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Abstract 

PART 1 

The tetrahaem cytochromes c3  are a group of proteins which were originally 
purified from the strictly anaerobic, sulphate-reducing bacteria. The proteins are small 
(84-117 residues), soluble and contain four covalently bound, bis-histidine ligated 
mesohaem LX prosthetic groups. 

A cytochrome c3  has been purified from the bacterium Shewanella sp. 
NC1MB400 and the gene encoding it, cycA has been cloned and sequenced along with 
some flanking sequence. The mature protein is 86 amino acids in length and contains 
four covalently bound haem groups, with a molecular weight of 11780 Da, which has 
been confirmed by electrospray mass spectrometry. The electronic absorption 
spectrum is characteristic of a low-spin c-type cytochrome with an cc-peak at 55mm. 
A redox titration of the four haems, yielded a pair of values at -60 mV and -200 mV, 
within the range observed for cytochromes c3. Resonance Raman spectra of the 
protein contain bands characteristic of low-spin haems, consistent with bis-histidine 
ligation for all haems. Electron paramagnetic resonance spectroscopy on the protein 
gave a single set of g-values at g=1.53, g=2.22 and g=2.83. The values are within 
the region observed for low spin, six coordinate, bis-histidine ligated haemoproteins. 
The one dimensional nuclear magnetic resonance spectrum of the protein contains 
well resolved haem methyl peaks, shifted to low field region by the paramagnetic iron 
centres. 

The deduced amino acid sequence from the cycA gene is 86 residues long for 
mature cytochrome c3  and has an additional 25 amino acid, periplasm directing 
presequence. The predicted sequence contains four, CXXCH haem binding motifs. 
This is consistent with the presence of four c-type haems in the mature protein. A 
total of eight histidines in the amino acid sequence is consistent with four bis-histidine 
ligated haems. Two additional reading frames, in the same orientation lie on either 
side of the cycA gene. The reading frames show sequence similarity with two 
cytoplasmic proteins and are clearly unrelated to cytochrome c3. Hence, no 
information about the physiological function of cytochrome c3  can be inferred. 

PART 2 

Flavocytochrome b2  (L-lactate: cytochrome c oxidoreductase (E. C. 1.1.2.3.)) 
is a homotetrameric enzyme from the mitochondria of the yeast Saccharomyces 
cerevisiae. Each monomer consists of an N-terminal cytochrome domain and a C-
terminal flavin domain, joined by a short flexible peptide. The haem domain has been 
identified as being mobile from the crystal structure of the Saccharomyces cerevisiae 
enzyme and a nuclear magnetic resonance study of Hansenula anomala 
flavocytochrome b2. The rate of flavin to haem electron transfer observed in the wild-
type enzyme is -1500 s'. This rate is lower than expected considering the distance 
between the cofactors is —10A. It has been postulated that mobility accounts for the 
lowered rate. A number of interdomain interactions are observed in the crystal 
structure of flavocytochrome b2  which may influence domain mobility. In order to 
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probe the importance of two such interactions the mutants K296M and R289K were 
characterised. 

Lysine 296 forms an interdomain salt bridge by binding to a haem propionate 
in the crystal structure. The mutant enzyme has kinetic characteristics which are, 
within error, identical to the wild type enzyme. It appears that lysine 296 has no 
influence on the rate of interdomain electron transfer. 

Arginine 289 hydrogen bonds to a haem propionate via a water molecule. 
Steady-state data for lactate oxidation by R289K, with ferricyanide as the terminal 
electron acceptor show a ten-fold fall in 	to 33 s_I  (400 s' for wild-type). The KM 

for lactate oxidation by R289K is increased to 3.2 mM (0.5 mM for wild type). 
Stopped-flow data indicate lowering of the microscopic rate constants for flavin and 
haem reduction. The R289K flavin rate constant was 20 s' compared to 600 s_i  for 
wild-type, and 15 s 1  for haem reduction compared to 445 s for wild-type. Stopped-
flow kinetic isotope effects for [2-2H]L-lactate flavin and haem reduction were the 
same as wild type. This indicates cleavage of a-H bond is rate limiting in the flavin 
reduction step. The haem value indicates no significant effect on flavin to haem 
electron-transfer rate. This was confirmed by haem re-reduction in fully reduced 
flavocytochrome b2, after abstraction of a single electron by cytochrome c. The 
R289K steady-state kinetic isotope effect of 4.5±1.5 is the same as wild-type and 
indicates a similar transition state in both enzymes. 
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Cytochrome c3 	 Chapter 1: Introduction 

