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Abstract 
 

Sphingolipids (SLs) are complex lipid-derived structures that are essential components 

of cell membranes in eukaryotes and some bacteria. SLs and their complex derivatives 

ceramides are known to be involved in multiple processes such as the formation of 

lipid rafts, cell signalling and membrane trafficking.  

The first step of SL biosynthesis is universal to all sphingolipid-producing organisms 

from bacteria to humans and is catalysed by the enzyme serine palmitoyltransferase 

(SPT). SPT is a member of the alpha-oxoamine synthase (AOS) family of pyridoxal-

5’-phosphate-dependent enzymes. All AOS family enzymes retain a high degree of 

structural homology and catalyse the decarboxylative Claisen-like condensation of 

amino acids with thioester substrates. The SPT enzyme catalyses the formation of the 

universal SL precursor, 3-ketodihydrosphingosine (KDS), by condensation of L-serine 

and coenzyme A-derived palmitic acid. Being the key controller in SL biosynthesis, 

SPT plays a big role in regulating natural and pathological processes.  

A lot of research interest has been recently generated by SLs isolated from bacterial 

members of the human microbiome and their roles in human health. Increasing 

evidence suggests that some of these SLs possess immunoregulatory effects and can 

have a direct impact on the immunity of the host. Bacteroides fragilis is a commensal 

gut-dwelling bacterium that belongs to a few human microbionts known to produce 

unique iso-branched sphingolipids (isoSLs); these have been shown to influence the 

human iNKT cell count. The production of SLs in B.fragilis is completely regulated 

by a gene product BF2461. 

In this work, BF2461 was expressed and purified; using a combination of UV-vis 

spectrometry, enzymatic assays, mass spectrometry and protein X-ray crystallography, 

it has been confirmed to be an SPT. The substrate specificity of the BfSPT has been 

assessed with a range of different chain-length substrates, including less common 15 

and 17-carbon chain length coenzyme A substrates. The enzyme can produce different 

types of SL precursors with a preference for the 16-carbon chain substrate palmitoyl-

CoA. However, at high levels of PCoA, a substrate inhibition is observed that might 
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point to a natural control mechanism employed by the bacterium in favour of 

producing iso-branched SLs (isoSLs).  

The structure of BfSPT has been elucidated in a complex with its amino acid substrate 

L-serine. Search and analysis of putative SPTs from other microbiome-associated 

bacteria that produce isoSLs show that they share high similarity with an average 

amino acid conservation of 74%, suggesting they might be adapted to a particular type 

of substrate. In this respect, BfSPT might be the first isoSL-producing SPT to be 

structurally characterised, and the first one to have a direct impact on human health.    

Further structural data were obtained on protein complexes with L-cycloserine and L-

penicillamine, some common inhibitors of the PLP-dependent enzymes. The structure 

obtained in the presence of L-penicillamine provides the first direct structural evidence 

of the inhibitory mechanism by a thiazolidine complex formation in the active site of 

a PLP-dependent enzyme. These findings shed light on certain aspects of the reaction 

and inhibition mechanisms of BfSPT as well as opening new prospects into researching 

this interesting target and its impact on the human microbiome. 
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1.1. Introduction to sphingolipids and their general features 
 

Sphingolipids (SLs) are a diverse class of lipid molecules made of sphingoid or long-

chain bases (LCB). Structurally LCBs consist of amino alcohols with a long 

hydrocarbon chain (a typical example being sphingosine, Fig.1.1). LCBs attach to a 

fatty acid via the amide linkage to produce ceramides, the simplest class of SLs that 

are further derivatised into more complex molecules. Acting as both structural 

components of cell membranes and signalling factors, SLs are responsible for a broad 

range of functions, not only enabling cell integrity but also being involved in cell 

signalling (Merrill, 2011; Fahy et al., 2005).  

SLs are essential components of cells in all eukaryotes, however absent in most 

prokaryotes. While there is a high diversity of complex sphingolipids amongst various 

living organisms, they all share very common initial stages of biosynthesis with the 

first gateway step being universally catalysed by the serine palmitoyltransferase 

enzyme (SPT). 

Sphingoid bases are defined as long-chain aliphatic amino-alcohols with their general 

structure usually represented by sphingosine (D-erythro-sphingosine, Fig.1.1). The 

molecule of sphingosine contains an 18-carbon chain with two alcohols (on C1 and 

C3, R- configuration), amine at C2, S- configuration, and E-double bond at C4. 

Another example of a major sphingoid base is sphinganine (Pruett et al., 2008). 

There are numerous variations in structures of sphingoid bases that include the length 

of the chain, branching, presence and positions of certain head groups or non-saturated 

bonds. Appearance of specific sphingoid bases in the composition of SLs differs across 

taxonomic orders; one example being the higher proportion of phytosphingosine (4-

hydroxysphinganine) in plants and fungi (Lynch et al., 2004). SL composition can also 

vary in different cells and tissues of one organism. The molecular differences between 

sphingoid bases govern certain types of interactions that have direct effects on the 

constituent state of biological membranes (Jaakishan et al., 2010; Kraft, 2017). It is 

generally acceptable to use the shorthand nomenclature for SLs stating the number of 

carbon atoms on their chains and number of unsaturated bonds; ceramide, for example, 
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is presented as d18:1/16:0 as seen on Fig.1.1.1; the unsaturated bond is assumed to be 

present at position 4 (Merrill, 2011; Fahy et al., 2005). 

The most common mammalian SLs have their main chain lengths of 16 and 18 carbons. 

Odd linear chain lengths (17 and 19 carbons) containing branched alkyl chains have 

been detected in trace amounts in mammals (Carter & Hirschberg, 1968) while being 

more common in lower organisms. Most of these sphingolipids are thought to be the 

derivatives of fatty acids that are iso-branched, by having a methyl group on the 

penultimate carbon, or anteiso-branched, by having a methyl group on a carbon third 

from the end (Kaneda, 1991). Examples of species producing branched sphingolipids 

include the nematode worm Caenorhabditis elegans (Chitwood et al., 1995), bacteria 

from Bacteroides genus (Wieland Brown et al., 2013) and dental pathogen 

Porphyromonas gingivalis (Mun et al., 2007). Less frequent is branching in the middle 

of the LCB chain, one example being methylation occurring at C9 of glucosylceramide 

in Pichia pastorris (Ternes et al., 2006). 

 

Fig. 1.1.1. The chemical structures of some sphingoid bases. Sphingosine (a) and sphinganine (b) are 

the two most common sphingoid bases in the majority of organisms except for plants and fungi that 

have the highest amounts of phytosphingosine (c). Iso 3-ketodihydrosphingosine (d, isoKDS) and 

deoxysphinganine (e, deoxyKDS) are two unusual products of SPT reactions. Several bacteria and 

nematode C.elegans produce iso-branched SLs, with isoKDS (d) being a proposed universal precursor. 

Deoxysphinganine (e) produced by a non-specific condensation of alanine and PCoA by SPT, is 

associated with several disorders such as HSAN type I and type 2 diabetes. The simplest type of 

sphingolipid is ceramide (f), made by condensation of a sphingoid base and a fatty acid base. 
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Branching of sphingolipids is reported to affect increasing membrane fluidity 

(Jaikishan et al., 2010); more importantly, branching modifications are thought to play 

a role in pathogen-host interactions, with the former protecting itself by bearing unique 

signature molecules not recognised by the latter (Buist, 2007).  

Deoxy-sphingoid bases made due to a non-specific SPT-catalysed condensation of 

alanine instead of serine, are accumulated as toxic by-products and are associated with 

several disease conditions including rare genetical Hereditary sensory autonomous 

neuropathy type I (HSAN I), type 2 diabetes and Alzheimers (Duan & Merrill, 2015). 

1.2. General mechanism of de novo sphingolipid biosynthesis 
 

To appreciate how the vast abundance and diversity of sphingolipids arises it is 

necessary to look at the general mechanism of sphingolipid biosynthesis (Fig. 1.2.1).  

The first universal step in sphingolipid biosynthesis involves condensation of L-serine 

with the coenzyme A-derived palmitic acid (palmitoyl-CoA) that is catalysed by the 

enzyme serine palmitoyltransferase (SPT). The product is the first sphingoid base 3-

ketodihydrosphingosine (KDS); it is further processed via a cascade of modifications. 

Free sphingoid bases are usually present in small quantities as their accumulation is 

often cytotoxic; they are rapidly converted into ceramides - the simplest class of SLs 

consisting of a sphingoid base N-linked to a fatty acid (with the ceramide being a 

typical example) (Castro et al., 2014). 

Ceramides themselves are an important and diverse class of SLs regulating membrane 

segregation and transport; they also have a profound effect on cell metabolism. Either 

an overproduction or deficiency of ceramides has been associated with numerous 

complex disorders such as obesity, diabetes, coronary heart diseases and cancer 

(Bikman & Summers, 2011).  

Furthermore, ceramides are at the central point of the biosynthesis of sphingolipids as 

they are further converted into more complex SLs such as phosphosphingolipids 

involved in cell signalling, glycosphingolipids that act as cellular receptors and 

sphingomyelins that provide cover for the nerve cells (Fig. 1.2.1). Ceramides can also 

be converted back into simple sphingoid bases such as sphingosine; these, in turn, are 
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further used for a production of novel SLs or smaller signalling molecules such as 

sphingosine 1-phosphate (S1P), which is an important lipomediator.   

The yeast biosynthetic pathway differs from the mammalian as certain points; most 

notably it uses phytosphingosine (4-hydroxysphinganine) as the main sphingoid base 

(Lynch et al., 2004). Yeast has served as a useful model organism for the study of SL 

biosynthesis and genetics (reviewed by Dickson, 2008). Several enzymes involved in 

the production of bacterial sphingolipids have been identified; however, the 

components of the full pathway so far have not been elucidated (Merrill, 2002; Merrill, 

2011).   

 

Fig. 1.2.1. A simplified general diagram of the sphingolipid biosynthesis in multicellular eukaryotes.    
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1.3. Chemistry of the pyridoxal 5’-phosphate (PLP) 
 

Vitamin B6 is the general name given to a range of pyridine compounds and their 

phosphate derivatives (Fig. 1.3.1). These are precursors of biologically activated 

pyridoxal 5’-phosphate (PLP) - one of the most ubiquitous natural cofactors used by 

more than 160 enzymes (Percudani & Peracchi, 2003). 

 

Fig. 1.3.1. Derivatives of vitamin B6 including pyridoxal 5’-phosphate 

PLP-dependent enzymes are involved in a diverse range of amino acid reactions 

including transamination, decarboxylation, racemisation, substitution and elimination 

(reviewed by Metzler et al., 1954; Toney, 2005). Beyond this diversity lies a unifying 

principle first outlined by Dunathan, 1966.  

In the active site of an enzyme, the PLP cofactor makes an internal aldimine bond via 

a Schiff base formation with a catalytic lysine residue. Upon binding of the amino acid 

substrate, a transaldimination reaction leads to a production of the PLP-substrate 

external aldimine. The universal stage in all PLP-catalysed reactions involves a group 

loss from the Cα of the bound amino acid. The reaction transition state assumes the 

so-called Dunathan intermediate (Fig 1.3.2), a geometric configuration where the Cα-

R bond to-be broken is aligned perpendicularly to the PLP-aldimine plane. The overlap 

of the sigma bond with parallel pi orbitals causes hyperconjugation effect with the 

electronic density being withdrawn into the π-system. This weakens the sigma bond 

allowing it to be ultimately broken. Upon the departure of the leaving group R, the 

developing negative charge on the Cα is stabilised by the electron-withdrawing effects 

of PLP leading to a progression to the quinonoid transition state. The exact geometrical 
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configuration of the remaining groups around Cα in respect to the bond broken is what 

determines the type of reaction to occur (Dunathan 1966). This stage is a basis for the 

diversity of PLP catalysis as it determines the reaction type – either racemisation, 

substitution or elimination. The further reaction progression route is determined by the 

properties of an enzyme imposing certain specific 3D environment at the active site 

(Toney, 2011).  

 

Fig. 1.3.2. The Dunathan intermediate formed by the PLP-amino acid external aldimine 

 

The reaction specificity is therefore controlled by the enzyme which provides a spatial 

environment regulating the initial substrate binding and conformation of the groups 

around the Cα of the substrate. This is achieved by the specific residues around the 

active site. As proposed by Dunathan, the major factor in controlling the reaction 

specificity is the stabilisation of the substrate carboxylate group provided by the 

enzyme backbone.    

In conclusion, enzyme architecture regulates the exact type of amino acid substrate 

that can bind to the PLP cofactor; it further determines the orientation of the substrate 

in the transition state, thus leading to a control of reaction specificity. (Eliot & Kirsch, 

2004).  
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Fig. 1.3.3. The lysine-bound internal aldimine is present in two tautomeric forms, the enolimine (338 

nm) and ketoenamine (426 nm). The quinonoid intermediate has the absorbance maxima at 500 nm.   

 

The ability of the PLP cofactor to absorb in the near UV and visible spectrum is a 

significant advantage in studying of the PLP-dependent enzymes. Depending on a 

localisation of the proton, the PLP is present in two isoforms – enolimine and 

ketoenamine, absorbing at 338 and 426 nm respectively (Fig. 1.3.3). The equilibrium 

between these tautomeric forms changes upon the substrate binding, allowing spectral 

changes to be quantitatively monitored. The activated enzyme quinonoid intermediate 

species generally absorb around 500 nm (although this might vary), in some cases this 

enables detection of the transient intermediate during the reaction by means of UV-vis 

spectrophotometry.   
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1.4. Serine palmitoyltransferase (SPT) 
 

For all known SL-containing organisms the first step in de novo sphingolipid 

biosynthesis is a Claisen-like condensation between the long-chain thioester 

(palmitoyl-CoA) and the amino acid L-serine yielding a sphingoid base 3-

ketodihydrosphingosine (KDS) as the product (Fig. 1.4.1). This reaction is catalysed 

by the enzyme serine palmitoyltransferase (SPT).  

 

Fig. 1.4.1. Production of KDS from L-serine and palmitoyl-CoA by SPT 

 

The above definition applies to most SPT-catalysed reactions including mammalian, 

yeast and Sphingomonas paucimobilis bacterial enzymes. However, the actual 

substrates and reaction products might vary either due to a natural preference for other 

substrate molecules in some organisms or due to particular mutations in SPT (such as 

the ones resulting in HSAN1 phenotype discussed later). As one of the purposes of 

this work is to gather and analyse the variety of substrates accepted by SPT, a broader 

definition of the SPT-catalysed reaction must be given to cover most of the cases. It is, 

therefore, can be described as decarboxylative Claisen-like condensation of acyl-

derived long chain thioester and an amino acid that results in the formation of a 

sphingoid base as a product. 
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1.5. Eukaryotic and bacterial SPTs 
 

Eukaryotic SPT is a complex membrane-associated enzyme composed of two major 

subunits LCB1 and LCB2 in yeastб with homological SPTLC1 and SPTLC2/3 in 

human (Weiss and Stoffel, 1997, reviewed by Lowther et al., 2012b); for clarity human 

subunits are referred to as hLCB1/hLCB2. The eukaryotic enzyme is a heterodimer 

with subunit hLCB2 bearing the catalytic Lys, while hLCB1 provides other residues 

involved in catalysis (Hanada et al., 2000b). Since its initial characterisation, smaller 

subunits of human enzyme ssSPTa and ssSPTb were discovered, presence of which is 

required for an increased activity of the main hLCB1/hLCB2 (Gable et al., 2000; Han 

et al., 2009) as well as a different type of the main subunit SPTLC3 (Hornemann et al., 

2006), showing that eukaryotic SPT is a higher order heterodimeric complex. 

Expression and purification of eukaryotic SPT is, therefore, associated with numerous 

issues of solubility, and no structural information has been obtained so far. The notable 

exception is the SPT of a protozoan parasite Toxoplasma gondii, as up to date it has 

been the only eukaryotic SPT known to consist in a homodimeric form that is thought 

to be obtained via lateral gene transfer from bacteria (Mina et al., 2017).  

In contrast, SPTs from sphingolipid-producing bacteria have become effective study 

models. SPT from the bacterium Sphingomonas paucimobilis was first identified and 

isolated by Ikushiro et al. in 2001. Unlike its eukaryotic counterpart, it is a readily 

soluble homodimer without membrane-associated domains. Due to the abundance of 

information, both structural and mechanistic, it remains an attractive target for 

studying the SPT mechanism.  

The structures of two bacterial SPTs were determined by the Campopiano group in 

collaboration with the Jim Naismith group (St Andrews). SPT from S.paucimobilis 

was the first ever serine palmitoyltransferase to be structurally characterised in the 

PLP-bound holo- (Yard et al., 2007; pdb 2JG2) and the external aldimine form (Raman 

et al., 2009; pdb 2W8J), followed by the Sphingomonas wittichii SPT in the internal 

aldimine (Raman et al., 2010; pdb 2X8U). The structure of another SPT from 

Sphingobacterium multivorum was determined in the external aldimine form by 

Ikushiro et al. in 2009 (pdb 3A2B). Several other bacterial SPTs have been found and 
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characterised, including the membrane-associated SPT from Bdellobacterium stolpii 

(Ikushiro et al., 2007).  

In B.fragilis, the gene BF2461 (reclassified into BF9343_2380 thereafter, for 

simplicity referred by the old name in the text) has been annotated as a putative SPT 

(57.4% seq. identity with S.multovorum SPT and 35.3% with S.paucimobillis SPT) 

and has been successfully targeted to generate SL-deficient organisms (Wieland 

Brown et al. 2013; An et al., 2014). Identical effects have been achieved in P.gingivalis 

upon deletion of homologous gene PG1780, resulting in SL deficiency and impaired 

survival of the strain (Moye et al., 2016). Furthermore, B.fragilis cells grown in the 

presence of myriocin, a known SPT inhibitor (Wadsworth et al., 2013) have also been 

SL-deficient (An et al., 2011).  

 

The BF2461 gene product from B.fragilis has been previously cloned, expressed and 

purified in the Campopiano group and confirmed to have an SPT activity (E.Bower, 

MRes thesis); one of the main aims of this work was processing and characterising this 

BfSPT further.  
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1.6. The structure and the catalytic mechanism of SpSPT 
 

S.paucimobilis SPT (SpSPT, pdb 2JG2) presents a homodimer with two active sites 

located at the domain interfaces (Fig. 1.6.1, A). It consists of three domains, the N-

terminal, the central catalytic and the C-terminal (Yard et al., 2007). The PLP cofactor 

molecule in the active site is bond via the internal aldimine linkage to the catalytic 

Lys265 residue. Conserved residues His159, His234 and Asp239 (Fig 1.6.1, B) are 

involved in the stabilisation of the pyridine ring of PLP and are crucial for the activity 

of the enzyme (Fig 1.6.1, bottom). As stabilisation of the phosphate group of PLP has 

been shown to have a significant impact on the activity of SPT, residues involved in a 

formation of so-called “phosphate cup” – the hydrogen bonding network around it are 

also important (Beattie et al., 2013a). Arg378 and Arg390 (Fig 1.6.1, C) are two 

essential residues in the catalysis of the SpSPT as both assist stabilisation of the 

carboxylate of L-serine at different stages of the reaction mechanism (Lowther et al., 

2011).  Arg 378 performs a conformational switch upon binding of L-serine and 

stabilises the carboxylate group of the external aldimine form. Arg 390 is involved in 

stabilisation of the reaction transition state and assisting decarboxylation.    

His159 located in parallel to the PLP pyridine and is crucial for positioning of the 

cofactor. It also assists stabilisation of the carboxylate group of the external aldimine 

substrate (Fig. 1.6.1, C). The essential role of His159 is highlighted by the fact that 

replacement of the residue with alanine increases the Kd of L-serine by 55-fold and 

KM by 10-20-fold; substitution of His159 with aromatic amino acids yields 

functionally inactive enzyme (Shiraiwa et al., 2009).  
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A 

 

B

 

C  

 

 

Fig.1.6.1. A: Structure of the S.paucimobilis SPT in PLP bound internal aldimine holo-form (pdb 2JG2). 

Bound PLP is shown as spheres. B: The SpSPT in the PLP-bound internal aldimine form (pdb 2JG2). 

C: The external aldimine form of SpSPT with the PLP bound to L-serine (pdb 2W8J). 
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The proposed mechanism of SPT reaction proceeds via the general Claisen-like 

condensation of L-serine and PCoA (Fig. 1.6.2) to yield KDS. The holo-enzyme has 

PLP bound to the catalytic Lys via an internal aldimine linkage (i). The amino acid 

substrate L-serine replaces Lys265 via transaldimination reaction. Upon formation of 

the external aldimine (ii), His159 forms a hydrogen bond with the carboxyl group of 

L-serine (Raman et al., 2009).  

In the presence of palmitoyl-CoA, L-serine performs a rotational change into the 

Dunathan conformation (iii) where the Cα-H bond is located perpendicular to the 

imine bond and the pyridine ring of PLP. This is followed by the deprotonation of the 

Cα proton by Lys265. The deprotonation has been shown to occur in the absence of 

the second substrate as well but is 100-fold slower (Ikushiro et al., 2008).  

 

Fig. 1.6.2. The proposed reaction mechanism of SPT 

Upon deprotonation of the Cα, the reaction proceeds via generation of reactive 

quinonoid intermediate (iv) that attacks the electrophilic carbonyl of the PCoA, 
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causing the formation of β-ketoacid intermediate (v). The following decarboxylation 

is assisted by interaction with R390 that is thought to stabilise the leaving carboxyl 

group. Upon the KDS-release step, the enzyme is recovered to the internal aldimine 

structure (i).   

S.paucimobilis SPT accepts palmitoyl-CoA as its primary acyl-CoA substrate, 

although it can also utilise acyl-CoAs with different lengths of carbon chains such as 

myristoyl- (C14) and stearoyl-CoA (C18) (Reviewed by Hanada, 2003). Wild-type 

SPT strictly accepts L-serine as its first substrate, although mutated forms of human 

SPT are known to use L-alanine as a substrate leading to accumulation of toxic by-

products (Penno et al., 2010). 

1.7. Inhibition of SPT 
 

Several natural inhibitors of SPT have been studied up to date, each revealing features 

of the enzyme reaction mechanism. The structures of some inhibitors are presented in 

the Figure 1.7.1. 

 

Fig. 1.7.1. Structures of the substrate L-serine and various known inhibitors of SPT 

SPT is sensitive to the stereometrical configuration of the substrate. D-serine has been 

reported as a weak competitive inhibitor, being able to form an external aldimine with 

PLP. However, it cannot be utilised by SPT as substrate as a subsequent addition of 

PCoA to the reaction does not lead to production of KDS. It is likely that the position 

of hydrogen on Cα is crucial for deprotonation (Hanada et al., 2000a; Ikushiro et al., 

2003). 
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L-cysteine and L-penicillamine, its non-proteinogenic dimethyl amino acid derivative, 

resemble serine with the hydroxyl group replaced by thiol. Both inhibit SPT via 

formation of covalent adducts with PLP (Hanada et al., 2000c); this is reflected by 

changes in the spectral profile of enzyme. The inhibition is reversible,[ as SPT activity 

can be restored by dialysis with fresh PLP, indicating that no covalent modification of 

the protein is present. (Lowther et al., 2012a). 

L-cycloserine, a natural product that resembles a cyclic version of serine, is also known 

to reversely inhibit PLP-dependent enzymes by a formation of isoxazole adducts 

(Peisach et al., 1998; Azam & Jayram, 2016). Surprisingly, inhibition of SPT with both 

D- and L- enantiomers of cycloserine reveals the formation of pyridoxal 

monophosphate (PMP) and an aldehyde product. This indicates a specific inhibitory 

mechanism for SPT involving hydrolytic ring opening on cycloserine with a 

subsequent decarboxylation and the amide bond hydrolysis (Lowther et al., 2010). 

β-chloroalanine (BCA) is known as a suicide inhibitor forming an irreversible covalent 

adduct with the PLP-dependent enzymes (Medlock & Merrill, 1988). The proposed 

mechanism involves elimination of chloride and formation of aminoacrylate complex 

(Fig. 1.7.2). Upon release of the product, the reaction can proceed via two routes: the 

aminoacrylate is either hydrolysed to pyruvate and ammonia or inactivates the internal 

aldimine complex by a nucleophilic attack. The partition ratio between both reactions 

is 300:1; in the first case the catalytic cycle continues, while in the second, inactive 

complex is formed with a characteristic absorption at 330 nm (Ikushiro et al., 2004).  
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Fig. 1.7.2. The proposed inhibitory mechanism of PLP-dependent enzymes by β-chloroalanine. 

 

Natural fungal product myriocin is the most commonly used SPT inhibitor in the 

studies of SL biosynthesis in all organisms (Chen et al., 1999). Its mechanism of 

inhibition was revealed by Wadsworth et al., 2013. Both mass spectrometry and 

structural data had shown that myriocin acts as a dual-mode inhibitor, firstly, by 

making a stable PLP adduct that can be reversely removed, and secondly, by slow 

degradation into C18- aldehyde containing species that condense with the active site 

lysine leading to an irreversible “suicide” inhibitory complex. 

One of the most recent molecules reported to have inhibitory effects on AOS members 

is a natural plant compound plumbagin (Choi et al., 2012). It was successfully used to 

stop the synthesis of a natural product curvulamine in Curvularia sp, likely by 

inhibiting a novel, unknown enzyme from the AOS family (Han et al., 2014). Up to 

date, there were no studies proposing the inhibitory mechanism, although its structure 

shows a brief similarity with PLP. It would be interesting to investigate any possible 

effects of plumbagin and its inhibitory mechanism using bacterial SPT as a model. 

Characterisation and study of SPT and other AOS family enzyme inhibitors can help 

to shed more light on the reaction mechanism and specificity of SPT. In this work, 

structural studies of SPT with D-Serine, L-penicillamine and L-cycloserine were 

attempted. Despite lack of the progress to obtain crystal data the with D-serine bound, 
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co-crystallisation studies of SpSPT have revealed some interesting observations with 

regards to resolution of the substrate, thus pointing to what could be a previously 

overlooked property of the enzyme. Furthermore, structural data obtained on BfSPT in 

the complex with L-penicillamine reveals evidence of the inhibitory mechanism as 

well as points towards the residues involved in the enzyme catalysis.   
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1.8. Sphingolipid metabolism in health and disease 
 

Sphingolipids are essential components of the cell membrane and their production is 

essential in most eukaryotes. Studies targeting the sphingolipid biosynthesis pathways 

in different organisms show that while simple organisms, such as yeast and C.elegans, 

are viable without production of SLs, in higher eukaryotes they are essential for 

survival.  

Studies of both B.fragilis (Wieland Brown et al., 2013; An et al., 2014) and 

P.gingivalis (Moye et al., 2016) demonstrated that bacteria can survive without making 

SLs, although their stress coping abilities and long-term survivability are impaired. 

Removal of SPT-encoding gene LCB1 in yeast S.cerevisiae results in the development 

of sphingolipid-deficient cells that are unable to control proton influx and thus are 

highly compromised at lower pH (Pinto et al., 1992). 

