Fan -shaped fertility- gradient, 

It is, of course, recognised that the above grids represent 

fertility- gradients of a very ideal type indeed, unlikely 

to be eactly realised in practice, but it is nevertheless 

interesting to see with what degree of efficiency the 

different types of analysis eliminate their effects. No 

attempt has been made to represent ridges or gradients 
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crossing the field at angles other than Cß,45, or 900 

This would be difficult within the limits of an 8x8 square, 

and would disturb the simplicity of the scheme. 

The following are the four "random- grids ", two of 

which, chosen at random, were superimposed on each of the 

fertility-grids. the sample values were obtained in the 

same manner as those in ection 2, page 2S, so that the 

theoretical variance is 2.5. 

O 1 -1 -1 -1 -2 3 

2 1 -2 2 2 -1 -2 

0 2 -1 -3 -3 -1 -2 

1 -3 

2 -1 

1 0 0 -1 

-4 3 1 -1 

2 -1 -2 

-2 2 

0 -1 2 -1 

0 0 2 1 -3 -1 

-1 

0 C 

3 -1 -1 -2 -1 0 0 0 

Totals. 
-2 

3 

-10 

-2 

-2 

-1 

-2 

Totals: 6 -4 0 -2 -6 -3 -6 -1 -16 
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Analyses of Variance (Random -grid 1) 

Number Source D.7. Sums of Squares Mean Squares 

Rows 7 11.75 1.68 

Residuals 56 158.25 2.83 

2 Columns 7 13.25 1.89 

Residuals 156.75 2.80 

3 Rows 11.75 1.68 

Columns 't 13,25 1.89 

Residuals 4`' 145.00 2.96 

Total 63 170.00 2.70 

(2 ) -1 -3 -1 

Totals: 

0 -1 -2 

C 

0 0 -1 -3 

0 -1 2 -1 

0 3 1 -3 -1 

3 -1 -1 -3 -1 

2 0 -1 -1 

1 -1 2 1 

- 2 0 0 

-1 0 -1 

0 

-1 

0 0 0 

G U 

1 -1 1 

-1 2 

0 -2 -2 

O -1 

O -1 

Totals 
-10 

4 

o 

2 -7 -1 -2 -8 1 -4 -3 
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Analyses of Variance (Random -grid 2) 

Number Source D.F. Suns of Squares Mean Squares 

1 Rows 7 17.44 2.49 

Residuals 56 89.00 1.59 

Columns 
. 10.94 1.56 

Residuals 95.50 1.71 

3 Rows 7 17.44 2.49 

Columns 10.94 1.56 

Residuals 78.06 1.59 

Total 63 106.44 1.69 

0 -2 1 

1 -1 

3 -i 

Q 1 

0 -4 -1 

0 0 -2 

-2 2 3 C. 

0 -2 -1 -2 

2 3 0 -1 

1 0 0 1 

2 -4 1 
-3 

2 0 -1 -3 

1 1 1 -1 

2 

0 -2 2 2 

Totals 
-1 

4 

-8 

_5 

J 

4 

Totals: 9 -7 1 -3 -3 3 3 -2 1 
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Analyse of Variance (Random -grid 3) 

Number Source D.P. Stuns of Squares Llean Squares 

1 Rows 7 17.61 2.52 

Residuals 56 157.37 2.81 

2 Columns 7 21.36 3.05 

Residuals 153.62 2.74 

3 Rows 17.61 2.52 

Columns 21.36 3.05 

Residuals 49 136.01 2.78 

Total 63 174.98 2.78 

Totals 

-1 2 0 -2 0 -4 -6 

1 -1 2 3 -2 -1 0 -2 

2 -2 1 -1 -1 0 2 0 

1. 0 -2 -1 -6 1. 

-1 -2 1 0 -1 0 0 -2 

-2 0 -2 1 1 3 -2 

1 1 .1 0 0 1 0 G 

0 -2 0 1 3 -2 1 1 

Totals: 1 -4 1 2 -3 0 -2 - 
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Analyses of Variance 

Source D.F. Sums of Squares ?:lean Squares 

Rows 7 13.19 1,86 

Residuals ;.- 135.25 2.42 

Columns 5.94 0,85 

Residuals 56 142.50 2.54 

Rows 7 13,19 1.88 

Columns l 5.94 0.85 

Residuals !.9 129,31 2,64 

Total 148,44 2,36 

The results of the analyses of the combined grids 

are tabulated below : - 

Fertility Source of Random 

Grid No. 

Ì 
Variation 

"locks 

(rows) 

Blocks 

(columns) 

Error 

Grid No. 

Mean Squares 

} 

} 

1 

1 

Analysis 1 

1,68 

1,88 

23,54 

24,38 

Anal :2. 

167,61 

176,5e 

2.8C 

2.54 

Anal :3 

1,86 

3,42 

23,52 

24.19 

Anal:4 

56,93 

61,21 

16,63 

16,96 

Anal:5 

1.68 

1.88 

167.61 

176.56 

2,96 

2.64 

Percentage 

Efficiency 
} 

4 

'Tenn Percent: Effic:{ 52.6Jo 

96,4% 

92,9% 

94.67, 

11.5% 

9,67 

10.612 

16,2% 

o/o 

91,2% 

89,4% 

90,3% 
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Fertility 

Grid No. 

Source of 

Variation 

Random 

Grid No, 

Mean Squares 

Analysis 1 Anal:2 Anal:3 Anal; _ Anal:5 

Blocks 3 2,52 5,52 2,52 II 

(rows) 4 1.88 5,21 1,88 

Bloc? -s 3 84,52 51,19 84,52 

(columns) 4 92,63 58,85 92,63 

3 12,99 2,74 12,62 6.91 2,78 

Error 4 Ì 13,89 2.54 13,47 6,77 2,64 

.Percentage 3 21.4% 101.5% 22,070 40,270100.0/ 

Efficiency 4 17,0% 92,9% 17.570 34,9% 89,4% 

19,270 97,2% 18,8% 37,670 

can Percent: Ef f i c ; 
--------s.--- -- 

_.,, r.. 
58,2% 28,2% 94.7% 

Blocks 1 8,29 26,50 8,29 
III 

(rows) 4 5,99 33,96 5,99 

Blocks 1 7.25 30,32 7,25 

(columns) 4 6,35 23.35 8,35 

1 16,55 16,68 14.28 13.80 17.88 

Error 4 18,46 18,17 14,97 16,29 19,91 

Percentage 1 16.3% 16.2% 18,9`0 19.67. 15.2% 

Efficiency 4 12,8% 13,07, 15.8% 14,57. 11,9 7, 

14,6% 14,6% 17,40 17.0 

Mean Percent; Effie 
14,6% 17,2% 13,6% 



Fertility Source of 

Grid No, 

IV 

Variation 

Blocks 

(rows) 

Blocks 

(columns) 

Error 

} 

} 

Random 

Grid N 

1 

2 

1 

2 

1 

2 

65. 

Mean Squares 

t`.n al : 3 

62,82 

66,35 

20,18 

23,60 

15,15 

13,38 

Percentage 

Eff ic iency } 

1 

2 

.iean Percent: Effie: 

13,29 

18,92 

16,01 

13,96 

16,9% 

12.1% 

14,5% 

9,82 

8.04 

Anal :4 Anal 15 

20,18 

23,60 

66,89 13.29 

66.71 18,92 

9,31 15,42 

7,99 12,59 

27,5% 

21,0% 

29,0% 17,5% 

21,2 % 13,4% 

24.270 25,1% 

_----,i---- -,_,...- 

14.8% 24.6% 

Blocks 

(rows) 

Blocks 

(columns 

Error 

3 

4 

3 

4 

3 

157,02 

146,60 

3.05 

0.85 

2,81 22,06 

20,63 

98.9% 12.6% 

97.5% 11.4% 

98,2% 12,0% 

54,1% 

4 2,42 

Percentage 1) 3 

Efficiency !) 4 

Mean 'Percent: Effie 
a,. 

51.12 

42.42 

3.55 

2,94 

120,f:2 

118.35 

7,37 

78,3% 

15.4% 

157,02 

146,60 

3,05 

0.85 

2.78 

5,95 2,64 

37,7/° 100.0% 

79.77. 39,7% 

79,0% 38,7% 

58.8% 

89,4Z 

4,7% 



Fertility Source of 

Grid No. Variation 

Random 

66. 

Mean Squares 

Grid No, Analysis 1 Anal:2 

VI 

VII 

Blocks 

(rows) 

Blocks 

(columns 

Error 

} 

} 

Percentage 

Eff iciency 

} 

} 

2 

An al : 3 An al t Anal :5 

44.49 

4 39,31 

2 

4 

2 

4 

7.95 

9,13 

2 21,37 

4 25,8% 

23.6 

ean Per con t: Eff ic: 

Blocks 1 163,96 

(rows) 3 157,02 

Blocks 1 

(columns) 3 

1 23,54 

Error 3 25,56 

Percentage 1 11.57. 

Efficiency 3 10,9% 

11.2% 

52,42 

54,56 

6,96 

7,22 

24,3% 

32,7% 

28,5% 

26,00 

82,3 

81,13 

3,21 

3,90 

Mean 'Percent: Eff ic: 

167,61 

185,19 

23,08 

11,7% 

52,6% 

60,5% 

56,6% 

78,78 

83 ,21 

3,66 

3,64 

46,2% 

64,8% 

55.5% 

56,0% 

60,43 

151,12 

23,98 

179,07 

175,52 

21.65 

44,49 

39,31 

52,42 

54,56 

1,59 

2,64 

106 ,3% 

89,4% 

97.87 

163,96 

157 .02 

167,61 

185 .19 

2,96 

22,06 26.31 23.27 2.78 

11,7% 11.37, 12.52 91,2% 

12,6% 10,6% 11.977 100.0% 

12.2 /, 11.0/, 12, 

11,6% 95.6% 
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Fertility Source of 

Grid No. Variation 

VIII Blocks 

(rows) 

Blocks 

(columns) 

Error 

Random Mean Squaree 

Grid. No, Analysis 1 P.nal : 2 

3 2,52 

4 1,88 

4 

3 39,53 

4 38.90 

Percentage 

Efficiency 

296,84 

292,71 

2.74 23,69 

2,54 21,29 

al :3 

129,27 

142,71 

An al s 4, An al l 5 

2,52 

1,88 

134,52 296,84 

147,35 292,71 

23,03 2,78 

20,71 2,64 

.lean Percent: Eff ic: 

IX Blocks 

(rows) 

Blocks 

(columns ) 

Error 

Percentage 

Efficiency 

J 

51, 

101,5% 11,7% 12,], 100,0`. 

92,9% 11,1% 11,4% 89.4% 

97.2 
0 

11,4% 11,8/ 

-----r---.._ . 
11,6% 

a 

3 

1 

3 

1 

3 

1 

3 

Mean 'Per -cent; Eff is 

48,82 

44,66 

27,97 

28,88 

9,7q 

9,6% 

0 
9.6 /o 

203,04 

213,34 

8,6 

7,8 

31,]0 

35 .6°/ 

21,5% 

33 ,4' 

93,86 

78,62 

22,34 

24,64 

94 .7% 

48,82 

44,66 

99,79 203,04 

88,30 213,34 

21,60 2,96 

23,45 2,53 

100,6% 
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Fertility 

Grid No, 

X 

Source or 

Var iat ion 

Random 

Grid No, 

Mean Squares 

Analysis 1 Anal :2 Anal:3 An al :4 Anal :5 

Blocks 

(rows) 

Blocks 

(columns) 

Error 

percentage 

Eff is iency 

} 

t 

1 

4 

1 

4 

1 

4 

1 

4 

163,97 

146,60 

12,06 

13,89 

161,14 

144.21 

75,75 

92,63 

23,08 12,41 

20,63 14,19' 

Jean -''ercént: Eff ic; 

22.4% 

17,0% 

19,7% 

11,7Z 21.82 

11.4% 16,6% 

11,6% 19,2% 

170,07 

174,56 

11,29 

10,39 

23,92 

22,7% 

23.3/ 

15.6% 21,2% 

163,97 

146,60 

75,75 

92,63 

2.96 

2.64 

91,,22 

89,4% 

90,3% 

XI Blocks 

(rows) 

Blocks 

(columns 

Error 

Percentage 

Efficiency 

4 

2 

44,4 

39,31 

4 

2 11,51 

4 13,32 

14,7% 

4 17,7% 

. 16.2% 

irïean 'Percent: Eff ic 

61,9 44.49 

60,0 39,31 

80,92 75.4 80.92 

88,06 82,2: 88,06 

6.96 9.3- 7,6 1,59 

7,23 10,7- 7, 2,64 

24,3% 18. 22, . 106,32 

32,6/, 22. 29.72 89,4°J 

284 20,0 25, 

22.3% 23.0% 97,8% 



Fertility Source of 

Grid No. Variation 

XIII 

Blocks 

(rows) 

Blochs 

(columns 

Error 

69. 

Random 

Grid No, Analysis 1 

1 144.86 

3 136.12 

Mean Squares 

1 

3 

1 16,55 

3 15,94 

er con tage 

if ic iency 

1 

3 

,bean Percent: Eff i.e 

Blocks 

(rows) 

Blocks 

(columns 

Error 

Percentage 

Eff iciency 

2 

3 

2 

3 

2 40.40 

3 39.53 

2 4.2 % 

3 7,0% 

5,6 

Anal :2 

7.25 

5.37 

33.75 

32.28 

Anal:3 

160,79 

145,94 

An al : 4% 

120,32 

112.30 

14,56 19,62 

14,71 18,991 

Anal;5 

144.86 

136,12 

7,25 

5,37 

17,68 

17,44 

16,3% 

17,4% 

16,8% 

0 
8,0% 

8.6% 

8.3% 

18.52 

18.9% 

18,7% 

12.6% 16.4% 

194.85 

180.52 

13,38 

7,34 

Mean 'Percent: Eff is 

196,14 

194.16 

17.55 

16,18 

9.5% 

17,71 

17,89 

9,6% 9.5% 

17.2% 15.5% 

13,4% 

210,06 

203.44 

15 , 81, 

15.02 

15.1 7. 

15,9% 

15,5% 

13,38 

7.34 

196,14 

194,16 

18,15 

17.44 

13 .6 % 

0 9,3% 

15.9% 

12,6% 
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Fertility Source of Random Mean Squares 

Grid No, 

XIV 

Variation 

Blocks 

(rows) 

Blocks 

(columns) 

Error 

Grid No Analysis 1 

1 44,00 

4 31.99 

1 

4 

1 25,27 

4 26,61 

Anal:2 

Percentage 1 10,72 

Efficiency 4 8,9 

9,8% 

jean percent: Eff ic: 

XV Blocks 

(rows) 

Blocks 

(columns 

Error 

Percentage 

Eff iciency 

2 

3 

2 

3 

2 13,38 

3 14.86 

2 12,6% 

18,7% 

15,6% 

272,31 

270,96 

I'rïean Percent: Eff is 

10,8% 

76.96 

73,49 

21,15 

21,42 

12.8% 

Anal:3 

124,21 

117,38 

15,24 

15,93 

Anal :4 

113.18 

98,21 

16,62 

18,33 

Ana1:5 

44,00 

31,99 

76,96 

73,49 

17,88 

19,91 

11,0% 

11,9% 

17,7% 

14,82 

16,2% 

12.9% 

16,2% 14,6Z 

15,4% 

307,63 

315,18 

18,92 263,85 

19,53 275, 

45.05 8,96 14,44 

46,29 9,33 14,35 

3,8'/, 18,9Z 11,72 

6.0% 49,8% 19,42 

4, 9% 24.4% 15.6" 

20,0% 

.., y.ii......,1.r 

10,2% 

15,1% 

11,97 

13,5% 

272.31 

270,96 

18,92 

19.53 

12,59 

14,19 

13,4% 

19.4 

16.5% 
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Fertility 

Grid No. 

Source of 

Variation 

Random 

Grid No 

Mean Squares 

Analysis 1. Anal: 2 Anal : 3 An al : 4 Anals5 

Blocks 2 

(rows) 3 

Blocks 2 

(columns) 3 

Error 

2 

3 

23.60 

17,32 

21.18 

22,56 

119.92 

115.03 

81.35 

81,18 

13,96 9.14 

14,58 10,35 

23,60 

17.32 

127.12 81.35 

130,57. 81,18 

8,24 12,59 

8,41 14.19 

ercentage 

Efficiency } 
2 

3 

can Percent: Effie: 

Blocks 1 

(rows) 3 

Blocks 1 

(columns) 3 

1 

Error 1 3 

8. 
12,3% 

10,2% 

12,9% 

18.5% 

26.9% 

20.5% 13.4% 

33.11 19,6% 

22,7% 26.83. 
,r. --.-.. . + 

24.8% 

123,32 

115.46 

15,44 

14,23 

165.11 

M56.11 

15,57 

14.56 

28,91 10,21 

26,86 9.15 

145.18 

141.78 

12.71 

10.94 

Percentage 

Efficiency 

1 

3 

Irïean Percent: Effie 

17.5% 9.3 26.4% 

19.5% 10,4% 30,5% 

18,5% 9. 28.4% 

14.6% 25. 

21,2% 

25,4% 

23.3% 

/6 S% 

123.32 

115,46 

15.57 

14.53 

15.42 

14.19 

17.5% 

19.6% 

18.6% 
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Fertility 

Grid No. 

Source of 

Variation 

Random 

Grid No, 

Mean Squares 

Analysis 1 Anal : 2 An al : 3 An al : 4 Anal:5 

Blocks 

(rows) 

Blocks 

(columns 

Error 

2 

} 
4 

24 

2 

4 

0.46 

3,82 

13.37 

16,2C 

5,25 

2.71 

12.77 

16,34 

61.39 

86,64 

5.75 

5,75 

66,32 

78,93 

5,13 

6,81 

0.46 

3.82 

5.25 

2.71 

14.53 

18.13 

XVIII 

Percentage 

Efficiency 

L.iean Percent: 

2 

4 

Eff is: 

12,6% 

14.6% 

13.6% 

`._-- ---- 

13.2% 

14.4% 

13.8% 

'```-- 

29,4% 

40.3% 

34.8% 

M 

32.9% 

34.7% 

33.8% 

11.6% 

13.0% 

12.3% -" 

Blocks 

(rows) 

Blocks 

(columns 

Error 

1 

4 

1 

4 

1 

4 

22,39 

21.87 

6,86 

8.35 

13,28 

7.05 

8.00 

10.20 

22,82 

18.55 

6,81 

8.76 

24.76 

27,80 

6.56 

7,60 

22.39 

21.87 

13.28 

7.05 

5,95 

8.53 

XIA 

Percentage 

Efficiency 

Mean Percent: 

- - 

1 

4 

Effie: 

39.4% 

28,3% 

33.8% 
. , _. - - -- .w 

31.1% 

33.8% 39.6% 

23.1% 27,0% 

28,4% 33,3% 

.. ..r ;-,` - :.,.... 
34.8% 

41,2% 

31.1 

36.2% 

... .. ., 

45.4% 

27.7% 

36.6% 
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Fertility 

Grid No. 

Source of 

Variation 

Random 

Grid No, 

Mean Squares 

Analysis 1 Anal : 2 Anal : 3 Anal :4 Anal' 5 
..w..... 

Blocks 

34 

12,53 33,96 12,53 

(rows) 10,46 35,93 10,46 

Blochs 

34 

24,93 47,53 24,93 

(columns 26,14 41,39 26,14 

13.08 11.53 10,40 6,71 11,39 

Error 4 10.46 8,50 7,28 6,59 8,22 

Percentage 21.3% 24,1% 26.7% 31.9% 24,4% 

.Ef f i c ien cy 4 22,8% 27,8% 32.4% 35,87 28,7% 

22.0% 26.0% 29.6% '33.8% 

lean Percent: Effic 

24.0% 31.7% 26.6% 

Blocks 1 15,50 40.14 15,50 XXI 

(rows) 3 16,00 44,21 16,00 

Blocks 1 15,04 46.46 15,04 

(columns 3 11.03 44,32 11,03 

1 12.24 12,29 9,16 6,37 11,64 

Error 10,53 11,15 7,00 6,99 10,47 

Percentage 

Efficiency 
} 

3 

22,1% 

26.4% 

22,0% 

24.9% 

29,5% 

39,7% 

32,3% 

39,8% 

22,8% 

26,6% 

24.2'?0 23.4% 34,6% 36,0% 

Mean 'Percent: Effie 

23.8% 35,3% 4,7% 



Fertility Source of 

Grid No. Variation 

XXII Blocks 

(rows) 

Blocks 

(columns 

Error 

Random 

Grid No 

1 

4 

1 

4 

1 

a 

74. 

