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Abstract

This work develops efficient methods for the implementation of Montague Grammar on

a computer. It covers both the syntactic and the semantic aspects of that task. Using a

simplified but adequate version of Montague Grammar it is shown how to translate from

an English fragment to a purely extensional first-order language which can then be made

amenable to standard automatic theorem-proving techniques.

Translating a sentence of Montague English into the first-order predicate calculus

usually proceeds via an intermediate translation in the typed lambda calculus which is

then simplified by lambda-reduction to obtain a first-order equivalent. If sufficient sortal

structure underlies the type theory for the reduced translation to always be a first-order

one then perhaps it should be directly constructed during the syntactic analysis of the

sentence so that the lambda-expressions never come into existence and no further

processing is necessary. A method is proposed to achieve this involving the unification

of meta-logical expressions which flesh out the type symbols of Montague's type theory

with first-order schemas.

It is then shown how to implement Montague Semantics without using a theorem prover

for type theory. Nothing more than a theorem prover for the first-order predicate

calculus is required. The first-order system can be used directly without encoding the

whole of type theory. It is only necessary to encode a part of second-order logic and

this can be done in an efficient, succinct, and readable manner. Furthermore the

pseudo-second-order terms need never appear in any translations provided by the parser.

They are vital just when higher-order reasoning must be simulated.

The foundation of this approach is its five-sorted theory of Montague Semantics. The

objects in this theory are entities, indices, propositions, properties, and quantities. It is a

theory which can be expressed in the language of first-order logic by means of axiom

schemas and there is a finite second-order axiomatisation which is the basis for the

theorem-proving arrangement. It can be viewed as a very constrained set theory.
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1. Introduction

In "Universal Grammar" (UG; Montague 1970) and "The Proper Treatment of Quantification

in Ordinary English" (PTQ; Montague 1973) Richard Montague showed how to specify a

denotational semantics for a fragment of English by means of translation into a model-theoretically

interpreted intensional logic (IL) based on the type theory of (Church 1940). Then in (Gallin 1975)

his student, Daniel Gallin, provided a proof theory for Montague's IL which is complete with

respect to a generalisation of Church's type theory suggested by (Henkin 1950). Gallin also showed

how to replace IL by the extensional two-sorted type theory (Ty2).

In this thesis I define a simplified version of Montague Grammar (SMG) which is no less

adequate than UG or PTQ, suitable for use as a front-end to a general reasoning system. The

potential applications of Montague Grammar envisaged here are not restricted to database query, in

that there is an illocutionary symmetry whereby for each interrogative query the corresponding

indicative statement can be asserted into the database as a fact.

Despite the work of Gallin there is still an unfortunate problem which arises for Montague's

translations. In type theory a unification algorithm must seek substitutions which equalise terms

modulo lambda-conversion. This is a source of great inefficiency (although not necessarily

incompleteness) in theorem provers for type theory which is an omega-order logic. The problem is

that unification is undecidable even in the case of second-order logic (Goldfarb 1981); thus there is

no effective procedure for determining whether or not two terms of the language of second-order

logic have a common instance. Because in the general case it is not possible to tell whether a

unification call will terminate, it is necessary to unify in parallel with the search process associated

with first-order logic thereby adding considerable computational overheads.

By contrast, if a semantics for SMG can be rendered into first-order logic then standard

theorem proving techniques such as resolution (Robinson 1965), where the unification algorithm is

part of a single inference step, can be used. It is clear that new constraints are needed in order to

achieve this. These constraints are implicit in the fragment itself which does not exercise much of

omega-order logic. Even following Montague and Gallin there is many a sentence whose translation
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has first-order equivalents. Therefore in this work I replace type theory with a Theory of Montague

Semantics (TMS) which provides a five-sorted extensional logic in which every sentence of the

fragment has a first-order translation.

In fact, TMS can be axiomatised entirely within first-order logic which suggests abandoning

omega-order logic even during the process of translation. The early approach of translating into IL

and then doing simplifications towards a first-order form requires a very complicated simplifier as

well as the parser. It will be shown that by going directly into first-order logic this computational

overhead can be avoided. By using semantic templates, which carry enough type information to

translate using only first-order unification, the translation can be built up incrementally during

parsing. Thus a remarkably short parser and translator for Montague Grammar is obtained, which

can form a self-contained and useful aid in the study of semantics. A systematic correspondence

between type theory and semantic templates will be described so that readers may see for

themselves how to implement extensions of Montague Grammar.

The whole front-end is presented in this thesis as a parser and translator for SMG written in

Prolog (Clocksin and Mellish 1981). Intended as an aid in the further study of the SMG-TMS

framework, it constructs analysis trees of the traditional kind and simultaneously builds up a

translation in five-sorted first-order predicate logic. Since the program outputs first-order logic it

could be used as a front-end for any of the systems developed in artificial intelligence for

manipulating first-order well-formed formulas. Although it is easier than type theory for which

there currently exists no practical theorem prover, TMS is not trivial and I will be concerned to

demonstrate that a finite axiomatisation suffices to cover TMS when the system is properly

organised. No particular theorem prover is presented but the system is adapted to the popular

resolution method.

1.1. The Range of Influence

What is on offer here is not the solution to a single big problem but the hope of managing the

complexity of Montague Grammar, which has entangled everyone else. For this, harmonious
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solutions to a host of smallish problems had to be found so that one way forward could be

presented.

Natural language understanding has been broken down into a syntactic parsing problem and a

semantic theorem-proving problem but before now there has been no simultaneous solution to both

problems for Montague Grammar. In particular, the common use of the typed lambda calculus to

build up the semantics during parsing overburdens the theorem prover as we have seen. So

semantic processing has always been restricted to lambda-reduction or evaluation with respect to

finite domains. Conversely restricting to the first-order predicate calculus for the sake of the

theorem prover raises difficult problems for semantic representation during parsing which have

apparently never been solved, let alone uniformly solved, for a significant Montagovian fragment

prior to this work. The solution in my early attempt (Jowsey 1986) was not uniform.

The nest of problems is so complex in its interrelations that having dealt with the parser as

above, new difficulties concerning the lack of abstraction facilities in first-order languages are

reflected back to the theorem proven the ghost of lambda still haunts us. These difficulties have

now been overcome despite the doubts expressed in (Jowsey 1986). A finite axiom system which

has not previously been published completes this thesis. More research work remains to be done

because the considerable control issues in both the parser and the theorem prover have not been

tackled at all.

The early approach to computational Montague Grammar is summarised in (Friedman 1978)

which contains an extensive bibliography. The tendency was to organise such systems as a long

composition of separate functions, typically: phrase structural analysis, quantifier scoping, translation

into IL, simplification of the IL expression, and semantic interpretation of the IL expression with

respect to a finite model (which can be viewed as an extension of simplification). This is

reminiscent of multi-pass compilers for programming languages, in contrast to which the present

system follows one-pass compilers with their greater elegance and efficiency. That approach

probably reached its zenith in the PHLIQA 1 question-answering system (Bronnenberg &al. 1980).

Whilst its syntax was clumsy but adequate, its semantics was very restricted. Simplification is
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something that a theorem prover for type theory would do but it is just not very much. Perhaps it

might be possible to add facilities to such a system to raise it to the present standard. However it

would not be clear what was being aimed at. Completeness would be too much to expect whereas

with first-order logic, completeness is the obvious target. Work continues in the earlier tradition. In

(Bainbridge 1984) the Prolog interpretation of Definite Clause Grammars is adapted to Montague

Grammar using a well-formed substring table to handle left-recursion. Because the database is

side-effected to record the table, the declarative interpretation of Prolog is lost Analysis trees are

output, ready for translation into unsimplified IL by a post-order tree walk. It appears that the

system would be slow. In this thesis a quick bottom-up parser, coded in declarative Prolog, will

simultaneously yield both analysis trees and 'simplified' first-order translations.

This thesis shares its aims but not its methods with those of (Schubert and Pelletier 1982).

Their arguments against generalised quantifiers are powerful but cannot be accepted at present

because to do so would be fundamentally non-Montagovian. However, from the point of view taken

here, the main problem with their work is that while they claim to compute a 'conventional' logical

translation their target language is actually rather unconventional. It is difficult to find specific

objections to their system as it is not precisely formulated. For example, they do not commit

themselves as to whether to use a first-order or a second-order language. However their language is

clearly not the same as the standard language presented in introductory logic textbooks. By

contrast, the one employed here differs only by the use of sorted quantifiers (which can be viewed

as a syntactic sugar). We agree in stressing that it is semantics, not syntax, which is important. Yet

Schubert and Pelletier give no formal semantics for their language, which could therefore with

enough ingenuity be interpreted as anything less powerful than third-order logic. It has been a

central concern that this work should be sufficiendy rigorous to be open to constructive criticism.

Let's consider the Chat-80 question-answering system described in (Pereira 1983) because it

uses a logic superficially resembling the present logic. Pereira's parser is an extension of Definite

Clause Grammar called Extraposition Grammar about which the present work is unconcerned. His

logical translations are again constructed by walking the analysis trees. Furthermore Pereira's

semantic formalism of Definite Closed-World Logic lacks illocutionary symmetry. His theorem
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prover inherits the closed-world assumption from Prolog through negation by failure, and adds a

groundness assumption whereby any atomic sentence in or deduced from the database must be

ground. Standard logic has none of these deficiencies and they are not considered acceptable in a

theorem prover for Montague Grammar, although they may be acceptable in the geography domain

of Chat-80.

The Prolog textbook of (Clocksin and Mellish 1981) gives an often cited example from

(Pereira, Pereira, and Warren 1979) of a small Definite Clause Grammar which constructs a first-

order translation incrementally by unification, as is done here. The difference is that it uses

numerous spread parameters which this implementation wraps in a single structure called a semantic

template, systematically derived from the appropriate type symbol.

The lecture notes of (Pereira and Shieber 1987) contain a chapter in which they develop a

fragment with similar coverage to the extensional fragment of Chapter 2. Moreover the way in

which they build up first-order formulas by unification uses a notational variant of the semantic

templates which I invented independently and had already published in (Jowsey 1986). Pereira and

Shieber explain templates as representing lambda-expressions (although they admit that the analogy

breaks down). The present explanation of templates as types appears to be an improvement.

However their approach is allied to mine and their notes are sufficiently clear that a skillful

programmer could probably construct all the purely syntactic parts of my system under their

guidance, provided that the programmer knew TMS beforehand.

An admirable alternative attempt to implement Montague Grammar is that of (Miller and

Nadathur 1986) whose aims and methods, though not solutions, are close to those of this thesis.

Their approach is based on a higher-order extension of Prolog called AProlog. In essence, they have

derived a programming language from Ty2 by analogy with the way in which Prolog is derived

from full first-order logic. A program in AProlog consists of higher-order definite clauses and is

executed by a depth-first search through the database, as in Prolog. However each clause is itself

executed by an inner depth-first search through the many unifiers which arise from the undecidable

unification algorithm of (Huet 1975). Obviously their system is far from complete but enough
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simple cases such as lambda-reduction work properly for it to be useful as a programming language.

The major advantage of using such a system is that Montagovian translations can be encoded very

transparently as data structures. In particular, bound variables pose no problems. To continue

within their paradigm would still involve writing a full theorem prover for Ty2 in AProlog.

Although this would be easier than writing such a theorem prover in Prolog, I am not convinced that

it could be made sufficiently efficient. Of course, having done the lambda-reductions very

pleasantly, it would still be possible to give up and switch to a first-order theory but then, having

abandoned theoretical higher-order characterisation, their proposal would reduce to the advocation of

^.Prolog as a favourite programming language. Nevertheless I acknowledge the force of the

argument for the uncompromising use of higher-order logic without following that line of

investigation myself.

Throughout the writing of this thesis, (Pereira 1983) has been a guiding example of thesis

style.

1.2. The Plan of this Thesis

The rest of Chapter 1 reminds the reader about certain logics pertinent to the following

original work; Chapter 2 is a scaled-down version of Chapter 3 which may be more comprehensible

to the uninitiated; Chapters 3 and 4 contain the substance of the thesis; and Chapter 5 concludes it.

A colloquial description of the thesis topic is to make Montague Grammar computational by getting

rid of lambdas. Chapter 3 is about using unification instead of lambda-reduction in an analyser for a

Montague fragment, and Chapter 4 is about a first-order theory of Montague Semantics. The

primary device of Chapter 3 is mapping English categories into logical types and the

implementation of types by semantic templates, and that of Chapter 4 is mapping (irreducible)

sentences, predicates, and terms into propositions, properties, and quantities respectively and the

arrangement of these by abstract predicates.

Prolog procedures are used freely in Chapters 2 and 3 but no tutorial material on Prolog is

included as such tutorials are now widely available. The reader is reassured that the grammars are
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coded in a pure "vanilla" Prolog (without '!' or assert, but with V) which admits of a declarative

interpretation. Likewise the reader of Chapter 4 is assumed to be familiar with the fundamental

ideas of resolution theorem proving as taught, for example, in first-year artificial intelligence

courses. Again, no unusual methods are used. The colloquial message of this thesis is that

Montague Grammar can be bent to fit standard techniques without breaking it Appendices contain

the extra uninteresting procedures required to make a usable system, and the entire normalised

axiomatisation.

1.3. Logical Targets

For a given fragment of English the complexity of the translation technique should be

inversely proportional to the complexity of the target language in any reasonable system. I have

assumed that the inherent complexity of the system is constant but can be divided between

translation and target to one's taste. This thesis will only illustrate the extremes. In the

specification a simple translation method will go into a difficult logic but in its implementation

trouble will be taken to translate into an easier logic.

1.3.1. The Omega-Order Language

This is an extremely general and powerful logic which offers far more than is required for the

SMG fragment but which allows straightforward translation.

Gall in's Two-Sorted Type Theory (Ty2):

t -- the type of truth values
e -- the type of entities
s -- the type of indices
<a,b> -- the type of functions from type a to type b

cn -- the nth constant of type a
vn a -- the nth variable of type a
(a P) - - apply a to P
Xd a -- the function which yields a when applied to an argument u
(a = P) --a is equal to P

These logical expressions are theoretically sufficient to provide translations from any language

in Montagovian universal grammar. Constants, variables, applications, and lambda abstractions
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yield a formalism rather similar to a functional programming language. However equality can only

be provided as an effective primitive for programming if it is restricted to entities, indices, and truth

values (Booleans). It is the introduction of equality for functions which makes this a logic. The

familiar logical connectives and quantifiers may be defined at some length in terms of the

expressions already given but it is rather a tour de force to do so. They will be notated as follows:

F --falsity
T - - truth

—i 4> --it is not the case that 0
[(() A \j/] - - both 0 and q/
[0 V y] -- either 0 or y or both
[—> qr] - - i f 0 then q/
[0 <-> qr] -- 0 if and only if q/
Vu 0 -- for all u, 0

0 -- there exists at least one t> such that 0

Alternatively all sentences (logical expressions of type 't') may be expressed using only constants,

variables, applications, implications, and universal quantifications.

1.3.2. Modal and Intensional Languages

Although Ty2 has types't', 'e', 's', and <a,b>, the SMG fragment will be formulated so that

't' and 's' always occur paired as <s,t> in types mapped from categories of English. From this

point of view it would be more appropriate to use a modal omega-order logic rather than Ty2. That

is, a logic with types 'o', 'e', and <a,b> where 'o' stands in for <s,t>. Montague used an

intensional omega-order logic (IL) with types 't', 'e', <a,b>, and <s,a>. The extensional types of

Ty2 contain all the intensional types of IL and the intensional types contain all the modal types. IL

seems awkward because it is neither broad enough to be maximally general, nor narrow enough to

be minimally sufficient.

IL is characterised by the relativisation of constants to indices which, lacking their own type,

must be manipulated by special operators. If i is a particular index variable (say Vq g) then every

constant c„ „ of IL really stands for (c i) and the expressions va, "a, D0, and 00 stand forfijd n,<s,a>

(a i), Xia, Vi0, and ^i0 respectively. These facilities fit SMG even less well than they fit PTQ.
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1.3.3. The First-Order Language

This is the most constrained logic which is still expressive enough to cover the SMG

fragment. It will be shown how to translate into it and how to do theorem proving with it. The

notation is designed to be compatible with the syntax of Prolog terms. In the logic itself terms are

either constants or variables. There are no functions.

Five-Sorted First-Order Predicate Logic:

e -- the sort of entities

s -- the sort of indices

o -- the sort of propositions
p -- the sort of properties
q -- the sort of quantities

rell{ a) --predicate rell of a
rel2( a, P) --predicate rel2 of <a,P>
rel3{ a, P, y ) -- predicate rel3 of <a,p,y>
rel4{ a, p, y, 8 ) -- predicate rel4 of <a,P,y,8>

0 --falsity
1 --truth

<)> it is not the case that $
(<t> & \|/) -- both 0 and y
(<t> v y) -- either (j) or y or both
(0 => y) - - if 0 then y
(0 <=> y) -- 0 if and only if y
a 11( D:a, 0 ) -- for all o of sort a, 0
exists( t>: a, 0 ) -- there exists at least one o of sort a such that 0

Here is a sketch of the semantics of the first-order language. Let S = {e, s, o, p, q}. A model

structure M is a sextuple <D D D D D F> with domain D = such that D„ * {}C S O p CJ dc o a a

for any a e S, D c P(D ), D c P(D x D ), D c P(D x D ), F(a) e D when a is a constant,O S P C o (J P o

and F(rein) c xn(D) when rein is an n-ary relation. Let an assignment over M be a function G such
that G(a) = F(a) when a is a constant and G(/o) e D when y is a variable. Let satisfaction be a

ternary relation '1=' such that for all models M and assignments G over M, it is not the case that

M,GI=0; if 0 and y are sentences then M,GI=(0=>y) iff M,GI=0 materially implies that M,GI=y; the

other connectives go similarly; if y is a variable, a e S, and 0 is a sentence then M,GI=all(y:a,0) iff

for all x e Da, M,G'l=0 where G' is the assignment such that G'(t>) = x and for all terms a * y,

G'(a) = G(a); the existential quantifier goes similarly; and if rein is an n-ary relation and ctj

through an are terms then M,GI=re/«(aj,...,an) iff <G((Xj),...,G(an)> e F(rein).
P(A) is the powerset of A.
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Furthermore ten symbols are singled out by definitions to denote entities, an index, and certain

special relations:

F(j), F(m), F(b), F(k) e De, F(!) e Ds,

F(=) = { <x,y> eDxDlx=y},

F(<) = { <x,y> e Ds x Ds I x < y }
where '<' is a left linear partial ordering on Ds,

F(true) = { <x,y> 6 Dq x Ds I y e x ),

F(ppty) = { <x,y,z> e Dp x Dg x Dg I <y,z> ex),
F(qtty) = { <x,y,z> e D x D x D I <y,z> e x }.q p s

Appropriate axioms will be provided for these non-logical (Montague Semantics theoretic) symbols

in due course.

A sentence <)> is true in a model M (M is a model of <{>) iff for all assignments G over M,

M,GI=(J). A sentence is valid, satisfiable, falsifiable, absurd iff it is true in all models, some models,

not all models, no models respectively. A set of sentences entails 4> iff every model of all its

members is also a model of <(>. It is contradictory iff there is no model of all its members.

This qualifies as a first-order language partly because it has a first-order syntax in which

relations are not varied, quantified, or related but another contributing factor is that in its semantics

there is no quantification over arbitrary subsets of the domain. In particular, it is not demanded that

Dq = P(DS) but merely that Dq be fixed by the model, be non-empty, and only contain subsets of
D It goes similarly for D and D . However models in which D , D , and D are big enough tos p q o p q

satisfy certain comprehension principles will be of special interest because such models are intended

interpretations of the language.

It may not be obvious that to interpret a fragment through a first-order language can still

qualify as Montague Grammar. Clearly, SMG as defined below preserves the semantic analyses of

UG or PTQ. Indeed faithfulness to Montague was an important discipline that made the present

work feasible. Suppose the first-order implementations given below are correct. If the sorts 'e', 's\

'o', 'p', and 'q' of the first-order language are interpreted respectively like the types 'e', 's', <s,t>,

<e,<s,t», and «e,<s,t»,<s,t» of the omega-order language then we can see that the same
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semantics for SMG is retained in its implementation. To argue rigorously all the way from

Montague's UG to the culminating TMS would involve some care over IL versus Ty2, characteristic

functions versus sets, and standard versus general models but I believe that the spirit of Montague

Grammar is being preserved.

1.4. On the Correctness of the Program

The Prolog program can be judged correct just in case for every sentence <]> in the SMG

fragment and y in the first-order language, if it translates <{> to y then there is a <{>' in Ty2 such that

<t>=>4>' and [0'^xy] is valid in Ty2, where => is the translation relation of the specification and x is

the translation function defined below. There are no free variables in y.

A Mapping from TMS into Ty2:

xe = e

xs = s

To = <s , t>

xp = <e ,<s , t»
xq = «e,<s , t»,<s , t»

xre/7( a ) = (irell xa)
irel2( a, p ) = (xrel2 xa xP)
irel3( a, p, y ) = (xrel3 xP xa xy)
xrel4( a, p, y, 5 ) = (irel4 xy xP xa x8)

xO s F

xl = T

X "0 = -1 X<f»
x(<p & y) = [x0 A xy]
x((f) v y) = [xtp V xy]
x(<t> => y) = [x«p —> xy]
x (<}> <=> y) = [ x<p <-> xy]

xall( t):a, (J) ) = VI; x^0 where u = Tn and I; = v

xexists( v>: a, <j) ) = x^<]) where x> = Tn and ^ = vn T

n, xa

= ŝ if u is a variable
xa = CAPITALISE a if a is a constant

zreln = CAPITALISE rein if rein is a relation other than =, true, ppty, qtty
x= s Xx Xy (x = y)
xtrue = Xp A. i (p i)
Tppty = Xx A.P X.i (P x i)
xqtty = X? XP Xi (P P i)

The notation stands for translation in the context where the first-order variable v is being
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translated to the Ty2 variable £. The function CAPITALISE could be defined by numerous cases

like: CAPITALISE run = RUN. The choice of argument order for relations is arbitrary.

It would be an enormous task to prove the correctness of any program so non-trivial as a

parser for Montague Grammar. Evidence of its correctness will be provided by displaying both the

TMS and equivalent Ty2 translations.
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2. An Extensional Fragment

Let's begin with a tiny extensional fragment which will illustrate the fundamentals without

cluttering them with the apparently unmotivated extras which are ultimately required. The regular

mode of presentation during this chapter and the next will be to alternately specify and then

program portions of the grammar.

