
On the Distribution of Control in

Asynchronous Processor Architectures

Vinod Eugene Francis Rebello

Doctor of Philosophy

The University of Edinburgh

1996

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429729671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

To my parents

Peter and Gemma

ii

Abstract

The effective performance of computer systems is to a large measure de-

termined by the synergy between the processor architecture, the instruction set

and the compiler. In the past, the sequencing of information within processor

architectures has normally been synchronous: controlled centrally by a clock.

However, this global signal could possibly limit the future gains in perform-

ance that can potentially be achieved through improvements in implementation

technology.

This thesis investigates the effects of relaxing this strict synchrony by dis-

tributing control within processor architectures through the use of a novel asyn-

chronous design model known as a micronet. The impact of asynchronous

control on the performance of a RISC-style processor is explored at different

levels. Firstly, improvements in the performance of individual instructions by

exploiting actual run-time behaviours are demonstrated. Secondly, it is shown

that micronets are able to exploit further (both spatial and temporal) instruction-

level parallelism (ILP) efficiently through the distribution of control to datapath

resources. Finally, exposing fine-grain concurrency within a datapath can only

be of benefit to a computer system if it can easily be exploited by the compiler.

Although compilers for micronet-based asynchronous processors may be con-

sidered to be more complex than their synchronous counterparts, it is shown

that the variable execution time of an instruction does not adversely affect the

compiler’s ability to schedule code efficiently. In conclusion, the modelling

of a processor’s datapath as a micronet permits the exploitation of both fine-

grain ILP and actual run-time delays, thus leading to the efficient utilisation

of functional units and in turn resulting in an improvement in overall system

performance.

iii

Acknowledgements

I am indebted to my supervisor, D. K. Arvind, for his continuous support,

encouragement and advice throughout my research.

Thanks to the MAP Group for our fruitful discussions; to the Edinburgh

Parallel Computing Centre (EPCC) for access to the MEiKO Computing Surface

and their technical support; and to the Department of Computer Science for

providing all the “essentials” for this work.

Most of all, a big special thank you to my parents and all my friends who

shared in my trials.

Finally, this work was funded by a research studentship from the UK Science

and Engineering Research Council.

Muito obrigado para todos!

iv

Declaration

This thesis was composed by myself and the work reported herein is my

own except where indicated. Some of the material in this thesis has already

been published in:� D. K. Arvind and V. E. F. Rebello. Instruction-level parallelism in asynchronous

processor architectures. In M. Moonen and F. Catthoor, editors, The Proceedings of

the 3rd International Workshop on Algorithms and Parallel VLSI Architectures, pages

203–215, Leuven, Belgium, August 1994. Elsevier Science Publishers.� D. K. Arvind and V. E. F. Rebello. On the performance evaluation of asynchronous

processor architectures. In P. Dowd and E. Gelenbe, editors, The Proceedings of

the 3rd International Workshop on Modeling, Analysis and Simulation of Computer and

Telecommunication Systems (MASCOTS’95), pages 100–105, Durham, NC, USA,

January 1995. IEEE Computer Society Press.� D. K. Arvind, R. D. Mullins and V. E. F. Rebello. Micronets: A model for decent-

ralising control in asynchronous processor architectures. In M. B. Josephs, editor,

The Proceedings of the 2nd Working Conference on Asynchronous Design Methodologies,

pages 190–199, London, UK, May 1995. IEEE Computer Society Press.� D. K. Arvind and V. E. F. Rebello. Static scheduling of instructions on micronet-

based asynchronous processors. In The Proceedings of the 2nd International Sym-

posium on Advanced Research on Asynchronous Circuits and Systems (ASYNC’96),

pages 80–91, Aizu Wakamatsu City, Japan. March 1996. IEEE Computer Society

Press.

Vinod E. F. Rebello

Table of Contents

1. Introduction 1

1.1 In this Thesis : 4

1.2 Thesis Outline : 6

2. Towards an Asynchronous Control Paradigm 10

2.1 Introduction : 10

2.2 System Design : 11

2.3 Implementation Technology and a Synchronous Control Paradigm 11

2.3.1 Clock Skew : 12

2.3.2 Other Limits on the Clock Frequency : : : : : : : : : : : 12

2.3.3 Power Consumption : 13

2.3.4 Shrinking Geometries : 14

2.3.5 Design Difficulties : 17

2.4 Asynchronous Design – A Solution? : : : : : : : : : : : : : : : : 18

2.4.1 Disadvantages of Asynchronous Design : : : : : : : : : 21

2.4.2 Equipotential Regions (revisited) : : : : : : : : : : : : : : 22

2.4.3 Handshake Protocols : 23

v

Table of Contents vi

2.4.4 Data Transmission : 24

2.4.5 Ease of Design : 27

2.5 Exploiting Performance : 28

2.5.1 Synchronous versus Asynchronous Control : : : : : : : : 28

2.6 Pipelines : 30

2.6.1 The Conversion of Synchronous Pipelines to Equivalent

Asynchronous Ones : 30

2.6.2 Micropipelines : 33

2.7 Related Work : 34

2.8 This Thesis : 35

2.8.1 Towards Asynchronous Datapaths : : : : : : : : : : : : : 36

2.9 Micronets : 38

2.9.1 Micronets, Microagents and their Micro-operations : : : 39

2.9.2 Micronet-based Datapaths : : : : : : : : : : : : : : : : : 41

2.10 Summary : 42

3. A Parallel Event-Driven Simulator 44

3.1 Introduction : 44

3.2 Parallel Discrete Event-driven Simulation : : : : : : : : : : : : : 45

3.3 An Overview of PEPSÉ : 46

3.3.1 The Simulation Platform : : : : : : : : : : : : : : : : : : 48

3.3.2 The Basic Simulation Platform Algorithm : : : : : : : : : 49

3.3.3 The Class Models : 50

Table of Contents vii

3.4 Development Notes : 54

3.4.1 Occam Buffers : 54

3.4.2 Guarded Outputs : 56

3.4.3 Modelling Signals : 57

3.5 Component Delays : 58

3.6 Conclusions : 59

4. The Control Paradigm and the Instruction Set 60

4.1 Introduction : 60

4.2 Comparing Synchronous and Asynchronous Processor Control : 61

4.2.1 The Two Processor Models : : : : : : : : : : : : : : : : : 62

4.2.2 The Instruction Set : 63

4.2.3 The Architectural Components : : : : : : : : : : : : : : : 65

4.3 The Synchronous Processor : 66

4.3.1 Synchronous Control : 66

4.4 Asynchronous Control and MAP : : : : : : : : : : : : : : : : : : 68

4.4.1 The Distribution of Control : : : : : : : : : : : : : : : : : 68

4.4.2 The Rôle of the Control Unit : : : : : : : : : : : : : : : : 69

4.4.3 Data Transfer : 73

4.5 The Performance Results : 73

4.6 Discussion : 76

4.7 Summary : 77

Table of Contents viii

5. The Control Paradigm and the Architecture 79

5.1 Introduction : 79

5.2 Exploiting Instruction-level Parallelism : : : : : : : : : : : : : : 80

5.3 Design Goals : 82

5.4 An Asynchronous ILP Processor : : : : : : : : : : : : : : : : : : 83

5.5 A Micronet Architecture : 84

5.5.1 Modifications to the Fetch Stage : : : : : : : : : : : : : : 85

5.6 The Control Refinements : 87

5.7 Measuring Improvements in Performance : : : : : : : : : : : : : 88

5.7.1 The Test Programs : 91

5.8 Refinement Step 1 – The Base Case : : : : : : : : : : : : : : : : : 92

5.9 Refinement Step 2 – Exploiting Multiple Write-back Buses : : : 97

5.10 Refinement Step 3 – Using a Single Write-back Bus : : : : : : : : 100

5.11 Refinement Step 4 – Asynchronous Micro-operation Issue : : : : 101

5.12 Refinement Step 5 – Out-of-Order Write-Backs : : : : : : : : : : 107

5.13 Refinement Step 6 – Faster Instruction Issue : : : : : : : : : : : : 110

5.14 Refinement Step 7 – Data Forwarding : : : : : : : : : : : : : : : 115

5.15 Refinement Step 8 – The Last Control Modification : : : : : : : : 118

5.16 Conclusions : 122

5.17 Refinement Step 9 – Transistor Resizing : : : : : : : : : : : : : : 123

5.18 Discussion : 124

5.18.1 Minimising the Self-Timed Overheads : : : : : : : : : : : 125

Table of Contents ix

5.18.2 Implications for the Compiler : : : : : : : : : : : : : : : 130

5.19 Summary : 131

6. The Control Paradigm and the Compiler 141

6.1 Introduction : 141

6.2 Compilers : 142

6.3 Scheduling Challenges in MAP Architectures : : : : : : : : : : : 143

6.3.1 MAP Behaviour : 145

6.3.2 A Parameterised Computational Model : : : : : : : : : : 145

6.4 The Scheduling Problem : 147

6.4.1 Similar Scheduling Problems : : : : : : : : : : : : : : : : 148

6.5 A Scheduling Methodology for MAP : : : : : : : : : : : : : : : 149

6.5.1 The Scheduler : 152

6.6 Results : 162

6.6.1 Post-pass Optimisation for Instruction Interference : : : 166

6.6.2 Are These Schedules Really Optimal? : : : : : : : : : : : 169

6.7 Open Problems : 170

6.7.1 Instruction Execution Costs : : : : : : : : : : : : : : : : : 170

6.7.2 Interaction Between Executing Instructions : : : : : : : : 171

6.8 Conclusions : 172

7. Conclusions and Future Work 174

7.1 A Summary : 174

7.2 Effects on System Design : 175

Table of Contents x

7.3 On-Going and Future Work : 180

7.3.1 Easing System Design : 180

7.3.2 Extending the Micronet Architecture : : : : : : : : : : : 181

7.3.3 Parallelising Compilers for a Superscalar MAP : : : : : : 185

7.4 Discussion : 186

7.5 Conclusions : 187

A. Glossary 189

B. The PEPSÉ Simulator 192

B.1 The Simulation Algorithm in OCCAM2 : : : : : : : : : : : : : : 192

C. The MAP Test Programs 196

D. Published Papers 198

D.1 Instruction-level Parallelism in Asynchronous Processor Archi-

tectures : 198

D.2 On the Performance Evaluation of Asynchronous Processor Ar-

chitectures : 211

D.3 A Model for Decentralising Control in Asynchronous Processor

Architectures : 217

D.4 Static Scheduling of Instructions on Micronet-based Asynchron-

ous Processors : 228

Bibliography 241

List of Figures

2–1 Two- and four-phase signalling : : : : : : : : : : : : : : : : : : : 23

2–2 Encoded data transmission : 25

2–3 Bundled data transfer : 26

2–4 From a synchronous to an asynchronous pipeline : : : : : : : : 31

2–5 A basic micropipeline FIFO : 33

2–6 Synchronous and asynchronous pipelines : : : : : : : : : : : : : 37

2–7 Contrasting a micropipeline with a micronet : : : : : : : : : : : 40

3–1 Overview of the simulator : 46

3–2 The simulation platform. : 48

3–3 A microprocessor model : 56

4–1 The processor pipeline : 62

4–2 The synchronous and self-timed processor models : : : : : : : : 63

4–3 Synchronous instruction cycles : : : : : : : : : : : : : : : : : : : 67

5–1 A typical micronet-based processor architecture model : : : : : 84

5–2 Issuing an LDA instruction in Refinement Step 1 : : : : : : : : : 95

5–3 Issuing an LDA instruction in Refinement Step 2 : : : : : : : : : 98

xi

List of Figures xii

5–4 Issuing an LDA instruction in Refinement Step 4 : : : : : : : : : 105

5–5 Issuing an LDA instruction in Refinement Step 6 : : : : : : : : : 113

5–6 Issuing an LDA instruction in Refinement Step 8 : : : : : : : : : 118

5–7 The FM utilisations : 120

5–8 The test program execution times : : : : : : : : : : : : : : : : : 121

5–9 Resource activity : 127

5–10 Overlapping micro-operation handshake cycles : : : : : : : : : 129

5–11 The micronet model for Refinement Step 1 : : : : : : : : : : : : 133

5–12 The micronet model for Refinement Step 2 : : : : : : : : : : : : 134

5–13 The micronet model for Refinement Step 3 : : : : : : : : : : : : 135

5–14 The micronet model for Refinement Step 4 : : : : : : : : : : : : 136

5–15 The micronet model for Refinement Step 5 : : : : : : : : : : : : 137

5–16 The micronet model for Refinement Step 6 : : : : : : : : : : : : 138

5–17 The micronet model for Refinement Step 7 : : : : : : : : : : : : 139

5–18 The micronet model for Refinement Step 8 : : : : : : : : : : : : 140

6–1 The makespans of schedules based on worst- and average-case

run-time costs : 170

7–1 Influences within processor system architectures : : : : : : : : : 176

7–2 Previously implicit influences within system architectures : : : 178

List of Tables

4–1 The instruction set : 64

4–2 Synchronous versus asynchronous performances : : : : : : : : : 74

5–1 The micro-operations required for instruction execution : : : : : 94

5–2 Instruction execution for Refinement Step 1 : : : : : : : : : : : : 95

5–3 Execution of the test programs on Refinement Step 1 : : : : : : : 96

5–4 Instruction execution for Refinement Step 2 : : : : : : : : : : : : 99

5–5 Execution of the test programs on Refinement Step 2 : : : : : : : 99

5–6 Instruction execution on Refinement Step 3 : : : : : : : : : : : : 100

5–7 Execution of the test programs on Refinement Step 3 : : : : : : : 101

5–8 Instruction execution on Refinement Step 4 : : : : : : : : : : : : 106

5–9 Execution of the test programs on Refinement Step 4 : : : : : : : 106

5–10 Instruction execution for Refinement Step 5 : : : : : : : : : : : : 109

5–11 Execution of the test programs on Refinement Step 5 : : : : : : : 109

5–12 Instruction execution on Refinement Step 6 : : : : : : : : : : : : 113

5–13 Execution of the test programs on Refinement Step 6 : : : : : : : 114

5–14 Instruction execution on Refinement Step 7 : : : : : : : : : : : : 117

xiii

List of Tables xiv

5–15 Execution of the test programs on Refinement Step 7 : : : : : : : 117

5–16 Instruction execution for Refinement Step 8 : : : : : : : : : : : : 119

5–17 Execution of the test programs on Refinement Step 8 : : : : : : : 119

5–18 Instruction execution for Refinement Step 9 : : : : : : : : : : : : 123

5–19 Execution of the test programs on Refinement Step 9 : : : : : : : 124

6–1 Measuring the optimality of the scheduling heuristics : : : : : : 164

6–2 The effects of Post-pass optimisations on Instruction Lookahead

schedules : 168

6–3 The effects of Post-pass optimisation on MAP instruction schedules169

Chapter 1

Introduction

“In analysing the functions of the contemplated device, the logical
control of the device, that is the proper sequencing of its operations, can be
most efficiently carried out by a central organ.”

John von Neumann, First Draft of a report on the EDVAC (1945)

It has long been realised that the implementation technology has influenced

developments in processor architectures. As a case in point, the advent of VLSI

technology in the early 1980s (together with mature optimising compilers) led to

the reassessment of complex instruction sets, and resulted in the development

of RISC architectures [71] [86]. The designers of these processors also paid

close attention to the interactions between the compiler, the instruction set, and

the processor architecture. Reducing the number and formats of instructions

made the architecture considerably simpler compared to existing designs, with

streamlined datapaths effectively shifting complexity from the hardware to the

compiler.

Improvements in transistor speed have brought improvement in system

performance [121], and it has been assumed that such progress would continue

virtually unhindered. However, designers have now been forced to consider

a domain previously taken for granted – the influence of the control paradigm

on the rest of the system. From around 1945, conventional wisdom has advoc-

ated the use of a centralised clock to sequence information correctly within a

1

Chapter 1. Introduction 2

processor architecture. Unfortunately, the ability to sustain this design style

as systems become larger, faster and more complex, is under pressure from a

number of directions, related to the global clock as well as the speed and scale

of the new systems [115,140,147,150,175].

Given the developments in technology, and contradicting John von Neu-

mann, centralised control can lead to inefficient behaviour. Events in synchron-

ous processors are recognised at regular, pre-determined intervals. In typical

designs, there are idle periods between events and the next clock tick. Of course,

this wastage could be reduced by increasing the clock frequency, but the benefit

of such a policy is diminished by problems of increased control complexity,

clock skewing and noise. Furthermore, the clock’s very presence is likely to

limit future gains in performance which may potentially be achieved by im-

provements in VLSI technology. The maximum speed of this clock signal is a

conservative estimate for reliable operations, which considers worst-case delays

in the critical path. In practice, even this estimate may not be met due to vari-

ations in fabrication and environmental parameters. The propagation delays

along clock distribution lines may become a significant proportion of the clock

period, and mitigating their effect at higher frequencies would be at signific-

ant design costs [42]. These inefficiencies are further exacerbated by scaling of

transistor sizes [115] [140] [147]. Another issue is the difficulty in separating the

logical and temporal aspects of synchronous circuits. Accurate estimations of

timings of synchronous processors and abstracting them from the logical design

is difficult. This has been one of the limiting factors in the automatic synthesis of

synchronous processors. All of these drawbacks have led to a renewed interest

in an alternative control strategy which relaxes the strict synchrony imposed by

the centralised clock by removing it altogether.

Asynchronous design is not new, in fact early computers did incorporate

asynchronous methods which were later abandoned in favour of the easier syn-

chronous style. Lately, a restricted form of asynchrony known as self-timing is

Chapter 1. Introduction 3

being considered which avoids timing-related problems by enforcing a simple

communication protocol [150]. This protocol acts like a local clock which syn-

chronises components within a circuit, but neither relies on specific time inter-

vals nor extends homogeneously to the entire circuit as a synchronous clock

does. The correct operation of self-timed systems is independent of delays,

enabling systems to cope with changes due to data dependencies or environ-

mental variations. This robustness is achieved at the price of local handshaking

protocols. Therefore, in order to exploit the performance benefits of asynchrony

over synchronous control, the average delay of the components together with

overheads of self-timed control should be less than the sum of the worst-case

delay and overheads of synchronous control. However, it was not the poten-

tial performance advantage of self-timed circuits which first attracted processor

designers.

Self-timed circuits offer a number of other advantages over their synchron-

ous equivalents (as discussed in [66] [106]) and, for example, have proved

attractive for low power circuit design and automated synthesis. Asynchron-

ous microprocessor designs (which have been built) have either concentrated

on their formal synthesis [37] [110] or just their feasibility [143], with limited

emphasis on their performance or efficient operation. One exception is the AM-

ULET project [56]: an asynchronous implementation of a previous synchronous

design, although the emphasis has primarily been on low power consumption.

The performance evaluation of asynchronous processors is still in its infancy.

Only recently have designs begun to take architectural considerations into ac-

count, e.g. Counterflow [157] and Fred [142], and investigate issues such as

Instruction-Level Parallelism (ILP).

Synchronous architectures exploit ILP at a considerable cost in terms of con-

trol overheads. Also, this centralised control regime forces complex designs to

operate below their technological best by always assuming worst-case beha-

viour. The benefit, however, is that the computational model uses fixed delays

Chapter 1. Introduction 4

thus leading to a deterministic behaviour of the architecture. This benefits the

compilers in predicting the state of the machine for efficient code generation and

scheduling. Therefore, forcing operations to complete within a fixed period of

time simplifies the cost of sequencing operations. In contrast, under asynchron-

ous control, operations take only as long as is necessary; even the execution

times of identical instructions may vary. This, in turn, may have an adverse

effect on efficient code generation and scheduling. However, note that exploit-

ing concurrent behaviour is more efficient under distributed control, whereas

synchronising operations or making them take place sequentially increases the

control complexity in an asynchronous environment.

1.1 In this Thesis

The RISC approach exploited the synergy in the interactions between the three

domains – the compiler, the processor architecture and the implementation tech-

nology. The work described in this thesis builds on this theme and investigates

the design of effective computer systems in the light of progress in each of these

domains; in particular, the efficient exploitation of ILP in fully asynchronous

general-purpose processor architectures.

There has also been an important trend in identifying and exploiting con-

currency in programs which are written in languages without explicit parallel

constructs. The concurrency is exposed in different stages of descending levels

of granularity: between basic blocks, between instructions within the same

block, and even within the instructions themselves. In general, concurrency

between basic blocks can be teased out by the compiler without an intimate

knowledge of the underlying processor. However, for effective exploitation of

concurrency at a finer detail of granularity, it is profitable to consider the in-

teractions between the compiler and the processor, and the processor and the

Chapter 1. Introduction 5

implementation technology, respectively. Increased performance through the

exploitation of ILP is a key feature of modern synchronous RISC processor archi-

tectures. However this approach is limited not only by the available parallelism

within programs, but also by the cost effectiveness of designing processors with

centralised control to exploit ILP.

This thesis studies the influence of a fully asynchronous control paradigm

on the design and performance of RISC-like processor architectures. The jus-

tification for doing this is the following observation. The clock period of a

synchronous processor is determined a priori by the speed of the slowest com-

ponent, and takes into account the worst-case execution and propagation times

and the worst-case operating conditions. In contrast, the performance of an

asynchronous processor is determined by the actual operational timing char-

acteristics of the components (effectively average delays) plus the overheads

due to self-timed control. Furthermore, a more significant and important con-

sequence of an asynchronous control paradigm is the ability to exploit fine-grain

concurrency efficiently at the instruction level.

Processors can be divided into two parts – the datapath and the control.

In synchronous designs, the centralised control performs the dual functions of

timekeeping and sequencing of operations within the datapath. Timekeeping is

now redundant in an asynchronous processor, thereby reducing the rôle of the

centralised control to just sequencing instructions. An asynchronous datapath

can be modelled and implemented as a micronet. Defined as a network of elastic

micropipelines [158], it allows for a greater degree of fine-grained concurrency

to be exploited, both between and within instructions, which would otherwise

be quite expensive to achieve in an equivalent synchronous design. In a tradi-

tional synchronous datapath, the centralised control forces each instruction to

go through all of the stages regardless of the need to do so (in effect a single

pipeline), with the time spent in each stage being determined by the clock

period. In a micronet, each program instruction spends time only in the relev-

Chapter 1. Introduction 6

ant stages and for just as long as is necessary. Furthermore, different program

instructions may execute concurrently within the same stage. A synchronous

pipelined processor for exploiting ILP has to incur additional control overheads,

e.g. [40] [42] [118]. In contrast, it will be demonstrated that as a consequence

of asynchronous control, implemented using a micronet, ILP can be achieved

implicitly without extra costs. This is because the control is now decentralised

and distributed amongst the communicating functional units which operate

concurrently. Micronets are easy to implement in CMOS VLSI technology [126],

and at the same time, as will be shown, they offer a good target for an optim-

ising compiler which can exploit the available concurrency between and within

instructions.

1.2 Thesis Outline

The contents of each of the remaining chapters are summarised as follows:

Chapter 2 highlights the inefficiencies in current synchronous designs and in-

troduces a particular field of asynchronous design known as self-timed

circuits as a methodology to overcome these problems. How self-timed

circuits communicate while being insensitive to varying delays and the

advantages of these types of circuits are also discussed. This chapter

then sets out the objectives and goals of this thesis in the context of cur-

rent related work and opinion, and introduces an efficient structure for

distributed asynchronous control called a micronet.

Chapter 3 – The performance of an asynchronous system is ultimately determ-

ined by the dynamic interaction amongst components within the system.

Furthermore, the temporal behaviour of current VLSI systems is being

increasingly influenced by propagation delays which themselves can only

Chapter 1. Introduction 7

really be determined after layout has taken place. Therefore, evaluat-

ing the performance of these systems via analytical methods is difficult.

Estimating program performance via logic simulation is impractical due

to the amount of CPU time required. However, an application such as

an asynchronous processor is particularly well suited to parallel discrete

event simulation (PDES) due the inherent parallelism afforded by the dis-

tribution of control.

This chapter describes PEPSÉ, a simulation platform on a network of

transputers [79] for evaluating the performance of asynchronous processor

architectures. The architectures can be modelled at various levels of ab-

straction in the programming language Occam2 [78]. Occam2 is based on

the process model of computing in which a system can be described as

a collection of concurrent processes which communicate with each other

asynchronously through channels. The semantics of Occam2 capture the

behaviour of asynchronous circuits naturally. The underlying timekeep-

ing mechanism in PEPSÉ is based on a parallel asynchronous simulation

algorithm described in [8]. The asynchronous nature of this algorithm ef-

ficiently simulates the class of architectures under investigation compared

to time-driven simulations.

Chapter 4 investigates, through simulation, the improvements in instruction

execution times of an asynchronously-controlled processor when com-

pared to an equivalent synchronously-controlled one. This study only ex-

ploits the average delays of the functional units in the self-timed case to re-

duce the execution times of the individual instructions. Results show that

shorter execution times can be achieved under micronet control. Taking

datapath pipelining into account at this stage is considered inappropriate

since pipelining increases both the control complexity and the instruction

latency.

Chapter 1. Introduction 8

Chapter 5 concentrates on the use of micronets to exploit ILP, which also re-

quires a number of control issues resulting from data and structural de-

pendencies between instructions to be resolved efficiently. Suitable met-

rics are introduced for measuring this and the performance of asynchron-

ous processors. The exploitation of ILP is analysed through a number of

refinements made to the Micronet-based Asynchronous Processor (MAP)

design of the previous chapter. Centralised control is progressively dis-

tributed to the functional units and the effects on the overall performance

of simple test programs are recorded. Results show that a micronet-based

datapath allows a greater degree of fine-grained concurrency to be ex-

ploited.

Chapter 6 discusses the influences of the asynchronous control paradigm on

the compiler of a micronet-based architecture. It is important to demon-

strate that the asynchronous processor is still a good target for a parallel-

ising compiler. The back-end of a compiler has two machine-dependent

tasks, namely to generate code and schedule the instructions. It will be

demonstrated that the local scheduling of a basic block can be performed

efficiently.

A micronet compiler is unable to predict the exact behaviour of the archi-

tecture for the execution of a given set of instructions. This is because the

execution times may vary due to data dependent operations and to inter-

actions between executing instructions competing for the same resources.

However, an instruction schedule based on worst-case operational beha-

viour can provide an upper bound on the program’s execution time. This

is useful since, generally, compilation is carried out once and programs are

run many times. Further performance improvement may be obtained at

run-time, to exploit the actual and data dependent delays, by fine-tuning

the instruction schedule dynamically.

Chapter 1. Introduction 9

Chapter 7 draws conclusions and includes discussions on the implications for

processor design and future work. A glossary of terms appears in Ap-

pendix A.

Chapter 2

Towards an Asynchronous Control

Paradigm

2.1 Introduction

This chapter focuses on a previously implicit factor in computer system design

called the control paradigm, and examines the motivation behind investigat-

ing the use of an asynchronous control paradigm in RISC processor architectures.

Synchronous controls have been the norm in processor designs. But lately, there

has been a resurgence in the use of asynchronous design styles where instead

of using a global clock to regulate operations and communicate information at

fixed intervals, operations take place autonomously and communication takes

place at arbitrary times whenever information transfer is necessary. Some of the

motivation behind this interest has been due to the difficulties envisaged in syn-

chronous VLSI design. This chapter outlines these concerns, the inefficiencies

in synchronous control and the advantages of asynchrony. More importantly,

the effect of the control paradigm on the exploitation of instruction-level paral-

lelism in the traditional view of processor datapaths is discussed. It is believed

10

Chapter 2. Towards an Asynchronous Control Paradigm 11

that the asynchronous approach can provide a more efficient design style for

processor architectures.

2.2 System Design

The design of a well integrated RISC microprocessor system should consider the

relationships between the different aspects of the system. The RISC experience

highlighted the need to consider the interactions between the implementation

technology, the processor architecture (which efficiently implements a given in-

struction set) and the compiler. The shift from CISC to RISC architectures took

advantage of maturing optimising compilers and improved VLSI technology.

The implementation technology has continued to play a significant part in im-

proving system performance of these architectures. However, current advances

are adversely affecting the synchronous control paradigm’s ability to exploit

the potential performance gains efficiently. In synchronous processors, while di-

minishing feature sizes and increasing clock speeds bring better performance,

they are achieved at a significant cost and design effort. Even the underlying

efficiency of this improvement is falling due, for example, to increases in power

consumption and the greater proportion of the clock period which needs to be

set aside to account for the side effects of technological advances.

2.3 Implementation Technology and a Synchronous

Control Paradigm

The improvements in integrated circuit technology pose new constraints on

the design of synchronous processors. Control management is characterised

by a global synchronising signal or clock to make all of the components in

Chapter 2. Towards an Asynchronous Control Paradigm 12

the design communicate correctly, i.e. the clock controls both the sequencing

and the timing within circuits. Though not always appreciated, this global

clock can significantly limit the performance in a large system. This is due,

in part, to a number of factors. Firstly, the clock period needs to account for

some underlying physical characteristics of VLSI circuits related to the cost

of distributing the clock and the loading on clock buffers. Thus, part of the

clock period must be set aside to allow for clock skew. Secondly, the clock

speed must be a conservative worst case, not only in terms of the component’s

critical-path delay, but also of fabrication and environmental parameters (if the

chip is to operate reliably). Finally, transistors switch virtually simultaneously,

causing the power supply inductance to become a more significant limitation

on switching speed.

2.3.1 Clock Skew

Some components in a synchronous design may see the global clock signal

change before others because of variations in propagation delays (due to dif-

ferences in track length and loading) along the clock distribution lines. This

discrepancy, known as clock skew, means that the effective computation time

available is less than the clock period. In order to ensure correct operation, the

clock period must be increased which implies a limit on the maximum clock

frequency. Reducing the clock skew requires detailed analysis of the load on

the clock signal and careful design of the clock drivers, which incurs significant

cost and design effort [42].

2.3.2 Other Limits on the Clock Frequency

Synchronous designs are optimised for worst-case conditions. The clock period

(and hence maximum frequency) is limited by the operation that takes the

Chapter 2. Towards an Asynchronous Control Paradigm 13

longest time to complete which is determined by the slowest component, its

slowest operation, its worst-case data inputs and the worst-case operating con-

ditions (i.e. supply voltage, temperature and fabrication process). Designers try

to reduce this delay by speeding up the component’s logic for degenerate data

input and by balancing component delays. However in synchronous designs,

effort must be invested in analysing logic which might be rarely used, in order

to find and speed up the critical path.

Furthermore, the slowest operation may not even be required in a particular

clock period. There has been some work on varying the period of the clock

dynamically depending on the operation [39]. An alternative approach is the

incorporation of multiple frequency clocks into designs (generally derived from

a single clock), which requires analogue circuitry i.e. phase-locked loops. Both

these approaches are difficult and expensive for the high clock frequencies at

which modern processors operate.

2.3.3 Power Consumption

Power consumption is increasingly becoming an important factor in processor

design. In CMOS circuits, the majority of power is consumed during the switch-

ing of gates. Most of them take place at clock transitions in synchronous designs

causing peaks of power consumption and leading to voltage drops due the in-

ductance of the power supply. (Extreme variations can cause the system to

malfunction.) Also, periodic high currents on a chip can cause electromigra-

tion: the force of the moving electrons hitting metal atoms causing deformations

and breaks in the metal [159]. Designers resort to using decoupling capacitors,

many power pins and wide power rails to reduce these effects at the expense of

packaging costs (e.g. gold is now being used in some designs for bond wires,

pads and power distribution rails [65] [83]). For example, the DEC 21064 Alpha

Chapter 2. Towards an Asynchronous Control Paradigm 14

chip requires 138 power and ground pins to supply its 30W power requirement

and the 43A peak switching current drawn by the clock [42] [114].

Synchronous systems distribute the clock to all of the components which

means that they consume power whether they are doing useful work or not.

Selective disabling of the clock signal adds complexity to the clock buffers and

exacerbates the clock distribution problem, especially at high clock frequen-

cies. Power consumption can also be reduced by decreasing the power supply

voltage. However, since transistor threshold voltages must scale down with

supply voltage, it may become increasingly difficult to make transistors with

small enough thresholds.

If the supply voltage is not reduced in proportion to the decrease in feature

size, then the power consumption per unit area will increase. Together with

the fact that in CMOS the power dissipated is proportional to the frequency of

the clock [175], it seems likely that the upward trend in power consumption

(especially of microprocessors) will continue. Eventually, one might envisage

performance being limited by heat dissipation unless cost effective techniques

can be found. Removing heat from chips will become increasingly difficult

and therefore expensive. Solid (passive) heat sinks to cope with even moderate

power levels (50W to 100W) are large and require significant air-flow. For higher

ranges, more active devices become necessary, e.g. a thermosiphon [65] [83].

2.3.4 Shrinking Geometries

As the physical size of transistors and connections, known as the feature size, is

scaled down, therefore allowing a larger number of more complex and faster cir-

cuits to be fabricated on a single chip, the problems associated with synchronous

design (clock skew and power consumption) will become increasingly signific-

ant [115] [140].

Chapter 2. Towards an Asynchronous Control Paradigm 15

The ability of synchronous designs to take advantage of these smaller, faster

devices is being hindered by timing delays in the interconnection layers [147]. In

VLSI circuits, wiring delays are approaching a significant proportion of switch-

ing delays and can no longer be ignored. Scaling exacerbates these problems:

since systems contain more circuits, global signals have to travel longer dis-

tances relative to transistor sizes. This may mean proportionally reducing the

clock period, which would result in inefficient operation of the system.

The Effects of Scaling

It is informative to observe how a circuit’s operation is affected when its spatial

dimensions are scaled down by a factor � [175]. (Assume that the circuit’s

operating voltage is divided by � too. This keeps both the electric fields on the

chip and the power dissipation per unit area constant.)

The propagation of electrical signals through a circuit is attenuated by two

delays: in the channels of transistors and in the wires. The former, often called

the transit time � , is the time taken by charge carriers to “cross” the electric

field in the channel. Since this field is unaffected by scaling, the transit time is

divided by � (the channel becomes shorter), resulting in faster transistors. The

delay that signals encounter in wires is determined by the rate at which a voltage

presented at one end of a wire equalises across the whole wire. For a wire of

length l, this is proportional to R:C:l2, where R and C are the resistance and

capacitance of the wire per unit length, respectively. When scaled down, R is

increased by a factor of �2, C is unaffected, and l is divided by �. Consequently,

the wire delay does not change under scaling. But since the transit time is

shortened, the wire delay increases relative to the transit time. If the correct

functioning of a circuit depends on the relation between these delays, then the

shrunk version may not function correctly any longer.

Chapter 2. Towards an Asynchronous Control Paradigm 16

Delays in short wires are much shorter than delays in transistors. For small

chip areas the wire delay may, therefore, be ignored. Such an area is known as

an isochronic or equipotential region [106] [150]. By dividing a circuit into suf-

ficiently small subcircuits and realising each subcircuit in an isochronic region,

only the wire delays of the connections between different subcircuits need to be

taken into account.

Locality

It is clear that since gate delays decrease with scaling, whereas interconnection

delays remain constant, eventually the speed at which a circuit can operate will

be dominated by interconnect delays rather than device delays. However, the

situation is actually somewhat worse than the above consideration implies, due

to a factor known as stuffing. This means that the lengths of the interconnections

do not scale down with the inverse of the scaling factor, as was assumed. In

practice, as the complexity of the circuit increases, the distance over which

interconnections must be maintained on a chip of fixed area may stay roughly

constant. It has been argued from statistical considerations [89] that a good

approximation to the maximum lengthLmax of interconnection required is given

by Lmax = A1=22
where A represents the area of the chip. Therefore, the average interconnection

delay may actually increase. If scaling occurs and the chip size is also increased,

then the interconnect problem is further exacerbated. When the delay time of

the circuit depends largely on the interconnection delay (instead of the logic

gate delay), minimal and local interconnections will become an essential factor

for an effective realisation of the VLSI circuit [96].

Chapter 2. Towards an Asynchronous Control Paradigm 17

2.3.5 Design Difficulties

The clock in a synchronous circuit can be a source of both transient and per-

manent errors [150]. Even when modules communicate correctly under ideal

or typical conditions, timing problems can still arise. A change in clock speed,

caused by processing or the environment, can make the system fail even if a

conservative one is chosen. For example, it could exaggerate clock skew and

require increased setup and hold times. For systems running at their maximum

clock frequency, this means reduced reliability. Overcoming these timing prob-

lems in synchronous designs is far from trivial and is one of the causes of devices

being either slow, unreliable, or not working at all.

Thus, improvements in IC technology pose new constraints on the design

of synchronous processors and since the clock has to be proportionally reduced

this results in an inefficient operation of the system. The use of global clock

signals also affects other areas of the design process. In synchronous designs the

timing of a circuit, being fundamental to its correct operation, is one of the most

difficult parameters to abstract from the logical design. Designers must always

be aware of the performance of the hardware implementation in order to verify

its operational correctness. Also, as a consequence of the automated layout of

circuits, the designer has less control over the exact placement of global signal

lines. Therefore, the true performance of these designs is difficult to estimate

accurately. For example, in the design of the DEC Alpha 21064, designers

had to use post-layout simulations and three-dimensional representations of

the results to evaluate the clock skew across the chip [42]. This violates the

hierarchical approach to design by making it more difficult to abstract away

from the electrical characteristics of the VLSI implementation [147].

Chapter 2. Towards an Asynchronous Control Paradigm 18

2.4 Asynchronous Design – A Solution?

Asynchronous design attempts to solve some or all of the problems described

previously. Asynchronous circuits have no global clock, and therefore are free

from global synchronisation operational and design problems. Asynchronous

circuits can be based on different timing models. A circuit is delay-insensitive

(DI) if its correct operation is independent of the delays in the logic gates and the

interconnections [20] [119]. However, the class of DI circuits has been found to

be extremely limited [21] [107]. A restricted form of this class, known as speed-

independent, allows arbitrary delays in logic elements, but assumes zero delays

in the interconnect (i.e. all interconnect wires are equipotential) [41] [124] [125].

Another class of circuits, quite similar to the first two, is known as quasi delay-

insensitive: i.e. delay insensitivity with isochronic forks (the delays in the arms of

a fork are assumed to be the same) which in practice is very close to speed inde-

pendence [106]. Finally, if the circuit only functions when the delays are below

some predefined limit, then the circuit is known as bounded-delay. Rather than

relying on a bounded delay model of the worst-case path through the circuit,

there are a variety of methods for generating a completion signal [150]. Self-

timed logic will signal when its output has been composed rather than simply

producing a result at some time in the future. These methods use a multiple

wire protocol for the communication of data to and from components in a delay-

insensitive way. Thus, the circuit’s logical behaviour is independent of delays

within components and wires. In addition to being freed from the problems

of clock distribution, systems designed with these asynchronous circuits are

claimed to offer a number of advantages over synchronous designs [66] [106]:

Speed – Asynchronous circuits are optimised for the typical case; worse-case

operations simply take longer. There is no fixed clock period during which

the operation must complete and therefore delays need only be as long

Chapter 2. Towards an Asynchronous Control Paradigm 19

as necessary. This may sometimes be slower than the synchronous clock

period, but since the circuits operate at a speed determined by the current

operation and therefore are effectively limited by their average (or typical)

delay, they are potentially faster. The time variation between worst-case

and typical operation can be significant, so optimising a circuit for typical

rather than worst-case operations has an advantage not available to the

synchronous designer. Generally, these circuits can be smaller and sim-

pler than their synchronous equivalents. Note that the delays themselves

are affected by environmental parameters and conditions. Again, syn-

chronous design needs to allow for the worst-case operating conditions to

guarantee correct operation.

Power Consumption – Asynchronous circuits generally have a much lower

power consumption than their synchronous equivalent. Clocked circuits

fire most of their transistors simultaneously at rising or falling clock edges.

In asynchronous circuits, since there is no global clock signal, power con-

sumption will be more evenly distributed over time so that the voltage

variance should not be as large (transistors only fire when they contribute

to the computation). Provided the supply voltage does not fall below the

transistor’s threshold voltage, an asynchronous circuit would simply slow

down but continue to operate correctly [109]. Note that in a synchronous

circuit any slowing down could mean the clock transition occurring before

data becomes ready, thus causing the circuit to fail.

Also, an asynchronous system activates only those parts of the circuit

which are required and so does not dissipate power in the rest of the

circuit that is not being used.

Modularity – The complexity caused by the current high level of integration

and parallelism makes demands upon our ability to design reliable sys-

Chapter 2. Towards an Asynchronous Control Paradigm 20

tems. A key lesson VLSI designers learned from software designers is to

divide a problem into modules that can be designed separately.

To reduce complexity, it is necessary for the boundary between modules

to be well defined and simple. An important boundary condition is to

know when the data communicated are valid. Provided each block in

an asynchronous system is internally correct and meets the simple timing

constraints of its external interface, the design will be correct in terms of

timing. A designer can therefore simply replace one block by another with

different characteristics and evaluate any change in performance with little

further effort. Again, a synchronous designer does not have this flexibility.

Layout and Robustness – Chip layout is much simplified since the lengths

(delays) of the wires do not affect the correctness of the circuit. Similarly

delay-insensitive circuits are tolerant to implementation parameters such

as fabrication process and transistor scaling.

Metastability – An arbitration device, i.e. a device that grants one of a num-

ber requests exclusively, is an example of a circuit exhibiting metastable

behaviour. The closer its initial state is to a metastable state, the longer it

takes to settle down into a stable state. This problem, first discovered by

Chaney and Molnar [28], means that any clocked system containing such

a device has a finite probability of malfunctioning.

Automated Synthesis – Accurately estimating the timings of synchronous pro-

cessors and abstracting them from the logical design is difficult. This has

been one of the limiting factors in automatic performance-lead synthesis of

synchronous processors. Since the correct operation of an asynchronous

circuit is independent of the delays, these circuits have proved attract-

ive for automated synthesis. Many “correct by construction” synthesis

methods and compilation tools [19,35,36,66,101,106,116,171] based on the

Chapter 2. Towards an Asynchronous Control Paradigm 21

decomposition of formally-proven specifications (e.g. [43]) have been pro-

posed. Due to the complexity of designing asynchronous systems, many

recent large designs [37] [110] [170] have been synthesised via compilation

tools derived from high-level specifications.

2.4.1 Disadvantages of Asynchronous Design

Asynchronous designs have complexities of their own. First, the logic to detect

when data are valid requires extra circuitry. Second, races and hazards need

more careful consideration [180]. Output hazards of combinational circuits have

little effect on the operation of synchronous systems, as they are allowed to settle

before being latched into registers. On the other hand, hazards are intolerable

in asynchronous systems because any transition of an output or state variable

triggers other transitions immediately; the circuit operates autonomously, and

does not depend on any clock timing. For this reason, it is necessary to analyse

the circuits used and define the constraints under which no hazard will ever

occur [179]. These constraints must then be followed strictly or failure due to

hazards may result [119].

Despite the significant work on the specification and design of asynchron-

ous circuits, testing them has received relatively little attention [67] [76]. Tradi-

tionally, testing asynchronous circuits has been considered a difficult problem,

especially when compared to the synchronous case. Unfortunately, methods

used to test synchronous circuits are not directly applicable. This is due, in

part, to the absence of the global clock signal in the asynchronous design style

which reduces controllability, and makes both the generation of test vectors

and the detection of hazards and race conditions harder [22]. However, some

techniques have been adapted for use in asynchronous circuits e.g. partial scan

path [90] [144]. Other developments have been the inclusion of hazard-free

Chapter 2. Towards an Asynchronous Control Paradigm 22

circuit synthesis strategies [179] and fault modelling and fault test evaluation

into synthesis systems [145] [173].

2.4.2 Equipotential Regions (revisited)

An equipotential region is one in which a signal can be treated as identical

everywhere, that is, the signal requires a negligible amount of time to equalise

all potential differences within the designated region. This notion is funda-

mental in any self-timed methodology [150]. A basic assumption in the syn-

thesis of self-timed modules is that within a module, wire delays are negligible,

whereas delays between logic gates are arbitrary but finite. This is equivalent

to stipulating that self-timed modules have to reside completely within equi-

potential regions. In any integrated circuit technology, limits of such regions

can be defined, based on the electrical characteristics of interconnects and cir-

cuits. Particularly, in MOS technology, equipotential regions are defined within

which signals settle in less than � , the transit time of a transistor [115]. As

stated in [150], normally, these limits are much larger than the size of self-timed

modules, and hence, no special care is required.

Scaling affects the number of transistors per isochronic region. Suppose that

in an isochronic region we allow wires of length at most l, with l satisfyingR:C:l2 = �:�
for some small constant �. The maximum area of an isochronic region is then(�:�)=(R:C) and is proportional to �=(R:C). Consequently, when scaling down

the circuit the maximum area of an isochronic region is divided by�3. Since scal-

ing multiplies the number of transistors per area by �2, the maximum number

of transistors per isochronic region is divided by�. This implies that subcircuits

need to be realised in isochronic regions that are as small as possible and that

the minimum number of isochronic regions per chip scales as �3.

Chapter 2. Towards an Asynchronous Control Paradigm 23

The notion of equipotential regions also brings up another interesting and

important point: self-timed modules can be considered to be contained in equi-

potential regions, communicating with each other reliably through the use of

a handshake protocol [150]. Therefore, this protocol must be implemented

whenever signals are to be transmitted between regions.

2.4.3 Handshake Protocols

Transfer 1 Transfer 2

Two−phase Protocol

Four−phase Protocol

Transfer 1

Request−Driven Data−Driven

Sender Receiver

SenderReceiver

Figure 2–1: Two- and four-phase signalling

A single voltage transition or change of voltage on a wire is the simplest form

of signalling that an event has occurred. Since there are time and energy costs

associated with changing the voltage on a wire, it pays to use as few voltage

transitions as possible in asynchronous signalling conventions, commonly re-

ferred to as handshaking.

The most efficient signalling convention is two-phase handshaking. Consec-

utive signals or events are indicated by alternating low-to-high and high-to-low

voltage transitions. The major advantages of two-phase handshaking, also

known as transition signalling or nonreturn-to-zero (NRZ) signalling, are that

Chapter 2. Towards an Asynchronous Control Paradigm 24

it is as fast and as energy efficient as possible [150]. However, in practice, addi-

tional logic and state information may be required in each element, since logic

devices tend to be sensitive to voltage levels or only transitions in a particular

direction.

Much of the work on self-timed circuit design has centred around an al-

ternative to two-phase, known as four-phase handshaking, which was first used

by Muller in many of his examples of speed-independent circuits [117]. In the

four-phase handshaking protocol, also referred to as Muller or return-to-zero

(RZ) signalling, both wires are initially low, by convention. After each event is

sent or presented onto the wire and acknowledged, both wires return to their

initial (low) state. The protocol is termed “four phase handshaking” since both

transitions (the assertion and the return to zero) are accompanied by additional

acknowledgements from the receiver. This results in four phases for a complete

message transfer. The principal advantage of this approach is that the nature

of four-phase handshaking tends to result in very simple and natural circuit

implementations in conventional logic gates. However, it uses twice as many

transitions than are necessary and whenever wire delay is a substantial fraction

of the operation time, the extra trip required by a single communication can be

a serious performance penalty. Figure 2–1 shows both signalling conventions.

The terms request driven and data driven indicate whether it is the receiver or

sender who initiate the handshake (the terms pull and push are also sometimes

used).

2.4.4 Data Transmission

The “two-wire” handshake, shown in Figure 2–1, is sufficient to communicate

one bit of information to another component. In order to communicate a larger

number of bits as a single event, a modification is required to allow the receiver

Chapter 2. Towards an Asynchronous Control Paradigm 25

Encoder Decoder

Data

Data Valid

Data

Data Valid

Protocol Ack. Signal

Encoded Data
Transfered Across

a Data Highway

SENDER RECEIVER

Figure 2–2: Encoded data transmission

to recognise when all the constituent bits are valid. Data transmission can take

one of two forms.

Firstly, the data and a data valid signal are encoded together to form a

codeword. The transmitted codeword is recognised by the receiver which

then extracts the original data (see Figure 2–2). Various codes have been pro-

posed [16] [74] which are dependent on the handshaking convention. The pre-

cise conditions for the feasibility of delay-insensitive data communication and a

comparison of DI codes has been made by Verhoeff [174]. The most popular one

is Dual-Rail Coding (DRC) (which is equivalent to Hot codes [74] of length two),

because of their simple encoder-decoder pair. In general, the disadvantage of

encoded data transfer is the extra circuitry (and therefore, area and perform-

ance costs) required to support this mechanism. An encoder and a decoder are

required on every output and input data port, respectively. Their area depends

on the data width and the coding scheme. Furthermore, the data highway

width also depends on the coding scheme, e.g. DRC requires a highway width

twice the data width. In practice, for small data widths, dual rail encoding may

be quite efficient. But for larger data widths, it becomes expensive in silicon

area, in terms of routing the wide data highways across and off-chip, and in

terms of the latch sizes associated with holding large code lengths. Although,

Chapter 2. Towards an Asynchronous Control Paradigm 26

in the future this may become less of a problem since with scaling, the effective

area increases by the square of the scaling factor, and improving technology is

increasing the physical area of chips too. Of the other codes suggested [174],

Berger Codes seem promising since the data value is a subset of the encoding

(i.e. separable), they have a low redundancy, and are easy to code.

An alternative scheme for self-timed datapaths would be to use data path

components which operate directly on the DI codeword instead of the data

alone. This would remove the need for encoding schemes, (a detection mechan-

ism still being required of course). At first sight, this may seem expensive due

to the complexity of the data path components involved, however it has been

shown that some designs based on dual-rail encoded data can be comparable

in size and speed [108] [131].

Data

SENDER RECEIVERData Valid

Req/ack

Figure 2–3: Bundled data transfer

The second form is “bundled data transfer” and is based on the bounded

delay model. The data wires and the data valid signal are treated as a bundle, i.e.

the data valid (DV) signal reaches the receiver after the data wires become valid.

This implies that the propagation delay for the data must be less than the delay

to propagate the DV signal. In general, this condition is met by inserting an

extra delay on the DV wire to account for the worst-case delay on the data wires.

This form allows the use of standard datapath components such as multipliers

and ALUs without the coding circuitry (as shown in Figure 2–3), thus reducing

the communication and area overheads.

Chapter 2. Towards an Asynchronous Control Paradigm 27

The main advantage of this method of building logic functions is that stand-

ard techniques or existing cell sets can be used to transform the data and be still

used in the framework of a self-timed system. A major disadvantage is that a

careful examination of the worst-case delay through the logic block and the data

delivery to the receiver is required to guarantee that the bundling constraint is

met under all conditions (similar to the task carried out in synchronous designs).

Guaranteeing worst-case delay will often require the bundling delay to be large

compared to the average case performance of the logic. This not only slows

down the module, but also the entire system that uses this module.

Conversions between dual-rail and bounded protocols is simple [150] so

that the self-timed logic techniques can be used even in a system that is largely

bundled. If dual-rail signalling is used internally on-chip, since dual-rail de-

mands more resources in terms of wires and pins, then it makes sense to convert

to a bundled protocol when sending data off-chip.

2.4.5 Ease of Design

In addition to the advantages of asynchronous design outlined earlier, further

benefits of reduced design time and costs are also possible. Asynchronous

design could be considered easier than synchronous design since the prob-

lems with clock distribution, skew and excessive voltage surges may not exist,

so a designer need not spend time resolving them. Furthermore, the delays

of infrequently used blocks do not significantly effect overall performance, so

costly sophisticated design techniques may be avoided. Simpler designs may

be used for blocks with data dependent delays (e.g. the ripple-carry adder).

The use of high-level design languages derived from CSP [73], such as Tan-

gram [149] and CHP [106] ease the difficulties of designing asynchronous cir-

cuits by allowing programs to be automatically compiled to circuits by a silicon

compiler [25] [171].

Chapter 2. Towards an Asynchronous Control Paradigm 28

The major drawbacks of self-timed circuits are in the circuit and signalling

overheads involved in local communication, and any timing constraints that are

required to be met by particular choices of signalling protocols. For example,

data may be passed in a delay-insensitive fashion at the expense of using mul-

tiple wires per data bit to encode this form of signalling [174]. If bundled data

signalling is used instead, the complexity is reduced at the cost of meeting the

bundling constraint. Any such timing constraints must be analysed thoroughly

and carefully if the circuit is to operate correctly.

2.5 Exploiting Performance

This thesis seeks to exploit the potential performance benefits of asynchrony

in processor systems. Care must be taken when comparing synchronous and

asynchronous implementations since in practice their design goals are differ-

ent [2]. One must also be aware of the trade-offs between performance, area

and power consumption.

2.5.1 Synchronous versus Asynchronous Control

Events in a synchronous processor are recognised at regular, pre-determined

intervals which are ultimately fixed by the clock. If the duration of all actions

were constant and known precisely, then the sequencing of actions could be

implemented efficiently with a global clock. Unfortunately, the actual delay can

vary and is likely to be a lot less than the predetermined worst-case delay, which

could result in significant idle periods between events and the next clock tick.

In contrast, an asynchronous architecture which is realised by using self-timed

components with appropriate handshaking protocols, is able to adjust to varying

delays in the components which could be due to data dependencies or changes

in the environment. This robustness is at a price, due to the overheads of local

Chapter 2. Towards an Asynchronous Control Paradigm 29

handshaking protocols. For this approach to be viable, the average delay of the

components together with overheads of self-timed design should be less than

the worst-case delays plus overheads of a synchronous design. Synchronisation

overheads are difficult to estimate as they are intimately influenced by the clock

frequency, technology, fabrication process, routing and chip size.

Most importantly, the self-timed (ST) overhead should not exceed the syn-

chronous overhead by more than the magnitude difference between the aver-

age and the worse-case delay of the component. As discussed earlier, while

improvements in technology may cause the synchronous overheads to increase,

this may not be the case for the overheads due to asynchrony since these can

be accounted for by gate delays and local communications. Improvements in

performance can be achieved by either reducing the ST overhead directly by

speeding up the specific circuits or indirectly by hiding the overhead by do-

ing some “useful work” concurrently. Alternatively, a designer could optimise

the design for typical operation. A synchronous designer’s primary goal has

been to reduce the worse-case delay (possibly at the cost of increasing the av-

erage delay) of components, therefore since the scope for a sufficient margin

of difference is small, incorporating synchronously designed components into

ST systems may not prove advantageous. Furthermore, when components are

connected in pipelines or arrays, the overall performance will tend towards the

worse-case value since throughput is limited by the slowest individual compon-

ent stage [87] [97]. Consequently, in comparison to an equivalent synchronous

design, the performance may even be worse due to the ST overheads. Previ-

ous attempts to harness this proposed advantage of self-timed circuits have not

proved too successful [146] [156].

Chapter 2. Towards an Asynchronous Control Paradigm 30

2.6 Pipelines

Pipelining is an implementation technique whereby a cascade of processing

stages is connected (generally in a linear fashion) to perform functions over a

stream of data flowing through the stages. This technique, which is by far the

most popular method for enhancing performance in CPUs, provides a way to

start a new task before an old one has been completed.