Deletion of serine palmitoyltransferase gene results in lethal phenotypes in organisms 

such as Drosophila (Adachi-Yamada et al., 1999) and mice (Hojjati et al., 2005), 

unless sphingoid bases are supplemented externally. This evidently shows a 

dependence of higher organisms on de novo sphingolipid biosynthesis. 

In mammals, sphingolipids are part of the diet; however, most SLs are degraded in the 

intestine, while only a fraction is used for biosynthesis (Schmelz et al., 1994). It is 

likely that dietary SLs are prevented from being incorporated into the synthetic 

pathway, as otherwise a complex mechanism would be necessary for selection of the 

appropriate bases present in given species (Vesper et al., 1999). 

While mutations that completely disrupt the activity of SPT in humans are lethal, 

minor missense mutations can reduce the activity of SPT and change its specificity. 

The most common example of this is a rare genetic disorder known as hereditary 

sensory autonomous neuropathy type I (HSAN I) that leads to a progressive sensory 

loss as well as the development of ulcers and limb pathologies. The condition is caused 

by mutations in the hLCB1 subunit of human SPT (Dawkins et al., 2001). Along with 

reducing the overall activity of SPT, HSAN I-associated mutations allow the enzyme 

to process L-alanine as a substrate, ultimately leading to a build-up of toxic 

deoxysphingolipids (Penno et al., 2010). Several disease-related mutations have been 



31 
 

studied and characterised using bacterial SPT as a model of human SPT. The effects 

include general reduction of SPT activity, reduction of substrate affinity and 

production of non-soluble protein (Raman et al., 2009; Beattie et al., 2013b), although 

the mutant enzymes did not yield a deoxyKDS-producing phenotype. Studies used 

homology modelling based on the 3D structure of bacterial SPT have led to the 

production of mutants of the mammalian SPT that can generate deoxy-products (Gable 

et al., 2010; Bode et al., 2016).  

More importantly, deoxysphingolipids associate not only with a rare HSAN I 

condition but also with more common disorders such as type II diabetes and metabolic 

dysfunction syndrome (Kowluru, 2014). Deoxysphingolipids are now used as specific 

biomarkers for these disorders (Othman et al., 2015). The accumulation of deoxySLs 

causes cytotoxic effects and impacts the insulin-producing cells. Targeting the build-

up of these toxic metabolites could potentially form a basis for a novel therapy against 

type II diabetes; therefore, studies of SPT reaction specificity could provide a key 

milestone towards it.  
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1.9. Bacteroides fragilis 
 

The human body is colonised by numerous bacteria species that, being either 

commensal, symbiotic or pathogenic, all together make up the human microbiome. 

Bacteria play a considerable part in human metabolism, immunity and protection 

against disease (reviewed by Reid, 2004). Organisms from Bacteroides genus are the 

most populous group of the human gut commensals making up to total 25% of the gut 

microflora (reviewed by Wexler, 2007). Despite not being the most abundant, 

B.fragilis is one of the species amongst the genus that draws most of the attention. 

Being part of the healthy human microflora, this gram-negative obligate anaerobe at 

certain conditions is often reported as a case of an opportunistic infection.  

Enterotoxigenic strains of B.fragilis (ETBF) have been linked with diarrhoea, 

inflammatory bowel disease and colon cancer (reviewed by Sears, 2009). The 

pathogenic effect of B.fragilis is contributed by two virulence factors: the bacterial 

capsule that is linked to abscess formation, and a specific protein toxin fragilysin. The 

latter one is a broad-spectrum metalloprotease that, in its active form, degrades E-

cadherin receptors on the human gut epithelium, thus contributing to bacterial 

permeability into tissues (Goulas et al., 2011). 

An even more striking feature of B.fragilis is its advanced role in modulation of the 

host’s immune system. It produces a range of specific polysaccharides that initiate 

conversion of CD4 cells and subsequent production of anti-inflammatory cytokines in 

humans. Although this response is also related to bacterial pathogenicity, under normal 

conditions it is beneficial to the host, as it prevents gastrointestinal inflammation. 

Furthermore, the transplantation of B.fragilis to a deficient animal host was shown to 

prevent and even eliminate the symptoms of induced colitis (Mazmanian et al., 2008). 

As a commensal organism, B.fragilis is plays a role in regulating favourable conditions 

in the human intestine that lead to maintenance of a healthy bacterial microflora 

(reviewed by Surana and Kasper, 2012). 

The most interesting aspect in the context of this review is that B.fragilis is one of the 

bacteria that produce sphingolipids in the human body. These SLs bring a unique 

molecular signature by being iso-branched on the end of their long carbon chain. 

Furthermore, compelling evidence suggests that functions of these bacterial isoSLs are 
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not limited to serving as a membrane building blocks; they also act as signalling factors 

with an impact on the host’s immune system. The significance of these iso-branched 

sphingolipids is discussed in the next chapter.  

  

1.10. Bacterial iso-branched sphingolipids in the human microbiome  
 

While most of the fatty acids in bacteria are present in a straight-chain form, 

occurrence of less common branched-chain fatty acids is known for about 10% of 

bacterial species, amongst a few of which are the Bacillus, Sphingobacterium spp. 

(reviewed by Kaneda, 1990), and Bacteroides (Mayberry, 1980). 

The branched fatty acids are produced from α-keto acids that are derivatives of valine, 

leucine and isoleucine. These fatty acids serve as precursors of phospholipids, having 

an impact on the bacterial cell membrane fluidity (Kaneda, 1977); they also appear to 

be the precursors in the biosynthesis of the branched sphingolipids in bacteria. The 

presence of the iso-branched SLs (containing a methyl group at the pre-terminal carbon 

of the LCB) has been detected in the soil-dwelling Sphingomonas spp. (Naka et al., 

2003). Despite this, however, the biological roles of isoSLs in Sphingomonas spp. are 

not fully understood.  

On the other hand, much of the recent interest is caused by the bacteria from the human 

microbiome that are associated with the production of isoSLs due to increasing 

evidence of their impact on human health (Heaver et al., 2018). 

The iso-branched sphingolipids are not known to be made by humans or mammals; 

their presence in human tissue isolates can be traced to five bacterial genera of 

Bacteroides, Parabacteroides, Prevotella, Tannerella and Porphyromonas (Kato et al., 

1995; Nichols et al., 2011); the former four being present in the human gut while the 

last one being a dental pathogen. While the exact functions of these bacterial 

sphingolipids have not been fully elucidated yet, the compelling evidence shows their 

involvement in intracellular signalling and mediating host immune cell response.  

Porphynomonas gingivalis, a dental pathogen responsible for periodontal disease, 

produces a range of ceramides that are found in affected dental tissues and thought to 



34 
 

stimulate inflammatory responses (Nichols et al., 1998). Specific sphingolipid 

fractions isolated from diseased tissues have been shown to induce autoimmune 

reactions in a mouse model (Nichols et al., 2009). Mass spectrum analysis has 

identified that sphingolipids produced by P.gingivalis are composed of iso-branched 

sphingoid bases (Nichols et al., 2004; Nichols et al. 2006, Mun et al., 2007). Deletion 

of the gene PG1780 that encodes a putative SPT of P.gingivalis was shown to produce 

viable organisms, while their survival and stress response was impaired (Moye et al., 

2016).  

Bacteria colonising the gut are the largest group of SL-producing organisms in the 

human body. Due to its relevance in human health, Bacteroides fragilis also remains 

one of the most studied SL-producing organism in the human gut. While the presence 

of sphingolipids in B.fragilis was detected in the late 1970s, (Miyagawa et al., 1979), 

their functional importance has been highly underexplored until several recent studies. 

In 2011, An et al. produce sphingolipid-deficient cells of B.fragilis by chemical 

targeting of serine palmitoyltransferase, showing that the resulting cultures are viable, 

although they have lower resistance against the experimentally induced stress. The 

authors propose that SLs protect the cells by directly being the key components of 

membrane domains and also composing the signalling factors. 

Further, in their major work, Wieland Brown et al., 2013, made an extensive structural 

mass analysis of B.fragilis sphingolipids, all of which are composed of iso-branched 

LCBs. Most importantly, amongst the bacterial SLs authors detected an analogue of 

α-galactosylceramide (α-GalCer, shown in figure 1.10.1) - a potent inducer of the 

invariant natural killer T cells (iNKT), initially known to be produced by a marine 

sponge (Bendelac & Savage, 2007). It has been proposed before that α-GalCer can be 

present in the human body in some form based on its high specificity towards the 

human immune cell receptors (Brossay et al., 1998). While earlier α-GalCer was found 

in the soil-dwelling Sphingomonas (Kinjo et al., 2005) where it has demonstrated the 

ability to activate iNKT cells, its presence in B.fragilis, a human commensal bacterium, 

is more significant due to a potential direct health impact.  
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Using immunology assays, Wieland Brown et al., 2013, showed that α-GalCer from 

B.fragilis activates both mouse and human iNKT cells, thus establishing a link towards 

the human immune regulation.  

 

Fig. 1.10.1. The structure of α-galactosyl ceramide isolated from B.fragilis contains iso-branched fatty 

acid and sphingoid bases. 

 

An et al., 2014, found that the total extract of B.fragilis SLs provides overall 

antagonistic effects on the gut receptors, thus increasing proliferation of iNKT cells; 

SL extracts of B.fragilis have been shown to provide protection against experimentally 

induced colitis in germ-free mice.   

In several of the above studies, the authors have been targeting bacterial SPTs to 

investigate the impact on the SL-biosynthesis. Deletion of BF2641 in B.fragilis 

produced SL-deficient organisms (Weiland Brown et al., 2013; An et al., 2014) with 

similar results reported upon targeting the analogous gene PG1780 in P.gingivalis. 

Furthermore, B.fragilis cells grown in the presence of myriocin are also SL-deficient 

(An et al., 2011).  

The study of sphingolipids in human microbiome remains a new and stimulating area 

of research. It is likely that SLs are one of the means of establishing evolutionary long 

microbiome-host interactions. While the specific roles of the iso-branched SLs 

produced by human microbiome bacteria are yet to be fully understood, their overall 

complexity and impact on human homeostasis are evident (Heaver et al., 2018).  

However, what remains likely from the above evidence, is that the production of 

isoSLs in the bacteria from human microbiome can be totally controlled at the first 

rate-determining step catalysed by serine-palmitoyl transferase (SPT). This highlights 

the importance of BfSPT as a study model for the enzymes controlling the isoSL-

production in the human microbiome.   
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1.11. Iso-branched sphingolipids in Eukaryotes 
 

Apart from the bacteria, C.elegans, a free-living nematode that is a common research 

model in biology, produces iso-branched fatty acids and SLs (Chitwood et al., 1995). 

SLs in C.elegans are critical for postembryonic development (Zhu et al., 2013); they 

provide an influence on ageing. Studies of the SL-deficient organisms show that they 

have slower developmental rates, but their lifespan increases (Cutler et al., 2014).  

A recent study by Hannich et al., 2017, outlined the biosynthetic route in the 

production of the iso-branched fatty acids in C.elegans (Fig.1.11.1). By using heavy 

carbon amino-acid labelling, authors showed that the amino acid leucine is 

incorporated into branched-chain acyl-CoA via an α-ketoacid route, it then enters 

several cycles of fatty acid chain elongation. Authors detected two types of sphingoid 

bases by MS: C17-iso-sphinganine and C17-iso-deoxysphinganine (iso-branched 

analogues of the straight-chain sphinganine and deoxysphinganine). This suggests that 

the acyl-CoA substrate of C.elegans SPT is isopentadecanoyl-CoA, while the observed 

products are being made by its condensation with serine and alanine respectively. 

Similar mechanisms of iso-branched fatty acid production are thought to be present in 

bacteria (Kaneda, 1977). It is likely that the isoSL-producing bacteria in the human 

microbiome, including B.fragilis, have a similar route and make the isopentadecanoyl 

CoA (isoC15-CoA), that is used as a precursor in the biosynthesis of SLs. 

In analogy to deoxysphingolipids, iso-sphingolipids are not metabolically processed 

by normal SL-producing organisms. Complementation of SL-deficient C.elegans with 

a straight chain SLs is not compatible with the metabolism of the worm; furthermore, 

an addition of isoSLs to an SL-deficient yeast S.cerevisiae does not support the growth 

of the cells and is toxic (Hannich et al., 2017). Incompatibility with the straight-chain 

SLs was recently used as a protection mechanism against plant-parasitic nematodes by 

Gao et al., 2016, demonstrating that non-branched sphingoid bases can induce 

nematocidal effects. These findings further highlight the importance of chemical 

differences between the straight-chain and iso- SLs. Iso-branched SLs have been 

discovered in parasitic nematodes, namely Ascaris suum living in a pig intestine 

(Lochnit et al., 1997). As parasitic nematodes share the same environment as the 

isoSL-producing bacteria in the mammal body, it might be more than a coincidence 
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that these species have adopted the use of isoSLs and could indicate a co-evolutionary 

strategy being adopted by the parasites in both utilising available food sources and 

protecting themselves from the host’s immune system. 

  

 

 

Fig. 1.11.1. A mechanism of iso-branched fatty acid formation as elucidated by Hannich et al., 2017 in 

C.elegans. It is possible that a similar mechanism occurs in B.fragilis to yield isopentadecanoyl-CoA 

(isoC15) as the primary substrate for SPT. The route to αGC production imposes that the substrate of 

BfSPT is isopentadecanoyl-CoA (isoC15-CoA) (based on Hannich et al., 2017 and Wieland Brown et 

al., 2013).  
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1.12. The AOS family of enzymes 
 

SPT belongs to the α-oxoamine synthase (AOS) family of enzymes within a wider fold 

type-I family of PLP-dependent enzymes. AOS enzymes catalyse the condensation of 

amino acids with acyl thioesters via general Claisen-like mechanism (Fig. 1.12.1). This 

ever-expanding family up to date counts 13 proteins that utilise various substrates and 

are involved in diverse metabolic pathways, 5 of which have been structurally 

characterised (table 1.12.1).  

 

Fig. 1.12.1. Simplified general reaction mechanism of the AOS enzymes 

Apart from the SPT, other structurally characterised members of the family are 5-

aminolevulinate synthase (ALAS; Astner et al., 2005), 8-amino 7-oxononanoate 

synthase (AONS; Alexeev et al., 1998), 2-amino 3-ketobutyrate CoA ligase (KBL; 

Schmidt et al., 2001) and Vibrio cholerae CAI-1 synthase (CqsA; Jahan et al., 2009). 

The information on the enzymes with their pdb codes can be found in Appendix 5. All 

proteins have a 20-33% sequence identity (Fig. 1.12.3).  

The enzyme 8-amino 7-oxononanoate synthase (AONS or BioF) catalyses the 

decarboxylative condensation of L-alanine with pimeloyl-CoA, which is the first step 

in the biosynthesis of the natural cofactor biotin in plants and bacteria (Alexeev et al., 

1998; Webster et al., 2000). ALAS synthesises 5-aminolevulinate acid (ALA) from 

glycine and succinyl CoA in animals, fungi and some bacteria; ALA is an essential 

precursor in heme biosynthesis (Astner et al., 2005). The KBL is involved in threonine 

utilisation pathway as it converts its degradation product 2-amino 3-ketobutyrate into 

glycine and acetyl-CoA. Notably, it is the only known AOS family member that does 

not have a decarboxylation step (Schmidt et al., 2001). CqsA is responsible for the 

synthesis of the main quorum sensing factor in V.cholerae which acts as a mean of 

signalling between bacteria (Jahan et al., 2009). The substrate specificity of CqsA was 
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a matter of debate until it was reported to accept both decanoyl-CoA and S-adenosine 

methionine (SAM) as a substrate in vivo (Kelly et al., 2009; Ng et al., 2011). 

 

 

Table 1.12.1. Summary of the AOS-family enzymes that have been structurally characterised. 

Abbreviations: Sp - Sphingomonas paucimobilis, Ec - Escherichia coli, Rc - Rhodobacter capsulatus, 

Vc – Vibrio cholerae. 

 

Other AOS-family proteins have been characterised to a lesser extent; these involve 

bacterial enzymes involved in production of various metabolites including other 

autoinducer factors (Spirig et al., 2008, Hornung et al., 2013), pigments (Williamson 

et al., 2005; Garneau-Tsodikova et al., 2006) and natural products (Burke et al., 2007; 

Gerber et al., 2009). Recently it was reported that another AOS family member might 

be involved in the synthesis of an antibacterial alkaloid curvulamin in marine fish 

symbiont Curvularia sp (Han et al., 2014). One of the initial steps involves 

condensation of alanine with 4-carbon acyl thioester. No curvulamin was produced by 

bacteria in the presence of cycloserine and plumbagin, known inhibitors of SPT and 

AONS, suggesting that this unknown enzyme might be a member of the AOS family. 

Enzyme Pathway AA 
substrate 

Thioester 
substrate 

Product Pdb ID 

Serine 
Palmitoyltransferase 
(SPT) 

Sphingolipid 
biosynthesis  

L-serine Palmitoyl-CoA 
3-ketodihydro-

sphingosine 
(KDS) 

Sp holo: 2JG2 
Sp PLP-L-serine: 

2W8J 

8-amino 7-
oxononanoate 
synthase (AONS) 

Biotin L-alanine Pimeloyl-CoA 
5-

aminolevulinate  

Ec Apo: 1BSO 
Ec Holo: 1DJE 

Ec AON-PLP: 1DJ9 

5-aminolevulinate 
synthase (ALAS) 

Tetrapyrrole Glycine Succinyl-CoA 
8-amino 7-

oxononanoate 

Rc holo: 2BWN 
Rc glycine-PLP: 

2BWP 
Rc succinyl-CoA-

PLP:2BWO 

2-amino 3-
ketobutyrate CoA 
ligase (KBL) 

Threonine 
degradation 

Glycine Acetyl-CoA 
2-amino 3-

ketobutyrate 
Ec: 1FC4 

Cholerae CAI-1 
synthase (CqsA) 

Quorum 
sensing 

S-
adenosine-
methione 

(SAM) 

Decanoyl-CoA 
Cholera 

autoinducer 
(CAI-1) 

Vc apo: 2WK7 
Vc holo: 2WK8 
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Fig. 1.12.2. Superimposed structures of 4 AOS family enzymes with the conserved residues involved 

in positioning of PLP shown as sticks. The proteins are KBL (1FC4, green), ALAS (2BW0, yellow), 

AONS, (1DJE, red), SPT (2JG2, orange). The SpSPT sequence numbering is used.  

 

Structural studies of the AOS-family enzymes reveal a range of similar features in the 

general fold symmetry and accommodation of the PLP molecule (Fig. 1.12.2). All 

proteins are present in the form of homodimers, with both catalytic sites located on the 

dimer interfaces. The position of PLP is superimposable in all structures, with the key 

stabilising residues (discussed as numbered in SpSPT) being lysine 265, histidine 159, 

aspartic acid 231 and histidine 234. Conservation of the above residues across the five 

structurally characterised AOS enzymes is highlighted in the figure 1.12.3. Histidine 

159 lays in parallel to the PLP ring; the residue is essential for the activity in the AOS 

enzymes as it regulates the position of the cofactor (Shiraiwa et al., 2009) and assists 

stabilisation of the amino acid carboxylate in the external aldimine form (Raman et al., 

2009). Aspartic acid 231 is involved in PLP stabilisation by forming a salt bridge with 

the protonated nitrogen on the pyridine ring, while histidine 234 stabilises the hydroxyl 

group of the cofactor (Fig.1.12.2).  
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Fig. 1.12.3. Sequence alignment of five AOS family members whose X-ray structures have been 

determined. Conserved residues are highlighted in green, residues directly involved in PLP binding and 

stabilisation highlighted in pink. The alignment was generated in ClustalW2. The above UniProt genes 

were used: E.coli AONS: (P12998), E.coli KBL: (P0AB77), S.paucimobilis SPT: (Q93UV0), 

Rhodobacter capsulatus ALAS : (P18079), V.cholerae CqsA: (Q9KM65).   
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1.13. Towards expanding the catalytic potential of AOS family of 

enzymes 
 

Enzyme catalysis is becoming a desirable alternative to chemical synthesis (reviewed 

by Jäckel et al., 2008). Enzymes work at moderate conditions without requiring 

expensive or toxic catalysts; their natural specificity allows to simplify production of 

high-value chiral compounds and reduce the costs of their subsequent purification. 

Enzymes are now finding more ways to be used as industrial catalysts in the production 

of biofuels and pharmaceuticals. Rational enzyme design and directed evolution 

strategies allow expanding catalytic potentials of existing enzymes and even creating 

novel ones (reviewed by Turner, 2009). 

The enzymes from the AOS family are good candidates for biocatalytic engineering. 

By having high structural homology, conservation of key residues and utilisation of 

similar catalytic mechanism, the AOS enzymes can process a variety of different 

substrates and yield a broad range of products. Furthermore, certain AOS family 

members have been reported with dual catalytic functions. One example is ORF34 

from Streptomyces aizunenesis with bifunctional ALAS and ALA-CoA cyclase 

activities (Zhang et al., 2010).  

Another intriguing enzyme, AONS from Thermus thermophilus has been characterised 

to show activities at high temperatures (50-90°C) as well as ability to catalyse several 

other AOS-related reactions (Kubota et al., 2007). Apart from the AONS activity, the 

protein accepts glycine and serine as substrates and can catalyse KBL and SPT-like 

reactions. Such inherent catalytic promiscuity suggests that this thermophile bacterium 

might have adopted a single protein to be used in several biosynthetic pathways 

(Kubota et al., 2012).  

Defining the exact features that determine the substrate specificities of the AOS 

enzymes and manipulating them can provide vast tools for broadening the enzyme 

catalysis.  
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1.14. Aims 
 

This work aimed to study the structural and mechanistic properties of SPT enzymes 

from S.paucimobilis and B.fragilis. In particular, the aims were:  

• To assess the possible mechanisms of amino acid substrate selection in SpSPT 

using site-directed mutagenesis combined with the amino acid binding and 

activity studies. 

• To express, purify and characterise the SPT from B.fragilis and compare it to 

other previously characterised SPTs. To see whether this microbiome-related 

SPT possesses unique mechanistic features relating to the production of iso-

branched SLs. 

• To perform a structural characterisation of BfSPT using X-ray crystallography 

and compare the structural features of the enzyme with other reported SPTs.  

• To assess the substrate selectivity of BfSPT utilising a range of different chain 

length acyl-coenzyme substrates and to identify the reaction products.  

• To study some general mechanistic features of SPT using inhibitors such as D-

serine, penicillamine and L-cycloserine to reveal aspects of binding and 

inhibition modes of these compounds.  
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Chapter 2: Materials and methods 
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2.1. Materials 
 

2.1.1. Constructs and plasmids 

 

Genes encoding SpSPT (C-terminal, C-terminal A295T and N-terminal His-tag 

versions) and BfSPT (C-terminal His-tagged) were previously cloned into the pET28a 

vector and stored as plasmid stocks at -20°C. 

Most of the previous work on SpSPT was done using a C-terminal His-tagged 

construct, informally referred to as “Scottish SPT” in our lab, yet some complications 

with crystallisation arose. The crystallography work was done using the new 

“American SPT” construct (N-terminal His-tag version with additional 13 aa linker 

region) provided by our collaborator Teresa Dunn from Bethesda, USA. In this report, 

the constructs are referred to as Sc SpSPT and Am SpSPT respectfully. Sequences of 

both constructs are provided in Appendix 1.    

2.1.2. Reagents 

 

All the reagents were purchased from Sigma-Aldrich, Biorad or Ficher Scientific 

unless otherwise specified. Palmitoyl-CoA, pentadecenoyl-CoA and heptadecanoyl-

CoA were purchased from Avanti Lipids. Other acyl-CoAs (myristoyl-CoA and 

stearoyl-CoA) were purchased from Sigma Aldrich.  

2.1.3. Bacterial strains used 

 

E.coli DH5α (InvitrogenTM) was used as high plasmid copy number strain during 

molecular cloning applications. E.coli C2987 (New England Biolabs) was used for 

transformation and vector ligation of PCR products during the site-directed 

mutagenesis.  

Protein expression was performed in E.coli BL21 DE3 (NovagenTM) and  E.coli BL21 

Gold (AgilentTM) strains.  
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2.1.4. List of general buffer solutions used and their abbreviations throughout 

the text 

 

Buffer name/abbreviation Mixture 

Lysis/Nickel purification 

buffer (LysB) 

20 mM KPhos pH 7.5 

150 mM NaCl 

10 mM imidazole 

250 µM PLP* 

Elution buffer (EB) 20 mM KPhos pH 7.5 

150 mM NaCl 

300 mM imidazole 

Crystallography buffer 

(X-trial) 

10 mM Tris pH 7.5 

150 mM NaCl 

250 µM PLP* 

Gel filtration/dialysis buffer 

(GF) 

20 mM KPhos pH 7.5 

150 mM NaCl 

250 µM PLP* 

 

Table 2.1. List of the standard buffer solutions and their abbreviations used later in the text. *Freshly 

made aqueous PLP solution was added to the buffer directly before use. A composition of other buffer 

solutions is specified later in the text.  

 

2.1.5. Growth and agar media 

 

Bacterial cultures were grown in Lysogeny Broth (LB) media containing 10 grams per 

litre tryptone, 5 grams per litre yeast extract and 10 grams per litre NaCl.  

The media were prepared using deionised water; the pH of solutions was brought to 

7.5. The media were sterilised by autoclaving. 

LB agar was purchased from Sigma-Aldrich; upon dissolving in water it was sterilised 

by autoclaving. During preparation of the agar antibiotic solutions were added when 

the agar cooled down to approximately 50°C; the agar was spread on Petri dishes that 

have been stored at 4°C and used within one week.  
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2.1.6. List of the primers used in site-directed mutagenesis reactions 

 

The primers were designed according to the method by Liu & Naismith, 2008. To 

increase the annealing efficiency of BfSPT C357del mutation, extended primers were 

designed. The primer oligonucleotides were ordered from Sigma Aldrich and stored 

as 10µM stocks at -20 °C.  

 

SpSPT A295T forward 

5’- CACCACCTCGCTGCCGCCCTC- 3’ 

SpSPT A295T reverse   

5’- GCGAGGTGGTGAAGATGTACGGAC- 3’ 

 

BfSPT C357del forward    

5’- CATCAACGTATCGTTCGGAGA[]TGCGGGAGGCACAAC- 3’ 

BfSPT C357del reverse   

5’- ATCAACGTATCGTTCGGAGA[]TGCGGGAGGCACAAC- 3’ 
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2.2. Methods 
 

2.2.1 DNA manipulation 

2.2.1.1 Site-directed mutagenesis 

 

The site-directed mutagenesis (SDM) was based on the method reported by Liu & 

Naismith, 2008. The following mixture was used: 5 μl x10 polymerase enzyme buffer, 

2.5 μl forward and 2.5 μl reverse primer (to the final concentration of 0.5 μM), 2.0 μl 

DNA template, 1 μl dNTP mix, 1 μl (2.5 U) polymerase; the mixture made up to total 

50 μl by adding pure H2O. Due to lack of initial success, three different DNA 

polymerases were used: Pfu Turbo Hotstart, Phu Phusion and Hi fidelity polymerase.  