I.I. BACTERIAL ENERGY TRANSDUCTION 

I.I.I. Introduction 

A problem faced by all living systems is the need to obtain cellular energy from 

their environment. Bacterial metabolic flexibility allows utilisation of an array of 

chemical species for growth. It is this flexibility which allows bacteria to flourish in 

seemingly hostile environments. Chemotrophic bacteria employ one of two 

mechanisms to derive cellular energy; fermentation or respiration. Each process 

requires an array of specialised enzymes and other proteins to regulate and facilitate 

energy transduction. 

Fermentation is the simplest process of bacterial energy generation, both 

evolutionarily and metabolically. Fermentative processes generally occur in the 

absence of oxygen. The substrates and products of bacterial fermentations are 

extremely diverse. The components of the respiratory chain play no part in 

fermentation. The first stage of fermentation involves splitting energy-rich molecules, 

such as sugars, into two or more fragments, including CO2. These fragments are 

phosphorylated during the breakdown process. The formation of ATP is achieved by 

reaction of ADP with the phosphorlylated intermediates of metabolic pathways. As a 

method of ATP generation, it is an inefficient process and has a low net yield. One 

example, homolactic fermentation, converts I mole of glucose into 2 moles of 

pyruvate and yields only 2 moles of ATP. This is in sharp contrast with the 28 moles 

of ATP formed from the same substrate by aerobic respiration. The main 

disadvantages of fermentation are the requirement for large masses of substrate and 

the accumulation of toxic end products such as ethanol. 

Obligate respiratory bacteria cannot ferment to fulfil their energy requirements 

and must instead respire. Respiration is an inherently more efficient process than 

fermentation. Generally speaking, respiration is oxidation of a substrate molecule and 

reduction of an inorganic electron acceptor, coupled to generation of a protonmotive 

force. Aerobic respiration uses molecular oxygen as the terminal acceptor, whereas 

anaerobic respiration uses a number of oxidised compounds, such as S042 , NO3 , Fe"  

etc. Anaerobes can again be subdivided into; obligate anaerobes which only grow in 
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the absence of oxygen and facultative anaerobes which can grow with or without 

oxygen. 

1.1.2. Bacterial electron transport chains and chemiosmoSis 

As has already been stated, respiration consists of a series of biological 

electron transfer reactions. Transfer of electrons from substrate to acceptor requires a 

net redox potential difference (r.p.d.) between the two components. The r.p.d. is 

spanned in small steps by an electron transport chain consisting of a number of 

proteins (Anraku, 1988). The cofactor of each protein in the chain has a redox 

potential higher than its predecessor. As electrons pass through the electron transport 

chain, they lose energy. The energy is conserved by coupled transport of "energised 

protons" across a proton-impermeable membrane (Nicholls & Ferguson, 1992). In 

gram-negative bacteria, such as S. putrefaciens, this impermeable barrier to protons is 

formed by the cytoplasmic membrane. This postulated coupling is the basis of the 

"chemiosmotic theory" (Mitchell, 1961, Williams, 1978). The coupling allows 

conversion of electronic energy into a form which is more directly useful to the cell. A 

schematic of this circuit is shown in Figure 1.1. 