The throughput of a pipeline is determined by how often a result exits the

pipeline. In a synchronous pipeline all of the stages must be ready to proceed at

the same time. The time required to move data down one stage of the pipeline,

the machine cycle, is determined by the time required by the slowest pipe

stage. As long as there are no dependencies between the data, the throughput

is fixed at one result per machine cycle. Data flow between adjacent stages in

an asynchronous pipeline is controlled by a handshaking protocol. Results only

move forward when the succeeding stage is empty. An asynchronous pipeline

may have a variable throughput rate since different stages may experience

different delays. For complex (data-dependent) computations, asynchronous

design has the advantage of exploiting the actual delays, whereas synchronous

solutions are adjusted to the worst-case.

2.6.1 The Conversion of Synchronous Pipelines to Equivalent

Asynchronous Ones

This section describes the transformation of a synchronous pipeline to an equi-

valent asynchronous one, as illustrated in Figure 2–4. Part (a) illustrates a

conventional synchronous pipeline with a clock signal being used to control the

transfer of data between functional units (FUs), and by the control unit (CU), to

generate the correct sequence of control signals to define the pipeline’s

Chapter 2. Towards an Asynchronous Control Paradigm 31

Control Unit

Functional
Unit

Functional
Unit

Control
Signals

Control
Signals

"Network"

Clock

Control Unit

Functional
Unit

FU Interface

Functional
Unit

FU Interface

Encoded Data

Acknowledge
Control
Signals

Data Req/Ack Signal

(b)

(c)

Control Unit

Functional
Unit

Functional
Unit

Clock

Control
Signals

Data

(a)

Control
Signals

C1 C2

Control
Signals

Figure 2–4: From a synchronous to an asynchronous pipeline

operation. In the CU, the relationship between control signals C1 and C2 is

strictly bound since they must be generated at the correct time and in correct

order. In other words, the CU needs to incorporate a (pessimistic) “timing”

model of the pipeline. A simpler pipeline as in the case of RISC architectures,

results in simpler control and therefore smaller control costs.

Part (b) illustrates an intermediate stage, where the transfer of data is con-

trolled locally. The “network” is responsible for communicating data and control

Chapter 2. Towards an Asynchronous Control Paradigm 32

signals between FUs. This process can be as simple as bundled data trans-

fer [158], or more complex such as encoding the data prior to transfer and

decoding it at the receiver [174]. The clock (to the CU) is now only used as a

time reference for the generation of FU control signals. The CU still needs to

model the timing characteristics of the pipeline which results in minimal per-

formance gains, if any. However, the global clock signal has been removed by

the decentralisation of communication controls.

Part(c) illustrates a truly self-timed pipeline. The interfaces receive control

signals from the CU and encode transfer data for detection at the interface of

the destination. When valid data has been detected and latched, the interface

sends an acknowledgement signal back to sender. It is now able to remove the

data and release the bus (if shared). The interface is responsible for meeting the

operational requirements of the FU, such as guaranteeing that the input data is

valid before control signals are asserted. This, together with the communication

protocol, decouples the logical behaviour from the timing characteristics of the

pipeline. This enables functionally-equivalent FUs to be interchanged without

affecting the operation of the rest of the pipeline. Since the CU no longer re-

quires the timing characteristics, the pipeline control becomes less complex and

therefore faster. The control signals C1 and C2 no longer have to be generated

at the right time or in the correct order with respect to each other, since a FU

cannot begin its operation until it has received both the data and the control

signals (due to the FU interface). The only constraint on the control or data

signals is that the previous value must have been received by the correspond-

ing FU interface before the next one can be issued. This means that both the

CU and the interfaces cannot change the value of a signal until it has received

an acknowledgement from the receiver. A typical handshake cycle might be as

follows: wait until FU is not busy; assert the control signals; wait for an acknow-

ledgement; clear control signals; repeat. This naturally maps to a four-phase

protocol [150] with the acknowledgement signal also doubling as a busy flag.

Chapter 2. Towards an Asynchronous Control Paradigm 33

This would allow the control unit of a processor to use the acknowledgement

signals from FUs as part of a scoreboarding mechanism.

The CU cannot predict exactly when the FU with the largest delay in the

pipeline will finish. By letting the FU indicate that it has finished, and not

necessarily to the control unit but to its successor, the pipeline is driven by local

average delays and not centrally-fixed worst case ones.

2.6.2 Micropipelines

L
og

ic

L
og

ic
Delay

C

CC
C

Stage A Stage B Stage C

Latch Latch Latch

Ack

Req

Ack

Ack

Req

Req

Req Ack

Latch

Ack

Req

Data In

Req In

Ack Out Ack In

Req Out

Data Out

Figure 2–5: A basic micropipeline FIFO

In the 1988 Turing Award lecture, Ivan Sutherland outlined a methodology for

the design of asynchronous pipelined systems using the two-phase bounded-

delay (bundled data transfer) protocol [158]. The interface has an arbitrary

number of data bits accompanied by two signalling wires (req and ack). A

micropipeline is a simple event-driven elastic pipeline which maintains the

order of data. A block diagram of a generic micropipeline is shown in Figure 2–

5. It consists of three parts: a control network consisting of a single C-element

per micropipeline stage, a latch in each stage, and possibly some combinational

Chapter 2. Towards an Asynchronous Control Paradigm 34

logic between stages. The logic can signal its own completion (Stage A), or it can

be simulated with a known delay (Stage B). If no processing is present between

stages, the pipeline becomes a first-in first-out (FIFO) queue (Stage C).

2.7 Related Work

Udding [165] [166] first proposed a formal definition and classification of delay-

insensitive circuits. Since then much theoretical work has evolved from process

algebra [82], trace theory [41] [140] [141] [172] and Petri nets [31] [101] [116] [178].

Due to the complexity of designing asynchronous systems, many large designs

have been synthesised via compilation tools derived from high-level methods.

These circuits have been shown to be efficient and robust in the design of con-

trol circuitry [36] [74] [106] [177]. At the board level, communication interfaces

such as the VME protocol [68] already make use of asynchrony [99]. However,

these circuits have been considered inadequate for designing data paths for

the following reasons. The overhead of encoding data, generating completion

signals and arbitration on buses make them slow and wasteful in area [2] [135].

Nevertheless, a few fully asynchronous microprocessors have been proposed.

Many of these designs have concentrated on specific aspects of self-timing such

as their formal synthesis [37], low power consumption [48], or just the feas-

ibility of implementing conventional microprocessor architectures (with little

emphasis on their performance or efficient operation).

The first asynchronous VLSI processor was built by Martin [110] at California

Institute of Technology. The goal was to demonstrate that complex circuits could

be generated from specifications using a library of self-timed elements. The

Amulet project [56] [137] at Manchester University investigated the application

of asynchronous micropipeline techniques to the commercial low-power ARM

microprocessor. The NSR processor [18] built at University of Utah is a general

Chapter 2. Towards an Asynchronous Control Paradigm 35

purpose processor built from Actel FPGAs. In addition to being internally self-

timed, the units are decoupled through self-timed FIFO queues between each

of the units which allows a high degree of overlap in instruction execution.

Other processors which are still in their design stages (or have yet to be built)

include: SCALP [49] and Hades [47], which are superscalar designs; TITAC,

which is a simple 8-bit processor built using CMOS gate array technology [129];

the ECSTAC [123] processor which uses an 8-bit architecture and a two-phase

communication strategy; and STRiP which, although it is called “self-timed”, is

in fact a synchronous processor which can dynamically alter its clock period [39].

Although these designs are based on a single micropipeline-style datapath [93]

[158], viewing the datapath as a linear sequence of stages may not be very effi-

cient for reasons elaborated in the following section. A couple of designs have

begun to investigate the influence self-timing has on processor architectures.

A novel architecture has been recently proposed by Sproull et al. at SUN Mi-

crosystems called the Counterflow Pipeline Processor Architecture [157], which

derives its name from the fact that instructions and results flow in opposite

directions in a pipeline and interact as they pass (similar to a 1-D systolic ar-

ray). It supports a form of register renaming, data forwarding, and speculative

execution across control flow changes. The performance of such an architec-

ture is still unknown [152]. Fred [142] is a decoupled, pipelined architecture

which supports dynamic instruction re-ordering and out-of-order instruction

completion.

2.8 This Thesis

One feature common to all of these processor designs is their view of the

datapath. As with synchronous designs, the datapath is still viewed as a single

linear pipeline. The work described in this thesis differs from them by viewing

Chapter 2. Towards an Asynchronous Control Paradigm 36

a datapath as a network of asynchronously communicating resources through

the generalisation of the micropipeline concept to a network of communicating

pipelines.

2.8.1 Towards Asynchronous Datapaths

The clock period of a synchronous pipeline is determined by the delay of the

slowest stage which takes into account worst-case timings for execution and

propagation. Furthermore, optimal performance for a pipeline is achieved

when all the stages are balanced. This is quite difficult to achieve in practice,

since the stages of a typical pipeline perform different operations, and often

their delays are data-dependent. Figure 2–6(a) illustrates the operation of such

a datapath in which synchronisation overheads have been omitted for the sake

of clarity. This imbalance between stage delays results in idle periods leading

to poor utilisation of the physical resources. Of course, further pipelining of the

slower stages could reduce this at the cost of increased design complexity and

synchronisation overheads.

In contrast, the performance of an asynchronous pipeline is determined by

the actual delays of individual stages (usually the average delays), and over-

heads due to self-timing protocols (which have been omitted in Figure 2–6(b),

again for the sake of clarity). ([54] compares synchronous and asynchronous

pipelines, taking into account their overheads.) This pipeline only exploits tem-

poral parallelism as before, but does so more efficiently. An instruction proceeds

to the next stage once it has completed the current one and the next stage is free.

Although each stage may consist of a number of (different) resources, generally,

only one (or a subset) of them will be active at any time for a given instruction.

The average throughput of any asynchronous pipeline cannot be greater

than the average throughput of the stage with the slowest isolated average

performance [128]. This is only the upper bound and thus may not always be

Chapter 2. Towards an Asynchronous Control Paradigm 37

OF

II

WB

E3 3

4E

E5

(a) A Synchronous Pipelined Datapath - exploits temporal parallelism

LD

ALU

ALU

ALU

E1 1

5 WB

E

OF

ALU OF

3ALU

4

3

1

5

OF

2

5

WB2

OF3

1 WB

E

OF

E

WB3

4OF

2

II4

II

II5

3

2

WB1

II

4E

5OF

4

WB

E5

STR

WB5

Idle Period

Active Period

(b) An Asynchronous Pipelined Datapath

LD

ALU

ALU

STR

ALU

II1

II

OF1

1

II2

OF

E1

1

OF2

II

II3

2

II

WB2

2

WB1

1

E2

OF3

II

OF

E3

2

WB3

II4

II

4OF

STR

E

4E

II5

LD

5OF

ALU

2

E5

3

WB5

E
OF

WB
- Instruction Execution
- Write-back

II

- Operand Fetch

- Instruction Decode
and Issue

(c) An Asynchronous "Networked" Datapath - exploits spatial parallelism as well

Figure 2–6: Synchronous and asynchronous pipelines

achieved, especially since once a stage is idle it is no longer able to maintain its

isolated average performance. Idle times, caused by blocking and starvation,

can be reduced by introducing additional buffers between stages (the number

required being closely correlated to the coefficient of variation of data dependent

delays between the stages [87]). However, this increases pipeline latency and

area costs, possibly resulting in reduced area-time performance and therefore

comparing unfavourably with a synchronous equivalent. Exploiting spatial

Chapter 2. Towards an Asynchronous Control Paradigm 38

parallelism, through the improved utilisation of resources, not only reduces

idle times but may also reduce the number of buffers required to maintain

isolated average performances. Thus, an implementation technique which is

more flexible than a linear pipeline is required to model datapath behaviour

efficiently.

Figure 2–6(c) illustrates an asynchronous datapath which exploits spatial

parallelism within some of the stages. (The datapath is no longer modelled as a

true pipeline). Successive instructions which utilise different resources within

a stage are now able to execute concurrently. In the simple example under

consideration in Figure 2–6(c), the execute stage has two concurrent resources.

It is possible for the instructions to share resources in any of the stages. For

example, while an instruction is stalled waiting for an operand on one bus,

another instruction could use the other buses to fetch its operands. The amount

of spatial parallelism which can be exposed in practice is determined by the

relative delays of the functional units in the datapath.

2.9 Micronets

Micropipelines [158] have been used to model linear asynchronous pipelines

such as datapaths [56] [143], and two-dimensional pipeline structures [64].

However, as described earlier, viewing a datapath as a single linear pipeline

does have limitations. A new paradigm called micronets is proposed for the dis-

tribution of control in asynchronous processor architectures. Micronets model

datapaths as a network of communicating functional units which allows the

efficient exploitation of both fine-grained instruction-level parallelism and the

actual execution costs of instructions.

Chapter 2. Towards an Asynchronous Control Paradigm 39

2.9.1 Micronets, Microagents and their Micro-operations

In a synchronous datapath the centralised control forces each instruction to go

through all the stages regardless of its need to do so (in effect a single pipeline).

The cost of execution is determined by the worst-case estimate of the slowest

stage. The same is true of a micropipeline-based datapath [56], except that the

cost is now determined by the actual delay of the slowest stage.

Micronets are effectively a generalisation of Sutherland’s micropipelines.

The components within each of the micropipeline datapath stages are exposed

in the form of fine-grain microagents. The microagents in any “stage” can operate

concurrently, and microagents in the different “stages” communicate with each

other asynchronously. Program instructions only utilise the relevant microa-

gents and for just as long as is necessary. More than one instruction may utilise

the different microagents within a “stage”. Figure 2–7 compares the resource

utilisation in micropipelined and micronet datapaths. In the former, the num-

ber of active instructions is never greater than the number of pipeline stages,

and at any time only a subset of the resources in each of the stages is normally

utilised. In micronets, the number of instructions which may be active at any

time is bounded by the number of microagents. An instruction which does not

require any of the resources within a “stage” can skip it. Furthermore, the time

spent by instructions in microagents may vary. Due to these reasons computa-

tions may overtake. In this way, micronets differ from 2-D micropipelines [64]

which represent asynchronous regular arrays. This feature will be exploited to

implement out-of-order instruction completion. (Note also that a microagent

itself can consist of a number of (micro)pipeline stages).

Figure 2–7(b) shows an instruction (I1) executing concurrently with a suc-

ceeding instruction (I2) in what would have been the same stage in a syn-

chronous pipeline. Because there are effectively a number of paths, different

instructions need not necessarily complete in the order they were initiated. Also,

Chapter 2. Towards an Asynchronous Control Paradigm 40

Control Unit

Control Unit

Pipeline Stage

Microoperation control signals

Direction of data flow A busy microoperation

I1

I2

I3

I3

I1

I1

I2

I3

I3

I4

I5

a) Typical resource utilisation in a pipeline

b) Snapshot of typical resource utilisation in a micronet

Figure 2–7: Contrasting a micropipeline with a micronet

the micronet is controlled at two levels: the data transfer between the micro-

agents is controlled locally, whereas the choice of micro-operations within the

microagent and the destinations of the results are controlled by the control unit

or by other microagents (see I4 and I5 in the figure). Communication between

microagents may occur either across dedicated lines or via shared buses. The

micro-operation control signals can also be used to prevent contention on shared

Chapter 2. Towards an Asynchronous Control Paradigm 41

buses. There are no specific restrictions on the choice of handshake protocol

employed at the different control levels. However in practice, such a choice is

influenced by performance and area considerations.

2.9.2 Micronet-based Datapaths

The micronet control paradigm is investigated in the context of a Reduced

Instruction Set (RISC) architecture. Self-timed circuits are used to distribute

processor control away from a centralised Control Unit (CU) (found in conven-

tional synchronous processors) to autonomous functional units. This distribu-

tion of control locally to functional modules affords greater scope for exploiting

concurrency between instructions.

Data dependencies within synchronous datapaths are resolved by using

either a hardware or a software interlock [70], which adds to their control com-

plexity. A micronet datapath uses existing handshaking mechanisms together

with simple locking of registers to achieve the same effect with trivial hard-

ware overheads. In synchronous designs the structural hazards are normally

avoided in hardware by using a scoreboarding mechanism. In micronets this

is provided by existing handshaking protocols. The choice of a four-phase

communication protocol [150] between the functional units allows the effi-

cient utilisation of these resources, by avoiding the additional control costs

(scoreboarding and hazard avoidance mechanisms) normally associated with

processors which exploit ILP. (This choice and its justification is discussed in

greater detail in Chapter 5). Out-of-order instruction completion can be suppor-

ted in synchronous designs, but at a non-trivial cost. Micronets are able to relax

the strict ordering of instruction completions and thereby exploit further ILP.

A Micronet-based Asynchronous Processor (MAP) design has the advantage of

exploiting the best-case delay (behaviour), whereas synchronous solutions are

adjusted a priori to the worst-case. The result is an increase the utilisation of

Chapter 2. Towards an Asynchronous Control Paradigm 42

the functional units by reducing their stalls. By exploiting both ILP and actual

run-times of instructions, better program performances may be achievable by

asynchronous processors.

2.10 Summary

There has been renewed interest in asynchronous circuits, especially in a restric-

ted form known as self-timed circuits [150]. These circuits have a number of

advantages [106], including their automatic synthesis from specifications [66].

While this has resulted in provably-correct circuit designs, the performance of

the resulting processor architectures have been largely overlooked.

A few processors have been proposed [56] [123] [143] which utilise asyn-

chrony at the circuit level and exploit average-case behaviour for better per-

formance. However, in the only comparison of an asynchronous processor

with its synchronous equivalent, results showed the synchronous version to be

faster, smaller and at the same time consume less power [56]. One reason could

be that the chosen architecture itself is better suited to a synchronous control

paradigm. This is emphasised by the fact that the next design will include archi-

tectural modifications [55] (rendering a comparison to the original synchronous

version unfair). This underlines the fact that the design of a processor must

consider the relationship between different aspects of the system.

A new model has been proposed called the micronet for modelling asynchron-

ous datapaths, which efficiently exploits actual instruction execution times and

instruction-level parallelism. Micronets model processor architectures as a net-

work of communicating resources, in contrast to the traditional one of a linear

pipeline. Micronets distribute the control to the functional units, which en-

ables the exploitation of fine-grain concurrency between instructions. It will be

shown that the overheads due to asynchrony can be hidden with the four-phase

Chapter 2. Towards an Asynchronous Control Paradigm 43

protocol being used to implement scoreboarding and hazard avoidance mech-

anisms, without incurring additional control costs. Although improvements

may be obtained in one area of the system design, it is imperative that this is not

at the expense of performance in another, thus having an overall negative effect

on the system. Therefore, the following chapters examine the influence of this

novel asynchronous control paradigm on the design of processor architectures.

In particular, the instruction latencies and resource utilisation in a micronet ar-

chitecture will be investigated together with the compiler’s ability to schedule

code for this target.

Chapter 3

A Parallel Event-Driven Simulator

“Both users and designers of computer systems are interested in perform-

ance evaluation since their goal is to obtain or provide the highest perform-

ance at the lowest cost.” [80]

3.1 Introduction

The dynamic behaviour of asynchronous systems is difficult to model analyt-

ically for making accurate performance predictions. The approach adopted in

this work has been to simulate register-transfer-level (RTL) models augmented

with timing obtained from SPICE-simulations of their circuit implementations.

This chapter describes the development and implementation of an asynchron-

ous parallel event-driven simulation platform for the performance evaluation

of both synchronous and asynchronous processor architectures and systems.

One objective was to develop a simulator for obtaining performance figures for

the execution of algorithms under different scheduling or placement strategies,

on different (multi)processor architectures and interconnection topologies. In

particular, this would include the measurement of the performance over time

of an ensemble of heterogeneous functional units which operate concurrently

44

Chapter 3. A Parallel Event-Driven Simulator 45

and communicate with each other asynchronously. This tool is the workbench

for the work described in this thesis.

3.2 Parallel Discrete Event-driven Simulation

Logic simulation is a common and effective technique for investigating the beha-

viour of computer designs. However, accurate simulations of large designs can

be extremely time-consuming. By executing them on parallel architectures, Par-

allel Discrete Event-driven Simulation (PDES) attempts to address this problem

by exploiting the structural concurrency inherent in the applications.

A Parallel Event-driven Processor Simulation Environment (PEPSÉ – pro-

nounced in the same way as the well known fizzy drink) has been developed

based on the ELSA algorithm [8]. PEPSÉ provides a framework for efficiently

evaluating the performances of both sequential and parallel architectures. The

architectural components may be modelled either uniformly at one of the dif-

ferent levels of abstraction, or the components can be modelled individually

at different levels. One could for example examine the performances of cache

coherence protocols in shared memory MIMD machines, communication pro-

tocols for local area network, effects of topology in distributed memory MIMD

machines, resource hot spots within processor design, to name just a few. For our

purposes, architectures are modelled at the register-transfer level with accurate

timing delays of the functional units being provided by SPICE simulations of

their VLSI implementation.

The current implementation of PEPSÉ runs on a network of transputers

called the MEiKO Computing Surface [79]. The architectures are modelled

in the programming language Occam2 [78]. (Occam has long been used to

specify the behaviour of circuits [103] [105].) A system can be described as a

collection of concurrent processes which communicate with each other asyn-

Chapter 3. A Parallel Event-Driven Simulator 46

chronously through channels. The semantics of Occam2 captures the behaviour

of asynchronous circuits naturally [161]. The asynchronous nature of the un-

derlying simulation algorithm efficiently simulates the class of architectures

under investigation (compared to time-driven simulations). For typical sizes

of system-under-simulation (s-u-s), these runs could be in the order of a few

hours on a uniprocessor. PEPSÉ exploits the structural concurrency in the s-u-s

to reduce these run times considerably.

3.3 An Overview of PEPSÉ

The simulator is comprised of a number of components, as shown in Figure 3–1.

Interconnection

Network

Architectural

Components

Algorithm
in a High-Level

Language

Algorithm

Model

Placement
and

Scheduling

Architectural

Description

Translation

Compilation

Simulator

Figure 3–1: Overview of the simulator

Algorithm in HLL – This is the application program/software which is to be

executed on the simulated architecture. The application program is usu-

ally in the format of a high level language, and will need to be “compiled”

into a format which is suitable for the particular architecture upon which

it is to be executed. This “compiled” format is called the Architecture

Specific Code.

Chapter 3. A Parallel Event-Driven Simulator 47

Algorithm Model – This is the Architecture Specific Code (ASC) of the applic-

ation program. The ASC contains instructions specific to the processor

or architecture upon which the application is to be simulated. Whether

the ASC is equivalent to assembler, machine code or some other inter-

mediate code depends on the level at which the processor is modelled.

For example, for register-transfer level models, the ASC would normally

be in the form of assembler instructions from the processor’s instruction

set. Since we are interested in the performance of an algorithm on a

given architecture, it would also be necessary to take account of compiler

characteristics.

Placement and Scheduling – This is the strategy for distributing the ASC over

the processor architecture, and determining how it is to be scheduled.

(Currently this task is achieved manually.)

Architectural Description – This consists of two groups:

1. The Architectural Components which include: processors (which

consist of two objects, an instruction fetch object and an instruc-

tion execute object, for modelling SIMD architectures or instruction

prefetch mechanisms), synchronous processors with clock speed as

a parameter; memories or caches whose parameters include size,

access time and initial contents; and application specific hardware

which includes components from logic gates to application-specific

integrated circuits (ASICs).

2. The Interconnection Network which describes the communication

between the architectural components. Direct or point-to-point con-

nections between two objects to model simplex communication can

be achieved using the Occam2 communication channels. Shared

connections, such as a bus, need to be modelled by a simulation ob-

ject. These objects have both a propagation delay and the number of

Chapter 3. A Parallel Event-Driven Simulator 48

components which share the bus as parameters. Half duplex com-

munication can be modelled as a bus with two ports, and full duplex

communication as two simplex ones.

3.3.1 The Simulation Platform

The simulation platform is based on ELSA algorithm. In ELSA, logical processes

have their own local simulation clock and communicate with other processes via

time-stamped (duration bounded) messages. Each logical process or simulation

object consists of two components, firstly a behavioural model of the object

which evaluates the physical process’ operation based on the value of its inputs

at the current simulation time and secondly, a mechanism to control the local

simulation clock and time-stamping of output messages. This mechanism uses

the delay associated with the particular operation to generate the correct time-

stamped output. The simulation proceeds asynchronously, with each logical

process passing state information in the form of tuples via their simulation

platform, as shown in Figure 3–2.

Simulation Platform

Behavioural Description

Simulation Platform

Behavioural Description

Object BObject A

Channel
carries tuples of information

(start time, end time, state values)

between Objects.

Figure 3–2: The simulation platform.

Each tuple of information contains:

1. a set of state values, and

Chapter 3. A Parallel Event-Driven Simulator 49

2. a start time and an end time which defines the interval for which these state

values are valid.

Note that a tuple containing a start time equal to the end time conveys no useful

information and that all tuples on each channel must represent contiguous

periods of time.

3.3.2 The Basic Simulation Platform Algorithm

The following steps outline the basic simulation platform algorithm:

Algorithm 1 : Basic Simulation Platform

1 Initialisation of variables and flags.

2 Clear input buffers, set input start and end times = 0,

and place initial output values in output buffers.

3 Send the initial output tuples out on their respective output channels.

Set the object’s current simulated time = 0.

4 If necessary, get required tuples from each input channel.while (current simulation time � tuple’s end time) get the next tuple.

5 Evaluate the function (output states values)

based on current inputs using the behavioural description.

6 Calculate the start time of all of the output tuples.

start time = current simulation time + object delay time �
7 Calculate the end time of all of the output tuples.

end time of each output tuple = MIN(end time of all input tuples) + �
8 Send the output tuples which are still within the simulation window,

i.e. tuples which have start time < “Stop Simulating” time.

9 Update simulation time.

current simulation time = MIN(end time) of all the inputs tuples

10 if not finished simulating, i.e. still within the simulation window,then goto step 4.

11 Sink outstanding tuples, i.e. those tuples which have start times that

are outside the simulation window.

Chapter 3. A Parallel Event-Driven Simulator 50

Steps 1 and 2 are initialisation stages, with Step 3 sending the initial tuples

defining the output states for the period (0, �) at the start of the simulation.

The only inputs which can affect the state values during the period (0, �) are

those with start times < 0, which obviously do not exist. Steps 4 to 10 constitute

the main loop where each time a new tuple(s) is required to advance the object

simulation time, a re-evaluation of the output states takes place. Step 6 evaluates

the output start time which is the how far into the simulation the object has

progressed plus �, a delay for the generation of the output state values. Step

7 determines the output end times which are set to the time at which the next

“event” occurs, which will be at the earliest end time of all of the input tuples,

plus � the same delay for the generation of output state values. At Step 9, the

current simulation time of the object is advanced to the time at which the next

“event” occurs. This means a new tuple(s) will be required and therefore a re-

evaluation of the output values. Step 11 is more an implementation requirement

to guarantee that all objects will complete executing and terminate.

The propagation delays over dedicated wires (one-to-one connections) are

modelled by incorporating them directly into the source object, and delays on

shared wires are modelled as a separate resources. If necessary, the simulation

platform for these resources can easily be made to detect instances of contention.

3.3.3 The Class Models

Using the basic simulation platform together with its behavioural description is

sufficient to allow the simulation of an object, if the output state(s) of that object

are a function of only the current input(s), as in the case of simple logic gates:

output states(time + �) = f(input states(time))

Since the simulation occurs at the instruction/register transfer level, most ob-

jects have more complex behaviours such as state machines. This means that

Chapter 3. A Parallel Event-Driven Simulator 51

the output states are a function of both the input states and some internal state

of the object:

output state(time + �) = f(input states(time) + internal state(time))

This means it is necessary to modify the basic simulation platform. Another

reason for modifying the simulation platform of some objects is related to per-

formance. In order to achieve good performance on parallel systems it is neces-

sary to keep inter-processor communication to minimum.

Clocked Objects

State machines, registers, synchronous processors etc., all require some sort of

“clock” or latch signal. These objects are generally only sensitive to the value of

input signals at the transition of (or when a certain value occurs) on one of the

inputs, i.e. the clock. If an object has a clock input then the simulation platform

need only evaluate the outputs once every clock period, instead of each time

the object needs a new tuple. In practice, these clock/latch signals can either be:� regular/periodic or irregular/aperiodic, and either� edge- or level-triggered.

For periodic clock signals, the simulation platform will know when the clock

transitions will occur. For example, if the clock input signal is regular, e.g. from

an oscillator, the clock input signal can be modelled internally within the object.

However for aperiodic clock signals, the simulation platform will have to test

only the state value of the clock input to determine its timing information. An

alternative would be to wait for a transition on the clock input and then allow

the behavioural description to test the clock input along with the other inputs

when evaluating the outputs. Remember, even if outputs do not change it will

Chapter 3. A Parallel Event-Driven Simulator 52

still be necessary to send new output tuples to allow the simulation to proceed.

The effect of the clocked inputs on the basic simulation platform is discussed in

the following sections.

Objects with Irregular Clock Signals

This simulation platform need only evaluate the outputs when there is a new

tuple on the clock input, therefore the platform only considers the tuples on the

clock input as new events. This implies that the simulation only uses the clock

input for the generation of timing information. Each iteration of the simulation

loop will require a new clock input tuple with the corresponding tuples of the

other inputs being required to evaluate the output tuples.

The Simulation Algorithm

The steps of the basic algorithm requiring modification are:

4. Get the required tuples.� On the clock input:

– if (current simulation time == end time) then get the next

tuple.� For each of the others:

– while (current simulation time � end time) get the next

tuple.

7. Calculate the end time of all of the output tuples:� end time = clock input’s end time + object delay time �.

9. Update simulation time:� current simulation time = clock input’s end time.

Chapter 3. A Parallel Event-Driven Simulator 53

Objects with Regular Clock Signals

The simulation platform for an object of this type is a special case of the one

with an irregular clock signal. The simulation advances a fixed (and known)

amount of time, i.e. the clock period, each iteration and therefore there is no

need for a separate clock input. Even if no new input tuples are required or the

input states do not change over a number of iterations, it is still necessary to

re-evaluate the outputs since the timing information will need to be updated,

and being a clocked object, the outputs are likely to be functions of both the

inputs and the internal state of the component.

The Simulation Algorithm

The variable object latency can be used as an offset or time delay before the

periodic clock starts.

3. Send initial tuples:� current simulation time = object latency.� Each input tuple’s start time = current simulation time.

4. For each input, make sure the tuple is valid:� while (current simulation time � end time) get the next tuple.

7. Calculate the end times of all output tuples:� end time = current simulation time + object delay time � + clock

period.

9. Update simulation time:� current simulation time = current simulation time + clock period.

Chapter 3. A Parallel Event-Driven Simulator 54

Level-triggered Clock Signals

A level-triggered clock input is treated just as another input since this input will

only have a boolean effect on the other inputs. Therefore, the basic simulation

platform would suffice. However, employing the simulation algorithm used

for irregular clocked objects may generate fewer output tuples.

3.4 Development Notes

The PEPSÉ simulation platform was implemented in Occam2 [78]. Occam2 sup-

ports concurrent threads of execution (processes) and uses unbuffered channels

to provide synchronisation and communication between processes. However,

since synchronisation is not required, the channels are buffered to avoid dead-

lock, decouple logical processes (thus increasing concurrency), and reduce mes-

sage traffic by merging tuples.

3.4.1 Occam Buffers

Avoiding Deadlock

Deadlock will occur if a cyclic relationship exists between a group of objects.

Initially, all of the objects will attempt to place their initial tuple on their output

channels, including the recipient objects, and will therefore be unable to receive

the incoming tuple. Buffers have been inserted to overcome this communication

constraint within Occam2. These buffers simply receive tuples, releasing the

sending object, and pass them on to the receiving object when it is ready, thus

having the effect of unblocking the objects not only at their initial transmission

but also at any time two objects attempt to send tuples simultaneously to each

other.

Chapter 3. A Parallel Event-Driven Simulator 55

Maintaining Asynchrony

The use of buffers also allows objects which can proceed “quicker” into the

simulation not to be held up by “slower” ones. Buffers can queue tuples, thus

allowing the sender object to proceed, by removing the synchronisation between

sending and receiving objects. However, one factor which has been observed

while simulating at the register/instruction level is that, in general, there is

a tight cyclic relationship between some pairs of objects, especially self-timed

components. If object A has an output channel to object B, object B is quite

likely to have an output channel to object A. In this case, there seems to be

only one outstanding tuple in the queue, and this occurs since both objects are

progressing at about the same rate.

Aliasing Variable Names

In order to generalise the simulation platform, since the number of inputs and

outputs to a particular object varies, the simulation platform takes an array of

inputs and an array of outputs. The buffers allow the aliasing of these array

variable names from the output of one object to the input of another object.

Numbers of Tuples on a Channel

With the basic simulation platform, the total number of tuples on each out-

put channel (one tuple per channel per iteration of the simulation loop) can

be bounded below by the largest number of tuples on any of the inputs and

bounded above by the sum of all the tuples on each of the inputs.

With regular clocked objects the number of tuples on each output will be the

simulation duration divided by the clock period. Also, with irregular clocked

objects, the number of tuples on each output will be equal to the number of

tuples on the clock input. Thus, clocked objects prevent the avalanching effect

Chapter 3. A Parallel Event-Driven Simulator 56

on tuple numbers. Furthermore, the buffers can be used to merge consecutive

tuples with identical state values and thereby reduce message traffic.

3.4.2 Guarded Outputs

Memory

Fetch

Unit
Execute

Unit

Figure 3–3: A microprocessor model

In some cases, it is not necessary to send tuples on all of the outputs at every iter-

ation. For example, when the fetch unit passes a load instruction to the execute

unit, it will take one iteration of the execute unit to interpret the instruction and

initiate a read from memory, and one further iteration to execute the instruction.

This implies that, after the first iteration, the execute unit object sends a tuple

to: � memory, a read access request,� the instruction processor, a null tuple or unexecuted instruction message.

After the second iteration, the object sends a tuple to:� memory, a null or no access request message,� the instruction processor, the updated register values.

Chapter 3. A Parallel Event-Driven Simulator 57

In order to execute one instruction, the execute unit object had to send two tuples

on each of its output channels, of which only one conveyed useful information.

Guarded outputs are boolean flags which inhibit or allow the transmission of a

tuple on a particular output channel. By applying guarded outputs to the above

example, the data processor object would not send a tuple to the instruction

processor after the first iteration, and to the memory after the second.

Thus, the use of guarded outputs can achieve a significant reduction in the

number of tuples used, without losing the modularity between timing inform-

ation generated in the simulation platform and the state information generated

by the behavioural description.

3.4.3 Modelling Signals

The transfer of state information takes place via tuples which are represented as

a variable length array of integers. Each tuple has a number of flags associated

it, these being index values within the array:

elsa.tup.len – is the pointer to the tuple length (index value “0”),

elsa.start.time – is the pointer to the time from when the states are valid (index

value “1”),

elsa.end.time – is the pointer to the time until when the states are valid (index

value “2”),

elsa.state – is the pointer to the first state value (index value “3”). The number

of states within a tuple can be determined by

number of states = tuple[elsa.tup.len] - 3

The use of variable length arrays allows the ability to incorporate a number of

states into one tuple and thus reduce the number of communication channels

Chapter 3. A Parallel Event-Driven Simulator 58

between two objects in any one direction to 1. This will always be true unless

the start- and end-times of particular states need to be different, in which case

another channel and separate tuples would be required.

3.5 Component Delays

The fidelity of the simulation results is determined by the accuracy of the simu-

lation model. The models used in this thesis have been validated via a combin-

ation of HSPICE simulations and analytical analysis. Each of the architectural

components used in the designs of Chapter 4 has been modelled as an in-

dividual simulation object based on a 1.2 �m CMOS process implementation

of off-the-shelf/standard library components. Individual component delays

have been extracted from a simulation tool within ES2’s commercially avail-

able silicon compilation integrated circuit design suite SOLO 1400 [50]. (ES2

claim to guarantee circuits designed using these tools will be fully functional

on first silicon). In the synchronous design, component delays were based on

worst-case timings, (including component operation e.g. propagating a carry

the entire length of the adder’s carry chain) and nominal/typical timing delays

(average component operation delays) in the self-timed case. Unfortunately

these designs were not laid out completely since this tool was not suited to

custom datapath design and thus full account of propagation delays were not

considered. The designs described in Chapter 5 were based on the EUROCHIP

0.7 �m CMOS process obtained from the CADENCE design suite. These tools

are better suited to datapath design (giving the designer more control over lay-

out) thus the HSPICE simulations give a more accurate account of both relative

component and propagation delays.

Chapter 3. A Parallel Event-Driven Simulator 59

3.6 Conclusions

PEPSÉ provides an efficient framework for obtaining accurate performance

figures for the execution of small programs on the simulated architectures. By

allowing mixed-level simulations the run-time costs can be further reduced

without sacrificing accuracy.

The approach adopted here is well suited to the simulation of asynchronous

circuits due to the asynchronous nature of the underlying algorithm itself. This

algorithm is inherently deadlock free and, in its conservative form, never viol-

ates the causality principle which means that an expensive roll-back mechanism

is not required [8].

Chapter 4

The Control Paradigm and the

Instruction Set

4.1 Introduction

In general, improvements in the performance of processor architectures can be

achieved in two ways: reducing the time taken to complete a unit of work

(i.e., reduce the latency of the operation) or by increasing the amount of work

achieved per unit time (i.e., increase the concurrency between operations). This

chapter focuses on the former by comparing an asynchronous control paradigm,

where the datapath control is distributed and functional blocks communicate

using handshaking protocols, with the traditional synchronous style. Specific-

ally, this work attempts to investigate if any performance improvements in the

execution times of individual instructions can be obtained within a typical RISC

datapath implemented as a micronet.

Although asynchronous control of datapaths had previously been considered

too expensive [2] [135], other work has suggested that the opportunity for

improved performance does exist [38] [63]. This chapter investigates the ap-

plication of the asynchronous control paradigm to a variable length pipelined

60

Chapter 4. The Control Paradigm and the Instruction Set 61

datapath and compares the effect of the two design styles, synchronous and

self-timed, on the performance of a RISC microprocessor architecture. It will

be shown that a micronet-based datapath can enhance the performance of a

microprocessor architecture.

4.2 Comparing Synchronous and Asynchronous Pro-

cessor Control

The basis for comparison of the two design styles is a simple two-stage pipelined

RISC architecture with a simplified instruction set. The justification for the sim-

plicity of the pipeline is the following: isolating the effect of the control paradigm

on the datapath is best realised by keeping the latter simple (although the ex-

ploitation of pipelining in a micronet processor is discussed in the following

chapter); in fact further pipelining interferes with the comparison of datapath

latencies in the two designs.

The RISC philosophy of simple control, regular and predictable behaviour

and efficient silicon utilisation has been considered ideal for a synchronous con-

trol paradigm. The current trend of commercial processors with high frequency

clocks are very much in this mould. However, it is difficult to define or find an

ideal synchronous processor design since the design itself is inextricably linked

with actual implementation delays. An asynchronous control paradigm would

be equally applicable to CISC or RISC, however a RISC-style architecture with

a simplified instruction set was chosen because of a shorter design time, sim-

pler data paths, and with the corresponding decode/control being hardwired,

avoiding any extra level of macro-to-microinstruction translation. This makes

it easier to investigate the interactions between the control paradigm and the

architecture. (It should be noted that an asynchronously-controlled architecture

loses some RISC features e.g. fixed instruction execution times).

Chapter 4. The Control Paradigm and the Instruction Set 62

Instruction
n

n + 1
Instruction

IF

Fetch Stage

ID EX MEM WB

Execute Stage

EX MEM WB

Execute Stage

IF

Fetch Stage

ID

Figure 4–1: The processor pipeline

The two stages, fetch and execute as shown in Figure 4–1, carry out the

usual processor operations. The fetch cycle involves fetching an instruction

or an offset value, and incrementing the program counter; the execute cycle

involves sequencing data movement and controlling the functional units within

the datapath. Thus, the architecture retains the basic RISC features and is a good

starting point from which to develop and investigate the suitability of the self-

timed paradigm to more complex pipelined processors.

4.2.1 The Two Processor Models

The two processor designs, as illustrated in Figure 4–2, almost share the same

functional units and only differ in the design style used to implement their

control sequencing. In the synchronous microprocessor, the control sequencing

is centralised in the Control Unit (CU). This unit generates signals for each of the

datapath resources (i.e. Fetch Unit, ALU, the Registers, PC Unit and Memory

Unit), to control the complete execution of an instruction. In contrast, the control

sequencing is decentralised in the asynchronous microprocessor. The CU initiates

a sequence of actions, and in most cases will no longer take any further part. The

respective functional units and their interfaces communicate with each other to

complete the task. This reduced complexity of the CU is achieved through

the distribution of control by the micronet and the asynchronous mechanisms

outlined in Chapter 2. This work naturally extends the theme of early RISC

architectures where performance improvements are gained by reducing the

Chapter 4. The Control Paradigm and the Instruction Set 63

Unit Interface

Y bus

Instruction

Memory

Fetch

Unit

PFE

Interface

ALU

ZA Bus

Registers

ALU
Interface

X bus

Register

Interface

ZM bus

Memory
Unit

Interface

Memory

Unit

Data
Memory

PC PC

Control Unit

Direction of data transfer.
Req./Ack. signal in other direction.

Control signals and acknowledge.

Control and data communication.

ALU

ZA Bus

Registers

X bus

ZM bus

Memory

Unit

Data
Memory

Unit

Y bus

Instruction

Memory

Fetch

Unit

PC

Control Unit

Figure 4–2: The synchronous and self-timed processor models

complexity of the pipeline and simplifying the control. Here the control is

simplified even further due to decentralisation.

4.2.2 The Instruction Set

The two designs also share a common instruction set (shown in Table 4–1),

which is based on the design in [110]. In the synchronous design, the execution

time of each type of instruction is fixed, whereas under asynchrony the execution

time of a particular instruction may vary. The different instructions can be

Chapter 4. The Control Paradigm and the Instruction Set 64

Group Instruction Explanation

1 ALU Rz := Rx ALUop Ry

1 LD Rz := Mem[Rx+Ry]

1 ST Mem[Rx+Ry] := Rz

2 LDX Rz := Mem[Ry+Offset]

2 STX Mem[Ry+Offset] := Rz

2 LDA Rz := Ry + Offset

3 STPC Rz := PC

3 JMP PC := Ry

4 BRCH If Cond then PC := PC + Offset

Table 4–1: The instruction set

divided into four categories which highlights the irregular nature of even a

simple processor pipeline:

Group 1 – These instructions do not affect the Program Counter (PC) and are

therefore independent of the fetch stage. The ALU and store (ST) instruc-

tions represent the classic single-cycle RISC instructions, with load (LD)

instructions taking slightly longer.

Group 2 – These instruction use an offset value which requires an additional

fetch from the instruction memory. The current instruction cannot begin

execution until the offset has been fetched and placed in the offset register.

Group 3 – These instructions require or modify the current PC, and the next

fetch cycle is stalled until the current execute stage is completed.

Group 4 – The branch instruction is a combination of groups 2 and 3. A PC

offset is required and the next fetch cycle cannot begin until the current

execution cycle completes, i.e. until the branch condition has been resolved

and the PC contains the correct value.

Chapter 4. The Control Paradigm and the Instruction Set 65

4.2.3 The Architectural Components

Figure 4–2 shows the architectural components implemented in both models.

The common components are:

1. The Instruction and Data Memory/Cache (IM and DM) which store the

program instructions and data, respectively.

2. The Fetch Unit (FU) which fetches instructions from the IM and transfers

offset values to the offset register in the PC Unit.

3. The PC Unit (PCU) which contains an adder to increment the PC, the PC

register and an offset register.

4. The Control Unit (CU) which initiates the necessary micro-operations in

the respective microagents for the given instruction being issued.

5. The Memory Unit (MU) which services the load and store instructions,

generates addresses and accesses the DM. This unit has an adder for

address calculations. (The input operands must be latched in the unit

prior to the unit’s operation).

6. The ALU executes arithmetic and logical instructions. It does not have

registers on its inputs (or outputs) and operates continuously with the

values on its inputs. This allows worst-case operation to complete within

the required time.

7. The Register bank consists of 32 registers, three operand read ports to the

functional units, and one write port for each of the functional units.

8. X and Y are operand fetch buses, ZA and ZM are write-back buses. The

ZM bus is also used as a third operand fetch bus for store instructions.

Chapter 4. The Control Paradigm and the Instruction Set 66

4.3 The Synchronous Processor

The synchronous model assumes that the control signals are generated exclus-

ively by the control unit, (i.e. the delaying of individual control signal outside

the CU to meet any timing constraint is not permitted), using an input clock

signal as a timing reference. In synchronous design, the clock period is gener-

ally determined by the largest delay in the pipeline. In this example however,

the execute stage delay varies from instruction to instruction, while the delay

of the fetch stage is generally independent of the instruction. Since the latter

is always on the critical path, the clock speed was chosen to exactly match the

worst-case delay of the fetch stage. However, instead of just viewing each stage

as a single cycle, the clock cycle is divided into a number of clock phases (four

in this example) which mimics a higher frequency clock and reduces idle time

by achieving a better approximation to delays. (This allows the modelling of

multi-phase clocking as used in modern synchronous designs to improve the

temporal granularity).

For the purpose of this study, the synchronisation overheads (as discussed

in Chapter 2) are ignored. In practice, they are difficult to estimate as they are

ultimately influenced by the clock frequency, technology, fabrication process,

routing, chip size and environmental variation.

4.3.1 Synchronous Control

On the first clock edge, the CU initiates a fetch instruction request. The FU then

fetches the next instruction from the IM at the location pointed to by the program

counter (PC) which is kept in the PCU, and at the same time, the current PC

value is incremented. The FU forwards the instruction to the CU just in time

for the next clock edge. Now, the CU has the instruction and decoding begins

Chapter 4. The Control Paradigm and the Instruction Set 67

Group 1

Group 2

Group 3

Group 4

+1Fetch Inst n

4 Clocks 0−2 Clks

Wait

Execute Inst n

4 Clocks

Fetch Inst n

4 Clocks

Fetch Inst n Fetch Offset

4 Clocks

+1Fetch Inst n

4 Clocks

Execute Inst n

Wait

1−3 Clks

4 Clocks

Fetch Inst n

+1Fetch Inst n

4 Clocks

Execute

1 Clk

4 Clocks

Fetch Inst n Fetch Offset

4 Clocks

+1Fetch Inst n

4 Clocks

Execute

1 Clk

The execute clock phase is
required when the BRANCH
is taken. (The PC is assigned
the offset value).

1 Clock or Clk = 1 clock phase

4 Clocks = 1 clock cycle (period)

Figure 4–3: Synchronous instruction cycles

while the PC is assigned its incremented value. The CU behaves according to

the type of instruction, as shown in Figure 4–3. If an offset is required, then

the execution of the instruction is stalled until the offset has been loaded into

the offset register. If the instruction is a branch instruction, then it is evaluated

while the offset is being fetched. If the branch evaluates to TRUE, then an extra

clock phase is required to assign the new PC value. The execute stage latencies

vary, taking anywhere between four and seven phases in this example, (the

total instruction latencies vary between 8 and 15 clock phases (2 and 4 clock

periods)).

Chapter 4. The Control Paradigm and the Instruction Set 68

4.4 Asynchronous Control and MAP

A micronet-based asynchronous processor (MAP) architecture does not have a

global clock signal nor centralised control for the transfer of data between archi-

tectural components. Although the processing components (the main functional

units) are considered to be identical in the two designs, additional components

(the communicating microagents (CMs)) effectively allow the functional units

(the functional microagents (FMs)) to locally control data transfer between them-

selves and their neighbours. In order to exploit data dependent or variable

delays, it is assumed that the functional units in the self-timed design can be

modified so that they generate completion signals [38] [169].

4.4.1 The Distribution of Control

There are a number of additional components required in the micronet design,

as shown in Figure 4–2:� The PFE interface models a combined interface between the CU, Fetch

Unit and PC Unit which aids local control of the fetch pipe. Local control

signals (previously routed via the control unit in the synchronous design)

between the FU and PCU, coordinate fetching of an instruction while

concurrently incrementing the PC or transferring an offset to the offset

register (held in PC unit).� Register, ALU, MU and PCU interfaces are found between their func-

tional units and the buses. These bus interfaces contain the CMs which

are responsible for receiving their FM’s micro-operation control signals

from the CU, returning the corresponding acknowledgement signal, ob-

taining the operand data for that operation and presenting these to the FU,

Chapter 4. The Control Paradigm and the Instruction Set 69

and if necessary, returning the result of a micro-operation to the correct

destination.

A number of protocols have been proposed for both control and data trans-

fers [111] [150] [174] between microagents. In the absence of a clock, the data

transmissions have to be encoded to enable the receiver to recognise valid

information. Bundled data transfers have been adopted to minimise coding

costs [158]. A four-phase handshaking protocol was adopted for both control

and bundled data transfer. This allows for a simpler design through the use of

various types of Muller C-elements [117] and conventional logic gates. In the

case of control signals, although four-phase protocol would be considered twice

as expensive compared to a two-phase one, the same efficiency is obtained as

two back-to-back, two-phase handshakes by representing two events in each

cycle. This is also an efficient option for data transfers since they take place

over shared buses, and in any case the second half of the four-phase handshake

occurs concurrently with computations. (These issues will be discussed further

in Chapter 5). Another advantage of using the four-phase protocol is that it

allows components to synchronise phases of an operation, e.g. calculating a

next Program Counter (PC) value while using the current PC register value to

address memory.

4.4.2 The Rôle of the Control Unit

The CU is still required to sequence tasks for correct datapath operation. Since

this control sequencing is decentralised in the micronet, the CU just needs to

initiate the sequence of actions, and leaves the respective FUs to communicate

to complete the task.

The CU initially requests the next instruction from the Fetch Unit (FU). The

FU will then fetch an instruction from the IM based on the current value of the

PC, while at the same time signalling the PCU to calculate (increment) the next

Chapter 4. The Control Paradigm and the Instruction Set 70

PC value. When the FU receives the instruction from the IM, it signals the PCU

to assign the calculated value to the PC register, while at the same time checking

to see if an offset is required for this instruction. If so, the FU will fetch the offset

first, then send the instruction to the CU and pass the new offset value to the

PCU. When the CU receives an instruction from the fetch unit it can initiate the

next instruction fetch if the current instruction does not use or modify the PC.

Instruction decoding identifies which components or FMs are required to

execute the current instruction. The CU communicates with them via the

chosen four phase asynchronous communication protocol. Each acknowledge-

ment control signal signifies two events – the first acknowledges the micro-

operation request and the second signals the completion of that micro-operation.

Should any of the required resources have not completed their previous micro-

operation, then the CU must wait until it receives the ‘finished’ signal, i.e. the

previous handshakes have completed. Then the CU can initiate the instruction’s

execution by informing the relevant microagents (by beginning a handshake on

each of the appropriate microagent control signals). Once the CU has received

all of the acknowledgements, then the instruction is considered to have been

issued. The CU resets the control signals (completes its phase of the handshake

protocol) and the instruction issue cycle can begin again. The execution of an

instruction is complete when the corresponding control signals have completed

their handshakes. Although the current instruction execution is overlapped

with the fetching of the next instruction, if the PC unit is involved in the instruc-

tion execution it may cause the current instruction fetch to stall.

The registers involved in the instruction execution are informed by the CU

as to which buses they have been assigned (derived from the instruction), with

respective microagents using the local communication protocol to request their

operands. For example, the ALU will assert request signals on both the X and

Y buses. This signal (being on a bus) will go to both the register bank and the

PC unit. However, only one of them will respond on each of the buses, since

Chapter 4. The Control Paradigm and the Instruction Set 71

the CU will have already notified which components were to be enabled during

the current instruction execution cycle.

The Control Signals

The control signals used by the CU effectively consist of a pair of wires: one

is the request to, (from now on referred to as the control signal) and the other

is the acknowledgement from (referred to as the acknowledgement signal), the

FU interface. By using a four-phase handshake protocol the CU can use each of

the acknowledgement signals as a status flag (e.g. high to mean busy and low

to mean free) for their respective resources. The precise meanings of the control

signals and their acknowledgement signals are described below.

As well as the request signal, the control signals to the register bank also

consist of the address of the register to which the signal applies. The control

signals to the register bank are:

Rx – Identifies the register which should output its contents to the X bus port of

the register bank. The corresponding acknowledgement signal is asserted

once the register has been accessed (if a register is blocked then it cannot be

accessed), and cleared when both the control signal has been de-asserted

(following the handshake convention) and the register interface has re-

ceived the data (i.e. when the interface is ready to transfer the data over

the X bus).

Ry – Identifies the register which should output its contents to the Y bus port.

The acknowledgement signal is set and cleared as for Rx.

Rz – Identifies the register which should output its contents to the ZM bus port.

The acknowledgement signal is set and cleared as for Rx.

Chapter 4. The Control Paradigm and the Instruction Set 72

ZMs – Locks the destination register preventing any read access to it. The

acknowledgement signal is set when the register is locked and cleared

when the register has been written to with data from the ZM bus (i.e.

data which has been received from the MU). Note that neither the control

signals Rz nor ZMs can be asserted simultaneously since this could lead

to bus contention.

ZAs – Locks the destination register and prevents read access to it. The ac-

knowledgement signal is asserted when the register is locked and cleared

when the result from the ALU has been written back to its destination

register via the ZA bus.

Other control signals to registers in the PC Unit include:

Rpcx – Outputs the value of the PC on to the X bus. Note that Rx and Rpcx can-

not both be active simultaneously since this could lead to bus contention

on the X bus.

Rpcy – The (next) data value on the Y bus is to replace the current PC value.

Rof – Outputs the value stored in the offset register on to the X bus. The PFE

interface makes sure that this register holds the correct value. As before,

the Rx and Rof cannot both be active simultaneously.

The control signals to the functional units (microagents) can take one of two

forms. Firstly, the control signals can contain the instruction opcode (or some

part of it) which is decoded locally by the functional unit itself (as in the case

of the ALU’s control signal AU). Here the local decoding is overlapped with

the instruction’s operand fetch. Secondly, if the decoding costs are small and

do not increase the CU delay, it may be possible to decode the opcode and use

dedicated control signals for particular (micro)operations within a functional

unit. Control signals to the MU are MU1 for a load (LD) instruction, MU2 for

Chapter 4. The Control Paradigm and the Instruction Set 73

the store and MU3 for the address calculation instruction. In this case the cost is

generally hidden by the instruction issue handshake of the previous instruction.

4.4.3 Data Transfer

Data transfer is request-driven, e.g. a functional unit which requires an operand

will assert a request to the register. The register will in turn send the data on the

bus, the reception of which is acknowledged by the functional unit’s interface

by de-asserting the original request. Thus allowing the register to release the

bus. Generally, this ensures that resources (registers and buses) are utilised

for no longer than is necessary. The register control signals together with the

handshaking protocol prevent bus contention occurring.

4.5 The Performance Results

All the functional units in Figure 4–2 were based on a 1.2 �m CMOS implement-

ation process. Their timing characteristics were extracted from a post-layout

simulation tool within a commercial VLSI design package called SOLO 1400 [50]

and used in the PEPSÉ simulation models of the processors. Neither layouts nor

transistor size optimisations for improved performance [26] were considered.