The general PCR reaction cycle was set up as:  

1. Initial denaturation 95°C – 30 sec 

2. (Denaturation 95°C – 30 sec; annealing 62°C – 30 sec; extension 72°C – 10 

min) x 30 times  

3. Final extension 72°C – 10 min 

 

To increase the efficiency of SDM, parameters such as annealing temperature or 

extension time have been modified.  

Upon completion of the reaction, a digest of methylated parental DNA strand was 

performed by adding 1 μl DpnI (10 U) enzyme and 6 μl of CutSmart buffer solution. 

The sample digestion time was increased from 1 to 5 hours at 37°C to increase the 

digestion quality. The resulting DNA products were visualised on the analytical scale 

using 1% agarose DNA gel; upon identification of PCR products, the multiplication 

band samples were used to transform E.coli CH5α cells. 

 

2.2.1.2. Bacterial cell transformation 

 

2 μl of plasmid DNA was added to a single aliquot of E.coli DH5α (cloning stages) or 

BL21 cells (for protein expression). The mixtures were incubated for 25 min at 4°C, 
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followed by a 40 sec heat shock at 42 °C. The cultures were returned to 4°C for another 

5 min before addition of 100 μl SOC media. After incubation at 37 °C with shaking 

for 1 hour, cultures were used to seed the lysogeny broth (LB) agar plates containing 

an appropriate antibiotic (30 mg/ml kanamycin). The plates were incubated at 37°C 

for 18 hours. 

2.2.1.3. Purification of plasmid DNA using QiagenTM DNA miniprep kit  

 

Upon successful transformation resulting in the growth of bacterial cell cultures, DNA 

miniprep procedure was performed to isolate the desired plasmid from the positive 

colonies. Several bacterial colonies were picked up and used to inoculate 5 ml of LB 

samples overnight in the presence of the antibiotic (30 mg/ml kanamycin). The 

overnight cultures were centrifugated for 10 min at 3000 rpm. The insoluble pellet was 

treated according to the QiagenTM protocol, first by resuspending it in the presence of 

RNAse, this was followed by the alkaline lysis of the cells and neutralisation step. Cell 

debris was removed by centrifugation for 10 min at 13K rpm, the DNA containing 

soluble fraction was applied to the miniprep spin column. Upon several wash steps and 

removal of the residual buffer, the plasmid DNA was eluted using into a sterile 

Eppendorf tube. The purified plasmid DNA was used for sequencing to confirm the 

presence of the desired gene, a transformation of new bacterial cells or long-term 

storage at -20 °C. 

2.2.1.4. Sequencing reaction 

 

DNA sequencing reaction was performed using 5 μl of template DNA, 1 μl of either 

forward or reverse sequencing pET28a primer (10 μM stock), 2 μl of sequencing 

terminator buffer x5 and 2 μl of BigDyeTM mixture. The sequencing reaction was 

programmed as 24 cycles: 94 ˚C for 30 seconds, 50 ˚C for 20 seconds and 60 ˚C for 4 

minutes. Samples were analysed by GenePool, Edinburgh Genomics.  
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2.2.2. Protein expression and purification methods 
 

2.2.2.1. Protein expression and cell harvesting 

 

Upon successful transformation, single plasmid-containing BL21 DE3 colonies were 

used to set up large-scale protein expression. The individual colonies were used to 

inoculate 250 ml of LB medium in the presence of 30 mg/ml kanamycin; the cultures 

were incubated overnight at 37 ˚C shaking. These cultures were used as the stocks to 

inoculate larger 500 ml LB media containing the antibiotic. The usual growing volume 

per protein preparation was 3 l (6 flasks of 500 ml). Upon reaching the exponential 

growth phase at 37°C (OD600 = 0.6), the protein expression was induced by adding the 

isopropyl β-D-1-thiogalactopyranoside (IPTG) to the final concentration of 100 μM 

(0.1 mM). The protein expression was performed for 4 hours at 30 ˚C shaking. After 

this time the bacterial cell pellets were precipitated by centrifugation at 3000 rpm for 

20 min at 4˚C. The supernatant was discarded while the pellets were resuspended in a 

small amount of phosphate buffered saline (PBS) buffer, followed by further 

centrifugation at 3000 rpm for 10 min at 4˚C. Upon discarding the supernatant, dry 

bacterial pellets containing the protein of interest were stored at -20˚C for further 

protein purification.  

2.2.2.2. Solubilisation of protein content 

 

Single bacterial cell pellets (~2g) were defrosted and resuspended in ~20 ml of LysB 

buffer at 4˚C with 1 protease inhibitor tablet (Roche) and 250 μl of PLP added. Upon 

resuspension, the cells were lysed by ultrasonication using a Soniprep 150 while being 

kept on ice; cell lysis was performed by sonication at moderate intensity for 30 sec 

followed by 30 sec of a cooling down period, this was repeated 15 times. Upon cell 

lysis, the soluble protein was separated from the cell debris by ultracentrifugation at 

20k rpm, 4˚C for 30 min using SorvalTM Ultracentrifuge. Separate samples from all 

the stages were taken for analysis on SDS PAGE. Soluble protein was taken for the 

further purification step by Ni-affinity chromatography.  
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2.2.2.3. Purification of protein by Ni-affinity chromatography 

 

Soluble protein fraction was incubated with ~2 g of QiagenTM Superflow Ni-NTA resin 

(Catalog number 30410) for 1 hour on a rotatory mixer. The resin was pre-equilibrated 

in LysB buffer containing 10 mM imidazole to reduce non-specific binding. Upon the 

incubation time, the sample was loaded onto a QiagenTM disposable plastic column; 

the histidine-tagged protein was binding to the resin while unbound fractions were 

flown through the column.  After another wash step with the LysB buffer, the protein 

was eluted using 5 ml of the EB buffer. The protein concentration was checked by 

measuring the absorbance at 280 nm by UV-vis scan. Samples from all stages were 

taken to be analysed by the SDS-PAGE. Eluted protein was taken to a further 

purification step by size exclusion chromatography. 

2.2.2.4. Protein purification by size exclusion chromatography 

 

The elution sample containing protein of interest from the previous Ni-affinity 

purification stage was passed through MilliporeTM 0.45 µm to remove possible 

aggregates. The sample was loaded on the 120 ml GE Health Care Superdex S200 

column that was pre-equilibrated with GF buffer containing 25 µM PLP. The protein 

was passed through the column, the protein-containing fractions were collected and 

analysed on SDS-PAGE; the protein concentration was checked by measuring the 

absorbance. Fractions containing the purified protein were frozen at -80°C with the 

addition of 20% glycerol.  

When protein was purified for the purpose of setting crystal trials, the column was 

equilibrated with X-trial buffer instead; the protein elution fractions were stored on ice 

before being transported to the crystallography facility.  
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2.2.3. Protein characterisation methods 
 

2.2.3.1. Protein analysis using polyacrylamide gel electrophoresis (SDS PAGE) 

 

Protein samples were analysed under the denaturing conditions using SDS 

polyacrylamide gel electrophoresis. The protein sample was mixed with X2 loading 

buffer (3 mL of 0,5 M Tris, pH 6.8, 5 % w/v glycerol, 10 % w/v SDS, 0.4 mL β-

mercaptoethanol and 0.05 % w/v bromophenol blue) and boiled for 5 min. It was then 

loaded onto 15% polyacrylamide gel and run for 50 min at 200V. The gel was 

visualised by staining in either CoomasieBlue stain (H2O, 0.1 % w/v Coomassie 

brilliant blue R250, 40 % w/v methanol and 10 % w/v acetic acid) or Coomasie 

QuickstainTM; images of gels were taken. The protein molecular mass was estimated 

by comparing the position of visible bands with the low molecular weight (LMW) 

markers (GE Healthcare). 

 

2.2.3.2. Enzyme UV-vis spectroscopy 

 

Before all spectroscopic studies, protein aliquots were dialysed in the GF buffer with 

250 µM fresh PLP for about 1 hour to convert SPT into the holo form. The excess of 

PLP was then removed using a desalting PD-10 column (GE Healthcare). 

Spectroscopy measurements were performed using VarianTM Cary UV-Vis 

spectrometer and 1ml quartz cuvette with 1cm path length. The protein absorbance 

spectra were normally recorded between 200 and 800 nm. The obtained data were 

processed using Microsoft Excel; the results were analysed and presented using Origin 

9.0 software.   

2.2.3.3. Determination of the enzyme concentration 

 

The enzyme concentration was determined by measuring the protein absorbance peak 

at 280 nm and using the Beer-Lambert law: 

𝑐 =
𝐴

𝜀𝑙
  (Equation 1), 
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where A is the absorbance reading at 280 nm, l is the light path length equal to the 

diameter of the cuvette (1 cm) and ε is the molar extinction coefficient. The molar 

extinction coefficient was determined for each protein using the ExPASy ProtParam 

tool (Gasteiger et al., 2005). It was estimated as 25900 M-1cm-1 for the WT SpSPT and 

23380 M-1 cm-1 for the WT BfSPT.  

2.2.3.4. Measuring enzyme dissociation constants for amino acids 

 

SpSPT and BfSPT enzymes had dissociation constants (Kd) determined for several 

amino acids (L-serine, D-serine, L-alanine, glycine). A typical experiment for 

determination of a Kd of amino-acid binding was performed in the GF buffer (20 mM 

KPhos, pH 7.5, 150 mM NaCl) and had the initial concentration of SPT at 10 µM, the 

total volume of the mixture at the start was 1 ml. The instrument was blanked with the 

GF buffer and the initial protein spectrum was collected across the range of 260-500 

nm. Small amounts of amino acid stock were gradually titrated into the mixture 

yielding the final amino acid concentration range of 0.1-100 mM (up to 160 mM for 

some AAs). Upon each addition, the SPT-AA mixture was left to equilibrate for 5 min 

and the protein spectrum was recorded afterwards. The titrations were made at 25°C. 

Changes in the absorbance peak at 425 nm corresponding to formation of the 

ketoenamine peak were plotted over the increasing concentrations of each amino acid 

using Origin Software. The graphs were normalised based on their absorbance at 280 

nm to account for a gradual dilution of the enzyme. The data were fitted by the 

hyperbolic saturation curve, Kd was obtained by the Origin software using the equation 

2: 

∆𝐴𝑜𝑏𝑠 =  
∆𝐴𝑚𝑎𝑥[AA]

𝐾𝑑+[AA]
 , (Equation 2) 

where ΔAobs and ΔAmax are the observed and maximum changes in the absorbance 

peak respectively and [AA] is the molar concentration of the amino acid. The 

experiments were done in triplicate unless otherwise stated; the error bars show the 

standard deviation within the samples. 
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2.2.3.5. Measuring enzyme activity using the DTNB assay 

 

Kinetic activities of SPTs were observed using 5,5'-dithiobis-(2-nitrobenzoic acid) 

(DTNB) assay (developed by Ellman, 1959; the protocol from Raman et al., 2009). 

DTNB specifically reacts with free thiols by forming a covalent complex via a 

disulphide bond. This causes the release of free TNB2- ions that have a maximum 

absorbance peak at 412 nm with ε = 14140 M-1 cm-1 (Riddles et al., 1983) (Fig.2.2.3.5).  

 

Fig. 2.2.3.5. Measuring the activity of SPT with DTNB assay. DTNB reacts with the thiol group on free 

CoASH, forming a disulphide product, this causes the release of coloured TNB2- ion that is monitored 

spectrophotometrically. 

 

The DTNB assay does not provide a direct measurement of the enzyme activity since 

the increase in absorbance at 412 nm is caused by the release of TNB2- ion and not the 

enzymatic product itself. This was accounted for by taking the appropriate controls 

without the presence of an enzyme, CoA substrate and both for each experiment. The 

highest rate of absorbance increase obtained within these control readings was 

subtracted as a background when calculating the enzymatic rates; this value usually 

remained low and never exceeded 5% of the maximum observed reaction rate, 

remaining within the boundaries of experimental error. This allows assuming that the 

amount of TNB2- released remains very close to the actual amount of the KDS (or 

KDS-like) product released by the SPT and can be used to establish reliable kinetic 

parameters for the reaction. For clarity, however, all reaction rates in the text and 

figures are presented in terms of the concentration of TNB2- released per second. 
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2.2.3.6. Comparing relative activities of SpSPT WT and A295T mutant enzyme 

 

The DTNB assay was used to compare the relative activities of the WT SpSPT with 

the A295T mutant. The reactions were made up in 100 mM HEPES buffer of pH 8.0, 

0.2 mM DTNB, 100 nM enzyme (WT or A295T) and 250 µM PCoA. Two sets of 

reactions were made with L-serine and L-alanine, using the excess concentrations of 

40 mM for both amino acids. To account for the assay background, control reactions 

were set up for both WT and A295T mutant with no amino acids present. The reactions 

were made to a total volume of 150 µl with the deionised water. The reactions were 

monitored using Biotek Synergy HT plate reader on 96-well plates at 30°C.  

The relative activities were presented in terms of comparing the initial rates that were 

determined from the absorbance increase at 412 nm for the first 5 min of reaction; the 

highest initial rate obtained for the reaction of WT SpSPT with the L-serine was 

displayed as 100%, with the initial rates of A295T mutant presented as a % fraction of 

it. The relative activities of both WT and A295T enzymes with two amino acids were 

compared and presented as a bar chart using the OriginTM software.   

 

2.2.3.7. Determining the activity of SPT using DTNB assay 

 

The activity of each BfSPT reaction was monitored by DTNB assay on Biotek Synergy 

HT plate reader using 96-well plates, with the total volume for each reaction being 150 

µl. As B.fragilis is a human commensal organism, all reactions were monitored at 37°C, 

which is close to the expected temperature conditions for BfSPT in vivo. Experiments 

for determining the activities of BfSPT with different substrates were performed 

individually for each substrate; each condition was set in triplicate; individual 

experiments were repeated up to three times with different enzyme samples to ensure 

consistency.   

Each experimental condition for BfSPT reaction was made in 100 mM KPhos buffer 

of pH 7.0 and contained 0.2 mM DTNB. The total reaction volume was brought to the 

final 150 µl using deionised water. 
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Experiments to determine the KM of L-serine were made in the presence of 50 µM 

palmitoyl-CoA and 200 nM enzyme; the concentration range of L-serine tested was 0-

40 mM.  For determining the activities with acyl-CoA substrates experiments had an 

excess amount of 20 mM L-serine and 200 nM of the enzyme. The concentrations of 

acyl-CoAs were in the range of 0-250 µM.  Due to the low observed reaction rates vs 

background, the activity of BfSPT with myristoyl-CoA (C14:0) was performed at the 

enzyme concentrations of 200 nM and 400 nM; for valid comparison with other 

enzymes the data obtained at the enzyme concentration of 200 nM is presented in the 

text; however, presented kinetic parameters were calculated from the second set with 

at higher enzyme concentration of 400 nM.   

The measured increase in absorbance at 412 nm was converted into the concentration 

of TNB2- ion released using Beer-Lambert law (equation 1).  

The mean initial reaction rates were plotted over the variable substrate concentrations 

[S]. The obtained saturation curves were fitted into the appropriate equations 2 or 3 

from which the kinetic parameters were calculated using GraphPadTM software. 

Kinetic parameters of KM and Vmax for BfSPT reactions with L-serine, myristoyl- 

(C14:0) and stearoyl- (C18:0) CoAs were determined from the Michaelis Menten 

equation (3): 

V =
𝑉𝑚𝑎𝑥 [S]

KM+[S]
  (Equation 3), 

where V is the observed initial rate expressed in nMs-1, [S] is the variable substrate 

concentration.  

BfSPT reactions with pentadecenoyl- (C15:0), palmitoyl- (C16:0) and heptadecanoyl- 

(C17:0) CoAs showed a various presence of substrate inhibition. For these reactions, 

the modified equation for the substrate inhibition (4) was used to determine the KM, 

Vmax and Ki values:  

V =
𝑉𝑚𝑎𝑥 [S]

KM+[S](1+
[S]

Ki
)
 (Equation 4)  

The enzyme turnover number kcat was determined as Vmax divided by the concentration 

of enzyme (200 nM, except for the reaction with myristoyl-CoA with 400 nM enzyme 
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as stated above). The substrate specificity index was presented as kcat/KM for each 

substrate.  

2.2.3.8. Measuring the activity of BfSPT upon time-dependent incubation with 

L-cycloserine 

 

The DTNB assay was used to observe the inhibitory effect of L-cycloserine on the 

activity of BfSPT. The reactions were set up in 96 well plates with the total volume 

of each reaction of 150 µl; the reactions were monitored using Biotek Synergy HT 

plate reader at 37°C.  

The initial reaction mixtures contained the final 0.2mM DTNB buffered by 100 mM 

KPhos, pH 7.0; 20 mM L-serine and a range of concentrations of LCS (0-2.5 mM). 

The incubation with inhibitor was started by adding the 200 nM enzyme into the wells 

containing L-serine and LCS. Incubations were timed for the periods of 1, 5 and 30 

min. The reactions were started upon addition of the PCoA into the wells to the final 

concentration of 25 µM. Notably, an imminent time lag between the start of reactions 

and launch of the data collection on the plate reader could not be avoided; this caused 

an increase in deviation, particularly affecting the samples with lower incubation times 

and concentrations of the inhibitor. The reactions were done in triplicate, the maximum 

averaged activity of BfSPT in a control sample (no LCS) was presented as 100% with 

other relative activities calculated from it. 

Cycloserine acts as a tight-binding inhibitor for PLP (Lowther, 2010), imposing that 

binding of the drug to the active site occurs more rapidly than the formation of the 

final inhibitory complex. In this case, the traditional Michaelis-Menten relation will 

not be valid as the concentration of free enzyme at steady state will not be equal to the 

concentration of free inhibitor. The Morrison equation (5) was designed for the cases 

of tight inhibitor binding and allows establishing of the apparent Ki, the constant used 

when the true inhibition constant Ki cannot be established:   

V =  V0 − 𝑉0 (
(Ki +[𝐸]+[𝐼]) − √(Ki +[𝐸]+[𝐼])2−4[𝐸][𝐼]

2[𝐸]
) (Equation 5) 

V – observed reaction rate; V0 – maximum reaction rate observed without the presence of inhibitor; Ki 

– inhibition constant (apparent); E – concentration of enzyme; I – concentration of the inhibitor.  
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Separate values or the apparent Ki have been established for each incubation time; 

these do not account for the time factor directly but provided a convenient reference 

point for the working concentrations of LCS for further structural studies.  
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2.2.4. Biophysical methods of protein characterisation 
 

2.2.4.1. Mass spectrometry 

 

Native mass spectrometry of BfSPT-L-penicillamine complex 

BfSPT sample was treated with 5 mM L-penicillamine for 30 min. The sample along 

with the enzyme control (no L-pen treatment) was buffer exchanged into 100 mM 

ammonium acetate using a PD-10 column (GE Healthcare). The final concentration of 

protein was 20.9 µM or 10.5 µM per monomer. 

Samples were ionised using nano-electrospray ionisation (nano-ESI) using TriVersa 

NanoMate (Advion) and analysed on Synapt G2 Q-ToF (Waters) at 80°C, the pressure 

at 5 mbar and the sampling cone voltage at 150V. The spectra were averaged over 4 

min of acquisition data and presented without processing. The m/z annotations were 

extracted using MassLynx V4 software (Waters).   

MALDI-time of flight spectrometry 

Detection of BfSPT KDS-like products of BfSPT reactions with 5 acyl-CoAs (C14, 

C15, C16, C17, C18) was performed using positive ion MALDI ToF spectrometry.  

The reactions were made in 100 mM HEPES, pH 7.0, 2 µM DTNB, 40 mM L-serine 

and 50µM of the corresponding acyl-CoA substrate. For each acyl-CoA substrate 

tested 2 reactions were prepared, one of which had 200 nM of enzyme added, while 

other served as the negative non-enzyme control. Before mixing with the matrix, both 

positive and control reactions were checked for the activity monitored by the DTNB 

assay at 37°C. Upon detection of enzymatic activity, the reactions were further left for 

1 hour at 37°C to incubate.  

The matrix was made of 20 mg/ml α-cyano-4 hydroxycinnamic acid (CHCA) solution 

prepared in 50% acetonitrile, 40% methanol and 0.1% trifluoroacetic acid (w/v). 1µl 

of each reaction sample was mixed with 1µl of matrix solution; samples were 

transferred on a MALDI sample plate and allowed to dry. 

The mass spectra were obtained using Bruker Ultraflex III equipment. The sample 

acquisition was performed over m/z range of 300-500 with the ion count range set as 
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2000-100 000. The peak analysis was performed using the Bruker Flex Software; the 

peaks corresponding to the positive +1 ions of the expected KDS-like products were 

identified. The obtained mass spectra were plotted as intensity versus m/z and 

presented using the GraphPadTM software.  

 

2.2.4.2. X-ray crystallography 

 

2.2.4.2.1. S.paucimobilis N-terminal SPT trials 

 

The N-terminal SpSPT was expressed and purified using QiagenTM Ni-NTA superflow 

resin following the standard protocol. As it was not suitable to have phosphates in the 

crystallisation trials due to a high amount of salt crystals, the protein was washed into 

a different X-trial buffer containing 20 mM TRIS pH 7.5, 150 mM NaCl and 250 µM 

PLP during the size-exclusion chromatography stage. Upon purification, the protein 

samples were concentrated to 25 mg/ml using VivaSpinTM concentrator tube with 45 

kDa cut off. 

Prior to setting up the trials, the sample was centrifuged at 14 krpm, 4°C for 15 min to 

remove possible aggregates. Crystal trials were set by the sitting drop method in 96 

well plates using ARI Crystal Gryphon robot; the plates were stored at 20°C. The final 

concentration of the protein was 20 mg/ml, the protein to precipitant ratio being 1:1 

and 2:1. For co-crystallisation with D-serine a 20 mM concentration of the amino acid 

was used. Several commercial screens were set up, namely PEG I, PEG II, Wizard, 

JCSG+. Crystals appeared from as little as two days, they were monitored using 

Rigaku MinstrelTM imager and tested within two weeks. 

Crystals suitable for testing were transferred to cryoprotectant solution (same mother 

liquor with 20% glycerol) and frozen in liquid nitrogen. The best quality crystal was 

obtained at 0.1M Sodium HEPES pH 7.5, 25% w/v PEG 4000 in the presence of 20 

mM D-serine and gave the diffraction to a maximum resolution of 1.55 Å.  Full 

diffraction dataset on the crystal was collected at the Diamond Light Source by a 

collaborator Dr Lucile Moynie, University of St Andrews. 
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2.2.4.2.2. BfSPT SPT crystal trials 

 

The protein was expressed and purified in the same way as the N-terminal SpSPT into 

the X-trial buffer. Initial trials were set up automatically using ARI Crystal Gryphon 

robot; the commercial screens set up were PEG I, PEG II, Wizard, JCSG+; the 

screenings were made in 96 well plates using the sitting drop method.  

Initial screens were performed with the protein concentration of 15, 20 and 25 mg/ml; 

the protein to precipitant ratios were set as 1:1 and 2:1. The best results were obtained 

at the concentrations of 15 and 20 mg/ml and the protein to precipitant ratio of 2:1. 

The most suitable initial crystallisation condition was identified as 100 mM Tris pH 

8.0, 20% w/v PEG 8K. These conditions were used to set up optimisation screens, with 

the pH range of 7.0-9.0 in 0.2 increments and the range of 10-26% w/v of PEG 8 K 

(2% increments). The follow-up screens were manually set up using the sitting drop 

method in 96 well plates.  

Upon several rows of optimisation, the best reproducible crystallisation conditions 

were found to be around 100 mM Tris pH 8.5, 17% w/v PEG 8K, 150 mM NaCl, 12% 

glycerol. The presence of glycerol showed a stabilising effect on the protein by 

reducing unwanted precipitation and allowed to use the original crystallisation 

solutions for cryoprotection (Teng, 1990). Several other conditions gave good quality 

crystals; the exact crystal growth conditions are specified for each of the structures 

obtained. The crystals were frozen and tested for initial diffraction, with the ones 

diffracting to the resolution of 3 Å and higher being processed for the collection of the 

full dataset.  

The data collection was performed in collaboration with Dr Magnus Alphey. Datasets 

were collected either at the Diamond Light Source (L-serine and L-penicillamine) or 

using the in-house X-ray source at the University of St Andrews (L-cycloserine 

structure).  

L-serine 

Trials of the BfSPT have been carried in the presence of 20 mM L-serine. The crystal 

grown in 100 mM Tris pH 7.7, 16% w/v PEG 8K, 150 mM NaCl, 250 µM PLP and 
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13% w/v glycerol has provided the best quality diffraction to the highest resolution of 

2.45 Å. The full dataset was collected at the Diamond Light Source.   

 

Penicillamine 

BfSPT co-crystallisation attempts with both 20 mM L-penicillamine and 20 mM D-

penicillamine did not result in a formation of reasonable quality crystals. A soaking 

method was performed to obtain the BfSPT structure in the complex with L-

penicillamine. Protein crystals were placed in a small droplet of the original 

crystallisation solution with a single solid granule of L-penicillamine added. In the 

first 30 min of incubation time, the crystals have visibly changed colour from yellow 

to pale. The crystals were left overnight before being taken out of the well solution and 

frozen.  

The exact soaking method was carried out with D-penicillamine. The soaking resulted 

in the visible changes of crystal colour, however, none of the resulting crystals did 

provide a diffraction to a resolution higher than ~3Å. 

The highest quality crystal soaked with L-penicillamine has provided a diffraction to 

a maximum resolution of 2.39 Å. The crystal was grown in 100 mM Tris pH 7.7, 16% 

w/v PEG 8K, 150 mM NaCl, 250 µM PLP and 10% w/v glycerol. The full dataset was 

collected at the Diamond Light Source.     

L-Cycloserine 

The co-crystallisation attempts with 2.5 mM LCS did not yield formation of any 

crystals. The soaking method was performed in analogy to penicillamine studies using 

the BfSPT crystals grown in 100 mM Tris pH 8.0, 18% w/v PEG 8K, 150 mM NaCl, 

250 µM PLP and 12% w/v glycerol. A small solid granule of LCS was added to the 

crystallisation well with the crystals present. In about 2 hours the crystals have visibly 

changed colour from yellow to pale; the sample was left to incubate overnight before 

being taken out of the well solution and frozen. The most successful crystal provided 

diffraction up to a maximum resolution of 2.75 Å. The full dataset was collected using 

the in-house X-ray source at the University of St Andrews.  
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2.2.4.2.3. Structure solution and refinement 

 

The obtained diffraction data were collected and processed automatically using 

iMOSFLM (Battye et al., 2011), with scaling performed by AIMLESS (Evans & 

Murshudov, 2013). The initial structures were solved by molecular replacement using 

PHASER (McCoy et al., 2007) and S.paucimobilis SPT (pdb code 2W8G) as a model 

for both Sp and Bf SPTs. The BfSPT structures obtained by soaking with L-pen and 

LCS were solved after obtaining the structure of BfSPT-L-serine external aldimine 

structure, using the later as the model for a molecular replacement. Ligand dictionaries 

were generated using PRODRG (Schüttelkopf & Van Aalten, 2004). Ligand fitting 

and manual refinements were performed in Coot (Emsley et al., 2010); automatic 

model refinements were done by REFMAC5 (Murshudov et al., 2011); the structure 

validation and model quality was checked using MOLPROBITY (Chen et al., 2010). 