2.1. The Syntactic Categories and their Semantic Types

This fragment comprises only two rules. A noun phrase (T) followed by a verb phrase (IV)

makes a sentence (S) and a determiner (DET) followed by a common noun (CN) makes a noun

phrase. Therefore five categorial symbols will be required. Formal definitions of Montagovian

fragments will always be kept together between the heading 'CATEGORY(S)' or 'LEXICON' or

'RULE(S)' and the ending TD'.

CATEGORIES

Cat = (S, CN, IV. T, DET}

S -- Sentence

CN -- Common Noun

IV -- Intransitive Verb (verb phrase)
T -- Term (noun phrase)
DET -- DETerminer

type(S) = t
type(CN) = type(IV) = <e,t>
type(T) = «e,t>,t>

type(DET) = «e , t>, «e, t> , t»
□

These are all atomic symbols. I have followed UG in the manner in which the semantic types

of the categories have been individually specified. A recursive type map as in PTQ is inappropriate

because the categories have no structure to recurse on.

2.1.1. Logical Abbreviations

For the extensional fragment it will not be necessary to use Montague's intensional logic or

Gallin's two-sorted type theory. Church's one-sorted type theory is expressive enough. To avoid
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labouring this point the sub-theory of Ty2 without's' will actually be used.

Cona = * c0, a' C1, a ' c2 . a • "• I
let x = v0>e y = v1>e

let P s v0,<e,t> Q s v1,<e,t>

Beware that the logical abbreviations in this chapter will have to be redefined for the SMG

fragment.

2.2. The Syntactic Rules and the Translation Rules

The syntactic rules recursively specify P^, the set of phrases of each category A. The rule Si'
is the base case, for i>l they have the form

Si . If a e and P e Pg and . . . then Fn(a, p, . . . ) e Pj-,,

where Ffi is some previously defined syntactic combination function.

The translation rules simultaneously specify =>, a translation relation such that for all a e

there are logical expressions a' of type type(A) such that a => a'. If the antecedent of Si holds

then

Ti . if a => a' and p => p' and ... thenF(a,p,...)=^(ya' P' ...).

2.2.1. The Lexicon

This provides information about B^, the set of basic phrases of each category A. The rule S1
is the syntactic rule of lexical insertion. The rules Tl provide translations which assign lexical

items appropriate functions in the semantics. Montague called them basic rules.

The (translations of) common nouns and intransitive verbs denote (the characteristic functions

of) sets of entities.* In particular, the word entity denotes the universal set of entities which

contains everything of sort 'e'. Proper nouns denote type-lifted functions in the usual manner of

Montague Grammar and determiners denote binary relations between sets of entities.

* The pedantic parenthesised ph rases will usually be omi l t ed in s t a t ement s such as this.
f See f0")a
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LEXIOQN

Bs = 0
Bq^j = (man, horse, entity)
Bjy = (runs, lives)
Bj = (John, Kate)

= {every, the, a, no)

SI. If A e Cat and a e B^ then a e P^.

Tla. man => M

horse ==> H

runs => R

lives => L

where M, H, R, L e Con<e t>

Tlh. entity => Xx T

Tld. John =* >.P (P j )
Kate => A.P (P k)

where j , k e ConJ e

T1 f . every => XP XQ Vx [ (P x) -> (Q x) ]
the =» XP XQ ]\ [Vy [ (P y) <-> (x=y)] A (Q x)]
a =» XP XQ ]x [(P x) A (Q x)]
no =>IP ^Qn)x [(P x) A (Q x)]

□

Corresponding syntactic and translation rules will always be kept side by side. The S-

numbers and T-numbers follow those used in PTQ (where they exist) in order to assist the

comparison of my fragments with PTQ. This accounts for their apparent disorder because I have

rearranged the presentation according to the complexity of the semantic types involved at each

stage.

I will often give the Prolog clauses for a rule widely separated from its formal statement so as

not to delay commentary best placed between them. The S-numbers and T-numbers serve to

strengthen their connection.

2.2.2. Programming the Lexicon

Every lexical entry has the form

word : = syntax : semantics.
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The semantic field often refers to a constant of some sort or a relation of some arity (l<n<4) with

sorted parameters and these are declared thus:

const ant ( constant: sort ).

relation( rein, v,:sort,, .... 1) :sort , relnfv, o ) ).1 1 n n 1 n' '

For this extensional fragment the only sort is 'e' and all the relations are unary except for equality.

The syntactic field contains the category of the word. The Prolog atoms whose names are the

lower case versions of the members of Cat will be used. Care should be taken to distinguish

between 't' the Prolog of T and 't' the type of S. The programming language and the specification

language unfortunately have to share the same alphabet but no ambiguity is thereby introduced.

The semantic field contains a semantic template. Let a well-formed formula (WFF) of first-

order logic be either a sentence or a term (of any sort). Then a semantic template is a pattern of

WFFs. Instead of using higher-order beta-reduction with lambda-expressions, the essential idea of

this program is to use first-order template unification which consists of matching patterns of WFFs.

It must first be clearly seen that a semantic template in the program does not share the form

of the lambda-expression in the specification. The correct analogy is with the type of the

expression. Indeed the template shows the type directly though it has to carry more information

than that The following table displays the correspondence where a and (3 are terms of sort 'e' and

<t>, V)/, and % are sentences of first-order logic. Which terms and sentences they are depends upon the

specific semantics to be programmed.

Category Type Template

S t <j>
CN, IV <e,t> [a I 0 ]
T «e, t>, t> [ [al0] Ivj/]
DET «e, t>,«e, t>, t» [[al0]I[IP IV] l%]]

The template comes from the type by replacing diamond brackets by square brackets, commas

by vertical bars, sort symbols by like sorted term schemas, and 't's by sentence schemas. These

conventions remain throughout. They should be understood as dogma before undertaking the study

of why or whether they work. The reasons lie very deep. Under this regime it is the semantic

component of the combination rules which specifies how the templates are to be unified.
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Prolog itself is not a typed language and therefore one opportunity for declarative explicitness

has been lost. Although attractive variable names have been chosen, no convention is enforced by

Prolog and so no information is actually conveyed by those choices. In practice, it does not matter

that there is no type checking because type violations are avoided like other bugs by careful

programming. This includes following an implicit type regime which in the case of semantic

templates is naturally the Montagovian type. For example, variables A and X in the program may

correspond respectively to types 't' and 'e' in the specification. However there is no general

convention on variable names. Ideally a language supporting such a convention would be

preferable.

Throughout this thesis lines beginning with 'I ' hold horn clauses (or comments) in the

first-order metalanguage of the implementation which can be interpreted as Prolog code. Although

the entire program will in due course be so given, the clauses may be disordered and occasionally

spurious. Nevertheless Prolog programmers should have no difficulty in constructing a runnable

system. In (Jowsey 1986) I quoted a program exactly but it led to presentational problems which

are avoided here.

7c SI, Tla
man

horse

runs

lives

= cn

= cn

= i v
= i v

[Xlman(X) ] .

[XIhor se(X)].
[XI run(X)].
[XI 1 ive(X)] .

relation! man, X:e, man(X) ).
relation( horse, X:e, horse(X) ).
relation! run, X:e, run(X) ).
relation! live, X:e, live(X) ).

Let's explore the difference between the programmed translation and a possible Ty2

translation. The template [XlmanfX)] is quite unlike the expression Lx(M x). For example:

Lx(M x) = M by eta-reduction or extensionality but [Xlman(X)] * man because a pair and a

constant do not unify;

x is bound in A.x(M x) but X is free in [Xlman(X)];

(Xx(M x) j) = (M j) by beta-reduction but [Xlman(X)](j) is ill-formed;
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A.j(M j) is ill-formed because j is a constant but [jlman(j)] is an instance of [Xlman(X)].

The fundamental difference is that whereas Xva denotes a function in Ty2, [fila] denotes an ordered

pair in Prolog.

I % SI, Tlh
I en t i ty : = cn : [XI 1 ] .

The expression XxT denotes the constant function of truth. The template [XII] which

programs it has a different role, as explained above.

% SI, Tld
John := t : [[j I A] I A] .

kate := t : [[klA] IA] .

cons tant( j : e ) .

cons t an t( k : e ).

Many illustrative examples will be included throughout this text They will all be genuine

examples of interaction with the programs which I am presenting. The symbol '<' is the

"awaiting input" prompt. The output will comprise the analysis tree and, following the symbol '>',

the logical translation. An equivalent translation in Ty2 will also be given for comparison. The

symbol 'fO' denotes concatenation.

EXAMPLE -1

<John runs .

fOI john
I runs

>run(j)

(R j)

Examples such as this may employ rules which have yet to be defined because they often

exist to illuminate preceding lexical entries, from which they should not be separated by rule

definitions.

SI, Tlf
every
the

a / an
no

= de t

= de t
= det
= det

[[XIA] I[[XIB]Ial1(X:e,A=>B)]].
[[YIA]I[[XIB]lexists(X:e,al1(Y:e,A<=>X=Y)&B)]]
[[XIA] I[[XIB]I ex ists(X:e,A&B)]].
[[XIA] I[[XIB]l~exists(X:e,A&B)]].

relation( =, X:e, Y:e, X=Y ).
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The technique of this program is generally to shift function applications in the lambda-body of

the Ty2 translation over to argument unification in the semantic template. For example

AP ... (P x) ... corresponds to [[XIA] ... A ...] with [XIA] doing P and A doing (P x).

The lexicon is total over the whole vocabulary of the fragment. There must be no hidden

words. Consequently both a and an have lexical entries but the '/' abbreviation allows them to be

merged into a single clause.

Equality is declared to be a binary relation between entities. At present, it is only being used

in definite descriptions as follows:

EXAMPLE -2

<The horse lives.

fOI fOI the

I I horse

I 1ives

>exists(Xl:e,all(X2:e,horse(X2)<=>Xl=X2)&live(Xl))

fx [Vy [(Hy)« (x=y)] A (L x)]

2.2,3. The Combination Rules

The syntactic combination functions Fn usually follow those used in PTQ but Fq is always
used for simple binary concatenation in my fragments. Indeed that is the only mode of combination

needed here. Note that the a/an business is handled as part of concatenation. It is outside of phrase

structure and syntactic categories are irrelevant to it.

RULES of functional application

Fq( a, P ) = a P unless a = a and P begins with a vowel sound;
Fq( a, P ) = an P if P begins with a vowel sound.

S2. If 8 e and a e Pq^ then Fq(5, a) e P^,

T2. if 5 => 6 * and a =* a' then Fq(8, a) => (5' a').

S4. If a e Pj and p e Pjy then Fq(cx, P) e P^,

T4. if a=>a' and P => P' then F^fa, P) => (a' P').
□
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The rule S4 only involves simple concatenation because each IV has already been entered in

the lexicon in its third person singular present morphology.

Here is a sample derivation of a sentence in the extensional fragment showing how each

syntactic rule and translation rule is used.

every e Bj-jgj man € Bq^
Sl.Tlf -Sl.Tla

every e pdet man e PCN
every XP XQ Vx [(P x) —» (Q x)] man =>M runs e Bjy

S2.T2 SI ,T1 a

every man e P-p runs e Pjy
every man => (XP XQ Vx [ (P x) —> (Q x) ] M) runs => R

- S4.T4

every man runs e P<-
every man runs => ((XP XQ Vx [ (P x) —> (Q x) ] M) R)

= (XQ Vx [(M x) -» (Q x)] R)
= Vx [ (M x) —> (R x) ]

The final translation is produced in an unreduced form which has to be simplified by repeated

lambda-reductions introducing a considerable computational overhead in more complicated cases.

Although it is theoretically possible to interleave lambda-reduction with parsing nevertheless the

same steps must be done and they involve creating a variable scope for each lambda-expression and

quantification. The program is going to avoid this by producing a first-order translation immediately

using semantic templates, which only have one universal scope.

2.2.4. Programming the Combination Rules

The program works by eliminating higher-order constructs entirely. For example, the

translation rule runs => R must be eliminated because R (an unapplied predicate constant) is

second-order. This has been achieved by the redistribution of the set-theoretic information in it.

Taking functions to be sets of ordered pairs, R is {<j,(R j)>, <k,(R k)>, ...). In this rather loose

notation SI and Tla imply that

runs e piv
runs => {<j,(R j)>, <k,(R k)>, ...).

The information about whether John runs, Kate runs, etc. which is in the meaning of runs is

displayed horizontally. Now the programmed rule is



26

I runs := iv : [Xlrun(X)].

but the free variable is implicitly universally quantified so this amounts to

I runs := iv : [j I run(j)].
I runs := iv : [klrun(k)].

in which the same information is displayed vertically.

Almost all the information in the fragment about particular semantic functions is contained in

the lexicon in vertical displays. The combination rules then have the task of assembling this

information so as to emulate function application. They use first-order unification to do it.

Every rule has the form

fn » syntax^ : semantics ^ + ... + syntax^: semantics^ => syntaxq : semanticsq .

The two rules below illustrate the method by which function application is programmed. In both

cases it happens that the applied function is on the left and its argument is on the right of the

concatenation.

I % S2, T2
I fO » det:[PIPP] + cn:P => t:PP.
I

I % S4, T4
I fO » t:[PI A] + iv:P => s:A.

The following example trace of the translation mechanism illustrates the unification process

and how it implements function application.

[1] every :=det : [[XIA]I[[XIB]I a 11(X:e,A=>B)]].
[2] man := cn : [Ylman(Y)].
[3] every man := t : [[XIB]Ial1(X: e,man(X)=>B)].
[4] runs := iv : [Zlrun(Z)].
[5] every man runs := s : al1(X: e,man(X)=>run(X)).

Lines [1], [2], and [4] are simply reminders of previously seen lexical entries with distinct variables

renamed apart. Line [3] results from applying rule S2, T2 to [1] and [2], Line [5] results from

applying rule S4, T4 to [3] and [4], In [3] and [5] the operator is being misused in an obvious

way because the left-hand side is a phrase here whereas only words are proper in that position. This

trace contains no more information than is implicit in the usual analysis tree.
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EXAMPLE -3

<Every man runs.

fOI fOI every
I I man

I runs

>al 1 (XI : e ,man(XI )=>run(Xl))

Vx [(M x) -» (R x)]

It has been shown by (Pereira and Shieber 1987) that it is possible to delay template

unification until after the parse but this needlessly complicates the program. Interestingly, that is the

reverse of the situation with lambda-reduction.

It cannot be determined from the orthography whether to use a or an. Furthermore the

decision is determined by lexical adjacency rather than by phrase structure. Contrast a unicorn

with an uninvited unicorn. Therefore the program will do the test upon lexical insertion using the

information declared in the 'an' procedure*. All words which could be preceded by a or an and

which require the latter will be declared.

I an( uninvited ).
I an( entity ).

EXAMPLE -4

<An entity lives.

fOI fOI a

I I entity
I 1 i ves

>exis t s(XI:e,l&l ive(Xl))

=ex i s t s (XI :e, 1 ive(XI))

}x [T A (L x)]

Development of the tiny extensional fragment now ceases because it has fulfilled its role in

illustrating the fundamental ideas. In the next chapter the SMG fragment will take those ideas a lot

further.

* Prolog predicates will always be called "procedures" just to distinguish them from other kinds of predicate. No
bias towards procedural interpretation is implied.
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3. Simplified Montague Grammar (SMG)

I am concerned to show how to translate sentences in a fragment of English which is derived

from Montague's PTQ and UG into first-order logic. The coverage of this fragment will be just as

extensive as that of Montague's fragments. It will contain phrases of category sentence, sentential

adverb, auxiliary verb, noun phrase, determiner, adjective, common noun, verb phrase, noun phrase

complement verb, sentence complement verb, verb phrase complement verb, adverb phrase, and

preposition. However its semantics will not be stated using EL but, following (Groenendijk and

Stokhof 1982), using Ty2.

The SMG fragment was first presented in (Jowsey 1985) where it had an IL semantics. The

first parser and translator for it was in (Jowsey 1986) where the program was explained by means of

IL. This experience has convinced me that Ty2 provides a better vehicle for explanation than IL

does. Therefore Ty2 replaces IL throughout this thesis. This allows a uniform and exceptionless

correspondence between type theory and my system for translating into first-order logic which was

previously lacking.

3.1. The Type Map

It is well known that Montague's fragments of English included treatments of modal and

intensional matters and so does SMG. However SMG follows UG and almost all later Montague

Grammarians in excluding the individual concepts of PTQ, which were the only objects that had

non-modal intensionality. Therefore the indexical aspects of the semantics of SMG are most

economically encompassed by using a modal logic but for the sake of easy explanation and

implementation I am not allowing myself anything other than sorted extensional logic in this thesis.

So the standard alternative to modal logic must be used and that is to include explicit indices having

the sort's'.

Montague's original formulations of type theory have been modified by several authors.

Bennett makes certain moves to simplify the original mapping from English categories to semantic

types. The most well-known system is that given by Dowty, Wall, and Peters who adopt Bennett's
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type map. Therefore we shall confine our comments to that system and ours.

The correct placement of indices in the type assigned to each category of English is an

entirely mechanical matter. In the scheme which I have adopted sentences denote sets of indices

and these systematically replace the truth values of the extensional fragment. The semantic

templates in the program follow these types as described previously.

CATEGORIES

Cat is the smallest set such that

(1) S, IV, CN e Cat
(2) if A, B e Cat then A/B, A//B e Cat.

Ca t
type e Typ such that

type(S) = <s,t>

type(IV) = type(CN) = <e,<s,t»

type(A/B) = type(A//B) = <type(B),type(A)> whenever A, B e Cat.
□

In contrast, the type map of (Bennett 1974) and (Dowty, Wall, and Peters 1981) went as

follows:

type(S) = t
type(IV) = type(CN) = <e,t>
type(A/B) = type(A//B) = «s , type(B)>, type(A)> whenever A, B e Cat.

The benefit of treating the types of primitive categories intensionally is that rules of functional

application always have the same simple form even when their arguments must be intensional

objects.

The coverage of SMG cannot be guessed from the set 'Cat' which contains symbols for an

infinity of categories whereas only thirteen of them are categories of phrases. This enables a

recursive type map to be given instead of thirteen arbitrary cases but there is no other reason for it.

The use of single-slash and double-slash is like that of IV and CN distinguishing verbal and non¬

verbal categories of the same type. Abbreviatory symbols are assigned to the ten primary slash

categories as follows.

DET = (S/IV)/CN
ACN = CN/CN

AS = S/S
AUX = S//S
T = S/IV

TV = IV/(S/IV)
SV = IV/S
IW = IV//IV
IAV = IV/IV
TAV = (IV/IV)/(S/IV)
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Together with the three primitive categories S, IV, and CN, these comprise the thirteen primary

categories. The symbols have been chosen from Montague's papers or for coherence with those in

his papers.

The primary categories are those which are categories of phrases in the fragment. Montague

actually had a primitive category (let's call it E with type(E) = <s,e>) which failed to be primary.

IV and CN were defined as S/E and S//E respectively. The idea of taking IV and CN as primitives

comes from Bennett and goes with the exclusion of individual concepts. Montague was also content

to leave a few primary slash categories unabbreviated. In my program, all slash expressions will be

eschewed in favour of their abbreviations considered there to be atomic symbols but the

corresponding semantic templates will still be justified according to the above type map.

My type map shares with Montague's the property of assigning intensionality generously so as

to cater for the most general case. For example, the objects of transitive verbs and prepositions are

always taken intensionally although most objects are essentially extensional, and intensional

determiners are theoretically possible although none seem to occur in practice. This provides a

uniformity of approach at the expense of an unexploited increase in typical complexity.

3.1.1. Logical Abbreviations

Cona = < c0, a' C1, a' c2,a' •" >
let 1 s v0,s J s vl,s k H v2,s

let x^v1>£ y ■ v3fe

let P — v0i<e,<s,t»^_ vl,<e,<s,t»
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3.2. Predicates, Terms, and Determiners

In this section I again cover the same ground as the extensional fragment but this time in a

way that can be extended to the full SMG fragment. The opportunity arises to introduce in an

undemanding context terminology and notation which will be required later. Throughout this

chapter, I will regularly alternate within sections between specification and implementation, slowly

building up the complexity of the grammar.

CATEGORIES

S -- Sentence

CN - - Corrmon Noun

IV -- Intransitive Verb (verb phrase)
T = S/IV -- Term (noun phrase)
DET = T/CN -- DETerminer

type(S) = <s,t>

type(CN) = type(IV) = <e,<s,t»

type(T) = <<e ,<s , t»,<s , t»

type(DET) = «e ,<s , t»,«e , <s , t»,<s , t>»
□

Common nouns and intransitive verbs will be collectively referred to as predicates. This is

just a generalisation over syntactic categories and not semantic terminology.

In SMG, sentences denote functions from indices to truth values which characterise sets of

indices and are referred to as propositions. Predicates denote functions from entities to propositions

which characterise properties of entities but will be referred to simply as properties since without

qualification entities will be understood. Terms denote functions from properties to propositions

which characterise properties of properties (of entities) and will be referred to as quantities (of

entities). This terminology is derived from the usual practice of identifying sets of sets of entities

with generalised quantifiers.* Determiners denote functions from properties to quantities.

* If a theoryofmass t e rms uses the word "quantity" then itsmeaning there is not necessarily the same.
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LEXICCN

Ba = {} if A 6 Ca t - (CN, IV, T, DET, AS, AUX, SV, ACN, IAV, IW, TV, TAV)
Bq^ = {man, woman, child, horse, fish, park, pen, entity, unicorn, mermaid)
Bjv = {run, walk, talk, think, live)
Bj = {John, Mary, Bill, Kate)*
®DET = {every, the, a, no)

SI. If A 6 Cat and a e B^ then a e P^,

Tla. if a e Bq^-{entity) U Bjy U B^y U B^Q^-fred) U BjAy U Bjyy U

{conceive, worship) U (about) then

a => c ,,n for some natural number n.
n,type(A)

Tlh. entity => Xx Xi T

Tld. John => XP (P J)
Mary => XP (P M)
Bill =* XP (P B)
Kate => XP (P K)

where J, M, B, K £ Con
e

T1 f . every => X? XQ Xi Vx [ (P x i)-»(Qx i) ]
the XP XQ Xi ^x [Vy [ (P y i) *-* (x=y) ] A (Q x i))
a =»IPIQIi )x [(Px i)A(Qx i)]
no => XP XQ Xi —!•)x [(P x i) A (Q x i)]

□

The most important consequence of the above definition of is that = {} and so there

are no primitive sentences in the fragment. The vocabulary of SMG is based upon that of PTQ.

Although horse is not in the PTQ fragment it has been reinstated from the text. Another source is

UG from which entity and no have been taken. The determiners are exactly those of UG. The

only other change from PTQ is that price, temperature, rise, change, and ninety have been

replaced by child, mermaid, think, live, and Kate respectively. The former vocabulary furnished

examples illustrating individual concepts which are no longer treated. I am responsible for the latter

vocabulary.