Mean Squares 

Analysis 1 Anal : 2 

39.53 

45.61 

18,53 

23.32 

7.58 10.21 

8.54 11,33 

a1:3 

36,21 

44.57 

8,00 

8.67 

Anal :4 

47.85 

53,32 

6,54 

7.5 

Anni. i 5 

39.53 

45.61 

18.53 

23.32 

6.02 

4 

ercentage 1 

Efficiency J 4 

.lean Percent: Effic: 

35,6% 

27.6; 

26.4% 

20,8% 

33,8% 

27.2% 

41.3% 

31,1% 

31.6% 23.6°% 30.5% 36,2% 

,_,..,.,.,........ ,....,.,,,,....,,,. ..,,...,k/'-_ ...... 
27.6% 33.4% 

rtirrl Blocks 

(rows) 

Blocks 

(columns 

2 49,44 

4 48.75 

2 

4 

2 2.84 

3.53 

2 59,5% 

4 66,9% 

63.2% 

Error 

Percentage 

Efficiency 

Mean Percent: Effie c 

2.91 

4.03 

8.65 

48.02 

49.21 

3,02 

39.30 

44.43 

4,10 

91.12 6.48 4 07 

19.5% 

25,9% 

56.0% 

67.8% 

41,2% 

58.0 

22.7% .61.9% 49,6% 

430% 55 

44.90 

36.7% 

40,8% 

49,44 

48.75 

2.91 

4,03 

2.83 

3.46 

59.7% 

68.2% 

64.0% 
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The average percentage efficiencies over the 23 

different grids are: Long blocks, 25.1 °/ ; Short blocks, 

26.9%; Latin square, 5l57, and while no great 
significance is attachable to such mean percentages, the 

generally superior efficiency of the Latin- square design 

is mnifest. Clearly the Latin square can be inferior 

to a blocks design which uses either the rows or columns 

as blocks only when either the row or column mean square 

(or both) is less than the error mean square, and then 

not by very much. The means of the smaller and larger 

percentages for the long blocks are 14.4 and 35.8 

respectively, and for the short blocks 24 .1% and 29-87. . 

These figures give some indication of the greater 

reliability of the more compact blocks, for it must be 

remembered that the experimenter usually knows little or 

nothing about the fertility- gradients of the field and at 

best can only guess. Similar considerations suggest that, 

if long narrow plots are used, it would be advisable to 

place the blocks in a line perpendicular to the length of 

the plots, thus:- 

Block 1 Block 2 Block 3 Block 4 
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In this manner, should the iilots prove to have been 

placed transverse to the main fertility -slope, then 

at least some of the effects of soil heterogeneity will 

have been removed, but presumably less efficiently than 

if the main fertility -slope had been parallel to the 

length of the plots, Actually, the above type of layout 

is standard practice for simple experiments requiring 

cultivation or drilling. 

As regards the individual fertility -grids, the 

following observations may be made: - 

I and TI : As expected, the long blocks provide the 

most and least favourable analyses. The wider blocks 

are not sufficiently sensitive to deal efficiently with 

such sudden fluctuations within the width of a single 

plot, even when the ridges are parallel to their longer 

sides ; but their efficiency improves when the ridges 

are less sudden. 

111 and 1V : Long blocks could have no effect on a 

uniform ridge running diagonally across the field from 

corner to corner. In Grid 111 they would partially 

remove the effects of either of the two ridge: alone, but 

the two together serve to even up row and column totals. 

The Latin square therefore also fails, and the short 

blocks are little better. In Grid 3$ there is a single 

but less sudden ridge which is best dealt with by the 
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short blocks. 

V The results are similar to 11 , except that the 

short blocks show up better, as they usually will when 

it is a question of fertility -slope and not ridges. 

V1 As in 1V , but the efficiencies are higher and 

the Latin square especially good considering the moderate 

efficiencies of both types of long block. 

Vil : No type of block can cope with this type of 

simultaneous variation at right angles, but the Latin 

square again registers a high efficiency. 

Vill : in their most favourable case the long blocks 

are highly efficient, but only the Latin square is 

independent of pre -knowledge of the grid. The short 

blocks fail to eliminate the ridge effects. 

. As for 7111 , except that the long blocks are 

less efficient for their most favourable -case. 

X and 11 : Very similar to V11 and 1lï respectively, 

but the short blocks show improvement because the ridges 

are less sudden. 

X11 , X111 , and :ITT : As in 111 , no type of analysis 

is better than moderately efficient. 

IVI, and XV11 : Similar to 111, X.111 and XiV 

respectively, but the greater efficiency of the short 

blocks in dealing with the less sudden ridge is noticeable. 
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XVlll : is expected, long blocks and the Latin square 

all fail, but the short blocks are fairly efficient. 

:71,77, and LL1 : All types of analysis give moderate 

results, the Latin square being only slightly better than 

the long blocks. The short blocks are best, as is not 

surprising when it is considered how these grids were 

composed. 

:Xl and LX111 : The efficiencies for these two grids are 

fairly representative of the all -over trend. 
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Section 7 

A Multiple - Factor Experiment. 

suppose that we have p replications in randomised 

blocks of mn treatment- combinations, the latter 

consisting of m treatments of one type ( let us say 

different varieties ) and n treatments of a second 

type ( say different fertilisers ) in all possible 

combinations. Let the yields yj,, ( where i denotes 

variety , j fertiliser, ana K replication ) be arranged 

in a matrix thus :- 

Yt» yin' 

Y, YisZ Y.a. 

Yi1iv .... 51;4. 

37'37'24, Y,,I Yr1 I Yn Y, Ynn, 

. I 

1 

3r2.12. Y7.:1 . . . Ys++i I 
. . .1 Y.nn. Yn.0 Y..,n1. 

: I 1 .... ...I .... 
I . 

Y h. . . . I Y,nN 

Let us first consider the p replications of the 

mn treatment -combinations under a hypothesis of complete 

uniformity. By (4,2) we have 

yyi,( - )2- ¡t ( yzp, - )z+ mn L (Y,.,, -Y +? ( Yy;), -4;0 -Y K 7)2, 
' ...(7,1) 

the three component sums of squares on the right -hand 

side having independent gamma -type distribution with 

mn -1, p -1, and (p- 1)(mn -1) degrees of freedom respectively. 

Now consider the mn column -means of the above matrix. They 

are independent, normal variates with variance (where u 

is the variance of the y;jK ), and may be regarded as 
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being arranged in a matrix of m rows and n columns. 

Hence we have also by (4,2) 
Z EZ(y) n (Y00 1 (yoo -Y 1/.(Yo y- Y+Y), ; 

J 
,.10 ....(7, 

and combining (7,1) and (7,2) 

SFS(y.jK 7)2= upE(y. -y-) + mP (Yo o -) i- Pa(Yeo -Y -;0 37 , J t ao J 

+ mn YooK -y) 
x 

+ U.Ety. , -YAK ) t . .(7,z 
J 

If we write (7,2) in matrix notation as 

VG-37 = ÿ`H37 t ÿtT + 3r'KY ....(7,4 
where l3 is the vector {y,,o yso ,ai Yio Y .y t.. iypH. y Yrh 
we know from Section 4 that each of the matrices G,H,J, 

and K is idempotent. e may also write (7,3) as 

y'Ay= y`By +yCy +ytDy +ytEy +y'Fy ....(7,5 
where y is the vector fy,,, y2. ..y k i ysz Y; -... Y X Y, h:' 

i.e. it is the vector y of previous sections, each element 

of which is now further partitioned into p elements, so 

that there are now mn subvectors of the type 

...yjh Now if, for example, K is the symmetrical 

matrix kn km 
km k,,s. 

ksa 

k!3 
k,c3 k 

of' order mn x mn, then the quadratic form ÿ'Kÿ, when 

referred to the vector y, must be 
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y' Ñ -r).- k k . . . k k11 km ...km y, k k ...k k,2 k,x ...k,2 
k 
k,,, 

k,,. 

k ...k 
kn. 

k,,, ...km 

k,,, k,,. ...km 

k2,....k 
k,,. kit . . . k,2 22 ia 22 ... at 22 

where each submatrix is of order pxp and has all elements 

the same. But y'Dy = pÿ'Kÿ, so that D must be idempotent, 

since K is idempotent. Similarly the matrices B and C may 

also be proved idempotent. 

From the results of Section 4 we know that the mean 

values of ÿ'Hÿ, ÿ'Jÿ and ÿ'Kÿ are (m-1)--V, (n -1) ÿi, and 

(m -1)(n -l) w respectively, so that the mean values of 

y'By, y'Cy wind y'Dy are (m -1)T; (n -1)G; and (m -1) (n -l) G`. 

Since B,C, and D are idempotent, it follows from Lemma 

9,Cor. -2 that y'By, y'Cy, amd y'Dy have gamma -type 

distribution with m -1, n -1, and (m- 1)(n -1) degrees of 

freedom respectively. It is obvious that the independence 

of the quadratic forms on the right -hand side of (7,4) is 

not affected by referring them to the vector y. Hence, 

applying Lemma 7, Cor.l to (7,1) and (7,2), we see that all 

the quadratic forms on the rient -hand side of (7,5) are 

independent. Their mean squares must therefore be 

independent estimates of the variance a 
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An initial analysis of variance may be made as 

in 4, thus:- 

Analysis of Variance. 

Variation due to D.F. Sums of Squares 
Mean 
Squares 

Blocks 

Treatment - 
combinations 

Error 

p -1 

mn -1 

(p- 1)(mn -i) 

ran 
L(y00,4-V)i 

r (yj -ÿ)1 

Y.17. (iaj.,- yoac +) 2 

s; 

ss 

3 
y. 

K 

Total mnn -1 TFS(5'K -y)1 

Reverting now from the hypothesis of uniformity to the 

hypothesis of the randomised -blocks design ( §4, P41), 87. 

is an estimate of 6 ̀i- mn 68 , but on a null hypothesis 8 

and d; continue to be estimates of the random variance 

(now ßx} . At this stage, therefore, a test could be 

made to see if treatments as a whole diverged significantly 

from the null hypothesis. But this is unnecessary, 

nor is it the object of the experiment. The sums of 

squares and degrees of freedom are now further subdivided 

as in (7,3). 
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Analysis of Variance. 

Variation due to D.P. Sums of Squares 

Blocks 

Treatment- 
com!mbinations 

Varieties 

Fertilisers 

Residuals 
( " Interaction" ) 

Total 

Error 

n-1 

m-1 

n-1 

(m- 1) (n -1) 

mn-1 

(p- 1)(mn -1) 

mn L (y00.,.-7)1" Yoou'9 )1 

rip T._.( y. -y )z 

mp E ( Yoo z ) 

(Yijo -Yioo-YO;O+Yl 

i_ ÿ ) Z ' l, i' 
JqK -YijO )Z 

Me an 
Squares 

sÿ 

sf 

Total mnp-1 
)L YEs (z,¿'K-7 

On a null hypothesis sw, ss, and sb are all independent 

estimates of the random variance and hence may be tested 

against s3 . By the tests with sr and JP the significance 

of variety and fertiliser means respectively is examined. 

The residual sum of squares under treatment -combinations 

is the sum of squares due to interaction between varieties 

and fertilisers. The interaction, AB, between two sets of 

treatments, ,A and B, is a measure of the variation in 

(yieldr) response to treatments A when combined with the 

different treatments of set B, the exact measure adopted 

being a matter of definition. To show that the residual 

sum of squares for treatment- combinations does indeed 

provide a measure of the interaction between varieties and 

fertilisers, let us define the response to, or "effect" of 
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the itti treatment of set A as yio0- ÿ, or what is the same thing, 

1 ( Yi jo -Ye ja ) It is clear that a measure of the variation 

of the response to the ith treatment over the different 

treatments of set B is given by the sum of squares 

(Ycjo- Yco, °Yajo +); , so. that for all treatments of set A 
,Í 

we have the sum of squares. (KJ, -y0 0# )1 as a 
J 

measure of the interaction AB, .nd this is identical with 

';he sum of squared residuals for treatment -combinations. 

Also, since this expression is symmetrical in i and j, it 

follows that interaction is a symmetrical relationship, 

interaction between fertilisers and varieties being the 

same as interaction between varieties and fertilisers. 

If there is no interaction, the residuals (ycjo -moo -yoo+ y) 

will be normally distributed with variance equal to 

17(m-1)(n-1) times the random variance of the experiment, 

this being so regardless of the significance of either 

set of treatments. The usual test will therefore determine 

whether the estimate of variance, s¿, derived from the 

interaction mean square is significantly different from 

that of the error mean square. If so, the interaction 

is said to be significant, and it becomes necessary to 

study individual elements of the "interaction- table" given 

by the matrix Cytio] 
It is noteworthy that the residual 

sum of squares of a randomised -block experiment is really 

the interaction between treatments and blocks. 
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Section 8 . 

The Split -Plot Experiment . 

Any type of experimental design in agriculture may 

have an additional type of treatment comparison appended 

merely by subdividing each plot (now known as a "whole -plot" 
into a number of sub-plots equal to the number of sub -plot 
treatments (unless there is confounding), which are as 

usual randomised within each whole -plot. As an example, 

let us consider a randomised -block experiment of m 

varieties replicated n times, each whole -plot of which 

is further subdived into p fertiliser treatments. Let 

the yields be [y;,j,] , where i represents variety , j block, 

and k fertiliser, the matrix [yzita being of order nn x p. 

By Lemma 8, we have 

(y. -y _VVV(v.'K-vcsa) .LiTty -371- 
J K 

o , ,...(8a1 
and under a hypothesis of complete uniformity throughout 

the experiment we have by the results of §1 the following 

equation of mean values. 

(map -1) ran( p-1) Viz' (mn -1) fib, .... (8 ,2) 

where eis the variance of a single sub -plot . vie may 

therefore perform an initial analysis of variance, thus : - 
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Analysis of Variance. 

Variation D.F. Sums of Squares 
bean 

Squares 

Between whole -plots 

Within whole- plots 

ran-1 

m-) (' -i) 

perY,o -ÿ)1 

c Ea.(f -v )1 
í j K 'J1< " tj0 

L 
$1. 

Total unp -i Y- EVy j -ßi)2 

However, the mp treatment -combinations are not 

randomised over the whole of each block owing to the 

restriction imposed by the design of the experiment. 

This restriction, that all combinations of a particular 

variety with the different fertilisers should occur in 

a single whole -plot, is the same with respect to the 

sub -plot treatments as the blocks restriction in a 

randomised- blocks design. We must therefore replace 

the hypothesis of complete uniformity with the hypothesis 

(similar to that of §4, P4-I ). that the whole -plots have, 

a priori, different means, even if treatments are still 

assumed to have no differential effect. Combining 

this null hypothesis with the hypothesis of the randomised - 

block design with respect to the whole plots, we have that 

each variate ycj,< is equal to u. +; 4- t6. + tiK , where A 
is a normal variate (constant over the f" block) with 
mean at the origin and variance GB ,;;o is the random 
whole -plot variate (normal, constant for all sub -plots in 

the (i., j) whole-plot, with mean at the origin and variance 6P) , 
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and is the random sub -plot variate (normal, with mean 

at the origin and variance css) . Hence, in the above table 
s is an estimate of o . 

We may now further subdivide the sum of squares between 
whole -plots in accordance with the ordinary randomised -block 
analysis of §4. By (4,2) we have 

1 1 -- 
P11(Y,;o -Y) = np .(Yzoo-Y)+ mp (Yore -1 +pç(y 0 -Ycoo- y00 +) , -8,3 
the degrees of freedom of the components on the right -hand 

side being, respectively, m -1, n -1, and (m -1) (n-1) . The 

final component, when divided by its degrees of freedom, 

yields a mean square ( ss, below) which is an estimate of 

*"0-,1-, where (_,pr -+-P- ) is the whole -plot random variance, 

i.e. es: is an estimate of 654 -4«Ç. The table is as follows: - 

ÀAnalvsis of Variance 

Variation D.F. Sums of Squares 
Mean 

Squares 

Between whole -plots 

Blocks 

Varieties 

Error 1) 

Within whole -plots 

n -1 

m-1 

-1)(n -1) 

mn (p -1) 

rpZ(Y,o -Y) 

np(Y,00 -T)2. 
c 

-a(yo- S- Yo4Y) ,ITo 
YIE (Y--,,- Yi,¡o.)1 

r 

p2- 

.. 

si- s 

,i 

Total mnp -1 En 
(Yij4 -Y f 

The mean square for blocks (s3) is an estimate of 65 +4.r,P+mc8 

The varieties mean square ( sw) may be tested as usual 

against that for error (1) . 
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The sum of squares for deviations from whole -plot 
means rn(yz -y.jo )Z may also be further subdivided, for 
we may regard the deviations as a matrix of p rows and 
mn columns, thus:- 

Y111 Y4o 
Yx -Y110 y/2. 'V 12o 

Y31 -31;30 

Yi31 y;3o 

_Yuh. "'TIM Y,:j -Y,zo Yw -Yi3o 

y4í= -Y:je 

Y:jw -Yÿo . 

Y..,. 

Ymni-Y, 

Y,,,N,-Ymo 

The general mean is r4 (Z.RyziK -P Y. ) = 0, and the mean of 
J 

row k is YDOK- ñY. = YeeK -Y Hence, by Lemma 8, we have, 

Y.jK Y;o )Z= mn ( yooK -Y) -ß-Z2 ( y:iK -y' -YoeK+ Y r. (8,4) J K á; K 

further subdivision may now be made of the final sum of 
squares on the right -hand side of (8,4). Consider the 

residuals y jK -yjo -7.4- arranged in rows according to 
the suffix j. The general mean of such a matrix is 

m ̂ P (Ea. y:;K F Yc;e - YoK+ mnP Y) = O. The general 

column -mean is ycoK -y;eO yooK +y. Hence, by Lemma 8, ( YtjK -Y:jo -YoeK Yz t= Y:oK Y .Jc -Y Y. wK + y.. 

oo ) 8 :z 

and combining (8,4) and (8,5) we arrive at 

yYjK -yjo )= mn.( yo.. y)s +4;( -YoeK + -Y)1 

-YU0 -Y:oK Y.00)1 (8,6) 
J K 

The first sum of squares on the right -hand side will be 

recognised as that for fertiliser -means and the second as 

that for interaction between varieties and fertilisers as in 

Section 7, .age g4-.. 

The next step is to examine the independence of 
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the three component sums of squares of (8,6). A deviation 

of a fertiliser -mean from the general mean, e.g y001 -3i, may 

be written as a *y, where y is the same vector as in ( 7,5) 

and a'= P[p -1 -1 -1... - l; 11-1 -1 -1 ... - 1 t etc., mn 

sub -vectors in all] A residual of type 

MoK -Moo -Y000- Y, e g Y01.-Y.00 -Yocxt , may be written as 
i 

be y = , [1 -m mp m -p+l 1 -m... 1 -m ; and n- 1 similar 

subvectors;1 .1 -p 1... 1 (m - in all 1)n similar subvectorsJ 

A residual of type y;36( -37;:i0 -y1og+y;oo , where we will as an 

example take 1 =1, j =2, k=3, may be written as c'y, where 

Y 

e wine Lm m m -mp m...m m -mn m -mn m +mnp -mn -mp m -mn.. . 

m -mn ; m m m -mp m...m ; and similarly up to the n`+' 

subvector, all the rest null]. 
at b =.i pin( 1 -m) (p- 1) -n(m -1) (p-1) -n( 1 -m) (p -2) 

+n(p- 1)(m -l) n(1- p)(m -1) -n(p -2)(m 11 =0. :. a and b are 

orthogonal. 

a'c = L [m(p- an -1) -m(p- 4[n -l) -m(1- p)(n- 1) + In( 1- n)(p -1) 

-ni( 1-n) (p -2) -m(n -1) (p -1) ] = O. a and c are orthogonal. 

b' c =.S {m( 1 -m) (n -1) (p- 2)+m(m -1) (p -1) (n-1)4-4 1-p) (i -m) (n -1) 

+m( 1 -n) ( i -m) (P-2)+( m-1) (P-1) (1 -n) m +m(n -1) (P -1) (1 -m)] _0 

b and c are orthogonal. Similar orthogonality may be 

proved for all values of i, j, and k, sa that from Lemmas 5 

and 6 we deduce the independence of the three component 

sums of squares of (8, 6) . 

In order to find their mean values, we have 
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a' a 1 ) 2 . m -( p -1) md = p ( P-1) . 

The mean value of mnI -)1 is 
K p-1, or, 

unstandardised (p- lj as , since a is the random variance of 
a single sub -plot yield. 
Also b'b P1( 1- m) Z( p- 1)n+(m- 1j(P- 1)2' n- +- (p- 1)(m -1)n 

( ß- p)2. (m -1)n= P(m- 1)(p -1) . The mean value of 
na( 3ric y 00-YooK +Y)- is (m -lj (p -1) _ (m -IXp -i )65 ( unstandardised) . 
and c' c = , p [mom (p- (n- 44-nit 1-p7- (n- 1) +1( 1-11)1P-1) 

+m1"(p- 411 n -1)1 = nP (p -1) (n -1) , hence the mean value of the 
residual sum of squares is m(n -1) (p -1) or m(n -1) (p -l) o: 

(unstandardised) . We thus have the following equation of 

mean values. 
mn(p-1)ßs =(P -1)cr51- (m- 3.)(p-1)v` +m(n- 1)(P -1)as -(8,7 

If we now write (8,6) in the form 

Y'AY =y'By +y'Cy -r- Y'ly, ....(8,8) 
it is evident that the matrices B and C may be proved 

idempotent in the same manner as B,C , and D of (7,5) , using 

a vector {Y,,,, Yioz -Yu*, Yl" 
...yz°11 ym". -Y..,° 

Also D =K' K where K is "the direct sum" of m sub -matrices 

each equal to L = 
I "p - TVT, + 'hp 

MP IP IP ... Ip 

MP IP 

L is of order nip x np, and m p is the matrix of order 

np x np with all elements +p, Ip is the unit matrix of 

order p x p, etc . / 
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L' L=N± 

-+ 214+ 

ìvïw 
1+*I#i. 

Nia- 

+ 2Ttiî - 2 Mw 

TjL. ..Ip, 

. 
Ij, . I. . 

- 
. 

-ñ 

+ I 2M 

- 

2M 
^w - 

4 

Iw li, Iv 
. 

: 
Iui Tw Iv ..Iw 

Hence K *K = K, and since K is symmetric it is also idempotent. 