The pdb validation reports were obtained using wwPDB server (Gore et al., 2017). 

Protein structures are displayed using PyMOL Molecular Graphics System, Version 

1.8.2.2 Schrödinger, LLC. 
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2.2.4.2.4. Crystallographic data collection and refinement statistics  

 

*  The presented refinement parameters are for the proposed PLP-decarboxyoxime 

complex. Discussion of other possible adducts of L-cycloserine are presented in 

chapter 3.3.6.   

a Numbers in brackets represent the highest resolution shell 

b % of residues in most favoured regions/allowed regions/unfavoured regions 

Protein B.fragilis SPT B.fragilis SPT B.fragilis SPT S.paucimobilis SPT 

Ligand PLP-L-serine PLP-L-penicillamine 

PLP-L-cycloserine 

adduct* PLP-L-serine 

Data collection     

Space group P1 21 1 P1 21 1 P1 21 1 P1 21 1 

Cell dimensions       
    a, b, c (Å) 60.26, 148.12, 103.24 60.22, 146.66, 103,12 59.45, 145.35, 101.75 61.38, 103.89, 63.75 

    a, b, g (°)  90.00, 105.08, 90.00 90.0, 104.98, 90.00 90.00, 105.16, 90.00 90.00, 116.53, 90.00 

Resolution (Å)a 82.70-2.45 82.37-2.39 28.20 – 2.75  54.92-1.55 
 (2.51-2.45) (2.45-2.39) (2.90-2.75) (1.59-1.55) 

Rmerge 0.078 (0.547) 0.076 (0.518) 0.153 (0.689) 0.073 (0.754) 

I / σ(I) 9.7 (2.3) 11.0 (2.7) 6.8 (1.3) 15.6 (2.5) 

Completeness (%) 97.8 (92.9) 98.4(97.9) 96.5(95.2) 98.3(97.9) 

Average 

redundancy 
4.8 (4.5) 5.7 (4.9) 4.9 (4.8) 

5.7(5.5) 

Chains in A.U. 4 4 4 2 
     

Refinement     

Resolution 82.70-2.45 82.37-2.39 28.20-2.75 54.92-1.55 

No. of unique 

reflections 62701 67068 41751 103385 

Rwork/Rfree 0.2112/0.2502 0.2075/0.2514 0.276/0.325* 0.1811/0.2098 
     

No. atoms     

Protein  12235 12268 12260 6012 

Ligand atoms 88 96 80* 44 

Number of waters 171 189 4 285 
     

B-factors (Å2)     

Protein  59.25 62.88 49.66 20.42 

Protein B-factor 

chain range 46.51(A)-74.65(D) 51.80 (A) -73.42(D) 37.36(A) - 61.07(D) 18.53(B)-22.30 (A) 

Waters 43.98 48.88 16.55 21.21 

Ligand 60.81 69.17 56.82* 20.4 

Ligand B-factor 

range 54.36(A)-69.4(D) 58.2(A) - 78.8 (B) 50.0 (A) - 65.0 (D)* 19.70 (B) -21.10 (A) 
     

R.M.S. deviations     

Bond lengths (Å) 0.0115 0.012 0.01* 0.018 

Bond angles (°) 1.3701 1.434 1.39* 1.8556 

Ramachandran plot 

summ. (%)b 97.2/2.8/0 98.3/1.7/0 96.6/4.4/0 98.0/2.0/0 
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2.2.5. Bioinformatic analysis of conservation amongst putative 

isoSPTs 
 

Search for putative isoSPT sequences was performed using protein BLAST (Altschul 

et al., 1990). The amino acid sequence of BfSPT was used as an input and searched 

independently against the sequence databases of Parabacteroides, Prevotella, 

Tannerella and Porphyromonas taxa, with the top hit results selected for each.  

For the top hit results, the identities of the corresponding genes and proteins were 

obtained from GeneBank (Benson et al., 2005) and UniProt (Bateman et al., 2017) 

respectively. The sequence alignments and phylogenetic trees were made using Clustal 

Omega (Sievers et al., 2011). The aligned sequences were presented using ESPript 3.0 

(Robert & Gouet, 2014). 

The structural models displaying sequence conservation were made by Consurf 

(Ashkenazy et al., 2010) using the sequence and the pdb coordinates of the BfSPT L-

serine external aldimine structure as an input template. The models were displayed 

using PyMOL Molecular Graphics System, Version 1.8.2.2 Schrödinger, LLC. 

Generation of the proposed PLP-isoKDS external aldimine model was made using 

PRODRG (Schüttelkopf & Van Aalten, 2004). Fitting of the PLP-isoKDS molecule 

into the conservation model was manually performed in Coot (Emsley et al., 2010) 

using the structure of the PLP-decarboxymyriocin complex (4BMK) as the initial 

template. The modelling of the 17-carbon chain of the ligand into the possible 

substrate-binding tunnel of BfSPT was manually performed in Coot using the local 

geometric restraints provided by the protein backbone.  
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Chapter 3. Results and Discussion 
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3.1. Sphingomonas paucimobilis SPT 
 

The initial approach of this project was to continue studies on SPT from Sphingomonas 

paucimobilis. The enzyme has been established as a reliable model in our research 

group and has been extensively characterised by the previous group members (Yard, 

Raman, Lowther, Wadsworth, Beattie). The aim was to expand the knowledge of 

certain mechanisms of enzyme inhibition further as well as to study the substrate 

specificity of the enzyme and the possible mechanisms leading to the formation of 

deoxysphingolipids.  

The enzyme was previously studied in the form of two constructs derived from specific 

cloning sites on the pET28a vector. The original construct contained a poly-histidine 

tag after the C-terminal (appendix 1); most of the previous work has been carried on 

it. Due to some undetermined difficulties with crystallisation of the protein arising 

after 2012, the further structural work has been carried on another construct containing 

N-terminal His tag joined by 13 additional linker amino acids (appendix 1). This 

second construct, provided by Teresa Dunn, has been codon-optimised for expression 

in Arabidopsis thaliana; this also led to some implications for designing the primers 

for SDM. The protein construct has shown a slightly reduced binding affinity for L-

serine and a kinetic activity lower for about two times, that was most likely caused by 

the presence of the flexible linker tag.  Colloquially the first construct was named as 

the “Scottish” (Sc) SPT and the former as the “American” (Am) SPT.  

Due to the differences in the activities of both constructs, all spectrophotometric 

studies were carried out with Sc SPT, while Am SPT was used for some structural 

studies. Despite some differences in mass (45975 Da for Sc and 47232 Am) and kinetic 

activity, both constructs have shown generally similar parameters and were treated 

using the same protocol.  

As this project has changed its direction quickly and not much significant work has 

been carried on both enzymes, most of the data presented here were obtained using 

ScSPT, while some of the work carried on AmSPT has been left off the scope of this 

report. Therefore further here the SPT from S.paucimobilis is referred to as SpSPT 

(indicating the C-terminal Sc construct unless stated otherwise).   
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3.1.1. Expression and purification of SpSPT (C- and N-terminal) 

 

Both C- and N-terminal SPTs have been expressed in pET28a vector and introduced 

into E.coli BL21 cells using kanamycin resistance gene for selection of the positive 

colonies. Upon the expression, the protein was readily purified using metal affinity 

chromatography, followed by purification with size-exclusion chromatography (Fig. 

3.1.1.1). 

The purified SPT appeared yellow in solution, indicating the presence of PLP as its 

cofactor. Characterisation of fractions collected over the course of protein purification 

by SDS-PAGE revealed the presence of a strong band roughly corresponding to 45.0 

kDa (with the theoretical mass of SpSPT being 45975.6 Da). Upon the second 

purification by the SEC, the protein has appeared as a broad single peak with the 

retention volume of 68.5ml on the SuperdexTM S200 column; this corresponds to an 

estimated MW of roughly 92.0 kDa (the calibration curve and the calculation is shown 

in Appendix 3) indicating that the protein is present in the form of homodimer.     
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A  B  

C  

 

Fig. 3.1.1.1. A) The SDS-PAGE analysis of the fractions collected during the purification of SpSPT. 

The fractions are marked as follows: T – total protein fraction obtained upon cell lysis; Sol – soluble 

fraction loaded on the Ni-affinity column; Pel – resuspended non-soluble fraction obtained from 

precipitated cell debris (discarded); FT – the flow through fraction during the Ni-affinity purification 

(discarded); E – elution fraction; GF A, B, C – peak fractions containing the purified protein collected 

after the size-exclusion chromatography. B) A photograph of the purified SpSPT as it appears bright 

yellow in solution. C) The size-exclusion chromatogram of SpSPT; the fractions 14, 15 and 16 contain 

the purified protein (GF A, B and C from the top gel). The column used is SuperdexTM S200 (GE 

HealthcareTM). 
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3.1.2. Spectroscopic studies of SpSPT 

 

The SPT from S.paucimobilis has a characteristic UV-Vis profile of a PLP-dependent 

enzyme (Ikushiro et al., 2001; Raman et al., 2009). The PLP molecule is in equilibrium 

between the two resonance forms, enolimine and ketoenamine, having the absorbance 

maxima at 338 and 425 nm respectfully (Fig. 3.1.2, A). Upon formation of the external 

aldimine with L-serine a change in the equilibrium is observed as the enzyme 

predominantly forms the ketoenamine complex. It is possible to follow the formation 

of the external aldimine by monitoring the change in absorbance at 425 nm. This 

change is proportional to the increase in the substrate concentration and can be used 

for determining the enzyme-substrate dissociation constant Kd (Fig. 3.1.2, C). 

The Sc SPT Kd (L-serine) was determined to be 1.1 mM; this value well agrees to the 

previously reported in the literature (Raman, 2009); the Am SpSPT (N terminal) had 

its Kd (L-serine) determined as 1.34 mM, it is likely that the flexible 13-amino acid 

extension of the Am SPT might slow down the substrate binding and thus reduce the 

affinity.    
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                      A 

 

                       B 

 

                       C 

 

Fig 3.1.2. A). The PLP binding profile of SpSPT (N-terminal).  The cofactor is present in an equilibrium 

between enolimine and ketoenamine forms (B). Addition of the substrate causes a shift in the 

equilibrium between these forms that can be monitored by the UV-vis spectrometry. C) Changes in 

absorbance of the ketoenamine peak at 425 nm are plotted against the increasing concentration of L-

serine and used to determine the binding constant Kd 
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3.1.3. Exploring of the substrate specificity of the A295T mutant 

 

Previous studies by A. Beattie have highlighted the role of the phosphate group 

interactions with SPT and its impact on the catalytic activity (Beattie et al., 2013a). In 

the external aldimine structure of SpSPT (pdb 2W8J), the active site residues around 

the phosphate group of PLP form a network of hydrogen bonds (Fig. 3.1.3.1, A). 

Notably, a 2.5 Å length H-bond is formed with the hydroxyl group of the substrate L-

serine.  It was proposed that mutating the alanine 295 to threonine will introduce 

additional hydroxyl group from the protein backbone that would stabilise the 

phosphate and, at the same time, create a steric clash with the hydroxyl group of L-

serine, thus reducing its binding affinity (Fig. 3.1.3.1, B). Both ALAS and AONS have 

a threonine residue present at the position corresponding to A295 in SpSPT; thus, in 

theory, an introduction of the mutation might facilitate a conversion of L-alanine by 

SPT.   

A

 
 

B

 

Fig. 3.1.3.1. Proposed effect of the A295T mutation on the substrate binding mode of ScSPT. A) The 

stabilisation of the phosphate group of the PLP-L-serine external aldimine by the backbone of SpSPT 

(2W8J). The key contacts are presented with the numerical distances shown in Å; the residues from the 

opposite protein chain are marked with * B) A theoretical model of the previous structure showing a 

possible effect of the A295T mutation (marked in purple).  

 

The C-terminal His-tagged A295T mutant was produced and spectroscopically 

characterised by A. Beattie (PhD thesis). This work has looked further at the properties 
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of the given mutant and its binding to amino acids glycine and alanine, as well as the 

comparison of reactivity with the WT enzyme.  

The A295T mutant enzyme was expressed from pET28a plasmid in E.coli BL21 DE3 

cells in the same manner as WT SpSPT. The protein was purified with metal affinity 

and size exclusion chromatography; the purified protein has shown a single band of 

45kDa on the SDS PAGE.      

Comparison of amino acid binding in WT and A295T SpSPT  

 

To assess the effects of the mutation on the binding parameters of several amino acids, 

UV-vis binding assays were performed as described in methods. Binding of both WT 

SpSPT and the A295T mutant were studied with L- and D-serine, glycine and L-

alanine. The data are presented over the next pages in figures 3.1.3.2 (A-D); the 

obtained binding constants are summarised in table 3.1.3.1.  

The A295T mutant shows different binding properties with L-serine and L-alanine as 

compared to the WT. It is possible to propose that introduction of the hydroxyl group 

from threonine 295 has weakened L-serine binding in about 13 times (Kd WT/mut = 

1.1/14.7); it also resulted in a different spectral configuration upon L-alanine binding. 

Due to non-linear changes in the PLP spectrum, however, the determined Kd of WT 

enzyme lacks accuracy, while no Kd could be determined for the A295T mutant. The 

mutation, however, did not have any relevant effect on glycine binding as was 

expected (Kd WT/mut = 14.6/16.1), suggesting that other molecular interactions might 

be involved in regulation of the amino acid recognition. The mutation also had a minor 

effect on reducing D-serine binding affinity compared to the wild type (Kd WT/mut = 

9.7/15.2), resulting in Kd’s of both serine enantiomers being of similar values. 

Enzyme Kd (L-serine), 

mM 

Kd (L-alanine), 

mM 

Kd (glycine), mM Kd (D-serine), 

mM 

SpSPT WT 1.1 12.3 14.6 9.7 

SpSPT A295T 14.7 - 16.1 15.2 

Table 3.1.3.1. Comparison of the obtained amino acid binding constants of the WT and A295T 

mutant  
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Figures 3.1.3.2 (1-4). Comparison of amino acid binding in WT and 

A295T SpSPT 

L-serine 

      A 

        

 

 
      B 

       

 

 

 

Figure 3.1.3.2  (A). Left: The UV-vis profile changes of SpSPT WT (A) and the A295T mutant (B) 

upon binding of L-serine. Right: Changes in the absorbance at 425 nm peak plotted vs amino acid 

concentration used to determine the binding constants Kd for SpSPT WT (A) and A295T mutant (B).  
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L-alanine 

     A 

         
      B 

        

 

 
 

Figure 3.1.3.2 (B). Left: The UV-vis profile changes of SpSPT WT (A) and the A295T mutant (B) 

upon binding of L-alanine. Right: Changes in the absorbance at 425 nm peak plotted vs amino acid 

concentration used to determine the binding constants Kd for SpSPT WT (A) and A295T mutant (B). 

Due to non-linear change in absorbance of the A295T mutant it was not possible to determine the Kd.  
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Glycine  

        A 

        

 
 

 

        B 

         

 

 
 

Figure 3.1.3.2 (C). Left: The UV-vis profile changes of SpSPT WT (A) and the A295T mutant (B) 

upon binding of glycine. Right: Changes in the absorbance at 425 nm peak plotted vs amino acid 

concentration used to determine the binding constants Kd for SpSPT WT (A) and A295T mutant (B).  
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D-serine 

         A 

              
         B 

               

 
 

      
 

     

 
 

Figure 3.1.3.2 (D). Left: The UV-vis profile changes of SpSPT WT (A) and the A295T mutant (B) 

upon binding of D-serine. Right: Changes in the absorbance at 425 nm peak plotted vs amino acid 

concentration used to determine the binding constants Kd for SpSPT WT (A) and A295T mutant (B).  
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Observing relative activities of WT and A295T SpSPT using DTNB assay 

 

Due to a very low activity of the A295T mutant, it was not possible to obtain the kinetic 

parameters of the enzyme variant. Therefore, a simple comparative experiment was 

carried out to compare the relative observed activities of both WT and A295T enzymes 

in terms of the observed initial reaction rate using the DTNB assay. The observed 

initial reaction rate of the WT enzyme was presented as 100%, with the rates of the 

A295T mutant presented as percentage fractions of it. To see whether the mutation has 

led to any changes in the substrate specificity, separate reactions have been carried 

with the excess concentrations of 40 mM L-serine and 40 mM L-alanine for both 

enzyme variants. The enzyme concentration was kept at 100 nM, other reaction 

conditions were kept as described in the materials and methods section.   

Relative activities of both WT and A295T mutant enzymes are shown in figure 3.1.3.3. 

The reaction rate of the mutant with L-serine shows only 13% of the WT activity. This 

correlates well with the predictions and binding studies as it is expected that threonine 

295 introduces a steric clash in the active site, making binding of L-serine less 

favourable.  

In contrast, a very slow activity was observed for the mutant with L-alanine. The WT 

SpSPT is known as not able to process L-alanine as a substrate (Hanada et al., 2000c), 

Higher increase in absorbance at 412 nm has been observed for the A295T mutant in 

reaction with alanine compared to the background, giving a total of 0.48 nM of TNB2- 

released per second.   

The observed activity of A295T with alanine represents only 1.56% of the WT enzyme 

activity with serine; therefore, the specificity of the enzyme has not been subverted yet. 

While the mutant form still prefers serine as its substrate, the serine/alanine preference 

rate has decreased from > 600 in the WT to 8.3 in A295T. 
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A   

B  

Fig. 3.1.3.3. Activities of WT and A295T mutant SPT with 40 mM L-serine and 40 mM L-alanine 

measured by DTNB assay. A) Total enzyme activity observed in terms of the TNB2- ion released over 

time. B) Relative activity presented in terms of the initial reaction rates with the initial reaction rate of 

WT SPT with L-serine presented as 100%. The control samples had no amino acid present.   
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3.1.4. Structural studies of SpSPT (N-terminal): Co-crystallisation 

attempt with D-serine  
 

Crystal trials of N-terminal SpSPT were set up in the presence of 20 mM D-serine. The 

crystals grown in 0.1M Sodium HEPES pH 7.5, 25% w/v PEG 4000 gave the best 

diffraction data with the resolution of 1.55 Å.  

Resolving of the structure was carried according to the materials and methods; the 

structure of SpSPT in complex with L-serine (pdb 2W8J) was used as the model for 

molecular replacement.  

The obtained structure is generally comparable in its quality to the already published 

SpSPT L-serine external aldimine structure (Raman et al., 2009; pdb code 2W8J) with 

the similar resolution (1.55 Å and 1.5 Å of the published structure), despite having 

slightly higher Rwork/Rfree values of 0.181/0.210 compared to 0.157/0.187 published.   

However, unexpectedly upon solving the initial structure without the ligand, the 

unbiased 3.0 σ Fo-Fc map presented electron density that was corresponding to the L-

serine external aldimine. No residual density that could indicate the shape of D-serine 

was observed in the active site (Fig. 3.1.4.1, A). To account for the possibility of a co-

crystallisation error, the trials were repeated for the second time with 20 mM D-serine; 

the results were reproducible indicating the presence of L-serine in the active site.  

D-serine powder provided by Sigma-AldrichTM is marketed as 99% pure by the 

manufacturer, therefore it can contain up to 1% L-serine. As D-serine binding to SPT 

is ~9 times weaker compared to L-serine (Kd 9.8 mM and 1.1 mM respectively), 

selective binding of the natural substrate would be preferred. However, this could not 

entirely contribute to the presence of L-serine in the active site as its maximum 

concentration would be 0.25 mM. This is 4 times lower than the Kd for L-serine and 

would leave most of the enzyme unoccupied and available for D-serine; that would be 

reflected by the proportional split in the electron density but would not result in all of 

the bound substrate being L-serine. It is therefore likely that D-serine was converted 

into L-serine in the active site of SPT during the two-week crystallisation period; thus, 

SPT might have a weak serine racemase activity. 
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A 

 

     3.0 σ Fo-Fc map                                                1.2 σ 2Fo-Fc map     

B 

 

 

Fig. 3.1.4.1. A) The electron density maps (initial 3.0 σ Fo-Fc map and the final refined 1.2 σ 2Fo-Fc 

map) obtained from the co-crystallisation dataset of SpSPT with D-serine, with the PLP-L-serine 

external aldimine modelled inside. The electron density contributes to the presence of L-serine in the 

active site. B) An overlay of the SpSPT structure obtained via co-crystallisation with D-serine (green) 

and the SpSPT external aldimine structure (2W8J, coloured in cyan). The 2Fo-Fc electron density map 

from the refined D-serine co-crystallisation structure is contoured around 1.2 σ. While the density 

around R378 is weak suggesting flexibility of the residue, no contact with the external aldimine is 

observed as opposed to the published L-serine structure in cyan (the same residue marked with *). 

RMSD variation of the obtained structure with 2W8J – 0.558 Å. 
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Comparisons of the obtained structure of SpSPT with the already published L-serine 

external aldimine (2W8J) and the PLP internal aldimine (Yard et al., 2007; pdb code 

2JG2) structures reveal that it has more similarities with the latter one, despite having 

the same PLP-ligand complex as 2W8J. The core RMSD between the D-serine co-

crystallisation product structure and 2W8J is 0.558 Å across 398 aligned residues; the 

RMSD between the structure and 2JG2 is 0.501 Å across 398 aligned residues 

(calculated in Coot). The differences are mainly contributed by the flexibility of the 

“PPAP” substrate-selection loop, yet more importantly by the position of the arginine 

378 (Fig. 3.1.4.1, B).  

In the internal aldimine structure of SpSPT (2JG2), the residue points outwards from 

the active site of an enzyme and towards the protein surface. Upon binding of L-serine, 

the R378 performs a distinctive conformational switch and twists towards the 

carboxylate group of L-serine, providing a stabilising interaction for the enzyme-

substrate complex (Raman et al., 2009, pdb code 2W8J). A similar conformational 

twist is expected to occur in S.wittichii SPT with the corresponding R358; while the 

residue is located near the surface of the protein in the published internal aldimine 

structure (Raman et al., 2010, pdb id 2X8U), it is likely to be involved in stabilisation 

of the external aldimine. 

In the structure obtained by the co-crystallisation with D-serine, the density around the 

“PPAP” loop remains weaker than for the rest of the protein, suggesting that the loop 

is flexible in the crystal complex. While the R378 is not completely visible due to 

flexibility, the residual electron density shows that its guanidinium group is located on 

the surface of the protein and not near the active site where the L-serine is bound in 

the form of external aldimine (Figure 3.1.4.1, B).  

Although indirectly, this observation points to some important features of the SPT 

binding mechanism. While D-serine can bind the PLP in the active site, it causes no 

conformational change of the R378 observed during the L-serine binding, suggesting 

that the enzyme has a distinctive and rapid mechanism for identifying its correct 

substrate. The absence of the conformational change of R378 indicates that initially 

D-serine has been bound in an external aldimine form and was slowly converted into 
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L-serine afterwards. No further conformational changes of R378 could occur as the 

enzyme has already retained its shape in the crystal lattice.  

Remarkably, previous 2008 study by Ikushiro et al. provided evidence that similar 

deprotonation of the external aldimine form occurs in SpSPT. The authors monitored 

the hydrogen-deuterium exchange on the Cα of serine bound to the SPT using NMR 

spectroscopy. Upon binding of the second substrate, reduction of the Cα hydrogen 

peak occurs for L-serine, but not for D-serine. However, in the absence of second 

substrate binding, very slow deprotonation is observed for both enantiomers with 

relatively close reaction rates of 0.19 x 10-5 s-1 for L-serine and 0.12 x 10-5 s-1 for D-

serine, and half-lives of 103 h and 150 h respectively.  

Interconversion of L- and D-serine is catalysed by the enzyme serine racemase 

belonging to β-family of PLP-dependent enzymes (Smith et al., 2010, pdb id 3L6B). 

In the reaction mechanism, the substrate (either L- or D- serine) replaces the catalytic 

Lys56 to form an external aldimine with the PLP in a similar manner to SPT; 

subsequent deprotonation and reprotonation of the Cα proceeds via acid/base catalysis 

enabled by Ser84 and Lys56.  

Another amino acid racemisation mechanism is occurring in N-acylamino acid 

racemase (NAAAR, Thoden et al., 2004; pdb 1SJA). While NAAAR is not a PLP-

dependent enzyme, it involves two basic residues, Lys163 and Lys 263, located 

opposite to each other across the Cα carbon of the substrate; depending on the amino 

acid enantiomer bound, one of the lysines acts as a base that deprotonates the Cα; this 

is followed by stereoinversion and reprotonation. Lack of the PLP cofactor that would 

act as an electron-withdrawing sink during the transition state limits the reaction to N-

acylated amino acids only. A similar racemisation mechanism involving two basic 

residues located in one plane across the Cα-H bond, each specifically deprotonating 

either L- or D- enantiomer, might as well occur in SPT.    
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Fig. 3.1.4.2. Left: The proposed mechanism of serine resolution in the active site of SPT. Slow 

deprotonation of the Cα on both L-and D-serine leads to a formation of the planar quinonoid species 

with the subsequent resolution to L-serine. Right: Positioning of the L-serine in the obtained structure 

(top) and the decarboxymyriocin (bottom, pdb 4BMK) in the active site of SPT with the residues 

possibly involved in deprotonation of the Cα of the substrate.  

 

During the SPT reaction mechanism, Lys265 acts as a base and rapidly deprotonates 

the Cα on the external aldimine of L-serine upon binding of the second substrate. 

However, as slow deprotonation occurs for both L- and D-serine in the absence of 

second substrate binding, it could be mediated by two basic residues that each can 

deprotonate a specific enantiomer. This will result in the formation of a planar 

quinonoid intermediate that will be rapidly reprotonated back, either by the catalytic 

lysine or the solvent. The restrictions provided by the active site of the enzyme would 

almost exclusively result in the formation of L-serine, thus leading to stereospecific 

resolution (Fig. 3.1.4.2, left). The catalytic Lysine265 residue would most likely act as 

one of the bases; possible second base could be the His159 located across the plane to 
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L265 and in parallel to the pyridine ring of PLP. His234, while being found at the 

opposite side of the Cα, is unlikely to play a role of the base due to a large distance 

between the N1 of the imidazole ring and the Cα of the bound substrate (5.8 Å).  

His159 and Lys265 are located on either side of the substrate α-carbon (Fig.3.1.4.2, 

top right), thus allowing both residues to act as a deprotonating base. Upon binding of 

D-serine via external aldimine, the Cα-H bond might be oriented towards His159 and 

therefore be susceptible to slow deprotonation. After formation of the quinonoid 

intermediate planar to the PLP ring, a stereoselective reprotonation would occur 

yielding the resolution to L-serine external aldimine.   

Myriocin has a D-configuration at its C2 and therefore is expected to have the same 

binding mode as D-serine. In the structure of SPT K265A with decarboxymyriocin 

(4BMK) the bound ligand retains D-configuration, while the Cα-H bond formed due 

to decarboxylation is directed towards His 234 (Fig. 3.1.4.2, bottom right). It remains 

likely that the D-configuration is retained due to the absence of the catalytic Lys265 

that would act as a deprotonating base otherwise.  