The definitions of B^ and Tla are very explicit and exhibit foresight about what categories
and basic phrases will occur later. The difficulty could have been hidden by saying "unless

mentioned elsewhere". Constants introduced by virtue of Tla can be abbreviated in upper case. For

* In fact By also includes the subscripted pronouns hen used for quantification.
No more lies about SMG.
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example, man => MAN where MAN e Con ,L»

Because I have already implemented the extensional fragment more simply, it is clear that

here I use heavier machinery than needed. However it is necessary to understand trivial applications

of the new methods before their substantial applications can be understood.

In the program, common nouns will now feature gender for agreement purposes. Their

semantic fields will each take an additional indexical parameter. Henceforth templates of the form

fall...[otnl<t>]...] will be abbreviated to [al,...,anl<t>] as Prolog list notation permits.

1 % SI, Tla
1 man = cn(masc) [X, Ilman(X,I)].
1 woman = cn(f em) [X, IIwoman(X, I)] .

1 ch i 1 d = cn(Gend) [X, I 1 chiId(X, I) ] .

1 horse = cn(neut) [X, I 1 horse(X, I) ] .

1 fish = cn(neut) [X, I 1 fish(X,I)] .

1 park = cn(neut) [X, I lpark(X, I)] .

1 pen = cn(neut) [X.IIpen(X.I)] .

1 unicorn = cn(neut) [X, 11unicorn(X,I)]
1 me rma i d = cn(f em) [X,I 1 me rma i d (X, I) ]

relation( man, X: e , I: s , man(X.I) ).
relation( woman, X:e, Its, woman(X, I) ) .

r e1 a tion( chiId, X:e, Its, child(X.I) ).
relation! horse. X: e, Its, horse(X,I) ).
relation( fish, X: e, Its, fish(X.I) ).
r e1 a tion( park, X: e, Its, park(X.I) ).
r e1 a tion( pen, X: e, Its, pen(X.I) ).
r e1 a tion( unicorn, X: e, Its, unicorn(X,I) )
r e1 a tion( me rma id, X: e, Its, me rma id(X,I) )

Only the unavoidable aspects of these changes are present in the new lexical entry for the

word entity because truth as a logical constant must not be made index dependent.

I % SI, Tlh
I entity := cn(neut) : [X,111].

Various abbreviations are employed with the procedure. The V functor abbreviation as

it occurs in a lexical entry such as

I v(run,runs,ran,Tense) := iv(Tense) [X,I Irun(X, I)].

is designed to get the effect of having the lexical entries

I run := iv(base) : [X, I I run(X,I)].
I runs := iv(pres) : [X, I I run(X, I)].
I ran := iv(past) : [X, I Irun(X, I)].
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so that the lexicon can be maintained as a total function over the vocabulary without redundancy

among the assignments to related verbs. The V functor, defined* below, allows the horizontal

abbreviation of vertical redundancy in the verbal paradigm.

v(Base,Present,Past,base) = Base
v(Base,Present,Past,pres) = Present
v(Base,Present,Past,past) = Past

It is provided that Tense equals either 'base', 'pres', or 'past'.

1 % SI, Tla
1 v(run, runs , r an, Tense) = iv(Tense) [X, I 1 run(X, I) ] .

1 v(walk, wa Iks, wa Iked, Tense) = iv(Tense) [X,I 1 wa 1 k (X, I) ]
1 v( talk, talks, talked, Tense) = iv(Tense) [X,I 1t alk(X, I) ]
1 v(think, thinks , thought, Tense) = iv(Tense) [X,I 1 think(X,I)
1 v(1ive, 1ives , 1 ived. Tense) = iv(Tense) [X, I 11ive(X, I) ]

1 re1 a tion( run, X: e, Its. run(X, I) )•
1 relation( walk. X: e, Its. wa 1k(X,I) ).
1 r e1 a tion( talk, X: e, Its, talk(X.I) ).
1 r e1 a tion( think, X: e, Its. think(X.I) ).
1 r e1 a tion( live, X:e, I: s , live(X.I) ).

Montague used t* as an abbreviation for XP (P i). Although SMG will not require such

abbreviations its implementation in Prolog will if massive redundancy is to be avoided later. The

following definitions illustrate how they will be implemented. A definition such as X *= Sem

stands for X* = Sem. A relation is defined rather than a function because Prolog only allows

executable code to be attached to relations.

Terms will now feature both gender and case.

% SI,
john
mary
bi 11

kate

Tld

t(masc.Case)
t ( fem, Case)
t(masc,Case)
t(fem, Case)

J
m*

b*

k*

X *= [[XI F]IF] :-

cons t an t( X:e ).

con st an t( j:e ).
cons tant( m: e ).
cons t an t( b:e ).
cons t an t( k : e ).

The '/' operator abbreviation allows two words to share the same lexical assignment without

* The original idea. However the base information must also be available to supply the root of the verb, whatever
its tense.
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writing it twice. It is expanded when V terms are expanded. The notation 'a(n)', which is a

popular alternative to 'a/an', could be implemented easily but with less generality.

% SI, Tlf
every
the

a / an
no

= det
= de t

= de t

= de t

[ [X, I I A] , [X, I IB], I I al 1 (X: e ,A=>B) ] .

[ [Y, I I A] , [X, I IB] , I I exi s t s (X: e , al 1 (Y: e , A<=>X=Y)&B);
[[X,I I A] ,[X,I IB],I I exis t s(X: e,A&B)].
[[X, I I A] ,[X, I IB],Il~exists(X:e,A&B)].

relatione =, T:S, H:S, T=H ).

RULES of functional application

Fq( a, P ) = a p
FQ( a, P ) = an P

unless a = a and P begins with a vowel sound;
if P begins with a vowel sound.

S2. If 6 e Ppjg'p and a e Pq^ then Fq(5, a) € P^,

T2. if 8 => 5' and a => a' then Fq(8, a) => (5' a').

F^( a, P ) = a pi where pi is the result of replacing
the first verb (i.e. member of Bjy, B^y, Bgy, or Bjyy)
in P by its third person singular present.

S4. I f a g prp and P g pjy then F^(a, P) g pg,

T4. if a => a' and P => P * then F^(a, P) => (a' P').

let ! g Con
s

□

The implemented rules are very like those given previously but they now take proper account

of the features I have introduced.

% S2, T2
fO » det:[PIPP] + cn(Gend):P => t(Gend.Case):PP.

an( a 11eged ).
an( ent i ty ) .

% S4, T4
f4 » t(Gend,subj):[PIF] + iv(pres):P => s:F.

cons t an t( ! :s ) .

When the final sentential semantic template F which is the goal of the parse is produced it

will be unified with [!IA] where ! denotes the current index (here and now) and A is the translation

of the analysed sentence in first-order logic.
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EXAMPLE 1

<John runs.

f 4 I john
I run

>run(j,!)

(RUN J ! )

EXAMPLE 2

<No unicorn lives.

f 41 fOI no

I I unicorn

I live

>~ exis t s(XI:e,unicorn(XI,!)&1 ive(Xl,!))

—x [ (UNICORN x !) A (LIVE x !)]

3.3. Propositional Modifiers

I will now extend the fragment with two further categories which have the same semantic type

in that the translations of phrases in those categories both denote functions from propositions to

propositions.

CATEGORIES

AS = S/S -- Ad-Sentence (sentential adverb)
AUX = S//S -- AUXiliary verb

type(AS) = type(AUX) = «s,t>,<s,t»
□

It is possible to incorporate these new categories into SMG without disturbing the previous

definitions because all the semantics of the extensional fragment was rewritten to include explicit

indices which now give the leverage required to do the work which in Montague's intensional logic

was done by modal and tense operators.
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LEXICON

Bas = {necessarily, possibly)
®AUX = ^ t'oes' doesn't • did ■ didn't, will, won't)

Tic. necessarily => kp ki Vj (p j)
possibly => Xp ki (p j)
does =»lp p
doesn't => kp Xi -i(p i)
did => Xp Xi -jj [ (j < i) A (p j)]
didn't => kp Xi -,)j [ (j < i ) A (p j)]
will => kp Xi [ ( i < j ) A (p j)]
won't => kp Xi ->)j [ (i < j ) A (p j)]

where p = v0<s (>

and < e Con<s><s>t» (« < P) = ((< «) P)
—1( i < i) -- irreflexive

[(i<j) A (j<k)] —> (i<k) -- transitive

[(i<k) A (j<k)] -> [(i<j) V (i=j) V (j<i)] -- left linear
□

The above vocabulary is rather innovative. It comes from PTQ by adding possibly and does,

and by replacing has and hasn't by did and didn't respectively. Montague claimed to translate the

present perfect but the formula he gave is better as a translation of the simple past. I maintain that

denotationally John does run equals John runs and John did run equals John ran. I have

nothing to say about John has run except that it does not equal John ran. Here SMG is further

from PTQ than anywhere else. It is morphologically simpler as well as allowing the semantics to

give a better rendering.

This extensional analysis directly states the indexical manipulations which would be buried in

the interpretation of intensional logic. Translations of sentences containing tensed verbs employ a

relation of temporal anteriority between indices which can be formalised in a number of ways.

Montague had indices as world-time pairs with a total linear ordering on the times. The simplest

approach is to leave indices unanalysed and impose temporal anteriority directly on them as a partial

ordering. The relation '<' denotes temporal anteriority. Three meaning postulates in SMG define it

to be a left linear partial ordering on the indices. It could also have been right linear to follow PTQ

more closely but I want models in which past and future are unalike.
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1 % SI, Tic
1 necessarily = as [[II A] ,Jlall(I:s, A) ] .

1 possibly = as [[IIA],Jlexists(I:s,A)] .

1 does = aux [FIF].
1 doesnt = aux [[IIAMTA].
1 did = aux [[IIA],Jlexists(I:s,I<J&A) ].
1 didnt = aux [[I IA] , jrexists(I:s,I<J&A)]
1 wi 11 = aux [[IIA] ,Jlexists(I:s,J<I&A) ].
1 won t = aux [[IIA] ,JI~exists(I:svJ<I&A) ]

relation( <, I:s, J:s, I<J ).

It is a benefit of treating English sentences as denoting propositions that rules of functional

application such as S9, T9 always have the same simple form even when their arguments must be

intensional objects.

RULE of functional application

S9. If a e and 0 e Pg then Fq(oi, 0) e P<,,

T9 . if a => a' and 0 => 0' then Fq(cx, 0)=>(a' 0').

RULE of tense and sign

Fj( a, (3, y ) = a p y

Fjl ot, P ) = a pi where pi is the result of replacing the first verb
in P by its third person singular past.

S17. If a e Pj and y e P^ux anc* P e ^IV 'hen Fj(a, y, P), F2(ot, P) e Pg,

T17. if a=>a' and y => y' and P => p' then Fj (a, y, P) => (*y" (a' P')),
F2(a, P) => Xi [(j<i) A (a' P' j)].

% S9, T9
fO » as:[FIG] + s:F => s:G.

% S17, T17
fl » t(Gend,subj):[PIF] + aux:[FIG] + iv(base):P => s:G.

% S17, T17
f2 » t(Gend,subj):[P,I I A] + iv(past):P => s:[J I exists(I:s,I<J&A) ].
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EXAMPLE 3

<Necessarily Mary walks.

f0 I neces sarily
I f4 I mary
I I wa 1 k

>al1(II:s,walk(m, II))

Vj (WALK M j )

EXAMPLE 4

<Mary didn't walk.

f1 I mary
I didnt

I wa lk

>"exists(Il:s,Il<!&walk (m, II))

Hj [(j<!) A (WALKM j)]

EXAMPLE 5

<Mary walked.

f2 I mary
I wa lk

>exists(Il:s,Il<!&wa 1k(m, II))

ii [ (j<! ) A (WALKM j)]

3.4. Propositional Attitude Verbs

The distinguishing characteristic of the propositional modifiers was that they all involved the

indexical manipulation of sentences but that there was no manipulation of propositional terms in the

program. Now we want propositions to be arguments of verbs such as believe. In the Montagovian

system this is easy to do since propositions are available as functions in Ty2. However in my first-

order implementation propositions are represented as index-sentence pairs, which are not terms in

the logic of translation but templates.

CATEGORY

SV = IV/S -- Sentence complement Verb

type(SV) = «s , t>, <e , <s , t»>
□
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Sentence complement verbs are the prepositional attitude verbs and denote functions from

propositions to properties.

LEX ICOM

Bgy = {believe, assert, deny, know, prove)

This is the vocabulary of UG. PTQ only has believe and assert.

% SI, Tla
v(believe, believes, believed, Tense)
v(assert, asserts, asserted, Tense)
v(deny, denies, denied, Tense)
v(know, knows, knew, Tense)
v(prove, proves, proved, Tense)

= sv(Tense)
= sv(Tense)
= sv(Tense)
= sv(Tense)
= sv(Tense)

R *= [[J IA],X,Ilexists(U:o,Ph i&Ps i ) ]
relation( R, X:e, U:o, I:s, Phi ),
Psi = a 11(J:s,true(U,J)<=>A).

relat

rel at

relat

relat

on( believe, X:e, U:o, I:s, be 1ieve(X,U, I) ).
on( assert, X:e, U:o, I:s, assert(X,U,I) ).
on( deny, X:e, U:o, I:s, deny(X,U,I) ).
on( know, X:e, U:o, I:s, know(X,U,I) ).

X:e, U:o, I:s. prove(X,U,I) ).

be 1ieve*

as ser t*

deny*
know*

prove*

re 1 ation( prove,

relation( true, U:o, I:s, true(U,I) ).

The solution which I have adopted is to introduce a new first-order sort 'o' of propositions

and to relate objects of this sort to indices via a relation 'true' such that true(U,I) holds iff the

proposition U is true at the index I. Other authors such as (Thomason 1980) have also advocated

taking propositions as a sort rather than as a functional type.

The Montagovian prepositional abstracts Xirp are then eliminated by saying that there is a

proposition which is true at just those indices where <]> holds. For example

John believes that 6
=> (BELIEVE J),

(BELIEVE Xi<p J ! )
= )p [(BELIEVE p J !) A (p=X.i<J>))
= jp [(BELIEVE p J !) A Vi [ (p i )<-><>] ]
= exists(U:o,believe(j,U,! )&al l(I:s,true(U,I )<=><(>)) .

The hard work of setting up this analysis has been done in the lexicon. The actual rule

required is simply one of functional application.
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RULE of functional application

F^( a, (5 ) = a that p

S7 . If 5 6 Pgy and (p e Pg then Fg(8, (J)) e Pjy.

T7 . if 8 => 8' and 0 => 0' then F^(5, 0) => (8' 0').
□

I that := part(that) : [].
I

I % S7, T7
I f6 » sv(Tense):[FlP] + part(that):[] + s:F => iv(Tense):P.

Note that the requirement that the lexicon be total has been fulfilled by including an entry for

the particle that. Words which are syncategorematic in SMG must be categorised in the

implementation but get a null semantics.

EXAMPLE 6

<John believes that Kate thinks.

f4 I john
I f6 I believe

I I f4I kate

I I 1 think

>exis ts(Ul:o,believe(j,U1,!)&al1(12:s,true(Ul,12)<=>think(k,12)))

(BELIEVE (THINK K) J !)

This holds iff there is a proposition U1 such that John believes U1 and U1 is that Kate thinks.

This example illustrates how intensionality is expressed in TMS. It can be seen that the TMS

and the Ty2 are equivalent because (THINK K) equals iU(THINK K i) which has the form XicJ>

studied above. Suppose that everything which thinks talks and vice versa:

al1(X:e,think(X,!)<=>talk(X, !))

Then it does not follow from the example that John believes that Kate talks. The bad inference is

blocked in TMS, Ty2, and in Montague's original IL by modal closure. Only the method of closure

varies between logics. In TMS it is a universal quantifier, in Ty2 it is lambda, and in IL it was the

cap operator.

It is reassuring to follow the trace of this example and see how the translation mechanism

handles opaque contexts such as the sentential complements of believe.
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[1] kate := t(fem,Case) : [[kIF]IF].
[2] thinks := iv(pres) : [X, I Ithink(X, I) ].
[3] kate thinks := s : [I It hink(k,I) ].
[4] believes := sv(pres) : [[J I A],Y,KI

exis t s(U:o,be 1ieve(Y,U,K)&all(J:s,true(U,J)<=>A))].
[5] that := part(that) : [].
[6] believes that kate thinks := iv(pres) : [Y,KI

exis t s(U: o,be 1ieve(Y,U,K)&all(J:s,true(U,J)<=> think(k,J)))].
[7] john := t(masc.Case) : [ [ j IG] IG] .

[8] john believes that kate thinks := s : [Kl
exis t s(U: o,be 1ieve(j,U,K)&all(J:s,true(U,J)<=> think(k,J)))].

In the program, sentences are translated to templates of the form [Il<j)] as in lines [3] and [8].

The lexical entry for believes is computed to be [4] and goes with [3] into rule S7, T7 to result in

[6]. The index variable I of [3] is unified with J in [4] and passes inside [6] and [8]. A different

one K is introduced by [4] and becomes the index variable of [6] and [8]. K will be bound to '!'

upon output.

Simple applications of S7, T7 such as this

therefore only de dicto readings can be produced

for de re readings.

always effect a complete change of context and

so far. A different kind of rule will be required

3.5. Predicate Modifiers

The next step up in the type hierarchy involves the introduction of three categories of ad-word

which are semantically functions from properties to properties. To get this into first-order logic

properties will be introduced as a new sort 'p' and a relation 'ppty' will be employed so that

PPty(V,X,I) holds iff the entity X has the property V at the index I.

CATEGORIES

ACN = CN/CN -- Ad-Corrmon Noun (adjective)
IAV = IV/IV -- Intransitive AdVerb (adverb phrase)
IW = IV//IV -- Intransitive Verb complement Verb

type(ACN) = type(IAV) = type(IW) = «e , <s , t» ,<e , <s , t»>
□

I have included a simple treatment of the intersective adjective red in SMG but have made no

attempt to distinguish the subsective tall because it is like the adverbs rapidly, slowly, and

voluntarily which Montague was content to leave.
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LEXICON

BACN = 'red' 13,1 • alle8ed)
Bj^y = {rapidly, slowly, voluntarily, allegedly)
Biw= wish)

T1 g. red => kP kx ki {(RED x i) A (P x i)]

where RED e Con<e <s t>>
□

Because PTQ has no adjectives, tall and alleged are from UG while red is mine. The rest is

the vocabulary of PTQ.

3.5.1. Extensional Adjective

I % SI, Tig
I red := acn : [ [X, I I A] ,X, 11 red(X, I )&A] .

I

I relation( red, X:e, I:s, red(X,I) ).

Only syntactically a predicate modifier, red reduces semantically to a conjoined predication

and so properties are not yet required.

EXAMPLE 7

<A red horse lives.

f4 I fOI a

I I fOI red

I I I horse

I live

>exis t s(XI:e,(red(XI,!)&horse(Xl,!))&1ive(XI,!))

)x [[(RED x !) A (HORSE x !)] A (LIVE x !)]

3.5.2. Intensional Predicate Modifiers

We know that tall, rapidly, slowly, and voluntarily are subsective: every tall man is a man,

if John ran rapidly then John ran, etc. Moreover it seems that tall is extensional and that

exceptionally it does not create an opaque context (Keenan 1984). However SMG follows

Montague in not recognising these facts.
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% SI, Tla
tall

a 11eged

rapidly
slowly
vo lunt arily
al legedly

:= acn

: = acn

= i av
= i av
= i av
= i av

v(try,
v (wi sh,

tries,
wishes,

t ried,
wished,

tall* .

al1eged* .

rapid* .

s 1 ow*

voluntary*
a 11eged* .

Tense) := ivv(Tense)
Tense) := ivv(Tense)

t ry* .

wi sh*

R *= [[Y,J IA],X,Ilexists(V:p,Phi&Psi)]
relation( R, X:e, V:p, I:s, Phi ),
Psi = all(Y:e,all(J:s,ppty(V,Y,J)<=>A)).

relation( tall , X: e, V p , I: s , tall(X,V,I) ).
rel ation( a 11 eged, X: e, V p, I: s , a 11eged(X,V,I) ).
r e1 a tion( rapid, X: e, V p , I: s , r apid(X,V, I) ).
relation( s 1 ow, X: e, V p, I: s , slow(X.V.I) ).
relation( volunt ary, X: e, V p, I: s , voluntary(X,V,I) )
r e1 a tion( try, X: e, V p, I: s , try(X.V.I) ).
relation( wi sh, X: e, V p, I : s , wish(X.V.I) ).

relation( ppty. V: p, X e, I: s , PPty(V,X,I) ).

This implementation is really a straightforward application of the principles already described

apart from the novelty of the templates for predicate modifiers. Again I have provided for the hard

work to be done in the lexicon so that only functional application rules are required.

RULES of functional application

S3a. If 5 e P^Qvf anc* a 6 ^CN t^ien ^0^' 6 ^CN'

T3a. if 5 => 8 * and a => a' then Fq( 8, a) => (8 ' a').

S10. If 6 £ ^iaV an<* a e ^TV t^len 8) 6 PIV 0V IV

T10. if 8 => 8' and a => a' then Fq(oc, 8) => (8' a').

Fj( a, P ) = a to p

S8. If 8 £ Pjyy and a £ Pjy then F^(8, a) e Pjy,

T8. if 8 => 8' and a => a' then F7(8, a)=>(8' a').
□
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I % S3a, T3a
I fO » acn:[PIQ] + cn(Gend):P => cn(Gend):Q.
I

I % SIO, TIO
I fO » iv(Tense):P + iav:[PIQ] => iv(Tense):Q.
I

I to := par t(to) : [] .

I

I % S8, T8
I 11 » ivv(Tense):[PIQ] + part(to):[] + iv(base):P => iv(Tense):Q.

EXAMPLE 8

<An alleged horse lives.

f41 fOI a

I I fOI alleged
I I I horse

I 1 ive

>exis t s(XI:e,exis t s(V2:p,al1eged(Xl,V2,! )&
a 11(X3:e,all(I4:s,ppty(V2,X3,14)<=>hor se(X3 ,14))) )&
1ive(XI, ! ))

jx [(ALLEGED HORSE x !) A (LIVE x !)]

This holds iff there are an entity XI and a property V2 such that XI lives, XI is alleged V2, and

V2 is to be a horse.

EXAMPLE 9

<John runs rapidly.

f4 I john
I fOI run

I I rapidly

>exists(VI:p,rapid(j,V1,! )&al1(X2:e,al1(13:s,ppty(VI,X2,13)<=>run(X2 ,13 ))))

(RAPID RUN J !)

This holds iff there is a property VI such that John does VI rapidly and VI is to run.