The primary proton pumping, from the cytoplasm to the periplasm, is achieved 

by large, membrane-spanning protein complexes. An expression relating to the 

magnitude of proton motive force (pmf) generated is: 

pmf = AT- 2.303 (RT / F) ApH 

The two components of the protonmotive force are ; firstly, the ApH term, relating to 

the imbalance in [HI across the membrane and secondly, the AT term relating to the 

electrical potential difference across the membrane. The large, membrane anchored 

F1F0  ATPase complex utilises the protonmotive force to synthesise ATP from ADP 

and P1. The ATPase is a secondary pump, passing protons back into cytoplasm and 

thus completing the proton pumping circuit. The protonmotive force can also be used 

to drive other cellular processes, including import of substrates and ions, turning of 

flagella, maintenance of cell turgor etc. 
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Figure 1.1. : A schematic representation of the proton circuit predicted by the chemiosmotic theory. 
The primary pump is a component of a respiratory chain which uses electron transfer to expel 
protons from the cell. This sets up a proton concentration gradient across the cell which is utilised 
by the ATPase. (Alter Nicholls and Ferguson, 199 1) 
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The components of the electron transport chain are mostly located in the 

cytoplasmic membrane, although some reside in the periplasm. Generally, bacterial 

electron transport chains consist of, a primary dehydrogenase, a quinone and a 

terminal oxidase (Figure 1.2.). The elements of the chain are variable, depending on 

the potential of the donor and terminal acceptor. Quinones link the primary donor and 

the terminal acceptor. These are hydrophobic and limited to the lipid bilayer of 

membranes. They undergo a 2e + 2H reduction to quinols, the charge balancing of 

this reduction is important, as an ionic species would be unstable in the membrane. 

They are also able to translocate protons from one side of the membrane to the other. 

Different quinones are used according to their suitability. Ubiquinone (EM +70 mV) is 

predominantly used in aerobic respiration whereas menaquinone (EM -74 mV) has a 

potential more suited to anaerobic couples. Likewise, the primary electron donor will 

require a specific enzyme, for example lactate dehydrogenase and succinate 

dehydrogenase are found in K coil. Where a selection of terminal acceptors is 

present, the one with highest redox potential is, in most bacteria, used preferentially. 

In E. coil a hierarchy exists, whereby; 02 (+820 mV)> NO3- (+420  mV) > trimethyl 

amine N-oxide (+130 mV) > fumarate (+30 mV). The values in brackets denote the 

midpoint potential for each acceptor. Respiratory chain regulation ensures maximum 

energy yield from the available substrates. Reduction of chemical species by growing 

bacteria does not conclusively prove the existence of a specific reductase however. In 

many cases the reduction can be facilitated by chemical reaction of bacterially 

generated species. For example, reduced sulphur species generated from reduction of 

thiosuiphate by S.putrefacienS MR-i enhance rates of manganese reduction (Myers & 

Nealson, 1988a). 
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FIGURE 1.2. : Organisation of one electron transport chain from E. coil. This chain functions in 
environments of high p02  and contains two proton translocating centres / electron carriers: Fp-
flavoprotein and Q-ubiquinone; and the electron carriers Fe / S-iron sulphur protein, cyt b-cytochrome 
b. cyt o-cytochrome o. Cytochroine o transfers electrons to the terminal acceptor which is oxygen in 
this case. (After Neidhardt et al., 1990) 
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1.2. SHE WANELLA PUTREFA GlENS 

1.2.1. A brief history of Shewanella putrefaciens 

Shewanella putrefaciens is a gram-negative, non-fermenting, facultative 

aerobe. The bacteria are rod shaped with a single polar flagellum. The first isolates 

were classified as a member of the genus Achromobacter (Derby & Hammer, 1931). 

In 1941 it was transferred to the genus Pseudomonas on the basis of morphology 

(Long & Hammer, 1941). The classification Shewanella finally arose after analysis of 

5S ribosomal RNA sequence data (MacDonall & Colwell, 1985). Another 

classification, which was in use until recently, is Alteromonas putrefaciens. The genus 

was confirmed after analysis of the complete 16S ribosomal DNA for several 

Shewanella strains (Gauthier, 1995). 