The observations derived from the co-crystallisation study are very intriguing as they 

suggest that SPT might have an inherent racemase activity. This activity could be 

tested using a variety of different methods such as chiral resolution HPLC and coupled 

enzyme assays. Although supplement of D-serine does not lead to the production of 

KDS by SPT (Hanada et al., 2000a), its possible conversion to L-serine might 

gradually result in the formation of KDS in the long term. It would not be possible to 

monitor this conversion using SPT only due to rapid degradation of PCoA, yet it might 

be possible to develop a coupled enzyme assay using an L-serine specific enzyme such 

as dehydratase. Studies could be further aided by using radioactively labelled serine. 

It is important to see the effect of active site lysine on conversion of D-serine. Valuable 

information could be obtained by exploring the properties of the K265A mutant, 

particularly testing its ability to form quinonoid species and its interaction with D-

serine. To test the validity of this assumption, a co-crystallisation study of the SPT 

K265A mutant could be performed with D-serine.  
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Finally, the differences the flexibility of the “PPAP” loop and the R378 between the 

obtained structure and the published L-serine external aldimine indicate on specific 

mechanisms employed by SpSPT in substrate selection. This is in contrast to the SPT 

from B.fragilis, where different mechanisms are shown to occur upon the substrate 

binding, as discussed later in the text. The practical impact of this observation could 

explain the difficulties in obtaining crystal complexes of SpSPT with L-penicillamine 

that have been accomplished using the BfSPT as a model.  
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3.2. Bacteroides fragilis SPT 
 

3.2.1. Expression and purification of BfSPT 

 

The putative B.fragilis SPT from the BF2461 gene (the nucleotide and protein 

sequences are presented in appendix 2) was successfully expressed in E.coli BL21 

strain and purified according to the materials and methods. Visualisation of the protein 

fractions, taken at different expression and purification stages, by SDS PAGE shows 

the appearance of a band slightly below the 45 kDa (Fig 3.2.1.1, A). During 

purification by size-exclusion chromatography, the protein eluted in a peak with the 

retention time corresponding to an approximate MW of 90 kDa (Fig.3.2.1.1, B; the 

calibration curve is shown in appendix 3). This suggested that the protein is present in 

a form of dimer in solution as expected.  

A  

B  

Fig 3.2.1.1. A) The SDS PAGE analysis of fractions collected during the expression and purification of 

BfSPT. Labels are: o – pre-induction, I – induced sample, T – total cell fraction, S – soluble fraction, P 

– non-soluble pellet fraction (discarded); Ni-affinity purification flow through (FT), wash (W) and 

elution (E). B) Size exclusion chromatogram of BfSPT with the retention peak appearing at fractions 

16-17. 
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The analysis of the purified protein by ESI LC-MS has yielded a single species with 

the mass of 44613.8 Da (Fig.3.2.1.2); this corresponds to the mass of the His-tagged 

BfSPT construct without the initial methionine (theoretical MW 44614.3 Da, ExPASy 

ProtParam).  

Treatment of the sample with 10 mM NaBH4 resulted in the chemical reduction of the 

internal aldimine bond between the PLP and the catalytic lysine (Fig. 3.2.1.2, bottom). 

The resulting PLP-enzyme adduct is stable enough to be observed by LC-MS. The 

spectrum of BfSPT under these reducing conditions shows the appearance of the 

species with MW of 44845.6 Da. The increase of 232 Da well corresponds to the 

theoretical mass of the PLP (233 Da) being covalently bound to the protein in the 

reduced form.  

 

 
 

 

Figure 3.2.1.2. The LC-MS spectrum of BfSPT in both as-purified and reduced forms.  Theoretical MW 

of BfSPT is 44614.30 Da (ExPASy ProtParam). The spectrum on the right has been obtained after the 

protein treatment with 10 mM NaBH4. The aldimine bond is reduced and the PLP forms a stable 

covalent adduct with the enzyme; this was captured by LC-MS with the mass of 44845.6 Da (in 

agreement with the expected 233 Da increase).   
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While having generally acceptable levels of expression and protein stability to be used 

in further studies, BfSPT did show slightly weaker long-term stability compared to the 

SpSPT. The protein stability has also varied broadly between different preparations. 

To address this issue, extra control was contributed to the protein induction, expression 

and purification stages.  

 

3.2.2. Spectrophotometric properties of BfSPT 

 

The purified BfSPT gave a characteristic UV-vis spectrum of a PLP-dependent enzyme 

with the appearance of peaks at 330 and 420 nm corresponding to the enolimine and 

ketoenamine isoforms of PLP. Notably, in BfSPT the maximum absorbance peak is 

shifted to 420 nm compared to 425 nm in the SpSPT. 

In contrast to the SpSPT, the PLP of BfSPT is present almost entirely in the 

ketoenamine form (Fig.3.2.2.1, A). This agrees well with the previous observations (E. 

Bower, MRes thesis), and has also been reported in the literature for the bacterial SPT 

from Bdellovibrio stolpii (Ikushiro et al., 2007) that has a 48% sequence identity with 

the BfSPT (protein BLAST, AB259216 gene).  

Binding of L-serine causes some visible changes in the equilibrium between both 

isoforms, however, these are less prominent than those of the S.paucimobilis SPT but 

look similar to a closer-related S.multivorum SPT (Ikushiro et al., 2007). Based on the 

spectral changes at 420 nm, the binding constant Kd of BfSPT to L-serine has been 

determined as 1.48 mM (Fig. 3.2.2.1, B); this is relatively higher compared to some 

other SPTs yet remains in a very close range to them (the comparison of the Kd values 

of BfSPT and other SPTs is presented in Table 3.2.3.3.2 further in a text).  
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A  

B  

Fig 3.2.2.1. A) Changes in the PLP spectrum of BfSPT upon addition of increasing concentrations of 

L-serine. The saturated spectra observed at concentrations of L-serine > 20 mM have been omitted for 

simplicity B) The mean increase in the absorbance at 420 nm plotted against the concentration of L-

serine to determine the binding constant Kd. The experiment was done in triplicate with the error bars 

presenting the standard deviation between absorbance changes in samples.   
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3.2.3. Kinetic characterisation of BfSPT 
 

3.2.3.1. The effect of pH on the activity of BfSPT 

 

The DTNB assay (Ellman, 1959) has been widely utilised in measuring enzyme 

activities in reactions that involve thiol release (Riddles et al., 1983), and SPT in 

particular (Raman et al., 2009). Although the inability to monitor the release of the 

actual products is the biggest drawback, DTNB assay remains a convenient and routine 

way of monitoring the activity of SPT in the real time.  

The activity of SpSPT has been conventionally measured at pH 7.5 – 8.0. However, as 

the pH level of a human gut is typically ranged at 6.4-7.5 (Pye et al., 1990), pH 

optimisation for the BfSPT activity was performed. The activity was tested using 5 

different 100 mM KPhos buffers with the pH range from 6 to 8 (with 0.5 increments). 

All the reaction conditions apart from the pH were kept constant with the enzyme 

concentration of 200 nM, L-serine and PCoA concentrations of 20 mM and 25 µM 

respectively.  

The activity of BfSPT varies considerably across the pH range tested (Fig.3.2.3.1.1), 

with the highest reaction rate being observed at pH 7.0; at pH 6.5 the enzyme retains 

96.2% of its highest activity, while at other pH values tested the activity drops to 34.8% 

(pH 6), 63.6% (pH 7.5) and 45.4% (pH 8.0). It is therefore evident that a careful pH 

control is needed for the optimal activity of the enzyme; hence all further kinetic 

experiments have been performed using buffered KPhos solutions of pH 7.0.  
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A  

B  

 

Fig. 3.2.3.1.1. The dependence of BfSPT activity on the pH measured by the DTNB assay. A) The mean 

absorbance readings over the time of the reaction calculated from the raw data. B) Comparison of the 

relative activity of BfSPT at different pH levels presented as a relative percentage rate (calculated from 

the maximum activity observed). The reactions were made in triplicate with the error bars representing 

the standard deviation between individual reactions.  
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3.2.3.2. Activity of BfSPT with different amino acids 

 

Wild-type BfSPT was tested for inherent catalytic promiscuity towards other amino 

acid substrates using the optimised DTNB assay. Alongside L-serine, activities with 

the excess of glycine, L-alanine and L-threonine were tested (40 mM each). However, 

apart from L-serine, there was no TNB2- release with the absorbance at 412 nm staying 

at the baseline level, suggesting that wild-type BfSPT cannot utilise other amino acids 

tested as substrates (Fig.3.2.3.2.1).  

A  

B  

Figure 3.2.3.2.1. The activity of BfSPT with different amino acids as measured by DTNB assay using 

PCoA as the second substrate. A) Averaged mean output of the raw data. Samples are labelled as: no 

amino acid control (o), glycine (G), L-alanine (A), L-serine (S) and L-threonine (T). B) Comparison of 

the mean reaction rates. Reactions were made in triplicate; the error bars present the standard deviation. 
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Just as most of the AOS family of enzymes, and its homolog S.paucimobilis SPT in 

particular, BfSPT was able to bind to several amino acids. Apart from the expected 

substrate L-seine, the spectral changes in the protein indicated binding of similar 

amino acids glycine, L-alanine and L-threonine. However, when monitored by DTNB 

assay, BfSPT was only able to utilise L-serine as its first substrate (Fig 3.2.3.2.1) while 

the activity with the three other amino acids did not increase above the negative control. 

In this respect, the enzyme reacts in a similar manner to all already reported SPTs.  

To obtain the kinetic parameters for L-serine, palmitoyl-CoA was used as the best 

performing acyl-CoA substrate. The measurements were made at the constant 

concentration of PCoA of 50 µM, giving the optimal reaction rate (Fig. 3.2.3.2.2). The 

enzyme KM for L-serine was determined as 0.64 ± 0.06 mM; while being lower than 

the already reported values for other bacterial SPTs, it is of a similar magnitude 

(compared in table 3.2.3.3.2). The determined enzyme turnover rate kcat is 67.9 x 10- 

3s-1. This is considered to be at the lower end of SPT activity, being very close to 

S.witichii (68.7 x 10- 3s-1) but about 15 times less of the S.paucimobilis SPT. However, 

the value was derived at conditions where the enzyme rates followed the Michaelis-

Menten relations and did not account for any possible impacts of the second substrate, 

which are to be discussed later. 

 

Fig. 3.2.3.2.2. The activity of BfSPT in reaction with L-serine presented in terms of the initial rates of 

TNB2- released per second (measured by the DTNB assay). The reaction rates are plotted against the 

increasing concentrations of L-serine; the saturation curve was fitted into the equation 3 to obtain the 

KM. Each reaction condition was measured in triplicate; the error bars show the standard deviation  
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3.2.3.3. Studies of BfSPT specificity towards acyl-CoA substrates 

 

To test the enzyme specificity towards the second CoA-derived substrate, activities 

were measured by DTNB assay with L-serine and each of the following acyl-CoA 

substrates of different chain lengths (increasing by an extra CH2 unit): myristoyl-CoA 

(C14), pentadecenoyl-CoA (C15), palmitoyl-CoA (C16), heptadecanoyl-CoA (C17) 

and stearoyl-CoA (C18).  

 

Figure 3.2.3.3.1. A summarised comparison of the relative activities of BfSPT with different-length 

acyl-CoA substrates measured by the DTNB assay (only the same scale data points are included). The 

acyl-CoA substrates are labelled as indicated in the text above. 

Individual reaction rates of BfSPT plotted over the acyl-CoA concentrations are 

presented further in the Fig. 3.2.3.3.2. The obtained kinetic parameters are summarised 

in the Table 3.2.3.3.1.  

The BfSPT has shown activities with all acyl-CoA substrates, while changes in the 

activities with different-length substrates varied considerably (Fig. 3.2.3.3.1). The 

highest enzyme activities were observed for pentadecenoyl- (C15), palmitoyl- (C16)- 

and heptadecanoyl-CoAs (C17), yet these substrates also caused clear enzyme 

inhibition at high concentrations. The highest reaction rates were observed for 

palmitoyl-CoA, yet the substrate also caused the biggest drop in the reaction rates at 

higher concentrations. Activities with myristoyl- (C14) and stearoyl- (C18) CoAs were 

lower, while these substrates did not appear to inhibit the enzyme.    
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Fig. 3.2.3.3.2. Determining the activity of BfSPT with various acyl-CoA substrates using the DTNB 

assay. The initial reaction rates are presented in terms of the amounts of TNB2- ion released per second 

and plotted across the increasing concentrations of acyl-CoA substrates. The reaction rates were fitted 

into the appropriate equations 3 or 4 as discussed in section 2.2.3.7 and used to determine the kinetic 

parameters summarised in Table 3.2.3.3.1. Each reaction condition was performed several times (at 

least 5), with the error bars presenting the standard deviation between the individual readings.  
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Substrate KM kcat x 103 kcat/KM
  Ki 

  µM s-1 M-1 s-1 µM 

L-serine 636 ± 59   67.9 ± 1.3*  107 - 

Myristoyl (14:0) 6.7 ± 2.8 6.2 ± 0.4 922 - 

Pentadecanoyl (15:0) 19.2 ± 6.2 52.6 ± 8.8 2733 153.4 ± 50.8 

Palmitoyl (16:0) 91.6 ± 39.7 361.0 ± 138** 3940 17.8 ± 8.3 

Heptadecanoyl (17:0) 14.5 ± 4.7 45.4 ± 6.1 3135 569.1 ± 326.1 

Stearoyl ( 18:0) 19.2 ± 3.7 35.9 ± 1.6 1871 - 

Table 3.2.3.3.1.  Summary of BfSPT kinetic data collected on different substrates 

 

 

Organism kcat x 103  KM (L-

serine) 

KM(PCoA) Kd (L-serine) Ki (PCoA) Pdb 

code 

 s-1 mM µM mM µM  

S.paucimobilis 1150 ± 30.0  1.4 ± 0.10 35.4 ± 2.0 1.1 ± 0.1 - 2W8J 

S.wittichi 68.7 ± 1.5 0.78 ± 0.10 23.4 ± 4.5  0.80 ± 0.1 - 2X8U 

S.multivorum 120 ± 10.0 4.8 ± 0.06 100 ± 10.0 0.47 ± 0.1  - 3A2B 

B.fragilis 67.9 ± 1.3* 

361.0 ± 138** 

 

0.64 ± 0.06 91.6 ± 39.7 1.48 ± 0.18 17.8 ± 8.3 

 

tbc 

Table 3.2.3.3.2. Comparison of BfSPT kinetic parameters with those of other published SPTs.  

* - derived from the obtained Vmax at fixed concentration of PCoA where enzyme shows the highest 

observed activity  

** - derived from the estimated value of Vmax obtained by analysing the impact of substrate inhibition 

on the reaction rate 
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BfSPT retains a degree of catalytic promiscuity towards its second substrate. In this 

respect, the enzyme is similar to other characterised bacterial SPTs (Ikushiro et al., 

2004, Raman et al., 2009). As monitored by the DTNB assay, the enzyme shows 

activity with all five acyl-CoA substrates tested, while the extent of this activity varies 

depending on the substrate.  

Most strikingly, while the enzyme had shown the highest activity towards palmitoyl-

CoA (C16) compared to any other substrates at concentrations ≤50 µM, it had its 

reaction rates steeply reduced at higher concentrations, producing a characteristic 

inhibition pattern. To check whether this inhibition could be caused by the substrate 

and not by a formation of the product instead, several reaction conditions were 

repeated in the presence of 20-300 µM KDS. However, it was found that the reaction 

rates were very similar to the observed before, and not affected by the addition of 

various concentrations of the KDS product. 

To determine the kinetic parameters of the enzyme towards the PCoA, the Michaelis-

Menten equation modified for substrate inhibition was used. Since the true values of 

KM, Vmax and Ki are unknown and appear to have a high interference between them, 

the presented apparent values are subject to a large statistical error.  

The observed substrate inhibition pattern indicates that while the enzyme processes 

PCoA as a substrate with the KM of 91.6 µM, it produces an inhibitory complex at 

much lower concentrations (Ki of 17.8 µM), giving approximately 5-fold preference 

towards the latter. As Ki>>>KM it is not possible to obtain an accurate value of Vmax 

and therefore kcat with high certainty. The determined kcat of 361.0 x 10-3s-1 is being 

several magnitudes higher than the previously reported value of 67.9 x 10-3s-1 

determined at the steady-state conditions with the optimal concentration of PCoA at 

50 µM. The enzyme has the highest specificity ratio of kcat/KM of 3940 M-1s-1 for PCoA, 

however, due to the observed high inhibition, it is not clear whether it utilises the 

substrate in vivo. 

Two of the second best-performing substrates, pentadecenoyl- (C15) and 

heptadecanoyl – (C17) CoAs also showed some degree of substrate inhibition although 

in both cases it was not as severe as with the palmitoyl-CoA.  
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The enzyme KM for pentadecenoyl-CoA (C15) at 19.2 µM is considerably lower than 

its Ki of inhibitory complex formation at 153.4 µM. This appears similar to the KM of 

14.5 µM for heptadecanoyl-CoA (C17), while the substrate has much higher Ki of 

569.1 µM. Both substrates have lower enzyme turnover rates kcat (52.6 x 10-3 and 45.4 

x 10-3 s-1 respectively), yet due to the lower KM as compared to PCoA, the enzyme 

specificity indexes remain high for both substrates (2733 M-1s-1 for C15-CoA and 3135 

M-1s-1 for C17-CoA). 

Notably, the C17 substrate has produced the biggest variation in the enzyme activity 

at concentrations ≥50 µM in comparison with other tested acyl-CoAs. During multiple 

readings performed at the same conditions, it was possible to observe reductions of the 

initial rate at high concentrations, while in other instances no inhibition was present. 

This unexpected variation could not be due to the experimental limitations only as all 

the simultaneous readings were taken across the whole range of acyl-CoA substrates 

at constant conditions. It was, however, possible to observe that the enzyme had seen 

bigger reductions in reaction rates developing into a substrate inhibition pattern in 

repeating readings as it was kept over time (while the rate would not be affected in the 

same manner for similar substrates C16 and C18 CoA). 

It might be possible to speculate about the presence of specific substrate selection 

mechanism in BfSPT. The enzyme could be specifically inhibited by palmitoyl-CoA 

as it is the main acyl-CoA precursor of sphingoid bases in humans, and thus the biggest 

competitor to the proposed substrate isopentadecanoyl-CoA. The SPT remains less 

specific towards the one carbon-longer heptadecanoyl-CoA. Yet it was not possible to 

pinpoint the very exact nature of this phenomenon due to the experimental limitations.  

No substrate inhibition was observed at high concentrations of both stearoyl- and 

myristoyl-CoAs. KM for stearoyl-CoA was 19.2 µM with the turnover rate kcat of 35.9 

x 10-3 s-1, giving the specificity index of 1871 M-1s-1.  

While the KM for myristoyl-CoA (C14:0) of 6.7 µM is the lowest amongst all 

determined, due to the slowest turnover (kcat = 6.7 x 10-3s-1) it was the weakest substrate 

for BfSPT, giving specificity index of 922 M-1s-1.  
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In summary, the kinetic results show that BfSPT has the highest specificity for the 16-

carbon long PCoA, with slightly reduced specificity levels for the 15- and 17- carbon 

length substrates. Yet it presents a tight inhibitory mechanism towards the PCoA that 

is less evident towards the one carbon shorter C15-CoA and one carbon longer C17-

CoA. This indicates a specific selection mechanism that is likely to play role in a 

competition of PCoA with the proposed natural substrate isopentadecenoyl-CoA in 

BfSPT. The biggest setback so far was an inability to use the proposed natural substrate 

of the enzyme. Up to our knowledge both the iso-branched CoA or its precursor 

isopentadecanoic acid are not available commercially.  

While the findings highlight the ways BfSPT can process some of the acyl-CoA 

substrates in vitro, the enzyme activity in vivo might be subject to a very different array 

of factors. The most significant question remaining is how the findings relate to the 

sphingolipid metabolism of B.fragilis in vivo and the particular impact of BfSPT on 

the relation of the commensal and its host. 

3.2.3.4. Characterisation of BfSPT products by MALDI MS 

 

To confirm that the monitored BfSPT reactions with acyl-CoAs resulted in the 

formation of the corresponding KDS-like products, reaction spectra were obtained 

using positive ion MALDI ToF.  

Spectra for BfSPT reactions with the C14, C15, C16, C17 and C18 acyl-CoA substrates 

were analysed; to provide a suitable control negative samples for each reaction 

condition were set up without the presence of the enzyme.  

The obtained reaction spectra are presented in the Figure 3.2.3.4.1 (parts 1-3) over the 

next few pages. The negative control samples are shown on top for each substrate.  

Positive ion peaks were detected at m/z of 272.2 (C14), 286.2 (C15), 300.2 (C16), 

314.2 (C17), 328.3 (C18), each corresponding to the monoisotopic mass of the positive 

ion (+1) of the expected KDS product. The peaks did not appear in the negative control 

reactions. The obtained spectra show the presence of the KDS-like products and 

therefore confirm that BfSPT catalyses the condensation of L-serine with all the acyl-

CoA substrates tested.   
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C14 

 

C15 

 

  

  
 

Fig. 3.2.3.4.1 (part 1). MALDI-ToF spectra of the BfSPT reaction products with C14 and C15. The top 

spectra correspond to negative control reactions containing both L-serine and corresponding acyl-CoAs 

but no enzyme. The bottom spectra of the enzymatic reactions each present a peak corresponding to the 

positive ion of the expected KDS-like product. 
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C16 

 

C17 

 

  

  
 

Fig. 3.2.3.4.1 (part 2). MALDI-ToF spectra of the BfSPT reaction products with C16 and C17. The top 

spectra correspond to negative control reactions containing both L-serine and corresponding acyl-CoAs 

but no enzyme. The bottom spectra of the enzymatic reactions each present a peak corresponding to the 

positive ion of the expected KDS-like product. 
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                              C18 

 

 

 
 

Fig. 3.2.3.4.1 (part 3). MALDI-ToF spectra of the BfSPT reaction products with C18. The top spectrum 

corresponds to negative control reactions containing both L-serine and C18-CoA but no enzyme. The 

bottom spectrum of the enzymatic reaction presents a peak corresponding to the positive ion of the 

expected KDS-like product. 
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3.2.3.5. Assessing the activity of BfSPT Cys357del mutant  

 

The flexible “PPAP” loop is present in other SPTs and AONS enzymes and thought to 

be involved in a selection of the second substrate. The loop contains generally 

distinctive motive of conserved proline and alanine followed by another one or two 

amino acids and another proline; the exact conservation of residues tends to vary a lot 

even within the proposed group of more related isoSPTs (discussed later in chapter 

3.3.7). Within the structure of the loop, BfSPT contains the unusual cysteine residue 

followed by serine (PPACSP) similarly. The significance of this cysteine residue has 

long been questioned, with possible theories including involvement in the specific 

selection of the second substrate and controlling the second substrate inhibition. To 

test the significance of cysteine 357 in the PPACSP loop of the BfSPT, a deletion 

mutant lacking the amino acid has been made. The protein was expressed and purified 

using the general protocol.  

The BfSPT Cys357del mutant showed a generally similar spectral profile to the WT 

protein with low enolimine and high ketoenamine peaks (Fig 3.2.3.5.1, A). Upon 

titration with L-serine, only minor spectral changes occurred with a slight increase of 

the 420 nm peak; yet the binding saturation occurred very rapidly with the derived 

binding constant of L-serine Kd equal to 0.44 mM ((Fig 3.2.3.5.1, B). This is 

approximately 3 times lower than of the WT enzyme (1.48 mM), suggesting that 

removal of the cysteine in the flexible substrate selection loop increases the binding 

affinity of L-serine. This remains consistent with the theoretical expectations; it is 

likely that the cysteine thiol group would provide certain repulsion to the serine 

molecule before it enters the active site of the enzyme.  

The kinetic activity of the C357del mutant was tested using the DTNB assay under the 

same conditions as the WT. The main aim was to observe whether the deleted cysteine 

residue would have any profound effect on the second substrate inhibition observed in 

the WT enzyme. The enzyme reaction was set up with increasing concentrations of 

PCoA over the range of 0-250 µM; the concentration of L-serine was kept in excess at 

40 mM; concentration of enzyme was set at 200 nM.  
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A  

B  

 

Fig 3.2.3.5.1. A) Changes in the PLP spectrum of BfSPT upon addition of L-serine. B) Changes in the 

absorbance peak at 420 nm plotted against the concentration of substrate and used to determine Kd of 

L-serine binding to BfSPT C357del 
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The activity rates of the C357del mutant were approximately 4-5 times lower than of 

the wild type (Fig 3.2.3.5.2); yet the enzymatic rates at higher concentrations of PCoA 

were still reduced, showing a similar substrate inhibition pattern to the wild-type 

enzyme. Just as in the WT, determination of the exact kinetic parameters of the mutant 

remained ambitious; despite observing reduced rates of enzymatic reactions Vobs, it 

was not possible to determine exactly which of the kinetic parameters (KM, Ki or Vmax) 

is affected by the mutation. Nonetheless, it remains evident that removal of cysteine 

357 from the substrate-selection PPACSP loop does not eliminate the substrate 

inhibition by PCoA, and therefore it is controlled by other factors.  

 

Fig 3.2.3.5.2. Initial reaction rates of BfSPT C357del mutant plotted across the different PCoA 

concentrations ranging between 0-250 µM, measured by DTNB assay. The reaction was done in 

triplicate with the average mean rates plotted; the error bars are showing the standard deviation between 

the samples   

 

The residue S358 also remains characteristic for BfSPT only and is not present in other 

SPTs that have been experimentally characterised. It could be reasonable to assume 

that both residues C357 and S358 are involved in the specific substrate binding 

mechanisms of BfSPT. A generation of the S358A mutant might be used for further 

exploration of the PACSP loop and its effect on the enzyme mechanism, with a later 

potential of generating a double C375del S358A mutant.   
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3.3. Structural and inhibitor-binding studies of BfSPT 
 

3.3.1. The crystal structure of BfSPT with L-serine 

 

The crystal structure of BfSPT complexed with L-serine was solved by molecular 

replacement using the homologous structure of SpSPT (2W8J) as a template. The 

obtained highest resolution was 2.45 Å with the final refinement values of Rwork/Rfree 

being 0.21/0.25.   

One asymmetric unit consists of four monomeric BfSPT chains composing two 

homodimers AB and CD oriented perpendicularly to each other (Fig. 3.3.1.1, A). This 

type of assembly appears to be crystallisation related as the purification and native 

mass spectrometry data suggests that BfSPT is present as a homodimer of two chains 

in the biological form (Fig. 3.3.1.1, B).  