EXAMPLE 10

<John tries to think.

f4 I john
I f7 I try
I I think

>exists(Vl:p,try(j,Vl,!)&a11(X2:e,a 11(13:s,ppty(VI,X2,13)<=>think(X2 ,13 ))))

(TRY THINK J !)



46

This holds iff there is a property VI such that John tries VI and VI is to think.

3.6. Transitive Verbs and Prepositions

We now come to what are semantically the most complex types in SMG. These are for

functions from quantities to properties, and functions from quantities to functions from properties to

properties. Quantities will be assigned the sort 'q' and qtty(W,V,I) will hold iff the property V has

the quantity W at the index I.

All the sorts required to give a first-order account of SMG have now been presented. Terms

are of the sort entity 'e\ index 's\ proposition 'o\ property 'p\ or quantity 'q'.

CATEGORIES

TV = IV/T -- Transitive Verb or Term complement Verb
TAV = IAV/T -- Transitive AdVerb or Term complement AdVerb (preposition)

type(TV) = <«e ,<s , t>>,<s , t» ,<e ,<s , t»>

type(TAV) = <«e ,<s , t>>,<s , t» ,«e ,<s , t»,<e , <s , t»»
□

LEXICON

Bpy = {find, lose, catch, eat, love, date, be, seek, conceive, worship)
Rj-Ay= {in, about)

Tib. find =>XP Xx (P Xy (FIND y x))
lose => IP Xx (P Xy (LOSE y x))
catch => XP Xx (P Xy (CATCH y x))
eat => XP Xx (P Xy (EAT y x))
love => XP Xx (P Xy (LOVE y x))
date => XP Xx (P Xy (DATE y x))
be => XP Xx (P Xy A.i (x=y))
seek => XP (try' (find' P)) where try => try' and find =» find'.

T1 i . in =5. XP XP Xx (P Xy (IN y P x))

where P ^ vQ_<<£_<s_£>>_<s_{>>

and FIND, LOSE, CATCH, EAT, LOVE, DATE e Con<e <£ <s t>>>

and IN 6 Con<e<<ei<Sft>>t<e,<st>>>>
□

This is the vocabulary of PTQ. Although catch and worship are not in the fragment they

have been reinstated from the text.
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3.6.1. Extensional Transitive Verbs

Like the intersective adjective red the verbs find, lose, catch, eat, love, date, and be are

entirely extensional.

% SI, Tib
v(find, finds, found, Tense) = tv(Tense) f ind*

v(lose, loses , los t , Tense) = tv(Tense) lose*

v(catch, catches , caught, Tense) = tv(Tense) catch*

v(ea t, eats , ate, Tense) = tv(Tense) eat* .

v(love, loves, loved, Tense) = tv(Tense) love*

v(date, dates, da t ed, Tense) = tv(Tense) date*

R *= [[[Y,11 Phi]1F],XIF] ; -

re 1 a t ion( R, X: e, Y: e, I:s, Phi )■

relation( f ind, X: e, Y: e, Irs, find(X.Y.I) ).
relation( lose, X: e, Y: e, Irs, lose(X,Y,I) ).
r e1 a tion( catch, X: e, Y: e, Irs, catch(X.Y.I) ).
r e1 a tion( eat, X: e, Y: e, Irs, eat(X, Y, I) ).
r e1 a tion( love. X: e, Y: e, Irs, love(X,Y,I) ).
r e1 a tion( date, X: e, Y: e, Irs, date(X,Y, I) ).

There was obviously great redundancy in the statement of the lexical rule Tib which could

have been removed by extending Montague's superscript notation used in John => J* to cover

find => FIND*. This is essentially the approach which 1 have used in the implementation. Do not

confuse this with Montague's subscript '*'. Montague had love => LOVE and John loves Mary =>

((LOVE* M) J) but I have love => LOVE* and John loves Mary => ((LOVE M) J).

EXAMPLE 11

<John loves Mary.

f4 I john
I f51 love

I I mary

>love(j,m, !)

(LOVE M J ! )

The reason why I have made these changes is to get rid of Montague's meaning postulates.

Many of the meaning postulates of PTQ disappear with individual concepts. That which made

individual constants rigid designators disappears because an extensional logic is used with constants

of sort 'e' for proper names which ensures rigid designation. The rest go with the change from

subscript '*' to superscript '*'.



48

I % SI, Tib
I v(be, is, was, Tense) := tv(Tense) : [[[Y,IIX=Y]IF],XIF].

The translation of be is essentially the equality relation.

EXAMPLE 12

<John is Bill.

f4 I john
I f5 I be

I I bi 1 1

>j=b

(J=B)

This treatment of the copula does not easily accommodate predicative adjectives. In John is red, it

does not appear that is corresponds to equality. However in UG, Montague provided the following

equivalent.

EXAMPLE 13

<John is a red entity.

f4 I john
f 5 I be

I f 01 a

I I fOI red

I I I en tity

>exi s t s (XI: e , (red(XI, ! )&1 )&j=Xl)

=red(j,! )

]y [[(RED y !) A T] A (J=y)]

3.6,2. Intensional Transitive Verbs

% SI, Tib
v(seek, seeks, sought, Tense) := tv(Tense) : seek* .

seek *= [[[Z,J Ifind(Y,Z,J)],JIA],X,I lexists(V:p,try(X,V,I)&Phi)]
Phi = al1(Y:e,al1(J:s,ppty(V,Y,J)<=>A)).

The translation of seek is the composition of the translations of try and find.
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EXAMPLE 14

<John seeks a unicorn.

f4 I john
I f51 seek

I I fO I a

I I I unicorn

>exis t s(VI:p,t ry(j,VI,!)&
al1(X2 :e,all(I3:s,ppty(VI,X2,13)<=>
exists(X4 :e,unicorn(X4 ,13)&f ind(X2,X4,13)))))

(TRY Xx Xi jy [(UNICORN y i) A (FIND y x i)] J !)

This holds iff there is a property VI such that John tries VI and VI is to find a unicorn.

I % SI, Tla
I v(conceive,conceives,conceived, Tense) := tv(Tense) : conceive* .

I v(worship, worships, worshipped.Tense) := tv(Tense) : worship* .

I

I R *= [[[Y,Jlppty(V,Y,J)],JIA],X,Ilexists(W:q,Phi&Psi)]
I relation( R, X:e, W: q, I:s, Phi ),
I Psi = a 11(V:p,a 11(J:s,qtty (W, V,J)<=>A)).
I

I relation( conceive, X:e, W:q, I:s, conceive(X,W, I) ).
I relation! worship, . X:e, W:q, I:s, worship(X,W, I) ).
I

I relation! Qtty, W: q, V:p, I:s, qtty(W,V,I) ).

This is the first genuine use of quantities. It is the implementation of Montague's famous

treatment of the opaque objects of intensional transitive verbs.

EXAMPLE 15

<John conceives a unicorn.

f4 I john
I f5 I conceive

I I fO I a

I I I unicorn

>exis t s(W1 :q,conceive(j,W1 , !)&
al1(V2:p,al1(13:s,qtty (W1,V2,13)<=>
exists(X4:e,unicorn(X4 ,13)&ppty(V2,X4,13)))))

(CCNCEIVE XQ Xi ]x [(UNICORN x i) A (Q x i)] J !)

This holds iff there is a quantity W1 such that John conceives (of) W1 and W1 is to be a property

of a unicorn.
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3.6.3. Extensional Preposition

I % SI, Tli
I in := tav : in* .

I

I R * = [[[Y,Ilexists(V:p,Phi&Psi)]IF],[Z,JIA],XIF]
I relation( R. X:e, V:p, Y:e, I:s, Phi ),
I Psi = al1(Z:e,a 11(J:s,ppty(V,Z,J)<=>A)).
I

I relatione in, X:e, V:p, Y:e, Its, in(X,V,Y,I) ).

Although in is often described as an extensional preposition we see that in SMG it is partly

intensional despite having a transparent object The predication in(X,V,Y,I) holds iff X does V in Y

at I.

EXAMPLE 16

<John walks in a park.

f4 I john
I fOI walk

I I f5 I in

I I I fO I a

I I I I park

>exists(Xl :e,park(XI,!)&exists(V2 :p,in(j,V2,X1,!)&
a 11(X3 :e,all(I4:s,ppty(V2 ,X3 ,14)<=>wa lk(X3 ,14)))))

]y I (PARK y ! ) A (IN y WALK J ! ) ]

This holds iff there are an entity XI and a property V2 such that XI is a park, John does V2 in XI,

and V2 is to walk.

3.6.4. Intensional Preposition

I % SI, Tla
I about := tav : about* .

I

I R *= [[[Z,J Ippty(VI,Z,J)],J I A],[Y,KIB],X,I
I I exists(V:p,exists (W: q,Phi&Psi)&Chi)]
I relation( R, X:e, V:p, W: q, I:s, Phi ),
I Psi = all(Vl:p,all(J:s,qt ty (W,VI,J)<=>A)),
I Chi = al1(Y:e,al1(K:s,ppty(V, Y,K)<=>B)).
I

I relation( about, X:e, V:p, W:q, I:s, about(X,V,W, I) ).

This is the fully intensional preposition. As a four-place relation between entities, properties,

quantities, and indices it has the most complex type in the fragment The predication

about(X,V,W,I) holds iff X does V about W at I.
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EXAMPLE 17

<John talks about a unicorn.

f 4 I john
fOI talk

I f5 I about

I I f 01 a

I I I unicorn

>exis t s(VI:p,exis t s(W2 :q,abou t(j,VI ,W2,! )&
a 11(V3 :p,all(I4:s,qtty (W2,V3,14)<=>
exists(X5:e,unicorn(X5,14)&ppty(V3,X5,I4)))))&
al1(X2:e,al1(13:s,ppty(Vl,X2,13)<=>talk(X2,13))))

(ABOUT XQ Xi }x [(UNICORN x i) A (Q x i)] TALK J !)

This holds iff there are a property VI and a quantity W2 such that John does VI about W2, VI is to

talk, and W2 is to be a property of a unicorn.

Comparing the SMG and the Prolog for in and about we can observe a certain

complementarity. In SMG about => ABOUT but in translates to the complicated expression in'

given in Tli. Yet the mechanism of in' is primarily to retract the default opaque expectation. This

appears implausible since surely the transparent case is the unmarked one. In the implementation

however things are the right way around because here the hard work is done to establish an opaque

context.

RULES of functional application
*

F^( a, p ) = a P unless p has the form hen;
F5 ( a, hen ) = a himn

55. If 8 e Pjy and a e P-j. then F^(8, a) e Pjy.

T5 . if 8 => 8' and a=^a' then (8, a) => (8 ' a').

56. If £ 6 ^TAV anc* a e then F^(^, a) e Pj^y.
T6 . if C, => C,' and a=>a' then F^(^, a) => (£' a').
□

% S5, T5
f5 » tv(Tense):[PPIP] + t(Gend,obj):PP => iv(Tense):P.

% S6, T6
f5 » tav:[PP!P_Q] + t(Gend,obj):PP => iav:P_Q.

Set ^ D
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3.7. Coordination

The coordination of sentences and of predicates is very straightforward and could easily have

been introduced much earlier to no benefit. However the coordination of terms is difficult to

achieve using unification and highlights its difference from lambda-reduction.

3.7.1. Sentential Coordinators

Like all coordinators these are basically extensional. There is nothing to do but spread the

index. In a lambda-expression spreading involves the abstracted variable occurring multiply within

the body distributed at regular positions.

RULE of conjunction and disjunction

Fg( a, p ) = a and p

F9( a, p ) = a or P

S11. If cp, \|i e Pg then Fg(0, vp), F^ (<p , \p) e Pg,

T11 . i f 0 => 0 ' and \p => \p* then Fg(<}), \j/) => Xi [ (0 ' i) A (\p* i) ] ,

F9(0, V) => *.i [(0' i) V (V' i)] .
□

I and := c(and) : [ ] .

lor :=c(or) : [] .

I

I % Sll, Til
I Fn » s:[I I A] + c(Co):[] + s:[I IB] => s:[IIC)
I <- co_ordinate( Co, Fn, A, B, C ).
I

I co_ordinate( and, f8, A, B, A&B ).
I co_ordinate( or, f9, A, B, A v B ).

The condition introduced by '<-' is declaratively identical to one introduced by a Prolog

but it is called from within the parser for greater efficiency.
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EXAMPLE 18

<John walks and Bill talks.

f8 I f4 I john
I I wa1k

I f4 I bill

I I talk

>wa1k(j,! )&talk(b,!)

[ (WALK J ! ) A (TALK B ! ) ]

3.7.2. Predicate Coordinators

These involve spreading the subject and the index. The only predicates which Montague

coordinated were intransitive verbs but a similar rule could easily be given for common nouns.

RULE of conjunction and disjunction

S12. If a, (3 e Pjy then Fg(a, (3), F^(a, P) 6 Piy
T12. if a => a' and (3=>|3' then Fg(a, P) => Xx Xi [(a' x i) A (P' x i) ] ,

Fg(a, P)=^Xx Xi [(a' x i) V (P' x i) ] .
□

I % S12, T12
I Fn » iv(Tense):[X,IIA] + c(Co):[] + iv(Tense):[X,I IB] => iv(Tense):[X, IIC]
I <- co_ordinate( Co, Fn, A, B, C ).

EXAMPLE 19

<John walks and talks.

f4 I john
I f8 I walk

I I talk

>wa1k(j,!)&t a 1k(j,!)

[(WALK J !) A (TALK J !)]

3.7.3. Term Coordinator

Noun phrase coordination poses problems for the unification approach. Montague's second-

order translation is not convertible to a workable semantic template. There is also doubt (in English

itself) about the gender of a disjunction when the disjuncts have different genders. Montague

restricted term coordination to disjunction merely to avoid the plurality of conjoined terms.
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RULE of disjunction

S13. If a, P e Pj then F^(a, (3) e Pj,
T13. if a => a' and P => P' then F^(a, p) => >.P ki [(a' P i) V (P' P i) ] .
□

* % S13, T13
* f9 » t(Gend,Case):[P,I I A] + c(or):[] + t(Gendl.Case):[P,I IB]
* => t(Gend,Case):[P,I IA v B] .

This naive attempt to implement term coordination following SMG fails to yield a template

for John or Mary because 'P' cannot be unified with both [jlF] and [mIG] at once. Although a

predication such as walk(X) can be spread, this only provides walk(X) v walk(X) whereas John or

Mary walks seems to require walk(X) v walk(Y). The problem arises because I use open templates

where Montague used closed lambda-expressions for which variables having different binding

occurrences can be made distinct by alpha-conversion.

Fortunately there is an adequate first-order semantics. It involves an entity X such that X=j or

X=m. There is no need to spread the predicate.

I % SI3, T13
I f9 » t(Gendl,Case):[[Y.IIX=Y],IIA] + c(or):[] + t(Gend2,Case):[[Z,IIX=Z],I IB]
I => t(Gend.Case):[[X,I IC],I I exists(X: e,(A v B)&C)]
I <- or_gender( Gendl, Gend2, Gend ).
I

I or_gender( Gend, Gend, Gend ).
I or_gender( Gendl, Gend2, neut ) :-
I Gendl \= Gend2.

The problem with the gender of a coordination such as John or Mary is solved by arbitrary

stipulation as neuter. Something must be chosen and I will choose it because the solution using

singular they is way beyond this fragment.

EXAMPLE 20

<John or Mary walks.

f4 I f9 I john
I I mary
I wa 1 k

>exis t s(XI:e,(XI=j v XI =m)&wa1k(XI,!))

[ (WALK J ! ) V (WALK M !) ]

* Buggy code, not part of the program.
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The plural term John and Mary is not given in Montague Grammar but it is clear what

translation John and Mary walk would have under this quantificational analysis.

>al 1 (XI : e, (XI =j v Xl=m)=>walk(Xl, ! ))

3.8. Parsing

The phrase structural component of the grammar has now been covered. The parser interprets

those phrase structure rules. As Montague's schematic rules cannot be stated in the same format,

they will be programmed directly into the parser. An understanding of the parsing mechanism will

therefore be required in order to follow the subsequent exposition of the handling of scope and

bound anaphora.

The parser employed in this system uses a bottom-up, right to left, shift and reduce algorithm.

Its bottom-up nature avoids the problem of looping on parsing left-recursive structures suffered by

top-down algorithms such as the direct Prolog interpretation of definite clause grammars.

In Montague Grammar the left-recursive structures are postmodified phrases such as the IV

run rapidly voluntarily allegedly or the CN man such that he walks such that he talks and

coordinate structures. Furthermore the rules of quantifying-in which will be used to treat the

phenomena of scope and bound anaphora are syntactically vacuous rewrite rules. With a top-down

approach it would not be clear what semantic information to associate with them but while doing a

bottom-up analysis all the information which could be relevant is available.

Despite this requirement to treat left-recursion most of the structures in Montague Grammar

are right-recursive. Therefore a right to left parse will be pursued purely for the sake of efficiency.

All parses would be found eventually in either direction but this way the usual parses will be found

faster.

A shift and reduce, stack and buffer parser is the simplest method of implementing bottom-up

analysis of grammatical phrases. Even after more efficient methods have been found I think that

this remains the most compelling conceptual model. Since I am primarily interested in semantics

rather than parsing I will be content with programming it directly. The essential non-determinacy of
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parsing will be captured by relying upon Prolog's own built-in non-determinacy implemented as

backtracking.

The procedure call parse(Stack, Buffer, N, Answer) succeeds when the arcs already parsed on

the Stack, followed by the words remaining in the Buffer, with N subscripted pronouns, parse as the

arc Answer.

Every arc has the form

syntactic category it syntactic structure it semantic template it Cooper store

and contains all the information needed about one constituent phrase. The syntactic category and

the semantic template above are exactly like the syntax:semantics to be found in the combination

rules.

The syntactic structure contains inessential information useful for tracing which corresponds to

Montague's analysis tree. It holds a record of the parse of a constituent. The labels 'fn' from the

statements fn»rule are used to cross reference analysis trees, rules, and their SMG definitions. A

syntactic structure either is a root word or has the form fn'arguments where 'fn' is applied to a list

of arguments which are syntactic structures recursively.

The Cooper store contains binding information about quantified terms. Its operation will be

described fully in the section on quantification.

The initial call to the parser is encapsulated in a convenient three argument procedure:

I % PARSE SENTENCE

I parse( Buffer, Str, A )
I parse( [], Buffer, 0, s#S t r#[ ! I A] it [ ] ).

There is nothing on the stack, the Buffer is the list of words to be analysed, it should contain zero

subscripted pronouns*, it should be a sentence with the syntactic structure Str and (letting the local

index be '!') with the translation A where all variables have been bound.!

* although SMG overgenerates with phrases containing them,
t To run the extensional fragment of Chapter 2 substitute this procedure:
I parse( Buffer, Str, A ) :-
I parse( [], Buffer, 0, s#Str#A#[] ).
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The termination state of the parser is

I % PARSE POUND
I parse( [Arc], [], Arc ).

The stack holds only Arc which is the constituent arc of the whole sentence and this is the final

answer, no more words remain in the buffer, and we don't care how many subscripted pronouns

became necessary.

The fundamental non-determinate operation of the parser is either to shift a word off the

buffer, find out its lexical insertion arc, and place it on the stack, or to reduce some arcs on top of

the stack according to a combination rule selected non-determinately. Since this is to be a right to

left parser shifting will be favoured over reducing.

I % SHIFT SI, T1
I parse( Stack, [WbrdIBuffer], N, Answer )
I an_check( Word, Buffer ),
I lexicon! Word, Syn, Str, Sem ),
I ante_check( Syn, Str, Sem, Stack ),
I parse( [Syn#Str#Sem# []IStack], Buffer, N, Answer ).

The purpose of 'an_check' is to check whether a or an has been properly chosen as it must

agree with the next word in the buffer.

I an_check( a, [Wordl_] )
I \+ an( Wbrd ).
I an_check( an, [Wbrdl_] )
I an( Word ).
I an_check( Wford, _ )
I Word \= a,

I Word \= an.

The actual lexicon is represented by the 'lexicon' procedure which expands out the

abbreviations employed with the ':=' procedure. The words given lexical entries are required to be

exactly the possible members of the buffer. A single ':=' clause may correspond to several actual

entries in the lexicon. The syntactic structures are explicit in the lexicon but they must be inferred

from each clause of the ':=' procedure.

I lexicon! Word, Syn, Str, Sem )
I WordAb := Syn:SemAb,
I select_form( WordAb, Word, Str ),
I expand_star( SemAb, Sem ).

The 'select_form' procedure is responsible for expanding the horizontal abbreviation of

vertical redundancy in the lexicon. Along with each word its root is supplied. In SMG the root of
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a word is a basic phrase unmodified by any combination rules. The root provides the syntactic

structure in the lexical entry for a word.

I select_form( 'Wbrd, W>rd, Word )
I a t om( Wo r d ).
I select_form( Word pn, Word, he(N) ).
I select_form( Word/_, Word, Word ).
I select_form( Root /Word, Word, Root ).
I select_form( v(W)rd,_,_,base), Word, W>rd ).
I select_form( v(Root ,Word,_,pres), Word, Root ).
I select_form( v(Root,_,Word,past), Word, Root ).

The 'expand_star' procedure expands semantic abbreviations which use the superscript

notation.

I expand_star( Ab*, Sern ) :-
I Ab *= Sem.

I expand_star( Sem, Sem ) :-
I Sem \= _* .

Note that because of the poor treatment of negation in Prolog, the goal Sem V _* above means

\+Ab*(Sem = Ab*) declaratively where "' is Prolog's existential quantifier. There are other similar

goals below.

The purpose of 'ante_check' is to find the antecedents of pronouns. For non-pronouns it

always succeeds vacuously.

I ante_check( _, Str, _,_):-
I Str \= he(_).

This 'parse' clause tries each combination rule in turn attempting to reduce arcs on the top of

the stack which match the left-hand side of a combination rule to the arc of the right-hand side of

that rule match.

I % REDUCE {PHRASE STRUCTURE RULES)
I parse( Stack, Buffer, N, Answer ) :-
I (Fn » Rule),
I get( Rule, Seq, Syn:Sem, Cond ),
I match( Seq, Stack, Args-[], Stores-[], StackTail ),
I Cond,
I appendlist( Stores, Sto ),
I parse( [Syn#Fn'Args#Sem#StoIStackTai1], Buffer, N, Answer ).

Combination rules may include an optional condition to be tested after a successful matching.

This is more efficient than using Prolog's own primitive conditional.