The performance of the instruction set outlined in Table 4–1 is summarised

in Table 4–2. In the simulations, every effort was made to make the comparisons

between the two design styles as fair as possible. While the chosen implement-

ation process is not state-of-the-art, no commercial design tools nor sufficient

commercial processor layout information was available upon which to base

an accurate comparison. Also, commercially available synchronous architec-

ture generally contain a number of engineering and design “tricks” specific to

particular implementations of a design.

Chapter 4. The Control Paradigm and the Instruction Set 74

Synchronous Design Asynchronous Design

Group Instruction Inst.Exec. Clock Inst.Exec. Datapath Speed Up

Time (nS) Phases Time (nS) Exec.Time

1 ADD 36 4 26 17 1.38

1 LD 54 6 34/26 34 1.58/2.07

1 ST 36 4 26 14 1.38

2 LDX 99 11 60/55 60 1.65/1.8

2 STX 81 9 55 40 1.47

2 LDA 81 9 55 43 1.47

3 STPC 45 5 32 20 1.40

3 JMP 45 5 32 9 1.40

4 BRCH F 72 8 59 32 1.22

4 BRCH T 81 9 63 42 1.28

Table 4–2: Synchronous versus asynchronous performances

The results of the comparison of instruction execution times under the two

control philosophies are shown in Table 4–2. The Instruction Execution Time (IET)

represents the time between issuing the current instruction and the next, i.e. the

effective cost for fetching and evaluating each instruction, taking into account

the two staged pipelined nature of the processors. In the synchronous case,

the minimum IET is 36nS (the clock period) which is equivalent to the delay

of the fetch stage. The fetch stage delay is 26nS in the micronet design, which

considers both the average timings and the self-timed overheads.

The Datapath Execution Time (DET) is the average duration between the CU

initiating an instruction and its completion, i.e. the instruction latency within the

(execute stage of the) micronet datapath. The IET is the maximum of the fetch

stage delay and the execute stage delay (DET). The DET is of particular interest

when it is larger than the fetch stage delay (26nS) since this means that the CU

Chapter 4. The Control Paradigm and the Instruction Set 75

might be able to exploit some concurrency by being able to overlap the execution

of more than one instruction within the datapath. If the following instruction

is independent, then the effective IET of the previous instruction will be the

smaller value (IETunrelated). Otherwise, in the presence of structural or data

dependencies, the larger value applies (IETrelated). When comparing execution

times between the two design styles for the load (LD) and load with offset (LDX)

instructions, the IETrelated value should be used, because in the synchronous

case wait states have been inserted in these instructions as the CU must assume

the worst-case situation. Although, in general, this suggests that MAP can

exploit some data-dependent concurrency, the synchronous processor’s CU

could test successive instructions for structural and data dependencies at the

expense of increasing the complexity and delay of the unit. The asynchronous

design can take advantage of any independence between instructions without

testing, since the handshaking mechanism will prevent erroneous behaviour

should such a dependency exist.

In the self-timed design, the IETs of the instructions are limited by the fetch

stage delay. In fact the speed-up in these cases virtually represents the ratio of

latency between the two instruction fetch pipes. Even though the synchronous

fetch pipe has a perfectly matched clock it is still limited by worst-case delays

and an inability to generate control signals at precise times due to its centralised

control.

These speed-ups show that it is indeed possible to achieve performance

improvements under an asynchronous control paradigm. Since all of the in-

structions show improvement, a program consisting of these instructions will

therefore be expected to execute faster. Furthermore, it is in the nature of the self-

timed CU to initiate instructions as soon as possible. This can only be achieved

at run-time. However, the timing characteristics used for the synchronous CU

are fixed at design time.

The preliminary conclusion from these results is that one can observe an im-

Chapter 4. The Control Paradigm and the Instruction Set 76

provement in performance of the asynchronous control mechanism over their

synchronous equivalent, when the individual instruction execution times are

compared. The MAP architecture uses circuits that generate completion sig-

nals [169] and therefore benefits from exploiting actual component delays. The

magnitude of any improvement is limited by a number of factors. The two

important ones are: the architectural design, where some sort of decoupling is

required between the two stages since each of the stages can stall waiting for

the other; and the difference between typical and worst-case delays which is

influenced by component design.

4.6 Discussion

MAP implementations are robust to variation in physical parameters and can

adjust to variations due to data-dependent operations. For instance, the time to

add two integers using a ripple-carry adder varies with the length of the carry

chain. The clock period of a synchronous implementation has to be adjusted

for the worst case, and therefore a synchronous version takes time proportional

to the number of bits of the operands. On the other hand, an asynchronous

ripple-carry adder computes in time which is on the average proportional to

the logarithm of the number of bits [60] [109]. This is at a cost of detecting the

completion of the operation locally. However, the overheads of the handshake

mechanism can be hidden in micronets, as will be shown in the following

chapter.

If the duration of all of the operations were constant and known precisely,

then the sequencing could be implemented efficiently with a global clock and

centralised control, since this is sufficient to signify the end of a computation

and start of the next one. Timing relies on the physical and environmental

parameters of the design. Designers, being aware that their knowledge of both

the physical properties of the devices and the runtime behaviour of the circuits

Chapter 4. The Control Paradigm and the Instruction Set 77

is imperfect, have to lengthen the clock period to account for an error margin

in the evaluation of the duration of a computation step. This error margin is

becoming a significant proportion of the operating clock period and actually

leads to inefficiency. Furthermore, delays have to be matched by a discrete

number of clock cycles which gives rise to idle times which can become quite

significant. Incorporating a variable period clock [39] or using a faster clock

leads to diminishing returns; increases the design complexity without neces-

sarily improving performance significantly. In fact, increasing clock frequency

has been the popular solution although such signals induce noise, and their

distribution is difficult and subject to skewing, as discussed in Chapter 2.

For complex computations with data dependencies, asynchronous design

has the advantage of exploiting the best-case delay, whereas synchronous solu-

tions have to adjust to the worst-case. Furthermore, data flowing in a network

of stages rather than a linear pipeline may not encounter the component with

the largest delay (slowest stage), e.g. not all instructions need to use a shifter,

and therefore will not even be hindered by the slowest operation (which itself

may not be executing at the time).

4.7 Summary

This chapter has described two similar microprocessor designs which differ

only in the control strategy. The architecture incorporates the basic features

of RISC without complicating issues such as pipeline hazards and provides a

good foundation from which to develop and investigate the suitability of the

self-timed paradigm for more complex pipelined processors. The synchronous

design incorporates conventional centralised control mechanisms. The sequen-

cing of instructions is controlled centrally in the control unit which generates the

control signals for each of the other components in the datapath with timing

Chapter 4. The Control Paradigm and the Instruction Set 78

provided by a clock signal. The clock period is fixed by the largest possible

delay within a stage in the pipeline. In an asynchronously controlled micropro-

cessor, control sequencing is decentralised amongst the datapath’s functional

units. The execute unit just initiates a sequence of actions, and in most cases

will take no further part. The corresponding components will then communic-

ate between themselves via request and acknowledge handshakes in order to

complete the task. This allows an operation to proceed at a rate determined by

local, variable delays and not by a delay which is fixed pessimistically.

This alternative control paradigm is realised through a micronet and the

main concern in this chapter has been with the exploitation of actual datapath

delays in micronet-based processors. Results obtained via simulation have

been presented for the performance of an instruction set for two design styles of

microprocessor. These indicate an improvement in performance (on average)

for the self-timed design over the synchronous equivalent. These results only

represent the performance gain per instruction. Since all the instructions have

shown improved execution times, the execution time of a program containing

an average instruction mix will also be better. The magnitude of these results

really depends on the type of operation being carried out and the design style of

the functional units (e.g. ALU design). The speed up reported here does agree

with other related work by Dean [39] and predictions by Ginosar [63].

Further improvements in performance are possible by taking advantage

of instruction-level parallelism (as in most commercially available RISC pro-

cessors). The MAP’s control unit can exploit some execution concurrency if it

can issue the following instruction before the previous one has finished. This

incurs no extra cost in this design unlike a synchronous processor’s control unit.

Allowing concurrent instruction execution introduces pipeline hazards [72] into

the design. The following chapter examines the modifications to the design of

the MAP architecture which exploit more fully the underlying self-timed control

paradigm, for exploiting ILP.

Chapter 5

The Control Paradigm and the

Architecture

5.1 Introduction

The previous chapter compared a synchronous RISC processor architecture

with its asynchronous equivalent. Centralised control and synchronous data

communication were replaced by distributed control and asynchronous com-

munication without the higher levels within the computer system perceiving

any changes. It was shown that an asynchronous control paradigm could indeed

improve the performance of the instruction set for a given processor architec-

ture. That design experiment only attempted to improve the execution times

of individual instructions, made possible by the micronet’s ability to exploit

actual component delays as well as hiding some of the handshaking overheads.

However, in order to realise the full potential of this asynchronous design style,

this chapter attempts to highlight the ease with which a MAP architecture

can be modified to exploit Instruction-Level Parallelism (ILP). Refinements are

made to a modified version of the micronet processor architecture described

earlier, to efficiently improve performance through the increased utilisation of

79

Chapter 5. The Control Paradigm and the Architecture 80

the datapath resources and to exploit ILP without significantly increasing con-

trol costs. In fact, ILP is used to effectively hide the remaining overheads due

to asynchronous control.

5.2 Exploiting Instruction-level Parallelism

Speeding up the execution latencies of instructions is one approach to improving

performance. An alternative is to execute more than one instruction at the same

time. Exploiting ILP [84] can be achieved either by issuing several independent

instructions per cycle as in superscalar or VLIW architectures, or by issuing an

instruction every cycle, where the cycle time is now shorter than the times for

any of the operations, as in (super)pipelined architectures. Furthermore, these

two approaches may also be combined.

The superscalar principle relies primarily on exploiting spatial parallelism,

which is achieved by running multiple operations concurrently on duplicated

hardware. In contrast, pipelining relies on exploiting temporal parallelism by

overlapping multiple operations on common hardware and operating with a

faster clock. Note that ILP is limited by data dependencies between instructions,

structural dependencies and also control transfers in pipelined architectures.

Most, if not all, processor architectures are pipelined (to some degree) since it

is considered the most cost effective of the two alternatives. However, the limits

on this type of concurrency have meant that modern processor designs need to

consider the more expensive form as well [40] [42]. This chapter concentrates

on implementing asynchronous “pipelines” for exploiting ILP (both temporal

and spatial) as a number of control issues resulting from data and structural de-

pendencies between instructions have to be addressed efficiently. Since a good

instruction schedule (generated statically) to avoid such dependencies is not

always possible, techniques are required to resolve them at run-time. Within

Chapter 5. The Control Paradigm and the Architecture 81

synchronous datapaths, structural hazards are normally avoided in hardware

by using a scoreboarding mechanism and data dependencies are resolved by

using either hardware or software interlocks [70], which adds to the control com-

plexity and cost. Data Forwarding is a technique commonly used in pipelined

architectures to minimise the cost of functional unit (FU) stalls due to data

dependencies, by redirecting data being written to registers to the waiting func-

tional unit [163]. In synchronous ILP designs, the cost of maintaining correct

operation increases the complexity of control which in turn adversely affects

the clock period and therefore the performance. However, an asynchronous

datapath which is designed using micronets can use the existing handshaking

mechanisms, together with the simple locking of registers, to achieve the same

effect with trivial hardware overheads. Exploiting concurrency in a micronet

architecture is aided by the distributed nature of the control strategy and by

the fact that data movement is controlled locally. Previously, it had been con-

sidered expensive to pipeline decoding, but here this is no longer the case since

control and decoding are distributed amongst architectural components. As

a consequence, implementing asynchronous superscalar or superpipelined ar-

chitectures is relatively straight-forward, and this will be discussed briefly in

Chapter 7.

In practice, all instructions do not necessarily have identical execution times

and thus the results of instructions may be ready out of program order. En-

forcing in-order write-back to registers is inefficient for performance, since

this can effectively stall functional units and thereby increase the evaluation

time of instructions. Out-of-order instruction completion can be supported in

synchronous designs, but at a non-trivial cost [40]. In contrast asynchronous

designs, as proposed in this work, can relax the strict ordering of instruction

completions and thereby further exploit ILP. The effect is to increase the utilisa-

tion of the functional units by reducing their stalls. By exploiting both ILP and

actual run-times of instructions, better program performances can be achieved

Chapter 5. The Control Paradigm and the Architecture 82

on asynchronous processors, and this will be demonstrated in greater detail in

the rest of this chapter.

5.3 Design Goals

A goal of early synchronous RISC architectures was to achieve an execution rate

of one instruction per machine cycle. In simple architectures, like the design

in Chapter 4 which followed the sequential mode of program execution and

avoided hazards, this meant an instruction would complete its execution before

the next one started. Such processors did not have a pipelined execute stage and

either the choice of instructions within the instruction set had to be restricted

by the requirement that the execution time of each instruction be equal to a

single (and in later RISC architectures – a fixed multiple of the) clock period (in

order to achieve a certain performance or MIPS rate) or that the clock period

was determined by the execution time of the slowest instruction. Remember

that the clock period itself is determined on the basis of conservative estimates

of component delays. Therefore all instructions are viewed as executing in the

same time irrespective of their actual delays even though most instructions will

actually complete in some fraction of the clock period. Also, in practice, different

instructions generally require different resources and even the same instructions

can have different execution times. All of this leads to poor utilisation of

expensive resources. Although pipelining has gone some way to redressing

this, the technique itself introduces inefficiencies: stage balancing problems, for

example the von Neumann bottleneck makes it difficult to match the cost of

fetching an instruction with its execution. Whereas the RISC philosophy was

concerned with the efficient usage of silicon real estate, the goal of the micronet

control paradigm is more efficient utilisation of the functional units over time.

Chapter 5. The Control Paradigm and the Architecture 83

5.4 An Asynchronous ILP Processor

The structure of a processor architecture is determined by the number and type

of components or functional units and their connections. Pipelining is a control

technique for exploiting temporal ILP. The first MAP architecture under invest-

igation is a modified version of the one described in Chapter 4. The functional

units are identical to those used in the previous design, with the exception

of those in the fetch stage. The modifications in the execute stage focus on

optimising the control and data handshake protocols to improve the control

sequencing and supporting ILP. These modifications have been implemented

in a series of refinements and at each refinement, their effect on program per-

formance is measured. An adequate set of instructions has been implemented

in each refinement step to highlight the effects of the modification.

The results in Chapter 4 have clearly shown how the asynchronous pro-

cessor’s performance is affected by the fetch stage. It is therefore necessary to

reduce the fetch stage delay to less than the smallest execution cost in order

to ensure that the execution pipe is kept busy. (Note that the fetch cost, being

independent of the instruction set, is more a function of the memory technology

which allows the overall processor performance to be traded off with the fin-

ancial cost of the instruction memory/cache). Also, the amount of concurrency

that can be exploited in such an architecture is severely restricted by the fact

that the PC has to be available to both the fetch and execute stages. The work

in this chapter focuses on the the datapath within the execute stage. In order

to improve resource utilisation and expose maximum concurrency, a number

of minor architectural modifications are made to the design described in the

previous chapter, to create the base architecture upon which further (control)

improvements will be made.

Chapter 5. The Control Paradigm and the Architecture 84

5.5 A Micronet Architecture

Adder
MU/

Issue Unit 1 Issue Unit n

Instruction
Buffer

Boolean
Registers

Instruction
Memory

CM

Control Unit

Control Signal

Interface containing CMs

FM

Data
Memory

Shifter Z BusY Bus

X Bus

W Bus

Handshake
Operand Fetch

Handshake
Write Back

Interface

Reg.
Bank

Instruction
Execution

ALU Inst

ALU

Interface

ALU

Go-Write

Reg.
Bank

Interface

Access
Operand

Offset

Write Back

Fetch and
Branch U

V Bus

Figure 5–1: A typical micronet-based processor architecture model

Figure 5–1 illustrates the functional units which might constitute a typical MAP

architecture. The intention is not to focus on the functional units themselves,

but rather on their asynchronous control using micronets and the resulting

performance improvements. The number of units and their functionality can

Chapter 5. The Control Paradigm and the Architecture 85

be changed without any side-effects. The base architecture under study is

comprised of the following units:

1. As previously, the Instruction and Data Memory (IM and DM) or Cache

store the program instructions and data, respectively.

2. The Fetch and Branch Unit (FBU) fetches instructions from the IM, executes

control transfer ones and places the others in the instruction buffer.

3. The instruction buffer is an asynchronous queue which effectively de-

couples the fetch stage from the execute stage.

4. The Control Unit (CU) initiates the necessary micro-operations in the re-

spective microagents for a given instruction.

5. The Memory Unit (MU) services the load and store instructions, generates

addresses (using its own adder) and accesses the DM.

6. The ALU executes arithmetic and logical instructions.

7. The Register bank consists of number of registers (32), three operand read

ports to the functional units, and a write port for the ALU and the MU.

8. The Boolean Register Bank holds flags which are used to resolve branch

conditions.

9. X and Y are operand fetch buses and V is the boolean flag write-back bus.

The Z bus is initially used as both an operand fetch bus (labelled W in

Figure 5–1) and a register write-back bus.

5.5.1 Modifications to the Fetch Stage

The combination of an unbalanced two stage pipeline and the implementation of

certain instructions (particularly control transfer ones) could cause the execute

Chapter 5. The Control Paradigm and the Architecture 86

stage to often become starved of instructions. This will have a detrimental effect

on the exploitation of concurrency and efficient utilisation within the execute

stage of the datapath, and therefore this behaviour has to be improved. Firstly,

all PC-related instructions are either executed in a new unit called the Fetch and

Branch Unit (FBU) or removed from the instruction set altogether. The FBU

is responsible for fetching instructions from the instruction memory or cache

and processing control transfer instructions. This unit filters out unconditional

branches and updates the PC directly. The branch target address is copied to

a register after which branch prediction schemes similar to those employed in

synchronous designs can be applied. Although the removal of the execution of

PC-related instructions from the execute stage may be seen as the influence of the

control paradigm on the processor architecture, this feature has already been

incorporated in high performance synchronous designs (e.g. [40] [44] [155]).

The problem is related to the fact that it is difficult to exploit parallelism when

a resource is being used in separate stages within the datapath.

As described in Chapter 2, pipeline stages have a producer-consumer be-

haviour. If two stages have varying delays such that their worst-case delays

alternates between them, then the pipeline latency will be the sum of the two

worst-case delays. If the stages are decoupled from each other by an asyn-

chronous queue which stores the predecessor’s results, then the stall time of the

stage is reduced and throughput improved. An instruction buffer/window has

been implemented to hold instructions pending execution. Situated between

the two stages, the buffer relaxes the synchrony between the FBU and CU, al-

lowing each stage to proceed at its own rate without hindering the other until

the buffer becomes either full or empty. Thus, the decoupling of the fetch stage

from the execute stage can reduce the amount of time the control unit is starved

of instructions. The FBU continuously fetches instructions and places them in

the buffer until either the buffer is full or the unit stalls waiting to resolve a

conditional branch (control transfer). Unconditional branches will be executed

Chapter 5. The Control Paradigm and the Architecture 87

by the unit, updating the PC immediately. The problem of control transfer resol-

ution is, however, made more difficult. Although this is similar to the problem

faced by deeply pipelined synchronous processors, the effect of the buffer is to

introduce a variable number of pipeline stages between the instruction being

fetched and the instruction being issued (executed). Ignoring control transfers,

implies that the current PC value will no longer be just one (or a constant num-

ber) ahead of the PC value of the instruction being executed, which makes it

difficult to use the PC value in the execute stage. The use of branch prediction

schemes to prevent stalling the pipeline and conditional instruction execution

as a solution to malpredicted branches can be employed without affecting or

being influenced by the control paradigm (see Chapter 7). The instruction buffer

has an additional use in more advanced designs which will also be elaborated

in the same chapter.

5.6 The Control Refinements

The following sections discuss the refinements made in a number of steps to

the execute stage of the base MAP design shown in Figure 5–111. These refine-

ments highlight the ease with which the micronet model can both efficiently

exploit ILP and obtain good functional unit utilisation without the difficulties

normally encountered in synchronous datapath design (e.g. implementing haz-

ard avoidance, data-forwarding or balanced pipeline stage design). Control is

distributed at each refinement step to the functional units, and improvements,

if any, in the execution of sample programs are recorded. An architecture, as

illustrated in Figure 5–1, is composed of a network of microagents (denoted by

solid boxes) which are connected via ports. The Functional Microagents (FMs)1Figures 5–11 to 5–18 can be found at the end of this chapter, from page 133 onwards.

Chapter 5. The Control Paradigm and the Architecture 88

perform micro-operations which are typical of a datapath. On each port of a FM

is a Communicating Microagent (CM) which is responsible for communication

among the FMs, and with the Control Unit (CU). The FMs are effectively isol-

ated and only communicate through their CMs, and can therefore be modified

without affecting the rest of the micronet. The modifications to the datapaths

are modelled using micronets as shown in Figures 5–11 to 5–18. These versions

aim to exploit the fact that the microagents operate concurrently, each executing

one micro-operation at a time. In Figure 5–11, for example, four microagents

can operate in parallel in the operand access stage; followed by three pairs in

the operand fetch handshake stage; two in the instruction execution stage; two

pairs in the write-back handshake stage; and two in the write-back stage.

5.7 Measuring Improvements in Performance

The two parameters which affect the performance of programs in asynchronous

pipelines are the latency of the microagents, which is defined as the time between

initiating the micro-operation and the result being signalled as available; and

their cycle time, which is the minimum time between successive initiations of the

same micro-operation, i.e. throughput. The two parameters have the same value

in a synchronous pipeline, with the cycle time being determined by the latency of

the slowest stage. The difference between the two values may be viewed as the

overhead due to asynchronous protocols and a good design should endeavour

to minimise it. This is achieved in micronets by overlapping the phases of the

communication protocol in the CMs with operations in the FMs, thus hiding

the overhead through concurrent operations. The effectiveness of this method

is gauged by measuring the utilisation of FMs when exercised by test programs

composed of the appropriate, identical instructions. Metrics are now introduced

for characterising the performance of micronet datapaths.

Chapter 5. The Control Paradigm and the Architecture 89

Minimum Micronet Latency (MML) is the time between asserting the control

signals (i.e. initiating an instruction issue) and receiving the final acknow-

ledgement of the instruction’s completion. From the CU’s point of view,

this is the shortest execution time (latency) through the micronet (ignor-

ing any stall time due to busy resources) for a particular instruction. This

value influences when successive data dependent instructions can begin

their execution. Note also, that this metric is not the same as the Datapath

Execution Time (DET), as used in the previous chapter, which is just the

time taken for the instruction’s result to reach its destination (i.e. it does

not include the time to signal the instruction’s completion).

Instruction Cycle Time (ICT) – In asynchronous pipelines, which usually have

non-uniform stage delays, the time between successive instruction issues

is influenced by the slowest stage currently active in the pipeline. The ICT

is the time between two identical instruction issues once that instruction’s

pipeline is full. This metric is the sustainable rate at which a particular type

of instruction can be issued. The upper bound on this value is determined

by the cycle time of the slowest microagent on the instruction’s path.

(Instructions are executed by following the particular paths through the

micronet). Note that this is not a strict upper bound since the time between

these instruction issues could increase because of contention for a shared

resource (caused by the concurrent execution of a different instruction).

For example, a different functional unit starts using the write-back bus

causing another instruction in the current instruction’s micropipeline to

stall. In practice, if this only happened occasionally, it may not affect the

ICT since the elasticity of the micronet may absorb the effect.

Program Execution Time (PET) is the actual execution time of a program. As

this time is reduced, component utilisation will increase (assuming the

amount of work stays the same). For a micronet executing a stream of

Chapter 5. The Control Paradigm and the Architecture 90

identical instructions, the PET can be approximated to:(n� 1) � ICT +MML + overheads (5.1)

where n is the number of instructions and the overheads are the costs asso-

ciated with the initial instruction fetch startup. Equation 5.1 is obviously

related to the synchronous equivalent where the ICT would be equivalent

to the clock period and MML to the pipeline latency, i.e. the clock period

multiplied by the number of stages in the pipeline. Note that average

values have been used for modelling purposes but in practice it is likely

that both the ICT and MML of an instruction would vary.

ALU Utilisation – The percentage of the program execution time (excluding

the initial instruction fetch time) for which the ALU performs useful com-

putation. Utilisation measurements are important for two reasons: firstly,

they are a measure of efficient functional unit usage, greater efficiency

leads to improved performance; secondly, high utilisation can also in-

dicate potential bottlenecks within the design. Although adding another

resource may improve program performance and reduce the utilisation

(an architectural design trade-off), this work advocates that given a set of

architectural resources, an asynchronous control paradigm is better able

to utilise them.

MU Utilisation – Same as above, but for the Memory Unit (MU).

Register Utilisation – Same as above, but for the Register Bank. This figure is

useful since in the nature of RISC architectures all data must be moved via

the register bank which could pose a potential bottleneck.

ALU Interface Utilisation – The percentage of the execution time (excluding

the startup latency) during which the ALU’s CMs are busy.

MU Interface Utilisation – Same as above, but for the Memory Unit Interface.

Chapter 5. The Control Paradigm and the Architecture 91

Register Interface Utilisation – Same as above, but for the Register Interface.

Program Minimum Instruction Issue Cycle Time (MIICT) is the minimum time

between successive instruction issues, which gives a measure of the max-

imum possible issue rate for a given program. The ratio of the largest

MML and smallest MIICT is an upper bound on the number of instruc-

tions which can potentially execute concurrently in the datapath.

Maximum FM Utilisation – The upper bound on the FM utilisation for a par-

ticular instruction is the ratio of the FM micro-operation latency and the

ICT for that instruction. Therefore, architecture designs should aim to

reduce the ICTs of instructions to that of their FM micro-operation delays.

Given that the ICT is determined by the slowest delay on the instruction’s

path, optimal utilisation can only be achieved when the FM is the slow-

est microagent. (In terms of program execution it is assumed that only

FMs do useful work and the other operations are effectively the overheads

associated with the architectural design).

5.7.1 The Test Programs

The feasibility of taking advantage of actual delays rather than assuming the

worst-case values depends on the difference between the actual and worst-case

delay being larger, on average, than the overheads due to asynchrony. If the

asynchronous overheads were to be hidden then asynchrony would always

have a performance edge. The successive refinements aim to show that the

exploitation of fine-grain ILP can be used to hide these overheads.

The actual performance of the architecture is determined by delays of the

components. It is demonstrated that the maximum attainable performance

approaches the maximum possible performance of the architecture. The FU

Chapter 5. The Control Paradigm and the Architecture 92

latencies are chosen to be constant – the average execution time, to capture the

essential behaviour of micronets.

The micronets in Figures 5–11 to 5–18 were exercised by programs with a

mixture of LD, STR, and ALU instructions (see Appendix C for more details).

The Alu, Load and Store test programs (ATP, LTP, STP) measure the maximum

attainable utilisation of their respective FMs. They contain repetitions of either

ALU, LD or STR instructions, so that only structural dependencies exist between

instructions (in effect setting up a static pipeline or a fixed path through a net-

work of components). The number of instructions in the test programs are

sufficient to fill the pipeline, i.e. enough instructions exist to allow the CU to

achieve a steady issue rate. The Hennessy Test (HT1) consists of a mix of the

three instructions, but without any data dependencies, which exercises the spa-

tial concurrency and out-of-order completion, for a particular schedule devised

by the compiler. HT2 is a variant of HT1 but with data dependencies, which

exercises the data forwarding mechanism as well. This program represents a

“typical” basic block of compiled code (actually a line of code in C from [70]).

In the following sections, the refinements which were made to MAP in

order to exploit ILP through the distribution and decentralisation of micronet

control have been described together with the performance results that have

been measured in the PEPSÉ environment.

5.8 Refinement Step 1 – The Base Case

Figure 5–11 illustrates a naı̈ve implementation of an asynchronous datapath

which does not as yet fully exploit the properties of micronets. Refinement

Step 1 only exploits the actual execution timings of micro-operations. The ex-

ecution of each instruction requires a predetermined set of micro-operations,

each initiated by signals from the CU. These are four-phased controls whose

Chapter 5. The Control Paradigm and the Architecture 93

acknowledgement signals are used as status flags for mimicking a scoreboard-

ing mechanism. The micro-operations for an instruction are initiated as soon

as possible by asserting the necessary control signals. The receipt of an ac-

knowledgement confirms that the associated micro-operation has begun and

the initiating control signal is de-asserted. The instruction is said to be issued

once all the asserted control signals have been acknowledged, and the next

instruction issue can begin.

These micronet control signals are described in greater detail below, with

the micro-operations required by each instruction outlined in Table 5–1:

Rx – This signal identifies the source register for the X Bus and the correspond-

ing acknowledgement is asserted once the register has been accessed, and

cleared once the data has been transferred to the operand fetch handshake

phase.

Ry – This is the same as above but for the Y Bus.

Rz – This is the same as above but for the Z Bus when used for fetching

operands.

Rof – This is similar to Rx except that it is used to access the offset register,

the contents of which are output on to the X Bus. Rof and Rx cannot be

asserted simultaneously since they both require the X bus.

AUs – This signal identifies the next operation of the ALU and the corres-

ponding acknowledgement is asserted when the interface is ready to fetch

the ALU’s operands from the register and is cleared when it initiates the

write-back handshake.

MC1 – This signal identifies a load instruction to the MU and is asserted and

cleared in the same manner as AUs. Other signals exist for both the store

Chapter 5. The Control Paradigm and the Architecture 94

(STR/STX) and the address calculation (LDA) instructions but these have

been omitted for the sake of brevity.

ZAs – This signal identifies the destination register for writing back the result

of an ALU operation via the ZA bus and the corresponding acknowledge-

ment signal is asserted when the register is ready to receive data and

cleared once the data has been written back.

ZMs – This is the same as above, but for data written back from the MU via the

ZM bus.

Instruction Required Micro-operations

ALU Rx Ry AUs ZAs

LD Rx Ry MU1 ZMs

ST Rx Ry Rz MU2

LDX Rof Ry MU1 ZMs

STX Rof Ry Rz MU2

LDA Rof Ry MU3 ZMs

Table 5–1: The micro-operations required for instruction execution

Figures 5–11 to 5–18 illustrate the micronet model through the series of

refinements. For each refinement step, they identify the stage during instruction

execution when each of the acknowledgement signals is generated. The timing

diagrams correspond to the execution of a load followed by an add instruction

which highlights the relationship between the control signal transitions.

In Refinement Step 1, all the micro-operations for an instruction are initiated

at the same time and the next set can only be initiated after the completion of

the micro-operations of the current instruction. This effectively serialises the

instruction execution, as illustrated in the timing diagram in Figure 5–11. As

Chapter 5. The Control Paradigm and the Architecture 95

an example, the behavioural description of the CU issuing a LDA instruction

is given in Figure 5–2. In successive refinements the rôle of the CU will be

diminished by distributing the control of the micronet to local interfaces, with

micro-operations being initiated individually as early as possible.

.

.
LDA : SEQ

Wait until the handshake cycle of all control
signals have been completed, by testing
the input acknowledgement signals.

Wait until the Control Signals have
been acknowledged.

wait until (RxA . RofA . RyA . RzA . AUA . MU1A . MU2A . MU3A . ZAsA . ZMsA);

- Rof

- RofA (Active phase), RofA (reset phase).Incoming Offset Register Acknowledgement Signal

Outgoing Register Offset Control Signal

STATE 1.

STATE 2.

CASE instruction

assert (Rof, Ry, MU3, ZMs);

deassert (Rof, Ry, MU3, ZMs);

wait until (RofA . RyA . MU3A . ZMsA);

Initiate instruction execution.

Instruction issued.

Figure 5–2: Issuing an LDA instruction in Refinement Step 1

Performance Results

Instruction ICT MML Max. FM Utilisation

ALU 24nS 24nS 16.67%

LD 43nS 43nS 53.49%

ST 23nS 21nS 42.85%

Table 5–2: Instruction execution for Refinement Step 1

The ICT value for an instruction is determined by its slowest microagent

control signal handshake, since the instruction issue is serialised. The results in

Table 5–2 show that the Instruction Cycle Time (ICT) is equal to the Minimum

Chapter 5. The Control Paradigm and the Architecture 96

Test Programs Alu Test Load Test Store Test HT1 & HT2

Program Execution Time 175nS 308nS 164nS 143nS

MIICT 24nS 43nS 21nS 21nS

ALU Utilisation 16.57% 0% 0% 8.39%

MU Utilisation 0% 53.31% 39.87% 22.38%

ALU Interface Utilisation 78.7% 0% 0% 39.86%

MU Interface Utilisation 0% 88.08% 82.91% 38.46%

Table 5–3: Execution of the test programs on Refinement Step 1

Micronet Latency (MML)2 (except for the ST instruction), which is not surprising

as instructions execute sequentially but only take as long as is necessary. The

higher value for the ST instruction is due to a handshake delay, which in the

case of the LD instruction is hidden by the write-back stage (discussed later in

this section). Although there is no explicit pipelining of the datapath, different

phases of the handshaking may occur at the same time, e.g. a CM may initiate a

handshake with another CM while completing one with its FM. This is reflected

in the interface utilisations shown in Table 5–3.

Also shown in Table 5–2 are the figures for the maximum FM utilisation

which represents the proportion of the MML taken by the FM to complete its

operation. As predicted, the execution times of the test programs in Table 5–3

are the sum of their individual instruction execution times together with startup

overheads. It is observed that the utilisations achieved for the FMs (in Table 5–2The values given here differ from those in the previous chapter due to the following

reasons: DET and MML are slightly different measures (see pages 74 and 89); changes

to the CU caused by the architectural modifications described earlier in this chapter;

and a different choice of design process and cell library has been used to implement

the datapath components (see page 58).

Chapter 5. The Control Paradigm and the Architecture 97

3) are very close to their upper bounds (in Table 5–2) which demonstrates that

asynchronous control using a micronet can be efficient.

The Store Instruction’s Cycle Time

The MU only receives the next control signal, i.e. its next operation once it has

completed the current instruction. Only then can the MU make a request to its

interface for the necessary operands. The increase in cycle time is due to the

operands waiting at the interface for this request because of the shared use of

the Z port (as both an input and output). This delay is effectively hidden by the

write-back operation in a load instruction.

5.9 Refinement Step 2 – Exploiting Multiple Write-

back Buses

An instruction’s micro-operations are still asserted and de-asserted collectively,

but as soon as all the relevant signals become ready, i.e. without having to wait for

earlier unrelated micro-operation handshakes to finish. This introduces overlap

between successive instructions which require different micro-operations. This

feature of the micronet helps to exploit even finer-grained spatial concurrency

between instructions than previously possible. In Figure 5–12, while instruc-

tions share the operand fetch resources, the two FMs and their write-backs

(WBs) can operate concurrently. This implies that there is scope for out-of-

order completion of instructions, which introduces pipeline hazards, such as

Read-after-Write (RAW), Write-after-Write (WAW) and Write-after-Read (WAR).

These problems are addressed in the following manner:

RAW & WAW – A register locking mechanism is implemented in the register

bank without the CU having to keep track of the locked registers. The

Chapter 5. The Control Paradigm and the Architecture 98

acknowledgement signals, ZMs and ZAs, are asserted after the locking

operation, and are de-asserted once the result is written back signalling

the unlocking of the register. This implies that the destination register of

the previous instruction will have been locked before the next one attempts

to use that register. The timing diagram in Figure 5–12 assumes that the LD

and ALU instructions write to different registers. Should the destinations

be the same, then the ZAs acknowledgement signal would only be asserted

after the ZMs acknowledgement signal has been de-asserted.

WAR – This hazard is avoided without additional hardware overheads. By

definition, an instruction is issued when all of the acknowledgements from

the relevant micro-operations have been received. This implies that the

source registers of previous instructions will have already been accessed.

Also, as long as the control signals to lock registers are not asserted before

the operand fetch ones, then the register bank will ensure correct operation.

A behavioural description of the CU issuing a LDA instruction in this refinement

step is given in Figure 5–3.

- Rof

- RofA (Active phase), RofA (reset phase).Incoming Offset Register Acknowledgement Signal

Outgoing Register Offset Control Signal

completed, by testing the input
on these control signals have been
Wait until the previous handshakes

acknowledgement signals.

Wait until the Control Signals have
been acknowledged.

Initiate instruction execution.

Instruction issued.

.

.
LDA : SEQ

STATE 2.

STATE 1.

assert (Rof, Ry, MU3, ZMs);

deassert (Rof, Ry, MU3, ZMs);

wait until (RofA . RyA . MU3A . ZMsA);

CASE instruction

wait until (RofA . RyA . MU3A . ZMsA);

Figure 5–3: Issuing an LDA instruction in Refinement Step 2

Chapter 5. The Control Paradigm and the Architecture 99

Performance Results

Instruction ICT MML Max. FM Utilisation

ALU 24nS 24nS 16.67%

LD 43nS 43nS 53.49%

ST 23nS 21nS 42.85%

Table 5–4: Instruction execution for Refinement Step 2

Test Programs Alu Test Load Test Store Test Hennessy Tests

Program Execution Time 175nS 308nS 164nS 106nS

MIICT 24nS 43nS 21nS 17nS

ALU Utilisation 16.57% 0% 0% 12%

MU Utilisation 0% 53.31% 39.87% 32%

Register Bank Utilisation 41.42% 23.18% 22.15% 39%

ALU Interface Utilisation 78.7% 0% 0% 57%

MU Interface Utilisation 0% 88.08% 82.91% 55%

Register Interface Util. 70.41% 92.72% 48.73% 71%

Table 5–5: Execution of the test programs on Refinement Step 2

This refinement step exploits limited spatial concurrency between instruc-

tions with different micro-operations, i.e. instructions which require different

microagents. Therefore, improvements are only observed in the Hennessy Tests

where instructions using different micro-operations (ALU and memory instruc-

tions) may execute concurrently, and this is reflected in the greater utilisation

figures for the respective units as shown in Table 5–5.

Chapter 5. The Control Paradigm and the Architecture 100

5.10 Refinement Step 3 – Using a Single Write-back

Bus

In the previous versions of the architecture, each functional unit had its own

write-back bus which allowed result operands to be written back to the registers

as soon as they became available. However, supporting n function units would

require n write-back buses (incurring area costs) and n write-ports on the register

bank (incurring performance costs). The micronet datapath (Figure 5–13) in this

refinement step has only one write-back bus, i.e. the functional units share the

ZM bus to write data back to the registers. The control signal ZAs is no longer

used so there is only one write-back microagent control signal ZMs. This

has a significant effect on performance since previous concurrent write-backs

must now take place sequentially. Also, the instruction issue conditions forces

instructions which require to write data back to execute completely sequentially

again.

Performance Results

Instruction ICT MML Max. FM Utilisation

ALU 24nS 24nS 16.67%

LD 43nS 43nS 53.49%

ST 23nS 21nS 42.85%

Table 5–6: Instruction execution on Refinement Step 3

Table 5–7 shows increases in the execution time for both Hennessy Test

programs, which re-enforces the advantages of multiple write-back buses (see

Table 5–5). Another interesting point to note is that the execution time of this

test program is independent of data dependencies. Each instruction issue is

Chapter 5. The Control Paradigm and the Architecture 101

Test Programs Alu Test Load Test Store Test Hennessy Tests

Program Execution Time 175nS 308nS 164nS 139nS

MIICT 24nS 43nS 21nS 17nS

ALU Utilisation 16.57% 0% 0% 9.02%

MU Utilisation 0% 53.31% 39.87% 24.06%

Register Bank Utilisation 41.42% 23.18% 22.15% 33.83%

ALU Interface Utilisation 78.7% 0% 0% 42.86%

MU Interface Utilisation 0% 88.08% 82.91% 41.35%

Register Interface Util. 78.7% 44.04% 55.06% 66.17%

WB Bus Utilisation 37.28% 20.86% 39.87% 33.83%

Table 5–7: Execution of the test programs on Refinement Step 3

stalled until the previous one has written its result back to the registers. This is

a return to almost complete sequential execution (as in Refinement Step 1). (The

difference in PETs for the Hennessy Tests in Step 1 and here is due to concurrency

between the ST and ALU operations.) Although the write-back bus doesn’t seem

to be a bottleneck, there are times when a result is delayed waiting for another

write-back operation to complete. This can affect performance especially if the

stalled data item is required by an instruction on the program’s critical path.

5.11 Refinement Step 4 – Asynchronous Micro-operation

Issue

In previous refinement steps, the control unit would not assert any of the in-

dividual control signals for issuing an instruction until all of them could be

asserted together. This constraint is now relaxed so that once an instruction

has been chosen to be issued, the individual control signals required by that

Chapter 5. The Control Paradigm and the Architecture 102

instruction can be asserted asynchronously as soon possible. This allows micro-

operations belonging to different instructions to overlap (see the timing diagram

of Figure 5–14). Note that an instruction’s control signals can only be de-asserted

once all the relevant control signals have been acknowledged, this being the time

at which the instruction is considered to have been issued (also shown in the

timing diagram). This refinement aims to improve the instruction execution by

exploiting a finer grain of ILP than previously possible in synchronous designs,

i.e. concurrency between individual components within stages of a datapath.

This also speeds up the instruction issue of blocked or stalled instructions. Only

the control signals to the common resources (which have not finished) will be

stalled thus allowing the ready resources to execute their micro-operations for

the current instruction earlier than before. However, relaxing this constraint

re-introduces possible hazards and efficient mechanisms have to be devised to

avoid them.

Instruction Issue

The micro-operations for an instruction are initiated individually as soon as

possible by asserting the necessary control signals. The receipt of an acknow-

ledgement confirms that the associated micro-operation has begun and the

instruction is said to be issued once all of the asserted control signals have been

acknowledged. The initiating control signals can then be de-asserted and the

next instruction issue can begin. As in Refinement Step 2, micro-operations

relating to different instructions may overlap. However, while Step 2 benefited

from spatial concurrency (made possible through the availability of resources),

this refinement step exploits mainly temporal concurrency through a limited

amount of pipelining. Fortunately, thanks to the properties of the micronet the

hazard avoidance mechanisms are implicit in the orderings of the assertions of

the control signals, known as pre-issue conditions, and these are discussed below.

Since some micro-operations share the same resources they obviously cannot

Chapter 5. The Control Paradigm and the Architecture 103

execute simultaneously. These restrictions are also applied by the pre-issue

conditions.

RAW – An instruction is considered issued once all of its resource control signals

have been acknowledged by the relevant microagents (i.e. the microagents

are active). This allows the control signals to be cleared and the next

instruction issue to begin. Recall that the control acknowledgement signal,

ZMs, is asserted once the register is locked and cleared once data has been

written to it. Thus, the destination register will be locked before the

following instruction attempts to read from it, since the next instruction

issue cannot be initiated until the previous set of control signals have been

acknowledged.

WAR – When a register is used both as a source and a destination within the

same instruction, then it is necessary to ensure that the source data is

obtained before the register is locked, otherwise deadlock will occur. In

the previous refinement steps no action was required to avoid this hazard

since this criteria was met by the issuing conditions (the set of microagent

control signals being asserted together) and the register bank. However, it

is now possible for ZMs to be asserted before the source operand control

signals Rx and Ry and therefore the CU stalls the assertion of ZMs until

Rx and Ry have been asserted.

Operand fetch – It is also necessary to ensure that a functional unit gets the

correct operands since it is possible for two units to require operands at

the same time. Functional units fetch each of their operands separately

over the operand fetch buses (X and Y) while acknowledging the control

signal (i.e. operation request) from CU in the following manner:

1. If the bus is free and no other request is in progress then the request

signal (to register port for this bus) is asserted.

Chapter 5. The Control Paradigm and the Architecture 104

2. When valid data is detected, the data is latched and the request

signal is cleared. Data is, of course, only latched by the functional

unit interface which made the original request.

Simultaneous operand requests by FMs to the same register bank CM

micro-operation can lead to one of them acquiring the wrong operand.

This can be avoided by the CU delaying the assertion of the control signal

to one of the functional units. The CU need only delay the assertion

of the control signal to a FM until the FM of the previous instruction

has made its operand request(s) to the registers. This event will have

occurred before the acknowledgement signals of the previous instruction’s

“operand fetch” micro-operations (Rx, Ry or Rz) have been de-asserted.

WAW – A situation may arise where the current instruction is stalled because

a previous instruction has not written its result back to the destination re-

gister. This stall is necessary because the current instruction might either

attempt to write its result to an unlocked register (which may eventu-

ally cause a deadlock) or write data to a location out of program order.

In this refinement, write-backs are still forced to occur in-order. The

solution adopted here is very simple since the above conditions can be

avoided by preventing each functional unit from writing data back until

its control signal from the CU has been de-asserted (an implicit go-write

signal). This is sufficient since an instruction’s control signals cannot be

de-asserted before ZMs is asserted (see timing diagram in Figure 5–14).

(In the CU, the control signals will be de-asserted once all the required ac-

knowledgements have been received, which includes ZMs, implying that

the destination register has been locked.) Note that if the CU attempts

to lock a register which is already so, then the acknowledgement signal

will not be asserted and the current register lock request will stall. This

mechanism guarantees that write-backs to the same register occur in the

Chapter 5. The Control Paradigm and the Architecture 105

correct order without stalling the instruction issue, and thereby allowing

the instructions to execute concurrently with only write-backs taking place

sequentially. Historically, the CDC6600 [162] used a Go-Write signal which

sequentialised the execution of the offending instructions.

Bus Contention – Only the functional units and the register bank can write on

to the Z Bus. The mechanism to avoid WAW hazards prevents contention

between functional units and therefore the only possibility for contention

is when the Register Bank and one of the functional units attempt to write

on the bus simultaneously. However, access to this bus is arbitrated by

the CU, through the mutually-exclusive assertions of the operand fetch

control signal Rz, and the write-back control signal ZMs.

The refinements to the behavioural description of the CU issuing a LDA instruc-

tion are shown in Figure 5–4.

- Rof

- RofA (Active phase), RofA (reset phase).Incoming Offset Register Acknowledgement Signal

Outgoing Register Offset Control Signal

CASE instruction
.
.

LDA :

in accordance with the

Assert Control Signals

pre-issue conditions.

Wait for Control Signal

acknowledgements.

wait until

wait until

wait until

wait until (MU3A);

(ZMsA);

deassert (MU3);

deassert (ZMs);

deassert (Ry);

(RofA); deassert (Rof);

PAR

(RyA);

SEQ

wait until

wait until

wait until

wait until

PAR

(RofA . RxA . RyA . MU3A);

(RofA . RxA . RyA . ZMsA);

assert (MU3);

assert (ZMs);

(RyA);

(RofA . RxA);

assert (Ry);

assert (Rof);

Figure 5–4: Issuing an LDA instruction in Refinement Step 4

Chapter 5. The Control Paradigm and the Architecture 106

Performance Results

Instruction ICT MML Max. FM Utilisation

ALU 21nS 24nS 19.05%

LD 42nS 43nS 54.76%

ST 23nS 21nS 42.85%

Table 5–8: Instruction execution on Refinement Step 4

Test Programs Alu Test Load Test Store Test Hennessy Tests

Program Execution Time 157nS 302nS 165nS 119nS

MIICT 21nS 42nS 22nS 16nS

ALU Utilisation 18.54% 0% 0% 10.62%

MU Utilisation 0% 54.39% 39.62% 28.32%

Register Bank Utilisation 37.09% 23.65% 35.85% 43.36%

ALU Interface Utilisation 80.13% 0% 0% 68.14%

MU Interface Utilisation 0% 89.86% 78.62% 48.67%

Register Interface Util. 93.38% 89.19% 88.68% 77.88%

Table 5–9: Execution of the test programs on Refinement Step 4

Table 5–9 shows some improvement in the execution times over Refinement

Step 3. In fact the PETs for the instruction test programs are better than the

corresponding values in Refinement Step 2 (see Table 5–5). These performance

gains are due to the small improvements in the instruction cycle times as shown

in Table 5–8. The magnitude is determined by the overlap between the operand

access of the current instruction and the write-back of the previous one. In

the example under consideration there can only be two program instructions

active in the datapath simultaneously. The likelihood of operand fetches and

write-backs occurring concurrently depends on the FM delay.

Chapter 5. The Control Paradigm and the Architecture 107

Although the Hennessy Test PETs also show improvements over the previous

refinement step, they are still worse then the figures in Step 2. In Refinement

Step 2, the programs exploited spatial parallelism, whereas now they only

exploit temporal parallelism. The latter is limited, due to the control unit being

unable to complete the issuing of the current instruction, (specifically, locking

the destination register) until the previous instruction has written its result back

to the register. This is necessary to enforce in-order instruction completion and

to prevent contention on the write-back bus. Also, the MIICT for the Hennessy

Test (in Figure 5–9) is less than the corresponding values for the other test

programs. This is due to the overlapping of independent instruction issues.

While analytical estimates of program execution times (PETs) for the Alu,

Load and Store Tests (see Equation 5.1) match those obtained from the simula-

tion, it is less easy to obtain the same for programs with a mix of instructions, as

in the case of the Hennessy Test. The execution times for such programs depend

on a number of factors, such as the relative values of the instruction issue and

cycle times and resource availability, which affect the amount of concurrency

available.

5.12 Refinement Step 5 – Out-of-Order Write-Backs

Enforcing in-order write-backs restricts the amount of concurrency which can

be exploited especially when functional unit execution times vary significantly.

However, supporting out-of-order completion of instructions in an asynchron-

ous environment is more difficult than under synchronous control. Determining

the precise order in which results will become available is virtually impossible

since micro-operation delays vary (subject to data and environmental paramet-

ers). Therefore a decentralised bus arbitration scheme is required such as a

token ring which is distributed amongst the CMs that write to the bus. Out-of-

Chapter 5. The Control Paradigm and the Architecture 108

order instruction completion can now be supported by tagging the write-back

data with the address of its destination register. However, the micro-operation

to write data back to the register bank can no longer be controlled by the CU

since the order of the write-backs cannot be predicted. Therefore, write-backs

are initiated directly by the CMs of the FMs which require the service, i.e. the

write-back micro-operation is initiated by the micro-operations in the previous

stage.

Since the Z bus is shared by the functional units which generate results

and access to the bus is no longer controlled by the CU, then potential for bus

contention does exist. Two (or more) CMs may attempt to write on to the bus at

the same time (or within the bus propagation delay). Determining the precise

times of the availability of data is very difficult. The use of a centralised request-

grant arbitration scheme is possible. This will become more complex as the

number of functional units increases. A priority scheme could be incorporated

to give certain functional units, especially those with longer delays like the

memory unit, access to the bus before other waiting units. An alternative more

distributed scheme can be achieved by using a token ring. The token need only

be held for the duration of data transfer and not the whole handshake. The

ring is distributed amongst the FU interfaces and is very simple to implement.

However as the number of functional units increases, so does the token’s cycle

time and for architectures with a large number of FUs this may not prove to be

a satisfactory solution.

The register control signal ZMs has to be modified in order to decouple the

CU from the process of writing data back into the register:

ZMs – Now just locks the destination register and prevents read access to it.

The corresponding control signal acknowledgement is now set on receiv-

ing the request (the asserted ZMs control signal) from the CU, and cleared

when the register is locked. Again, ZMs and Rz cannot be asserted simul-

Chapter 5. The Control Paradigm and the Architecture 109

taneously, since it is now necessary to guarantee that either the register has

been locked prior to the next instruction being issued (in case of a RAW

dependency), or that the register has been read before it is locked (in the

case of a WAR dependency). Note that in the case of a WAW dependency,

it is still necessary for the functional unit control signal to be de-asserted

after the destination register has been locked, i.e. de-asserted only after

the de-assertion of ZMs has been acknowledged.

Performance Results

Instruction Instruction Micronet Maximum FU

Cycle Time Latency Utilisation

ALU 21nS 24nS 19.05%

LD 42nS 43nS 54.76%

ST 23nS 21nS 42.85%

Table 5–10: Instruction execution for Refinement Step 5

Test Programs Alu Test Load Test Store Test Hennessy Tests

Program Execution Time 159nS 302nS 165nS 114nS

MIICT 21nS 42nS 23nS 17nS

ALU Utilisation 18.3% 0% 0% 11.11%

MU Utilisation 0% 54.39% 39.62% 29.63%

Register Bank Utilisation 29.41% 23.65% 32.70% 56.48%

ALU Interface Utilisation 80.39% 0% 0% 72.22%

MU Interface Utilisation 0% 89.86% 79.25% 72.22%

Register Interface Util. 86.27% 85.81% 91.19% 85.19%

Table 5–11: Execution of the test programs on Refinement Step 5

Chapter 5. The Control Paradigm and the Architecture 110

The results in Table 5–11 show that in this refinement, out-of-order instruc-

tion completions (i.e. write-backs) have little effect on performance. This is to

be expected in the instruction test programs where there is no scope at all for

benefit, although the Hennessy Test shows is only a slight improvement. The

explanation is as follows: In order to benefit from out-of-order write-backs, the

architecture needs to be able to exploit spatial parallelism. In the micronet,

this means that the instruction issue rate needs to be faster than the instruction

execution rates. It can be observed in Table 5–11, that the Minimum Instruction

Issue Cycle Time (MIICT) is nearly as long as the smallest Instruction Cycle

Time (ICT). This suggests that the issue of instructions is a limiting factor on

the degree of spatial concurrency that can be exploited. In order to achieve

higher concurrency it is necessary for the IICT to be as small a proportion of

the smallest ICT as possible. Another reason is the limited amount of spatial

parallelism available in the test programs themselves and the general (conser-

vative) dependency rules applied when issuing instructions. These issues will

be addressed in following refinements.

5.13 Refinement Step 6 – Faster Instruction Issue

The issue cycle time determines the rate at which instructions can be issued

to the micronet datapath and should this be a limiting factor on performance

then the handshake cycle times of the microagent control signals have to be

minimised. This can be achieved by either improving the hardware design of

the control circuits, or alternatively, by redefining the handshake cycle itself (the

option considered in this refinement step).

Here, in Refinement Step 6, the rôle of the CU is diminished further by

distributing the control of the micronet to individual CMs. While the CU ini-

tiates the micro-operations individually for the current instruction as early as

Chapter 5. The Control Paradigm and the Architecture 111

possible via the corresponding CMs as before, the rôle of the CMs has been en-

hanced to more than just controlling local communications between FMs. They

effectively buffer the initiation of the micro-operations from the CU until the

respective FMs are ready to perform. This increases the number of operations

which actually take place concurrently. This is also due in part to the changes

in the significance of the control signal handshake. The acknowledgements to

the control signals are revised as shown below:

Rx – This signal still identifies the source register whose contents are to be

transferred across the X Bus. However, the corresponding acknowledge-

ment is asserted by the CM of the register bank when the X bus operand

fetch micro-operation is ready to access the register, and de-asserted once

the operand fetch handshake is in progress over the X bus.

Ry – Same as above, but for the Y Bus.

Rz – Same as above, but for the Z Bus.

Rof – Same as above, but also with the restriction that the control signals Rx

and Rof cannot both be active simultaneously.

Rz – The acknowledgement signal is cleared when the register interface has re-

ceived the data transfer acknowledgement from the destination functional

unit. (Z bus is data driven).

AUs – This still identifies the next operation to be carried out by the ALU. The

acknowledgement, however, is now asserted when the corresponding

CMs are ready to fetch the operands from the registers and is cleared once

the FM micro-operation has completed.