Two Shewanella strains have been extensively used; NCIIvI1B 400 with which 

our lab is concerned and MR-1. Several respiratory enzymes have been isolated from 

each strain. Shewanella NCIM1B400 is a marine organism which was isolated from the 

North Sea, near Aberdeen (Lee et at., 1977) whereas MR-1 was isolated from 

freshwater sediment near Oneida Lake, New York (Myers & Nealson, 1988a). It has 

become apparent that significant sequence differences exist between homologous 

proteins from these strains. A 16S rRNA analysis and comparison has been carried 

out for a number of Shewanella strains. It is apparent that NC1MB400 is more closely 

related to the newly identified S. frigidimarina, isolated from Antarctic sea ice 

(Bowman et al., 1997), than to the S. putrfaciens MR-1 type strain. It has therefore 

been proposed that NCIMIB400 be reclassified as S. frigidimarina (Reid & Gordon 

1998) The G+C content of S. frigidimarina is 40-43 mol% (Bowman et al., 1997) 

whereas S. putrefaciens DNA has a value of 44-47 %. The value for NC1MB400 is 

41.7 % which falls well within the range for S. frigidimarina. Hereafter Shewanella 

strain NCTMB400 will be specifically referred to as NC]IMB400. S. putrefaciens or 

Shewanella putrefaciens refers to strain MR-i or its close relatives. 

6 
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1.2.2. Electron donor and acceptor usage in Shewanella 

Shewanella putrefaciens can utilise a variety of terminal electron acceptors to 

support growth. The proliferation of S. putrefaciens in a number of habitats is a 

reflection of this capability. To date Shewanella sp. have been isolated from; marine 

and lacustrine waters (Myers & Nealson, 1988a; Perry et al., 1993; Bowman et 

al., 1997 Lee et al., 1977), oil field fluids and anaerobic sediments (Semple & 

Westlake, 1987), dairy products (Long & Hammer, 1941) and even clinical specimens 

(Nozue, 1992). Although S. putrefaciens is an obligate respiratory organism, the 

species, S. frigid/marina, closely related to Shewanella NCIMB400 can ferment 

(Bowman, 1997). S. putrefaciens is able to use H2, lactate, formate and pyruvate as 

electron donors. The ability to respire with H2  is shared with sulphate reducing 

bacteria, but S. putrefaciens can grow at H2  partial pressures some 25 fold lower than 

them (Lovely et al., 1989). Shewanella putrefaciens exhibits an unparalleled 

respiratory versatility when it comes to choice of terminal acceptor. To date, the 

known species, to which it can couple respiratory electron transfer are: 

02, Mn'1 , Few, S2042 , S032 , S, DMSO, TMAO, NO3 , NO2 , Fumarate. 

The respiratory versatility predicts a potentially complex electron transport 

system with some potentially unique components. At present it is not clear whether 

individual reductases exist for each of the terminal electron acceptors. Many of the 

species are of environmental importance, especially in chemical cycling between oxic 

and anoxic regions. The dissimilatory bacterial action on iron and manganese species 

in anaerobic sediments is thought to account for the banding observed in many rocks 

(Nealson & Myers, 1990). Anaerobic sediments show zoning, characterised by 

reductive processes occurring at different depths. S. putrefaciens is implicated in Mn 

reduction in such environments, a process previously thought to be predominantly 

chemical, not microbial (Myers & Nealson, 1988a,b; Nealson & Saffarini, 1994). The 

mechanism of Fern  and Mn's' reduction is of great interest. The ability to reduce ferric 

iron is shared with some of the sulphate reducing bacteria, notably Desulfuromonas 

acetoxidans and Desu/fovihrio desulfuricans (Nealson & Saffarini, 1994). Both 

7 
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metals exist as a number of insoluble oxide forms at pH 7.0. Despite the insoluble 

nature of the terminal acceptor, it is not thought that siderophores are implicated in 

the reduction process (cf. assimilatory iron reduction). Particulate oxide reduction 

may require direct bacterial cell contact with the insoluble oxide, possibly through 

exopolysaccharide adhesion (Obuekwe, 1981). One postulated reduction mechanism, 

is a link from the cytoplasmic-membrane respiratory chain across the periplasm and 

outer membrane to the metal oxide particles (Myers & Myers, 1993a). Cytochromes 

located in the outer-membrane have been implicated in this process (Myers & Myers, 

1992; Myers & Myers, 1997b). 