I get( (Lhs => Rhs), Lhs, Rhs, true ).
I get( (Lhs => Rhs <- Cond), Lhs, Rhs, Cond ).
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The 'match' procedure attempts to match its first argument which is a sequence of items to

combine, against the beginning of its second argument which is a stack of arcs. Like a unification,

a matching is unique if it succeeds. A successful matching returns the entire tail of the stack after

the matched arcs. The third and fourth arguments to 'match' are queues (difference lists) for the

syntactic structure and the Cooper store respectively so that they can be built up in the natural left

to right order. A one-item sequence is handled by the base cases of 'match' and a sequence

concatenated to an item is handled by its recursive cases, where the item is sought in the arc on the

top of the stack. The first clause is the base case for items which in SMG are syncategorematic and

so have a null semantics. Syncategorematic items contribute nothing to the queues.

I match( Syn:[], [Syn#_#[]#_IStack], ArgQ, StoQ, Stack )
I empty_queue( ArgQ ),
I empty_queue( StoQ ).

The second clause is the base case for items having full semantic templates.

I match( Syn:Sem, [Syn#Str#Sem#StoIStack], ArgQ, StoQ, Stack )
I Sem \= [],
I unit_queue( Str, ArgQ ),
I unit_queue( Sto, StoQ ).

The third clause is the recursive case for syncategorematic items.

I match( Seq+Syn:[], [Syn#_#[]#_IStack], ArgQ, StoQ, StackTail )
I match( Seq, Stack, ArgQ, StoQ, StackTail ).

And the fourth clause is the recursive case for items having full semantic templates.

I match( Seq+Syn:Sem, [Syn#Str#Sem#Sto 1Stack], ArgQl, StoQl, StackTail ) :-
I Sem \= [],
I match( Seq, Stack, ArgQ, StoQ, StackTail ),
I join_queue( Str, ArgQ, ArgQl ),
1 join_queue( Sto, StoQ, StoQl ).

StoQ becomes bound to a queue of the stores of the subconstituents. What is actually required is

their set-theoretic union which is computed by 'appendlist' only if the rule condition succeeds. The

empty store is generated upon lexical insertion so I have yet to specify how stores become filled.

For perspicuity, separate queue manipulation procedures replace further complication of the

'match' procedure.
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I empty_queue( List-List ).
I

I unit_queue( Elem, [Eleml List]-List ).
I

I join_queue( Elem, List-[ElemlLast], List-Last ).

3.9. Quantification

As far as the lexicon is concerned this only involves the addition of subscripted pronouns to

the set of basic terms of SMG. These correspond to free variables in translation. Real pronouns

will be substituted for the subscripted ones by the rules of quantification which bind the variables in

translation. Since subscripted pronouns are not English words SMG overgenerates.

LEXICON

B-p = [John, Mary, Bill, Kate, hep, he^, hej, ...}

Tie. hen => XP (P xn)

where x = v~
n Zn, e

□

Note that free variables are implicitly universally quantified over the whole sentence.* For

example, hep talks is true if and only if everyone talks! Therefore John walks and he talks cannot

be translated as

Xi [(WALK J i) A (TALK xQ i)]

UG, (Cooper 1979), and others to the contrary notwithstanding.

1 % SI, Tie

1 he pn = t(mas c,subj) [[XIF]IF]
1 him pn = t(masc,obj) [[XI F]IF]
1 she pn = t(fem, subj ) [[XIF]IF]
1 her pn = t(fern, obj ) [[XIF]IF]
1 i t pn = t(neut.Case) [[XIF]IF]

I anaphorise( X, [[XI F]IF] ).

The marking of pronouns with the 'pn' operator is necessary because, for example, he and

John have unifiable lexical assignments but the latter is not anaphoric. Subscripted pronouns lack

lexical entries because they cannot occur in the buffer. Instead they get their semantics by means of

the 'anaphorise' procedure, which makes the variable X available so that it can be associated with

any subscript.

* SMG agrees with PTQ and Prolog.
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RULE SCHEMA of quantification

Fio n( a, p ) = pi unless a has the form he^,
where pi comes from P by replacing the first occurrence
of he or him by a and all other occurrences

n n J
of hen or himn by {he, she, it) or {him, her, it}
respectively, according as the gender of the first
®CN or 'n a 's {mascu'ine' feminine, neuter};

FlO n( he^, P ) = pi where pi comes from P by replacing all occurrences
of hen or himn by he^ or him^ respectively.

S14. If a g Pj and cp g Pg then Fjq n(«, <t>) e Pg,

T14. if a => a' and «p =» cp * then Fjq n(«, <t>) => (a> ^-xn <p * ) •
□

The first clause of the definition of Fjq n is the syntactic analogue of beta-reduction.
Applications of it are vacuous when neither hen nor himn occurs in p. Vacuous quantification can

be illustrated by a specification such as

Fjq q( a unicorn, John walks ) = John walks.

The semantics for the sentence John walks derived in this manner would give it the reading "There

is a unicorn such that John walks" which would be totally wrong. However this pitfall can easily be

avoided by founding the syntactic structure on material which actually occurs in the sentence being

parsed. The opposite error would arise if a term which did occur were lost thus freeing a variable.

The second clause of the definition of Fjq n was included by Montague in order to make the

quantification rules total over all terms. It is the syntactic analogue of alpha-conversion. It will be

avoided in the implementation by numbering the subscripts consecutively (starting from zero) so that

renumbering is unnecessary.

The subscripts chosen for pronouns are entirely distinct from the names of the variables in the

translation into first-order logic. This is unlike the situation with Montague's translation into

intensional logic where they coincide. In the program, the variables which appear during the

translation process are meta-variables, strictly speaking. These can be instantiated to any term.

When the translation of the whole sentence has been obtained the remaining uninstantiated meta¬

variables are all instantiated to consecutive variables of the object language (starting from one, to

emphasise the difference from pronoun subscripts).
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EXAMPLE 21

<No woman loves her.

flOl 0

fO I no

I woman

f4 I he(0)
I f5I love

I I he(0)

>~ ex i s t s (XI : e .woman(XI , ! )&1 ove (XI ,X1 , ! ) )

—x [ (WCMAN x !) A (LOVE x x !)]

Montague Grammar does not distinguish reflexive and non-reflexive pronouns. In the above

example, no woman loves her(self) is derived faithfully to Montague as

FlO no woman, heQ loves himQ ).

This is the only possible derivation for the above sentence if vacuous and renumbering rule

applications are disallowed.

EXAMPLE 22

<A woman doesn'

flOl 0

1 fOI a

1 1 woman

1 fl 1 he(0)
1 1 doesnt

f5 I love

I he(0)

>ex i s t s (XI: e .woman (XI , ! )&" 1 ove (XI ,X1 , ! ))

}x [ (WCMAN x !) A -.(LOVE x x ! )]

This is the sole derivation again. These two examples serve to demonstrate that the rules of

quantification have two usages which are inseparable. Firstly, to bind anaphors and secondly, to

give a quantified term wide scope. In order to bind an anaphor it is necessary to quantify its

antecedent in, but that scopes the quantified term in a way which may not be desirable.

Consequently no synonymous reading can be produced for those two examples.

The formulation which I am about to suggest improves upon Montague Grammar by ruling

out vacuous quantification, free variables, and renumbered variables. The idea is to use an auxiliary

data structure in the syntax which constitutes a mild violation of the principle of compositionality.
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The auxiliary data structure will be a store rather like the store in (Cooper 1983). However

Cooper's store was semantic.

Each arc on the stack has associated with it a syntactic category, syntactic structure, and

semantic template as already required. Each arc also includes an associated Cooper store as

required for quantification. In this theory the store is a set of bindings between pronouns and arcs

of the form

syntax: semantics = arc.

A pronoun need only be represented by its syntactic subscript and semantic meta-variable. Arcs in

store are quadruples as on the stack.

In (Cooper 1983) the store is a set of bindings between pronouns and term denotations. My

semantic template in each stored arc corresponds to Cooper's term denotation. Therefore my

analysis differs from Cooper's in two essential respects. Stored arcs also have their own stores. I

will argue that this is necessary yet Cooper simply flattens the proper nested structure of the store.

Also, agreement is a syntactic phenomenon. The syntactic category field of quadruples in the store

could contain the full category and features of its origin. However it will be more parsimonious to

store only sufficient information to carry out gender agreement Furthermore the inessential

syntactic structure is also stored away and turns up in the right place to add credibility to my

approach.

Stores can, of course, be empty which is the initial store state associated with arcs upon

lexical insertion. During phrase structural combination the set theoretic union of stores is taken.

The option for storage occurs whenever a term has been built up. If it is taken then that term

becomes available to be the antecedent of a pronoun. The stored term arc is itself given a

pronominal semantics.

I % STORE S14; S16; S15
I parse( [Syn#Str#Sem#StoIStack], Buffer, N, Answer )
I Syn = t(Gend,Case),
I Str \= he(_),
I anaphorise( X, Semi ),
I succ( N, M ),
I parse( [Syn#he(N)#Seml #[N:X=Gend#Str#Sem#Sto]IStack],
I Buffer, M, Answer ).
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The storage rule is only applicable to terms not having the syntactic structure of subscripted

pronouns. That case corresponds to renumbering and permitting it would cause the rule to cycle on

its own output. When storage has applied the store is a singleton because any other stored material

should not be available at this depth of the analysis tree.

Suppose the parser is at the point of lexically inserting a pronoun off the buffer onto the stack.

What is the subscript in the analysis of that pronoun? Under the assumptions that there are to be no

unbound pronouns and that cataphora is to be avoided, a strategy for the subscripting of pronouns is

immediately apparent.

Since the stack contains the analysis of the words so far and the buffer contains words

remaining up to the end of the sentence only the stack is relevant to anaphoric reference. The

strategy is to search down the stack looking in all the stores for a possible antecedent of the correct

gender. There may be more than one candidate so this is a non-determinate part of the algorithm.

If an antecedent cannot be found then the parser should clearly fail immediately and backtrack. The

pronoun is subscripted with the number with which its antecedent is associated in store.

I % S14; S16; S3; S15
I ante_check( t(Gend,_), he(N), Sem, Stack )
I member( _#_#_#Sto, Stack ),
I stored( N:X=Gend#_, Sto ),
I anaphorise( X, Sem ).

Stores can be nested so the search through a store is recursive.

I stored( Binding, Sto )
I member( Bindingl, Sto ),
I ( Bindingl = Binding;
I Bindingl = (_=_#_#_#Stol),
I stored( Binding, Stol ) ).

The option for retrieval occurs whenever a sentence or a predicate (ie. intransitive verb or

common noun) has been built up. When it is taken the pronoun in the antecedent position and any

subsequent pronouns are bound and the term is given its scope. All stored terms must be retrieved

eventually because the goal of parsing specifies a closed sentence with an empty store.
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I % REIKI EVE S14 ; SI 6 ; S15
I parse( [Syn#Str#Sem#Sto IStack], Buffer, N, Answer ) :-
I quantify_in( Syn, X, TermSem, Sem, Semi ),
I select( M:X=Gend#TermS t r #Te rmS em#Te rmS to , Sto, RestSto ),
I append( TermSto, RestSto, Stol ),
I pars e( [Syn#f10'[M,TermS tr,Str]#Seml #Sto1 IStack],
I Buffer, N, Answer ).

The calls to 'quantify_in' and 'select' are conceptually in the opposite order. They are

implemented the unclear way round so that the first argument to 'quantify_in' can tell immediately

whether this rule is applicable. The following call to 'select' then causes the quantification to

become fully instantiated. Note that retrieval is the place to make the embedded store available. In

this respect it is like a combination rule in which the term and the sentence or predicate are just

being combined.

I % T14

I quantify_in( s, X, [[XIG] IF], G, F ).

Think of this semantics as abstracting X from Sem and then applying TermSem to the result.

This strategy has the advantage that coreference is determined during the parsing of the

sentence rather than by a special tree-walk after the syntactic parse has been found. It should be

extensible to a more advanced form of weak syntax/semantics interaction in which the match which

determines the antecedent during the search of the stores in the arcs down the stack would succeed

depending on some degree of inference rather than just on gender agreement.

Let's consider the possibilities which the quantification rules offer for analysing ambiguities of

scope. I have chosen an example with a quantified subject and object, a tense operator, and an

intensional transitive verb. Each of the following parses corresponds to a different reading. Note

that a syntactically similar sentence without these semantic complexities such as John loves Mary

would have just as many parses but would always have the same simple translation, love(j,m,!).

Whenever a quantified object has wider scope than an intensional transitive verb the

translation of the predicate is essentially extensional. To draw attention to this phenomenon I will

use a sort-lifting function from entities to quantities written as a postfix '*' and similar to

Montague's type-lifting abbreviation but remaining within first-order logic. The sort-lifting function

is defined by the universal closure of the equivalence
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qtty( X*. V, I ) <=> ppty( V, X, I ).

The parser does not know anything about this function. I have included it purely for simplification

purposes.

EXAMPLE 23

<Every man worshipped a woman.

f2 I fOI every
I I man

I f 5 I wo r ship
I I fO I a

I I I woman

>exists(Il:s,Il<!&al1(X2:e,man(X2,II)=>
exists (W3:q,wor ship(X2 ,W3,11)&
al1(V4:p,all(I5:s,qtty (W3,V4,15)<=>
exis t s(X6:e,woman(X6 ,15)&ppty(V4,X6,15)))))))

]j t(j<!) A Vx [(MW x j)->
(WORSHIP XQ Xi ] x [ (WCMAN x i) A (Q x i)] x j ) ] ]

The above translation is the one obtainable without quantification rules. To see how the

scopes come out as they do, here is its trace:

[1] every :=det : [[X, I I A] .[X,I IB],I I a 11(X: e,A=>B)].
[2] man := cn(masc) [X, I Iman(X, I) ] .

[3] every man := t(masc,Case) : [[X,I IB],I Ial1(X:e,man(X, I)=>B) ] .

[4] worshipped := tv(past) [[[Y,J Ippty(V,Y,J)],J I A],X,I I
exists (W: q , wor shi p (X,W, I )&al l(V:p,all(J:s,qtty (W, V, J )<=>A))) ] .

[5] a := det : [[Z.KIA],[Z.KIB],KIexists(Z:e,A&B)].
[6] woman := cn(fem) : [Z.KIwoman(Z,K) ] .

[7] a woman := t(fem,Case) : [[Z,KIB],KIexists(Z:e,woman(Z,K)&B)].
[8] worshipped a woman := iv(past) : [X, I I

ex i s t s (W: q .worship (X,W, I )&al l(V:p,all(J:s,qt ty (W, V, J )<=>
ex i s t s (Y: e , woman(Y, J )&pp ty (V, Y, J )))))] .

[9] every man worshipped a woman := s : [KI exists(I:s,I<KSt.a11 (X:e ,man(X,I)=>
ex i s t s (W: q , wor shi p (X.W, I )&al l(V:p,all(J:s,qt ty (W, V, J )<=>
exis t s(Y:e,woman(Y,J)&pp ty(V, Y, J)))))))].

Rules of functional application apply to produce [3] from [1] and [2], [7] from [5] and [6], and [8]

from [4] and [7], Although worshipped is the past of worship, the only record of this is the

argument of 'iv' until the rule of tense and sign (instead of a simple rule of functional application)

applies to produce [9] from [3] and [8].
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EXAMPLE 23 (continued)

<Every man worshipped a woman.

0

fO

f2

a

woman

fOI every
I man

f 5 I wo r ship
I he(0)

>exi s t s (XI: e .woman(XI, ! )&ex i s t s (12: s , I2< !&al 1 (X3 : e ,man(X3 ,12)=>
exis t s (W4 :q,wor ship(X3 ,W4,12)&
al1(V5:p,all(I6:s,qtty (W4 ,V5,16)<=>ppty(V5,X1,I6)))))))

=exis t s(XI:e.woman(XI,!)&exists(I2:s,12< ! &a11 (X3:e .man (X3,I2)=>
worship(X3,Xl*,I2))))

]x [ (WMSN x !) A ]j [ (j<! ) A Vy [(M\N y j)
(WORSHIP X? (P x) y j)]]]

The above translation requires the use of Cooper storage. It is difficult to give a trace of this

because it has not been produced compositionally. Let's end lines with when there is an

associated non-empty store. This is hardly a general notation but it will serve for all traces here

where stores only contain the variable Y bound to the translation of a woman.

[1] every man := t(masc.Case) : [[X,I IB],I Ial1 (X:e,man(X,I)=>B)].
[2] worshipped := tv(past) : [[[Y,JIppty(V,Y,J)],JI A],X,I I

ex i s t s (W: q , wor ship (X.W, I )&al l(V:p,all(J:s,qt ty (W, V, J )<=>A))) ] .

[3] a woman := t(fem.Case) : [ [Z.KIB] ,KI exi s t s (Z: e,woman(Z,K)&B) ] .

[4] her := t(fem.obj) : [[Yl F]IF]...
[5] worshipped her := iv(past) : [X,11

ex i s t s (W: q,worship(X,W, I )&al l(V:p,all(J:s,qt ty (W, V, J )<=>
ppty(V.Y.J))))] . . .

[6] every man worshipped her := s : [KI exi s t s (I: s , IcKStal 1 (X: e ,man(X, I )=>
exists (W: q .worship (X.W, I )&al l(V:p,all(J:s,qt ty (W, V, J )<=>
ppty(V.Y.J))))))]...

[7] every man worshipped a woman := s : [Klexists(Z:e.woman(Z,K)&
exis t s(I:s,I<K£tal1 (X:e ,man(X,I)=>
ex i s t s (W: q, wor ship (X.W, I )&al l(V:p,all(J:s,qt ty (W, V, J )<=>
PP ty(V,Z,J)))))))].

Lines [1], [2], and [3] are also found in the previous trace and need no elaboration. Storage

produces [4] from [3], functional application produces [5] from [2] and [4], tense and sign produces

[6] from [1] and [5], and finally retrieval produces [7] from [6]. Thus a woman is raised to wide

sentential scope. Similar analyses can raise every man to wide scope, or both every man and a

woman in either order.
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EXAMPLE 23 (continued)

<Every man worshipped a woman.

flOl 0

I fOI every
I I man

I f2 I he(0)
I I f5 I worship
I I I fOI a

I I I I woman

>a 11(XI:e,man(XI,!)=>exists(I2:s,I2<!&
exists (W3 : q, wor ship (XI ,W3 ,12)&
al1(V4:p,all(I5:s,qtty (WJ,V4,15)<=>
exi s t s (X6 : e , woman (X6 ,15 )&ppty (V4 ,X6 ,15)))))));

Vx [(MW x ! ) —» ■]j [ (j<! ) A
(WORSHIP XQ Xi •] x [ (WCMAN x i) A (Q x i)] x j) ] ]

flO 1

fO

flO

a

woman

0

fOI every
I man

f2 I he(0)
I f 5 I wo r s h i p
I I he(1)

>exis t s(XI:e.woman(XI,!)&al1(X2:e,man(X2,!)=>exists(I3:s,I3<!&
exis t s(W4 :q, wor ship(X2 ,W4 ,13 )&
all(V5:p,al1(16:s.qtty(W4,V5,16)<=>ppty (V5 ,X1.16)))))))

=exi s t s (XI: e .woman (XI, ! )&al 1 (X2 : e ,man(X2, ! )=>exists(I3:s,I3<!&
worship(X2 ,X1 * , 13 ))));

]x [ (V£M4N x ! ) A Vy [ (M4N y ! ) -> j]j [ (j<! ) A
(WORSHIP X.P (P x) y j)]]]
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flOl 0

fOI every
I man

flOl 1

I fO I a

I I woman

I f2 I he(0)
I I f5 I worship
I I I he(1)

>a11(XI:e ,man(XI,!)=>exis t s(X2:e.woman (X2, ! )&exists(I3:s,I3<!&
ex is ts (W4:q,worship (XI ,W4 ,13)&
al1(V5:p,all(I6:s,qt ty (W4, V5 ,16)<=>ppty(V5,X2,16)))))))

=al1(XI:e.man(XI,!)=>exis t s(X2:e,woman(X2,! )&exists(I3:s,I3<!&
worship(XI ,X2*,I3))))

Vx [(MW x ! ) —» }y [(W2MN y ! ) A ] j [ (j<! ) A
(VSORSHIP kP (P y) x j )]] ]

All anaphora is treated as bound anaphora in Montague Grammar. Therefore some sentences

which we would expect to have no scopal ambiguity must be analysed using the same rules of

quantification.

EXAMPLE 24

<John walks and he talks.

flOl 0

j ohn
f8 I f4 I he(0)

I I wa1k

I f4 I he(0)
I I talk

>wa1k(j,! )&t a 1k (j, ! )

[ (WALK J !) A (TALK J !)]
done- air

So far all retrieval considered has been /sentential. There are also rules to retrieve at

predicates. The following schematic rule quantifies a term over an intransitive verb.

RULE SCHEMA of quantification

S16. If a e pj and M piv then F10,n(a' p) 6 piv
T16 . i f a => a' and P =* P' then Fjq n(a, p) => ky (a' kxfi (P' y)).
□

I % T16

I quantify_in( iv(_), X. [[XIGJIF], [YIG], [YIF] ).

Two more readings of the big example considered above are now provided for. This makes
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seven readings in all.

EXAMPLE 23 (continued)

<Every man worshipped a woman.

every
man

0

fOI a

I woman

f5 I wo r s h i p
I he(0)

>exists(Il:s,Il<!&al1(X2:e ,man(X2,11)=>exis t s(X3:e,woman(X3,11)&
exists (W4 :q,wor ship(X2 ,W4 ,11 )&
al l(V5:p,all(16:s.qtty(W4,V5,I6)<=>ppty(V5,X3,16)))))))

=exists(Il:s,Il<!&a11(X2:e ,man(X2,II)=>exists(X3:e.woman(X3,11)&
wo r s hip(X2 , X3 *,11))))

} j [ (j<! ) AVx [ (MV4 x j ) -> ]y [ (WIMW y j ) A
(WDRSHIP XP (P y) x j)]]]

The above translation requires the use of retrieval at intransitive verbs. The following trace

illustrates how this works:

[1] every man := t(masc.Case) : [ [X, I IB] , I I al 1 (X: e,man(X, I )=>B) ] .

[2] worshipped := tv(past) : [[[Y, J I ppty(V, Y, J)],JI A] ,X,I I
ex i s t s (W: q , wor ship (X,W, I )&al l(V:p,all(J:s,qtty (W, V, J )<=>A))) ] .

[3] a woman := t(fem,Case) : [[Z,KIB],KIexists(Z:e,woman(Z,K)&B)].
[4] her := t(fem,obj) : [[Yl F]IF]...
[5] worshipped her := iv(past) : [X, I I

exis ts(W:q,wor ship (X,W, I)&al 1 (V: p , a 11 ( J : s , q t ty (W, V, J )<=>
ppty(V.Y.J))))]...