BfSPT retains a general structure of other AOS enzymes resembling high homology 

with other the known SPTs. The Cα RMSD (calculated using Coot, Emsley et al., 2010) 

of the BfSPT relative to the other SPTs (aligned with chain A of BfSPT) are: 1.39 Å 

over 384 residues of the S.paucimobilis enzyme (2W8J), 1.36 Å over 381 residues of 

S.witichii SPT (2X8U, internal aldimine) and 0.93 Å over 381 residues of the 

S.multivorum SPT (3A2B). The average RMSD difference between the individual 

chains of the BfSPT is 0.34 Å (the smallest of 0.18 Å being within chains A and C; the 

biggest of 0.44 Å between C and D). Least-square alignment of BfSPT with the 

external aldimine structures of Sp and Sm SPT is shown in Fig. 3.3.1.1, C. 
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A     

B        

C       

Fig. 3.3.1.1.  The 2.45 Å structure of BfSPT in a complex with the L-serine external aldimine. A) The 

asymmetric unit is made of 4 protein chains forming two dimers; dimer formed with chains A (green) 

and B (cyan) is perpendicular to the second dimer made of chain C (yellow) and D (magenta). The 

position of the PLP-L-serine external aldimine complex is marked by spheres in dark blue. B) The 

biological unit formed by two monomeric subunits A and B. The protein chain termini are marked by 

blue (N) and red (C) spheres. The PLP-L-serine external aldimine complex is presented in spheres with 

carbon atoms coloured yellow. C) The least-square superposition of BfSPT with S.paucimobils SPT 

(2W8J, yellow) and S.multivorum SPT (3A2B, magenta) external aldimine structures. BfSPT has RMSD 

of 1.39 Å with SpSPT (35.4% seq. identity) and RMSD of 0.93 Å with SmSPT (57.4% seq. identity). 
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The initial unbiased Fo-Fc omit map contoured at 3.0 σ level included positive density 

in the active site of the enzyme well corresponding to the PLP-L-serine external 

aldimine (Fig. 3.3.1.2); the structure was refined with PLP-L-serine external aldimine 

with the final Fo-Fc density map well corresponding to the shape of the ligand.  

 

3.0 σ  Fo-Fc map                                                  2.6 σ Fo-Fc map 

Fig. 3.3.1.2. The PLP-L-serine external aldimine density models. Left: The initial Fo-Fc density maps 

(contoured at 3.0 σ, cut off at 2.0 Å) calculated from the structure that did not have the PLP-L-serine 

complex modelled in. Right: Final Fo-Fc map obtained after refinement with the PLP-L-serine external 

aldimine complex modelled in, shown at 2.6 σ, cut off 2.1Å. 

 

The PLP cofactor is located on the dimer interface (Fig. 3.3.1.3); its pyridine ring is 

held in parallel to the essentially conserved H136 residue and stabilised by polar 

contacts with D208 (2.9 Å) and H211 (3.2 Å). The phosphate group is stabilised by a 

2.6 Å polar contact with S241 of the same subunit and the contacts with S271 and 

A272 of the opposite subunit (2.8 and 2.7 Å respectively). The L-serine is bound to 

PLP via aldimine linkage (external aldimine); the catalytic lysine242 is not bound to 

the PLP. The carboxyl group of L-serine is pointing into the opposite direction from 

K242 and makes a 3.1 Å polar contact with H136; the hydroxyl group of serine makes 

a 3.1 Å polar contact with the phosphate group of PLP. The hydroxyl group of L-serine 

is oriented towards the conserved N50 yet there is no polar contact due to a large 

distance of 4.4 Å.   
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A  

B  

 

Fig. 3.3.1.3. The position of L-serine external aldimine in the active site of the BfSPT structure (Chain 

A). A) The key residues involved in stabilising the PLP-L-serine external aldimine. B) Key interatomic 

distances between the protein backbone and the phosphate group of PLP. The residues marked with * 

belong to the opposite protein subunit.   

 

While the general geometry of the active site is similar to SpSPT, the noticeable 

differences between the external aldimine forms of two enzymes arise in the 

stabilisation of bound L-serine by the additional residues. In the SpSPT (2W8J, Fig. 
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3.3.1.4, A) the carboxylate of L-serine is stabilised by a contact with the flexible R378 

residue located right next to the flexible PPATP loop. The analogical residue R358 is 

present in S.wittichi SPT near the protein surface in the internal aldimine structure 

(Raman et al., 2010, pdb id 2X8U) and expected to perform a conformational twist 

upon the substrate binding, while no external aldimine structure was published. In a 

contrast, BfSPT (Fig. 3.3.1.4, B) is missing a similar interaction with the carboxylate 

of L-serine; the analogical residue of BfSPT is V353 that would not be able to interact 

with the L-serine. In this respect, BfSPT is reminiscent of S.multivorum SPT (Ikushiro 

et al., 2009, pdb id 3A2B) that has a similar substrate binding interactions (Fig. 3.3.1.4. 

C).  

Both BfSPT and SmSPT have N50 and N52, respectively, located at the opposite plane 

in the active site. In the structure of BfSPT the interatomic distances between the 

carboxamide group of N50 and the hydroxylate and carboxylate groups of L-serine are 

4.4 Å and 5.0 Å respectfully. While the distances are too large to involve a polar 

contact in the crystal structure, it is highly likely that the given residue is involved in 

the reaction mechanism and stabilisation of the transition form. 

The similar catalytic mechanism has been proposed to occur in S.multivorum SPT by 

Ikushiro et al., 2009 where the corresponding N52 is involved in coordination of the 

departing carboxylate of L-serine. Further stabilisation is provided by a distant R367 

(corresponding to R365 in BfSPT). The experimental evidence obtained by Lowther 

et al., 2011 in S.wittichii SPT shows that replacement of the corresponding arginine 

370 by lysine reduces enzymatic activity down to 3% while, change to alanine yields 

a completely inactive enzyme.   

Upon deprotonation of Cα from L-serine N50 plays part in stabilising the planar 

quinonoid intermediate by interacting with the carboxylate of the deprotonated serine. 

The given asparagine residue is one of the key essentially conserved residues in all 

AONS enzymes where its alteration or removal reportedly results in complete loss of 

enzyme activity. Notably, the residue N74 is also conserved in SpSPT yet it occupies 

a position further away from the active site where it is less likely to be directly involved 

it the reaction mechanism; the position analogical to N50 of BfSPT is occupied by Y73 

in SpSPT.  
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A  

B  

C  
Fig. 3.3.1.4. Comparison of the active sites of L-serine external aldimine forms of S.paucimobilis SPT 

(A, yellow, pdb code 2W8J), B.fragilis SPT (B, green) and S.multivorum SPT (C, orange, pdb code 

3A2B). The variants of “PPAP”-like loop are marked as the purple cartoon on all structures.  
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It is evident that the L-serine external aldimine form of BfSPT is stabilised by the same 

mode as in S.multivorum; the N50 of BfSPT is oriented towards L-serine yet it does 

not form a contact with the residue. This is in striking contrast with SpSPT, where 

R378 performs a conformational shift upon binding of L-serine and provides a 

stabilising interaction for the carboxylate group of the substrate. No homologous 

interaction of the same type is present in Bf and SmSPTs; analogical residues V353 

and V355 respectively are located far from the active site. This might allow additional 

flexibility for the “PPAP” loops in the enzymes.  

Presence of the N50 in BfSPT can also suggest that the enzyme might be a better model 

for studying the structural binding of inhibitors compared to SpSPT, as no further 

conformational changes occur in the structure upon formation of external aldimine (as 

opposed to the R378 switch in Sp enzyme). 

The key differences between the active sites of BfSPT and SpSPT highlight the specific 

strategies that the two enzymes have adopted. The lack of stabilising arginine residue 

in BfSPT results in a weaker stabilisation of carboxylate in the reaction transition state 

and therefore directly explains the observed reaction rate differences between Bf and 

SpSPT. At the same time BfSPT might have evolved to keep the substrate selection 

loop (PPACSP) more flexible; while this reduces the enzyme reaction rate, it might be 

one of the mechanisms adopted by B.fragilis to get a tighter control over the reaction 

flux (and therefore a controlling step in production of all its sphingolipids). Although 

the actual evidence with regards to BfSPT is limited, independent experiments 

performed in our group with similar P.gingivalis SPT suggest that the structure of 

PPACSP loop might indeed have an impact on controlling the second acyl substrate 

inhibition.  
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3.3.2. Studies of BfSPT-penicillamine complex formation using UV-vis 

spectroscopy 

 

Penicillamine (Pen) or β,β-dymethylcysteine is a non-proteinaceous sulphur-

containing amino acid. It is present in L and D forms, with D-penicillamine occurring 

naturally as a degradation product of penicillins (Abraham et al., 1943).  Both 

compounds are general inhibitors of the PLP-dependent enzymes by a formation of 

thiazolidine adducts with the cofactor (Buell & Hansen, 1960).  

D-penicillamine is a weaker PLP inhibitor and therefore approved in use as a drug; the 

in vivo inhibitory effects are mild and can be subverted by administering pyridoxal 

(Jaffe et al., 1964). It is used as a copper chelator in the treatment of Wilson disease 

(Das & Ray, 2006) and as a treatment for rheumatoid arthritis (Camp, 1977). L-

penicillamine, on the other hand, is a stronger PLP inhibitor and presents toxic effects 

in vivo (Wilson & Vigneaud, 1950) by reducing the brain levels of the PLP-dependent 

glutamate decarboxylase and thus affecting neurotransmitter levels (Abe & Masuda, 

1979).  

 

The structure of penicillamine is resembling a structure of cysteine with an additional 

two methyl groups on the Cβ. While cysteine can form a cyclic thiazolidine adduct 

with PLP, penicillamine forms it more rapidly due to gem-dimethyl effect, and thus 

acts as a strong inhibitor of the PLP-dependent enzymes.  

The inhibitory effects of penicillamine on SpSPT have been studied by Lowther et al., 

2012a. Using spectrophotometric UV-vis and end-point inhibition data, it was shown 

that both enantiomers form complexes with SPT. L-penicillamine had a stronger effect 

in reducing the activity of the enzyme to 5% at a 5 mM concentration; under the same 

conditions, D-penicillamine reduced the activity to 34%. The formation of thiazolidine 

adduct was also reported by observing the expected mass increases using native mass 

spectrometry.    
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In this work L- and D-penicillamine studies were performed to explore the binding 

mechanisms in BfSPT. Studying and comparing binding modes of the two enantiomers 

allowed to observe certain stereospecific features of BfSPT which are useful for a 

deeper understanding of the enzyme substrate-binding mechanism. Formation of the 

penicillamine-derived adducts was monitored by the UV-vis spectrometry; the protein 

complexes were analysed using native mass spectrometry. X-ray crystallography has 

also revealed structural information of the PLP-penicillamine binding mode.   

The formation of the BfSPT-penicillamine adduct could be directly observed upon 

monitoring the spectral changes of the enzyme UV-vis profile. The excess amount of 

L-penicillamine (5 mM) was added to a 20 µM aliquot of the enzyme; changes in the 

absorbance have been monitored over 30 min with readings taken every 5 min.  

Upon the addition of L-pen, the enzyme profile starts changing rapidly with the 

increase in the 330 nm peak and the decrease in the 420 nm peak (Fig.3.3.2.1, A).  

The change in both peaks is observable from the start at t=0 min; the increase in 330 

nm and decrease on 420 nm rapidly passes the middle point after 5 min; further 

incubation leads to a complete elimination of the 420 nm peak and maximum increase 

in the 330 nm peak after 30 min. It is important to note that the proposed thiazolidine 

peak has the absorbance at 333nm, therefore it overlaps with the already existing PLP 

enolimine peak (330 nm). Therefore, the decrease in 420 nm ketoenamine peak is more 

informative when considering the enzyme-inhibitor complex formation.  

Treatment of BfSPT with 5 mM D-penicillamine under the same condition resulted in 

similar spectral changes (Fig.3.3.2.1, B), yet these occurred over the much slower time; 

at the end-point at 35 min, the 330 nm peak was still increasing and the 420 nm peak 

was decreasing. Upon further time-dependent incubation with D-penicillamine it was 

shown that the total equilibrium point occurs after a 2 hour incubation time. In this 

respect, D-penicillamine forms a complex with the enzyme at a slower rate. To 

determine the approximate binding constants of both enantiomers, equal aliquots of 

the enzyme at 20 µM were treated with a range of concentrations of L-and D-

penicillamine and incubated for 30 mins and 2 hours respectively to reach the end 

saturation point. The spectra of the enzyme were collected after the incubation time 
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and plotted together. The changes in absorbance in both peaks were plotted together 

with the Kd calculated as described in methods. 

A 

 
B 

 
Figure 3.3.2.1. Spectral changes of BfSPT upon time-dependent incubation with L-penicillamine (A) 

and D-penicillamine (B) 

 

By observing the changes in absorbance of BfSPT upon treatment with different 

concentrations of L- and D-penicillamine it was possible to approximate the binding 

constants for both enantiomers (Fig.3.3.2.2). The Kd values for L-pen were 0.23 mM 
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as determined by 330 nm peak and 0.26 mM as determined by 420 nm peak. D-

penicillamine showed a weaker binding with Kd of 0.31 mM (330 nm) and 0.48 mM 

(420 nm).  

 

   A  

 

 

 

   B

 

 

 

Figure 3.3.2.2 Left: The spectral changes of BfSPT upon the concentration-dependent incubation with 

L- penicillamine (A) and D-penicillamine (B). Right: Changes in the absorbances at 330 nm and 420 

nm peaks of both enantiomers plotted versus the concentrations of each enantiomer.  

 

 

The discrepancy between the readings at two peaks brings in some important 

observations that should be addressed with regards to the proposed PLP-penicillamine 

binding mechanism (Figure 3.3.2.3).  Due to an overlap of the thiazolidine peak with 
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the PLP in enolimine form, it is not possible to distinguish between the two forms and 

therefore reliably determine the Kd by viewing the 330 nm peak only. Therefore, the 

Kd values obtained from the readings at 420 nm appear to be more accurate as the 

reduction in the peak strength corresponds to the conversion of the PLP in the 

ketoenamine form into the PLP-pen adduct. Therefore, the Kd values of 0.26 mM for 

L-pen and 0.48 mM for D-pen are considered to be more reliable. The difference in Kd 

constants shows that the binding of L-penicillamine occurs approximately 1.8 times 

stronger than of its enantiomer.   

 

Figure 3.3.2.3. The proposed mechanism of PLP-L-penicillamine binding with the subsequent 

thiazolidine adduct formation.  

 

The formation of the PLP-thiazolidine complex occurs in two stages (Fig. 3.3.2.3). 

First, upon arrival into the active site of the enzyme, L-penicillamine replaces the 

catalytic lysine to form the PLP-external aldimine. During the second stage, the thiol 

of L-pen processes with the nucleophilic attack on the aldimine carbon, forming a 

cyclic thiazolidine adduct. The formation of the adduct is further facilitated due to the 

gem-dimethyl or Thorpe-Ingold effect, where the presence of the two methyl groups 

bound to Cβ of L-pen causes an increase in a compression angle amongst them and 
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therefore makes the cyclisation reaction more favourable. The final product is not 

covalently attached to the enzyme.  

The binding mode of D-penicillamine is expected to be very similar to its enantiomer, 

however, as the observed data show, it binds with a weaker affinity and at a slower 

rate, making it a less potent inhibitor of BfSPT.  

It was not possible to observe the inhibition of BfSPT activity using the DTNB assay 

due to the interference of the thiol group present in penicillamine with the DTNB 

reagent. The previous methods by Lowther et al., 2012a, applied to SpSPT involved 

measuring of the activity using the assay after treatment with both L-and D-

penicillamine with subsequent dialysis into a buffer containing no PLP. During the 

process, the non-covalent adduct was removed from the active site of the enzyme; this 

allowed monitoring the remaining SPT activity. This approach did not work 

successfully with BfSPT since the enzyme was prone to precipitation upon dialysis in 

no-PLP containing buffer after being treated with both L- and D- penicillamine, 

therefore inhibition data could not be obtained.  
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3.3.3. Observing the formation of BfSPT-penicillamine complexes by native 

mass spectrometry 

 

The penicillamine adduct that forms in the active site of BfSPT is not bound to the 

enzyme covalently, therefore it was not possible to capture it using mass spectrometry 

under denaturing conditions. Yet some evidence of the complex formation was 

obtained using native ESI ToF MS. L-enantiomer of penicillamine was chosen as it is 

a stronger binder to SPT.  

BfSPT has proven to be not as robust as SpSPT under the conditions of ESI-MS for 

native studies. Several attempts have been performed using fresh protein preparation 

every time; however, the native protein spectrum has been appearing smeared, most 

likely due to a lower stability of the protein that has been discussed before. This itself 

provides an implication for the accurate mass determination; however, it still allows 

observing spectral mass changes of the native protein complexes upon treatment with 

L-penicillamine.  

BfSPT treated with 5 mM L-penicillamine for 30 min was analysed using native MS. 

A non-treated aliquot of the enzyme was used as a control. The obtained spectra are 

presented in figure 3.3.3.1. 

The spectrum of the native BfSPT (Fig.3.3.3.1, A) shows a dominant peak 

(deconvoluted from m/z charge ion +19) of 89707.73 Da; this corresponds to the 

monomeric mass of 44853.87 Da within 10 Da difference to the expected mass of 

BfSPT with the PLP (44843 Da). Two smaller peaks appear that, despite not being 

resolved, fit within the theoretical mass ranges of BfSPT dimer with no PLP and BfSPT 

with the cofactor on one monomer only.  

The native spectrum of BfSPT treated with L-penicillamine shows a different profile 

with the several additional peaks being present (Fig.3.3.3.1, B). The major peak A of 

4697.7 at +19 m/z corresponds to 89229.2 Da. This agrees well with the expected mass 

of dimeric BfSPT that has lost PLP in both subunits (89226 Da); the reduction in mass 

compared to the control sample (89707.7Da) is 478.7 Da or 239.4 Da per monomer. 

The expected thiazolidine adduct is not bound to the enzyme covalently therefore 
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under the ionising conditions of the experiment a large fraction of the PLP-thiazolidine 

adduct is lost from the active site of the enzyme.  

 

A 

 

B 

            

Fig. 3.3.3.1 Native mass spectra of BfSPT (m/z peak [M +19H] 19+ ). A) the control enzyme spectra. 

B) Native mass spectra of the enzyme treated with 5 mM L-pen. 
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The next peak B at 4705.517 corresponds to 89377.7 Da; the increase in mass is 148 

Da, this corresponds to a mass of L-penicillamine, however as the previous peak 

indicates the enzyme with no PLP, it is unclear how this peak arises; most likely it is 

yielded due to non-specific binding of single L-pen molecule to a BfSPT dimer.   

The next resolved peak C corresponds to 89639.7 Da, giving the increase in 262 Da 

compared with the peak B and 410 Da with the peak A (enzyme-no PLP). The exact 

mass of the peak does not correspond to any of the expected species. The most likely 

adduct to be present within the close mass range would be an enzyme dimer with 2 

PLP units on it (89686 Da); yet as the difference between the theoretical and actual 

peaks is 46.3 Da, it is not possible to resolve the peak with high certainty.  

A minor peak appearing in between of the previous two larger peaks could not be 

accurately resolved and might correspond to a mixture in protein states, including 

dimer with one PLP and dimer with one PLP unit + L-pen.     

The last resolved peak D corresponds to 89784.0 Da which is an increase in 144 Da 

compared to the peak C; this increase in mass corresponds well to an enzyme dimer 

with PLP unit forming a thiazolidine adduct with L-penicillamine (theoretical mass 

increase 144 Da). However, as there are some discrepancies in between the mass of 

the previous peak C and the control sample it is not possible to deduce that the peak 

responds to 1 PLP and 1 PLP-thiazolidine unit with high certainty. The remaining 

smaller peaks at higher mass could not be resolved but they might be indicative of 

2PLP-2 thiazolidine complexes and some further non-specific adducts.  

While there are some implications in determining the accurate masses of the BfSPT-

L-pen complexes, it is possible to observe changes in the mass spectrum of the enzyme 

upon the treatment with the inhibitor and formation of several intermediate forms; 

while the spectrum of the native enzyme has 2 PLP units under the ionisation 

conditions, treatment with L-penicillamine causes major loss of the non-covalent 

adduct with majority of the enzyme appearing in apo-form; several further forms are 

present; these most likely include 1PLP, 2PLP, 1PLP-TA; 2PLP-TA; 2PLP-2TA 

complexes; not all of these could be resolved from the obtained spectra. Additional 

peak increases of 148 Da suggest that L-penicillamine might also bind non-specifically 

to the enzyme under the experimental conditions.  
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3.3.4. Structure of BfSPT in a complex with L-penicillamine   

 

As opposed to the L-cycloserine adduct discussed further in the Chapter 3.3.6, the L-

penicillamine-derived thiazolidine complex is stable and therefore, could be easier 

captured using the X-ray crystallography. The 2.39 Å structure of BfSPT with the PLP-

thiazolidine adduct has been obtained by directly soaking BfSPT crystals with L-

penicillamine granules for 30 minutes, during which the yellow crystals have turned 

colourless. Analogical soaking with D-penicillamine was performed, none of the 

resulting crystals provided a diffraction to a resolution higher than ~3 Å. This is most 

likely because D-penicillamine is a slower and weaker binder to BfSPT and forms a 

complex less readily at the same conditions; with some optimisation it might be 

possible to obtain diffraction-quality crystals with D-penicillamine in future.  

The structure of BfSPT complexed with L-penicillamine was solved using the 

previously obtained structure in the complex with L-serine as the model. The obtained 

highest resolution was 2.39 Å, with the final refinement values of Rwork/Rfree being 

0.21/0.25.   

The crystallised complex is formed by 4 BfSPT monomers making two homodimers 

in the asymmetric unit (Fig.3.3.4.1.). The core RMSD between the L-pen and L-ser 

structures is 0.228 Å across 1572 aligned residues (Coot). The obtained protein 

structure complex displays the positive electron density in the initial Fo-Fc omit map, 

well corresponding to the theoretical PLP-thiazolidine adduct (Fig 3.3.4.2); the PLP-

L-pen ligand was fitted in and used for a refinement. The refined density model is 

shown in Fig. 3.3.4.2, middle. The density for the complex is clearly present in all 

subunits, although the subunit B does lack the density around the carboxylate of L-

penicillamine. For display and discussion, the subunit chain C was chosen. The shape 

of the ligand clearly shows the presence of the ring-closed thiazolidine complex with 

the two isomethyl groups at Cβ and the chiral carboxylate group of L-penicillamine 

well defined.  
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Fig. 3.3.4.1. The 2.39 Å BfSPT structure obtained by soaking the protein crystal with solid L-

penicillamine. The positions of thiazolidine adducts are shown in purple spheres. The asymmetric unit 

consists of 4 chains forming two homodimers AB and CD. Chains are coloured as follows: A – turquoise, 

B – slate blue, C – yellow, D – pink.   
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3.0 σ Fo-Fc omit map 

   

1.2 σ 2Fo-Fc refinement map

 

Figure 3.3.4.2. Ligand density maps for 2.39 Å BfSPT structure obtained by soaking with L-

penicillamine, shown in two different orientations (top and bottom); protein chain C is shown. Top: 

The original Fo-Fc map (contoured at 3.0 σ, 1.7 Å cut off) that had no ligand modelled in, with the 

structure of the PLP-thiazolidine complex rendered on top. Middle: The final 2Fo-Fc map obtained after 

refinement with the PLP-thiazolidine adduct (contoured at 1.2 σ, 1.6 Å cut off). Bottom: Chemical 

structures of D- and L- penicillamine and the PLP-thiazolidine adduct forming upon L-penicillamine 

binding.   
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While there is no direct contact of L-serine with the N50 in the external aldimine 

structure of BfSPT (fig 3.3.4.3, B), the L-penicillamine-derived thiazolidine adduct 

forms a 2.96 Å hydrogen bond between the carboxylate oxygen of L-penicillamine 

and the carboxamide nitrogen of N50 (Fig.3.3.4.3, A). Furthermore, there is a 3.57 Å 

polar contact between the second carboxylate oxygen of the thiazolidine adduct and 

the imidazole nitrogen of H211 (Fig. 3.3.4.3, A) that further stabilises the complex. 

Both these contacts are not present in the L-serine external aldimine structure (Fig 

3.3.4.3, B).  

Both N50 and H211 residues are essentially conserved between all the AOS-family 

enzymes; the presence of these contacts in the inhibitor complex further highlights 

their potential involvement in a stabilisation of the transition complex during the 

course of the reaction. The structural evidence itself suggests that in the Dunathan 

conformation, L-serine performs a swing in the active site upon binding of the second 

substrate, where the carboxylate group would be positioned in a similar manner as seen 

in the thiazolidine complex.  

While we have no structural data for the D-penicillamine binding mode, it is viable to 

propose that the carboxylate group of the latter would be placed in the opposite 

orientation than of L-penicillamine, preventing the contact with the carboxamide of 

the N50 and the imidazole of H211. This would result in a weaker binding of the adduct 

in the active site. This is the most likely reason for the slower adduct formation, 

observed during the UV-vis studies, as well as generally weaker levels of inhibition 

reported for the D-enantiomer with the PLP-dependent enzymes. 

The observed PLP-thiazolidine complex serves as a structural model for other PLP-

dependent enzymes present in the human body reportedly inhibited by L-penicillamine, 

and the human SPT in particular. In this respect, the complex provides a structurally-

based evidence of the inhibitory effect of L-penicillamine, and despite the lack of D-

penicillamine complex, allows discussing the variety in the binding modes of the two 

enantiomers and hence explains the observable difference in their biological activities.   
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A  

B  

Figure 3.3.4.3.: A) The binding mode of L-penicillamine derived thiazolidine adduct in the active site 

of BfSPT. The PLP-thiazolidine ring complex is stabilised by the carboxylate group contacts to the N50 

and H211. B) An overlay of the active sites of the PLP-L-serine external aldimine structures (residues 

and ligand in cyan) and the L-penicillamine derived thiazolidine complex (ligand in purple, residues in 

green). The thiazolidine carboxylate is positioned differently to the L-serine carboxylate and makes 

contacts with N50 and H211.    
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3.3.5. Inhibition of BfSPT with L-cycloserine 

 

D-cycloserine (trade name SeromycinTM) is a natural amino acid derivative used in the 

second line of treatment against the drug-resistant Mycobacterium tuberculosis (Perri 

& Bonora, 2004). By mimicking the shape of D-alanine and D-glutamine it acts as an 

inhibitor targeting D-aminotransferase enzymes involved in peptidoglycan 

biosynthesis (Peisach et al., 1998), thus effectively disrupting the synthesis of bacterial 

cell wall components. It also acts as a partial agonist of N-methyl D-aspartate receptor 

(NMDA) in nerve cells and has potential as a treatment in neuropsychological 

disorders (Schade & Paulus, 2016).  

L-cycloserine (LCS) is a synthetic enantiomer that shows similar inhibitory effects on 

aminotransferases; however, unlike DCS, the potential to use LCS for medical 

treatment is limited due to a non-specific inhibition of other pyridoxal 5’-phosphate-

dependent enzymes, in particular, this affects mamal serine palmitoyltransferase 

(Williams et al., 1987). Nevertheless, due to its high binding affinity to PLP, LCS is a 

very useful molecule for studying mechanisms of the PLP-dependent enzymes.  

The earlier study by Lowther et al., 2010, has described effects of prolonged 

deactivation of serine palmitoyltransferase from Sphingomonas paucimobillis by L-

cycloserine, leading to the formation of a product identified as β-

aminooxyacetalaldehyde and a reduced pyridoxamine 5’-phosphate (PMP). To further 

supplement the earlier data and elucidate the early stages of deactivation mechanism, 

spectral studies of BfSPT deactivation with LCS have been performed. These were 

further complemented by obtaining the crystal structure of the enzyme in the presence 

of L-cycloserine.  