It follows that on a null hypothesis the three 

quadratic forms on the right -hand side of (8,8) yield 

independent estimates of 6i with degrees of freedom equal 

to the respective coefficients of (8,7). It is also 

apparent that the residual quadratic form, y'Dy will yield 

an estimate of ßs even if the null hypothesis can no 

longer be regarded as valid. The following is the 

complete table of analysis of variance:- 
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Ver iat ion 

Between whole -plots 

Blocks 

Varieties 

Error(1) 

Total 

Within whole -plots 

Fertil isers 

Interact ion 

Error(2) 

Total 

Grand Total 

D.F. Sums of Squares 

n-1 

m-1 

(m -1) (n -1) 

mn-1 

(m-1)(p-1) 

m(n-1) (p~'. 

mn(p-1) 

P,Ie an 
Squares 

mpE -Y)1 

nn;.(Yie..-)i 

pg( Y,4o -Yron ."703 4. /i 

Pr:FYÿoT/ 

mn (YooK-Y )1 

n .oK- á:oo 

K(t T ,%(JKi0 J¿pK+íoo ., 

( 4 T iK-3 u° 
)1 

, 

mnp-1 S?-F(V;:K-Y) K ' J 
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The varieties mee-1 square 
( sue) may be tested against 

ss, s2 and ss against 4 It may be desired to test ss 

against 4- in order to see if there is any significant 

component of whole -plot variance. This is valid, since 

ss is independent of s; and hence, by Lemma 7, Cor.l, of ss. 

In_ general s5 will be greater than ss , but sometimes it 

will be less, indicating that the estimate of variance of 

whole -plot means is less than would have been expected 

from ordinary random -sampling of the population of sub -plot 

random variates. This can arise from accidents of 

sampling, or it may mean that there is competition between 

the sub -plots within each whole -plot. 

Should the variety and fertiliser effects prove to 

be significant, it will be necessary to compare the 

varietal means (y,;,,,,) among themselves, and likewise the 

fertiliser means (Y..4). Also should the interaction 

between varieties and fertilisers prove significant, we 

will wish to compare means of the individual treatment - 

combinations (yzoK) . We therefore proceed to allot 

standard errors for the various types of comparison. 

The interaction table is as follows:- 
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Fertilisers 

Varieties 
F2 ... FK ... h, 

Varietal 

Yleans 

V, 

Vz 

Vi, 

VN+ 

Y,p, 

Yz.o 

Yíoi 

Y,o, 

Y,02. 

31. 1.O2 

, 

Y.:oz 

Y,ox 

... 

... 

.... 

... 

YOK 

YzOK 

Yí.oc 

Y,oK 

... 

... 

... 

... 

Y,o%, 

ÿ 2-ow 

Yíoh 

Yh ,* 

Y100 

Yawo 

Yíoo 

YMOv r'ertiliser 

ivieans 
Yoo yoa.t .. 

... YooK ... Y°41 -- 

The standard error for comparing varietal means 
sr 

(yz,o) is , since ss is an estimate of p tunes the 

error variance of a whole -plot mean. For comparing 

fertiliser means it is j For the comparison of 

single means in the same row of the interaction -table 
s 

the standard error is r, and the same standard error 
(adjusted to suit the numbers in the groups) applies to 

groups of means in the same row (e.g. y,o,+ y,02 compared 

with y,os +y,o6 ) or to groups in different columns but 

comprising the same rows (e.g. y,,,+ y± y3O1 , compared 

with y1.5 4. Y,43+- y303 ) All the above types of comparison 

may be made by the t -test with the appropriate number of 

degrees of freedom, but any other type of comparison 

involves the component of error variance due to 
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whole- plots, namely 6ó, and, as has been shown by Nair (18) 

the exact test for such a comparison is the Fisher- Behrens 

test, named by Sukhatme (20) , who has tabulated significance 
levels, the d- test. Tables of "d" are also reproduced in 

Fisher and Yates (14). The sample estimate of 4- is " 
for a single whole -plot, of or a whole -plot mean. 

Thus for comparing single means not in the same row (e.g. 
yo, and y °, or y and y ) the standard error is 
Jsn 

+ 
S Kw = f .ßÿ..(p -1' s- ss , and for comparing groups of 

means from two different rows (e.g. the mean of yo± - t SS 
_ 58 with the mean of y ±yi y) the standard error is ,, , 

where q is the number of means in the group. The whole - 

plot component in this formula remains constant whatever 

the value of q, provided only single rows are involved. 

If the t -test is used with such a combined estimate of 

standard error in order to make an approximate test, the 

number of degrees of freedom will be that of ss i.e. 
(m -1) (n -1) . If ss < 4 , the question of a component of 

error due to whole -plots does not arise. 
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Ortho o'onal 

96. 

Subdivision of Sets of Legrees 

Let { y) be a vector of treatment-means. 

of Freedom 

Since, in 

the calculation of the treatment sum of squares in the 

analysis of variance, adjustment is made for the number of 

replications of the experiment, we may for simplicity and 

without loss of generality consider 

this vector as being the yield of a 

iy} may be divided into sub -vectors 

number of factors in the experiment 

each element, y, of 

single replication. 

according to the 

and the respective 

levels of each factor. For example, in a three -factor 

experiment with p, q, and r levels, we may arrange tyJ 

as pq subvectors of r elements each. 

Any subdivision Ay, where A is an orthogonal matrix 

of order n x n (n being the total number of treatment - 

combinations) and the elements of its first row are all 

unity but normalised by division by III subdivides the 

n -1 degrees of freedom into n -1 separate orthogonal degrees 

of freedom by means of the linear functions of the last 

n -1 rotas of A. Such a subdivision is called a complete 

orthogonal set. If the variates {y} are standardised, 

the variance matrix of the yields is I, so that the variance 

matrix of the transformed variates Ay is, by Lemma 5, also 

I. This proves that each linear function is statistically 
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independent of all the others, and hence in the case of 

more than one replication their squares are, by Lemma 7, 

Cor. 1, independent of all the other sums of squares in 

the analysis. It also proves that each of the squares 

of the linear functions has a mean value equal to the 

intrinsic or random variance of the experiment. Moreover, 

the rank of the matrix of the quadratic form corresponding 

to any such square is one, since the matrix is of the forni 

P.e e / , where ,ms is a row vector. It follows that each of 

the squares of the normalised linear functions has gamma - 

type distribution with one degree of freedom and may be 

tested for significance against the error mean square of 

the experiment, or, since only one degree of freedom is 

involved, the t -test may be applied directly to the 

normalised linear function itself. 

Since A_ [a,;i] is or?- hogonal, Z a6a,, = 0 (i#k), and since 

each element of row 1 is Ft , a = 0 (VI). Also Ia j, = 1. 

In other words, in addition to the condition Zaa= 0 (4k), 

the coefficients of each linear function must sum to zero and 

must be normalised. Algebraically, the sum of the squares 

corresponding to each individual degree of freedom of a 

complete orthogonal set must always equal the total sum of 

squares for the treatments under consideration. This is 

easily proved. The column-vector of a complete orthogonal 
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set is Ay (including row 1, though this is not one of the set). 
Now yt At Ay = (a y )1 

= The sum of squares of the orthogonal set + (Xy)7n 

But y' A' Ay = y' y ( since A is orthogonal) = Z yz . 

Hence the sum of squares of the orthogonal set 
_ Ey% 43)7n =Eyi -r= (y`°)} 

= treatment sum of squares. 

It may be observed that since 1AI= l # 0, the n -1 

linear functions are linearly as well as statistically 
independent , but that if an nth linear function were 

chosen according to the same conditions, it would not 

be independent of the others (Aitken, 1) and would in 

fact merely repeat one of the functions already chosen. 

On the ot'ler hand an orthogonal set need not be complete. 

Suppose Ah, were a matrix of order pxn (p <u), the first row 

of which must be as before a normalised vector of unit 

elements (representing the degree of fr edom taken up in 

fixing the general menu) . Then, if Af, possesses the 

orthogonal property Aw:1/4, =I, the treatment sum of squares 

is subdivided into p-1 single degrees of freedom, each 

independent of the error sum of squares, the proof being 

similar to that above for the complete orthogonal set. 

If we denote by A.,,_, the matrix AA., without its first row 

then A'p.,A`,.,, the matrix of the quadratic form comprising 
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the sum of squares of the p -1 linear functions, has the 
same rank as Ab._, , namely p -1. A'h AA,_, is also 

idempotent , since A *_, A, ,Ah_, A_, = At_, . k, by the 

orthogonal property. Hence, since the quadratic form 

has p -1 degrees of freedom, both the trace and rank of 

its matrix,A'k_, A_, must be p -l. Also the matrix of 

the quadratic form comprising the total treatment sum of 

squares is known by past results to be idempotent with 

both trace and rank equal to n -l. If A is the matrix 

of the complete orthogonal set corres,nonding to 

A,, and A =w1, then, since At A = + An lAn _/, 
^-h it follows that A ̀ _/,, A n -w must be the matrix of the 

residual quadratic form. But At,..., and An_N, are such that 

At,., A = AM Ak_, =0, so that it follows by Lemma 10 

(Cor.) that the residual sum of squares has n -p degrees of 

freedom and its mean square yields an estimate of variance 

independent of each of those of the orthogonal set and 

hence, by Lemma 7, Cor. 1, of all the other mean squares of 

the analysis. 
There is an infinite number of complete orthogonal 

sets for any given set of degrees of freedom, but any such 

subdivision of the treatment sum of squares should conform 

to a predetermined plan of analysis consistent with the 

design of the experiment, or it will not be statistically 
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useful. Indeed, provided this condition is satisfied 

a set of degrees of freedom may be subdivided non - 

orthogonally, for any normalised row -vector when applied 

to the vector of treatment -means, provided that it is 

independent of the error sum of squares of the experiment, 

gives rise to a t -test or to an F -test with one degree of 

freedom. As en example suppose that in a simple 

randomised- blocks experiment we wish to compare treatment 1 

with both treatment 2 and treatment 3. The vector 

corresponding to the comparison of treatments 1 and 2 is, 

after the manner of §4, and ignoring the normalising factor, 

tl 1... 1 ; -1 -1... -1 ;remaining sub -vectors null }_ d, 

and that for the comparison of treatments 1 and 3 is 

t.1 1... 1 ; o o... o ; -1 -1...-1 : the rest null = e. 

Both d and e(and, in fact, the vector of any linear 

function of the treatment means) may easily be proved 

independent of the vector of any residual, but 
they are 

not orthogonal to one another. 
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101, 

Interactions in General 

Let us consider an experiment with three factors 

A,B,C at m, n, and p levels respectively. As in the 

previous section we regard the treatment means fyz}O, 

where i, j, k represent levels of A, B, C respectively, 

as being the result of a single replication. 

By (7,3) we have 

r = npcL( Yíoo -Y + mp,( Yo Y o -Y t+ P .( o ,o, -Yo ó+ )z 
J -Y 

Trin (Y,o, 'Y)+ (Y;" -y.' -yoK (10,1 
K 

The sums of squares on the right -hand side represent in 

order the "main effect" of A, main effect of B, interaction 

AB, main effect of C, and residuals. Their degrees of 

freedom are m -1, n -1, (m- 1)(n -1), p -i, and (p- 1)(mn -1) 

respectively. 'exactly as in §8, Page88 , we now 

arrange the mnp residuals of (10,1) in a matrix of order 

n x mp with rows according to the suffix j, and deduce 
(10,2 

that (y.. -Y ?¡o -Y +Y) = n (Y"0K Y.ao -YooK y )+ (YK 3Yi -Y. -I- Y )o 
.Í 

where the sums of squares on the right -hand 

side have been seen to correspond to the interaction 
AC and 

residuals with (m- 1)(p-1) and m(n- 1)(p -1) degrees of freedom 

respectively. 

Now consider the residuals yyj64, -y,,0 -y,0K4-yy00 arranged 

in a matrix of order m x np with rows 
corresponding to the 



suffix i, thus.- 

Yll -Y,o-Y,o ±Y.O 
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Y1Z-y,o-y.x Y.o . YiliK yjo Y,K+Y.. Y,.w Y,no Y,.w+Yl.o 

Y}. -y alo Yxo+Ysoo Yi8K Yzio-Ysoi Y:.oe y2.jK yZjo 
YoK 

y2.00 yxw YIn ó - Yz,4:Ys.00 

.y .,;w YM;;7 3LK Y-00 .Y..,.Ñ Y.-- Y-,Ñ Y oo, 

The general mean of this array= j.(X.TI,Y,jK -nRyoK 

+ np LyQO ) = Q . The general column mean = yob . 

so that an application of Lemma 8 gives 
x 

90-Y.. -y0k ÿ) = mj K yo,K y,, Y,o +7 +- ( 37::J.K Y; Yeak Yj+ y oo Yo;o Yo.r 7) : 

(10, 3) 

where the first sum of squares on the right -hand side is 
seen to be that due to the interaction BC with (n- 1)(p -1) 

degrees of freedom, as may be proved by the same method 

as that used for the sumsof squares due to the interactions 

AB and AC. 

A residual of type yid,, yió y- y Yoó Yo.1p+YK-y 

(taking as an example i =1, j =2, k -3) may be written as a'y 

where a' _,,,;, ..[m -1 m -1 m +p -mp -1 n- 1...m -1 ' (m+- n -mn -1) 

(ma- n -mn -1 ) m +n +p+mnp -ran -np -mp -1) (m +n -mn -1) (m n -mn -1) 

then repeating the first sub -vector up to the nth subvectorn 

-1 -1 p -1 -1... -1 n -1 n -1 n +p -np -1 n- i...n -1 -1 -1 p -1 

;and so on up to the 2n subvector, the remainder repeating 

the (n+ -1)' to the 2ñ l 
A residual of type yo;K yti, Y K Y (e.g. Y,,-Y,.-Y ±Y) may be, 



written as bty where 

b' = w [(n-1)(p-1) 
till nt then repeating the 1st to the 

to the mn 

3.03. 

i-n 1-n . . . 1-n 11-p 1 1...1 l-p 1 1..1 1 

Now nl,n7'pza'b = (m-1)(n-1)(p-1) -(m-1)(n-1) 
(n-1)(p-1)+(m-1)(n-1)(p-l)-(m-1)(n-1)(p-2)+(ul-1)( 

-(m-1)(p-1)(n-2)+(m-1)(n-2)(p-2)-(m-1)(p-1)(n-)-( 
+(m-1)(n-l)(p-2)-(m-1)(n-1)(p-1)-(m-1)(n-1)(p-1)+( 
(p-2)-(r1i-1)(n-1)(p-1)+(m-1)(p-1)(n-2)-(m-1)(n-4)( 
(p-1) (n-2) = 0 

n up 

( p-2 )+( iu-1 j 
n-1)(p-i) 

m-1)(n-1)(p-1) 
m-1, (n-J_) 

a and b are orthogonal, and this may similarly 

for any residual a'y and any residual bey. Hence, 

writing (10,3) as 

y'A'Ay = y'B'By + 

we 

y'C'Cy (10 , 4 

be proved 

deduce that the rows of.B are orthogonal to the rois 

of C. The residual sum of squares I ( ;N- yso -yOK ;)K +y ,0+y' +yoK yz 
J 

is thus independent of E21 (y.K y.o yaK ÿ)z, and by Lemma 7, 
j K 

Cor.l, of all other sums of squares in the analysis. Also, 

by Lemma 10 (Cor.) , the residual sum of squares has m(n- 1)(w -i) 

- (n -1) (p -1) _ (m- l)(n- 1)(p -l) degrees of freedom and 

the residual mean. square is on a null hypothesis an estimate 

of the intrinsic variance of the experiment. 

In section 7 the interaction of two factors A anu B 

was defined as a measure of the variation in the response to 

A at the different levels of B, this measure being proviued 

by the sum of squares Y,.(yi, -y00 -5yß0 +362- . 

of the interaction AB at any given levels i and j is provided 

Titus, a measure 
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by the linear expression Yco -yLO. +ÿ 
A second order interaction is defined as a measure 

of the variation in the first order interaction AB at 
the different levels of C . Since y..- ybo- yod +y= L(Yj.K -YbK y;K1JK) 

such a measure is given by the sum of squares[y ¿H yoú yoK 
12. 

4- Lost yJ0 -Y100-yam ÿ or Y jK Y ¿jo.K YOLK Y(o + Yo +y 
o oK -762- 1z 

which is the sum of squared residuals of (10,3). This sum 

of squares is symmetrical with respect to i,j, ana k, so 

that the interaction ABC may equally be defined as a measure 

of the variation in the interaction C at the different 
levels of B, or as a measure of the variation in the 

interaction BO at the different levels of A. The process 

may be continued by the addition of a fourth factor L, when 

the residual sum of squares for treatments will be the third 
order interaction ABCD, and so on. 

Combining (10,1) , (10,2) , and (10,3) we have the 

algebraic relationship 
2 

= np Ycoo- ÿ );+ mp (yojo ); + mn (YooK -Y ) + pI(37-60-y 

7)1+ n . (Y,. y. moo.« r m. (YgK y0. -YAK 5- )2.+ (311 Y.;o 

-Yoja +y¿.o +yob o 4-3rooK -Y > > 
(10 , 5 

where each c.mponent sum of squares has been shown on a null 
hypothesis to have gamma -type distribution with the appropriate 

number of degrees of freedom from the table below, each 

mean square yielding an independent estimate of the error 
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variance of the experiment. The treatment sum of squares 

has therefore been subdivided as follows:- 

Analysis of Variance 

Variation due to .F ûums of Squares 

Main effect of A 

Main effect of B 

Main effect of ;, 

Interaction AB 

Interaction BC 

Interaction CA 

Interaction ABC (a- l)(n- 1)(p-lj 

np ¿ ( YiOn 
-7)2 

( mp Yo,O - ) 2 

: n 
K 

( YooK -Y I 
YJo -vo. -Yo;o+ Y 11 

2 
la (^^ (y -ó -YooK+Y) 

Il YL ( yloK -Y. -Y JOOK+.7)1- J )2 K 

77-E( 
' 

Y;K Yi; 
Y))K 

Y,KYcootYo;o 
+ JooK - )s 

Total mnp-1 Y5T ( Y,K -7;" 

The effect of the lst level of S, i.e. yO'0 -ÿ, may be 

written as c'y where 

c' =,Rw n -1 n -1 ... n -1 ; -1 -T ... -i 4 -L -T ... -1 till 
th 

litk 
sub- vector,then repeatinC 1st to n l 

The erfect of the 1st level of C, i.e. y,, -ÿ, may 

similarly be written as d'y where 

d'= mh[p -1 -1 -1 ... -1 ; p -1 -i -1 ... -1 1 etc., 

subvectors in ail] . 

Now the vector b of the residual b'y above, which 

measures the interaction B C at the lstlevels of both 

B and C, is seen to have as elements ( except for a 

common factor) the products of corresponain6 elements 
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of c and d, which are the vectors determining the effects 

of the first levels of B ana G. 

This property is a general one and is specially 

exemplified in the case of factors at only two levels (Section 

12). To see how it arises, let us consider the treatment 

means y,.; of an experiment with all combinations of two 

factors A and B at in and n levels respectively, the suffix 

i representing the i ' level of A and the suffix j the jtk 

level of B. Let a' iyioI 
be any linear function of the 

mean yields for the levels of factor A. It need not 

necessarily belong to an orthogonal subdivision of the 

lei /el -means of A, but if it is to be of any use statistically 

it must be independent both of the error mean square of 

the experiment and of the vector of unit elements which 

constitutes the correction for the mean. Since in the case 

of a residual vector the sum of its elements corresponding 

to any particular value of i or of j ,dust be zero ( or else 

it would not be independent of all the level -mean deviations), 

any vector whatsoever when applied to typo} will aetermine a 

linear function independent of the error mean square, but 

to satisfy the second requirement must be zero. Written 

in terms of the vector y= k Y,,, Y, ; Yom, Yu; Y1,,; 3r,.1) 

a' tyl becomes 

[ a , a a a . a ' ' a a ... a,] y . . . . (10,0 
. . . a s 1 ,I , 

At any particular level of B, i.e. for any particular value 
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of j , say j =1, the value of the linear function is 

n na ... ; na ; . na,,, . J y. ...,10,? 
The deviation of this value from the mean value is 

h (n -1) a, -a, .. -a, : (n -1 )a, -a, .. -a,i 

- 
(10,8) 

and the sum of the squares of such deviations is the sum 

of squares for the interaction between the given linear 

function and the factor B. The deviation of the mean 

of the 1st level of B from the general mean is given by 

12-1 -1 .. -11 n -1 -1 .. -11 ..in-1 -1 ... -i] y..{10,9) 

It is evident from the fact that /7,az = 0 that the 

vectors of (10,6),(10,8), and (10,9) are orthogonal 

to one another, so that in general the sum of squares 

for the interaction of two effects is independent of the 

sums of squares for the effects themselves. It is also 

evident that the elements of the vector of (10,8) are, 

except for a common factor, the products of corresponding 

elements of the effects vectors of (10,6) and (10,9) . 