[6] worshipped a woman := iv(past) : [X,I Iexists(Z:e,woman(Z,I)&
ex i s t s (W: q, wor ship (X,W, I )&al 1 (V:p,al 1 (J : s , q t ty (W, V, J )<=>
PPty(V.Z.J)))))].

[7] every man worshipped a woman := s : [KI exists(I:s,I<K&a11 (X:e ,man(X,I)=>
exis t s(Z:e.woman(Z,I )&
ex i s t s (W: q , wor ship (X.W, I )&al 1 (V: p , al 1 (J : s , q t ty (W, V, J )<=>
ppty(V.Z.J)))))))].

Lines [1], [2], and [3] are as before. Storage produces [4] from [3], functional application produces

[5] from [2] and [4], retrieval produces [6] from [5], and finally tense and sign produces [7] from

[1] and [6]. Thus a woman is raised over the predicate but not over the sentence. The final

analysis is similar and has every man raised to wide scope.
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EX/4MPLE 23 (continued)

<Every man worshipped a woman.

0

fOI every
I man

f2 I he(0)
I flO 1

fOI

I

a

woman

f 5 I wo r s h i p
I he(1)

>a11(XI:e,man(XI,!)=>exists(I2:s,I2<!&exists(X3:e.woman(X3,I2)&
exists (W4 :q,wor ship(Xl ,W4 ,I2)&
a 11(V5:p,all(I6:s,qtty (W4 ,V5,16)<=>ppty(V5,X3.16)))))))

=a11 (XI:e .man(XI,!)=>exists(I2:s,I2< !&exis t s (X3 : e,woman (X3,12 )&
worship(XI,X3*,I2))))

Vx [(MW x ! ) —> [ (j< ! ) A ^y [ (WCMW y j ) A
(WORSHIP XP (P y) x j)] ] ]

There are also some sentences for which the preferred reading requires quantification over an

intransitive verb.

EXM1PLE 25

<John tries to catch a fish and eat it.

j ohn
f7 I try

I flO

I

0

fO

f 8

a

fish

f5 I catch

I he(0)
f5 I eat

I he(0)

>ex i s t s(VI:p,t ry(j, VI , ! )&
a 11 (X2: e, a 11 (13 : s , pp ty ('VI ,X2,13 )<=>
exists(X4:e,fish(X4,13)&ca tch(X2,X4,13)&ea t(X2,X4,I3)))))

(TRY Xy Xi -)x [(FISH x i) A [(CATCH x y i) A (EAT x y i) ] ] J !)

3.10. Relative Clauses

Montague only analysed what are called such-that relative clauses. His analysis was peculiar

in many respects. For rather little benefit it introduced much complexity into the grammar

particularly in interaction with other rules. Therefore this section has a length beyond its
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importance. However some of the matters dealt with below could recur in a syntactically adequate

treatment of relative clauses.

A such-that relative clause is a restrictive postmodifier of common nouns introduced by the

words such that and abstracting from any sentence a predicate to intersect the common noun. This

kind of relative clause is popular as logical jargon but is hardly ordinary English.

RULE SCHEMA of relativisation

F3 ( a, (3 ) = a such that {31 where (31 comes from |3 by replacing each occurrence
of hen or himn by {he, she, it} or (him, her, it)
respectively, according as the gender of the first
Bq^j in a is {masculine, feminine, neuter}.

S3 . If a 6 Pq^j and <j) e P<. then F3 n(a. ) e ^CN-

T3. if a => a' and 0 <|)' then F^ n(a, <t>)=> kxR ki [(a' xn i) A (<)>' i) ] .
□

These are odd rules in that they allow the introduction of pronouns which do not have real

terms as their antecedents. This will be a source of complexity in the implementation.

EXAMPLE 26

<Every man such that he runs walks.

f41 fOI every
f 3 I 0

I man

I f41 he(0)
I I run

wa 1 k

>al 1 (XI : e,man(XI , ! )&run(Xl , ! )=>walk(Xl , ! ))

Vx [ [ (MAN x ! ) A (RUN x ! ) ] -> (WALK x ! ) ]

In ordinary English this would be every man who runs walks. The words such and that

were syncategorematically introduced by q. They are implemented as particles, which have null
semantic templates. This that is the same that as was given for the rule Fg.
I such := part(such) : [].
I tha t := par t(tha t) : [J.

Because the implementation of anaphoric pronouns assumes that they have terms as

antecedents and no such term can be identified for the pronoun bound in a such-that relative clause,

a kludge is necessary in the implementation of this strange construction. The relative clause rules
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have been implemented as if their grammar were as follows.

QUASI-RULES of relativisation

F31 ( « ) = a such that

F32 n( a> P ) = ot P1 where [51 comes from P as in Fg n.

531. If a e Pq^ then Fgj(a) e Pgj.

T31. i f a => a' thenFgj(a)=>a'.

532. If a 6 P<,rp and 0 e P<- then Fgj n^a' ^ G ^CN'

T32. if a => a' and <}>=><])' t hen Fgg n (ot, <10 => ^xn [(a' xR i) A (<f)' i) ] .
□

Naturally it is the proper rules which are manifest in the syntactic structure fields rather than

the quasi-rules which are just a fiction to help in understanding the program.

The intermediate category ST of such-that antecedents is introduced in order to store a virtual

term for pronouns in the relativised sentence to refer back to. Of course this is not a real term (it is

not even a real constituent) so its structure, semantics, and store are ill-defined and are just given as

'dummy'. The following 'parse' clause combines a common-noun phrase and such that to give a

such-that phrase.

I % STORE S31

I parse( [part(that)#_,part(such)#_,cn(Gend)#Str#Sem#Sto IStack],
I Buffer, N, Answer ) :-

I succ( N, M ),
I parse( [ s t (Gend )#S t r#Sem# [N:X=Gend#durrmy I S t o ] I S t ack ] ,

I Buffer, M, Answer ).

Once a relativised sentence has been parsed, it can be concatenated onto the such-that phrase to

again give a common-noun phrase, losing 'dummy' in the process.

I % RETRIEVE S32

I par s e( [s#Str2#Sem2#Sto2,st(Gend)#Strl#Seml# [M:X=_IStol]IStack],
I Buffer, N, Answer ) :-

I relativise( X, Semi, Sem2, Sem ),
I append( Stol, Sto2, Sto ),
I par se( [cn(Gend)#f3 * [M,Str1,Str2]#Sem#StoIStack],
I Buffer, N, Answer ).

Think of the semantics expressed by 'relativise' as abstracting X from Sem2 and then intersecting

Semi with the result.

I % T3

I relativise( X, [X.IIA], [I IB], [X.IIA&B] )
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Such-that relative clauses allow relativisation of any term position within a sentence. But they

leave a personal pronoun in place instead of preposing a relative pronoun.

EXAMPLE 27

<A park such that John runs in it lives.

f4 fO

f 3 0

park
f4 I john

I fOI run

I I f5 I in

I I I he(0)
1 i ve

>ex i s t s (XI:e,(park(XI,!)&exis t s(V2:p,in(j,V2,X1,!)&
a 11 (X3:e,a 11(14:s,pp ty(V2,X3,14)<=>run(X3 ,14)))) )&
1ive(Xl , !))

)x [[(PARK x !) A (IN x RUN J !)] A (LIVE x !)]

In ordinary English this would be a park which John runs in lives. The bound pronoun may occur

multiply or not at all. In the latter case vacuous abstraction results but it is not a semantic error as

was vacuous quantification with Fjq n because no information is now being lost.

Relative clauses allow terms to occur within terms and they are unique for this in SMG. If a

pronoun is free in a such-that common noun (ie. it is not the relativised pronoun) then it is available

to have a previous term as its antecedent. There is then the opportunity for an unfortunate loophole

in the strategy for avoiding free variables.
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EXAMPLE 28

<A man finds a pen such that he walks.

flO 2

fO

flO

a

f3

0

fO

f4

1

pen
f41 he(0)

I walk

a

man

he(0)
f 5 I find

I he(2)

*ex i s t s (XI: e , (pen (XI, ! )&walk(X2, ! ) )&exi s t s (X2 : e ,man(X2 , ! )&f ind(X2,Xl , ! )))

)x [ [ (PEN x ! ) A (WALK xQ ! ) ] A -jy [ (M\N y ! ) A (FIND x y ! ) ] ]

The variable X2 is free here although there are also bound occurrences of X2. What went wrong is

that heQ found a man as its antecedent but then a pen such that heQ walks was stored so that when
a man was quantified in it missed binding beg.

Note that the other three parses of the above example are good and that even the bad parse is

in SMG. Yet SMG has a semantic error here because free variables are interpreted universally.

The implementation has avoided free variables till now and so we would like to close this loophole.

The same problem was noticed by (Friedman and Warren 1978). To avoid it, when deciding

to retrieve a term, they always checked that no other stored term contained a free occurrence of the

pronoun to which the chosen term was bound. I have described the equivalent of their solution for

my methodology. There is a simpler solution. To avoid unbound pronouns, check that each

syntactic structure is closed as it is output by the parser. The procedure implementing this closure

check is presented in appendix 1.4.

It is a pity that the closure check is necessary at all because it rarely fails. If stores were not

nested then the check would become essential to block vacuous quantification as it did in Friedman

and Warren's program. However in my program it can be regarded as a luxury which one may

prefer to forego at the cost of the very occasional free pronoun within a relative clause.

* Not produced by program with closure check.
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As if such-that relative clauses didn't have enough problems of their own, Montague also

provided a schematic rule of quantification over common nouns similar to that over intransitive

verbs which is only non-vacuous for such-that common nouns.

RULE SCHEMA of quantification

S15. If a e Py and p 6 Pq^ then Fjq n(a, P) e ^CN'

T15. if a=>a' and P => P * then Fjg n(a, P) => ^y (a' ^xn (P' y)) •
□

I % T15

I quantify_in( cn(_), X, [[XIG]IF], [YIG], [YIF] ).

No examples demand this rule and it is hard* to find examples having readings which can

only be produced by it. The following is such an example for the given reading.

EXAMPLE 29

<An alleged man such that he loves every woman lives.

f4 fO a

flO 1

fO

fO

every
woman

alleged
f3 0

man

f4 I he(0)
I f51 love

I I he(1)
1 i ve

>exis t s (XI:e,al1(X2:e,woman(X2,!)=>exis t s(V3:p,a 11eged(Xl, V3 , ! )&
all(X4:e,all(15:s,ppty(V3,X4,15)<=>man(X4,15)&love(X4,X2,15)))) )&
1 ive(Xl ,! ))

jx [Vy [ (WMN y ! ) -» (ALLEGED XxQ \i [ (MW xQ i) A (LOVE y xQ i ) ] x ! ) ] A
(LIVE x !))

In order to give every woman narrower scope than an but still remove it from the intensional

context of alleged whilst loves remains within that context, it is necessary to use the CN

quantification rule.

Let's see how far Montague Grammar gets with the problematic "donkey sentences" as they

are called. The prime example is everyone who owns a donkey beats it and the best that SMG

* It is even harder in the PTQ fragment which has no adjectives. An example due (almost) to Partee is every man
such that he lost a pen voluntarily such that he doesn't find it will walk slowly for the reading where a pen

binds it but has narrower scope than every. Partee was wrong in giving this example without the voluntarily.
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can do follows. Only translations in which the indefinite determiner corresponds to a wide scope

existential quantifier can be found for such examples.

EX/WPLE 30

<Every man such that he catches a fish eats it.

flO 1

fO

f4

a

f i sh

fO

f5

every
f3 0

man

f4 I he(0)
I f51 catch

I I he(1)
eat

he (1)

>exi s ts (XI : e , f i sh(Xl , ! )&al 1 (X2: e,man(X2, ! )&catch(X2,Xl, ! )=>eat (X2.X1 , ! )))

}x [(FISH x !) A Vy [[ (NftN y !) A (CATCH x y !)] -> (EAT x y !)]]

Admittedly this is a possible reading but it is not the preferred one. In the preferred reading

the existential quantification has narrow scope.

♦all (XI : e ,man (XI, ! )&ex i s t s (X2 : e , f i sh(X2, ! )&catch(Xl ,X2, ! ) )=>eat (XI ,X2, ! ))

However in this translation attempt an occurrence of X2 is left unbound.

Because the existential quantifier is in the antecedent of an implication it is equivalent to a

wide scope universal quantifier.

* a 11 (XI: e , a 11 (X2:e,man(Xl , ! )&f ish(X2, ! )&catch(Xl ,X2, ! )=>eat (XI ,X2, ! )))

Although this is the best translation it is hard to obtain compositionally because the indefinite

determiner corresponds to a different quantifier from that assigned lexically and preserved by the

usual rules of quantifying-in.

Donkey sentences are more of a problem for their translation into pure logic than for their

implementation in Prolog. This is because the above translation with the free variable is usable. To

be precise, the output of the parser is a structure containing meta-variables but quantifiers can only

bind variables. Substitutions for meta-variables will ignore quantifier boundaries. So if the

quantifiers are removed by substituting free variables and Skolem terms then the resulting translation

* These translations cannot be produced by the program.
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will work.

The problem is more acute in the case of disjunctive donkey sentences such as everyone who

owns Pedro or Eeyore beats it. Here the coordination is essentially a wide scope conjunction but

Montague's predicate spreading analysis of term coordination does not introduce any variable which

the pronoun could translate as. If my quantificational analysis is adopted then the above technique

can be applied here too.

3.11. Summary and Outlook

All the syntactic constructions of Montague Grammar have now been covered. The

translations output by the program have been designed to be in a first-order language while still

being equivalent to the higher-order translations provided by the specification. The aim is to use a

first-order theorem prover on the output. Axioms of comprehension and extensionality are necessary

and sufficient to prove this equivalence, because for that purpose the first-order language lacks only

the lambda-terms of the omega-order language. Comprehension axioms assure the existence of

terms equal to the missing lambda-terms and extensionality axioms assure their uniqueness. Such an

axiomatisation is incomplete because other irrelevant set-theoretic axioms (choice, infinity, etc.) are

missing. In the next chapter, such proof-theoretic considerations will be studied in detail.
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4. Theory of Montague Semantics (TMS)

At first, one might expect to implement SMG using a theorem prover for Ty2 similar to the

theorem-proving system described in (Andrews &al. 1984). However these experts warn that they

are "a long way from having a reasonable theorem-proving procedure for higher-order logic".

Furthermore they have set their sights on covering most of mathematics, for which Ty2 is adequate.

For example, they show how Cantor's Theorem* that a set has more subsets than members can be

proved completely automatically by their system but this is near the limit of its ability. I believe it

to be badly inefficient to use a mathematical theorem prover for a natural language fragment which

admits extra constraints.

The hard fact remains that theorem proving for SMG is going to be quite difficult so I feel

justified in using any arrangement that can be found to make a system to demonstrate that it can be

practical. In earlier chapters it has been shown how to translate sentences of SMG into sentences of

the language of TMS. Now that method offers numerous constraints which are very valuable: in

addition to being first-order, it uses a predicate logic which is entirely relational (it lacks functional

terms), the relations are either two, three, or four-place, bound variables are all sorted, and there are

no free variables in the translations.

The resources of sentential and quantificational logic alone do not comprise a complete proof

theory for TMS. It still remains to provide axioms for the membership relations (true, ppty, and

qtty), the equality and temporal anteriority relations, and the sorted constants in order to capture

proof-theoretic capabilities which were implicit in translations into Ty2. In the case of the

membership relations this amounts to providing a modicum of set theory in the shape of suitable

extensionality and comprehension axioms. Comprehension is by far the greater challenge.

It is beyond the scope of this thesis to present a specific theorem prover for first-order logic or

to investigate control issues concerning searches for proofs in TMS. However a standard reduction

will be presented from five-sorted first-order predicate logic to an unsorted Kowalski-form language

which can be processed by most resolution theorem proversf. In that sense, it is fair to say that a

* -i}R VP Ix ((R x)=P) proved by substituting Xy -.(R y y) for P, where P = vo <e t> an<* ^ s v0 <e <e t»'
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complete theorem-proving system will be precisely specified.

4.1. Extensionality

As the intention is to follow Montague's analysis of propositions, properties, and quantities,

they have been installed as sets. Therefore providing an appropriate proof theory for them entails

providing at least extensionality and comprehension axioms. Extensionality states that two of these

objects are equal if they consist of the same members.

Extensionality Axioms

a 11(U1 :o,a 11(U2 :o,all(I:s,true(Ul,I)<=> true(U2,1)) => U1=U2))

al1(VI :p,al1(V2:p,al 1(X:e,al1(1:s,ppty(Vl,X,I)<=>ppty(V2,X, I))) => V1=V2))

a 1 1 (W1 : q , a 1 1 (W2 :q,all(V:p,all(I:s,qt t y (W1 , V, I )<=>q 11 y (W2 , V, I) )) => W1 =W2 ))

The intensionality obtained, for example, by using propositions instead of truth values as the

objects of believe has been called "weak" intensionality by (Chierchia 1984) because although

believe is not extensional its propositional objects are extensional sets of indices. This is the correct

interpretation for Montague Grammar and we shall see that the extensionality of sets cannot be

withheld in TMS.

4.1.1. The Role of Extensionality

Consider the following translations:

<John believes that Kate thinks.

>exis t s(U1:o,be 1ieve(j,U1,!)&al1(I:s,t rue(Ul,I)<=> think(k,I)))

<Mary believes that Kate thinks.

>exis t s(U2 :o,be 1ieve(m,U2 ,!)&al1(I:s,t rue(U2,1)<=> think(k.I)))

Extensionality is necessary to ensure a unique proposition that Kate thinks so that John and Mary

believe the same thing.

t Such a language cannot, of course, be directly interpreted by Prolog because Prolog is correct only for Horn
clauses and is incomplete even for them.
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4.2. Comprehension Introduced

It is more difficult to provide sufficient existential principles for propositions, properties, and

quantities than anything else in TMS. In the first-order language used so far it is most natural to

postulate the following schematic axioms:

First-Order Comprehension Axioms

exi s t s (U: o , a 1 1 ( I: s , t rue(U, I )<=><(>) ) ; no free U in (f>

exi s t s (V: p, a 1 1 (X: e, a 11 (I: s , pp ty (V,X, I )<=><}>) ) ) ; no free V in <j>

ex i s t s (W: q, al 1 (V: p, a 1 1 (I: s , q t ty (W, V, I )<=>(|>))) ; no free W in <]>

The semantics for TMS in Chapter 1 is non-committal about the sizes of DQ, Dp, and but
let's suppose that in the intended model they are big enough for these schemas. They must contain

sets, however, and just as there are rival versions of set theory so there are other comprehension

axioms for TMS which should be considered. The preferred axioms given above are analogous to

Zermelo-Fraenkel set theory in its usual elementary formulation.

The inclusion of axiom schemas in a theory is an unwelcome source of complexity for its

theorem prover. The present formulation has the virtue of exhibiting where the trouble arises and

confining it there.

4.2.1. The Role of Comprehension

Consider the following translation:

<John doesn't believe that Kate thinks.

>~ exists(U:o,be 1ieve(j,U,!)&all(I:s,true(U,I)<=> think(k,I)))

=al1(U:o,al1(I:s,t rue(U,I)<=> think(k,I))=>'believe(j,U,!))

Comprehension is necessary to ensure the existence of a proposition that Kate thinks so that John

could have believed it and the sentence cannot be vacuously true.

Observe that there is a dual approach to the one adopted here, in which the translations are
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<John believes that Kate thinks.

>al1(U:o,al1(I:s,t rue(U,I)<=> think(k,I))=>believe(j,U,!))

<John doesn't believe that Kate thinks.

>~ all(U:o,all(I:s,true(U,I)<=> think(k,I))=>be1ieve(j,U,!))

=exists(U:o,~believe(j,U,!)&all(I:s,true(U,I)<=> think(k,I)))

In the dual approach the polarities in which extensionality and comprehension play their roles are

reversed. I have adopted the earlier approach because conjunction is commutative and I prefer to

write the conjuncts the other way around, with John believes before that Kate thinks.

4.3. Comprehension Unconstrained

It is clear that the first-order comprehension axioms supply enough propositions, properties,

and quantities to fulfill the roles they actually play in TMS. However it has often been observed

that whereas there are only ^ propositions definable by an open sentence ()>, there are 2&0
propositions if there are ^ indices (and there are at least indices). Following the idea of
(Henkin 1950), the TMS semantics only needs to ask for enough propositions in DQ to satisfy all
instances of the first-order comprehension schema but let's briefly aim for Dq = P(DS)- Using
second-order predicate logic, let [Sl,...,Sn] be the type of predicates of n-tuples of individuals

having the sorts SI through Sn. These three axioms then suffice:

Second-Order Comprehension Axioms

al1(P:[s],exis ts(U:o,al1(I:s,true(U,I)<=>P(I)))

a 11 (P: [e,s],exists(V:p,a 11(X:e,a 11(I:s,ppty(V,X,I)<=>P(X,I))))

all(P:[p,s],exists (W: q,all(V:p,all(I:s,qtty (W,V,I)<=>P(V,I))))

In second-order logic a finite axiomatisation is therefore achievable. However these axioms

only "work" in so far as second-order logic itself can be formalised. Given the standard semantics

for type-theoretic languages they say all that one would wish but the problem of what sets there are

is merely thrown back to the problem of what predicates P there are. To appreciate this, note that

the usual proof theory would provide the following comprehension schema for predicates:
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Arbitrary-Order Comprehension Axioms

exis ts(P: [SI Sn] ,all(Tl :S1 a 1 1 (Tn : Sn, P(T1 Tn )<=>«>) . . . ))
; no free P in <j)

Clearly from a theorem-proving point of view little progress has been made since the system must

still process an infinity of axioms. From an ontological point of view the position is much worse.

In the recommended first-order comprehension schemas the meta-variable <)> obviously ranges

over first-order sentences but in the above schema it is far from obvious what should be allowable in

<)>. Allowing only first-order sentences repeats the proof-theoretic capabilities of the purely first-

order system but seems unnatural now that a language is being used in which quantification over

predicates is provided. Allowing all second-order sentences yields a more powerful system

analogous to Morse-Kelley set theory. Alternatively the arbitrary-order comprehension schema

could be considered to have instances in a third-order, omega-order, or even transfinite-order

language, yielding extra sets for each increase in order. There is nowhere to stop; this is a

consequence of the incompleteness of second-order logic. Furthermore there are other second-order

principles, such as the axiom of choice, which are independent of comprehension and which it is

unclear whether to take or leave. That these considerations have no relevance to linguistics suggests

that second-order logic is too expressive for TMS.

