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Abstract 

Long terminal repeat (LTR) retrotransposons are autonomous eukaryotic repetitive 

elements which may elicit prolonged genomic and immunological stress on their host 

organism. LTR retrotransposons comprise approximately 10 % of the mammalian 

genome, but previous work identified only 1.35 % of the chicken genome as LTR 

retrotransposon sequence. This deficit appears inconsistent across birds, as studied 

Neoaves have contents comparable with mammals, although all birds contain only one 

LTR retrotransposon class: endogenous retroviruses (ERVs). One group of chicken-

specific ERVs (Avian Leukosis Virus subgroup E; ALVEs) remain active and have been 

linked to commercially detrimental phenotypes, such as reduced lifetime egg count, but 

their full diversity and range of phenotypic effects are poorly understood. 

A novel identification pipeline, LocaTR, was developed to identify LTR retrotransposon 

sequences in the chicken genome. This enabled the annotation of 3.01 % of the genome, 

including 1,073 structurally intact elements with replicative potential. Elements were 

depleted within coding regions, and over 40 % of intact elements were found in clusters 

in gene sparse, poorly recombining regions. RNAseq analysis showed that elements were 

generally not expressed, but intact transcripts were identified in four cases, supporting 

the potential for viral recombination and retrotransposition of non-autonomous repeats. 

LocaTR analysis of seventy-two additional sauropsid genomes revealed highly lineage-

specific repeat content, and did not support the proposed deficit in Galliformes. 

A second, novel bioinformatic pipeline was constructed to identify ALVE insertions in 

whole genome resequencing data and was applied to eight elite layer lines from Hy-Line 

International. Twenty ALVEs were identified and diagnostic assays were developed to 

validate the bioinformatic approach. Each ALVE was sequenced and characterised, with 

many exhibiting high structural intactness. In addition, a K locus revertant line was 

identified due to the unexpected presence of ALVE21, confirmed using BioNano optic 

maps. The ALVE identification pipeline was then applied to ninety chicken lines and 

322 different ALVEs were identified, 81 % of which were novel. Overall, broilers and 

non-commercial chickens had a greater number of ALVEs than were found in layers. 

Taken together, these two analyses have enabled a thorough characterisation of both the 

abundance and diversity of chicken ERVs. 
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Lay Summary 

Retroviruses are a group of viruses which are unable to replicate themselves. Instead, 

during infection, these viruses insert their own genetic material into host cell DNA (the 

genome) where it is then replicated, producing more virus. Depending on the insertion 

site, these viruses can disrupt host gene function, which can lead to cancer. Furthermore, 

these insertions can elicit generational effects. If a retrovirus inserts within the DNA of 

a sperm or egg cell, the retrovirus will be passed on to the next generation as an 

endogenous retrovirus (ERV), and will be present in every cell of the offspring.  

In mammals, approximately 10 % of the genome consists of ERVs. However, in the 

chicken only 1.35 % of genome is derived from ERVs, even though other birds have 

levels equivalent to mammals when differences in genome size are considered. Despite 

this apparent deficit of ERVs, a chicken-specific ERV group, the ALVEs, is known to 

induce tumours and inhibit productivity in commercial flocks. This PhD project sought 

to perform a better annotation of ERVs in the chicken and other birds, characterise 

ALVEs in commercial flocks, and more fully identify ALVE diversity across chickens. 

A new annotation pipeline, LocaTR, was developed to identify ERVs in genome 

sequence. This pipeline was used to annotate ERVs in sixty-seven bird species, including 

chicken, and six reptile outgroups. The previously identified ERV content in chickens 

was almost doubled and the lineage analysis did not support the previously proposed 

deficit of ERVs in the chicken compared to other birds. Chicken ERV distribution and 

intactness was assessed to predict their effects on the host. Most ERVs were ancient and 

highly degraded, but 1,073 structurally intact ERVs were identified.  

A further ALVE identification pipeline was developed to identify novel ALVE insertions 

in eight elite layer lines from Hy-Line International. Twenty different ALVEs were 

identified, diagnostic tests were developed, and each insert was sequenced and 

characterised. Many of the inserts remain highly intact supporting a continued influence 

on chicken biology. Analysis of ninety additional datasets identified over three hundred 

ALVEs, 81 % of which were novel to this study.  

This PhD project has enabled a thorough characterisation of chicken ERVs, and the two 

pipelines are applicable to other research, such as viral-induced cancers in humans. 
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Chapter 1:  Introduction 

Repetitive sequences in eukaryotic genomes have been widely dismissed as ‘junk’ DNA, 

however recent functional genome annotation has revealed the great abundance, 

diversity, and evolutionary significance of these elements. This PhD project will more 

completely characterise repetitive elements with a retrovirus-like structure in the chicken 

genome, including an assessment of recurrent retroviral integrations which detrimentally 

affect commercial poultry production. This chapter introduces these repetitive elements, 

and the chicken as a study species.  

 

1.1 LTR retrotransposons 

Eukaryotic repetitive DNA ranges from low-complexity, short nucleotide repeats, to 

large, replication-competent transposable elements which can move around the genome. 

Transposable elements are divided into two major groups depending on whether they 

replicate via an RNA intermediate (class I; retrotransposons) or a DNA intermediate 

(class II; DNA transposons). Most class II elements jump around the genome by 

excising and then inserting in a new location (‘cut and paste’), whereas class I elements 

retrotranspose, producing a new element copy which then inserts at a different location 

(‘copy and paste’), propagating the genomic content of these elements and resulting in 

high copy numbers. There are no cellular mechanisms for the clean excision of 

retrotransposons from the genome (Havecker et al. 2004; Stoye 2012).  

Class I retrotransposons are divided into long terminal repeat (LTR) retrotransposons 

and the potentially more ancestral non-LTR retrotransposons (Flavell et al. 1997; Kordis 

2005). LTR retrotransposons are a diverse group of autonomous elements (sequences 

which can move by themselves) abundant in eukaryotic genomes. Approximately 10 % 

of the mammalian genome consists of LTR retrotransposon-derived elements, but in 

some lineages, such as many plants (e.g. conifers) and amphibians (e.g. plethodontid 

salamanders), these can account for 80 – 90 % of the genomic DNA (Roth et al. 1997; 

Bromham 2002; McCarthy et al. 2002; McCarthy & McDonald 2004; Havecker et al. 

2004; Vitte & Panaud 2005; Chaparro et al. 2007; Sun et al. 2012; Nystedt et al 2013).  
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LTR retrotransposons have a wide range of genomic and physiological effects, especially 

due to their role in insertional mutagenesis, their propensity for recombination, and the 

ability of some groups (such as vertebrate retroviruses) to become extracellular (Mattick 

et al. 2010; Aswad & Katzourakis 2012; Stoye 2012). The structure, evolutionary history, 

and biological effects of these elements are described below. 

 

1.1.1 LTR retrotransposon structure 

Superficially, LTR retrotransposons and non-LTR retrotransposons share a similar, 

virus-like architecture (Figure 1.1), containing structural and enzymatic genes, 

terminated by the target site duplications (TSDs) formed during genomic integration. 

LTR retrotransposons are clearly differentiated by the presence of the eponymous long 

terminal repeats. These domains, which range in length from one hundred base pairs 

(bp) to two kilobase pairs (kb), exhibit a shared U3-R-U5 structure (domain names 

explained below; page 4), consisting of conserved blocks interspersed with hypervariable 

regions (Conklin 1991; Benachenhou, Jern, et al. 2009).  

The LTRs drive internal protein expression, even bidirectionally (Dunn et al. 2006), 

due to their modular arrangement of polyadenylated regions arranged into promoters 

and enhancers, particularly in the U3 domain. The U3-R boundary marks the 

transcription start site (TSS) and is preceded by a highly conserved TATA box 

(Benachenhou, Blikstad, et al. 2009). LTR hypervariable regions consist of transcription 

factor (TF) binding sites which confer host- and tissue-specific expression. In addition, 

the LTRs give a clear, repeated demarcation to the retroelement, which aids retention 

of structural integrity after retrotransposition. Non-LTR retrotransposons are commonly 

truncated at the 5’ end, resulting in a loss of promoter activity, due to failed replication 

of the 5’ sequence (Cordaux & Batzer 2009).  

LTR retrotransposons typically contain two protein coding genes (Figure 1.1), each of 

which codes for multiple constituent proteins. The gag (group-specific antigen; core 

structural proteins) gene codes for the matrix, capsid and nucleocapsid proteins required 

for forming a retrotransposon virion. The pol (polymerase; enzymic proteins) gene 

codes for the protease (cleaves the translated retrotransposon proteins), reverse 
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transcriptase (produces double stranded DNA from the retrotransposon RNA 

intermediate), RNaseH (non-sequence-specific ribonuclease) and integrase (integrates 

retrotransposon DNA into the host genome) proteins required for retrotransposition.  

 

 

Figure 1.1 Transposon archetypal structures. LTR retrotransposons and Non-LTR 

retrotransposons are class one transposable elements which replicate via an RNA 

intermediate which is reverse transcribed to cDNA, enabling replication in a ‘copy 

and paste’ manner. These elements are demarcated by target site duplications 

(red boxes) and share a generally homologous enzymic polymerase (POL) gene. 

The first LTR retrotransposon gene (GAG) encodes group-specific antigens which 

are not homologous with the Non-LTR retrotransposon RNA binding domain. LTR 

retrotransposons sometimes also contain accessory genes (grey dotted box) such 

as the envelope gene found in the Retroviridae. LTR retrotransposons begin and 

end with the eponymous LTRs. The 5’ LTR is immediately followed by the primer 

binding region (PBS) and the 3’ LTR is immediately preceded by the polypurine 

tract (PPT). Non-LTR retrotransposons have a 5’ promoter and 3’ A-rich regions. 

DNA transposons are class two transposable elements which jump around the 

genome in a ‘cut and paste’ manner. They are demarcated by short, genera-

specific inverted tandem repeats (ITRs). 

Some LTR retrotransposon groups contain accessory genes acquired from other 

infectious agents or the host genome. These often provide additional functionality, and 

can lead to host genic dysregulation, retroelement niche expansion, or the ability of LTR 

retrotransposons to become extracellular through acquisition of an env (envelope) gene, 

which mediates host cell surface binding and viral entry (Malik et al. 2000; Llorens et al. 

2011). Additionally, LTR retrotransposons contain a primer binding site (PBS), where 

a host tRNA primes reverse transcriptase, and a polypurine tract (PPT), which primes 

the second stage of reverse transcription (Arkhipova et al. 1986; Zhang et al. 2014).   
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Retrotransposition and expression 

LTR retrotransposons are transcribed by host RNA polymerase starting at the TSS at 

the 5’ LTR U3-R boundary, and terminating at the 3’ LTR R-U5 boundary. This 

produces a transcript which begins R-U5 (repeated – unique 5’ sequence) and ends U3-

R (unique 3’ sequence – repeated), hence the LTR domain nomenclature (Arkhipova 

et al. 1986; Katz & Skalka 1990). Transcripts of the negative ‘template’ strand will be 

translated at the host ribosome into retroviral proteins, and positive strand transcripts 

form the templates for retrotransposition. Retrotransposition results in identical LTR 

sequences at the point of integration, enabling the estimation of element age from LTR 

nucleotide divergence, based on host rates of neutral evolution (Kijima & Innan 2010).  

The mechanism for retrotransposition is summarised in Figure 1.2. 

 

Integration sites and genomic fates 

The integration site greatly impacts the evolutionary success of an LTR retrotransposon, 

as natural selection will act to remove insertions which are detrimental to the host. This 

is often difficult to study accurately as the observable distribution is a result of the effects 

of selection (Bushman 2003). The LTR retrotransposon integrase is non-sequence-

specific, but the accessory genes or domains in some groups enable specific targeting. 

For example, chromodomain-mediated cDNA tethering to RNA polymerase III 

facilitates the integration of chromovirus LTR retrotransposons (part of the Gypsy/Ty3 

supergroup) near RNA genes transcribed by this polymerase (Malik & Eickbush 1999; 

Bushman 2003). Furthermore, integration bias largely depends on when existing LTR 

retrotransposons can retrotranspose (due to epigenetic silencing), and whether its cDNA 

and integrase (produced in the cytoplasm) can access the genome whilst the nuclear 

membrane is present (Desfarges & Ciuffi 2010).  

Most LTR retrotransposon insertions have limited impact on the host, so are retained 

in the genome but degrade over many host generations. Degradation occurs through 

polymerase slippage (causing frameshifts or single nucleotide polymorphisms; SNPs), 

the random endonucleolytic action of integrase, and homologous and non-homologous 

recombination events (Katz & Skalka 1990; Bromham 2002). These processes erode 
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the archetypal LTR retrotransposon structure leading to truncations or the excision of 

internal domains (Figure 1.3). Commonly, the identical LTR pairs will recombine 

leaving ‘solo LTRs’ which are sixty to a hundred times more abundant in eukaryotic 

genomes than intact elements (Stoye 2001).  

 

 

Figure 1.2 Mechanism for LTR retrotransposon expression and retrotransposition. 

A). An intact, replication competent LTR retrotransposon hijacks host cell 

replicative machinery to express a positive single strand RNA (ssRNA) copy from 

the transcription start site (TSS) located at the U3-R boundary in the 5’ LTR. 

Transcription extends to the 3’ LTR R-U5 boundary. Similar transcription to 

produce a negative ssRNA enables expression and translation of the internal 

coding regions. B). A host tRNA binds to the primer binding region (PBS) of the 

positive ssRNA and reverse transcriptase (RT) produces complementary single 

strand DNA (ssDNA). C). After reaching the end of the ssRNA template, the ssDNA 

and RT lifts off and binds to the 3’ end due to the shared LTR R region homology, 

and RT continues. D) RNaseH activity breaks down the ssRNA template to leave 

the polypurine tract (PPT), which acts as a primer for RT synthesis of the ssDNA 

complementary strand. E). In the same manner as part C, the RT lifts off to 

synthesise the remainder of the complementary strand, creating the double strand 

DNA ready for genomic insertion via the action of integrase (F). Figure adapted 

from Arkhipova et al. 1986 and Zhang et al. 2014. 
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Figure 1.3 LTR retrotransposon degradation. Degradation can be a gradual 

process with coding domains gradually acquiring frameshift and nonsense 

mutations, or degradation can be accelerated due to recombination. This can lead 

to truncation, removing the ends of elements, or internal deletion due to non-

homologous recombination. In many cases the paired LTRs recombine, excising 

the internal coding regions leaving a ‘solo LTR’. 

Cellular regulation of LTR retrotransposons 

Most LTR retrotransposons degrade relatively rapidly in evolutionary timescales, but 

their effects immediately after insertion can be varied and unpredictable (section 1.1.3). 

In addition, over short timescales uncontrolled retrotransposition and insertional 

mutagenesis creates persistent but varied challenges for the host, so it is advantageous to 

control retrotransposon activity. Eukaryotic cells do this through two core processes: 

epigenetic silencing by sequence methylation and histone modifications, and innate 

antiviral defence (Stoye 2012).  

DNA base methylation in eukaryotes occurs almost exclusively at cytosine residues and 

is used in transcriptional regulation through the silencing of promoter and enhancer 

regions. In a similar manner, cells target transposable elements to be methylated to 

silence their activity (Weber & Schübeler 2007). Methylation is observed across LTR 

retrotransposon sequences, but particularly in the LTRs themselves due to the presence 

of promoters and enhancers. The LTR U3 domain is commonly the most methylated 

region as this is where cellular machinery and transcription factors bind (Cam et al. 2008; 

Reiss et al. 2010). The hypervariable nature of the U3 domain across LTR 

retrotransposons likely represents an evolutionary response to epigenetic targeting 

(Benachenhou et al. 2013; Goodier 2016).  
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In addition to the action of host cell methyl transferases, targeted methylation of 

retrotransposons is facilitated by co-evolved mechanisms. Cam and colleagues (2008) 

identified that complementary binding of expressed retrotransposon-derived sequences 

physically recruited methylation machinery to integration sites, and a family of zinc-

finger proteins with LTR retrotransposon-sequence-specificity were required for 

identifying and methylating non-promoter-like regions (Rowe et al. 2013). Cytosine 

methylation is a heritable control, and is proactively regulated in animal genomes as 

methylation marks are reset after any cell division. The high copy number and recurrent 

LTR retrotransposon activity in many plants, may be due, at least in part, to the absence 

of these post-replication checks, as ‘reactivated’ elements may be able to retrotranspose 

for multiple generations until their epigenetic marks are reset (Rigal & Mathieu 2011). 

Sequence-level silencing can account for control in adult cells, but not during early 

development when methylation is stripped. Most early development epigenetic 

modification studies have only been completed in mammalian model systems, but 

recent work has shown the importance of histone marks and modifications in limiting 

transposable element activity (Rowe & Trono 2011; Leung & Lorincz 2012). The 

heritable relevance of histone modifications has also been shown in plants, where 

deacetylase and deubiquitination mutants in Arabidopsis were shown to exhibit higher 

incidence of transposable element insertions (Rigal & Mathieu 2011). Despite histone-

induced regulation, transposable element activity is still significantly elevated during early 

development (Bromham 2002; Cohen et al. 2009; Faulkner et al. 2009; Reiss et al. 2010; 

Feschotte & Gilbert 2012). 

Epigenetic marks are the major, heritable mechanism for transposable element control. 

However, these marks are easily modified and will often change during times of cellular 

stress or dysregulation, resulting in increased transposable element activity. Additionally, 

recent insertions will likely be incompletely methylated (if at all), leading to partial 

element expression (Reiss & Mager 2007; Varriale 2014). Innate antiviral defence 

mechanisms provide secondary, cumulative control of these elements. This can include 

a range of host viral inhibitors (often based on detecting RNA or DNA intermediaries), 

restriction enzymes, or more complex pathways such as RNA interference (RNAi) (Rigal 

& Mathieu 2011; Chung et al. 2014). RNAi can specifically target retrotransposon 

transcripts which have been previously expressed, as short sequences (approximately 20 
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to 40 bp) are retained as references which can be used to bind new transcripts and mark 

them for degradation. Sequences with close homology will also be targeted as exact base 

pair complementarity is not required (Rigal & Mathieu 2011; Chung et al. 2014). Whilst 

these mechanisms target expressed retrotransposons, enzymes such as cytidine 

deaminases target existing genomic insertions and mutate the polyadenylated regions, 

disrupting promoter and enhancer activity (Chiu & Greene 2008). In addition, LTR 

retrotransposons themselves are known to influence the expression, replication and 

transmission of other LTR retrotransposons (introduced further in section 1.1.3). 

 

1.1.2 Evolutionary origins 

LTR retrotransposons have been identified throughout the eukaryotic lineage, 

supporting their presence in the last eukaryotic common ancestor (Llorens et al. 2008; 

Llorens et al. 2011). These elements are absent in studied Prokaryotes, and no LTR 

retrotransposon precursors have been identified. However, both DNA transposons and 

non-LTR retrotransposons are found in prokaryotes, and it is likely that LTR 

retrotransposons are chimeric elements formed from recombination between elements 

of these two ancestral classes (Malik & Eickbush 2001; Boeke 2003). There has been 

some suggestion that the uncoupling of transcription and translation in eukaryotic cells, 

and the presence of a nuclear membrane barrier, made the two stage retrotransposition 

of LTR retrotransposons more successful than other transposon classes (Malik & 

Eickbush 2001).  

In addition to their chimeric origin, the ‘superficially conserved’ internal coding 

sequences of LTR retrotransposons also appear to have complex evolutionary histories, 

with multiple independent acquisitions from various viral sources in different lineages 

(Malik et al. 2000; Malik & Eickbush 2001; Peterson-Burch & Voytas 2002; Havecker 

et al. 2004; Capy 2005; Benachenhou, Blikstad, et al. 2009). Consequently, lineages 

constructed from separate domains produce different group relatedness, but the use of 

the highly conserved reverse transcriptase (RT) gene (required at all times for 

retrotransposition) has become the field standard for retrotransposon classification and 

phylogeny construction (Jern et al. 2005; Llorens et al. 2008).  
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Phylogenies constructed from RT divide up the LTR retrotransposons into five distinct 

groups (Figure 1.4): Bel/Pao (Semotiviridae), Copia/Ty1 (Pseudoviridae), DIRS 

(Dictyostelium intermediate repeat sequence), Gypsy/Ty3 (Metaviridae) and the 

retroviruses (Retroviridae). LTR retrotransposons across the five groups are typically 4 

– 10 kb in length, but can elongate considerably depending on the presence of accessory 

genes. The Bel/Pao, Copia, Gypsy and retroviruses all share a similar version of the 

archetypal LTR retrotransposon structure (Figure 1.5). In contrast, the DIRS elements 

exhibit a highly divergent structure lacking, most strikingly, the eponymous LTRs. These 

elements phylogenetically group within LTR retrotransposons due to RT homology, but 

have inverted terminal repeats (ITRs) and have acquired a methyl transferase and 

tyrosine recombinase rather than the typical protease and integrase (Goodwin & Poulter 

2001; Poulter & Goodwin 2005; Piednoël et al. 2011). 

 

 

Figure 1.4 LTR retrotransposon cladogram based on reverse transcriptase (RT) 

with the non-LTR retrotransposon LINE family as outgroup. The Retroviridae are 

divided into seven genera, and have historically been grouped into three classes 

labelled with Roman numerals based on human retrovirus classification (I, II and 

III). Despite their divergent structure (Figure 1.5), DIRS elements sit between the 

Metaviridae (Gypsy/Ty3) and Semotiviridae (Bel/Pao). The Pseudoviridae 

(Copia/Ty1) are the most basal LTR retrotransposon lineage. The broad LINE 

branch represents extensive non-LTR retrotransposon diversity. Cladogram 

constructed based on Poulter & Goodwin 2005; Llorens et al. 2008; Piednoël et 

al. 2011; Llorens et al. 2011; Benachenhou et al. 2013. 
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Figure 1.5 LTR retrotransposon archetypal structures. The Retroviruses, Gypsy, 

Bel/Pao and Copia groups have the standard LTR retrotransposon structure with 

a pair of LTRs terminally demarked by a target site duplication (red box). The 5’ 

LTR finishes with the primer binding site (PBS) and the 3’ LTR is preceded by the 

polypurine tract (PPT). The internal sequences are the gag (group specific 

antigens; dark blue), and polymerase (blue) including RT (reverse transcriptase), 

RH (RNaseH), IN (integrase) and PR (protease). In the retroviruses, Bel/Pao and 

Gypsy the polymerase order is PR-RT-RH-IN, but the more ancient Copia group has 

IN first. In retroviruses, the PR is encoded as part of the gag gene leading to higher 

protease expression. Retroviruses typically have an envelope gene (light blue) 

which encodes the virion proteins required for an extracellular lifecycle. Some 

Gypsy and Copia elements have independently acquired envelope genes, but 

these are exceptions. DIRS retrotransposons have a highly divergent structure with 

inverted tandem repeats (ITRs) rather than LTRs, although these are much longer 

and more complex than those in DNA transposons (Figure 1.1). DIRS elements are 

demarcated by the trinucleotide TTT and the ICR (internal complementary region) 

has homology with both ITRs, facilitating DIRS retrotransposition via a circular 

double stranded DNA (dsDNA) intermediate. DIRS elements have a typical gag, but 

use a methyl transferase (MT) and tyrosine recombinase (YR) rather than the 

typical protease and integrase. 

Eukaryotic distribution 

Copia and DIRS elements have the widest eukaryotic distribution, with representation 

in single-cell eukaryotes such as the Diatoms (Piednoël et al. 2011; Benachenhou et al. 

2013). The diverse Gypsy group also diverged before the last common ancestor of 

plants, animals and fungi, but the Bel/Pao clade is limited to metazoans, and retroviruses 

are limited to vertebrates (Llorens et al. 2009; Llorens et al. 2011).  
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Despite these general distributions there is substantial lineage specificity, with the total 

loss of some LTR retrotransposon groups at various taxonomic levels (Bromham 2002; 

Peterson-Burch & Voytas 2002; Havecker et al. 2004; Kordis 2005; Volff 2009). For 

example, DIRS elements are absent in mammals and birds despite their presence in 

other vertebrate groups (Piednoël et al. 2011). The abundance and diversity of particular 

lineages is largely dependent on stochastic processes influenced by genomic expansion 

and contraction, changes in effective population size, inter-element recombination, and 

infections from exogenous viruses (Flavell et al. 1997; Katzourakis et al. 2005; Weiss 

2006; Kanda et al. 2013). 

 

Retroviruses – acquisition of an envelope 

Technically, the term ‘retrovirus’ can be used to describe any retrotransposon which can 

escape a host cell and infect other cells with successful integrations (Llorens et al. 2011). 

Practically, when this term is used it refers to vertebrate retroviruses of the Retroviridae 

family. This distinction is important as multiple LTR retrotransposon lineages have 

acquired env genes enabling them to become exogenous viruses (Malik et al. 2000; 

Peterson-Burch & Voytas 2002). Interestingly, a number of these do not appear to have 

then become infectious agents, suggesting that they instead facilitate virion chaperoning 

during retrotransposition when single stranded viral RNA or DNA would be targeted 

for degradation by the host cell (Havecker et al. 2004). However, the true benefit of this 

to the retrotransposon is unknown, as recent work has suggested that elements without 

an env proliferate to a greater extent (Magiorkinis et al. 2012).  

The Retroviridae (hereafter simply referred to as ‘retroviruses’) originated from within 

the Metaviridae (Gypsy/Ty3). There is conflicting evidence from the different coding 

regions (confounded by possible convergence and horizontal gene transfer; HGT) as to 

whether retroviruses are monophyletic or whether the three subclasses (class I, II and 

III; Figure 1.4) arose independently (Llorens et al. 2008; Benachenhou et al. 2013). The 

defining feature of all elements in this group is the presence of an env gene. This enables 

retroviruses to replicate in a host cell, exit the cell, and then fuse with a target cell and 

integrate into its genome, propagating horizontally. This has led to examples of cross-

species niche expansion, such as the ongoing Koala retrovirus (KoRV) infection which 
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originated from a gibbon gammaretrovirus (Tarlinton et al. 2006), or the mammalian 

gammaretrovirus REV (reticuloendotheliosis virus) which now infects chickens and 

turkeys (Payne 1998).  

Importantly, as retroviruses still integrate into the host genome, if integration occurs 

within the germline the retrovirus sequence will become part of the inherited genome, 

and have an intracellular lifecycle functionally indistinguishable from other LTR 

retrotransposons (Magiorkinis et al. 2012). These endogenous retroviruses (ERVs) are 

very common across vertebrates, although this ‘fossil record’ of retroviral integrations is 

very uneven. Endogenous lentiviruses were first identified in 2007 in the European 

rabbit (Oryctolagus cuniculus) and have since been identified in two lemur species 

(Katzourakis et al. 2007; Gilbert et al. 2009), and an endogenous deltaretrovirus was 

discovered for the first time earlier this year in the Natal long fingered bat (Miniopterus 

natalensis) (Farkašová et al. 2017). Limited identification of some groups is due to a 

combination of retrovirus propensity for infecting germline cells, the likelihood of recent 

infection (enabling identification), and the analysis of appropriate genomes. A limited 

number of different endogenous alpharetroviruses have been described as they are 

limited to avian genomes having evolved from avian betaretroviruses (Bolisetty et al. 

2012). In addition, endogenization events are rare, with most ERV genomic copy 

number variants (CNVs) due to intracellular retrotransposition following the initial 

integration event (Bock & Stoye 2000; Katzourakis et al. 2005). Consequently, if novel 

ERVs are either degraded on arrival, or before retrotransposition occurs, they are 

unlikely to be well represented in a genome. 

As most LTR retrotransposons are solely intracellular elements, ERVs pose unique 

challenges for host cells. Novel infections without vertical inheritance enable exogenous 

retroviruses to evolve at rates up to six orders of magnitude faster than in vertebrate 

genomes, as well as horizontally introduce novel accessory genes (including detrimental 

oncogenes or beneficial additions) from other vertebrate hosts and their parasites, or 

other viruses. Persistent infection also means that there are young, structurally intact 

genomic integrations, in locations potentially detrimental to the host, as there has been 

insufficient time for removal by selection, epigenetic silencing or natural decay (Doolittle 

& Feng 1989; Stoye 2001; Reiss & Mager 2007; Rigal & Mathieu 2011; Kanda et al. 

2013).  
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In many cases, vertebrate ERVs do not correspond to current exogenous retroviral 

infections, but rather represent a record of historical infections and provide an answer 

to how viruses which evolve so quickly could have been around for so many millions of 

years (Doolittle & Feng 1989). Some ERVs re-emerge from the genome, likely through 

recombination with unrelated viruses, to pose novel exogenous threats, such as Avian 

Leukosis Virus subgroup J in chickens (Doolittle & Feng 1989; Venugopal 1999; 

Katzourakis et al. 2005; Kanda et al. 2013).  

 

1.1.3 Genomic and physiological impacts of LTR retrotransposons 

The co-option and maintenance of LTR retrotransposon-derived elements is rare, 

particularly over large evolutionary timescales. Highly deleterious integrations will either 

be removed from a population, or be rapidly targeted for epigenetic silencing and will 

eventually degrade. Any maintained insertion must either be selectively advantageous 

and its further replication controlled, or in a genomic location where maintenance is 

possible, such as in poorly recombining regions or regions in linkage with genes under 

selection (Gogvadze & Buzdin 2009; Stoye 2012; Magiorkinis et al. 2013). Novel LTR 

retrotransposon integrations can elicit a wide range of impacts, some of which are 

relevant for disease or productivity traits. Depending on the host species, the LTR 

retrotransposons which have most recurrent impact will differ due to lineage specificity 

and individual element intactness.  

 

Impact on genome stability and host gene functionality 

LTR retrotransposons can comprise large proportions of the genome, and in some 

species (such as plethodontid salamanders) individual elements exist in over a million 

copies (Chaparro et al. 2007; Sun et al. 2012). This can elicit metabolic stress on the 

host due to the large quantity of DNA which needs to be copied at each cell division, 

and physiological stress as cell size needs to increase to cope with a bloated nucleus 

(Roth et al. 1997; Cavalier-Smith 2005). Rates of retrotransposition and deletion are 

generally balanced, but periods of elevated or reduced activity can lead to lineage-specific 

element complements, and can affect the overall genome size (Promislow et al. 1999). 



14 

In general, LTR retrotransposons (and other transposable elements) follow the Pareto 

principle, where 20 % of elements account for 80 % of the total abundance (Magiorkinis 

et al. 2012). Consequently, there are many sites which could facilitate inter- and intra-

chromosomal recombination, leading to chromosome fission and fusion events, and 

sequence deletion. Such events are likely to be highly deleterious for the host, so 

observed recombination between LTR retrotransposon loci is rare (Hughes & Coffin 

2001). However, elevated transposable element activity in cancer genomes has been 

identified as a cause of genomic instability (Romanish et al. 2010). Recombination events 

can also facilitate sequence duplication (including entire gene blocks) (Cusack & Wolfe 

2007; Langille & Clark 2007; Dorus et al. 2008; Han et al. 2009), and the action of LTR 

retrotransposon reverse transcriptase and integrase on host gene mRNA can cause the 

formation of retrogenes, which present opportunities for rapid host evolution 

(Bromham 2002; Kaessmann et al. 2009; Mattick et al. 2010).   

LTRs themselves have been well documented as providing alternative, or tissue-specific 

promoters to host genes (Meisler & Ting 1993; Dunn et al. 2005; Dunn et al. 2006; 

Romanish et al. 2007; Cohen et al. 2009; Jacques et al. 2013; Z. Wang et al. 2013; Wragg 

et al. 2013). Interestingly, the influence of these mobile promoters can be felt from large 

up- and down-stream distances, making the bioinformatic prediction of LTR impacts on 

gene expression difficult (Li et al. 2012). Integrations within gene introns are much more 

common than those near (within 10 kb) upstream promoters and the transcription start 

site, and are known to disrupt splice sites which can cause or limit alternative transcripts, 

sometimes in a tissue-specific manner (Chang et al. 2006; Mattick et al. 2010; Isbel & 

Whitelaw 2012; Stoye 2012). Whilst the likely effects of such integrations can be 

predicted bioinformatically, the extent and range of the effects are yet to be fully studied 

due to the difficulty in assessing alternative splicing from short read next generation 

sequencing (NGS) data (Martin & Wang 2011; Ozsolak & Milos 2011).  

 

The diverse roles of retroviral proteins 

In some rare cases, LTR retrotransposon insertions have been co-opted by the genome 

and are now host genes with a range of cellular functions (Lynch & Tristem 2003; 

Youngson et al. 2005; Ono et al. 2006; Volff 2006; Sekita et al. 2008; Carré-Eusèbe et 
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al. 2009; Marco & Marín 2009; Volff 2009). The best studied of these are the 

mammalian syncytin genes, which are derived from an ERV envelope gene. Syncytins 

are crucial for the formation and maintenance of the placenta during pregnancy, as the 

envelope protein is expressed on the surface of cells enabling cell-cell interaction and 

fusion, potentially with a secondary immunosuppressive role which prevents foetal 

rejection (Mi et al. 2000; Gong et al. 2005; Dupressoir et al. 2009). Interestingly, syncytin 

genes arose independently in multiple mammalian lineages from distinct, but related, 

ERVs (Heidmann et al. 2009; Chuong et al. 2013; Lavialle et al. 2013).  

For an LTR retrotransposon insertion to be truly co-opted, its replication needs to have 

been controlled and its detrimental effects reduced or eradicated (Stoye 2012). The 

continued expression of evolutionarily recent ERV insertions in vertebrate genomes has 

been shown to elicit a prolonged immunological burden on the host, mainly due to the 

production of replication competent virus which induces persistent viremia (Aswad & 

Katzourakis 2012). However, expression of endogenous retroviral proteins has also 

been shown to confer resistance to exogenous retroviruses (part of the wider endogenous 

viral element derived immunity), particularly if they are closely related. Consequently, 

such elements provide a selective advantage during recurrent retroviral infections, but 

are strongly selected against once that retrovirus is no longer a threat (Katzourakis & 

Gifford 2010; Aswad & Katzourakis 2012; Patel et al. 2012; Hurst & Magiorkinis 2014).  

ERVs can mediate exogenous retroviral infection in two main ways. Firstly, production 

of envelope protein can inhibit exogenous retrovirus infection through receptor 

interference. The endogenous envelope acts as a competitive inhibitor by physically 

blocking the cellular receptors hijacked by infecting viruses. Examples include the 

mammalian gammaretroviral Fv4 and Rcmf, and chicken alpharetroviral ERVs such as 

ALVE6 (Robinson et al. 1981; Smith et al. 1991; Varela et al. 2009; Ito et al. 2013; 

Kozak 2014). In some cases the cellular receptors have become mutated to block viral 

entry, but this can elicit a broad range of negative phenotypic effects on the host 

(Lepperdinger et al. 2001; Jadin et al. 2008). Secondly, whilst production of gag proteins 

is generally detrimental to the host (Astrin & Robinson 1979; Robinson et al. 1981), 

these proteins can also have an inhibitory effect on retroviral uncoating and reassembly, 

as well as halting nuclear transport and targeting viral RNA for degradation by forming 

double stranded hybrid sequences (Aswad & Katzourakis 2012). In hosts with multiple, 
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related ERVs which exhibit different levels of intactness, the cumulative effect of these 

elements on retroviral defence is complex and often finely balanced. In addition, whilst 

some expressed ERVs can protect host cells, the presence of ERV transcripts increases 

the likelihood of forming recombinant viruses (Venugopal 1999; Liu et al. 2011; Henzy 

et al. 2014).  

 

1.2 The study of LTR retrotransposons in the chicken 

Exogenous and endogenous retroviruses have been intensively studied in the chicken, 

particularly Avian Leukosis Viruses (ALVs; also known as Avian Sarcoma Leukosis 

Viruses, ASLVs) due to their diverse effects, including the modulation of retroviral 

infection dynamics, depression of commercial performance traits, and formation of 

tumours (Gavora et al. 1991; Ka et al. 2009; Payne & Nair 2012). However, the wider 

LTR retrotransposon content of the genome has yet to be completely described.  

A comprehensive evaluation is required as the chicken is of great agricultural and 

economic importance, as well as being an important developmental, experimental and 

disease model. The Food and Agriculture Organisation (FAO) reports that over fifty 

billion broiler chickens are raised annually, producing over one hundred million tonnes 

of meat (2015 data). In addition, at least six billion layer chickens produce over one 

trillion eggs every year. Since 2000 consumption of chicken meat has increased by 35 

%. However, this hides the increasing demand of developing countries, which by 2030 

will consume more than double the quantity in 2000. Greater understanding of LTR 

retrotransposons, as genomic elements which limit productivity and detrimentally affect 

animal welfare, is therefore of vital importance to global food security. 

 

Chicken domestication 

Domestication of the red junglefowl (RJF; Gallus gallus) began six to eight thousand 

years ago, with multiple origins, back crosses and at least one hybridisation event with 

the grey junglefowl (G. sonneratii) (Rubin et al. 2010). Following this complex 

domestication process, the domestic chicken (G. gallus domesticus) and RJF have 
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retained high genetic identity and remain classified as the same species. Furthermore, it 

was an RJF individual which was sequenced for the chicken reference genome, in an 

attempt to avoid any genetic changes from the domestication process (Hillier et al. 2004). 

This was the first bird and first agricultural animal to be sequenced, and its phylogenetic 

location within the Galloanserae has enabled it to be particularly informative in the study 

of other commercially relevant bird species (Figure 1.6). However, the RJF individual 

sequenced was from an American zoo in Hawaii (originally from Malaysian stock), 

where there had potentially been crosses with domesticated chickens. Whilst Hillier and 

colleagues (2004) acknowledged this risk, the chosen bird was phenotypically and 

physiologically a typical RJF, including the seasonal laying of small, brown eggs. 

However, recent work has revealed significant genetic introgression in this individual 

from the domesticated White Leghorn (WL) breed (Ulfah et al. 2016), which likely 

means the reference genome does not truly represent the chicken’s wild ancestor. 

 

Intensive commercialisation 

Traditionally, a diverse variety of chicken pure breeds and hybrids were kept in small 

flocks for their meat and eggs, with some breeds developed for cock-fighting or 

exhibition. Following the Second World War, large scale commercialisation focused on 

breeding specialised broiler (meat) and layer (egg) lines to overcome the observed 

genetic conflicts between production (growth rate) and reproduction (egg production) 

(Muir et al. 2008).  

Despite the hundreds of well-characterised chicken breeds (Ekarius 2007; Roberts 

2009), commercial stock has been derived from just a handful. Commercial layer lines 

are divided by egg colour. White egg layers (WELs) were largely derived from WLs, 

and brown egg layers (BELs) were developed from North American and European dual 

purpose breeds such as Plymouth Rock, Rhode Island Red and New Hampshire. For 

broilers, distinct lines were created for the sire (paternal) and dam (maternal) birds, again 

to avoid the genetic conflict between production and reproduction. The broiler dam line 

has an origin similar to the BELs, but the sire line was derived almost completely from 

the Cornish breed (British Cornish Indian Game breed) due to its compact body size 

and high proportion of breast muscle (Muir et al. 2008). 
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Figure 1.6 Galloanserae cladogram showing commercially relevant species and 

their general relationship to the chicken, including those within the Phasianidae 

pheasant family. The two Galloanserae orders are the land (Galliformes) and water 

(Anseriformes) fowl. The common names for the represented Galloanserae 

species are, from the top: common pheasant, golden pheasant, grey partridge, 

turkey, red junglefowl (incl. domestic chicken), green junglefowl, Sri Lankan 

junglefowl, grey junglefowl, Japanese quail (Old World quail), Northern bobwhite 

(New World quail), Guinea fowl, duck, greylag goose, and swan goose (also known 

as the Chinese goose). The broad branch leading to the Neoaves represents this 

group’s large phylogenetic diversity. Cladogram adapted from Kan et al. (2010) 

and Meiklejohn et al. (2014). 

These commercial programmes have proven particularly effective in broilers, increasing 

growth rate while decreasing food conversion rates, so that meat can be produced today 

for a lower price (in real terms) than it was in the 1950s (Havenstein et al. 2003). 

Havenstein and colleagues identified that 85 – 90 % of this improvement was due to 

selectively bred genetic modifications, with improvements in husbandry accounting for 

the remainder. Similarly, selective breeding in layers has augmented lifetime egg 

production, continues to increase total egg counts, and has reduced required feed intake 



19 

by 30 %, all whilst breeding for commercially desirable uniformity in egg size, shape and 

colour (McKay 2009). 

Such intensive phenotypic manipulation has had genomic impacts, with decreased 

productivity-gene allelic diversity following hard selective sweeps (Rubin et al. 2010), and 

variation in DNA methylation patterning across coding and regulatory regions. Studies 

of the latter (Nätt et al. 2012; Hu et al. 2013) suggest that rapid responses to breeding 

programmes may be plastic epigenetic effects rather than ‘permanent’ nucleotide 

changes, a notion supported by the paucity of coding region deletions in intra-line 

comparisons, and the maintenance of high nucleotide diversity (Rubin et al. 2010).  

These findings were welcome news to breeders, as continued commercial improvement 

requires genetic diversity, and traditional selective breeding methods often result in high 

inbreeding coefficients within lines (Bacon et al. 2000; Charlesworth 2009). In chickens, 

these effects are due to the limited numbers of breeds used in the initial development 

of commercial lines, use of within-line selection (where a limited number of individuals 

derive a large proportion of the next generation) and the knock-on effect of intense 

market competition, where commercial stock has been reduced to a limited number of 

lines in a few multinational companies (Muir et al. 2008). Maintenance of high 

nucleotide diversity is likely testament to the recent, complex domestication and the 

large ancestral effective population size (Ellegren 2005).  

 

1.2.1 Chicken genome structure and sequence 

Compared to mammalian genomes, the 1.2 gigabase-pair (Gbp) chicken genome is 

small but compact: approximately one third the length of the human genome but with a 

similar number of annotated protein-coding genes (Hillier et al. 2004). Chicken genomic 

DNA is arranged over thirty-eight autosomes and a pair of sex chromosomes, giving a 

diploid number of seventy-eight. The autosomes exhibit length variation across two 

orders of magnitude, with chromosomes 1 to 10 classified as macrochromosomes 

(although the literature sometimes refers to chromosomes 6 to 10 as ‘intermediate’ 

chromosomes), and 11 to 38 as microchromosomes. Microchromosomes exhibit higher 

GC content, a higher density of genes and CpG islands, elevated rates of synonymous 
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substitutions (Ks), lower repetitive DNA content, and reduced intronic and intergenic 

distances compared with the macrochromosomes (Ellegren 2005). Additionally, 

microchromosomes exhibit elevated recombination rates due to the obligate meiotic 

chromosomal crossovers which occur between all homologous chromosome pairs 

irrespective of their short lengths. This has the effect of elongating the chicken linkage 

map to 4,000 centimorgans (cM), 300 cM longer than the human linkage map, despite 

the three-fold difference in genome length (Dawson et al. 2007). Across the genome, 

the neutral nucleotide substitution rates are very similar between chicken (and birds 

more widely) and mammals (Helm-Bychowski & Wilson 1986; Hedges et al. 1996).  

The avian sex chromosomes (W and Z) began to develop from an autosomal pair 

approximately 150 million years ago (MYA), and have an origin independent from the 

sex chromosomes of the mammalian or other reptilian lineages (Fridolfsson et al. 1998; 

Matsubara et al. 2006; Nam & Ellegren 2008). Unlike mammals, in birds the female is 

the heterogametic sex (WZ) and the male is homogametic (ZZ). The Z chromosome 

evolves faster than the W (ratio estimates vary between 1.7 to 6.5 times faster), exhibiting 

the “Faster-Z effect”, which has been documented across a wide range of species (Meisel 

& Connallon 2013). In chickens, this effect is not due to a gender-specific mutation bias, 

but rather the ineffectiveness of selection on the Z chromosome, enabling mildly 

deleterious mutations to become fixed through genetic drift (Axelsson et al. 2004; 

Bergero & Charlesworth 2009; Wright et al. 2015).  

 

Chicken genomic resources 

The chicken reference genome has undergone several revisions since the publication of 

the first draft in 2004. At the beginning of this project version 4.0 (Gallus_gallus4.0; 

Galgal4) was majorly revised to correct errors on the Z chromosome, but still lacked 

chromosome-level assemblies for nine microchromosomes (29-31, 33-38) and the 

assemblies for chromosomes 16, 25, 32 and W were far shorter than their known 

lengths. The total assembly length was 1.05 Gbp, suggesting that at least 200 Mb of the 

genome was yet unsequenced (Gregory 2017).  However, the chicken genome is 

constantly being improved and during this project the new Galgal5 assembly was 

produced (Warren et al. 2017), and the release of Galgal6 is predicted for next year.  
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Such active development is both a blessing and a hindrance for the researcher. The 

genome sequence is constantly improving and better reflecting true chicken biology, but 

the release of three assemblies in seven years means that annotated genomic coordinates 

and gene feature models are constantly changing. In addition, the knowledge that a new 

assembly is just around the corner has made genome database organisations, such as 

NCBI or Ensembl, loath to rerun their annotation pipelines. Despite this, the chicken 

genome annotation is one of the best outside mouse and human, due to considerable 

research effort and the availability of NGS data across a wide range of tissues and 

developmental stages. Improvements to both genome and annotation quality during the 

course of this project have been facilitated by the development of long read sequencing 

technologies and high resolution optic mapping (Kuo et al. 2017; Warren et al. 2017). 

In addition, study of chicken breed variation has been aided by the development of a 

high density 600K SNP chip (Kranis et al. 2013). 

 

Genome stability 

The 2n = 78 chicken karyotype is very representative of the entire avian lineage, where 

the karyotype is largely confined to a 2n = 76 to 80 range, with variation due to 

microchromosome fusion events. Similar genome organisation is also found in the 

distantly related Lepidosauromorpha reptilian lineage, suggesting that the avian 

karyotype highly resembles that of the amniote ancestor 310 MYA (reviewed by Ellegren 

2010). Such chromosomal stability is mediated, at least in part, by the hexanucleotide 

tandem repeats near the telomeres, which are ten times more abundant in the chicken 

compared with mammals, and are present on all chromosomes in active configurations 

(Delany et al. 2003). Recombination rates are also elevated near the telomeres relative 

to the chromosomal average, potentially generating the high frequency of tandem 

repeats responsible for protecting the chromosome ends. Similar findings were later 

identified in the zebra finch (Taeniopygia guttata, 2n = 80) to a greater extent, supporting 

the role of telomeric DNA in avian chromosomal stability (Backström et al. 2010).  

Chicken genome stability goes beyond the highly conserved karyotype, as avian genomes 

exhibit extended syntenic blocks, even between phylogenetically distant species 

(Ellegren 2010). Synteny is generally maintained by the lower rates of recombination 
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observed away from the telomeres, with internal macrochromosome regions exhibiting 

rates as low as 0.1 cM/Mb compared to greater than 2.5 cM/Mb near the telomeres 

(Delany et al. 2003). Elferink and colleagues (2010) further categorised the heterogeneity 

of recombination rates, identifying regions effectively devoid of recombination, even on 

the generally highly recombining microchromosomes. Concordantly, observed 

intrachromosomal rearrangements are also rare, occurring ten times less frequently than 

in mammals (Feuk et al. 2006; Pontius et al. 2007). Furthermore, repetitive elements 

are known to facilitate chromosomal rearrangements in many species by non-

homologous recombination (Feuk et al. 2006; Aguilera & Gómez-González 2008; 

Carbone et al. 2009), but such effects are limited in the chicken and other galliform birds 

due to the paucity of annotated repetitive elements in the genome (Griffin et al. 2008).  

 

Genomic repeat content 

Annotation of the original chicken genome draft sequence identified a significantly lower 

proportion of the genome as interspersed repeats (approximately 10 %) compared with 

mammalian genomes (typically 40 – 50 %) (Hillier et al. 2004). This was later shown to 

be a more widespread avian phenomenon with similar levels identified in the genomes 

of other fowl such as the duck (Anas platyrhynchos) and turkey (Meleagris gallopavo), 

as well as in the higher order passerines such as the budgerigar (Melopsittacus 

undulatus), collared flycatcher (Ficedula albicollis) and zebra finch (Dalloul et al. 2010; 

Warren et al. 2010; Huang et al. 2013; Kawakami et al. 2014; Ganapathy et al. 2014). 

Additionally, the most abundant chicken repetitive element, Chicken Repeat 1 (CR1; a 

LINE family element), is present in approximately two hundred thousand copies, 

significantly fewer than the over one million L1 copies in mammalian genomes, even 

when scaled for the three-fold difference in genome size (Ellegren 2005). These initial 

draft genomes also began to show that whilst overall repeat content was similar between 

birds, the represented repeat families and their relative proportions were highly lineage 

specific. It was not until after the start of this project, with the release of further genomes, 

that this could be studied more completely, including through the analysis presented 

here in Chapter 4. Subsequent work on avian genomic repeat content has been reviewed 

in the introduction to that chapter (page 5). 
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This observed deficit of repetitive elements in avian genomes compared with mammals 

is at least partially responsible for their observed compactness. Such a deficit could be 

due to limited numbers of new retrotransposition events, and the commonly observed 

truncation of the 5’ CR1 promoter region in avian genomes could have limited 

expansion of this group (Ellegren 2005). However, as avian genomes are generally very 

similar in size despite highly lineage-specific repeat content composition, it is likely that 

birds are particularly efficient at controlling and removing transposable elements.  

There is a great deal of literature supporting the physiological costs of large genomes, 

including reduced organism-level size, slower cell division, reduced metabolic rates, and 

even issues with circulation and neurological capacity (Hanken & Wake 1993; Roth et 

al. 1997; Nuzhdin 1999; Cavalier-Smith 2005; Gregory 2005; Sun et al. 2012). For birds, 

flight requires a high metabolic rate, and a number of studies have linked this to the 

observed compact genome sizes (Hughes & Hughes 1995; Gregory et al. 2009; Wright 

et al. 2014). Similarly, compact genomes are also seen in bats compared with other 

mammalian groups, again due to the reduction of transposable element content (Van 

Den Bussche et al. 1995). A greater understanding of avian transposable element 

content is therefore necessary to understand not only the effects of individual elements 

on the host, but also what the content reveals about avian genome evolution. 

 

1.2.2 Chicken LTR retrotransposon content 

Until the release of the reference genome very little was known about the wider LTR 

retrotransposon content of the chicken. Most research had focused on individual ERVs 

which were known to have phenotypic and commercial relevance, particularly the 

alpharetroviral Avian Leukosis Virus subgroup E (ALVE) and Endogenous Avian Virus 

(EAV) insertions (Sacco & Venugopal 2001; Borisenko 2003; Payne & Nair 2012). 

These elements are relatively recent insertions and are therefore more likely to be 

structurally intact and able to elicit a modulatory phenotypic effect (introduced fully 

below). However, they are also at relatively low copy numbers, and therefore make up 

only a small fraction of the total LTR retrotransposon content. 
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In the 2004 first draft release of the chicken reference genome, Hillier and colleagues 

identified approximately 30,000 distinct LTR retrotransposon-derived elements, 

accounting for 1.3 % of the assembled genome. All identified sites were from ERVs, 

with no gypsy, copia or bel/pao homologues detected. Only one of the two known 

ALVEs in the reference genome bird were assembled and detectable, and it was only 

recently that the second ALVE was detected in one of the unassembled contigs localised 

to the very 5’ end of chromosome 1 (Benkel & Rutherford 2014). ERVs were identified 

from each of the three retroviral clades, and many of the GGERVK10 (class II; 

betaretrovirus) and GGERVL (class III; spumavirus) family elements were found to be 

less than 3 % divergent, and therefore predicted to still be active within the genome. 

Gammaretroviral (class I) sequences identified in the chicken genome were heavily 

degraded. These elements are most closely related to exogenous Murine Leukosis Virus 

and the human endogenous retrovirus group HERV-I, and are likely the remnants of 

ancestral insertions common to all amniotes (Martin et al. 1997; Martin et al. 1999; 

Borysenko et al. 2008). Interestingly, no ERVs from current gammaretroviruses, such 

as chicken syncytial virus (CSV) or REV in turkeys, are detectable in bird genomes 

(Borysenko et al. 2008).  

The following year, Wicker and colleagues (2005) performed Cot-based cloning and 

sequencing (CBCS) to identify repeats present at large copy numbers. This enabled 

better definition of some of the observed LTR retrotransposon element families, before 

the first full-genome bioinformatic analysis of the chicken in 2008 (Huda et al. 2008). 

Wicker identified four high copy number groups of LTR retrotransposons: Birddawg 

(7,404), Kronos (4,961), Hitchcock (3,324) and Soprano (1,362). Most identified 

elements were short, solo LTRs, but internal sequences were identified in Birddawg 

(894; 12.1 %), Kronos (1,517; 30.6 %) and Soprano (75; 5.5 %) elements, enabling family 

classification. All three were initially classified as previously unseen gypsy elements, but 

were later reclassified as endogenous spumaviruses (GGERVL-related, class III) when 

clustered with a larger number of reference LTR retrotransposon sequences (Bolisetty 

et al. 2012). The Hitchcock elements could be defined as solo LTRs due to the presence 

of TSDs at the termini and the absence of SINE-like features.  

The development of a range of bioinformatic tools for the identification of LTR 

retrotransposons based on their canonical structure, rather than purely sequence 
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homology, facilitated the next stage of annotation of these elements in the chicken 

genome (all methods for detecting LTR retrotransposons have been reviewed in the 

introduction to chapter 3, page 5). Huda and colleagues (2008) used one structure-based 

method and identified fourteen distinct groups of chicken LTR retrotransposons, 

resolving across the three retroviral clades, based on the detection of eighty-nine full 

length sequences. Eleven of these groups were novel but generally filled gaps in the 

retroviral phylogeny, largely reflecting the detection of structurally intact (at least, LTR-

RT-LTR) elements for the first time.  

The most recent analysis, by Bolisetty and colleagues (2012), made use of multiple 

methodologies and performed an extensive analysis of LTR retrotransposon 

distribution and expression. The authors’ approach enabled identification of 492 intact 

elements and approximately 30,000 solo LTR-like elements (proportionately over 60 % 

more solo LTRs than are found in mammals). This represented a large increase in total 

annotated sequence, but the increased length of the genome assembly (Galgal3) caused 

the proportion to remain at approximately 1.3 %. Intact elements were found to be 

significantly depleted within or nearby (< 10 kb) coding regions, and 40 % were found 

in clusters where the elements were unrelated by genera or insertion age. Together, these 

data support selection against deleterious LTR retrotransposon insertions, but the 

authors also concluded that the clusters may be functional, either by promoting 

recombination or acting as binding sites for cytoskeletal elements during cell division.  

Bolisetty and colleagues also performed parallel annotations of the turkey and zebra 

finch genomes. Whilst the turkey was superficially like chicken (although with lower 

annotated content presumably due, in part, to its poorer genome assembly; scaffold N50 

of 0.86 Mb compared to 11.06 Mb in chicken), the zebra finch had almost three times 

the LTR retrotransposon-derived sequence content, with 1,221 intact elements and 

approximately 78,000 solo LTR-like elements. As mentioned above, the overall zebra 

finch repeat content is very comparable to chicken, so this likely reflects lineage-specific 

LTR retrotransposon expansion. It is possible that such results were not biologically 

representative, as the authors’ approach used a methodology potentially more biased 

towards the gammaretroviral sequences that are more common in the zebra finch, due 

to the program’s development based on primate retroviral sequences. However, if these 

differences are representative it is then a question as to which taxonomic level the lineage 
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specificity extends. Bolisetty and colleagues suggested that this represented a deficit of 

LTR retrotransposons in Galliformes relative to the entire Neoaves superorder. But as 

this conclusion was drawn from only three species, a much wider and more 

comprehensive analysis of avian genomes is required to quantify this proposed deficit.  

 

Summary of the current annotation of chicken LTR retrotransposon content 

ERVs have been detected from all three retroviral clades, with full length examples from 

spumaviruses, alpha-, beta- and gammaretroviruses, but deltaretrovirus and lentivirus 

ERVs (both clade II) are absent. No gypsy, copia or bel/pao elements have been 

detected, and DIRS elements have also not been identified in any avian or mammalian 

genome, despite their presence in other sauropsids (Piednoël et al. 2011).  

A total of 1.35 % (almost 15 Mbp) of the chicken genome (based on the Galgal3 

assembly) has been annotated as LTR retrotransposon-derived elements, including 

approximately 500 intact elements. As expected, this value was far less than the 10 % 

typically observed in mammalian genomes, but it was also three times less than observed 

in the zebra finch, leading to the hypothesis that there is a deficit of LTR 

retrotransposons in Galliformes compared to higher order Neoaves.  