By a slight extension of definition we may now 

define the interaction of two linear functions associated 

with different classifications of the variates. Let us, 

for Example, as above consider all combinations yzi of two 

factors A and B at m ana n levels respectively, and let 

a' 1 y'j be any linear function of the level -means of 

factor A and b' 1 y03 any linear function of the level -means 
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of factor B, subject to /, a` _ bJ 0 . r;xpressed in 

terms of the vector y = bj, these linear functions are 

a, a . . . a, s a2 ai . . az I . . . , am... á ( 
and m b b . . b b b b l Is b, bz 

am] y ....O.() ,10) 

bJ y -410,11) 
and it is obvious that they are independent. Their interaction 

is defined in accordance with the previous paragraph as 

ka al b y6 , i.e. the transforming vector has as elements, 
c3 

apart from a common factor k, the products of corresponding 

elements of the effects vectors. The interaction is therefore 
k [ a, b, a, b 2 ..a, b ; ax b, a b .. a h :.. a b a,rb, ... 84rr b j y 

.....0,12 
and its vector is clearly orthogonal to those of (10,10) and 

(10,11). As for the value of k, it will depend on the 

actual definition of the linear function taken to measure 

the interaction, as will. be seen in Section 12. For instance, 

in satisfying the condition that the effects and their 

interaction should be independent, the three appropriate 

linear functions, if normalised, also satisfy the conditions 

that they should belong to the same orthogonal set. Hence 

k could be taken as JS5 -(a;, b) , and the vector of (10,12) 

would be normalised. Higher order interactions may be 

similarly defined, all vectors being further partitioned 

to correspond to the additional classification. 

In the special case when all the elements of the 

effects vectors ( not normalised) are t 1 , as in designs 

with factors at two levels only, the operation of multiplying 
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corresponding elements of A and 13 to get oB is reversible 

in that, if we apply it to A and AB,we shall get B. In other 

words the two vectors so treated need not be associated 

exclusively with different factors or classifications as 

in the general case. The main effects and interactions of 

a e factorial design thus constitute a finite group with 

identity I since A = B= .... =I (;r'inney, 9 ) 
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Section 11. 

Analysis of Variance and Least Squares. 

Yates (24) pointed out that the process of analysis 

of variance, as applied to a set of orthogonal data such 

as those obtained from the regular experimental designs, 

is equivalent to fitting constants representing the effects 

of rows., columns, treatments, etc. (according to the 

particular aesign in question) by the method of least squares. 

An explicit proof of this, using matrix notation, is given 

below. 

Let y = {y6,4 , where the yt s are independent normal 

variates with variance 62', be the matrix of yields for an 

n x n Latin square, which we may take as the most general 

of the elementary designs, and let us consider fitting to 

the data by least squares constants representing the mean, 

rows, columns, and treatments - namely, xOpO;x,.,x,..., 

x!100 ; x010 ,x0 x0.!0, x ,x001 , Xoen , subject to the 

conditions x xooK= ; , which are necessary to ensure 
goo 

that row, column, and treatment totals show only the effects 

due to the particular row, column, or treatment concerned, 

and also that the general mean of the yields is an unbiassed 

estimate of the population mean. 

The observational equations are Ax = y, where x is 

the vector { x oo xioc ..X X010 ózó . x01 X00, x002. xounl 



tis the vector {yuK ya.K ynK y Y J 2iK 2z1( SrtK yniK ynxK YnnKl 

( the suffix k representing the particular treatment allotted 

by randomisation to each plot), ana A is of the form 

1 I 

1 
J I K, 

J ,T 
I I K, 

J 1 

I . K. 

where J is the column vector il 1 .... 1} with n 

elements, i, is a matrix of order n x n with all elements 

in the kth column unity and all other elements zero, 1 is 

the unit matrix of order n, and the Ki are matrices of 

order n x n with one element of each row and column unity, 

all other elements zero, and such that, if kkt is the 

th 
row of KL , khQ kka = O , i.e. corresponding rows are 

orthogonal. 

The normal equations are A'Ax =A' y, where 

A'A 
two 

-ri n n ...n -n n ...n L n n _n 

n I 

n l n I ivi I M 

-- - -L------ 
n 

n I I bi 

. 

n 
- --r -- - - -- - - -I- - - -- - 
n 
n n 
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a matrix of order (3n +1) x (3n +1) . The matrix M, being 

of order n x n with all elements unity, may, owing to 

the linear constraints ;..x = 

replaced by a null matrix in every case. Similarly 

the vectors [ n n ... n] of the first row of MA may 
be replaced by null vectors. The vector A'y is seen to 

be G R, R, ... R C, C1 Cr, `l', 'i, ...T} , where G is the 

grand total of yields, Rt _ total of yields in the ia' row, 

Ci = total for the j column, and TK = total for the kTh 

treatment. 

The above set of 3n +1 equations are orthogonal in 

that the equation for x000 may be solved independently of 

the other constants which may in turn be found independently 

of one another. The solutions are x000 = Y, x;,o= Y; =Y, 

xp,p - YO;. -Y 1 xOOK - M/K -Y 

The residual sum of squares 
=YEEY-_-(Y-)-( Y,o -(YooK ,K 
_ EL ( Yj -Yo-y,o +24) f 

L o 

Ji 

as in the analysis of variance of the Latin square (P44). 

But the residual sum of squares also = (y- Ax)'(y -Ax) 

y'y - x' A' y. In ordinary notation this is Y, 37 y K - o 

- ¿ xz00 RL - II 
x0)0 C.1 - x0OK TK The term x000 G is 

the "correction for mean" of analysis of variance, and 

the remaining terms give by reason of the orthogonality 

mentioned above the reduction from the sum of squared 
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residuals due to fitting each constant. The sum of squares 

for rows, for exemple, _ oo R;, 

yy00 -Y) n yo, -y yocj 
= n Yip,+ 

n YL ( ,o -ÿ ) 

nÿZ ) 

Similarly, that for columns = n E (y 0 0 
-ÿ)i, and that for 

treatments .. 
-y)1. 

As for degrees of freedom, the number 

residual sum of squares is from the theory 

(Aitken, 3) equal to 

Vo. of observation 4o. of constants fitte + no.of linear 
restraints) 

n -(3n +1) +3 

The number 

and treatments is 

for the 

of least squares 

_ (n-l)(n-2). 

of degrees of freedom for rows, columns, 

n -1 in each case, as may be seen from 

the simple consideration that there is one linear restraint 

on each set of constants, or a proof based on the traces 

of idempotent matrices may be given, using Lerma 9,Cor .. 

In fitting the constants by least squares we 

have assumed that the L-y 
;i:j 

are independent normal 

variates each with the seme variance 61", but not 

necessarily with the same mean, and that each variate is 

made up of a set of independent components thus: yzj, 

_ 
x.00 -4- xbo x0;01- xooil xJK where the xoo, ,x;00 ,x,o , x001( 
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represent, respectively, mean, row, column, and treatment 

effects, and xLjK is a random normal variate with mean at 

the origin and variance e. But these assumptions are 

exactly those of the analysis of variance of a Latin square 

( Section 5,1:48), and we have seen above how the ordinary 

process of analysis of variance corresponds exactly to the 

fitting of constants by least squares in respect of the 

isolation of the components of variance and degrees of 

freedom deriving from the various experimental controls. 

The two processes are thus identical, but the method of 

fitting constants may still be used when an experiment, 

either by accident or design, lacks orthogonalit, so that 

the ordinary procedure of analysis of variance is unavailable 

or needs modification (Yates,24). It is also seen from 

the theory of least squares that the residual sum of 

squares is a minimum. This is the basis of many formulae 

for estimating the yields of missing plots, etc. 
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Section 12. 

Factorial Experiments at Two Levels Only. - 

The statistical analysis of experiments with factors 

at only two levels lends itself admirably to algebraic 

treatment. The definitions and notations used are, except 

where indicated, those of Yates (26). 

Matrix Representation of Main Effects and Interactions. 

Let us first consider one factor only, say .nitrogen, at 

two levels n and (1) , where (1) represents the plots 

receiving control applications of nitrogen. üüithout 

ambiguity the yields corresponding to these treatments may 

be represented by the same symbols, and since in the 

calculation of the treatment sum of squares adjustment is 

made for the number of replications of the experiment, we 

need only consider the case of a single replication and 

no generality will be lost. tie have the symbolic 

relationship 

1 1 [i] .... (12 ,1) 

N n -1 -1 1 n] 

where n +1 symbolises the total of ,Melds (represented 

on the left -hand side by I ) and n -1 the superiority 

of nitrogen over control, i.e. the "main effect" of n 

(represented on the left -hRrid side by N ) . Similarly, for 

any other single factor, e.g. potash, we have the symbolic 

relationship 
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Proceeding now to two factors, n ana k, we have the 

following treatment combinations :- (1),n,k,nk. 

The main effects and interaction (omitting Yates' 

conventional factor) are given by N = (n -1) +(nk -k), K 

_ (k -1) + (nk -n) , NK = (nl.- k) -(n -1) . Vie therefore have 

the following symbolic equations :- , 

I = (n+l)(k+1) (total effect) 

lv = (n-1) (k+1) 

K = (n+1)(k-1) 

ìvK = (n-1)(k-1) 

or iI N K NK3 _ (n+1) (k+1) 

(n- 1)(k +l) ...(12,3) 

(n +l)(k -1) 

(n- 1)(k -1) 

But the vector on the right -hand side is the vector 

formed from [k +11 and rn +ll by making ordered 

Lk-1 n -1J 

binary products, and is therefore the "direct -product" of 

the two simple vectors, a process denoted. by the symbol 

" X" thus: (n+-1) (k +1) [k±1J 
X Ln±1J (n -1) (k -+-1) 

(n +l)(k -1) 
(n- l) (k -1 
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It therefore becomes necessary to consider the algebra of 
direct- product vectors and uatrices. 

Direct -Product Vectors and matrices. Let us consider 
y, a a,x x, and t, [b.1 b,Z 

x a a, x: t b bxZ s 
The vector of products {x, s, x, s x, s, xzs} is transformed 
into the corresponding vector of products {y, t, y, tx y1 t, gxtx} 

according to the relationship 
y, t, = a b a,, b, a,b,, a,Lb,L x, s, 
Y, ti a b ,- a b a,, b L, a,=bis x, sz 
YL t, a,.,b az,b,: ab &b,, x,s, 
Y,, ti. b, xz s2 

The vector on the left -hand side is defined as the 

direct -product vector of y and t and may be written 

[y] [t,l , or more simply (yxt) . similarly, the 
Y t= 

vector on the right -hand side is the direct -product vector 

of x and s , or ( xxs ) . If y =Ax and t =Bs, then the 

direct -product matrix (Ax13) is defined by the relationship 
(yxt) _ (AxB) (xxs) . In general, if yam. y, y, .... Ym} =Ax 

where x = x, x ... x } and A is in general rectangular 

and of order (mxn) , and if t = t, t1 ... t4.1 = Bs, where 

s = s sx ...s0 and B is in general rectangular and of 

order pxq then the direct- product vectors of x and s 

and of y and t are 
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(X143.1= £x, S, .i Sz . . Sv &,s, X1 Sl . . . 

( yxt )_ y, L, y, t y, t Y t, Y, t, . .. y;. tw . ... 
end the direct -product matrix (.AxB) of A end B is defined 
by ( yxt ) = (AxxBs _ (AxB) ( xxs) (12,4) 
(AxB) is of order mp x nq, since (y x t) is of order mp x 1 
and ( x x s) is of orner nq x 1. If A = Iat,] , then (AxB) can 
be formed as follows:- 

( A x B ) = a B a,l B 

a,, B 

a,,,, B a,,ZB 

Hence (I x A) = 

LA 

, where I is of order n x n 
la 

and A recurs n times down the diagonal; and (I xI), 
where the I' s are of order nxn and m x m respectively, 
is I of order mn x mn. Also (A x1) = A, for, putting 

B =1 in (12,41 , we have 

(A x1) (x x s; _ (Ax A(x xs) , s being scalar. 
ivulti- plication Theorem The fundamental multiplicative 

law for general direct- product matrices is (A JcB) (C% D) 

(AC x BD; .. For by aefinitiom (AxB)(xxs) = (Ax xBsj 

where x ana s are arbitrary conformable vectors. Hence 

(A xB) (C x l)) (x x s) = (A xB) (Cx x Ds) 
(ACx xBi)s) 

= (AC xBD) (x x s) 

(by definition) 
(again by definition; 
(also by definition) 
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. ' . (A. x B) (C x D) = (AC x BD) , since x and s are arbitrary 
vectors. 
Transposition of a Direct-Product Matrix. What is 
(AXB)f? 

( A x B) = a B a,2B e . . a,,,B 
a 11B a1 B a B 
á,B a ,B EL. B 

(A xB)' _ alB' aziB' á,B' = A (A' x B1) . 

a,2B' a72B' e e a B' 
mz 

a:nB' az B' . . . á ß' 

First_ Theorem on Orthogonality. If M and N are both 

orthogonal matrices, then the direct- product matrix 

(M x N) is orthogonal. For 

(11xN)' (M xN) = (M' x N') (M N) 
(ïßí' DEI x N) ( by the multiplication 

theorem) 

= (I x I) = I. 
"Direct- Square" of a Matrix.. If we have a direct -product 

matrix (A x B) and put B = A, we obtain (A x A) , the"direct- 
z 

square" of A, which we may write as A £ 3 

For example, if A = a a,2 , (though in general 
a=, atz 

A is rectangular), 
it} - Z 

A = a aa,Z aa a,Z 

an asz áZa a.4z 
a. aa á á,l 

} e, á a22 á a, a22 
_ r 
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a matrix of order 4x 4. The process may be repeated 

to obtain the "direct- cube" of A, Aa} , a matrix of order 
3 3 

2 x 2 , and so on. 

Second Theorem on Orthogonality. If M is an 
s} 

orthogonal matrix, then M is also orthogonal. This 

follows immediately from the previous theorem on 

orthogonality, for if we put N=M, we have that M 

orthogonal, and the proof follows by induction. 

Interaction Transformations. Ore have, by (12,1) , 

symbolically = [11 
1 

ll . Suppose now 1 
nJ 

that we normalise each of the row vectors of the 

matrix on the right -hand side and write 

CIJ 
=1-7-- 1 1 rll M fil -1 í LnJ 

= 
LnJ 

The matrix NI is orthogonal so that the linear 

expressions for I and N constitute a complete 

orthogonal set. Similarly, we may write 

4g] A [11 1 
_ M 

it 

for any other single factor, potash. 

Now, for a 2 x2 experiment with n and k we 

have by (12,3), ignoring normalising factors, 

= k +l x n +1 1 =ssI KNI N, 
Ck -1] Ln -1] 

I N K NK = (n +1)(k +1) 
(n -1) (k+ 1) 
(n +l) (k -1) 
(n -1)(k -1) 
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It is thus apparent that the following symbolic operations 

hold good - I = I , (IxN) =N, (IxK) =K, (NxK) =NK, 

where the symbols (representing vectors on the left -hand 

side of each equation refer to single factors, those on 

the right -hand side to the 2- factor experiment. 

Introducing normalising factors, we have I N K NK} 
1 n} = 

{I 

{1} I k {IW 
_ 
M(23 

( 1 k3 x [l nj ) ( by definition 
of multiplication) 

M [1 n k nk} 

The "interaction matrix" transforming yields into main 
x 

effects and interactions is therefore M£ for a 2 x2 

experiment. By the second theorem on orthogonality 

above, we know that M 

z 1 1 
-1 1 
-1 -1 
1 -1 

Thus the main effects and interactions constitute a 

complete orthogonal set and may be testea for significance 

in the manner ed,plained in oection 9. 

If a third factor, say d, is now introduced, 

main effects and interactions are aefined by the products 

of the preceding (ni-1)(k+-1), (n.-1)(k +l) , (n4-1) (k -1) 

(n- 1) (k -1) with the factors (d +-1) and (d -1) in turn, 

subject to normalisation as before. But this is 

is orthogonal. It is, in fact, 

1 1 
-1 1 
1 1 

-1 1 
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forming a direct -product vector with the adüitional 

vector I 11 dl , so that we have, symbolically, 

{ I N K NK D ND KD NKD} 
_fI D3 xII N K 1VKJ 

Nß£33[ 1 a3 x iïï3 fl n k nk 3 

4 :33 ( tl dJ x I n k nk} ) =M 11 n k nk d nd kd nkd 

The interaction matrix for three factors at two levels 
3 

each is therefore , which is orthogonal, so that once 

again the degrees of freedom for treatments have been 

orthogonally subüiviaea into single degrees of freeaom. 

Britten in full the transformation of yields into main 

effects and interactions for a 2 x2 x2 experiment is 

I 
N 
K 
NK 
D 
ND 
KD 
NEV_ 

By the introduction of further factors it may be 

proved that in an s- factor experiment with each factor 
s l 

at two levels, the interaction matrix is M , which is 

orthogonal, showing that there is one degree of freedom 

for each main effect and interaction, each of which is 

independent of the others and of all other sums of squares 

in the analysis of variance. This property and its 

corollary, that each main effect and interaction is 

i 1 1 
-1 1 

-1 -1 
1 -1 

-1 -1 
1 -1 
1 1 

L-1 1 

1 

-1 
1 

-1 
-1 
1 

-1 
1 

1 
1 

1 

1 

-1 
-1 
-1 
-1 

1 
-1 
-1 
1 
1 

-1 
-1 
1 

1 
1 

-1 
-1 
1 
1 

-1 
-1 

1 

-1 
1 

-1 
1 
-1 
1 

-1 

1 

1 
1 
1 
1 
1 
1 
1- 

1 
n 
k 
nk 
d 
nd 
kd 

-nkd 
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expressible as a linear function of the yields, the 

square of which appears in the analysis of variance, is 

confined to experiments with two factors only. 

As shown ir.. Section 10, the following symbolic 

equations are true (subject to normalisation), using the 

definition that, if A= l' y and B= m' y, then AB =1L. mL yL : - 
Ii= I, IN= N, INK =NK, N2= K = DL = I, D.ND =ND' = NI= N, 

KD.NKL =D, etc. Hence I is known as the identity of 

the "effects group". 

Since the linear expressions corresponding to each 

main effect and interaction are all independent of one 

another, it follows, by Lemma 6, that the mean square for 

each main effect or interaction is independent of the 

mean square obtained by pooling the degrees of freedom 

and squares corresponding to any of the other members 

of the orthogonal set. By the additive law of gamma - 

type variates such a poolea sum of squares has on the 

null hypothesis gamma -type distribution with degrees of 

freedom equal to the sum of the individual degrees of 

freedom, and its mean square is an unbiassed estimate 

of GZ, the random variance. This is the justification, 

in experiments with a single or even fractional 

replication, for combining the degrees of freedom and 
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squares corresponding to high order interactions 

(normally expected to be null) into an estimate of 

experimental error against which other mean squares may 

be tested. The particular degrees of freedom to be used 

as the estimate of error must be chosen beforehand from 

the interactions of the second of higher order which, on 

the basis of past experience or by reason merely of their 

high order, are predicted to be negligible. Naturally, 

should any of the chosen interactions prove to be appreciable, 

it is not permissible to remove them from the estimate 

of error. The result must be deemed a chance one, though 

it may be noted for reference in respect to future work. 

Also, should a main effect or interaction not amc.ug those 

chosen as estimate of error prove to be not sib_ ;ificant, 

it is not a valid procedure to combine such a degree 

(or degrees) of freedom into a new pooled estimate of 

error, for such an estimate would be biassed. The 

following proof is this is adapted from a proof due to 

M.H. Quenouille. 

Suppose that we have two variance estimates, 

u and v, of & with no and nZ degrees of freedom 

respectively. Let acv be the level of significance 

such that, if u < d, v, it is proposed to form a 

n,u + n,,V 
new variance estimate n , nl For simplicity 
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we take the special case of n,= 2. Then the mean 

value of u for u < ac tr 

° % J d 1ni 
-/ 

'Q?,- 1 il r o c .0 -lzu'z ` c J rc) ¡d"r 
do J lJ ins xx,A, -¡ 1 + ) au.Á.u. 

Q 1` l zeri PL/ 

J00 
iMZ/ Ms - ` -_)f - 4elit,e04-0-Crkv(_40.)). d4r, 

.12 

o yL~L 411%-e zl 0'1 P 

)- f % %n 
GyzñZ/ 

O1 ¡ZI 
/1 L 

. n + CT '(n+zoCP,1 aL/./(n )il 
1 eri \ .-i --n- /J 

} n+zacc i 

oCn ( ZZ (n,+le«' 
J G 1 l :+ zdUi \ na. , 1 - 

I 

-! 

/ nl+ zags}- ( ( + zdo z i 
Hence the mean value of nn +z 

u 
for 44 < 0 v- will 

n. r 

be too low by an amount ( L 

which - O as r12.--, 00. 

In 1935 Yates (25) first published the theory of 

factorial experiments, though they had actually been in 

use at Rothamsted Experimental Station for several years. 

Ten, and subsequently, many criticisms on various 

grounds were levelled at such experiments, most of them 

being effectively countered by Yates (25,26). One such 

criticism, by Vvishart (23), may be mentioned here. 
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Wishart contended that, owing to the comparative 

unreliability of estimates of variance based on only 

one degree of freedom, it was dangerous to accept mean 

squares which were significent at the 5% level as being 

evidence of some real effect when they were very likely 

only chance effects. Thus, the treatment sum of squares 

should be examined for significance first (just as in 

an ordinary randomised -block experiment), ana only if 

significance were established would it be legitimate to 

test individual degrees of freedom, such tests being, 

after ail, only individual t -tests of two particular 

treatments. These contentions are easily refuted. If 

the 5` 7o level of significance is used, only one in twenty 

of the effects and interactions should be significant 

by pure chance, whether based on one or several degrees 

of freedom. Realising that by adopting the 5% level 

he may be in error once in every twenty times, the 

statistician does not assert that any effects which reach 

this significance -level are necessarily genuine. He 

waits for confirmatory evidence . Then, factorial design 

is such that it is unnecessary to prove the significance 

of the treatments sum of squares as a whole before 

examination of individual degrees of freedom. For 

example, the main effect of any factor at two levels 
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(say n ) is measured by comparing half the plots of 

the experiment with the other half. Thus, so far as 

the main effect of n is concerned, the design is 

equivalent to a simple experiment with two treatments 

only - the two levels of n - , and in such a case it is 

obviously legitimate to use the t -test before the i -test, 

since the two tests are exactly equivalent. 