MC1 – This signal still identifies a load instruction for the MU. The acknow-

ledgement is asserted and cleared as for AUs.

Chapter 5. The Control Paradigm and the Architecture 112

ZMs – This signal still identifies the destination register which has to be locked.

However, the corresponding acknowledgement signal is asserted when

the CM is ready and de-asserted once the operation has been completed,

as described in the previous refinement step.

As in previous refinement steps, hazards are dealt with by properly sequen-

cing the control signals (the pre-issue conditions):

WAR – A functional unit cannot generate a result without first receiving its in-

put operands. These are fetched in instruction order due to the handshake

mechanism. The ZMs signal is only asserted after all the previous operand

fetch control signal handshakes have been completed. This also prevents

the destination register being locked before operands are accessed.

WAW – The mechanism is similar to before, except now the de-assertion of

the functional unit control signals is no longer delayed until the ZMs

acknowledgement signal is de-asserted. Instead, the go-write signal now

originates explicitly from the register interface once the register has been

locked and not implicitly from the CU.

RAW – The CU delays the assertion of the operand fetch control signals Rx,

Ry and Rz until the previous ZMs control acknowledgement signal has

been de-asserted, which indicates the locking of the previous destination

register.

Operand Fetch – The pre-issue conditions are same as before. For each instruc-

tion, the control signal to the functional unit interface is only asserted after

the required operand fetch control signals. This prevents bus contention

on the operand fetch buses and guarantees that operands will be fetched

in-order.

Chapter 5. The Control Paradigm and the Architecture 113

Write-back Contention – This is prevented by the use of a token ring to arbitrate

accesses to the write-back (Z) bus. Of course, this problem could be

obviated by using dedicated buses for small number of FMs, but may be

impractical for larger designs.

The behavioural description of the CU issuing a LDA instruction in this refine-

ment step is given in Figure 5–5.

- Rof

- RofA (Active phase), RofA (reset phase).Incoming Offset Register Acknowledgement Signal

Outgoing Register Offset Control Signal

CASE instruction
.
.

LDA :

wait until

wait until

wait until

wait until (MU3A);

(ZMsA);

deassert (MU3);

deassert (ZMs);

deassert (Ry);

(RofA); deassert (Rof);

PAR

(RyA);

in accordance with the

Assert Control Signals

pre-issue conditions.

Wait for Control Signal

acknowledgements.

SEQ

wait until

wait until

wait until

wait until

assert (Ry);

assert (Rof);

PAR

(RofA . RxA . RyA . MU3A);

(RofA . RxA . RyA . ZMsA);

(RyA . ZMsA);

(RofA . RxA . ZMsA);

assert (MU3);

assert (ZMs);

Figure 5–5: Issuing an LDA instruction in Refinement Step 6

Performance Results

Instruction ICT MML Max. FM Utilisation

ALU 15nS 24nS 26.67%

LD 39nS 43nS 58.97%

ST 23nS 21nS 42.85%

Table 5–12: Instruction execution on Refinement Step 6

Chapter 5. The Control Paradigm and the Architecture 114

Test Programs Alu Test Load Test Store Test Hennessy Tests

Program Execution Time 123nS 287nS 165nS 102nS

MIICT 15nS 39nS 23nS 10nS

ALU Utilisation 23.93% 0% 0% 12.5%

MU Utilisation 0% 57.3% 39.62% 33.33%

Register Bank Utilisation 59.83% 24.91% 35.22% 66.67%

ALU Interface Utilisation 94.87% 0% 0% 83.33%

MU Interface Utilisation 0% 97.86% 79.25% 84.38%

Register Interface Util. 93.16% 89.32% 93.08% 90.63%

Table 5–13: Execution of the test programs on Refinement Step 6

The instruction issue times have been reduced by minimising the delay

between the assertion of the control signals and the arrival of their acknow-

ledgements. This improvement was achieved by pipelining the control signal

handshakes. Previously, the control acknowledgement signals were asserted

once the particular action had taken place. Now, the interfaces (if not already

busy with a previous handshake) will acknowledge a request immediately, sig-

nifying that the operation will take place, and de-assert the acknowledgement

signal once the task has been completed. Although the particular task may

have been completed, the interface may still continue to be busy completing

successive tasks and may not be ready to acknowledge another request from

the CU immediately, thus hiding communication delays.

An improvement in the ICTs of instructions which require to write data back

to the registers, i.e. the LD and ALU instructions, can be observed in Table 5–12.

This is due to the de-centralisation of the write-back control to the relevant CMs.

These improvements are reflected in the shorter PETs for the Alu, Load, HT1

and HT2 test programs, as shown in Table 5–13. Thus, the faster issue cycle time

Chapter 5. The Control Paradigm and the Architecture 115

allows these test programs to benefit from the write-back modifications made

in the earlier refinement steps.

5.14 Refinement Step 7 – Data Forwarding

This refinement step implements two features to increase the amount of fine-

grained concurrency which is available: firstly, the well-known technique of

data forwarding to reduce the effect of stalls due to data dependencies between

instructions and secondly, the application of the pre-issue conditions only when

strictly necessary in order to reduce CU stalls. Implementing the specific de-

pendency rules requires checking the actual register addresses within instruc-

tions. This requires extra hardware and increases the control unit’s complexity,

however all of this is required for out-of-order instruction issue. Therefore, it

may only be worthwhile if the expected or exploitable performance (determ-

ined by the target application) outweighs the cost of implementing the specific

dependency rules (which depends on implementation technology). Alternat-

ively, it may be possible to generate the required information at compile time

and encode it into the instruction word.

Previously, the micronet imposed a feed-forward discipline in the pipelines.

This is now relaxed by having feedback paths which has the effect of allow-

ing required operands to move against the flow. In the micronet datapath, the

operands are only available for a short period of time (i.e. while they are be-

ing transferred to the register interface) after which they are obtained from the

register bank (in effect the architecture implements only one stage of the coun-

terflow pipeline [157], and relies on fast operand fetch access from the register

bank).

With data transfer on the Z bus being tagged, the CMs can identify and in-

tercept operands for which they may be waiting. This mechanism, reminiscent

Chapter 5. The Control Paradigm and the Architecture 116

of the IBM 360/91 common bus architecture [163], has been implemented by

exploiting the feedback loops within the micronet. In the event of data for-

warding, where data is routed directly to the CM of the waiting FM, the CM’s

previous request for that operand is, in effect, cancelled by initiating a separate

handshake. This frees the corresponding operand fetch CM to service its next

request. An alternative approach would be to implement operand bypassing,

where the operand is fed back to the operand fetch micro-operation. This fea-

ture avoids both duplicated tag matching in each of the data forwarding CMs

and the need for the cancel handshake, at the expense of being slower than data

forwarding. However, the functionality is viewed as internal to the register

bank, since, from outside the data is obtained from the same place – just slightly

quicker than expected. This means that this method would fit perfectly into the

micronet model since no further modification would be required to any other

part of the datapath.

The dual rôle of the Z Bus can now no longer be supported due to the

data-forwarding mechanism. A separate operand fetch bus (W Bus) is used,

making the Z Bus purely a write-back bus (see Figure 5–17). (In the previous

refinements, the Z Bus was used as both a operand bus (for STR instructions)

and as a write-back bus.) By separating the functionality, the register interface

for the Z bus is simplified. The traffic on the Z Bus is reduced and since the

register interface no longer needs to send data on the Z Bus, it can be removed

from the token ring (speeding up the ring’s cycle time). Also, this allows the

third operand for a STR instruction to be forwarded when necessary. As one

might expect, in terms of exploiting concurrency, it is better if less resources are

shared between operations of different pipeline stages.

Performance Results

Columns “HT2” and “HT2DF” refer to the cases without and with data-

Chapter 5. The Control Paradigm and the Architecture 117

Instruction ICT MML Max. FM Utilisation

ALU 15nS 24nS 26.66%

LD 38nS 43nS 60.52%

ST 23nS 21nS 42.85%

Table 5–14: Instruction execution on Refinement Step 7

Test Programs Alu Test Load Test Store Test HT1 HT2 HT2DF
PET 121nS 280nS 165nS 83nS 97nS 91nS

MIICT 15nS 39nS 23nS 8nS 10nS 10nS

ALU Util. 24.35% 0% 0% 15.58% 13.18% 14.11%

MU Util. 0% 58.76% 39.62% 41.55% 35.16% 37.65%

Reg. Bank Util. 60.87% 25.55% 22.01% 58.44% 67.03% 65.88%

ALU If. Util. 94.78% 0% 0% 79.22% 80.21% 80%

MU If. Util. 0% 97.81% 79.25% 72.72% 74.72% 72.94%

Reg. If. Util. 94.78% 89.42% 93.08% 90.90% 92.30% 92.94%

Table 5–15: Execution of the test programs on Refinement Step 7

forwarding, respectively. As is expected, the results show improvements in

performance in programs with data dependent instructions, and this is recorded

in the figures for the Hennessy Test in Table 5–15. As a side-effect of the data-

forwarding, the PET improvements in the Load and Alu Test are due to the

introduction of the W Bus which removed the Register Interface from the token

ring, thereby reducing the ring’s cycle time. The division of the Z bus into

separate buses also improves the scope for greater concurrency. For the first

time the PETs for HT1 and HT2 differ since the pre-issue conditions have been

applied only when necessary. Since HT1 has no data dependencies between

instructions it executes faster.

Chapter 5. The Control Paradigm and the Architecture 118

5.15 Refinement Step 8 – The Last Control Modifica-

tion

In this final refinement step, both the assertion and de-assertion of the control

signals occur independently of each other. This increases further the concur-

rency between micro-operations and maximises the exploitation of fine-grained

concurrency between instructions for a given architecture. A behavioural de-

scription of the CU issuing a LDA instruction is given in Figure 5–6. Previously,

the FM control signal acknowledgements represented the business of their re-

spective functional units. This is no longer the case, since these signals are

de-asserted on the receipt of the required operands. This effectively reduces the

ICT as is observed in the performance figures for all the programs in Table 5–17.

ZMsA);

ZMsA);

wait until

wait until

wait until

wait until

(RofA . RxA .

(RyA .

(RofA . RxA . RyA .

(RofA . RxA . RyA . ZMsA . MU3A);

assert (Rof); wait until (RofA); deassert (Rof);

assert (Ry); wait until (RyA); deassert (Ry);

ZMsA); assert (ZMs);

assert (MU3);

wait until (ZMsA); deassert (ZMs);

wait until (MU3A); deassert (MU3);

PAR

- Rof

Incoming Offset Register Acknowledgement Signal

Outgoing Register Offset Control Signal

- RofA (Active phase), RofA (reset phase).

- RofACondition only applied when a dependency exists

Figure 5–6: Issuing an LDA instruction in Refinement Step 8

Performance Results

The ICT figure for the LD instruction in Refinement Step 8 is the best attain-

able as it represents the MU’s FM delay for the operation. The corresponding

Chapter 5. The Control Paradigm and the Architecture 119

Instruction ICT MML Max. FM Utilisation

ALU 12nS 24nS 33.33%

LD 23nS 43nS 100%

ST 12nS 21nS 75%

Table 5–16: Instruction execution for Refinement Step 8

Test Programs Alu Test Load Test Store Test HT1 HT2DF
Program Exec Time 103nS 188nS 98nS 79nS 91nS

Effective Speed Up 1.75 1.66 1.71 1.89 1.62

MIICT 10nS 10nS 10nS 10nS 10nS

ALU Utilisation 28.87% 0% 0% 16.44% 14.11%

MU Utilisation 0% 88.46% 67.74% 43.84% 37.65%

Register Bank Util. 72.16% 32.45% 37.63% 64.38% 64.71%

ALU Interface Util. 93.81% 0% 0% 78.08% 78.82%

MU Interface Util. 0% 96.7% 95.7% 72.6% 70.59%

Register Interface Util. 93.81% 79.79% 90.32% 91.78% 91.76%

Table 5–17: Execution of the test programs on Refinement Step 8

utilisation figure in Table 5–17 supports this claim (Note: these utilisation meas-

urements do take into account both the initial operand fetch and the final write-

back delays, and will therefore never attain the theoretical upper bound shown

in Table 5–16). These figures show that the micronet can exploit the actual

operational costs and effectively hide the overheads of self-timed design. The

ICTs for the ALU and ST instructions are limited by their operand fetch cycle

times, and the utilisation of the FM in these cases also approach their bounds.

These cycle times are due to the communication protocol between the FUs and

the register bank. These delays can be reduced by using a less conservative

bundling delay [158] and through layout and transistor size optimisation [26]

Chapter 5. The Control Paradigm and the Architecture 120

(Refinement Step 9). The improvements in FM utilisation over the 9 refinement

steps are shown in Figure 5–7.

% Utilisation

90

80

70

60

50

40

30

20

10

0

ALU (ATP)

ALU (HT1)

MU (LTP)

MU (STP)

MU (HT1)

Step 9Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

Figure 5–7: The FM utilisations

The overall improvements in the program execution times in Refinement

Step 8 over Step 1 (shown in Table 5–17 and Figure 5–8) for the three instruction

test programs are due to improvements in temporal concurrency due to asyn-

chronous pipelining of the datapath. The actual speedups achieved are less

than the maximum attainable improvement, which is the ratio of the ICTs (in

Chapter 5. The Control Paradigm and the Architecture 121

PET (nS)

300

250

200

100

50

150

ALU Test
Load Test
Store Test

HT2
HT1

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9

Figure 5–8: The test program execution times

Tables 5–2 and 5–16), because of the MML and the startup overheads (see Equa-

tion 5.1), for longer tests programs the speed-up will approach the maximum

value. The speed-up for HT1 is in part due to the pipelining of the instructions

as observed in previous test programs, and also due to additional spatial con-

currency achieved through the overlapping of different instructions in the same

stage of the micronet. This further improvement is still significant (approxim-

ately 17-20% in this example) given that both successive instruction operand

fetches and write-backs are effectively forced to take place sequentially due to

resource constraints. (In fact, the delays of these operations are larger than the

Chapter 5. The Control Paradigm and the Architecture 122

FM delays for store and ALU operations and the MIICT which implies that the

scope for spatial concurrency in this particular example is quite small). As the

number of microagents within each stage is increased, the spatial concurrency

effect will be more pronounced. The speed-up for HT2, as expected, reflects the

reduced concurrency which can be exploited, because of data dependencies in

the program. These dependencies affect spatial concurrency more since they

sequentialise operations irrespective of resource requirements. This emphasises

the need for a good instruction schedule to exploit micronet-based architectures.

5.16 Conclusions

The interaction between concurrently executing instructions is quite difficult to

predict. For example, two instructions which compete for the same resources

might acquire them in a different order depending on the actual delays which

are themselves data-dependent. This is not in itself a drawback, since one of

the instructions is stalled for just as long as is necessary, unlike the synchronous

case.

These refinements have investigated the influence of an asynchronous con-

trol paradigm on the performance of processor architectures for exploiting fine-

grained ILP. The rôle of the CU in an asynchronous processor can be con-

siderably simplified, just to initiating individual micro-operations as early as

possible. The control of the datapath is distributed to local interfaces courtesy

of the micronet. The results show that given a set of resources, an asynchronous

control paradigm implemented as a micronet is able to efficiently achieve good

utilisation on datapath resources through the exploitation of both actual exe-

cution latencies and fine-grain spatial and temporal ILP. It has to be noted that

the datapath latency is unaffected by the exploitation of temporal parallelism

which is generally not the case in a synchronous pipeline.

Chapter 5. The Control Paradigm and the Architecture 123

5.17 Refinement Step 9 – Transistor Resizing

This additional refinement further illustrates how easily modifications can made

to the behaviour of a particular part of the micronet without affecting the rest of

the design. In the previous refinement step, some of the ICTs were limited by

the handshake cycle time of data transfers across the buses. In this refinement

step, the bus drivers have been resized to reduce the bus propagation times.

Consequently, no other (design) modifications were required to both ensure the

correct operation of the micronet and exploit the benefits.

Performance Results

Instruction ICT MML Max. FM Utilisation

ALU 10nS 22nS 40%

LD 23nS 41nS 100%

ST 10nS 20nS 90%

Table 5–18: Instruction execution for Refinement Step 9

In this refinement step, the ICTs of both the ALU and ST instruction, as

shown in Table 5–18, are now limited by the instruction issue cycle. This is

clearly highlighted by the fact that their corresponding test programs have

similar PETs (see Table 5–19).

In a synchronous pipeline, performance benefits can only be attained when

improvements are made to the worst-case delay of the slowest stage. However,

a micronet can exploit the benefits of improvements made to any stage. In MAP,

the delay associated with the current issue cycle is determined by the current

slowest stage and this is likely to vary from cycle to cycle. Excluding hazards,

the instruction issue rate is limited by the issue cycle time or the operand fetch

Chapter 5. The Control Paradigm and the Architecture 124

Test Programs Alu Test Load Test Store Test HT1 HT2 HT2DF
PET 89nS 186nS 85nS 68nS 83nS 78nS

MIICT 10nS 12nS 10nS 10nS 10nS 10nS

ALU Util. 33.75% 0% 0% 19.35% 15.58% 16.67%

MU Util. 0% 89.44% 79.75% 51.61% 41.56% 44.44%

Reg. Bank Util. 77.11% 36.67% 44.3% 62.9% 70.13% 68.06%

ALU If. Util. 92.77% 0% 0% 74.19% 75.32% 69.44%

MU If. Util. 0% 96.67% 96.2% 74.19% 74.03% 72.22%

Reg If. Util. 91.57% 81.11% 88.61% 90.32% 90.91% 91.67%

Table 5–19: Execution of the test programs on Refinement Step 9

cycle time (depending on the delays incurred by their actual implementation).

The time to write data back to registers will vary depending on the time taken

to obtain access to the bus.

5.18 Discussion

The work in this chapter has focused on how asynchronous controls within the

micronet can be used efficiently to utilise the components of a typical datapath.

The architecture has been influenced to the extent that resources (microagents)

should operate as independently and concurrently as possible. This is achieved

through the distribution and decentralisation of control and the use of decoup-

ling queues between successive resources. The micronet effectively provides

a framework to control a processor architecture and does not constrain a de-

signer towards any particular architecture. Instead the designer can easily add

or remove resources (thus modifying the architecture) to meet different design

criteria. The processor’s performance and efficiency is determined by the pro-

Chapter 5. The Control Paradigm and the Architecture 125

portion of the actual delays (latencies) of the micro-operations to the cycle times

of their functional units (FMs). It is difficult to quantify the magnitude of change

a particular modification will have on performance because of the complex in-

terdependency (sequencing and actual delays of components) of events. A high

functional unit utilisation isn’t necessarily a good thing since this may imply a

bottleneck in that particular unit. Of course, the designer could replace that unit

with a faster one or even add another unit to improve performance which may

have the effect of reducing the utilisation. Improving the performance of the

part of a design which is causing a bottleneck will simply move the bottleneck

to the next slowest part of the design (which may or may not be within the

design constraints). This work tries to advocate that given a set of architectural

resources, the micronet control paradigm is better able utilise them (almost

achieving their maximum theoretical bounds).

5.18.1 Minimising the Self-Timed Overheads

As shown in this chapter, the key to efficient exploitation of ILP in MAP has

been the ability to hide the overhead due to asynchronous handshake protocols.

While the two-phase handshaking protocol is conceptually easier to understand,

a four-phase one leads to simpler and therefore possibly faster circuits. In

order to exploit ILP, the control unit might want to issue instructions before

the previous one has completed, therefore these circuits need to be as fast as

possible.

Both transitions in a generic four-phase protocol (the assertion and the

return-to-zero) are accompanied by additional acknowledgements from the

receiver. Although the principal advantage of this approach is a simpler cir-

cuit implementation, it uses twice as many transitions than is necessary and

whenever the wire delay is a substantial fraction of the operation time, the extra

trip required by a single communication can be a serious performance penalty.

Chapter 5. The Control Paradigm and the Architecture 126

In fact, the reset phase of the handshake does not signal any event, thus leading

some designers to modify the protocol to simultaneously reset the two signals

after the active phase to reduce the handshake cycle time [55]. The micronet is

only concerned with the external communications between microagents, each

of which might use a different protocol internally. Micronets employ the tradi-

tional four-phase handshaking protocol for both control and local bundled data

transfer. Other reasons, more specific to micronets, have influenced this choice,

and these are discussed next.

Fast Instruction Issue

One of the significant features of micronets is their ability to exploit spatial

concurrency within the datapath. This requires a fast instruction issue rate to

keep the microagents busy. The CU initiates the micro-operations for each of

the instructions individually and as early as possible. The acknowledgements

from the CMs (after a delay of one C-element) confirm that the corresponding

micro-operations will be initiated. The instruction is considered to have been

issued once the CU has received all the acknowledgements. This corresponds

to the first half of the four-phase protocol. The CU is free to issue the next

instruction, while the reset phase of the protocol completes. This is done when

the corresponding acknowledgement signal is de-asserted which signifies that

the particular resource is ready for the next request. The instruction releases

the resources individually as soon as the respective micro-operations have com-

pleted, thus freeing the resources for another instruction. Figure 5–9 shows

the activity of two resources in micronets in comparison to a micropipeline

and a synchronous pipeline. Assume each of the three instructions require two

resources concurrently for varying periods of times. In the case of the synchron-

ous pipeline, successive instructions must wait for the next clock tick to begin

execution. In a micropipeline, the next instruction can begin execution when

the previous one has finished with both resources. In both cases, significant

Chapter 5. The Control Paradigm and the Architecture 127

IDLE

INSTR 1

INSTR 2

INSTR 3

ISSUED
INSTR 1

ISSUED
INSTR 2

ISSUED
INSTR 3

a) Resource activity in a synchronous pipeline

b) Resource activity in a micropipeline

c) Resource activity in a micronet

FM 1

FM 1

FM 2

FM 1

FM 2

FM 2

Figure 5–9: Resource activity

idle times may exist. A micronet can reduce these idle times by not forcing the

instructions to obtain both resources at the same time.

Allowing the micro-operations of different instructions to overlap could lead

to potential hazards. Since the acknowledgement signals effectively denote the

readiness or busyness of resources, they can be collectively used as a scoreboard.

Hazard avoidance due to data dependences is implicit in the orderings of the

assertions of the control signals. These pre-issue conditions stall the assertion

of the respective control signal until the completion of one of the halves of

Chapter 5. The Control Paradigm and the Architecture 128

the handshake protocol of the dependent micro-operation control signal(s).

Although a four-phase protocol would be considered twice as expensive as a

two-phase one, the same efficiency is obtained as two back-to-back, two-phase

handshakes by representing two events in each cycle. The recovery transitions

are used by the control unit for scoreboarding and hazard avoidance. This is

necessary for efficient exploitation of ILP, since the control unit has to issue

each instruction before the previous one completes its execution. Furthermore,

a four-phase protocol exposes more concurrency by effectively decoupling the

sender’s and receiver’s operations from their communication.

Routing Data in Micronets

Although the actual data transfer between microagents is controlled locally via

handshake protocols, the access to shared resources, such as data highways,

may be controlled either globally by the CU or locally by an arbitration scheme.

Global control is used in cases where the order of granting resources is known

in advance or has to be enforced. This is again achieved through the use of

pre-issue conditions. Otherwise, a local mutual exclusion scheme such as in

token rings or arbiters will grant requests. For example, the writing back to the

register bank is controlled directly by the CMs of the FMs which require this

service. As a consequence of this and also due to the differences in the execution

times of micro-operations, instructions may complete out of order. Therefore

data has to be tagged with its destination which also enables data-forwarding

to be supported.

The decision to use a two-phase or four-phase protocol also depends on

whether the local communication between two microagents takes place over a

shared bus or not. When wires are shared between two or more components,

the wires must return to an inactive or predetermined state to allow successive

handshakes to commence. When the highway is not shared, two-phase can be

Chapter 5. The Control Paradigm and the Architecture 129

used because there is only one source and one destination and so after each

completed handshake the wires will be in phase. Generally in processor archi-

tectures, data transfers take place over shared highways and the four phases of

the protocol map to the four states of bus activity: an inactive state; (either a

request is made for data or) data placed on the bus; (data is placed on the bus

or) the receiver signals the receipt of data; (the acknowledgement cleared or)

data is removed from bus.

µOp Latency

µOp Cycle Time

Acknwldg
Signal

Control
Signal

Op1

Op2

Op3

Op4

µ

µ

µ

µ

L1 + L2 + L3 + L4

Figure 5–10: Overlapping micro-operation handshake cycles

As suggested earlier, only one of the four phases actually contributes to the

progress of the operation. In practice, the overhead of the other phases can be

reduced by overlapping them with the micro-operation (computation) associ-

ated with the sender’s and/or receiver’s stage (see Figure 5–10). In a pipeline,

overheads can be further minimised by overlapping handshake phases of suc-

cessive stages. For example, fetching a single operand requires a handshake

between the register interface and register bank to access the operand, and the

register interface and the functional unit interface to transfer the operand to the

appropriate functional unit:

Phase 1 (REGISTER ACCESS) – While the register interface makes a request to

accesses a register, the FU interface can initiate the operand fetch hand-

shake by making a request to the register interface.

Chapter 5. The Control Paradigm and the Architecture 130

Phase 2 (DATA TRANSFER) – When the operand is received by the register

interface it carries on and completes the handshake with the register bank.

Concurrently, if it has received the operand request from a FU interface,

then the data is transferred over the bus.

Phase 3 (FM BUSY) – The functional unit interface receives data, it is trans-

ferred to its FM and it completes the handshake with the register interface.

Meanwhile, the first handshake (register bank-register interface) may have

completed, which implies that the next register access could begin.

Phase 4 (FM BUSY and/or REGISTER ACCESS) – When the operand request

signal from the FU interface has been cleared, then the register interface

removes the data from the bus. Meanwhile, the register interface could

also be accessing another register or although the FU may still be busy, its

interface could make another request for operands.

In terms of fetching the operand for the FU, if there were no delays, then this

is the shortest time possible (i.e. the sum of the critical latencies). However, the

time between operand fetches may be increased by the unnecessary additional

time the bus is being driven, this being the transit time of the corresponding

de-assertion of the acknowledgement signal and time to remove data from the

bus. Notice that in this case, data transfer is request-driven, i.e. for each operand

that is required, the FU asserts a request signal over the appropriate bus to the

register read port. This ensures that resources (registers and buses) are utilised

for no longer than is necessary. The register control signals together with the

handshaking protocol prevent bus contention occurring.

5.18.2 Implications for the Compiler

Code scheduling is important in architectures which are able to exploit instruction-

level parallelism. In synchronous RISC systems, the order and the time at which

Chapter 5. The Control Paradigm and the Architecture 131

each instruction is to be issued are determined by the compiler. Generally,

instruction execution is started at the next machine instruction cycle which is

determined by the clock. In MAP, instructions are issued in-order as soon as

possible – allowing instructions to execute when ready. In the control unit, the

effect of this scheduling approach is to initiate the instruction issue immediately

after the previous one, thereby reducing the idle time between instructions. For

example, given two events: A followed by B, in a synchronous design B will

be captured only at the first clock after the worst-case delay between A and B.

On average, this can still be a significant time after the actual occurrence of B.

Thus, in a synchronous design, each instruction will spend a fixed period of

time (determined by the largest worst-case stage delay) in each stage regardless

of requirement, while in a MAP design, instructions spend varying amounts

of time in only the relevant stages. Therefore, the asynchronous design is more

efficient – each instruction spends only as long as necessary in each stage,

and is better able to exploit any concurrency. A side-effect of this is that in

MAP, the execution time of instructions cannot be predicted exactly at compile-

time. However, a MAP compiler need only generate an appropriate instruction

ordering to maximise the exploitation of ILP and need not be concerned with the

time at which instructions are actually issued.

5.19 Summary

The utilisation of parallelism between instructions in high performance pro-

cessors is very important. This chapter has investigated the influences of an

asynchronous control paradigm on the design and performance of processor

architectures for exploiting fine-grained ILP. An ILP MAP design has been out-

lined and how the control for such an architecture can be implemented efficiently

has been shown. The rôle of the CU in an asynchronous processor has been

Chapter 5. The Control Paradigm and the Architecture 132

considerably simplified, just to initiating individual micro-operations as early

as possible. The control of the datapath is distributed to local interfaces cour-

tesy of the micronet. The advantages of this approach accrue from being able to

exploit both the actual run-time delays of the microagents and their concurrent

operation. The results show that given some set of architectural resources, an

asynchronous control paradigm implemented as a micronet is able to achieve

near optimal utilisation efficiently. Furthermore, as one might expect, when

a FU operation is the slowest stage in the pipeline, then maximum utilisation

can be achieved. The improvement in performance can be accredited to the

style of design, which can exploit advances in technology better, unlike cur-

rent synchronous designs. The next chapter investigates the suitability of MAP

architectures as good targets for optimising compilers.

Chapter 5. The Control Paradigm and the Architecture 133

Write Back

Registers

Interface

Acks.
ZMs, ZMs

Write Back Handshake

Execute Stage

Execution
Instruction

Store Inst

Load Inst

MU

Interface

ZM Bus

Interface

ALU

ALU Inst

ALU Ack. MU Ack.

ZA Bus

Operand
Access Operand Fetch Handshake

Interface

Registers

Offset

Rx, Ry & Rz AcksRof Ack

Y Bus

ZM Bus

X Bus

Control Unit

Deasserted : When data has been written to its destination register.

Deasserted : When Write Back Handshake complete (LD, ALU) or Instruction Execution finished (ST).

Asserted : Upon access to source register. Deasserted : When Operand Access phase complete.Rx, Ry, Rz Acks.

ALU, MU Acks.

ZMs Ack.

Control
Signals
(from CU)

ALU Instruction Cycle TimeLoad Instruction Cycle Time

Load Instruction Issued ALU Instruction Issued

Acknowledge
Control

Signals
(to CU)

Load Instruction ALU Instruction

Ry

Rx

AUs

MC1

ZMs

ZAs

Ry

Rx

AUs

MC1

ZMs

ZAs

Figure 5–11: The micronet model for Refinement Step 1

Chapter 5. The Control Paradigm and the Architecture 134

Write Back

Registers

Interface

Acks.
ZMs, ZMs

Write Back Handshake

Execute Stage

Execution
Instruction

Store Inst

Load Inst

MU

Interface

ZM Bus

Interface

ALU

ALU Inst

ALU Ack. MU Ack.

ZA Bus

Operand
Access Operand Fetch Handshake

Interface

Registers

Offset

Rx, Ry & Rz AcksRof Ack

Y Bus

ZM Bus

X Bus

Control Unit

Acknowledge
Control

Signals
(to CU)

Ry

Rx

AUs

MC1

ZAs

ZMs

Ry

Rx

AUs

MC1

ZAs

ZMs

ALU Instruction Cycle Time

Load Instruction Cycle Time

Control
Signals
(from CU)

ALU Instruction Issued

Load Instruction Issued

Deasserted : When data has been written to its destination register.

Deasserted : When Write Back Handshake complete (LD, ALU) or Instruction Execution finished (ST).

Asserted : Upon access to source register. Deasserted : When Operand Access phase complete.Rx, Ry, Rz Acks.

ALU, MU Acks.

ZMs Ack.

Figure 5–12: The micronet model for Refinement Step 2

Chapter 5. The Control Paradigm and the Architecture 135

(from CU)

Acknowledge
Control

Signals
(to CU)

Signals

Ry

Rx

AUs

MC1

ZMs

ALU Instruction Cycle TimeLoad Instruction Cycle Time

Load Instruction Issued ALU Instruction Issued

Load Instruction ALU Instruction

Ry

Rx

AUs

MC1

ZMs

Deasserted : When data has been written to its destination register.

Deasserted : When Write Back Handshake complete (LD, ALU) or Instruction Execution finished (ST).

Asserted : Upon access to source register. Deasserted : When Operand Access phase complete.Rx, Ry, Rz Acks.

ALU, MU Acks.

ZMs Ack.

Control

Write Back

Registers

Interface

ZMs Ack

Write Back Handshake

Execute Stage

Execution
Instruction

Store Inst

Load Inst

MU

Interface

ZM Bus

Interface

ALU

ALU Inst

ALU Ack. MU Ack.

Operand
Access Operand Fetch Handshake

Interface

Registers

Offset

Rx, Ry & Rz AcksRof Ack

X Bus

Y Bus

ZM Bus

Control Unit

Figure 5–13: The micronet model for Refinement Step 3

Chapter 5. The Control Paradigm and the Architecture 136

Write Back

Registers

Interface

ZMs Ack

Write Back HandshakeExecution
Instruction

Store Inst

Load Inst

MU

Interface

Z Bus

Interface

ALU

ALU Inst

ALU Ack. MU Ack.

Operand
Access Operand Fetch Handshake

Interface

Registers

Offset

Rx, Ry & Rz AcksRof Ack

X Bus

Y Bus

Z Bus

Control Unit

Execute Stage

Load Instruction Cycle Time

Ry

Rx

AUs

MC1

ZMs

Ry

Rx

AUs

MC1

ZMs

Load Instruction Issued ALU Inst Issued

ALU Instruction Cycle Time

Control
Signals
(from CU)

Acknowledge
Control

Signals
(to CU)

Deasserted : When Operand Access phase complete.

ALU, MU Acks.

Rx, Ry, Rz Acks

Deasserted : When data has been written to its destination register.ZMs Ack

Deasserted : When Write Back Handshake complete (LD, ALU) or Instruction Execution finished (ST).

Asserted : Upon access to the source register.

Figure 5–14: The micronet model for Refinement Step 4

Chapter 5. The Control Paradigm and the Architecture 137

(from CU)
Signals

Acknowledge
Control

Signals
(to CU)

Control Ry

Rx

AUs

MC1

ZMs

Ry

AUs

MC1

ZMs

Load Inst Issued

ALU Inst Issued

Load Instruction Cycle Time

ALU Instruction Cycle Time

Write Back

Registers

Interface

Rx

Z Bus

Execute Stage

Write Back HandshakeExecution
Instruction

Store Inst

Load Inst

MU

Interface

ALU Ack.MU Ack.

Interface

ALU

ALU Inst

Token Ring

Offset

Operand Fetch Handshake
Operand
Access

Interface

Registers

X Bus

Y Bus

Z Bus

Token Ring

Rx, Ry, Rz
& ZMs Acks

Rof Ack

Control Unit

Deasserted : When Operand Access phase complete.

ALU, MU Acks.

Rx, Ry, Rz Acks

ZMs Ack Deasserted : When the destination register has been locked.

Deasserted : When the Functional Unit’s execution stage has finished.

Asserted : Upon access to the source register.

Figure 5–15: The micronet model for Refinement Step 5

Chapter 5. The Control Paradigm and the Architecture 138

(to CU)
Signals

Signals
Control

Control

(from CU)

Load Instruction Cycle Time

Ry

Rx

AUs

MC1

ZMs

Ry

Rx

AUs

MC1

ZMs

Load Instruction Issued

ALU Inst Issued

would be asserted should it be

point at which that control signal

The dotted line represents the

required for the next instruction.

ALU, MU Acks.

ZMs Ack

Deasserted : When Operand Fetch Handshake is in progress.

Deasserted : When the Functional Unit’s execution stage has finished.

Deasserted : When the destination register has been locked.

Rx, Ry, Rz Acks

Write Back

Registers

Interface

Acknowledge

ALU Instruction Cycle Time

Execute Stage

Write Back HandshakeExecution
Instruction

Store Inst

Load Inst

MU

Interface

Z Bus

ALU Ack.MU Ack.

Interface

ALU

ALU Inst

Token Ring

Offset

Operand
Access

Interface

Registers

Operand Fetch Handshake

Rof Ack

Z Bus

Y Bus

Go-Write

X Bus

& ZMs Acks
Rx, Ry, Rz

Token Ring

Control Unit

Figure 5–16: The micronet model for Refinement Step 6

Chapter 5. The Control Paradigm and the Architecture 139

Acknowledge
Control

Signals
(to CU)

Control
Signals
(from CU)

Load Instruction Cycle Time

Ry

Rx

AUs

MC1

ZMs

Ry

Rx

AUs

MC1

ZMs

Load Instruction Issued

ALU Instruction Cycle Time

ALU Inst Issued

would be asserted should it be

point at which that control signal

A dotted line represents the

required by the next instruction.

ALU, MU Acks.

ZMs Ack

Deasserted : When Operand Fetch Handshake is in progress.

Deasserted : When the Functional Unit’s execution stage has finished.

Deasserted : When the destination register has been locked.

Rx, Ry, Rw Acks

Write Back

Registers

Interface

Execute Stage

Write Back Handshake

Token Ring
Data

Forwarding

Loop

Execution
Instruction

Store Inst

Load Inst

MU

Interface

Z Bus

ALU Ack.MU Ack.

Interface

ALU

ALU Inst

Offset

Operand Fetch Handshake

& ZMs Acks
Rx, Ry, Rw

Rof Ack

Y Bus

X Bus

Go-Write

W Bus

Operand
Access

Interface

Registers

Control Unit

Figure 5–17: The micronet model for Refinement Step 7

Chapter 5. The Control Paradigm and the Architecture 140

Acknowledge
Control

Signals
(to CU)

Control
Signals
(from CU)

would be asserted should it be

point at which that control signal

required for the next instruction.

The Dotted Line represents the

Ry

Rx

AUs

MC1

ZMs

Ry

Rx

AUs

MC1

ZMs

Inst Issued

ALU Inst Cycle Time

Inst Issued

Load Inst Cycle Time

ALU, MU Acks.

ZMs Ack

Deasserted : When Operand Fetch Handshake is in progress.

Deasserted : When the destination register has been locked.

Rx, Ry, Rw Acks

Deasserted : When the Functional Unit’s CMs have received the operands

Write Back

Registers

Interface

Data

Loop

Execute Stage

Execution
Instruction

Store Inst

Load Inst

MU

Interface

Write Back Handshake

Token Ring

Forwarding

ALU Ack.

Interface

ALU

ALU Inst

Z Bus

Offset

Operand Fetch Handshake

& ZMs Acks
Rx, Ry, Rw

Rof Ack

W Bus

Y Bus

X Bus

Go-Write

MU Ack.

Operand
Access

Interface

Registers

Control Unit

Figure 5–18: The micronet model for Refinement Step 8

Chapter 6

The Control Paradigm and the

Compiler

6.1 Introduction

It is important that any processor design be a good target for a compiler, in

order that the architectural and technological benefits afforded by the design

be efficiently realised. The execution times of programs are strongly influenced

by the relationship between the compiler and the rest of the system [176]. In

the case of MAP architectures, it is important to understand the influences

of asynchronous control on parallelising compilers. The compiler’s rôle is to

identify parallelism within the program, generate the appropriate code and

efficiently schedule the instructions for the given processor architecture. This

chapter investigates how these functions are influenced by an asynchronous

control paradigm, and examines the design of a static instruction scheduler for

MAP architectures.

As described earlier in Chapters 4 and 5, the micronet improves the per-

formance of the instruction set by exploiting average delays and by exposing

141

Chapter 6. The Control Paradigm and the Compiler 142

both spatial and temporal instruction-level parallelism (ILP) within an architec-

ture. This chapter discusses how these advantages can be exploited; a generic

computational model for MAP architectures is developed and techniques (heur-

istics) are introduced which together with the architecture’s distributed control

strategy allow the compiler to efficiently exploit the available ILP. The inten-

tion of this preliminary study is not to propose the best heuristic or schedul-

ing strategy for MAP architectures, but rather to show that a micronet-based

datapath can indeed be a suitable target for compilers.

6.2 Compilers

A compiler has three machine-dependent tasks which affect the performance

of a program. Code Generation determines which instructions implement the

given program most efficiently, which can be made simpler by good instruction

set design [34]; Instruction Scheduling attempts to find an optimal ordering for

the chosen instructions; and Register Allocation assigns variables to physical

registers.

Instruction scheduling is an important feature for processor architectures

which exploit instruction-level parallelism, since fast program execution relies

on a good code schedule to both reduce the effects of hazards and to maximise

functional unit utilisation. In code generation, a particular implementation of a

higher-level function is usually determined by the combination of instructions

which leads to the minimum execution cost. However in ILP processors, this

cost is also affected by the order in which instructions are scheduled.

Instruction scheduling is classified as being local if it only considers instruc-

tions within a basic block [14] [70], and as being global if it considers instructions

spanning multiple basic blocks [15] [52]. While local scheduling can extract

parallelism within a basic block, global scheduling can exploit further program

Chapter 6. The Control Paradigm and the Compiler 143

parallelism by allowing inter-block movement of instructions [3] [46]. Further-

more, in architectures which exploit ILP, in order to generate good code for a

particular function, the compiler can no longer just take into account the cost of

individual instructions but rather their collective costs as determined by their

schedule.

Although register allocation can also introduce hazards due to register de-

pendencies (e.g. anti-dependencies), techniques such as register renaming can

be employed to reduce this effect. Note that since global scheduling is generally

achieved independently of the architecture, this chapter concentrates on local

scheduling which is more machine-dependent. Furthermore, local scheduling

is generally used to fine-tune the code produced after global scheduling [70].

6.3 Scheduling Challenges in MAP Architectures

Most modern synchronous processors enhance their performance by exploiting

ILP. This is achieved in two parts: firstly, parallelism within the program has

to be exposed [9] (e.g. through loop unrolling) and, secondly, a semantically

correct instruction ordering has to be achieved which utilises as much of the

available parallelism amongst the resources of the target architecture. Although

this ordering can be imposed either at compile-time or at run-time, ILP might

be best exploited statically rather than dynamically, more so since the dynamic

approach cannot exploit a greater degree of parallelism beyond the scope limited

by the fetched instructions.

The trend towards static instruction scheduling, i.e. the reliance on the com-

piler to generate the optimal schedule, has been aided by the predictability

of execution costs on synchronous processors. The optimising compilers for

synchronous pipelines assume a deterministic behavioural model of the tar-

get with each stage delay being approximated to being the same, having been

Chapter 6. The Control Paradigm and the Compiler 144

fixed a priori by the clock. In contrast, a linear, asynchronous pipeline, e.g.

micropipeline [158], has stages whose delays can vary. A compiler in this case

has a less accurate timing model of the target, and any optimisations based on a

synchronous model, such as scheduling instructions in execution gaps as found

in the MIPS re-organiser [13] [71], are less effective.

A micronet enables the exploitation of both spatial and temporal concur-

rency between instructions (in contrast, a micropipeline only exploits temporal

parallelism). Therefore, it is less easy for a compiler to predict the behaviour of

the micronet for the following reasons: firstly, as in a micropipeline, the delay

of each pipeline stage might vary; secondly and more uniquely, each instruction

only visits the relevant stages and the multiple paths enable more than one

instruction to operate concurrently within a stage, which enables instructions

to race each other, with possible out-of-order completion of instructions. Fur-

thermore, instructions may interfere with each other when competing for the

same resource in a particular stage.

The effective performance which a MAP system can deliver depends intim-

ately on the compiler’s ability to match the parallelism in programs with the

temporal and spatial concurrency exposed by the MAP architecture. The result-

ing instruction schedule should aim to keep the functional units busy thereby

increasing their utilisation and improving the overall performance. Unlike syn-

chronous schedules which imply both an order of execution for the instructions

and the times in terms of multiples of the basic instruction cycle, when they are

to execute, asynchronous ones only imply an order and are efficiently issued

“dynamically” by the control unit (CU). This removes the need for the inclusion

of NO-OP instructions in asynchronous schedules. Note that in synchronous

designs, the selection of which instruction to issue in a given cycle is gener-

ally performed at compile time in superpipelined (and VLIW) machines and at

run-time in superscalar ones.

Chapter 6. The Control Paradigm and the Compiler 145

6.3.1 MAP Behaviour

A MAP architecture has several communicating pipelines all of whose stages

can potentially be busy simultaneously. The task of the scheduler is to order

the instructions in such a manner so as to maximise the resource utilisation,

minimise the resource contention and allow the processor’s control unit to

maintain an optimal instruction issue rate. The control unit issues successive

instructions as early as possible in order to initiate the instruction’s execution

immediately after the previous issue, thereby reducing the idle time between

instructions.

A micronet can be stalled due to contention for resources. In particular, the

CU (also referred to as the issue unit) will be stalled when the resources required

by the current instruction are all busy. The scheduler attempts to minimise

this by suitably ordering the instructions at compile-time. If it is impossible

to schedule successive unrelated instructions, then the micronet minimises the

stall at run-time. In the case of data-dependent instructions: both instructions

are issued, with the second instruction awaiting the result to be forwarded. In

the case of resource contention: the second instruction performs all the micro-

operations up to the microagent which is busy. In effect, only the offending

micro-operation is stalled, rather than the entire instruction. These fine-grained

hazard avoidances are enforced at run-time by the pre-issue conditions of the

micronet as previously described in Chapter 5.

6.3.2 A Parameterised Computational Model

A computational model describes the scheduler’s view of the target architec-

ture. The model is the basis upon which the scheduler aims to maximise the

amount of parallelism that can be exploited. One of the advantages afforded by

asynchronous and distributed control in the design of processors is the modu-

Chapter 6. The Control Paradigm and the Compiler 146

larity and composibility which allows designers to easily modify and explore

the architectural design space e.g. determining the optimal number of resources

for a class of problems. It would be advantageous, therefore, not to have to

redesign the scheduler each time as well. This will need two requirements to be

fulfilled: the scheduling strategy should not be specific to any particular archi-

tecture; and the computational model should capture the salient characteristics

of any target architecture (the holy grail in the field of scheduling [134]).

For synchronous architectures the computational model is simple: instruc-

tions do not interact and their execution times are considered fixed. In contrast,

the model for a micronet-based processor is necessarily less accurate for the

following reasons: execution times for even the same instruction may vary due

to data-dependent operations, environmental parameters, and the interactions

between different instructions which are executing simultaneously. However,

the modularity and composibility of the micronet makes it easy to parameterise

the computational model which would allow the same scheduler to be applic-

able to a variety of architectures. Unfortunately, this concept cannot be easily

adopted for synchronous architectures since each one is almost unique because

of its centralised controls and any changes made can effect the behaviour of the

whole design.

The MAP computational model views an architecture as a collection of re-

sources or microagents (a number of issue units, a number of various functional

units, and a number of bus highways) which are connected in some fashion (i.e.

some functional units may share buses, while others have dedicated point-to-

point connections). Each microagent associates a latency and a cycle time with

each of its micro-operations, the former determines when the result becomes

available and the latter is the rate at which those micro-operations can be pro-

cessed. The model currently assumes a “five-stage” network (register access,

operand fetch handshake, execution, write-back handshake, and write-back)

(see Chapter 5) to which resources are allocated depending on their type – is-

Chapter 6. The Control Paradigm and the Compiler 147

sue unit; register bank; operand fetch bus; functional unit; or write-back bus.

The register file can be modelled as one large file or a number of smaller ones

depending on the number of operand fetch ports. It is also possible to model

VLIW or superscalar architectures. The parameterised model effectively forms

a resource graph of the target architecture. In general, this graph is irregular and

does not have the same conventional connectivity patterns that are normally

associated with multiprocessor scheduling graphs, e.g. full connection, grid,

hypercube or a ring topology.

6.4 The Scheduling Problem

The MAP scheduling problem can be stated as follows: Given a set of heterogen-

eous resources with variable execution times, devise a minimal-length, non-preemptive

schedule which respects dependencies within programs; each program being described

as an arbitrary partial ordering of instructions.

This type of problem, usually referred to as the precedence- and resource-

constrained instruction scheduling problem has been studied well, and it is

known that even by imposing restrictions, the problem is still NP-hard [32] [85] [168].

For example, when the execution times of tasks are not uniform and their partial

order is arbitrary, then for two or more identical processing units, the problem of

determining a minimal-length, non-preemptive schedule is NP-complete [59].

This result is true even if all of the tasks are independent. Therefore, in order

to achieve near-optimal execution times for given applications on MAP archi-

tectures, an efficient (polynomial-time) scheduling algorithm based on one or a

number of heuristics must be devised.

Chapter 6. The Control Paradigm and the Compiler 148

6.4.1 Similar Scheduling Problems

The scheduling of instructions for MAP finds echos in other scheduling prob-

lems:

1. Multiprocessor Scheduling: There is a wealth of strategies and solutions

to various classes of scheduling problems. For example, multiprocessor

scheduling considers tasks as the basic unit of work, whether one considers

processes, code segments, or even machine-code instructions they can all

be viewed as tasks at a different levels of granularity. These problems

usually assume that processors are homogeneous (i.e. identical), whereas

a MAP architecture has different functional units each of which can only

execute a unique set of instructions. Furthermore, since multiprocessor

scheduling only considers acyclic dependencies between tasks and that

each task is only executed once, this technique can only be used to schedule

instructions within basic blocks.� Level Scheduling was an early approach used in operational research

and assembly line problems [75]. This scheme is only optimal when

considering unit execution time (UET) systems and tasks graphs

which are either in- or out-forests. Priorities are assigned to all

tasks: the tasks within the same level of a directed acyclic graph

(DAG) being assigned the same values and the higher levels within

the DAG (those farthest from the terminal level or sink tasks) being

given higher priorities. The highest, unexecuted, ready task, i.e. a

task which has no predecessors or all of its predecessors have already

been executed, is assigned to the first processor which becomes avail-

able. More recently, optimal solutions for arbitrary-shaped DAGs for

up to 2 processors have been found [33] [57] [151].

Chapter 6. The Control Paradigm and the Compiler 149

2. Graph Colouring is a technique used in register allocation [27]. A large

number of symbolic registers are mapped onto a limited number of phys-

ical registers in a CPU. At any time t there are a number of “live” symbolic

registers which need to be optimally allocated. Similarly in MAP, at any

time t there is a list of instructions that are eligible to be issued for execu-

tion. The choice of instruction for scheduling depends on availability of

resources and the cost, of say, not scheduling the instruction immediately.

3. In dataflow machines, instructions are issued as soon as their operands are

available. This is achieved completely dynamically in hardware but incurs

significant run-time (book-keeping) costs. Scheduling in traditional syn-

chronous RISC architectures is achieved completely statically. An effort to

reduce the book-keeping costs has lead to an interest in dataflow-RISC hy-

brids [58]. MAP architectures can also be viewed as a hybrid of these two

classical styles. As in the RISC architectures, code scheduling is done stat-

ically but, additionally, instruction issue (and even possibly the instruction

schedule) is fine-tuned dynamically to take advantage of run-time charac-

teristics as in the data-flow model. Notice that in some sense, MAP is more

interested in dataflow at the microagent-level than at the instruction-level.

This now begs the following question: How much scheduling should be

done statically in the MAP scheduler and what should be left for the MAP

hardware? Before this can be answered, the rest of this chapter attempts

to determine how much scheduling can be done at compile-time.

6.5 A Scheduling Methodology for MAP

A directed acyclic graph (DAG) is used to represent the instructions within the

basic blocks of a program. (Techniques such as trace scheduling [46] [52] or

global compaction [130] could be used to increase the size of these blocks.) Each

Chapter 6. The Control Paradigm and the Compiler 150

node within the DAG corresponds to an instruction, and each edge to a data

dependence between instructions. Typically, an instruction cannot begin execu-

tion until all of its predecessors have completed and their results have become

available. In practice, it is not necessary to stall the instruction completely in all

the cases where such dependencies exist. Since the micronet already minimises

the length of any stall, i.e. only stalling until their dependencies have been re-

solved, the implicit (and possibly) unnecessary stalls incurred by a conventional

computational model, which may adversely affect the optimality of the sched-

ules generated by heuristics, can be avoided. The implications for the MAP

scheduler, i.e. the degree to which an instruction needs to be stalled, depends

on the type of dependency implied by the edge within the DAG, as described

as follows:

Read-after-Write – Although the dependent instruction will be issued, its exe-

cution will be delayed (by the micronet) until the completion of its prede-

cessor. In practice, it is preferable not to issue such an instruction, since

some of the resources earmarked for the dependent instruction will be-

come unavailable for use by other, now “ready-to-execute” instructions,

which might introduce further structural hazards in the bargain.

Write-after-Write – Only the write-back order has to be maintained and this is

also achieved in hardware by the micronet. Two instructions are permitted

to execute concurrently. Although all of the second instruction’s micro-

operations will have been initiated, the write-back micro-operation will

stall for as long as the first instruction holds on to the destination register.

The current MAP architecture supports only one outstanding register lock

request, therefore a subsequent third instruction which requires a locked

register cannot be issued, until the first write-back has been completed.

The scheduler should avoid arranging instructions which write to the

register file immediately after two instructions with write-after-write de-

Chapter 6. The Control Paradigm and the Compiler 151

pendencies if independent instructions cannot be found for issue between

the two dependent instructions.

Write-after-Read – In the case of an architecture with a single set of operand

fetch buses, the hardware ensures that a dependent instruction will be

unable to lock its destination register before its predecessor has fetched

its operand. Should there be a number of operand fetch buses (as in a

superscalar MAP), and the possibility of a dependent instruction obtain-

ing its operands before its predecessor, then this instruction may have to

be stalled. This would only be necessary when the time to execute the

dependent instruction is less than the operand fetch time for the prede-

cessor. This hazard is also known as an anti-dependency, and along with

write-after-write hazards can be avoided by register renaming.

Hazard resolution is a good example of the interaction between the compiler

and the architecture. Since there is no concept of time in the schedule, it is

impossible to avoid all hazards at compile time (c.f. the MIPS organiser). The

scheduler can only hope to produce an ordering of instructions which reduces

the number of hazards, and relies on the MAP architecture to minimise their

effects by efficiently resolving them in hardware.

In MAP architectures, it is better to schedule independent instructions suc-

cessively since this may allow the optimal instruction issue rate to be achieved.

In practice, finding independent instructions is not always possible. With the

MAP scheduling problem being NP-complete [59], heuristics are required to

map tasks from a program DAG on to a resource graph. The method which has

been investigated here, combines some elements of the approaches described

earlier but is based primarily on the well-known List Scheduling method.

Chapter 6. The Control Paradigm and the Compiler 152

6.5.1 The Scheduler

List scheduling (LS) is a general method for scheduling tasks in resource-

constrained problems [32]. LS builds a ready set that contains all of the tasks

which are not waiting on the results of other tasks. When a processor becomes

available, a task with the highest priority is chosen from the set and assigned

to it. The ready set is obtained from a topological sort of the data dependence

graph. LS relies on other heuristics to prioritise the ready tasks and guide it

towards an optimal solution. This has lead to a profusion of LS-based heurist-

ics [12,45,77,104,134].

The MAP solution adopted here is based on a greedy scheduling algorithm

for list scheduling which was proposed by Coffman and Graham [33]. This is an

optimal, O(n2) algorithm for arbitrary precedence constraints on two processors

with unit execution costs. A MAP scheduler has to deal with heterogeneous

resources and can no longer just choose the ready instruction with the highest

priority, but must also consider whether the correct resources are also available

i.e. the instruction must be executable. Once an executable instruction is issued,

its execution cannot be suspended and resumed at the point of suspension at

a later time, i.e. schedules must be non-preemptive. The goodness of these

schedules are highly dependent on the parameter(s) that are used to prioritise

instructions within the ready list [1] [112], and these MAP-specific heuristics are

discussed in the following sections.