The siderophore putrebactin from S. putrefaciens was recently identified 

(Ledyard, 1997) and could be involved in dissimilatory iron reduction. Siderophores 

are organic molecules which chelate ferric iron allowing it to be taken up by the 

bacterium. Once inside the cell, the complex is reduced and ferrous iron is released 

into solution. This mechanism is most commonly associated with assimilatory iron 

reduction however. Iron oxide reduction by S. putrefaciens is a problem in oil fields, 

where removal of the protective oxide coat from steel pipes accelerates their 

corrosion. Reduction of iron by S. putrefaciens is strongly inhibited by oxygen, whilst 

nitrate, or a nitrate reduction product, has a partial inhibitory effect on metal 

reduction (Arnold, 1990; DiChristina, 1992; Myers & Nealson, 1988b). 

1.2.3. Genes involved in anaerobic respiration 

The genetic control of anaerobic respiration in Shewanelia sp. is still poorly 

understood. When grown anaerobically on fumarate or nitrate Shewanella 

putrefaciens is able to respond to a number of electron acceptors. This response 

suggests some co-ordinate control over anaerobic genes similar to that of E. coil. The 

fumarate nitrate respiration (Fnr) control protein of E. coil is a monomer in the 

presence of 02.  The protein is converted to an active dimer under anaerobic 

conditions. The sensing of 02 is thought to use an Fe-S cluster bound to four 

cysteines (Lazza.zera, 1996). This acts as a conformational switch under conditions of 

02 deprivation. A gene encoding EtrA, an analogue of Fnr, has been identified in S. 

putrefaciens (Saffarini & Nealson, 1993). EtrA contains the conserved active 

8 
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cysteines of Fnr and the amino acid sequence of the DNA binding domain in both 

proteins is identical. Mutants deficient in etrA are unable to grow on; NO2 , S2042 , 

S032 ,  TMAO, DMSO, Fe and fumarate, suggesting that EtrA is involved in 

regulation of the corresponding reductase genes. However, the mutants were still able 

to grow using NO3  and Mn" suggesting that it is not involved in the regulation of 

these two systems. The presence of a further etrA analogue has also been predicted 

from Southern blots of S. putrefaciens DNA with etrA as the hybridisation probe. 

Further genes which are strictly essential for anaerobic respiration have also been 

identified, yet in a southern blot, the genes did not hybridise to etrA orfrir (Saffarini et 

al., 1994). 

Recently, a gene which encodes a 21 kDa tetrahaem, c-type cytochrome 

(cymA) has been implicated in anaerobic respiration of a number of substrates (Myers 

& Myers, 1997a). Mutants lacking the gene show little respiratory reduction of Few, 

NO 	and fumarate and they also have a deficiency of Mn'1' reduction. The gene is not 

necessary for TMAO usage. Biochemical and genetic evidence implies unique terminal 

reductases for Few, NO3  and Mn' .  The fumarate reductase in NCIMB400 (Gordon, 

1996; Gordon et al., 1998) and MR-I (Myers & Myers, 1997c) has also been 

identified The phenotype of the cymA removal indicates that the CymA protein 

functions at a step in the electron transport chain that is common to reduction of the 

four species This pathway appears to be the most efficient, but not the only pathway 

to Mn'1' reduction. A menaquinofle deficient S. putrefaciens mutant which lacks 

electron transfer to the same species as the CymA deficient mutant (Myers & Myers, 

1993b) is in fact also deficient in cymA (Myers & Myers 1997a). It has been 

suggested that CymA could be one of the proteins reported to be located on the outer 

face of the cytoplasmic membrane (Myers and Myers, 1992; 1993a; 1997b). This 

could allow the organism to pass electrons from the periplasm to membrane localised 

components, in order to reduce extracellular electron acceptors. 