In this section, maintaining consistency with 

Section 9, the linear responses of main effects or 

interactions have been defined by certain normalised 

vectors. Such a definition is not in accord with that 

of Yates (26) , whose definition of the effect of a 

linear combination of the yields, Ley, is given by , 

where by convention ñ= i for factors at two levels only 

and X =i in all other cases. 

The definition of a linear response as a 

normalised vector of yields has many theoretical 

advantages. Such vectors may be assembled into a complete 

or incomplete orthogonal set, ana the significance or 

non -significance of the responses is immediately apparent 

by comparison with tx(S.E. of the experiment), where t 

has the value corresponding to the number of degrees of 

freedom of the error mean square and to the level of 

significance required. Also their squares may be entered 
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directly in the analysis of variance table without any 

division. (In the case of more than one replication, 

the square root of the number of replications is 

incorporated in the normalising factor J- in the 
denominator if the vector y is of treatment totals, in 

the numerator if the vector is that of treatment means) . 

The normalised definition is also completely practical 

in working with a single experiment or with a set of 

experiments all of the same design. In point of fact, 

in these circumstances no normalising factor is required 

at all, provided adjustment to the squares is made in 

the analysis of variance by the proper divisor `the 

square of the normalising factor) and provided the 

standard error for the t -test is also suitably adjusted. 

Thus, the original definitions given by Yates (25) for 

the main effects and interactions of factorial experiments 

at two levels only were sums and differences of yields 

of treatment -combinations without the conventional factors 

he introduced before the paper was actually published. 

However, if linear responses are to be made 

comparable for experiments with different designs, they 

must be reduced to a per plot basis, otherwise, for 

example, the interaction between two factors n and k of 

a three -factor experiment will, other things being equal, 
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be less than the interaction of these same factors in a 

five-factor experiment. With the normalised vector 

definition it would be approximately half. It was 

to correct this anomaly that Yates altered his original 

definitions. For similar reasons, therefore, we now 

introduce a practical measure of the response on a per 

plot basis of a linear combination of yields,,ey, - 

namely Eit. This definition is the same as that of Yates 

except for his conventional factor ñ , i.e. the two 

definitions are the same except for factors at only 

two levels. There is, however, the additional condition 

which must now be imposed on the elements of the vector L, 

that they must be integral or zero and have no factor in 

common. 

The new definition presents other advantages 

besides facilitating comparisons between different 

experiments. For example, we shall see in the next 

section how, if we fit a multiple polynomial 

a + a ioo... + x y +- aoo1_.z + ... . a oio... 

i- a xy + a xz f & il yz + ... + a xys +- 
io... o... o... u... 

by least squares to the yields of an experiment with 

factors x,y,z,... at two levels only, the coefficients 

are the linear responses, as now defined, of the main 

effects and interactions, e.g. a01 _the interaction YZ. 
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Of course, the items in the "sums of squares" column in 

the analysis of variance are no longer the squares of the 

linear responses, but the adjustments are easily made, 

as are those required to the standard error for application 

of the t -test. It is clear that the results obtained with 

the normalised definition still hold, since the factor Z 

is detachable as required. Where it is theoretically 

preferable the normalised definition will still be used, 

but, if so, the fact will be specifically mentioned. 

Yates' adoption of the conventional factor A =* 

for factors at two levels is more difficult to justify. 

It is true that for main effects his definition gives 

the mean response, but it does not give the mean 

interaction, which would require the factor 

where r is the order of the interaction concerned. 

The complications brought about by varying X within 

a single experiment probably caused Yates to define 

X as i for all main effects and interactions, but why 

introduce the factor ñ at all? There seems to be no 

particular advantage (other than the very slight one 

already mentioned) in having any factor additional to 

Er, the necessity for which in certain circumstances 

has been shown. The effect is merely to introduce 

additional complication. For example, the formulae 
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for deriving the yields of the various treatment - 

combinations from the main effects and interactions 

lose simplicity. For a 2 x 2 x 2. experiment in 

n,k, and d 
(Yates' 

nk = Mean + ( N4K -NK +D ND+KDNKD) (definition 

_ * (I -N- K- NK +D- ND+KD -NKD) (normalised definition) 

=Mean N +K- NK+D- ND+KD -NKD (response per plot 
definition) 

The signs in each case come from the transpose of the 

matrix k 
s 
of P122. The improved simplicity of the 

last formula is apparent. 
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Section 13. 

Orthogonal Polynomials and Factorial Experiments 

It has been seen ( §11) that analysis of variance is 

equivalent to fitting by least squares to the yield data 

certain constants, including one for every treatment. If 

the treatments consist of a single factor at equally -spaced 

intervals (levels) , we may fit a curve of regression to the 

treatment -constants by least squares and orthogonal 

polynomials. In agricultural experiments, where the 

factors are conveniently arranged at equally- spaced levels, 

we are chiefly interested in the linear and quadratic 

effects of the factor, and these may be determined by 

fitting a quadratic polynomial of type aó a, p,(x) +ápi(x) = u, 

where the functions p(x) are orthogonal. Suppose that 

we have a factor at five equally- spaced levels and assign 

metric values -2, -1, 0,1,2 to the variate x , thus:- 

x 

u 

-2 -1 0 1 2 

U,, u uo u, u2 , 

where u2, u, etc. are the treatment constants fitted by 

least squares. since these constants are deviations of 

treatment means from the general mean, the ups may be 

taken as treatment means or treatment totals (the required 

adjustments in either case being easily made), thus 

allowing the change of origin from the general mean 



133. 

to zero to be absorbed in the constant term, a0. As 

previously, we shall in this section take the u' s as 

being the treatment yields of a single replication. 
tiVith the metric values adopted it is apparent that 

we may take pi(x) as x and p2(x) as x -, for these functions 

can be made orthogonal be assigning a suitable value for 

04. The observational equations are Pa=u, Where the rows 

of P are [l x;. 

equations are 

x -d, . In our example 01.--2, and the 

1 -2 ao - u 

..,1 T1 a, 

1. U -2 
443 Wee 

1 2 2 

Because of the orthogonal relations, PP is a diagonal 

matrix. In general, 'P= diag {n 14(x) 14(x)] , where :LAP= 

n =the number of levels of x. The normal equations are 

P' ?a = P' u, where P' u =i:Eu lup,(x) Yup,(x)} , so that the 

a j are determined independently as ai = w,x Thus 

in the present example 

ao -111 1 1 1 1) u 

ió(s2 -1 Ü 1 2) 

_ w2 -1 -2 -1 2) 
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At the same time the residual sum of squares, since the 

u's are independent and have the same intrinsic variance, 

is equal to (u -Pa) (u Pa) = u' u - a'P'Pa. In ordinary 

notation this is equal to Iu Yelps (x) , and because of 
the orthogonality the reductions from the treatment sum 

of squares due to the linear and quadratic effects are 

a,Ep,L(x) and a;lpi(x). The reduction due to the fitting 

of the constant term is (1"-)1 which is the correction for 

the general mean. 

It is evident that P' u, with the vectors normalised, 

is an incomplete orthogonal set subdividing the degrees of 

freedom for treatments. zach individual degree of freedom 

may therefore be tested either by the F -test (comparing 

its mean square, al! 12-(x), with the error mean square) , 

or by applying the t -test directly to the linear function. 

The significance of the linear and quadratic effects is 

thus rigidly tested. It will also be noticed that al 

and at are the linear responses per plot (as defined in 

the last section) of the linear and quadratic effects 

respectively. 

The orthogonal polynomial values as obtained above 

are particular cases of the Tchebycheff polynomials. If 

it is desired to ascertain the cubic, quartic, quintic, 

etc. effects of x, the appropriate orthogonal polynomial 
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values may be found in Fisher and Yates' tables (14). 

The new terms may be fitted without alterations to any 

previous terms and their contributions to variance are 

purely additive. 
If the design consists of two factors at equally - 

spaced levels of each, we may fit a bi- variate polynomial 

by least squares and orthogonal polynomials. Allotting 

metric values to x and y as before so that Ex = =y = 0, 

it follows that the functions x and y are orthogonal to 

one another since .xy = =x/y= O. Also we see at once 

that the function xy is orthogonal to both x and y. 

Hence for the fitting of the bivariate polynomial 

f (x,y) = a0; a,ox +a, y+ a xy, a must be by the results 

of §10 (Pins) the interaction of the linear effects of 

the two factors. In particular, if x and y are at two 

levels only, ais the interaction XY. As an example, 

in a 5 x 4 experiment we have the scheme 

x -2 

Y - 
i 
1 
i 

-1 0 2 

uil uzI u3f u 4a 
u sr 

uiz uzx 1131 u42_ usZ 

U/3 uA3 u33 u43 u 53 

u,4 u lk u14 
u ay u S4 



so that 

a04 = 3 [ 1 

a,, 4 , -2 

a0, =44-3 

= 200 1. 6 

Where u ={ u u u31 u,o u u U2.2. .U3_2. .. u u ] u u 3 51 Iz /[f 2/. . s/p 

It has already been seen how eC can be fixed so as 
to make the function x" -,d orthogonal with x and 1, and 

therefore with all members of the orthogonal set Ptu. 
Similarly, may made orthogonal by fixing (i. 
If this is done, it follows that the functions (x1"--00y, 

x(yz /3) , (x2---00(y2- ---p) are all orthogonal with the 
functions 1, x, y, xy, x' -at, and to each other. 
Hence, if we fit by least squares the bivariate polynomial 

f C x,y) _ a.o a,0 x +- azo(x -at) + ao1y +a xy-+- az,(x -d) y 

+ ai.(y1-A) + a.sx(ÿ ) +ate(x A)(yam ¡3) 

az, , a,1 , azz represent respectively the interactions 
between quádratic effect of x and linear effect of y, 

between linear effect of x and quadratic effect of y, 

and between the two quadratic effects. If the factors 

are A and B, these interactions may be denoted by A "B' 

A'B ", and AnB ", the single and double dashes representing 

linear and quadratic effects respectively. In a 3 x 3 

design the above subdivision of treatment yields would 

136. 

.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] u 

-9. 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2, u 

-3 -3 -3 -3 -1 -1 -1 -1 -1 1 1 1 J. 1 3 3 3 3 3] u 

3 0 -3 -6 2 J. 0 -1 -2 -2 -1 0 J. 2 -6 -3 0 3 6, u 
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give a complete orthogonal set, but with either factor at 

more that three levels the subdivision is incomplete and 

there will be a residual treatment sum of squares. 

However, as in the case of a single factor, additional 

terms may be added representing cubic etc. effects and 

their interactions, the required values of the orthogonal 

polynomials being available in Fisher and Yates (14). As 

before the significance of each aij may be tested against 

the error mean square. 

The fitting of a multivariate polynomial f(x,y,z, ... ) 

to the treatment yields of a design with more than two 

factors is a simple extension of the above process. 

The matrix Pot the equations a =VA-, with its 

vectors normalised so that P'Y I, is what we have 

called in discussing factors at two levels ( §12, P. izi ) an 

interaction matrix. Such matrices were constructed by 

means of forming direct- products, and an extension of 

this method may be used to construct the interaction 

matrix for factors at more than two levels. For example, 

consider our 5 x 4 design. Taking the first factor A 

alone and using the normalised definition, the interaction 

transformation is:- 
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o 

r-s Si' re 

where the interaction matrix (Bd, say) is orthogonal, but, 

of course, with only a single factor there are no 

interactions, only linear and quadratic effects. For the 

second factor B alone the transformation is 

- 
z o, 

_3 i , 3 uCz o -As Tan u -s i ca 

LU0r. 

with orthogonal interaction matrix N (say). These two 

transformations may be combined by direct -multiplication 

with the convention that u;,o u.6 = u tj . 

I ~= s( 1 1 1 1 1 1 1 1 1 1 1 

A' (-2 -1 0 1 2 -2 -1 0 1. 2 -2 

A'' ( 2 -1 -2 -1 2 2 -1 -2 -1 1 2 

B' t(-3 -3 -3 -3 -3 -1 -1 -1 -1 -1 1 

A' B' rô ( 6 3 0 -3 -6 2 1 0 -1 -2 -2 

A"B' 2V-6 3 6 3 -6 -2 1 2 1 -2 2 

B't zrs( 1 1 1 1 1 -1 -1 -1 -1 -1 -1 

AIB" ari(-2 -1 0 1 2 2 1 0-1 -2 2 

A"B" 2Ti( 2 -1 -2 -1 2 -2 1 2 1 -2 -2 

1 , 

We have 

1 

-1 

1 

0 

1 

1 

1 

2 

1 

-2 

1 

-1 

1 

0 

1 

1 

1) 

2) 
uz, 

-1 -2 -1 2 2 -1 -2 -1 2) us, 

12 

1 1 1 1 3 3 3 3 3) uz2_ 

17.31- 

-1 0 1 2 -6 -3 0 3 6) u,s 

ug,. 

-1 

-1 

1 

-2 

-1 

0 

-1 

-1 

-1 

2 

-1 

-2 

6 

1 

-2 

-3 

1 

-1 

-6 

1 

0 

-3 

1 

1 

6) 

1) 

2) 

u,j 

u, 

u77 

uw, 

11,-, 

4 

1 2 1 -2 2 -1 -2 -1 2 r ,, 
34 

1144f 
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By the first theorem on the orthogonality of direct - 

product matrices ( §12, P.119) , we know that (N x Ivi) 

is orthogonal, so that the above matrix is orthogonal 

and each vector is normalised. It is apparent that the 

vector of an interaction (say A "Bt) is (apart from 

normalising factors) the result of multiplying corresponding 

elements of the effects vectors (A" and Bt), thus agreeing 

with previous results. 

Tables of Orthogonal Polynomials Tables of orthogonal 

polynomial values for some simple factorial designs will 

now be appended. Only linear and quadratic effects will 

be tabulated, since cubic or higher effects are rarely 

required. In the notation used a,,,, for example, would 

represent the coefficient of xy"z in our fitted 

polynomial f(x,y,z) , i.e. it would be the interaction 

A'B "C' on a response per plot basis. 

3 x 2 

1 -1 O i=A' 

-2 1 1 -2 1i-A" 

-1 -1 1 1 1.1=B 

0 -1 -1 0 1j =A' B 

2 -1 1 -2 11=A"B 

4 x 2 

3 -3 -1 1 3 = A' 

1 1 -1 -1 1] = A" 

-1 1 1 1 J.]. B 

-3 -3 -1 1 3 = A' B 

-1 1 -1 -1 1J = A" B 



as II-4-2 

y a zs 2 

-1 

-1 

0 

-2 

1 

-1 

óC 1 -1 -i -1 

a= í1,o[ 2 1 0 -1 

a,,, = z1s L 2 1 2 1 
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5 x 2 

2 -2 -1 0 1 

2 2 -1 -2 -1 

-1 1 1 1 1 

-2 -2 -1 0 1 

-2 2 -1 -2 -1 

3X3 

-1 0 1 -1 0 

1 -2. 1 1 -2 

0 0 0 1 J. 

0 0 0 -1 0 

0 0 0 1 -2 

-2 -2 -2 1 1 

2 0 -2 -1 0 

-2 4 -2 J. -2 

4x3 

23 = A' 

2.1 = A" 

1j= A' 

11 = A' 

11 = B' 

1 ] = A' B' 

±..1 = A 11B' ' 

13 = BO ' 

11 = Air 

1 J= ANB" 

aierz to[3 -1 1 3 -3 -1 J. 3 -3 -1 1 3] = A' 

a20.--ht 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1] = Ar 

ao; i -1 -1 -1 0 0 0 0 1 1 1 11= B' 

a,,,9,1,4 3 1 -1 -3 0 0 0 0 -3 -1 1 3, _ A' B' 

ati g[- 1 1 1 -1 0 0 0 0 1 -1 -1 13 =-n B' 

O1 1 1 1 1 -2 -2 -2 -2 i 1 i 1J = B" 

`lx ,tó[ 3 -1 1 3 6 2 -2 -6 -3 -1 1 3] = A113" 

[1 -1 -1 1 -2 2 2 -2 1 -1 -1 1, = A"B" 



a,-/-0 C 2 

i 

1 

alf-Az`g [-2 1 

a0.2.-30L 1 1 

a,i p C 2 -1 

2 - am.' 114 

a,0=g E3 

aic- 16 1 

i ao= $0 -3 

r a= 400 ` 9 

Asg=SoC3 

s ao2." i` 1 

's -3 an= So 

ala.' !L L 

1 

-1 

t1,0= c- _ 4o C 1 -.. -1 0 

azO= [2 -1 -2 

aai' ró i- 3 -3 -3 

a= 211-0C 6 3 0 

a2j=zg [- 6 3 6 

aoi Zo I 1. 1 1 

nil: 44- 2-1 0 

_A C 2 -1 -2 
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0 1 2 -2 -1 0 1 2 -2 -1 0 1 

-2 -1 2 2 -1 -2 -1 2 2 -1 -2 -1 

-1 -1 -1 0 0 0 0 0 1 1 J. 1 

0 -1 -2 0 0 0 0 0 -2 -1 0 1 

2 1 -2 0 0 0 0 0 2 -1 -2 -1 

1 1 1 -2 -2 -2 -2 -2 1 1 1 1 

0 J. 2 4 2 0 -2 -4 -2 -1 0 1 

-2 -1 2 -4 2 4 2 -4 2 -1 -2 -1 

4x4 
1 3 -3 -1 1 3 -3 -1 1 3 -3 -1 

-1 1 1 -1 -1 1 1 -1 -1 1 1 -1 

-3 -3 -i -1 -1 -1 1 1 1 1 3 3 

-3 -9 3 1 -1 -3 -3 -1 1 3 -9 -3 

3 -3 -1 1 1 -1 1 -1 -1 1 3 -3 

1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 

1 3 3 1 -1 -3 3 1 -1 -3 -3 -1 

-1 1 -1 1 1 -1 -1 1 1 -1 1 -1 

5 x 4 

1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 

-1 2 2 -1 -2 -]. 2 2 -1 -2 -1 2 2 

-3 -3 -1 -1 -1 -1 -1 1 1 1 1 1 3 

-3 -6 2 1 0 -1 -2 -2 -i 0 1 2 -6 

3 -6 -2 1 2 1 -2 2 -1 -2 -1 2 6 

1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1. 

1 2 2 1 0 -i -2 2 1 0 -1 -2 -2 

-1 2 -2 1 2 1 -2 -2 1 2 1 -2 2 

2J= A' B' 

2,=A"B' 

1,= B" 

2, =.1111311 

2'= A"B" 

1j= A' 

-1 1 = A" 

3 3,=B' 

3 91--A"3' 

-3 3]= A"B' 

1 1] = B" 

1 31= A' B" 

-1 1]=A"B" 

-1 0 1 =A' 

-1 -2 -1 1=Arr 

3 3 3 4=B' 

-3 0 3 6J=A' B' 

-3 -6 -3 6]-`i"B' 

1 1 1 lJ=B" 

-1 0 1 +A' B" 

-1 -2 -1 2=A"Bn 



t 
Z

- 
T

 
Z

 
T

 
Z

- 
t-

 Z
 

t 
Z

 
T

 
Z

 
T

 
Z

- 
t 

Z
- 

t-
 Z

- 

uH
a=

C
fi 

Z
 

O
 

Z
- 

q-
 

Z
- 

T
- 

0 
T

 
Z

 
t-

 Z
- 

0 
Z

 
Z

- 
T

- 
0 

T
 

Z
 

t 
Z

 
0 

Z
- 

ug
-4

Z
 

Z
 

Z
 

Z
 

Z
 

T
- 

T
- 

T
- 

T
- 

T
- 

Z
- 

Z
- 

Z
- 

Z
- 

Z
-.

 
T

- 
T

- 
T

- 
T

- 
T

- 
Z

 
Z

 
Z

Z
 

, 
H

uV
=

[3
 

Z
- 

Z
- 

ÿ 
Z

 
T

- 
.Z

- 
T

- 
Z

 
O

 
O

 
ß 

0 
0 

2-
 T

 
Z

 
T

 
Z

- 
V

- 
Z

 
t 

Z
 

Z
 

0 
Z

- 
t-

 
Z

 
T

 
O

 
T

- 
Z

- 
0 

0 
0 

0 
0 

Z
- 

T
- 

0 
T

 
Z

 
t-

 Z
- 

0 
Z

 

=
t2

 
Z

 
Z

 
2 

Z
 

T
 

T
 

T
T

 
T

 
0 

0 
0 

0 
0 

T
- 

T
- 

T
- 

T
- 

T
- 

Z
- 

Z
- 

Z
- 

Z
- 

uv
=

[2
 

T
- 

Z
- 

T
- 

Z
 

Z
 

T
- 

Z
- 

T
- 

Z
 

Z
 

T
- 

Z
- 

T
- 

Z
 

Z
 

T
- 

Z
- 

T
- 

Z
 

Z
 

T
- 

Z
- 

T
- 

t 
O

 
T

- 
Z

- 
Z

 
T

 
0 

T
- 

Z
- 

Z
 

T
 

0 
T

- 
Z

- 
Z

 
T

 
O

 
T

- 
Z

- 
Z

 
T

 
O

 
T

- 

9 
x 

9 



143. 

In the following three- factor tables the vectors are 

applicable to a vector of treatment yields of the 

form {u111 ui,, ... uM+ll 

U111,, ü111., U,11/. 