Compared to multiprocessor environments, although the scheduler for MAP

does not have to explicitly consider interprocessor communications it does

however effectively assume data is not local since operands have to be fetched

from and sometimes returned to the register bank (i.e. incurring some cost).

Note also that even though data forwarding might be considered to be equi-

valent to local data access, it is not modelled in the computational model since

Chapter 6. The Control Paradigm and the Compiler 153

this is an architecture-specific feature (i.e. not permitted in the parameterised

model) which is impossible to predict a priori.

Minimising Idle Times

The scheduler’s first assumption is that minimising the stall time will lead to bet-

ter (or at least near-optimal) program execution time (the first priority heuristic).

This implies that the MAP compiler should not schedule instructions until their

dependencies have been resolved (as discussed in Chapter 5 and Section 6.5)

and the necessary microagents (resources) are available. This requirement is

met by basing the heuristic’s cost function on worst-case instruction execution

times (see Section 6.7.1 for further details). This implies that the computational

model has to maintain a scoreboard of resource activities.

Primary Instruction Priority

In Coffman and Graham’s algorithm, interprocessor communication is assumed

to be zero and tasks have unit execution times, which means that time can be

conveniently treated as being discrete rather than continuous. This allows pri-

orities to be assigned based on the task’s level within the DAG from the sink

tasks. Since instructions have different worst-case execution times in MAP, the

problem is similar to multiprocessor scheduling with interprocessor communic-

ation delays (where communication costs are only incurred if dependent tasks

are scheduled on different processors). The solutions adopted in this field have

been based on critical path analysis and heuristics [62] [91] [148]. (The critical

path cost of a task is the largest sum of costs along a path from itself to a sink

task.) In the MAP computational model, although actual instruction execution

costs may vary, these critical path costs can be determined a priori by basing

them on fixed, worst-case instruction costs.

Chapter 6. The Control Paradigm and the Compiler 154

Secondary Instruction Priorities

The heuristics applied so far may still not prioritise the executable tasks suf-

ficiently. Therefore, additional heuristics are required to further prioritise the

candidate tasks. One feature which does seem to significantly influence the best

choice of candidate is the dependents of the chosen task. The two heuristics

used to “break ties” amongst candidates of the same priority act as follows: the

first one gives a higher priority to the task with the larger number of successors

which are solely dependent on it. A feature of this heuristic is that the priority of

a task increases with time. If a tie is still unbroken, then a higher priority is given

to the task with the most successors. Additionally, these heuristics highlight

the need to consider not only which tasks need to execute in the future, but also

their resources.

The Importance of the Instruction Issue Cycle Time

Unlike synchronous pipelines, micronet resources have two parameters which

affect instruction execution costs: the micro-operation’s latency and its cycle

time. Together with program parallelism and the number of resources, a limiting

factor on the amount of exploitable ILP is the cycle time of the issue unit in

relationship to the execution time of instructions (or more accurately their cycle

times).

In order to minimise the issue unit’s stall time, the compiler has to devise

a schedule that allows instructions to be issued continuously at the highest

possible rate, which is equivalent to one every minimum Instruction Issue

Cycle Time (IICT). Synchronous datapaths are pipelined or where necessary

super-pipelined (i.e. the functional units are themselves pipelined) sufficiently

to achieve this goal. Due to the spatial ILP in MAP, instructions are issued

at a rate (determined by the IICT and dependencies) which is faster than their

Instruction Cycle Times (ICTs). The ICT is the effective issue time (due to pipelin-

Chapter 6. The Control Paradigm and the Compiler 155

ing) for a particular instruction, which is determined by the rate at which that

specific instruction type can be processed. As the IICT, which is less than the

largest ICT, gets smaller, the MAP architecture behaves more in a superscalar

fashion and therefore the value of the IICT itself can have a significant influence

on the optimality of a schedule. This is less significant when the IICT is compar-

able to the largest ICT, in which case the order of the independent instructions is

less critical, since the micronet behaves like a linear pipeline without any spatial

concurrency.

IICT, ICT and Lookahead

When choosing an instruction to schedule, it may be beneficial to consider not

only those instructions which are ready, but also the ones which will become

ready in the near future, called instruction lookahead, e.g. within the next min-

imum IICT. Note that this may mean deliberately selecting an instruction that

causes the processor’s issue unit to stall.

The two steps of choosing an instruction and checking to see if sufficient

resources are available for it should not take place independently. Since the

scheduling of an instruction is subject to current resource availability, the sched-

uler should also consider future resource requirements (Resource Lookahead).

Example 1 and Example 2 contrast the influence of IICT and resource lookahead

on determining an optimal schedule. A1 andB are ready candidate instructions,

with a third instruction, A2, which has a structural dependency on A1.

Chapter 6. The Control Paradigm and the Compiler 156

Example 1 : Resource Lookahead

1 switch IICT

2 case 0: Choose schedule fA1,B,A2g or fB,A1,A2g;n� Either schedule is optimal �n
3 case (0 � IICT < 12 �ICTA):

4 if (ICTB >2�ICTA) Choose schedule fB,A1,A2g;n� Instruction B takes longer than the both A1 and A2 �n
5 else Choose schedule fA1,B,A2g;n� In other words, combine the resource requirements of �nn� dependent instructions and schedule the instruction �nn� according to the resource with the most work. �n
6 case (12 �ICTA � IICT < ICTA):

7 if (ICTB >2�ICTA) n� then schedule B first (as before) �n
8 Choose schedule fB,A1,A2g;

9 else n� schedule A1 first�n
10 if (ICTB < ICTA) Choose schedule fA1,A2,Bg;

11 else Choose schedule fA1,B,A2g;

12 case (ICTA � IICT):n� Schedule the instruction with the largest ICT first �n
13 if ICTA < ICTB Choose schedule fB,A1,A2g;

14 else Choose schedule fA1,A2,Bg;

15 end switch;

In the case of scheduling heuristics which do not consider resource looka-

head, the schedules they generate might be as follows:

Example 2 : Without Resource Lookahead

1 if (IICT = 0) Choose schedule fA1,B,A2g or fB,A1,A2g;n� Again, either schedule is optimal �n
2 else n� Simply schedule the instruction with the largest ICT first. �n
3 if (ICTA < ICTB) Choose schedule fB,A1,A2g;

4 else if (IICT < ICTA) Choose SchedulefA1,B,A2g;

5 else Choose schedule fA1,A2,Bg;

Chapter 6. The Control Paradigm and the Compiler 157

The lookahead heuristics attempt to match the available program and archi-

tectural parallelism over a short window of time. The strategy of repeating the

process over the entire program allows the instruction-level parallelism to be

exploited more evenly. This has two effects: firstly, a better program makespan

is usually achieved; and secondly, a schedule is generated which is more robust

to deviations from the predicted instruction costs because only the appropriate

amount of program parallelism is exposed which can be exploited by the target

at any one time. Since costs are based on worse-case values rather than typical

ones, the traditional list scheduling heuristics tend to overly migrate independ-

ent instructions to the top of the schedule, leaving insufficient parallelism for

later. Kerns and Eggers [88] proposed a code scheduling algorithm called bal-

anced scheduling for synchronous architectures which is similar in concept. Their

algorithm is specifically designed to tolerate a wide range of variance in load

latency, e.g. cache misses/hits, global and local memory. In these architectures,

instruction costs are well defined and considered fixed. Usually the latencies

reflect the most optimistic execution, e.g., the time of a cache hit rather than a

cache miss. Traditional schedulers improve performance through reordering

instructions to avoid pipeline stalls, e.g., by inserting independent instructions

after loads to keep the CPU busy. The number of instructions inserted (in the best

case) depends on this latency value. If the load instruction is delayed beyond

the scheduler’s estimate, then the processor will stall. However, if the latency is

shorter, the destination register of the load instruction will be tied up for longer

and this may increase register pressure enough to cause unnecessary code spills.

Unfortunately both balanced scheduling and resource lookahead are computa-

tionally more expensive than the traditional list scheduling approach and will

not be considered further in this initial study.

Chapter 6. The Control Paradigm and the Compiler 158

The approximation algorithm

The algorithm takes as its input a directed graph of instruction dependencies

and a resource graph with architectural parameters, and generates an instruction

schedule for the given MAP architecture. Two lists are defined as follows: the

WI list – the list of instructions still awaiting their operands, and the EI list

– an ordered list of instructions which are ready, or will be ready in the near

future (for lookahead instructions), but still awaiting issue. The order of the

latter list is determined by the critical path costs of instructions, i.e. the primary

priority. Next, a prioritised list of executable instructions is derived from the

EI list based on the availability of their resources at the current time. If there

are ties, an instruction (or instructions in the case of superscalar MAP) is chosen

for issue based on secondary priority values.

The scheduler mimics the behaviour of the architecture’s issue unit. The

function generate schedule(), as shown in Algorithm 2, schedules instructions

based on their readiness, their priority and the availability of resources. Un-

like schedulers for synchronous machines, the scheduling of instructions does

not proceed in uniform time steps, but rather in an asynchronous event-driven

manner until all the instructions are scheduled. Each iteration of the main loop

(the while do loop in line 5) corresponds to an instant in time when the issue

unit is ready to issue an instruction. However, a situation may arise when at

some given time there are no instructions ready for issue (line 8), in which case

the clock must be advanced, but only as far as necessary to remedy this. The

incrementing of the clock simulates the issue unit being stalled. The routine,

advance clock(), finds the earliest occurrence of three types of events: the ready

time of an instruction in the WI list and of a lookahead instruction in the EI list;

the time when the result of an operation becomes available in the register file;

and the time a busy resource becomes free. Only the first two events can change

the status of the EI list. There is a choice of heuristics which can be applied,

Chapter 6. The Control Paradigm and the Compiler 159

either the instruction lookahead or the traditional priority-based approach. In-

struction lookahead (lines 9 – 17) chooses the best instruction to issue from

the EI list based on the lookahead heuristic. The function, get ready instr() de-

scribed in Algorithm 3, returns from the given list of instructions the one with

the highest estimated-time-to-completion (ETC) priority for which there will be

sufficient resources in the datapath when issued at its earliest issue time. In

the current implementation of the lookahead heuristic, only one instruction is

chosen per issue cycle iteration. The routine, apply.lookahead() as described in

Algorithm 4, implements the instruction lookahead heuristic. The alternative

heuristic (lines 18 – 29) chooses the instruction with the highest priority which

can be issued immediately. This may involve choosing one or more from a

number of instructions with the same primary priority value (ETC). Line 19

creates a list of ready instructions with the same, highest ETC values and line

22 removes those instructions with insufficient resources for issue at the current

time. Line 23 supports architectures which incorporate lockstep superscalar

instruction issue. The routine issue all() issues as many of the instructions as

possible from the given list. If there are not enough issue-slots for the complete

list (rdyI), then the routine choosing insts() returns the best instruction for issue

based on the secondary priorities. The two loops (lines 26 and 27) repeat until

either the issues slots are filled or their respective lists become empty. The clock

is advanced appropriately depending on whether or not the scheduler was able

to issue one or more instructions at the current time (lines 28 and 29). The

routine, update writeback, models the behaviour of the portion of the micronet

not directly controlled by the issue unit, e.g. write-back bus. Line 32 updates

the instruction lists and the next instruction issue cycle iteration begins at a new

time.

Chapter 6. The Control Paradigm and the Compiler 160

Algorithm 2 : The MAP scheduler (generate schedule())

1 curr time := 0;

2 calc completion times(); n� Critical path analysis for each instruction �n
3 update WI(WI list); n� Determine instruction start times �n
4 update EI(WI list); n� Move ready instructions to EI list �n
5 while (WI list 6= fg) or (EI list 6= fg) do
6 no issued := 0; n� Number of inst issued simultaneously at this time �n
7 candidates := EI list;

8 if (EI list = fg) curr time := advance clock(YES, YES, NO, curr time);

9 else if (lookahead = YES) n� Use Instruction Lookahead Heuristics �n
10 BestChoice := get ready instr(candidates); n� Inst with the highest �nn� priority in the candidates list for which there are sufficient resources �n
11 if (BestChoice 6= NULL)

12 while candidates 6= fg do
13 NextInst := get ready instr(candidates);

14 if (NextInst 6= NULL)BestChoice = apply.lookahead(BestChoice, NextInst);end while
15 if (BestChoice.rdy time � curr time + issue cost)

16 issue instruction(BestChoice); no issued++;

17 EI list := EI list - fBestChoiceg;else
18 do n� Alternative strategy without Instruction Lookahead �nn� same ETC list is the list of the highest ETC cost, ready insts �n
19 9 same ETC list � candidates, s:t: 8 i 2 candidates,9 v 2 same ETC list, s:t: (v.ETC � i.ETC);

20 candidates := candidates - same ETC list;

21 do n� Remove instructions without sufficient resources �n
22 9 rdyI � same ETC list, s:t: 8i 2 rdyI,

find avail FU resources(i, datapath, curr time);

23 if (jrdyIj � spsclr deg - no issued) issue all(rdyI, no issued);else n� choose between insts in rdyI list �n
24 inst chosen := choosing insts(rdyI, no issued);

25 EI list := EI list - finst choseng;

26 while ((no issued < spsclr deg) and (same ETC list 6= fg));

27 while ((no issued < spsclr deg) and (candidates 6= fg));

28 if (no issued > 0) curr time += inst issue cycle;

29 else curr time := advance clock(YES, YES, YES, curr time);

Chapter 6. The Control Paradigm and the Compiler 161end if
30 update writeback(datapath);

31 if (WI list 6= fg)

32 update WI(WI list); update EI(WI list);end while
33 update writeback(datapath);

The function described in Algorithm 3 returns, from the given list, the

instruction with the highest estimated-time-to-completion (ETC) priority for

which there will be sufficient resources in the datapath if it is issued at its earli-

est issue time. If this time is not the same as the current issue time (i.e. the

next earliest scheduling time for any unscheduled instruction), then issuing this

instruction will effectively cause the issue unit to stall. However, in practice it

is not possible to predict what will actually transpire unless the actual delays

can be determined a priori. Notice that the scheduler must take into account the

fact that some instructions will begin to be issued before they are ready or all

of their resources are available which effectively allows the cost of issuing the

instruction to be hidden.

Algorithm 3 : The MAP scheduler (get ready instr(inst list))

1 9 inst 2 inst list s.t. inst.ETC is maximum;n� i.e. inst is the first instruction in the ordered list inst list �n
2 while ((inst list 6= fg) and (not cand found))

3 if (inst.rdy time > curr time + issue cost)n� This instruction can be issued early to hide the issuing cost �n
4 inst.issue time := inst.rdy time - issue cost;

5 else inst.issue time := curr time;

6 if (find avail resources(inst, inst.issue time) 6= fg) cand found = TRUE;else
7 inst list := inst list - finstg;

8 9 inst 2 inst list s.t. inst.ETC is maximum;end ifend while
9 return(inst);

Chapter 6. The Control Paradigm and the Compiler 162

In certain cases it is more prudent to stall the issue unit until a higher

priority instruction becomes ready, rather than immediately issuing another

ready instruction. The routine, apply.lookahead(), as described in Algorithm 4

implements the instruction lookahead heuristic which uses the ETC priority

and the earliest issue time of two instructions to determine which of them

should be issued first. By comparing the estimated execution time of the two

instruction schedules, the order with the smallest time is chosen. Should the two

schedules have the same time, then the order where an instruction completes

earlier is chosen, since this would at least allow its dependents to become ready

sooner. However, if a tie still exists then the secondary instruction priorities are

applied to choose a candidate.

Algorithm 4 : The MAP scheduler (apply lookahead(instA, instB))

1 opt1 := instA.issue time + instA.ETC;

2 opt2 := instA.issue time + instB.ETC + instA.issue cycle;

3 opt3 := instB.issue time + instB.ETC;

4 opt4 := instB.issue time + instA.ETC + instB.issue cycle;

5 etc ABl := max(opt1, opt2);

6 etc ABs := min(opt1, opt2);

7 etc BAl := max(opt3, opt4);

8 etc BAs := min(opt3, opt4);

9 if (etc ABl < etc BAl) return(instA);

10 else if (etc ABl > etc BAl) return(instB);

11 else if (etc ABs < etc BAs) return(instA);

12 else (etc ABs > etc BAs) return(instB);

13 else return(break ties(instA, instB));

6.6 Results

In this section, the makespans of MAP schedules for a number of typical in-

struction DAGs (briefly described below) are compared with their optimum.

The optimal makespan of each DAG is derived from an exhaustive search of all

Chapter 6. The Control Paradigm and the Compiler 163

possible valid schedules. The DAGs represent a selection of graph shapes

typical of program applications:

BT3 – A Binary Tree with three levels.

BT3.5 – A Binary Tree with three and half levels.

BT4 – A Binary Tree with four levels.

DD – Diamond DAGs which are commonly found in the evaluation

of partial differential equations.

DM – Dense matrix multiplication.

SM – Sparse matrix multiplication.

CC – Mix of Load, Store and ALU instructions with data dependen-

cies. (The Hennessy Test used in Chapter 5.)

CCL – A loop unrolled version of CC (i.e. two iterations of the

Hennessy Test).

Min1 – This architecture contains the minimum resources – one

ALU and one Memory Unit (MU) which both share a single

write-back bus. The cycle times and latencies of the ALU, the

MU and the write-back micro-operations are assumed to the

same.

3bus1 – This architecture has an additional ALU and each of the

three functional units has a dedicated write-back bus. (The

micro-operation cycle times and latencies are the same as Min1).

Min2 – Same as Min1, except that the micro-operation costs of all of

the microagents reflect realistic costs obtained from SPICE-level

simulations.

3bus2 – Same as 3bus1, but with the micro-operation cycle times

and latencies of Min2.

Chapter 6. The Control Paradigm and the Compiler 164

No. of No. of The The MAP Heuristic MAP with Lookahead

Prgm MAP Valid Optimal Optimal Make- Close- The Make- Close- The New

DAG Arch Schds Schds Mkspn span ness Range span ness Range Schd?

BT3 Min1 640 24 1105nS 1185nS 92.76% 75% 1185nS 92.76% 75% No

BT3.5 Min1 230400 512 1505nS 1585nS 94.68% 85.71% 1585nS 94.68% 85.71% No

BT4 Min1 21964800 529920 1785nS 1885nS 94.4% 85.71% 1885nS 94.4% 85.71% No

DD Min1 42 2 1325nS 1325nS 100% 100% 1325nS 100% 100% No

DM Min1 310160 200 1905nS 1925nS 98.95% 98.11% 1905nS 100% 100% Yes

SM Min1 46574 24 2085nS 2245nS 92.33% 81.81% 2265nS 91.37% 79.55% Yes

CC Min1 4 2 735nS 735nS 100% 100% 735nS 100% 100% No

CCL Min1 4032 4 945nS 1015nS 92.59% 88.89% 1015nS 92.59% 88.89% No

BT3 3bus1 640 72 1105nS 1105nS 100% 100% 1105nS 100% 100% No

BT3.5 3bus1 230400 128 1355nS 1355nS 100% 100% 1355nS 100% 100% No

BT4 3bus1 21964800 456960 1605nS 1605nS 100% 100% 1605nS 100% 100% No

DD 3bus1 42 2 1225nS 1225nS 100% 100% 1225nS 100% 100% No

DM 3bus1 310160 156 1645nS 1645nS 100% 100% 1645nS 100% 100% No

SM 3bus1 46574 46 2005nS 2035nS 99% 97.67% 2005nS 100% 100% Yes

CC 3bus1 4 2 735nS 735nS 100% 100% 735nS 100% 100% No

CCL 3bus1 4032 18 835nS 835nS 100% 100% 835nS 100% 100% No

BT3 Min2 640 32 930nS 930nS 100% 100% 930nS 100% 100% No

BT3.5 Min2 230400 704 1230nS 1230nS 100% 100% 1230nS 100% 100% No

BT4 Min2 21964800 768768 1500nS 1500nS 100% 100% 1500nS 100% 100% No

DD Min2 42 2 570nS 570nS 100% 100% 570nS 100% 100% No

DM Min2 310160 120 1250nS 1280nS 97.6% 92.5% 1250nS 100% 100% Yes

SM Min2 46574 2 1180nS 1200nS 98.3% 95.9% 1190nS 99.15% 97.96% Yes

CC Min2 4 2 400nS 400nS 100% 100% 400nS 100% 100% No

CCL Min2 4032 2 550nS 550nS 100% 100% 550nS 100% 100% No

BT3 3bus2 640 32 920nS 920nS 100% 100% 920nS 100% 100% No

BT3.5 3bus2 230400 704 1220nS 1220nS 100% 100% 1220nS 100% 100% No

BT4 3bus2 21964800 2377728 1500nS 1500nS 100% 100% 1500nS 100% 100% No

DD 3bus2 42 2 490nS 490nS 100% 100% 490nS 100% 100% No

DM 3bus2 310160 1620 1230nS 1230nS 100% 100% 1230nS 100% 100% Yes

SM 3bus2 46574 8 1160nS 1180nS 98.28% 96.01% 1160nS 100% 100% Yes

CC 3bus2 4 2 400nS 400nS 100% 100% 400nS 100% 100% No

CCL 3bus2 4032 12 550nS 550nS 100% 100% 550nS 100% 100% No

Table 6–1: Measuring the optimality of the scheduling heuristics

The results for the MAP scheduling heuristic, both without and with instruc-

tion lookahead, are shown in Table 6–1. For each DAG, the number of valid

schedules is recorded together with the optimal makespan for the given target

architecture. The makespan generated by the heuristics together with its close-

ness to the optimum (recorded both as a percentage of the optimal (Closeness)

and as a percentage of the difference between the best and worst makespans

(within The Range – best being 100%, worst 0%)) are also included. It is assumed

that there are a sufficient number of registers available to avoid code spilling.

This would normally be determined at the register allocation phase of the com-

Chapter 6. The Control Paradigm and the Compiler 165

pilation and is not considered here (see Chapter 7). If the lookahead heuristic

generates a different schedule, this is indicated in the column “New Schd?”.

The results look quite promising. In a majority of the cases for the 3bus1

and 3bus2 architectures, the MAP heuristic can find an optimal solution (only

in the case of SM is instruction lookahead required, for both architectures, to

reduce the makespan to optimum). However, the MAP scheduler does not

do as well on the Min1 architecture (for BT3, BT3.5, BT4, CCL, DM and SM).

The reason for the poorer makespans is due to a bottleneck on the write-back

bus. So significant is the effect of the bottleneck that even applying instruction

lookahead, i.e. waiting until a higher priority instruction becomes ready rather

than issuing the current one, has little effect. It turns out to be better in some

cases to stall the issue unit for a much longer period of time than that assumed

by the lookahead heuristic (of just the IICT), because this additional stall time

would be hidden by the write-back bottleneck. The bottleneck can actually cause

the lookahead heuristic to generate a schedule (e.g. for SM) whose makespan

is worse than the one generated by the original MAP heuristic. The makespan

would have been significantly better if it were not for the bottleneck (c.f. SM on

Min2). Where the makespan is only slightly worse than the optimum, i.e. DM,

the heuristic together with instruction lookahead is sufficient to find an optimal

solution. In the case of the Min2 architecture, BT3, BT3.5, BT4, and CCL are now

optimal. This is because the relative delays of the microagents have reduced

the bottleneck for the write-back bus. In the case of DM and SM, there is still

interference between the instructions which result in sub-optimal executions.

This instruction interference can be reduced by applying a post-pass re-ordering

of the generated schedules.

Chapter 6. The Control Paradigm and the Compiler 166

6.6.1 Post-pass Optimisation for Instruction Interference

Instructions are said to interfere when a higher priority instruction’s flow (i.e.

execution) through the micronet is delayed by an instruction of a lower priority.

For example, when an instruction is stalled waiting for a common resource,

such as the write-back bus.

The MAP scheduler, which is mainly concerned with minimising the stall

time of the issue unit, will generally choose to issue a lower priority instruction

rather than wait for a higher one to become ready. However, the instruction

lookahead heuristic tries to counterbalance this effect, albeit in a limited fashion.

As described in Chapter 5, the issue unit can only control the order in which

operands are fetched (via the pre-issue conditions), i.e. the execution order of the

micro-operations of microagents up to the execution stage. After this stage, the

order in which instructions acquire successive microagents, especially common

ones, may not necessarily be the same as the order in which the instructions

were scheduled. This is due to multiple paths which allow instructions to race

each other; the ability to skip stages; and varying stage delays, all of which are

afforded by the micronet. In fact, it is difficult to predict how the microagents

will be utilised as the schedule is being generated (i.e. on-the-fly), since a yet-to-

be scheduled instruction could still determine whether an already scheduled one

is serviced by a given microagent at a particular time. Therefore, any instruction

interference optimisations can only be made after the initial schedule has been

generated.

The only optimisation that can be made by the scheduler is to reorder the

instructions. The post-pass heuristic, described in Algorithm 5, tries to ensure

that instructions on critical paths are never delayed by those which are not. The

heuristic uses the earlier instruction scheduling priorities and the schedule’s

“trace” information from the computational model to determine whether the

issue order of two successive instruction should be swapped. Line 4 locates an

Chapter 6. The Control Paradigm and the Compiler 167

instruction which is scheduled after one with a lower critical path priority. If

the two instructions use a common microagent, in this case a write-back bus

(line 5), the trace information is used to determine if the second, higher priority

instruction is delayed by the first. This delay can easily be identified if the

second instruction is stalled at its previous microagent (line 8). However, the

heuristic (line 10) also assumes that if the second instruction requires the com-

mon microagent just as the first one finishes with it, then the control unit must

have delayed (i.e. stalled) the issuing of the second instruction. The algorithm

is applied to successive pairs of instructions in the schedule in a manner similar

to the well known bubblesort algorithm. Although, this heuristic may increase

the stall time of the issue unit, it has the overall effect of performing a restricted

form of resource lookahead.

Algorithm 5 : Post-Pass Optimisation (reduce interference())

1 do
2 SWAP = NO;n� Assign InstA and InstB to the first two instructions in the schedule. �n
3 do
4 if ((SWAP == NO) and (InstA.ETC < InstB.ETC))n� Possible swap between InstA and InstB. �n
5 if (use same wbbus(InstA, InstB) == TRUE)n� Both instructions use the same write back bus. �n
6 InstA.et = time at which InstA relinquishes the write-back bus;

7 InstB.rt = time at which InstB requires the write-back bus;

8 if (InstA.et � InstB.rt) SWAP = YES;n� InstA delays InstB by the difference in these values. �n
9 else n� No swap required since instructions use different resources. �nn� Get the next pair of instructions in the schedule. �n

10 else n� Get the next pair of instructions in the schedule. �n
11 while not the end of the schedule;

12 if (swap == YES) simulate schedule();n� Obtain the new schedule’s trace info for next iteration. �n
13 while (swap == YES);

Chapter 6. The Control Paradigm and the Compiler 168

The MAP with Lookahead (LA) MAP with LA and Post-pass

Prgm MAP Optimal Make- Close- The Make- Close- The

DAG Arch Mkspn span ness Range span ness Range

BT3 Min1 1105nS 1185nS 92.76% 75% 1105nS 100% 100%

BT3.5 Min1 1505nS 1585nS 94.68% 85.71% 1505nS 100% 100%

BT4 Min1 1785nS 1885nS 94.4% 85.71% 1785nS 100% 100%

DD Min1 1325nS 1325nS 100% 100% 1325nS 100% 100%

DM Min1 1905nS 1905nS 100% 100% 1905nS 100% 100%

SM Min1 2085nS 2265nS 91.37% 79.55% 2085nS 100% 100%

CC Min1 735nS 735nS 100% 100% 735nS 100% 100%

CCL Min1 945nS 1015nS 92.59% 88.89% 965nS 97.88% 96.82%

BT3 3bus1 1105nS 1105nS 100% 100% 1105nS 100% 100%

BT3.5 3bus1 1355nS 1355nS 100% 100% 1355nS 100% 100%

BT4 3bus1 1605nS 1605nS 100% 100% 1605nS 100% 100%

DD 3bus1 1225nS 1225nS 100% 100% 1225nS 100% 100%

DM 3bus1 1645nS 1645nS 100% 100% 1645nS 100% 100%

SM 3bus1 2005nS 2005nS 100% 100% 2005nS 100% 100%

CC 3bus1 735nS 735nS 100% 100% 735nS 100% 100%

CCL 3bus1 835nS 835nS 100% 100% 835nS 100% 100%

BT3 Min2 930nS 930nS 100% 100% 930nS 100% 100%

BT3.5 Min2 1230nS 1230nS 100% 100% 1230nS 100% 100%

BT4 Min2 1500nS 1500nS 100% 100% 1500nS 100% 100%

DD Min2 570nS 570nS 100% 100% 570nS 100% 100%

DM Min2 1250nS 1250nS 100% 100% 1250nS 100% 100%

SM Min2 1180nS 1190nS 99.15% 97.96% 1180nS 100% 100%

CC Min2 400nS 400nS 100% 100% 400nS 100% 100%

CCL Min2 550nS 550nS 100% 100% 550nS 100% 100%

BT3 3bus2 920nS 920nS 100% 100% 920nS 100% 100%

BT3.5 3bus2 1220nS 1220nS 100% 100% 1220nS 100% 100%

BT4 3bus2 1500nS 1500nS 100% 100% 1500nS 100% 100%

DD 3bus2 490nS 490nS 100% 100% 490nS 100% 100%

DM 3bus2 1230nS 1230nS 100% 100% 1230nS 100% 100%

SM 3bus2 1160nS 1160nS 100% 100% 1160nS 100% 100%

CC 3bus2 400nS 400nS 100% 100% 400nS 100% 100%

CCL 3bus2 550nS 550nS 100% 100% 550nS 100% 100%

Table 6–2: The effects of Post-pass optimisations on Instruction Lookahead

schedules

The results of this optimisation, shown in Table 6–2, on the schedules gener-

ated by the lookahead heuristic are quite dramatic. All of the schedules except

one (HTL on Min1, which has been significantly improved nevertheless) are

now optimal, including the makespan for SM on Min1 which was made worse

by instruction lookahead (see Table 6–1). The results also show that the post-

pass heuristic does not adversely affect any of the schedules (even those which

are already optimal).

The results of applying the post-pass heuristic directly to the schedules

Chapter 6. The Control Paradigm and the Compiler 169

The The MAP Heuristic MAP with Post-pass

Prgm MAP Optimal Make- Close- The Make- Close- The

DAG Arch Mkspn span ness Range span ness Range

DM Min1 1905nS 1925nS 98.95% 98.11% 1925nS 98.95% 98.11%

DM Min2 1250nS 1280nS 97.6% 92.5% 1280nS 97.6% 92.5%

DM 3bus2 1230nS 1230nS 100% 100% 1230nS 100% 100%

SM Min1 2085nS 2245nS 92.33% 81.81% 2085nS 100% 100%

SM Min2 1180nS 1200nS 98.3% 95.9% 1260nS 93.22% 83.67%

SM 3bus1 2005nS 2035nS 99% 97.67% 2035nS 99% 97.67%

SM 3bus2 1160nS 1180nS 98.28% 96.01% 1180nS 98.28% 96.01%

Table 6–3: The effects of Post-pass optimisation on MAP instruction schedules

produced without using instruction lookahead are shown in Table 6–3. In the

cases of DM on Min1, Min2 and 3bus2, and SM on 3bus1 and 3bus2, there is no

improvement. The makespan for SM on Min2 is actually worse, while for SM on

Min1 it is now optimal. (Note that all of these schedules are optimal when both

lookahead and post-pass are applied.) This does not mean that the post-pass

heuristic will only work for schedules which can be improved by lookahead

(emphasised by BT3, BT3.5 and BT4 on Min1). But rather, that the heuristic

seems to give better results on those which are.

This post-pass heuristic can be applied initially to either the beginning (for-

ward post-pass) or the end (reverse post-pass) of the instruction schedule gener-

ated by the first pass scheduler. The final schedules of the two approaches are

identical, however reverse-postpass tends to attempt (to test for) more swaps.

6.6.2 Are These Schedules Really Optimal?

Remember that these schedules are only optimal with respect to the instruction

costs which have been assumed. In practice, these schedules may not be optimal

for a particular execution of the program for the reasons discussed earlier, i.e. the

behaviour of the micronet is difficult to predict a priori and therefore instruction

schedules are based on worst-case costs. One could even expect that each run of

the program would have a different optimal schedule. Therefore it is impossible

Chapter 6. The Control Paradigm and the Compiler 170

to determine how far from true optimality the schedules are, without in effect

executing the actual instructions on the target architecture. This technique of

scheduling through self-simulation has already been proposed when schedul-

ing without a precise computational model [10]. The practicalities of such an

approach are still open to question. Although the stability of the schedules in

light of variance in the resource delays needs further study, this does not mean

that good (at least comparable with synchronous systems) program executions

cannot be achieved.

6.7 Open Problems

6.7.1 Instruction Execution Costs

3

4

10

6

3

2

3

4

Issue Cycle Time

ALU Instruction

Load Instruction

Store Instruction

Worst-case Costs Average-case Costs

The Scheduling Costs

LD

ALU

ALU

ST

ALU

Instruction
Schedule

Execution Time
using worst-case
run-time costs run-time costs

using average-case
Execution Time

2 - 5

4 - 7

7 - 10

9 - 12

0 - 4

13 - 17

10 - 16

6 - 11

3 - 7

0 - 10

Execution Times :

The Schedule Based on Worst-Case Costs

1217

ALU

ST

ALU

LD

ALU

Instruction
Schedule

Execution Time
using worst-case
run-time costs run-time costs

using average-case
Execution Time

0 - 3

4 - 7

6 - 9

8 - 11

2 - 6

0 - 4

3 - 13

6 - 10

9 - 19

16 - 20

The Schedule Based on Average-case Costs

20 11

Figure 6–1: The makespans of schedules based on worst- and average-case

run-time costs

Chapter 6. The Control Paradigm and the Compiler 171

In a micronet-based processor, the actual execution times of instructions cannot

be accurately predicted at compile-time. Although the execution times of the

same instruction might vary due to data-dependent delays, worst-case, average-

case or even best-case figures for the execution cost can be found on which the

schedules could be based. When producing static schedules, the compiler has to

use the delays of the FMs and the question arises as to which of the sets of figures

to use. Figure 6–1 illustrates the simplified schedules for the Hennessy Test

(HT1) based on worst-case and average-case costs and figures for the execution

times of the instructions based on actual worst-case and average-case delays at

run-time for these schedules. The ratios of the delays for the two cases for the

instructions realistically reflect actual behaviour for the asynchronous processor

under study. The figures reveal that given these ratios, using a schedule based on

worst-case costs is better in practice. Using this approach a heuristic will always

try to schedule an instruction, if possible, only when its operands are guaranteed

to be available, thereby minimising any stalls. Note also that the schedule’s

correctness is not affected by the changes in instruction costs. Furthermore,

given that a program’s critical path may change with different executions (due

to different data sets) and that the schedule is generated once, the compiler’s

choice of which costs to use is important (e.g. for real-time programmers [133]).

By basing the schedule on worst-case delays a lower bound on performance can

be achieved.

6.7.2 Interaction Between Executing Instructions

While optimising the instruction schedule is more difficult than in synchronous

processors for the reasons stated previously, other reasons contribute as well,

such as the difficulty in predicting the global state of the micronet. In synchron-

ous processors, the compiler can assume when scheduling a basic block that the

datapath is idle and all of the resources are available. This is a consequence of

Chapter 6. The Control Paradigm and the Compiler 172

the fact that in synchronous pipelines, an instruction never affects the execution

of other instructions. This is not necessarily the case in a micronet, since the

execution times of instructions might vary for the following reasons: only a

partial ordering is employed between instructions (i.e. it is not necessary for

the previous instructions to have completed their execution before successive

ones); instructions compete for shared resources, e.g. the write-back bus; during

execution instructions might interfere with each other. Therefore, the state of

the resources at any particular time cannot be predicted accurately at compile-

time. But this information is indeed available at run-time in the issue unit of

the micronet. This could be used to dynamically tune (i.e. allow out-of-order

instruction issues) the static schedule by the control unit. This requires identi-

fying an instruction which can be executed immediately (easily achieved using

the control acknowledgement signal scoreboarding mechanism), and checking

that the instruction is independent of earlier ones in the instruction buffer. Al-

though the latter may be expensive to perform, the task can be made simpler

with assistance from the compiler by using a concurrency bit.

6.8 Conclusions

The micronet model exposes temporal and spatial concurrency in the datapath,

with fine-grained resources now being visible to the compiler. This model

subsumes the micropipeline model which only exploits temporal concurrency

in the datapath and the scheduling methods described here can be equally

applied to micropipeline-based processors.

Code scheduling (on ILP architectures) and machine-dependent optimisa-

tions have a significant impact on program performance. It is the task of the

compiler to schedule instructions such that these resources are efficiently util-

ised. The instruction schedule is devised based on a (parameterised) computa-

Chapter 6. The Control Paradigm and the Compiler 173

tional model of the target architecture. For synchronous architectures the model

is simple; in contrast, an asynchronous model is necessarily less accurate for

the reasons discussed earlier. However, initial studies have shown that these

factors do not significantly hinder a MAP compiler’s ability to schedule code

efficiently. Worst-case instruction execution times have been considered for the

reasons described earlier and the resulting schedule is treated as a first pass one.

The interference between the instructions can be reduced by applying post-pass

optimisations. The instructions could then be dynamically reordered at run-

time to fine-tune this schedule by taking advantage of actual run-time costs.

Due to the asynchronous behaviour these instructions are issued as soon as

possible, without the need for delays using NO-OP instructions. In conclusion,

preliminary studies have shown that a micronet-based asynchronous processor

architecture does present a suitable target for an ILP compiler.

Chapter 7

Conclusions and Future Work

7.1 A Summary

Traditionally, the sequencing of information within processor architectures has

been synchronous – centrally controlled by a clock. This global clock places

limits on future gains in performance which can potentially be achieved by

improvements in implementation technology. This thesis has investigated the

effects of relaxing the strict synchrony by distributing control within the pro-

cessor architecture and also its impact on the overall system design. Micronets

have been proposed as an efficient implementation of an asynchronous control

paradigm for processor architectures and their effect on system performance

has been explored on three fronts. Firstly, with respect to an instruction set,

the execution time of individual instructions were compared under the two

control alternatives. A synchronous RISC architecture was transformed into a

comparable self-timed one and simulation studies demonstrated improvements

in the performance of the instruction set over the corresponding synchronous

processor. Secondly, although improved performance through increased silicon

utilisation within architectures which exploit instruction-level parallelism (ILP)

174

Chapter 7. Conclusions and Future Work 175

in the form of pipelining is a key feature in processor designs, synchronous

designs actually incur an increase in control complexity which adversely affects

their efficiency. Based on an initial MAP design, a series of refinements have

been made to the control framework which shows that the micronet approach

is better able to exploit the available ILP amongst the functional units within

processor architectures, and without significantly increasing control complexity.

In micronets, not only can the handshake protocols be used to avoid hazards

and minimise stalls, but the overheads due to asynchrony can also be hid-

den. Finally, although additional processor performance within the datapath

has been exposed, whether or not the system benefits depends on a compiler’s

ability to exploit this improvement. An architecture needs to expose the avail-

able resource concurrency, while the compiler extracts the program parallelism

(architecturally-independent) and maps it onto the former in such a manner as

to maximise performance. Machine dependent optimisations and code schedul-

ing (on ILP architectures) have a significant impact on the overall system per-

formance. Performance gains obtained by RISC compilers have been due to

the availability of accurate models of instruction behaviour on their target ar-

chitectures. However, under asynchronous control, the resulting variable and

non-predeterministic execution time of instructions due to data dependent op-

erations does not seem to adversely effect the generation of good schedules. In

conclusion, the adoption of micronets as an asynchronous distributed control

paradigm can lead to a more efficient utilisation of functional units and thus

improved system performance.

7.2 Effects on System Design

It is well known that the effective performance of a well integrated computer

system is to a large measure determined by the synergy between the design

of the processor architecture, the instruction set and the compiler. Therefore,

Chapter 7. Conclusions and Future Work 176

Implementation
Technology

Processor
Architecture

Control
Paradigm

Datapath
Architecture

Instruction
Set

Programming
Language

System
Architecture

Compiler

Design Influence

Performance Influence

Arch
Params

Datapath
Timing

Application

Figure 7–1: Influences within processor system architectures

the design of any such system should consider each of these areas and their

relationship to each other. Furthermore, as this work has highlighted, another

area (namely the control paradigm) also requires consideration (Figure 7–1):

The Instruction Set design is determined by the type of applications or

programming languages for which the system is targeted, with RISC designers

choosing to include only those instructions which are likely to be used frequently

and whose exclusion would seriously degrade the system’s performance [11].

Although the trend from sets containing a large number of complex instructions

towards sets containing fewer less complex ones has led to simpler datapath

and control, an improvement in overall system performance is still dependent

on the compiler.

The Compiler is responsible for the construction of a (near) optimal (minimal

Chapter 7. Conclusions and Future Work 177

code size or execution length) sequence of instructions which implements the

target application program (written in a specific programming language). The

advent of reduced instruction set architectures saw the accelerated development

of optimising compiler techniques. These techniques have had a significant

impact on system performance, thus making compilers, at least their back-

ends, an integral part of a processor system. Code generation/scheduling and

machine dependent optimisations require a detailed knowledge about each

instruction’s execution behaviour on the target architecture.

The Datapath Architecture, which is a collection of components (register

bank, functional units, etc.) and their control signals and datapath interconnec-

tions (dedicated or shared), aims to implement the execution of each instruc-

tion as efficiently as possible which may also involve considering trade offs

between power consumption, silicon area and performance. By streamlining

the datapath of an architecture, its complexity can effectively be migrated to the

optimising compiler. Details of the architecture become easier to make visible

to the compiler and its computational model which reflects the behaviour of

the architecture is now more tractable. The regular and determinate behaviour

allows optimising techniques to be more effective.

The Implementation Technology (IT) has played a significant part in im-

proving performance of processor architectures: transistorisation, various pro-

cess technologies, scaling, fabrication techniques have all played their part.

However, current advances in IC technology affect a synchronous control paradigm’s

ability to exploit the performance gains available (as discussed earlier in Chapter 2).

The Control Paradigm (CP), as the name suggests, is the mechanism by

which the operation of the components within the datapath architecture are

coordinated. Throughout the history of computer architecture, with a few

exceptions, this has been synchronous where a global clock signal sequences

actions and whose period is used to account for delays. With the majority of

Chapter 7. Conclusions and Future Work 178

processor designs being based on a centralised synchronous control, the notion

of a control paradigm has never been an issue.

Implementation
Technology

Compiler

Instruction
Set

Processor
Architecture

Control
Paradigm

Figure 7–2: Previously implicit influences within system architectures

This thesis has explored an asynchronous control paradigm where the se-

quencing is decentralised and architectural components communicate using

handshaking protocols. Self-timed control has been investigated together with

its influence on the above areas and thus the overall effect on the performance

of an integrated system. This work has not set out to find the best instruction

set for asynchronous processors since it is felt that the CP does not significantly

restrict the choice of instructions that could be included. In fact, an asynchron-

ous CP is less restrictive since instruction execution times and design delay do

not effect its correctness. However, some implementations of instructions, such

as those which rely on the timing of operations or other instructions, may not

be efficient or even possible.

On the other hand, the CP’s influence on the datapath architecture is defin-

itely more marked. While it is possible to implement a traditional synchronous

architecture precisely in an asynchronous manner [137], one may find that the

new design operates slower mainly due to the additional control required to

Chapter 7. Conclusions and Future Work 179

force the design to operate or support certain features peculiar to the synchron-

ous version. As described earlier in Chapter 2, the design goals under the two

CPs are different, leading to possibly different implementations of the architec-

tural components. The micronet approach with decentralised and distributed

control, which does not preclude any particular architecture, does however lead

to architectures composed of autonomous concurrently operating units.

From a purely performance point of view, for the modern RISC optimising

compiler, the influence of an asynchronous control paradigm appears at first

sight to be detrimental. The reason is the rôle played by the CP: synchronous

control implies both an event ordering and timing which leads to predictable

behaviour; asynchronous control implies only an event ordering. Without any

timing information one might surmise that it becomes more difficult to optimise

code schedules. In practice, preliminary results seem to imply that the compiler

is not adversely affected by an asynchronous CP. Even though the schedules

produced should be at least as good as those produced for a synchronous

processor, the system should benefit from dynamic reordering to exploit further

(run-time) performance.

The use of particular implementation technologies may also influence the

choice of CP. Some types of MOS families may be considered well suited to

self-timed circuit design, e.g. those which could use the precharge phase as

a “spacer” between data values as an alternative method for hiding hand-

shake overheads. Techniques such as differential cascade voltage switch level

DCVSL [30] [69], Precharged CVSL [160] or domino CMOS logic [175] have

already been used [98].

The behaviour of asynchronous processors is complex and their performance

is difficult to predict. Discrete event simulations as described in this work offer

a method for accurately measuring their performance. The model in Occam2

naturally captures the concurrency and asynchronous communication. This

also allows the simulation to be parallelised to obtain reasonable run-times for

Chapter 7. Conclusions and Future Work 180

large circuits and test programs. This is aided by the asynchronous nature of the

underlying simulation algorithm itself [8]. Although there are numerous tools

and techniques for the synthesis, verification and silicon compilation of self-

timed circuits, tools for the development, evaluation and testing of self-timed

(processor) systems [29] [51] are still lacking.

Given that micronets provide an efficient control framework for MAP sys-

tems many of these aspects are being addressed [92] [127] and could be invest-

igated in more detail in future work.

7.3 On-Going and Future Work

7.3.1 Easing System Design

The distribution of control to the functional units improves performance by

exploiting fine-grain concurrency and actual delays. The majority of control in

MAP architectures is delegated to the interfaces of the functional units. The

work in [126] has addressed the design of these control interfaces (the CMs)

by introducing the idea of control constructs. These enable the efficient im-

plementation of control interfaces which is crucial to the performance of the

asynchronous processors. High-level descriptions of control constructs have

been described in VHDL and a library of cells has been implemented in the

Cadence Design Framework for automated synthesis [164]. Results from SPICE

simulations for an add ALU operation have been presented which demonstrate

the feasibility of distributing controls [4]. This work is an important step for the

rapid prototyping of micronet-based asynchronous processors in a top-down

fashion. The separation of timing and functionality enables truly modular

designs, i.e. functional units can be modified without redesigning the rest of the

system. Thanks to the micronet, the number and type of functional units can

Chapter 7. Conclusions and Future Work 181

be changed, by simply specifying the behaviour of the control interface with

respect to the rest of the system in terms of the control constructs. This enables

the designer/computer architect to explore the architectural design space with

ease, for example, determining the optimal number of functional units for a

class of problems in the design of micronet-based superscalar architectures.

7.3.2 Extending the Micronet Architecture

Conditional Branching

The Fetch and Branch Unit (FBU) itself can be viewed as an instruction pre-

processor, handling all PC related instructions. Its task is simply to supply the

CU (and the execute stage) with, if possible, the correct stream of instructions.

However, the implementation of (conditional) branch instructions is one of the

hardest and most important problems to be dealt with in high performance

pipelined processors. Branch instructions tend to interrupt the smooth flow

of instructions through the datapath making the average instruction through-

put rate much lower than the peak rate. For example, early studies for the

pipelined MU5 computer showed that if branches occurred in only one out of

ten instructions then performance would be reduced by a factor of three, unless

precautions were taken [122]. The importance of dealing with the performance

degradation has long been recognised [23]. Implementing branch instructions

so that a branch transfer does not take effect until a fixed number of instruc-

tions after the branch are also executed can be used to reduce branch delay.

This technique is commonly referred to as “delayed branching” and was used

as early as 1952 in the Los Alamos MANIAC and more recently in early RISC

processors such as IBM 801 [138], the Berkeley RISC I [136] and the Stanford

MIPS [71]. Delayed branching is one of the simplest ways to optimise branches

in synchronous architectures. However, a major limitation is the difficulty of

filling the required number of delay slots determined by the time taken to re-

Chapter 7. Conclusions and Future Work 182

solve the branch condition [113]. While this number is fixed for a synchronous

architecture, the number of instructions required to be fetched to hide the branch

latency in an asynchronous datapath may be variable, depending not only on

the execution cost but also the relative instruction fetch cost. Although this

approach could be used for a specific MAP architectural design, as a general

approach it is not viable. Thus, for micronet-based architectures, the preferred

techniques might be ones which do not rely on fixed timing for their correct op-

eration, such as branch prediction schemes [100] [153] or advanced branching

mechanisms [132].

Out-of-Order Instruction Issue

Since the compiler may not be able to generate the best schedule, the CU may

need to issue instructions out-of-order from the instruction buffer. This requires

the identification an instruction which can be executed immediately (easy and

cheap since the handshake mechanism with the functional units acts like a

scoreboard), and checking that it is independent of the previous instructions in

the buffer which might be expensive (dynamic register renaming) without the

compiler’s help [120].

Out-of-order instruction issue would allow the control unit to fine-tune the

static instruction schedule to take advantage of variable instruction execution

times. In the presence of out-of-order instruction issue (or out-of-order operand

fetch), the issuing (and execution) of instructions is only limited by the availab-

ility of resources and operands. Micronets can therefore be viewed as a hybrid

dataflow style of architecture, limited to the window of instructions available in

the instruction buffer, without the bookkeeping costs associated with traditional

dataflow architectures [61].

Chapter 7. Conclusions and Future Work 183

Exception Handling and Speculative Execution

Many synchronous processor architectures have been developed to exploit high

degrees of ILP. Some of these processors dispatch multiple instructions from a

conventional linear instruction stream to multiple functional units simultan-

eously and use mechanisms for out-order instruction issue and completion,

branch prediction and speculative execution to remove the constraint of se-

quential instruction execution. The added complexity brought about by these

mechanisms make it more difficult for the processor to maintain a precise sys-

tem state after an exception occurs [81]. An exception is said to be precise if

the saved process state corresponds with a sequential mode of program execu-

tion where one instruction completes before the next one begins. Many of the

methods adopted by these synchronous processors for implementing precise

interrupts [154] can be applied to MAP. For example, a history buffer (which is

a first-in-first-out (FIFO) queue of all the instructions that are executing) can be

used in the same way as it is in the MC88110 [40]. Alternatively, by introducing

some processing (decision making) capabilities into the register bank, tech-

niques equivalent to shadow registering [95] or the use of reorder buffers [154]

could also be employed [155].

Although instructions may be fetched speculatively by the FBU in MAP,

whether they should be executed speculatively is an architectural trade-off. Just

as in synchronous designs, the techniques and hardware support for exception

handling can be exploited to support speculative execution [40] [155] [167].

Extending Micronets to Implement Superscalar Architectures

The evolution of a synchronous scalar architecture into a superscalar one gen-

erally requires the duplication of the entire datapath. In MAP, this may not

be necessary for a number of reasons: since the fetch and execute stages are

decoupled, the effective instruction fetch rate may be sufficiently fast enough

Chapter 7. Conclusions and Future Work 184

to mean that duplication of the fetch stage is not required; superscalar architec-

tures exploit spatial parallelism and this is already achieved to a degree by a

native/scalar micronet datapath; the natural extensibility of the micronet means

that the incorporation of additional resources can be easily and efficiently ex-

ploited given a sufficiently fast enough instruction issue rate. Should this not

be the case, the duplication of the instruction issue unit is possible (making the

architecture superscalar) with more microagents to support concurrent operand

fetching and the pre-issue conditions being modified to avoid new hazards and

support out-of-order instruction issue. Due to the asynchronous behaviour, it

would be inefficient to operate the instruction issue units in lock-step. The pro-

cessor would now have to support complete dynamic instruction scheduling

(out-of-order issue and out-of-order operand fetch). Johnson [81] provides a

careful assessment of the complexity of the control logic involved in synchron-

ous superscalar processors. The design and implementation of a superscalar

micronet-based processor is currently being investigated [127].

Some Additional FU modifications

The designs of the functional units themselves may need to be modified to ex-

ploit the benefits of an asynchronous control paradigm or MAP architecture,

e.g. average case delays. The Memory Unit (MU) services the load and store

requests. While the simplest design option is to maintain the order in which

the requests are serviced, in order to reduce the amount of time other func-

tional units are stalled waiting for data, these load and store requests could be

separated. Giving priority to load requests may reduce the data wait latency,

although this requires the requests to be checked against any pending write

request.

If the fetch stage has a sufficiently small delay, (i.e. there are no signific-

ant periods where the execute stage is starved of instructions), the FBU could

Chapter 7. Conclusions and Future Work 185

be modified to allow it to be able to decode encoded instructions stored in

memory, i.e. the unit can effectively be used as a pre-instruction-decode stage

to speed up the instruction issue stage at the expense of a wider instruction

buffer, increased fetch latency but smaller code size and perhaps lower power

consumption [24] [48].

7.3.3 Parallelising Compilers for a Superscalar MAP

Although, Instruction-Level Parallelism (ILP) has been exploited by high per-

formance uniprocessors for the past 30 years, the 1980s saw it play a much

more significant rôle in computer design [94] [139]. ILP consists of a number

of processor and compiler design techniques which are generally transparent

to the user. Certain functions must be performed if a sequential program is to

be executed in an ILP fashion: the program must be analysed to determine the

type of dependencies between instructions and when these will be resolved;

scheduling and register allocation must be performed; often operations must be

executed speculatively, which in turn requires branch prediction. A number of

design choices exist as to whether these functions are supported in the compiler

or run-time hardware. Future MAP research should attempt to answer these

questions.

Since a formidable amount of work has been done in the traditional ILP

field [139], future work regarding the use of micronets may only need to consider

the effects of an asynchronous control paradigm on ILP techniques (e.g. [17]).

Although, some work has been done with List Scheduling heuristics, this ap-

proach may not produce the best results. Other interesting questions also arise,

such as: with out-of-order instruction issue, how much work needs to be (and

can be) done by the compiler? In practice, how much variance in instruction

execution times should be expected in typical programs [53]? Also, how feasible

is it to develop one efficient compiler for a family of MAP architectures?

Chapter 7. Conclusions and Future Work 186

7.4 Discussion

The emergence of VLSI technology, together with the maturing of optimising

compiler techniques, aided the development of early RISC architectures [71] [86] [136].

Their primary concern was the efficient usage of expensive silicon real estate,

and careful consideration was given to the design of the instruction set architec-

ture [102]. There have been two orthogonal trends in the evolution of synchron-

ous processor architectures [84]: the deeply-pipelined architectures [118], i.e.

ones which exploit temporal parallelism, and superscalar architectures which

exploit spatial parallelism [40] ([44] is an example which exploits both). Both

these classes have benefited from improvements in technology and the result-

ing faster clock frequencies. But these improvements have been sustained at

a high price in terms of clock distribution, power consumption, and design

complexity [42]. Furthermore, significant additional control costs are incurred

in exploiting ILP in both cases.

Micronets offer an alternative model for the design of future processor archi-

tectures. Whereas the original RISC ideal was the efficient usage of the silicon

space by identifying the critical resources, a micronet is essentially concerned

with their efficient utilisation over time. This is achieved in two ways: by re-

moving the clock, and distributing control to the resources; and viewing the

datapath not as a linear pipeline, but as a network of communicating resources.