Whilst endogenous alpharetroviruses make up only a small fraction of the total LTR 

retrotransposon content, these elements remain active and are commonly intact. In 

addition, ALV is the only known chicken retrovirus with both exogenous and 

endogenous current activity (Borysenko et al. 2008; Payne & Nair 2012).   

 

1.2.3 The endogenous alpharetroviruses of the chicken genome 

ALVE loci 

Like other alpha- and betaretroviruses, ALV insertion is effectively random across the 

genome. However, the presence of a nuclear localisation signal (NLS) in the ALV 

integrase means that, like lentiviruses, ALV does not require the breakdown of the 

nuclear membrane to access genomic DNA. This likely explains the weak observable 

insertion site ‘preference’ of ALV for open chromatin, generally within or near regions 
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of the genome expressed by RNA polymerase II, such as protein coding genes 

(Narezkina et al. 2004; Justice & Beemon 2013). The impact of these insertions is 

modulated by host genetic susceptibility and the location of the insertion. Most ALVs 

are slowly transforming, producing lymphoid tumours over weeks or months via 

insertional mutagenesis, but the acquisition of accessory genes (such as v-src in Rous 

Sarcoma Virus; RSV) enables acute transformation and rapid tumour development 

(Payne 1998).  

Purely exogenous ALVs (subgroups A-D and J) induce leukoid tumours across the 

Galliformes. Endogenous ALVs can also infect horizontally within a population, but 

have a species-specific range. Subgroup E (the ALVEs) are found in RJF and the 

domestic chicken but no other Gallus species, subgroups F and G are in pheasant, H in 

partridge and I in quail (Frisby et al. 1979; Venugopal 1999). ALV subgroups are defined 

by the virion surface protein constituent gp85 (encoded by the envelope gene), as this 

defines the specific TV (tumour virus) cell entry receptor. ALV-A enters by the TVA 

receptor, ALV-C by the TVC receptor, and subgroups B, D and E via the TVB receptor. 

Two TVB alleles have been identified which convey resistance to ALVE cell entry 

(TVB*S3, TVB*R), but these are both recessive to, and far less common than, the 

wildtype TVB*S1 which is susceptible to all three subgroups (Hunt et al. 2008; Yu et al. 

2008; Justice & Beemon 2013). There are no documented cases of ALVEs containing 

accessory oncogenes, and they are expressed at a level two to three orders of magnitude 

lower than exogenous ALV due to deletion of enhancers in the ALVE LTR U3 domain 

(Coffin et al. 1983; Norton & Coffin 1987; Conklin 1991). ALVE LTRs typically only 

have a single enhancer, rather than the tandem enhancer cassette present in exogenous 

ALV (Ruddell 1995). Consequently, ALVEs rarely induce tumour formation, but the 

presence of these loci in the host genome can modulate the infection dynamics of 

exogenous ALV (Benson et al. 1998; Payne 1998; Yu et al. 2008; Payne & Nair 2012; 

Kanda et al. 2013).  

ALVE insertions are recent and recurrent, as there is significant element variation 

between chicken populations (with approximately fifty ALVE loci identified to date), 

low element copy number, and generally high structural integrity. In fact, nearly half of 

the twenty-three ALVEs identified across various WL lines can produce replication 

competent virions (Benkel 1998; Borisenko 2003). The presence of replication 
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competent ALVEs, and ALVEs expressing the gag gene, has been associated with 

reductions in body weight, egg production, size and shell thickness, and increased 

retroviral shedding, which facilitates horizontal infection within a flock (Crittenden et al. 

1984; Kuhnlein et al. 1989; Gavora et al. 1991; Ka et al. 2009). Conversely, expression 

of the ALVE envelope can mediate the effects of both exogenous and endogenous ALV 

through receptor interference, as the endogenous env glycoproteins physically block the 

TV receptors (Smith et al. 1990a; Smith et al. 1990b; Smith et al. 1991). As the number 

of ALVEs increases, the interplay of these effects becomes more complicated and less 

predictable, particularly when lines are interbred. The associated effects of ALVEs, and 

the methods for their detection, have been more extensively reviewed in the introduction 

to chapter 6 (page 5). 

Given these detrimental productivity and complex immunological effects, it has become 

common practice to attempt to eradicate ALVEs from commercial lines. ALVEs are 

non-essential genetic components of the chicken genome, and ‘ALVE-free’ lines have 

been developed (Zhang et al. 2008). However, the commercial community has been 

unable to completely remove ALVEs from breeding stock, with WELs typically 

containing one to three ALVEs, BELs containing four to eight, and broilers containing 

six to ten (Benkel 1998). This has been a combination of the inability to detect all ALVE 

insertions, the association between some ALVEs and desirable traits (such as ALVE21 

and slow feathering (Bacon et al. 1988; Tixier-Boichard et al. 1994; Tixier-Boichard & 

Boulliou-Robic 1997; Elferink et al. 2008; Bu et al. 2013), and ALVE-TYR and white 

plumage (Chang et al. 2006)), and the need to balance existing selective breeding 

programmes. A new methodology for detecting ALVE insertions and assessing the 

diversity between commercial lines is needed to better direct the elimination of these 

elements from the chicken genome. 

 

EAVs 

EAVs are a much older group of endogenous alpharetroviruses than ALVEs and exhibit 

a wider distribution among the Galliformes, with element divergence matching host co-

speciation patterns. Despite a more ancient origin, in many species EAVs remain 

transcriptionally active and horizontal transmission is common in sympatric species 
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(Dimcheff & Drovetski 2000; Dimcheff et al. 2001). In the RJF and domestic chicken 

EAV sequences are generally inactive, even compared to other Gallus species (Sacco et 

al. 2001), but some elements have retained the ability to retrotranspose and express 

individual retroviral domains. 

EAVs are divided into three main groups due to their phylogenetic clustering: EAV-0, 

EAV-HP and EAV-E51 (including EAV-E33 sequences which fall within the EAV-E51 

cluster, but were originally identified from a different clone). EAV-0 sequences share 

the most recent common ancestor with ALVEs and are generally the most structurally 

intact, even retaining functional polymerase. EAV-E51 and EAV-HP elements all 

exhibit large deletions in their polymerase gene (rendering them non-autonomous) but 

retain intact gag and envelope domains in some instances (Boyce-Jacino et al. 1992; Bai 

et al. 1995; Sacco & Nair 2014). Despite this, group members retain high LTR identity, 

suggesting recent and recurrent retrotransposition, and there are independent, 

segregating EAV complements in various chicken lines (Dimcheff & Drovetski 2000; 

Sacco & Venugopal 2001; Wragg et al. 2015). Until recently, a fourth distinct EAV group 

was defined which shared 5’ homology with EAV-HP and 3’ homology with EAV-E51, 

but had a unique, yet truncated polymerase domain. These sequences, known as ART-

CH (avian retrotransposon in chicken), are now known to be recombinant sequences 

between an EAV-HP (5’ LTR and most of gag) and an EAV-E51 which had already had 

significant polymerase degradation (Sacco & Nair 2014).  

Despite their general degradation, EAVs still retrotranspose and insertional mutagenesis 

remains a possibility. Individual insertions have been shown to elicit phenotypic effects, 

particularly due to the alternative promoter activity generated by a high number of solo 

LTRs (Sacco & Venugopal 2001). For example, independent EAV-HP LTR insertions 

in the promoter region of the solute carrier SLCO1B3 (solute carrier organic anion 

transporter family member 1B3) were recently shown to upregulate gene expression 

causing the oocyan ‘blue-green’ egg shell phenotype in both Chinese (Z. Wang et al. 

2013) and South American (Wragg et al. 2013) chicken breeds.  

The movement of non-autonomous EAVs is facilitated by the presence of replication-

competent retroviruses. This can either be other ERVs, such as intact ALVEs, or 

exogenous retroviruses during an infection. The emergent ALV-J is a result of the latter, 
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following recombination between an exogenous ALV-A and the intact envelope domain 

of an EAV-HP (Payne et al. 1991; Payne et al. 1992; Bai et al. 1995; Benson et al. 1998; 

Sacco & Flannery 2000). The altered ALV virion causes ALV-J to enter cells via the 

NHE1 receptor (originally named TVJ), changing the target cell from B cells to any 

myeloid cell, resulting in myelocytomas (rather than typical ALV-induced B cell 

lymphomas) in infected birds (Zhang et al. 2008; Payne & Nair 2012; Sacco & Nair 

2014). Whilst this target cell change created a new immunological challenge for infected 

birds, expressed EAV-HP envelope has been shown to induce tolerance by receptor 

interference (Sacco et al. 2004).  

The detrimental global impact of ALV-J has been well documented (Payne 1998; Fadly 

2000; Payne & Nair 2012), and whilst its spread has largely been controlled in Europe 

and North America, it is still a recurrent issue in Asia where secondary ALV-J/ALVE 

recombinants (Liu et al. 2011) and acutely transforming strains (Chesters et al. 2001) 

have been identified. The potential for novel recombinant retroviruses, even derived 

from sequences which have been in the genome for millions of years, highlights the need 

for a full characterisation of ERVs in the chicken, including documenting the observed 

diversity between populations.  

 

1.3 The scope of this PhD project 

This project has two broad aims. Firstly, an updated characterisation of LTR 

retrotransposon-derived elements in the chicken genome, and an assessment of how this 

content compares with that observed in other avian genomes. This will involve the 

critical assessment of existing LTR retrotransposon detection methodologies and the 

creation of a new bioinformatic annotation pipeline, LocaTR, to identify these elements 

(Chapter 3). The intactness, distribution and expression potential of the chicken LTR 

retrotransposons will be assessed to give an accurate snapshot of the abundance of these 

elements. The LocaTR pipeline will then be applied to seventy-three sauropsid 

genomes, including six reptilian outgroups, to identify LTR retrotransposons across the 

lineage, assess any lineage-specific expansions or contractions, and evaluate the impact 

of genome assembly quality on LTR retrotransposon detection (Chapter 4). 
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Secondly, a new bioinformatic pipeline will be described to identify ALVE insertions 

from next generation sequencing data, to characterise the diversity of these youngest 

chicken ERVs and assess their potential impact on host genome stability and physiology 

(Chapter 6). The pipeline will be tested and validated by analysing eight elite layer lines 

from Hy-Line International, developing diagnostic assays for each of the identified 

ALVEs, and sequencing each ALVE insert. The potential phenotypic effects will be 

assessed, and potential methods identified for mediating the detrimental impacts of 

these insertions (Chapter 6). The wider ALVE diversity in chicken populations will be 

assessed by applying the pipeline to multiple datasets from commercial stocks, 

indigenous breeds, and wild RJF (Chapter 7). 

Together, this will enable an updated annotation of transposable elements capable of 

insertional mutagenesis, recombination with exogenous retroviruses, and disruption of 

commercially relevant traits, with the aim of mitigating their detrimental effects on 

productivity and animal welfare. 
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Chapter 2:  Materials and Methods (i) 

This chapter outlines the methodology used for the next two chapters. These chapters 

concern the identification of all LTR retrotransposons within assembled avian genomes, 

beginning with the annotation of the chicken. This involves the development of a new 

identification pipeline to annotate these repetitive elements, and their full 

characterisation in terms of genomic distribution, age and intactness.  

In this thesis ‘element’ refers to a single LTR retrotransposon. There may be multiple 

‘copies’ of the same LTR retrotransposon in the genome (classified by LTR 

retrotransposon family or retroviral genera), but each integration is a separate ‘element’. 

 

2.1 Development of LocaTR – an integrated identification pipeline for 

LTR retrotransposons, using the Galgal4 chicken genome assembly 

2.1.1 Genomic resources 

The Galgal4 chicken genome assembly (GenBank: GCF_000002315.3) was used for 

development of the LocaTR identification pipeline and for the analysis of chicken LTR 

retrotransposon content.  

 

2.1.2 Construction of the LocaTR LTR retrotransposon identification pipeline 

LocaTR, a unified LTR retrotransposon identification pipeline, was created to connect 

the disparate LTR retrotransposon identification methodologies outlined below in 

section 2.1.3 into a clear, user friendly framework. The pipeline includes seventeen 

processing scripts directly run by the user, six accessory scripts containing standalone 

functions, a reference set of LTR retrotransposon sequences, nucleotide and protein 

domain profile Hidden Markov Models (pHMMs), and extensive documentation.   

Most scripts were written in Python, with four of the position formatting scripts written 

in BASH. All scripts were written specifically for this pipeline, are extensively 

commented, and have built in help messages and error catches. All code can be found 

on the CD accompanying this thesis (Appendix 1) as well as online in the GitHub 

LocaTR repository: https://github.com/andrewstephenmason/LocaTR.  
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2.1.3 In silico methods for the identification of LTR retrotransposons 

Three homology based identification programs and four structure-based identification 

programs were implemented as part of LocaTR to annotate LTR retrotransposons. 

Both branches of identification strategies have their strengths and weaknesses (outlined 

in section 3.1), and the individual programs also have their own biases. However, the 

combination of strategies and the use of multiple programs within each strategy was done 

to mitigate against those potential issues. Other structure-based approaches are available, 

but the four used here have a wide use in the literature and no complete identification 

redundancy between methods. 

 

Homology-based identification 

RepeatMasker v4.0.3 (Smit et al. 2013) analysis was performed on Galgal4 with default 

settings and also by specifying the ‘-species’ flag as ‘chicken’ and then as ‘vertebrates’. 

Under default settings, RepeatMasker uses the primate RepBase libraries (Jurka et al. 

2005), but the ‘-species’ flag directs RepeatMasker to annotated repeats in specific 

phylogenetic groups. In all cases the ‘-nolow’ flag was used to reduce computational 

effort by ignoring low complexity DNA and simple repeats during masking. In addition, 

the three non-default sensitivity settings of RepeatMasker were tested to compare total 

annotated repeat content against processing time. Following testing of settings, LTR 

retrotransposon-annotated regions were extracted using a custom BASH script.  

As well as using existing, generic RepBase libraries, a custom database of reference LTR 

retrotransposons was compiled from 717 single domain and full-length sequences 

(Appendix 2: AF01). These were sourced from the Gallus-specific RepBase libraries 

and sequences from the Gypsy Database (GyDB) of Mobile Genetic Elements (Llorens 

et al. 2011), selected for diverse LTR retrotransposon phylogenetic coverage, from avian 

host species where possible. These sequences were used as queries in local BLASTn 

and tBLASTx v2.2.28 (Altschul et al. 1990) searches of Galgal4, using an E-value 

threshold of 10
-10

, with rejection of hits shorter than 100 bp (Katzourakis & Gifford 

2010). These positions were combined with the locations identified by RepeatMasker, 

and annotated sites were merged if they overlapped or were fewer than 11 bp apart. 
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Each identified putative sequence was analysed again with RepeatMasker, specifying the 

‘-species vertebrates’ flag, and those locations with high homology to other repeat classes, 

such as Chicken Repeat 1 (CR1) LINE elements identified due to their reverse 

transcriptase domain, were removed. Putative LTR retrotransposon sites were further 

checked using a reciprocal tBLASTx search against the custom LTR retrotransposon 

database. This whole process was wrapped into Python scripts.  

Additionally, ReDoSt v1.1 (Piednoël et al. 2011) was used with default settings for the 

identification of the structurally divergent DIRS elements. Putative DIRS elements had 

to have an identifiable reverse transcriptase domain, and either a recognisable methyl 

transferase or tyrosine recombinase domain. DIRS element locations were extracted 

using a custom Python script, including 350 bp of up- and down-stream sequence to 

capture the inverted terminal repeats (ITRs).  

 

Structure-based identification 

LTR_STRUC (LS) v1.1 (McCarthy & McDonald 2003) was the oldest structure-based 

program used for this study. Whilst it has continued to be used in LTR retrotransposon 

identification studies, the program itself is a black box: the source code is unavailable, 

there is very limited documentation, and it only runs as a foreground Windows 

executable. In the first instance, the ten poorly defined sensitivity settings were compared 

by analysing the Galgal4 chromosomes 1 and Z against the default analysis. Following 

this, LS was run on the full Galgal4 assembly with sensitivity 1, per contig, to address 

inherent memory issues, and then separately on reverse complemented sequence, as LS 

does not consider the reverse strand during identification. Sequences were then used as 

BLASTn queries against Galgal4 to obtain the putative element positions. Sequence 

preparation, batch running of LS on Windows, and identification of element locations 

was all managed with Python scripts. 

LTR Harvest (LH) (Ellinghaus et al. 2008) was implemented as part of GenomeTools 

v1.5.1 (Gremme et al. 2013), compiled with HMMER v3.1b1 (Eddy 2009), with two 

custom parameter groupings in addition to the default settings (Table 2.1). Custom set 

1 followed less stringent requirements for LTR length and sequence identity (enabling 
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detection of older, more divergent sequences). Custom set 2 went beyond this to also 

allow for nested LTR retrotransposons, where a more recent LTR retrotransposon 

insertion occurred within an existing LTR retrotransposon. Custom settings were chosen 

based suggestions in the LH user manual, and the annotated features of previously 

identified chicken LTR retrotransposon sequences.  

Table 2.1 Default and chosen parameters for LTR Harvest optimisation. 

LTR Harvest Parameter Default Set 1 Set 2 

Min LTR length (bp) 100 80 80 

Max LTR length (bp) 1,000 2,000 2,000 

LTR homology cut-off (%) 85 75 75 

Max element length (bp) 15,000 15,000 25,000 

Report nested elements no best all 

 

Prior to running RetroTector (ReTe) v1.0.1 (Sperber et al. 2007), all contigs shorter 

than 30 kb were ‘padded’ at each end to aid the LTR retrotransposon identification 

algorithm, as suggested in the ReTe documentation. The padding was 15 kb of randomly 

generated sequence with equal base frequencies, and the sequence was checked prior to 

use with BLASTn and tBLASTx searches against the NCBI non-redundant database 

(Pruitt et al. 2002) to ensure it was devoid of gene or repeat identity. The primary 

‘SweepDNA’ protocol masked undesirable repeat classes by converting identified 

sequences to ambiguous bases (Ns). This protocol masked Alu and L1 elements by 

default, but four additional ‘brooms’ (specific repeat-masking programs) provided by the 

ReTe authors were used to mask CR1 elements. Repeat-masking limits the search space 

and reduces false positives. The secondary ‘SweepScripts’ protocol was run with default 

settings and putative hits were extracted using custom Python scripting, rather than the 

‘CollectGenome’ protocol which required management of multiple SQL databases.  

The default configuration file for MGEScan_LTR (MGS; referred to as LTR_Rho in 

original literature) v1.3.1 (Rho et al. 2007) was altered to increase the diversity of 

detected elements. The minimum distance between LTRs was reduced from 2 kb to 1 
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kb, the maximum length for the LTR retrotransposon was increased from 20 kb to 25 

kb, minimum LTR length was decreased to 80 bp, and maximum LTR length was 

increased from 1 kb to 2 kb. These changes were made to reflect the optimum 

parameters identified with the multiple tests of LH. MGS was run individually on each 

Galgal4 contig and the positions extracted with a custom BASH script. 

Following identification of putative elements by these four programs, additional support 

was required before they were defined as LTR retrotransposons. Each element was 

analysed by RepeatMasker to check for other repeat classes, particularly CR1. LTR 

retrotransposon nucleotide motifs were identified using Dfam v1.2 (Wheeler et al. 2013) 

pHMMs with HMMER nhmmscan and an E-value threshold of 10
-5

. Putative protein-

coding regions within the elements were identified using GyDB gag, pol, envelope and 

accessory protein pHMMs with HMMER hmmscan and an E-value threshold of 10
-10

, 

following translation of each element into all six reading frames with the EMBOSS 

v6.6.0 transeq tool (Rice et al. 2000). E-value thresholds were chosen to reflect 

recommendations in the HMMER user manual. pHMMs for the Galgal4 tRNA genes 

were also built to enable characterisation of the protein binding site (PBS) domain 

between the 5’ LTR and gag gene. tRNA genes were identified using tRNAscan-SE 

v1.3.1 (Lowe & Eddy 1997) with default parameters. tRNA sequences were then 

extracted using custom Python scripts and aligned by amino acid using MUSCLE 

v3.8.31 (Edgar 2004) with default settings, and pHMMs built using HMMER 

hmmbuild. HMMER hmmpress was used to create all pHMM flatfile databases.  

Feature test results were used to generate composite confidence scores for each putative 

insertion. Elements were scored with a ‘P’ if any LTR retrotransposon coding domains 

were identified. Identification of reverse transcriptase would ideally be supported by 

identification of other domains, as reverse transcriptase alone could belong to a LINE. 

Elements were also scored with a ‘D’ if there was positive identification of LTR 

retrotransposon nucleotide motifs, with the ‘D’ followed by a number identifying where 

the first LTR retrotransposon-related motif positioned when ranked by E-value. If 

elements were annotated by RepeatMasker as LTR-related, they were also scored with 

an ‘R’, with the output showing how much of the element had matches to various repeat 

classes. Finally, elements were also scored with a ‘t’ if the PBS site was identified.  
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Putative elements were ranked on assigned score, and those with no supporting evidence 

were automatically discarded. The result output for all other identified sites was checked 

manually. The highest confidence score for a putative element was ‘D1+P+R+t’, but 

lower confidence elements were also selected. In general, elements with just the ‘R’ 

classification were discarded unless most of the element had LTR-related annotation 

(and the annotation of other repeat classes was minimal), and elements with just the ‘t’ 

classification were automatically discarded. User discretion was important with more 

ambiguous scores, such as ‘D7+R’, but putative elements were discarded if there was 

insufficient evidence that they were LTR retrotransposons. 

 

Combining the homology and structure-based identification approaches 

All elements identified by the structure-based identification programs were used in a 

secondary BLASTn/tBLASTx protocol, following the same approach as above with the 

custom LTR retrotransposon database. This was to identify degraded sequence or solo 

LTRs related to the newly identified, structurally intact elements (SIEs) which were not 

identified by the homology based identification. The final stage of the LocaTR 

identification pipeline was to combine and merge all LTR retrotransposon-related 

sequence identified in the homology, structure-based and secondary BLAST protocols 

using external element coordinates, resulting in a full LTR retrotransposon annotation. 

 

2.2 Analysis of the LTR retrotransposons identified in the Galgal4 

chicken genome assembly 

2.2.1 Initial characterisation of structurally intact LTR retrotransposons 

Structurally intact elements were aligned to the forty-five full length LTR 

retrotransposon reference sequences in the custom database using MUSCLE with 

default settings, and analysed for putative coding regions with GyDB protein pHMMs, 

using HMMER hmmscan and an E-value threshold of 10
-10

. Domain alignments were 

inspected and SIEs were manually classified into either a retroviral genus or another 

LTR retrotransposon family. Protein assignments, particularly reverse transcriptase, 

took precedence over nucleotide alignments during classification.  
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LTR pair sequence identity was calculated from MUSCLE alignments with default 

settings. The insertion date for each element was calculated using this LTR pair identity 

and nucleotide divergence rates from the Galliformes (Helm-Bychowski & Wilson 

1986). The potential impact of selection on element distribution over time was tested by 

randomly assigning intact element insertion ages 1,000 times, and averaging the 

proportions for age categories based on LTR identity.  

Average GC content was calculated for the entire genome and per chromosome. 

Chromosomal GC content was correlated with log10 transformed values for chromosome 

length and gene density. GC content was calculated for each structurally intact element 

and compared to the genomic average as a function of their calculated insertion date.  

 

2.2.2 Genomic distribution of LTR retrotransposons 

LTR retrotransposon density and clustering 

Element density (LTR retrotransposons per Mb) was calculated per chromosome and 

correlated with chromosome length, gene density and average chromosomal 

recombination rate (Elferink et al. 2010), all of which were log10 transformed to 

normality. Pairwise Pearson correlations were performed and a General Linear Model 

(GLM) fitted using element density as the response variable and chromosome length 

and recombination rate as covariates. Data from chromosomes 27 and Z were excluded 

from the GLM as outliers due to large residuals in the normality plots. Furthermore, 

data from chromosomes 16, 25, 32 and W could not be directly compared to the overall 

analysis due to substantial known sequence assembly gaps.  

Density heterogeneity was considered through identification of structurally intact 

elements in clusters, with a cluster defined as at least five elements per Mb, compared 

to a calculated even distribution of one element per Mb. This level was chosen to match 

the cluster definition used in the previous work by Bolisetty and colleagues (2012) with 

the Galgal3 genome assembly, even though they identified half the number of 

structurally intact elements compared with the Galgal4 analysis presented in this thesis. 

Tests were completed using a stricter cluster cut-off of ten elements per Mb, to ensure 

the identified clusters were biologically representative rather than a statistical result of an 
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increased number of identified elements. Elements within each cluster were checked for 

their insertion age and LTR retrotransposon family classification. 

The probability of clusters arising by chance was assessed by comparing the observed 

number of SIEs within clusters to 100,000 random integration distributions using equal 

numbers of modelled insertion sites. Differences between observed and simulated 

cluster numbers were quantified with exact binomial tests. Average recombination rates 

within clusters were obtained from the 500 kb-average-bin data from Elferink and 

colleagues (2010), following conversion of cluster positions to the Galgal3 assembly 

(WASHCU2; GenBank: GCF_000002315.2) using the ‘Map to Reference’ tool in 

Geneious v7.0.4 (Kearse et al. 2012). Galgal4 centromere locations were also mapped 

using the Galgal3 annotations (Table 2.2). 

Table 2.2 Galgal4 centromeric locations identified using the flanking sequence to 

the 1.5 Mb of ambiguous bases used to mark the centromeres in the Galgal3 

WASHCU2 annotation file. Whilst the Galgal4 centromeres often retain some 

ambiguous bases, their resolution was greatly improved. 

Chromosome Galgal3 Galgal4 

1 76,857,403 - 78,357,402 74,621,949 - 74,673,419 

2 52,291,242 - 53,791,241 52,740,394 - 52,743,010 

4 19,307,569 - 20,807,568 19,201,396 - 19,215,816 

5 6,508,834 - 8,008,833 5,826,741 - 5,827,880 

8 10,229,801 - 11,729,800 9,981,100 - 9,992,722 

Z 24,138,915 - 25,638,914 24,533,502 - 24,641,581 

 

Analysis of LTR retrotransposon distribution on chromosomes 27 and Z 

Chromosomes 27 and Z were identified as GLM outliers in terms of their LTR 

retrotransposon density. Density heterogeneity was inspected across each of these 

chromosomes individually, with particular regard to the recombination rate. 

Chromosome 27 recombination rate and LTR retrotransposon density heterogeneity 

were correlated using the 500 kb-average-bin data from Elferink and colleagues (2010). 
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These densities were inspected manually through Ensembl to enable direct comparison 

with gene distribution. The Ensembl annotation file was used to calculate average gene 

exon number across the chromosome. In addition, the Ensembl Comparative 

Genomics Synteny tool was used to check chromosome 27 synteny with the genomes of 

the zebra finch (Taeniopygia guttata) and turkey (Meleagris gallopavo), as well as 

annotated gene paralogues also found on chromosome 27.  

Element density in the highly recombining Z chromosome pseudoautosomal region 

(PAR; the 5’ 630 kb of the chromosome; Smeds et al. 2014) was compared with the 

chromosomal average. In addition, the log10 element density vs log10 chromosome length 

correlation straight line equation was used to predict the expected LTR retrotransposon 

density of the Z, given its length. The observed density was compared to this expected 

value using the exact binomial test. 

 

Distribution of LTR retrotransposons relative to known gene annotations 

Structurally intact element locations were compared to the Ensembl Galgal4 version 79 

annotation file using the BEDTools v2.23.0 intersectBed tool (Quinlan & Hall 2010). 

Elements overlapping with ‘transcriptional units’ (TU; regions including exons, introns, 

UTRs, and 5 kb up- and downstream regions, for protein and RNA genes) were 

annotated for strand and TU domain overlap. The shortest distance from each non-

overlapping element to a TU was calculated and distances were binned in 10 kb ranges 

up to 100 kb.  

Genome-wide and per chromosome analyses were completed and compared with 

randomly generated simulations of equal numbers of modelled insertion sites. 

Simulated insertion sites were modelled using a random number generator and repeated 

100,000 times. Deviation of the observed distribution from the modelled data was 

quantified using individual category exact binomial tests and the Kolmogorov-Smirnov 

test for the overall distance distributions.  

Similar distribution analyses were conducted relative to constrained genomic locations 

using two multiple sequence alignments from Ensembl; one consisting of twenty-three 

amniotes and another of seven sauropsids.  
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2.2.3 Analysis of the expression of structurally intact LTR retrotransposons 

Available RNAseq data for quantification of expression 

Twenty-three diverse chicken RNAseq datasets were used to provide evidence for any 

LTR retrotransposon expression. Of these, twenty were adult tissues (breast muscle, 

bursa, cerebellum, duodenum, gizzard fat, Harderian gland, heart muscle, ileum, 

kidney, left optic lobe, liver, lung, ovary, pancreas, proventriculus, skin, spleen, thymus, 

thyroid and trachea) from the Roslin Institute J-Line (EBI ENA: PRJEB12891), and 

three were White Leghorn embryonic stages HH4-5 (GenBank: SRX893876), HH14-

15 (GenBank: SRX893868) and HH25-26 (GenBank: SRX893873).  

All twenty-three datasets were quality checked with FASTQC v0.11.2 (Andrews 2012). 

Whereas the J-Line data were all high quality, the embryonic data exhibited low quality 

read ends and overrepresentation of adapter sequences. These were removed with Trim 

Galore v0.4.0 (Krueger 2013) using Cutadapt v1.4 (Martin 2011). 

 

Mapping of RNAseq data and assessment of putative expression 

Reads from each tissue dataset were mapped independently to the Galgal4 assembly 

using Bowtie2 v2.2.5 (Langmead & Salzberg 2012) and TopHat2 v2.0.14 (Kim et al. 

2013). Inner insert size and strand orientation was identified during mapping, and 

transcripts assembled using Cufflinks v2.2.1 (Trapnell et al. 2010) without a reference 

annotation.  

Locations for assembled transcripts were overlapped with the locations of structurally 

intact LTR retrotransposons using BEDTools intersectBED, requiring matched strand 

orientation. Overlaps were viewed using the Ensembl genome browser and Geneious, 

and the extent of expression for each LTR retrotransposon was assessed. In cases where 

expression appeared partial across the intact LTR retrotransposon, the relevant 

sequence was used as a BLASTn and BLASTx query against the NCBI non-redundant 

database to identify whether it matched intact domains or genes. All full-length or 

domain-matched transcripts were translated into the three forward reading frames and 

the number of stop codons assessed. Predicted proteins without a high frequency of 

interspersed stop codons were used as BLASTp (Altschul & Madden 1997) queries 
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against the NCBI non-redundant database and homologous results were aligned with 

MUSCLE and individually assessed. Putative conserved domains were identified using 

InterPro (Mitchell et al. 2015) and transmembrane topologies predicted using Phobius 

(Käll et al. 2004). 

 

Further characterisation of Ovex1: a co-opted, gammaretrovirus-derived gene 

Ovex1 is a chicken gene which had been previously characterised as a co-opted 

endogenous gammaretrovirus with expression limited to the ovaries (Carré-Eusèbe et al. 

2009). However, RNAseq mapping in this project identified that Ovex1 expression was 

more ubiquitous. Expression was quantified in all tissue datasets, including those where 

cufflinks failed to construct transcript models. Reads were extracted from the RNAseq 

BAM files for the Ovex1 exon and whole gene region, and viewed in Geneious.  

InterPro and Phobius results for the Ovex1 protein (GenBank: NP001159385.1) were 

compared to similar analysis of envelope proteins from bovine leukaemia virus (BLV; 

deltaretrovirus; GenBank: AF033818.1), feline foamy virus (FFV; spumavirus; 

GenBank: NP056915.1), Mus dunni endogenous virus (MdEV; gammaretrovirus; 

GenBank: AAC318061.1), mouse mammary tumour virus (MMTV; betaretrovirus; 

GenBank: AAC82558.1), Rous sarcoma virus (RSV; alpharetrovirus; GenBank: 

BAD98245.1) and Walleye dermal sarcoma virus (WdSV; epsilonretrovirus; GenBank: 

AAC82608.1). Each of these retroviral, envelope proteins was also annotated for protein 

domain families and motifs using NCBI.  

Ovex1 sauropsid homologues were identified using the chicken Ovex1 protein sequence 

as a BLASTp query against the NCBI non-redundant database. These were MUSCLE 

aligned along with forty-seven GyDB retroviral envelope protein sequences, the 

alignment was trimmed, and a phylogenetic tree constructed using RAxML v8.1.15 

(Stamatakis 2014) with the PROT-GAMMA-I-WAG protein evolutionary model and 

one hundred bootstraps. Patterns of selection in the sauropsid Ovex1 protein 

homologue alignment were analysed using the DataMonkey (Pond & Frost 2005) hosted 

DEPS (Directional Evolution in Protein Sequences) program (Pond et al. 2008). 
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2.3 Comparative analyses of the LTR retrotransposon content of the 

Galgal4 and Galgal5 chicken genome assemblies 

2.3.1 Analysis of the Galgal5 assembly with LocaTR 

LTR retrotransposons were identified in the Galgal5 genome assembly (GenBank: 

GCF_000002315.4) using the LocaTR identification pipeline with default settings. The 

assembly statistics of Galgal4 and Galgal5 are compared in Table 2.3.  

Table 2.3 Comparison of the Galgal4 and Galgal5 chicken genome assemblies. 

Assembly features Galgal4 Galgal5 

Assembled length (bp) 1,046,932,099 1,230,258,557 

Assembled chromosomes 1-28, 32, W, Z 1-28, 30-33, W, Z 

Total contigs 27,041 24,693 

Contig N50 (bp) 279,750 2,894,815 

Placed contigs (bp) 1,014,655,963 1,091,712,069 

Unplaced contigs (bp) 32,120,124 138,199,872 

Total scaffolds 16,847 23,870 

Scaffold N50 (bp) 12,877,381 6,379,610 

 

2.3.2 Analysis of the LTR retrotransposons of the Galgal5 genome assembly 

The distribution and location of LTR retrotransposons in the new, Galgal5 assembly 

was analysed in much the same manner as with Galgal4, described above (Section 2.2.2).  

Correlations were made between element density, chromosomal recombination rate, 

and gene density, now using the updated Ensembl Galgal5 v86 feature annotation file. 

Data for chromosomes 27 and Z were excluded due to their far higher than expected 

density, which resulted in non-normal plots after log10 transformation. Whilst 

improvements have been made to chromosomes 16 and W they remain poor 

assemblies compared to their known lengths, so were again not considered in this 

analysis (Warren et al. 2017). Chromosomes 30, 31, 32 and 33 were also excluded for 

this reason. Structurally intact element distribution was inspected for evidence of 
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clusters, and the clustered elements were checked for insertion date or phylogenetic 

relatedness. 

Element distribution was compared to the Ensembl annotation file using BEDTools 

intersectBED and closestBed in the same manner as with Galgal4. Random insertion 

distributions were modelled 100,000 times using BEDTools shuffle and compared 

using individual category exact binomial tests. Structurally intact element locations were 

also overlapped with a recently updated list of long non-coding RNA (lncRNA) genes 

(Kuo et al. 2017) using closestBed, not requiring matching strand orientation.  

Throughout this annotation comparisons were made between the two assembly results. 

Genomic locations were converted between the assemblies using the NCBI Genome 

Remapping Service (www.ncbi.nlm.nih.gov/genome/tools/remap) where required.  

 

2.4 Analysis of LTR retrotransposon content across the avian lineage 

2.4.1 Genomic resources 

Genome assemblies for sixty-seven bird species and six reptilian outgroup species were 

downloaded from the NCBI GenBank. RefSeq assembly versions were used where 

available to include the assembled mitochondrial chromosome. Assembly statistics and 

accession numbers for each of the seventy-three species used are shown in Table 2.4. 

 

2.4.2 Homology approach using updated Galgal4 LTR retrotransposon content 

Of the seventy-three genomes listed below in Table 2.4, twenty-one phylogenetically 

diverse species were initially analysed for their LTR retrotransposon content using a 

purely homology based approach. These twenty-one genomes, including two reptilian 

outgroups, have been identified by an asterisk in Table 2.4.  

Table 2.4 Genome assembly statistics for the seventy-three species used in this 

study. Those species which were used in the initial, homology-only LTR 

retrotransposon identification strategy are indicated by an asterisk. 
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Each genome was analysed with RepeatMasker specifying the “-species vertebrates -

nolow” flags, and the LTR retrotransposon-annotated positions were extracted. This 

generic analysis was extended with a second RepeatMasker analysis which used a custom 

library built from the structurally intact Galgal4 LTR retrotransposons identified by the 

LocaTR pipeline. Annotated positions from these two methods were combined, and 

putative elements with high homology to other repeat classes were removed. 

Annotated LTR retrotransposon content was correlated with genome length, scaffold 

N50 length and contig N50 length, and values were mapped to a cladogram based on 

the known phylogeny (Jarvis et al. 2015; Suh 2016). 

 

2.4.3 LTR retrotransposon identification using LocaTR 

LTR retrotransposons were annotated in each of the seventy-three sauropsid genomes 

using the LocaTR pipeline. The total LTR retrotransposon content values were 

correlated with genome length, scaffold N50 length and contig N50 length. The number 

of SIEs was scaled by genome size and correlated with contig and scaffold N50 values. 

All metrics were log10 transformed for normality.  

Total content values were mapped to a cladogram based on the known phylogeny. A 

GLM was constructed to identify significant variables which explained the observed 

distribution of LTR retrotransposon content. Total content was fitted as the response 

variable, and the model consisted of taxonomic groupings, scaled SIE values, contig N50 

length and genome length (the last three as covariates). Eight taxonomic groupings were 

fitted to best match the avian lineages at the K/T extinction event: Paleognathae, 

Galliformes, Columbea, Caprimulgiformes and Otidimorphae, Cursorimorphae and 

Opisthocomiformes, Aequornithia and Phaethantimorphae, Afroaves, and Australaves. 
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Chapter 3:  A new look at the LTR retrotransposon content 

of the chicken genome 

3.1 Introduction 

Since the release of the first draft of the chicken genome, there have been four major 

studies which have improved the knowledge of its overall LTR retrotransposon content. 

Initial work by the International Chicken Genome Consortium (2004) used homology-

based approaches to identify ERVs from all three retroviral classes, and Wicker and 

colleagues (2005) used Cot-based cloning and sequencing (CBCS) to identify the highest 

copy number LTR retrotransposon elements in the chicken genome. These were 

initially classified as gypsy elements, but were later reclassified as endogenous GGERVL 

spumavirus sequences (Bolisetty et al. 2012). Work by Huda and colleagues (2008) and, 

most recently, Bolisetty and colleagues (2012), expanded identification by including 

structure-based methodologies which take advantage of the archetypal LTR 

retrotransposon structure. Overall, this enabled the characterisation of 492 structurally 

intact elements and the annotation of 1.35 % of the genome as LTR retrotransposon-

derived elements.  

Despite these studies, this overall figure remains three times lower than the content of 

mammalian genomes, even when scaled for genome size. In addition, Bolisetty and 

colleagues (2012) found that the Neoaves had LTR retrotransposon content much more 

comparable to mammals, and suggested that this ‘deficit’ of LTR retrotransposons in 

chicken may be specific to the Galliformes. So, have all the chicken LTR 

retrotransposons been successfully identified, and is the apparent paucity of these 

elements biologically representative or simply a result of an incomplete annotation?  

Since the work of Bolisetty and colleagues (2012), a new chicken genome assembly has 

been released (Galgal4), and previous work has shown that there has been a marked 

increase in repeat content annotation with each revised assembly. In addition, previous 

identification studies have been heavily homology-based or have only used one structure-

based identification program, so it is possible that whole subsets of elements, and those 

that are lineage-specific, may have been missed completely. It is therefore necessary to 

undertake a review of the available methodologies and undertake a new, more 

comprehensive identification of LTR retrotransposon sequence in the chicken genome.  
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3.1.1 Review of the available identification methodologies 

Homology-based approaches 

LTR retrotransposons have largely been studied independently in a species-specific 

manner, but the increased availability of genomic sequence in the last fifteen years has 

led to the development of multiple repeat databases. It is common practice to begin any 

de novo repeat annotation with RepeatMasker (Smit et al. 2013), which identifies all 

repetitive DNA in the genome assembly and classifies it according to the RepBase 

libraries (Jurka et al. 2005). However, it is usual to then further extend the annotation 

with custom-built libraries or standalone BLAST searches (Altschul et al. 1990) using 

full or partial reference sequences from databases such as HERVd (Paces et al. 2004), 

RetOryza (Chaparro et al. 2007), and GyDB (Llorens et al. 2011), depending on the 

desired study species.  

This homology-based approach profits from such an extensive knowledge base, enabling 

confident LTR retrotransposon annotation even when present in low copy number or 

truncated forms. However, identified elements are a product of the reference sequences 

used to find them, and there is significant bias towards well described repeat classes from 

extensively studied species and younger, more complete insertions (Bergman & 

Quesneville 2007). Additionally, heterogeneous conservation of repetitive sequence 

returns fragmented hits, rather than complete elements, and there is often a bias towards 

retroviral-like domains such as reverse transcriptase, leading to the detection of other 

retrotransposing elements such as LINEs. Crucially, homology-based identification 

alone is non-exhaustive and is unlikely to detect lineage-specific repeats.   

 

Structure-based approaches 

The conserved archetypal structure of LTR retrotransposons enables element 

identification independent of sequence homology, by instead modelling the element 

based on various distance and similarity constraints. Such approaches initially identify 

LTRs by their U3-R-U5 conserved structure, including polyadenylation signals, 

transcription factor binding sites and the transcription start site, and their demarcation 

by short inverted repeats. Candidate LTRs are then paired on distance and similarity 
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constraints with annotated pairs only classified as LTR retrotransposons when validated 

by the presence of further motifs which satisfy location, size and reading frame 

requirements. This stipulation for identification of candidate LTR pairs means that 

intact LTR retrotransposon discovery is heavily dependent on assembly quality, 

particularly its contiguity and true resolution of high copy number repeats.  

The first structure-based identification method, LTR_STRUC (LS) (McCarthy & 

McDonald 2003), set the trend for a range of related but increasingly sophisticated 

programs with equally unwieldy names. LS identifies putative LTRs by seeding random 

alignments between two points within a set distance constraint, and extending the 

alignment until scores drop beneath a predefined threshold. Alignment ends are fine-

tuned by identification of the target site duplications (TSDs), which border the LTR, 

and the neighbouring Primer Binding Site (PBS) and Polypurine tract (PPT) at the inner 

edge of the 5’ and 3’ LTRs respectively. LS predominantly identifies LTR pairs with 

greater than 90 % homology, enabling high specificity, but with limited sensitivity. This 

can be improved with a poorly defined ‘sensitivity scale’, allowing identification of LTR 

pairs with 75 % identity, but with a large associated increase in the false positive rate.  

Despite its release in 2003, LS continues to be used successfully for diverse LTR 

retrotransposon family annotation (McCarthy & McDonald 2004; Polavarapu et al. 

2006; Huda et al. 2008; Garcia-Etxebarria & Jugo 2010; Garcia-Etxebarria & Jugo 2012), 

but is unable to complete exhaustive identification. Increased sensitivity and processing 

speed was introduced with the related LTR_par (Kalyanaraman & Aluru 2006) and the 

web-based LTR_FINDER (Xu & Wang 2007). These incorporated the use of suffix 

arrays for rapid seed extension, and the capability to manage multi-fasta files, span contig 

gaps and analyse the complementary strand; features lacking in LS which required 

additional accessory scripting.  

LTR Harvest (LH) (Ellinghaus et al. 2008) advanced LTR retrotransposon annotation 

and largely replaced these latter two programs, using the search criteria of LTR_par but 

optimised for large genomes and memory efficiency. Additionally, users can specify a 

wide range of options to adapt the program’s sensitivity, and completing the multiple 

analyses is fast, as the suffix array is created once and then stored. This enables the full 

analysis of gigabase size genomes with multiple parameter setups in minutes, rather than 
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hours or days, following one computationally expensive step. Superficially, the ease of 

performing multiple analyses may seem a bonus, but it is, in fact, a necessity. Slight 

parameter alterations have a dramatic effect on both the number of putative LTR 

retrotransposons identified and the observed false positive rate, the latter commonly 

reaching over 60 % (Lerat 2010), hence the ‘suggestion’ from the authors for ‘thorough’ 

putative element validation. Unlike all other available structure-based programs 

however, LH is actively curated and has associated validation software, LTR Digest (LD) 

(Steinbiss et al. 2009), which uses built-in and user-specified profile Hidden Markov 

Models (pHMMs) for the PPT and retroviral-like domains, and species-specific tRNA 

pHMMs to identify and categorise the PBS. Additionally, the identification (LH) and 

validation (LD) steps can be integrated into one analysis using the LTRsift pipeline 

(Steinbiss et al. 2012). However, validation is convoluted, requiring installation of 

multiple accessory programs, and remains highly subjective, based on arbitrary 

thresholds and the selection of ‘appropriate’ pHMMs. The latter is of great importance, 

as bias towards known sequence should be avoided. Ill-considered validation will likely 

increase the false negative rate without marked reduction of the false positive rate. 

Besides this related family of programs, two others are commonly used. 

MGEScan_LTR (MGS; initially named LTR_Rho) (Rho et al. 2007) was developed to 

remove all sequence bias in LTR models and instead focus on motif structure, requiring 

‘maximal exact matches’ (blocks of exact identity) of at least 40 bp between putative 

LTRs before extending the sequence alignment. This often limits LTR pair homology 

to 80 %, but all identified LTRs are clustered and pHMMs constructed for subsequent 

detection of related, but more divergent LTRs. The authors accept the potential for 

elevated false positive rates, but also identified that MGS detects a very different subset 

of LTR retrotransposons when compared with LS or LTR_par; a result also seen when 

later compared to LH (Lerat 2010).  

Another, different identification approach is that of RetroTector (ReTe) (Sperber et al. 

2007) which links retroviral-like motifs through ‘fragment threading’. Whilst powerful, 

it is perhaps the most limited by existing sequence, as LTR searching depends on trained 

pHMMs and motif recognition is based on a series of sequence libraries. Initially 

designed for primate ERVs, the application of ReTe has diversified to other animal 

species (Garcia-Etxebarria & Jugo 2010; Garcia-Etxebarria & Jugo 2012), including 
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chicken (Bolisetty et al. 2012), but the reliance on motif libraries is evident: identification 

is biased towards young, structurally complete ERVs, rather than from any LTR 

retrotransposon clade. Perhaps because of this, ReTe has a relatively low false positive 

rate, at least in mammalian studies (Lerat 2010; Garcia-Etxebarria et al. 2014), aided by 

‘brooms’ to mask (‘sweep’) LINEs and SINEs before the identification of putative LTRs. 

LTR searches favour speed over sensitivity, rapidly narrowing the search space for later 

computationally-intensive annotation of inner motifs. ReTe also identifies a markedly 

different element subset compared to MGS and the LS/LH family of programs.  

Whilst these programs differ in the order and importance of the validating domains, and 

their computational complexity, they all share the initial requirement for candidate LTR 

pair identification. Truncated or solo LTR elements will not be detected by these 

methods and neither will LTR retrotransposons which lack the archetypal structure, 

such as DIRS elements for which a specific, homology-based approach has been 

developed (ReDoSt; Piednoël et al. 2011). Efforts to develop novel structure-based 

methods have not been hugely successful. Benachenhou and colleagues (2009a; 2009b) 

designed pHMMs to specifically identify retroviral LTRs alone. Whilst models fitted 

individual retroviral genera well, wider application showed that LTRs outside the 

training groups could not be identified. Furthermore, analyses were computationally 

complex and had high false positive rates as conserved LTR features, such as polyA 

regions and promoters, are common to other genomic features. In contrast, Ashlock 

and Datta (2010) focused on internal domain reading frame patterns and compared 

these to patterns observed in host coding and non-coding DNA. Sensitivity for retroviral 

domain detection was reported to be greater than 92 %, but interpretation was complex 

and limited by both frameshift mutations common in degraded repeats and the specific 

genera included in model training. Concordantly, the well-established structure-based 

methodologies remain the only viable option for genome-wide annotation of all LTR 

retrotransposon types, as long as they remain structurally intact.  

 

Combining identification strategies 

Homology-based identification is inherently biased towards known sequence, and whilst 

structure-based methods can identify diverse or lineage-specific LTR retrotransposons, 
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they also use motifs and models based on known sequence, and have a high false positive 

rate. It should also be noted that the implementation of all these tools is complicated, 

requiring installation of accessory software, management of SQL databases, and the 

writing of purpose-built scripts to control batch analysis and program-specific issues such 

as memory allocation. Analysis is further hindered by incomplete or confusing manuals 

and unavailability of the source code, as well as non-existent curation and user support, 

with LH a stark exception. As such, LTR retrotransposon annotation is daunting, 

particularly as the combination of multiple methodologies is necessary for complete 

annotation and the avoidance of program-specific biases (Lerat 2010; Garcia-Etxebarria 

et al. 2014).  

Recent work combining two (Barrio et al. 2011; Bolisetty et al. 2012) or three (Garcia-

Etxebarria & Jugo 2010; Garcia-Etxebarria & Jugo 2012) identification strategies in 

animal genomes has highlighted the limited redundancy between the elements identified 

by the different methodologies, commonly with more than 80 % of identified elements 

unique to one approach. Despite this, previous work in the chicken has had a strict 

requirement for redundancy between programs to validate identified LTR 

retrotransposons It is therefore highly likely that many genuine elements have been 

ignored rather than annotated, which may, in part, contribute to the previously reported 

‘deficit’ of these elements in the chicken when compared with mammals and Neoaves. 

 

3.2 Research Aims 

This chapter covers three major research aims. Firstly, the development of a user-

friendly bioinformatic pipeline to combine multiple LTR retrotransposon identification 

strategies into a single integrated approach. Secondly, the use of this pipeline to identify 

the LTR retrotransposons of the chicken genome to determine whether previous, 

incomplete annotation was responsible for the observed deficit of these repeats in 

chicken compared to other birds. Finally, to fully characterise the LTR retrotransposon 

distribution relative to genes, recombination rate and other LTR retrotransposons, and 

to assess the extent of LTR retrotransposon expression.  
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3.3 Statement of publication 

The results presented in this chapter have been published: Mason AS, Fulton JE, 

Hocking PM & Burt DW (2016), A new look at the LTR retrotransposon content of 

the chicken genome, BMC Genomics, 17:688. The paper has been included on the CD 

accompanying this thesis in Appendix 3: Paper2.  

Figures, tables and text have been reworked to fit this thesis and further methodology 

optimisation, results, figures and tables have been included. The final section of the 

paper on the LTR retrotransposons of the avian phylogeny forms the preliminary 

lineage analysis in Chapter 4 of this thesis (section 4.5.1, page 5). 

 

3.4 Development of the LocaTR identification pipeline 

LTR retrotransposon identification was facilitated by the development of the LocaTR 

identification pipeline. This user-friendly, well documented pipeline consists of four 

broad parts: genome pre-processing, structure-based identification, homology-based 

identification, and the confirmation of putative LTR retrotransposons by removing false 

positives. LocaTR can be used to identify LTR retrotransposons in any assembled 

genome and can be easily adapted to include additional search programs, if required.  

The combination of extensive documentation and intermediary scripts has made 

running the disparate identification programs easier, whilst retaining the ability for the 

user to alter individual parameters, although recommendations have been made in the 

documentation based on this work. Most of the programs and scripts have been written 

to work on a Linux server, but both LS and ReTe must be run on a desktop, specifically 

Windows for LS. If the homology and structure-based identification programs are run 

in parallel, a full LTR retrotransposon identification of a 1 Gb genome can be completed 

within 10 days. 

 

LocaTR scripts and documentation 

Seventeen intermediary scripts and six accessory scripts were written to manage the 

LocaTR identification pipeline. The names and functionalities of these scripts are 
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detailed in Table 3.1 and Table 3.2 respectively. Each script has its own extensive 

documentation, help messages and error catches, and additionally each of the four 

broad sections of LocaTR has its own documentation to aid the user. A detailed flow 

chart for LocaTR is shown in Figure 3.1. All scripts are on the CD accompanying this 

thesis and in a GitHub repository (https://github.com/andrewstephenmason/LocaTR). 

 

 

Figure 3.1 The LocaTR identification pipeline workflow. Each script run by the user 

is shown by its number (as described below in Table 3.1), and the independently 

run programs are underlined (LH = LTR Harvest; MGS = MGEScan_LTR; ReTe = 

RetroTector; RM = RepeatMasker). LTR_STRUC is not shown as its execution is 

completely controlled and hidden with script 203. Scripts for each LocaTR section 

are enclosed by boxes with dashed borders: homology (pink), structure-based 

(blue) and secondary BLAST (purple). The pHMMs used for the SIE feature tests 

are enclosed by the green box with the solid border. 
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Table 3.1 The LocaTR intermediary scripts. 

Script name Functionality 

101_format_genome_file.py Formats sequence headers ready for analysis 

102_extract_tRNA_seq.py Takes tRNAs identified by tRNAscan-SE, 

extracts sequences and create pHMMs 

201_extract_LH_positions.py Extracts positions and sequences following 

LTR Harvest analysis 

202_LS_seq_formatter.py Creates individual sequence files from the 

genome multi-fasta, and reverse complements  

203_LS_ltrstruc_batch.py Manages the LTR_STRUC process on Windows 

204_LS_batch_pos_extract.py Processes the sequences identified by 

LTR_STRUC and generates a positions file 

205_MGS_seq_formatter.py Creates individual sequence files from the 

genome multi-fasta 

206_extract_MGS_positions.sh Extracts positions and sequences following 

MGEScan_LTR analysis 

207_rete_input_fasta_formatter.py Creates individual sequence files from the 

genome multi-fasta and pads sequences 

shorter than 30kb 

208_extract_ReTe_positions.py Extracts positions and sequences following 

RetroTector analysis 

301_extract_RM_positions.sh Extracts positions and sequences following 

RepeatMasker analysis 

302_refBLASTsearch.py Performs the BLASTn/tBLASTx protocol and 

putative element cross-validation 

304_extract_dirs_positions.py Extracts positions and sequences following 

ReDoSt analysis 

305_merge_homology_positions.sh Merges all identified locations from the 

homology based searches 

403_validate_SIEs.py Performs feature analysis for putative SIE 

support and confirmation 

404_merge_positions_list.sh Merges all identified locations 

405_secondary_BLAST_analysis.py Performs the secondary BLASTn/tBLASTx 

protocol using confirmed SIE sequences 

406_convert_to_original_contigs.py Converts all sequence and position files back 

to original contig names 
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Table 3.2 The LocaTR accessory scripts. 

Script name Functionality 

000_modify_paths.py Matches LocaTR filepaths to host directory setup 

001_seq_extract.py Creates multi-fasta files from positions list 

002_pos_merger.py Merges positions lists 

003_custom_rm_processor.py Prepares custom RepeatMasker analysis output 

and for putative element cross-validation 

004_rm_fragment_remover.py Identifies non LTR retrotransposon repeats in 

putative sequence and removes them 

static_functions.py Series of functions for merging, sequence 

extraction, list formatting etc. called by scripts 

 

 

3.4.1 Initial optimisation of individual identification programs 

RepeatMasker 

RepeatMasker (RM) analysis was performed on the Galgal4 assembly under default 

conditions, and by specifying the RepBase libraries for chickens and, more widely, for 

vertebrates. Under default conditions (human repeat libraries) 6.19 % of the genome 

was annotated as repeats, with only 0.13 % of the genome attributed to LTR 

retrotransposon derived elements. By specifying the chicken RepBase libraries, this 

value increased to 9.96 % of the genome for all repeats, and to 1.66 % of the genome 

for LTR retrotransposons, made up of some 32,674 independent elements, covering 

17.38 Mbp of the genome. By widening the available RepBase libraries to all vertebrate 

entries, the annotated repeat content increased again to 10.41 %, and the LTR 

retrotransposon annotation increased to 1.78 % of the genome (Table 3.3). The addition 

of the vertebrate RepBase libraries increased the amount of LTR retrotransposon 

sequence identified, and annotated shorter, potentially more fragmented and divergent 

sequences, as the average identified repeat length fell by 22.5 % from 532 bp to 412 bp. 

Due to the identification of more LTR retrotransposon sequence, all further RM 

analyses used the ‘-species vertebrates’ flag. 
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Table 3.3 Annotated Galgal4 repeat content using RepeatMasker with three 

different available RepBase libraries.  