L7 uM21. u U IRI 2 
I f1 ant .. .uiefnI. .. 

¡' 

3 x 2 x 2 

aloo= g C-1 0 1 -1 0 1 -1 0 1 -1 0 1.] = A' 

al.00= 24 [ 1 -2 1. 1 -2 1 

a®IO= 'zC-1 -1 -1 J. 1 1 

allo= S1 1 0 -1 -1 0 J. 

al-Jo- 24 El 2-1 1 -2 1 

aooi izC-1 -1 -1 -1 -1 -1 

aloi= 4. [ 1 0 -1 1 0 -1 

"zo,=C 1 2 -1 -1 2 -1 

ao,i -/2 C 1 1 1 -1 -1 -1 

a,,, = g C-1 O 1 1 0 -1 

%,,---.4[ 1 -2 1 -1 2 -1 

-3 -1 1 3 

-3 -i 1 3 

-1 -1 -1 -i 

3 1 -1 -3 

-1 1 1 -1 

1 -2 i 1. -2 1.1 = A" 

-1 -1 -1. 1 1 i] = B 

1 0-1 -1 0 11= Al B 

-1 2 -1 1 -2 11= A"B 

1 J. 1 1 1 1i_ C 

-1 0 1 -1 C i]= Al 

1 -2 1 1 -2 1, = A"C 

-1 -1 -1 1 1 1, B C 

J. 0 -1 -1 a 1] = A' BC 

-1 2 -1 1 -2 1] = A"BC 

4 x 2 x 2 

-3 -1 1 3 -3 -1 1 31= A' 

1 -1 -1 1 1 -1 -1 1, = A" 

-1 -1 -1 -1 1 1 1 1,=B 

3 1 -1 -3 -3 -1 1 3,= A'B 

-1 1 1 -1 1 -1 -í í] = A"B 

1 i 1 1 1 1 1 1= C 

-3 -1 1 3 -3-1 1 d= A10 

1 -1 -1 1 1-1-1 1]=A"C 

-1 -1 -1 -1 1 i 1 1].: BC 

3 1 -1 -3 -3 -1 1 3j= A' BC 

-1 1 1 -1 1 -1 -1 11= An BC 
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3 x 3 x 2 

-1 0 1 -1 0 
1 

-1 0 1 -1 0 1 -1 0 iJ=A' 

1 -2 1 1 -2 1. 1 -2 1 1 -2 1 1 -2 1]=A" 

0 0 C 1 1 1 -i -1 -1 0 0 0 1 1 4= B1 

C 0 0 -1 0 1 1 0 -1 0 0 0 -1 0 1J= A' B' 

0 0 0 1 -2 1 -1 2 -1 0 0 0 1. -2 1J= A"B' 

-2 -2 -2 1 1 1. 1 1 1 -2 -2 -2 1 1 iJ B" 

2 0 -2 -1 0 1 -1. 0 1 2 0 -2 -1 0 4=A1B" 

-2 4 -2 1 -2 1 1 -2 1 -2 4 -2 1 -2 1]° A"B" 

-1 -1 -1 -1 -1. -1 1 1 1. 1 1 1 1 1 4-0 

1 0 -1 1 0 -1 -1 0 1 -1 0 1 -1 0 1:T./VC 

-1 2 -1 -1 2 -1 1 -2 1 1-2 1 1 -2 1]=A"0 

0 .0 0 -1 -1 -1 -1 -1 -1 0 0 0 1 1 1J=B'C 

0 0 0 1 0-1 1 0 -1 0 0 0 -1 0 1] =A' B'C 

0 0 C -1. 2 -1 -1 2 -1 0 0 0 1 -2 1]=A"B1C 

2 2 2 -1 -1 -1 1 1 1 -2 -2 -2 1 1 1.]=13"0 

-2 0 2 1. G -1 -1 0 1 2 0 -2 -1 0 1.11= A' B"C 

2 -4 2 -1 t -1 1 -2 1 -2 4 -2 1 -2 11-A"B"C 
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Section 14. 

148. 

Graduation of Bivariate Leta by Orthogonal Polynomials and Least Squares. 

The discussion of the previous section suggests that 
a general method of graduation by means of orthogonal 

polynomials for a set of m x n data, independent and of 

equal weight, for x = 0,1,2, ....m -1, y=0,1 2, ...n -1, 
mignc be investigated. We therefore extend to the 

bivariate case Aitken' s method (2) of graduation of a 

set of univariate data. Were it not for the fact that 

the theoretical and practical work becomes unduly 

unwieldy, there seems no reason why the multivariate 

case should not be similarly treated, and indeed those 

cases of most common occurrence in agriculture, namely 

three or four variates (factors) graduated by orthogonal 

polynomials up to degree 2 in each variate should not 

present undue difficulty. It was seen in the preceding 

section that the orthogonal polynomials determining e.g. 

a21 were obtained by multiplication of corresponding 

polynomials in the sets determining a10and a0, . In the 

same way we find that in the present case the bivariate 

orthogonal polynomials are obtained by similar 

multiplications of the Tchebycheff polynomials of the 

univariate case. 



149 . 

In the following exposition we shall need to make use 

of the calculus of finite differences for functions of two 

variables. The various formulae required are set out 

below ; fi fi Ex denote operations with respect to x. alone , 

1, 
E. ,E operations with respect to y alone. In dealing 

with the product function uv, the subscript 1 refers to 

operations on Li. alone and the subscript 2 to operations on 

V alone. 

Dif f er enc ing 0 %L1 LA. (4-1)(1i-1) 

,w,il r µya 44,5r, + L(.x,ai. 

Summation tL.O(x,y) Nhere 56(x,y) = (x,y) , 
x=, 

_: 
, 

0(x,1) +56(x)2)+.... +0(x,n)} x. 

= ) (x,1) 

_ L r- (.z1-1) f(x,ï) sinceAx,l)= Napx,l) 

(41-1)(E;-1) f(1,1) 

f(m +l,n4-i) - f(m +1,1) - f(l,n +l) f(1,1) 

Indefinite Summation If 56(x,y)=4,,plf(x,y) , then 

Va(x,y) =f(x,y) where upper and lower limits to both 

x and y may be introduced as above. 

Indefinite Summation of a Product 

&r( ux u-,b7 ) - (Ex, xz -1) (E . Er. -1) 4,,st ,, 

= E,, , A .Lm,. 
Lays ( 1 +4. Ax, 0 2) 14-Er -1, "y,) "Ii, .axe. 



149, 

In the following exposition we shall need to make use 
of the calculus of finite differences for functions of two 
variables. The various formulae required are set out 
below : Ox, E, E, denote operations with respect to x alone, 

E ,E with respect to y alone. In dealing 
with the product function uy, the subscript 1 refers to 
operations on u. alone and the subscript 2 to operations on 

y alone. 

Differencing AJ1l. u I= (Ex -1) (Ea -1) ux, 
= (E 

;Ea 4, 

- 

M : 

Summation ff.0(x,y), Nhere f6(x,y) = L1x0f(x,y), 

rw R., 

= (1 +E +E +.... +; ) o(x,1) 
_ 2_ Ox t (L -1) f(x,i) sinceAx,l) =kA (x,1) 

(EX- 1)(L; -1) f(1,1) 

f(m- t-1,n4 -1.) - f(m +l,l) - f(l,n +l) + f(i,l) 
Indefinite Summation If 0(x,y)=4,,41(x,Y) , then 

Vo(x,y) =f(x,y) where upper and lower limits to both 

x and y may be introduced as above. 

Indefinite Summation of a Product 

) 
_ (E, Exs -1) (E 1, Er. -1) `isä 

= Ex, Qmay, ;, C 1+ , ox. z) (1 +E : A1,45/, ) 
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. . EE =- =- L1 kx5V 
x,% 

= E><, U E / ( I - E : I ' ax, n ; + E}p%, / ; -. _.. x l - 

- 
-I -1 

, 
-2 i -2 z -7 s 3 - ( EY, xy Ey, IL - E, L1x, L,« Ey Ey= - Ex, /xz a, L%Z + Ep L1x, EJ, y= 

. E7-A, L1 E;; A ,ll ' E%,E3Q,Qi+ . -... ) 44,1 XÓ 

(St - x,_, x,1 - 

t + >r k 3-/ x/` + ®pe® 
7Y,_1t,.L2 h + A; - 

o ?1 " y ) ̀ d 

Advancing Difference Formula. 

(1'-x )x (1 +a 
= (1+x xcz)Li; +. )(1+Y0I + 

_ ( l+ Xax 4- yN + x(;),Ax+ xyQxL1a+ 3j4L,y+-__. ( uoA 

Reduced Descending Factorials. 

LIYAN [xo T] 
x. v 
tr/ s) - x(D-I) yLs+l) 

AL L Ytt-yC -0J 

- x(r) s) 
koYo 

x(rIAs-I) 
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Let the mn data corresponding to x = 0,1,2, ....m -1, 
y = 0,1,2,....n -1 be represented by the vector 

AL = t -o,o 44-0,1 lko,i Lt._, yo ky, 444,,n_, 440, d(,, it 81-1 

The problem is to fit a polynomial li(x, y : m,n) of degree 

(1.,k) , where .1. <m, k <n, by the principle of least squares. 

Let us take Ü in the form á, -1- cb,IT,, (x,y) 

(x,y) +.. +aaKT(x,y)+q ,(x,y}-aT,(x,y) +.. 
+a1,,17,K (x,y) +... +aakT.K(x,y) , where, for example, 

TEK (x,y) is a polynomial in x of degree not >2and in y 

of degree not > k. Also we impose on the T- polynomials the 
...-1 r1-1 

orthogonal conditions LE T, (x,y) '4,5( x, y ) = 0 
9= 

for r/. p or s # q, # 0 when r -p and s = q simultaneously. 

The observational equations are u-= Ta, where the rows 

of T are [l 2 
T(1 i ¡I K f¡I rFl 1 

011 01 , ,,0 1,I 11/C II.S 

for x =o, y =o; x =o, y =1 ; x =o, y =2;... x =o, y =n -13 x =l, y =o; 

x =1, y= 1..., x =1, y= n- 1 ;.... x =m -1, y =n -1, and 

¡ 
a= ) ;,. a0,1 ;,1 . . sö ay, a,,,. . . . . . a } 

IM1 01-1 IA -1 , , 2 
R-, n-1 

T'T dia . [ mn S;:T1 (x ) tT (x,y) .. . TLx,y) . g 
O 

O,, ly 7ts4 Y 02 XOrycO 0, x>wyaO ,K 

Hence the normal equations T'Ta = T'u, give the áAi independently 
LE u T. fix, ) 

of each other as ate - x Z (14,11 

Since the a,'s are independent and óf equal weight, the 

residual sum of squares = (u -Ta)" (u- Ta)= u'u.- a'T'Ta 

_Ey .,,,y) 
t, 

r-11. - 
_Z[a` Numerator on R.H.S. of (14,1) , 
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the sum of squared residuals being reduced by a single term 
for each ai5j 

Derivation of the T- Polynomials Ti,,,,(x,y) , a polynomial 

of degree p in x, q in y, may be expressed as 

cisv4,4x,y)+ c, ph9/',(x,Y) +9,_/Ph- r,11(x,Y) +.. +Oa,e l'a,v(x,Y) 
where Ptyp( x,y) is an arbitrary polynomial of degree 

p in x, q in. y. 

LE Ti,jx,Y) Tris (x,Y) = 
` 1r s( x, Y)[9.wPAy(x,Y) +5.,v,Pbqri(x,Y) +.... x=0 po 

+co,,to,(.,Y) }. 
Hence the orthogonal conditions are equivalent to 

LE P ̀̀ ,9/ ( x f y) Tr,b ( X 7 y ) -0 
x_o -. 

for all values of p . r , q4 s , but not p=r, q=8 

simultaneously. If now in the formula for summation 

of a product we put tt,s1_ (x +p (y +q),) , then since 

(x +p -ad =0 when x =0 for a= 1,2,...p and (ytq 2-) =00 

when y =0 for ,Q,= 1,2,...q, we have 
.,.-, ,1-t 

EE ua,q x,y - u-w-,,n- 
,- 

- x ,n-zn-,C J r 
0 

1 ' 0r/ß 

The orthogonal conditions are 

(m +p- 1)(1)(n-f-q -l0F ,s(x,y) -(m +p -2th- )(nom -i ,3tt Trs(x,Y) 

m +p- 110(n *q- 2F.T,S (x,Y)- ±- (In +p -3 _l)(n +q- lk7!Ì'Ç5(x,Y) 

+(m +p -2 Wn +q -24_, -T,rs (x,Y) + (m-p -l4.) (n+q- a4E3T,Is (x,y) 

-..... = 0 , for all values of p < r , q s , but not 
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p =r, q =s simultaneously. Taking these equations in 
order from the lowest (p =o, q =o), we derive in succession 

Eo Trs(x,y) = 0 =EE Tr.s (x,Y) =IE Trs(x,Y) =E3T.-,s(x,Y) 
s r+IC S -t Sri 

= rfr,s(x,Y)= ETrs(x,Y)- ...: L Trs(x,Y)= T,,s(x,Y) 

(x,y) where r and s are both positive. Putting 
(x,y) =.: ,z5(xy) a polynomial of degree (2r,2s) , 

we have that G,,,,,, (x,y) and its differences with respect 
to x,aGG, (x,y),G 1s(x,Y),....,. ;s(x,Y) vanish at 
x =0 and x. m, and hence that G(x,y) contains the 

factors x( x- 1)( x- 2)...( x- r+ 1)( x- m)(x- m- 1)(x- m- 2)...(x- m -r +l). 
Similarly Gtr (x,y) and its differences with respect to 

(x,y) ,û Gy;u(x,Y) ,...1;G,,,r,u(x,y) vanish at y=0 
and y.n, and hence Grix,y) contains the factors 

y( y- 1)...( y- s +l)(y- n)(y- n- 1)...(y-n -s +l). .Except for 

a numerical factor, c x,y) is the product of these 
r f 

(2r4-2S) factors. Also 0,.G,,,s(x,Y) = r,-,s(x,Y) , Trs(x,Y) 

= 6TAA ICr) (x -m)tr) y(s)(y -116 , the numerical factor being 

chosen as rL.$)lbecause then 
X(!.) 

, (x -m)to, yts), and (y -n)(5) 

are all integers, x and y being integral. 

(x,y) is an integer. 
To obtain Tres (x,y) we first express (x- m)00-nks) 

as a Gregory Newton series thus:.- 
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(x - mtr) (y -q5) _ (x-r)(0 (y-so -(m -r) (x -rkr,) (Y -sts) 
-(n -s) (x -r)(r) (y- s) +(m -r +1)Cz) (x -rL (y -s)5) 

(n -s) (x- rkr.,) (Y-s)(s -,) ± (n -s +1)0. (x -r) (Y -s - ... 
+ ( -1)r #s (m- 1)ßr,) (n -1)(5) 

We then have Xt.) (x -m)0 Yls) (y-n6 _ (2r )`r) (2s)) x(3r) Yl25) 
-(m -r) (2r -1)0 (2skS) xclr -s) y(zs) -(n -s) (2rkr,) (2s -16) xcxY) 

4- (m -r + 1) (2) (2r -2)r) (2s )(s) r -z) Y + (rn -r)(n -s) (z3 _,)`r-Ps15) 
tzr-I) 

+(n -s 4 -1)(7.) (2r)tr.) (2s -2)(s) yCzs -Z) + ...+ `,firim -qr)b-il.$) X(r) (S) 

using the identities x(r)(x -r)r,= (2r)0 x(Zr) 

and xt.)(x -r _ (2r -l)(r) xcr_i) . Hence, reducing the 
suffixes of x and y by r and s respectively we have 

T r,s (x,y) = dx6,7Cx(r) (x -mkr) yes) (y- nksj, 

_ (Zr) fir) (2s )`S) x yes) -(m -r) (2r -1)r) (2s) xr)y) - 
+ (- 1)r, 

-s (m -1)0 (n -1)(0 

the general term, the (h,k) 
th ,being 

k +K 
( -1) (2r -h)(r) (2s -k)') l + x(r_h) Y (m -r h -1)(1,) (n -s 

But (14,2) is a Grego-Newton advancing -difference 

expansion written in reverse, the term corresponding to 

.(14,2) 

that containing 

ie 
Axn fT rS 

// r+s- T (o,o) = (-1) "/ (r+P)0 
(o,o) being the (r- p,s -q) th 

, 

(m- p- 1)(r+) 

Now (14,3) is simply the product of two univariate poly- 

nomial values a'T r(o) and 6,11T 5 (o) , so that tables of 

terminal values and differences for the bivariate case 

(s ÷(1)(.5.) 

....(14,3) 
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may be constructed from the univariate case by appropriate 

multiplications. For example, let us take the case m=7 

r =3; n=6, s =3. We have the following univariate 

tables in which ( as we shall see later) the usual 

cancellations should be made: - 

r 

E Tr 

m=7 n -6 

= o 1 2 3 s = o 1 2 3 

1 -3 5 -1 Ts 1 -5 5 -5 

1 -5 2 4T5 2 -6 12 

2 -2 ALT, 3 -15 

1 g Ts 10 

7 28 84 6 LTS 6 70 84 180 

from which the corresponding bivariate table may be 

constructed:- 



(r,$) 
0, 0)( 0, 1)( 0, 2)( 0, 3)(1,Ù

)(1,1)(1,2)(1,3)(2,0)(2,1 )(2,2)(2,3)(3,0)(3,1)(3,2)(3,3) 
T

r,s 
1 

-5 
5 

-5 
-3 

15 
-15 

15 
5 

-25 
25 

-25 
-1 

5 
-5 

5 

A
xT

r, s 
1 

-5 
5 

-5 
-5 

25 
-25 

25 
2 

-10 
10 

-10 

(7 T
ns 

2 
-6 

12 
-6 

18 
-36 

10 
-30 

60 
- -2 

6 
-12 

A
L

 x T
r,S 

2 
-10 

10 
-10 

-2 
10 

-10 
10 

&
ay T

,5 
, 

2 
-6 

12 
-10 

30 
-60 

4 
-12 

24 

T
r,s 

3 
-15 

-9 
45 

15 
-75 

-3 
15 

Q
xT

rS 
1 

-5 
5 

-
5
 

L
o 

2 n 
T

 
x 

S 
4 

-12 
24 

-4 
12 

-24 
L

 

axQ
11T

ns 
3 

-15 
-15 

75 
6 

-30 

T
r,s 

10 
-30 

50 
-10 

L
lxa1 'E

rgs 
2 

6 
12 

T
r,s 

6 
-30 

-6 
30 

Q
, Q

3d 
T

r,S 
,` 

10 
-50 

20 

Ú
xdu 

T
ri5 

3 
-15 

T
r,s 

20 
-20 

x ®
y T

r s 
10 

42 
490 

588 
1260 

168 1960 
2352 

5040 
504 

5880 
7056 

15120 
36 

420 
504 

1080 



157. 

M -1 h -1 
The values of 

).E `13,:s (x,y) in the above table 
_ 

are found as follows. In virtue of the orthogonal 

relations, we may replace T+5 (x,y) by its term of 

highest degree and write II : 
x 

T 
ns 

(x,y? 
(2r)Cr) 

Summing this product by parts, (Zs) 
($) xLr) Y) T ix 

using the fact that ZZ Tr,s (x,y) =. ' T r,s (x,y) 
r44 s 

T LE Tr,S (x,y) = _ 
r,s (x ,Y)= /.1 T rs ()E,Y) r +i 5 -1 

2- 2_ T (x,y) = 0, we obtain ELT (x,y) 
r +155 1 

` 

ns 
Y +5 Lr(zs C r +1 5+1 r/\s _) `Lr)2 tx- ioR4 -"ts) (since E L\L _ E 

Applying now r summations by parts with respect to x 

alone according to the formula E v, Lax ux = u x vM %1 
M -1 x0 o 

- Le L u,, k v,,. , and noting that at each step one or 

other of the factors in the partial integrate vanishes 

at x= o or x= m, we get 
N t ... - -1 rn -1 

1r 
+S LrLT5 n -1 

F.1-1 
r 

9 
mss 21_._Z rl (y L. T (x,y _ (1! (rLS)iy 4 ) 2rí1 J L 0 yn0 

A further similar application of s summations by parts 

with respect to y alone brings us to the result 

E1 
,t)(siL 2')._.ß,.,i ri)n ¡"t- I1)( ̂ t-z`).- (ht_SL-) 1 

(z. - +1) (txr, (.25 -.1)cap 

which is seen to be the product 21 T. (x) . L TY (x) , 
x =o x =o 

so that again the univariate tables may be used, this time 

to obtain the values of I T,.5 (x,y) in the table 

above. The usual cancellations of the univariate tables 

may therefore be made, and, in fact are essential if the 

a are to be the same as the effects and interactions 
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as already defined. 

The (r,$) reduced bivariate factorial moment of the 

data is inn sl 
L' L 

we have a r.s 

But T r,s (x,y) 

Al; + j T r, s 

For evaluating ars 

(x,Y).u,,á" 
(o,o)-+- y 0, T ;s (0,0) 

(Oso) + Y(3.) L Tr,s 

j (x,Y) _ /1/1 T " 
= T Y,s (0 ,o) + x 0,, T rs 
(0)0) + xYL1xL1a, T rs 

ar,s L L Tr ,s (x,Y) = Ty,$ (o,o) LE u,y + D,, I Tr,s (o,o) ,L& iv 
-4-A T r,s (o,o) EE yu,, + La xTr,s (o,o) I X 

u,,,,t.... 
= T r,s (0,0) m(o,o) +QxTr,s (0,0) n6,) + A T.,s (o,o) m(o,,) 

+- STrs (o,o) 19 + 
is found by combining the reduced factorial 

u71. with the appropriate entries in the column 

(r,$) of the table of terminal values and differences for 

the special values of m and n , and then dividing 

Hence 
ar,s 

moments of 

by a T r,s . The reduced bivariate factorial moments 

are obtained by repeated summation on the values of y 

for each value of x and combining the results with a 

table of values of x x= o11,2,m -1 and r =o, 

1,2,.... 