 

The UV spectrum of BfSPT spectrum has been observed upon incubation with 2.5 mM 

LCS over the period of 30 mins. The spectral shift over the time indicated changes in 

the equilibrium between the PLP isoforms as binding of LCS occurred (Fig 3.3.5.1). 
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The absorbance peak at 420 nm (ketoenamine) decreased over the 30 mins being 

reduced almost to baseline; the enolimine peak (330 nm) permanently increases; the 

peak at 380 nm starts appearing upon further incubation. The peak appearing at 380 

nm (evident from 15-30 min) is thought to be the ring-opened oxime intermediate 

(Ikushiro et al., 2004; Lowther et al., 2010) – a reversible complex that has a faster 

formation rate than the final inhibitory complex, causing its build up.   

 

Fig. 3.3.5.1. Changes in the spectral profile of BfSPT over time upon addition of 2.5mM LCS. 

 

To assess the inhibitory effects of L-cycloserine in BfSPT, the activity of the enzyme 

was monitored by the DTNB assay after a time-dependent incubation of the enzyme 

with various concentrations of LCS. The reactions were done in triplicate, the 

maximum averaged activity of BfSPT in the control samples (no LCS) was presented 

as 100%, with other relative activities presented as the % fraction of it (Fig 3.3.5.2). 

The LCS has shown a strong inhibitory effect on the activity of BfSPT even at small 

concentrations and over a low incubation period, with apparent Ki values being at the 

micromolar level: 9.0 ± 2.5  µM for 1 min incubation, 8.4 µM ± 2.1 µM for 5 min 

incubation and 1.7 ± 0.4  µM for 30 min incubation. The results show that LCS is a 
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very potent inhibitor of BfSPT, with the excess concentrations starting from 0.1 mM 

and higher even after a very short incubation time.  

 

Fig. 3.3.5.2. Relative activity of BfSPT (determined from measured initial reaction rates by the DTNB 

assay), that has been prior incubated with various amounts of LCS, over time; the black, blue and red 

lines correspond to the samples incubated for 1, 5 and 30 mins respectively. Reactions were done in 

triplicate with the error bars presenting the standard deviation between the samples. 

 

It is important to note that the experiment was designed to provide an estimation of the 

inhibitory concentrations of LCS to be used with BfSPT and not to determine the true 

parameters of the enzyme inhibition. In the last case, the true kinetic parameters could 

not be established under the available conditions since the reaction is processed using 

the PCoA and not the expected isopentadecanoyl-CoA. Furthermore, the concentration 

of PCoA is set at 25 µM at which the optimal rate of the reaction is reached, while the 

impact of the substrate’s own inhibition is also unaccounted for.    
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3.3.6. Structural studies of the L-cycloserine binding mode to BfSPT 

 

Upon monitoring of the binding and inhibition, structural studies of BfSPT and LCS 

have been performed. The most successful crystal obtained by a soaking method 

provided diffraction up to a maximum resolution of 2.75 Å.  

The structure was solved using the BfSPT L-serine structure with no PLP as a template 

for a molecular replacement. As in the previous BfSPT structures, the complex consists 

of 4 enzyme chains in an asymmetric unit forming two separate homodimers. The core 

RMSD between the structure and the BfSPT L-serine complex is 0.544 Å across 1572 

aligned residues in 4 chains (Coot).  

After initial refinement without the PLP cofactor modelled, the Fo-Fc map had shown 

weak density signals for the ligand in the active sites of most of the chains, with only 

the phosphate ion and minor parts of the PLP chain visible. The density in the chain C, 

however, corresponded well to shape the PLP aromatic ring, phosphate group and the 

likely cycloserine-derived adduct visible at 3 σ - contour level of the unbiased Fo-Fc 

map.  

The initial density observed around the ligand binding site was not conclusive enough 

to determine the exact nature of the LCS adduct and the mechanism of its formation. 

Resolution of several possible adducts has been attempted based on the proposed 

mechanisms of LCS deactivation of the PLP-dependent enzymes and SPT in particular 

(Fig 3.3.6.1).  

3 possible adducts were fitted into the active site (Fig 3.3.6.1): the cyclic 3-

hydroxyisoxazole-PMP (A), PLP-oxime (an open ring form, B) and PLP-

decarboxylated oxime (C), a decarboxylated form of the oxime. The structures of the 

ligands fitted into the active site of BfSPT are shown in figure Fig 3.3.6.5 later in the 

discussion.  

The analysis of the obtained R values and temperature B-factors indicates that out of 

the three complexes, the PLP-decarboxylated oxime complex model (C) is the one that 

most closely corresponds to the experimental data, while the hydroxyisoxazole-PMP 

adduct (A) is the least likely. However, relatively low resolution limits the possibility 

of making a definite conclusion about the exact nature of the ligand complex observed.  
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Structures of possible PLP-cycloserine derivatives  

2.5σ (Fo-Fc) 2.1 σ (Fo-Fc) 

Rwork/Rfree = 0.282/0.329 

Av. ligand B factor = 60.6 

 

 

 

2.5σ (Fo-Fc) 2.1 σ (Fo-Fc) 

Rwork/Rfree = 0.277/0.323 

Av. ligand B factor = 62.6 

 

 

2.5σ (Fo-Fc) 2.1 σ (Fo-Fc) 

Rwork/Rfree = 0.276/0.325 

Av. ligand B factor = 56.8 

 

 

 

Fig. 3.3.6.1. The Fc-Fo electron density maps around the active site of BfSPT-LCS soaked complex. The 

figures to the left present the same initial unbiased Fo-Fc electron density map contoured at 2.5 σ level. The 

figures to the right show biased Fo-Fc electron density maps contoured at 2.1 σ level, obtained after 

independent refinements with each of the three possible complexes. The obtained values of Rwork/Rfree and 

average ligand B-factors are shown for each of the proposed ligands. The possible adducts include 

hydroxyisoxazole-PMP (yellow, A), PLP-oxime complex (purple, B) and PLP-decarboxylated oxime 

complex (green, C). 
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Mechanisms of LCS deactivation of PLP-enzymes 

There are numerous examples of the PLP-cycloserine complexes in the Protein Data 

Bank (Appendix 4), these include alanine racemases (Fenn et al., 2003; Noda et al., 

2004; Asojo et al., 2012), decarboxylases (Malashkevich et al., 1999), lyases 

(Kuznetsov et al., 2015), D-amino acid aminotransferases (Peisach et al., 1998) and 

D-cysteine desulfhydrase (Bharath et al., 2012). Apart from the serine 

palmitoyltransferase structure presented by our group (Lowther et al., 2010; pdb id 

2XBN), all the structures report a closed-ring oxazole adduct bound to the cofactor in 

the active site; it is present in either PLP-3-isoxazolidinone or PMP 3-

hydroxyisoxazole forms.  

Upon formation of the PLP-cycloserine external aldimine, a transamination reaction 

occurs, resulting in the formation of 3-hydroxyisoxazole PMP adduct (Fig.3.3.6.2); 

during this, the hydrogen is lost from the chiral Cα leading to a configurational change 

from sp3 to sp2 and adoption of the planar geometry by the ligand. The resulting adduct 

has a reported absorbance peak at 320 nm (Fenn et al., 2003). No mechanism involving 

cycloserine ring-opening has been reported for any of the aminotransferase enzymes. 

 

Fig. 3.3.6.2. The mechanism of cycloserine binding to PLP-dependent enzymes; the cyclic adducts 

appear in most of the published protein structures (summarised in Appendix 4).  

 

Malashkevich et al., 1999, present structures of dialkyglicine decarboxylase from 

Burkholderia cepacia with both LCS (pdb:1D7U) and DCS (pdb:1D7S) bound. Both 

structures solved at high resolution (1.95 and 2.05 Å respectively) present the PLP-

oxazole ring cyclic complexes; yet the LCS-derived complex adopts a planar ring 

configuration indicating deprotonation at the Cα, while the DCS-derived complex 

retains the sp3 configuration at the Cα. Fenn et al., 2003, report that in the alanine 



134 
 

racemase from Geobacillus stearothermophilus a transamination reaction occurs in 

both enantiomers leading to a formation of a planar product (hydroxyisoxazole-PMP).  

Contrary to most of the other classes of PLP-dependent enzymes that have been shown 

to form cyclic adducts with cycloserine, SPT-LCS complex is proposed to form via 

different, ring opening mechanism (Fig 3.3.6.3); the adduct is either rapidly and 

reversibly converted to a sterically preferable oxime intermediate, with the 

characteristic absorption at 380 nm, or slowly hydrolysed to yield the PMP and a 

product, β-aminooxopyruvate (Ikushiro et al., 2004). 

 

Fig. 3.3.6.3. The proposed mechanism of cycloserine inhibition of SPT (Ikushiro et al., 2004) 

 

 

Fig. 3.3.6.4. The proposed mechanism of LCS inhibition of SpSPT observed by Lowther et al., 2010. 

As opposed to the earlier mechanism by Ikushiro et al., 2004, the reaction involves decarboxylation step 

after cycloserine ring opening; this results in the formation of β-aminooxyacetaldehyde and PMP. 
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The structural evidence obtained in SpSPT by Lowther et al., 2010, suggests that in 

S.paucimobilis SPT a ring-opening mechanism occurs; however, the obtained 

crystallisation product corresponded to β-aminooxyacetaldehide, showing that loss of 

the product carboxylate group had occurred (Fig.3.3.6.4). This allowed proposing a 

novel inhibitory mechanism present in SpSPT that involves a decarboxylation step 

before the product release.   

Provided that LCS similarly deactivates BfSPT, formation of the adduct would occur 

via the ring opening mechanism; this would lead to a very slow product release and 

accumulation of the oxime-PLP intermediate. As the UV-vis spectrum of BfSPT shows 

the appearance of a characteristic 380 nm peak upon incubation with LCS, it is likely 

that the enzyme deactivation occurs via the ring-opening mechanism; this might also 

involve a decarboxylation step as in SpSPT. 

  

The nature of the observed LCS-derived adduct 

As the mechanism of PLP inactivation by LCS in BfSPT may take several routes, 

different enzyme-inhibitor complexes could potentially be present in the active site. 

Resolving of the structure was attempted with 3 adducts: the closed-ring 3-

hydroxyisoxazole-PMP (A) which has been reported for most of the PLP-dependent 

enzymes in the pdb (Appendix 4), the PLP-oxime complex (B) as based on the 

mechanism of SPT inhibition outlined by Ikushiro et al., 2004, and the PLP-

decarboxylated oxime (C), based on the structural data presented by Lowther et al., 

2010.  

The active sites of the refined model complexes are presented in Figure 3.3.6.5.   

The closed-ring cycloserine adduct has been fitted as 3-hydroxyisoxazole-PMP 

(Fig.3.3.6.5, A). Upon formation of the PLP-3-isoxazolidinone adduct, a 

transamination reaction can occur yielding a change in Cα of LCS from sp3 to sp2 

hybridisation state; this would give a formation of the planar 3-hydroxyisoxazole – 

PMP adduct and loss of chirality of the molecule. Due to a low resolution, it is not 

possible to distinguish between the 3-hydroxyisoxazole and the 3-isoxazolidinone 

forms in the structure. The shape of the density, however, suggests that the PLP-
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nitrogen bond does not lay in the plane of the pyridoxal ring, therefore a presence of 

the transaminated planar product is more likely. The model least agrees with the 

experimental data with the Rwork/Rfree values of 0.282/0.329 and the average ligand 

temperature B-factor of 60.6. Furthermore, the appearance of the observed 380 nm 

peak upon treatment of BfSPT with LCS may suggest that the ring-opening mechanism 

is present in the enzyme, thus making the cyclic complex one of the least likely to be 

present.  

The proposed PLP-oxime complex (Fig 3.3.6.5, B) fits into the general shape, yet the 

subsequent refinement does not cover the carboxylate group completely; the 

orientation of the group also appears less favourable as under the density restraints it 

does not make a stabilising contact with H136. Both L and D enantiomers of the oxime 

complex were fitted, yet neither of those was entirely covered by the electron density. 

This model better agrees with the experimental data with the Rwork/Rfree = 0.277/0.323 

and the average ligand temperature B-factor of 62.6. However, it would remain highly 

likely that the carboxylate group of the intermediate B would make a polar contact 

either with H136 or N50 of BfSPT; this would result in a stronger electronic density 

around the carboxylate ion. As these theoretical estimations are not observed in the 

model, it remains less likely that the oxime complex is present in the crystal structure.       

The apparent density, however, corresponds better to the shape of the theoretical 

decarboxylated oxime complex (Fig. 3.3.6.5, C) that is likely to form in BfSPT in 

analogy with SpSPT as observed by Lowther et al., 2010. Based on the values of 

Rwork/Rfree = 0.276/0.325 and the average ligand temperature B-factor of 56.8, the 

complex model is the one that best agrees with the experimental data. The limited 

resolution, however, does not allow making a definite conclusion about the actual 

ligand present in the active site and hence discussing the exact mechanism of the 

BfSPT inactivation by L-cycloserine.  

The results, however, indicate that the inhibitor soaking approach works well for 

BfSPT and can be potentially used to obtain a better resolution data. Small molecule 

mass spectrometry can be used in combination with the structural studies to elucidate 

the exact mechanism of LCS inhibition in BfSPT.  
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A  

B  

C  

Fig 3.3.6.5. Three possible LCS-derived complexes rendered on top of the corresponding refined 2.1 σ 

(Fo-Fc) electron density maps in the active sites of the obtained 2.75Å structure of BfSPT. Yellow: 

hydroxyisoxazole-PMP (A); Purple: oxime (B); Green: decarboxylated oxime (C).   
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3.3.7. Structural conservation amongst microbiome-related iso-

branched SPTs 
 

B.fragilis is a typical example of Bacteroides, one of the five genera of microbiome-

related bacteria that are associated with a production of iso-branched SLs, the other 

four being Parabacteroides, Prevotella, Tannerella and Porphyromonas (Kato et al., 

1995; Nichols et al., 2011). By producing unique iso-branched SLs, the bacteria from 

these genera can impact the host’s immune system and therefore are directly relevant 

to human health. Being SL-producing organisms, these species are expected to have 

an SL-producing pathway starting with SPT. Further significance of these isoSL-

producing organisms in the human microbiome was recently reviewed by Heaver et 

al., 2018. 

In B.fragilis, SL-deficient bacteria have been produced by growing cells in the 

presence of myriocin (An et al., 2011) or knocking out the gene BF2461 (Wieland 

Brown, 2013; An et al., 2014) that has been confirmed to encode for BfSPT by this 

study. Identical effects have been achieved in P.gingivalis upon deletion of the 

homologous PG1780 gene, resulting in SL deficiency and impaired survival of the 

strain (Moye et al., 2016). It is likely that SL metabolism could also be controlled at 

the SPT level in the rest of the isoSL-producing microbiome-related bacteria.  

BfSPT is the first microbiome-related SPT associated with a production of iso-

branched SLs to be structurally characterised. To identify other potential isoSPT 

candidates and assess their similarities a protein-sequence bioinformatics approach 

was used. A protein BLAST (Altschul et al., 1990) search was performed against the 

other four bacterial taxa using the WT sequence of BfSPT (Uniprot ID Q5LCK4) as 

an input; this allowed to identify four proteins for each of the taxa with a very high 

sequence identity (74.3% on average; summary of hits shown in table 3.3.7.1; the 

protein sequences are presented in Appendix 5). Notably, the highest matching identity 

scores were picked for each respective genus; variation of putative SPTs between 

species within each taxon was not assessed.  
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The average sequence identity in various AOS-family proteins amongst different 

species remains within 30-35%; the average sequence identity amongst the four 

structurally characterised bacterial SPTs (Sp, Sm, Sw and Bf) is 42.4%.  

The high sequence conservation amongst the five proteins identified by the BLAST 

search (average 74.3%) and association of the query species with the production of 

iso-branched SLs allows consideration of the hit results as putative isoSPTs. 

 

Species GeneBank ID1 UniProtID2 % similarity (BfSPT) 

    
B.fragilis CAH08161.1 Q5LCK4 - 
Porphyromonas gingivalis WP_021679668.1 W1R7E5 76% 
Parabacteroides goldsteinii WP_010802415.1 S0GTM6 77% 
Prevotella sp. CDE86132.1 R7LFZ5 73% 
Tannerella sp. CCY38459.1 R5IDR1 76% 

1 Benson et al., 2005, 2 Bateman et al., 2017. 

Table 3.3.7.1. Hit results for the search of provisional isoSPTs in microbiome-related bacteria identified 

by BLAST 

 

To assess the similarities amongst the putative isoSPTs and to identify possible 

conservation motifs, sequence alignments were made for five isoSPTs as well as other 

three SPTs that have been structurally characterised. It is important to note that such 

comparison is not representative to the general population of bacterial SPTs and is not 

intended to be used as one; in contrast, it is used to highlight the similarities between 

BfSPT and other SPTs from bacteria that have been known to be a part of the human 

microbiome and generate iso-branched SLs.    
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Table 3.3.7.2. Sequence identity matrix generated by Clustal Omega; higher percentage of sequence 

identities amongst the isoSPTs is marked in red. 

 

The alignment of 5 iso SPTs is shown in figure 3.3.7.2; the alignment of five isoSPTs 

with Sp, Sm and Sw SPTs is presented in appendix 6. Additionally, the eight SPTs were 

aligned with some other AOS-family enzymes to reveal the conserved structural core 

within the family; the alignment is shown in appendix 6. The numbers of totally 

conserved and partially conserved residues in each of the alignments as well as 

percentage sequence similarities and identities are given in table 3.3.7.3.  

Comparison of all three alignments allows assessing the approximate structural cores 

shared between AOS enzymes, SPTs and isoSPTs in particular. A phylogenetic tree of 

all 14 proteins was constructed using Clustal Omega (Sievers et al., 2011) to show 

approximate evolutionary distance amongst the enzymes (Fig. 3.3.7.1).  
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S.paucimobilis 
 

74.69 35.35 35.44 35.28 33.93 34.43 34.43 

S.wittichi 74.69 
 

34.35 36.83 37.69 35.13 38.11 36.83 

S.Multivorum 35.35 34.35 
 

53.16 57.36 59.18 57.72 58.99 

Prevotella 35.44 36.83 53.16 
 

72.84 66.07 66.84 66.84 

B.fragilis 35.28 37.69 57.36 72.84 
 

75.77 76.65 76.14 

Porphyromonas 33.93 35.13 59.18 66.07 75.77 
 

80.61 80.1 

Parabacteroides 34.43 38.11 57.72 66.84 76.65 80.61 
 

81.01 

Tannerella 34.43 36.83 58.99 66.84 76.14 80.1 81.01 
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Fig. 3.3.7.1. Phylogenetic tree showing evolutionary relations between different bacterial SPTs and 

within some common AOS-family enzymes. The numbers represent a fraction of amino acid 

substitutions per sequence length. SPTs are named after a particular species they belong to; other 

proteins are from: ThAOS (Thermus thermophilus), KBL (E.coli); AONS (E.coli); ALAS (Rhodobacter 

capsulatus), Cqsa – Vibrio cholerae. The sequence alignment and the phylogenetic tree was obtained 

using Clustal Omega software from EMBL (Sievers et al., 2011). All putative isoSPTs sequences are 

taken from closely related organisms belonging to the same taxonomic order Bacteroidales.  
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Figure 3.3.7.2. Sequence alignment of 5 isoSPTs (protein IDs presented in table 3.3.7.1). The alignment 

was performed using Clustal Omega and visualised using ESPript 3.0 (Robert & Gouet, 2014). The 

residue numbering and the secondary structure information is obtained from the structure of BfSPT. The 

key catalytic residues involved in PLP or substrate binding are highlighted in blue; the C357 of BfSPT 

located within the PACSP loop is highlighted in purple.  
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While the proteins from the AOS family all retain a conserved structural core, the 

sequence conservation amongst them varies differently with only 16% of residues 

being fully or partially conserved and 5.7% totally conserved in the alignment sample 

of 14 AOS enzymes (presented in Appendix 6).  

Alignment Reference No. fully 

conserved 

No.partially 

conserved 

Length 

Ntotal 

Similarity,% Identity, % 

14 AOS App 6 22 40 384 16.1 5.7 

8 SPTs App 6 91 90 395 45.8 23.0 

5 isoSPT 3.3.7.2 225 72 395 75.2 57.0 

 

Table 3.3.7.3. Summary of the alignments of the protein sequences, presenting the numbers of fully 

and partially concerned residues within each of the alignments, total lengths of the alignments; sequence 

similarity (Ncons + Npartially cons)/Ntotal and sequence identity Ncons/Ntotal amongst all of the compared 

proteins. 

 

The structures of five putative isoSPTs share a core of 225 conserved and 72 partially 

conserved residues, giving the sequence similarity and identity scores of 75.2% and 

57.0% respectively. The protein sequences in this group were compared including 

other bacterial SPTs that have been structurally characterised (Sp, Sm and Sw); this 

gave a sequence similarity score of 45.8%. and a sequence identity score of 23.0%. 

It is evident that all five isoSPTs share a common structural core way more 

considerable than with other SPTs compared (75% including partially conserved 

residues, as opposed to 45.8% among all the SPTs tested). In this respect, high 

homology amongst the five putative SPTs from bacteria living in the human body is 

remarkably striking, considering these organisms are known to produce iso-branched 

sphingolipids. It is very likely that this conservation is functionally related and is 

preserved in order to adapt for the specific substrates of these enzymes.  

To visualise the protein conservation on a 3D structure the conserved and partially 

conserved residues were mapped by Consurf (Ashkenazy et al., 2010) with BfSPT 

structure used as a template. The obtained visualisations for 8 SPTs and 5 isoSPTs 

have been presented in a surface mode and compared in figure 3.3.7.3.  
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Fig. 3.3.7.3. Structural representation of conservation in the eight SPTs and five isoSPTs only (model: 

BfSPT). Light grey: all BfSPT residues presented as surface; Dark Blue: residues fully or partially 

conserved among 8 STPs (45.8%); Yellow: residues fully or partially conserved in five isoSPTs (75%).  
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All 8 SPTs have the key PLP-binding residues conserved including the catalytic lysine 

loop (G238-S243, BfSPT numbering used). 26 out of the 91 residues fully conserved 

between 8SPTs are glycines; these are generally involved in preserving the shape of 

the linker regions by adopting flexible geometry.   

It is notable that within the isoSPTs the highest sequence variety is observed within 

the α-helices of proteins. While some β-sheets show a degree of variation, most of 

them also remain conserved, forming central core domains.   

When the conservational alignment is presented as a surface model (Fig. 3.3.7.3), a 

visible cleft can be observed with the entrance near the “PPAP” loop; the tunnel 

proceeds to the active site. While there is no direct structural evidence obtained, the 

cleft is thought to be the entry of the second substrate. Furthermore, the structure of 

SpSPT in a complex of decarboxymyriocin (4BMK, Wadsworth et al., 2013) shows 

that the visible 9-carbon chain of the substrate-mimicking inhibitor extends towards 

the tunnel.    

All eight SPTs show a high degree of conservation in the loops forming the proposed 

substrate-entry tunnel, however, while some variation is present in the SPTs from Sp, 

Sm and Sw, the same loops remain almost exclusively identical in all isoSPTs. Notably, 

the protein surface near the proposed substrate entry site and within the tunnel remains 

very highly conserved in all isoSPTs; this suggests that all the enzymes share a very 

similar mode of substrate recognition and might be evolutionary strictly conserved to 

accept an iso-branched substrate. The high conservation indicates that the proteins are 

highly specific in their binding mode of the second substrate which is most likely the 

15-carbon isopentadecanoyl-CoA.  

In order to visualise a possible second substrate/product binding mode, a theoretical 

PLP-isoKDS external aldimine has been modelled into the active site of BfSPT (Fig. 

3.3.7.4) 
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Fig. 3.3.7.4. Mapping of structurally conserved residues (coloured in red) amongst SPTs. Top: cartoon 

representation of residue conservation in 8 SPTs (Sp, Sm, Sw and 5 isoSPTs) mapped on the structure 

of SpSPT external aldimine (2W8J). Only fully conserved residues are mapped. Middle: representation 

of residues remaining totally conserved among the isoSPTs mapped on the structure of BfSPT-L-serine 

external aldimine; the ligand is presented as red spheres. Bottom: The structure of BfSPT presented in 

a surface mode; residues fully conserved between the isoSPTs are mapped. A theoretical PLP-isoKDS 

product external aldimine has been modelled into the proposed substrate-entry tunnel to represent a 

possible binding mode; the positioning of decarboxymyriocin from 4BMK was used for initial reference.    
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Fig. 3.3.7.5. Conserved residues in five isoSPTs around the proposed substrate-entry tunnel mapped on 

a structure of BfSPT shown in two orientations. The modelled isoKDS-external aldimine shown in blue; 

the conserved residues forming the proposed second-substrate entry pocket are shown as red sticks.   

 

From observing both the sequence alignments and the 3D models, it is evident that 

isoSPTs share unusually high homology amongst them. Conserved loops that form the 

substrate binding cleft (BfSPT numbering) are G23-27, V44-N50, G75-D87; K174-

D187 (Fig.3.3.7.5). These contain a higher number of large aliphatic and aromatic 

residues as compared to SpSPT that are more likely to form interactions with a 

proposed iso-branched substrate. 
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Fig. 3.3.7.6. A model showing a possible mode of substrate binding in isoSPTs. The residues coloured 

in purple are conserved in all 5 isoSPTs and could provide stabilisation of the bound iso-substrate (cyan). 

* - residue belonging to the opposite protein chain.  

 

It is also possible to speculate that the conserved residues F81, L82, I269, F270, 

residue Y25 of the opposite chain and residues P351, P355, A356 belonging to the 

“PAPP” loop are responsible for the selection and stabilisation of the iso-branched 

substrate binding by providing a defined hydrophobic pocket environment around the 

iso-methyl group at the end of the substrate chain (Fig. 3.3.7.6). The very conserved 

arrangement of these residues might be a key to the observed substrate-inhibition 

pattern towards a longer non-branched palmitoyl-CoA. The importance of these 

residues could be experimentally tested by site-directed mutagenesis in BfSPT. 

Modification of these residues might alter the inhibition patterns observed in reactions 

of BfSPT with palmitoyl-CoA and reveal novel aspects that control the second-

substrate specificity of the enzyme.   

It can not be excluded that the high sequence conservation amongst the five isoSPTs 

is not directly related to the enzyme specificity and is contributed by the close 
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phylogenetic distance of their species only. However, the 3D-visualisation of the 

conserved residues overall and around the proposed substrate binding-pocket suggests 

that some of the structure conservation motifs might be functionally important in 

binding of the iso-substrate and could be associated with the production of isoSL bases.  