RepBase 

library 

Total repeat 

content (%) 

LTR Content 

(%) 

LTR Content 

(Mbp) 

# LTR 

elements 

Default 6.19 0.13 1.34 2,929 

Chicken 9.96 1.66 17.38 32,674 

Vertebrates 10.41 1.78 18.64 45,223 

 

Additionally, RM has three built-in sensitivity settings which were tested and compared 

to the default (Table 3.4). As reliable repeat discovery was the aim of this study, rather 

than genome masking for mapping or gene annotation, the reduction in computational 

time offered by the ‘q’ and ‘qq’ sensitivity settings did not justify the observed reductions 

in annotated content. Whilst the ‘s’ (slow/sensitive) setting did identify more LTR 

retrotransposon-homologous sequence, it was accompanied by a large increase in 

computational time for relatively little gain. RM analyses are used several times in 

LocaTR so any increase to computational time would be multiplied through the process. 

Consequently, all RM analyses were implemented with default sensitivity. 

Table 3.4 The effect of the different RepeatMasker specificity settings on detected 

LTR retrotransposon content and processing time. The predicted sensitivity and 

processing time effect from the manual are shown in columns 2 and 3. Increased 

sensitivity is shown with a ‘+’, and decrease with a ‘-‘. Processing time increase is 

denoted by ‘S’ (for ‘slower’) and decrease with ‘F’ (faster). 

Setting 
Sensitivity 

effect 

CPU 

effect 

Content 

(%) 

Content 

(Mb) 
# elements CPU time 

Slow (s) + 0-5% 2-3x S 1.80 18.82 46,663 >10 days 

Default 0 0 1.78 18.64 45,223 2.5 days 

Quick (q) - 5-10% 2-5x F 1.74 18.17 41,902 1.5 days 

Rush (qq) - 10% 4-10x F 1.66 17.43 37,998 0.5 days 
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LTR_STRUC 

The ten optional LS sensitivity settings had a marked impact on the number of identified 

elements, the false positive rate, and the processing time for each analysis during 

preliminary analysis of chromosomes 1 and Z (Table 3.5). Additional elements with 

feature support were identified at each sensitivity setting, but the processing time 

increased by a factor of 1.5-2.5 for each higher setting. However, as the highest setting 

still identified confirmed new LTR retrotransposons, setting 1 was used for all further 

LS analyses. On both chromosomes, confirmed elements were significantly younger, 

based on LTR identity, than the identified false positives (t = 6.80, p < 0.0001). The 

lengths of the confirmed elements were also significantly shorter than the identified false 

positives on chromosome 1 (t = -3.43, p = 0.0006), but there was no difference on the Z 

chromosome. 

This preliminary work also identified that the ‘default’ sensitivity setting was the same as 

sensitivity setting 4, a piece of information which had been lost to the program curators.  

Table 3.5 Sensitivity testing with LTR_STRUC using Galgal4 chromosome 1 and Z. 

Sensitivity 

setting 

Processing 

time (mins) 

Identified 

elements 

Confirmed 

elements 

False positive 

rate (%) 

1 2,523.45 101 46 54.4 

2 1,286.13 99 45 54.5 

3 636.17 87 43 50.6 

4 268.52 77 41 46.8 

default 261.12 77 41 46.8 

5 163.37 64 39 39.1 

6 85.00 52 34 34.6 

7 45.05 43 31 29.5 

8 24.78 33 22 33.3 

9 14.87 21 13 38.1 

10 9.75 10 5 50.0 
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Analysis of the full assembly with LS revealed that there were issues with memory 

allocation, as the program would finish after only analysing approximately 400 Mb of 

the genome. Additionally, the program did not consider the reverse strand, so elements 

were missed unless there was a clear signal in the reverse orientation. Concordantly, 

those elements which were detected on both strands were significantly younger 

insertions (t = 8.86, p < 0.0001), and were highly represented in the confirmed list after 

feature analysis. For example, a default analysis of chromosome 1 identified 38 LTR 

retrotransposons, but running on the reverse strand identified 45, where 24 were shared 

between the runs, giving a total of 59 putative elements, of which 25 (42.4 %) were 

confirmed by feature analysis. A script was written to separate the multi-fasta assembly 

file into individual sequence files, and to create reverse complemented sequences ready 

for analysis (202_LS_seq_formatter.py). A batch processing script was also created to 

manage passing multiple sequences to the LS executable (203_LS_ltrstruc_batch.py).  

 

LTR Harvest 

LTR Harvest (LH) identified the largest number of confirmed elements from the 

structure-based programs, but the false positive rates were strikingly high for all 

parameter settings tested, including the three sets presented in Table 3.6. Enabling LH 

to identify all potential LTR pairs for the identification of nested elements (set 2) did not 

identify any additional confirmed elements, but considerably increased the standard 

processing time for the feature annotation analysis. In fact, the seven cases of nested 

LTR retrotransposons identified in the Galgal4 assembly were all identified from the set 

1 analysis. Additional parameter tests were completed (altering LTR identity and length 

parameters), but no other setup identified more confirmed LTR retrotransposons. 

Table 3.6 Parameter optimisation with LTR Harvest 

Parameter set Identified elements Confirmed elements False positive rate (%) 

Default 3,707 527 85.8 

1 5,264 643 87.8 

2 65,422 643 99.1 
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To determine whether the false positive rate was directly linked to putative LTR pair 

sequence identity, the set 1 parameters from above were used for ten additional runs 

where the LTR homology requirement was gradually increased (Table 3.7). False 

positive rates remained high throughout, despite the increasingly stringent requirements 

for near perfect LTR pair identity.  

Table 3.7 The impact of increasing the LTR pair identity on the false positive rate 

of LTR Harvest 

LTR identity (%) Identified elements Confirmed elements False positive rate (%) 

75 (set 1) 5,264 643 87.8 

85 3,792 559 85.3 

87 3,173 527 83.4 

90 2,337 525 77.5 

92 1,012 521 49.5 

95 958 497 48.1 

96 735 379 48.4 

97 531 275 48.2 

98 293 159 45.7 

99 112 73 34.8 

100 30 27 10.0 

 

This again highlights the need for strict feature annotation for confirmation of the 

putative LTR retrotransposons. Near identical false positive rates were observed with 

the GenomeTools validation program LTR Digest (Steinbiss et al. 2009), suggesting that 

these are indeed issues with LH false positive rates, rather than over-conservatism in the 

feature annotation analysis. LTR Digest was not used as the validation methodology for 

all structure-based programs as it required putative LTR retrotransposons in strict GFF3 

format, which proved difficult to reliably produce from the other programs. 

Additionally, construction of new scripts to confirm the putative LTR retrotransposons 

enabled a fresh review of the thresholds used for identifying these elements. 
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3.5 The LocaTR analysis of the Galgal4 chicken assembly 

In total, 31.5 Mb of the chicken genome was identified as LTR retrotransposon-derived 

sequence, accounting for 3.01 % of the Galgal4 chicken genome assembly. This 

comprised 36,109 annotated regions of which 1,073 were structurally intact elements 

(SIEs): more than double the number previously reported (Bolisetty et al. 2012). Of this 

total, the expanded homology protocol identified over 20.3 Mb of sequence, almost 4 

Mb more than was annotated by RM using the chicken RepBase libraries (Table 3.3). 

The structural-based methodologies identified 9.1 Mb, 45.8 % of which was ‘novel’, 

having not been identified in the homology-based searches. The secondary BLAST 

analysis for fragments related to annotated SIEs identified an additional 7.1 Mb of 

sequence (Figure 3.2).  

 

 

Figure 3.2 Performance of the homology and structure-based identification 

methodologies. Euler diagram representing the relative proportion of LTR 

retrotransposon content identified by the homology (red), structure (blue) and 

secondary BLAST (purple) modules of the LocaTR pipeline. Numbers represent the 

total length in megabases (Mb); 31.5 Mb in total. Homology methods identified 

20.3 Mb of sequence, and structure-based ID methods 9.1 Mb including 4.9 Mb 

(54.2 %) overlap with the homology data. The secondary BLAST identified an 

additional 7.1 Mb based on elements from the structure-based methods. 

Most of the 36,109 annotated LTR retrotransposon-derived regions are fragmented, 

with an average length of 0.9 kb and high standard deviation (2.1 kb) reflecting the large 
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sequence structural variability. SIEs also exhibit large element size variation (mean 

length 8.5 kb, standard deviation 6.5 kb), some of which can be accounted for by the 

seven examples of nested LTR retrotransposons, where one element has inserted within 

another resulting in the relative elongation of the outer element.  

All Galgal4 structurally intact LTR retrotransposons were ERVs, predominantly from 

the betaretrovirus, gammaretrovirus and spumavirus retroviral genera. These are the 

shared ancestral ERV genera amongst vertebrates (Herniou et al. 1998; Borisenko 

2003), and it is likely that the bias of mammalian sequences in the RepBase vertebrate 

libraries aided their identification and classification. A total of 65.7 % of SIEs could be 

classified by protein-coding domain homology. Of these, over a third were ERVs from 

the alpharetrovirus-betaretrovirus clade, generally the youngest and therefore most easily 

detectable group, including the assembled ALVE-RJF on chromosome 1. Consistent 

with previous publications, no elements were identified from either the Bel/Pao, DIRS, 

Gypsy or Copia groups of LTR retrotransposons (Huda et al. 2008; Piednoël et al. 2011; 

Bolisetty et al. 2012) and there was no evidence of deltaretrovirus or lentivirus ERVs.  

 

3.5.1 Characterisation of the structurally intact LTR retrotransposons 

Of the 1,073 SIEs, only 291 (27 %) were identified by two or more programs, with only 

seven SIEs identified by all four (Figure 3.3). With a strict requirement for identification 

by at least two structure-based programs, 2.8 Mb (67.14 %) of the novel annotated 

sequence identified by these four programs would have been missed.  

Despite low cross-program corroboration, there appears to be no specific program 

biases for GC content, inner structural intactness, length, element age (shown in Table 

3.8 as mean LTR identity), or classified genera, as had been proposed in the annotation 

of other species (Garcia-Etxebarria & Jugo 2010; Garcia-Etxebarria & Jugo 2012). All 

programs had SIE length distributions skewed by identification of very long LTR 

retrotransposons. The high percentages of SIEs unique to each program exemplifies the 

necessity of using multiple identification approaches. However, the high false positive 

rates mean stringent confirmation of putative SIEs is essential. 
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Figure 3.3 Four-set Venn diagram of the overlap between structurally intact LTR 

retrotransposons identified by the four structure-based identification methods. In 

general, there was little overlap between programs, with 782 elements (72.9 %) 

unique to one program. Each ellipse corresponds to one program (with LS in grey, 

LH in blue, MGS in orange and ReTe in green). The numbers represent the number 

of intact elements identified by that program or group of programs, with the ellipse 

overlaps representing shared identification. 

 

Table 3.8 Comparison of intact LTR retrotransposons (SIEs) features identified by 

the four structure-based identification programs. 

            SIE program results LTR_STRUC LTR Harvest MGEScan_LTR RetroTector 

Initial SIEs identified 299 5,264 523 567 

SIEs with feature support 93 643 427 290 

False positive rate (%) 68.9 87.8 18.4 48.9 

Total SIE content (bp) 767,132 4,837,212 4,928,810 2,664,622 

Mean SIE length (bp) 8,249 7,523 11,543 9,188 

Median SIE length (bp) 6,144 6,047 7,889 7,477 

Median SIE LTR identity (%) 95.8 95.2 91.5 94.0 

Mean SIE GC content (%) 48.1 47.2 45.7 46.3 

SIEs unique to program (%) 28.0 65.3 44.3 50.7 
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SIEs tend to represent recent insertions and accordingly exhibit LTRs with less than 10 

% sequence divergence, supporting insertion less than 13.5 million years ago (MYA) (95 

% confidence range: 12.5-14.7 MYA). Nearly 90 % of all identified SIEs have inserted 

since the separation of the chicken and turkey lineages (27.0 MYA, 95 % confidence 

range: 25.0-29.4 MYA)  (Helm-Bychowski & Wilson 1986). In addition, SIE GC-

content (46.9 %) was not significantly higher than the genome average of 41.8 %. 

However, variation in GC-content is explained by SIE insertion age, as absolute element 

GC-content deviance from the genomic mean decreases for older insertions (r = 0.45, P 

< 0.001, Figure 3.4).  

 

 

Figure 3.4 Absolute SIE GC content deviance from the genomic mean as a function 

of their age, measured by LTR pair identity. The red dashed line is the Pearson 

correlation (r = 0.45, P < 0.001). Younger insertions have a more deviant GC 

content, relative to the genomic average, than older elements. 

 

3.5.2 Changes in LTR retrotransposon annotation since the previous genome 

assembly (Galgal3) 

Some of the annotation improvement can be attributed to the improved quality of the 

Galgal4 assembly, as previous work used Galgal3 which had a four times higher 

proportion of ambiguous bases, a contig N50 of only 46.4 kb and significant assembly 
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errors on the Z chromosome. However, most improvements can be directly attributed 

to the use of the LocaTR pipeline, due to the enriched reference sequence database and 

reduced conservatism during SIE identification (Table 3.9). Improvements between the 

assemblies only accounted for an extra 2.5 Mb of annotated LTR retrotransposons. Use 

of LocaTR identified a further 14.1 Mb including an additional 587 SIEs not found by 

the previous RetroTector analysis (Bolisetty et al. 2012). 

Table 3.9 Comparison of LTR retrotransposon annotations between chicken 

genome assemblies highlighting improvements made with the LocaTR pipeline. 

     Assembly feature  Galgal3 
Galgal4 

(chicken RM) 

Galgal4 

(LocaTR) 

Assembly length (bp) 1,098,770,941 1,046,932,099 1,046,932,099 

Scaffold N50 (bp) 11,063,745 12,877,381 12,877,381 

Contig N50 (bp) 46,345 279,750 279,750 

LTR content (bp) 14,870,595 17,369,358 31,490,117 

LTR content (%) 1.35 1.66 3.01 

Number of SIEs 492 - 1,073 

 

3.6 Analysis of the LTR retrotransposons of Galgal4 

3.6.1 LTR retrotransposon density 

LTR retrotransposon density has a strong, positive correlation with chromosome size (r 

= 0.91, P < 0.001), and, consequently, a strong negative correlation with recombination 

rate (r = -0.81, P < 0.001) and gene density (r = -0.72, P < 0.001). Chromosome size was 

the only significant variable when fitted to the GLM (P < 0.001), but as recombination 

rate is scaled by sequence length (centimorgan per Mb; cM.Mb
-1

) this remains an 

important contextual relationship. Chromosomes 16, 25 and W exhibited much higher 

than expected element density (Figure 3.5), but this was likely due to large amounts of 

missing sequence from the assemblies caused by unassembled, collapsed or 

unsequenced repetitive elements. However, chromosomes 27 and Z are much more 

complete and have high density relative to their length and recombination rate.  
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Figure 3.5 Correlation between the chromosome length and its LTR 

retrotransposon density, where both measures have been log10 transformed. The 

dotted grey line represents the strong, positive correlation when named outliers 

were removed (r = 0.91, P < 0.001). Chromosomes 16, 25 and W have shorter 

assembly lengths than the known physical distance (Masabanda et al. 2004). 

Chromosomes 27 and Z have densities greater than expected for their length.  

Identification of intact LTR retrotransposon clusters 

Whilst most LTR retrotransposons were found on the chicken macrochromosomes, 

intra-chromosomal element density was highly heterogeneous. There were large regions 

of the genome devoid of intact elements, but 40.3 % of all SIEs were found within 

clusters (432 elements in 28 clusters) unrelated by insertion age or genera (Appendix 2; 

AF03). This was significantly higher than expected under random integration, where 

only 6.49 % of SIEs fall within clusters (P = 1.58x10
-30

). Cluster size varied from the 

minimum defined of five, up to a cluster which contained all fifty-six identified SIEs on 

chromosome W (Table 3.10).  

The suitability of using a cluster cut-off of 5 elements per Mb (chosen to match the work 

of Bolisetty et al. 2012) was tested by doubling the required frequency to 10 elements 

per Mb (matching the relative density cut-off of Bolisetty et al. 2012). This caused a 
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reduction of the number of SIEs within clusters (down to 343; 32.0 %) but all previously 

identified cluster regions were retained, suggesting that all were genuine clusters rather 

than random noise. 

Table 3.10 Identified LTR retrotransposon clusters in the Galgal4 assembly. 

Cluster coordinates and contained SIE features are shown in Appendix 2; AF03. 

Chromosome/Contig # Clusters # SIEs in clusters Cluster sizes 

1 7 107 32, 8, 7, 23, 9, 5, 23 

2 2 52 46, 6 

4 2 30 22, 8 

5 2 21 15, 6 

8 1 5 - 

16 1 8 - 

27 1 8 - 

W 1 56 - 

Z 5 103 15, 29, 10, 41, 8 

AADN03011155.1 1 6 - 

JH375232.1 1 6 - 

JH375233.1 1 7 - 

JH375236.1 1 11 - 

JH376410.1 1 7 - 

LGE64 1 5 - 

 

Clusters were commonly associated with regions of elevated fragmented LTR 

retrotransposon density, suggesting the persistence of these seemingly favourable areas 

over time. There were also several examples of regions with a high density of fragmented 

LTR retrotransposons linking two separately identified SIE clusters, most notably the 

two clusters near the centromere of chromosome 4. Almost all clusters were in regions 

of low recombination relative to the chromosome average, which likely facilitated the 

structural longevity of elements in these regions (Table 3.11). However, this correlation 
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was limited by the lack of data for chromosome 16, the unassembled contigs and the 

non-recombining W. Clusters on chromosomes 1, 2, 4 and 8 encompassed the poorly 

recombining centromeric regions (asterisked clusters in Table 3.11). Contrastingly, the 

cluster on chromosome 5 which encompasses the centromere has a 500 kb bin 
 

Table 3.11 Observed recombination rates in assembled chromosome clusters. The 

clusters indicated with an asterisk overlap the centromeres.  

 Recombination rate (cM.Mb-1) 

Cluster location 500kb-bin average Chromosome average 

1: 72,775,206 - 76,073,001 * 0.16 2.10 

1: 99,226,520 - 100,570,014 0.60 2.10 

1: 140,707,522 - 141,575,378 0.16 2.10 

1: 147,783,930 - 151,568,638 0.11 2.10 

1: 152,941,395 - 154,373,881 0.00 2.10 

1: 157,335,033 - 157,917,833 0.00 2.10 

1: 158,996,141 - 161,747,651 0.12 2.10 

2: 52,169,051 - 56,240,034 * 0.26 1.80 

2: 132,517,171 - 133,448,919 0.10 1.80 

4: 18,033,066 - 19,885,008 * 0.00 2.10 

4: 21,732,969 - 22,756,182 0.00 2.10 

5: 2,544,652 - 4,179,090 0.00 2.50 

5: 5,395,023 - 5,835,541 * 3.77 2.50 

8: 9,568,649 - 10,505,342 * 0.00 3.20 

27: 42,531 - 857,048 0.70 10.80 

Z: 26,957,545 - 27,971,718 1.70 3.00 

Z: 41,956,846 - 44,554,708 0.13 3.00 

Z: 48,504,870 - 49,571,015 0.40 3.00 

Z: 72,996,715 - 78,405,920 0.60 3.00 

Z: 79,462,456 - 80,646,626 0.00 3.00 
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recombination rate higher than the chromosomal average, but this could be due to 

averaging out across the region, or assembly issues with the centromere altering the 

observed distance.  

Despite the apparent longevity of these cluster containing regions, there was no evidence 

of insertion age bias in the clusters compared to those without. However, there is an 

overall bias in the dataset due to the higher proportion of younger SIEs which might 

mask any age-related effects. Additionally, there was a significant under-representation 

of both sauropsid (
2 

= 8.41, P = 0.004) and amniote (
2 

= 3.95, P = 0.047) constrained 

elements within the cluster regions. 

The eight clusters without recombination rate information were located at: 16: 230,428-

498,782; W: 9,649-1,241,834; AADN03011155.1: 4,562-75,119; JH375232.1: 2,446-

218,948; JH375233.1: 23,167-125,879; JH375236.1: 5,242-184,598; JH376410.1: 

2,512-82,932; LGE64: 925-799,254. 

 

Macrochromosome-like LTR retrotransposon density on chromosome 27 

Chromosome 27 element density was four times higher than on the similarly sized 

chromosomes 26 and 28, and included eight SIEs. However, its overall length, GC-

content and average recombination rate are consistent with these neighbouring 

chromosomes. Additionally, the chromosome shares a 1:1 synteny with the turkey 

(Meleagris gallopavo) chromosome 29 and zebra finch (Taeniopygia guttata) 

chromosome 27, so this relatively elevated LTR retrotransposon content was not a result 

of a recent macrochromosome fusion event.  

On closer inspection, 89 % of all elements on chromosome 27 were within 1 Mb of the 

5’ telomere, including a cluster of all eight SIEs (Table 3.11). Whilst the average 

chromosome recombination rate is 10.8 cM.Mb
-1

, the 5’ 1 Mb has a recombination rate 

of 0.7 cM.Mb
-1

, fifteen times lower than the chromosomal average. Interestingly, the 

gene density for this region is consistent with the rest of the chromosome, but almost all 

the genes are members of the feather beta-keratin family and share almost 100 % identity 

with each other. In birds, the main beta-keratin family is on chromosome 25, but recent 

work identified monophyletic expansions of the feather-specific family members on 
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chromosomes 2 and 27, shared among birds but absent in crocodilian outgroups 

(Greenwold & Sawyer 2010; Ng et al. 2014; Greenwold et al. 2014). 61 beta-keratin 

paralogues form a tandem array at the 5’ end of chromosome 27, and these are 

surrounded by, but not overlapping with, the high density LTR retrotransposon-derived 

sequences. Greenwold & Sawyer (2010) originally predicted that the high 

microchromosome recombination rates could generate these large paralogue tandem 

arrays, but, as has been stated above, the recombination rate for this region is very low. 

It is therefore possible that retrotransposition events facilitated the expansion of these 

paralogous genes, and the low recombination rates enabled the LTR retrotransposons 

to retain their structural intactness.  

 

Elevated LTR retrotransposon density on the Z chromosome 

A total of 6.21 % of the Z chromosome was annotated by LocaTR as LTR 

retrotransposon-derived sequence. In contrast, chromosome 4 has a similar length to 

the Z, but only 1.78 % of its total length was identified as LTR retrotransposon-derived 

sequence. As a sex chromosome, the Z only recombines in males and the recombination 

rate is highly heterogeneous, with long regions of low recombination which are known 

to facilitate both repetitive element persistence and retention of structural identity 

(Bergero & Charlesworth 2009). This is supported by 103 of the Z chromosome SIEs 

(61.3 %) being in clusters, with recombination rates in these regions strikingly lower than 

the chromosomal average (Table 3.11). Based on the correlation between element 

density and chromosome length for the majority of the genome, the predicted density 

for the Z would be 27.4 elements per Mb, compared to the observed value of 55.3 

elements per Mb. Therefore, the Z has 101.8 % more LTR retrotransposon-derived 

elements than would be expected on an autosome of equal length. 

As a converse example of the relationship between density and recombination rate, the 

highly recombining pseudoautosomal region (PAR) of the Z chromosome has just 2.7 

% of the expected LTR retrotransposon sequence given its length and the average 

chromosomal element density. 
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3.6.2 LTR retrotransposon distribution relative to transcriptional units 

Assuming random integration, 51.3 % of all LTR retrotransposons would be expected 

within transcriptional units (TUs), of which 92.0 % would be within introns. However, 

there is a significant depletion of LTR retrotransposons in TUs in both the full data set 

(31.3 %; P = 1.94x10
-5

) and SIE-only data set (35.8 %; P = 3.90x10
-4

) (Figure 3.6). This 

skewed result is observed with the overall distribution relative to nearest gene annotation, 

with both the full (KS = 0.139, P = 1x10
-100

) and SIE (KS = 0.146, P = 1.28x10
-17

) data sets 

exhibiting significant shifts away from the TUs.  

 

 

Figure 3.6 LTR retrotransposon distribution relative to the Ensembl genome 

annotations (v79). Shortest distance was measured from each element to the 

nearest annotated feature (irrespective of strand) and grouped into 10 kb bins, 

where the bin value represents the upper bin limit. For comparison, the dotted line 

represents 100,000 randomly generated distributions for each dataset, with 

standard deviation shown with the error bars. Only one line is shown because the 

randomly generated full and intact models gave the same results, and the 

standard deviation was equal between models when rounded to two decimal 

places. Significant differences between proportions in each bin are highlighted 

with asterisks, where * = P < 0.05 and *** = P < 0.0001. TU = Transcriptional 

Unit (incl. exons, introns, UTRs and 5 kb flanks up and downstream). ND = Non-

Defined (elements on contigs without any Ensembl annotation).  
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Taken genome-wide, some of the distribution detail is overlooked. Microchromosomes 

generally follow the random integration distribution, but the longer macrochromosomes 

exhibit the depletion of elements within TUs (e.g. chromosome 1; 28.3 % in TUs 

compared to 47.2 % under random integration; P = 3.88x10
-5

). Additionally, 

chromosomes 1-5, 8 and Z have significant enrichment of elements greater than 100kb 

away from TUs (e.g. chromosome 1; 42.8 % compared to 23.0 % under random 

integration; P = 1.17x10
-5

). These chromosomes are also gene sparse and contain 73.6 

% of the clustered SIEs (318 elements in 20 clusters). SIEs within clusters are also 

significantly depleted within TUs (P = 1.60x10
-7

) and enriched greater than 100kb away 

(P = 0.001) relative to the observed SIE distribution.  

Together these data suggest that new insertions within TUs are selected against, and that 

accumulation is tolerated primarily in the poorly recombining, gene sparse regions of 

the genome where clusters can form and persist over long evolutionary timescales due 

to limited selective constraints. Consequently, SIE distribution should be age dependent, 

with new insertions following a random distribution and older elements skewed away 

from the TUs. Whilst there is some evidence that SIEs within clusters are generally 

older than those outside, there is no suggestion that SIE age distribution differs from 

randomly generated redistributions. This analysis is, however, confounded by the 

dominating proportion of ‘young’ SIEs (70 % LTR identity or greater; 96.52 % of all 

SIEs). Older elements alone exhibit depletion in TUs and enrichment greater than 100 

kb away, but the sample size was too small for statistical robustness. 

  

Overlaps with transcriptional units  

Despite the evidence for enrichment away from transcribed regions, 31.3 % of all 

elements and 35.8 % of SIEs overlap TUs. Under random integration 4.9 % of insertions 

should be within exons, 3.1 % within UTRs, and the remaining 92.0 % within introns. 

However, the full dataset has significant enrichment of exon overlaps (10.1 %; P = 0.015), 

and the effect is greater in the SIE dataset with significant enrichment in both exons 

(38.3 %; P = 4.1x10
-24

) and 5’ UTRs (5.5 %; P = 0.005), and consequent depletion within 

introns (51.6 %; P = 1.3x10
-18

). There was no evidence for significant sense/anti-sense 

differences, as has been previously reported (Bolisetty et al. 2012).  
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Many of the exonic overlaps were short (less than 10 bp), with most of the element 

within the neighbouring intron. It is possible that some of these definitions were 

therefore simply artefacts of poor element demarcation during identification. Despite 

this, the proximity to the exons is still of interest as it could affect, or even have created, 

splice sites in the containing gene. For those elements which completely contained exons 

or even complete, annotated genes, another observation was that most of these genes 

were categorised by Ensembl as “uncharacterised, known protein coding”, which in most 

cases means that there was some RNAseq data which supported expression at this site, 

but little else is known. Additionally, most of these instances were single exon genes. It 

is therefore possible that these Ensembl ‘genes’ were only annotated due to expression 

(in one or more tissues for at least one submitted dataset) from the LTR retrotransposon 

itself, and are not ‘true’ genes. 

It is, however, unlikely that all significant exon overlaps are a result of incorrect 

annotation. The two sets of constrained positions provide some evidence of biological 

significance. A total of 238 SIEs contain at least one constrained element and of these 

82 have constrained elements from both lists, 82.9 % of which overlap exons. However, 

some overlaps are short and some of the constrained elements are themselves short, 

with a minimum accepted length of 10 bp. Exon overlaps may represent 

retrotransposon-derived exons or regulatory regions, or potential false positives which 

passed the feature tests. Most overlapped exons lacked any clear LTR retrotransposon 

homology through BLASTn, tBLASTx or domain pHMM analysis, even if the regions 

surrounding the overlapped feature have LTR retrotransposon homology. Whilst this 

may simply reflect selection and divergence of these retrotransposon derived sequences 

over time, it is worth noting that Ovex1, a co-opted gammaretrovirus in the chicken 

genome (discussed below in section 3.7.1), is found throughout the avian lineage and 

still retains clear LTR retrotransposon homology. The 5’ UTR overlaps potentially 

represent more interest, even if the overlaps are short, as the proximity to the start of 

the gene might suggest impact on gene expression or regulation. However, only a fifth 

of these UTR overlaps are LTRs (which, when intact, have their own promoter activity). 

Only 29 LTRs from the 1,073 SIEs contain constrained elements, with eight SIEs 

exhibiting constrained elements in both LTRs. These constrained LTRs largely overlap 

annotated exons rather than being potential standalone promoters under selection. 
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Overall, most constrained element overlaps with LTR retrotransposons appear to be 

with their internal regions. However, it is important to recognise that regions are only 

classed as being under constraint if they are conserved between multiple species groups, 

so any insertion since the divergence from the turkey would not appear constrained, but 

could still have function. 

 

3.7 Analysis of structurally intact LTR retrotransposon expression 

A total of 379 (35.3 %) SIEs have detectable RNA expression in the correct orientation, 

with robust transcript models, in at least one of the twenty-three tissues analysed. 

Expression was not biased towards younger elements or specific genera, but only 24.8 

% of expressed SIEs are found within clusters. Expressed elements appear to follow a 

random distribution pattern relative to the Ensembl annotation, but those that overlap 

TUs are highly enriched in exons (47.1 %; P = 4.1x10
-24

). Only 31 SIEs exhibit ‘complete’ 

expression, defined as a transcript extending at least the element length without the 

LTRs. Again, there was no apparent bias for genera or insertion age.  

Two thirds of all complete transcripts can be found in at least one embryo stage, but 

there is no evidence for significantly elevated expression at the earliest stage. Incomplete 

transcription of LTR retrotransposons across all 379 SIEs may support a gradual decline 

of expression through the three analysed embryonic stages (186, 168 and 144 SIEs 

expressed respectively). Pancreas and ovary were the most represented adult tissues 

(each had 143 elements with at least fragmented expression, with 49.7 % overlap 

between the two tissues), but overall have the 6
th

 and 15
th

 highest transcript model 

coverage of the genome. This suggests element expression may be tissue specific, rather 

than simply related to the quantity of RNA expressed by a specific tissue across the 

genome. 

Most identified LTR retrotransposon transcripts have high frequencies of closely 

interspersed stop codons in all three translated forward frames. However, there are 

examples of potentially full length protein products. One SIE on chromosome 8 (8: 

10,499,515-10,505,342) has a long open reading frame (ORF) with high homology to 

the betaretrovirus polymerase polyprotein and was found to be expressed in embryo 
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stages HH14-15 and HH25-26. A second SIE (4: 85,449,603-85,458,772) has two long 

ORFs in the first reading frame with high homology to gag and polymerase respectively, 

and a third long ORF in the second reading frame with high homology for the envelope 

polyprotein, all from gammaretroviruses. Whilst the gag and polymerase putative 

proteins lack some domains, the envelope ORF encodes Ovex1 (GenBank: 

NP_001159385.1; Figure 3.7), a previously described 873 amino acid protein of known 

gammaretroviral origin (Carré-Eusèbe et al. 2009).  

 

 

Figure 3.7 Ovex1 schematic showing the long gag-pol 5’UTR and envelope-derived 

exon, promoted by the 5’ LTR. The two LTR locations are shown, as are the 

recognisable reverse transcriptase (RT), RNaseH and integrase (INT) features 

identified by pHMM analysis. The lower line of red bars show the regions under 

constraint from the Ensembl alignment of seven sauropsid genomes. The location 

information shows the position of Ovex1 on chromosome 4. 

No putative transcripts were identified from alpharetroviral elements, although the many 

intact alpharetroviral LTRs could provide the basis for novel or alternative promoter 

activity, as could those from other retroviral genera. Both the intact polymerase putative 

proteins identified above have recognisable reverse transcriptase and RNaseH domains, 

which suggests they retain the ability to transpose other repeats, including non-

autonomous elements.  

 

3.7.1 Characterisation of Ovex1, the co-opted endogenous gammaretrovirus 

In their original characterisation, Carré-Eusèbe and colleagues (2009) determined that 

chicken Ovex1 RNA was limited to the gonads, but the RNAseq analysis described in 

the current study supports ubiquitous expression, with full-length transcript models 
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generated for ten adult tissues, including the ovary, and stage HH4-5 in the embryo data. 

Furthermore, the other RNAseq datasets had expression across the region, but at a level 

below the threshold required for transcript model construction in Cufflinks. Whilst 

expression in the ovary was the highest in the analysis (over 1000 times more read 

support than in spleen, the least supported intact transcript model), Ovex1 expression 

was not solely limited to the gonad and may have a more general function.  

InterPro analysis of the Ovex1 protein identified one transmembrane (TM) domain 22-

47 residues away from the protein carboxyl-terminus, as well as several protein-protein 

interaction sites (Figure 3.8). In comparison, the envelope proteins of reference beta-, 

delta-, epsilon- and, most relevantly, gammaretroviruses exhibit two TM domains near 

the carboxyl-terminus: approximately 30-55 and 205-230 residues from the end. The 

Phobius predictions for Ovex1 and the reference envelope proteins identified the region 

from the N-terminus to the first TM domain as non-cytoplasmic. This is consistent with 

all envelope protein annotations, as the N-terminal two thirds of the protein forms the 

surface domain, and the carboxyl-end forms the TM domain. In exogenous retroviruses 

translated envelope protein is spliced into its two constituent domains which then form 

a heterodimer, and a subsequent homotrimer of these heterodimers forms the retroviral 

envelope subunits. Other examples of host co-opted gammaretroviruses, notably the 

mammalian syncytin placental genes and murine antiviral receptor genes Fv4 and Rcmf, 

continue to form this homotrimer for their host function (Gong et al. 2005; Lavialle et 

al. 2013). The presence of putative protein-protein interaction sites suggests that Ovex1 

products could also form these functional homotrimer complexes.  

 

 

Figure 3.8 Domain analysis of the 873 amino acid Ovex1 protein. The blue line 

represents the Phobius-predicted non-cytoplasmic domain, and the short green 

line at the carboxyl-terminus is the cytoplasmic domain. The grey box near the 

carboxyl-terminus is the InterPro-predicted transmembrane (TM) domain, and the 

larger, upstream, diagonal-filled box represents the predicted location of the TM 

domain missing in Ovex1 that is present in gammaretroviral envelope proteins. 

The dark red boxes show the predicted protein-protein interaction sites.  
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Identification of Ovex1 homologues 

BLASTp searches identified Ovex1 protein homologues across the sauropsid lineage, 

including in turkey (GenBank: XP_010708895.1; 1x10
-200

; 95 % identity), duck (Anas 

platyrhynchos; GenBank: XP_012958629.1; 1x10
-200

; 86 % identity), eighteen Neoaves, 

and four reptiles: Anolis carolinensis, Pelodiscus sinensis, Python bivittatus and 

Thmanophis sirtalis. The four reptile Ovex1 homologues were annotated as PPARD 

(peroxisome proliferator activated receptor delta) proteins in GenBank, but the 

alignment between these and the PPARD sequences from chicken (GenBank: 

NP_99059.1), mouse (Mus musculus; GenBank: NP_035275.1), and human (Homo 

sapiens; GenBank: AAH07578.1) was very poor (less than 8 % identity when the three 

PPARD proteins share 82.9 % identity), suggesting an incorrect annotation for these 

four reptile sequences. The avian Ovex1-homologue sequences were generally well 

conserved at the TM carboxyl-end, and three species (Anser cygnoides, Serinus canaria 

and Zonotrichia albicollis) had duplicated protein sequences which also retained high 

carboxyl-end identity. Analysis of the Ovex1-homologue protein alignment identified 

207 sites (18.8 %) under purifying selection, including sites throughout the TM domain 

(supporting the carboxyl-end conservation) and regions correlating to the predicted 

protein-protein interaction sites. 

The phylogeny built from the alignment of retroviral envelope proteins and sauropsid 

Ovex1 protein homologues (Figure 3.9) was generally poorly supported, likely due to 

the extensive variability of the envelope sequences between retroviral genera. Whilst the 

Ovex1 homologues largely follow the known avian phylogeny, they do not nest with the 

gammaretroviral sequences as expected. However, the Ovex1 homologues do fall within 

the retroviral phylogeny (with the spumavirus group as a correct outgroup) and the 

combination of limited basal node support and excess of Ovex1 sequences (compared 

to other retroviral groups) may have affected the tree construction. The phylogeny alone 

would not be enough evidence to put the gammaretroviral classification in doubt, as all 

the polymerase domain classifications support gammaretroviral origin. Interestingly, the 

species-specific duplicated sequences group together as a sister clade to the reptile 

Ovex1 homologues, rather than falling within the main avian group, perhaps supporting 

an ancient duplication event within the avian lineage.  
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Figure 3.9 Phylogeny of retroviral envelope proteins, Ovex1 and the sauropsid 

Ovex1 homologues. Bootstrap values greater than 70 are shown on their 

respective nodes. The grey bars identify the retroviral clades, but exceptions are 

denoted by the symbols: ‘+’ Beta (B), ‘#’ Alpha, ‘*’ Epsilon. The betaretrovirus 

clade is divided by its two envelope subclasses, B and D. The phylogeny generated 
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here largely matches the known envelope phylogeny published on GyDB, although 

it would be expected that deltaretroviruses would be basal to the 

epsilonretroviruses. In addition, the alpharetroviruses would be expected to 

cluster together as a sister group to the deltaretroviruses.  

 

3.8 Discussion 

This updated annotation of the LTR retrotransposon content of the chicken genome 

has identified 31.5 Mb of sequence, including 1,073 structurally intact elements. 

Improvements between the Galgal3 and Galgal4 genome assemblies accounted for 

almost 2.5 Mb of extra annotated sequence, but the expanded homology protocol and 

use of four structure-based identification programs implemented through LocaTR 

enabled this much more complete annotation, including an additional 587 SIEs not 

identified in the previous analysis. This work brings the total annotated LTR 

retrotransposon content to 3.01 % of the genome, matching the observed levels in 

Neoaves and even mammals, when scaled for genome size. However, this increase in 

annotated content is largely due to annotation effort, so this work alone is insufficient to 

refute the previously proposed deficit of LTR retrotransposons in the Galliformes. The 

LocaTR analysis of multiple genomes of the avian lineage presented in Chapter 4 more 

comprehensively addresses this evolutionary question.  

 

An exhaustive list? 

The question remains as to whether even this much-expanded annotation is a complete 

list of all LTR retrotransposons within the chicken genome. Put simply, it is highly 

unlikely that the work presented here is an exhaustive list. The chicken genome 

assembly is not perfect, with thousands of unplaced contigs, missing microchromosomes 

and poorly sequenced regions such as chromosomes 16 and W, both of which are 

known to have high repeat content. In addition, the new Galgal5 assembly, released in 

March 2016, is likely to have a similar effect on annotated content as was observed 

between the Galgal3 and Galgal4 assemblies (explored in Chapter 4).    
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Another consideration is the methodology itself. The LocaTR pipeline does not require 

redundancy between approaches, but a degree of conservatism is still required in 

element validation to reduce the risk of false positives. Furthermore, the identification 

programs themselves are inherently biased towards known, well described LTR 

retrotransposon reference sequences. This is most obvious with the homology-based 

approaches, but the structure-based programs are based on training sequences and 

‘typical’ size constraints. However, it is also unlikely that most highly degraded or 

divergent sequences which are missed by these approaches are of great biological 

relevance to the host, unless such divergence was due to host co-option. 

 

3.8.1 The development of the LocaTR identification pipeline 

The initial installation, preliminary work and parameter optimisation completed for 

each of the disparate identification programs used in this study was time consuming and 

required the installation of multiple dependencies on the Roslin Linux servers. This was 

further complicated by generally limited documentation and a lack of ongoing author 

curation for several of the programs. As a result, every effort was made to ensure that 

the LocaTR identification pipeline was clear, well documented, and retained the ability 

for users to set program-specific parameters. Individual installations can still be difficult 

depending on the user’s computer architecture and privileges, as well as the availability 

and continued compatibility of accessory packages. In addition, LocaTR requires access 

to multiple operating systems with LTR_STRUC limited to Windows, and RetroTector 

to Windows or macOS. However, LocaTR is modular, allowing users to ‘pick and 

choose’ individual identification programs and to add additional software if desired.  

The programs used for the LocaTR analysis have been good choices, following their 

selection after an extensive review of the available software. There was generally low 

overlap between programs, and other tested programs had result subsets completely 

contained within other results, such as all elements identified by LTR_par and 

LTR_FINDER also identified by LTR Harvest. Other programs are available, but the 

current set of four structure-based programs offers good variety. The reference 

sequences used for the expanded homology-based protocol also give good phylogenetic 
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coverage, although analysis of plant genomes would benefit from the addition of plant-

specific LTR retrotransposon groups to the sequence list.  

The high false positive rate of the structure-based programs remains a concern, as does 

the potential for non-LTR retrotransposon sequences to be detected by the homology-

based programs due to high identity between domains such as reverse transcriptase. 

However, the results from the feature tests give good support for putative LTR 

retrotransposons, and the high corroboration between the feature tests and LTR Digest 

was reassuring. There is a chance that some identified SIEs may be false positives that 

passed the feature tests, but every effort has been made to reduce this undesirable result.  

Altogether, the pipeline development has been a success, not just for the results obtained 

with the analysis of the chicken, but also for its wider application. 

 

3.8.2 LTR retrotransposon distribution in the chicken genome 

Detailed analysis of the chicken LTR retrotransposons has shown that element 

distribution is non-random, with a significant depletion of elements within coding 

regions and an enrichment of elements in gene sparse areas, including significantly 

elevated LTR retrotransposon density on macrochromosomes. Genomic distribution 

is, therefore, dependent on insertion neutrality, as non-detrimental insertions are 

retained producing skewed distributions away from coding regions. 

Over 40 % of structurally intact elements were within clusters which were unrelated by 

insertion age or retroviral genera, suggesting recurrent insertions into the same genomic 

locations, generally in gene-sparse regions. Bolisetty and colleagues (2012) found similar 

rates of clustering and proposed functional roles for these clusters as cytoskeletal binding 

regions during mitosis, or as hotspots for recombination. This analysis, however, has 

found no evidence of constraint within cluster locations, and that most clusters are within 

genomic regions of low or negligible recombination rates. It is therefore likely that 

clusters form as the regions where insertions elicit limited or negligible deleterious 

phenotypic effects increase in size, eventually self-perpetuating as new insertions grow 

the clusters further.  
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This concept may have a wider impact on genome size, as high repeat content promotes 

repeat content expansion. Previous work has already linked total repeat content to the 

greater genomic stability of avian genomes compared with mammalian genomes (Griffin 

et al. 2008; Ellegren 2010), and may also explain why avian genomes have a deficit of all 

repeat classes compared to mammals unless scaled by genome size (explored further in 

Chapter 4).  

 

3.8.3 LTR retrotransposon activity within the chicken genome 

The continued retrotransposition of chicken alpharetroviral ERVs (both ALVEs and 

EAVs) is well documented (Wragg et al. 2015; Rutherford et al. 2016), but the high LTR 

identity observed with some gammaretroviral and betaretroviral ERVs supports recent 

integration of these retroviral genera, with the potential for further retrotransposition. 

Only a minority of these younger insertions retain intact internal domains, but the 

expression of other retroviral-like proteins in cells has the potential to facilitate 

retrotransposition of these degraded sequences.  

Transcribed LTR retrotransposons in the chicken were rare, and even these examples 

were largely fragmented or code for non-functional proteins. However, whilst a relatively 

diverse set of tissue types were used to assess expression they were from a limited age 

range and a single breed (crucially not the same bird used for the reference genome). 

Tissue-, temporal- and breed-specific expression is likely, and expression levels may be 

low enough to preclude transcript model construction. Despite this, transcripts were 

identified from gag, polymerase and envelope domains, with apparent tissue specificity. 

Of particular interest is the identified expression of polymerase in two cases, as both 

predicted products retain reverse transcriptase and RNaseH integrity, which suggests 

translated products could transpose other repeats, including non-autonomous elements. 

In addition, the integration of reverse transcribed host mRNA can form retrogenes; 

elements with huge evolutionary potential for the host through the introduction of intact 

domains to existing genes, or full gene duplication (Kaessmann et al. 2009). 

The expression of intact, likely functional, domains also presents more opportunity for 

recombination with exogenous retroviruses. Identification here of both gamma- and 
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betaretroviral domains, rather than just the alpharetroviral sequences implicit in the 

formation of ALV-J (Fadly 2000; Borisenko 2003), also extends the range of potential 

recombinant retroviruses, especially as cross-genera recombination has been observed 

(Liu et al. 2011). 

In addition, this work has enabled the further characterisation of Ovex1, including its 

much more ubiquitous pattern of expression compared to its initial characterisation 

(Carré-Eusèbe et al. 2009). The presence of putative protein-protein interaction 

domains suggests the Ovex1 protein may be able to form the functional homotrimer 

complexes observed in retroviral envelope proteins as well as other co-opted 

gammaretroviruses. Cell-cell cohesion, similar to that effected by the syncytin protein in 

the mammalian placenta, seems unlikely due to the ubiquity of expression. It is more 

likely that the protein may have a role in innate antiviral immunity through receptor 

interference, as has been widely documented in mouse and cat (Felis catus) with 

gammaretroviral envelope, in sheep (Ovis aries) with betaretroviral envelope, and in 

chicken with ALVE envelope (Lavialle et al. 2013; Smith et al. 1990a; Varela et al. 2009; 

Ito et al. 2013; Kozak 2014), by physically blocking retroviral entry receptors as a 

competitive inhibitor. Identification of duplicated avian homologues in three avian 

species also supports receptor interference, with duplicates potentially selected for 

defence to related, but distinct exogenous gammaretroviruses. This would be the first 

example of gammaretroviral envelope-mediated receptor interference in chicken. 

 

3.9 Concluding remarks 

This detailed annotation of LTR retrotransposons in the chicken reference genome 

provides a platform for further analysis. Within the scope of this project, it has enabled 

an evolutionary study of LTR retrotransposon content across the avian lineage (Chapter 

4) and the evaluation of ALVE diversity across chicken subpopulations and commercial 

lines (Chapters 6 and 7). Beyond its application for chicken research, the development 

of the LocaTR identification pipeline provides a useful resource to other researchers for 

the identification of these retroelements in any assembled genome.  
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Chapter 4:  Patterns in LTR retrotransposon content across 

the Avian lineage 

4.1 Introduction 

The work presented in the previous chapter showed that the chicken (super order 

Galloanserae) has a similar LTR retrotransposon content to that previously described in 

Neoaves. However, this could now be due to research effort rather than a true, 

biologically accurate representation of the difference in content between these birds. It 

should also be remembered that the initial proposal of a deficit of LTR retrotransposons 

within the Galliformes was based on comparisons with a limited selection of Neoaves 

genomes available at the time (Suh et al. 2011; Bolisetty et al. 2012). It is therefore 

possible that these conclusions were drawn based on lineage-specific LTR 

retrotransposon expansions.  

During the second year of my PhD project a wide phylogenetic range of draft avian 

genomes were released, enabling large-scale comparative genomic studies for the first 

time (Jarvis 2014). This took the number of publicly available avian genomes to forty-

eight, a number which has continued to increase over the last three years. Most of these 

were Neoaves genomes (reflecting avian extant diversity), with the chicken, turkey and 

duck of the Galloanserae, and the African ostrich (Struthio camelus australis) and white-

throated tinamou (Tinamus guttatus) of the Paleognathae. Endogenous viral elements 

were studied almost immediately (Cui et al. 2014), and the greatest numbers of intact 

ERVs were identified in three oscine passerines: 725 in zebra finch, 785 in the medium 

ground finch (Geospiza fortis), and 1,032 in the American crow (Corvus 

brachyrhynchos). However, at least in terms of intact elements, there was no clear split 

in content between Galliformes and Neoaves. The average number of identified intact 

ERVs was 350: the chicken had 573 and turkey had 303. Furthermore, the work 

presented in chapter 3 identified 1,073 intact ERVs in chicken.  

This variation in ERV content, especially as there is little evidence of shared avian ERVs 

with reptilian species, suggests lineage-specific expansion and contraction of many of 

these elements. Multiple studies published during and since my own analysis of LTR 

retrotransposons across the avian lineage (below) have supported the importance of 

lineage-specific repeat content, particularly in the Neoaves. This stems from the rapid 
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diversification of this group which has produced a hard polytomy at the base of the 

lineage, resulting in large-scale, incomplete lineage sorting of thousands of analysed 

genetic markers, including transposable elements (TEs) (Suh et al. 2015; Suh 2016).  

The general evolutionary consensus for the consistently low TE content of avian 

genomes (5-10 %, except approximately 22 % in the downy woodpecker, Dryobates 

pubescens) has been that these elements are generally inactive (Shedlock 2006; 

Shedlock et al. 2007; Janes et al. 2010). However, recent work has shown that many TEs 

are highly active in birds, but that there is a counter balancing high rate of large genomic 

deletions which maintain the small avian genome size (Kapusta et al. 2017). It is also 

interesting to note that whilst the net size change in most lineages remains close to zero, 

neighbouring taxa can exhibit very different, yet balanced, rates of gain and loss. This 

may, again, facilitate highly lineage-specific repeat content, although some of this effect 

may be mitigated as new TE expansions or TEs with high copy number are more likely 

to be removed from the genome by processes such as non-allelic recombination 

(Kapusta & Suh 2017). All this potential for lineage-specificity likely means a solely 

homology-based approach to LTR retrotransposon identification is inadequate for 

complete annotation.  

Another consideration for observed repeat lineage specificity is the highly variable 

quality of the avian genome assemblies. It was noted in chapter 3 that, even without the 

use of LocaTR, the analysis of the chicken Galgal4 assembly enabled identification of 

2.5 Mb more LTR retrotransposon derived sequence than was identified in the same 

manner with the previous Galgal3 assembly. The original forty-eight avian genomes used 

short read sequencing data, but some of the more recent assemblies, including the 

Japanese quail (Coturnix japonica), hooded crow (Corvus cornix), great tit (Parus major) 

and the new Galgal5 chicken genome assembly, have made use of long read sequencing 

technology. This generates higher contiguity and is more able to sequence through 

repetitive regions. The Galgal5 assembly is 183 Mb longer than Galgal4, has ten times 

greater contig length, reduced contig number, a 95.7 % reduction in the number of 

scaffold spanned gaps, and three more assembled microchromsomes (30, 31 and 33) 

(Warren et al. 2017), summarised in Table 2.3. It is therefore likely that these long read 

based assemblies will produce more representative LTR retrotransposon content, and 

it is important that the impact of assembly quality is quantified. 
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4.2 Research Aims 

This chapter covers two major research aims. Firstly, the identification of LTR 

retrotransposons in the new chicken genome assembly (Galgal5) using LocaTR, to 

determine whether recent improvements in assembly length and contiguity have effected 

total LTR retrotransposon content. Secondly, the identification of LTR 

retrotransposons across the avian lineage using LocaTR, to identify whether there is truly 

a deficit of these elements in Galliformes compared to the Neoaves, and to assess the 

extent of lineage-specific expansions and the impact of genome quality on repeat 

annotation. 

 

4.3 Statement of publication 

A summary of the LocaTR analysis of the Galgal5 chicken assembly was published 

within the paper describing the new genome build: Warren W, Hillier L, Tomlinson C 

et al. (2017), A New Chicken Genome Assembly Provides Insight into Avian Genome 

Structure, G3, 7: g3.116.935923. This included a short section on the physical 

distribution of these elements, the comparison between Galgal4 and Galgal5, and 

relative improvements to total repeat content (Appendix 3: Paper3). At the point of 

publication, the RetroTector analysis had not been completed, so the total numbers 

presented here are slightly larger than in the Galgal5 paper. 

As stated above (section 3.3), the initial, homology-based identification of LTR 

retrotransposons across a limited range of the sauropsid lineage was published as part of 

the LocaTR and Galgal4 annotation paper: Mason et al. 2016 (Appendix 3: Paper2).   

 

4.4 Identification of the LTR retrotransposon content of the new Galgal5 

chicken genome assembly 

A total of 35.2 Mb of the Galgal5 assembly was identified as LTR retrotransposon-

derived sequence. This accounts for 2.86 % of the genome. Whilst this is a smaller 

percentage than identified in Galgal4, this is due to the 17.51 % increase in total assembly 
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length. The actual annotated LTR retrotransposon sequence has increased by 3.7 Mb 

(11.91 % increase over the Galgal4 annotation; Table 4.1). 

Table 4.1 Comparative summary of the LocaTR-annotated LTR retrotransposon 

content of the chicken genome from the Galgal4 and Galgal5 assemblies. 

Assembly features Galgal4 Galgal5  

Total length (bp) 1,046,932,099 1,230,258,557 

LTR content (bp) 31,454,008 35,200,607 

LTR content (%) 3.01 2.86 

Number of SIEs 1,073 1,295 

 

This total content includes some 63,421 distinct sites of which 1,295 were structurally 

intact elements (SIEs). A total of 1,073 SIEs were identified in Galgal4 and the increase 

appears to be due to improvements on the W chromosome (SIEs increased from 56 in 

Galgal4 to 244 in Galgal5) and the sequencing of previously unrepresented regions. SIE 

content on the assembled macrochromosomes has generally reduced due to collapsing 

of repetitive regions and proper incorporation of unplaced contigs.  

The effect of the improvements made in this assembly to increase both contiguity and 

total sequence were evident from a the RepeatMasker ‘-species vertebrates’ analysis 

alone (Table 4.2). However, the use of LocaTR enabled identification of an additional 

8.5 Mb of LTR retrotransposon-derived sequence (32.0 % extra). This observed 

increase using LocaTR was not solely due to identification of SIEs, as the LocaTR 

homology protocol identified 31.3 Mb of sequence, 4.6 Mb more than using 

RepeatMasker alone (Table 4.3). The secondary BLAST protocol (following the SIE 

identification) had a much more limited additive effect than in the Galgal4 analysis. This 

was due to most of these sites being identified by the homology protocol, following the 

inclusion of the Galgal4 results. 
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Table 4.2 Improvements in LTR retrotransposon content annotation across three 

chicken genome assemblies. The Galgal4 to Galgal5 sequence increase is almost 

four times more than the increase between Galgal3 and Galgal4. 

Assembly features Galgal3 Galgal4  Galgal5 

Assembly length (bp) 1,098,770,941 1,046,932,099 1,230,258,557 

Scaffold N50 (bp) 11,063,745 12,877,381 6,379,610 

LTR content (bp) 14,870,595 17,369,358 26,660,513 

LTR content (%) 1.35 1.67 2.17 

 

Table 4.3 The contribution of the distinct LocaTR protocols to the overall total for 

both the Galgal4 and Galgal5 assemblies. Total identified content is shown for the 

homology and structure-based protocols, and just the additive effect is shown for 

the secondary BLAST. The use of the Galgal4 annotation as part of the Galgal5 

analysis has reduced the additive effect of the secondary BLAST, limiting 

additional sequence to that homologous to the newly identified SIEs. 

LocaTR protocol contributions Galgal4 Galgal5  

Homology protocol (bp) 20,322,178 31,290,565 

Structure-based programs (bp)    9,114,835    9,683,365 

Additive secondary BLAST (bp)    7,064,272       484,108 

Total (bp) 31,454,008 35,200,607 

 

Each of the four structure-based identification programs again exhibited high false 

positive rates (Table 4.4), but this time there was greater corroboration between the 

programs. In the Galgal4 analysis, 72.79 % (782/1073) of all SIEs were identified by a 

single program. For Galgal5, 532 of the 1,295 SIEs (41.08 %) were unique to a single 

program, and 609 (47.02 %) were identified by two programs. There was much greater 

overlap between the results of LTR Harvest, MGEScan_LTR and RetroTector for this 

analysis than was observed in Galgal4. Again, there were no detectable biases between 

the four programs, but only 0.31 % of SIEs were identified by all four. 
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Table 4.4 Structurally intact elements identified by the four structure-based 

identification programs. False positive rates are comparable to the Galgal4 

analysis (Table 3.8), but the unique SIE percentages are lower for all programs. 