The terminal graduated values (z) and differences are 

Zino- a0,0 + a l (O,O) + ao0 100 (0,0) +- a1,o 'Ti.,o(O,0) 

+- a r 

1,1 (o,o) + a0,2 T0,2. (o,o) + 

4,71,0= 
a,oQxT,,o(o,o) + 

+a' 
3 
aT (o o)+. 

,o x 30 

a;o..axTko(o,o) -1- a,,,L1x,T,,,(0,0), 
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Lyz40 = a01 T0,,(o,o1 + a a rl,i(O,0)+ aO1A T Z(0 ,o) .. 
a , T2. o(O.,o) + 3 L ;b(o,o)+ 

a,Ay zoe = a,,, Q,.Qa.T,,, (o ,o + 
L 

$ zo, a0,x Ç Ta,,(o,o)+ 

and so on, so that the table can be used a second time, 
using the entries in rows as multipliers in order to find 
the terminal graduated values and differences, from which 

all the graduated values may be found. 

similar check to that in the univariate case 

could be made by calculating the remote terminal values 
and differences, Z , A. a,, ,,. , -9-1 etc Since 

Trs(x,y) = Tr.( x) _Ts (y) = ( -1)r Tr(m- x- l).( -1)5 Ts (n -y -1) CA1tken(2, 

which = ( -1)r +s T,..,s(m- x- 1 ,n -y -1) , we have that 
_ ao,0 -a,,0T(o,o) -a T(O,0) +- aß,ó ,(O,o) t 

Also, ax4,TÇ5(x,y) _ At Tr(x) . 

IX Ts 
(y) 

( -1)/ At T,, (m- x -p -1) . (-1)//+5 i Ts (n- y -q -1) 

_ ( -1)/" ' at Tns(m- x- p- 1 ,n- y -q -1), 
so that QZ a -ak.C,,o(m- 2,n -1) 4- ç, 4 TT2P(m- 2,n -1) 

+ a,,, Lax Ty(m- 2,n -1) -a3,,,AT,0(m- 2,n -1)- 

a,, T, 0( o, o)- asoQxTs,o(Q,o)- a,,, & Ty( 0,0) + a3,,, TJA(0,0) 4-.... 
and so on for the other differences. This shows that by 

reading all entries in the bivariate tables of orthogonal poly - 

nomials with positive sign, we could calculate z,,, _, , 

etc. However, since each z ji is in 
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any case calculated independently, such a check is 

unnecessary. 

Lxample of the bíethod. Graduation of the following 

bivariate data by means of a polynomial of degree (3,3) 

x = 0 1 2 3 4 5 6 Totals. 

y=0 9 13 11 7 5 3 3 51 

i 10 10 17 18 16 5 2 78 

2 14 20 27 26 20 13 14 134 

3 10 10 24 32 24 30 13 143 

4 5 13 18 16 24 29 22 127 

5 3 6 19 12 20 22 19 101 

Totals 51 72 116 111 109 102 73 634 

Calculation of Reduced Bivariate Factorial Moments:- 

X-0 E `i I^3 x=1 
13 

E EZ E' L. 

9 51 72 

10 42 103 10 59 162 

14 32 61 104 20 49 103 188 

10 18 29 43 Fio 10 29 54 85 122 

5 8 11 14 17 13 19 25 31 37 

3 3 3 3 3 6 6 6 6 6 
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These summations, may be combined into the following 

table:- 

x= 0 1 2 3 4 5 6 

E 51 72 116 111 109 102 73 

EL 103 162 310 290 324 347 252 

104 188 397 338 436 497 375 

60 122 286 216 320 366 291 

Values of g(Y) are as follows:- 

z _ 0 1 2 3 4 5 6 

r=0 1 1 1 1 1 3. 1 

1 1 2 3 4 5 6 

2 1. 3 6 10 15 

3 1 4 10 20 

Suitable combination of the above two tables 

reduced bivariate 

Li? - 634, 

L?L0 -1788, 

31 i = 4335, 

",03 
Leu 1661, 

The computation 

factorial moments thus : - 

74r= 2021, 

7 `' = 6195, 

L'Lz 8475, 

"''3?=6198 1! L * 

L Lo "--1 3218, 

L. L' = 10374, 

' = 14622, 

L ¿v- 10879, 

gives the 

/Le _- 3027 

í-1009 6 

fa L)=14552, 

TY-10976 

is arranged round the table of orthogonal 

polynomial values as on the next page. 



15.095 
C

?. 829 -0.940 

r.,s 
M

om
ent s 

634 
2021 
1788 
3218 
6195 
2335 
3027 

10374 
8475 
1661 

10096 
14622 

6198 
14552 
1 0879 
10976 

634 
406 

-553 

0.0 
0.1 

0.2 

1 
-5 2 

5 

-6 3 

;.. 
5-Y

. 
C

 
C

O
S -0.104 

- 
'2c; -0.013 

c?. 1: 
-0.025 -0.028 

-0.226 
0.127 

0.083 

-129 
119 

1067 
19 

-523 
-499 

-79 
859 

-379 
-1 

-95 
64 

90 

z 
1,0 

1,1 
1,2 

1 
Q

 
, V

 
2,0 

2,1 
2,2 

2,3 
3,0 

3,1 
3.2 

3,3 

-5 

12. 

-3 1
 

15 
-5 
-6 

-15 5 
18 

15 
-5 

-36 

5 
-5 2 

-25 
25 
10 

-10 

25 
-25 
-30 

10 

-25 
25 
60 

-10 

-1 2 

-2 

5 
-10 
-2 
10 

-5 
10 6 

-10 

5 
-10 
-12 

10 
2 

-6 
12 

-10 
30 

-60 
4 

-12 
24 

-15 
-
g
 

45 
15 

-75 
-3 

15 
1 

-5 
5 

-5 
4 

-12 
24 

-4 
12 

-24 
3 

-15 
-15 

75 
6 

-30 
10 

-30 
50 

-10 
2 

-6 
12 

6 
-30 

-6 
30 

10 
-50 

20 
3 

-15 
20 

-20 
10 

1260 
168 

1960 
2352 

5040 
504 

5880 
7056 

15120 
36 

420 
504 

1080 

zoe _ 8.834 
L

lxzó,. =
 2.142 

p 
z,,o =

 1. 650 
dx z,,.=

 -3. 024 
ppzo,o 

4.646 
2 

z0=
-1.503 

a 
zoo=

 
1.322 

G
1x, 

zoo -1.680 
p,zojo=

 -3.849 
z,,a=

 
0 .040 

6Z
Q

1 zae -0.218 
4'4./4 za o 

3. 210 
1.870 

Q
d 

zao=
 

,4 
2.oy -0.864 

pp 
zoo -2.164 

ppy 
zo:o=

 
0.830 
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From the calculated values of Zozo Zoo Dzo,o , dx Zoo , 

etc. 

X .¡ 

we may obtain the following graduated values:- 

0 1 2 3 4 5 6 Totals. 

y=k0 8.834 10.976 10.094 7.510 4.546 2.52.4 2.766 47.3 

1 10.484 17.272 19.356 17.840 13.828 8.424 2.732 89.9 

2 10.631 18.216 22.627 23.886 22.015 17.036 8.971 123.3 

3 9.315 15.718 21.527 25.648 26.987 24.450 16.943 140.6 

4. 6.576 11.688 17.67L 23.126 26.624 26.756 22.108 134.6 

5 2.454 8.036 12.694 16.320 18.806 20.044 19.926 ;b.3 

Totals 48.3 81.9 104.0 114.3 112.8 99.2 93.5 634.0 

A check on zb,s, derived alternatively as described on P159 

gave 19.926, agreeing exactly with the result of the 

above table. The grand total of the graduated values is 

the same as that of the ungraduated values. 

The residual sum of squares may be calculated 

from the following table of 

ignored. 

x _ 0 1 2 

-uzj , in which signs are 

3 4 5 6 

y= 0 0.166 2.024 0.906 0.510 0.454 0.476 0.234 

1 0.484 7.272 2.356 0.160 2.172 3.424 0.732 

2 3.369 1.784 4.373 2.114 2.015 4.036 5.029 

3 0.685 5.718 2.473 6.352 2.987 5.550 3.943 

4 1.576 1.312 :.).324 7.126 2.624 2.244 0.108 

5 0.546 2.036 6.306 4.320 1.194 1.956 0.926 

z 2-= 436.0 
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The residual sum of squares may also be computed as 
follows and each ars tested for significance. 
Degree 
of curve 

fitted 
=(r,$) 

ars x Numerator of (14,1) 
Residuals 
from 
12,242, the 
total S.S. 

D. F. 

=42-(r+ 1)(s+1) 

Mean 

Square 

F 

0,0 9570,23 2671.77 41 65.17 

r- 0,1 336.57 2335.20 40 58,36 5.8 

or 0,2 519,82 1815.38 39 46.55 11.2 

0,3 12.90 1802,48 38 47.43 0,3 

1,0 84,25 25 87.5 2 4C 64,69 1,3 

4*- 1,1 580.45 1670.50 38 43,96 13,2 

1,2 0,15 1150.53 36 31,96 0,0 

1,3 54,39 1083,24 34 31.86 1.7 

2,0 494,01 1841,19 39 47,21 10.4"* 

2,1 1,03 1175,46 36 32,65 0,3 

2,2 104,80 550.69 33 16,69 6.3* 

2,3 9.48 473,92 30 15,80 0,6 

3,0 0,03 1841.16 38 48,45 0.0 

3,1 21.47 1153.96 34 33,94 0.6 

3,2 . 
8,13 521,06 30 17,37 . 0.5 

3,3 7,47 436.82 26 16.80 0,4 

-- 



166. 

The above table assumes that, far example, the fitting of 

ai0 and a01 involves also the fitting of a , so that 

it would not be correct to test a10 against the residual 

left by subtraction of the sums of squares due to a,1 

and a10 using 27 degrees of freedom. As expected, since 

the data are approximately a normal bivariate sample, the 

constants which prove significant are chiefly those 

associated with second degree terms. The residual sum of 

squares agrees reasonably well with that found otherwise. 

The above tests of significance are, of course, only 

approximate and in default of more exact knowledge about 

the true variance of the variates. In actual experimental 

work the tests will be made against the error mean square. 

As regards degrees of freedom, if the curve fittea is of 

degree (r,$), there are (r- r1)(s +1) constants and this 

is the rank of the matrix T. The vector of residuals is 

u T.a or [I-T(111'1)-1V.) u, where the matrix I- T(TtT)-` T' 

is symmetric, idempotent, and hence of rank mn -(r a-1)(s + 1). 

The sum of squared residuals must therefore have 

mn- (r41-1)(s + 1) degrees of freedom, and its mean square is 

on a null hypothesis an estimate of variance 
which is 

independent of the estimates derived 
from the linear 

combinations t ars3 _ (T'T) + T'u. 

For the sake of comparison we 
will now graduate 

the same set of data by the methoas 
of the previous section. 
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For the factor x we have the interaction transformation 

I 741 1 1 1 1 1 1 1) 
,. 

XI -2 -1 0 1 2 3) 

X" art( 5 0 -3 -4 -3 0 5) 

xa" sjr ( -1 1 1 o -1 -1 1) 

u;0 ....(14,4 

where the values of the orthogonal polynomials for the 

linear and quadratic effects are obtainable as in the last 

section, or may be found,together with the cubic values, 

in Fisher and Yates 

transformation is 

I 
Y, 

Y" 
Y,,, 

(14). 

1 

-3 

-1 

7 

For the factor y 

1 1 1 

-1 1 3 

-4 -4 -1 

4 -4 -7 

the 

1) 
5) 

5) 

5)... 

uo, ...(14,5) 

Combining (14,4) and (14,5) by direct multiplication and 

reverting from the normalised definition to the response 

per plot definition, we have the transformation of Table 

(14,1) 

10 10 

10 24 

19 12 

where 

17 

32 

22 

u 

18 

24 

193 

is now the vector 

16 5 2 ; 14 20 

30 13 5 13 18 

t9 

27 

16 

13 

26 

24 

11 

20 

29 

7 

13 

22 

5 

14 

; 

3 

: 

3 

3i 

10 

6 

The values of the so obtained check exactly with the 

previous results, as do the graduated values. The defect 

of this method is that the transforming matrix is likely 

to be unwieldy. 



a - -` r 1 1 1 1 1 1 1 
00 

_ 
L 

aro = /68 _3 -2 -1 0 1 2 3 

al. = 5-01/1_ 5-01/1_ 
L 
r 5 0 -3 -4 -3 0 5 

a3o = 36 [-1 1 1 0 -1 -1 1 

aa, _ 1745 C-5 -5 -5 -5 -5 -5 -5 

a _ /q6o 15 10 5 0 -5 -10 -15 

a = ssa L 25 0 15 20 15 0-25 

a31 
= [ 5 -5 -5 0 5 5 -5 

aox = sss C 5 5 5 5 5 5 5 

arz = 23 {-l5 -10 -5 0 5 10 15 

all... 7015g 
L 

25 0 -15 -20 -15 0 25 

a32 - OS C -5 5 5 0 -5 -5 5 

aos 126o C -5 -5 -5 -5 -5 -5 -5 

au = So { 15 10 5 0 -5 -10 -15 

a = /S/zO 25 0 15 20 15 0 -25 
.1 

a33 .. /Og® C 
5 -5 -5 0 5 5 -5. 

1 1 3. 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]=u 

-3 -2 -3. 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 I 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 33= u 

Z 5 0 -,, -4 -3 0 5 5 0 -3 -4 -3 0 5 5 0 -3 -4 -3 0 5 5 0 -3 -4 -3 0 5 5 0 -3 -4 -3 0 51=u 

-1 1 1 0 -1 -1 1 -1 1 1 0-1 1 1 -1 1 1 0 -1 -1 1 -1 1 1 0 -1 -1 1 -1 1 1 0 -1 -1 1J= u 

-3 -3 -3 -3 -3 -3 -3 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 5 5 5 5 5 5 5j=u 

9 6 3 0 -3 -6 -9 3 2 1 0 -1 -2 -3 -3 -2 -1 0 1 2 3 -9 -6 -3 0 3 6 9 -15 -10 -5 0 5 10 15=u 

-15 0 9 12 9 0-15 -5 0 3 4 3 0 -5 5 0 -3 -4 -3 0 5 15 0 -9 -12 -9 0 15 25 0 -15 -20 -15 0 251=u 

3 -3 -3 0 3 3 -3 1 -1 -1 0 1 1 -1 -1 1 1 0 -1 -1 1 -3 3 3 0 -3 -3 3 -5 5 5 0 -5 -5 5] =u 

-1 -1 -1 -1 -1 -1 -1 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -1 -1 -1 -1 -1 -1 -1 5 5 5 5 5 5 5j= u 

3 2 1 0 -1 =2 -3 12 8 4 0 -4 -8 -12 12 8 4 0 _4 _8 _12 3 2 1 0 -3. -2 -3 -15 -10 -5 0 5 10 151=u 

-5 0 3 4 3 0 -5 -20 0 12 16 12 0 -20 -20 0 12 16 12 0 -20 -5 0 3 4 3 0 -5 25 0 -15 -20 -15 0 251-..0 

1 -1 -1 0 3. 1 -1 4 -4 . -4 0 4 4 -4 4 -4 -4 0 4 4 -4 1 -1 -1 0 1 1 -1 -5 5 5 0 -5 -5 5]= u 

7 '7 7 7 7 7 7 4 4 4 4 4 4 4 -4 -4 -4 -4 -4 -4 -4 -7 -7 -7 -7 -7 -7 -7 5 5 5 5 5 5 51=u 

-21 -14 -7 0 7 14 21 -12 -8 -4 0 4 8 12 12 8 4 0 -4 -8 -12 21 14 7 0 -7 -14 -21 -15 -10 -5 0 5 lo 15)= u 

35 0 -21 -28 -21 0 35 20 0 -12 -16 -12 0 20 -20 0 12 16 12 0 -20 -35 0 21 28 21 0 -35 25 0 -15 -20 -15 0 251=u 

-7 7 7 0 -7 -7 7 -4 4 4 0 -4 -4 4 4 -4 0 4 4 -4 7 -7 -7 0 7 7 -7 -5 5 5 0 -5 -5 5]=u 

(Ta.ble 14 ,1) 
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Calculation of the Optimal Levels of Factors in Combination. 

These may be obvious by inspection, but in any case 

approximate calculated values are not difficult to obtain. 

As an example let us suppose that the data of P.ibo 

represent the yields of an experiment with two factors 

x and y at seven and six levels respectively. From the 

graduated values of P.IG4 we may select a square of nine 

of them within which ranges the maximum value must evidently 

lie. The chosen values are 

23.886 22.015 17.036 

25.648 26.987 24.450 

23.126 26.624 26.756, 

and by a change of origin we denote them to be 

Z ,- Z Z 1,-/ 

Z a _, 0'0 i ,,p 

Z-, Zo,, Z,,, 

By the advancing difference formula 

zx = (1 + xl ,, t- y + Xv) a + xyAxjy, + 564 + x,,z + ydxaa, 
v 

}- XV Q + , Qy + . . ) Z0,0 

For a maximum value of z,,7., we must have 

3x rZ; 
= (Ax +2xi -Aqd 

x x Z y .x0 + ye)11xi5; + --- )Zoo = O 

az=a1+-z-ny+xexa+3xZ-Lfi1,-=xe,.Q + xi=jaxay+...)z,,o =o x 

Approximate equations for x and y small are therefore 

( nx- y,.nx; 3 ox.)ZO,o + x (px" 63) Zn,c +y. (-46i. -4: AA) zgo = o 
(14,6) 

and ( 61-tyn,jL*3 0)zg,o+x([l.N-iQxai 
-iQ24z,na-et-(d;-;)z,,,=o 
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It is necessary to express these equations in terms 

of differences which involve values of z evenly ranged 

about the origin. This is achieved by means of the 

substitutions 

s ? 

= Z 
C Zi_¡/D 

9 ,r 
x Z-, o -h 

= axz +axzzO -a 
At, off, zo,,= ax4 z+ OXly 

and similar expressions for differences of y. The 

equations (14,6) then become 

c+ sL ZZo +Qxz2 

+ x( wzyo - ACZo- trLz 2,0) 

+ y( d&j. Zr 2nx.80 Z-,, o yt , Z , o t L zo,_, 2 4,4 z ) = 0 
i f 4 

and Au zoo- zÇz ' Zo,-,+ sL zo,-, +3Çzo,' +3 .61Zor,_ 

+ x( kAtzo,, -- tx4 zo, 
-zdQ z - zowaZ -3: A,' Z ) 

z 4 +y( Or - zo1_z -yzo,1 ) = 0 

In the present example, where the fitted 

polynomial is predominantly of the second degree, we may 

ignore differences of x or y of the third and higher 

orders, whereupon expressed in terms of the zts, the 

equations reduce to 

=( z, -Z) t x( z,o -2zoo t Zo1 
, 

+xZñ izo_, ) = 

, y( xZo+Zzo, 'zo z?' s z,,-, 

and -/i_( Zor Z,l)+x( zZ,,o+Zai -Zo,o-%yZ,-liZ +-i,o Zo,) 

-- y( Zo -2zoo + zor, )=-- 
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or 3.876x - 2.301y = -Q.599 

and 2.301x - 5.355y = -2.304, 

whence x = 0.14, y=0.49. 

The method is easily extensible to data with 

more than two factors. 
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Section 15. Confoundina 

The principles of confounding have been discussed 

by Fisher (13), Yates (24,25,26), Barnard (4), and 

Finney (10). Fisher describes confounding as an 

artifice which "consists of increasing the number of 

blocks..... beyond the number of replications in the 

experiment so that each replication occupies two or 

more blocks; and, at the same time, arranging that the 

experimental contrasts between the different blocks 

within each replication shall be contrasts between 

unimportant interactions, the study of which the 

experimenter is willing to sacrifice, for the sake 

of increasing the precision of the remaining contrasts, 

in which he is specially interested ". Yates' description 

is "a device whereby the necessity of including every 

combination of the treatments of a factorial design in 

each block (or row and column in a Latin square) is 

avoided.....The treatment combinations of each replication 

are divided into two or more groups (each group being 

assigned to a separate block) in such a way that the 

contrasts between the different groups represent 

high -order interactions, which are usually of less 

interest than the main effects and interactions between 



two factors only. Thus in any one replication the 

cont.rasts.representing certain interactionsare identified, 

or confounded, with the block differences ". 

Both these descriptions (they are hardly formal 

definitions) are more restricted than they need be. 

Two experimental contrasts are said to be confounded 

when they are identified with one another with respect 

to the unit plots making up the contrasts. For example, 

in a split -plot experiment the whole -plot treatments 

are confounded with whole -plots with respect to the 

sub-plots as unit, but may obviously be estimated from 

the whole -plot yields. Similarly, in a simple 

confounding experiment in which the treatment -combinations 

are divided into two blocks for each replication so that 

a particular contrast is totally confounded the latter 

is confounded with blocks but is capable of estimation 

from comparisons of block -pairs. Nor is it necessary 

that one of the contrasts confounded should be some 

effect of soil heterogeneity, whether it be due to 

blocks, whole -plots, or rows and columns of a Latin square. 