4.4. Metatypes

It is not without precedent in computer science to want to represent an uncountable number of

objects: real numbers are approximated by floating-point numbers. So although there are too many

second-order predicates, I will proceed by assuming that there are enough abstract predicates for the

first-order comprehension schemas because these suffice in practice. Let's defer the internal

arrangement of abstract predicates and first consider their interface with the rest of TMS. It is

obviously necessary to extend the language output by the parser to accommodate them. Note that in

the language from the parser all variables are bound and sorted. Note also that in the second-order

comprehension axioms the predicate variables are outermostly universally quantified and unsorted*.

* Notwithstanding that they have second-order types, such types are necessarily not sorts. To allow otherwise
would make predicates into individuals and hence admit Russell's paradox.
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Therefore let free variables in the extended language be implicitly universally quantified and

unsorted so that they can have abstract predicates within their range. Now it is possible to cover

comprehension without clashing with anything in the language output by the parser.

Furthermore it is very convenient to make relations in the output from the parser more

accessible in the extended language. Relations can easily be construed as unsorted objects of

another kind. It must be understood immediately that this move is not essential in principle. It is a

purely syntactic convenience for reducing a finite number of cases (the semantic vocabulary of the

fragment) to only three cases (arity still being kept distinct). All relation variables are free variables

because bound variables are always sorted individual variables in TMS. Unlike abstract predicates,

relations have no comprehension principles to satisfy and no terms outside of the vocabulary. Thus

the semantic importance of construing relations as objects is minimised.

Every relation in the output from the parser is to be retired into the first argument position of

the '$' predicate of the appropriate arity.

EXAMPLE 31

<Mary found the park and walked in it.

flOl 0

I fO

I f 2

I

the

park
mary
f 8 f5I find

I he(0)
fOI walk

I f51 in

I I he(0)

>exis t s(XI:e,a 11(X2:e,park(X2,!)<=>X1=X2)&
exis t s(12:s,I2<!&find(m,Xl,12)&exis t s(V3:p,in(m,V3,X1,12)&
a 11(X4:e,all(I5:s,pp ty(V3,X4,15)<=>walk (X4,15))))))

=exists(Xl:e,all(X2 :e,$(park,X2,!)<=>$(=,XI,X2))&
exists(12:s,$(<,12,!)&$( f ind,m,Xl,12)&exists (V3 : p,$(in ,m, V3 ,X1,12)&
al1(X4:e,all(I5:s,$(ppty,V3,X4,I5)<=>$(walk,X4,I5))))))

This new notation will be the usual one for the rest of the chapter.

Having both relations and abstract predicates as free and unsorted variables raises the question

of how they are to be distinguished. The answer comes in a broader context by being precise about



85

the full extended language suitable for automatic theorem proving in TMS. The usual metalanguage

in which pure first-order logic is described only distinguishes between sentences and terms a but

TMS is an applied first-order logic in which terms can be further subclassified in the metalanguage.

Altogether nine metatypes will be used, comprising: truth valued sentences sent; sorts of individuals

sort; individuals ind which are sorted objects; 2-place, 3-place, and 4-place relations between

individuals rel2, rel3, and re14; abstract predicates of lists of individuals abs; locations of

individuals in lists loc; and lists of individuals indlist which represent environments. All of these

have been met and motivated before except for loc and indlist which will play a supporting role

internal to the arrangement of abstract predicates.

Metatypes can be thought of as intermediate symbols in the phrase structural synthesis of an

object language. With their aid the well-formed formulas (sentences and terms) of TMS will be

unambiguously specified.

Sentences

0, 1 , sent, (sent & sent), (sent v sent), (sent => sent), (sent <=> sent),
all (x>: sort, sent) , exists (v: sort, sent) , $ (re/2 , ind, ind) , $ (rel3 , ind, ind, ind) ,

$(rel4 , ind, ind, ind, ind) , (abs .. indlist), get {loc, indlist, ind), (sort . : ind).

Because the n-place relations rein which were previously taken as primitive predicates have

now been retired from that role, there is plenty of room for new primitive predicates to be

(unconfusingly) introduced to help the theorem prover. Only six will be required altogether. 2-

place, 3-place, and 4-place relational predications have already been discussed. Abstract predication

(..) and environmental selection (get) help to arrange for axiom schemas. With respect to a list of

individuals, associates abstract predicates with sentences and 'get' associates locations with

individuals. Finally sortal predication (.:) is not required unless quantifiers are to be eliminated as in

the reduction to Kowalski form. Using free variables and Skolem terms can be assigned sorts.

Individuals are sorted into entities, propositions, properties, quantities, and indices.

Sorts

e , o , p , q , s .

In the language with sorting quantifiers the only individuals required by the SMG fragment are

Here and Now (the local index), Bill, John, Kate, and Mary. In the Kowalski-form language new
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individuals are introduced by Skolem functions and those associated with the TMS axioms will be

characterised and given standard names in due course.

Individuals

!, b, j, k, m, ...

Binary relations follow the fragment. Note the unexceptional syntax of and 'true'.

2-Place Relations

=
, <, child, fish, horse, live, man, mermaid, park, pen,
red, run, talk, think, true, unicorn, walk, woman.

Ternary relations follow the fragment. Note the unexceptional syntax of 'ppty' and 'qtty'.

3-Place Relations

alleged, assert, believe, catch, conceive, date, deny,
eat, find, know, lose, love, ppty, prove, qtty, rapid,
slow, tall, try, voluntary, wish, worship.

Quaternary relations follow the fragment.

4-Place Relations

about, in.

It appears that there are also 1-place and 5-place relations in full English. For example, it

rains could translate to $(rain,!) and John bets Mary a pound that it will rain could roughly

translate to $(betj,m,w,u,!) where 'w' is a pound and 'u' is the proposition that it will rain. This

poses no theoretical problems.

4.5. Equality

One should not lose sight of the fact that the logical extensions proposed in this chapter have

the sole purpose of supporting TMS in an automatic theorem proving setting. Therefore the only

kind of equality that is interesting is equality between individuals as it arises in the unextended

theory. Equality between abstract predicates, for example, is of no concern nor is there any attempt

at completeness in these extensions nor even a model theory for them. They remain practical

arrangements. A good example of their utility as such is the way in which the retirement of

relations into '$' predications simplifies the arrangement of the equality axioms.
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Equality Axioms (Version 1)

$(=,T,T)

($(=,T1,H1) & $(=,T2,H2)) =>

($(R,T1, T2) => $(R,H1,H2))

(S(=,T1,H1) & $(=,T2,H2) & $(=,T3,H3)) =>

($(R,T1,T2,T3) => $(R,H1,H2,H3))

($(=,T1,H1) & $(=,T2,H2) & $(=,T3,H3) & $(=,T4,H4)) =>

($(R,T1,T2,T3,T4) => $(R,H1,H2,H3,H4))

Note that R can be instantiated to '=' itself in the second axiom.

4.6. Temporal Anteriority

The main discussion of this business is in section 3.3.

Temporal Anteriority Axioms

'

$(<,I.I)

($(<,I,J) & $(<,J,K)) => $(<,I,K)

($(<,I ,K) & $(<,J,K)) => ($(<,I,J) v $( = ,I,J) v $(<,J,I))

This irreflexive, transitive, and left linear relation is of a more general form than that required

by the semantics of tensed verbs because its defining axioms are stated using unsorted free variables

of metatype ind and therefore all individuals are ordered whereas the only individuals which really

need to be ordered are those of sort 's\ the indices. It is a harmless superfluity which lends

simplicity and, I hope, efficiency to the arrangement.

4.7. Comprehension Arranged

Methods of extending TMS for automatic processing have now been developed to a sufficient

level for the schematic axioms to be represented in a finite database. The basic idea is that a

sentence schema <}> with free variables i)j through i>n be represented by an abstract predication

P..[\)j,...,un]. The globally free variable P of metatype abs is predicated of a single argument which
is a list, expressed in Prolog list notation, of individual variables. The internal structure of abstract

predicates (and indeed of lists) will soon be disclosed but need not be known to understand this.
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The extended system has a pleasing modularity.

Abstract Comprehension Axioms

exists(U:o,all(I:s,$(true,U,I)<=>P..[I]))

exists(V:p,all(X:e,all(I:s,$(ppty,V,X,I)<=>P.. [X,I])))

exi s t s(W: q, al1(V: p,a 11(I:s,$(qt ty ,W, V,I)<=>P..[V,I])))

This formulation is halfway between the first-order and second-order comprehension axioms

presented previously. Its effect is to arrange for the first-order schemas or, equivalently, the three

second-order axioms if the arbitrary-order schema has <(> restricted to first-order sentences. It is

analogous to von Neumann-Bernays set theory in its formulation without any class quantifiers.

4.8. Equality Rearranged

There is also an axiom schema of equality which is sometimes used instead of the axioms of

equality special to any particular theory. It is

T=H => => «.JJ)
where the result of replacing all free occurrences of the variable by the term a in the sentence <}>

(with the usual possible renaming of bound variables in <|>) has been abbreviated to

In TMS, this schema can also be given a finite form using abstract predicates.

Equality Axioms (Version 2)

$(=,T,T)

$(=,T,H) => (P..[T] => P..[H])

It is unclear whether this arrangement is preferable to the version 1 axioms replacing equals for

equals in rel2, rel3, and re14 arguments. Perhaps it is a matter for experiment.

4.9. Theory of Abstract Predicates

The three abstract comprehension axioms have been carefully crafted for use in automatic

theorem proving. For pragmatic reasons their implicitly universally quantified free variables over

abstract predicates are meant to be less demanding than explicit second-order universal
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quantifications. The arbitrary-order comprehension schema is impredicative because <J> can contain

higher-order quantifications. Furthermore it is always incomplete because there is no maximal-order

logic to exhaust the complexity of predicates. However the aim here is only to arrange for the

first-order comprehension schemas; hence abstract predicates have only to cover the predicative

arbitrary-order comprehension schema with <\> restricted to first-order sentences. That amounts to a

portion of second-order logic for which this section effectively provides a complete finite

axiomatisation.

Much of TMS can be explained without a structural description of abstract predicates but

there need be no mystery about them. They simply abstract over the sentences (closed or open) of

the unextended language from the parser. Here are the terms:

Abstract Predicates

and (abs,abs), do(rel2, loc, loc), do (reL3 ,loc,loc,loc), do (rel4 ,loc ,loc ,loc ,loc) ,

every (sort,abs), if (abs,abs), i f f (abs ,abs), no, not (abs), or(abs,abs),
some (sort, abs), yes.

The most difficult problem in the theory of abstract predicates is that of abstraction over

terms, especially bound variables, as they occur in the unextended language. The simplest solution

seems to be to use De Bruijn numbers to represent bound variables as described in (Curien 1986)

for the lambda calculus. Consider a translation of Mary found the park and walked in it.

] x [Vy [(PARK y !) <-> (x=y) ] A i j [ (j <!) A [(FIND x M j) A (IN x WALK M j ) ] ] ]

De Bruijn dropped the alphabetic variables and used numbers as indicated by the following formula:

] [V [(PARK 1 !) <-> (2=1)] A ] [ (1<! ) A [(FIND 2 M 1) A (IN 2 WALK M 1)]]]

The binding for each variable can be found by counting outwards upto its number of lambdas or

quantifiers. This technique has been adapted to TMS. The essential idea is to drop variables from

quantifiers under abstraction and to abstract each term into the location of an individual in a list of

individuals corresponding to the dropped variables in scope. For a bound variable this will be its

position in the list expressed as a Peano numeral in the sequence: i, s(i), s(s(i)), etc. Counting starts

from position one. For a constant or free variable a it will be the immediate location k(a).

Locations

i , k(ind), s (loc) .
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The final metatype in the theory is for lists of individuals. These are the objects of which

abstract predicates are predicated. The well-known list notation of Prolog is used with the usual

abbreviations such as [a,p] for [al[pi[]]].

Lists of Individuals

[ ] , [ ind I indlist ] .

Every well-formed formula in the output from the parser can be encoded into an abstraction

term.

EXAMPLE 31

<Mary found the park and walked in it.

flOl 0

I fOI the

I I park
I f2 I mary
I I f8 I f5 I find

I I I I he(0)
I I I fOI walk

I I I I f51 in

I I I I I he(0)

>ex i s t s (XI:e,a 11(X2:e,park(X2,!)<=>X1=X2 )&
exis t s(12:s,I2<!&f ind(m,Xl,I2)&
exists (V3 : p, in(m,V3 ,X1.12)&
a 11(X4 :e,all(I5:s,ppty(V3,X4,I5)<=>wa1k (X4,15))))))

=some(e,and(every(e,iff(do(park,i,k(!)),do(=,s(i),i))),
some(s,and(do(<,i,k(!)),and(do(find,k(m),s(i),i),
some (p,and(do(in,k (m),i,s(s(i)),s(i)),
every(e,every(s,iff(do(ppty,s(s(i)),s(i),i),do(walk,s(i),i)))))))))))..[]

It is not that I want to duplicate the means of expression in TMS for fun. The point is that

any sentence can occur for $ in the comprehension schemas. The argument list will usually be

non-empty because of the initial dependence of <j> on its environment

The concretion axioms arrange abstraction terms as an inner logic. They explicitly formalise

the Tarskian semantics of the unextended language in the extended language. Those for connectives

pass the environment down into subexpressions.
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Concretion Axioms (Connectives)

(1) yes..L

(2) " no..L

(3) not(P) . .L <=> " P. .L

(4) and(P,Q). . L <=> (P..L & Q. .L)

(5) or (P,Q). .L <=> (P..L v Q. .L)

(6) if(P,Q)..L <=> (P..L => Q. .L)

(7) iff(P,Q)..L <=> (P. .L <=> Q. .L)

Those for quantifiers pass an extended environment down.

Concretion Axioms (Quantifiers)

(8) every(S,P)..L <=> a 11( T:S, P..[TI L] )

(9) some(S,P)..L <=> exists(T:S, P. .[TIL] )

Those for relations dispense with the environment after use.

Concretion Axioms (Relations)

(10) (get (Ol, L, T1 ) & get (C)2,L,T2)) =>
(do(R,Ot ,02)..L <=> $(R,T1,T2))

(11) (get (Ol,L,T1) & ge t(02,L,T2) & get(03,L,T3)) =>

(do(R,01,02,03)..L <=> $(R,T1,T2,T3))

(12) (get(Ol,L,T1) & ge t(02,L,T2) & get(03,L,T3) & get(04,L,T4)) =>
(do(R,01,02,03,04)..L <=> $(R,T1.T2.T3,T4))

Those for terms look up individuals at locations in the environment.

Concretion Axioms (Terms)

(K) ge t( k(T), L, T )

(I) get( i, [TIL], T )

(S) get( O, L, T ) => get( s(O), [HIL], T )

There are other approaches to the formulation of an inner logic. Instead of De Bruijn

numbers it is possible to use inner variables as in (McCarthy 1979) which complicate environments,

or to use combinators as in (Barnden 1983) which obscure abstract predicates. It is important to be

neither inefficient nor impenetrable and the above method is a happy compromise.
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4.9.1. Brace Abstraction

This subsection is concerned with two pieces of notation which are very helpful for

understanding the system but which do nothing to increase its power. Let's introduce the terms

{L (J)} and a?L to abbreviate abstract predicates and locations respectively where L is a list of

individual variables. They are called the abstraction of L from 4>, and the location of a in Lyf The
fundamental statements of their behaviour are u>k«.rt <}> 'v- ^or«iuWe

{LAJ..L <=> A
and

get( T?L, L, T )

They are not first-order functions but metalanguage operators which are defined from previous

simpler terms. The following definitions provide a brace abstraction algorithm for eliminating them

from well-formed formulas of the unextended language. Those for connectives recurse down into

subexpressions.

Abstraction Cases (Connectives)

(1) {L 1} = yes

(2) {L 0} = no

(3) {L -A} ee not ( {L A) )

(4) {L (A & B)) e= and ( {LA}, {LB} )

(5) (L (A v B)} ee or ( {L A), {L B} )

(6) {L (A => B)} ee if( {L A), (L B) )

(7) (L (A <=> B)} ee iff( {L A) , {LB} )

Those for quantifiers recurse with an extended variable list.

Abstraction Cases (Quantifiers)

(8) {L a 11(T:S,A)} = every( S, {[TIL] A) )

(9) {L exis t s(T:S,A)} = some( S, {[TIL] A) )

Those for relations recurse down into the variable list.
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Abstraction Cases (Relations)

(10) {L R(T1 ,T2)} = do( R, T1?L, T2?L )

(11) {L R(T1 ,T2 ,T3)} = do( R, T1?L, T2?L, T3?L )

(12) {L R(T1,T2,T3,T4)} = do( R, T1?L, T2?L, T3?L, T4?L )

Those for terms bottom out eventually with appropriate locations.

Abstraction Cases (Terms)

(K) T?L = k(T) if cons t an t (T: S) or L=[]

(I) T?[TIL] = i

(S) T? [HI L] = s (T?L) if

These cases cover the entire unextended language suggesting that the arrangement is complete

for the first-order comprehension axiom schemas.

4.10. Sort Reduction and Quantifier Removal

Pure sort reduction to standard first-order logic is easily arranged. Introduce a new primitive

predicate (.:) corresponding to sortal predication and consider sorted quantifications to be

abbreviations for relativised quantifications:

all( u:S, <j> ) = all(e, S.:o=><t> )

exists( t>:S, <h ) = exists( o, S.:t>&4> )

However pure sort reduction violates the simplifying principle that exactly the bound variables are

sorted while exactly the free variables are unsorted. These artificial constraints on binding and

sorting are too useful to abandon.

If we want to use the resolution method of theorem proving then quantifiers must be removed

entirely and sort reduction can be done simultaneously with that. The resulting quantifierless

formulation uses sortal predications, the implicit universal quantification of free variables, and

Skolem functions. It is appropriate to identify which Skolem terms arise from the axioms of TMS.

Individuals

!, b, choose (sort,abs, indlist), fai 1 (sort,abs, indlist),
io (ind,ind), \p(ind,ind), i q {ind, ind) , j, k, m, u (abs),
\(abs), vq(ind,ind), w(abs), xp(ind,ind) .
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The extensionality axioms give rise to 'io\ 'xp', 'ip', 'vq', and 'iq'. If U1 and U2 are

different propositions then io(Ul,U2) is an index at which they differ in truth value. Properties are

served similarly by 'xp' and 'ip', and quantities by 'vq' and 'iq'. The comprehension axioms give

rise to 'u', 'v', and 'w'. If P is an abstract predicate then u(P), v(P), and w(P) are the corresponding

proposition, property, and quantity whichever of these notions makes sense. For example, the

property of loving Mary is

v ({ [X, I ] love(X.m.I)})

=v(do(love,i,k (m),s(i)))

If John has this property then

$(pp ty,v(do(love,i,k(m) ,s(i))),j,!)

=do(love,i,k(m) ,s(i))..[j,!]

=$( love , j ,m, ! )

Note that if P is "garbage" then not much can be proved about v(P). The concretion axioms (8) and

(9) give rise to 'fail' and 'choose' respectively. If S is a sort, P is an abstract predicate, and L is a

list of individuals then choose(S,P,L) is an individual of sort S which witnesses P in the

environment L; and fail(S,P,L) witnesses not(P) similarly. For example, choose(e,do(child,i,!),[]) is

the most childlike entity.

The constants 'j', 'm', 'b', 'k', and '!' also have associated axioms but these are rather trivial.

Because constants are basically unsorted in the first-order languages, they must be deliberately

assigned sorts as necessary. In the language of the translator the following circumlocutions do the

job:

Sortal Assignment Axioms (Sorted Language)

exists( X:e, $(=,X,j) )

exists( X:e, $(=,X,m) )

exists( X:e, $(=,X,b) )

exists( X:e, $(=,X,k) )

exists! Irs, $(=,I,!) )

These are the last axioms of TMS. In the language of the theorem prover the non-emptiness of each
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sortal domain is axiomatised by the provision of some terms of that sort. However such terms

already come from the TMS axioms by the removal of existential quantification. Although they

come from almost everywhere, they are collected together here for exhibition.

Sortal Assignment Axioms (Unsorted Language)

e.:j & e.:m & e.:b & e.:k & s.:!

(o.:U1 & o.:U2) => s.:io(Ul,U2)

(p.:VI & p.:V2) => (e.:xp(VI,V2) & s.:ip(Vl,V2))

(q . :W1 & q.:W2) => (p . : vq(Wl ,W2) & s . : i q (W1 ,W2))

o.:u(P) & p.:v(P) & q.:w(P)

S.:choos e(S,P,L)

S.:fai1(S,P,L)

The correct arrangement of sorts shown above is vital for the consistency of the system. For

example, the argument of Russell's paradox can be used to prove that the proposition of

{[T] ~true(T,T)} cannot be an index.

Theorem

s. :u(not(do(true, i , i )) )

However u(P) is a proposition for all abstract predicates P, that is for all P of metatype abs. Note

that u(man) is not even a term of the theory because 'man' has the metatype rel2. The management

of metatypes by the implementation has not been explicitly described but it seems reasonable to

suppose that a regime similar to that for polymorphic types (Mycroft and O'Keefe 1983) would not

go wrong.
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5. Conclusion

It is clear that most difficulties with Montague Grammar can be resolved by the methods of

this thesis. The technique of letting the fragment, rather than intensional logic, determine the

complexity of the implementation has been very rewarding. The problems of lambda-conversion

and substitution of equivalents into opaque contexts have been reduced to easily processed first-

order forms. A comprehensive axiom system has been introduced and it was shown how the

schematic axioms can be finitely represented in a satisfactory manner. The goal of constraining

Montague Grammar for use in computational linguistics is probably unachievable if the above

methods are insufficient because it seems impossible to get significantly closer.

The specific axioms proposed here are the easiest to explain although it should not be

misunderstood that they are the only ones possible. Minor increases in efficiency may be available

with some variations. For example, the well-known fact that a single sentential connective and

quantifier suffice could perhaps be used profitably in the theory of abstract predicates. Some

experimentation with other axiomatisations may be worthwhile but it is hard to imagine a major

advance here.

The remaining place where difficulties can be expected to arise is in the control strategy of

the theorem prover. It would not be surprising if the strategies developed for mathematics were

inappropriate for semantics. Mathematical proofs tend to involve lengthy deductions from few

axioms whereas semantic ones have shorter deductions from more axioms. This characteristic is

shared with database applications but these usually restrict the logic so that certain questions which

can be asked of the system cannot be asserted to it as facts. For example, disjunctive facts may not

be assertable to such a system. By allowing full first-order logic, my system of semantics is

somewhere between mathematics and such databases. It does not seem unreasonable to hope that a

workable question-answering system will be constructed in its entirity after practical experience with

this kind of theorem proving has led to some insight into its desirable behaviour.
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1. Miscellaneous Programs

1.1. Operator Declarations

op( 1200, x fx, >> ). % Label led Rule

op( 1150, X fx, <- ) • % Condition

op( 850, xfx, <=> ). % Equivalence
op( 850, X fx, => ) ■ % Implication, Combination
op( 800, x fy, v ) • % Di sj unc tion
op( 800, xfy, & ). % Conjunct ion
op( 750, fy.