Intact element features LTR_STRUC LTR Harvest MGEScan_LTR RetroTector 

Initial SIEs identified 1,661 29,251 1,129 1,054 

SIEs with feature support 379 800 687 539 

False positive rate (%) 77.18 97.27 39.15 48.86 

SIEs unique to program (%) 6.86 27.38 27.51 18.18 

 

4.4.1 LTR retrotransposon density 

In the Galgal5 assembly, like Galgal4, chromosome length had a strong negative 

correlation with both gene density (r = -0.93; P < 0.001) and recombination rate (r = -

0.91; P < 0.001). In the Galgal4 assembly, LTR retrotransposon content was found to 

have the opposite correlation: a strong positive correlation with chromosome length and 

negative correlations with both gene density and recombination rate (Table 4.5). In 

Galgal5 these correlations are weaker, but remain significant. 

Table 4.5 Correlations between LTR retrotransposon density and chromosome 

length, recombination rate or gene density for the chicken Galgal4 and Galgal5 

assemblies. Each correlation is given as the Pearson ‘r’ and the associated P 

values are given below in brackets. Non-significant P values are underlined. 

Correlations were completed for all assembled Galgal4 chromosomes (Gg4), all 

assembled Galgal5 chromosomes (Gg5 All), the Galgal5 macrochromosomes (Gg5 

Macro; 1-10) and the Galgal5 microchromosomes (Gg5 Micro; 11-15,17-26,28). 

Gg4 analysis excluded chromosomes 16, 25, 27, 32, W and Z (section 2.2.2), and 

Gg5 analysis excluded chromosomes 16, 27, 30-33, W and Z (section 2.3.2). 

LTR density correlation Gg4 Gg5 All Gg5 Macro Gg5 Micro 

vs. chromosome length 
  0.91 

(P < 0.001) 

  0.69 

(P < 0.001) 

  0.97 

(P < 0.001) 

  0.17 

(P = 0.572) 

vs. recombination rate 
- 0.81 

(P < 0.001) 

- 0.50 

(P = 0.014) 

- 0.88 

(P = 0.001) 

- 0.22 

(P = 0.447) 

vs. gene density 
- 0.72 

(P < 0.001) 

- 0.58 

(P = 0.003) 

- 0.88 

(P = 0.001) 

- 0.18 

(P = 0.548) 
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Reduction in the genome-wide correlation strength is due to the increase in annotated 

LTR retrotransposon content on the microchromosomes. The macrochromosomes 

and microchromosomes have very different LTR retrotransposon content compared to 

their chromosome length (Figure 4.1). Chromosomes 1 to 10 have correlations like 

those observed genome-wide in Galgal4, however, the microchromosomes (11-15, 17-

26, 28) have no significant correlations between LTR retrotransposon content and 

chromosome length, recombination rate or gene density (Table 4.5).  

 

 

Figure 4.1 Correlation between chromosome length and LTR retrotransposon 

density, where both measures have been log10 transformed and all the outlier 

chromosomes (16,27,30-33,W,Z) have been removed. The grey dotted line (r = 

0.69) shows the positive correlation for all data, and the red dotted line (r = 0.97) 

is the stronger positive correlation when just considering the macrochromosomes 

(chromosomes 1-10; triangles). The microchromosomes (crosses) alone have a 

non significant correlation.  

The GLM fitted for the whole genome identified both chromosome length (P < 0.001) 

and recombination rate (P = 0.027) as significant variables. There was no significant 

interaction between the two variables even though recombination rate is scaled by 

chromosome length. Recombination rate was not significant in the Galgal4 GLM 

(section 3.6.1). The GLM fitted for just the macrochromosomes gave only chromosome 
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length as significant (P < 0.001), and the GLM for the microchromosomes had no 

significant variables.  

Correlations between LTR retrotransposon content and chromosome length were all 

repeated with the addition of the unplaced, but localised, contigs for the assembled 

chromosomes. The lengths were included in the chromosome totals and elements 

identified on these contigs were added to the density calculation. The correlations were 

much the same, and the same split was observed between macrochromosomes and 

microchromosomes. These data are not shown here as the values for lengths and density 

were non-biologically representative approximations. However, it was important to 

check that the absent regions that were difficult to assemble, due to, for example, their 

repeat content, did not bias the correlations. 

 

SIE clusters 

A total of 521 SIEs (40.23 %) were identified within clusters which were unrelated by 

insertion age or genera (Appendix 2; AF05), proportionately almost identical to Galgal4 

(40.26 %).  All but two of the previously identified clusters were identified again. Both 

were clusters of five SIEs which have now reduced to four, removing them from the 

analysis. An additional cluster was identified on the Z chromosome, and neighbouring 

cluster pairs identified on both chromosome 1 and Z in Galgal4 were joined in this 

analysis. Despite these similarities it must be noted that several clusters on chromosomes 

1, 2, 4 and Z reduced in size due to repeat collapsing and the incorporation of unplaced 

contigs which increased the region size. However, the numbers remain similar due to 

the expansion of the single W chromosome cluster from 56 SIEs in Galgal4 to 244 in 

this analysis. 

 

4.4.2 The distribution of LTR retrotransposons relative to genomic features 

In addition to the recent improvements of the chicken reference genome, the known 

annotation of coding features has also been updated using RNAseq data from multiple 

tissues and developmental stages, and the inclusion of PacBio IsoSeq data which 



99 

unambiguously identifies alternative transcripts (Gonzalez-Garay 2015). Consequently, 

much more of the genome has been annotated as coding, so now, under random 

integration, it would be expected that 58.32 % of insertions would fall within 

transcriptional units (TUs; the coding region and 5 kb up- and downstream). However, 

as with the Galgal4 analysis, there is a significant depletion of LTR retrotransposon 

derived sequence within coding regions (46.27 %; P = 0.017), and an enrichment of 

these in unplaced contigs (20.52 %; P = 0.020), when compared to a model of random 

integrations (Figure 4.2). These differences are more marked in the SIE dataset (P = 

1.24 x10
-5

 and P = 4.45 x10
-10

 respectively).  

 

 

Figure 4.2 LTR retrotransposon distribution relative to the Ensembl genome 

annotations (v86). Shortest distance was measured from each element to the 

nearest annotated feature (irrespective of strand) and grouped into 10 kb bins, 

where the bin value represents the upper bin limit. The dotted line represents 

100,000 randomly generated distributions for each dataset, with standard 

deviation error bars. One line is shown because the randomly generated full and 

intact models gave the same results, and the standard deviation was equal when 

rounded to two decimal places. Significant differences between proportions in 

each bin are highlighted with asterisks, where * = P < 0.05 and *** = P < 0.0001. 

TU = Transcriptional Unit (incl. exons, introns, UTRs and 5 kb flanks up and 

downstream). ND = Non-Defined (contigs without an Ensembl annotation). 
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In contrast to the Galgal4 analysis, there was no enrichment in either the full or SIE 

datasets in regions greater than 100 kb away from coding regions. However, when the 

macrochromosomes (1-10, Z) were considered alone, there was both significant 

depletion of elements within TUs (43.78 %; P = 0.027) and enrichment in regions greater 

than 100 kb away from coding regions (24.69 %; P = 0.032). On the microchromosomes, 

LTR retrotransposon distribution follows that of the random integration model.  

 

Observed overlaps with long non-coding RNA (lncRNA) genes 

Transposable elements have been shown to derive lncRNA genes in mammalian 

genomes (Kapusta et al. 2013), and work recently published from our group by Kuo and 

colleagues (2017) identified over 20,000 novel lncRNA genes in the chicken. Of the 782 

structurally intact LTR retrotransposons on assembled chromosomes, 72 (9.21 %) were 

found to overlap with lncRNA genes by at least 50 bp. Of these, 32 (44.44 %) were where 

the lncRNA completely contained the SIE, and 21 (29.17 %) were SIEs which 

completely contained the lncRNA. A further 15 (20.83 %) had overlaps shorter than 

half the length of the smaller element.  

Interestingly, 54.17 % of lncRNA (39/72) overlaps were with SIEs within clusters. One 

of these SIEs (4: 19,503,044-19,513,269) contained two lncRNAs in the same 

orientation: 4: 19,509,404-19,510,686 and 4: 19,511,604-19,513,631. Overall, 54.17 % 

of overlapping features were in the same orientation.   

The output file of this intersectBed analysis is in Appendix 2: AF06. 

 

4.5 LTR retrotransposon content across the avian lineage 

4.5.1 Homology-based annotation using the LTR retrotransposon sequences 

identified in the analysis of the Galgal4 assembly 

LTR retrotransposons were identified in each of the twenty-one analysed species with 

the generic RepeatMasker analysis for vertebrate repeats, but the addition of the Galgal4 

custom library increased the annotated LTR retrotransposon content in all species. The 

additive influence of the chicken-derived sequences was substantial across the lineage 
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(Table 4.6), except in the phylogenetically distant Carolina anole (Anolis carolinensis). 

Eleven of the analysed species had an increase to their annotated repeat content greater 

than was seen in the chicken. 

When these data were annotated against the known phylogeny (Figure 4.3) it was clear 

that LTR retrotransposon content is highly heterogeneous, and there was certainly no 

clear split between the Galloanserae and Neoaves. The highest LTR retrotransposon 

content was identified in the two oscine passerines analysed (American crow and zebra 

finch; cbra and tgua), matching the work of Cui and colleagues (2014). However, it is 

interesting to note that these two species differ in the content derived from each 

RepeatMasker analysis (Table 4.6), perhaps supporting lineage-specific repeat variation 

within this incredibly diverse phylogenetic group.  

Sister taxa often have very different LTR retrotransposon content, such as the rock dove 

(Columba livia; cliv) and yellow throated sandgrouse (Pterocles gutturalis; pgut), and 

Anna’s hummingbird (Calypte anna; cann) and the common cuckoo (Cuculus canorus; 

ccan). Interestingly, in both pairings it is the species with the ‘poorer’ genome quality (in 

terms of N50 length) which has the greater content. However, there were no significant 

correlations between LTR retrotransposon content and genome size, scaffold N50 or 

contig N50 (Figure 4.4). A striking example of this was that the same LTR 

retrotransposon content (2.67 %) was observed in the bald eagle (Haliaeetus 

leucocephalus; hleu) and barn owl (Tyto alba; talb) despite the bald eagle genome having 

a 180-fold higher scaffold N50 length. This likely represents true lineage-specific 

differences between the species. 
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Table 4.6 The identified LTR retrotransposon content in each analysed species 

showing the contribution of the two RepeatMasker analyses. Species are shown 

in alphabetical order with unique four letter codes. The LTR retrotransposon 

content is shown as percentages of the genome in all cases, with the first column 

the content identified from the ‘-species vertebrates’ RepeatMasker analysis (RM-

v), the second column from the custom Galgal4 library (RM-G4), and the third 

column shows the additive total. Annotated content overlapped between analyses 

in all cases, with the additive Galgal4 analysis effect in the final column. 

Species name Code RM-v (%) RM-G4 (%) Total (%) Effect (%) 

Anas platyrhychos apla 0.99 3.78 3.95 74.94 

Anolis carolinensis acar 4.52 0.43 4.88   7.38 

Apaloderma vittatum avit 0.86 3.10 3.38 74.56 

Aptenodytes forsteri afor 1.10 1.38 1.51 27.15 

Calypte anna cann 0.66 0.77 1.09 39.45 

Chrysemys picta bellii cpic 1.30 2.58 3.87 66.41 

Columba livia cliv 0.61 0.89 1.06 42.45 

Corvus brachyrhynchos cbra 1.97 3.48 4.53 56.51 

Cuculus canorus ccan 0.52 3.94 4.10 87.32 

Falco peregrinus fper 1.15 1.35 1.54 25.32 

Gallus gallus ggal 1.67 3.01 3.01 44.52 

Haliaeetus leucocephalus hleu 1.83 2.46 2.67 31.46 

Meleagris gallopavo mgal 1.06 1.62 1.76 39.77 

Melopsittacus undulates mund 1.52 1.59 2.03 25.12 

Pelecanus crispus pcri 1.73 3.38 3.53 50.99 

Picoides pubescens ppub 0.59 1.13 1.37 56.93 

Pterocles gutturalis pgut 1.11 3.97 4.27 74.00 

Pygoscelis adeliae pade 1.28 2.56 2.69 52.42 

Struthio camelus australis scam 0.17 0.36 0.48 64.58 

Taniopygia guttata tgua 3.54 2.07 4.94 28.34 

Tinamus guttatus tgus 0.21 0.49 0.61 65.57 

Tyto alba talb 1.51 2.09 2.67 43.45 
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Figure 4.3 LTR retrotransposon genome content across the Avian lineage. This 

cladogram shows twenty species from the three major lineages of birds and two 

outgroup species: the Carolina anole and the Western painted turtle. The LTR (%) 

column shows the relative proportion of the genome annotated as LTR 

retrotransposon by the combined RepeatMasker protocol. The third column gives 

the genome size in gigabase pairs (Gbp). The fourth and fifth columns are 

indicative measures for assembly quality: the scaffold N50 in megabase pairs, and 

the contig N50 in kilobase pairs. The cladogram was constructed based on 

published avian phylogenies (Jarvis et al. 2015; Suh 2016). Species names are 

given as four letter codes which were defined above in Table 4.6.  
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Figure 4.4 Scatter plots showing the absence of correlations between identified 

LTR retrotransposon content (%), genome size and genome quality. A) LTR content 

against genome size including the outlier larger reptile genomes (r = 0.31; P = 

0.160). B) LTR content against avian genome size (r = -0.05; P = 0.821). C) LTR 

content against scaffold N50 length (r = 0.12; P = 0.584). D) LTR content against 

contig N50 (r = 0.16; P = 0.482). The chicken value was excluded from this last 

correlation as its contig N50 was eighty-fold greater than the average N50 value 

of the other genomes. 

 

4.5.2 LocaTR analysis of the avian lineage 

LTR retrotransposons were identified in sixty-seven avian genomes and six reptilian 

outgroups. Total LTR retrotransposon content ranged from 0.48 – 9.03 %, with a mean 

value of 2.68 % and a median of 2.09 %. Five of the reptiles exhibited the five largest 

contents, with Python bivittatus (pbiv) the thirteenth largest (4.29 %). Among the avian 

genomes, the maximum annotated content was 4.77 % in Colius striatus (cstr), the mean 

value was 2.31 %, and the median was 2.03 %. The number of identified SIEs varied 
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over three orders of magnitude, with 11 in Ara macao (amac) and 6,760 in Anolis 

carolinensis (acar) (mean = 506.14, median = 238). Predictably, the larger reptilian 

genomes had more SIEs than were observed in any bird (again, except pbiv). When the 

number of SIEs were scaled by genome size, five of the top ten densities were in bird 

genomes, the most being in chicken (ggal; fourth highest value overall).  

The LocaTR pipeline identified more LTR retrotransposon-derived sequence in all 

species than was observed with a RepeatMasker analysis alone. However, the additive 

effect of LocaTR ranged from just 3.26 % in Cathartes aura (caur) to 1,000.00 % in pbiv. 

The mean additive effect was 144.97 %, but this was very skewed, as the median effect 

was 63.89 %. Those species with limited additive effect also had some of the lowest 

numbers of identified SIEs. In three species, the secondary BLAST protocol identified 

no additional sequence: Eurypyga helias (ehel; 81 SIEs), Haliaeetus albicilla (halb; 122 

SIEs), and Tyto alba (talb; 115 SIEs). 

There was no observable correlation between total LTR retrotransposon content and 

genome size (r = -0.13; P = 0.297), but content was positively correlated with the number 

of identified SIEs (r = 0.38; P = 0.002). There were positive correlations between the 

number of SIEs (when scaled for genome size) and contig N50 (r = 0.48; P < 0.001), and 

with scaffold N50 (r = 0.75; P < 0.001). Contig N50 was not correlated with total content 

(r = 0.10; P = 0.388), but there was a slight positive correlation between scaffold N50 

and total content (r = 0.29; P = 0.018). Correlations with scaffold N50 must be treated 

carefully as the species used in this analysis have very different scaffold statistics. Over 

50 % of species have a scaffold N50 over 2 Mbp, but in 40 % it is less than 65 kbp.  

A comprehensive analysis of the contribution of different LTR retrotransposon groups 

to the overall annotated content was not completed in this study. However, DIRS 

elements were not identified in any bird genome, or in the genomes of Alligator 

mississippiensis (amis), Crocodylus porosus (cpor) or pbiv. These findings are 

corroborated by the literature (Piednoël et al. 2011), and support the loss of DIRS 

elements in the Archosauriformes, and an independent loss within the pbiv lineage.  

The annotated LTR retrotransposon content is summarised below in Table 4.7, and 

mapped to the Sauropsida phylogeny in Figure 4.5. 
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Table 4.7 The identified LTR retrotransposon content in each analysed species 

showing the annotated content from a standard RepeatMasker analysis (RM-v), 

the annotated content from the LocaTR analysis, and the number of identified 

structurally intact elements (SIEs). Species are shown in alphabetical order with 

unique four letter codes used below in Figure 4.5, and the reptilian outgroups have 

been indicated by an asterisk. Any codes used above in Figure 4.3 and Table 4.6 

were used again here. The LTR retrotransposon content is shown as percentages 

of the genome in all cases.  

Species name Code RM-v (%) LocaTR (%) No. SIEs 

Acanthisitta chloris achl 1.26 4.57 88 

Alligator mississippiensis * amis 4.80 6.10 2,014 

Amazona aestiva aaes 1.66 4.28 714 

Amazona vittata avia 1.06 1.10 25 

Anas platyrhynchos apla 0.98 2.26  479  

Anolis carolinensis * acar 4.45 9.03  6,760  

Anser cygnoides domesticus acyg 0.97 2.02  182  

Antrostomus carolinensis acol 1.38 4.50  78  

Apaloderma vittatum avit 0.86 0.95  83  

Aptenodytes forsteri afor 1.08 1.77  155  

Apteryx australis mantelli aaus 0.15 0.48  284  

Aquila chrysaetos canadensis achr 1.85 2.03  442  

Ara macao amac 0.84 0.87  11  

Balearica regulorum gibbericeps breg 1.32 1.39  124  

Buceros rhinoceros silvestris brhi 0.74 1.52  44  

Calidris pugnax cpug 0.57 3.61  280  

Calypte anna cann 0.64 3.30  340  

Cariama cristata ccri 0.73 1.51  76  

Cathartes aura caur 0.92 0.95  19  

Chaetura pelagica cpel 0.67 3.72  312  

Charadrius vociferus cvoc 0.81 3.39  375  

Chlamydotis macqueenii cmac 1.20 2.09  68  
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Chrysemys picta belii * cpic 1.30 8.96  3,209  

Colinus virginianus cvir 1.12 1.21  22  

Colius striatus cstr 1.76 4.77  109  

Columba livia cliv 0.59 2.54  264  

Corvus brachyrhynchos cbra 1.97 3.12  1,059  

Corvus cornix cornix ccor 1.61 2.29  701  

Coturnix japonica cjap 1.19 2.09  393  

Crocodylus porosus * cpor 5.14 7.68  1,818  

Cuculus canorus ccan 0.52 4.54  194  

Egretta garzetta egar 1.26 3.14  320  

Eurypyga helias ehel 1.41 1.47  81  

Falco cherrug fche 1.13 1.29  311  

Falco peregrinus fper 1.14 1.28  315  

Ficedula albicollis falb 1.53 1.82  238  

Fulmarus glacialis fgla 1.09 1.14  59  

Gallus gallus ggal 2.17 2.86  1,295  

Gavia stellata gste 0.63 1.53  42  

Geospiza fortis gfor 2.69 3.21  486  

Haliaeetus albicilla halb 1.58 1.65  122  

Haliaeetus leucocephalus hleu 1.83 1.95  276  

Lepidothrix coronata lcor 0.92 1.87  226  

Leptosomus discolor ldis 0.96 1.02  116  

Manacus vitellinus mvit 0.87 2.30  215  

Meleagris gallopavo mgal 1.06 2.80  411  

Melopsittacus undulatus mund 1.52 4.22  642  

Merops nubicus mnub 0.90 1.95  105  

Mesitornis unicolor muni 0.92 1.09  100  

Nestor notabilis nnot 1.22 3.63  85  

Nipponia nippon nnip 1.06 1.51  226  
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Opisthocomus hoazin ohoa 1.02 2.09  492  

Parus major pmaj 1.49 2.10  613  

Pelecanus crispus pcri 1.73 3.00  225  

Phaethon lepturus plep 1.46 1.78  134  

Phalacrocorax carbo pcar 1.15 1.21  93  

Phoenicopterus ruber prub 0.96 1.86  56  

Picoides pubescens ppub 0.59 0.94  545  

Podiceps cristatus pcrs 1.28 2.84  111  

Pseudopodoces humilis phum 1.66 2.63  921  

Pterocles gutturalis pgut 1.11 1.26  50  

Pygoscelis adeliae pade 1.28 1.54  196  

Python bivittatus * pbiv 0.39 4.29  652  

Serinus canaria scan 3.48 4.31  934  

Struthio camelus australis scam 0.17 1.09  134  

Sturnus vulgaris svul 1.48 2.04  431  

Taeniopygia guttata tgua 3.54 4.50  1,109  

Tauraco erythrolophus tery 1.50 4.65  133  

Thamnophis sirtalis * tsir 0.83 6.14  2,614  

Tinamus guttatus tgus 0.21 1.46  243  

Tyto alba talb 1.51 1.56  115  

Zonotrichia albicollis zalb 2.29 2.82  338  

Zosterops lateralis melanops zlat 1.84 2.33  416  
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Figure 4.5 Cladogram of the avian lineage, including reptilian outgroups, with the 

annotated LTR retrotransposon content of each genome. Species names are given 

with a four letter code as defined in Table 4.7. The total LTR retrotransposon 

content is given as a percentage of the genome size following annotation by 

LocaTR. The final three columns are for the genome assembly size, the scaffold 

N50 length, and the contig N50 length. Five of the assemblies do not contain 

scaffolds, so the scaffold N50 value is shown as ‘-‘. The cladogram was 

constructed based on the known phylogeny (Kan et al. 2010; Meiklejohn et al. 

2014; Jarvis et al. 2015; Suh 2016), and seven of the nodes are numbered to give 

their approximate dates of divergence. The cladogram itself is not to scale, but the 

long branches after the Neoaves radiation have been chosen to show the length 

of separation of these major groups. Numbered nodes: 1) Separation of the 

Lepidosauromorpha (lizards and snakes) and Archosauromorpha ~265 MYA, 2) 

separation of the Pantestudines (Turtles) and Archosauriformes ~260 MYA, 3) 

separation of the crocodilian and avian lineage ~250 MYA, 4) separation of the 

Palaeognathae and Neognathae ~105 MYA, 5) separation between the 

Galloanserae and Neoaves ~100 MYA, 6) split between the Galliformes and 

Anseriformes ~60 MYA, and 7) the Neoaves radiation ~65 MYA following the K-T 

mass extinction event. The short branch lengths after node 7 have been drawn to 

represent the incomplete lineage sorting following rapid diversification. The eight 

taxonomic groupings used for the GLM were: Paleognathae (scam-tgus), 

Galliformes (apla-cvir), Columbea (pcrs-pgut), Caprimulgiformes and Otidimorphae 

(cann-cmac), Cursorimorphae and Opisthocomiformes (breg-ohoa), Aequornithia 

and Phaethantimorphae (ehel-pcri), Afroaves (cstr-ppub), and Australaves (ccri-

zlat). The eight groupings are indicated in order by alternating blue and red blocks. 

Total LTR retrotransposon content is highly variable across the avian genomes, and 

even sister species are strikingly different. Falco peregrinus (fper) and F. cherrug (fche) 

match closely (1.28 and 1.29 % respectively), but the two other sister species groupings 

of Amazona aestiva (aaes; 4.28 %) and A. vittata (avia; 1.10 %), and Corvus 

brachyrhynchos (cbra; 3.12 %) and C. cornix (ccor; 2.29 %) show marked differences. 

Some of this variation is due to differences in the number of identified SIEs. The two 

Falco species have 315 and 311 SIEs respectively, but aaes had 714 whilst avit had 25, 

and cbra had 1,059 whilst ccor had 701. Such variation between closely related species 

makes the identification of any phylogenetic effect difficult, as the number of SIEs 

(shown above to be correlated with genome quality) confounds observable patterns.  

The fitted GLM showed that both contig N50 and genome size were non-significant 

variables in explaining the variation in total LTR retrotransposon content. However, 
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both the broad taxonomic groupings (Figure 4.5) and scaled SIE numbers were 

significant variables in the model (both P = 0.001), although there was no significant 

interaction term. Taxonomic groupings explained 28.49 % of the observable variation, 

and the scaled SIE number explained a further 12.95 %. This supports lineage specificity 

in LTR retrotransposon content in broad taxonomic groupings separate since the K/T 

extinction event. Interestingly, when all Neoaves were grouped as a single taxon in the 

model, the variable was non-significant (P = 0.068).  

Therefore, this expanded analysis of the avian lineage corroborates the results of the 

homology-based analysis, and does not support a significant difference in LTR 

retrotransposon content between the Galliformes and Neoaves. However, it is possible 

that improvements to assembly quality could significantly increase the total identified 

LTR retrotransposon content in individual species and alter these conclusions. 

 

Comparison with the results of the purely homology-based annotation 

The LTR retrotransposon content of twenty-one species (excluding the chicken due to 

the change in assembly) were analysed with all three methodologies: the standard 

RepeatMasker analysis, the homology-based protocol (section 4.5.1), and the full 

LocaTR analysis (above). The homology-based protocol increased the annotated LTR 

retrotransposon content in all species compared to RepeatMasker alone, and it was 

predicted that the LocaTR analysis would either match this content or increase it further, 

as lineage-specific or divergent SIEs could be detected. However, as Table 4.8 shows, 

the LocaTR analysis gave lower values for over half the analysed species (red shading). 

For each species where the value ‘reduced’ in the LocaTR analysis, the element position 

files were overlapped, and the ‘missing’ sequences were analysed with RepeatMasker. 

In each case the sequences responsible for the higher content in the homology-based 

analysis had at least partial CR1 homology, as elements were commonly fragments 

matching the pol gene. Strict filtering was used in LocaTR to reduce the potential for 

CR1 contamination, but some false positives were called in the homology-based analysis.  

 



112 

Table 4.8 A comparison of the annotated LTR retrotransposon content based on 

three search methodologies. These twenty-one species were analysed using a 

standard RepeatMasker analysis (RM-v), the purely homology-based identification 

from section 4.5.1 (Homology), and the full LocaTR analysis. Species are in 

alphabetical order with their four letter codes, and the two reptilian outgroups have 

been indicated by an asterisk. The annotated values are as a percentage of total 

genome length in all cases, and the values in the LocaTR column have been 

shaded red if they are less than the annotated value from the homology-based 

identification.   

Species name Code RM-v (%) Homology (%) LocaTR (%) 

Anas platyrhynchos apla 0.98 3.95 2.26 

Anolis carolinensis * acar 4.45 4.88 9.03 

Apaloderma vittatum avit 0.86 3.38 0.95 

Aptenodytes forsteri afor 1.08 1.51 1.77 

Calypte anna cann 0.64 1.09 3.30 

Chrysemys picta belii * cpic 1.30 3.87 8.96 

Columba livia cliv 0.59 1.06 2.54 

Corvus brachyrhynchos cbra 1.97 4.53 3.12 

Cuculus canorus ccan 0.52 4.10 4.54 

Falco peregrinus fper 1.14 1.54 1.28 

Haliaeetus leucocephalus hleu 1.83 2.67 1.95 

Meleagris gallopavo mgal 1.06 1.76 2.80 

Melopsittacus undulatus mund 1.52 2.03 4.22 

Pelecanus crispus pcri 1.73 3.53 3.00 

Picoides pubescens ppub 0.59 1.37 0.94 

Pterocles gutturalis pgut 1.11 4.27 1.26 

Pygoscelis adeliae pade 1.28 2.69 1.54 

Struthio camelus australis scam 0.17 0.48 1.09 

Taeniopygia guttata tgua 3.54 4.94 4.50 

Tinamus guttatus tgus 0.21 0.61 1.46 

Tyto alba talb 1.51 2.67 1.56 
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These findings do not undermine the general results presented as part of my paper 

published last year (Mason et al. 2016), but they do highlight the need for strict filtering 

of LINE elements during annotation of LTR retrotransposons. Even under the stricter 

filtering used in LocaTR, identification of CR1 elements remained an issue, and further 

work is needed to reduce the likelihood of false positives without limiting the detection 

ability of the pipeline. 

 

4.6 Discussion 

4.6.1 The LTR retrotransposons of the chicken genome 

The LocaTR analysis of the new chicken Galgal5 assembly identified an additional 3.7 

Mb of LTR retrotransposon-derived sequence in the genome compared to Galgal4, 

taking the total content to 35.2 Mb (2.86 % of the genome). Overall, this means that the 

annotated LTR retrotransposon content of the chicken has been doubled during this 

PhD project. This includes the identification of 1,295 structurally intact LTR 

retrotransposons (222 more than in Galgal4), 40.23 % of which are in clusters unrelated 

by insertion age or genera.  

Compared to Galgal4, the Galgal5 assembly is 183.3 Mb longer, with a ten-fold greater 

contig N50 length, and now includes chromosomes 30, 31 and 33, as well as improved 

assemblies of chromosomes 16, 25 and W (Warren et al. 2017). Given these 

improvements, and the previously observed effects on repeat annotation between the 

Galgal3 and Galgal4 assemblies, it was unsurprising that the LTR retrotransposon 

content was increased. However, the totals identified on the macrochromosomes 

(particularly of SIEs) were lower in Galgal5 than in Galgal4, likely due to repeats 

collapsing, and unplaced contigs being correctly included. The improved W 

chromosome assembly counteracted this effect with its high repeat content, as did the 

elevated LTR retrotransposon content observed on the microchromosomes. This 

created a bimodal relationship between chromosome length and total LTR 

retrotransposon content, which, in Galgal4, was a simple linear relationship, where 

longer chromosomes had higher content. In Galgal5, the macrochromosomes exhibited 
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this effect, but this was lost on the microchromosomes, with content independent of 

chromosome length.  

This bimodal result is much more biologically representative than the ‘one model fits 

all’ Galgal4 result, especially when you consider each integration as an independent 

event, rather than only looking at the current, total distribution and content. As the 

macrochromosomes account for a large proportion of the total genome size individually, 

recurrent independent integrations will accumulate based on the probability of inserting 

within a sequence of that size. However, for microchromosomes which account for 

approximately 1 % of the genome each, the number of integrations is largely due to 

chance. The observation that microchromosome integrations follow a random 

distribution relative to genes is related to this insertion probability, as well as the higher 

microchromosome gene density. 

Overall, the distribution of LTR retrotransposons relative to gene features was very 

similar between the two assemblies, even with the recent augmentation of the annotation 

file. Interestingly, seventy-two SIEs significantly overlapped with recently identified 

lncRNA genes (Kuo et al. 2017), and over half of these were SIEs within clusters, 

significantly more than expected by chance. In their Galgal3 analysis of LTR 

retrotransposons, Bolisetty and colleagues (2012) hypothesised that the clusters had 

cellular functions, either as conserved cytoskeletal binding regions or sites which 

promoted recombination. In chapter 3, I instead suggested that these sites were simply 

regions where insertions had limited negative effects on the hosts, so could be 

maintained and expanded over time. Furthermore, absence of constrained sites and low 

recombination rates in the clusters provided no support for Bolisetty’s hypotheses. 

However, it is possible that the long-term maintenance of structural integrity in the 

clusters facilitates the co-option of these integrations as cellular lncRNAs. As lncRNAs 

are generally species-specific, this may explain the functional role of clusters which lack 

evidence of phylogenetic constraint (Kapusta et al. 2013; Kuo et al. 2017). Further work 

is needed to fully characterise the cellular effects of these LTR retrotransposon-derived 

lncRNAs, and it is likely that some non-SIEs also overlap with lncRNA genes. 
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4.6.2 Heterogeneous LTR retrotransposon content across the avian lineage 

In birds, the LTR retrotransposon content is highly heterogeneous, ranging from 0.48 

% to 4.77 %. In general, the reptilian outgroups had more LTR retrotransposon-derived 

sequence, although this distinction was lost when content was scaled for genome size. 

The number of structurally intact elements also varied considerably across the analysed 

genomes, ranging from 11 to 6,760 (equating to 9.1 SIEs per Gb to 3,757.3 SIEs per Gb 

when scaled to genome size), and much of this variation was likely due to the highly 

variable assembly quality (see below).  

The distribution of genomic content is highly lineage specific, with much of the variation 

explained by broad taxonomic groupings present at the K/T extinction event 

approximately 65 million years ago. Representation of species within these groups is not 

equal, but neither is the extant diversity of these groups. The observed broad 

phylogenetic effect is reduced in some lineages by very different LTR retrotransposon 

content values, even between very closely related species. This may be an accurate 

biological representation of very narrow lineage-specific expansions and contractions, 

but could also be due to issues with the assembly. Further lineage-specific resolution 

could be gained through construction of a phylogenetic tree based on multiple 

sequences and features, although such trees have recently been shown to exhibit a hard 

polytomy at the base of the Neoaves, corresponding to the rapid superorder 

diversification after the K/T extinction event (Suh et al. 2015; Suh 2016). Further 

analysis is needed to quantify the specific ERVs responsible for contraction/expansion 

in each lineage, and to date these periods of potentially rapid genome evolution.  

The observed heterogeneity of LTR retrotransposon content across the avian lineage 

does not support the previously proposed hypothesis that there is a deficit of these 

elements in galliform birds (Bolisetty et al. 2012). Whilst the average content in the 

galliforms (and the Galloanserae more widely) is lower than the average values in three 

other broad taxonomic groupings (the Caprimulgiformes and Otidimorphae, 

Cursorimorphae and Opisthocomiformes, and Australaves), there is no consistent 

pattern to support higher general LTR retrotransposon content in the Neoaves.  

Consistent with the literature on wider repeat content (Kapusta & Suh 2017), the 

Paleognathae exhibit some of the lowest annotated LTR retrotransposon values, despite 
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having some of the largest avian genomes. Recently published work by Kapusta and 

colleagues (2017) related the larger genome sizes in flightless birds (including penguins) 

to reduced rates of medium and large scale deletions, and the presence of generally 

older transposable elements, rather than increased genome size reflecting new 

transposable element activity. The results obtained here support these findings, although 

the LTR retrotransposon content for penguins (afor and pade; Figure 4.5) appears 

representative within its taxonomic grouping. However, loss of flight in penguins 

occurred following the Neoaves diversification (the potential time of repeat group 

expansion), and the penguin genomes exhibit moderate LTR retrotransposon levels 

within their group, but have relatively contiguous genomes. Again, further 

characterisation of the representative ERVs and their ages would clarify periods of 

retrotransposon activity and itheir potential contribution to genome evolution.  

 

The effect of assembly quality on annotated LTR retrotransposon content 

Across the avian genomes, LTR retrotransposon content was not correlated with 

genome size, but there were positive correlations between the number of identified SIEs 

and genome assembly contiguity. Identification of few SIEs limits the total annotated 

content directly, but also reduces the additive effect of the secondary BLAST protocol. 

This effect was evident between chicken genome assemblies, and sister species with 

markedly different SIE number and total LTR retrotransposon content. Due to lineage-

specific effects, there was no clear difference in LTR retrotransposon content based 

purely on genome contiguity, but it was a significant variable in the fitted GLM, second 

to the taxonomic grouping.  

Many of the analysed genomes were first draft publications based on short read 

sequencing technology, and consequently exhibited low N50 values (Jarvis 2014). Some 

of the more recent avian genome sequencing projects (including Japanese quail, great 

tit, and the Galgal5 assembly) made use of PacBio long read sequencing which generates 

much more contiguous assemblies. Long read sequencing is now one of a series of tools, 

including Hi-C (sequencing of sites with chromatin interactions) and BioNano high 

resolution optic mapping (creation of long physical maps for scaffold joining), which are 

being implemented to create high quality, contiguous genome assemblies at a fraction of 
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the cost required for the ‘finishing’ of genomes such as human and mouse (Nagano et 

al. 2013; Cao et al. 2014; Howe & Wood 2015; Mak et al. 2016; Worley 2017). These 

techniques have recently been used on a diverse range of species to create ‘gold standard’ 

genomes (Shi et al. 2016; Bickhart et al. 2017; Jiao et al. 2017; Mohr et al. 2017; Zimin 

et al. 2017).  

Similar improvements to many of the avian genomes would greatly facilitate the accurate 

annotation of repetitive DNA, as these sections often ‘collapse’ during de novo short 

read assembly, but are resolved in long read sequencing or optical mapping (Bergman 

& Quesneville 2007; Alkan et al. 2011; Zhang et al. 2011; Schatz et al. 2012; Howe & 

Wood 2015; Michael & VanBuren 2015; Weissensteiner et al. 2017). It is therefore 

possible that future analyses of LTR retrotransposon content in birds could reveal a 

deficit in the Galliformes compared to other lineages. However, the evidence presented 

here does not support that hypothesised deficit, and it is likely that future work would 

further characterise the lineage-specificity of LTR retrotransposon repeat content across 

different phyla. Further characterisation of the proportion of different ERV genera, and 

their subsequent expansion and contraction across the lineage, is needed to better 

understand retrotransposon dynamics, periods of co-infection with exogenous retrovirus 

relatives, and the role these elements play in genome evolution. 

 

4.6.3 Analysis of multiple genomes with LocaTR 

No issues were experienced moving from analysis of just the chicken genome to analysis 

of multiple species. All custom-built scripts in the pipeline were written to ensure that 

variable sequence naming systems were handled appropriately, although the large 

numbers of small contigs in some assemblies did increase the processing time of the 

structure-based identification methods, particularly LTR_STRUC. Validating the 

identified SIEs was the most computationally intensive part of each analysis, usually due 

to the large numbers of putative sites identified by LTR Harvest, where the false positive 

rate (as with chicken) was commonly over 90 %.  

Most sections of the pipeline were highly parallel, but RetroTector and LTR_STRUC 

required desktop architecture. The programs could be run simultaneously on the same 
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machine, but only one genome at a time. Consequently, the homology-based protocols, 

and the MGEScan_LTR and LTR Harvest identifications were completed within a 

fortnight, but the LTR_STRUC and RetroTector identifications took over six months 

using multiple machines. For such large, multi-species analyses it would be beneficial to 

re-write these programs as Linux-based tools, but this is unlikely to happen due to issues 

with source code availability, and the requirement for access and management of SQL 

databases for RetroTector. If a quick analysis of multiple genomes is required, it may be 

necessary to host multiple virtual machines on a cloud-based service to complete the 

analyses in parallel. Alternatively, these program analyses could be ignored, but, as seen 

with the chicken analysis in chapter 3, both LTR_STRUC and RetroTector identified 

LTR retrotransposons not found by other programs.  

The unwanted identification of LINEs (such as CR1) remains an issue with LocaTR. 

This was particularly evident during the tBLASTx searches of the homology-based 

protocols, as these detect reverse transcriptase from all retrotransposon classes. Great 

effort has been taken to remove LINE-homologous sequences, but some are still 

annotated as LTR retrotransposons. E-value thresholds could be adapted to see if this 

reduces LINE detection. It would also be beneficial to add LINE-specific pHMMs to 

the validation process, as these could highlight sites which have a greater homology to 

these elements than LTR retrotransposons. As with any annotation process, manual 

checks and tests by the user are recommended. This should include identification of the 

percentage of ambiguous bases (Ns) in any annotated element, and plotting the 

distribution of putative element lengths. 

More generally, the LocaTR pipeline would benefit from some code revisions to 

improve efficiency. Much of the coding was completed towards the start of this PhD 

project, and could certainly be improved. This would include better memory, loop and 

function management, and the handling of intermediary files. Any improvements would 

avoid the use of accessory software, as one of the major benefits of LocaTR is that it is 

largely self-contained. One major revision would be to use standardised BED formats 

for positions files, rather than the custom file organisation used throughout. This would 

make the output files more standardised and immediately transferrable to other software 

or to genome browsers such as Ensembl.   
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4.7 Concluding remarks 

This broad analysis of LTR retrotransposons across the avian lineage does not support 

the previously proposed deficit of these elements in galliform birds compared to the 

Neoaves. Overall, LTR retrotransposon content is highly variable, but shows the effects 

of lineage specificity as far back as the rapid diversification after the K/T mass extinction. 

However, these findings may be confounded by the variability in genome assembly 

quality, so annotated content will likely increase as assembly quality improves. 

Concordantly, the updated Galgal5 chicken genome assembly had a higher total LTR 

retrotransposon content and more identifiable intact elements than in Galgal4.  

The LocaTR pipeline was used successfully across multiple genomes, although such a 

large-scale analysis highlighted several areas for pipeline improvement. Specifically, the 

implementation of LTR_STRUC and RetroTector, and comprehensive handling of 

false positives exhibiting LINE homology.  
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Chapter 5:  Materials and Methods (ii) 

This chapter outlines the methodology used for chapters 6 and 7. These chapters move 

away from the annotation of all LTR retrotransposon elements in assembled genomes, 

to instead focus on a single class of endogenous alpharetroviruses - Avian Leukosis Virus 

subgroup E (ALVEs) – and their identification in unassembled, whole genome 

(re)sequencing (WGS) data.  

 

5.1 Development of an ALVE identification pipeline using Hy-Line and 

Roslin J-Line DNA re-sequencing data 

5.1.1 Genomic Resources 

Whole genome resequencing data from eight Hy-Line (HL) elite commercial lines was 

used with permission from Hy-Line International following its use in the development 

of the 600K chicken SNP array (Kranis et al. 2013). Sequencing data for each line came 

from pooled libraries of ten individuals. All sequenced lines were from one of three well 

described commercial breeds: White Leghorn (WL; named WL1-5), White Plymouth 

Rock (WPR; sister lines named WPR1 and WPR2), and Rhode Island Red (RIR). 

Three of the sequenced lines (WL2, WL3 and WPR1) used pools of solely females, 

and the other five lines used only males.  

In addition, individual whole genome resequencing data was used from nine Roslin J-

Line (JL) females (EBI ENA: PRJEB15189) and a ten male JL pool (sequenced for the 

600K chicken SNP array). This line is a Brown Leghorn (BL) created from a mixture 

of six experimental lines (originally derived from the same ancestral population) which 

underwent differential selection for over fifty years, now retained at the Roslin Institute, 

UK (Blyth 1954; Blyth & Sang 1960).  

All sequencing data were Illumina paired-end 101 bp reads with a 500 bp insert size. 

Data were quality checked with FastQC v0.11.2 (Andrews 2012) and no trimming was 

required. Each dataset was individually mapped to the Galgal5 reference genome 

(GenBank: GCF_000002315.4) using BWA-mem v0.7.10 (Li 2013) and average 

genome coverage was calculated using the samtools v0.1.19 mpileup tool (Li et al. 2009).   
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5.1.2 ALVE identification with a custom pipeline 

A custom pipeline was created to identify ALVE insertions in paired-end sequencing 

data. This pipeline makes use of existing, commonly used and freely available data 

manipulation software, coded through seven independent scripts. The code files are 

available on the CD associated with this thesis (Appendix 1) and online in a GitHub 

repository: https://github.com/andrewstephenmason/ALVE_ID_pipeline. 

The pipeline identifies and extracts paired reads from resequencing data where at least 

one of the reads has ALVE homology. Extracted read pairs are mapped to the reference 

genome, enabling identification of the genomic insertion coordinates. Known genomic 

locations for assembled alpharetroviral elements are filtered out and the remaining 

putative insertions sites are manually checked. The pipeline, and its use with the HL 

and JL data, is described more completely in the following subsections. 

 

Pseudochromosome mapping, read subtraction and reference genome mapping 

Reads from each dataset were individually mapped to an ALV-derived 

‘pseudochromosome’ using BWA-mem. The pseudochromosome was constructed 

from eleven ALV-derived reference sequences (Appendix 2: AF08) joined by 1,000 bp 

of Ns, with the pseudochromosome terminating in 1,000 bp of Ns (ambiguous bases).  

All pseudochromosome-mapped reads were subtracted from the original FASTQ files, 

along with their read pairs (but filtering out secondary alignments), to produce new 

‘reduced’ FASTQ files (Figure 5.1). Read subtraction was completed using tools from 

samtools and BASH commands, filtering based on the SAM flag. The reduced FASTQ 

files were mapped to the chicken Galgal5 reference genome assembly, again with BWA-

mem, and reads with a mapping quality lower than 20 were removed. The resulting 

BAM file was converted to BED-6 format using the BEDTools v2.23.0 (Quinlan & Hall 

2010) bamToBed tool, splitting clipped reads into distinct BED entries. Entries 12 bp 

or fewer apart were merged with the BEDTools mergeBed tool, and these putative 

ALVE insertion site regions were removed if they were shorter than 200 bp.  
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Figure 5.1 Reads mapped to the retroviral pseudochromosome. For read pairs, 

there are four possible mapping scenarios. Both reads in the pair can map to the 

pseudochromosome (A), but this gives no positional information relative to the 

host genome. One read of the pair can map fully (B) with the mate presumably 

mapping to the host genome. This locates the read, providing general positional 

information. In a similar manner, if one read of the pair maps at the very end of 

the retroviral sequence some of the read is clipped (C). The clipped sequence is 

host genome, so provides exact coordinates for the insertion point. Finally, most 

read pairs will be unmapped as they have no retroviral sequence (D). Mapped 

reads are in dark blue and unmapped reads in light blue. The dotted lines 

represent the distance between read pairs. The black bar represents the 1 kb of 

Ns which separate the pseudochromosome retroviral sequences. 

Filtering and manual confirmation of putative insertions 

Putative ALVE insertion site regions were compared to known alpharetroviral locations 

in the Galgal5 reference genome using the BEDTools intersectBed tool. Putative 

insertion site regions were removed if they overlapped with known assembled locations. 

Assembled alpharetroviral-derived sequence locations were identified using a BLASTn 

(Altschul et al. 1990) protocol with an E-value threshold of 10
-10

, and identified genomic 

coordinates were converted into BED-6 format. Thirty reference sequences were used 

in total, including all those used in the pseudochromosome (Appendix 2: AF07). The 

extra sequences were added to identify EAV and ART-CH (avian retrotransposon of 

chickens) alpharetroviral sequences, as these share significant homology with ALV-

derived sequence; enough for multi-mapping. 

The remaining putative ALVE insertion site regions were filtered based on the presence 

of clipped reads. These reads map correctly to the reference genome for only part of 

their length, so may indicate the exact insertion site if the remainder of the read is 
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homologous to ALVE sequence. Higher confidence scores were given to those regions 

exhibiting both 5’ and 3’ clipped reads, as these may support the putative insertion site 

from both ends of the insertion (Figure 5.2). Regions were checked manually using IGV 

Desktop for Windows v2.3.60 (Thorvaldsdóttir et al. 2013). Clipped read sequences 

were used as queries for the NCBI BLASTn megablast and blastn algorithms to check 

for homology to ALV-derived sequences, and the insertion hexamer and was noted.  

 

 

Figure 5.2 Clipped read support for ALVE insertion sites. Scenarios A, B and C 

represent reads (black arrows) across a putative insertion hexamer sequence, with 

clipped ALVE insertion sequences angled off and in red. A) a site with no insertion 

showing the reads mapping correctly across the region. B) a site with an insertion 

where there are clipped reads at both the 5’ and 3’ ends. The reads correctly map 

to the reference genome at the start but then become clipped due to the presence 

of the insertion. As the hexamer sequence is duplicated it is represented at both 

ends of the insert, so reads cover it from both directions. With an intact insertion, 

the red arrow sequence would be the LTRs at opposite ends of the ALVE. C) a site 

where the sequencing data only provides evidence for clipped reads at one end of 

the insertion. These have lower confidence than those sites exhibiting scenario B.  

Putative insertion site existing nomenclature and nearby gene features 

Most previously characterised ALVEs lack published genomic coordinates, but 

published insertion hexamer sequence, immediate flanking sequence and diagnostic 

PCR primer sequences were used as BLASTn queries against the Galgal5 assembly to 

identify known ALVE insertion sites (Benkel 1998; Chang et al. 2006; Smith & Benkel 

2009a; Smith & Benkel 2008; Chen et al. 2014). In addition, Professor Bernhard Benkel 

(Dalhousie University, Nova Scotia, Canada) kindly shared validated insertion sites from 

his recent ‘Chickens of the World’ study of ALVE diversity, built on forty years of ALVE 

research (Rutherford et al. 2016, and additional manuscripts in preparation). 

In addition, the 100 bp of 5’ genomic sequence flanking identified insertion sites was 

used as a BLASTn query against the Galgal4 assembly (GenBank: GCF_000002315.3) 
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to identify the predicted insertion site locations in the previous assembly. These 

positions were overlapped with the Ensembl Galgal4 version 79 annotation file using the 

BEDTools intersectBed and closestBed tools to identify overlapped genes or the 

shortest distance from an ALVE to the nearest coding feature. Well described ALVEs 

are often within or near genes, so this annotation also added confidence to assigning an 

existing name to an identified insertion, predicting its size and structural integrity, and 

suggesting the potential impact of any insertion on the phenotype of the bird. 

 

Developing nomenclature for novel insertions 

Names were given to novel insertions following the format “ALVE_ros001”, where ‘ros’ 

is an abbreviation for The Roslin Institute. Attempts were made to develop names 

specific for each insertion using chromosomal locations, insertion hexamer sequences, 

location relative to genes, and ALVE intactness, but each of these was not deemed 

future-proof (Table 5.1). In addition, names including these details became very 

cumbersome, whereas the priority was to classify these insertions as ALVEs and then 

refer the researcher to this work describing their locations. As such, new names have 

been applied to previously identified insertions that lacked any clear sign that they were 

ALVEs, such as the Benkel ‘N4’ and ‘New11’ elements identified in the Hy-Line birds. 

Table 5.1 Identified future-proofing concerns with ALVE-specific nomenclature. 

Naming feature Issues for naming 

Location Chromosome unlikely to change, but coordinates would shift 

with each revised build. Names would also be long: ALVE3 

would include Gal5:20:10309347 as part of its name. 

Insertion hexamer Some hexamers contain line-specific SNPs and there is 

inconsistency in the literature for whether hexamers are 

reported as observed in genome assemblies, or in the same 

orientation and from the same strand as the ALVE. 

Gene feature Gene names and exon numbers change over time, particularly 

with identification of additional isoforms. There may also be 

overlapping features, such as a gene and non-coding RNA. 

ALVE intactness This is unknown for most ALVEs, and may differ between lines.  
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5.2 Characterisation of the ALVEs identified in the Hy-Line and Roslin J-

Line DNA resequencing data 

5.2.1 Genotyping of identified ALVEs in the Hy-Line commercial flocks 

Bird DNA samples 

Genomic DNA samples were collected by Hy-Line for male birds in each of the eight 

elite layer lines. Data was collected for each line for 15 generations between 1996 and 

2011. The birds used for the sequencing detailed above were from the 2008 generation. 

Sample sizes for each line varied across the generations, but over nine thousand DNA 

samples were available for ALVE genotyping. In each case, genomic DNA samples were 

extracted using a standardised DNA spooling protocol following salt and ethanol 

extraction from wing vein blood samples.  

 

Diagnostic KASP assay design 

Flanking chicken genome sequences were given to Hy-Line for the design of the KASP 

assay primers. For each insertion this required 100 bp of up- and down-stream flanking 

sequence as well as all the available sequence from the insert, obtained from the 5’ and 

3’ clipped reads. Primers were designed using the Kraken Primer Picker software with 

an optimum length of 20 - 25 bases, aiming for equal GC content between the primers, 

ideally between 40 % and 50 % GC. Assays used a four-primer approach with two 

fluorophore-labelled, allele-specific primers for the presence or absence of the ALVE 

insert, each with their own reverse primer pair (Figure 5.3).  

Assays were conducted on 1,536-well plates using 1μl total reaction volumes in each 

well. Reactions used dehydrated DNA samples, primers and the LGC KASP 2x 

Mastermix V4.0 1,536 formulation, following the original KBiosciences KASP protocol. 

PCR used a 61˚C to 55˚C annealing temperature touchdown protocol for ten cycles 

and then 55˚C for twenty further cycles. Plates were then read using the PHERAstar 

Plus SNP plate reader software which called the individual genotypes. To gain increased 

resolution, or to ensure samples were correctly grouped by genotype, additional PCR 

cycles were completed in groups of three and the plates read again. 
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Figure 5.3 KASP assay primer rationale for wildtype and insert-containing sites. 

Primer 1 (wildtype) and primer 2 (insert) are fluorophore-labelled primers and their 

amplification enables genotyping direct from solution. The starting sequence for 

the genotype-specific primers is often the same, but they differ when they cross 

the insertion hexamer, with primer 1 continuing through host genome sequence 

and primer 2 entering the ALVE insertion. 

The primers were redesigned for assays which failed or produced unexpected results in 

initial tests. Redesigns included identification of, and controlling for, SNPs within the 

primer binding regions, and moving primers which bound highly repetitive regions of 

the genome, identified by lower case letters in the masked genome build.  

ALVE frequencies were recorded for each of the identified ALVEs across all the lines. 

Due to commercial sensitivity, exact insert frequencies will not be reported here, instead 

the following categories will be used: absent (f = 0), rare (0 < f ≤ 0.1), low (0.1 < f ≤ 0.25), 

medium (0.25 < f ≤ 0.75), high (0.75 < f < 1) and fixed (f = 1).  

 

Diagnostic PCR assay design 

In addition to the KASP assays, standard PCR assays were also developed for each of 

the identified ALVE insertions. Existing assays were used for ALVE3, ALVE9, 

ALVE15, ALVE21, ALVEB5 (Benkel 1998), ALVE-TYR (Chang et al. 2006), ALVE-

NSAC1 (Smith & Benkel 2009b), and ALVE-NSAC3 (Smith & Benkel 2008). The 

upstream primer of the published ALVE1 assay (Benkel 1998) was redesigned for a 

higher melting temperature (Tm), but the other two primers were retained.  
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New assays were designed for the remaining insertions using the 500 bp 5’ and 3’ 

insertion flanking sequence, and the sequence from the soft-clipping reads supporting 

the insertion site. Primers were designed using the Primer3 software (Rozen & Skaletsky 

2000) hosted on the Biology Workbench 3.2 (Subramaniam 1998), requiring product 

sizes of 100–500 bp, a GC clamp size of 1 base, optimal primer length of 22 bases, and 

minimum primer length of 20 bases. Most assays used three primers, but ALVE_ros005 

and ALVE_ros007 only used a two primer assay.  

For all assays, PCR was conducted in 10μl reaction volumes, with equal concentrations 

of primers, using the Roche FastStart Taq kit (04738357001). Each PCR reaction began 

with a 4 minute activation at 95°C, then had 35 cycles of 30 seconds denaturing at 95°C, 

30 seconds annealing at 60°C and 45 seconds elongation at 72°C, and then finished with 

a 7 minute final extension at 72°C. The ALVE15 and ALVEB5 PCR reactions had an 

annealing temperature of 50°C due to the low primer Tm. In addition, the 45 second 

elongation within each cycle was extended to 3 minutes for ALVE_ros007. Samples 

were run on a 1% agarose gel with Invitrogen SYBR Safe DNA gel stain (S33102), using 

the Bioline Hyperladder I (BIO-37045) as the marker ladder. 

 

5.2.2 Genotyping of identified ALVEs in the Roslin J-Line 

Bird sampling and sample preparation 

Blood samples were taken from the wing veins of all thirty-two JL individuals in the 

current flock. Blood sampling for DNA extraction was conducted after ethical approval 

under project licence PPL60/4056. Genomic DNA was extracted from whole blood 

using the ThermoFisher Scientific DNAzol protocol, following the manufacturer’s 

instructions. DNA concentration was quantified and samples diluted to a concentration 

of 10ng/μl.  

 

Diagnostic PCR assay design 

Existing PCR primers were used for the ALVE3 and ALVE15 assays (Benkel 1998). A 

three-primer PCR assay was developed for ALVE_ros011 using the 500 bp 5’ and 3’ 
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insertion flanking sequence, and the sequence from the 5’ soft-clipping reads supporting 

the insertion site. As above, primers were designed using Primer3, requiring product 

sizes of 100-500 bp, a GC clamp size of 1 base, optimal primer length of 22 bases, and 

minimum primer length of 20 bases. 

For all three assays, PCR was conducted in 10μl reaction volumes, with equal 

concentrations of primers, using the Roche FastStart Taq kit. ALVE3 and 

ALVE_ros011 were cycled 35 times with an annealing temperature of 60°C. As stated 

above, the ALVE15 PCR reaction had 35 cycles, but an annealing temperature of 50°C. 