Micronets are able to efficiently (the overheads due to asynchrony being hid-

den) exploit fine-grain ILP without the additional control costs (the protocol

also implements a scoreboarding and hazard avoidance mechanisms).

The asynchronous and distributed nature of the control in micronets allows

the processor to be easily extended with little effect on the rest of the design. For

a given class of problems, the designer is able to easily explore the architectural

design space more accurately by adding critical resources. This can be naturally

Chapter 7. Conclusions and Future Work 187

extended to superscalar architectures by increasing the number of issue units.

(Synchronous superscalar architectures replicate entire datapaths.) The same

scoreboarding mechanism is shared between the issue units for determining the

global state of the datapath.

7.5 Conclusions

This thesis has highlighted the increasing inefficiencies due to the clock and

centralised control in synchronous designs. Many of these problems can be

avoided by using self-timed circuits and a method for converting synchronous

pipelines to the self-timed equivalents has been outlined. This has been gen-

eralised to a novel asynchronous control technique, known as Micronets, for

decentralising controls in asynchronous processor architectures. Micronets are

viewed as a network of communicating functional units, which expose fine-

grain concurrency between instructions.

This work has investigated the effect of removing synchrony in processor

design and the consequent influences of an asynchronous control paradigm

on the design and performances of RISC processor architectures for exploiting

fine-grained ILP. It has been demonstrated that for a RISC architecture, the in-

struction execution of a self-timed design is able to exploit actual run-times. The

advantages of an asynchronous control go even further, in being able to sup-

port instruction level concurrency. A Micronet-based Asynchronous Processor

(MAP) architecture (which is effectively a variable length multiple-pipelined

datapath) has been designed to efficiently exploit instruction-level parallelism

and the nature of control for such an architecture has also been outlined. It

has been demonstrated that four-phase handshaking protocols enable the im-

plementation of highly concurrent structures and in most cases the overheads

can be hidden. Just as importantly, these protocols are used to efficiently avoid

Chapter 7. Conclusions and Future Work 188

datapath hazards. By using the self-timed design paradigm to the decentralised

control, the control mechanisms in MAP are distributed amongst its functional

units which allows the exploitation of a finer grain of ILP than previously pos-

sible. Improved architectural performance comes from being able to exploit

both the actual run-time delays of the microagents and their concurrent op-

eration. Some of the issues relating to micronets as targets for parallelising

compilers have been discussed. Initial work has also confirmed the suitability

of the asynchronous processor as a good target for these compilers. The modular

nature of micronets eases modification and empowers the computer architect

with finer control in the design, for example, of superscalar architectures. Fi-

nally, the micronet model considers the interactions between the underlying

implementation technology, the architecture and the compiler, and underlines

the integrated approach to system design.

Appendix A

Glossary

Actual (Program) Execution Time – The time between the issuing of an instruc-

tion (or start of a program) and the completion of all actions associated

with that instruction (or program).

Asynchronous – An asynchronous circuit is an ‘unclocked’ circuit, i.e. a circuit

which does not rely on global synchronisation by an external clock signal.

Asynchrony implies the absence of any timing bounds on the operation of

a circuit (whose duration may be subject to many uncontrolled factors).

Delay Insensitive – A circuit is delay-insensitive if its correct operation is in-

dependent of any assumptions about the delays of the individual com-

ponents or wires in the circuit except that those delays be finite, c.f. speed-

independent.

Equipotential Region – An equipotential region is a portion of a circuit within

which propagation delays in wires are considered to be negligible. The

smaller the area of the region, the more validity this assumption has in

practice.

189

Appendix A. Glossary 190

Fetch Cycle Time – The time between the Control (Execute) Unit requesting

the next instruction from the instruction cache or memory and receiving

it.

Instruction Cycle Time (ICT) – The execution time of a particular instruction

as seen by the Control Unit. It is measured as the time between instruction

issues of the same type.

Instruction Issue Time (IIT) – The time taken to issue an instruction. This

constitutes just half of the four phase protocol and represents the time

between decoding and issuing the instruction. (In synchronous designs,

this would be the decode cycle with operand fetch occurring either con-

currently or afterwards). In MAP, the fetching of operands is considered

to be part of the instruction’s execution. This is because the register bank is

also treated as a functional unit or resource from which required operands

may be unavailable.

Instruction Issue Cycle Time – The time between the issue of any two success-

ive instructions. This is the time to complete the four-phase handshaking

protocol and is therefore limited by the handshake cycle time of the slowest

common control signal or IIT.

Isochronic Fork – A fork or branch of a wire in a circuit is considered to be

isochronic if the difference in the propagation delays between branches

is negligible. This is obviously the case if all branches of the fork are

contained in an equipotential region.

Micronet – A micronet is a network of pipelines (micropaths), with (selected)

stages of different pipelines being able to communicate with each other.

This enables the exploitation of both spatial and temporal concurrency

between instructions [4] (in contrast, a micropipeline only exploits tem-

poral parallelism [6]).

Appendix A. Glossary 191

Micropath – A micropath is a pipeline or sequence of microagents, and in turn, a

microagent performs either a communicating or a functional micro-operation.

A functional microagent (FM) communicates with other FMs through their

respective communicating microagents (CM).

Micropipeline – A micropipeline is a self-timed, event-driven, elastic pipeline

whose stages operate asynchronously and communicate using the two-

phase bundled data protocol [158].

Self-Clocked – Self-clocked circuits are self-timed designs that are implemented

using a hidden internal clock within an equipotential region. Although in-

ternally they are composed of clocked synchronous elements, self-clocked

circuits retain an external asynchronous interface.

Self-Timed – Self-timed circuits use asynchronous initiation and completion (or

request/acknowledge) signals. The class of self-timed circuits includes all

delay-insensitive, speed-independent and self-clocked circuits.

Speed Independent – A circuit is said to be speed-independent if its correct

operation is independent of the delays in the individual components of

the circuit. It is assumed that there is no propagation delay associated

with the wires of the circuit, c.f. delay-insensitive.

Appendix B

The PEPSÉ Simulator

B.1 The Simulation Algorithm in OCCAM2{{{ PROC elsa.platformPROC elsa.platform(CHAN OF ANY tty,[]CHAN OF INT::[]INT in,out,VAL INT function.delay)-- Basic structure for the simulation platform.-- Folders marked with ** require modifications when customising.{{{ process runtime parameters **VAL INT max.input.width IS elsa.tuple.len.default+2:VAL INT max.output.width IS elsa.tuple.len.default+2:-- elsa.tuple.len.default is a constant currently set to 4. This-- is length of tuple with only one state value. Here, the input-- and output buffers will be defined to hold tuples with up to-- 3 state values.}}}{{{ variables[no.inputs][max.input.width] INT ipdata:[no.outputs][max.output.width] INT opdata:-- Buffers for inputs and outputs.}}}
192

Appendix B. The PEPSÉ Simulator 193{{{ PROC function **PROC function([][]INT istates,ostates)-- This is the procedure which evaluates the output states given-- the current inputs.}}}SEQ{{{ initialisation-- Set default values for flags}}}{{{ initialise input and output buffersPARPAR i=0 FOR no.inputsPAR j=0 FOR max.input.widthipdata[i][j]:=0SEQ -- Each output set to initial valuesPAR i=0 FOR no.outputsSEQopdata[i][elsa.tup.len]:= elsa.tuple.len.defaultPAR j=1 FOR max.output.width-1opdata[i][j]:= tristate -- initial state values.opdata[i][elsa.start.time]:= 0opdata[i][elsa.end.time]:= function.delay}}}{{{ send initial output tuplesPAR i=0 FOR no.outputsout[i] ! opdata[i][elsa.tup.len]::opdata[i]}}}WHILE NOT finished.simSEQ{{{ fetch necessary inputsPAR i=0 FOR no.inputsIF(ipdata[i][elsa.start.time]=ipdata[i][elsa.end.time])in[i] ? tuple.length::[ipdata[i]FROM 0 FOR tuple.length]TRUE

Appendix B. The PEPSÉ Simulator 194SKIP}}}{{{ execute function **function(ipdata,opdata) -- Behavioural model of Object.}}}{{{ determine OUTPUT start timePAR i=0 FOR no.outputsopdata[i][elsa.start.time] :=ipdata[0][elsa.start.time]+function.delay}}}{{{ determine OUTPUT end timeminimum.end.time :=max.sim.timeSEQ i=0 FOR no.inputsIF(minimum.end.time>ipdata[i][elsa.end.time])minimum.end.time := ipdata[i][elsa.end.time]TRUESKIPPAR i=0 FOR no.outputsopdata[i][elsa.end.time] :=minimum.end.time + function.delay}}}{{{ send outputsPAR i=0 FOR no.outputsIF(max.sim.time > ipdata[i][elsa.end.time])out[i] ! opdata[i][elsa.tup.len]::[opdata[i] FROM 0 FOR opdata[i][elsa.tup.len]]TRUESKIP}}}{{{ update simulation timePAR i=0 FOR no.inputsipdata[i][elsa.start.time] := minimum.end.time}}}

Appendix B. The PEPSÉ Simulator 195{{{ Simulation Complete ?IF(ipdata[0][elsa.start.time] >= max.sim.time)finished.sim := TRUETRUESKIP}}}{{{ Sink irrelevant inputsSEQ i=0 FOR no.inputsWHILE (max.sim.time > ipdata[i][elsa.end.time])in[i] ? tuple.length::[ipdata[i] FROM 0 FOR tuple.length]}}}:}}}

Appendix C

The MAP Test Programs{{{ Instruction Test code{{{ Program - Load Test-- instruction format <opcode,Rx,Ry,Rz,condflg,timestampflg>-- remember to initialise reg[i] = iinstr[0] :=[ld,0,0,1,false,true]instr[1] :=[ld,0,0,2,false,true]instr[2] :=[ld,0,0,3,false,true]instr[3] :=[ld,0,0,4,false,true]instr[4] :=[ld,0,0,5,false,true]instr[5] :=[ld,0,0,6,false,true]instr[6] :=[ld,0,0,7,false,true]instr[7] :=[time,1,2,2,false,false]instr[8] :=[jmp,8,0,0,false,true]}}}{{{ Program - Store Test-- instruction format <opcode,Rx,Ry,Rz,condflg,timestampflg>-- remember to initialise reg[i] = iinstr[0] :=[st,0,1,1,false,true]instr[1] :=[st,2,0,2,false,true]instr[2] :=[st,0,3,3,false,true]instr[3] :=[st,4,0,4,false,true]instr[4] :=[st,0,5,5,false,true]instr[5] :=[st,6,0,6,false,true]instr[6] :=[st,0,0,7,false,true]instr[7] :=[time,1,2,2,false,false]instr[8] :=[jmp,8,0,0,false,true]}}}
196

Appendix C. The MAP Test Programs 197{{{ Program - Alu Test-- instruction format <opcode,Rx,Ry,Rz,condflg,timestampflg>-- remember to initialise reg[i] = iinstr[0] :=[add,0,0,1,false,true]instr[1] :=[add,0,0,2,false,true]instr[2] :=[add,0,0,3,false,true]instr[3] :=[add,0,0,4,false,true]instr[4] :=[add,0,0,5,false,true]instr[5] :=[add,0,0,6,false,true]instr[6] :=[add,0,0,7,false,true]instr[7] :=[time,1,2,2,false,false]instr[8] :=[jmp,8,0,0,false,true]}}}{{{ Program - Hennessy Test-- instruction format <opcode,Rx,Ry,Rz,condflg,timestampflg>-- x[i] := k + x[j]; x addr in R0, (1,R1),(i,R2),(j,R3),(k,R4),(Xj,R5),(Xi,R7)instr[0] :=[ld, 0,3,5,false,true]instr[1] :=[add, 1,3,3,false,true]instr[2] :=[add, 5,4,7,false,true]instr[3] :=[st, 0,2,7,false,true]instr[4] :=[add, 1,2,2,false,true]instr[5] :=[time,0,0,0,false,true]instr[6] :=[jmp, 0,6,0,false,true]}}}}}}

Appendix D

Published Papers

The copyright on each of the following papers has been transferred to the El-

sevier Science Publishers and the IEEE Computer Society Press (as indicated),

which have granted to the authors the right to republish without specific per-

mission.

D.1 Instruction-level Parallelism in Asynchronous Pro-

cessor Architectures

Title: Instruction-level parallelism in asynchronous processor

architectures.

Authors: D. K. Arvind and V. E. F. Rebello.

Presented at: The 3rd International Workshop on Algorithms and Parallel

VLSI Architectures.

Place: Leuven, Belgium.

Date: 29th – 31st August 1994.

Publisher: Elsevier Science Publishers.

198

INSTRUCTION-LEVEL PARALLELISM IN ASYNCHRONOUSPROCESSOR ARCHITECTURESD. K. ARVIND and V. E. F. REBELLODepartment of Computer Science, The University of EdinburghMay�eld Road, Edinburgh EH9 3JZ, Scotland, U. K.fdka,vefrg@dcs.ed.ac.ukABSTRACT. The Micronet-based Asynchronous Processor (MAP) is a family of processorarchitectures based on the micronet model of asynchronous control. Micronets distributethe control amongst the functional units which enables the exploitation of �ne-grainedconcurrency, both between and within program instructions. This paper introduces the mi-cronet model and evaluates the performance of micronet-based datapaths using behaviouralsimulations.KEYWORDS. Instruction-level parallelism (ILP), asynchronous processor architecture,self-timed design.1 INTRODUCTIONCentralised controls have been traditionally used to correctly sequence information withinprocessor architectures. However, the ability to sustain this design style is under pressurefrom a number of directions [6]. This paper examines the e�ect of relaxing this strictsynchrony on the design and performance of processor architectures. The reasons are thefollowing. The the clock frequency of a synchronous processor is determined a priori by thespeed of its slowest component (which takes into account worst-case timings for executionand propagation for pessimistic operating conditions). In contrast, the performance ofan asynchronous processor is determined by actual operational timing characteristics ofindividual components (e�ectively the average delays), and overheads due to asynchronouscontrols. Secondly, an important consequence of asynchronous controls is the ability toexploit �ne-grained Instruction-level Parallelism (ILP), and this is explored in greater detailin the rest of this paper.ILP can be achieved either by issuing several independent instructions per cycle as insuperscalar or VLIW architectures, or by issuing an instruction every cycle as in a pipelinedPublished in the Proceedings of the 3rd International Workshop on Algorithms andParallel VLSI Architectures, pp 203-215, Leuven, Belgium, August 1994.c Elsevier Science Publishers.

architecture where the cycle time is shorter than the critical path of the individual oper-ations [5]. This work concentrates on the design and evaluation of asynchronous pipelinesfor exploiting ILP, as a number of control issues resulting from data and structural depend-encies between instructions have to be resolved e�ciently.A few asynchronous processors have recently been proposed [3, 8, 9]. These designs arebased on a single micropipeline datapath [10]. One disadvantage of viewing a datapathas a linear sequence of stages is that, in general, only one of the functional units will beactive in any cycle. Pipelining the functional units themselves is expensive both in termsof additional hardware and the resulting increase in latency.We introduce an alternative model for an asynchronous datapath called a micronet. Thisis a network of elastic pipelines in which individual stages of the pipelines have concurrentoperations, and stages of di�erent pipelines can communicate with each other asynchron-ously. This allows for a greater degree of �ne-grained concurrency to be exploited, whichwould otherwise be quite expensive to achieve in an equivalent synchronous datapath.2 MICRONETS AND ASYNCHRONOUS ARCHITECTURESMicronets are a generalisation of Sutherland's micropipeline [10], which dynamically con-trol which stages communicate with each other. Thus micronets can be viewed not justas a pipeline but rather as a network of communicating stages. The operations of each ofthe stages are further exposed in the form of microagents which operate concurrently andcommunicate asynchronously with microagents in other stages. Each program instructionspends time only in the relevant stages and for just as long as is necessary. This is in con-trast with synchronous datapaths in which the centralised control forces each instruction togo through all the stages, regardless of the need to do so (in e�ect a single pipeline). Fur-thermore, the microagents within a stage might operate on di�erent program instructionsconcurrently.Micronets are controlled at two levels: the data transfer between microagents is controlledlocally, whereas the type of operation carried out by a microagent (called a microopera-tion) and the destination of its result is controlled by the sequencer or by other microagents.Microagents can communicate either across dedicated lines or via shared buses where ar-bitration is provided either by the sequencer or some other decentralised mechanism suchas a token ring.Data dependencies in synchronous pipelines are resolved by using either hardware orsoftware interlocks [4], which increases the complexity of the controls. Micronets use theirhandshaking mechanisms together with simple register locking to achieve the same e�ect,but with trivial hardware overheads. In synchronous designs the structural hazards arenormally avoided in hardware by using a scoreboarding mechanism. In micronets this isprovided by existing handshaking protocols. Out-of-order instruction completion can besupported in synchronous designs, but at a non-trivial cost. Micronets are able to relaxthe strict ordering of instruction completions and thereby further exploit ILP. The resultis to e�ectively increase the utilisation of the functional units by reducing their idle timesor stalls. Better program performances can be achieved by exploiting both ILP and actual

instruction execution times.2.1 Asynchronous ArchitecturesFigures 1-3 illustrate micronet models of a generic asynchronous RISC datapath. Theintention is not to focus on the functional units themselves but rather on their asynchronouscontrol and investigate their e�ect on the performance. The number of units and theirfunctionality may be changed without side-e�ects.The architecture can be described as a network of microagents (denoted by solid boxes)which are connected via ports. The microagents which are labelled in the �gures, calledFunctional Microagents (FMs), perform microoperations which are typical of a datapath.On each of their ports are Communicating Microagents (CMs) which are responsible forasynchronous communications between FMs and the rest of the micronet. The FMs aree�ectively isolated and only communicate through their CMs, and can therefore be modi�edwithout a�ecting the rest of the micronet.2.2 Measuring PerformanceWe next introduce a few metrics for measuring improvements due to the distribution ofcontrol. There are two principal characteristics which a�ect performance - the microop-eration latency (the time between initiating the operation and the result being available),and the microoperation cycle time (the minimum time between successive initiations of thesame operation, i.e. throughput). The metrics de�ned for MAP are as follows:Minimum Datapath Latency (MDL) - The time between asserting the control signals(i.e. initiating instruction issue) and receiving the �nal acknowledgement of the in-struction's completion.Instruction Cycle Time (ICT) - The time between two identical instruction issues oncethat instruction's pipeline is full. In asynchronous pipelines which usually have non-uniform stage delays, the time between successive instruction issues is inuenced bythe slowest stage currently active in the pipe.Program Execution Time (PET) - The actual execution time of the program.A more detailed exposition of performance-related issues is presented in [1].To study the e�ectiveness of the micronets, it is su�cient to focus on the LD, ST, andALU instructions. Five simple test programs were devised to exercise the design. TheAlu, Load and Store test programs measure the maximum attainable utilisation of theirrespective FMs. Each of these programs contain a number of identical instructions, suchthat only structural dependencies exist between instructions (in e�ect setting up a staticpipeline or a �xed path through a network of components). The number of instructionsin the test programs are su�cient to �ll the pipeline, i.e. enough instructions exist for theControl Unit (CU) to achieve a steady issue rate. The Hennessy Test (HT1) consists ofa mix of the previously-mentioned instructions but without any data dependencies, which

exercises the spatial concurrency and out-of-order completion, both of which are providedby the micronet, for a particular schedule devised by the compiler. HT2 is a variant ofHT1, with data dependencies, which exercises the data forwarding mechanism as well.This program represents a \typical" basic block of compiled code (actually a line of codein C from [4]).To facilitate the simulation of instruction sequences within reasonable run-times andwithout sacri�cing accuracy, the timing characteristics of the architecture (in 1.5 �mCMOS) were extracted from a post-layout simulation tool within a commercial VLSI designpackage called SOLO 1400 [2] and incorporated into a mixed-level (mainly register-transferlevel) model. The processor was described in Occam2 and simulated on a parallel asynchron-ous event-driven simulation platform, on a transputer-based MEiKO Computing Surface.3 REFINEMENTSThe following sections discuss a number of re�nements which were made in three stagesto the base design as shown in Figure 1. This highlights the ease with which the mi-cronet model can e�ciently exploit ILP and without the di�culties normally encounteredin synchronous datapath design, such as implementing hazard avoidance, data-forwardingor balanced pipeline-stage design.The processor design as illustrated in Figure 1 only exploits the actual execution timingsof microoperations (Stage 1), whereas later designs exploit both this property and theavailable concurrency between the microoperations of di�erent instructions. The executionof each instruction requires a predetermined set of microoperations, each initiated by signalsfrom the CU. These are four-phased controls whose acknowledgement signals are used asstatus ags for mimicing a scoreboarding mechanism. In general, the microoperations foran instruction are initiated as soon as possible by asserting the necessary control signals.The receipt of an acknowledgement con�rms that the associated microoperation has begunand the initiating control signal is de-asserted. The instruction is said to be issued once allthe asserted control signals have been acknowledged, which then allows the next instructionissue to begin.3.1 Stage 1Figure 1 illustrates a na��ve implementation of the datapath of an asynchronous processor,which does not as yet fully exploit the full repertoire of micronets. The control signalsgenerated by the CU for Stage 1 are described in greater detail below:Rx, (Ry) - This signal identi�es the source register for the X (Y) Bus. The correspondingacknowledgement is asserted once the register has been accessed, and cleared oncethe data has been transferred to the operand fetch CM.Rz - Same as above. The ST microoperation obtains the third operand over the Z Bus.Rof - Same as above, but the value in the o�set register is output onto the X bus.

Write Back

Interface

Bank
Reg.

Store Inst

Load Inst

Interface

MU

Instruction
Execution

Write Back Handshake

X Bus

Y Bus

Interface

Offset

Reg.
Bank

Z Bus

Operand
Access

Operand Fetch Handshake

ALU Inst

Interface

ALU

Z Bus

Control Unit

ZMs AckRx, Ry & Rz Acks MUs AckRof Ack AUs Ack

Micronet Datapath for Stage 1 & Stage 2

Communicating Microagents (CMs).

Data flow between microagents.

Control Acknowledgement Signal.

Functional Microagents (FMs) - includes the
Reg. Bank and the functional units, ALU & MU.

Control Signals flow in the opposite direction.

Control
Signals
(fm CU)

Signals
(to CU)

Ack.
Control

Rx

Ry

AUs

ZMs

Rx

Ry

AUs

ZMs

MUs

MUs

Load Instruction Issued ALU Inst Issued

ALU Instruction Cycle Time
Load Instruction Cycle Time

Timing Diagram for Stage 1 Timing Diagram for Stage 2

Load Instruction Issued ALU Inst Issued

ALU Instruction Cycle Time

Initiate ALU Inst Issue

Load Instruction Cycle TimeFigure 1: The micronet model of Stages 1 & 2AUs - This signal identi�es the next operation of the ALU. The corresponding acknow-ledgement is asserted when the interface is ready to fetch the ALU's operands fromthe registers and is cleared when it initiates the write-back handshake.MUs - This signal identi�es a load instruction to the MU and is asserted and cleared inthe same manner as above. (Control signals for the other MU microoperations havebeen omitted for the sake of clarity).ZMs - This signal identi�es the destination register for data write-backs from the ALU orMU via the Z bus. The corresponding acknowledgement signal is asserted when theregister is ready to receive data and cleared once the data has been written back.In Stage 1, all the microoperations for a particular instruction are initiated together,and the next set cannot be initiated until the completion of the set of microoperations ofthe previous one. This e�ectively serialises the instruction execution, as illustrated in thetiming diagram in Figure 1. In successive re�nements the rôle of the CU is diminishedby distributing the control of the micronet to local interfaces and microoperations areindividually initiated as early as possible.

Instruction Inst. Cycle Time (ICT) Datapath Latency (MDL)ALU 24nS 24nSLD 43nS 43nSST 23nS 21nSTable 1: Instruction Execution on Stage 1In the base stage, the ICT is determined by the slowest control signal handshake sincethe next instruction issue cannot begin until all the previous handshakes have been com-pleted. The results in Table 1 show that the ICT is equal to the MDL (except for the STinstruction), which is not surprising as instructions execute sequentially but only take aslong as is necessary. The higher value for the ST instruction is due to a handshake delay,which in the LD instruction is hidden by the write-back stage. Although there is no explicitpipelining of the datapath, di�erent phases of the handshaking may occur at the same time,e.g. a CM may initiate a handshake with another CM while completing one with its FM.As was expected the execution times of the test programs (Table 5) are the sum of theirindividual instruction execution times together with startup overheads.3.2 Stage 2The strict condition which was employed in Stage 1 for initiating a set of microoperationsafter the completion of the previous set is now relaxed. Furthermore, the CU can now assertany of the individual microoperations for an instruction asynchronously, where previouslythe set of microoperations for an instruction were initiated in unison. This allows micro-operations relating to di�erent instructions to overlap (Stage 2 in Figure 1). Note thata control signal which is related to an instruction can only be de-asserted once all of therelevant control signals have been acknowledged. The e�ect of relaxing this constraint is tointroduce possible hazards and e�cient mechanisms have been devised to avoid them. For-tunately, these hazard avoidance mechanisms are implicit in the orderings of the assertionsof the control signals, known as the pre-issue conditions and these are discussed below:Read-after-Write (RAW) - A register locking mechanism is implemented in the registerbank without the CU having to keep track of the \locked" registers. The acknow-ledgement signal ZMs is asserted after the locking operation, and is de-asserted oncethe data is written back (signaling the unlocking of the register). By de�nition aninstruction is issued once all the acknowledgements of the relevant microoperationshave been received. This implies that the destination register of the previous instruc-tion will have been locked before the CU initiates any of the current instruction'smicrooperations.Write-after-Read (WAR) - This hazard is avoided without additional hardware over-heads. When a register is used as both source and destination within the sameinstruction, then it is necessary to ensure that the source data is obtained before theregister is locked, otherwise deadlock will occur. The CU stalls the assertion of ZMsuntil the source operand control signals Rx and Ry have been asserted.

Write-after-Write (WAW) - Although concurrent instruction execution can now takeplace, write-backs are still enforced in order. It is necessary to ensure that destinationregister has been locked, and that data is then written to its correct location. Theseconditions are met by simply preventing a functional unit (FU) from writing databack until the control signal from the CU has been de-asserted (an implicit go-writesignal). This is su�cient since the control signals cannot be de-asserted before ZMsis asserted (see Figure 1). Note that if the CU attempts to lock a register whichis already so, then the acknowledgement signal cannot be asserted and the currentrequest will stall. This mechanism guarantees that write-backs to the same registeroccur in the correct order without stalling the instruction issue, and thereby allowingthe instructions to execute concurrently with only the write-backs being sequential.The CDC6600 [11] used a similar go-write signal which sequentialised the executionof the o�ending instructions.Operand Fetch - Simultaneous operand requests by FUs to the same Register Bank CMmicrooperation can lead to one of them acquiring the wrong operand. This can beavoided by the CU by delaying the assertion of the control signal to a FU until theprevious FU has made its operand request(s) to the registers, i.e. until the acknow-ledgement signals of \operand fetch" microoperations have been de-asserted.Bus Contention - Due to the mechanism to avoid WAW hazards only the Register Bankand either the ALU or Memory Unit can write onto the Z Bus simultaneously. Thusbus access is arbitrated by the CU through mutually-exclusive assertions of Rz andZMs. Instruction Inst. Cycle Time (ICT) Datapath Latency (MDL)ALU 21nS 24nSLD 42nS 43nSST 23nS 21nSTable 2: Instruction Execution on Stage 2The improvements in the instruction cycle times, as shown in Table 2, are small. This canbe explained by the limited overlap between the operand access of the current instructionand the write-back of the previous one. In the design under consideration there can onlybe two program instructions active in the datapath simultaneously.3.3 Stage 3In Stage 3, the rôle of the CU is diminished further by distributing the control of the mi-cronet to individual CMs. The CMs have been enhanced to more than just controlling localcommunications between FMs. They e�ectively bu�er the initiations of the microoperationsfrom the CU until their respective FMs are ready to perform. Also, the write-back to theregister bank is no longer controlled by the CU, but directly by the CMs of the FMs whichrequire the service, i.e. the write-back microoperation is initiated by the microoperationsin the previous stage.

Write Back

Interface

Bank
Reg.

Store Inst

Load Inst

Write Back Handshake
Execution
Instruction

Interface

MU

Interface

ALU
Forwarding

Loop

Data

Z Bus

ALU Inst

Token Ring

Operand Fetch Handshake
Access
Operand

X Bus

Go-Write

Y Bus

W Bus
Interface

Offset

Reg.
Bank

Micronet Datapath
Control Unit

Rof Ack Rx, Ry, Rw
& ZMs Acks

MUs Ack AUs Ack

Control
Signals
(fm CU)

Control

(to CU)
Signals
Ack.

Rx

Ry

AUs

ZMs

Rx

Ry

AUs

ZMs

MUs

MUs

Inst Issued

Instruction Issued
Load Instruction Cycle Time

ALU ICT
Timing Diagram

Figure 2: The micronet model of Stage 3Enforcing write-backs in order restricts the degree of concurrency which can be exploited,especially when the FU executions times vary signi�cantly. However supporting out-of-order completion of instructions in an asynchronous environment is more di�cult thanunder synchronous control. Determining the precise order in which results will be availableis virtually impossible since microoperation delays vary.Out-of-order instruction completion is supported by tagging the write-back data with theaddress of the destination register. The CU cannot predict the write-back order, therefore adecentralised bus arbitration scheme as in a token ring is employed. The ring is distributedamongst the CMs and is very simple to implement in VLSI. However, the ring's cycle timewill increase with the number of FMs, and might be infeasible for larger numbers.With data transfer on the Z bus being tagged, CMs can identify and intercept operandsfor which it may be waiting. This mechanism is reminiscent of the IBM 360/91 common busarchitecture [12]. Data-forwarding has been implemented by exploiting the feedback loopsof the micronet. In the event of data forwarding, where data is routed directly to the CM ofa waiting FM, the CM's previous request for that operand is in e�ect cancelled by initiatinga separate handshake. This frees the corresponding \operand fetch" CM to service its nextrequest. An alternative approach would be to implement operand bypassing, where theoperand is fed back to the \operand fetch" microoperation. This avoids the need for dataforwarding CMs and the cancel handshake. The dual rôle of the Z bus can no longer besupported due to the data-forwarding mechanism. A separate operand fetch bus (W bus)is used, thereby making the Z bus purely a write-back one (see Figure 2).As a result of these modi�cations, the acknowledgements to the control signals and thepre-issue conditions have to be revised as shown below:Rx, (Ry, Rw) - The acknowledgement is asserted by the CM of the register bank whenthe X (Y, W) bus operand fetch microoperation is ready, and de-asserted once theoperand fetch handshake is in progress.Rof - Same as above. Note that both the control signals Rx and Rof cannot be active

simultaneously.AUs, MUs - The acknowledgement is now asserted when the corresponding CMs are readyto fetch the operands from the registers and is cleared once the FM microoperationhas completed.ZMs - The acknowledgement signal is asserted when the CM is ready and de-asserted oncethe operation has been completed (i.e. the register has been locked).RAW -The CU delays the assertion of the operand fetch control signals Rx, Ry and Rwuntil the previous ZMs control acknowledgement signal has been de-asserted, whichindicates the locking of the previous destination register.WAW - The mechanism is unchanged except that the go-write signal originates from theregister interface and not the CU (i.e. the mechanism has now been decentralised).Write-back Contention - This is prevented by the use of a token ring to arbitrate ac-cesses to the write-back (Z) bus. Of course, this problem could be obviated by usingdedicated buses for small number of FMs, but is impractical for designs with largernumbers.Further concurrency is achieved by applying these pre-issue conditions only when necessaryby explicitly checking register addresses for dependencies between successive instructions.Instruction Inst. Cycle Time (ICT) Datapath Latency (MDL)ALU 15nS 24nSLD 38nS 43nSST 23nS 21nSTable 3: Instruction Execution on Stage 3We observe an improvement in the cycle times of instructions which require to writedata back to the registers, such as the LD and ALU instructions, as shown in Table 3.This is due to the de-centralisation of the write-back control to the relevant CMs. Theseimprovements are reected in the shorter PETs for Load, Alu and HT1 test programs, asshown in Table 5. Columns \HT2" and \HT2(DF)" refer to the cases without and withdata-forwarding, respectively.3.4 Stage 4In this �nal stage, both the assertion and de-assertion of the control signals now occurindependently of each other. The states of the FU acknowledgements no longer representthe activity of their FMs, but rather that of their operand-fetch CMs. All of this furtherincreases the concurrency between microoperations which makes possible the exploitationof �ne-grained concurrency between instructions.The ICT value for the LD instruction in Table 4 is the best attainable as it representsthe MU delay for the operation. These �gures show that the micronet can exploit the

Rx

Ry

AUs

ZMs

Rx

Ry

AUs

ZMs

MUs

MUs

Inst Issued

ALU ICT

Load ICT

Inst Issued

Control
Signals
(fm CU)

Control

Signals
(to CU)

Ack.

Timing Diagram

Write Back

Interface

Bank
Reg.

Store Inst

Load Inst

Write Back Handshake
Execution
Instruction

Interface

MU

Interface

ALU
Forwarding

Loop

Data

Z Bus

ALU Inst

& ZMs Acks

Operand Fetch Handshake
Access
Operand

X Bus

Go-Write

Y Bus

W Bus
Interface

Offset

Reg.
Bank

Token Ring

Micronet Datapath
Control Unit

Rx, Ry, Rw
AUs AckRof Ack MUs Ack

Figure 3: The micronet model of Stage 4Instruction Inst. Cycle Time (ICT) Datapath Latency (MDPL)ALU 12nS 24nSLD 23nS 43nSST 12nS 21nSTable 4: Instruction Execution on Stage 4actual operational cost and e�ectively hide the overheads of self-timed design. The ICTsfor the ALU and ST instructions are limited by their operand fetch cycle times. The overallimprovements in the program execution times in Stage 4 over Stage 1 for the �rst three testprograms (shown in Table 5 and Figure 4) are due to improvements in temporal concurrencydue to the pipelining of the datapath. The actual speedup which is achieved is less thanthe maximum attainable improvement (the ratio of the ICTs in Tables 1 and 4), due tothe MDL and the startup overheads (for longer test programs the speed-up will approachthis maximum value). The speed-up for HT1 is due in part to pipelining of the instructionsas observed in the other test programs, but also due to additional spatial concurrencydue to the overlapping of di�erent instructions in the same stage of the micronet. Thisfurther improvement is still signi�cant (approximately 17% in this example) given thatboth successive instruction operand fetches and write-backs are e�ectively forced to takeplace sequentially due to resource constraints. (In fact, since these delays are larger thanPET Alu Test Load Test Store Test HT1 HT2 HT2(DF)Stage 1 175nS 308nS 164nS 143nS 143nS -Stage 2 157nS 302nS 165nS 119nS 119nS -Stage 3 121nS 280nS 165nS 83nS 97nS 91nSStage 4 103nS 188nS 98nS 79nS - 91nSE�ective Speed Up 1.75 1.66 1.71 1.89 - 1.62Table 5: Execution Times of the Test Programs

Stage 1 Stage 2 Stage 3 Stage 4

80

100

120

140

160

180

200

220

240

260

280

300

320
PET (nS)

Load Test

Store Test

HT2

ALU Test

Figure 4: Comparison of Execution Times of the Test Programsthe FM delays for the Store and ALU operations, the scope for spatial concurrency in thisparticular example is quite small). As the number of microagents in each stage is increased,the spatial concurrency e�ect will be more pronounced. The speed-up for HT2 as expectedreects the reduced concurrency which can be exploited, due to the data dependencies inthe program.In summary, the rôle of the CU in an asynchronous processor has been considerablysimpli�ed to just initiating individual microoperations as early as possible. The control ofthe datapath is distributed to local interfaces, courtesy of the micronet.4 CONCLUSIONSThis work has investigated the inuence of an asynchronous control paradigm on the designand performance of processor architectures. By viewing the datapath as a network ofmicroagents which communicate asynchronously, one can extract �ne-grain concurrencybetween and within instructions. The micronet can be easily implemented using simpleself-timed elements such as Muller C-elements [7] and conventional gates. Future work willinvestigate the suitability of asynchronous processors as targets for optimising compilers.

AcknowledgementsV. Rebello was supported by the U. K. Engineering and Physical Sciences Research Coun-cil (EPSRC) through a postgraduate studentship. This work was partially supported bya grant from EPSRC entitled Formal Infusion of Communication and Concurrency intoPrograms and Systems (Grant Number GR/G55457).References[1] D. K. Arvind and V. E. F. Rebello. On the performance evaluation of asynchronous pro-cessor architectures. In P. Dowd and E. Gelenbe, editors, Proceedings of the 3rd InternationalWorkshop on Modeling, Analysis and Simulation of Computer and Telecommunication Systems(MASCOTS'95), pages 100{105, Durham, NC, USA, January 1995. IEEE Computer SocietyPress.[2] European Silicon Structures Limited. Solo 1400 Reference Manual. ES2 Publications Unit,Bracknell, U.K., 1990.[3] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V. Woods. A micropipelined ARM.In T. Yanagawa and P. A. Ivey, editors, The Proceedings of the IFIP International Conferenceon Very Large Scale Integration (VLSI'93), pages 5.4.1{5.4.10, Grenoble, France, September1993.[4] J. Hennessy and T. Gross. Postpass code optimisation of pipeline constraints. ACM Transac-tions on Programming Languages and Systems, 5(3):422{448, July 1983.[5] N. P. Jouppi and D. W. Wall. Available instruction-level parallelism for superscalar and su-perpipelined machines. In The Proceedings of ASPLOS III, pages 272{282. ACM Press, April1989.[6] C. Mead and L. Conway. Introduction to VLSI Systems. Addison-Wesley, Reading, Mass.,1980.[7] R. E. Miller. Switching Theory. Volume II: Sequential Circuits and Machines. John Wiley andSons, 1965.[8] W. F. Richardson and E. L. Brunvand. The NSR processor prototype. Technical ReportUUCS-92-029, Department of Computer Science, University of Utah, USA., 1992.[9] R. F. Sproull, I. E. Sutherland, and C. E. Molnar. Counterow pipeline processor architecture.Technical Report SMLI TR-94-25, Sun Microsystems Laboratories Inc., April 1994.[10] I. E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720{738, June 1989.[11] J. E. Thornton. Design of a Computer: The Control Data 6600. Scott Foresman and Company,1970.[12] R. M. Tomasulo. An e�cient algorithm for exploiting multiple arithmetic units. IBM Journalof Research and Development, 11(1):25{33, January 1967.

Appendix D. Published Papers 211

D.2 On the Performance Evaluation of Asynchronous

Processor Architectures

Title: On the performance evaluation of asynchronous processor

architectures.

Authors: D. K. Arvind and V. E. F. Rebello.

Presented at: The 3rd International Workshop on Modeling, Analysis

and Simulation of Computer and Telecommunication

Systems (MASCOTS’95).

Place: Durham, NC, USA.

Date: 18th – 20th January 1995.

Publisher: IEEE Computer Society Press.

On the Performance Evaluation of Asynchronous ProcessorArchitecturesD. K. Arvind and V. E. F. RebelloDepartment of Computer Science, The University of EdinburghEdinburgh, EH9 3JZ, United KingdomE-mail: fdka,vefrg@dcs.ed.ac.ukAbstractThis paper evaluates and analyses the inuence ofan asynchronous control paradigm on the performanceof processor architectures. The idea of a micronet isintroduced which models the datapath as a network ofconcurrent functional units which communicate witheach other asynchronously. This allows the e�cientexploitation of �ne-grained instruction-level parallel-ism (ILP). A micronet-based asynchronous processor(MAP) architecture is described in Occam2 and sim-ulated in a parallel discrete event simulation environ-ment. Suitable metrics are introduced for measuringthe performance of the MAP datapath.1 IntroductionThere has been renewed interest in asynchronouscircuits especially in a restricted form known as self-timed circuits [14]. These circuits have a number ofadvantages [11], including their automatic synthesisfrom speci�cations [7]. While this has resulted inprovably-correct circuit designs, the performance ofthe resulting processor architectures have been largelyoverlooked [4, 12].A few processors have been proposed [6, 13] whichutilise asynchrony at the circuit level and exploitaverage-case behaviour for better performance. Anexamination of the inuence of asynchronous controlparadigm on the design of processor architectures hasrecently been reported [1]. A new model has been pro-posed called the micronet for modelling asynchronousdatapaths, which e�ciently exploits instruction-levelparallelism in programs.The designs in [6, 13] are based on a single mi-cropipeline datapath [15]. Viewing the datapath asa linear sequence of stages may not be very e�cientfor reasons elaborated in the following section. Thispaper evaluates the performance of an asynchronousdatapath based on the micronet model which treatsthe datapath as a network of communicating func-tional units called microagents.

2 Asynchronous Pipelines
5

WB

OF E

E

E

5

4

1

II

(b) An Asynchronous Pipeline - only exploiting temporal parallelism

LD

5 WB

STR

ALU

II1

3

II2

WB

II

4II OF4

3

E

1

3OF

2

OF

WB

ALU

2

5

ALU II

OF

3

2

E1

Idle Period

Active Period

E

ALU

OF

1

2

ALU

II

4

WB5

WB1

E2 WB2

E3 WB3

4E

E5

(a) A Synchronous Pipeline

LD

ALU

ALU

STR

ALU

II1

II

OF1

3

II2

OF

E1

1

OF2

OF

II3

1

OF

WB2

2

WB1

3

E2

OF3

II

4

E3

OF

WB3

II4

5

4OF

STR

5

4E

II5

II

5OF

ALU

LD

E5 WB5

E
OF

WB
- Instruction Execution
- Write-back

II

- Operand Fetch

- Instruction Decode
and Issue

(c) An Asynchronous Pipeline - exploiting spatial parallelism as wellFigure 1: Synchronous and Asynchronous PipelinesThe clock period of a synchronous pipeline is de-termined by the delay of the slowest stage which takesinto account worst-case timings for execution andpropagation. Furthermore, optimal performance for apipeline is achieved when all the stages are balanced.This is quite di�cult to achieve in practice, since thestages of a typical pipeline perform di�erent opera-tions, and often their delays are data-dependent. Fig-ure 1(a) illustrates the operation of such a datapathin which synchronisation overheads have been omittedfor the sake of brevity. This imbalance between stagedelays results in idle periods leading to poor utilisationof the physical resources. Of course, further pipelin-ing of the slower stages could reduce this at the cost ofincreased design complexity and synchronisation over-heads.In contrast, the performance of an asynchronouspipeline is determined by the actual delays of indi-vidual stages (usually the average delays), and over-Published in the Proceedings of the 3rd International Workshop on Modeling, Analysis and Simulation ofComputer and Telecommunication Systems (MASCOTS'95), pp 100-105, Durham, NC, USA, January 1995.c IEEE Computer Society Press.

heads due to self-timing protocols (which have beenomitted in Figure 1(b), but have been included in themodels). This pipeline only exploits temporal paral-lelism as before, but does so more e�ciently. We makesome further observations about the stages in a syn-chronous datapath. All the instructions may not re-quire the services of all the stages. Secondly, althougheach stage may consist of di�erent resources, only oneof them will be active at any time for a given instruc-tion. Figure 1(c) illustrates an asynchronous pipelinewhich exploits spatial parallelism within some of thestages. Successive instructions which utilise di�erentresources within a stage are now able to execute con-currently. In the simple example under considerationin Figure 1(c), the execute stage has two concurrently-operating resources. It is possible for the instructionsto share resources in any of the stages. For example,while an instruction is stalled waiting for an operandon one bus, another instruction could use the otherbuses to fetch its operands. The amount of spatialparallelism which can be exploited in practice is de-termined by the relative delays of the functional unitsin the datapath (see Section 4.2 for more details). Thenext section briey describes micronets which can beused to model asynchronous datapaths.3 MicronetsMicronets can be viewed as a generalisation of Suth-erland's micropipelines [15]. A micronet is describedas a network of elastic pipelines in which individualstages of the pipelines have concurrent operations,and stages of di�erent pipelines can communicatewitheach other asynchronously. The operations of a mi-cronet stage can be exposed as �ne-grained micro-agents. This should not be confused with furtherpipelining of each of the stages. In fact microagentswithin each stage operate concurrently and can com-municate asynchronously with microagents of any ofthe other stages. A microagent �res when the set ofinputs determined by the control signals are valid, andgenerates a set of outputs. Each program instructionspends time only in the relevant stages and for just aslong as is necessary. Furthermore, the di�erent micro-agents within a stage which belong to di�erent pro-gram instructions operate concurrently.Synchronous datapaths require either software orhardware interlock mechanisms to resolve data de-pendencies [8], and scoreboards to avoid structuralhazards. However, a micronet-based datapath usesexisting handshaking mechanisms and register lock-ing to attain the same e�ect. Out-of-order instructioncompletions can be easily achieved, thereby furtherexploiting ILP in the programs. In the following sec-tion the performance evaluation of a micronet-basedasynchronous processor is presented.

4 Performance Evaluation of MAPA MAP architecture can be viewed as an ensembleof heterogeneous functional units which operate con-currently and communicate with each other asyn-chronously. We wish to accurately measure the per-formance of programs on such an architecture, and toobserve the e�ects of architectural changes. For ourpurposes the architecture is modelled at the register-transfer level in the Occam2 language [9], with ac-curate timing delays of the functional units beingprovided by SPICE-level simulations of their VLSIimplementations. Occam2 is based on the processmodel view of computing in which a system can bedescribed as a collection of concurrent processes whichcommunicate with each other asynchronously throughchannels. The simulation platform is a transputer-based MEiKO Computing Surface [10]. The underly-ing timekeeping mechanism is based on a parallel asyn-chronous simulation algorithm [2], which e�cientlysimulates the class of architectures under investiga-tion.4.1 The MAP DatapathThe datapath can be described as a network of mi-croagents (denoted by solid boxes) which are connec-ted via ports as illustrated in Figures 2 and 3. TheFunctional Microagents (FMs) perform microopera-tions which are typical of a datapath. On each port ofa FM is a Communicating Microagent (CM) which isresponsible for communications among the FMs, andwith the Control Unit (CU). The FMs are e�ectivelyisolated and only communicate through their CMs,and can therefore be modi�ed without a�ecting therest of the micronet.The processor design as illustrated in Figure 2 onlyexploits the actual execution times of microoperations(MAP 1), whereas the design as shown in Figure 3 ex-ploits both this property and concurrency between themicrooperations of di�erent instructions (MAP 2). Inboth cases, each microoperation is initiated by four-phased control signals from the CU, whose acknow-ledgements are used as status ags for mimicing ascoreboard.4.1.1 Instruction Issue and Data TransferAll the microoperations for an instruction are initiatedin unison, with the next set waiting until the comple-tion of the previous one. The start of a microoperationis acknowledged which results in the de-assertion ofthe initiating control signal. The subsequent instruc-tion can only be issued once the previous set of controlsignals have all been acknowledged which e�ectivelyserialises the instruction execution. In MAP 2, theCU initiates the microoperations individually for the

Functional Microagents (FMs) - includes the
Reg. Bank and the functional units, ALU & MU.

Communicating Microagents (CMs).

Control Acknowledgement Signal.
(Control Signals flow in the opposite direction.)

Data flow between microagents.

Interface

Bank
Reg.

Write Back

Store Inst

Load Inst

Interface

MU

Execution
Instruction Write Back Handshake

ALU Inst

Interface

ALU

Z Bus

X Bus

Y Bus

Interface

Offset

Reg.
Bank

Z Bus

Operand
Access

Operand Fetch
Handshake

Control Unit

ZMs AckRx, Ry & Rz Acks MUs AckRof Ack AUs Ack

Figure 2: The micronet model of MAP 1
Interface

Bank
Reg.

Write Back

Store Inst

Load Inst

Interface

MU

Execution
Instruction Write Back Handshake

Interface

ALU
Forwarding

Loop

Data

Z Bus

ALU InstX Bus

Go-Write

Y Bus

W Bus
Interface

Offset

Reg.
Bank

Operand
Access Handshake

Operand Fetch

Control Unit

Rx, Ry, Rw
AUs AckRof Ack MUs Ack

& ZMs Acks

Token RingFigure 3: The micronet model of MAP 2current instruction as early as possible via the corres-ponding CMs. The receipt of the acknowledgementonly con�rms that the CMs will initiate the corres-ponding microoperation. This allows microoperationsrelating to di�erent instructions to overlap. Hazardavoidance is implicit in the orderings of the assertionsof the control signals [1]. The rôle of the CMs hasbeen enhanced to e�ectively bu�er the initiations ofthe microoperations from the CUs until the respectiveFMs are ready to perform. The writing back to theregister bank is no longer controlled by the CU, butdirectly by the CMs of the FMs which require the ser-vice. These features help to exploit more �ner-grainedconcurrency between instructions than previously pos-sible. In MAP 2, out-of-order instruction completion(due to di�erent execution delays in the FMs) anddata-forwarding are also supported [1].In the next section the e�ect of these features on

the performance of simple programs are investigatedby simulating the micronet model in a parallel dis-crete event simulation environment which was brieydescribed earlier.4.2 Performance ResultsThe performance evaluation of asynchronouspipelines is non-trivial since the stage delays arenon-uniform, and variable due to data dependencies.The interaction between successive instructions whichleads to spatial and temporal concurrency is di�cultto evaluate accurately through analytical methods.The two principal attributes which a�ect the perform-ance of programs in asynchronous pipelines are thelatency of the relevant microagents, which is de�nedas the time between initiating the microoperation andthe result being available, and their cycle time, whichis the minimum time between successive initiations ofthe same microoperation, i.e. throughput. (They arethe same in a synchronous pipeline, with the cycletime being determined by the slowest latency.) Thedi�erence between the two values can be viewed asthe overhead due to asynchronous protocols and agood design should endeavour to minimise it. Thisis achieved in micronets by overlapping the phases ofthe communication protocol in CMs with useful opera-tions in the FMs, thus hiding the overhead. The e�ect-iveness of this method can be determined by measur-ing the utilisation of FMs by exercising them with testprograms composed of appropriate, identical instruc-tions. A few metrics are now introduced for gaugingthe performance of micronet datapaths.Minimum Datapath Latency (MDL) - The timebetween asserting the control signals (i.e. initi-ating an instruction issue) and receiving the �nalacknowledgement of the instruction's completion.Instruction Cycle Time (ICT)- The time between two identical instruction is-sues once that instruction's pipeline is full. Inasynchronous pipelines which usually have non-uniform stage delays, the time between success-ive instruction issues is inuenced by the sloweststage currently active in the pipe.Program Execution Time (PET) - The actualexecution time of the program.ALU Utilisation - The percentage of the programexecution time for which the ALU performs usefulcomputation.MU Utilisation - Same as above, but for theMemory Unit (MU).Maximum FM Utilisation (MFU) - The upperbound on the FM utilisation is the ratio of theFM's microoperation latency and the ICT.

Inst MAP 1 MAP 2ICT MDL MFU ICT MDL MFUALU 24nS 24nS 16.7% 12nS 24nS 33.3%LD 43nS 43nS 53.5% 23nS 43nS 100%ST 23nS 21nS 42.9% 12nS 21nS 75%Table 1: Instruction ExecutionTest Pgs ATP LTP STP HT1 & 2PET 168nS 301nS 159nS 136nSALU Util 16.6% 0% 0% 8.4%MU Util 0% 53.3% 39.9% 22.4%Table 2: Execution of Test Programs on MAP 1The Alu, Load and Store test programs (ATP, LTP,STP) measure the maximum attainable utilisation oftheir respective FMs. Each contains repetitions ofeither ALU, LOAD or STORE instructions, such thatonly structural dependencies exist between instruc-tions (in e�ect setting up a static pipeline or a �xedpath through a network of components). The numberof instructions in the test programs are su�cient to �llthe pipeline, i.e. enough instructions exist to allow theCU to achieve a steady issue rate. The Hennessy Test(HT1) consists of a mix of the previously-mentionedinstructions without any data dependencies, which ex-ercises the spatial concurrency and out-of-order com-pletion, for a particular schedule devised by the com-piler. HT2 is a variant of HT1 with data dependen-cies, which exercises the data forwarding mechanismas well.The functional units were implemented in a 1.5 �mCMOS process. The timing characteristics were ex-tracted from a post-layout simulation tool within acommercial VLSI design package called SOLO 1400 [5]and incorporated into the Occam2 model.In MAP 1, the ICT value for each instructionis determined by the slowest microagent control sig-nal handshake required by that instruction, since thenext instruction issue cannot begin until all the previ-ous handshakes have been completed. The results inTable 1 show that the ICT is equal to the MDL (ex-cept for the ST instruction), which is not surprising asTest Pgs ATP LTP STP HT1 HT2PET 96nS 181nS 93nS 72nS 84nSSpd Up 1.75 1.66 1.71 1.89 1.62A Util 28.9% 0% 0% 16.4% 14.1%M Util 0% 88.5% 67.7% 43.8% 37.7%Table 3: Execution of Test Programs on MAP 2

instructions execute sequentially but only take as longas is necessary. The higher value for the ST instructionis due to a handshake delay, which in the case of theLD instruction is hidden by the write-back stage. Al-though there is no explicit pipelining of the datapath,di�erent phases of the handshaking may occur at thesame time, e.g. a CM may initiate a handshake withanother CM while completing one with its FM.Also in Table 1, the maximumFM utilisations rep-resents the proportion of the MDL taken by the FMto complete its operation. As expected, the execu-tion times of the test programs in Table 2 are thesum of their individual instruction execution times.We observe that the utilisations achieved for the FMs(in Table 2) are very close to their upper bounds (inTable 1) which shows that asynchronous control usinga micronet can be e�cient.The ICT �gure for the LD instruction in MAP 2 isthe best attainable as it represents the MU delay forthe operation. The corresponding utilisation �gurein Table 3 supports this claim (Note: these utilisa-tion measurements do not take into account both theinitial operand fetch and the �nal write-back delays,and will therefore never attain the theoretical upperbound). These �gures show that the micronet can ex-ploit the actual operational costs and e�ectively hidethe overheads of self-timed design. The ICTs for theALU and ST instructions are limited by their operandfetch cycle times, and the utilisation of the FM in thesecases also approach their bounds. This cycle time isdue to the communication protocol between the FUsand the register bank. These delays can be reducedby using a less conservative bundling delay [15] andthrough layout and transistor size optimisation [3].The improvements in the program execution times(PET) for MAP 2 (shown in Table 3) for the three in-struction test programs are due to improvements intemporal concurrency due to asynchronous pipelin-ing of the datapath. Although the actual speedupsachieved are less than the ratios of the ICTs for MAP 1and MAP 2 (shown in Table 1), they are the maximumattainable improvement. The speed-up for HT1 is inpart due to the pipelining of the instructions as ob-served previously in the other test programs, and alsodue to additional spatial concurrency through over-lapping of di�erent instructions in the same stage ofthe micronet. This further improvement is still sig-ni�cant (approximately 17% in this example) giventhat successive instruction operand fetches and write-backs are e�ectively forced to take place sequentiallydue to resource constraints. (In fact, since these delaysare larger than the FM delays for the Store and ALUoperations, the scope for spatial concurrency in thisparticular example is quite small.) As the numberof microagents in each stage is increased, the spatialconcurrency e�ect will be more pronounced, subjectto relative delays of the microagents. The speed-upfor HT2 as expected reects the reduced concurrency

which can be exploited, because of data dependenciesin the program.It has to be noted that the datapath latency isuna�ected by the exploitation of temporal parallel-ism which is generally not the case in a synchronouspipeline.The interaction between concurrently executing in-struction is quite di�cult to predict. For example,two instruction which compete for the same resourcesmight acquire them in di�erent order depending on theactual delays which are themselves data-dependent.This is not in itself a drawback, since one of the in-struction is stalled for just as long as is necessary,which would not be true in a synchronous case.5 ConclusionsThe behaviour of asynchronous processors are com-plex and their performance is di�cult to predict. Dis-crete event simulations as described in this work of-fer a method for accurately measuring their perform-ance. The model in Occam2 naturally captures theconcurrency and asynchronous communication. Thisalso allows the simulation to be parallelised to obtainreasonable run-times for large circuits and test pro-grams. This is aided by the asynchronous nature ofthe underlying simulation algorithm itself.To the best of our knowledge this is the �rst workwhich has investigated the inuence of an asynchron-ous control paradigm on the performance of processorarchitectures for exploiting �ne-grained ILP. The mi-cronet model allows the exploitation of both temporaland spatial concurrency which results in e�cient util-isation of resources within the datapath.AcknowledgementsV. Rebello was supported by a postgraduate stu-dentship from the U. K. Engineering and PhysicalSciences Research Council (EPSRC). This work waspartially supported by a grant from EPSRC en-titled Formal Infusion of Communication and Con-currency into Programs and Systems (Grant NumberGR/G55457).References[1] D. K. Arvind and V. E. F. Rebello. Instruction-levelparallelism in asynchronous processor architectures.In M. Moonen and F. Catthoor, editors, Proceedingsof the 3rd International Workshop on Algorithms andParallel VLSI Architectures, pages 203{215, Leuven,Belgium, August 1994. Elsevier Science Publishers.