The lack of real experimental data does not allow to confirm the specific features of 

the acyl-CoA substrate binding or determine the nature of substrate inhibition observed 

towards PCoA in BfSPT. Yet the structural model analysis of the enzyme in 

comparison with other putative isoSPTs present in human microbiome strongly 

highlights their similarities as compared to other SPTs. It might be possible that we 

are looking at the new sub-class of SPT enzymes, of which BfSPT is a first 

characterised example, that are highly conserved, associated with production of unique 

isoSL bases and have a direct relevance to the human health.  
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3.4. Conclusions and further work 
 

There is a vast array of sphingolipids in the human body, adopting a variety of forms 

and shapes. Furthermore, as humans, we host numerous range of other organisms that 

compose our microbiome. Some of these organisms produce their own, unique SLs. 

While the total extent of the microbiome-related SLs and their functions remain largely 

unknown, it is evident that they play a more significant role in human health than was 

previously understood. Nevertheless, despite the enormous diversity of sphingolipids 

in nature, up to our knowledge, the first gateway step in the production of every SL 

molecule is controlled by the enzyme serine palmitoltransferase.  

The work aimed to study the mechanistic and structural features of SPTs from 

S.paucimobilis and B.fragilis. Studies of SpSPT highlighted some interesting 

observations with respect to the amino acid binding. While the X-ray structure of the 

SpSPT co-crystallised with D-serine yielded the other enantiomer L-serine in the 

active site, observation of changes in the enzyme backbone allowed to make some 

deductions about possible racemase activity of SPT. Furthermore, generation of 

A295T mutant has shown that SpSPT might have a potential to be used for altering 

substrate specificity. The primary focus of this work, however, remained on the BfSPT.  

Bacteroides fragilis is an interesting member of the human microbiome and presents 

a fascinating target for SL research. It produces some unique iso-branched SLs, the 

significance of which drives a lot of attention due to the growing evidence of their 

impact on the human immune system. This work has shed light on some of the 

structural and mechanistic features of B.fragilis SPT. The enzyme has been 

successfully purified and characterised by a combination of spectrophotometric assays, 

mass spectrometry and X-ray crystallography. It was capable of utilising a number of 

substrates in vitro, namely myristoyl-, pentadecenoyl-, palmitoyl-, heptadecanoyl- and 

stearoyl-CoAs, with all reaction products being confirmed by MALDI-ToF mass 

spectrometry. The high levels of substrate inhibition for palmitoyl-CoA, the substrate 

expected to be naturally competitive with the proposed isopentadecanoyl-CoA, 

suggest a presence of a control mechanism regulating the selection of a second 

substrate.  
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X-ray crystallography was used to obtain the structure of BfSPT, making it the first 

SPT with a direct link to human health to be structurally characterised. Several 

structural complexes of BfSPT have been obtained in the presence of the substrate L-

serine as well as with L-cycloserine and L-penicillamine complexes. The structure of 

BfSPT obtained in the presence of L-penicillamine showed the formation of the PLP-

thiazolidine adduct, providing the first structural evidence for the inhibitory 

mechanism of the drug. While the structural information obtained from the BfSPT-L-

cycloserine complex remains non-conclusive, it shows that the taken approach can be 

used further to get structural information about the drug-binding mode.  

While the main aims of this work were successfully achieved, there is an extensively 

broad area for further studies. The main drawback of this study was the inability to test 

the activity of BfSPT with its proposed natural substrate isopentadecanoyl-CoA. 

Obtaining and characterising the iso-branched substrate would be a top priority for 

future work as this would allow making definite conclusions about the reaction 

specificity of BfSPT and its role in a production of isoSLs.  

Structural and bioinformatic analyses of BfSPT revealed some essential residues 

within the proposed substrate-binding tunnel that could play a role in the substrate 

recognition. Testing the significance of these residues using site-directed mutagenesis 

could provide insights into the substrate recognition and inhibition modes of the 

enzyme.  

As the Bf enzyme has proven itself to be a good model for structural studies, much 

work can be carried in this direction. In particular, further attempts can be made to 

obtain the structure of the enzyme in complex with D-penicillamine. 

Arguably some of the most significant findings of this study were made by analysing 

the similarity of BfSPT and other putative SPTs from the human microbiome that have 

been associated with the production of iso-branched sphingolipids. This approach, in 

combination with the structural data already obtained, has allowed identification of 

some high structural conservation amongst the enzymes. Further exploration of this 

area might yield a key to understanding how the bacteria in the human microbiome 

produce their unique sphingolipids. In this respect, BfSPT can serve as an established 

model for future studies.  
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Appendix 1. Nucleotide and protein sequences of SpSPT constructs 

N-terminal (American) SpSPT nucleotide sequence: 

       1 GGCAGCAGCC ATCATCATCA TCATCACAGC AGCGGCCTGG TGCCGCGCGG  

      51 CAGCCATATG GCTAGCACAG AGGCTGCCGC TCAGCCGCAC GCCCTGCCTG  

     101 CAGACGCGCC TGACATTGCT CCTGAACGTG ATTTGTTAAG TAAATTTGAT  

     151 GGCCTAATCG CCGAAAGACA AAAACTACTC GATTCAGGTG TAACAGATCC  

     201 TTTTGCCATC GTTATGGAGC AAGTTAAGTC TCCAACTGAA GCTGTGATAC  

     251 GAGGAAAAGA TACAATCCTG CTCGGAACTT ATAATTACAT GGGAATGACC  

     301 TTTGATCCGG ACGTAATTGC AGCAGGTAAG GAAGCATTGG AGAAATTTGG  

     351 TAGCGGTACT AATGGTAGCA GAATGCTGAA CGGGACCTTT CATGATCATA  

     401 TGGAAGTTGA ACAAGCCTTG CGTGATTTCT ACGGTACGAC GGGAGCTATT  

     451 GTCTTTTCAA CTGGTTACAT GGCAAACCTT GGAATCATAT CAACACTTGC  

     501 GGGTAAAGGT GAGTATGTTA TTTTGGATGC AGACTCTCAT GCTTCTATCT  

     551 ACGATGGCTG TCAACAAGGA AACGCGGAAA TCGTAAGATT CCGGCACAAC  

     601 TCAGTGGAGG ATCTTGATAA GAGACTTGGT AGGCTTCCAA AGGAACCAGC  

     651 TAAACTCGTT GTTTTGGAAG GCGTTTATTC GATGCTTGGT GATATTGCTC  

     701 CTCTCAAGGA GATGGTTGCT GTGGCCAAGA AGCATGGAGC CATGGTGCTT  

     751 GTCGACGAGG CACATTCTAT GGGCTTCTTC GGACCAAATG GTAGAGGAGT  

     801 GTACGAAGCT CAGGGACTCG AAGGACAGAT AGACTTCGTC GTCGGCACTT  

     851 TCTCTAAGTC TGTTGGAACT GTTGGCGGGT TTGTTGTGAG CAATCATCCA  

     901 AAATTCGAGG CGGTGAGGTT AGCTTGTAGG CCATATATAT TCACCGCTAG  

     951 TTTGCCCCCG AGTGTCGTAG CTACAGCTAC CACATCTATA CGAAAACTTA  

    1001 TGACAGCGCA CGAGAAACGG GAGAGATTAT GGTCTAATGC AAGAGCACTG  

    1051 CATGGAGGGC TTAAGGCTAT GGGGTTTAGG TTAGGAACGG AGACTTGCGA  

    1101 CTCCGCTATT GTAGCTGTGA TGCTTGAGGA TCAGGAACAA GCTGCTATGA  

    1151 TGTGGCAGGC CTTGTTAGAT GGTGGACTAT ATGTTAACAT GGCAAGACCT  

    1201 CCTGCAACCC CTGCTGGTAC GTTTCTCCTA CGTTGTTCCA TTTGCGCTGA  

    1251 ACACACTCCC GCACAAATCC AGACTGTTTT GGGGATGTTT CAAGCTGCGG  

    1301 GACGCGCAGT CGGGGTTATT GGTTGAGCGA ATTCGAGCTC CGTCGACAGG  

    1351 CTTGCGGCCG CA  

 

1362 bp 

 

N-terminal SpSPT amino acid sequence (“American”) in pET28a plasmid 

MGSSHHHHHHSSGLVPRGSHMASTEAAAQPHALPADAPDIAPERDLLSKFDGLIAERQKLLDS
GVTDPFAIVMEQVKSPTEAVIRGKDTILLGTYNYMGMTFDPDVIAAGKEALEKFGSGTNGSRM
LNGTFHDHMEVEQALRDFYGTTGAIVFSTGYMANLGIISTLAGKGEYVILDADSHASIYDGCQQ
GNAEIVRFRHNSVEDLDKRLGRLPKEPAKLVVLEGVYSMLGDIAPLKEMVAVAKKHGAMVLV
DEAHSMGFFGPNGRGVYEAQGLEGQIDFVVGTFSKSVGTVGGFVVSNHPKFEAVRLACRPYIF
TASLPPSVVATATTSIRKLMTAHEKRERLWSNARALHGGLKAMGFRLGTETCDSAIVAVMLED
QEQAAMMWQALLDGGLYVNMARPPATPAGTFLLRCSICAEHTPAQIQTVLGMFQAAGRAV
GVIG 
 
MW = 47232.0 Da (ExPASy ProtParam) 

 

Molar extinction coefficient = 25900 M-1 cm-1 
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C-terminal (Scottish) SpSPT nucleotide sequence: 

       1 ATGACCGAAG CCGCCGCTCA GCCCCACGCC CTCCCCGCCG ACGCGCCCGA  

      51 CATCGCGCCG GAACGCGACC TGCTCTCCAA GTTCGACGGC CTGATCGCCG  

     101 AGCGGCAGAA GCTGCTCGAC TCCGGCGTCA CCGATCCCTT CGCGATCGTG  

     151 ATGGAACAGG TGAAGTCGCC GACCGAGGCC GTGATCCGTG GCAAGGACAC  

     201 GATCCTGCTC GGCACGTACA ACTATATGGG CATGACCTTC GATCCGGACG  

     251 TGATCGCAGC GGGCAAGGAA GCGCTGGAGA AGTTCGGGTC GGGCACCAAT  

     301 GGCAGCCGGA TGCTCAACGG CACCTTCCAC GACCATATGG AAGTCGAACA  

     351 GGCGCTGCGC GATTTCTACG GCACGACCGG CGCGATCGTC TTTTCGACCG  

     401 GTTACATGGC CAATCTCGGC ATCATCTCAA CGCTGGCGGG CAAGGGTGAG  

     451 TATGTCATCC TCGACGCCGA CAGCCATGCG TCGATCTATG ACGGCTGCCA  

     501 GCAGGGCAAT GCCGAGATCG TCCGCTTCCG CCACAATTCG GTCGAGGATC  

     551 TCGACAAGCG GCTGGGCCGT CTGCCCAAGG AACCTGCCAA GCTGGTCGTG  

     601 CTGGAGGGCG TCTATTCGAT GCTCGGCGAC ATCGCTCCGC TGAAGGAGAT  

     651 GGTCGCGGTC GCCAAGAAGC ATGGCGCAAT GGTCTTGGTC GACGAAGCGC  

     701 ATTCGATGGG CTTTTTCGGC CCCAACGGGC GCGGCGTGTA CGAGGCGCAA  

     751 GGGTTGGAAG GCCAGATCGA TTTCGTCGTC GGCACCTTCT CCAAATCGGT  

     801 CGGCACAGTC GGCGGCTTCG TCGTGTCCAA TCATCCGAAG TTCGAGGCGG  

     851 TCCGCCTCGC CTGCCGTCCG TACATCTTCA CCGCCTCGCT GCCGCCCTCG  

     901 GTGGTAGCGA CCGCGACGAC GTCGATCCGC AAGCTGATGA CCGCGCATGA  

     951 AAAGCGTGAG CGGCTGTGGT CGAATGCCCG CGCGTTGCAT GGCGGGCTGA  

    1001 AGGCGATGGG CTTCAGGCTC GGCACCGAGA CCTGCGACAG CGCGATCGTC  

    1051 GCGGTCATGC TGGAGGATCA GGAACAGGCC GCGATGATGT GGCAGGCGCT  

    1101 GCTCGACGGC GGGCTCTACG TCAACATGGC GCGCCCGCCC GCGACCCCGG  

    1151 CCGGCACCTT CCTGCTGCGC TGCTCCATCT GTGCCGAGCA CACGCCGGCG  

    1201 CAGATCCAGA CCGTGCTGGG CATGTTCCAG GCCGCGGGCC GCGCGGTCGG  

    1251 CGTCATC GGC CTCGAGCACC ACCACCACCA CCAC  

 

1284 bp  

C-terminal SpSPT amino acid sequence (“Scottish”) in pET28a plasmid 

MTEAAAQPHALPADAPDIAPERDLLSKFDGLIAERQKLLDSGVTDPFAIVMEQVKSPTEAVIRG
KDTILLGTYNYMGMTFDPDVIAAGKEALEKFGSGTNGSRMLNGTFHDHMEVEQALRDFYGTT
GAIVFSTGYMANLGIISTLAGKGEYVILDADSHASIYDGCQQGNAEIVRFRHNSVEDLDKRLGRL
PKEPAKLVVLEGVYSMLGDIAPLKEMVAVAKKHGAMVLVDEAHSMGFFGPNGRGVYEAQGL
EGQIDFVVGTFSKSVGTVGGFVVSNHPKFEAVRLACRPYIFTASLPPSVVATATTSIRKLMTAHE
KRERLWSNARALHGGLKAMGFRLGTETCDSAIVAVMLEDQEQAAMMWQALLDGGLYVNM
ARPPATPAGTFLLRCSICAEHTPAQIQTVLGMFQAAGRAVGVIGLEHHHHHH 
 

MW (without initial methionine) = 45975.6 Da (ExPASy ProtParam) 

 

Molar extinction coefficient = 25900 M-1 cm-1 
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Appendix 2. Nucleotide and amino acid sequence of B.fragilis SPT 

(BF9343_2380, old locus tag BF2461) 

 
Bf2461 nucleotide sequence: 

       1 ATGGGATTAT TACAAGAGAA GTTAGCTAAA TACGACCTCC CTCAGCAGAT  

      51 AAAGGCTAAA GGCGTATATC CATACTTTCG TTGTATCGAA AGTGAACAGA  

     101 ACACAGAGGT GATAATGAGT GGCAGAAAGG TGTTAATGTT TGGCTCAAAC  

     151 TCATACTTAG GCCTGACTAA TCATCCGAAA GTAATTGAAG CTGCTGTTGA  

     201 AGCTACCCGC AAATATGGTA CAGGTTGCGC CGGATCGCGT TTTCTGAACG  

     251 GTACACTCGA CCTCCATCTT CAATTGGAGA AAGAATTGGC CGAATTTGTT  

     301 GGTAAAGAAG ATGCTATCAT TTATTCTACC GGATTTCAGG TAAATCTGGG  

     351 TGTGGTTTCG TGTGTGACAG GTCGTGAAGA TTATGTGATC TGTGATGAAC  

     401 TTGACCACGC TTCTATTGTT GAAGGACGCC GCCTTTCTTT TTCTACCATT  

     451 CTTAAGTTCA AGCATAACGA TATGGAATCT CTTGAGAAAG AGTTGCAGAA  

     501 ATGTCGTCCT GATGCAGTGA AACTGATTGT AGTAGATGGA GTATTCAGTA  

     551 TGGAGGGTGA TATTGCCAAT TTGCCTGAGA TCGTCCGTTT GTCTAAAAAA  

     601 TATGATGCTA ATATCATGGT AGATGAAGCG CATGGACTGG GAGTTTTGGG  

     651 TAATCACGGA CGCGGTACTT GTGATCATTT CGGATTGACT AAAGAGGTGG  

     701 ATCTTATTAT GGGTACATTC AGTAAGTCAT TGGCCGCTAT CGGTGGCTTT  

     751 ATTGCAGCAG ACGAGTCCAT CATTAATTAT TTGCGTCACA ATTCACGTTC  

     801 ATATATCTTT AGTGCAAGTA ATACGCCTGC TGCTACAGCT GCCGCTCGTG  

     851 CTGCACTTCA GATTATGAAA AACGAACCGG AACGTATTGA GCATTTGTGG  

     901 GATATAACCA ATTACTCTTT AAAGTGTTTC CGTGAACTTG GTTTTGAGAT  

     951 CGGACATACC TCCACTCCTA TCATTCCTCT ATATGTACGT GATATGGAGA  

    1001 AGACATTTAT GGTAACTAAG ATGTTATTTG ACGAAGGTGT GTTTGTAAAT  

    1051 CCAGTTGTGC CTCCCGCATG TTCTCCGAAC GATACGTTGA TTCGTTTCTC  

    1101 GTTGATGGCT ACACACTCTA AAGAACAGAT TGATTTTGCT ATCGGTAAGT  

    1151 TAGTGAAATG TTTCAAGGCA CTTGATCTTT TATAA  

 

BfSPT amino acid sequence in pET28a plasmid:  

MGLLQEKLAKYDLPQQIKAKGVYPYFRCIESEQNTEVIMSGRKVLMFGSNSYLGLTNHPKVIEAAVEATR

KYGTGCAGSRFLNGTLDLHLQLEKELAEFVGKEDAIIYSTGFQVNLGVVSCVTGREDYVICDELDHASIVE

GRRLSFSTILKFKHNDMESLEKELQKCRPDAVKLIVVDGVFSMEGDIANLPEIVRLSKKYDANIMVDEAH

GLGVLGNHGRGTCDHFGLTKEVDLIMGTFSKSLAAIGGFIAADESIINYLRHNSRSYIFSASNTPAATAAA

RAALQIMKNEPERIEHLWDITNYSLKCFRELGFEIGHTSTPIIPLYVRDMEKTFMVTKMLFDEGVFVNPV

VPPACSPNDTLIRFSLMATHSKEQIDFAIGKLVKCFKALDLLEHHHHHH 

Amino acid sequence of B.fragilis SPT in pET28a plasmid. Coloured are the 

catalytic residues (red), PLP-binding motif (green), PACSP loop (blue) and C-

terminal histidine extension (purple). 

 

MW (without the initial methionine) = 44614.30 Da (ExPASy ProtParam) 
 

Molar extinction coefficient = 23380 M-1 cm-1 
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Appendix 3. Superdex S200 Gel filtration column calibration curve 

 

App. 3. Calibration curve for the HiLoad 16/600 Superdex 200 column (GE 

Healthcare) used to estimate the molecular weight of the protein based on its retention 

time. 

The MW of the protein is estimated as follows: 

MW = e(
𝐾𝑎𝑣  − 0.676

−0.0041
) 

𝐾𝑎𝑣 =
𝑉𝑒 − V𝑜

𝑉𝑡 − V𝑜
 

Ve = elution volume 

Vo = Void volume (43.4 mL) 

Vt = Total bed volume (120 mL) 
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Appendix 4. Cyclsoserine-derived structures in the pdb 

Pdb 
code: 

Molecul
e: 

Organism: Enzyme: Ligand config: Reference: 

1D7S   DCS Burkholderia 
cepacia  

dialkylglycine 
decarboxylase 

3-isoxazolidinone 
(sp3) 

Malashkevic
h, 1999 

1D7U  LCS Burkholderia 
cepacia  

dialkylglycine 
decarboxylase 

3-hydroxyisoxazole 
(sp2) 

Malashkevic
h, 1999 

1EPV DCS Geobacillus 
stearothermophil
us 

alanine racemase    3-hydroxyisoxazole 
(sp2) 

Fenn et al., 
2003 

1NIU LCS Geobacillus 
stearothermophil
us 

alanine racemase    3-hydroxyisoxazole 
(sp2) 

Fenn et al., 
2003 

1I2L DCS E.coli deoxychorismate 
lyase 

3-hydroxyisoxazole 
(sp2) 

Jensen et al. 
(unpubl) 

1VFS DCS Streptomyces 
lavendulae 

alanine racemase 3-hydroxyisoxazole 
(sp2) 

Noda et al., 
2004 

1VFT LCS Streptomyces 
lavendulae 

alanine racemase 3-hydroxyisoxazole 
(sp2) 

Noda et al., 
2004 

1MD
Z 

LCS Salmonella 
enterica 

ArnB 
aminotransferase 

3-hydroxyisoxazole 
(sp2) 

Noland et 
al., 2004 

2DAA DCS Bacillus sp. D-aminoacid 
aminotransferase 

3-isoxazolidinone 
(sp3) 

Peisach et 
al., 1998 

2RJH DCS E.coli alanine racemase 3-isoxazolidinone 
(sp3) 

Wu et al., 
2008 

3E6E DCS Enterococcus 
faecalis 

alanine racemase 3-hydroxyisoxazole 
(sp2) 

Priyadarshi 
et al., 2009 

4OM
A 

LCS Citrobacter 
freundii 

methionine 
gamma-lyase 

3-hydroxyisoxazole 
(sp2) 

Kuznetsov et 
al., 2015 

4LUT DCS Clostridium 
difficile 

alanine racemase 3-isoxazolidinone 
(sp3) 

Asojo et al., 
2014 

4D9E LCS Salmonella 
enterica 

D-cysteine 
desulfhydrase 

3-isoxazolidinone 
(sp3) 

Bharath et 
al., 2012  

2XBN LCS Sphingomonas 
paucimobilis 

serine 
palmitoyltransfera
se 

β-
aminooxyacetaldehy
de 

Lowther et 
al., 2010 

5U3F DCS Mycobacterium 
Tuberculosis 

branched-chain 
aminotransferase 

3-hydroxyisoxazole 
(sp2) 

Amorim 
Franco et al., 
2017 

PDB structural entries of various PLP-dependent enzymes containing cycloserine-derived adducts. 3-

isoxazolidinone has a tetrahedral sp3 configuration around C of , while 3-hydroxyisoxazole is a planar 

ring in sp2 configuration. 
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Appendix 5. Sequences of putative microbiome-related isoSPTs 

identified by protein BLAST 
 

BfSPT sequence Genbank CAH08161.1 (Q5LCK4): 

 

        1 MGLLQEKLAK YDLPQQIKAK GVYPYFRCIE SEQNTEVIMS GRKVLMFGSN SYLGLTNHPK 

       61 VIEAAVEATR KYGTGCAGSR FLNGTLDLHL QLEKELAEFV GKEDAIIYST GFQVNLGVVS 

      121 CVTGREDYVI CDELDHASIV EGRRLSFSTI LKFKHNDMES LEKELQKCRP DAVKLIVVDG 

      181 VFSMEGDIAN LPEIVRLSKK YDANIMVDEA HGLGVLGNHG RGTCDHFGLT KEVDLIMGTF 

      241 SKSLAAIGGF IAADESIINY LRHNSRSYIF SASNTPAATA AARAALQIMK NEPERIEHLW 

      301 DITNYSLKCF RELGFEIGHT STPIIPLYVR DMEKTFMVTK MLFDEGVFVN PVVPPACSPN 

      361 DTLIRFSLMA THSKEQIDFA IGKLVKCFKA LDLL 

 

Porphyromonas gingivalis WP_021679668.1 (W1R7E5);  

76% identity with BfSPT 

        1 LLQDKLAQYT EPQKAQAAGI YPYFRKIESD QDTEVVIDGR KVLMFGSNAY LGLTNHPKVK 

       61 EAAIEATKKY GTGCAGSRFL NGTLDIHLEL EKRLAEFVGK EDAISFSTGF QVNLGVVSCI 

      121 TGREDYIIWD ELDHASIIEG IRLSFSTKLK YKHNDMGSLE KRLQQCDPDK IKLIVVDGVF 

      181 SMEGDVCNLP EIVRLAKRYN ANVMVDEAHG IGVMGDHGRG VCNHFGLTDE VDLIMGTFSK 

      241 SFASLGGFIA GDKSVINYLR HHARSYIFSA SCTPASTAAA AAALDIMLSE PERLARLWEL 

      301 THYSLNAFRS LGFEIGHTST PIIPLFIRNN EKTFQITRDA FEEGVFVNPV VSPAVAPSDT 

      361 LIRFSLMATH TKEQLDFAIE KLHKVFKQNS VL 

 

Parabacteroides goldsteinii (77% identity with BfSPT) WP_010802415.1 

(S0GTM6): 

        1 MKLLQEKLAK YDAPQKAMAA GIYPYFRMIE SDQDTEVMIS GKKVLMFGSN AYLGLTNHPK 

       61 VKEAAIEAIK KYGTGCAGSR FLNGTLDIHI QLEKRLAEFV GKEDAIVYST GFQVNLGVVS 

      121 CLTGREDYIL WDELDHASII EGHRLSFSTK LKYKHNDMDS LEKQLQKCEP DKVKLIVIDG 

      181 VFSMEGDIAK LPEIVALAKK YNASIMVDEA HGLGVLGDHG RGTCNHFGVT DDVDLIMGTF 

      241 SKSLASIGGF IASDKDTINY LRHNSRSYIF SASNTPAATA AAGAALDIMQ SEPERIEHLW 

      301 KLTHYALDGF RNMGCEIGHT STPIIPLFIR DNDLTFLIVK ELFEAGIFVN PVVSPAVAPE 

      361 DTLIRFSLMA THTKEQLDYA LEAIHKVFKS HGLVD 

 

Prevotella sp 73% identity: GenBank ID:  CDE86132.1 (R7LFZ5) 

        1 MGILQDRLAK YTLPQQYQAQ GVYPYFRAIE GKQGTEVEMG GHHVLMFGSN AYTGLTGDER 

       61 IIAAGKKAMD KYGSGCAGSR FLNGTLDLHV QLEKELAAFV GKEDALCYST GFTVNSGVIS 

      121 CLTGREDYII CDDRDHASIV DGRRLSFSTC LKYKHNDMAD LERQLQKCAP EAVKLIVVDG 

      181 VFSMEGDLAN LPEIVKLKHK YNATIMVDEA HGIGVFGRNG RGVCDYFGLT DEVDLIMGTF 

      241 SKSLASIGGF IAADESIINW LRHNSRTYIF SASNTPAATA CAMEALHILQ QEPERIEALW 

      301 DVTRYALKRF REEGFEIGET ESPIIPLYVR DTEKTFIATA RAFDAGVFIN PVIPPACAPH 

      361 DTLVRVALMA THTKEQVDRA VESLGKVFRE LDIIK 

 

Tannerella sp. 76% (CCY38459.1), (R5IDR1) 

        1 MKLLQAKLAK YDAPQKAKAL GVYPYFRKIE SDQDTEVLIN GKKVLMFGSN SYLGLTNHPK 

       61 IKEAAIAAIK KYGTGCAGSR FLNGTLDIHV ELEDRLARFV GKEEAIIYST GFQVNLGVVS 

      121 CLTGREDYII WDELDHASII EGRRLSFSTP LKYKHNDMAS LEKVLKSCPE DKVKLIVTDG 

      181 VFSMEGDVAN LPEIVALAKK YNAAVMVDEA HGIGVFGKQG RGTCDHFGVT GDVDLIMGTF 

      241 SKSFASLGGF IATDSITANY LRHNSRSYIF SASITPASTA AVGAALDIME SEPERIAHLW 

      301 EVTNYALEGF RNLGCEIGHT STPIIPLFIR DNEKTFRVTR DLFDEGVFVN PVVSPAVAPS 

      361 DTLIRFSLMA THTKEQVDFA LDKIEKCFKR LDILK 
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Appendix 6. Sequence alignment of 8 SPTs and 14 AOS enzymes 
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