Samples were run on a 1% agarose gel with Invitrogen SYBR Safe DNA gel stain, using 

the Bioline Hyperladder I as the marker ladder. 

 

5.2.3 Probability of missing an ALVE insertion within the WGS datasets 

Probability of missing an ALVE insertion in the JL individual sequencing data 

A model was constructed in Python to determine the probability of missing an insertion 

of a given frequency when choosing the nine individuals for the sequencing project 

(Figure 5.4). For a given ALVE frequency, individuals from a modelled population of 

32 birds were randomly assigned an insertion genotype based on Hardy-Weinberg 

equilibrium. Nine birds were chosen at random without reselection and the observed 

frequency noted. As coverage for the JL was >18X for all individuals it was assumed that 

heterozygote insertions would always be identified within the sequencing data if they 

were present, and that variability in read coverage or allele specific amplification in 

library preparation would have little impact on insertion discovery. 

The model was run for all possible insertion frequencies from a 32 individual flock 

(from an allele frequency of 1/64, incrementing in equal steps to 1), repeated one million 

times, and the probability of missing the insert was calculated in each case. This 

detection calculation follows a binomial distribution. Additionally, the model was run 

varying the modelled sample size from one individual to the whole flock to determine 

the number of individuals required to give 90 %, 95 % or 100 % detection probability 

for all possible insertion frequencies. 
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Figure 5.4 Schematic highlighting the issues with sampling bias for insertion 

discovery from individual sequencing datasets. Under Hardy-Weinberg equilibrium, 

a flock of thirty-two birds with an insert frequency of 0.2 would have ten 

heterozygote birds (pink) and two birds homozygous for the insert (red). Depending 

on the nine birds chosen for sequencing, inserts could be missed (from the 

28,048,800 possible ways to choose nine birds from a thirty-two bird flock, an 

individual carrying the insert could be missed 167,960 times (0.60 %)) or the 

observed frequency could differ from the actual frequency. For example, if the nine 

birds with a number 1 were chosen, the observed frequency would be 0.22, but if 

the birds with a number 2 were chosen, the observed frequency would be 0.06. 

Probability of missing an ALVE insertion in the HL and JL pooled sequencing data 

The model used for the pooled datasets was largely the same as above, but the number 

of sampled individuals was always ten and the population sizes were changed for each 

dataset to reflect each line. The JL population was again 32, but the HL populations 

cannot be stated here due to commercial sensitivities. However, it must be noted that as 

the pools for WL2, WL3 and WPR1 were solely from females, these sampled 

populations were much larger than those from males alone.  

Additionally, as the pooling methodology was to pool the DNA samples to make a single 

sequencing library (rather than libraries constructed for each sample, then pooled), there 

was a high probability that allele specific amplification in the library preparation would 
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remove alleles from the sequencing project. This was a particular concern as coverage 

in the pooled data was 11X-18X, so on average even if PCR amplification was perfectly 

distributed across the ten samples, two to nine of the available alleles would have been 

missed. As coverage is so important for allele representation in the pooled data, 

variability in the coverage across the genome was also modelled using a Poisson 

distribution. Furthermore, an underlying error rate for read mapping was defined to 

potentially disrupt mapping rate. This value was based on the proportion of unmapped 

reads for each dataset when mapped to the reference genome. Another known issue for 

allele detection in pooled data is variability in the ‘sequencability’ of the genome. 

However, as there is limited literature on this (Li 2011b; Li 2011a; Li 2015) and the 

value is largely arbitrary, for this model it was assumed that all regions of the genome 

could be sequenced equally well, especially as the majority of the chicken genome falls 

within the optimum GC % observed with Illumina sequencing (Warr et al. 2015).  

Given these additional parameters, the model was run as follows: for a given frequency 

the flock of a given size was randomly assigned genotypes based on Hardy-Weinberg 

equilibrium, individuals and alleles were sampled according to a binomial distribution, 

and samples scaled for genome-average coverage and Poisson-varied coverage, both of 

which were further scaled by an underlying error rate. Models were run one million 

times and the probability of missing the insertion was calculated. Probabilities were 

calculated for each line, for each observable insertion frequency within the sample of 

ten birds used for sequencing, using the Poisson-coverage-scaled probabilities. 

Probabilities for insertions with a frequency ≤ 0.75 were negative log10 transformed, 

plotted against insertion frequency, and linear gradients were calculated and correlated 

with genome-average coverage.  

The model was also run specifically for three cases when the ALVE insertions could be 

detected in the sampled birds, but were missed in the sequencing, and for the case with 

the lowest observed frequency identified in the identification pipeline (section 6.4.3). As 

the specific coverage for these sites was known, the probabilities without Poisson-scaled 

coverage variation were recorded.  
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5.2.4 Sequencing and characterisation of ALVEs identified in the Hy-Line lines 

Selection of samples for sequencing 

Hy-Line provided stock DNA samples to cover at least three birds per ALVE insertion 

per breed. Samples were chosen based on their KASP assay results and were 

homozygous for the insertion where possible. To achieve this, samples from an 

unsequenced HL line (sister line to WL4) were used to give homozygous ALVE_ros008 

individuals. DNA samples were diluted to a concentration of 10ng/μl.  

 

Amplification of ALVE inserts by PCR and purification of PCR product 

The external, ‘no insert’ diagnostic PCR primers designed for this study were used to 

amplify the inserts for sequencing. PCRs were performed with the Takara 

PrimeSTAR® GXL DNA Polymerase kit (R050A) using the standard 30 cycle 3 step 

PCR protocol with 50μl reaction volumes. For primer Tm values less than 55˚C, the 

annealing PCR step was at 55˚C but otherwise at 60˚C. The 68˚C extension step was 

done for 8 minutes, following the manual’s advice of extension for 1 minute per kb of 

expected product. Following PCR, 10μl of PCR product was run on a 1 % agar gel with 

Invitrogen SYBR Safe DNA gel stain, using the Bioline Hyperladder I as the marker 

ladder, to check for approximate band sizes. 

For inserts with a PCR product greater than 1kb, the remaining 40μl of PCR product 

was run again on a 1 % agarose gel with wide wells. Gels were run until the end of the 

marker was off the gel to give good band separation, and the longest band matching the 

expected insert size was cut from the gel and weighed. DNA was purified from these 

excised bands using the Invitrogen PureLink™ Quick Gel Extraction kit (K210012), 

following the protocol for purification using a centrifuge. DNA was further purified by 

ethanol precipitation, and resuspended in 12μl tris elution buffer. 

For inserts shorter than 1 kb, 10μl of the remaining PCR product was cleaned to remove 

primers and excess dNTPs using the Exo/SAP protocol: Exonuclease I (NEB M0293L) 

and shrimp alkaline phosphatase (GE Healthcare E70092Y) incubated at 37˚C with the 

PCR product for 15 minutes, then at 80˚C for a further 15 minutes. 
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Cloning of inserts greater than 1kb in length and extraction of plasmids 

Purified insert DNA was cloned into the Invitrogen ZeroBlunt TOPO pCR®4 Blunt-

TOPO® vector (45-0031) with a 24 hour incubation. 3μl of cloned product was used to 

transform One Shot® Mach1™-T1
R

 Competent E. coli cells, which were grown 

overnight on kanamycin selective plates. Positive clone colonies were selected and added 

to 100μl of lysogeny broth (LB) supplemented with ampicillin (LB-amp), and checked 

for successful transformation by PCR using the protocol described above. 40μl of 

successfully transformed LB-amp colony solution was transferred to 3ml LB-amp and 

incubated in the horizontal shaker at 37˚C for 48 hours.  

Colony incubations were homogenised and 2ml of solution spun down to leave a 

bacterial pellet. Plasmids were extracted from the pellet using the Invitrogen PureLink™ 

Quick Plasmid Miniprep kit (K210011), following the protocol for purification of DNA 

with a centrifuge, including the additional ethanol wash (W10). Purified plasmid DNA 

was eluted into ambient temperature tris elution buffer and the concentration measured. 

 

ALVE sequencing and characterisation 

Purified ALVE DNA was amplified for sequencing using the Applied Biosystems 

BigDye Terminator v3.1 Cycle Sequencing kit (4337454) following the manufacturer’s 

instructions. The initial primers used for each amplification were the external, ‘no insert’ 

primers used to produce the PCR product. These reactions were then submitted to 

Edinburgh Genomics (University of Edinburgh, UK) for Sanger sequencing.  

Sequences produced for each insert in this first sequencing run were mapped to the 

flanking DNA for each insertion as well as to the ALVE1 reference sequence (GenBank: 

AY013303.1) using the ‘Map to Reference’ tool in Geneious v7.0.4 (Kearse et al. 2012). 

For inserts shorter than 1kb, one sequencing run from each of the original primers was 

sufficient to cover the whole insertion, so a consensus sequence was generated and 

observed SNPs or indels were annotated. For the longer inserts, the initial sequencing 

runs were used to observe any insert-terminal deletions (such as loss of the envelope-

LTR section of the insert) and to check that the start of each sequencing run matched 

the known flanking DNA.  
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Sixteen further primers were designed based on the ALVE1 reference sequence to 

amplify the interior of the ALVE inserts with the BigDye Terminator protocol. Fourteen 

of these were evenly spaced every 500 bp along the ALVE1 sequence, and the other two 

were designed to cover each LTR in the direction of the genomic flanking DNA (Figure 

5.5). Each primer sequence was designed to be 22 bases in length and have terminal GC 

clamps (Table 5.2). The Benkel LTR primers were not used as these are present twice 

in intact elements. In each case, following amplification with the BigDye protocol, 

samples were submitted to Edinburgh Genomics for Sanger sequencing. 

All additional sequencing runs for each insert were mapped to the respective flanking 

DNA sequences and ALVE1 to form contiguous consensus sequence using the 

Geneious ‘Map to Reference’ tool. Consensus sequences were then used as BLASTn 

queries against the NCBI non-redundant database to check for identity with other ALVE 

sequences, and to identify the extent of any retroviral domain deletions.  

LTR pairs from intact elements were aligned using MUSCLE, with default settings, to 

identify LTR divergence and suggest the ALVE age. All 3’ LTRs, the two solo LTRs 

and the 3’ LTRs from reference ALV-A (GenBank: M37980.1) and ALV-J (GenBank: 

JF951728.1) exogenous retroviruses were aligned using MUSCLE with default settings. 

The alignment was trimmed to remove the insertion hexamers and a tree constructed 

using RAxML with a generalised time reversible (GTR) gamma nucleotide model with 

100 bootstraps. In addition, transcription factor binding sites were identified using the 

EMBOSS v6.6.0 tfscan tool (Rice et al. 2000), and the sequences scanned for the miR-

155 target sequence (AGCATTA) (Hu et al. 2016) using the EMBOSS fuzznuc tool. 

 

 

 

Figure 5.5 ALVE1 reference sequence domains and sequencing primer locations. 

The alternating black and grey backbone represents 500 bp stretches of the 7.5 

kb element. The triangles show the sequencing primer locations and directions. 

The 5’-3’ order of the primers is the same as is in Table 5.2 below. Domains: matrix 

(p19 and p10), capsid (p27), nucleocapsid (p12), protease (PRO), reverse 

transcriptase (RT), integrase (INT), surface (gp85), and transmembrane (gp37).  
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Table 5.2 Generic ALVE sequencing primers. Positional information based on the 

alignment against the ALVE1 reference sequence. 

Name Sequence Primer location 

ALV_5LTRrc 5'-ACCACTATTCCCTAACGATCAC    290 – 311  

ALV_500 5'-CGACGACTGAGCAGTCCACCCC    500 – 521  

ALV_1000 5'-CGTTGGCACATCCTGCTATCAG 1,000 – 1,021 

ALV_1500 5'-TACAGACGGTTATAGCGGCAGC 1,500 – 1,521 

ALV_2000 5'-ATCCAGCCCTTAGTTATGGCAG 2,000 – 2,021 

ALV_2500 5'-CATGCGAAAATCCCGGGATATG 2,500 – 2,521 

ALV_3000 5'-CAAGGATTGCTTCTTTTCTATTC 3,000 – 3,021 

ALV_3500 5'-CCTTTTATGAGCAGTTACGAGG 3,500 – 3,521 

ALV_4000rc 5'-CAGGGTGGTCGGTAACCCTCAC 3,979 – 4,000 

ALV_4500rc 5'-GGTCTGAACAACCTCCCTAGCC 4,479 – 4,500 

ALV_5000rc 5'-TCACCACGCTCAAAGTGATTGAG 4,978 – 5,000 

ALV_5500rc 5'-GAGAGGCAGAAATCCGTTTGGC 5,479 – 5,500 

ALV_6000rc 5'-ATGCACCGCAGTACTCACTCCC 5,978 – 6,000 

ALV_6500rc 5'-ATCTGAGCATGTATCATCCAGG 6,479 – 6,500 

ALV_7000rc 5'-CATCTTTCGGATGCTACTGGAC 6,983 – 7,004 

ALV_3LTR 5'-GATATAGTAGTTGCGCTTTTGC 7,215 – 7,236 

  

Geneious-hosted GLIMMER3 (Delcher et al. 2007) was used to predict retroviral ORFs 

with default settings. ORFs were translated into the appropriate frame and aligned to 

well annotated ALV protein sequences (GenBank: Q04095.2, AAK13201.1). 

 

5.2.5 Characterisation of the K locus in the Hy-Line elite layer lines 

Identification of the Galgal5 K locus and design of the diagnostic K locus assay 

Previously published PCR primer sequences (Tixier-Boichard et al. 1994; Tixier-

Boichard & Boulliou-Robic 1997; Elferink et al. 2008) and the K locus bridging 
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sequence (Bu et al. 2013) were mapped to the Galgal5 assembly using the ‘Map to 

Reference’ tool in Geneious, to characterise the size of the K locus tandem duplication. 

The predicted K locus sequence was used to design a KASP assay for the duplicated 

region bridging sequence, to be used in tandem with the ALVE21 KASP assay. 

 

Optic mapping of the K locus 

Blood samples were taken from one male individual from each of five Hy-Line lines, 

using the same blood extraction protocol as described in section 5.2.1. Samples were 

taken from the slow feathering WL4 and WPR1, as well as the sister line of the RIR 

used for the sequencing of this project (RIR-sf). Samples were also taken from the fast 

feathering WL3 and WPR2. Blood samples were mixed with ThermoFisher Scientific 

UltraPure Low Melting Point Agarose, formed into stable plugs and then analysed with 

the BioNano Irys platform at The Earlham Institute, UK. Samples were extracted from 

the agarose plugs and quality controlled before analysis. The restriction enzyme 

Nt.BspQ1 (recognition site: GCTCTTC) was used for mapping due to its suitable 

frequency of occurrence in the K locus target region.  

 

Analysis of BioNano results 

Molecule object files generated by the Earlham Institute were quality checked and 

submitted to Kees-Jan Francoijs (KJF), the European support scientist at BioNano 

Genomics. KJF performed an in silico Nt.BspQ1 digest of the Galgal5 Z chromosome 

using the BioNano Knickers v1.5.5.0 software, to generate a consensus map (CMAP) 

file with the predicted fluorescence patterns. Molecule object files were then viewed in 

IrysView v2.5.1 and assembled to the CMAP using the Refaligner and Assembler v5122 

packages (available: https://bionanogenomics.com/support/software-downloads/). All 

viewing and interpretation was undertaken locally in an IrysView v2.5.1 instance.  

Analyses were undertaken by KJF due to large memory requirements for performing de 

novo assemblies using IrysView (recommended >48 GB RAM limited to Windows 

architecture). The new BioNano Access (which can connect to a dedicated Linux server 
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for memory-intensive analyses) was still in beta testing when analysis was undertaken, 

and there were difficulties using the Access pipeline due to university regulations on 

SQL databases and remote Linux server access. Consequently, the analysis undertaken 

in this thesis has been to view the generated alignments across the K locus region, rather 

than running the BioNano structural variant detection pipelines. The molecule objects 

for each analysed line were viewed separately with the mapping confidence set at 20.  

 

5.3 Identification of ALVEs from the DNA resequencing data of various 

commercial, experimental and ‘wild’ chicken populations 

5.3.1 Pipeline implementation with single-end reads 

Required adjustments to pipeline for single-end reads 

For user ease, separate scripts were written for use with single-end data. The changes 

made within the script files were relatively minor, adapting input/output to handle a 

single FASTQ file rather than two, and adjusting the required region size to 80 bp 

compared to the 200 bp used with paired end data.  

 

Effects on pipeline sensitivity using single-end rather than paired-end datasets 

The HL and JL paired-end data were used to create pseudo-single-end FASTQ files by 

concatenating paired files and removing pair information from the sequence headers. 

This was completed with a custom Python script (pseudo_fastq.py; Appendix 1). 

Pseudo-FASTQ files were mapped to the Galgal5 reference genome using BWA and 

average genome coverage calculated with samtools mpileup.  

Pseudo-single-end datasets were then analysed for ALVE insertions using the scripts 

adapted for single-end data analysis, and the identified locations were manually checked 

as described above (section 5.1.2). Identified ALVE insertion sites were compared to 

the data from the paired-end analysis and the relative sensitivity of the single-end pipeline 

was assessed.  
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5.3.2 Genomic resources 

Chicken resequencing data was analysed from nineteen projects, enabling ALVE 

identification of eighty-nine datasets. Most datasets were publicly available through the 

ENA or DDBJ Short Read Archive, but some were kindly provided by collaborators.  

Most datasets were sequenced with Illumina technology. However, the Andersson and 

Kauai Feral Chicken datasets were sequenced using the Applied BioSystems SOLiD 

platform, which produces output not directly compatible with BWA. For both datasets, 

the raw FASTA and quality score (QUAL) files had already been merged to create 

colorspace FASTQ files with Sanger quality scores. A custom Python script (color-

fastq2sanger-fastq.py; Appendix 1) was used to convert these to standard ‘basespace’ 

FASTQ files ready for use in the pipeline.  

Datasets were quality checked with FASTQC and reads were trimmed if base quality 

score dropped beneath 20, and read pairs removed if over half a read was trimmed, or 

if the read was mostly Ns. Trimming was completed with TrimGalore v0.4.0 (Krueger 

2013) using Cutadapt v1.4 (Martin 2011). The analysed projects are detailed below. 

 

Paired end sequencing datasets 

Most datasets were paired end, Illumina sequencing data. The lines are presented in 

Table 5.3 and the accession numbers for the datasets are shown in Table 5.4. 

Table 5.3 Paired end WGS datasets analysed for this study. The datasets and the 

lines they contain are listed. Each line was given a coded name which is either a 

shortening of the full line name or includes the breed, where BL = Brown Leghorn, 

Br = broiler, RIR = Rhode Island Red, RIW = Rhode Island White, RJF = red jungle 

fowl, WL = White Leghorn, and WPR = White Plymouth Rock. The RJF abbreviations 

include their countries (C = China, J = Java, S = Sumatra) and the Ethiopian village 

birds are abbreviated with the international code for Ethiopia (ETH). The Tibetan 

highland breeds are abbreviated as TIB-HL. The library type is shown for each line, 

showing either the number of individuals used in each pool, or the number of 

individual (indiv) sequencing libraries available. The final column assigns each line 

a group number (1-5) for the GLM analysis in section 7.4.1. Group 1 is commercial 

white egg layers, group 2 is commercial brown egg layers, group 3 is broilers, group 

4 is generalist and ‘native’ breeds, and group 5 is RJFs and ‘village’ chickens. 
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Dataset Line Code Library type Group 

Arkansas vitiligo model Brown  BL-Br Pool (10) 1 

Smyth BL-Sm Pool (10) 1 

Cobb heritage broiler - Br-Cobb Indiv (20) 3 

Commercial 1995 broiler - Br-REL 8 x Pool (10) 3 

Egg shell strength High RIW-ESH Pool (8) 2 

 Low RIW-ESL Pool (8) 2 

Ethiopian village birds Horro ETH-Horro Indiv (6) 5 

 Jarso ETH-Jarso Indiv (5) 5 

Fat-Lean broilers Fat Br-VLDL-F Indiv (4) 3 

 Lean Br-VLDL-L Indiv (4) 3 

High and Low antibody High WL-HA Pool (16) 1 

 Low WL-La Pool (16) 1 

INRA high/low fat cross - Br-INRA Indiv (16) 3 

Indonesian natives Black java Bl-java Pool (10) 4 

 Black sumatra Bl-sum Pool (10) 4 

 Kedu Hitam Kedu hitam Pool (10) 4 

 Sumatera Sumatera Pool (5) 4 

 Java RJF RJF-J Pool (2) 5 

 Sumatra RJF RJF-S Pool (3) 5 

 WL WL-NU Indiv (1) 1 

Iowa State Fayoumi Fayoumi Pool (16) 4 

 Leghorn WL-IS Pool (16) 1 

Korean domestic Araucana Araucana Indiv (3) 4 

 Korean Korean Indiv (3) 4 

 WL WL-K Indiv (3) 1 

Lohmann layers RIR RIR-L Indiv (25) 2 

 WL WL-L Indiv (25) 1 

 WL WL-Lp Pool (10) 1 
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 WPR WPR-L Pool (10) 2 

Pirbright inbred lines 15 WL-PB-15 Pool (10) 1 

 6 WL-PB-6 Pool (10) 1 

 7 WL-PB-7 Pool (10) 1 

 C WL-PB-C Pool (10) 1 

 N WL-PB-N Pool (10) 1 

 P WL-PB-P Pool (10) 1 

 Wellcome WL-PB-W Pool (10) 1 

 Zero WL-PB-Z Pool (10) 1 

Roslin experimental blind BEG blind BL-BEGb Pool (10) 1 

 BEG sighted BL-BEGs Pool (10) 1 

 RGE blind  BL-RGEbm Indiv (1) 1 

 RGE blind BL-RGEbp Pool (10) 1 

 RGE sighted BL-RGEsf Indiv (1) 1 

 RGE sighted BL-RGEsp Pool (10) 1 

SPF commercials A WL-SPFa Pool (14) 1 

 B WL-SPFb Pool (11) 1 

Taiwanese domestic Silkie Silkie Indiv (1) 4 

 Taiwan Country Taiwan Indiv (1) 4 

Tibetan highland/lowland Chahua Chahua Indiv (1) 4 

 Highland1 TIB-HL1 Indiv (1) 4 

 Highland2 TIB-HL2 Indiv (1) 4 

 Highland3 TIB-HL3 Indiv (1) 4 

 Lhasa White Lhasa white Indiv (1) 1 

 Lindian Lindian Indiv (1) 3 

 WL WL-B-D Indiv (1) 1 

 WL WL-B-E Indiv (1) 1 

Tibetan fighting RJF RJF-C Indiv (6) 5 

 Xishuangbanna Xishuang Indiv (8) 4 
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Table 5.4 Accession numbers and references for the paired end WGS data. All 

accession numbers are for the European Nucleotide Archive (ENA) except the 

Indonesian natives stored in the DNA Databank of Japan (DDBJ). Some datasets 

were not publicly available but were kindly shared by collaborators. Collaborators 

have been named with their affiliation.  

 

Dataset Accession No. Reference 

Arkansas vitiligo model PRJNA256208 Jang et al. 2014 

Cobb heritage broiler PRJEB15276 (non-public) Khoo et al. in prep. 

Commercial 1995 broiler Douglas Rhoads, 

University of Arkansas 

Pavlidis et al. 2007 

Egg shell strength PRJNA231017 Zhang et al. 2015 

Ethiopian village birds Olivier Hanotte,  

University of Nottingham 

Wragg et al. 2015 

Fat-Lean broilers PRJEB15288 (non-public) Griffin et al. 1991; 

Khoo et al. in prep. 

High and Low antibody Chris Ashwell,  

North Carolina State 

Kuehn et al. 2006 

INRA high/low fat cross PRJNA247952              - 

Indonesian natives DDBJ DRA003951 Ulfah et al. 2016 

Iowa State Susan Lamont, Iowa State              - 

Korean domestic PRJNA291174 Oh et al. 2016 

Lohmann layers Rudolf Preisinger, Lohmann Pooled data used in 

Kranis et al. 2013 

Pirbright inbred lines Roslin Institute Kranis et al. 2013 

Roslin experimental blind Roslin Institute Hocking & 

Guggenheim 2014 

SPF commercials Marc Eloit,  

Pasteur Institute 

Gagnieur et al. 2014 

Taiwanese domestic PRJNA202483 Fan et al. 2013 

Tibetan highland/lowland PRJNA309581 Zhang et al. 2016 

Tibetan fighting PRJNA241474 Guo et al. 2016 
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Single end sequencing datasets 

Two datasets were used which had single end datasets, both of which were sequenced 

with the Applied Biosystems SOLiD platform. The first dataset was a collection of lines 

sequenced to identify signals of domestication. This comprised pooled sequencing data 

for eight red jungle fowl, ten each from two commercial broilers, eight RIR, eleven and 

eight from two commercial WL lines, eleven each from two WPR sister lines bred for 

differential growth rates (high and low), and ten from an obese WL experimental line 

(ENA SRP001870) (Cole 1966; Dunnington & Siegel 1996; Rubin et al. 2010). The 

second dataset was for feral chickens on the Hawaiian island of Kauai (Gering et al. 

2015). This included individual sequence data from twenty-three feral chickens, as well 

as one laboratory RJF (ENA PRJNA272379). 

 

5.3.3 ALVE identification 

Each dataset was analysed in turn using either the paired-end or single-end ALVE 

identification pipeline, as appropriate. Putative ALVE insertion regions were checked 

manually as described above (section 5.1.2) and the insertion hexamer noted. With the 

release of the Galgal5 feature annotation from Ensembl (v87), insertion locations were 

not also identified in Galgal4 as with the HL and JL data. Instead, insert coordinates 

were compared directly to the Galgal5 annotation using BEDTools closestBED and 

intersectBED. Insertion sites were compared with the HL and JL data, as well as other 

known ALVE locations, to assign existing nomenclature where appropriate. Novel 

insertions, and those lacking clear ALVE-based names, were assigned new names based 

on the ALVE_ros001 nomenclature developed above. 

Due to the short, 35bp reads of the Andersson dataset, mapping was completed with 

BWA-aln followed by BWA-samse in addition to the standard BWA-mem protocol, as 

BWA-aln is optimised for short read mapping (Li & Durbin 2009; Li 2013). The results 

were compared between these two mapping approaches.  
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Characterisation of insertion locations 

The insertion hexamers of the identified ALVEs were checked for sequence over-

representation and GC content distribution. These observed values were compared to 

a model which simulated equal numbers of hexamers randomly distributed across the 

genome, repeated one million times. The GC content distributions were compared 

using a two-sample t-test and plotted using MATLAB.  

Insertion bias due to GC content was also assessed by calculating the GC content in the 

insertion regions in windows of 100 bp, 1 kb, 10 kb and 100 kb. Values were compared 

to the genome average as well as to the chromosomal GC content, and patterns in GC 

deviance were assessed. In addition, the number of insertions identified on each 

chromosome was log10 transformed for normality and correlated with the log10 

transformation of chromosome length. 

 

5.3.4 Cluster analysis based on ALVE content 

Presence/absence data for each line for all identified ALVEs was used to create a 1/0 

matrix for clustering the lines based on their ALVE content. Euclidean distances were 

calculated for the matrix using the MATLAB pdist function. These distances were used 

to form a hierarchical binary cluster tree with the MATLAB linkage function using 

average distances, and the complete tree plotted using the dendrogram function.  

Analysed datasets differed on library type (individuals or pools) and genome coverage. 

A general linear model (GLM) was used to identify whether these factors significantly 

influenced ALVE identification compared to the observed chicken breed categories. 

Lines were grouped into five categories: white egg layers, brown egg layers, broilers, 

native breeds, and ‘wild’ (including RJF samples). The GLM was fitted with identified 

ALVE number as the response variable, line category and library type as categorical 

variables, and average genome coverage as a covariate. For individual libraries, genome 

coverage was calculated per dataset and then averaged between datasets. 

To ensure the generated dendrogram was due to shared ALVEs, rather than similar 

numbers of identified ALVEs in disparate lines forcing relatedness, a model was 

generated to randomly redistribute the presence/absence data. The model data set was 
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limited to lines with twelve ALVEs or fewer to ensure the large numbers of lineage-

specific ALVEs observed in some datasets did not bias the dendrogram construction. 

For each line, the number of identified ALVEs was kept the same, but the modelled 

ALVEs were randomly assigned. One hundred randomly generated dendrograms were 

created, manually inspected, and compared to a dendrogram constructed using the 

observed presence/absence data for the same lines.  

 

Principal Coordinate Analysis 

In addition to the hierarchical dendrogram construction, the lines were also clustered 

using classical multidimensional scaling, also known as Principal Coordinate Analysis 

(PCoA). Traditional Principal Component Analysis (PCA) was not appropriate as the 

presence/absence data was mainly zeros. The PCoA was completed on the Euclidean 

distance matrix calculated above using the MATLAB cmdscale function, which also 

calculated the eigenvalues. Eigenvalues were plotted using a scree plot and the 

contribution of each was compared. The MATLAB plot function was used with various 

pairs and trios of the eigenvalues to identify clusters between the analysed lines. 
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Chapter 6:  The discovery and characterisation of Avian 

Leukosis Virus subgroup E (ALVE) insertions using whole 

genome (re)sequencing (WGS) data 

6.1 Introduction 

Avian Leukosis Virus subgroup E (ALVE) insertions are the youngest chicken 

endogenous retroviruses (ERVs), and are diverse across various chicken lines (Benkel 

1998; Weiss 2006). Whilst their genomic copy number is often low, as contemporary 

insertions many ALVEs retain high structural integrity.  

Complete, transcriptionally active ALVEs produce replication-competent viral particles 

which can be shed, facilitating horizontal transmission of the virus within and between 

flocks. For the hosts, viral particles induce viremia which causes persistent 

immunological and physiological stress. This has been shown to significantly delay and 

reduce antibody production to exogenous Avian Leukosis Virus (ALV) infection 

(Gavora et al. 1995), as well as detrimentally affect commercial traits in both broilers 

(e.g. early growth rate, total body weight) and layers (e.g. egg weight and density, total egg 

count) (Fox & Smyth 1985; Kuhnlein et al. 1989; Gavora et al. 1991; Ka et al. 2009). 

Despite this, multiple intact and transcriptionally active ALVEs remain in commercial 

lines due to their association with desirable phenotypic traits. These include ALVE-

TYR, responsible for white feather colour through the recessive white mutation (Fox & 

Smyth 1985; Chang et al. 2006; Chang et al. 2007), and ALVE21, which is closely 

associated with the slow feathering K locus used to differentiate bird gender at hatch 

(Bacon et al. 1988; Iraqi & Smith 1995; Elferink et al. 2008). In addition, many lines 

harbour intact ALVEs, such as ALVE1, which have been transcriptionally silenced by 

DNA methylation, but can reactivate under certain infection conditions or during 

embryonic development (Conklin 1991; Hu et al. 2016). 

Not all ALVEs are structurally intact, but the expression of individual retroviral domains 

can still elicit a significant effect on the host. Production of gag glycoproteins (e.g. 

ALVE3) has been shown to induce tolerance to novel ALV infections, resulting in a 

delayed immune response and higher incidence of lymphoid tumours (Astrin & 

Robinson 1979; Crittenden et al. 1984). Contrastingly, expressed envelope glycoproteins 

(e.g. ALVE3, ALVE6, ALVE9) confer resistance to novel ALV infection through 
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competitive interference, as the envelope proteins physically block the TVB (tumour 

virus binding) receptors used by ALVEs to enter host cells (Robinson et al. 1981; Yu et 

al. 2008). These opposed effects confer complex infection dynamics in hosts with 

multiple ALVE insertions. For example, ALVE21 positive birds which also contain 

ALVE6 or ALVE9 have reduced viremia, higher ALV-antibody titres, and reduced viral 

shedding when compared to birds with ALVE21 alone (Smith et al. 1990a; Gavora et 

al. 1995). This cross-reactivity can lead to unexpected results when lines with different 

ALVE complements are crossed.  

These detrimental, and often complex, ALVE-related effects have led many commercial 

companies to select against these loci, aided by the development of a range of diagnostic 

PCR assays and an ELISA for p27, a gag component found in all ALV subgroups (Smith 

et al. 1979; Benkel 1998; Chang et al. 2006; Smith & Benkel 2009a; Rutherford et al. 

2013). However, changing focus in selection programmes, the expense of testing all 

known ALVEs for entire commercial flocks using gel based PCRs, the close association 

between many ALVEs and desirable traits (particularly ALVE21), the incomplete 

identification of all ALVEs within individual lines, and the high frequency of many 

ALVEs, means that ALVEs have not been eradicated in commercial lines. This enables 

further ALVE retrotransposition events, which could produce novel mutagenic effects, 

and recombination between ALVEs and exogenous ALV.  

The current detrimental impact of ALVEs in commercial chicken production goes 

beyond the described effects on productivity. For example, all commercial flocks are 

tested for exogenous ALV using the p27 ELISA, but ALVEs expressing gag generate 

false positive results and these birds must be culled. Recent research into the increasingly 

virulent Marek’s Disease Virus (MDV; alpha herpesvirus) has shown that whilst the 

ALVE background does not influence MDV incidence or survival, MDV itself induces 

ALVE expression (even of normally silenced elements such as ALVE1), provoking viral 

shedding (Chang et al. 2015; Hu et al. 2016; Hu et al. 2016a). There was also found to 

be a significantly higher incidence of spontaneous lymphoid tumours in lines containing 

ALVE21 following MDV vaccination (Fadly et al. 2014; Cao et al. 2015). This extra 

context of biologically representative co-infection is important as individual infections or 

traits are commonly only considered in isolation. 
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The range of current and future concerns makes ALVE identification and 

characterisation within commercial lines essential for improvements in both productivity 

and animal welfare. This information can then be used to design new, high throughput 

diagnostic assays for flock genotyping to advise better selective breeding programmes, 

or even identify targets for CRISPR/Cas9 deletions. 

 

Existing methods for identification of ALVE insertions 

Traditionally, ALVEs were identified almost exclusively in White Leghorn (WL) 

chickens by performing full genomic DNA digests with several restriction enzymes, 

followed by fragment hybridisation to 
32

P-labelled RNA from Rous Sarcoma virus (RSV) 

(Astrin 1978). This generated band size patterns specific to known ALVEs. As WLs 

generally have few ALVEs (Benkel 1998), in situ hybridisation with RSV RNA probes 

often yielded general genomic locations. In addition, each analysed line had known 

phenotypes for ALVE gag and envelope expression which could then be assigned 

directly to individual ALVE insertions (Astrin & Robinson 1979). These methods were 

laborious, but did enable the identification of twenty-three ALVEs in WLs and a further 

twenty to twenty-five once the methodology was expanded to other chicken breeds 

including commercial broilers (Sabour et al. 1992; Benkel 1998; Hunt et al. 2008).  

The specificity of this detection method improved with the availability of a chicken 

reference genome, as primers could be designed to amplify the restriction enzyme digest 

fragments for sequencing. This enabled identification of exact genomic coordinates for 

the insertion (Smith & Benkel 2009). Further improvements were predicted with the 

cost-effective availability of short read whole genome (re)sequencing (WGS) data. As 

hypothesised, this data facilitated identification of huge numbers of single nucleotide 

polymorphisms (SNPs) across various chicken lines (Kranis et al. 2013). Larger 

structural variants (SVs), particularly transposable element copy number variants 

(CNVs), could not be detected so easily, usually requiring the identification of 

incongruent read mapping events relative to the reference genome (Alkan et al. 2011). 

However, incongruent read mapping is relatively common, especially when assemblies 

are incomplete and repetitive sections of the genome remain poorly resolved.  
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Unfortunately, de novo assemblies from short read technology are not the solution, as 

they are limited by their inability to assemble through repeated regions greater than 1 

kb.  Repetitive element insertions generally ‘collapse’, with all element-homologous 

reads mapping to a single assembled region. Long read sequencing technology, such as 

PacBio, now generates high throughput data with reads long enough to sequence 

through most repeat classes. Whilst these technologies are now becoming more 

commonplace, most sequencing projects have been completed with short read 

technology, and, consequently, have not been mined fully for their structural variants. 

Discovery of novel chicken ALVEs from WGS data faces these same issues. The 

Galgal5 reference genome contains two ALVEs: ALVE-RJF on chromosome 1 and the 

partially assembled ALVE6 (Benkel & Rutherford 2014). When WGS data is mapped 

to the reference genome, all ALVE-homologous sequences map to the assembled 

ALVE-RJF. Only reads that map to the very edge of ALVE-RJF, or who’s read pair 

maps to ‘true’ chicken genomic DNA, provide novel insertion positions. However, 

detection of these insertion junctions is heavily dependent on genome coverage. 

In an effort to improve coverage of insert junction sites, protocols have been developed 

which echo the hybridisation strategies of traditional repeat identification. These ‘target 

capture’ sequencing projects use repeat sequences to form a ‘bait panel’ for sheared 

genomic DNA. Bound DNA fragments are then sequenced to high coverage and the 

resultant data mapped to the reference genome. This has been used successfully with 

other retrotransposon classes such as human L1 elements (Baillie et al. 2011), but during 

the course of this project a methodology was also published specifically for ALVE target 

capture sequencing (Rutherford et al. 2016).  

As an alternative to WGS, target capture sequencing would reduce overall costs. 

However, these data are very specific and unnecessary if identified ALVEs were 

previously known or at a high frequency in a population, particularly as sequencing cost 

is dropping all the time. One of the major advantages of WGS data is the ability to apply 

a single dataset to multiple research questions. In addition, whilst identifying structural 

variants from existing WGS datasets is more difficult than identifying SNPs, it is possible, 

as demonstrated below. This means existing WGS data can be used for ALVE 

identification, rather than requiring additional sequencing.  
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6.2 Research Aims 

This chapter covers four major research aims. Firstly, the development of a new 

bioinformatics pipeline for the identification of ALVEs within existing WGS datasets, 

without requiring further, targeted sequencing. Secondly, the validation of the findings 

of this pipeline by the development of diagnostic assays specific to each ALVE insertion 

which were subsequently tested on the original lines. Thirdly, the annotation of each 

ALVE insertion by assigning existing or new nomenclature, describing the insert location 

relative to annotated genes, and characterising the intactness of the insert sequence. 

Finally, the further characterisation of the commercially important slow feathering K 

locus using high resolution optic mapping. 

 

6.3 Development of the ALVE identification pipeline 

6.3.1 Initial approaches 

With the emergence of more cost effective WGS datasets, multiple bioinformatics tools 

have been developed in recent years to identify viral insertions, particularly in the field 

of human cancer genomics. These tools, such as Virana (Schelhorn et al. 2013), 

VirusSeq (Chen et al. 2013), VirusFinder (Q. Wang et al. 2013; Wang et al. 2015) and 

ViralFusionSeq (Li et al. 2013), create a viral pseudochromosome which is appended to 

the reference genome enabling bridging of read pairs between genomic and viral DNA.  

Initially, identification of ALVEs was completed with custom scripting following this 

approach. Both VirusFinder and VirusSeq were trialled, but the ability to directly tailor 

a pipeline to discovery of retroviral insertions (rather than any viral genera) and reduce 

the computational effort meant that the time creating a new identification pipeline was 

well spent. However, it was quickly observed that there were limited mapping events 

between the genomic DNA and viral pseudochromosome. Additionally, any mapping 

was well within the viral sequence, rather than at either terminus. Whilst this enabled 

detection of an insertion within an approximately 500 bp region, it did not enable exact 

insertion site identification.  

Another approach was to first map all reads to the reference genome, then extract any 

incongruently or unmapped reads and map these to the pseudochromosome. Any read 
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pairs with one read mapping to the pseudochromosome would then be mapped back 

against the reference genome, enabling identification of the insertion site. Whilst this 

methodology worked, it was computationally expensive as many low quality or non-

ALVE reads were carried through to the pseudochromosome mapping. The approach 

was changed to begin with the pseudochromosome mapping, removing the most 

computationally expensive step without any impact on detection sensitivity. This 

approach is described below.  

 

6.3.2 Pipeline implementation 

This ALVE identification approach was wrapped into seven scripts, written to be 

executed in Linux using either standard BASH tools or Python 2.7 (Table 6.1). The 

overall pipeline is shown in Figure 6.1. Following identification of putative ALVE sites, 

the BAM files can be viewed at the command line or in a much more visual manner 

using a genome viewer such as IGV or Golden Helix. All scripts are on the CD 

accompanying this thesis (Appendix 1) and in the GitHub ALVE identification 

repository (https://github.com/andrewstephenmason/ALVE_ID_pipeline). 

Table 6.1 ALVE identification pipeline scripts and functionality. 

Script name Functionality 

S1_run_blast_ref_seq.sh Identifies known alpharetroviral sites  

S2_make_pseudochromosome.py Creates the pseudochromosome  

S3_run_bwa_alignment.sh Maps sequencing reads to the 

pseudochromosome 

S4_extract_ref_seq_mapped_reads.sh Extracts viral mapped reads and pairs  

S5_run_bwa_alignment.sh Maps sequencing reads to the 

reference genome 

S6_extract_putative_sites.py Identifies the putative insertion sites 

S7_merge_lists_and_reduce_ref_genome.sh Merges identified sites between 

sequencing files and prepares a 

reduced reference genome 
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Figure 6.1 ALVE identification pipeline workflow. Script names have been 

abbreviated to their order as in Table 6.1 and input/output files are shown. 

Each script file manages the naming prefixes of all linked files, enabling the processes to 

be completed in a largely parallel manner. However, data analysis is limited to the 

number of processors and amount of writable memory available. As BAM files are very 

large, the most memory intensive steps were always when these files had to be sorted, 

such as after a mapping, hence the setting of sorting threads and memory in the two 

mapping scripts (S3 and S5). Additionally, the samtools sort program creates huge 

temporary files during sorting and thus parallel runs were usually limited to eight datasets 

at a time, where the total compressed FASTQ size for the dataset was 20-30 GB, 

corresponding to 200-300 million paired end reads.  

Once the reference alpharetroviral sites have been identified (S1_run_blast_ref_seq.sh) 

and the pseudochromosome created and indexed (S2_make_pseudochromosome.py), 

these two processes do not have to be completed again. The slowest step is always the 

mapping of the full FASTQ files to the pseudochromosome 

(S3_run_bwa_alignment.sh; 12-24 hours). Read subtraction usually completes in less 

than two hours (S4_extract_ref_seq_mapped_reads.sh) and the mapping of the reduced 

dataset is often minutes (S5_run_bwa_alignment.sh). Similarly, the putative site 

identification (S6_extract_putative_sites.py) and reference genome processing for 



152 

viewing (S7_merge_lists_and_reduce_ref_genome.sh) take only minutes. Depending on 

the number of identified sites, and whether sites match known ALVEs, the manual 

validation of putative insertion sites can take minutes or hours.  Altogether, this means 

that once the FASTQ files are processed and ready for analysis, a novel dataset can have 

its ALVE content characterised within 24 hours.    

 

6.3.3 Unwanted issues with sequence homology 

Undesirable identification of other alpharetroviral classes 

Preliminary mapping work showed that ALVE sequences retain enough homology to 

map to other alpharetroviral classes such as EAVs and ART-CH sequences. As a result, 

these sequences were also identified in the Gal5 reference genome and used to filter out 

putative sites that were due to spurious mapping. 

However, evJ and ALV-J reference sequences were initially retained in the 

alpharetroviral pseudochromosome used for the first mapping process, and the 

envelope gene of these sequences is derived from EAV-HP (Benson et al. 1998; Smith 

et al. 1999). This enabled the mapping of EAV homologous reads to the 

pseudochromosome which were then mapping to EAV sites in the analysed lines. EAVs 

are more numerous than ALVE insertions, so initially made up over 80% of putative 

insertion regions. These sites were identified as EAVs by BLASTn against the NCBI 

non-redundant database, and the causative evJ and ALV-J sequences were removed 

from the pseudochromosome, preventing unwanted mapping events. 

 

Dubious mapping on chromosomes 20 and 23 

Initial mapping of the Hy-Line data routinely identified several putative insertion sites 

within an 8 kb region on chromosome 20 (20: 5,221,295-5,229,299) and two regions on 

chromosome 23 of 7.5 kb (23: 2,053,213-2,060,796) and 4.2 kb respectively (23: 

5,152,304-5,156,520). Manual inspection of these sites suggested no ALVE homology, 

at least to ALVE LTRs, but the regions were of real interest as all the putative sites were 

intronic, but very close to the gene exons. 
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In each of the three cases the intronic sites were within genes from the proto-oncogene 

tyrosine protein kinase SRC family, including the sarcoma (c-SRC) gene itself at the 

chromosome 20 site. This gene was transduced by, and mutated in, the proto-ALV, 

Rous Sarcoma Virus (RSV), to become v-SRC (Swanstrom et al. 1983). In these first 

mappings, the pseudochromosome included the RSV reference sequence which 

enabled read mapping to c-SRC causing the false matches. In a similar manner, the 

closely related genes of YRK and LCK, sited at the respective chromosome 23 regions, 

also facilitated read mapping.  

RSV was removed from the pseudochromosome and the regions added to the filtering 

list during putative region identification.  

 

Hybrid ALVE-genome reference sequences 

A final identification issue was that the reference sequences for ALVE1 and ALVE21 

also included the insertion hexamer sequence and flanking genomic DNA. As a result, 

when these sequences were used to identify existing alpharetroviral sites in the reference 

genome they also masked flanking genomic DNA. Consequently, ALVE1, known to be 

in at least some of the WL HL lines, and ALVE21, known to be in the two slow 

feathered HL lines, were not identified at any point in initial mapping.  

The initial response was to remove these sequences from the reference sequence 

identification step. Whilst this enabled ALVE1 identification in the ‘correct’ lines, it also 

incorrectly caused ALVE21 identification in every line. This was simply because these 

two reference sequences had not been removed from the pseudochromosome, so non-

viral genomic reads could map, be retained, and support a putative insertion. These two 

sequences were edited to remove the flanking DNA using the GenBank annotations, 

and all other reference sequences were checked in a similar manner.  

 

6.3.4 Thresholds for suitable insertion site support 

Preliminary identification analyses required putative ALVE insertion sites to have at least 

360 bp of supporting flanking sequence, as well as evidence of both 5’ and 3’ soft-clipped 
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reads supporting the insert. However, use of these stringent thresholds meant that 

known ALVEs in some of the HL lines were missed during these analyses.  

360 bp was chosen to ensure good read coverage supporting the site, but did not 

consider the reduction of coverage due to removal of genomic DNA reads or the 

heterogeneity of coverage across such sites. Putative site regions were defined by reads 

overlapping when mapped to the reference genome, but if two nearby reads were 

separated by more than 12 bp they would not represent one contiguous region, 

potentially reducing the extent of the defined region furthest from the insertion site. This 

threshold was reduced to 200 bp to reflect a scenario where two reads were end-to-end 

at the insertion site. In partnership with the requirement that putative regions were 

supported by at least three reads, this kept mapping noise to a minimum without 

reducing sensitivity. Additionally, many initially identified sites with poor support were 

supported by multi-mapped reads with mapping qualities of less than 20. Filtering was 

used to remove these low quality mappings and false positive noise was further reduced. 

The requirement for representation of both 5’ and 3’ soft-clipped reads at an insertion 

site does give high confidence to a putative ALVE insertion. However, this requires high 

enough coverage of an insertion so that reads can be identified that map to the genome-

ALVE junction from both ends, which in turn requires significant enough mapping to 

both the pseudochromosome and reference genome with the read pair mapping in the 

most optimal locations. When read coverage is insufficiently high, or insertion alleles 

are poorly represented in the pool, it is unlikely that 5’ and 3’ support will be achieved. 

Additionally, more complicated insertions which are associated with genome deletions 

or translocations would not necessarily have both 5’ and 3’ soft-clipped reads for the one 

insertion in the same genomic location. The filtering was adjusted to require 

identification of either 5’ or 3’ soft-clipped support of a junction, but sites with both 

directions of support were highlighted during detection.  

Automated ALVE insertion detection remains imperfect. Manual viewing and 

confirmation of sites is still required to confirm an ALVE insertion and to remove those 

sites with limited or no obvious support. Regions of apparent noise are still identified in 

some analyses, potentially due to reads mapping to highly conserved alpharetroviral 

regions such as the pol gene for novel EAV or ART-CH insertions. However, manual 
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confirmation of sites is generally very quick, especially when sites are shared between 

lines, and viewing is still required for identification of the insertion hexamer as well as 

the extraction of soft-clipped sequence used in diagnostic assay design.  

 

6.4 The ALVEs of the Hy-Line elite layer lines 

Twenty ALVEs were identified across the eight Hy-Line lines (Table 6.2). The WLs 

consistently have the fewest ALVEs (2-4), followed by the two WPR sister lines (5-7) 

and the RIR with 10 (Table 6.3).  

The WLs have the literature predicted ALVEs of ALVE1 (all 5 lines), ALVE3 (3 of the 

5), ALVE9 (1 of the 5) and ALVE15 (3 of the 5). In addition, WL4 has ALVE21 as 

predicted, and ALVE_ros008, an ALVE previously identified in other lines by the 

Benkel group (BK-59). Furthermore, the identification pipeline identified another 

putative ALVE insertion site region in WL4 (1: 66,120,264 - 66,121,075), but there were 

only five soft-clipped reads in the region and there was no significant ALVE homology, 

so this site was discarded.  

The WPR sister lines share five of their ALVEs, including ALVE-TYR, the causative 

factor in recessive white (Chang et al. 2006), hence the white plumage of the WPR breed. 

Three other shared ALVEs were all originally identified within heritage breeds at the 

Nova Scotia Agricultural College (Smith & Benkel 2009a; Rutherford et al. 2013): 

ALVE-NSAC1, ALVE-NSAC3 and ALVE-NSAC7. Unexpectedly, WPR2 also has 

AVE21, even though it has the fast feathered phenotype. As well as the five ALVEs 

shared between the WPRs, WPR2 also had ALVEB5 and the novel ALVE_ros009.  

The RIR had the most ALVEs and shared only ALVEB5 and ALVE-NSAC1 with the 

WPR lines. Four other sites had previously been described by the Benkel group: 

ALVE_ros001 (COTW55), ALVE_ros002 (COTW69), ALVE_ros005 (New11), and 

ALVE_ros006 (N4). The remaining four identified ALVEs were novel intergenic sites: 

ALVE_ros003, ALVE_ros004, ALVE_ros007 and ALVE_ros010. 
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Table 6.2 The twenty ALVEs identified across the eight Hy-Line elite layer lines, with 

their Galgal5 location, insertion hexamer and overlapped feature. The six Benkel-

defined ALVEs which lacked clear ALVE nomenclature are also shown.  

Name Old name Location Hexamer Feature 

ALVEB5  1: 10,637,460 GGTGGT  

ALVE1  1: 65,993,542 ACGGTT SOX5 intron 1 

ALVE-ros001 COTW55 1: 101,668,931 GTTGTG  

ALVE-ros002 COTW69 1: 158,775,708 ATAAGT  

ALVE-ros003 SGT-24 1: 163,248,553 CCTACT  

ALVE-TYR  1: 187,921,213 ACACTG TYR intron 4 

ALVE-NSAC1  2: 120,868,843 CCTGTT  

ALVE-ros004  2: 124,432,997 CTTGAC  

ALVE-ros005 New11 2: 142,480,536 TTGATA  

ALVE-NSAC3  3: 53,639,776 ATAAAA  

ALVE-ros006 N4 3: 57,337,987 GGACTC  

ALVE15  3: 70,384,294 GTTTAT GRIK2 intron 16 

ALVE-ros007  4: 59,843,015 AATAGA  

ALVE-ros008 BK-59 4: 62,680,158 CTGTAG  

ALVE-ros009  4: 71,095,932 GTCCAG  

ALVE9  6: 33,153,441 CTCAAA DOCK1 intron 35 

ALVE-NSAC7  9: 11,714,130 CTTCTC  

ALVE-ros010  9: 11,871,576 TCGGAT  

ALVE3  20: 10,309,347 AACCAC HCK intron 6 

ALVE21  Z: 10,681,671 GGGTAG  

 

The initial characterisation of ALVE_ros007 was confusing as the pipeline identified it 

as two independent sites 1,939 bp apart. The 5’ site (4: 59,843,021) had only 3’ soft-

clipped reads, and the 3’ site (4: 59,844,960) had only 5’ soft-clipped reads. Additionally, 

in the filtered BAM file there were no mapped reads in the space between these two 

sites, but the full RIR BAM file had mapping throughout the region (Figure 6.2). This 



157 

suggested that there had been both an ALVE insertion and a genomic deletion at the 

site, with the two occurrences linked in one genotype. Further evidence for this came 

from BLASTn searches against the NCBI non-redundant database with the soft-clipped 

read sequence. The 3’ soft-clipped reads at the 5’ site were homologous to the 3’ end of 

the ALVE LTR, suggesting an insertion in the negative orientation. The 5’ soft-clipped 
 

Table 6.3 The ALVEs identified in each of the Hy-Line elite layer lines using the 

ALVE identification pipeline. 

Name WL1 WL2 WL3 WL4 WL5 WPR1 WPR2 RIR 

ALVEB5         

ALVE1         

ALVE-ros001         

ALVE-ros002         

ALVE-ros003         

ALVE-TYR         

ALVE-NSAC1         

ALVE-ros004         

ALVE-ros005         

ALVE-NSAC3         

ALVE-ros006         

ALVE15         

ALVE-ros007         

ALVE-ros008         

ALVE-ros009         

ALVE9         

ALVE-NSAC7         

ALVE-ros010         

ALVE3         

ALVE21         
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reads at the 3’ site, however, were homologous to the ALVE envelope domain, 

suggesting a deletion of over 6 kb of the ALVE insertion as well as almost 2 kb of the 

genomic DNA (section 6.6.1).  

 

 

Figure 6.2 The ALVE_ros007 genomic region showing the ALVE homologous reads 

and the full RIR BAM file. Above the chromosome 4 scale bar are the ALVE filtered 

reads. No reads mapped between the two clipped sites when filtered, but the full 

region (below the scale, collapsed showing lines between pairs) has mapping 

throughout.  

Genomic distribution of the identified ALVEs 

Five of the twenty identified ALVEs are intronic (Table 6.2), and these were all 

previously well described and characterised. ALVE1 is within the first intron of SOX5 

(SRY-box 5 transcription factor; 15 exon gene), ALVE3 is within the sixth intron of 

HCK (tyrosine-protein kinase; 11 exon gene), ALVE9 is within the thirty-fifth intron of 

DOCK1 (dedicator of cytokinesis 1; 52 exon gene), ALVE15 is within the final intron 

of GRIK2 (glutamate ionotropic receptor kainite type subunit 2; 16 exon gene), and 

ALVE-TYR is within the final intron of TYR (tyrosinase; 5 exon gene).  

There is no correlation between the ALVE insertion site and the observed GC content 

of that region. Additionally, there are no apparent correlations or patterns in the 

insertion hexamer sequences. However, with the relatively few ALVEs identified, it is 

unlikely that any true patterns could be observed.  
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6.4.1 KASP development 

KASP assays were successfully developed for all twenty identified ALVE insertions from 

the HL lines. The four primers for each assay are presented in Table 6.4, and assay 

results for the 2010 generation males are shown in Figure 6.3. 

Table 6.4 Primers used for the diagnostic Hy-Line-based KASP assays. There are 

four primers for each assay. The first pair is for the ‘no insert’ genotype and the 

second pair is for the insert. Primers 1 and 3 for each assay have the fluorescent 

tags (sequences not shown). Base ambiguities are shown using the IUPAC codes.  