[2] D. K. Arvind and C. R. Smart. Hierarchical paralleldiscrete event simulation in composite ELSA. In Pro-ceedings of the Sixth Workshop on Parallel and Dis-tributed Simulation (PADS'92), pages 147{156, Janu-ary 1992.[3] S. M. Burns. Performance Analysis and Optimisationof Asynchronous Circuits. PhD thesis, Computer Sci-ence Department, California Institute of Technology,Pasadena, California, USA, 1991.[4] I. David, R. Ginosar, and M. Yoeli. Self-timed ar-chitecture of a reduced instruction set computer. InS. Furber and M. Edwards, editors, The Proceedingsof the IFIP Working Conference on AsynchronousDesign Methodologies, Manchester, UK, March 1993.Elsevier Science Publishers.[5] European Silicon Structures Limited. Solo 1400 Ref-erence Manual. ES2 Publications Unit, Bracknell,U.K., 1990.[6] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, andJ. V.Woods. A micropipelined ARM. In T. Yanagawaand P. A. Ivey, editors, The Proceedings of the IFIPInternational Conference on Very Large Scale Integra-tion (VLSI'93), pages 5.4.1{5.4.10, Grenoble, France,September 1993.[7] S. Hauck. Asynchronous design methodologies: Anoverview. Technical Report TR 93-05-07, Departmentof Computer Science and Engineering, University ofWashington, Seattle, USA, 1993.[8] J. Hennessy and T. Gross. Postpass code optimisa-tion of pipeline constraints. ACM Transactions onProgramming Languages and Systems, 5(3):422{448,July 1983.[9] INMOS Limited. Occam2 Reference Manual. PrenticeHall International, 1988.[10] INMOS Limited. Transputer ReferenceManual. Pren-tice Hall International, 1988.[11] A. J. Martin. Programming in VLSI: From communic-ating processes to delay-insensitive circuits. TechnicalReport Caltech-CR-TR-89-1, Department of Com-puter Science, California Institute of Technology, Pas-adena, California, 1989.[12] A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovic,and P. J. Hazewindus. The design of an asynchron-ous microprocessor. In C. L. Seitz, editor, AdvancedResearch in VLSI: Proceedings of the Decennial Cal-tech Conference on VLSI, pages 351{373, Cambridge,Mass., 1989. MIT Press.[13] W. F. Richardson and E. L. Brunvand. The NSRprocessor prototype. Technical Report UUCS-92-029,Department of Computer Science, University of Utah,USA., 1992.[14] C. L. Seitz. System Timing. In C. Mead and L. Con-way, editors, Introduction to VLSI Systems, chapter 7,pages 218{262. Addison-Wesley, 1980.[15] I. E. Sutherland. Micropipelines. Communications ofthe ACM, 32(6):720{738, June 1989.

Appendix D. Published Papers 217

D.3 A Model for Decentralising Control in Asyn-

chronous Processor Architectures

Title: Micronets: A model for decentralising control in

asynchronous processor architectures.

Authors: D. K. Arvind, R. D. Mullins and V. E. F. Rebello.

Presented at: The 2nd Working Conference on Asynchronous Design

Methodologies.

Place: London, UK.

Date: 30th – 31st May 1995.

Publisher: IEEE Computer Society Press.

Micronets: A Model for Decentralising Control in AsynchronousProcessor ArchitecturesD. K. Arvind, R. D. Mullins and V. E. F. RebelloDepartment of Computer Science, The University of EdinburghEdinburgh, EH9 3JZ, United KingdomE-mail: dka@dcs.ed.ac.ukAbstractMicronets model processor architectures as a net-work of communicating resources, in contrast to thetraditional one of a linear pipeline. Micronets distrib-ute the control to the functional units, which enablesthe exploitation of �ne-grain concurrency between in-structions. The overhead due to asynchrony is hid-den with the four-phase protocol being used to imple-ment scoreboarding and hazard avoidance mechanisms,without incurring additional control costs. This pa-per demonstrates the feasibility of micronet-based pro-cessors. Results are presented for SPICE-level simula-tions of a 0.7�m CMOS implementation of a datapath.The relationships between micronets and both the com-piler and the computer architecture are also explored.1 IntroductionMicropipelines [22] have been used to model lin-ear asynchronous pipelines such as datapaths [6] [18],and two-dimensional pipeline structures [8]. However,viewing a datapath as a single linear pipeline has lim-itations [2]. A new paradigm called micronets has re-cently been proposed for the distribution of control inasynchronous processor architectures [1]. Micronetsmodel datapaths as a network of communicating func-tional units which allows the e�cient exploitation ofboth �ne-grained instruction-level parallelism and theactual execution costs of instructions.The choice of a four-phase communication pro-tocol [19] between the functional units allows the ef-�cient utilisation of these resources, by avoiding theadditional control costs (scoreboarding and hazardavoidance mechanisms) normally associated with pro-cessors which exploit ILP.The design of an e�ective micronet-based sys-tem should also consider the interplay between thecompiler and the processor architecture, i.e. does a

micronet-based processor o�er a good target for a par-allelising compiler. The inuence of this asynchronoustarget on compiler design is briey discussed.2 MicronetsMicronets are a generalisation of micropipelines.The operations within each of the micropipeline stagesare exposed in the form of �ne-grain microagents. Themicroagents in any \stage" can operate concurrently,and microagents in the di�erent \stages" communic-ate with each other asynchronously. Program instruc-tions only utilise the relevant microagents and for justas long as is necessary. More than one instruction mayutilise di�erent microagents within a \stage". Figure 1compares the resource utilisation in micropipelinedand micronet datapaths. In the former, the number ofactive instructions is never greater than the number ofpipeline stages, and at any time only a subset of theresources in each of the stages is normally utilised. Inmicronets the number of instructions which may beactive at any time is bounded by the number of mi-croagents. An instruction which does not require anyof the resources within a \stage" can skip it. Further-more, the time spent by instructions in microagentsmay vary. Due to these reasons instructions may over-take. Synchronous processors which permit this do soat a signi�cant control cost; the resulting scoreboard-ing mechanism is also used to resolve structural haz-ards (together with software or hardware interlocksto resolve data dependencies). All of this comes forfree in a micronet-based datapath: the existing hand-shaking mechanisms and register locking provide theseservices [1].In practice datapaths have to deal with conditionswhich interrupt the ow of instructions, such as con-dition branching and exception handling. The RISCarchitectures have popularised the \delayed branch-ing" approach to reducing the performance degrada-Published in the Proceedings of the 2nd Working Conference on Asynchronous Design Methodologies,pp 190-199, London, UK, May 1995. c IEEE Computer Society Press.

Control Unit

Control Unit

Pipeline Stage

Microoperation control signals

Direction of data flow A busy microoperation

I1

I2

I3

I3

I1

I1

I2

I3

I3

a) Typical resource utilisation in a pipeline

b) Snapshot of typical resource utilisation in a micronet

I4

I5Figure 1: Contrasting a micropipeline with a micronettion of condition branching [9] [16] [17]. However, thistechnique is unsuitable for asynchronous datapathsbecause of the di�culty in estimating the time toresolve the branch condition (which is �xed in syn-chronous architectures). Therefore, the number of in-structions which have to be fetched cannot be determ-ined. For micronet-based architectures, the preferredtechniques are ones which do not rely on �xed tim-ing for their correct operation, such as branch predic-tion schemes [12] [20] or advanced branching mechan-isms [15]. Precise exception handling and speculativeexecution are supported through the use of history andwrite-back bu�ers [21] [23].A micronet-based datapath, as illustrated in Fig-ure 2, is composed of a network of microagents (de-noted by solid boxes) which are connected via ports.The Functional Microagents (FMs) perform microop-

erations which are typical of a datapath. On eachport of a FM is a Communicating Microagent (CM)which is responsible for communications among theFMs, and with the Control Unit (CU). The FMs are ef-fectively isolated and only communicate through theirCMs, and can therefore be modi�ed without a�ectingthe rest of the micronet. The protocol used in thedesign of micronet-based datapath is discussed in thefollowing section.
Adder
MU/

Issue Unit 1 Issue Unit n

Instruction
Buffer

Boolean
Registers

Instruction
Memory

CM

Control Unit

Control Signal

Interface containing CMs

FM

Data
Memory

Shifter Z BusY Bus

X Bus

W Bus

Handshake
Operand Fetch

Handshake
Write Back

Interface

Reg.
Bank

Instruction
Execution

ALU Inst

ALU

Interface

ALU

Go-Write

Reg.
Bank

Interface

Access
Operand

Offset

Write Back

Fetch and
Branch U

V BusFigure 2: A micronet-based processor architecture2.1 Choice of protocolBoth transitions in a generic four-phase protocol(the assertion and the return-to-zero) are accompan-ied by additional acknowledgements from the receiver.The principal advantage of this approach is a sim-pler circuit implementation. However, it uses twiceas many transitions than is necessary and wheneverthe wire delay is a substantial fraction of the oper-ation time, the extra trip required by a single com-munication can be a serious performance penalty. In

fact, the reset phase of the handshake does not sig-nal any event, thus leading some designers to modifythe protocol to simultaneously reset the two signalsafter the active phase to reduce the handshake cycletime [5]. The micronet is only concerned with theexternal communications between microagents, whichmight use a di�erent protocol internally. Micronetsemploy the traditional four-phase handshaking pro-tocol for both control and local bundled data transfer.Other reasons, more speci�c to micronets, have inu-enced this choice, and these are discussed next.2.1.1 Fast instruction issueOne of the signi�cant features of micronets is its abil-ity to exploit spatial concurrency within the datapath.This requires a fast instruction issue rate to keep themicroagents busy. The CU initiates the microoper-ations for each of the instructions individually andas early as possible. The acknowledgements from theCMs (after a delay of one C-element) con�rm that thecorresponding microoperations will be initiated. Theinstruction is considered to have been issued once theCU has received all the acknowledgements. This cor-responds to the �rst half of the four-phase protocol.The CU is free to issue the next instruction, while thereset phase of the protocol completes. This is donewhen the corresponding acknowledgement signal is de-asserted which signi�es that the particular resource isready for the next request. The instruction releasesthe resources individually as soon as the respectivemicrooperations have completed, freeing the resourcesfor another instruction. Figure 3 shows the activity oftwo resources in micronets in comparison to a similarsynchronous pipeline and micropipeline.The microoperations of di�erent instructions mayoverlap leading to potential hazards. Since the ac-knowledgement signals denote the busyness of re-sources, they can be collectively used as a scoreboard.Hazard avoidance due to data dependences is implicitin the orderings of the assertions of the control sig-nals [1]. These pre-issue conditions stall the assertionof the respective control signal until the completionof one of the halves of the handshake protocol of thedependent microoperation control signal(s).Although a four-phase protocol would be con-sidered twice as expensive as a two-phase one, thesame e�ciency is obtained as two back-to-back, two-phase handshakes by representing two events in eachcycle. The recovery transitions are used by the controlunit for scoreboarding and hazard avoidance. This isnecessary for e�cient exploitation of ILP, since thecontrol unit has to issue each instruction before the

IDLE

INSTR 1

INSTR 2

INSTR 3

ISSUED
INSTR 1

ISSUED
INSTR 2

ISSUED
INSTR 3

a) Resource activity in a synchronous pipeline

b) Resource activity in a micropipeline

c) Resource activity in a micronet

FM 1

FM 1

FM 2

FM 1

FM 2

FM 2 Figure 3: Resource activityprevious one completes its execution. Furthermore, afour-phase protocol exposes more concurrency by ef-fectively decoupling the sender's and receiver's opera-tions from their communication [1].2.1.2 Routing data in micronetsAlthough the actual data transfer between microa-gents is controlled locally via handshake protocols, theaccess to shared resources, such as data highways, maybe controlled either globally by the CU or locally byan arbitration scheme. Global control is used in caseswhere the order of granting resources is known in ad-vance and has to be enforced. This is again achievedthrough the use of pre-issue conditions [1]. Otherwise,a local mutual exclusion scheme such as in token ringsor arbiters will grant requests. For example, the writ-ing back to the register bank is controlled directly bythe CMs of the FMs which require this service. As aconsequence of this and also due to the di�erences inthe execution times of microoperations, instructionsmay complete out of order. Therefore data has to betagged with its destination which also enables data-forwarding to be supported.The reader is referred to [1] for further informationon micronets, and to [2] for the performance evalu-ation of micronet-based datapaths.

3 Implementing a micronet-baseddatapathThe Control Unit (CU) is essentially an instruc-tion queue which is now reduced to simply issuing in-structions. The CU makes requests to the interfacesof the functional units, with the instruction's comple-tion being controlled by these interfaces, thereby leav-ing the issue unit free to rapidly initiate the next in-struction. The microoperations associated with theseinstructions operate concurrently, subject to depend-ence rules.The destination registers can be locked to ensurethat they are accessed in the correct order. In ad-dition, a number of pre-issue constraints or depend-ence rules are implemented in the control unit to pre-vent Write-after-Read (WAR) and Read-after-Write(RAW) pipeline hazards. The rules may be relaxedby checking for dependencies between speci�c registerswhich are required by the current instruction. A Go-write mechanism maintains the correct ordering ofwrite-backs to the same register, thus avoiding Write-after-Write (WAW) errors, without stalling the issueof instructions [1].Figure 4 illustrates the instruction issue logic. Onlya selection of microagents are required on each instruc-tion issue cycle. A dual-rail encoder is used to pro-duce both the requests for the necessary microagentsand a complemented signal to mask those which arenot required. Microagents which are not involved inthe current instruction issue will not block due to thismasking mechanism.The dependence rules, P0 to Pn, represent the spe-ci�c conditions that must be met before that microop-eration is issued. Each wait operation is implementedas a single asymmetric C-element, which ensures thatany subsequent clearing of the pre-issue constraintdoes not result in another issue request.The ALU and its interfaces are shown in Figure 5.The interface or control logic for the ALU can be de-composed into two main operations - execution, andwrite-back, which operate concurrently. Execution in-volves the fetching of operands, the go-write mechan-ism and the ALU operation itself, while the write-backallows the result to be written to the destination re-gister. On the issue of an ALU microoperation, exe-cution progresses as follows:� The acknowledge to the control unit is assertedto signal that the microoperation has begun.� The execute interface initiates the go-write andboth operand requests.
D

U
A

L
-R

A
IL

E
N

C
O

D
E

R
D

U
A

L
-R

A
IL

D
E

C
O

D
E

R

K*

n

n

0

R

R

A

A

P

P

CONDITIONS
PRE-ISSUE

Rn

R0

A0

An

C

C

C

INSTR.

DECODE

CURRENT

INSTRUCTION

i

A

K

IACK

I-QUEUE

REQ(in)

ACK(in) IREQ

n

n

Figure 4: Instruction issue logic� The operand interfaces make requests to the re-gister bank for their operands (operand registerdetails are provided directly by the control unit).A go-write request is also made by the go-writeinterface.� The ALU's operand fetch interfaces signal the re-ceipt of data to the ALU's execute interface, andcomplete their handshakes with the register inter-face.� Operands are dual-rail encoded to allow a com-pletion signal to be generated.� The ALU operation begins, the result is detectedand the execute interface attempts to issue a writeback operation to the ALU's Z-bus interface.� If the Z-bus interface is free then the result islatched and the ALU acknowledge to the controlunit is deasserted. The control unit may now is-sue the next ALU microoperation.� If a go-write permission has been received, thenthe write back occurs as soon as it obtains accessto the Z-bus.A closer inspection of the behaviour of the inter-faces shows that the overhead in using a four-phasehandshaking protocol is indeed hidden, as shown inthe example that follows for the operand interface.

To the REG

OPERAND

INTERFACES

GO-WRITE

To the REG

Y
 L

A
T

C
H

X
 L

A
T

C
H

INTEFACE

INTERFACE

E
N

C
O

D
E

R

D
E

C
O

D
E

R

E
N

C
O

D
E

R

A
 L

 U
L

A
T

C
H

ZBUS

INTERFACE

L
A

T
C

H

B
U

S
D

R
IV

E
R

L
A

T
C

H

To the REG

WRITE-BACK

INTERFACE

EXECUTE

X
OPERAND

FETCH

OPERAND
FETCH

CONTROL UNIT

XBUS

YBUS

XBUS

YYBUS

GO-WRITE

ZTAG

From the

CU

ZBUS

T RING

ZBUS

ZTAGFigure 5: Interfaced ALUPhase 1 - Request is made to the register bank foran operand. This phase is usually hidden sinceit takes place concurrently with the operand's re-gister access.Phase 2 - Acknowledge or data valid signal is re-ceived, the receipt of operands is now detectedby the control unit and the ALU operation maybegin.Phases 3 and 4 - Handshake completes concur-rently with the ALU operation, and these extraphases are e�ectively hidden.The destination register for each ALU operation isstored in two tag latches, as shown in Figure 5. Thetag and data are sent together to the register blockallowing the correct destination register to be selected.The functions of the register interfaces as shown inFigure 6 are listed below:Operand Interfaces - These interfaces communic-ate with the control unit, the register bank andthe operand fetch interfaces of other functionalunits, to control the supply of operands. An op-erand may only be sent to a functional unit whenthe following operations have been successfullycompleted:� A request has been made to the operand in-terface by the CU.

� The register's lock bit has been read as clear.� A request has been made by the functionalunit for the operand.Lock Interface - The behaviour of the lock interfaceis similar to that of the operand interfaces:� A request is made by the CU to lock the des-tination register, which is locked when ready.� The Go-Write permission is then granted tothe requesting functional unit.Write-Back Interface - This interface accepts dataand register tags from the Z-bus and writes thedata back to the appropriate register. The cor-responding lock bit is then cleared.Accesses to both the data registers and the lock bitsis controlled by using a �xed delay. As the register ac-cess time is almost constant, there are few advantagesto be gained by implementing a \data valid" signal.
the CU)

(From

W OPERAND

INTERFACE

X OPERAND

INTERFACE

Y OPERAND

INTERFACE

FU CU FU

XW
FU

Y
CU

WRITE-BACK

INTERFACE

CU

LOCK

INTERFACE

REGISTER BLOCK

WREG

YREG

XREG

LOCK

BITS

DECODER

DECODER

REGISTERS

DECODER

DECODER

DECODER
ZBUS

ZREG

GO_WRITE

ZTAG

ZBUS

LOCK REG

WBUS

XBUS

YBUS

(From

the CU)

Figure 6: Interfaced Register BankSince the write-back bus is shared by a number offunctional units, some form of arbitration mechanismmust be used to avoid contention, like a token ring.Although easy to implement, its performance woulddegrade with an increase in resources sharing the bus.

4 Simulation ResultsA prototype datapath was implemented in ES2's0.7�m CMOS process using the Cadence design tools.They were used to create a library of self-timed com-ponents and datapath elements. The Cadence DesignFramework provided interfaces to both VHDL andHSPICE. A VHDL model of the datapath was cre-ated from a high-level speci�cation and synthesised.The HSPICE simulations of the entire datapath tookapproximately 17 hours on a SUN Sparc-10.Figure 7 shows the execution of an ALU instruc-tion with traces of the relevant control signals beingnumbered.
Figure 7: ALU InstructionPanel 1 - An asserted request signal (73) from thecontrol unit to the ALU initiates an add opera-tion. The acknowledge signal (54) represents theperiod of ALU activity.Panel 2 - The operand request signal (155) is sentby the control unit to initiate a register accessmicrooperation. The acknowledge signal (93) isasserted by the register operand interface to pre-vent further operand requests until a functionalunit has claimed the current operands. Only thesignals for one of the operands is shown.Panel 3 - A request to lock the destination register(118) and the register bank acknowledge sig-nal (127) are shown. The acknowledge signal islowered after the register has been locked and ago-write request has been received from a func-tional unit.

Panel 4 - Shows an ALU operand request (165) tothe register bank, together with the correspond-ing data valid signal (148) from the register bank.Panel 5 - After the add operation has completed, arequest (151) is made to write the result to thedestination register. The receipt of data at theregister bank is signaled by the assertion of theacknowledge ag (67).Panel 6 - Shows the instruction decode start signal(880). The duration of this signal indicates theinstruction issue time. Also shown is the registerwrite signal (3847), where data is written backon the �nal edge of this signal. The completeinstruction execution time is represented by thedelay between the �rst and last edges as shownin this panel. (Note that both signals are activelow.)The following subsections describe a number ofmeasurements which inuence the performance ofmicronet-based datapaths.4.1 Handshaking
Figure 8: The handshake cycleThe handshake cycle is implemented by two back-to-back C-elements. This forms the basis for distrib-uted control in micronets (a circuit commonly used forcommunication between microagents) and therefore acrucial factor which inuences performance within themicronet. Ignoring the computation within a micro-agent, the throughput would then be limited by thecontrol handshake cycle. Figure 8 shows a cycle time

of 0.8nS, corresponding to a maximum throughputrate of 1.25GHz. This suggests that micronet controlcircuitry is unlikely to limit throughput in processingpipelines.4.2 Maximum instruction issue rate
Figure 9: Maximum instruction issue rateFigure 9 represents an instruction issue time of1.85nS. The maximum instruction issue rate is de-termined by the earliest possible reassertion of theissue signal. Given su�cient instruction fetch band-width, the minimumcycle time for this signal is 2.05nSwhich equates to a maximum instruction issue rate of488Mhz. This represents a theoretical upper limit onprocessor performance while ignoring datapath delays.4.3 ALU throughputFigure 10 shows the signal from the control unit(73) being asserted to initiate an ALU operation. Theperiod when both the ALU and its interface are busyis represented by the duration of signal 54 (4.31nS).During this period the ALU interface requests bothoperands, initiates the operation, detects the result,obtains write-back (go-write) permission and writesthe result to the Z-bus. The actual instruction exe-cution time of the ALU is determined by the periodbetween the operands arriving and the ALU's acknow-ledge being deasserted (3.11nS). This is the delay re-quired to add without any carry propagation and thusrepresents the minimum time through the functionalunit. The minimumALU instruction cycle time is de-termined by the earliest possible reassertion of signal

Figure 10: ALU Activity73. This cycle time was estimated at 4.51nS, imply-ing a peak processor performance of 222 MIPS for addinstructions.Only the FM latency should be considered as timespent in useful work, with the other delays being over-heads of control paradigm and the architecture. Inthis implementation, the micronet overhead for thisoperation is 1.4nS (the di�erence between the opera-tion's cycle time and its latency). This overhead canbe e�ectively removed by modifying the ALU interfaceto deassert the microoperation acknowledge signal tothe CU once the operands have been fetched [2].4.4 Operand fetchThe operand fetch delay, as shown in Figure 11,was calculated as the period between the assertion ofthe operand request signal (155) and the assertionof the data valid signal (148) from the register bank(1.45nS). The actual time to access one of the registersis determined by the duration between the assertionof the operand request acknowledge (93) and the datavalid signal (1.24nS).4.5 Write-backFigure 12 shows that the time, between the resultbecoming available at the output of the ALU and be-ing written back in the destination register, is 2.48nS.The actual time taken to write data to a register is0.5nS (duration of signal 3847). The slow rising andfalling edges of the write-back request (151) signal,limits the write-back rate to 474MHz.

Figure 11: Operand FetchNote that no circuit optimisation of transistor sizeshave yet been made to either improve performance orsharpen edges. Micronet datapaths can be synthesisedfrom high-level speci�cations using a custom-built lib-rary of four-phased self-timed components and inter-connection cells.5 DiscussionThe emergence of VLSI technology, together withthe maturing of optimising compiler techniques,had aided the development of early RISC architec-tures [9] [11] [16]. Their primary concern was the e�-cient usage of expensive silicon real estate, and carefulconsideration was given to the design of the instruc-tion set architecture [13]. There have been two or-thogonal trends in the evolution of synchronous pro-cessor architectures [10]: the deeply-pipelined archi-tectures [14], i.e. ones which exploit temporal par-allelism, and superscalar architectures which exploitspatial parallelism [3] ([4] is an example which ex-ploits both). Both these classes have bene�ted fromimprovements in technology and the resulting fasterclock frequencies. But these improvements have beensustained at a high price in terms of clock distribu-tion, power consumption, and design complexity [4].Furthermore, signi�cant additional control costs areincurred in exploiting ILP in both cases.Micronets o�er an alternative model for the designof future processor architectures. Whereas the originalRISC ideal was the e�cient usage of the silicon space

Figure 12: Register Write Backby identifying the critical resources, we are essentiallyconcerned with their e�cient utilisation over time. Weachieve this in two ways: by removing the clock, anddistributing control to the resources; and viewing thedatapath not as a linear pipeline, but as a network ofcommunicating resources. We are able to e�ciently(the overheads due to asynchrony are hidden [1]) ex-ploit a �ne-grain ILP without the additional controlcosts (the protocol also implements a scoreboardingand hazard avoidance mechanisms).The asynchronous and distributed nature of thecontrol in micronets allows the processor to be easilyextended with little e�ect on the rest of the design. Fora given class of problems, the designer is able to easilyexplore the architectural design space more accuratelyby adding critical resources. This can be naturallyextended to superscalar architectures by increasingthe number of issue units. (Synchronous superscalararchitectures replicate entire datapaths.) The samescoreboarding mechanism is shared between the issueunits for determining the global state of the datapath.A micronet-based superscalar architecture has beendesigned and its performance is currently being eval-uated.5.1 The Micronet and the compilerThe micronetmodel exposes structural concurrencyin the datapath, with �ne-grained resources now beingvisible to the compiler. It is the task of the compilerto schedule instructions such that these resources aree�ciently utilised. The instruction schedule is devised

based on a model of the architecture; for synchronousarchitectures the model is simple: instructions do notinteract and their execution times are �xed. In con-trast, an asynchronous model is necessarily less ac-curate for the following reason: execution times forthe same instruction may vary due to environmentalparameters, data-dependent operations, and interac-tions between di�erent instructions which are simul-taneously executing in the micronet. We have con-sidered models based on worst-case instruction execu-tion times where the resulting schedule is treated asa �rst pass one. The instructions are dynamically re-ordered at run-time to tune this schedule and due tothe asynchronous behaviour these instructions are is-sued as soon as possible, without the need for delaysusing NO-OP instructions.A micronet-based datapath has several communic-ating \pipelines" which can all potentially be busysimultaneously. The control unit aims to issue thoseinstructions successively which minimise resource con-tention. It will only stall if no instructions are avail-able for issue, or all the instruction's resources arebusy. The micronet's asynchronous behaviour minim-ises the duration of this stall. In the case of instruc-tions with data or structural hazards, both instruc-tions are issued without stalling, with the second in-struction executing until the busy microagent. These�ne-grain hazard avoidances are enforced at run-timeby the pre-issue conditions of the micronet.Other reasons contribute towards the complexityof compiler-time scheduling on micronets. An initialstate of activity is assumed for scheduling a basic blockwithin the micronet, which might well be di�erent atrun-time. The actual state can indeed be determ-ined at run-time thanks to the implicit scoreboardingmechanism in the CU. This information is used to dy-namically alter the static schedule by identifying aninstruction which can be executed immediately (eas-ily achieved using the control acknowledgement sig-nal), after checking for independence from the previ-ous instructions in the bu�er, which is determined atcompile-time and marked by a concurrency bit. Theinstruction issue is only limited by the availability ofresources and operands, in the presence of out-of-orderinstruction issue. Micronets can therefore be viewedas a hybrid dataow style of architecture which is lim-ited to the window of instructions available in the in-struction bu�er, without the bookkeeping costs of tra-ditional dataow architectures [7].

6 ConclusionsWe have presented a new model, called micronets,for decentralising controls in asynchronous processorarchitectures. They are viewed as a network of com-municating functional units, which expose �ne-grainconcurrency between instructions. We have demon-strated that four-phase handshaking protocols enablethe implementation of highly concurrent structuresand in most cases the overheads can be hidden. Justas importantly, these protocols are used to e�cientlyavoid datapath hazards.The modular nature of micronets eases modi�ca-tion and empowers the computer architect with �nercontrol in the design, for example, of superscalar ar-chitectures. Some of the issues relating to micronets astargets for parallelising compilers have been discussed.The control interfaces for the micronet-baseddatapaths are speci�ed using a library of interconnec-tion cells, and automatically synthesised in terms ofsimple C-elements. Results from SPICE simulationsfor an add ALU operation have been presented whichdemonstrates the feasibility of distributing controls.In conclusion, the micronet model considers theinteractions between the underlying implementationtechnology, the architecture and the compiler, and un-derlines our integrated approach to system design.AcknowledgementsV. Rebello and R. Mullins were supported by post-graduate studentships from the U. K. Engineering andPhysical Sciences Research Council (EPSRC). Thiswork was partially supported by a grant from EPSRCentitled Formal Infusion of Communication and Con-currency into Programs and Systems (Grant NumberGR/G55457).References[1] D. K. Arvind and V. E. F. Rebello. Instruction-level parallelism in asynchronous processor archi-tectures. In M. Moonen and F. Catthoor, edit-ors, Proceedings of the 3rd International Work-shop on Algorithms and Parallel VLSI Architec-tures, pages 203{215, Leuven, Belgium, August1994. Elsevier Science Publishers.[2] D. K. Arvind and V. E. F. Rebello. On the per-formance evaluation of asynchronous processorarchitectures. In P. Dowd and E. Gelenbe,editors, Proceedings of the 3rd International

Workshop on Modeling, Analysis and Simula-tion of Computer and Telecommunication Sys-tems (MASCOTS'95), pages 100{105, Durham,NC, USA, January 1995. IEEE Computer Soci-ety Press.[3] K. Diefendor� and M. Allen. Organisation ofthe Motorola 88110 superscalar RISC micropro-cessor. IEEE Micro, 12(2):40{63, April 1992.[4] D. W. Dobberpuhl et al. A 200-MHz 64-bitdual issue CMOS processor. IEEE Journal ofSolid-State Circuits, 27(11):1555{1567, Novem-ber 1992.[5] S. B. Furber. Lessons from AMULET1: To-wards AMULET2. In Computing Without Clocks:Asynchronous Microprocessor Design. The SunAnnual Lecture in Computer Science at the Uni-versity of Manchester, September 1994.[6] S. B. Furber, P. Day, J. D. Garside, N. C. Paver,and J. V. Woods. A micropipelined ARM. InT. Yanagawa and P. A. Ivey, editors, The Pro-ceedings of the IFIP International Conference onVery Large Scale Integration (VLSI'93), pages5.4.1{5.4.10, Grenoble, France, September 1993.[7] J.-L. Gaudiot and L. Bic. Advanced Topics inDataow Computing. Prentice-Hall, EnglewoodCli�s, NJ, USA, 1991.[8] G. Gopalakrishnan. Some unusual micropipelinecircuits. Technical Report UUCS-93-015, Depart-ment of Computer Science, University of Utah,Salt Lake City, UT, USA, December 1993.[9] J. Hennessy, N. Jouppi, F. Baskett, and J. Gill.MIPS: A VLSI processor architecture. In TheProceedings of the CMU Conference on VLSI Sys-tems and Computations, Rockville, Md. USA.,October 1981. Computer Science Press.[10] N. P. Jouppi and D. W. Wall. Availableinstruction-level parallelism for superscalar andsuperpipelined machines. In The Proceedings ofASPLOS III, pages 272{282. ACM Press, April1989.[11] M. G. Katevenis, R. W. Sherbourne, D. A. Pat-terson, and C. H. S�equin. The RISC II micro-architecture. In F. Anceau and E. J. Aas, edit-ors, The Proceedings of VLSI'83: VLSI Design ofDigital Systems, pages 349{359. North-Holland,1983.

[12] J. K. F. Lee and A. J. Smith. Branch predictionstrategies and branch target bu�er design. IEEEComputer, 17(1):6{22, January 1984.[13] �A. Lunde. Empirical evaluation of some featuresof instruction set processor architectures. Com-munications of the ACM, 20(3):143{153, March1977.[14] S. Mirapuri, M. Woodacre, and N. Vasseghi. TheMIPS R4000 processor. IEEE Micro, pages 10{22, April 1992.[15] Y.-J. Oyang, C.-H. Wen, Y.-F. Chen, and S.-M.Lin. The e�ects of employing advanced branch-ing mechanisms in superscalar architectures.ACM Computer Architecture News, 18(4):35{51,December 1990.[16] D. A. Patterson and C. H. S�equin. RISC I: Areduced instruction set VLSI computer. In TheProceedings of the 8th International Symposiumon Computer Architecture, pages 443{457, May1981.[17] G. Radin. The 801 minicomputer. In The Pro-ceedings of the Symposium on Architectural Sup-port for Programming Languages and OperatingSystems, pages 39{47, March 1982.[18] W. F. Richardson and E. L. Brunvand. The NSRprocessor prototype. Technical Report UUCS-92-029, Department of Computer Science, Universityof Utah, USA., 1992.[19] C. L. Seitz. System Timing. In C. Mead andL. Conway, editors, Introduction to VLSI Sys-tems, chapter 7, pages 218{262. Addison-Wesley,1980.[20] J. E. Smith. A study of branch predictionstrategies. In The Proceedings of the 8th Inter-national Symposium on Computer Architecture,pages 135{148, May 1981.[21] J. E. Smith and A. R. Pleszkun. Implementingprecise interrupts in pipelined processors. IEEETransactions on Computers, 37(5):562{573, May1988.[22] I. E. Sutherland. Micropipelines. Communica-tions of the ACM, 32(6):720{738, June 1989.[23] N. Ullah and M. Holle. The MC88110 implement-ation of precise exceptions in a superscalar ar-chitecture. ACM Computer Architecture News,21(1):15{25, March 1993.

Appendix D. Published Papers 228

D.4 Static Scheduling of Instructions on Micronet-

based Asynchronous Processors

Title: Static scheduling of instructions on micronet-based

asynchronous processors.

Authors: D. K. Arvind and V. E. F. Rebello.

Presented at: The 2nd International Symposium on Advanced Research on

Asynchronous Circuits and Systems (ASYNC’96).

Place: Aizu Wakamatsu City, Japan.

Date: 18th – 21st March 1996.

Publisher: IEEE Computer Society Press.

Static Scheduling of Instructions onMicronet-based Asynchronous ProcessorsD. K. Arvind and V. E. F. RebelloDepartment of Computer Science, The University of EdinburghEdinburgh, EH9 3JZ, United KingdomE-mail: fdka, vefrg@dcs.ed.ac.ukAbstractThis paper investigates issues which impinge on thedesign of static instruction schedulers for micronet-based asynchronous processor (MAP) architectures.The micronet model exposes both temporal and spa-tial concurrency within a processor. A list schedul-ing algorithm is described which has been optimisedwith MAP-speci�c heuristics. Their performance onsome program graphs are presented and conclusionsare drawn on the suitability of MAP as targets for ILPcompilers.Keywords: Asynchronous Processor Architecture,Instruction-level Parallelism (ILP), Micronets, Staticscheduling.1 IntroductionA number of novel asynchronous processor architec-tures have been proposed recently [6, 9, 10, 12, 21, 23,24, 27], but scant attention has been paid to any un-derstanding of the interactions between the processorand compiler designs. Instead, existing synchronousRISC compiler technology has been reused (largelyunmodi�ed), while exploiting any improvements inthe performance of the hardware which asynchronyprovides.One of the outcomes of the RISC design approachhad been a deeper understanding of the interactionsbetween the processor design and the implementa-tion and compiler technologies, respectively. The pro-cessors were streamlined for e�cient implementationin the emerging VLSI technology, and the system com-plexity was migrated upwards to their compilers. Forinstance, MIPS did away with hardware interlocks andrelied instead on the compiler to reorder instructionsand introduce null ones where appropriate [15]. The

optimisers for synchronous pipelines have assumed adeterministic model of the target, with each stagedelay being approximated to being the same, havingbeen �xed a priori by the clock. They produce, both,an order of execution for the instructions, and thetimes - in terms of multiples of the basic RISC instruc-tion cycle, when they are to execute. In contrast, a lin-ear, asynchronous pipeline, e.g. micropipeline [28], hasstages whose delays can vary, thanks to data depend-encies. Now, the compiler has a less accurate timingmodel of the target, and any optimisations based ona synchronous model, such as scheduling instructionsin execution gaps, are less e�ective.A micronet is a network of pipelines, with (selec-ted) stages of di�erent pipelines being able to commu-nicate with each other. This enables the exploitationof both spatial and temporal concurrency between in-structions [2] (in contrast, a micropipeline only ex-ploits temporal parallelism [4]). It is more di�cult fora compiler to predict the behaviour of the micronetfor the following reasons: �rstly, as in a micropipelinethe delay of each pipeline stage might vary; secondlyand more uniquely, each instruction only visits the rel-evant stages and the multiple paths enable more thanone instruction to operate concurrently within a stage,which enables instructions to race each other, withpossible out-of-order completion of instructions. Fur-thermore, instructions may interfere with each otherwhen competing for the same resource in a particularstage.The e�ective performance which a MAP system candeliver depends intimately on the compiler's abilityto match the parallelism in programs with the tem-poral and spatial concurrency exposed by the MAParchitecture. This paper is a preliminary attempt tounderstand the interface between the back-end of aparallelising compiler and MAP architectures. In therest of this paper, Section 2 briey describes MAParchitectures; Section 3 introduces the MAP schedul-Published in the Proceedings of the 2nd International Symposium on Advanced Research on AsynchronousCircuits and Systems (ASYNC'96), pp 80-91, Aizu Wakamatsu City, Japan, March 1996.c IEEE Computer Society Press.

ing problem, and presents MAP-speci�c optimisationsto a list scheduling algorithm; Section 4 evaluates thequality of the resulting schedules; Section 5 discussesthe choice of instruction costs and the e�ect of instruc-tion interference on the scheduler; and �nally, Section6 provides concluding remarks and scope for futurework.2 A brief introduction to MAP archi-tectures
Memory

FM_n

Data

FM_1

Issue Unit 1 Issue Unit n

FM_2

Offset
Reg.

Reg.
Bank

Reg.
Bank

W Bus

X Bus

Y Bus V Bus

Z Bus

FM

Control SignalCM
Example
MicropathsData BusFigure 1: A micronet model of a MAP architectureA micronet is an ensemble of micropaths, where amicropath is a pipeline or sequence of microagents,and in turn, a microagent performs either a com-municating or a functional micro-operation. A func-tional microagent (FM) communicates with other FMsthrough their respective communicating microagents(CM). Even with a single issue unit, where the issuerate is faster than the slowest instruction executionrate, the microagents can all operate concurrently inspace, in addition to the temporal concurrency associ-ated with pipelines. Another feature of the micronet isthat the micro-operations for an instruction are initi-ated independently by the issue unit, as soon as their

particular microagents become available, and deleg-ates all control to them, thus freeing the issue unit forthe next instruction. Therefore, the idle time betweeninstructions is kept to a minimum [2]. The executinginstructions also release their microagents individu-ally, as soon as the respective micro-operations havecompleted, thus freeing the resources immediately foranother instruction. Finally, through a novel applica-tion of the communication protocol, datapath hazardsare resolved e�ciently while hiding the overheads ofasynchrony [3].A micronet can be stalled due to contention for re-sources. In particular, the issue unit will be stalledwhen the resources required by the current instructionare all busy. The scheduler attempts to minimise thisby suitably ordering the instructions at compile-time.If it is impossible to schedule successive unrelated in-structions, then the micronet minimises the stall atrun-time. In the case of data-dependent instructions:both instructions are issued, with the second instruc-tion awaiting the result to be forwarded. In the case ofresource contention: the second instruction performsall the micro-operations up to the microagent which isbusy. In e�ect, only the o�ending micro-operation isstalled, rather than the entire instruction. A detailedexplanation of hazard avoidance is given in [3], withimplications for the scheduler being detailed below:Read-after-Write - Although the dependent in-struction will be issued, its execution will bedelayed until the completion of its predecessor.In practice, it is preferable not to issue suchan instruction, since the resources earmarked forthe dependent instruction are unavailable for useby other, now \ready-to-execute", instructions,which might introduce further structural hazardsin the bargain.Write-after-Write - The write-back order has tobe maintained and this is achieved in hardwareby the micronet. The two instructions are per-mitted to execute concurrently. Although all ofthe second instruction's microoperations will havebeen initiated, the write-back microoperation willstall for as long as the �rst instruction holds onto the destination register. The current MAP ar-chitecture supports only one outstanding registerlock request, therefore a subsequent third instruc-tion which requires a locked register cannot beissued, until the �rst write-back has been com-pleted. The scheduler should avoid arranging in-structions which write to the register �le immedi-ately after two instructions with write-after-writedependencies.

Write-after-Read - In the case of an architecturewith a single set of operand fetch buses, the hard-ware ensures that a dependent instruction will beunable to lock its destination register before itspredecessor has fetched its operand. Should therebe a number of operand fetch buses (as in a su-perscalar MAP), and the possibility of a depend-ent instruction obtaining its operands before itspredecessor, then this instruction may have to bestalled. This would only be necessary when thetime to execute the dependent instruction is lessthan the operand fetch time for the predecessor.This hazard is also known as an anti-dependency,and along with write-after-write hazards can beavoided by register renaming.Hazard resolution is a good example of the interac-tion between the compiler and the architecture. Sincethere is no concept of time in the schedule, it is im-possible to avoid all hazards at compile time (c.f. theMIPS organiser). The scheduler can only hope to pro-duce an ordering of instructions which reduces thenumber of hazards, and relies on the MAP architec-ture to minimise their e�ects by e�ciently resolvingthem in hardware.The computationalmodel for synchronous RISC ar-chitectures is simple, in the sense that the executiontimes of instructions are considered �xed and instruc-tions do not contend for resources. Neither of thesehold for MAP architectures. The MAP model de-scribes the architecture as a collection of microagents,where each one has an micro-operation latency whichdetermines when the result of that micro-operationbecomes available; and a micro-operation cycle time,which signi�es the rate at which the micro-operationscan be executed.3 The MAP SchedulerThe MAP scheduling problem can be stated asfollows: Given a set of heterogeneous resources withvariable execution times, devise a minimal-length,non-preemptive schedule which respects dependencieswithin programs. Each program being described as anarbitrary partial ordering of instructions.The precedence- and resource-constrained instruc-tion scheduling problem has been studied well, andit is known that even by imposing restrictions, theproblem is still NP-hard [7] [17] [29]. For example,when the execution times of tasks are not uniformand their partial order is arbitrary, then for two ormore identical processing units, the problem of de-

termining a minimal-length, non-preemptive scheduleis NP-complete [13]. This result is true even if allof the tasks are independent. Therefore, in order toachieve near-optimal execution times for given applic-ations on MAP architectures, an e�cient (polynomial-time) scheduling algorithm based on one or a numberof heuristics must be devised.3.1 The MAP Scheduling ProblemList scheduling (LS) is a general method forscheduling tasks in resource- constrained problems [7].LS builds a ready set that contains all of the taskswhich are not waiting on the results of other tasks.When a processor becomes available, a task with thehighest priority is chosen from the set and assigned toit. The ready set is obtained from a topological sort ofthe data dependence graph. LS relies on other heur-istics to prioritise the ready tasks and guide it towardsan optimal solution. This has lead to a profusion ofLS-based heuristics [5, 11, 16, 20, 25].The MAP solution adopted here is based on the op-timal, greedy scheduling algorithm for list schedulingwhich was proposed by Co�man and Graham [8]. Thisis an O(n2) algorithm for arbitrary precedence con-straints for two processors with unit execution costs.A MAP scheduler has to deal with heterogeneous re-sources and can no longer just choose the ready in-struction with the highest priority, but must also con-sider whether the correct resources are also available.Once an instruction is issued, its execution cannot besuspended and resumed at the point of suspension ata later time, i.e. schedules must be non-preemptive.The goodness of these schedules are highly dependenton the parameter(s) that are used to prioritise instruc-tions within the ready list [1] [22], and these are nextdiscussed.3.1.1 Minimising Idle TimesThe scheduler's �rst assumption is that minimisingthe stall time will lead to an optimal (or at leastnear-optimal) program execution time (the �rst pri-ority heuristic). This implies that the MAP compilershould not schedule instructions until the required mi-croagents (resources) are available. Also, the hazardsdue to data dependencies outlined in the previous sec-tion should be avoided. All of this implies that thecomputational model has to maintain a scoreboard ofresource activities.

3.1.2 Primary Instruction PriorityIn Co�man and Graham's algorithm, interprocessorcommunication is assumed to be zero and tasks haveunit execution times, which means that time can beconveniently treated as being discrete rather than con-tinuous. This allows priorities to be assigned based onthe task's level within the DAG from the sink tasks.Since instructions have di�erent worst-case executiontimes in MAP, the problem is similar to multiprocessorscheduling with interprocessor communication delays(where communication costs are only incurred if de-pendent tasks are scheduled on di�erent processors).The solutions adopted in this �eld have been basedon critical path analysis and heuristics [14] [19] [26].(The critical path cost of a task is the largest sum ofcosts along a path from itself to a sink task.) In theMAP computational model, although actual instruc-tion execution costs may vary, these critical path costscan be determined a priori by basing them on �xed,worst-case instruction costs.3.1.3 Secondary Instruction PriorityThe heuristics applied so far may still not prioritisethe executable tasks (i.e. those tasks whose operandsand resources are available and are therefore ready forexecution) su�ciently. One feature which does seemto signi�cantly inuence the best choice of candidate isthe dependents of the chosen task. The two heuristicsused to \break ties" amongst candidates of the samepriority act as follows: the �rst one gives a higherpriority to the task with the larger number of suc-cessors which are solely dependent on it. If a tie isstill unbroken, then a higher priority is given to thetask with the most number of successors. A feature ofthese heuristics is that the priority of a task increaseswith time. Additionally, these heuristics highlight theneed to consider not only which tasks need to executein the future, but also their resources.3.1.4 Importance of the Instruction IssueCycle TimeUnlike synchronous pipelines, micronet resources havetwo parameters which a�ect instruction executioncosts: the microoperation's latency and its cycletime [4]. Latency determines when data becomesavailable for subsequent micro-operations and otherinstructions. The cycle time inuences when a re-source (microagent) becomes available again for useby a subsequent instruction (or microoperation). To-gether with program parallelism and the number of re-sources, a limiting factor on the amount of exploitable

ILP is the cycle time of the issue unit in relationship tothe execution time of instructions (or more accuratelytheir cycle times).In order to minimise the issue unit's stall time,the compiler has to devise a schedule that allows in-structions to be issued continuously at the highestpossible rate, which is equivalent to one every min-imum Instruction Issue Cycle Time (IICT) [3]. Tradi-tional synchronous datapaths are pipelined or wherenecessary super-pipelined (i.e. the functional units arethemselves pipelined) su�ciently to achieve this goal.Due to the spatial ILP in MAP, instructions are is-sued at a rate (determined by the IICT and depend-encies) which is faster than their Instruction CycleTimes (ICTs). The ICT is the e�ective issue time(due to pipelining) for a particular instruction, whichis determined by the rate at which that speci�c in-struction type can be processed. As the IICT, whichis less than the largest ICT, gets smaller, the MAP ar-chitecture behaves more in a superscalar fashion andtherefore the value of the IICT itself can have a signi-�cant inuence on the optimality of a schedule. Thisis less signi�cant when the IICT is comparable to thelargest ICT, in which case the order of the independentinstructions is less critical, since the micronet behaveslike a linear pipeline without any spatial concurrency.3.1.5 IICT, ICT and LookaheadWhen choosing an instruction to schedule, it may bebene�cial to consider not only those instructions whichare ready, but also ones which will become ready in thenear future, called instruction lookahead, e.g. withinthe next minimum IICT. Note that this may meandeliberately selecting an instruction that causes theprocessor's issue unit to stall.Another form of lookahead is to consider the fu-ture resource requirements when scheduling instruc-tions, called resource lookahead. The two steps inchoosing an instruction and checking for availabilityof resources should take place in conjunction (See Al-gorithm 1 for more details).3.2 The MAP scheduling algorithmThe algorithm takes as its input a directed graphof instruction dependencies and a resource graph witharchitectural parameters, and generates an instructionschedule for the given MAP architecture. Two listsare de�ned as follows: the WI list - the list of instruc-tions still awaiting their operands, and the EI list - anordered list of instructions which are ready, or will beready in the near future (for lookahead instructions),

but still awaiting issue. The order of the latter list isdetermined by the critical path costs of instructions,i.e. the primary priority. Next, a prioritised list of ex-ecutable instructions is derived from the EI list basedon the availability of their resources at the currenttime. If there are ties, an instruction (or instructionsin the case of superscalar MAP) is chosen for issuebased on secondary priority values.The scheduler mimics the behaviour of the archi-tecture's issue unit. The function generate schedule(),as shown in Algorithm 1, schedules instructions basedon their readiness, their priority and the availabilityof resources. Unlike schedulers for synchronous ma-chines, the scheduling of instructions does not pro-ceed in uniform time steps, but rather in an asyn-chronous event-driven manner until all the instruc-tions are scheduled. Each iteration of the main loop(the while do loop in line 5) corresponds to an instantin time when the issue unit is ready to issue an in-struction. However, a situation may arise when atsome given time there are no instructions ready forissue (line 8), in which case the clock must be ad-vanced, but only as far as necessary to remedy this.The incrementing of the clock simulates the issue unitbeing stalled. The routine, advance clock(), �nds theearliest occurrence of three types of events: the readytime of an instruction in the WI list and of a looka-head instruction in the EI list; the time when theresult of an operation becomes available in the re-gister �le; and the time a busy resource becomes free.Only the �rst two events can change the status of theEI list. There is a choice of heuristics which can beapplied, either the instruction lookahead or the tradi-tional priority-based approach. Instruction lookahead(lines 9 - 17) chooses the best instruction to issue fromthe EI list based on the lookahead heuristic. The func-tion, get ready instr(), returns from the given list ofinstructions the one with the highest estimated-time-to-completion (ETC) priority for which there will besu�cient resources in the datapath if it is issued atits earliest issue time. This time may be the currentissue time or some time in the future. In the case ofthe latter, issuing this instruction will cause the issueunit to stall. In the current implementation of thelookahead heuristic, only one instruction is chosen perissue cycle iteration. The routine, apply.lookahead(),implements the instruction lookahead heuristic whichuses the ETC priority and the earliest issue time oftwo instructions to determine which of them shouldbe issued �rst. By comparing the estimated executiontime of the two instruction schedules, the order withthe smallest time is chosen. Should the two schedules

have the same time, then the order where an instruc-tion completes the earliest is chosen, since this allowsdependents to become ready sooner. The alternativeheuristic (lines 18 - 29) chooses the instruction withthe highest priority which can be issued immediately.This may involve choosing one or more from a numberof instructions with the same primary priority value(ETC). Line 19 creates a list of ready instructions withthe same, highest ETC values and line 22 removesthose instructions with insu�cient resources for issueat the current time. Line 23 supports architectureswhich incorporate lockstep superscalar instruction is-sue. The routine issue all() issues as many of the in-structions as possible from the given list. If there arenot enough issue-slots for the complete list (readyI),then the routine choosing insts() returns the best in-struction for issue based on the secondary priorities.The two loops (lines 26 and 27) repeat until either theissues slots are �lled or their respective lists becomeempty. The clock is advanced appropriately depend-ing on whether or not the scheduler was able to issueone or more instructions at the current time (lines 28and 29). The routine, update writeback, models thebehaviour of the portion of the micronet not directlycontrolled by the issue unit, e.g. write-back bus. Line32 updates the instruction lists and the next instruc-tion issue cycle iteration begins at a new time.Example 1 and Example 2 contrast the inuence ofIICT and resource lookahead on determining an op-timal schedule. A1 and B are ready candidate in-structions, with a third instruction, A2, which has astructural dependency on A1.The lookahead heuristics attempt to match theavailable program and architectural parallelism overa short window of time. The strategy of repeating theprocess over the entire program allows the instruction-level parallelism to be exploited more evenly. This hastwo e�ects: �rstly, a better program makespan is usu-ally achieved; secondly, a schedule is generated whichis more robust to deviations from the predicted in-struction costs because only the appropriate amount ofprogram parallelism is exposed which can be exploitedby the target at any one time. Since costs are basedon worse-case values rather than typical ones, the tra-ditional list scheduling heuristics tend to overly mi-grate independent instructions to the top of the sched-ule, leaving insu�cient parallelism for later. Kernsand Eggers [18] proposed a code scheduling algorithmcalled balanced scheduling for synchronous architec-tures which is similar in concept. Their algorithm isspeci�cally designed to tolerate a wide range of vari-ance in load latency, e.g. cache misses/hits, global and

Algorithm 1 : The MAP scheduler (generate schedule())1 curr time := 0;2 calc completion times(); n� Critical path analysis for each instruction �n3 update WI(WI list); n� Determine instruction start times �n4 update EI(WI list); n� Move ready instructions to EI list �n5 while (WI list 6= fg) or (EI list 6= fg) do6 no issued := 0; n� Number of inst issued simultaneously at this time �n7 candidates := EI list;8 if (EI list = fg) curr time := advance clock(YES, YES, NO, curr time);9 else if (lookahead = YES) n� Use Instruction Lookahead Heuristics �n10 BestChoice := get ready instr(candidates); n� The inst with the highest �nn� priority in the candidates list for which there are su�cient resources �n11 if (BestChoice 6= NULL)12 while candidates 6= fg do13 NextInst := get ready instr(candidates);14 if (NextInst 6= NULL) apply.lookahead(BestChoice, NextInst);end while15 if (BestChoice.rdy time � curr time + issue cost)16 issue instruction(BestChoice); no issued++;17 EI list := EI list - BestChoice;else18 do n� Alternative strategy without Instruction Lookahead �nn� Let same ETC list be the list of the highest ETC cost ready insts �n19 9 same ETC list � candidates, s:t: 8 i 2 candidates,9 v 2 same ETC list, s:t: (v.ETC � i.ETC);20 candidates := candidates - same ETC list;21 do n� Remove instructions without su�cient resources �n22 9 readyI � same ETC list, s:t: 8i 2 readyI,�nd avail FU resources(i, datapath, curr time);23 if (jreadyIj � spsclr deg - no issued) issue all(readyI, no issued);else n� choose between insts in readyI list �n24 inst chosen := choosing insts(readyI, no issued);25 EI list := EI list - finst choseng;26 while ((no issued < spsclr deg) and (same ETC list 6= fg));27 while ((no issued < spsclr deg) and (candidates 6= fg));28 if (no issued > 0) curr time += inst issue cycle;29 else curr time := advance clock(YES, YES, YES, curr time);end if30 update writeback(datapath);31 if (WI list 6= fg)32 update WI(WI list); update EI(WI list);end while33 update writeback(datapath);

Example 1 : Resource Lookahead1 switch IICT2 case 0: Choose schedule fA1,B,A2g or fB,A1,A2g;n� Either schedule is optimal �n3 case (0 � IICT < 12 �ICTA):4 if (ICTB >2�ICTA) Choose schedule fB,A1,A2g;n� Instruction B takes longer than the both A1 and A2 �n5 else Choose schedule fA1,B,A2g;n� In other words, combine the resource requirements of �nn� dependent instructions and schedule the instruction �nn� according to the resource with the most work. �n6 case (12 �ICTA � IICT < ICTA):7 if (ICTB >2�ICTA) n� then schedule B �rst (as before) �n8 Choose schedule fB,A1,A2g;9 else n� schedule A1 �rst�n10 if (ICTB < ICTA) Choose schedule fA1,A2,Bg;11 else Choose schedule fA1,B,A2g;12 case (ICTA � IICT):n� Schedule the instruction with the largest ICT �rst �n13 if ICTA < ICTB Choose schedule fB,A1,A2g;14 else Choose schedule fA1,A2,Bg;15 end switch;Example 2 : Without Resource Lookahead1 if (IICT = 0) Choose schedule fA1,B,A2g or fB,A1,A2g;n� Again, either schedule is optimal �n2 else n� Simply schedule the instruction with the largest ICT �rst. �n3 if (ICTA < ICTB)Choose schedule fB,A1,A2g;4 else if (IICT < ICTA)Choose SchedulefA1,B,A2g;5 else Choose schedule fA1,A2,Bg;local memory. In these architectures, instruction costsare well de�ned and considered �xed. Usually thelatencies reect the most optimistic execution, e.g.,the time of a cache hit rather than a cache miss. Tra- ditional schedulers improve performance through re-ordering instructions to avoid pipeline stalls, e.g., byinserting independent instructions after loads to keepthe CPU busy. The number of instructions inserted

(in the best case) depends on this latency value. Ifthe load instruction is delayed beyond the scheduler'sestimate, then the processor will stall. However, ifthe latency is shorter, then the destination register ofthe load instruction will be tied up for longer and thismay increase register pressure enough to cause unne-cessary code spills. Both balanced scheduling and re-source lookahead are computationally more expensivethan the traditional list scheduling approach, and willnot be considered further in this paper.4 ResultsIn this section, the makespans of MAP schedulesfor a number of typical instruction DAGs (brieydescribed below) are compared with their optimal.(The optimal makespan is derived from an exhaust-ive search.)BT3 - A Binary Tree with three levels.BT3.5 - A Binary Tree with three and halflevels.BT4 - A Binary Tree with four levels.DD - Diamond DAGs which are commonlyfound in the evaluation of partial di�er-ential equations.DM - Dense matrix multiplication.SM - Sparse matrix multiplication.CC - Mix of Load, Store and ALU instruc-tions with data dependencies.CCL - A loop unrolled version of CC.Min1 - This architecture contains the min-imum resources - one ALU and oneMemory Unit (MU) which both sharea single write-back bus. The cycletimes and latencies of the ALU andMU micro-operations are assumed tothe same.3bus - This architecture has an additionalALU and each of the three functionalunits has a dedicated write-back bus.(The microoperation cycle times andlatencies are the same as Min1).Min2 - Same as Min1, except that the mi-crooperation costs of the ALU and MUare di�erent and reect realistic costsobtained from SPICE-level simulations.