In a half -replicate design, for example, every treatment 

contrast is confounded with some other treatment contrast, 
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the one being called the "alias" of the other. 

However, the term "confounding" is most often 

understood in the particular sense of an experimental 

device for controlling the heterogeneity of the population. 

Thus, in field experiments, if the number of treatment - 

combinations is large, the blocks of an ordinary 

randomised -block design become too big to exert an 

effective control over soil heterogeneity. Confounding 

is the device most commonly used to counteract this. 

Any treatment contrast ¿'y (where LQ 0), corresponding 

to a single degree of freedom, may be confounded by 

allotting the treatment- combinations to different blocks 

according to whether they correspond to positive or 

negative elements of W. The only practical application 

of this is when the elements of £Ui(not normalised) 

are all'-1, in which case, if each replication occupies 

two blocks, every other treatment contrast belonging to 

the same orthogonal set as try will be unconfounded. 

This is evident since any other vector [ m 3 of the 

orthogonal set has its elements divided into two groups 

corresponding to the positive and negative elements of 

co, and the sums of elements within these groups, being 

equal must therefore each be zero. But this division 

into groups is the same division by which the treatment- 
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combinations are allotted to the two different blocks. 

Hence in the linear function m'y, the coefficients of 

the components of yield due to each block variate sum 

to zero, and m'y is thus unaffected by block differences. 

The designing of confounded experiments is therefore 

seen to reduce in many cases to the search for suitable 

vectors with elements all ±1. Suitability will usually 

mean that the treatment contrast to be confounded should 

be a high-order interaction, or at least an interaction 

which may be predicted (perhaps from previous experiments) 

to be negligible in comparison to the random variation. 

In some cases of partial confounding, i.e. a design 

where the contrasts confounded are not the same for 

each replication, even main effects may be confounded 

in order to secure a balanced design. 

Confounding is especially simple for 2" factorial 

designs, since every main effect and interaction is 
a 

determined by ̂vector with all elements-± (Section 12). 

Finney has summarised the rules governing the structure 

of such designs. In accordance with the notation of 

section 12, capital letters A,B,C,D, AB,AC,BC, 

ABC,ABD, etc. are used to denote main effects and 

interactions of factors a,b,c,d, , while small letters 

are used for the treatment- combinations, e.g. abd is the 
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combination of the higher levels ( "presence ") of a, b, d 

with the control levels ( "absence ") of the remaining 

factors. It was seen at the end of Section 10 (P.108) 

that if we regard AB as the "product" of A and B, then B 

is the product of A and AB. (Yates calls B the 

"generalised interaction" of A and AB). It is useful to 

define a similar symbolic product for the small letters, 

e.g. the product of "abc" and "bee" is defined to be "ae" 

In a 2" confounded arrangement the block containing 

the control treatment (1), representing the absence of 

all factors, is called the "principal block ". This leads 

to the first rule governing the structure of such a 

design: that every treatment- combination in the 

principal block contains an even number of the letters 

occurring in any confounded interaction. This is 

seen to be a simple consequence of the symbolic 

representation of an interaction by the product 

(al)(b ±1)(c ±1)(dt1)...., the minus sign in the 

bracket associated with a particular factor being 

taken if that letter occurs in the interaction, e.g. 

ABC is (a-1)(b- 1)(c- 1)(d +1).... The sign of (1) is 

tb4t of 

clearly the same asAany product of o,2,4,....letters 

from the brackets containing minus signs. When only a 

single contrast is to be confounded, this rule alone 
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enables the principal block to be written down without 

actually working out the interaction matrix. Another 

property of the principal block, that the product of 

any two treatment- combinations which are members of the 

principal block is also a member, follows from the 

fact that the product will still have an even number of 

the letters of any confounded interaction, 

Still greater control over soil heterogeneity will 

be given if each replication is divided into 4,8,16, 

equal blocks, when the 3,7,15,.... additional degrees of 

freedom, respectively, (per replication) now allotted 

for block differences will entail the confounding of 

3,7,15, treatment contrasts. These degrees of 

freedom for blocks (within replications) may be 

subdivided into single degrees of freedom with all 

elements of the unnormalised subdividing vectors equal 

tot]. by means of the matrices MW, M£33, , 

where M is the matrix 1 1 , and its direct square, 
-f I 

direct cube, etc. are, ignoring normalising factors, the 

interaction matrices of Section 12. The rows of these 

matrices, M , M£ ;} , M .... , being linearly 

independent, determine for designs with each replication 

divided into 2, 4,8,16,....blocks, respectively, all 
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possible ways of forming block contrasts by means of an 

equal number of additions and subtractions. But it 

has been seen (Sections 10, 12) that any 2,3,4,... rows 
2 

(other than the first) of M£3 ,MD3 ,M4 , .... , respectively, 

generate all the others by means of multiplication of 

corresponding elements, i.e. the other rows are interactions 

of the given 2,3,4,... It follows that, if any set of 

contrasts is simultaneously confounded, all possible 

products ( "generalised interactions ") of these contrasts 

are also confounded. Thus, if the replication is 

divided into four blocks, only two treatment contrasts 

may be selected for confounding, for the third contrast 

confounded is automatically the product of the other two. 

Hence, one would not choose for confounding the 

interactions ABC and ABCD, for example, since this would 

mean that the main effect D would also be confounded, 

and in general this is not desirable. Keeping the 

restrictions of this paragraph in view, the statistician 

may easily derive the treatment- combinations for the 

principal block of his design by applying the two rules 

of the previous paragraph. 

Once the principal block has been written down, 

another block of the design may be generated from it by 

multiplication by any treatment - combination not a member 
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of the principal block. A repetition of this process 

will give all the blocks of the scheme. The reason 

for this is easy to see when we consider that, when each 

replication is divided into 21'' blocks, the contents of 

the blocks are determined by the 2. 
-iv 

treatment -combinations 

corresponding to each of the 21I' different permutations 

of positive and negative signs in corresponding elements 

of the p vectors representing the treatment contrasts 

selected for confounding. But any one such permutation 

of signs means that the 2 so 

determined have either an even or odd number of letters 
in common 

(depending on the particular ;ign in each vector),with 

the letters of each confounded interaction. In other 

words, their orthogonality (even number of letters in 

common) or non -orthogonality to each of the confounded 

interactions is fixed. Consequently, if in such a 

permutation the sign in one vector is changed, the 

new set of 2n÷ treatment- combinations now determined 
differs from the former in respect of orthogonality to 

the confounded interactions for only one interaction, 

and, as has been seen, this is brought about by 

multiplying by a treatment -combination which is 

non -orthogonal to the interaction concerned. That is, 

in the case of the principal block, such a multiplying 
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treatment -combination is not a member of the principal 

block. But in changing one sign of a particular 

permutation we have obtained a new permutation which 

determines the contents of a second block, and so the 

rule is proved. 

The contents of the blocks may also be obtained 

in the case of a 2 experiment with 2 #' blocks per 

replication from the symbolic relationship 

{Column vector of confounded interactions, 

tColumn vector of block totals j 

Hence [lvi n {Vector of confounded interactions 
Vector of block totals) 

Substitute for the vector of confounded interactions 

the appropriate row vectors of the interaction matrix 

post -multiplied by the column vector of treatment - 

combinations 

f (1) a b ab c ac be abc etc.). £yI 

and we obtain a relationship giving the contents of the 

blocks. The matrix PfZN, comprising the 2 of 

the interaction matrix ho "3, corresponding to the 21%1 

confounded interactions and the row of unit elements, 

is of order 21'x 2~ , and when premultiplied by [ j 

gives a product matrix of order 2"x 2" with all elements 

either o or 1. Applying this product matrix to {y32 
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we obtain the contents of each block. The unit 
fh-3 ' n3 

elements of Ltvi J [ 4J correspond to particular per- 

mutations of signs of Nil,. , a fact noted in the previous 

paragraph. 

The subject of confounding in designs with all 

factors at three levels and in designs with some factors 

at three levels and some at two levels has been 

exhaustively treated by Yates (26). With a factor 

at four levels (or qualities), use is maue of the 

orthogonal subdivision into three uegrees of freedom 

corresponding to the matrix lú£z3 . The problem of 

confounding in this case thus reduces to the case of 

a 2" design, provided the other factors occur at two 

or four levels. In such a design, if the factors have 
i 

four equally- spaced levels (not qualities), use might be , 

made of the fact that the quadratic effect of a four - 

level factor is represented by a vector with all elements 

±1, and therefore presents opportunities for confounding. 

Confounded designs have been worked out for experiments 

with all factors at five levels, but such applications 

must be comparatively rare in practice. 
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Section 16. 

Analysis of Covariance 

Part of the observed variation of a variate y 

(the dependent variate) may be due to its regression on 

a number of concomitant variates x, xz,....xK, the 

latter being known as the independent variates, though 

they need not be, and in general are not, statistically 

independent of one another. By making allowance for 

this regression the precision of an experiment may be 

greatly increased. This is done by means of a process 

rather inadequately named the Analysis of Covariance. 

In the first place, if we have a sum of squares 

resolved into a number of component sums of squares in 

accordance with some particular experimental design, 

thus:- y'A'Ay= y'B'By +y'C'Cy+ +y'N'Ny, 

then not only does the same partitioning apply to the 

sums of squares of all the concomitant variates, but 

also to the sums of products (or covariances) of any 

two variates, dependent or independent. For example, 

y'A'Ax;, = y'B'Bx + y'C'Cx + +y N'Nx 

illustrates the partitioning of the sums of products of 

y and xi, . Hence, corresponding to each component set 

of the partitioned degrees of freedom, we have the sums 

of squares for all variates and the sums of products for 

each pair of variates, from which it is possible to 
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obtain in the usual manner the various partial regression 

and correlation coefficients for each set, and the sums 

of squares for y corrected for regression. Unless it 

is desired to make the tests of significance of analysis 

of variance for any of the x- veriates, no restriction 

is placed on their probability distributions. 

Let a'y be any deviation of a class -mean from the 

general mean or any residual of the type discussed in 

the theory of analysis of variance, and let Ay be the 

column vector representing the assembly of all similar 

mean -deviations (or residuals), whose mean will be zero. 

If we let a'y =b, a'x, +bia'xL+ +b,.a'xK, we have 

a set of observational equations which may be written as 

Ay =AXb, where b is the vector Ib, b1 . , ..b,1 and X is the 

matrix x xs,.... x,ç, 

x, x, . . x,(1 
x13 x13 . X K5 

with the same number of rows as there are elements in 

the vectors£y3 , x,, x23, .... etc., and x¿j represents 

the j of the vector xi. A may be a symmetric 

matrix as in the case of an error residual, but, if it 

is, it will be singular, being not of full rank. The 

normal equations are X'A'Ay = X' L'AXb, so that b =(X'A'AX} XAAJ., 

The vector of residuals is [I- AX(X'A'AX)'X'A'] Ay, 
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and the sum of squared residuals is 

y'A' [ I -AX (X'A'AX)' X'A'] Ay. The latter may be 

alternatively expressed as y'A'Ay (1 -f ) , where R V17 

is the sample estimate of the multiple correlation 

coefficient, for, if { 3 is a regression estimate of iy}, 
9' A' Ay AAA 

( jKA 

But 'A'Ag =b'X'A'AXb =b'X'A'Ay = 'A'Ay 

= 
"'A'A ,s... WAá' 

On a hypotheses of 

and the result follows. 

uniformity the vectors {b3 

obtained from each set of the partitioned degrees of 

freedom would be sample estimates of a certain population 

vector 4}. However, in an analysis of variance no such 

assumption is made concerning the different blocks, rows, 

or columns used to control soil heterogeneity and the 

treatments may or may not have a differential effect. 

The object of the covariance analysis is to discover how 

far the significance of treatments, as tested in the 

analysis of variance of the variate y, is attributable 

to the regression of y on the independent variates. 

Attention is therefore confined to only two sources of 

variation - treatments and error. 

The regression and correlation coefficients obtained 

from the error line of the analysis provide a measure of 

the association between the random variation of y and 
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the random variation of the x's. This is known as the 

"error regression ", and from it may be found how much of 

the estimated variance of y is due to regression. The 

treatments regression, on the other hand, may be quite 

different from the error regression owing to the 

treatments having differential effects on the variates. 

Cochran (6) concluded that a test comprising a comparison 

of the residual mean squares of the treatments and error 

regressions would not be suitable. He also investigated 

the possibility of taking the error regression out of the 

treatments sum of squares and testing this residual sum 

of squares with the residual sum of squares for error. 

I$' the treatments and error sums of squares for y are 

y'A'Ay and y'B'By with p and q degrees of freedom 

respectively, the matrices A'.A and BIB are both idempotent 

and such that A'B = B'A - 0. The residual sum of squares 

for error after deducting the sum of squares for regression 

is y'B' [ I- BX(X'B'BA) 
e 

.'B' By with q -k degrees of 

freedom (if there are k independent variates), and, since 

the matrix of this quadratic form is idempotent, its 

mean square yields an estimate 

*There is no connection between the vector b and the matrix 

B as there is between a and A above. The notation b for a 

regression coefficient is universal and is retained. 
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of the intrinsic variance of y. When the error regression 
is applied to the treatment -means of y, the vector of 
residuals is Ay -AXb, where b (X'B'BX)- 'X'B'By, or 
4I_XX?BBXrX?B?B]Y, so that the sum of squared residuals 

is y'[ I- B'BX(X'B'BXr X',A'A 
C 

I- X(X'B'BX) 'X'B'Bly, 
or y'L'Ly. Now 

M'L= CB'- B'BX(X'B'BX) 'X'B', C A -AX (X'B'BX) 'X'B'B] 

O. Since B'A =O. 

Hence, as seen in the proof of Lemma 10 (Cor.) , the two 

quadratic forms ytM'My and y'L'Ly are independent. 
But L'L = A'A[B'BX(X'B'BX) XtA'(- i'AX(X'B'BX) 'X'B' 

+[B'BX(X'B'BX) 'X'A'AX (X'B'BX) 'X'B'i, 
so that (L'L)"= A'A- i'AX(X'B'B.X) 'X'B'B] 

+{B'BX(X'B'B:X) 'X'A'AX(X'B'BX)' X'B'43'BX(X'B'BX) 'X' A'A, 

+[ A' AX( X' B' BX)' X' A' 4A' AX (X'B'BX)'X'A'AX(X'B'BX)'X'B'B] 

-[B'BX(X'B'BX) 1X'A'AX(X'B'BX)'X'A'AJ 

+[ B' BX( X' B' BX )' °'A'AX(X'B'BX)'X'A'AX(X'B'BX) 'X'B'B] 

L'L. 

The matrix L'L is therefore not idempotent. Hence the 

mean square of the quadratic form y'L'Ly would not be an 

estimate of the intrinsic variance of y. Cochran, in 

fact, showed that such a quadratic form, not having a 

matrix with equal non -zero latent roots, is not 

distributed as a gamma -type variate. The F -test 
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therefore fails. 

The correct test, first published by Bartlett (27), 

may be described as follows. The treatments and error 

lines of the table are pooled so as to give sums of 

squares and sums of products for "treatmentsi- error" 

with p+q degrees of freedom. The sum of squares due 

to regression is now obtained from these, leaving a 

residual sum of squares with p +q .'k degrees of freedom. 

From this is subtracted the residual sum of squares 

for error, y'B' CI_BX(X'B'BX) 'X'B'] By with q -k degrees 

of freedom, so that a new mean square with p degrees 

of freedom is obtained for comparison by the F -test 

with the residual sum of squares for error. We now 

examine the validity of this procedure. 

It is perhaps not immediately obvious that this 

test is suitable for the purpose on hand. Just as the 

residual sum of squares for error is that due to the 

intrinsic random variance of the dependent variate, so 

the residual sum of squares for treatments+ error is 

that due to the intrinsic "random + treatment" variance 

of the dependent variate. Their difference is therefore 

a sum of squares due to the intrinsic treatments variance 

of y, so that a comparison with the intrinsic error 

variance by means of the r -test, if valid, is suggested. 
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If the sum of squares for treatments+error is 

y'C'Cy =y'A'Ay + y'B'By with p+q degrees of freedom, 

where A'A and BIB are both idempotent and such that 

A'B = B'A _ 0, it is easily proved in the same manner as 

in Lemma 10 that C'C is also idempotent. The sum of 

squared residuals for treatments+ -error is 

y'C' [ I_CX(X'C'CX)IX'C'] Cy, while that for error is 

y'B' C I_BX(X'B tBX) X'B' } By -y'M'My. Their difference is 

y' [C'C- B'B- C'CX(X'C'CX) IX'C'C +B'B(X'B'BX) sX'B'B]y 

or y'N'Ny. Putting C'C = A'A+B'B, we have 

N'N =A'A- (A'A +B'B)X(X'C'CX) 1X1( A 'A+B'B1 -43'BX(X'B'BX)- IX'B'E]. 

Also M'IVß= B'B *'BX(X'BtBX) 'X'B'B] 

-B'BX(X'C'CX)'X'A'A - B'BX(X'C'CX)'X'B'B 

+ B'BX (X'B'BX) 'X'B'B + B'BX(X'C'CX) 'X'A'A 

+ B'BX (X'C'CX) 'X'B'B B'BX(X'B'BX) IX'B'B 

0, 

which is the criterion for the independence of the two 

quadratic forms y'M'My and y'N'Ny and is equivalent to 

AMA'N = N'11=0. Applying now Lemma 10 (Cor.), we see 

that y'N'Ny must have gamma -type distribution with 

(pi -q--k) - (q -k) =p degrees of freedom, and its mean 

square is, on a null hypothesis (that the intrinsic 

treatments variance is zero), an estimate of the intrinsic 

random variance of y independent of the estimate from 
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the error residual. The F -test is therefore valid and 

exact. 

The significance of the error regression may be 

tested by analysis of variance, thus: - 

Analysis of Variance 

S Durc e of Variation. í).F. Sums of Squares 
Me an 
Squares 

Regression 

Deviations from 
Regression 

k 

q -k 

ytB'BX(.1.'B'B:à.} 1btB'By 

, ß' {1 - BX(KB'BXi j KB] B 

s; 

s1 

Total q y'B'By s3 

The product of the matrices of the quadratic forms for 

regression and for deviations from regression is zero and 

the matrices are both idempotent. The corresponding 

mean squares are therefore independent estimates of the 

variance of the y's, and are hence amenable to the F -test. 

Should the test prove significant we will wish to assume 

the amended hypothesis that part of the random variance 

of the y's is due to regression, and that the residual 

mean square si is an estimate of what we have called the 

intrinsic variance of the y's, i.e. the random variance 

after allowance for regression. Owing to the fact that 

the b's are not independent of one another their 

individual contributions to the sum of squares for 

regression are not easily obtainable. However, each 
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b may be tested for significance by means of the t -test, 

for 1b3=(X'B'BX) 'X'B'By, so that the variance matrix of 

the b's is, by Lemma 5, (X'B'BX) -', since the y's are 

independent and of equal weight and B'B is idempotent. 

Hence the variances of the b's are given by cÇ G; where 

clz;, is a diagonal term of (X'B'BX) 1, and the value of t 

is given by f4-7:s} , sZ being the estimate of variance from 

the residual sum of squares for error with q-k degrees of 

freedom. Numerator and denominator are easily seen to 

be independent, for b3= (Y'B'BX)'X'B'By =Ry and S= 'MME 

where M = B{BX(X'B'BX) 'X'B'BJ , so that RM =0, remembering 

that, since B is the matrix of the error residuals, B is 

idempotent as well as B'B. This was proved for the 

error residuals of the split -plot design on Page 90, and 

may similarly be proved for any regular design. It 

arises from the fact that the matrix of the vector of 

error residuals of an analysis of variance (here B) is the 

same as the matrix of the vector of residuals after 

fitting constants by least squares (Section 11), and 

such a matrix is always idempotent. 

Values of y adjusted for regression may be obtained 

and, if the effect of treatments has proved significant 

in the analysis of covariance, the adjusted treatment 

means may be compared. Referred to the mean as origin, 
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an adjusted treatment mean is al,y - aLXb, where b is 
the vector of error regression coefficients and a4 is 
a row of A. The error regression coefficients are used 

for this adjustment because they are a measure of the 

regressions when block, etc. differences have been 

removed. The means we wish to compare are independent 

of block, etc. differences and for purposes of comparison 

we are testing a null hypothesis in respect of treatments. 

Hence the adjustment is made by means of the error 

regressions. It remains to find the standard error of 

the difference of two adjusted means and to prove that 

the t -test is valid for such a comparison. The difference 

between two adjusted treatment means is 

(a/4 -a ) y -(< -a) Xb 

(al -a) [ I- X(X'B'BX) =Sy X'B'B y 

By Lemma 5, the variance of t' is difference 
i. 

= ( a -á) [I_X(XBtBX1'X'B'B] Lz ) Gs 

(afi -) C I-Y(X'B'BX) 
i 

X 
. (az 

(since azB = aj B = 0) 
ti g- (az -ai) X (X'B'BX)'X'(a -) GL, 

where tr= number of plot- yields per treatment mean. This 

is equivalent to the results of Wishart (29). To show 

that the difference of two adjusted means is independent 

of the estimate of variance 5'22-, we have that 



SM = (a( -á) LI- X(X'B'BX )-LX'B'B JLB- BX(X'B'BX) IX'B'B] 

=(agi -agi) [ X (X'B'BX) IX'B'B - X(X'B'BX) 1X'B'B] 

= 0 , again since aEB = a. B = 0 and B is idempotent. 

The validity of the t -test is therefore proved. 
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