ALVE KASP primers 

ALVEB5 5'-AATAAACAATTCTCAGCTTAACCACCC 

5'-GAATGTTTAAGTCYGTGGATCTAATGA 

5'-AAAATAAACAATTCTCAGCTTAACCACCT 

5'-TTGCGAACACCTRAATGAAGCAGAA 

ALVE1 5'-AAATTGACTTTAATATCTGTCAACGGTTC 

5'-CCAAGCAAGTAGCCCAAAACACAGTA 

5'-AAATTGACTTTAATATCTGTCAACGGTTG 

5'-GAACACCTGAATGAAGCAGAAGGCTT 

ALVE-ros001 5'-TCATACACATGTTGTGYTCCCTG 

5'-ATGTCCTGACTATGATCTGGCAGCT 

5'-TTCATACACATGTTGTGTGAAGCCTT 

5'-TAACGATTGCGAACACCTGAATG 

ALVE-ros002 5'-TTCTGTGATTTAGTGATTCTATGATAAGTC 

5'-CTACAATTCTGTGATTCTGTGATTCTG 

5'-ATTCTGTGATTTAGTGATTCTATGATAAGTG 

5'-CAAGTTGCCTCTGGCTCTATTTGACTA 

ALVE-ros003 5’-TAGATCCTGATATCTTCATCCCTATCA 

5’-ATTTATACAAATGTATGTGGTGAGAATGAT 

5’-TAGATCCTGATATCTTCATCCCTATCT 

5’-GAGTTGCCTCTGGCTCTATTTGACTA 

ALVE-TYR 5'-TTTCACTCTGAGCCTTCCAGTGTTA 

5'-TGCAGTACCAGTGTATACAGATTGTGTAA 

5'-TTCACTCTGAGCCTTCCAGTGTTG 

5'-GAACACCTGAATGAAGCTGAAGGCTT 
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ALVE-NSAC1 5'-GTAAGCCTGGAGATGTCCTGTTC 

5'-CAATACACAAGACTGAAAGCAGTCCAT 

5'-GTAAGCCTGGAGATGTCCTGTTT 

5'-GAACACCTGAATGAAGCTGAAGGCTT 

ALVE-ros004 5'-CTCTTGCTTAATGTTTTGTTATCTTGACC 

5'-TGGCAAATCGTTTCTGAGTCCAATTAGAT 

5'-TCTCTTGCTTAATGTTTTGTTATCTTGACT 

5'-CAAGTTGCCTCTGGCTCTATTTGACTA 

ALVE-ros005 5’-CTAAATATGTCTTTTTTGTCTCCTTGATAC 

5’-GGGTAAACAATAGCACTGCTCCTTAT 

5’-ATTCTAAATATGTCTTTTTTGTCTCCTTGATAT 

5’-TAGCGATTGCGAACACCTGAATGAA 

ALVE-NSAC3 5'-AAACAGCTGATGGTATATCTTTTCATAAAATA 

5'-CATTTCCATACACATCACAGAGATGAAATT 

5'-ACAGCTGATGGTATATCTTTTCATAAAATG 

5'-GAACACCTGAATGAAGCAGAAGGCTT 

ALVE-ros006 5'-ATATTCAGACACAGGACTCC 

5'-AGCCAGTCTGTATCTTCTGT 

5'-CATATTCAGACACAGGACTCT 

5'-TCTGGCTCGATTTGACTAC 

ALVE15 5'-TAGAATATATTTACAAAAATCTCCATRTTTATG 

5'-CTTTGAGGATCTACTTGATGAAAACATGTT 

5'-TAGAATATATTTACAAAAATCTCCATRTTTATT 

5'-TAACGATTGCGAACACCTGAACGAA 

ALVE-ros007 5'-TCATAACAATGGAGATGTGGGAATAGATA 

5'-TTGATCCAAGGCAGGTAGTATTATCTGTT 

5'-TTCATAACAATGGAGATGTGGGAATAGATT 

5'-CGTTGAGTCCCTAACGATTGCGAA 

ALVE-ros008 5'-TATGATAAGAATTTTCTGTAGG 

5'-AATATCTGAGACAGAGAATAAA 

5'-CTATGATAAGAATTTTCTGTAGT 

5'-AGACTATTCAAGTTGCCTCT 

ALVE-ros009 5’-GGGTTCATGCTGTGTCCAGTG 

5’-GAACACCTGAATGAAGCAGAAGGCTT 

5’-GGGTTCATGCTGTGTCCAGTC 
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5’-AGATTTGCAGAGGGTGCACTCCAT 

ALVE9 5'-TCCCTCTTGAGTCTCAAAAGAGTTC 

5'-GAAAGCCTGTGTATTATTAAAGGCCC 

5'-ATTCCCTCTTGAGTCTCAAATGAAGCC 

5'-TCCCTAACGATTGCGAACACCTGAA 

ALVE-NSAC7 5'-TGGATGAACAAGTTCACTTCTCTAAGA 

5'-ACCAGACTGCATGTGTGTTAGCTTAACA 

5'-TTGGATGAACAAGTTCACTTCTCTGAAGC 

5'-ACGATTGCGAACACCTGAATGAAGCA 

ALVE-ros010 5'-CTTATTTAGGAGAAATGCAAATGTAGGCTA 

5'-TTTGTGTAATACCCCATTAGGGGCATAT 

5'-ATTTAGGAGAAATGCAAATGTAGGCTG 

5'-AAGTTGCCTCTGGCTCTATTTGACTA 

ALVE3 5'-GCTCCACGGTCCGTGGTTG 

5'-TGCAGTAATGGTGTTTGACACCAATTGAT 

5'-GGCTCCACGGTCCGTGGTTT 

5'-GAACACCTGAATGAAGCAGAAGGCTT 

ALVE21 5'-AAAACCAAACACTTTTGTATATGGGTAGTT 

5'-CTGACTTCACTACTCAGCATCACCAA 

5'-ACCAAACACTTTTGTATATGGGTAGTG 

5'-GAACACCTGAATGAAGCTGAAGGCTT 
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Figure 6.3 KASP diagrams for each of the identified ALVEs using the 2010 males 

of all eight Hy-Line lines. The red data points are individuals homozygous for the 

ALVE, greens are heterozygotes, blues are wildtype homozygotes, and blacks are 

the controls. Pink data points were ambiguous either due to their location outside 

genotype clusters or the path taken during cycling (such as the pink data points 

within the genotype clusters of ALVE_ros006). For assays such as ALVE_ros003 

(where the insert allele was rare) groups have been called using data from multiple 

generations (not shown). ALVE-TYR and ALVE9 lack any heterozygote calls due to 

these ALVEs being fixed in some lines and absent in all others. 

Most assays needed multiple designs to fix issues caused by SNPs in the primer binding 

regions (Figure 6.4) or non-amplification of one of the alleles, usually the ALVE insert 

(Figure 6.5). This usually involved identification of SNPs so that they could be included 

as ambiguous wobbles in the primers or avoided completely. Primers ordered with 

ambiguous bases included both primer variants in the indicated locations, ultimately 

limiting the number of manageable SNPs to two within each primer. SNP-related issues 

were often with the wildtype group, as assays were designed based on ALVE+ lines, so 
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SNPs in the ALVE- lines were overlooked. One example of this was ALVE_ros005 

which had a group consisting of individuals from all three brown egg layer lines which 

did not leave the origin in the original assay design (Figure 6.6A). The assay was 

successfully redesigned (Figure 6.6B) after sequence from origin group individuals from 

all three lines showed a 6 bp deletion in the ‘no insert’ reverse primer binding location 

(Figure 6.6C). Whilst individuals from all three lines exhibited the deletion, 

ALVE_ros005 was only identified in WPR1 and the RIR, both at rare frequencies.  

 

 

Figure 6.4 ALVE15 KASP assay redesign based on a SNP the base before the insert 

hexamer. A) The pink group to the left of the main blue group were from brown egg 

layer lines which contained a G/A SNP in the fluorescent-tagged primer binding 

region. This reduced wildtype fluorescence and created this ‘slow’ group. B) The 

redesign included the SNP ambiguity (G/A = R) and enabled blue group resolution. 

 

Figure 6.5 ALVE-NSAC1 KASP assay redesign due to non-amplification of the insert 

primers. A) Pink group at the origin did not move due to non-amplification of the 

insert-specific primers. This also caused the green heterozygote group to remain 

on the x-axis. B) Redesign of the insert-specific primers enabled amplification 

creating the red group and better resolving the green and blue groups. 
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Figure 6.6 ALVE_ros005 assay redesign due to presence of an origin group 

consisting of individuals from both WPR lines and the RIR. In the original design 

(A) a group of pink individuals did not leave the origin, suggesting that there was a 

problematic SNP or other variant in one of the primer binding regions. The assay 

was redesigned (B) following identification of a 6 bp deletion in the original ‘no 

insert’ reverse primer location in all three lines by Sanger sequencing (C). The top 

three sequences in C were from the pink ‘fail’ group in A, and the next three were 

from individuals which were correctly called in A. The insertion site is indicated by 

the red dashed line, and the KASP primer locations are shown by the numbered 

primer sequences, where 1 = insert fluorescent primer (hence the highlighted T 

after the insertion site), 2 = ‘no insert’ fluorescent primer, and 3 = the ‘no insert’ 

reverse primer, showing the impact of the 6 bp deletion. The redesign moved 

primer 3 to avoid the deletion, producing tight genotype groups and the removal 

of most pinks. Remaining pinks were likely due to low quality DNA as those 

samples also failed in several other KASP assays. These DNAs should be replaced, 

as two of the eight RIR pinks in the redesign were ALVE_ros005 heterozygotes 

when checked by gel-based PCR assay. 

An advantage of the KASP system was the ability to PCR the plates for a given number 

of cycles, read the plates, and then continue PCR if necessary. This aided assay 

improvement for the optimum number of cycles (Figure 6.7), and enabled tracking of 

individual samples during PCR to ensure the path taken was consistent with other 

individuals in the genotype cluster (e.g. pink calls in ALVE_ros006; Figure 6.3).   
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Figure 6.7 ALVE-NSAC7 genotype cluster resolution during PCR cycling, with cycles 

increasing from left to right. Initially the groups are not distinct enough to be called 

(30cyc), but resolution gradually improves through the 33cyc and 36cyc. 36cyc 

was chosen as optimum due to the better resolution between the red and green 

groups (several intermediates changed genotype call between the two). As the 

plates become ‘over-cycled’ (39cyc) the blue cluster loses cohesion, with a group 

moving up the plot towards the heterozygotes. 

6.4.2 Diagnostic PCR development 

In addition to the KASP assays used for large-scale genotyping, diagnostic PCR assays 

were also developed as these are more suitable for the non-industrial genotyping of 

smaller flocks. Of the twenty identified sites, ten already had published PCR assays: 

ALVE1, ALVE3, ALVE9, ALVE15, ALVE21, ALVEB5, ALVE-TYR, ALVE-NSAC1 

and ALVE-NSAC3. However, the original ALVE1 upstream primer had a Tm of just 

49.6°C which caused amplification problems for the longer PCR runs used in the ALVE 

sequencing (sections 5.2.4 and 6.6), so it was redesigned to give a Tm of 67.7°C. 

Twenty-eight new primers were designed for the remaining ten identified ALVEs, with 

ALVE_ros005 and ALVE_ros007 having a two primer assay protocol rather than the 

standard three. When designing primers for ALVE_ros005 it was observed that read 

pairs were spanning the predicted insertion site, suggesting that it was a solo LTR like 

ALVE15. Concordantly, the same primers could amplify all three possible genotypes. 

An alternative, ‘insert’ primer was initially designed, but it became redundant following 

identification of the site as a solo LTR. The ALVE_ros007 design was inhibited by not 

knowing whether the insertion was always truncated and associated with the genomic 

deletion. Although the KASP assay worked on the assumption that individuals were 

either wildtype or had both the truncated insertion and genomic deletion at this locus, 

the PCR assay would potentially be used on lines where this was not the case, so band  
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Table 6.5 Primers used for the diagnostic Hy-Line-based PCR assays. For each 

element, the first sequence is the forward, upstream primer and the second is the 

reverse, downstream primer. In three primer assays the third primer is the 

alternative primer. Any original Benkel LTR primers are named (LTRA etc.). The 

papers for previously published primers are numbered where: 1 = Benkel, 1998; 

2 = Chang et al., 2006; 3 = Smith & Benkel, 2009; 4 = Smith & Benkel, 2008. 

Name Primers ALVE+ (bp) ALVE– (bp) 

ALVEB5 5'-CAGTCATATATCCGAATGTTTAAGTCT (1) 

5'-GGAGCCATAATTTCATAATGAA (1) 

5'-CGCCCATATGTCCTTGCGTC (LTRD; 1) 

   123    241 

ALVE1 5'-CGGTTATAATGAGGGTTGTGCTTTTC 

5'-GCACCAAACAATCTAGTCTGTGC (1) 

5'-CCTGAATGAAGCAGAAGGCTTC (LTRA; 1) 

   260    368 

ALVE-ros001 5'-TTCCTCTCAGGTCTTCTTGGCG 

5'-TGCCCTACGTATGACAATGCTG 

5'-AACGATTGCGAACACCTGAATG 

   275    460 

ALVE-ros002 5'-TCAGCAGCAACAGAAATCCAGC 

5'-CAAGACCCACCTGGATGCCTAC 

5'-GGCTATTCAAGTTGCCTCTGGC 

   270    361 

ALVE-ros003 5'-TCTCACAAACCCCACAGGTGTC 

5'-TTTGTCATCTCTGTGCCCTTGG 

5'-GTTGCCTCTGGCTCTATTTGAC 

   186    498 

ALVE-TYR 5'-TTGAGATACTGGAGGTCTTTAGAAATG (2) 

5'-CAAAACCATAAATAGCACTGGAAATAG (2) 

5'-CCTCTGGCTCTATTTGACTACACAGT 

   345    481 

ALVE-NSAC1 5'-GGTTTGGAGAGCGTTAGCAG (4) 

5'-TGACGTCTGTTTTCCCATGA (4) 

5'-TGTAGTCAAATAGAGCCAGAGG (LTRC; 1) 

   340    519 

ALVE-ros004 5'-CTAAGTAGCTGTCATCCCCACC 

5'-AAAGTGTTTCCAGCAGTTTTCC 

5'-AAGTTGCCTCTGGCTCTATTTGAC 

   273    336 

ALVE-ros005 5'-TGGGGAAGTTGTGCTTTTCCAC 

5'-TCTTTGCAACACAGCTTGGGAG 

   668    388 

ALVE-NSAC3 5'-TGCTATCTCCCTGCTCATTTG (3) 

5'-CACCCAGATCCTTTTCCTCA (3) 

   163    500 
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5'-GAGTCCCTAACGATTGCGAACAC (LTRF; 1) 

ALVE-ros006 5'-TAACTTCTCTTCCAGCCTCAGC 

5'-TTTTTCAAGGAGCAGAAAATCC 

5'-GAACCCCTAAATGAAGCTGAAG 

   333    417 

ALVE15 5'-CAAATGAGGGTAATAAGGGAG (1) 

5'-CACTACCAAATATAATTCTGTAG (1) 

   460    180 

ALVE-ros007 5'-TCAGCATAAAACCACAGCAAAG 

5'-GTGGATTTTGGGCTACTTTCAG 

1,970 2,511 

ALVE-ros008 5'-GCACAGAGAAGGATATGTGCTG 

5'-CTGTAAAAGAATCCCATGCCTC 

5'-GACTATTCAAGTTGCCTCTGGCTC 

   336    428 

ALVE-ros009 5'-ACAGCCTCTCTGGACAACCTGG 

5'-GCCCATGTCAAACATCATCAGG 

5'-TGTTTTTCCCTTATTTGGTCTTCAG 

   248    366 

ALVE9 5'-CATTCTCCATGCACCTGAAGTG (1) 

5'-TAGTGCACATATAATTTCAGATGAGTT (1) 

5'-ACCTGAATGAAGCTGAAGGCTTC (LTRB; 1) 

   115    450 

ALVE-NSAC7 5'-ACACCATCTCCATACACTTCCC 

5'-GAAATGCACGTAAGCACAAAAG 

5'-TGAATGAAGCAGAAGGCTTCAGAG 

   172    288 

ALVE-ros010 5'-CCAAGCTCTGAACATACACTGC 

5'-CTGGGTAACAGAAGAGTGGTCC 

5'-CTAACGATTGCGAACACCTGAATG 

   228    433 

ALVE3 5'-GAAATGCCTGCCCCATGCCAGTG (1) 

5'-CTTCTCCAGCTTCAGTGACGC (1) 

5'-CCTGAATGAAGCAGAAGGCTTC (LTRA; 1) 

   190    270 

ALVE21 5'-CATTTCAAGCAAGGGACTGGC (1) 

5'-GTGGGAATGGTACTACAGAGAAGG (1) 

5'-ACCTGAATGAAGCTGAAGGCTTC (LTRB; 1) 

   390    510 

 

size variations between individuals had to be observable. Consequently, only the two 

external primers were used for this PCR assay, with a band length of 2,511 bp in the 

wildtype, and 1,970 bp in an individual with both the truncated insertion and genomic 

deletion. Any major deviations of these band sizes, or their absence, would therefore 
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require further investigation. To account for these longer PCR products, the elongation 

step in each PCR cycle was extended to 3 minutes.  

All primers designed for this project are summarised in Table 6.5 along with the 

previously published primers and predicted band sizes for products with and without 

the ALVE insertion. Each primer set was tested on the HL DNA samples and the 

observed genotypes corroborated the KASP assay results. 

 

6.4.3 Genotyping of the 2008 birds used for resequencing 

DNA samples from the eighty individuals used for the 2008 HL line resequencing 

project were genotyped using all the developed KASP assays. Interestingly, there were 

marked differences between frequencies of ALVEs shared between lines of the same 

breed, and many of the ‘common’ layer ALVEs, such as ALVE1, ALVE3 and ALVE15, 

were not fixed in WLs as has been previously suggested.  

WL ALVE frequencies were generally high, with ALVE1 fixed in three lines, ALVE9 

fixed in WL3, and ALVE3 and ALVE15 found at medium or high frequencies in all 

cases (Table 6.6). Only the WL4 insertion ALVE_ros008 was at a rare frequency, with 

two heterozygotes in the original pool. ALVE_ros008 had the lowest observed frequency 

of any insert identified by the identification pipeline. This region had 10.8X coverage, 

consistent with the genome average of 11.1X, but the individual site modelling suggests 

that there was a 74.5 % chance of missing this insertion in the data.  

As expected, both WPRs were fixed for ALVE-TYR. The other insertions were of 

medium frequency, except ALVE-NSAC7 which was fixed in WPR1 and at a high 

frequency in WPR2. Interestingly, as the KASP assays were applied across all the lines, 

ALVEB5 was also identified in WPR1. This insertion was only seen in one homozygous 

WPR1 individual and there was no evidence for it in the full, reference genome 

mapping. Coverage over this site was 11.7X, 15 % lower than the genome average, and 

modelling suggested only a 28.6 % chance of this insertion being detected. Following 

detection of ALVEB5 in WPR1, the only observed difference between the WPR ALVE 

contents was the novel chromosome 4 insertion ALVE_ros009 in WPR2 (Table 6.7). 
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Table 6.6 Observed frequency categories for each identified White Leghorn ALVE 

in the five Hy-Line white egg elite layer lines, using the 2008 resequenced birds. 

Insert WL1 WL2 WL3 WL4 WL5 

ALVE1 Fixed Fixed Medium High Fixed 

ALVE15 High Medium - - Medium 

ALVE_ros008 - - - Rare - 

ALVE9 - - Fixed - - 

ALVE3 - Medium Medium High - 

ALVE21 - - - Fixed - 

 

Table 6.7 Observed frequency categories for each identified ALVE in the three Hy-

Line brown egg elite layer lines, using the 2008 resequenced birds. Entries 

indicated by asterisk were identified by KASP assay, not the identification pipeline.  

Insert WPR1 WPR2 RIR 

ALVEB5 Rare * Medium Medium 

ALVE_ros001 - - Medium 

ALVE_ros002 - - Medium 

ALVE_ros003 - - Low 

ALVE-TYR Fixed Fixed - 

ALVE-NSAC1 Medium Medium Medium 

ALVE_ros004 - - High 

ALVE_ros005 - - Low 

ALVE-NSAC3 Medium Low - 

ALVE_ros006 - - Medium 

ALVE_ros007 - - Medium 

ALVE_ros009 - Medium - 

ALVE-NSAC7 Fixed High - 

ALVE_ros010 - - Medium 

ALVE3 - - Rare * 

ALVE21 Fixed Fixed - 



170 

The RIR exhibited no fixed inserts, with most inserts having medium frequency and two 

with low frequency (Table 6.7). As with WPR1, the application of all developed KASPs 

to all lines enabled the detection of ALVE3 in the RIR. This is an insert shared with 

three WLs and not with the WPRs, the other brown egg layer lines. However, the 

frequency of this insert is very low, as it was only found in one heterozygous individual. 

Again, full genome mapping did not support this insertion, despite the region having 

36.5X coverage, more than double the genome average. This exemplifies the potential 

for allele specific amplification during sequencing library preparation, as homogeneous 

amplification should result in one or two ALVE-homologous reads. Detection 

modelling for this site suggested a 44.0 % chance of identifying ALVE3 in the data.  

 

Probability of detecting insertions with the HL pooled sequencing data 

The probability of insert detection in the pooled datasets is almost perfectly, positively 

correlated with the average genome coverage (r = 0.999, P < 0.00001). However, the 

combination of sampling bias, variability in allele specific amplification, and relatively 

low coverage generates quite low detection probabilities from the model.  

Across the eight lines, 90 % detection confidence is only achieved with insertion 

frequencies between 0.3 (WL1) and 0.5 (WL4). At ALVE frequencies as low as 0.1, 

there is only a 28 - 45 % chance of detecting that insert across the lines. This means that 

there is a high probability that rare ALVEs will be missed from the pooled sequencing 

data. This is particularly important when ALVE insertions are line specific, and 

therefore cannot be identified using assays developed from detection in other lines. As 

coverage and sequencing variability largely determine detection probability, increasing 

the number of sampled individuals in the pool does not improve the rate of detection.   

 

6.4.4 Multi-generation genotyping of line males 

In addition to the eighty individuals used for resequencing, DNA was also available for 

all the males of each of the eight lines for fifteen generations, totalling over nine thousand 

samples. This enabled the detection of insert frequency changes over time, as well as the 
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potential discovery of inserts present in lines when the birds used for resequencing did 

not contain those inserts. However, this would only detect inserts found in at least one 

of the lines from the resequencing data, not unidentified line-specific inserts, as a KASP 

assay would not have been developed for them.  

The multi-generation data for the WLs matched the sequenced individuals very well, 

with each frequency category matching those from the 2008 resequenced individuals 

(Table 6.6). One difference was that the observed ALVE1 frequency for WL3 was half 

that observed in the sequenced individuals. This frequency remains in the ‘medium’ 

category, but is rarer than the original sampling would suggest. Interestingly, ALVE3 

frequency has been gradually increasing in WL2, WL3 and WL4, but not in the RIR. 

ALVE3 is an intronic insertion, within the sixth intron the HCK tyrosine protein kinase 

gene, and is centred in a 200 kb region containing twenty genes (Figure 6.8). This region 

includes the immune gene IRF9 (interferon regulatory factor 9), and the apoptosis 

regulator BCL2L1 (B-cell lymphoma 2 like protein 1), which has been identified as a 

candidate in differential response to MDV (Ohashi et al. 1998).  

 

 

Figure 6.8 Ensembl view of the 200 kb genomic region centred on the ALVE3-

containing HCK gene. Tracks have been collapsed down to genes (red) and 

predicted lncRNA (grey). The image is a screenshot from the Ensembl website. 

The WPR sequenced individuals were far less representative of the multi-generation 

data. ALVEB5 was rarer overall in both lines than in the sequenced individuals, and 

ALVE-NSAC7 was not fixed in WPR1, as was suggested above, but was 25% rarer, with 

a frequency bordering medium to high, lower than observed in WPR2 (Table 6.8). 

Additionally, three insertions identified in the RIR were identified in the WPRs. Both 

lines had ALVE_ros004 at a rare frequency and WPR1 also exhibited ALVE_ros005 

at a rare frequency and ALVE_ros010 at a low frequency. In WPR1 the frequencies of 
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all three had remained consistent over the sampled generations, but the WPR2 

ALVE_ros004 frequency dropped rapidly over the last eleven generations from 

medium to rare frequency. ALVE_ros004 is intergenic: over 40kb upstream from the 

reverse strand gene MMP16 (matrix metallopeptidase 16), and 450kb upstream of the 

forward strand gene RIPK2 (receptor interacting serine/threonine kinase 2). 

Additionally, ALVE_ros009 was also found in WPR1 in the 1996-1998 generations at 

rare frequencies, but was then lost from the population, so was not counted in the 2010 

frequency data. The frequency of ALVE_ros009 in WPR2 did not have a similar 

decline, so the loss from WPR1 was likely due to drift.  

Table 6.8 Observed frequency categories for each identified ALVE in the three Hy-

Line brown egg elite layer lines, using the most recently available, 2010 full 

generation of male birds. Entries indicated by asterisk were ALVEs present in the 

lines but absent from the 2008 resequenced birds, and the entries indicated by 

the circumflex were ALVEs with frequency categories different from Table 6.7. 

Name WPR1 WPR2 RIR 

ALVEB5 Rare Medium Low ^ 

ALVE_ros001 - - Low ^ 

ALVE_ros002 - - Low ^ 

ALVE_ros003 - - Low 

ALVE-TYR Fixed Fixed - 

ALVE-NSAC1 Medium Medium Medium 

ALVE_ros004 Rare * Rare * Medium 

ALVE_ros005 Rare * - Rare ^ 

ALVE-NSAC3 Medium Low - 

ALVE_ros006 - - Medium 

ALVE_ros007 - - Medium 

ALVE_ros009 - Medium - 

ALVE-NSAC7 High ^ High - 

ALVE_ros010 Low * - High 

ALVE3 - - Low ^ 

ALVE21 Fixed Fixed - 
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The RIR frequencies matched the resequenced individuals well, despite category 

changes for four ALVEs (Table 6.8). ALVE3, which was not originally identified in the 

bioinformatics pipeline, had a higher frequency than in the resequenced individuals, but 

the observed frequency was consistently low across the generations.  

 

6.4.5 Final list of identified ALVEs in the Hy-Line lines 

Overall, two to four ALVEs were identified in the five WL lines, nine were identified in 

WPR1 and eight in WPR2, seven of which were shared, and eleven ALVEs were 

identified in the RIR. This totals twenty different ALVEs with forty-two occurrences. 

The predicted gain and loss of ALVEs within the lines is represented in Figure 6.9. 

The two brown egg breeds (WPR and RIR) shared five ALVEs: ALVEB5, ALVE-

NSAC1 and the novel ALVE_ros004, ALVE_ros005 and ALVE_ros010. The RIR and 

three WL lines shared ALVE3, and there was at least one documented occasion in the 

RIR line history where there has been a WL cross, likely introducing this typically white 

egg layer ALVE into the RIR. ALVE21 is the only other cross-egg-colour ALVE, but as 

this is associated with the commercially important slow feathering locus it was likely 

introduced when breeding for this phenotype.  

 

Unidentified ALVEs within the Hy-Line lines 

BAM files for the Hy-Line lines were also manually inspected for a whole range of 

additional ALVEs with known insertion sites (Table 6.9). These were identified using 

existing diagnostic assay primers, flanking information and insertion hexamers, as well 

as information kindly shared by Professor Bernhard Benkel. However, no additional 

ALVEs were identified beyond those discovered by the pipeline.  

There was no evidence in any of the eight lines for the two ALVEs in the chicken 

reference genome assembly: ALVE6 and ALVE-RJF (Benkel & Rutherford 2014). 

Whilst ALVE-RJF (Figure 6.10) has not been identified in any ‘modern’ chicken breeds 

(Benkel & Rutherford 2014), the literature for ALVE6 states that it is common in layers 

(Benkel 1998), so it was surprising that it was not identified by the pipeline, particularly 



174 

after successful detection via preliminary gel-based PCR assays completed by Hy-Line 

in WL4 and WPR1. However, the ALVE6 insertion site is at the very start of 

chromosome 1 (Figure 6.11), and, concordantly, read mapping is poor even for normal 

  

 

Figure 6.9 Network map of shared ALVEs in the Hy-Line elite layer lines. Gains and 

losses have been plotted in the most parsimonious manner, so the white and 

brown egg layer groups are independent. Each ALVE is shown by a different colour 

in each lineage, with the number of different coloured lines reaching each HL line 

representing the total number of ALVEs identified. No line inter-relatedness has 

been included for the WLs and the presence/absence of ALVE3 and ALVE15 was 

assumed to be due to incomplete lineage sorting. The ALVE_ros009 WPR1 line 

does not reach the end as it was present in the 1996-1998 generations, then lost.  
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Table 6.9 ALVEs with previously published insertion sites, insertion hexamers or 

diagnostic assays which were manually checked across the Hy-Line lines. 

Name Location Hexamer 

ALVE6 1: 576 GGCGCT 

ALVE-RJF 1: 32,603,304 GGCTTG 

ALVE2 1: 36,872,528 GAGGGG 

ALVE16 1: 67,449,967 CATGGC 

ALVE12 1: 122,259,940  GTGTTG 

ALVE-NSAC2 1: 146,108,486 GGGTCC 

ALVEB11 2: 62,587,235 AGAGGA 

ALVEB2 2: 95,058,383 GACCAT 

ALVE-NSAC5 3: 73,338,411 GGCTGA 

ALVEB10 4: 27,829,406 GCATTC 

ALVEB4 4: 88,793,982 ATGTTT 

ALVEB9 5: 12,126,222 GGGGAC 

ALVEB1 5: 23,238,400 GTTATT 

ALVE-NSAC6 5: 57,261,506 AAAACT 

ALVE4 6: 33,827,722 GCTGCC 

ALVEB3 7: 20,479,059 GTAGTC 

ALVE-NSAC4 12: 17,625,255 CCTGGG 

ALVEB6 14: 9,367,708  GTGTCT 

ALVEB8 20: 1,468,850 GACTAC 

ALVE7 Z: 14,471,852 ACCCTC 

 

genomic reads.  It is therefore possible that ALVE6 was missed during the identification 

process, as were any other insertions located at the telomeres, centromeres or other 

difficult to sequence regions of the genome. When combined with the high probabilities 

of missing low frequency or line specific insertions when using pooled datasets, it is 

highly likely that the twenty ALVEs across the eight HL lines are an under-

representation. 
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Figure 6.10 Hy-Line WPR1 read mapping (with linked read pairs) around the 

Galgal5-assembled ALVE-RJF. There was a clear demarcation between reads 

mapping to the reference genome 5’ of the assembled ALVE-RJF, and ALVE-

homologous reads mapping to ALVE-RJF itself. As no reads bridge this gap, WPR1 

does not contain ALVE-RJF. In addition, the mate of read 1 maps 13,954 bp 

downstream, again supporting the absence of ALVE-RJF in WPR1. The mate of read 

2 maps to the 5’ genomic region which flanks the ALVE-TYR insertion. 

 

Figure 6.11 Hy-Line WPR1 read mapping (with linked read pairs) around the 

putative ALVE6 insertion site (red dashed line) in the first 2,000 bp of the Galgal5 

chromosome 1. Read mapping is generally poor and there is no evidence of an 

ALVE insertion at the indicated site. 

6.5 Further characterisation of ALVE21 and the K locus 

ALVE21 was identified in WPR1 and WL4 as expected, but also in the fast feathered 

WPR2 (all three lines are fixed for their feathering phenotypes). The BAM files for the 
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region clearly showed support for the ALVE21 insertion in these three lines, especially 

when compared to the ALVE21-, fast feathered WL5 (Figure 6.12).  

 

 

Figure 6.12 BAM file support for ALVE21. IGV screenshots show the clipped reads 

at the ALVE21 insertion site in WPR1, WPR2 and WL4, whilst reads map correctly 

across the region in WL5 (ALVE21-, fast feathered). Strikingly, no reads map 

through the insertion site in WPR2 without clipping. However, in both WPR1 and 

WL4 (the expected ALVE21+ lines) approximately half the reads covering the 

insertion site map through the region without clipping. This supports the presence 

of the locus duplication in WPR1 and WL4 (where one of the duplicates contains 

an unoccupied ALVE21 site) but not in WPR2, matching the feathering phenotype. 

Whilst ALVE21 is closely associated with the slow feathering phenotype, it is the K locus 

duplication (Figure 6.13) which is the causative factor. However, there have been 

reported cases of phenotype reversion to fast feathering caused by recombination 

between the tandem repeated sections of the K locus (Figure 6.14) (Levin & Smith 

1990). WPR1 and WPR2 are sister lines which were separated based on the fast/slow 

feathering phenotype. The presence of ALVE21 in the fast feathering WPR2 suggests 

that the fast/slow feathering phenotype was not segregating in the WPR population at 

the point of separation. Rather, that fast feathering revertants were selected as the 

founders of the WPR2 line. 
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Figure 6.13 Schematic for the feathering locus. The wildtype k+ has the PRLR gene 

on the reverse strand, SPEF2 on the forward strand and the ALVE21 insertion site 

(gold bar). The duplicated region is shown with the duplicated gene sections 

(dSPEF2 and dPRLR) and duplicated insertion site. In the K allele one of the 

ALVE21 sites is occupied and the other is empty (as in k+), but it is unknown which 

site is occupied. The only unique sequence is the link between dSPEF2 and dPRLR. 

 

Figure 6.14 Potential K allele revertants. The tandem repeats of the K allele retain 

greater than 99 % homology so will readily recombine producing phenotypic 

revertants. With respect to ALVE21, there are two possible revertant genotypes, 

with (kR) or without (k+) the insertion.  These genotypes will depend on where 

recombination crossing over occurs. 

Duplication of the ALVE21 insertion site in the slow feathered K allele meant that the 

KASP assay identified all WPR1 and WL4 individuals as heterozygotes, as the ‘empty’ 

insertion sites were picked up by the ‘no insert’ primer pair (Figure 6.15A). In addition, 

the assay provided more support for the hypothesised feathering phenotype reversion 

(k
R
) in WPR2, as all these individuals were homozygous for ALVE21. Furthermore, the 

ALVE21 KASP was used on male progeny of a WL4 (♂) x WL3 (♀) cross to show that 

these were ‘genuine’ heterozygotes for ALVE21 (Figure 6.15B, grey, K/k
+
 genotypes).  
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Figure 6.15 KASP assay results for ALVE21. A) Results for the 2010 males from 

all eight Hy-Line lines showing WPR1 and WL4 as heterozygotes, WPR2 as 

homozygous for the insert, and the remaining five, fast feathered lines as 

homozygous wildtype. B) Results for WL4 males (green, K/K), WL3 males (blue, 

k+/k+), the male progeny of a WL4 (♂) x WL3 (♀) cross (grey, K/k+) and the female 

progeny of the same cross (red, K/-). Theoretically more samples would better 

resolve the grey group towards the x-axis, as the ALVE21 insertion site ratio is 2 

empty to 1 occupied (K has 1 of each, k+ has 1 empty). There were no samples 

available for ‘true’ ALVE21 heterozygotes (kR/k+, a WPR2 crossed with a non-

WPR2 fast feathered bird).  

6.5.1 K locus bridging sequence KASP development 

Whilst the ALVE21 KASP assay was viable for use with lines where the feathering 

phenotype was known to be fixed, it cannot be used reliably on segregating lines. Even 

with perfect data, genotype clusters would likely resolve poorly and it would be 

impossible to distinguish between K/K and k
R
/k

+
 individuals (Figure 6.16). However, the 

genotypes can be reliably called when the ALVE21 KASP is used in tandem with an 

assay specific to the duplication bridging region within the K allele. 

As Figure 6.13 shows, the only unique sequence within the K locus is the bridge between 

duplicated and wildtype sequence. Using primer sequences designed by Elferink and 

colleagues (2008) and the published bridging sequence (Bu et al. 2013), the exact 

bridging point was identified at Z: 10,800,130, meaning the duplicated region is 188,265 

bp (Z: 10,611,865-10,800,129), almost 12 kb longer than previously reported. The 

duplicated region within the K locus therefore contains most of PRLR (up to 575 bases 

of exon 12) and the first four exons and 1,540 bases of the fourth intron of SPEF2 (378 

bp short of exon 5). The potential ALVE21 insertion sites could therefore be at Z: 
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10,681,670 or at position 258,691 of the full K locus (measured as 441,255 bp from the 

outer points of PRLR and SPEF2). 

 

 

Figure 6.16 The continuum of possible ALVE21 KASP results from the six K locus 

genotypes. KASP resolution to five groups based on relative intensity has been 

shown (Fulton et al. 2016), but is unlikely with limited numbers of each genotype. 

In addition, no resolution would be possible between the kR/k+ and K/K genotypes. 

A composite sequence for the K allele was created and used to design the duplication 

KASP assay (Table 6.10). The results from the use of this assay on all HL lines from 

the 2010 generation were as expected, with the slow feathering WPR1 and WL4 positive 

for the duplicated region and all others negative, including WPR2 (Figure 6.17). 

Table 6.10 KASP primers for the K-duplication assay. As the result of this assay is 

the presence/absence of the entire unique sequence, the first primer pair is an 

internal control (commonly used by Hy-Line). The second primer pair is for the 

duplication sequence. The first primer in each pair carries the fluorescent tag.   

Assay KASP primers 

K-duplication 5'-CCACGGTCCGTGGTTG 

5'-ATTGACAGATTGAGAGCTCTTTCTCGATT 

5'-ACTAGGGCTAGCATTTAATATAACCCCT 

5'-TGAAACCATCCCTGGAGAGATGGAA 
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Figure 6.17 K-duplication KASP assay results. Due to the use of an internal control 

individuals homozygous for the duplication appear as heterozygotes (green). Some 

preliminary work (not shown) suggests ‘true’ duplication heterozygotes form an 

intermediary group. Here, the green group contains all WPR1 and WL4 individuals. 

6.5.2 Characterisation of the K locus with BioNano optic mapping 

The KASP assay results and original BAM file for WPR2 support the fast feathering 

phenotypic reversion in this line. However, additional data was needed to confirm this 

result, and to identify which of the ALVE21 insertion sites was occupied in the K locus. 

Coverage across this region was low for all lines and varied to the extent that it was 

impossible to infer higher coverage of the duplicated sections of the K allele from 

existing sequence data. Sequencing alone cannot resolve this locus due to the high 

homology (99 %) between duplicate regions and the gaps of at least 70 kb between 

unique sequences. Even long read sequencing technology would be unable to reliably 

resolve this region. However, the high resolution optic maps produced by the BioNano 

Irys technology have average N50s greater than 200 kb so can concatenate regions of 

unique sequence (Figure 6.18). 

 

Optic maps for the Hy-Line samples 

A total optic map length of 140 – 200 Gb was predicted for all samples, but far less data 

was generated for the WPR1, WPR2 and RIR-sf samples, and molecule N50 values 

were shorter than the 200 kb average in four cases (Table 6.11). Furthermore, the 

success of the de novo assemblies was generally poor, with no consensus maps generated 

for WPR2, very limited genome coverage for the other samples, and no consensus maps  
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Figure 6.18 BioNano strategy for optic mapping of the K locus. The BioNano Irys 

technology creates optic maps by incorporating fluorescent tags using modified 

restriction enzymes (green triangles). Observed tag patterns between different 

genotypes are then compared to identify the structural variants (locations in figure 

not biologically representative). The K allele-containing Z will not just be longer, 

but will also have differential tag patterns: 1) altered spacing due to unique 

duplicated region bridge; 2) increased spacing due to insertion of ALVE21 at one 

of the two unoccupied sites. The revertant kR should have a pattern very like the 

wildtype k+ allele, but will have the increased spacing due to ALVE21 (3).  

 

Table 6.11 Optic map statistics for the five Hy-Line samples. WL3 was wildtype fast 

feathered (k+), WPR2 was the predicted fast feathered revertant line (kR), and WL4, 

WPR1 and RIR-sf were slow feathered (K). Statistics for total map length, number 

of optic map molecules, and map molecule N50 is shown for each analysed line. 

The final column is the total consensus map length after de novo assembly with 

the average map coverage in brackets. No consensus could be formed for WPR2 

due to limited data, and the other sample consensus maps did not cover the entire 

Galgal5 genome (1.2 Gbp). The absence of long contiguous consensus maps 

limited SV detection, and contiguous maps were absent across the K locus. 

Line Map length (Mb) Total molecules Map N50 (kb) Consensus map (Mb) 

WL3 222,923.5  1,240,879 180.7 355.9 (23.7X) 

WL4 288,517.2 1,637,620 180.1 551.0 (39.7X) 

WPR1 126,395.3 568,595 230.5 159.9 (14.8X) 

WPR2 41,146.6 253,579 159.0 No consensus 

RIR-sf 49,009.3 331,003 141.9 5.2 (62.6X) 
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generated for any sample across the K locus region of the Z chromosome. 

Consequently, this data was insufficient to fully characterise the duplication within the K 

allele of the slow feathered samples or validate the ALVE21 insertion site in WPR2. 

Visualisation of the WL3 optic maps mapped to the Z chromosome (Figure 6.19) 

revealed limited coverage across even the wildtype k
+
 allele, although the corroboration 

between predicted and observed Nt.BspQ1 sites was generally good. However, there 

were multiple maps which exhibited incongruence against the in silico reference digest. 

 

 

Figure 6.19 Optic maps for the WL3 (k+) samples. In each panel the red dotted box 

outlines the k+ allele, the top scale represents the location on the Z chromosome, 

and the blue vertical lines in the green bar represent the predicted Nt.BspQ1 sites. 

Both panels are the same, but the lower panel shows the matched sites between 

maps and the in silico digest. The red shaded section in the lower panel represents 

the bridging region in the duplicated K allele. Dark orange maps map to the 

positive strand, and the paler orange to the negative strand. The fluorescent tags 

(green marks on the maps) are darker green when the tags are more confident. 

Most tags match the in silico predictions well, and there are reads mapping 

through the bridging region, supporting the wildtype prediction. However, there are 

maps with poor matches (such as the very bottom dark orange map). 
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Importantly for this sample, there were optic maps which mapped through the bridging 

region which would generate breaks in the K allele (shaded red in Figure 6.19), 

supporting the wildtype k
+
 genotype. None of the other samples had sufficient coverage 

across the region to draw any confident biological conclusions.   

The primary aim of the BioNano optic mapping was to validate the presence of the 

ALVE21 insertion in the WPR2 sample, providing additional support for the 

phenotypic reversion of this line. As the original data was insufficient to address this 

question, the Earlham Institute generated an additional 220 Gb of optic map molecules 

which greatly enriched the original dataset. This data was sufficient to generate a 

consensus map across the K locus, and identified the ALVE21 insertion due to the 

augmented spacing of Nt.BspQ1 markers around the known insertion site (Figure 6.20). 

This corroborates the mapping scenario predicted in Figure 6.18, and provides 

additional evidence for WPR2 line origin as a fast feathering revertant.  

It is likely that the generation of additional data for the slow feathering samples would 

enable the further characterisation of the K allele.  

 

 

Figure 6.20 Consensus map for the WPR2 (kR) allele. The scale bar is for the Z 

chromosome. The vertical lines in the green bar represent the in silico digest 

Nt.BspQ1 predicted sites, the two-tone blue bar represents the consensus 

assembly for WPR2 with the vertical lines showing the supported Nt.BspQ1 sites, 

and the connecting lines show matched sites. The dark blue within the two-tone 

blue bar shows the optic map coverage across the region. The red circles mark 

examples of tandem sites which have collapsed to a single site in the consensus 

due to cross-reacting fluorescence. The red dotted box marks the ALVE21 insertion 

site (Z: 10,681,671), and the expanded region between tags in the consensus 

shows the ALVE21 insertion in WPR2. This matches the Figure 6.18 prediction. 
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6.6 Characterisation of the identified ALVE sequences and assessment 

of their recombination, expression and retrotransposition potential 

Fifteen of the twenty ALVEs identified across the HL lines were fully sequenced in this 

study (Table 6.12). Of these, ALVE15 and ALVE_ros005 were solo LTRs, and ALVE9, 

ALVE-NSAC1 and ALVE_ros007 had varying degrees of 5’ truncation. The remaining 

ten were ‘intact’ elements with both 5’ and 3’ LTRs, although, as expected, the ALVE3 

sequence had no reverse transcriptase domain.  

Table 6.12 Key features of the fifteen sequenced ALVEs 

ALVE name Length (bp) Orientation Structure LTR Identity (%) 

ALVE1 7,530 - Intact 100 

ALVE3 5,848 + Intact, no RT 100 

ALVE9 5,077 - pol-env-3’LTR - 

ALVE15 280 - Solo LTR - 

ALVE21 7,529 - Intact 100 

ALVEB5 7,530 + Intact 99.6 

ALVE-NSAC1 4,838 - pol-env-3’LTR - 

ALVE-NSAC7 7,531 - Intact 100 

ALVE-TYR 7,534 + Intact 100 

ALVE_ros001 7,531 + Intact 100 

ALVE_ros003 7,528 + Intact 100 

ALVE_ros004 7,530 + Intact 100 

ALVE_ros005 280 - Solo LTR - 

ALVE_ros007 1,400 - env-3’LTR - 

ALVE_ros008 7,529 + Intact 100 

 

No sequence information was obtained for ALVE-NSAC3 or the novel ALVE_ros002, 

ALVE_ros006, ALVE_ros009 or ALVE_ros010. Due to the length of ALVE insertions, 

both PCR amplification and sequence cloning were difficult. PCR amplification often 
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resulted in band ‘smears’ on the gel, or the presence of multiple, varying length bands 

for the same assay. Due to this, confirmed and purified insert DNA was never obtained 

for ALVE_ros006, ALVE_ros009 or ALVE_ros010. The diagnostic PCR assays 

described in section 6.4.2 worked as expected for these ALVEs, so further optimisation 

of the long-range PCR protocol may enable amplification of these sites. Troubleshooting 

was attempted, but it is possible that further primer redesigns are required, as was 

successfully completed with ALVE1.  

Cloning success with the intact ALVEs was reduced by 96-99 % compared to test runs 

with the short, solo LTR ALVE15 sequence, even when the cloning vector reaction was 

extended to 24 hours from the ‘5 minute’ protocol. For both ALVE-NSAC3 and 

ALVE_ros002, several repeats of the cloning and transformation protocol yielded only 

two to five colonies, and it is possible that these were contaminants rather than genuinely 

transformed colonies. PCR checks of the colony preparations were ambiguous, but 

sequencing reactions submitted with multiple internal primers as well as the external 

primer pair produced no sequence. Whilst no sequence information was obtained, 

preliminary PCRs suggested that all the non-sequenced ALVEs were full length. Some 

support for this prediction comes from the original characterisation of ALVE-NSAC3 

as full length (Smith & Benkel 2008). However, for the novel insertions these are very 

preliminary suggestions as the PCRs themselves may be part of the problem. 

 

6.6.1 Structure of the incomplete ALVE insertions 

Whilst some of the nine completely intact ALVEs contain mutations which disrupt their 

protein coding potential (section 6.6.3), all nucleotide domains are covered. The six 

incomplete ALVEs are described below. All ALVE sequences are in Appendix 2: AF09. 

 

Solo LTRs: ALVE15 and ALVE_ros005 

Both ALVE15 and ALVE_ros005 are full length, solo LTRs in the negative orientation. 

ALVE15 is widespread in layers (Benkel 1998), and is within the final intron of the 

negative strand GRIK2 gene, 800 bp upstream from the final exon. Whilst there is no 
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literature supporting any impact of ALVE15 on this gene, Ensembl predicts two 

transcripts for GRIK2, the only difference being the presence or absence of the final 26 

amino acid exon. However, there is no available data with which to correlate ALVE15 

presence/absence with prevalence of these transcript variants. From InterPro analysis, 

loss of the final exon does not remove any functional domains or motifs from GRIK2, 

but there could be impacts on protein structure. Conversely, ALVE_ros005 is 

intergenic, more than 150 kb from the nearest gene. 

 

Internal deletion: ALVE3 

ALVE3 has been well studied due to its expression of both gag (Crittenden et al. 1984) 

and envelope (Robinson et al. 1981) glycoproteins. However, ALVE3 is non-

autonomous as it lacks approximately 1,370 bp of sequence, encompassing nearly all 

the protease and reverse transcriptase domains. Either side of this internal deletion, 

ALVE3 is largely complete and the gag-pol single open reading frame has been 

maintained, producing a single transcript spanning the entire gag domain, RNaseH and 

integrase. The expression of the ALVE3 retroviral constituents is likely facilitated by its 

location in the sixth intron of the HCK gene, however there is no available literature on 

the impact ALVE3 presence has on HCK expression or splicing. 

 

3’ truncation: ALVE9, ALVE-NSAC1 and ALVE_ros007 

ALVE9, ALVE-NSAC1 and the novel ALVE_ros007 are all negative orientation 

insertions which are truncated from their 5’ ends, but to varying degrees. ALVE9 is intact 

from 185 bp into the protease domain, ALVE-NSAC1 is intact from 74 bp into the 

reverse transcriptase domain, and ALVE_ros007 is far shorter, intact from 280 bp into 

the envelope surface domain. Whilst all three lack the promoter and enhancers within 

the 5’ LTR, retroviral expression is possible, as ALVE9 expresses high levels of envelope 

protein, known to inhibit ALVE infection (Robinson et al. 1981). However, ALVE9 is 

intronic which could facilitate its expression, but ALVE-NSAC1 and ALVE_ros007 are 

both intergenic. 
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The truncations for ALVE9 and ALVE-NSAC1 are both clean deletions with no 

removal of surrounding genomic sequence. ALVE_ros007, however, is associated with 

a genomic deletion of 1,941 bp (4: 59,843,021-59,844,960). Relative to ALVE1, the first 

6,123 bp of ALVE_ros007 has been truncated, so the total deletion event removed 

8,064 bp of sequence (Figure 6.21). Whilst there is some evidence of avian constrained 

sequence in this deleted genomic region, the constrained region is short and has no 

protein coding potential or promoter/enhancer activity, although the latter is from ChIP-

seq data limited to the adult liver (Eory et al., manuscript in preparation).  

 

 

Figure 6.21 Schematic for the predicted ALVE_ros007 insertion and subsequent 

genomic deletion. Starting from the wildtype (A) there was an ALVE insertion in a 

negative orientation (B). There was then a deletion (C; dotted box) of 6,123 bp 

from the ALVE and 1,941 bp from the host genome, leaving the fragmented 

insertion of the ALVE 3’ LTR and partial envelope domain (D). 

6.6.2 ALVE LTR alignment and phylogeny 

The alignment of all twenty-five sequenced LTRs had 98.6 % identity, and LTRs were 

all 274 bp long, except the 3’LTR of ALVE_ros007 which was degraded. Of the ten 

intact ALVEs, nine had LTRs with 100 % pair identity, with the LTRs of ALVEB5 

sharing 99.6 % identity due to one SNP (G262T) in the 5’ LTR (3’LTR was identical to 

other ALVE LTRs at this site). All LTRs contained an intact TATA box motif (146-

152) and the nearby transcription start site (168-174; U3-R boundary) which was also 

identified as a binding site for the SRF (serum response factor) transcription factor 

(Figure 6.22). In addition, a second, upstream SRF site (43-52) was identified in all 

LTRs. 
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Figure 6.22 The features of the ALVE LTR. LTRs are split into three main sections: 

U3, R and U5, where the U3-R boundary marks the transcription start site (TSS). 

The U3 contains enhancer/promoter sequences, including the TATA box motif 

(146-152) and SRF transcription factor binding sites (43-52, 168-174). 

The alignment of all ALVE 3’LTRs, solo LTRs and the ALV-A and ALV-J 3’LTRs had 

88.6 % sequence identity. Alignment was best from the TATA box through to the 3’ 

end of the LTR (R-U5 domains). This was expected as the U3 LTR domain is known 

to be more divergent as well as contain variable promoters, enhancers and transcription 

factor binding sites that effect tissue-specific expression (Benachenhou et al. 2013). The 

ALVE U3 domain is also known to be much shorter than the U3 of exogenous ALV 

LTRs, as ALVEs lack sequences essential for expression enhancement which causes a 

two to three order of magnitude reduction in overall expression (Norton & Coffin 1987; 

Conklin 1991; Ruddell 1995). Concordantly, the ALV-A and ALV-J LTRs are 324 bp 

in length, with all 50 ‘additional’ bases within the U3 region.  

However, the exogenous ALV LTRs provide a good outgroup for the ALVE phylogeny 

(Figure 6.23). The internal ALVE phylogeny itself is poorly resolved, with limited levels 

of bootstrapping support. This is not helped by the identical ALVE21, ALVE-TYR, 

ALVE-NSAC1, ALVE_ros004 and ALVE_ros008 LTR sequences, which force the 

polytomy at the base of the lineage. However, the general view is that the ALVEs 

originating from the brown egg layers are basal to the white egg layer-specific ALVEs.  

LTR alignments were chosen as LTRs were common to all obtained sequences, but the 

short length does not facilitate well resolved phylogenies. However, even alignments with 

internal domains, such as a 1.3 kb stretch of RNaseH and integrase shared between all 

sequences except ALVE15, ALVE_ros005 and ALVE_ros007, exhibit this same 

problem. Given their total length, each of the ALVE sequences are very similar, likely 

due to their recent integration into the genome, and are evolving independently in the 

different lines. This combination makes a truly representative phylogeny hard to resolve. 
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Figure 6.23 ALVE LTR phylogeny with the exogenous ALV-A and ALV-J 3’ LTRs 

forming the outgroup. Bootstrap support greater than 60 % is shown at the 

relevant nodes, but support is generally limited due to the high identity between 

the sequences. There are several sites which distinguish the generally brown egg 

layer ALVEs from the white egg layer ALVEs, but the LTRs have high identity. 

6.6.3 ALVE open reading frame integrity and potential expression 

Exogenous ALV is transcribed from the 5’ LTR transcription start site into two ORFs 

which are translated, then later cleaved into separate peptides by the retroviral protease. 

The first ORF is gag-pol and the second ORF is env, and is usually phased into the next 

reading frame.  However, this compact genomic organisation is vulnerable to frame shift 

mutations once under the genetic regulation of the host when the retroviral selective 

constraints are lost. Each of the sequenced ALVEs was annotated for ORFs and their 

integrity assessed below. The gag-pol analysis is summarised in Figure 6.24, and the env 

analysis in Figure 6.25. 
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ORF1: gag-pol 

Six of the ten ALVEs with gag nucleotide coverage have one or more mutations in the 

p10 or p27 domains which truncate any transcripts. In most cases, a second viable ORF 

is then possible from amino acid 113 within the p27. ALVEB5, ALVE-NSAC7, 

ALVE_ros001, ALVE_ros003, ALVE_ros004 and ALVE_ros008 all do this with 

various causative mutations. All these ALVEs, except ALVE_ros003, exhibit a viable 

ORF up to the various frameshift or nonsense mutations in p10/p27. In addition, 

ALVE_ros001 has a frameshift mutation after 39 amino acids of integrase, truncating 

the transcript, and ALVE_ros004 has a frameshift after 72 amino acids of RNaseH with 

a secondary, 5’ truncated RNaseH-integrase ORF.  

ALVE3 has a full ORF across gag-pol, but both the protease and reverse transcriptase 

are absent from the element. Likewise, ALVE9 and ALVE-NSAC1 have intact ORFs, 

but due to their 5’ truncation these start at the end of protease and 39 amino acids into 

reverse transcriptase respectively. The ALVE1 sequence matches the GenBank 

reference exactly with a single ORF into the protease domain ending with a frameshift 

mutation. A second ORF overlaps the first but truncates after 214 amino acids into 

integrase, 100 amino acids before the end of the gag-pol product. ALVE-TYR has a 

single ORF from gag until the very start of RNaseH, where there is a frameshift-causing 

deletion, and a second ORF which begins 53 amino acids into integrase. Only ALVE21 

has an intact ORF spanning all the domains.  

Due to the number of mutations observed in the p10 and p27 gag regions, intact p27 

was only detected from ALVE1, ALVE3, ALVE21 and ALVE-TYR. Whilst ALVE1 is 

not normally expressed (Conklin et al. 1982), ALVE3, ALVE21 and ALVE-TYR are 

(Gavora et al. 1991; Chang et al. 2006). These four ALVEs are common and, with 

respect to the HL lines, are either fixed or at high frequencies.  Furthermore, as partial 

p27 coverage was observed at both the 5’ and 3’ ends of the other six sequenced ALVEs, 

it is possible that, if translated, partial protein folding could be enough to create the 

epitope detected by the industry-standard p27 ELISA (Smith et al. 1979).  
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Figure 6.24 Schematic showing ALVE gag-pol domains and the open reading 

frames identified in each of the twelve ALVEs containing gag or pol sequence. Non-

continuous ORFs are shown with dotted lines. The solid line connecting the ORF 

blocks of ALVE3 shows contiguity but the absence of PRO and RT. Abbreviated pol 

domains are: PRO = protease, RT = reverse transcriptase, INT = integrase. 

ORF2: env 

Ten of the sequenced ALVEs exhibited intact envelope ORFs spanning both domains. 

These were ALVE1, ALVE3, ALVE9, ALVE21, ALVE-TYR, ALVE-NSAC1, ALVE-

NSAC7, ALVE_ros003, ALVE_ros004 and ALVE_ros008. On average, each of these 

exhibited four to six non-synonymous changes across this region.  

ALVE_ros001 had a single ORF which covered most of envelope, but truncated 47 

amino acids short of the 3’ end. Despite this, the transmembrane motif itself was not 

affected, so the protein may retain function if the cytoplasmic tail is not required for 

folding. ALVEB5 had two ORFs over the region. The first is truncated so misses 147 

amino acids of the surface (SU) domain, but the second ORF covers the entire 

transmembrane (TM) domain. The largely truncated ALVE_ros007 also has two ORFs. 