~ \ % Negation
op( 700, xfx, % Abstract Predication

op( 700, xfx. % Sortal Predication

op( 700, xfx. : = ) • % Lexical Assignment
op( 700, X fx, *= ). % Definition of Lexical Abbreviation

op( 500, xfx. - ). % List Difference

op( 500, yfx. + ) • % Concatenation

op( 450, X fx, % Translation, Sorting
op( 450, x fy, # ). % Arc Construction

op( 400, xf, pn ) . % Pronoun Marking
op( 400, X fx, ■ / )• % Alternative Words

op( 400, xf ,

* ) % Lexical Abbreviation

op( 100, X fx,
* \ % Application of Syntactic Combination

to List of Syntactic Structures

1.2. Top Level Driver

go( Opt ) : -

abo1ish( option , 1 ),
assert( option(Opt) ),
go-

go : -

repeat,
nl , writ e( < ),
readwords( Buffer )
process( Buffer ).

9

process( [ ] ) .

process( Buffer ) : -

parse( Buffer, Str, A ),
closed( Str ),
n1, pp( Str ),
option( Opt ),
repor t( Opt, A ),
get_return,
! >

fail.

get_return :-

% Instructions: A procedure call go(s), go(k),
% go(a), or go(n) runs the system, showing the
% translations in standard form, Kowalski form,
% abstracted form, or no form respectively.
% After the prompt '<' enter the words to be
% parsed followed by .RETURN or enter just
% .RETURN to quit. After a translation enter
% ;RETURN to seek another parse or enter RETURN
% to abandon that sentence. The procedure call
% 'go' initially runs as go(s) but subsequently
% reruns the system as it last ran.
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get0( 0*
)•

get_return : -

skip( 0'
).

fai 1 .

repor t( s, A ) : -
standard( A ),
n 1 , write( > ), write( A ).

repor t( k, A ) :-
kf( A, K ).
kf_pp( K ).

repor t( a, A ) : -
standard( A ),
abs tract(A, P ),
n1, write( > ), write( P..[] ).

repor t( n, A ) :-
write( ? ) .

option( s ).

1.3. English Word Reader

I readwords( Ws )
I get( C ),
I readchars( C, Cs ),
I ! ,

I words( Ws, Cs, [] ),
I ! .

I

I readchars( 0'., [] )
I skip( 0'
I )•
I readchars( C, [CICs] )
I get0( CI ),
I readchars( CI, Cs ).
I

I words ([WIWs ] ) --> word(W), !, blanks, words(Ws).
I words([]) --> [].
I

I word(W) --> [C], {1c(C.D)}, !, alphas(Cs), {name(W, [DICs])} .

I

I alphas([DICs]) --> [C], (lc(C,D)}, !, alphas(Cs).
I alphas(Cs) --> ", !, alphas(Cs).
I alphas([]) --> [].
I

I blanks --> [C] , {C=<0' }, !, blanks.
I blanks --> [ ] .

I

I 1c( C, C ) :-

I C >= 0'a,
I C =< 0'z.
I 1c( C, D ) :-

I C >= 0'A,
I C =< 0'Z,



plus( 0'A, N, 0'a ),
p1us( C, N, D ).

1.4. Syntactic Structure Closure Check

I closed( Str ) : -

I closed( Str, [] ), ! .

closed( Root, _ ) :-

atom( Root ).
closed( he(N), Env )

member( N, Env ).
closed( Fn'Args, Env )

\+ closer( Fn ),
closed 1is t( Args, Env ).

closed( Fn'[NIArgs], Env )
closer( Fn ),
closed 1is t( Args, [NIEnv] ).

closedlist( [], _ ).
closedlist( [ArglArgs], Env )

closed( Arg, Env ),
closed 1 is t( Args, Env ).

closer( f3 ).
c loser ( f10 ) .

1.5. Syntactic Structure Pretty Printer

I pp( Str ) : -
I pp( Str, 0, n, y ), !.
I

I pp( Fn'Args, Depth, X, Y )
I write_bars( X, Depth ),
I write_fbar( Fn ),
1 pp1is t( Args, s(Depth), n, Y
I pp( Root, Depth, X, y ) :-
I write_bars( X, Depth ),
I wr it e( ' * ),
I writ e( Roo t ),
I nl .

I

I pp1is t ( [] , _, X, X ).
I pplist( [ArglArgs], Depth, X, Z )
I pp( Arg, Depth, X, Y ),
I pp1is t( Args, Depth, Y, Z ).
I

I write_bars( n, _ ).
I write_bar s( y, 0 ).
I write_bars( y, s(Depth) )
I wr i t e ( ' I ' ),
I write_bars( y, Depth ).
I

I write_fbar ( f10 ) : -

I wr ite( * f10 I ).



I write_fbar( Fn ) : -
I wr it e( ' ' ) ,

I wr i t e ( Fn ) ,

I writ e( ' I ' ).

1.6. First-Order Logic Variable Standardiser

I s t andard( Phi ) :-

I s t andard( Phi, 1 ), !.
I

I standard( "Phi, N ) :-
I s tandard( Phi, N ).
I standard( Phi&Psi, N ) :-
I s t andard( Phi, N ),
I s t andard( Psi, N ).
I standard( Phi v Psi, N )
I s t andard( Phi, N ),
I standard( Psi, N ).
I standard( Phi=>Psi, N )
I standard(Phi,N),
I s t andard( Psi, N ) .

I standard( Phi<=>Psi, N )
I s t andard( Phi, N ),
I standard( Psi, N ).
I standard( a 11(Var:Sort,Phi), N ) :-
I variable( Sort, N, Var ),
I succ( N, M ),
I s t andard( Phi, M ).
I standard( exists(Var:Sort,Phi), N )
I variable( Sort, N, Var ),
I succ( N, M ),
I s t andard( Phi, M ).
I standard( Phi, N ).
I

I variable( Sort, N, Var )
I prefix( Sort, Char, _),
I name ( N, NS t r ),
I name( Var, [CharlNStr] ).
I

I skolem_term( Sort, Args, Alpha )
I retract( skolem(N) ),
I succ( N, M ),
I assert( skolem(M) ),
I prefix( Sort, _, Char ),
I name ( N, NS t r ) ,

I name( Fun, [CharlNStr] ),
I Alpha [FunlArgs],
I

I s ko1em( 1 ).
I

I prefix( e, 0'X, 0'x ).
I prefix( s, 0'I, O'i ).
I prefix( o, 0'U, 0'u ).
I prefix( p, O'V, O'v ).
I prefix( q, 0'W, O'w ).
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1.7. Kowalski Formatter

I kf( Phi, K ) :-
I findall( X, literals( Phi, work(1 , [],X-[]/[] ) ), K ).

I literals( 0, Wark )
I ! , emp t y ( Wo r k ).
I 1it e r a 1s( 1, Wo r k ) : -

I !, fail .

I literals( Phi&Psi, Wark )
I !, conjuncts( Phi, Psi, Work ).
I literals( Phi v Psi, Work )
I !, disjuncts( Phi, Psi, Work ).
I literals( Phi=>Psi, Work )
I !, disjuncts( "Phi, Psi, Work ).
I literals( Phi<=>Psi, Work )
I !, conjuncts( Psi=>Phi, Phi=>Psi, Work ).
I literals( a 11(Var:Sort,Phi), work(N,F,L) )
I variable( Sort, N, Var ),
I succ( N, M ),
I !, disjuncts( "(Sort.:Var}, Phi, work(M, [VarIF],L) ).
I literals( exists(Var:Sort,Phi), Work )
I Work = work(_,F,_),
I skolem_term( Sort, F, Var ),
I !, conjuncts( {Sort.:Var}, Phi, Work ).
I 1 i tera 1 s( "0, Work ) :-

I !, fai1.
I 1 i t e r a 1 s ( "1, Work )
I ! , emp t y ( Wo r k ).
I 1itera 1s( " "Phi, Work ) :-

I !, literals(Phi, Work ).
I literals( "(Phi&Psi), Work )
I !, disjuncts( "Phi, "Psi, Work ).
I 1it e r a 1s ( "(Phi v Psi), Wo r k ) : -
I !, conjuncts( "Phi, "Psi, Work ).
I literals( "(Phi=>Psi), Work )
I !, conjuncts( Phi, "Psi, Work ).
I literals( "(Phi<=>Psi), Work )
I !, conjuncts( Phi v Psi, "Phi v "Psi, Wark ).
I literals( "a 11(Var:Sort,Phi), Work )
I Work = work(_,F,_),
I sko1em_term( Sort, F, Var ),
I !, conjuncts( (Sort.:Var), "Phi, Work ).
I literals( "exists(Var:Sort,Phi), work(N,F,L) )
I variable( Sort, N, Var ),
I succ( N, M ),
I !, disjuncts( "{Sort.:Var}, "Phi, work(M, [VarIF],L) ).
I 1 it e r a 1 s ( "Phi, Wo r k ) :-

I predication( Phi, Psi ),
I !, antecedent( Psi, Wark ).
I literals( Phi, Wark )
I predication( Phi, Psi ),
I !, consequent( Psi, Wark ).

I ernpty( work(_,_,X-X) ).

I antecedent( Phi, work(_,_,C/[Phi I A]-C/A) ).
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consequent( Phi, workPhiIC]/A-C/A) ).

conjuncts( Phi, Psi, Work )
literals( Phi, Work ).

conjuncts( Phi, Psi, Work )
literals( Psi, Work ).

disjuncts( Phi, Psi, work(N,F,X-Z) )
literals( Phi, work(N,F.X-Y) ),
literals( Psi, work(N, F, Y-Z) ).

predication( {A}, A ).
predication( A, S(R,T1) )

relation( R, Tl:_, A ).
predication( A, $(R,T1,T2) )

relatione R, Tl:_, T2:_, A ).
predication( A, $(R,T1,T2,T3) )

relation( R. Tl:_, T2:_, T3:_, A ).
predication( A, $(R,T1,T2,T3,T4) )

relation( R. Tl:_, T2:_, T3:_, T4:_, A ).

1.8. Kowalski Form Pretty Printer

I kf_pp( K ) :-
I kf_pp( n, K ), !.
I

I k f_pp( _, [] ).
I kf_pp( n, [XIK] ) :-
I literals_pp( X ),
I kf_pp( y, K ).
I kf_pp( y, K ) :-
I nl ,

I kf_pp( n, K ).
I

I 1iterals_pp( []/[] )
I nl ,

I wr it e( 0 ) .

I literals_pp( C/A )
I literals_pp( +, C ),
I literals_pp( -, A ) .

I

I literals_pp( _, [] ).
I literals_pp( S, [PhilB] )
I nl ,

I writ e( S ) ,

I writ e( ' ' ),
I write( Phi ),
I literals_pp( S , B ) .

1.9. Brace Abstracter

I abs tract( Phi, P ) : -

I abs tract( [], Phi, P ), !
I



abs t r ac t ( L, 0, no ).
abs tractj L, 1, yes ).
abstract( L, "Phi, not(P) )

abstract( L, Phi, P ).
abstract( L, Phi&Psi, and(P,Q) )

abs tract

abs t r ac t

abstract( L, Phi
abs tract

abs tract

abstract( L, Phi
abs tract

abs tract

abstract( L, Phi<=>Psi, iff(P,Q) )
abs tract

abs tract

abs t rac t( L, all
abs tract

abstract( L, exi
abs tract

abstract( L, Phi
predication(
1 ocation

abstract( L, Phi
predicat
1 oca tion

location

abs t rac t( L, Phi
predicat
location

location

location

abstract( L, Phi
predication(
location

1 oca tion

location

1 oca tion

L, Phi, P ),
L, Psi, Q ).

v Psi, or(P,Q)
L, Phi, P ),
L, Psi, Q ).
>Psi, if(P,Q)
L, Phi, P ),
L, Psi, Q ).

L, Phi, P ),
L, Psi, Q ).
T:S,Phi), every(S,P) )
[TIL], Phi, P ).
ts(T:S,Phi), some(S,P) )
[TIL], Phi, P ).
do(R.Ol) ) :-

Phi, $(R,T1) ),
T1, L, Ol ).
do(R.Ol,02) ) : -

on( Phi , $(R,T1,T2) ),
Tl, L, Ol ),
T2, L, 02 ).
do (R.Ol ,02 ,03 ) ) : -

on( Phi, $(R,T1,T2,T3) )
Tl, L, Ol ),
T2, L, 02 ),
T3, L ,03 ).
do(R.Ol,02,03,04) )

Phi, $(R,T1,T2,T3,T4)
Tl, L, Ol ),
T2, L, 02 ),
T3, L, 03 ),
T4, L, 04 ).

location( T, L, k(T) )
cons t ant( T:_ );
L = [].

location( T, [TIL], i ).
location( T, [HIL], s (O) ) :

T \= H,
location( T, L, O ).

1.10. List Processing Utilities

appendlis t( [], [ ] ).
appendlist( [HIT], L ) :-

append 1is t( T, R ),
append( H, R, L ).

append( [], L, L ).
append( [HIT], L, [HIR] )
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append( T, L, R ).

member( X, [HIT] ) :-
X = H;
memb e r( X, T ).

select( X, [XIL], L ).
se1ect( X, [HIT], [HIL] )

se1ect( X, T, L ).
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2. The Axioms of TMS in Kowalski Form

I assume that the theorem prover will process a set of clauses, whose members are conjuncts

in Kowalski's normal form:

(<t>j & . . . & <fm) => (Vj V . . . V V(/n)

where <(>j and "vpj are predications. Interpret the empty conjunction as truth and the empty
disjunction as falsity.

Such clauses will henceforth be printed vertically, thus:

+ Vj

+ Vn
- *!

- <t)
vm

Clauses from the axiomatisation of TMS have been given mnemonic labels which roughly

have the forms t-name' for sortal assignments, 'name+' and 'name-' for clauses coming in

positive-negative pairs, and (when negative, for example) name' and 'name-' for clauses coming in

left-right pairs.

Clause Label

+ s.:io(Ul,U2) '+io'
- o. :U1
- o.:U2

Section and Explanation

4.1. Extensiona1ity: Propositions

+ $(true,U1,io(U1,U2) ) 'true+'
+ $(true,U2,io(Ul,U2))
+ S(=,U1,U2)
- o.:U1
- o.:U2

+ $(=,U1,U2) 'true-'
- o.:U1
- o. :U2
- S(true.Ul,io(Ul,U2))
- $(true,U2,io(Ul,U2))
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+ e.:xp(Vl,V2) '+xp' 4.1. Extensiona1ity: Properties
- p. :V1
- p.:V2

+ s.:ip(Vl,V2) '+tp'
- p. :V1
- p.:V2

+ $(ppty,VI,xp(Vl,V2),ip(VI,V2)) *ppty+'
+ $(ppty,V2,xp(Vl,V2),ip(Vl,V2))
+ $(=,V1,V2)
- p. :V1
- p. :V2

+ $( = ,VI,V2) 'ppty-'
- p. :V1
- p. :V2
- $(ppty,VI,xp(VI,V2),ip(Vl,V2))
- $(ppty,V2,xp(Vl,V2),ip(Vl,V2))

+ p.:vq(Wl,W2) "+vq' 4.1. Extensionality: Quantities
- q. :W1
- q. :W2

+ s . : i q (W1 ,W2) ' + i q '
- q. :W1
- q. :W2

+ $ (q 11 y ,W1 , vq (W1 ,W2) , i q (W1 ,W2)) ,qtty+'
+ $ (q t ty ,W2 , vq (W1 ,W2) , iq(Wl ,W2))
+ $ ( = ,W1 ,W2)
- q. :W1
- q. :W2

+ $( = ,W1 ,W2) 'qtty-'
- q. :W1
- q. :W2
- $ (q 11y ,W1, vq(W1 ,W2), iq(W1 ,W2))
- $(qt ty ,W2,vq(Wl ,W2), iq(Wl ,W2 ))

+ o.:u(P) '+u' 4.7. Comprehension: Propositions

+ $(t rue,u(P),I) 'u+'
- s . : I
- P.-[I]

+ P..[I] 'u-'
- s . : I
- $(t rue,u(P),I)

+ p.:v(P) '+v' 4.7. Comprehension: Properties

+ $(ppty,v(P),X,I) 'v+'
- e. :X
- s. :I
- P-.[X,I]
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P-. [X. I]
e. :X

s . : I

$(ppty.v(P),x,I)

q.:w(P)

$(q t ty,w(P),V,I)
P ■ :V
s. :I

P..[V,I]

P..[V,I]
P • :V
s. :I

$(q t ty,w(P),V,I)

$(=,T,T)

$(R,H1,H2)
$( = ,T1,H1)
$(=,T2,H2)
$(R,T1,T2)

$(R,H1,H2,H3)
$( = ,T1 ,H1)
$(=,T2, H2)
$( = ,T3,H3)
$(R,T1,T2,T3)

$(R,H1,H2,H3,H4)
$(=,T1,H1)
$(=,T2,H2)
$(=,T3,H3)
$(=,T4,H4)
$(R,T1,T2,T3,T4)

P -- [H]
$(=,T,H)
P.•[T]

$(<,I, I)

$(<,I,K)
$(<,I, J)
$(<,J,K)

$(<.I,J)
$(=,I.J)
$(<,J.I)
$(<,I,K)
$(<,J,K)

e. : j

'+w' 4.7. Comprehension: Quantities

'w+'

'

w- '

'=+' 4.5., 4.8. Equality: Reflexive

'2=-' 4.5. Equality: 2-Place Substitutive

'3=-' 4.5. Equality: 3-Place Substitutive

'4=-' 4.5. Equality: 4-Place Substitutive

4.8. Equality: Substitutive

4.6. Anteriority: Irreflexive

4.6. Anteriority: Transitive

'-k' 4.6. Anteriority: Left Linear

'+j' 4.10. Sortal Assignment: John

e. :m '-Hn' 4.10. Sortal Assignment: Mary
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e. : b

e. : k

s . : !

yes..L

no. . L

not(P)..L
P. .L

P. .L

no t(P)..L

and(P.Q) ..L
P. .L

Q. .L

P. .L

and(P.Q)..L

Q..L
and(P,Q)..L

or(P,Q)..L
P. .L

or(P,Q)..L
Q. .L

P. .L

Q. .L
or(P,Q)..L

if(P.Q).-L
P. .L

if(P.Q).-L
Q. .L

Q. .L
if(P.Q)..L
P. .L

if f(P,Q)..L
P. .L

Q. .L

if f(P,Q)..L
P. .L

Q. .L

P. .L

if f(P,Q)..L
Q. .L

' +b'

'+k'

'

+ ! '

'

yes + '

'no -'

'not+'

'not -'

4.10. Sortal Assignment: Bill

4.10. Sortal Assignment: Kate

4.10. Sortal Assignment: Here and Now

4.9.(1) Concretion: Truth

4.9.(2) Concretion: Falsity

4.9.(3) Concretion: Negation

'and+' 4.9.(4) Concretion: Conjunction

1
- and'

' and-'

'+or' 4.9.(5) Concretion: Disjunction

or +

'+if' 4.9.(6) Concretion: Implication

if+'

if-'

'+iff' 4.9.(7) Concretion: Equivalence

iff+'

iff'
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Q. .L
if f(P,Q)..L
P. .L

S.:fai1(S,P,L)

every(S,P). .L
P..[fai1(S.P.L)IL]

P..[TIL]
S. :T

every(S,P)..L

'iff-'

'+fail' 4.9.(8) Concretion: Universality

'every+'

'every-'

S.:choose(S,P,L) '+choose' 4.9.(9) Concretion: Existence

some(S,P)..L 'some+'
S. :T

P..[TIL]

P ..[choose(S,P,L)IL] 'some-'
s ome (S,P)..L

do(R,01,02). .L 'do2+'
get (Ol,L,T1)
get(02,L,T2)
$(R,T1,T2)

4.9.(10) Concretion: 2-Place Relation

$(R,T1,T2) 'do2-'
get(Ol,L,T1)
get(02,L,T2)
do(R,01,02). .L

do(R,01,02,03)..L 'do3+' 4.9.(11) Concretion: 3-Place Relation
get(Ol,L,T1)
ge t(02,L,T2)
ge t(03,L,T3)
$(R,T1,T2,T3)

$(R,T1,T2,T3) 'do3 -'
get (01,L,T1)
ge t(02,L,T2)
get(03,L,T3)
do(R,01,02,03) . .L

do(R,01,02,03,04)..L 'do4+' 4.9.(12) Concretion: 4-Place Relation
ge t(01,L,T1)
get(02,L,T2)
get(03,L,T3)
get (04,L,T4)
$(R,T1,T2,T3,T4)

$(R,T1,T2,T3,T4) 'do4-'
ge t(Ol,L,T1)
get(02,L,T2)
get(03,L,T3)
get (04,L,T4)
do(R.Ol ,02,03,04). .L
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+ get(k(T),L,T) 'k+' 4.9.(K) Concretion: Constant

+ get(i,[TIL],T) 'i+' 4.9.(1) Concretion: First Variable

+ get(s(O),[HIL],T) 's+' 4.9.(S) Concretion: Successor
- get(O,L,T)

To these permanent initial clauses will be added the clauses coming from the temporary

assumptions which happen to have been asserted.

EXAMPLE 31

<Mary found the park and walked in it.

flOl 0

I fOI the

I I park
I f2l mary
I I f8 I f5 I find

I I I I he(0)
I I I fOI walk

I I I I f51 in

I I I I I he(0)

/

+ e.:xl

+ $(park,XI, ! )
- e. :X1
- $(=,xl,Xl)

+ $( = ,xl,X1)
- e. :X1
- $(park,XI,!)

+ s . : i2

+ $(<•i2,!)

+ $(find,m, xl,i2)

+ p.:v3

+ $(in ,m,v3,xl,i2)

+ $(ppty,v3,Xl ,12)
- e. :X1
- s . :I2
- $ (walk,XI, 12)

+ $ (walk,XI , 12)
- e. :X1
- s. :I2
- $(ppty,v3,X1,12)

The system can then be queried by asserting the negation of the theorem to be proved and
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attempting to deduce the empty clause by resolution.

QUESTION 1

<Mary found an entity.

f2 I mary
I f51 find

I I fOI a

I I I entity

- s . : 11
- $(<,11,!)
- e. :X2
- $(find,m,X2,11)

The above four goals resolve against the fourth, fifth, first, and sixth clauses respectively in Example

31 to affirm the question "Is it the case that Mary found an entity?" meaning "Did Mary find

anything?". An extremely simple example has been chosen but the same system covers all of

Montague Grammar.