The results for the MAP scheduling heuristic, bothwithout and with instruction lookahead, are shown inTable 1. For each DAG, the number of valid schedulesis recorded together with the optimal makespan forthe given target architecture. The makespan gener-ated by the heuristics together with its closeness to theoptimal (recorded both as a percentage of the optimal(% Di�) and as a percentage of the di�erence betweenthe best and worst makespans (% of the Range) arealso included. It is assumed that su�cient registers areavailable and so code spilling could be avoided. Thiswould normally be determined at the register alloc-ation phase of the compilation and is not consideredhere.The results look quite promising. In a majority ofthe cases for the 3bus architecture, the heuristic can�nd an optimal solution (only in the case of SM is in-struction lookahead required to reduce the makespanto optimal). However, the MAP scheduler does notseem to do as well on theMin1 architecture (for BT3,BT3.5, BT4, CCL, DM and SM). The reason for thepoorer makespans is due to a bottleneck on the write-back bus. It turns out to be better in some cases tostall the issue unit for a longer period of time thanthat assumed by instruction lookahead (the IICT),i.e. wait until a higher priority instruction becomesready, because this stall time is hidden by the write-back bottleneck. Where the makespan is only slightlyworse than the optimal, i.e. DM, the heuristic togetherwith instruction lookahead is su�cient to �nd an op-timal solution. In the case of the Min2 architec-ture, BT3, BT3.5, BT4, and CCL are now optimal.This is because the relative delays of the microagentshave reduced the bottleneck for the write-back bus.In the case of DM and SM, there is still interferencebetween the instructions which result in sub-optimalexecutions. Instruction interference can be reducedby applying a post-pass re-ordering of the generatedschedules, and this is the subject of a future paper.Remember that these schedules are only optimalwith respect to the instructions costs which have beenassumed. In practice, these schedules may not be op-timal for a particular execution of the program for thereasons discussed earlier. One could even expect thateach run of the program would have a di�erent op-timal schedule. The stability of the schedules in lightof variance in the resource delays needs further study.

No. of No. of The The MAP Heuristic MAP with LookaheadPrgm MAP Valid Optimal Optimal Make- % % of the Make- % % of theDAG Arch Schds Schds Mkspn span Di� Range span Di� RangeBT3 Min1 640 24 1105nS 1185nS 92.76% 75% 1185nS 92.76% 75%BT3.5 Min1 230400 512 1505nS 1585nS 94.68% 85.71% 1585nS 94.68% 85.71%BT4 Min1 21964800 529920 1785nS 1885nS 94.4% 85.71% 1885nS 94.4% 85.71%DD Min1 42 2 1325nS 1325nS 100% 100% 1325nS 100% 100%DM Min1 310160 200 1905nS 1925nS 98.95% 98.11% 1905nS 100% 100%SM Min1 46574 24 2085nS 2245nS 92.33% 81.81% 2265nS 91.37% 79.55%CC Min1 4 2 735nS 735nS 100% 100% 735nS 100% 100%CCL Min1 4032 4 945nS 1015nS 92.59% 88.89% 1015nS 92.59% 88.89%BT3 3bus 640 72 1105nS 1105nS 100% 100% 1105nS 100% 100%BT3.5 3bus 230400 128 1355nS 1355nS 100% 100% 1355nS 100% 100%BT4 3bus 21964800 456960 1605nS 1605nS 100% 100% 1605nS 100% 100%DD 3bus 42 2 1225nS 1225nS 100% 100% 1225nS 100% 100%DM 3bus 310160 156 1645nS 1645nS 100% 100% 1645nS 100% 100%SM 3bus 46574 46 2005nS 2035nS 99% 97.67% 2005nS 100% 100%CC 3bus 4 2 735nS 735nS 100% 100% 735nS 100% 100%CCL 3bus 4032 18 835nS 835nS 100% 100% 835nS 100% 100%BT3 Min2 640 32 930nS 930nS 100% 100% 930nS 100% 100%BT3.5 Min2 230400 704 1230nS 1230nS 100% 100% 1230nS 100% 100%BT4 Min2 21964800 768768 1500nS 1500nS 100% 100% 1500nS 100% 100%DD Min2 42 2 570nS 570nS 100% 100% 570nS 100% 100%DM Min2 310160 120 1250nS 1280nS 97.6% 92.5% 1250nS 100% 100%SM Min2 46574 2 1180nS 1200nS 98.3% 95.9% 1190nS 99.15% 97.96%CC Min2 4 2 400nS 400nS 100% 100% 400nS 100% 100%CCL Min2 4032 2 550nS 550nS 100% 100% 550nS 100% 100%Table 1: Measuring the optimality of the scheduling heuristics
3

4

10

6

3

2

3

4

Issue Cycle Time

ALU Instruction

Load Instruction

Store Instruction

Worst-case Costs Average-case Costs

The Scheduling Costs

LD

ALU

ALU

ST

ALU

Instruction
Schedule

Execution Time
using worst-case
run-time costs run-time costs

using average-case
Execution Time

2 - 5

4 - 7

7 - 10

9 - 12

0 - 4

13 - 17

10 - 16

6 - 11

3 - 7

0 - 10

Execution Times :

The Schedule Based on Worst-Case Costs

1217

ALU

ST

ALU

LD

ALU

Instruction
Schedule

Execution Time
using worst-case
run-time costs run-time costs

using average-case
Execution Time

0 - 3

4 - 7

6 - 9

8 - 11

2 - 6

0 - 4

3 - 13

6 - 10

9 - 19

16 - 20

The Schedule Based on Average-case Costs

20 11Figure 2: The makespans of schedules based on worst- and average-case run-time costs

5 Discussion5.1 Choice of instruction execution costsAlthough the execution times of the same instruc-tion might vary due to data-dependent delays, worst-,average- or even best-case �gures for the executiontimes can be found on which the schedules could bebased. When producing static schedules, the compilerhas to use the delays of the FMs and the questionarises as to which of the sets of �gures to use. Figure 2illustrates the simpli�ed schedules for the CC test (ob-tained from [15]) based on worst-case and average-case costs and �gures for the execution times of theinstructions based on actual worst-case and average-case delays at run-time for these schedules. (The ra-tios of the delays for the two cases for the instructionsrealistically reect actual behaviour on the asynchron-ous processor under study.) The �gures reveal thatgiven these ratios, using a schedule based on worst-case costs is better in practice. Using this approacha heuristic will always try to schedule an instruction,if possible, only when its operands are guaranteed tobe available, thereby minimising any stalls. Note alsothat the schedule's correctness is not a�ected by thechanges in instruction costs. Furthermore, given thata program's critical path may change with di�erentexecutions (due to di�erent data sets) and that theschedule is generated once, the compiler's choice ofwhich costs to use is important. By basing the sched-ule on worst-case delays a lower bound on performancecan be achieved.5.2 Interaction between executing in-structionsReasons other than the ones just stated also con-tribute to the di�culty in predicting the global stateof the micronet. In synchronous processors, the com-piler can assume when scheduling a basic block thatthe datapath is idle and that all of the resources areavailable. This is a consequence of the fact that insynchronous pipelines, an instruction never a�ects theexecution of other instructions. This is not necessar-ily the case in a micronet, since the execution timesof instructions might vary for the following reasons:only a partial ordering is employed between instruc-tions (i.e. it is not necessary for the previous instruc-tions to have completed their execution before success-ive ones); instructions compete for shared resources,e.g. the write-back bus; during execution instructionsmight interfere with each other. Therefore, the state

of the resources at any particular time cannot be pre-dicted accurately at compile-time. But this informa-tion is indeed available at run-time in the issue unit ofthe micronet. This could be used to dynamically tune(i.e. allow out-of-order instruction issues) the staticschedule by the control unit. This requires identi-fying an instruction which can be executed immedi-ately (easily achieved using the control acknowledge-ment signal scoreboarding mechanism), and checkingthat the instruction is independent of earlier ones inthe instruction bu�er. Although the latter may be ex-pensive to perform, the task can be made simpler withassistance from the compiler by using a concurrencybit.6 ConclusionsThe MAP approach e�ciently combines aspects ofwell-known architectural styles. In dataow architec-tures, the instructions are issued as soon as their op-erands are available. This is achieved dynamicallyin hardware which incurs not insigni�cant run-time(book-keeping) costs. As in RISC architectures, codescheduling is done statically, but additionally instruc-tion issue (and even possibly the instruction schedule)is �ne-tuned dynamically to take advantage of run-time characteristics as in the data-ow model. In asense, at the instruction-level MAP follows the clas-sical von Neumann style, whereas at the level of mi-croagents it is more in the character of dataow archi-tectures.The micronet model exposes temporal and spa-tial concurrency in the datapath, with �ne-grainedresources now being visible to the compiler. Thismodel subsumes the micropipeline model which onlyexploits temporal concurrency in the datapath and thescheduling methods described here can be equally ap-plied to micropipeline-based processors.Code scheduling (on ILP architectures) andmachine-dependent optimisations have a signi�cantimpact on program performance. It is the task of thecompiler to schedule instructions such that these re-sources are e�ciently utilised. The instruction sched-ule is devised based on a computational model of thetarget architecture. For synchronous architectures themodel is simple; in contrast, an asynchronous modelis necessarily less accurate for the reasons discussedearlier. However, initial studies have shown that thesefactors do not signi�cantly hinder a compiler's abil-ity to schedule code e�ciently. Worst-case instructionexecution times have been considered and where theresulting schedule is treated as a �rst pass one. The

interference between the instructions can be reducedby applying post-pass optimisations, and this is beingcurrently investigated. The instructions could thenbe dynamically reordered at run-time to �ne-tune thisschedule by taking advantage of actual run-time costs.In conclusion, preliminary studies have shown thata micronet-based asynchronous processor architecturedoes present a suitable target for an ILP compiler.AcknowledgementsV. Rebello was supported by a postgraduate stu-dentship from the U. K. Engineering and PhysicalSciences Research Council (EPSRC). This work waspartially supported by a grant from EPSRC en-titled Formal Infusion of Communication and Con-currency into Programs and Systems (Grant NumberGR/G55457).References[1] T. Adam, K. M. Chandy, and J. R. Dickson.A comparison of list schedules for parallel pro-cessing systems. Communications of the ACM,17(12):685{690, December 1978.[2] D. K. Arvind, R. D. Mullins, and V. E. F. Re-bello. Micronets: A model for decentralisingcontrol in asynchronous processor architectures.In M. B. Josephs, editor, The Proceedings ofthe 2nd Working Conference on AsynchronousDesign Methodologies, pages 190{199, London,UK, May 1995. IEEE Computer Society Press.[3] D. K. Arvind and V. E. F. Rebello. Instruction-level parallelism in asynchronous processor archi-tectures. In M. Moonen and F. Catthoor, edit-ors, Proceedings of the 3rd International Work-shop on Algorithms and Parallel VLSI Architec-tures, pages 203{215, Leuven, Belgium, August1994. Elsevier Science Publishers.[4] D. K. Arvind and V. E. F. Rebello. On the per-formance evaluation of asynchronous processorarchitectures. In P. Dowd and E. Gelenbe,editors, Proceedings of the 3rd InternationalWorkshop on Modeling, Analysis and Simula-tion of Computer and Telecommunication Sys-tems (MASCOTS'95), pages 100{105, Durham,NC, USA, January 1995. IEEE Computer Soci-ety Press.

[5] J. Baxter and J. H. Patel. The LAST Al-gorithm: A heuristic-based static task allocationalgorithm. In The Proceedings of the 1989 Inter-national Conference on Parallel Processing, pages217{222, 1989.[6] E. Brunvand. The NSR processor. In TheProceedings of the Hawaii International Confer-ence on System Sciences. IEEE Computer SocietyPress, January 1993.[7] E. G. Co�man. Computer and Job-Shop Schedul-ing Theory. John Wiley and Sons, New York,1976.[8] E. G. Co�man and R. L. Graham. Optimalscheduling for two-processor systems. Acta. In-formatica, 1:200{213, 1972.[9] I. David, R. Ginosar, and M. Yoeli. Self-timedarchitecture of a reduced instruction set com-puter. In S. Furber and M. Edwards, edit-ors, The Proceedings of the IFIP Working Con-ference on Asynchronous Design Methodologies,Manchester, UK, March 1993. Elsevier SciencePublishers.[10] Mark E. Dean. STRiP: A Self-timed RISC Pro-cessor. PhD thesis, Stanford University, July1992.[11] H. El-Rewini and T. G. Lewis. Scheduling paral-lel program tasks onto arbitrary target machines.Journal of Parallel and Distributed Computing,9:138{153, 1990.[12] S. B. Furber, P. Day, J. D. Garside, N. C. Paver,and J. V. Woods. A micropipelined ARM. InT. Yanagawa and P. A. Ivey, editors, The Pro-ceedings of the IFIP International Conference onVery Large Scale Integration (VLSI'93), pages5.4.1{5.4.10, Grenoble, France, September 1993.[13] M. R. Garey and D. S. Johnson. Computers andIntractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company,1979.[14] A. Gerasoulis and T. Yang. A comparison of clus-tering heuristics for scheduling directed acyclicgraphs on multiprocessors. Journal of Paralleland Distributed Computing, 16:276{291, Decem-ber 1992.

[15] J. Hennessy and T. Gross. Postpass code optim-isation of pipeline constraints. ACM Transac-tions on Programming Languages and Systems,5(3):422{448, July 1983.[16] J-J. Hwang, Y-C. Chow, F. D. Anger, and C-Y. Lee. Scheduling precedence graphs in systemswith interprocessor communication times. SIAMJournal of Computing, 18(2):244{257,April 1989.[17] H. Kasahara and S. Narita. Practical multipro-cessor scheduling algorithms for e�cient parallelprocessing. IEEE Transactions on Computers, C-33(11):1023{1029, November 1984.[18] D. R. Kerns and S. J. Eggers. Balanced schedul-ing: Instruction scheduling when memory latencyis uncertain. SIGPLAN Notices, 28(6):278{289,June 1993. Proceedings of the ACM Confer-ence on Programming Language Design and Im-plementation.[19] S. J. Kim and J. C. Brown. A general approachto mapping of parallel computation upon multi-processor architecture. In The Proceedings of theInternational Conference on Parallel Processing,Vol. III, pages 1{8, 1988.[20] S. Manoharan and P. Thanisch. Assigning de-pendency graphs onto processor networks. Par-allel Computing, 17(1):63{73, April 1991.[21] A. J. Martin, S. M. Burns, T. K. Lee,D. Borkovic, and P. J. Hazewindus. The designof an asynchronous microprocessor. In C. L.Seitz, editor, Advanced Research in VLSI: Pro-ceedings of the Decennial Caltech Conference onVLSI, pages 351{373, Cambridge, Mass., 1989.MIT Press.

[22] C. McCreary, A. A. Khan, J. Thompson, andM. E. McArdle. A comparison of heuristics forscheduling DAGs on multiprocessors. TechnicalReport CSE-93-07, Auburn University, Auburn,AL, 36849. USA., 1994.[23] S. V. Morton, S. S. Appleton, and M. J. Liebelt.ECSTAC: A fast asynchronous microprocessor.In M. B. Josephs, editor, The Proceedings ofthe 2nd Working Conference on AsynchronousDesign Methodologies, pages 180{189, London,UK, May 1995. IEEE Computer Society Press.[24] T. Nanya, Y. Ueno, H. Kagotani, M. Kuwako,and A. Takamura. TITAC: Design of a quasi-delay-insensitive microprocessor. IEEE Designand Test of Computers, pages 50{63, Summer1994.[25] C. H. Papadimitrou and M. Yannakakis. To-wards an architecture-independent analysis ofparallel algorithms. SIAM Journal of Comput-ing, 19(2):322{328, April 1990.[26] V. Sarkar. Partitioning and Scheduling ParallelPrograms for Execution on Multiprocessors. TheMIT Press, 1989.[27] R. F. Sproull, I. E. Sutherland, and C. E. Mol-nar. Counterow pipeline processor architecture.Technical Report SMLI TR-94-25, Sun Microsys-tems Laboratories Inc., April 1994.[28] I. E. Sutherland. Micropipelines. Communica-tions of the ACM, 32(6):720{738, June 1989.[29] J. Ullman. NP-complete scheduling prob-lems. Journal of Computer and System Sciences,10:384{393, 1975.

Bibliography

[1] T. Adam, K. M. Chandy, and J. R. Dickson. A comparison of list schedules
for parallel processing systems. Communications of the ACM, 17(12):685–
690, December 1978.

[2] M. Afghahi and C. Svennson. Performance of synchronous and asyn-
chronous schemes for VLSI systems. IEEE Transactions on Computers,
41(7):858–872, July 1992.

[3] A. Aiken and A. Nicolau. A development environment for horizontal
microcode. IEEE Transactions on Software Engineering, 14(5):584–594, May
1988.

[4] D. K. Arvind, R. D. Mullins, and V. E. F. Rebello. Micronets: A model for
decentralising control in asynchronous processor architectures. In M. B.
Josephs, editor, The Proceedings of the 2nd Working Conference on Asynchron-
ous Design Methodologies, pages 190–199, London, UK, May 1995. IEEE
Computer Society Press.

[5] D. K. Arvind and V. E. F. Rebello. Instruction-level parallelism in asyn-
chronous processor architectures. In M. Moonen and F. Catthoor, editors,
Proceedings of the 3rd International Workshop on Algorithms and Parallel VLSI
Architectures, pages 203–215, Leuven, Belgium, August 1994. Elsevier Sci-
ence Publishers.

[6] D. K. Arvind and V. E. F. Rebello. On the performance evaluation of asyn-
chronous processor architectures. In P. Dowd and E. Gelenbe, editors,
Proceedings of the 3rd International Workshop on Modeling, Analysis and Sim-
ulation of Computer and Telecommunication Systems (MASCOTS’95), pages
100–105, Durham, NC, USA, January 1995. IEEE Computer Society Press.

[7] D. K. Arvind and V. E. F. Rebello. Static scheduling of instruction on
micronet-based asynchronous processors. In The Proceedings of the 2nd
International Symposium on Advanced Research on Asynchronous Circuits and
Systems (ASYNC’96), pages 80–91, Aizu Wakamatsu City, Japan, March
1996. IEEE Computer Society Press.

241

Bibliography 242

[8] D. K. Arvind and C. R. Smart. A unified framework for parallel event-
driven logic simulation. In Proceedings of the 1991 Computer Simulation
Conference, Baltimore, Maryland, USA, July 1991.

[9] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations for
high performance computing. ACM Computing Surveys, 26(4):345–420,
December 1994.

[10] H. G. Baker. Precise instruction scheduling without a precise machine
model. ACM Computer Architecture News, 19(6):4–8, December 1991.

[11] M. R. Barbacci and D. P. Siewiorek. The Design and Analysis of Instruction
Set Processors. McGraw Hill, 1982.

[12] J. Baxter and J. H. Patel. The LAST Algorithm: A heuristic-based static
task allocation algorithm. In The Proceedings of the 1989 International Con-
ference on Parallel Processing, pages 217–222, 1989.

[13] D. Bernstein, D. Cohen, Y. Lavon, and V. Rainish. Performance evalu-
ation of instruction scheduling on the IBM RISC System/6000. In The
Proceedings of the 25th Annual International Symposium on Microarchitecture
(MICRO’25), pages 226–235, 1992.

[14] D. Bernstein and I. Gertner. Scheduling expressions on a pipelined pro-
cessor with a maximal delay of one cycle. ACM Transactions on Program-
ming Languages and Systems, 11(1):57–66, 1989.

[15] D. Bernstein and M. Rodeh. Global instruction scheduling for superscalar
machines. In The Proceedings of the Conference on Programming Language
Design and Implementation, pages 241–255, June 1991.

[16] B. Bose and T. R. N. Rao. Theory of unidirectional error correct-
ing/detecting codes. IEEE Transactions on Computers, C-31(6):521–530,
June 1982.

[17] D. G. Bradlee, S. J. Eggers, and R. R. Henry. Integrating register allocation
and instruction scheduling for RISCs. ACM Computer Architecture News,
19(2):122–131, April 1991.

[18] E. Brunvand. The NSR processor. In The Proceedings of the Hawaii Interna-
tional Conference on System Sciences. IEEE Computer Society Press, January
1993.

[19] E. Brunvand and R. F. Sproull. Translating concurrent programs into
delay-insensitive circuits. In The Proceedings of the International Conference
on Computer Aided Design (ICCAD-89), pages 262–265, November 1989.

Bibliography 243

[20] J. A. Brzozowski and J. C. Ebergen. Recent developments in the design of
asynchronous circuits. In Fundamentals of Computation Theory, pages 78–
94. Lecture Notes in Computer Science, Vol. 380, Springer-Verlag, 1989.

[21] J. A. Brzozowski and J. C. Ebergen. On the delay-sensitivity of gate
networks. IEEE Transactions on Computers, 41(11):1349–1359, November
1992.

[22] J. A. Brzozowski and K. Raahemifar. Testing C-elements is not elementary.
In M. B. Josephs, editor, The Proceedings of the 2nd Working Conference
on Asynchronous Design Methodologies, pages 150–159, London, UK, May
1995. IEEE Computer Society Press.

[23] W. Buchholz. Planning a Computer System: Project Stretch. McGraw-Hill,
1962.

[24] J. Bunda, W. C. Athas, and D. Fussel. Evaluating power implications
of cmos microprocessor design decisions. In The Proceedings of the 1994
International Workshop on Low Power Design, pages 147–152, Napa, CA,
USA., 1994.

[25] S. M. Burns. Automated compilation of concurrent programs into self-
timed circuits. Technical Report Caltech-CS-TR-88-2, Computer Science
Department, California Institute of Technology, 1988.

[26] S. M. Burns. Performance Analysis and Optimisation of Asynchronous Cir-
cuits. PhD thesis, Computer Science Department, California Institute of
Technology, Pasadena, California, USA, 1991.

[27] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins,
and P. W. Markstein. Register allocation and spilling via graph coloring.
Computer Languages, 6:47–57, 1981.

[28] T. J. Chaney and C. E. Molnar. Anomalous behaviour of synchronizer and
arbiter circuits. IEEE Transactions on Computers, 22(4):421–422, April 1973.

[29] C.-H. Chien, M. A. Franklin, T. Pan, and P. Prabhu. ARAS: Asynchronous
RISC architecture simulator. In M. B. Josephs, editor, The Proceedings of
the 2nd Working Conference on Asynchronous Design Methodologies, pages
210–219, London, UK, May 1995. IEEE Computer Society Press.

[30] K. M. Chu and D. I. Pulfrey. Design procedures for differential cascade
voltage switch circuits. IEEE Journal of Solid-State Circuits, 21(6):1082–1087,
1986.

Bibliography 244

[31] Tam-Anh Chu. Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic
Specifications. PhD thesis, MIT Laboratory for Computer Science, June
1987.

[32] E. G. Coffman. Computer and Job-Shop Scheduling Theory. John Wiley and
Sons, New York, 1976.

[33] E. G. Coffman and R. L. Graham. Optimal scheduling for two-processor
systems. Acta. Informatica, 1:200–213, 1972.

[34] R. P. Colwell, C. Y. Hitchcock, E. D. Jensen, H. M. B. Sprunt, and C. P.
Kollar. Computers, complexity and controversy. IEEE Computer, 18:8–19,
September 1985.

[35] I. David, R. Ginosar, and M. Yoeli. An efficient implementation of boolean
functions as self-timed circuits. IEEE Transactions on Computers, 41(1):2–11,
January 1992.

[36] I. David, R. Ginosar, and M. Yoeli. Implementing sequential-machines as
self-timed circuits. IEEE Transactions on Computers, 41(1):12–17, January
1992.

[37] I. David, R. Ginosar, and M. Yoeli. Self-timed architecture of a reduced in-
struction set computer. In S. Furber and M. Edwards, editors, The Proceed-
ings of the IFIP Working Conference on Asynchronous Design Methodologies,
Manchester, UK, March 1993. Elsevier Science Publishers.

[38] M. E. Dean, D. L. Dill, and M. Horowitz. Self-timed logic using current-
sensing completion detection (CSCD). In The Proceedings of the Inter-
national Conference on Computer Design (ICCD’91), pages 187–191. IEEE
Computer Society Press, October 1991.

[39] Mark E. Dean. STRiP: A Self-timed RISC Processor. PhD thesis, Stanford
University, July 1992.

[40] K. Diefendorff and M. Allen. Organisation of the Motorola 88110 super-
scalar RISC microprocessor. IEEE Micro, 12(2):40–63, April 1992.

[41] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. ACM Distinguished Dissertations. MIT Press, 1989.

[42] D. W. Dobberpuhl et al. A 200-MHz 64-bit dual issue CMOS processor.
IEEE Journal of Solid-State Circuits, 27(11):1555–1567, November 1992.

[43] J. C. Ebergen. A formal approach to designing delay-insensitive circuits.
Distributed Computing, 5(3):107–119, 1991.

Bibliography 245

[44] J. H. Edmondson, P. Rubinfeld, R. Preston, and V. Rajagopalan. Super-
scalar instruction execution in the 21164 Alpha microprocessor. IEEE
Micro, 15(2):33–43, April 1995.

[45] H. El-Rewini and T. G. Lewis. Scheduling parallel program tasks onto
arbitrary target machines. Journal of Parallel and Distributed Computing,
9:138–153, 1990.

[46] J. R. Ellis. Bulldog: A Compiler for VLSI Architectures. MIT Press, 1986. PhD
Thesis, Yale, 1985.

[47] C. J. Elston, D. B. Christianson, P. A. Findlay, and G. B. Steven. Hades -
Towards the design of an asynchronous superscalar processor. In M. B.
Josephs, editor, The Proceedings of the 2nd Working Conference on Asynchron-
ous Design Methodologies, pages 200–209, London, UK, May 1995. IEEE
Computer Society Press.

[48] P. Endecott. Processor architectures for power efficiency and asynchron-
ous implementation. Master’s thesis, Department of Computer Science,
University of Manchester, UK., 1993.

[49] P. Endecott. SCALP: A Superscalar Asynchronous Low-Power Processor. PhD
thesis, Department of Computer Science, University of Manchester, UK.,
December 1995. CST-41-86.

[50] European Silicon Structures Limited. Solo 1400 Reference Manual. ES2
Publications Unit, Bracknell, U.K., 1990.

[51] C. Farnsworth, D. A. Edwards, J. Lie, and S. S. Sikand. A hybrid asyn-
chronous system design environment. In M. B. Josephs, editor, The Pro-
ceedings of the 2nd Working Conference on Asynchronous Design Methodologies,
pages 91–98, London, UK, May 1995. IEEE Computer Society Press.

[52] J. Fisher. Trace scheduling: A technique for global microcode compaction.
IEEE Transactions on Computers, 30(7):478–490, July 1981.

[53] M. J. Flynn, C. L. Mitchell, and J. M. Mulder. And now a case for more
complex instruction sets. IEEE Computer, 20(9):71–83, September 1987.

[54] M. A. Franklin and T. Pan. Clocked and asynchronous instruction
pipelines. In The Proceedings of the 26th Annual International Symposium on
Microarchitecture (MICRO’26), pages 177–184, Austin, Texas, USA, Decem-
ber 1993. IEEE Computer Society Press.

[55] S. B. Furber. Lessons from AMULET1: Towards AMULET2. In Comput-
ing Without Clocks: Asynchronous Microprocessor Design. The Sun Annual

Bibliography 246

Lecture in Computer Science at the University of Manchester, September
1994.

[56] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V. Woods. A mi-
cropipelined ARM. In T. Yanagawa and P. A. Ivey, editors, The Proceedings
of the IFIP International Conference on Very Large Scale Integration (VLSI’93),
pages 5.4.1–5.4.10, Grenoble, France, September 1993.

[57] H. Gabow. An almost linear algorithm for two-processor scheduling.
Journal of the ACM, 29(3):766–780, 1982.

[58] G. R. Gao. An efficient hybrid dataflow architecture. Journal of Parallel
and Distributed Computing, 19:293–307, 1993.

[59] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[60] J. D. Garside. A CMOS VLSI implementation of an asynchronous ALU.
In S. Furber and M. Edwards, editors, Asynchronous Design Methodolo-
gies, volume A-28 of IFIP Transactions, pages 181–207. Elsevier Science
Publishers, 1993.

[61] J.-L. Gaudiot and L. Bic. Advanced Topics in Dataflow Computing. Prentice-
Hall, Englewood Cliffs, NJ, USA, 1991.

[62] A. Gerasoulis and T. Yang. A comparison of clustering heuristics for
scheduling directed acyclic graphs on multiprocessors. Journal of Parallel
and Distributed Computing, 16:276–291, December 1992.

[63] R. Ginosar and N. Michell. On the potential of asynchronous pipelined
processors. ACM Computer Architecture News, 18(4):27–34, December 1990.

[64] G. Gopalakrishnan. Some unusual micropipeline circuits. Technical Re-
port UUCS-93-015, Department of Computer Science, University of Utah,
Salt Lake City, UT, USA, December 1993.

[65] W. R. Hamburgen and J. S. Fitch. Packaging a 150W bipolar ECL mi-
croprocessor. Research report 92/1, DEC Western Research Laboratory,
March 1992.

[66] S. Hauck. Asynchronous design methodologies: An overview. Technical
Report TR 93-05-07, Department of Computer Science and Engineering,
University of Washington, Seattle, USA, 1993.

[67] P. Hazewindus. Testing Delay-Insensitive Ciruits. PhD thesis, California
Institute of Technology, Pasadena, CA, USA., 1992. CS-TR-92-14.

Bibliography 247

[68] S. Heath. VMEbus User’s Handbook. CRC Press, 1988.

[69] L. G. Heller and W. R. Griffin. Cascade Voltage Switch Logic: A dif-
ferential CMOS logic family. In The Proceedings of the IEEE International
Conference on Solid-state Circuits, pages 16–17, 1984.

[70] J. Hennessy and T. Gross. Postpass code optimisation of pipeline
constraints. ACM Transactions on Programming Languages and Systems,
5(3):422–448, July 1983.

[71] J. Hennessy, N. Jouppi, F. Baskett, and J. Gill. MIPS: A VLSI processor
architecture. In The Proceedings of the CMU Conference on VLSI Systems
and Computations, Rockville, Md. USA., October 1981. Computer Science
Press.

[72] J. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 1990.

[73] C. A. R. Hoare. Communicating sequential processes. Communications of
the ACM, 21(8):666–677, August 1978.

[74] L. A. Hollaar. Direct implementation of asynchronous control units. IEEE
Transactions on Computers, C-31(12):1133–1141, December 1982.

[75] T. C. Hu. Parallel sequencing and assembly line problems. Operational
Research, 9(6):841–848, 1961.

[76] H. Hulgaard, S. M. Burns, and G. Borriello. Testing asynchronous circuits:
A survey. Technical Report Technical Report UW-CSE-94-03-06, Depart-
ment of Computer Science and Engineering, University of Washington,
1994.

[77] J-J. Hwang, Y-C. Chow, F. D. Anger, and C-Y. Lee. Scheduling preced-
ence graphs in systems with interprocessor communication times. SIAM
Journal of Computing, 18(2):244–257, April 1989.

[78] INMOS Limited. Occam2 Reference Manual. Prentice Hall International,
1988.

[79] INMOS Limited. Transputer Reference Manual. Prentice Hall International,
1988.

[80] R. Jain. The Art of Computer System Performance Analysis. John Wiley &
Sons, 1991.

[81] M. Johnson. Superscalar Processor Design. Prentice-Hall, Englewood Cliffs,
NJ, USA., 1991.

Bibliography 248

[82] M. B. Josephs and J. T. Udding. Delay-insensitive circuits: An algebraic
approach to their design. In J. C. M. Baeten and J. W. Klop, editors,
Theories of Concurrency: Unification and Extension (CONCUR’90), pages
342–366. Springer-Verlag, August 1990.

[83] N. P. Jouppi, P. Boyle, and J. S. Fitch. Designing, packaging and testing a
300-Mhz, 115W ECL microprocessor. IEEE Micro, 14(2):50–58, April 1994.

[84] N. P. Jouppi and D. W. Wall. Available instruction-level parallelism for
superscalar and superpipelined machines. In The Proceedings of ASPLOS
III, pages 272–282. ACM Press, April 1989.

[85] H. Kasahara and S. Narita. Practical multiprocessor scheduling al-
gorithms for efficient parallel processing. IEEE Transactions on Computers,
C-33(11):1023–1029, November 1984.

[86] M. G. Katevenis, R. W. Sherbourne, D. A. Patterson, and C. H. Séquin.
The RISC II micro-architecture. In F. Anceau and E. J. Aas, editors, The
Proceedings of VLSI’83: VLSI Design of Digital Systems, pages 349–359.
North-Holland, 1983.

[87] D. Kearney and N. W. Bergmann. Performance evaluation of asynchron-
ous logic pipelines with data dependent processing delays. In M. B.
Josephs, editor, The Proceedings of the 2nd Working Conference on Asyn-
chronous Design Methodologies, pages 4–13, London, UK, May 1995. IEEE
Computer Society Press.

[88] D. R. Kerns and S. J. Eggers. Balanced scheduling: Instruction scheduling
when memory latency is uncertain. SIGPLAN Notices, 28(6):278–289, June
1993. Proceedings of the ACM Conference on Programming Language Design
and Implementation.

[89] R. W. Keyes. The evolution of digital electronics towards VLSI. IEEE
Transactions on Electronic Devices, ED-26(4):271–278, 1979.

[90] A. Khoche and E. Brunvand. Testing self-timed circuits using partial
scan. In M. B. Josephs, editor, The Proceedings of the 2nd Working Conference
on Asynchronous Design Methodologies, pages 160–169, London, UK, May
1995. IEEE Computer Society Press.

[91] S. J. Kim and J. C. Brown. A general approach to mapping of parallel
computation upon multiprocessor architecture. In The Proceedings of the
International Conference on Parallel Processing, Vol. III, pages 1–8, 1988.

[92] M. Ko. Instruction scheduling for micronet-based asynchronous pro-
cessors. Master’s thesis, Department of Computer Science, University of
Edinburgh, Edinburgh, Scotland, UK., September 1995.

Bibliography 249

[93] S. Komori, H. Takata, T. Tamura, F. Asai, T. Ohno, O. Tomisawa, T. Yama-
saki, K. Shima, K. Asada, and H. Terada. An elastic pipeline mechanism
by self-timed circuits. IEEE Journal of Solid-State Circuits, 23(1):111–117,
February 1988.

[94] R. F. Krick and A. Dollas. The evolution of instruction sequencing. IEEE
Computer, 24(4):5–15, April 1991.

[95] M. Kuga, K. Murakami, and S. Tomita. DSNS (Dynamically-hazard-
resolved, Statically-code-scheduled, Nonuniform Superscalar): Yet an-
other superscalar processor architecture. ACM Computer Architecture
News, 19(4):14–29, June 1991.

[96] H. T. Kung. Why systolic architectures? IEEE Computer, 15:37–46, January
1982.

[97] S-Y. Kung, S. C. Lo, and P. S. Lewis. Timing analysis and design optimisa-
tion of VLSI data flow arrays. In The Proceedings of the IEEE International
Conference on Parallel Processing, pages 600–607, 1986.

[98] C H. Lau. SELF: A self-timed systems design technique. Electronics Letters,
23(6):269–170, March 1987.

[99] L. Lavagno and A. Sangiovanni-Vincentelli. Automated synthesis of asyn-
chronous interface circuits. In S. Furber and M. Edwards, editors, The
Proceedings of the IFIP Working Conference on Asynchronous Design Method-
ologies, Manchester, UK, March 1993. Elsevier Science Publishers.

[100] J. K. F. Lee and A. J. Smith. Branch prediction strategies and branch target
buffer design. IEEE Computer, 17(1):6–22, January 1984.

[101] P. F. Lister and A. M. Alhelwani. Design methodology for self-timed VLSI
systems. IEE Proceedings-E Computer and Digital Techniques, 132(1):25–32,
January 1985.

[102] Å. Lunde. Empirical evaluation of some features of instruction set pro-
cessor architectures. Communications of the ACM, 20(3):143–153, March
1977.

[103] T. Mano, F. Maruyama, K. Hayashi, T. Kakuda, N. Kawato, and T. Uehara.
OCCAM to CMOS: An experimental logic design support system. In
C. J. Koomen and T. Moto-oka, editors, Computer Hardware Description
Languages and their Applications: The Proceedings of the Decennial Caltech
Conference on VLSI, pages 381–390. North Holland, 1985.

[104] S. Manoharan and P. Thanisch. Assigning dependency graphs onto pro-
cessor networks. Parallel Computing, 17(1):63–73, April 1991.

Bibliography 250

[105] R. M. Marshall. Synthesis of Hardware Systems from Very High Level Be-
havioural Specifications. PhD thesis, Department of Computer Science,
University of Edinburgh, UK., December 1986. CST-41-86.

[106] A. J. Martin. Programming in VLSI: From communicating processes to
delay-insensitive circuits. Technical Report Caltech-CR-TR-89-1, Depart-
ment of Computer Science, California Institute of Technology, Pasadena,
California, 1989.

[107] A. J. Martin. The limitations to delay-insensitivity in asynchronous cir-
cuits. In W. J. Dally, editor, The Proceedings of the 6th MIT Conference on
Advanced Research in VLSI, Cambridge, Mass., 1990. MIT Press.

[108] A. J. Martin. Asynchronous datapaths and the design of an asynchronous
adder. Technical Report Caltech-CR-TR-91-08, Computer Science Depart-
ment, California Institute of Technology, 1991.

[109] A. J. Martin. Tomorrow’s digital hardware will be asynchronous and
verified. In J. van Leeuwen, editor, Algorithms, Software, Architecture:
Proceedings of the IFIP Information Processing Conference, pages 684–695.
North-Holland, September 1992.

[110] A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovic, and P. J. Hazewindus.
The design of an asynchronous microprocessor. In C. L. Seitz, editor,
Advanced Research in VLSI: Proceedings of the Decennial Caltech Conference
on VLSI, pages 351–373, Cambridge, Mass., 1989. MIT Press.

[111] A. McAuley. Four state asynchronous architectures. IEEE Transactions on
Computers, C-41(2):129–142, February 1992.

[112] C. McCreary, A. A. Khan, J. Thompson, and M. E. McArdle. A comparison
of heuristics for scheduling DAGs on multiprocessors. Technical Report
CSE-93-07, Auburn University, Auburn, AL, 36849. USA., 1994.

[113] S. McFarlane and J. Hennessy. Reducing the cost of branches. In The
Proceedings of the 13th Annual International Symposium on Computer Archi-
tecture, pages 396–403, June 1986.

[114] E. McLellan. The Alpha AXP architecture and 21064 processor. IEEE
Micro, pages 36–47, June 1993.

[115] C. Mead and L. Conway. Introduction to VLSI Systems. Addison-Wesley,
Reading, Mass., 1980.

[116] T. H.-Y. Meng, R. W. Brodersen, and D. G. Messerschmitt. Automatic
synthesis of asynchronous circuits from high-level specifications. IEEE
Transactions on Computer Aided Design, 8(11):1185–1205, November 1989.

Bibliography 251

[117] R. E. Miller. Switching Theory. Volume II: Sequential Circuits and Machines.
John Wiley and Sons, 1965.

[118] S. Mirapuri, M. Woodacre, and N. Vasseghi. The MIPS R4000 processor.
IEEE Micro, pages 10–22, April 1992.

[119] C. E. Molnar, T-P. Fang, and F. U. Rosenberger. Synthesis of delay-
insensitive modules. In Henry Fuchs, editor, 1985 Chapel Hill Conference
on VLSI, pages 67–86. Computer Science Press, 1985.

[120] S.-M. Moon and K. Ebcioglu. An efficient resource-constrained global
scheduling technique for superscalar and VLIW processors. In The Pro-
ceedings of the 25th Annual International Symposium on Microarchitecture
(MICRO’25), pages 55–71, 1992.

[121] G. E. Moore. Cramming more components onto integrated circuits. Elec-
tronics, pages 114–117, April 1965.

[122] D. Morris and R. N. Ibbett. The MU5 Computer System. The Macmillan
Press, 1979.

[123] S. V. Morton, S. S. Appleton, and M. J. Liebelt. ECSTAC: A fast asyn-
chronous microprocessor. In M. B. Josephs, editor, The Proceedings of the
2nd Working Conference on Asynchronous Design Methodologies, pages 180–
189, London, UK, May 1995. IEEE Computer Society Press.

[124] D. E. Muller and W. S. Bartky. A theory of asynchronous circuits. In Vol.
XXIX of The Annals of the Computation Laboratory of Harvard University.
Harvard University Press, 1959.

[125] D. E. Muller and W. S. Bartky. A theory of asynchronous circuits. In The
Proceedings of an International Symposium on the Theory of Switching, pages
204–243. Harvard University Press, April 1959.

[126] R. D. Mullins. A VLSI design methodology for asynchronous processor
architectures. Technical report, Department of Computer Science, Uni-
versity of Edinburgh, Edinburgh, Scotland, UK., May 1994.

[127] R. D. Mullins. An asynchronous superscalar RISC architecture. Mas-
ter’s thesis, Department of Computer Science, University of Edinburgh,
Edinburgh, Scotland, UK., September 1995.

[128] E. J. Muth. The production rate of a series of workstations with variable
service times. International Journal of Production Research, 11(9):155–169,
1973.

Bibliography 252

[129] T. Nanya, Y. Ueno, H. Kagotani, M. Kuwako, and A. Takamura. TITAC:
Design of a quasi-delay-insensitive microprocessor. IEEE Design and Test
of Computers, pages 50–63, Summer 1994.

[130] A. Nicolau. Loop quantization or unwinding done right. In The Proceed-
ings of the 1st International Conference on Supercomputing, pages 294–308,
June 1987.

[131] C. D. Nielsen and A. J. Martin. A delay-insensitive multiply-accumulate
unit. Technical Report CS-TR-92-03, Computer Science Department, Cali-
fornia Institute of Technology, 1992.

[132] Y.-J. Oyang, C.-H. Wen, Y.-F. Chen, and S.-M. Lin. The effects of employ-
ing advanced branching mechanisms in superscalar architectures. ACM
Computer Architecture News, 18(4):35–51, December 1990.

[133] K. V. Palem and B. B. Simons. Scheduling time-critical instructions on
RISC machines. ACM Transactions on Programming Languages and Systems,
15(4):632–658, September 1993.

[134] C. H. Papadimitrou and M. Yannakakis. Towards an architecture-
independent analysis of parallel algorithms. SIAM Journal of Computing,
19(2):322–328, April 1990.

[135] V. Patel and K. Steptoe. Evaluation of self-timed systems for VLSI. Elec-
tronics Letters, 25(3):215–217, February 1989.

[136] D. A. Patterson and C. H. Séquin. RISC I: A reduced instruction set VLSI
computer. In The Proceedings of the 8th International Symposium on Computer
Architecture, pages 443–457, May 1981.

[137] N. C. Paver. The Design and Implementation of an Asynchronous Micro-
processor. PhD thesis, Department of Computer Science, University of
Manchester, UK., 1994.

[138] G. Radin. The 801 minicomputer. In The Proceedings of the Symposium
on Architectural Support for Programming Languages and Operating Systems,
pages 39–47, March 1982.

[139] B. R. Rau and J. A. Fisher. Instruction-Level Parallel processing: History,
overview and perspective. The Journal of Supercomputing, 7(1/2):9–50,
May 1993.

[140] M. Rem. Concurrent computations and VLSI circuits. In M. Broy, editor,
Control Flow and Data Flow: Concepts of Distributed Programming, pages
399–437. Springer-Verlag, 1986.

Bibliography 253

[141] M. Rem. Trace theory and systolic computations. In J. W. deBakker, A. J.
Nijman, and P. C. Treleaven, editors, PARLE: Parallel Architectures and
Languages Europe, volume 1, pages 14–34. Springer-Verlag, 1987.

[142] W. F. Richardson. Architectural Considerations in a Self-Timed Processor
Design. PhD thesis, Department of Computer Science, University of Utah,
UT, USA., February 1996. CSTD-96-001.

[143] W. F. Richardson and E. L. Brunvand. The NSR processor prototype. Tech-
nical Report UUCS-92-029, Department of Computer Science, University
of Utah, USA., 1992.

[144] M. Roncken. Partial scan test for asynchronous circuits illustrated on
DCC error corrector. In The Proceedings of the International Symposium on
Advanced Research on Asynchronous Circuits and Systems (ASYNC’94), Salt
Lake City, Utah, USA, March 1994. IEEE Computer Society Press.

[145] M. Roncken and R. W. Saeijs. Linear test times for delay-insensitive cir-
cuits: A compilation strategy. In S. Furber and M. Edwards, editors, The
Proceedings of the IFIP Working Conference on Asynchronous Design Method-
ologies, Manchester, UK, March 1993. Elsevier Science Publishers.

[146] O. Salomon and H. Klar. Self-timed fully pipelined multipliers. In
S. Furber and M. Edwards, editors, The Proceedings of the IFIP Working
Conference on Asynchronous Design Methodologies, Manchester, UK, March
1993. Elsevier Science Publishers.

[147] K. C. Saraswat and F. Mohammadi. Effect of scaling of interconnections
on the time delay of VLSI circuits. IEEE Journal on Solid-State Circuits,
SC-17(2):275–280, April 1982.

[148] V. Sarkar. Partitioning and Scheduling Parallel Programs for Execution on
Multiprocessors. The MIT Press, 1989.

[149] F. Schalij. The Tangram manual. Technical Report Technical Report UR
008/93, Philips Research Labs Eindhoven, 1993.

[150] C. L. Seitz. System Timing. In C. Mead and L. Conway, editors, Introduc-
tion to VLSI Systems, chapter 7, pages 218–262. Addison-Wesley, 1980.

[151] R. Sethi. Scheduling graphs on two processors. SIAM Journal of Comput-
ing, 5(1):73–82, 1976.

[152] A. Severson and B. Nelson. Throughput in a Counterflow pipeline pro-
cessor. ACM Computer Architecture News, 23(1):5–12, March 1995.

Bibliography 254

[153] J. E. Smith. A study of branch prediction strategies. In The Proceedings of
the 8th International Symposium on Computer Architecture, pages 135–148,
May 1981.

[154] J. E. Smith and A. R. Pleszkun. Implementing precise interrupts in
pipelined processors. IEEE Transactions on Computers, 37(5):562–573, May
1988.

[155] S. P. Song, M. Denman, and J. Chang. The PowerPC 604 RISC micropro-
cessor. IEEE Micro, 14(5):8–17, October 1994.

[156] J. Sparsø, C. D. Neilsen, L. S. Nielsen, and J. Staunstrup. Design of self-
timed multipliers: A comparison. In S. Furber and M. Edwards, editors,
The Proceedings of the IFIP Working Conference on Asynchronous Design Meth-
odologies, Manchester, UK, March 1993. Elsevier Science Publishers.

[157] R. F. Sproull, I. E. Sutherland, and C. E. Molnar. Counterflow pipeline pro-
cessor architecture. Technical Report SMLI TR-94-25, Sun Microsystems
Laboratories Inc., April 1994.

[158] I. E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–
738, June 1989.

[159] S. M. Sze. VLSI Technology. McGraw Hill, 1983.

[160] Y. K. Tan and Y. C. Yim. Self-timed system design technique. Electronic
Letters, 26(5):284–286, 1990.

[161] G. Theodoropoulos. Strategies for the Modelling and Simulation of Asyn-
chronous Computer Architectures. PhD thesis, Department of Computer
Science, University of Manchester, UK., September 1995.

[162] J. E. Thornton. Design of a Computer: The Control Data 6600. Scott Foresman
and Company, 1970.

[163] R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic
units. IBM Journal of Research and Development, 11(1):25–33, January 1967.

[164] I. P. Tzonos. A VLSI library of asynchronous cells. Master’s thesis, De-
partment of Computer Science, University of Edinburgh, Edinburgh, Scot-
land, UK., September 1995.

[165] J. T. Udding. Classification and Composition of Delay-Insensitive Circuits.
PhD thesis, Eindhoven University of Technology, September 1984.

[166] J. T. Udding. A formal model for defining and classifying delay-
insensitive circuits and systems. Distributed Computing, 1:197–204, 1986.

Bibliography 255

[167] N. Ullah and M. Holle. The MC88110 implementation of precise ex-
ceptions in a superscalar architecture. ACM Computer Architecture News,
21(1):15–25, March 1993.

[168] J. Ullman. NP-complete scheduling problems. Journal of Computer and
System Sciences, 10:384–393, 1975.

[169] S. H. Unger. Asynchronous Sequential Switching Circuits. Wiley-
Interscience, John Wiley & Sons, Inc., New York, 1969.

[170] K. van Berkel, R. Burgess, J. Kessels, A. Peeters, M. Roncken, and F. Schalij.
A fully asynchronous low-power error corrector for the DCC player. IEEE
Journal of Solid State Circuits, 29(6):1429–14398, 1994.

[171] K. van Berkel, J. Kessels, M. Roncken, R. W. Saeijs, and F. Schalij. The
VLSI-programming language Tangram and its translation into handshake
circuits. In The Proceedings of the European Design Automation Conference,
pages 384–389, 1991.

[172] J. L. A. van de Snepscheut. Trace Theory and VLSI design, volume 200 of
Lecture Notes in Computer Science. Springer-Verlag, 1985.

[173] R. van de Wiel. High-level test evaluation of asynchronous circuits. In
M. B. Josephs, editor, The Proceedings of the 2nd Working Conference on
Asynchronous Design Methodologies, pages 63–71, London, UK, May 1995.
IEEE Computer Society Press.

[174] T. Verhoeff. Delay-insensitive codes - An overview. Distributed Computing,
3:1–8, 1988.

[175] N. Weste and K. Eshraghian. Principles of CMOS VLSI Design. Addison-
Wesley, Reading, Mass., 1985.

[176] W. A. Wulf. Compilers and computer architecture. IEEE Computer, 14:41–
47, July 1981.

[177] M. Yoeli. Structured design of the control parts of self-timed VLSI systems.
In O. N. Garcia and X. Zhang, editors, The Proceedings of 2nd International
Conference on Computer and Applications, pages 839–841. IEEE Computer
Society Press, 1987.

[178] M. Yoeli. Net based synthesis of delay-insensitive circuits. Technical
Report 609, Department of Computer Science, Technion - Israel Institute
of Technology, Haifa, Israel, February 1990.

Bibliography 256

[179] M.-L. Yu and P. A. Subrahmanyan. Hazard-free asynchronous circuit
synthesis. In S. Furber and M. Edwards, editors, The Proceedings of the IFIP
Working Conference on Asynchronous Design Methodologies, Manchester, UK,
March 1993. Elsevier Science Publishers.

[180] J. Yuan and C. Svensson. High-speed CMOS circuit techniques. IEEE
Journal on Solid-State Circuits, SC-24(1):62–70, February 1989.