The first starts within 75 bp of the truncated element and covers 67 amino acids of SU 
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and 33 amino acids of TM before an indel-caused frame shift mutation. The second 

ORF covers the final 153 TM amino acids.  

The majority of sequenced envelope appears intact, however expression may be 

inhibited as all sequences contain the full miR-155 target site (Hu, Zhu, Chen, Liu, Sun, 

Geng, Wang, et al. 2016).  

 

 

Figure 6.25 ALVE envelope schematic showing surface (SU) and transmembrane 

(TM) domains and the open reading frames identified in the three ALVEs with non-

intact envelope ORFs compared to the intact ORF.  

6.7 The ALVEs of the Roslin J-Line 

Three ALVEs were identified in the Roslin J-Line: ALVE15 (3:70,384,294; GTTTAT), 

ALVE3 (20:10,309,352; AACCAC) and a novel insertion on chromosome 15 named 

ALVE_ros011 (15:7,599,053; CTCACT). As has been described above, ALVE15 and 

ALVE3 are within gene introns (GRIK2 intron 16 and HCK intron 6 respectively), but 

the novel ALVE_ros011 was intergenic. As the J-Line sequencing data was for individual 

birds, the ALVE frequencies could be estimated directly from the BAM files. ALVE3 

was fixed across the individuals, ALVE15 had a frequency of 0.66 and ALVE_ros011of 

0.44. There was no observed sequencing bias between ALVE and wildtype alleles. 

The insertion detection modelling suggests that, given the sampling of nine individuals 

from the population of 32, insertions with frequency greater than or equal to 0.36 would 

be detected 100% of the time. Insert frequencies of 0.125 can be detected 95% of the 

time, and frequencies of 0.1 would be detected 90% of the time. This means that any 

rare ALVEs in the JL could have been missed by sequencing only nine individuals. 

However, sampling more individuals has a limited effect on increasing the confidence 
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of detecting rarer insertions. Specifically, 95% confidence of detecting an insert with 

frequency of 0.05 is only achieved by sampling 20 individuals, and 31 individuals would 

be needed to achieve 95% confidence of identifying any insertion.  

 

6.7.1 PCR assay development and genotyping 

New gel-based PCR primers were developed for ALVE_ros011 genotyping. All three 

designed primers were twenty-two nucleotides long, had GC content of 45 - 55 %, and 

Tm of approximately 60˚C. The common forward primer sequence was 5’-

GTTCAGGCTAACCAACAAAACC, the ‘no insert’ reverse primer was 5’-

AGACACTTCACACACCTTGTGC, and the ‘insert’ reverse primer was 5’-

GACAGACCGTTGAGTCCCTAAC and derived from clipped LTR sequence. This 

design produced bands of 455 bp for no insert and 289 bp when the ALVE was present. 

Primers and product sizes for ALVE3 and ALVE15 are presented above in Table 6.5. 

All flock individuals were tested for the identified ALVEs. ALVE3 was fixed within the 

line. ALVE15 had a frequency of 0.63, with twelve of the thirty-two individuals 

homozygous for the insert, and sixteen heterozygote individuals. ALVE_ros011 had a 

lower frequency of 0.44, also with twelve heterozygotes but only six homozygous 

individuals. These observed frequencies for the entire flock from 2016 closely matched 

the frequencies from the 2013 sequencing dataset. Only one individual was homozygous 

for all three inserts, and only one lacked both the ALVE15 and ALVE_ros011 inserts. 

 

6.7.2 Comparison of results to the J-Line pool sequenced for the 600K paper 

In 2008, ten J-Line individuals were used for an Illumina sequencing pool used in the 

development of the 600K SNP array (Kranis et al. 2013). Analysis of this dataset with 

the ALVE identification pipeline identified ALVE3, with the BAM file suggesting the 

ALVE was homozygous in all individuals, and ALVE15, where there was clear evidence 

of ‘no insert’ alleles in the population. However, ALVE_ros011 was not detected. 

Ten sequencing reads covered the insertion site of ALVE_ros011 (average genome-wide 

coverage was 11.27X) with none supporting an ALVE insertion. As the observed 
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ALVE_ros011 frequency was 0.44 in both the 2013 individual sequencing data and full 

flock 2016 samples, it is unlikely that the insertion could have arisen and reached this 

frequency within five years, particularly with no observed increase between 2013 and 

2016. However, in 2016 there were ten individuals which were homozygous for no insert 

and sixteen heterozygotes, so, by a chance, a higher proportion of individuals lacking 

the insertion could have been chosen for the pool, but only a 4.27x10
-13 

% chance it could 

have been missed altogether.   

Genotyping of the original DNA samples used for sequencing revealed that, again, 

ALVE3 was fixed in the line, but both ALVE15 and ALVE_ros011 had a much lower 

frequency in these individuals than was observed in the more recent sampling. ALVE15 

frequency was 0.40, with one homozygous individual and six heterozygotes, and 

ALVE_ros011 frequency was just 0.15, with one homozygous individual and one 

heterozygote. ALVE_ros011 frequency in the pool was therefore approximately only a 

third of the predicted line frequency, making it very likely that those alleles were not 

sampled for sequencing. Analysis of this site with the pooled data model for detection 

probability suggested that there was a 64.7 % chance of missing this insertion.  

 

6.8 Discussion 

The new ALVE identification pipeline developed here has been successfully used to 

identify twenty-one different ALVEs across nine chicken layer lines, without the need 

for additional targeted sequencing. Of these, six were novel to this study. The white egg 

layer Leghorn lines (including the Roslin J-Line) had two to four ALVEs. As expected 

(Sabour et al. 1992; Benkel 1998), the three brown egg layer lines had more identified 

ALVEs, some of which have been previously identified in broiler lines. The WPR sister 

lines had eight and nine ALVEs (seven of which were shared), and the RIR had eleven.  

Diagnostic assays were developed for each of the ALVEs and used to obtain insert 

frequencies for multiple generations of each line. ALVE1 was found to be fixed in three 

WLs (1, 2 and 5), ALVE3 was fixed in the JL, ALVE9 was fixed in WL3, ALVE21 was 

fixed in WL4 and both WPRs, and, as predicted, ALVE-TYR was fixed in both WPRs. 

No ALVEs were fixed in the RIR. Most ALVEs had variable frequencies which 
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fluctuated randomly over time. It is possible that ALVEs which were rare at population 

level could have been missed from the identification (discussed below). 

Five previously characterised ALVEs (ALVE1, ALVE3, ALVE9, ALVE15 and ALVE-

TYR) were intronic insertions, but no novel ALVEs were found within or near genes. 

There was no observable insertion site bias related to GC content, and no patterns were 

observed in the insertion site hexamer sequences.  

Full ALVE sequence was obtained for fifteen of the twenty Hy-Line insertions. Two of 

these (ALVE15 and ALVE_ros005) were solo LTRs, and three (ALVE9, ALVE-

NSAC1 and ALVE_ros007) had varying 5’ truncations. As previously reported in the 

literature, the sequence for ALVE3 was intact except for protease and reverse 

transcriptase domains. The other nine sequenced ALVEs were full length, but varied in 

terms of their domain intactness when ORFs were predicted. Specifically, most ALVEs 

exhibited mutations within the p10 or p27 gag domains which disrupted putative ORFs, 

however most appeared to contain an intact envelope domain. The expression status of 

the ALVEs remains unknown, but all identified envelope domains contained the target 

site for the miR-155 microRNA which marks these transcripts for degradation before 

translation. The five non-sequenced ALVEs were also likely to be full length, although 

this is based purely on band length predictions from problematic long range PCRs.  

The completeness of ALVE identification, wider use of the diagnostic assays, and the 

relevance of this data for commercial improvement are discussed below. 

 

6.8.1 Critical assessment of the ALVE identification pipeline 

The preliminary analyses attempted with published viral insertion detection software 

involved the installation of many dependencies (BioPerl, BioPython etc.). Furthermore, 

the programs were difficult to customise beyond the hard-coded settings for analysis of 

the human genome for certain viral genera. In contrast, the new ALVE identification 

pipeline developed here makes use of common NGS data manipulation software such 

as samtools, and scripts were written in BASH and Python 2.7, without reliance on 

modules outside the standard Python library. This has been done to make analysis as 

easy, user-friendly and adaptable as possible. Developed scripts have logical names and 
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include clear documentation, built in help messages, and output file name management. 

Additionally, multiple analyses can run in parallel, and a complete analysis of a single 

WGS chicken dataset typically takes less than two days. 

The success of the pipeline is limited by the completeness of the reference genome and 

the average coverage of the sequencing data. For example, ALVE6 was not detected in 

any of the nine datasets, despite being a common ALVE in layers and having previously 

been found to have a high frequency in WPR1 from gel-based PCRs performed in the 

Hy-Line Molecular Genetics laboratory. However, ALVE6 is located at the very 5’ end 

of the assembled chromosome 1 sequence and is poorly covered by short read 

sequencing projects, prohibiting identification of incongruently mapped reads. This 

would likely be an issue for any ALVE found within telomeres, centromeres or other 

incompletely assembled genomic regions. Even when assembled in the reference 

genome, regions which are difficult to sequence often have a much lower coverage than 

the genome-wide average. Reduced coverage can lead to putative insertion sites not 

reaching set support thresholds, or insert allele sequence being missed altogether. 

Initially ALVE insertions were not called by the pipeline unless there was both 5’ and 3’ 

clipped support, but this reduced the number of identified sites as low frequency inserts 

in regions of low coverage may only have support for one end of the insert. Altering this 

parameter did not increase false positive ‘noise’ in the results, but did enable the 

identification of thirty-six ALVE instances rather than the original twenty-seven.  

 

Missing ALVEs due to sampling 

Testing of all the Hy-Line lines with the KASP assays developed in this project identified 

five additional ALVE instances which were missed by the pipeline. Three of these could 

not have been detected as the ALVE was not present in any individual chosen for the 

sequencing pool. In the case of ALVE_ros004 in the WPRs, this was because the insert 

was rare in the population. However, ALVE_ros010 was missed in WPR1 despite being 

more common, with there being a 75 % chance that at least one heterozygous individual 

was included in the pool. This highlights the issue with sampling a population for the 

detection of rarer inserts, and this would not be improved by using individual sequencing 

libraries rather than pools, or by increasing ALVE coverage through additional targeted 
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sequencing. Experimental design for sequencing is therefore vital, as researchers and 

companies need to consider the lower limit of frequencies they need to detect reliably 

and then sample accordingly, particularly if flock sizes are large.  

The other two missed ALVEs (ALVE3 in the RIR, and ALVEB5 in WPR1) were 

present in the sequencing pool individuals, but no ALVE reads were detected at the 

sites, even in the full BAM file. This is an issue created by using sequencing pools for 

variant discovery, as not all individuals will be represented at each site (depending on 

coverage) and some alleles will be missed entirely due to random amplification in the 

PCR stage of sequencing library preparation. These issues can be mediated by increasing 

coverage in the pooled data or, more comprehensively, by using individual sequencing 

libraries rather than pools. This is again a case of experimental design. However, just as 

sequencing has almost completely moved from single end to paired end data, new WGS 

projects are now commonly completed using individual sequencing libraries, likely due 

to reductions in sequencing cost. These data generally exhibit higher coverage than older 

pool datasets, and in areas of lower coverage, there are only two alleles to represent. 

These two issues combined means that it is possible that ALVEs which were relatively 

rare in a line, or were line-specific, could have been missed during this project. This was 

an issue with the analysed WGS data, rather than with the identification pipeline itself. 

 

The role of targeted ALVE sequencing 

Additional targeted sequencing is no better for identifying ALVE insertions than using 

data obtained from individual sequencing libraries with standard coverage. Both 

methods are affected by sampling bias from the flock, but if the sequencing data was to 

be used solely for the identification of ALVE insertions, targeted sequencing projects 

would be more cost effective. However, datasets from targeted sequencing are very 

specific and have limited extra uses, whereas full genome, individual WGS data can be 

used for a variety of research questions. Targeted ALVE sequencing may be useful to 

groups with existing pooled sequencing project data who want to more confidently 

identify the ALVEs in their lines.  
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Wider application of the ALVE identification pipeline 

Beyond the Hy-Line elite layer lines and Roslin J-Line, the pipeline has been used in 

this project to analyse other chicken datasets to more completely assess ALVE diversity 

across various lines (Chapter 7). The pipeline was also adapted to perform a preliminary 

identification of the more numerous EAV insertions in the Hy-Line lines by altering the 

sequences in the pseudochromosome used for initial mapping. 

The pipeline is very versatile and could be used for the identification of any viral 

insertion in any species relative to its reference genome. This would simply require the 

user to create a FASTA file of one or more viral reference sequences. This file would 

be used to identify assembled sites in the reference genome (S1_run_blast_ref_seq.sh) 

and to construct the pseudochromosome (S2_make_pseudochromosome.py). The 

pipeline could therefore be used for the identification of any endogenous viral elements 

(EVEs), including those responsible for causing cancers in other species, such as human. 

As mentioned above, any application would be limited by reference genome intactness 

and coverage. The pipeline may therefore be unable to identify telomeric insertions by 

herpesviruses such as Marek’s Disease Virus in chickens. 

 

6.8.2 Development of diagnostic ALVE assays 

Over the last twenty-five years diagnostic gel-based PCR assays have been developed for 

most well described ALVE insertion sites, generally enabling reliable genotyping. 

Exceptions to this included ALVE2, ALVE6, ALVEB4 and ALVEB8, where published 

assays could only determine presence or absence of the ALVE without distinguishing 

between heterozygous or homozygous individuals, and ALVE21 where results were 

ambiguous due to the presence of the K locus duplication (Benkel 1998). In this project, 

twelve new, gel-based PCR assays were developed, including an adapted version of the 

previously published ALVE1 assay to account for the large difference in Tm values 

between primers. Assays developed for long ALVE insertions used three primers, where 

one was within the insertion, enabling unambiguous genotyping. Assays for the truncated 

ALVE_ros007 and solo LTR ALVE_ros005 used only two primers, as standard PCR 

conditions can amplify through these insert lengths.  
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Gel-based PCR assays continue to be a laboratory standard, as they are generally easy to 

run and interpret, and are applicable across diverse lines, breeds and populations. 

However, when used on large commercial flocks, gel-based assays become laborious 

and expensive, making them an impractical large-scale genotyping tool. The KASP 

diagnostic assay system was originally developed for high-throughput, inexpensive SNP 

genotyping, and exhibits limited interference from negative controls and low error rates 

compared to chip-based genotyping (Semagn et al. 2014). Traditionally the KASP 

system has not been used for genotyping large structural variants, but in this project we 

have successfully developed diagnostic KASP assays for the twenty ALVEs identified in 

the Hy-Line elite layer lines, and an assay to detect the unique sequence in the K locus 

duplication. The development of these high throughput assays enabled the largely 

automated genotyping of almost ten thousand individuals for all twenty-one variants. 

This would have been incredibly expensive and time consuming with gel-based assays.   

Whilst the KASP system works best with large numbers of samples (for genotype group 

confidence), it can also be performed with small sample numbers on a qPCR machine. 

This means that the assays developed here could be used on other chicken lines, but 

lineage-specific SNPs in the primer binding regions would likely disrupt the assay.  This 

is an unavoidable issue resulting from the original purpose of this technology as a SNP 

genotyper, with chemistry sensitive to ambiguities in primer binding regions. This has 

the potential to limit assay application to lines with available sequence data, where the 

primers could be checked and modified where applicable. This was observed when 

these assays were applied to non-sequenced Hy-Line lines (data not shown), and even 

within those lines with available sequence data (ALVE_ros005; section 6.4.1). However, 

as KASP assays are generally used for high throughput genotyping, it is likely that 

sequence data would be available for the lines of interest, or obtaining whole genome 

resequencing data would be a viable option. In addition, as the ALVE_ros005 work 

showed, targeted Sanger sequencing around a known insertion site in ‘problematic’ 

samples can be used to advise modifications in existing assay primers.  
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6.8.3 ALVE21 and the slow feathering K locus 

The slow feathering locus has provided commercial breeding companies with a cost-

effective method for sexing day old chicks. However, the close association of this locus 

with ALVE21 renders breeding for slow feathered birds an imperfect solution, as 

ALVE21 is replication competent and known to increase mortality rates, facilitate viral 

shedding, and detrimentally effect productivity traits such as muscle growth rate and total 

egg count (Smith et al. 1990a; Smith et al. 1990b; Fadly & Smith 1991; Gavora et al. 

1995; Hamoen et al. 2001; Khosravinia 2009). Full characterisation of this locus, and 

the development of diagnostic assays, has been hindered due to the large tandem 

duplication in the causative slow feathered K allele (Levin & Smith 1990).  

In this project, two high-throughput diagnostic KASP assays have been developed to 

facilitate unambiguous ALVE21 and K locus genotyping when used in tandem. As 

discussed above, it is possible that these assays may not be applicable to all commercial 

stock due to SNPs or indels. This is particularly relevant for the duplication bridge assay, 

as multiple slow feathering phenotype variants have been observed, suggesting that the 

extent of the underlying duplication may differ between lines (Iraqi & Smith 1995; 

Wimmers et al. 1996; Tixier-Boichard & Boulliou-Robic 1997; Kansaku et al. 2011). If 

application of the assay developed here gave unexpected results across different lines, it 

would be prudent to fully characterise the bridging location following the methodology 

previously used to identify the site in layers (Elferink et al. 2008; Bu et al. 2013).  

It was disappointing that the BioNano high resolution optic mapping generated during 

this project was unable to fully characterise the duplicated region in the K locus due to 

insufficient data. However, further analysis is underway and the provision of more data 

by the Earlham Institute should facilitate the full elucidation of the locus and 

identification of the ALVE21 site which is occupied. In addition, as the new BioNano 

Access software becomes more widely used it will be much easier to analyse the data.  

Optic maps currently represent the only technology capable of fully characterising a 

variant as long as the 180 kb duplication within the K allele. Complete characterisation 

would advise breeding companies on how to best mitigate the ALVE21 insertion, 

perhaps through CRISPR/Cas9-mediated deletions (discussed below in section 6.8.4). 

However, another consideration is that the partially duplicated genes within the K allele 
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may also contribute to the detrimental effects on productivity traits, particularly as PRLR 

SNPs have previously been linked, in wildtype fast feathering birds, to reductions in layer 

success (Zhang et al. 2012). Recent studies have identified that both PRLR and SPEF2 

mRNA levels were elevated in slow feathered individuals (with no evidence of antisense 

RNA interference), and that the duplicate transcripts exhibited a similar, and very broad, 

spatiotemporal distribution (Luo et al. 2012; Bu et al. 2013; Zhao et al. 2016). This may 

reflect a diverse range of phenotypic effects due the slow feathering locus, and it may be 

better for commercial breeders to pursue a different sex marker. 

 

WPR2 is a fast feathering revertant line 

Development of the ALVE identification pipeline was facilitated by the positive controls 

of known associations between ALVEs and specific phenotypes. Both WPR lines were 

known to contain the recessive white mutation caused by ALVE-TYR, and the slow 

feathered WPR1 and WL4 were expected to contain ALVE21. It was therefore 

surprising that WPR2, the fast feathered sister line to WPR1, was also fixed for 

ALVE21. This finding was validated by manual inspection of the genome alignment 

maps (BAM files), positive ALVE21 KASP assay results, and the visualisation of the 

insertion using BioNano optic mapping. However, the fast feathered phenotype was also 

validated by the homozygous ALVE21 KASP result, the negative K locus bridging 

KASP result, and the absence of reads mapping through the insertion site.  

Together, these results support a fast feathered revertant origin for the WPR2 line. The 

WPR sister lines were separated based on their feathering rates, and it is therefore likely 

that the ancestral WPR line was slow feathering but the occasional fast feathered 

revertant made it seem like the line was still segregating. WPR2 therefore contains an 

ALVE insertion which has a wide range of detrimental phenotypic effects, including on 

productivity traits, but also lacks the commercially useful slow feathering allele. This 

result should be considered by Hy-Line when planning future breeding programmes.  
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6.8.4 The commercial response to ALVE loci 

This work has characterised the ALVE content of eight Hy-Line elite layer lines. Whilst 

it is possible that line-specific ALVEs may have been missed due to population sampling 

or incomplete allele amplification, this data enables Hy-Line to develop a management 

programme for these variants. Some possibilities and considerations are explored below.  

 

Evidence for current ALVE-related selection 

Multi-generational KASP assay genotyping has shown that the frequencies of most 

ALVEs are not changing in a directional manner. This is unsurprising, as there has been 

no targeted breeding programme designed for the elimination of ALVEs, and selection 

against p27 limits selective pressure to ALVEs with intact gag expressed at the point of 

testing (prior to their selection as breeder birds). Most ALVE frequencies are fluctuating 

randomly due to drift, which means ALVEs at rare frequencies could be lost (e.g. 

ALVE_ros004 in either WPR line), or those at very high frequencies could become 

fixed (e.g. ALVE15 in WL1). 

Only ALVE3 had any directional selective effect, with frequency increasing in all three 

WLs (WL2, WL3, WL4) inheriting this insertion, but only random fluctuations were 

observed in the RIR. ALVE3 is a well described element, and it has been long known 

to express both gag and envelope proteins, with the latter at a particularly high titre 

(Astrin & Robinson 1979; Robinson et al. 1981). Concordantly, ALVE3 does elicit a 

regulatory effect on infection by both exogenous and endogenous ALV through receptor 

interference (Robinson et al. 1981; Smith et al. 1990a; Smith et al. 1990b). However, 

the HL lines are not under recurrent ALV selective pressure and ALVE3 produces p27, 

so it is unlikely that ALVE3 is being directly selected for, particularly as this is not seen 

in the RIR. It is possible that the proximity of ALVE3 to two genes with immune roles 

relevant to MDV infection success (which is under direct selection) has resulted in 

increasing frequency due to linkage disequilibrium. This effect may have been broken 

in the RIR, rather than selection specifically differing between the two breeds. 

The impact of selecting against p27 expression may also be apparent from the general 

gag sequence degradation observed in six of the structurally intact sequenced ALVEs. 
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Assessing ALVE phenotypic effects 

The high structural identity of many of the sequenced ALVEs suggests that they may 

retain the ability to retrotranspose, even if individual ALVE insertions do not contain all 

retroviral domains. For example, any line containing expressed ALVE21 would be able 

to retrotranspose any other ALVE insertion. ALVE polymerase proteins could also 

facilitate the movement of other autonomous and non-autonomous retrotransposons, 

increasing the potential for insertional mutagenesis in the individual bird. However, as 

the steady-state methylation of all the insertions is unknown, it remains unclear how 

likely retrotransposition is under normal conditions. During early embryogenesis (when 

methylation patterns are removed) ALVEs may be able to retrotranspose, although 

recent work has detected piRNA-mediated defence against ALVE retrotransposition in 

domesticated chickens (Sun et al. 2017). Any full length ALVE or intact ALVE domain 

poses a future genomic threat for recombination, retrotransposition or reactivation of 

expression after line crosses or epigenetic modifications. 

The full expression status for many of the identified ALVEs is unknown, despite the 

sequence data obtained in this study. Structurally intact sequences may not be expressed 

due to methylation or genomic location, but this cannot be fully or uniquely elucidated 

without expression data in a range of tissues from a range of developmental stages. Due 

to high sequence identity between ALVE insertions, any transcriptomics data would 

need to be long read sequencing, such as PacBio, to uniquely describe expression levels. 

It would also be pertinent to characterise microRNA expression, as many of the 

sequenced ALVE envelope domains are intact at the nucleotide level, but contain the 

miR-155 recognition sequence which would target these transcripts for degradation prior 

to translation. Additional, novel microRNAs may be present which regulate expression 

from other ALVE domains.  

Even if an ALVE is not expressed, presence of an insertion alone may elicit a phenotypic 

effect. For example, an ALVE LTR insertion modulates the expression profile of the 

aromatase gene, causing the henny-feathering mutation (Matsumine et al. 1991), and the 

insertion of ALVE-TYR into the final intron of the tyrosinase gene causes truncation of 

the final exon, producing the recessive white mutation (Chang et al. 2006; Chang et al. 

2007). The phenotypic effect of the five intronic insertions identified in the Hy-Line 
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elite layer lines have been well described, so further analysis may not be necessary, but 

this should be a consideration for any novel ALVEs identified in future. 

Even with this extra data on ALVE activity and local impact, a full association analysis 

with phenotypic data would be needed to assess the individual and cumulative effects of 

the ALVEs on the host. Hy-Line collects phenotypic data for many commercially 

relevant productivity traits, and all individuals can now be genotyped for their ALVE 

content using the KASP assays from this work. This kind of study may identify specific 

ALVE insertions as priorities for eradication from the lines. However, the effect of any 

ALVE which is fixed within a line cannot be detected as there is no variation at that site. 

 

Methods for ALVE eradication from the Hy-Line elite layer lines 

ALVE insertions pose current and future threats, but as non-essential genomic 

components (Zhang et al. 2008), they can be eliminated from the genome without 

negative developmental or physiological effects. In commercial lines which are otherwise 

ALV free, this would likely halt any further ALVE integrations.  

Traditional breeding methods could be used to gradually reduce ALVE frequency in 

each line, focusing on those with greatest predicted effects in an association analysis, or 

those inserts which are structurally intact or in regions of the genome where they elicit a 

phenotypic effect. However, such methods are slow and would have to be integrated 

within existing selective breeding programmes. Any fixed ALVE could also not be 

removed in this manner, requiring crosses with other lines which may create varied, 

undesirable phenotypic effects. The CRISPR/Cas9 system makes it possible to perform 

targeted genetic modification without the need for generations of selective breeding. 

Large, targeted deletions are possible (Zhou et al. 2014), and recent work has made 

CRISPR/Cas9 possible in chickens following initial problems with accessing zygotes 

without disturbing development (Dimitrov et al. 2016; Oishi et al. 2016).  

CRISPR/Cas9-mediated deletions could facilitate the removal of all ALVEs in a single 

generation, but, for commercial stock, this would need to be managed correctly to 

maintain genetic diversity within the flock. Furthermore, recent studies into the public 

perception of genetically modified (GM) organisms show that people remain concerned 
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about the development and consumption of GM animals ((Bawa & Anilakumar 2013; 

Frewer et al. 2013; Frewer et al. 2014; Lucht 2015)), and only the AquAdvantage salmon 

has been approved for consumption to date (United States Food and Drug 

Administration, 2015). However, the CRISPR/Cas9 system would provide a particularly 

neat solution to the negative effects of ALVE21, as the retrovirus could be removed 

without disrupting the slow feathering phenotype. A similar approach could also be used 

with ALVE-TYR, and the final exon could also be removed if the white feathering 

phenotype was an essential requirement.  

 

6.9 Concluding remarks 

The bioinformatic pipeline developed here has enabled the identification of ALVE 

insertions using existing WGS datasets. Compared with WGS datasets from pools, it is 

likely that ALVE-specific target capture sequencing would facilitate the detection of rare 

insertions. However, WGS data generated from individuals is just as sensitive for ALVE 

detection, and has a much wider application. Identification and characterisation of 

ALVEs in the Hy-Line elite layer lines will also enable the development of a breeding 

programme to remove ALVE insertions, using traditional or modern techniques. This 

would likely improve the productivity of the birds, resulting in greater commercial gains, 

and improve the flock-level animal welfare. 

Within this project, this pipeline has enabled the detection of ALVEs in a wide range of 

chicken subpopulations, not just layers, and has facilitated the widest characterisation of 

ALVE diversity to date (Chapter 7). Beyond its application for chicken research, this 

approach could be used to identify any viral integration into genomic DNA, in any 

species. This has great potential for use in diagnosing oncornavirus-induced cancers, 

such as human adult T cell leukaemia (caused by Human T-Lymphotropic Virus; 

HTLV), and aiding the development of personalised therapeutics.  
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Chapter 7:  Discovery of the wider diversity ALVE insertions 

across commercial and non-commercial chickens using 

whole genome (re)sequencing data 

7.1 Introduction 

At the end of the 1980s White Leghorn (WL) chickens had been extensively 

characterised for their ALVE content with at least twenty-three independent insertions 

identified. Research initially focused on these prominent commercial layer chickens due 

to the well described detrimental effects on egg laying success (Gavora et al. 1991). 

Detrimental effects of ALVEs had also been identified in brown egg and broiler 

chickens, albeit indirectly, when it was found that the recessive white mutation (later 

found to be caused by ALVE-TYR; Chang et al. 2006) was linked to viremia and 

reductions in muscle growth rate and total muscle mass (Fox & Smyth 1985). However, 

targeted study of broiler ALVEs was hindered by their greater number when compared 

to WLs. A series of studies in the early 1990s found that whilst some ALVEs were shared 

between white and brown egg layers and broilers (notably ALVE3 and ALVE6) many 

ALVEs were novel and there was no suggestion of a clear ancestral ALVE complement 

(Gudkov et al. 1986; Iraqi et al. 1991; Sabour et al. 1992; Grunder et al. 1995). 

Furthermore, the standard method for ALVE classification at the time, restriction 

fragment length polymorphisms (RFLPs), became harder to interpret with greater 

numbers of ALVEs, especially after RFLPs were found to vary between breeds for the 

same insertions (Aarts et al. 1991; Boulliou et al. 1991).  

Despite these issues with identification, it was generally found that white egg layers 

contained one to three ALVEs, and brown egg layers and broilers contained six to ten 

(Benkel 1998). However, ALVE research has largely utilised experimental lines held at 

research institutes and universities. This has biased work towards leghorns (as the eggs 

could, originally, be sold on to recoup research costs) and heritage breeds, rather than 

commercially relevant lines. These birds are also highly inbred, so ALVEs considered 

‘common’ (such as ALVE1 or ALVE3) are likely to become fixed, promoting their 

common status in the literature, and rarer ALVEs are more likely to be lost, reducing 

apparent diversity. It is therefore unclear whether these generally accepted numbers of 

ALVEs for layers and broilers are accurate. The work presented in chapter 6 highlighted 
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this, as the WLs had two to four ALVEs and the brown egg layer WPRs both had eight 

and the RIR had eleven. Whilst these elite Hy-Line layer lines have undergone selection 

to mitigate the impacts of ALVEs, they have a much higher effective population size 

than any university population, and are likely more representative of ALVE diversity in 

these breeds. The larger effective population sizes of commercial broilers, non-

commercial ‘wild’ chickens, and RJF populations may elicit larger numbers of ALVE 

insertions, particularly in the absence of intensive artificial selection. However, broiler 

genetics are rarely made public due to fears about commercial sensitivities, and non-

commercial birds and RJFs have not been analysed to date. It is highly likely that the 

presence of just two ALVEs in the chicken reference genome is significantly under-

representative of the wider ALVE diversity (Benkel & Rutherford 2014). 

In 2016 Rutherford and colleagues used their ALVE target capture NGS protocol to 

analyse over thirty European and North American heritage breeds. A total of 137 novel 

ALVE insertions were identified, tripling the existing numbers in the literature. 

However, the development of the ALVE identification pipeline (Chapter 6) enables 

analysis of any existing WGS dataset. Whilst commercial broiler data remain 

unavailable, WGS data for experimental lines, heritage broilers, broiler crosses, ‘wild’ 

chickens and RJF individuals is publicly available in short read archives, or has been 

kindly shared by collaborators. The analysis of these datasets, presented below, has 

enabled a much more thorough characterisation of ALVE diversity across chickens, 

without any further targeted sequencing. 

 

7.2 Research Aims 

This chapter covers three major research aims. Firstly, the expansion of the ALVE 

identification pipeline developed in Chapter 6 to identify ALVE insertions in publicly 

available single end WGS data. Secondly, the identification of ALVEs in WGS data 

from a wide range of chicken lines, including layers, broilers, ‘wild’ non-commercial 

birds, and RJF datasets, to identify trends in ALVE distribution and determine how 

artificial selection has affected ALVE diversity and abundance in commercial lines. 

Finally, an assessment of a phylogeny generated by using ALVEs as genetic markers. 
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7.3 ALVE identification pipeline adaptation for single end WGS data 

7.3.1 New pipeline scripts for use with single end data 

The majority of changes required to make the ALVE identification pipeline applicable 

for use with single end sequencing data were simply alterations to script input/output: to 

expect a single FASTQ file rather than two. The only change made to the parameters 

was to reduce the minimum region length required for an insert to be identified from 

200 bp in the paired end data to 80 bp with single end data. This reduction accounts for 

the fact that single end data will have no read mates to increase the area of interest 

around the ALVE hexamer. As significant pseudochromosome mapping will not occur 

with less than 20 bp of ALVE homologous sequence, some sites could be represented 

by just 80 bp of reference genome mapped sequence. 

For user ease, separate scripts were created for use with single end data (Table 7.1; 

Appendix 1). However, as already stated, and explained below, the changes were minor 

and Figure 7.1 shows how parallel the pipelines remain. se_S1_run_bwa_alignment.sh 

replaced both S3_run_bwa_alignment.sh and S5_run_bwa_alignment.sh and was 

altered so that the BWA mapping only accepted one FASTQ file. This changed the 

user specification (lines 2 and 6), how the output file prefixes are generated (line 11) and 

the BWA mem command (line 13). se_S2_extract_ref_seq_mapped_reads.sh replaced 

S4_extract_ref_seq_mapped_reads.sh with the only alteration made to output a single 

FASTQ file following read subtraction (line 30). se_S3_extract_putative_sites.py 

replaced S6_extract_putative_sites.py and included the reduction of minimum required 

region length to 80bp (line 28). All additional scripts are on the CD accompanying this 

thesis (Appendix 1) and in the GitHub ALVE identification pipeline repository: 

https://github.com/andrewstephenmason/ALVE_ID_pipeline. 

 

Table 7.1 ALVE identification pipeline scripts for use with single end WGS data. 

Script name Functionality 

se_S1_run_bwa_alignment.sh Maps sequencing reads to i) the 

pseudochromosome and ii) the genome 

se_S2_extract_ref_seq_mapped_reads.sh Extracts viral mapped reads 

se_S3_extract_putative_sites.py Identifies putative insertion sites 
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Figure 7.1 ALVE identification pipeline workflow showing how the single end (se) 

WGS data scripts fit. The schematic is based on Figure 6.1 using script 

abbreviations from Tables 6.1 and 7.1. Scripts S1, S2 and S7 remain the same. 

7.3.2 Assessing pipeline sensitivity using pseudo single end FASTQ files 

derived from the Hy-Line and J-Line paired end sequencing data 

Impact of single end reads on read mapping and overall coverage 

BAM files produced by mapping the pseudo single end FASTQ files to the reference 

genome had a significantly greater genome-wide average coverage than those generated 

from the original paired end FASTQ files for both the Hy-Line (repeated measures ‘t’ 

test; t = 5.88; P = 6.14x10
-4

) and J-Line (repeated measures ‘t’ test; t = 10.97; P < 1x10
-5

) 

datasets. Consequently, read coverage was deemed unlikely to cause any problems in 

the detection of ALVEs within the datasets.    

 

Use of pseudo single end FASTQ files with the Hy-Line and J-Line datasets 

Thirty-five instances of ALVEs were identified across the eight Hy-Line lines when the 

original paired end sequencing data was used in the identification pipeline. However, 

use of the pseudo single end FASTQ files missed fourteen of those instances (40 %), 

with only lines WL1 and WL3 having all ALVEs identified (Table 7.2).  
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Table 7.2 Identified and ‘missed’ ALVEs using the pseudo single end WGS data for 

each of the eight Hy-Line lines. The majority (21/35) of ALVE instances were 

identified, but eight of the individual ALVEs were missed completely. 

Line Identified ALVEs Missed ALVEs 

WL1 ALVE1, ALVE15 - 

WL2 ALVE1, ALVE3 ALVE15 

WL3 ALVE1, ALVE3, ALVE9 - 

WL4 ALVE1, ALVE3, ALVE21 ALVE_ros008 

WL5 ALVE1 ALVE15 

WPR1 ALVE-TYR, ALVE-NSAC1, 

ALVE-NSAC7 

ALVE-NSAC3, ALVE21 

WPR2 ALVEB5, ALVE-TYR, ALVE21, 

ALVE-NSAC3, ALVE-NSAC7  

ALVE_ros009 

RIR ALVE_ros004, ALVE_ros010 ALVEB5, ALVE-NSAC1, ALVE_ros001, 

ALVE_ros002, ALVE_ros003, ALVE_ros005, 

ALVE_ros006, ALVE_ros007 

 

Whereas most ALVEs were identified, use of single end data clearly reduced the 

sensitivity of the identification pipeline. For example, WPR1 had five identified ALVEs, 

three of which were identified (ALVE-TYR, ALVE-NSAC1, ALVE-NSAC7), and two 

were missed (ALVE-NSAC3, ALVE21). Even with the three ALVEs that were 

identified, comparison of the insertion region BAM files outputted from the 

identification pipeline shows a reduction in both the coverage and clipped support for 

the insertion site (Figure 7.2). There was a complete absence of reads which have only 

short (< 25 bp) clipped sections, as these were too short for significant mapping to occur 

on the pseudochromosome. These reads were observed in the paired end data as their 

read mates mapped within the insert, so both reads were retained during read 

subtraction. In comparison, the two ALVEs that were missed had limited support in the 

paired end data (Figure 7.3), and further reduction in read support caused these sites to 

be missed by the pipeline. Both ALVE-NSAC3 and ALVE21 were identifiable in the 

pipeline output, but did not reach the required threshold level. 
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Figure 7.2 Read coverage of the ALVE-NSAC7 insertion site in Hy-Line WPR1 using 

the paired end (A) and pseudo single end (B) WGS data. ALVE-NSAC7 was detected 

from both analyses, but the read coverage was reduced in B. All reads with soft-

clipped regions less than 25 bp (marked with grey squares in A) were not in the 

final filtered BAM files. These reads were found in A as their read pair mapped 

completely to the pseudochromosome. 

 

Figure 7.3 Read coverage of the ALVE-NSAC3 insertion site in Hy-Line WPR1 using 

the paired end (A) and pseudo single end (B) WGS data. ALVE-NSAC3 was missed 

due to the limited coverage in the pseudo single end data. The two soft-clipped 

reads absent in B have only 20 and 23 soft-clipped bases respectively. 
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When this approach was applied to the other five Hy-Line lines with ‘missing’ ALVEs 

(WL2, WL4, WL5, WPR2, RIR), all instances were identified but simply did not meet 

the threshold level. This was particularly problematic in cases where the paired end data 

only supported one end of the insert site with soft-clipped reads, such as ALVE_ros002, 

ALVE_ros008 and ALVE_ros009, all of which were detrimentally effected by the loss 

of reads with only short soft clipped sections. Furthermore, the complex RIR insertion 

ALVE_ros007 only had one read supporting the 3’ end of the insert in the single end 

data, so from this information alone, it would have been impossible to identify that this 

ALVE is associated with the genomic deletion described above (section 6.6).  

In contrast, all ALVEs identified in the JL individuals using paired end data were 

identified successfully using the single end sequencing data and the adapted pipeline 

scripts. Like the HL data, there was loss of reads with only short sections homologous 

to ALVE sequences, but the overall higher coverage of the JL datasets reduced the 

chance effect that the only supporting reads had short clipped sections. Additionally, as 

the JL samples were of individuals rather than pools, the potential for sampling bias 

reducing the representation of insert alleles in the dataset was less of a concern.  

 

7.4 ALVE content of diverse chicken WGS datasets 

A total of 322 different ALVEs were identified across the analysed datasets, including 

those identified in the Hy-Line elite layer lines and the Roslin J-Line, and 81.1 % were 

previously uncharacterised. Only sixty-two (19.3 %) of ALVEs identified in this study 

were found in multiple lines. When combined with the ALVEs identified by Rutherford 

and colleagues following their target-capture sequencing of thirty heritage breeds (2016), 

this brings the total known ALVE sites to at least 430.  

The following section describes the ALVEs identified in each line. Lines have been 

grouped into five broad classes based on their general ‘use’ or breed management to 

enable easier comparison of ALVE diversity and identification of shared insertions. All 

ALVEs are listed in Appendix 2: AF10 with new nomenclature, insertion location, 

insertion hexamer and gene overlaps. The full presence/absence data for each ALVE 

for each analysed line is a 322 x 65 matrix, and has been included on the CD 
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accompanying this thesis (Appendix 2: AF11). No ALVEs were identified in either of 

the single end sequencing datasets, and the reasons for this are explored in section 7.4.2. 

 

7.4.1 Identified ALVE insertions 

Commercial white egg layers 

Including the eight Hy-Line lines and Roslin J-Line, thirty-three white egg layer datasets 

were analysed. Typical layer ALVEs were well represented across the lines. ALVE1 was 

in twenty-six lines, ALVE3 in nineteen, ALVE4 in seven, ALVE9 in thirteen, ALVE15 

in fifteen, and ALVE21 in seven.  

The WLs had one to six ALVEs, apart from the WL-PB-Z ‘Zero’ line which was bred 

to have no ALVEs (Bacon et al. 2000), and none were detected (Table 7.3). The BLs 

had three to eight ALVEs, most of which were shared with the WLs, although there is 

evidence that the two blind bird experimental datasets were derived from a cross 

between a BL and a brown-egg layer (discussed below). Few novel ALVEs were 

identified in these lines. Interestingly the Chinese white egg layer Lhasa white line had 

ALVE1, ALVE3, ALVE9 and ALVE15: textbook ALVE content for a white leghorn. 

The Lohmann commercial leghorn (WL-L) has four ALVEs: ALVE1, ALVE3, 

ALVE15 and ALVE_ros282, a novel insertion found on an unplaced contig 

(NT_464277.1), which is shared with two of the inbred Pirbright lines (WL-PB-N, WL-

PB-P). The Pirbright WL lines were originally housed at ADOL (Avian Disease and 

Oncology Laboratory, USA) where their ALVE contents were well described (Bacon et 

al. 2000). However, only WL-PB-7 matches up completely with the literature (ALVE1 

and ALVE2), even when accounting for the absence of ALVE6 in any line due to its 

insertion site. For example, ALVE10 is supposed to be in at least WL-PB-15 and WL-

PB-C, but the insertion site is unknown, and the two lines do not share any ‘novel’ sites. 

WL-PB-N is even more deviant from the literature reported ALVE1, ALVE3 and 

ALVE6. This pipeline identified ALVE1, ALVE4, ALVE15, the novel ALVE_ros282 

mentioned above and ALVE_ros034 which is shared with WL-D and blue egg layer 

Aracauna. These significant ambiguities could be due to changed breeding management 

when the lines moved to Pirbright, likely with reduced effective population sizes. 
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Table 7.3 Number of ALVEs identified in the commercial white egg layer lines. The 

shared ALVEs column represents how many of the ALVEs in that line were shared 

with any other analysed dataset (not just this grouping). The novel ALVEs column 

represents how many of the identified ALVEs were previously unknown. 

Line name No. ALVEs Shared ALVEs Novel ALVEs 

BL-BEGb 8 8 2 

BL-BEGs 8 8 2 

BL-RGEbm 5 4 0 

BL-RGEbp 5 5 0 

BL-RGEsf 4 3 0 

BL-RGEsp 5 5 0 

BL-Br 4 3 1 

BL-Sm 3 3 1 

JL 3 2 0 

Lhasa white 4 4 0 

WL1 2 2 0 

WL2 3 3 0 

WL3 3 3 0 

WL4 4 4 0 

WL5 2 2 0 

WL-L 4 4 1 

WL-B-D 5 5 1 

WL-B-E 5 4 0 

WL-NU 3 2 1 

WL-K 5 5 0 

WL-IS 2 2 0 

WL-HA 6 4 1 

WL-LA 4 4 0 

WL-PB-15 4 3 1 

WL-PB-6 1 1 0 
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WL-PB-7 2 1 0 

WL-PB-C 2 1 0 

WL-PB-N 5 5 2 

WL-PB-P 5 5 1 

WL-PB-W 3 2 1 

WL-PB-Z 0 0 0 

WL-SPFa 2 2 0 

WL-SPFb 3 3 0 

 

WL-SPFa and WL-SPFb were lines from separate companies bred to provide pathogen 

free eggs for research. Both lines have ALVE1, which is not expressed under normal 

conditions, and ALVE9, which expresses envelope glycoproteins. Both these lines 

would be classed as ALV free despite this envelope expression due to testing solely with 

the p27 ELISA. In addition, SPFb also contains ALVE_ros010 (which is also present in 

brown egg layers, broilers and generalist breeds such as the Silkie) for which the 

sequence and expression profile are unknown.  

The WL-HA and WL-LA lines were selectively bred for high and low antibody 

response to infection respectively. The two lines share ALVE1, ALVE3 and ALVE15, 

and the low line also has ALVE4. The high line has ALVE9 and two sites shared with 

generalist breeds and broilers. The pool data came from sixteen individuals for both 

lines, but average coverage was 14.7 X for the high and 16.4 X for the low, meaning that 

on average at least half of the alleles would not be represented at any one site. As a result, 

it is difficult to assign any selective effect on the observed differences in ALVE content, 

especially without expression data for the additional sites in the high line. 

The other analysed WLs are all held at research institutes and exhibit typical layer 

ALVEs. Novel ALVEs were also identified in WL-D (ALVE_ros034) and WL-NU 

(ALVE_ros046). 

The BL-Br line is the parental line for the Smyth line (BL-Sm) which was bred as a 

model for autoimmune vitiligo. ALVEs in both lines were analysed in 2000 using 

RFLPs, which suggested both lines had the same three ALVEs (Sreekumar et al. 2000). 
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Localisation using FISH suggested one was on an unknown microchromosome, one on 

chromosome 1 (cytogenetic band p2.5) and the other on chromosome 2 (q2.6). 

Identification from the WGS data identified ALVE3 (chromosome 20), ALVEB5 

(chromosome 1) and the novel ALVE_ros173 (chromosome 4) in both lines and 

ALVEB6 (chromosome 14) in BL-Br. ALVEB5 matches the chromosome 1 banding 

location well, but clearly there is no chromosome 2 insertion, and no traditional layer 

ALVEs are in the 2q2.6 region. It is therefore likely that the FISH identification was 

incorrect or incomplete, as it would be unlikely that an ALVE on chromosome 2 would 

be lost in both lines independently (unless there has been active selection against it) 

accompanied by the introduction of a novel ALVE in both lines on chromosome 4. 

Both blind chicken datasets have more ALVEs than would be expected in BLs, and 

many are shared with broilers and brown egg layers such as ALVE-NSAC1, ALVE-

NSAC2, ALVE-TYR, ALVE_ros004, ALVE_ros005 and ALVE_ros010, reflecting 

RIR and WPR crosses early in the respective line development (Hocking 2017, personal 

communications). BL-BEG lines have eight ALVEs each, sharing seven including a 

novel lineage-specific insertion on chromosome 1 (ALVE_ros040) and a novel insertion 

shared with both RIW lines (ALVE_ros066). The only differences are that the blind 

birds have ALVE15 and the sighted birds have ALVE9, ALVEs which are common in 

layers without impacting sight. It is likely that the observed difference is due to sampling 

effects from the sequencing pool. Similarly, each of the Br-RGE lines has four or five 

ALVEs, but there were nine total ALVEs in the dataset. It is likely that ALVEs were 

simply missed from some lines, rather than representing true biological differences.  

 

Commercial brown egg layers 

The commercial brown egg layer breeds had between six and eleven ALVEs (Table 

7.4). All seven lines shared ALVEB5, and all lines except the RIRs shared ALVE-TYR, 

ALVE-NSAC7 and ALVE21. Three novel ALVEs were discovered across the datasets, 

of which the Hy-Line RIR and WPR2 novel ALVEs (ALVE_ros007 and ALVE_ros009 

respectively) were described above (section 6.4). The RIR-L novel insertion 

(ALVE_ros211; 5: 56,988,767) is within the eighth intron of MDGA2 (MAM domain 

containing glycosylphosphatidylinositol anchor 2).  
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Table 7.4 Number of ALVEs identified in the commercial brown egg layer lines. The 

shared ALVEs column represents how many of the ALVEs in that line were shared 

with any other analysed dataset (not just this grouping). The novel ALVEs column 

represents how many of the identified ALVEs were previously unknown.  

Line name No. ALVEs Shared ALVEs Novel ALVEs 

RIR 11 10 1 

RIR-L 7 6 1 

RIW-ESH 11 10 0 

RIW-LSH 11 11 0 

WPR1 8 8 0 

WPR2 8 7 1 

WPR-L 6 6 0 

 

Compared with the sister HL WPRs, the Lohmann WPR has no additional ALVEs. 

The Lohmann WPR sequence was from a pooled sequencing library so it is possible 

that rare ALVEs could have been missed, such as ALVE_ros004 which was present in 

all other brown egg layer lines, but was only found at rare frequencies in the HL WPRs. 

Despite the similar genetics, the Lohmann RIR has fewer ALVEs than the HL RIR and 

the two lines only share five ALVEs. Sequencing does not appear to be the issue here 

as data was available for a pool of ten, and for twenty-five individuals, so it is highly 

unlikely that any ALVEs with a frequency greater than approximately 0.1 were missed.  

The sister RIW lines were under differential selection for egg shell strength. The two 

lines do differ in their ALVE content, but this is likely due to incomplete lineage sorting 

or dropped alleles from the pooled sequencing libraries, rather than due to selection. 

No ALVEs that differ between the two lines are within or near genes.  

 

Broilers 

The Western heritage broiler lines and the Lindian Chinese broiler had between 

thirteen and thirty ALVEs (Table 7.5). Seventy-two different ALVEs were found 

between the six lines, forty-one of which were novel to this study. The Western lines 
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share most of their ALVEs with other analysed birds. ALVEB6, ALVE_ros010 and 

ALVE_ros020 are shared between all five Western lines. The common ‘meat type’ 

ALVEs of ALVEB5, ALVEB10, ALVE-NSAC1, ALVE-NSAC5 and ALVE-TYR are 

also common across these five lines. Despite similar total numbers, the Lindian is very 

different from the other broilers. Only two of its fourteen ALVEs are shared with any 

other dataset, and only ALVE_ros220 is shared with another broiler (Br-INRA). It is 

also unlikely that the full ALVE diversity was represented here as the Lindian 

sequencing data came from one individual. Two Lindian insertions were within introns. 

Table 7.5 Number of ALVEs identified in the broiler lines. The shared ALVEs column 

represents how many of the ALVEs in that line were shared with any other analysed 

dataset (not just this grouping). The novel ALVEs column represents how many of 

the identified ALVEs were previously unknown. 

Line name No. ALVEs Shared ALVEs Novel ALVEs 

Br-Cobb 15 12 7 

Br-INRA 20 12 10 

Br-REL 30 24 13 

Br-VLDL-F 15 12 6 

Br-VLDL-L 13 11 7 

Lindian 14 2 11 

 

Five of the fifteen ALVEs identified in Br-Cobb overlapped with genes. Four were 

intronic, but the lineage-specific ALVE_ros231 is within the 3’UTR of LPHN2 

(Latrophilin 2; also known as ADGRL2). Seven of the twenty Br-INRA ALVEs were 

intronic. This included ALVE_ros072 in the third intron of FRY (Furry homologue; 

shared with Br-Cobb, Br-VLDL-L, Silkie and RJF-C), ALVE_ros234 in the fourteenth 

intron of ADGRL4 (Adhesion G Protein-Coupled Receptor L4; shared with Bl-java), 

and three lineage-specific insertions. 

The high ALVE count seen in the Br-REL line was unexpected, but it is possible that 

matings outside the breed have occurred, as the line includes the typically layer ALVE1 

and ALVE15. The REL dataset is also more likely to include the full diversity of ALVEs 
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within that line as eighty individuals (in 8 pools of 10 birds) were used for sequencing. 

Seven of the thirty ALVEs are intronic, including ALVE1, ALVE15, ALVEB6 and 

ALVE-TYR. The other three are all novel to this study, and only ALVE_ros142 is 

shared (with ETH-Horro).  

The Br-VLDL-F and Br-VLDL-L lines are sister lines differentially selected since the 

1980s for the concentration of very low density lipoprotein (VLDL) in blood plasma, an 

indicative marker for fatness or leanness in chickens (Griffin et al. 1989; Griffin et al. 

1991). Despite this recent shared ancestry, only five of the twenty-three total ALVE 

instances identified in these two lines are shared. This could be due to the sequencing 

of only four individuals for each line, so some of the rarer insertions could have been 

missed from one line but identified in the sister line. Nine intronic ALVE insertions 

were identified, four of which were found only in the fat (Br-VLDL-F) line (ALVE15, 

ALVEB6 and the novel, line-specific ALVE_ros083 and ALVE_ros273), but none of 

the effected genes were associated with gene ontology terms for lipid/amino acid 

biosynthesis, and none of the regions were associated with recent selection signature 

analysis (Khoo et al. manuscript in prep). However, the novel ALVE_ros083 is in the 

second intron of the CaSR (Calcium-sensing receptor) gene, which regulates calcium, 

sodium, potassium and water reabsorption in kidney by regulating the release of 

parathyroid hormone (D’Souza-Li 2006; Vezzoli et al. 2009). Interestingly, this insertion 

is associated with a genomic deletion of 334 bp (in a similar manner to ALVE_ros007 

in the HL RIR). A combination of the presence of an ALVE insertion within the intron, 

and disruption of the intron genomic sequence, might impact the expression of CaSR. 

 

Generalists and ‘native’ breeds 

This diverse group of fourteen datasets exhibited very varied ALVE content, both in 

terms of total number and the specific sites identified. Lines ranged from having a single, 

novel, unshared ALVE (Chahua; ALVE_ros271) to twenty-two ALVEs in the Black Java 

(Bl-java) breed (Table 7.6). Eighty-three different ALVEs were identified across the 

lines, fifty-six of which were new to this study (67.5 %).  
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Table 7.6 Number of ALVEs identified in the generalist or native breeds. The 

shared ALVEs column represents how many of the ALVEs in that line were shared 

with any other analysed dataset (not just this grouping). The novel ALVEs column 

represents how many of the identified ALVEs were previously unknown. 

Line name No. ALVEs Shared ALVEs Novel ALVEs 

Araucana 12 8 6 

Bl-java 22 12 9 

Bl-sum 2 1 1 

Chahua 1 0 1 

Fayoumi 6 2 6 

Kedu hitam 12 5 8 

Korean 10 9 5 

Silkie 9 3 5 

Sumatera 2 2 0 

Taiwan 7 4 3 

TIB-HL1 4 1 3 

TIB-HL2 2 2 0 

TIB-HL3 2 0 2 

Xishuang 16 5 12 

 

The ALVE content of some lines may be incompletely represented due to the 

sequencing methodology used. For example, sequencing data for the Chahua, three 

Tibetan highland breeds, Silkie and Taiwan country chicken were each derived from 

only a single individual, so are unlikely to be truly representative of the breed or region.   

 

RJFs and ‘village’ chickens 

This group represents the most diverse lines when compared to all other analysed 

datasets. These five lines have 178 ALVE instances (over 55 % of the total ALVEs 

identified) and 165 ALVEs are novel characterisations in this study (92.7 %; Table 7.7). 

Within the group, RJF-J and RJF-S have markedly fewer ALVEs, but the identified 
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ALVEs are nearly all lineage-specific. These two lines had pooled sequencing datasets 

for two and three individuals respectively, so this may have limited the number of 

identified ALVEs compared to RJF-C (six individual sequencing datasets). 

Table 7.7 Number of ALVEs identified in the RJFs and ‘village’ chickens. The shared 

ALVEs column represents how many of the ALVEs in that line were shared with any 

other analysed dataset (not just this grouping). The novel ALVEs column represents 

how many of the identified ALVEs were previously unknown. 

Line name No. ALVEs Shared ALVEs Novel ALVEs 

ETH-Horro 50 11 44 

ETH-Jarso 59 8 52 

RJF-C 52 4 49 

RJF-J 11 1 11 

RJF-S 12 0 12 

 

Insertions within genes are common within these lines, except for RJF-S where only one 

ALVE is intronic (8.3 %; ALVE_ros107). ETH-Horro has twelve intronic overlaps (24.0 

%) and ETH-Jarso has fourteen (23.7 %). RJF-C has sixteen gene overlaps (30.8 %), with 

ALVE_ros074 overlapping with the 3’UTR of ELMOD1 (ELMO domain containing 

1). RJF-J has six gene overlaps (54.5 %), including ALVE_ros012, which is the only 

exonic insertion in the entire study.  

ALVE_ros012 is within the eighth exon of the eleven exon CPA5 (carboxypeptidase A5 

precursor). The insertion is at 1: 963,340 and the exon eight coordinates are 1: 963,280-

963,370. If this insertion causes a transcript truncation, the final 170 amino acids (40.6 

% of the total protein length) will be lost. On length alone this would likely destroy the 

protein functionality, but InterPro analysis also shows that the insertion region is non-

cytoplasmic, so protein folding is likely important, and that the insertion disrupts a core 

PRINTS peptidase domain. For the host RJF this may have limited phenotypic effect as 

there are multiple paralogues which potentially facilitate redundancy, including the 

immediately neighbouring CPA2 (upstream) and CPA1 (downstream). However, tissue 

specific expression or paralogue protein specialisation is unknown. 
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7.4.2 Failings with the Kauai and Andersson datasets 

No ALVEs were identified in either of the single end datasets analysed in this study: the 

Kauai feral chickens or the multiple Andersson-sequenced lines. Whereas no previous 

analyses for ALVE content have been conducted with the Kauai chickens, the 

Andersson-sequenced lines included WLs, WPRs and RIRs, shown in this study and 

previous work to contain multiple ALVE insertions. Problems with the identification 

scripts were ruled out due to the successful identification of ALVE insertions in the J-

Line and Hy-Line pseudo single end FASTQ files using the single end script pipeline 

(section 7.3.2). However, the analysis of pipeline sensitivity with those pseudo single end 

FASTQ files did highlight the need for at least 25 bp of viral clipped sequence to 

successfully map to the pseudochromosome, and how coverage can affect insertion 

calling, particularly from pooled libraries.  

The Kauai chickens were all sequenced from individual libraries but only with an 

average coverage of 2.7–4.8X. In addition, the reads were 75 bp compared to the 

standard 101 bp generated in Illumina sequencing, so the probability of a single read 

mapping significantly to both host genome and pseudochromosome correctly was 

reduced. For the Andersson lines the average coverage was even lower at 1.7–3.1X, the 

data was all from pooled libraries, and the reads were only 35 bp in length, making the 

calling of ALVE insertions impossible from this identification pipeline.  

To further check pipeline sensitivity, each of the Andersson-sequenced BAM files was 

checked manually for ALVEs found to be common for those breeds, such as ALVE1, 

ALVE3 and ALVE15 for WLs. No ALVEs were detected this way either, suggesting 

that structural variant calling of this kind may not be possible with single end 35 bp reads. 

Testing was done using both the standard BWA mem protocol and the short read 

optimised BWA aln followed by BWA samse protocol, but this made no significant 

difference to mapping rates. The Kauai BAM files were also checked manually, again 

without success. However, this may be because these lines do not have ALVEs common 

with previously analysed birds, rather than no inserts being detectable with 75 bp reads.    
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7.5 ALVE insertion patterns across all analysed datasets 

7.5.1 ALVE insertion sites 

There was no observable bias across the 322 ALVE insertion sites for any kind of GC 

skew when compared to chromosome or genome-wide GC levels, at any calculated 

window size. No hexamer insertion sequences were over-represented, and the hexamer 

GC content was normally distributed around a mean value of 49.9 % GC with five 

occurrences of entirely A/T hexamers, but no entirely G/C hexamers. The modelled 

hexamer sequence GC content was also normally distributed, but shifted towards the 

genome-wide GC content with a mean value of 42.4 %, significantly less GC rich than 

the observed sequences (t = 4.66; P = 3.84x10
-6

).  

A total of eighty-six identified ALVE insertion sites were within genes (26.7 %): one 

within an exon, two within 3’ UTRs, and the remainder in introns. If all insertions were 

random events in the same line you would expect 51.8 % to be within introns. However, 

each line has had independent insertion events, so it is unwise to over interpret these 

observed distributions, particularly as it hides the patterns in individual lines. For 

example, six of the WL lines (WL1, WL5, WL-IS, WL-L, WL-PB-C, WL-SPFa) only 

have intronic ALVE insertions. Despite this deficit of insertions overlapping genes, 32.9 

% of insertions fall within 10 kb of a gene, compared to 4.1 % under random integration.  

ALVE insertions, like LTR retrotransposons (Chapter 3), are most common on the 

largest chromosomes, with identified ALVE number positively correlated with 

chromosome length (r = 0.959, P < 0.001). Insertion sites therefore appear random, but 

the chance an individual insertion will be retained will depend on genetic drift and the 

selective pressure, if any, caused by that insertion.  

 

7.5.2 ALVEs as genetic markers 

The dendrogram constructed from the ALVE presence/absence data (Figure 7.4) 

generally follows the accepted pattern of ALVE numbers in commercial stock, where 

white egg layers have fewer than brown egg layers, which have fewer than broilers.  
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Figure 7.4 Dendrogram of relatedness between successfully analysed chicken 

lines using ALVE presence/absence data. Broilers are marked with pink boxes, 

brown egg layers with brown boxes and white egg layers with white boxes. Lines 

marked with grey squares had individual WGS data. All unmarked lines used 

pooled data. All datasets were paired end Illumina data. Line name abbreviations 

were defined in Table 5.3. 
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The RJF and ‘village’ birds appear most basal due to their high overall ALVE count and 

large number of lineage-specific inserts. Whilst RJF-J and RJF-S are not at the base of 

the dendrogram with RJF-C or the Ethiopian village chickens, this appears to be due to 

the number of identified ALVEs, rather than the observed diversity. RJF-S has no shared 

ALVEs and RJF-J shares only one ALVE with the Black Java breed, which makes 

geographical sense. As considered above, it is unclear whether the broiler lines with large 

ALVE numbers (such as Br-REL and Br-INRA) are truly representative of commercial 

broilers as they are pedigree/heritage lines now with relaxed selection, random mating 

and effective population sizes smaller than historical levels. However, the five Western 

broiler lines share most of their ALVEs, suggesting limited lineage-specific effects. A 

dendrogram based on shared ALVE sites alone places these five broiler lines as the most 

basal branches. 

The ‘generalist’ group are found throughout the dendrogram, many dominated by novel 

and/or lineage-specific ALVEs, perhaps representing the bias in the analysed datasets, 

and ALVE literature, towards Western breeds. It is likely that the position of these lines 

within the dendrogram is more numerical than due to shared sites (discussed below). 

The dendrogram internal structure is very sequential, rather than a limited number of 

clear clades. Where clades do exist, such as the final WL group (WL-SPFa down to 

WL1) or the WPR/RIW group, this is due to the high numbers of shared ALVEs 

between these lines and the absence of ALVEs shared outside these clades. ALVEs such 

as ALVE1, ALVE3, ALVE21, ALVEB5, ALVE-NSAC1, ALVE-TYR and 

ALVE_ros010 were found commonly and identified in different breeds and groupings, 

narrowing calculated distances between lines. However, relatedness is modulated further 

as the large number of lineage-specific ALVEs increased relative distance between lines. 

 

Numerical clustering bias 

Whilst Figure 7.4 does appear to reconstitute the predicted general relationships 

between the analysed lines, the number of identified ALVEs in each line does appear 

to be a confounding factor. For those lines with few ALVEs this is an inherent bias 

created by calculating relatedness from a distance matrix using presence/absence data, 
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as lines with few ALVEs group together based on the high prevalence of the ‘absence’ 

genotype at most sites. Modelled dendrograms invariably cluster solely based on the 

number of ALVEs in each line, where the lowest numbers have the shortest distance 

(Figure 7.5). The real data does not follow this pattern completely, but instead has 

structure at least partially based on known line and breed relatedness.   

 

 

Figure 7.5 Dendrograms constructed for lines with twelve ALVEs or fewer. Line 

interrelatedness is shown by the dendrogram and line ALVE number is shown by 

the red bars, where longer bars are more ALVEs. Dendrogram A was constructed 

using the real data and shows structure based on relatedness rather than number 

of discovered ALVEs. Dendrogram B was an example of one of the hundred 

modelled dendrograms with randomly assigned ALVE insertions. Its structure is 

based solely on the number of ALVEs in each line, with almost uniform number 

decrease down the dendrogram. 

Despite the role of genetic structure, the number of identified ALVEs clearly still has an 

impact on some of the dendrogram nodes. This point has already been hinted at with 

the positioning of RJF-J and RJF-S. These lines have one and zero shared ALVEs 

respectively, yet due to their ALVE number are less basal than heritage broilers which 
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contain the traditional layer insertions ALVE1 (Br-REL, Br-VLDL-L), ALVE3 (Br-

INRA) and ALVE15 (Br-REL, Br-VLDL-F).  

Multiple numerical-biased examples can be found within the ‘generalist’ birds. The 

Chahua has only one ALVE (a novel insertion on chromosome 18; ALVE_ros271) 

which is shared with no other lines, but it groups most closely with WLs which also only 

contain one or two ALVEs. The Fayoumi line has six ALVEs, all of which were novel, 

but two were shared with the ETH-Horro ‘village’ chickens. Despite this, the Fayoumi 

sits in the middle of the dendrogram due to the number of ALVEs, rather than more 

basally. Similarly, the TIB-HL1 has four ALVEs, three of which are novel and lineage-

specific. The remaining ALVE_ros276 is shared with multiple lines including the basal 

ETH-Horro, ETH-Jarso and RJF-C, but TIB-HL1 still groups within the BLs due to 

the number of insertions. Finally, the Sumatera groups with TIB-HL2 and TIB-HL3 

within the WLs, and all three lines have two identified ALVEs. The Sumatera has 

ALVE-NSAC1 and ALVE-TYR, both of which are commonly found in all groups 

excluding the commercial white egg layers. TIB-HL2 shares ALVE-TYR and the 

previously mentioned ALVE_ros276, but TIB-HL3 has only lineage-specific insertions.  

Shared ALVEs appear responsible for most dendrogram groupings, but the number of 

ALVEs, particularly lineage-specific ALVEs, has a notable effect on the node order. In 

the absence of shared ALVEs due to common ancestry, lines are simply arranged by the 

number of ALVEs, as was seen in the modelled dataset (Figure 7.5B). 

 

The impact of sequencing library and average coverage on ALVE identification 

Sequencing library type adds an additional level of complexity, as the modelling 

completed in chapter 6 showed that ALVEs which are rare at the population level are 

much more likely to be detected from individual sequencing libraries rather than pools. 

Concordantly, eight of the ten lines with the most identified ALVEs were sequenced 

from individual sequencing libraries (Table 5.3; Figure 7.4). These lines were, however, 

predicted to have a greater number of ALVEs than any of the layer-type chickens which 

exhibited consistently lower ALVE numbers. Use of individual sequencing library 

datasets with layer individuals, such as the J-Line (JL; 9 individuals) or Lohmann WL 
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(WL-L; 25 individuals), did not produce an increase in ALVEs relative to other leghorn 

lines.  

When these data were analysed by the GLM, the results showed that line category (based 

on breed or ‘use’; Table 5.3) was the only significant explanatory variable (P < 0.0001), 

accounting for 90.3 % of the observed variation in identified ALVE number once the 

other variables were accounted for. Neither library category or average genome coverage 

were significant variables, although these were highly correlated with each other. Within 

the GLM analysis they cumulatively accounted for 6.1 % of the observed variation, but 

97.5 % of this was common between the two variables. This suggests that the use of 

different sequencing library types has not biased the generated dendrogram. 

 

Clustering by Principal Coordinate Analysis (PCoA) 

PCoA was conducted to provide support for the conclusions from the hierarchical 

clustering presented above. This methodology takes multivariate datasets and attempts 

to reduce the number of dimensions used to explain dataset variance and relatedness. 

However, the highly lineage specific ALVE content meant that the first thirteen 

eigenvalues significantly contributed to explaining the observed variance, meaning that a 

plot would need to have thirteen dimensions to best visualise the relatedness between 

the data. This is impossible on paper, so multiple plot versions were trialled using two 

or three of the largest eigenvalues, but none created good low-dimensional visualisation 

of the data. 

Reduced datasets which included either shared ALVEs across all datasets, only ALVEs 

found in layers, or only shared ALVEs found in layers were also analysed by PCoA, but 

these had large contributions from at least eight eigenvalues. This made clear plotting 

impossible and likely reflects the large variation in lineage-specific ALVE content. 

Further dataset reductions were not trialled as this would defeat the aim of clustering. 
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7.6 Discussion 

7.6.1 Applying the ALVE identification pipeline to analyse multiple datasets 

The ALVE identification pipeline was used successfully on a wide range of paired end 

WGS datasets. The only notable issue with pipeline performance was with the RJF-C 

dataset, where the pipeline detected a very large number of putative insertion sites which 

were then dismissed after visual inspection in IGV. This seemed to be due to the 

presence of other structural variation in the genome which resulted in a large proportion 

of incongruently mapped reads. The manual insertion site check was the most laborious 

step of the pipeline, particularly with the large number of detected sites in some of the 

analysed datasets when compared with the Hy-Line and J-Line analysis in Chapter 6. A 

possible improvement to the S6_extract_putative_sites.py script would be to check 

clipped sequence homology to ALVE sequence, rather than automatically including any 

sites which have clipped reads. Short sequence BLAST parameters and appropriate 

thresholds would be required, and sites would still need to be checked manually, but 

this may reduce some of the noise.  

Analysis of the single end WGS datasets was far less successful. No sites were detected 

in either the Kauai or Andersson datasets, and sensitivity was much reduced in the Hy-

Line pseudo single end data. Reduction in sensitivity was due to lower insertion site 

coverage when reads with only a short clipped section were lost (compared to the Hy-

Line and J-Line paired end analyses) as these had no viral-mapped mate to retain the 

read during read subtraction. This effect was compounded in the Kauai and Andersson 

datasets by their shorter read lengths, as at least 25 bp was needed for BWA mapping. 

The Andersson reads (35 bp) could therefore not map to both the reference genome 

and retroviral pseudochromosome, and the chance of mapping was reduced for the 

Kauai 75 bp reads compared to the 101 bp Illumina reads of the pseudo single end data. 

Detection was further limited by the overall low average coverage in both these data sets 

(< 5X). This is a common problem for the generally older single end datasets, as these 

were completed when sequencing chemistry was more expensive and less productive. 

Paired end WGS datasets are far more commonplace now than single end data, and it 

would be unwise for any researcher to commission new single end sequencing. The 
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single end ALVE identification pipeline is therefore useful for Illumina single end data, 

or perhaps very high coverage 75 bp SOLiD reads. 

 

Future applications: adapting to long read sequencing data 

Long read technologies offer an exciting opportunity for the study of ALVE insertions, 

and structural variants more widely. Long reads facilitate unique repetitive read mapping 

(producing better assemblies) and may include the full ALVE sequence within a read. 

This would enable initial ALVE characterisation without the need for the additional 

sequencing, as performed for the Hy-Line sites (section 6.6).   

Recent work has successfully used long read technology to identify retrotransposon 

insertions and deletions, with the authors developing the PBHoney program to 

automate detection of all observed variants (English et al. 2014). I would recommend 

the construction of an identification approach specific to ALVEs to reduce search effort 

and post-PBHoney filtering. This would follow a very similar approach to the pipeline 

for short read data developed in this project: mapping reads to a pseudochromosome 

using a long read aligner such as BLASR (Chaisson & Tesler 2012), alignment of 

mapped reads to the reference genome, and then filtering by the alignment CIGAR 

strings to identify clipped reads or reads with large internal insertions (likely the whole 

ALVE sequence). Secondary alignments may need to be considered if reads containing 

long intact ALVEs preferentially mapped to the assembled ALVE-RJF sequence leaving 

the true, flanking genomic DNA as a clipped alignment. 

 

7.6.2 ALVE diversity across chicken populations 

A total of 322 different ALVEs were identified in this study. When combined with the 

recent targeted sequencing approach by Rutherford and colleagues (2016), this brings 

the total number of identified ALVEs to over 430, almost nine times as many as were 

known at the start of this project. This highlights the diversity of ALVEs across chickens 

and the large potential for phenotypic host effects, given the high structural integrity of 

these young retroviral insertions. This number is likely also an underestimate, even of 
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the lines which were analysed, due to population sampling and the use of pooled 

sequencing libraries. In my work, only 19.3 % of identified ALVEs were shared between 

multiple lines (some of which were experimental sister lines) and 81.1 % were previously 

uncharacterised.  

Overall, ALVEs showed no bias for the GC content of their insertion site region, but 

insertion hexamers were significantly more GC rich than would be expected with 

random insertions. Interestingly, alpha- and betaretroviruses have been found to exhibit 

the lowest integration site preference amongst retroviruses, appearing almost random 

(Serrao et al. 2015). However, like other retroviruses, ALV site choice is dependent on 

the ease of access for the integrase, with insertion sequences exhibiting A-philicity, where 

the DNA has A-DNA-like structure rather than typical B-DNA, producing a larger 

minor groove in the DNA helix (Wu et al. 2005; Serrao et al. 2015; Grawenhoff & 

Engelman 2017).  

One observed bias for ALV insertion is an apparent preference for open chromatin, 

particularly near regions transcribed by RNA polymerase II, such as protein-coding 

genes (Narezkina et al. 2004; Serrao et al. 2015). As gene density is positively correlated 

with GC content, this may explain the elevated GC content of the insertion site 

sequences. The data appears to support this preference, as 59.6 % of identified ALVEs 

(192 of 322) either overlapped with or were within 10 kb of a protein-coding gene. Only 

eighty-six of these overlapped genes, but this is not unexpected, as we are observing only 

the insertions that were retained by the host. It is possible that many genic insertions 

were lethal or highly detrimental to the reproductive or commercial success of the host, 

resulting in this apparent deficit within genes, despite the retrovirus preference.  

 

ALVE trends between different breeds 

This study has identified an increased number of ALVEs across the Western 

commercial breeds, but the overall pattern of white egg layers having fewer than brown 

egg layers, which have fewer than broilers remains true. These breeds also reconstitute 

good phylogenetic relationships based on their ALVE content due to the number of 
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shared sites, with the brown egg layers appearing like a hybrid between broilers and white 

egg layers, reflecting their shared ancestry (Muir et al. 2008).  

The difference between these three groups is partially due to greater selection in layers, 

particularly white egg layers, against the negative effects of ALVE expression on 

commercial traits such as egg laying success. However, commercial white egg layers were 

also derived from a much narrower genetic background than brown egg layers and 

broilers, and therefore exhibit much lower levels of genetic diversity (Muir et al. 2008). 

In all commercial stocks, a relatively small effective population (Ne) size and an elevated 

probability of inbreeding could lead to the reduction of the number of ALVEs in a 

population, but it could also lead to more rapid fixation of detrimental variants in the 

population, retaining ALVEs as fixed loci (Charlesworth 2009). Most highly inbred lines, 

such as the Pirbright WLs or other institute-housed WLs with Ne as low as two, were 

also derived from just a few individuals of more outbred commercial stock following 

their initial intensive selection. WLs therefore share very similar, low ALVE content, 

but their population allele frequencies and likelihood of fixation or loss of an insert are 

dependent on Ne and the strength of selection. It is also possible that reduced Ne has 

effected the ALVE content of the broilers analysed for this work. These lines are no 

longer commercially relevant, but are retained as heritage breeds or experimental, 

institute lines, both of which will have significantly reduced Ne. Analysis of commercial 

broilers would be of great interest, particularly to see if dam lines (bred solely for 

reproductive success) also exhibit reduced ALVE content relative to the sire lines, due 

to the negative effects of ALVE expression on layer success (Muir et al. 2008). 

The large numbers of ALVEs within wild or RJF populations superficially suggests that 

there was an originally high diversity of ALVEs within the RJF ancestor birds before 

domestication. However, many of these ALVEs are lineage specific, likely reflecting the 

complex domestication of the chicken, with multiple origins and backcrosses, coming 

from an ancestrally very large Ne (Ellegren 2005; Rubin et al. 2010). This likely suggests 

that all domesticated breeds were derived from high, possibly very different, ALVE 

backgrounds. Birds were then naturally, indirectly selected for reduced ALVE content, 

due to the impact on productivity and the potential for infection of other birds in the 

flock. Parallel selection from different origins most parsimoniously explains the similar 

number, but highly divergent insertion sites, of non-Western breeds, such as the 
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Fayoumi and Silkie.  It is possible that with additional sequencing of geographically 

disparate RJFs and more non-Western, non-commercial breeds, that ALVEs could be 

used to track breed origins and interrelatedness. 

This work also supports the recent research by Ulfah and colleagues (2016) which 

showed that the RJF reference genome bird was a result of extensive introgression with 

WLs, rather than truly representative of the domestic chicken ancestor. This sequence 

should therefore not be used as a tool for identifying changes since domestication. One 

such case was the recent publication of piRNA-mediated ALVE control in the germline 

which used the reference genome as the ancestral baseline (Sun et al. 2017).  

 

7.7 Concluding remarks 

ALVE identification has generally been limited to commercial breeds or experimental 

lines, with a large bias towards Leghorns. In this work, 322 ALVEs were identified from 

almost one hundred chicken WGS datasets, including village chickens, non-Western 

breeds and wild red jungle fowl, and over 80 % of these were previously unknown 

insertions. This has enabled a better characterisation of the wide diversity of ALVEs 

across chicken populations, but it is likely that this only scratches the surface.  
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Chapter 8:  Discussion 

This PhD project consisted of two broad aims. Firstly, the production of an updated 

annotation of the LTR retrotransposon content of the chicken genome, including a 

wider evolutionary study of LTR retrotransposon content across the avian lineage. 

Secondly, the development of a bioinformatics approach for the identification of novel 

ALVE insertions from chicken whole genome resequencing data, focusing on 

characterisation of ALVEs in the Hy-Line elite layer lines.  

Chapters 3 and 4 addressed the first aim. The available methodologies for identifying 

LTR retrotransposons were critically assessed, and the LocaTR identification pipeline 

was subsequently developed. LocaTR combines multiple identification strategies from 

existing programs to enable the most comprehensive annotation of LTR 

retrotransposons currently available. LTR retrotransposons were identified firstly in the 

chicken Galgal4 assembly, almost doubling the previously annotated content. Identified 

elements were exclusively ERVs, and analysis of element distribution revealed the effect 

of selection on these elements to reduce their phenotypic impact on the host genome. 

ERVs were also assessed for their age, completeness and expression, which enabled the 

further characterisation of Ovex1 (a co-opted chicken gene of gammaretroviral origin), 

perhaps supporting a different, wider function for this gene than was previously 

hypothesised. LocaTR was then used to annotate the LTR retrotransposon content of 

seventy-three sauropsid genomes (including the new chicken Galgal5 assembly), 

enabling characterisation of lineage-specific effects and the role of genome quality in 

repeat annotation. This work did not support a previous hypothesis that galliform birds 

had a deficit of LTR retrotransposons compared to other avian groups.  

Chapters 6 and 7 addressed the second aim. A scripting pipeline was developed to 

identify ALVEs from WGS data using standard software and tools. This pipeline was 

initially used on resequencing data from eight Hy-Line elite layer lines, and twenty 

different ALVEs were identified including five novel sites. As expected, white egg layers 

were found to have fewer ALVEs than brown egg layers, but many white egg layer 

ALVEs were fixed in individual lines. Diagnostic KASP and traditional gel-based PCR 

assays were developed to identify all insertions, and fifteen of the identified ALVEs were 

sequenced and characterised. Additionally, the fast feathered WPR line was identified 
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as a K locus revertant, which still contained the replication competent ALVE21. The 

pipeline was then applied to almost one hundred diverse chicken datasets and over three 

hundred different ALVEs were identified, 81.1 % of which were novel to this study. This 

wider study revealed some of the ALVE diversity in non-commercial lines, and how 

unrepresentative the reference genome was for RJF ALVE diversity. The pipeline was 

critically assessed for detection sensitivity, and particularly how this changed depending 

on read length, read library construction and observed coverage.  

In this final chapter, I will evaluate the relevance of my findings in the wider context, 

considering limitations with the methodology, the evolutionary roles for these repetitive 

elements in avian genomes, and the practical consequences of this study, including the 

proposals for further research.  

 

8.1 The development of novel identification pipelines for the 

identification of LTR retrotransposon-derived repetitive elements 

8.1.1 LocaTR 

The LocaTR identification pipeline consists of three homology-based identification 

programs, four structure-based identification programs and twenty-three custom scripts 

written in BASH and Python 2.7. Multiple programs and strategies were required as 

individual programs have been shown to identify different subsets of LTR 

retrotransposons (Lerat 2010; Garcia-Etxebarria & Jugo 2010; Garcia-Etxebarria & Jugo 

2012). The use of so many identification programs covering both homology and 

structure-based strategies, had not been completed before this project. In addition, some 

of the programs were difficult to run, either due to limited documentation and support, 

or more systematic issues with memory allocation. LocaTR mitigates these issues 

through the accessory scripts. All scripts are on the CD accompanying this thesis 

(Appendix 1) and on GitHub (https://github.com/andrewstephenmason/LocaTR).  

LocaTR accessory scripts use common Linux-hosted software (particularly for a 

bioinformatics group) such as BLAST, EMBOSS and HMMER, but are largely self-

contained to avoid complications with accessory programs and dependencies. LocaTR 

can control for variation in input files (such as long or variable sequence header names) 
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and is highly adaptable, as additional identification software, reference sequences or 

validation profiles can be added at the user’s discretion, and the individual parameters 

for identification software can still be set by the user. This makes the pipeline applicable 

for LTR retrotransposon identification of any assembled genome, with full 

characterisation of a one to two gigabase genome in approximately ten days.  

Analysis with LocaTR has increased the annotated LTR retrotransposon content of all 

genomes studied within this project. However, the incorrect identification of non-LTR 

retrotransposons, such as CR1, has remained a concern due to two main issues. Firstly, 

LTR retrotransposons are highly diverse elements and although the main groups share 

an archetypal structure, the lengths of individual features (such as the LTRs) can vary 

across three orders of magnitude (Benachenhou, Jern, et al. 2009; Llorens et al. 2011). 

Consequently, parameters for structure-based programs must be kept unconstrained, 

leading to the inclusion of non-LTR retrotransposons within blocks of repetitive 

sequence which superficially represent LTRs. Secondly, high homology between the 

polymerase domains of retrotransposons leads to detection of these regions during the 

BLAST protocols of LocaTR. Future work needs to address the careful validation of 

putative elements to guarantee their correct annotation, particularly when the pipeline is 

applied to more diverse species with different non-LTR retrotransposon complements. 

This should include better handling of fragmented sequences identified in the BLAST 

protocols by expanding alignments to the neighbouring regions, and including non-LTR 

retrotransposon domain pHMMs in the validation scripts, to test for more significant 

domain matches than are observed with LTR retrotransposon pHMMs.  

The major limitation to the success of LocaTR is genome contiguity. This does not 

significantly influence the initial homology-based identification, but fewer intact elements 

are identified in less contiguous genomes. This has a multiplying effect, as fewer intact 

elements result in a smaller contribution from the secondary BLAST protocol, where 

lineage-specific divergent and degraded sequences are detected. This is a consequence 

of repetitive genomic regions being most difficult to assemble, and should improve as 

genome assemblies are updated with long read sequencing and high resolution optic 

mapping, as was discussed on page 5. Researchers should therefore be careful when 

comparing repeat content between species unless both genomes are highly contiguous. 

Concordantly, future work could identify LTR retrotransposon patterns among the bird 
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genomes, including the previously hypothesised deficit in the Galliformes which was not 

supported by this work. 

Additional improvements to LocaTR are required to improve its efficiency and 

scalability. This should include investigating cloud computing methods to parallelise 

identification with RetroTector and LTR_STRUC (as these require desktop 

architecture), and the standardisation of intermediary files to match existing file formats 

such as BED6. 

 

8.1.2 ALVE identification pipeline 

The ALVE identification pipeline was originally designed for the analysis of paired end 

sequencing data and consists of seven scripts written in BASH and Python 2.7. The 

pipeline uses standard bioinformatic tools for the processing, alignment and 

manipulation of NGS data, avoiding reliance on complex accessory software packages. 

The pipeline’s application was extended with alternative scripts for the analysis of single 

end sequencing data, and an accessory script to convert SOLiD ‘colorspace’ FASTQ 

files into standard ‘basespace’ FASTQ format. The ALVE identification pipeline is 

therefore applicable to most publicly available WGS datasets, although additional scripts 

would be required for the analysis of long read sequencing data (discussed on page 5). 

The pipeline is also highly versatile as users select the type of inserts to be detected by 

providing the appropriate reference sequences. This makes the pipeline applicable to 

any species, and any viral insertion. Depending on the size of the FASTQ files, 

identification of ALVE insertions was completed in one to three days. All script files are 

on the CD accompanying this thesis (Appendix 1) and in a GitHub repository 

(https://github.com/andrewstephenmason/ALVE_ID_pipeline).   

The major limiting factor for the success of the ALVE identification pipeline is total 

coverage. Soft-clipped reads at the insertion site are required to give the exact insertion 

co-ordinates, as well as validate the insertion by providing ALVE-homologous sequence. 

In datasets with limited coverage, there are few soft-clipped reads to support the insertion 

site, and in single end datasets reads must contain significant matches to both the insert 

and reference genome. This issue is compounded by short sequencing reads (no ALVEs 
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were detected with read lengths shorter than 100 bp during this project) and the use of 

pooled sequencing libraries, where inserts may be at a low frequency within the sample 

population or the insert alleles may become underrepresented after PCR amplification. 

More recent sequencing projects which use paired end reads of at least 100 bp, generate 

at least 20x coverage, and use individual sequencing libraries, avoid issues with 

insufficient coverage. Consequently, targeted ALVE sequencing to generate higher 

coverage of genome-insert boundaries should only be used to complement existing 

datasets or to conduct ALVE diversity studies in a more cost effective manner if whole 

genome sequencing is not required. However, as the cost of individual chicken genome 

sequencing to 30x coverage has fallen to approximately £300 (and will continue to fall), 

it is worth completing whole genome sequencing rather than generating datasets with 

limited wider research applications. Careful consideration is required to select an 

appropriate number of individuals for sequencing based on the desired confidence for 

detecting insertions of a given frequency, and the size of the flock. Individual sequencing 

libraries are best, as variation in PCR amplification in pooled sequencing libraries 

reduces detection confidence and can reduce sensitivity (sections 6.4.3 and 7.3.2).  

Another limitation is the difficulty in identifying insertions in poorly assembled regions. 

This certainly hindered the identification of ALVE6 in any sequencing data analysed in 

this PhD project. Future improvements to the reference genome should eventually 

mitigate these issues, but this is worth remembering if the pipeline is applied to viruses 

which preferentially integrate at the telomeres or centromeres. Interestingly, this thesis 

has shown that the chicken reference genome is particularly under-representative of 

ALVE diversity among chickens and wild RJF, corroborating recent analysis by Ulfah 

and colleagues (2016). However, this has actually facilitated the identification of novel 

ALVE insertions during this project, as the reference genome provided an almost 

ALVE-free background, particularly as the only fully assembled reference genome 

ALVE (ALVE-RJF) has not been identified in any other chicken (Benkel & Rutherford 

2014). Known alpharetroviral sites were filtered out during the identification pipeline, 

but each line was manually checked for the presence of ALVE-RJF to ensure mapped 

reads were not filtered out incorrectly. This is an important consideration if the pipeline 

is applied to more ancient and numerous insertions, such as EAVs, as there will be 

assembled EAVs which are shared with some lines, but absent in others. It may aid novel 
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insertion detection if assembled insertions are masked after their identification (e.g. 

converted to ambiguous bases, Ns), and each detected site treated individually. 

The most laborious part of the pipeline is the manual validation of putative integration 

sites using a genome viewer such as IGV. Whilst this was straightforward with the low 

numbers of ALVEs detected in the commercial layers, it was more time consuming with 

the non-commercial and RJF datasets. Future work could develop the filtering of 

putative sites, perhaps even identifying soft-clipped reads, checking these against the 

given reference sequences, and extracting the insertion site and hexamer for comparison 

against a database of previously identified ALVEs. Such changes would likely limit 

manual checking rather than replacing it entirely, to ensure putative sites are not filtered 

out incorrectly. 

 

8.2 Evolutionary roles for LTR retrotransposon-derived sequences in 

avian genomes 

8.2.1 Repetitive elements in avian genome evolution 

This project has increased the annotated LTR retrotransposon content of all analysed 

genomes. Despite this, avian genomes remain repeat sparse. Whilst the avian karyotype 

likely closely resembles that of the amniote ancestor (Ellegren 2005; Ellegren 2010), it 

is interesting that birds exhibit only a subset of the transposable elements present in that 

ancestor. Within the LTR retrotransposons, this has included the loss of both DIRS and 

Gypsy elements, with only ERVs represented in the lineage. However, this is a wider 

phenomenon, as birds contain only one of the autonomous non-LTR retrotransposon 

groups (CR1) which have been observed across other amniotes (Kapusta & Suh 2017).  

Bayesian inference of extinct dinosaur genome sizes has suggested that genome 

contraction in the avian lineage began approximately 230 million years ago, following 

the divergence from the crocodilian lineage (Organ et al. 2007). As flight evolved much 

later, it is likely that initial genome contraction was due to the physiological pressures of 

endothermy, with similar reductions avoided in mammalian genomes due to the 

evolution of enucleated erythrocytes (Hughes & Hughes 1995; Waltari & Edwards 2002; 

Cavalier-Smith 2005; Organ et al. 2007). Even in avian groups where flight has been lost, 
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relaxation of the constraint on genome size has not necessarily had a consequential 

increase in repetitive content (Briggs 2003; Phillips et al. 2010; Kapusta et al. 2017).  

The paucity of all repeat classes in Paleognathae birds (Kapusta & Suh 2017), including 

LTR retrotransposons (Chapter 4), may support the significant depletion of repetitive 

elements during the genome contraction of the avian ancestor, corroborating the 

modelling of Organ and colleagues (2007). This likely suggests a limited role for 

repetitive elements in the diversification of birds within the Archosauriformes, even 

though these elements remained active in the genome. However, Neognathae birds 

exhibit higher relative repeat content despite continued constraint on genome size, 

supporting a secondary, more recent, evolutionary role for transposable elements. Large 

differences in repetitive content have been shown to increase speciation rates due to 

hybrid sterility, whilst additionally facilitating divergence by providing novel promoters, 

splice variants and entire coding regions (Ginzburg et al. 1984; de Boer et al. 2007; Jern 

& Coffin 2008; Stoye 2012). This project has generated much more complete LTR 

retrotransposon annotations for many avian species, so could be analysed further to 

examine whether periods of elevated LTR retrotransposon activity match known 

speciation events, such as the rapid diversification of Neoaves at the K/T boundary. This 

would involve the characterisation of the age and genera of the identified LTR 

retrotransposons, likely following the methodology of the existing avian repeat study of 

Kapusta and colleagues (2016). This work would also aid the understanding of lineage-

specific LTR retrotransposon content and group dynamics, and the role of exogenous 

retroviruses in stimulating lineage-specific expansions.   

In addition to characterising the genera and ages of LTR retrotransposons across the 

avian lineage, further work should describe the distribution of these elements compared 

to the work presented in this thesis with the chicken. In chicken, LTR retrotransposon 

distribution is non-random, and represents the effects of selection to mitigate the impact 

of integrations. Consequently, LTR retrotransposon density is greater on the gene sparse 

macrochromosomes, and distribution on these chromosomes is skewed away from 

coding regions (sections 3.6 and 4.4). Whilst many of the analysed avian genomes lack 

comprehensive gene annotations, it would be of great interest to characterise their LTR 

retrotransposon distribution, particularly the presence of intact element clusters and 

whether any of these share synteny between closely related species. The presence of 
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large genomic regions which differ between otherwise syntenic chromosomes may have 

contributed to hybrid sterility and speciation (Ginzburg et al. 1984; Nuzhdin 1999).  

 

8.2.2 Co-opted LTR retrotransposon-derived sequences in chicken 

Protein coding genes of LTR retrotransposon origin 

Protein coding genes co-opted from LTR retrotransposon-derived sequences are rare 

occurrences, although more transient roles in antiviral immunity have been identified in 

multiple species, including chicken (see below) (Crittenden et al. 1984; Smith et al. 1991; 

Sacco et al. 2004; Aswad & Katzourakis 2012; Stoye 2012; Hurst & Magiorkinis 2014). 

In this study, the chicken co-opted gammaretroviral envelope gene, Ovex1, was shown 

to have a wide distribution in the Sauropsida, and to exhibit expression beyond the 

ovaries, contrary to its initial characterisation (Carré-Eusèbe et al. 2009). This may 

support a much more general function for Ovex1, perhaps as a competitive inhibitor 

against exogenous gammaretrovirus infection, however this requires further functional 

characterisation.  

Ovex1 expression was ubiquitous, but was far greater in the ovaries than in other 

identified tissues. It is therefore possible that minimal levels of Ovex1 protein was 

produced outside the ovaries, therefore limiting its range of effects.  Furthermore, whilst 

in silico domain identification was carried out in this project, isolation and identification 

of the Ovex1 protein would provide evidence as to its functionality, as fully functional 

retroviral envelope proteins form homotrimers. Ovex1 knockouts would also identify 

whether Ovex1 is an essential protein, particularly whether it is required in ovary 

development as was originally hypothesised (Carré-Eusèbe et al. 2009), or whether 

Ovex1 mutants are more susceptible to current exogenous gammaretrovirus infection, 

such as CSV. As Ovex1 homologues are present throughout the sauropsids, it would be 

of great interest to fully understand the evolutionary impact of this co-opted ERV.  

It is possible that other chicken genes have incorporated LTR retrotransposon-derived 

sequences as exons or promoters, particularly as overlaps with protein-coding genes 

were observed in the Galgal4 analysis. Further work should confirm and characterise 

overlaps with annotated exons, and identify their contribution, if any, to gene function.  
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Long non-coding RNA genes of LTR retrotransposon origin 

Recent improvements to the chicken genome annotation has enabled the identification 

of over 20,000 long non-coding RNA (lncRNA) genes (Kuo et al. 2017). As a group, 

lncRNAs are not necessarily functional, but merely evidence that a genomic locus is 

expressed, even if in a tissue-specific or temporally-specific manner. However, those that 

have been well characterised have a wide range of functions, from subcellular 

organisation and epigenetic remodelling, to regulating transcription and facilitating 

alternative splicing, and are often species-specific (Mercer et al. 2009; Baker 2011; 

Pontier & Gribnau 2011; Wang & Chang 2011).  

As many mammalian lncRNAs are known to be of transposable element origin (Kapusta 

et al. 2013), it was interesting that seventy-two intact chicken LTR retrotransposons (5.6 

%) significantly overlapped (> 50 bp) or fully contained a lncRNA gene. Future work 

needs to assess LTR retrotransposon regions which are overlapped, whether any 

degraded LTR retrotransposon sequences overlap with lncRNA genes, and derive the 

function, if any, of the overlapped loci. There is no general, comprehensive 

methodology for the functional characterisation of lncRNA genes, and loci generally 

need to be evaluated independently with extensive experimental evidence (Mercer et al. 

2009). Recent in silico efforts have been made to assign direct lncRNA functional 

relatedness by assessing co-expression with well described protein coding genes using 

RNAseq datasets over multiple tissues (Xiao et al. 2015). However, this requires a 

lncRNA to have a direct effect, and expression that can be accurately quantified over 

multiple tissues. Initially, research should focus on identifying the functional ‘class’ of 

any overlapped lncRNA, with individual loci targeted for further research. Functional 

characterisation of lncRNA genes is a new and rapidly expanding field, and new 

predictor tools are currently under development (Kuo 2017, personal communication). 

 

8.2.3 Transient ALVE-derived immunity in chickens 

Many recent ALVE insertions retain a high degree of structural integrity, and the role of 

well described elements such as ALVE6 and ALVE9 in mitigating exogenous ALV 

infection through receptor interference has been well described (Robinson et al. 1981; 
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Smith et al. 1990a; Smith et al. 1991; Gavora et al. 1995). In commercial flocks, where 

exogenous ALV infections are controlled and largely absent (at least in Western 

settings), these viral-protein producing loci are undesirable and have the potential to 

cause complications when lines are interbred. However, in wild RJF and non-

commercial birds it is likely that these insertions would be transiently beneficial to the 

host, as the physiological cost of ALV infection outweighs the negative effects of 

endogenous expression. This potentially explains the large diversity of ALVEs in the 

village birds and RJF datasets, with cumulative flock immunity likely caused by many 

individual ALVEs at low population frequencies, as the rate of adoption will be far 

greater than the rate of fixation (Taylor et al. 2011; Aswad & Katzourakis 2012). 

Individual insertions which remain useful will be retained, and selection will only act to 

keep insertions whilst they provide a selective advantage.  

ALVE insertions which confer a selective advantage to the host are expected to be under 

constraint, exhibiting fewer stop codons and low dN/dS ratios (non-

synonymous/synonymous changes) in the advantageous domains, such as the envelope 

gene. These values could be compared with other ALVE insertions to identify domains 

under selection, and to exogenous relatives to observe how selection pressures change 

when under host control. Observed selection effects can be quantified using the 

McDonald-Kreitman test, or the more robust Distribution of Fitness Effects (DFE) test. 

DFE tests account for changes in effective population size over time, and the impact this 

has on the effectiveness of selection (Aswad & Katzourakis 2012). Such analyses would 

require the sequencing of multiple inserts from individual birds, however with long read 

sequencing it may be possible to generate individual reads which cover the entire 

insertion. Whilst it is unlikely that the selective role of recent insertions could be studied 

in this manner, these analyses would enable characterisation of ALVE degradation over 

time, without the influence of artificial selection against P27 expression.  

 

8.2.4 Further areas for research 

In chickens, further work is needed to fully characterise the diversity of ALVE insertions 

across RJF and non-commercial chickens, as well as identify whether ALVE numbers 

in commercial broiler dam lines are as similarly reduced as in commercial layers. 
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Furthermore, ALVEs are not the only alpharetroviral sequences which remain mobile 

in the chicken genome. EAVs are older and generally less complete, but are present in 

greater copy numbers and still modulate phenotypes. During this PhD project I 

collaborated on an EAV-HP diversity study in a range of chicken populations (Wragg et 

al. 2015), but further analysis of all EAV classes is required. Preliminary testing has been 

completed using the ALVE identification pipeline adapted for EAVs, and this would be 

a straightforward application. Beyond endogenous alpharetroviruses, further work is 

needed to characterise the effects of the betaretrovirus and gammaretrovirus polymerase 

transcripts identified from the J-Line RNAseq data (page 5). If translated, these proteins 

could facilitate the retrotransposition of non-autonomous repetitive elements, and the 

formation of retrogenes.   

This PhD project has also generated updated LTR retrotransposons for seventy-two 

additional sauropsid species, including commercially relevant and key indicator species 

across the avian lineage. Most identified LTR retrotransposon sequences will exhibit 

limited phenotypic influence on the host due to their location or degree of degradation, 

but expression and epigenetic data from a range of germline and somatic tissues is 

required to fully characterise these sequences. These annotations provide the basis for 

future evolutionary studies into transposable element activity and phenotypic influence 

across the avian lineage, as well as a baseline for characterising the diversity of recently 

inserted elements between populations, as was completed here with chicken ALVEs. 

Whilst ALVEs are limited to Gallus gallus, other endogenous ALVs are found across 

galliforms, and may present future targets for recombination. It is also likely that the 

study of other avian species will reveal recurrent retroviral infections and integrations.  

 

8.3 Practical applications from this CASE PhD project 

8.3.1 ALVEs in the Hy-Line elite layer lines 

The ALVE identification pipeline identified twenty different ALVEs across eight elite 

layer lines. As expected, the white egg layer WLs had consistently lower numbers of 

insertions than were detected in the brown egg layer WPRs and RIR. However, it is 

highly likely that not all ALVEs within these commercial flocks were identified. ALVEs 
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at low frequency could have been missed due to individual sampling or under-

representation in the pooled sequencing libraries, particularly if insertions were line 

specific and could not be detected with subsequent KASP assays. To completely 

characterise the ALVE content of the lines, additional individual sequencing is required, 

and must be designed to maximise the probability of detecting all ALVE insertions. 

However, it is possible that very rare insertions would remain undetected, particularly if 

they are on the W chromosome. Furthermore, any insertion in a poorly assembled 

region of the genome, such as ALVE6 at the 5’ end of chromosome 1, could not be 

reliably detected by this methodology. Work is ongoing to identify the ALVE6 insertion 

by extending the chromosome 1 assembly using long read sequencing data. 

Traditional, gel-based PCR and high-throughput KASP assays were developed for each 

of the identified ALVE insertions. It is likely that all gel-based PCR assays could be used 

successfully with other chicken lines, enabling the genotyping of ten ALVEs which 

lacked assays prior to this study. The SNP-level specificity of the KASP system might 

mean that assays need to be adjusted before their successful application in other 

populations. In the absence of sequencing data to direct these adjustments, a similar 

approach could be taken as was completed with ALVE_ros005, where local Sanger 

sequencing was used to identify problematic sequence. The KASP assay system is a 

powerful tool for high-throughput genotyping, and this work represents one of the first 

uses of the system for detecting large structural variants rather than SNPs.  

 

Further characterisation of the ALVE insertions 

The work presented in chapter 6 of this thesis focused on the detection of ALVE 

insertions from WGS data, the development of diagnostic assays, and the elucidation of 

the insert sequence. However, further work is needed to fully quantify the phenotypic 

effects, if any, of each ALVE insertion. Firstly, examples of each ALVE from each line 

need to be sequenced, rather than a single representative sequence for each ALVE 

across the Hy-Line elite layer lines. This was the original intention of the work presented 

in section 6.6, but difficulties in long range PCR and PCR product cloning limited the 

scope of sequence characterisation, including the absence of sequences for five 

identified ALVEs. It is possible that as these insertions are relatively recent there will be 
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few significant changes between different lines, however any large-scale changes could 

drastically affect the phenotypic impact of an ALVE, especially if a full length insert in 

some lines is a solo LTR in others.  

Prior to any additional sequencing (see below), the phenotypic effects of each ALVE 

could be assessed through an association analysis with productivity trait data. These 

analyses compare the genotypes for genetic variants with observed differences in 

productivity traits, to associate either individual or cumulative genotypes with observed 

phenotypic differences (Haley & Knott 1992; Haley et al. 1994; Korte & Farlow 2013). 

Such analyses cannot observe the effect of fixed insertions (such as ALVE-TYR in the 

WPRs), but could identify other associations. It is possible that such an analysis would 

reveal no negative associations between ALVEs and productivity traits, but any 

highlighted ALVEs would be prime targets for eradication from the lines. In addition, 

gene expression of the five genes where ALVEs are within introns (ALVE1, ALVE3, 

ALVE9, ALVE15 and ALVE-TYR) should be quantified using RT-qPCR in wildtype, 

heterozygote and homozygote individuals, to identify whether the presence of the ALVE 

influences gene expression. This should be completed for the exons immediately before 

and after the insertion, as previous work with ALVE-TYR found that the insertion did 

not affect total expression but caused transcript truncation (Chang et al. 2007).  

To completely characterise the phenotypic effects of each ALVE, more sequencing data 

is needed across a whole range of tissues at different ages, including developmental 

stages. This should include whole genome bisulfite sequencing for characterisation of 

the methylation status of each ALVE insertion, and ChIPseq to identify protein 

interactions with the ALVEs such as enhancer or TF binding, or the presence of 

histones. Additionally, the expression of each ALVE should be assessed using long read 

RNA sequencing, such as PacBio IsoSeq, to enable unique identification of transcripts 

from each site. This data would also confirm whether the envelope-regulating 

microRNA miR-155 is active within these lines. Together, these data would identify 

whether ALVEs are transcriptionally active under normal conditions, and whether they 

could be reactivated under stress, as has been shown during coinfection with MDV 

(Fadly et al. 2014; Cao et al. 2015).  
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ALVEs in other commercial lines 

The approaches for ALVE identification and characterisation outlined in this thesis 

could easily be applied to the identification of ALVE insertions in other commercial 

datasets. Related analyses are currently underway in other companies of the EW group 

(the Hy-Line parent company; J Fulton & S Tyack 2017, personal communications), but 

it is unlikely that the broiler results will be made public. The analysis of current 

commercial broiler data, particularly the differences between sire and dam lines, would 

be of great interest, as controlling for the likely more numerous ALVE insertions in 

those lines could greatly influence productivity and animal welfare.  

In chapter 7, the Lohmann (also in the EW group) WL, WPR and RIR layer lines were 

analysed for their ALVE content, revealing very similar complements to the Hy-Line 

lines. It is possible that KASP assays developed here could be used successfully with the 

Lohmann stock, but adjustments may have to be made for SNPs in the primer binding 

regions. It is also possible that shared ALVEs contain company-specific SNPs or even 

larger structural variation. Further sequencing is needed to identify the line and breed-

specific differences within companies, as well as any company-specific variants. These 

may reflect differences in selective breeding programmes, including against P27 

expression, and could result in varied phenotypic effects on the host.  

 

8.3.2 Wider application of the identification pipelines 

The two identification pipelines developed in this PhD project are not limited to the 

work presented here. As has been shown, LocaTR can be used to annotate LTR 

retrotransposon content in any assembled genome, providing the basis for evolutionary 

studies in any eukaryotic organism. In practical terms, researchers would need to adjust 

the list of reference sequences and select identification program parameters to best suit 

the chosen study species.  

The ALVE identification pipeline also has a much wider potential application, again 

depending on the reference sequences chosen by the researcher. A modified ALVE 

identification pipeline could enable the identification of any viral insertion relative to a 

reference genome, in any species. Beyond the study of ERV integrations in agricultural 
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animals, the pipeline could therefore be applied to viral-induced cancer genomics, 

including in humans.  

 

8.4 Concluding remarks 

Compared with other eukaryotes, avian genomes contain a limited diversity of LTR 

retrotransposons, restricted solely to endogenous retroviruses. However, the work 

presented in this PhD thesis has increased the known abundance of these retroviral 

sequences in all sauropsid genomes analysed, and enabled a thorough characterisation 

of ERV distribution, expression and putative functions in the chicken genome. My 

research then focused on ALVE insertions, the youngest chicken ERVs, enabling a 

wider characterisation of their diversity across chicken populations, including an in-

depth analysis of their location, intactness and frequency in the Hy-Line elite layer lines.  

This work has both academic and practical applications for avian biology. These range 

from evolutionary studies into the role of transposable elements in the rapid 

diversification of birds, to directly advising commercial breeding companies about the 

phenotypic impacts of ALVE insertions and identifying which sites should be prioritised 

for eradication. Future work proposed in this thesis will further characterise the diverse 

roles of these repetitive elements, and expand the applications of the tools developed 

during this PhD project. As ALVEs remain a recurrent problem in commercial flocks, 

further understanding of these loci is critical for improving animal welfare and 

guaranteeing long term global food security.  
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Appendices 

Appendix 1: Code repositories 

All scripts for the two developed pipelines have been included on the CD accompanying 

this thesis, and are also hosted in individual GitHub repositories: 

LocaTR  https://github.com/andrewstephenmason/LocaTR 

ALVE_ID_pipeline  https://github.com/andrewstephenmason/ALVE_ID_pipeline 

In addition, a third GitHub repository has been created which contains additional code 

which has been useful during this thesis. All scripts contain appropriate comments, and 

a general README file has been created to explain individual script functionality: 

ASM_PhD_extras https://github.com/andrewstephenmason/ASM_PhD_extras 

 

Appendix 2: Additional files 

This appendix consists of eleven additional files of results and reference sequences. 

Each file has been included on the CD accompanying this thesis, and static links have 

also been provided. This section briefly describes the files including their format.  

 

1) Reference sequences used in LocaTR 

A total of 717 reference sequences were used as part of the LocaTR expanded homology 

protocol. Sequences were chosen to give good phylogenetic coverage of known LTR 

retrotransposons, but there is a bias towards ERVs and Avian repeats. Sequences were 

downloaded from RepBase, Gypsy Database and NCBI. The file is a standard FASTA. 

Filename: AF01_LocaTR_reference_sequences.fa 

Static link: https://tinyurl.com/ydeux9ef 

 

2) LTR retrotransposons identified in the Galgal4 assembly 

Identified LTR retrotransposon positions have been given in BED6 format. This is a 

tab spaced file with columns: chromosome, start position (0 indexed), end position, 

name, score and strand. Line names were ‘FL’ meaning full list, or ‘SIE’ meaning 
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structurally intact element. All SIEs were contained within FL lines, but some SIEs are 

within larger FL regions. The score column was a placeholder, with values were set to 0.  

Filename: AF02_Galgal4_LTR_retrotransposons.bed 

Static link: https://tinyurl.com/ydgh7ep3 

 

3) Structurally intact LTR retrotransposon clusters in the Galgal4 assembly 

This file is the output of cluster_counter.py (ASM_PhD_extras repository), showing the 

analysis of contigs which contained five or more SIEs and whether these were in clusters. 

For contigs with clusters, the output shows number and proportion of SIEs within 

clusters, cluster sizes and locations, and the LTR homology of each SIE LTR pair. 

Homology values of 0.0 represent sequences where LTRs had significantly diverged in 

length (through insertions or deletions) so the homology scores were uninformative.  

Filename: AF03_Galgal4_SIE_cluster_locations.txt 

Static link: https://tinyurl.com/ya2k8kmd 

 

4) LTR retrotransposons identified in the Galgal5 assembly 

As AF02, but with LTR retrotransposons identified in the Galgal5 assembly. 

Filename: AF04_Galgal5_LTR_retrotransposons.bed 

Static link: https://tinyurl.com/yan9s5qq 

 

5) Structurally intact LTR retrotransposon clusters in the Galgal5 assembly 

As AF03, but with clusters identified from the LTR retrotransposons in the Galgal5 

assembly. LTR pair homology was not included in this output. 

Filename: AF05_Galgal5_SIE_cluster_locations.txt 

Static link: https://tinyurl.com/yb7of5gh 

 

6) Structurally intact LTR retrotransposon overlaps with Galgal5 lncRNA genes 

This file is in modified BED format. Columns 2-7 are the SIEs which overlap with 

lncRNA genes in BED6 format, where the name is ‘SIE’ and the score is the element 
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length, and columns 8-13 are the same but for the lncRNA genes, with the name as 

‘RK_lnc’ for Richard Kuo lncRNA gene annotation. The first column is the length of 

overlap between each feature on the line.  

Filename: AF06_Galgal5_lncRNA_overlaps.txt 

Static link: https://tinyurl.com/yb894o34 

 

7) Alpharetroviral reference sequences used to mask the Galgal5 assembly 

A total of 31 alpharetroviral sequences were used to identify alpharetroviral-homologous 

regions in the Galgal5 reference genome. The file is a standard FASTA with the header 

name containing the sequence name, GenBank accession and sequence length. 

Filename: AF07_alpharetroviral_reference_sequences.fa 

Static link: https://tinyurl.com/yafun5tf 

 

8) ALVE reference sequences used to construct the viral pseudochromosome 

A total of 11 ALVE sequences were used to construct the viral pseudochromosome. 

The file is a standard FASTA with the header name containing the sequence name, 

GenBank accession and sequence length. This file is a subset of AF07. 

Filename: AF08_ALVE_reference_sequences.fa 

Static link: https://tinyurl.com/y7cq5wev 

 

9) The sequenced Hy-Line ALVEs 

A standard FASTA file with the fifteen sequenced ALVEs from the Hy-Line elite layers 

including terminal hexamers. Sequence headers include the name and orientation.  

Filename: AF09_HL_ALVE_sequences.fa 

Static link: https://tinyurl.com/ybydbhes 

 

10) The locations of all identified ALVEs in the Galgal5 assembly 

Each identified ALVE is listed with its chromosome, insertion hexamer start position, 

hexamer sequence and gene feature overlap. Previous and new nomenclature is shown. 
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Filename: AF10_ALVE_locations.xlsx 

Static link: https://tinyurl.com/yaunavym 

 

11) Presence/Absence matrix for all identified ALVEs 

All datasets are listed as columns matching the order outlined in section 7.4.1. The 

ALVE complement of each line is shown as 1 (presence) or 0 (absence) for all identified 

ALVEs. ALVEs are shown with their insertion site and new nomenclature. 

Filename: AF11_ALVE_presence_absence_matrix.xlsx 

Static link: https://tinyurl.com/ybsavjza 

 

Appendix 3: Published papers 

During this PhD project, I have been involved in the publication of three papers. PDF 

versions of each have been included on the CD accompanying this thesis, and static links 

have also been provided. Each paper was published in an open access journal. 

 

1). Wragg D, Mason AS, Yu L, Kuo R, Lawal RA, Desta TT, Mwacharo JM, Cho CY, 

Kemp S, Burt DW & Hanotte O (2015), Genome-wide analysis reveals the extent 

of EAV-HP integration in domestic chicken, BMC Genomics, 16: 784.  
 

I analysed whole genome resequencing data from the eight Pirbright inbred lines for 

novel EAV-HP integrations. This analysis was carried out using a pipeline developed by 

David Wragg with additional scripting completed by me and Richard Kuo. I reviewed 
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