1.2.4. CytochromeS from Shewanella 

When grown anaerobically, Shewanella is known to produce a large number 

of cytochromes (Morris, 1990). CymA is one of several multiple-haem containing 

9 
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cytochromes c which have been identified. One of the best studied of these, is the 

periplasmic fumarate reductase flavocytochrome c3  (Pealing, 1992; Morris, 1994; 

Gordon, 1998). The enzyme has an Mr value of 63800 and contains FAD and four c-

type haems as cofactors. It contains a large flavin binding domain, similar to that of 

the membrane bound fumarate reductases and a small cytochrome domain, similar to 

the low molecular weight cytochromes c3  of the sulphur reducing bacteria. The 

enzyme has a number of novel properties which distinguish it from other fumarate 

reductases. Firstly, flavocytochrome c3  is soluble, not membrane bound. Secondly, it 

consists of a single polypeptide chain as opposed to multiple subunits. Thirdly, it 

contains the four c-type haems instead of an Fe-S cluster. The analogous cytochromes 

C3 from the sulphur reducing bacteria have been widely studied. 

1.3. THE SULPHUR-REDUCING BACTERIA 

The dissimilatory reduction of sulphur species features in the metabolism of a 

large number of different bacteria. The terms sulphate-reducing and sulphur-reducing 

bacteria are rather broad. Here, the terms describe bacteria which use the processes of 

energy conservation through oxidation of a substrate and concomitant reduction of 

sulphur compounds. The process of assimilatory sulphur reduction uses many similar 

enzymes but is limited to the building of molecules such as amino acids and cofactors. 

In assimilatory processes, there is no appreciable build up of sulphide associated with 

the reduction of sulphur species. Dissimilatory sulphur reduction is a true respiration, 

performed by specialised bacteria and, under appropriate conditions, can lead to large 

accumulations of sulphide. 

The cytochromes c3  (tetrahaem) are generally associated with the sulphate and 

sulphur-reducing bacteria and are found in all the Desulfovibrio spp. (Postgate, 

1984). The first observation of cytochrome c3  was made by Postgate in 1954. He 

described a pigment obtained from the sulphate-reducing bacterium Desulfovibrio 

desuiphuricans (Hildenborough) as "in several ways resembling the cytochrome c of 

yeast and muscle". The Desulfovibrio are ecologically versatile. In the absence of 

sulphate they can grow by fermentation on lactate, pyruvate or ethanol in association 

10 
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with a methanogen, which uses the hydrogen produced. Lactate and pyruvate can also 

be used as substrates in the presence of sulphate, probably involving the release of 

hydrogen as an intermediate. They are also able to grow chemolithotrophically in the 

presence of hydrogen and sulphate. The hydrogen may be supplied from association 

with a fermentative bacterium. The reduction of sulphate has little in common with 

other modes of bacterial respiration (Figure 1.3.). Sulphite reductase contains 

siroheme and is named desulfiviridin or desulforubidin depending on the spectral 

properties. The enzyme produces sulphide or trithionite under different conditions. 

The electron transport processes involved in sulphate reduction have been 

confused in the past for a number of reasons. The first reason is, the multiplicity of 

terminal acceptors which appear to be present. Secondly, physiological roles were 

ascribed on the basis of in vitro stimulation of a reaction. For example, cytochrome c3  

is an oxygen scavenger which may stimulate oxygen-sensitive processes non-

specifically (LeGall & Postgate, 1973). Thirdly, the segregation of redox processes to 

the cytoplasm and periplasm was only realised relatively recently. The in vitro 

reactions between cytochrome c3  and ferredoxin, flavodoxin or rubredoxin are well 

characterised (Guerlesquin ci al., 1984; Cambillau et al., 1988; Stewart et al., 1988; 

Dolla etal., 1991; Stewart & Wampler., 1991). These provide insights into theoretical 

aspects of protein complex formation. However, in vivo these reactions would not 

occur due to the cellular location of the components. Cytochrome c3  has a periplasm 

directing leader sequence, yet all the other proteins are located on the other side of 

the cytoplasmic membrane. It is likely then, that the proposed models are invalid. The 

interaction of the proteins is probably due to non-specific complementarity between 

the numerous charged resides 

present. It has been suggested that in vivo, the interaction could be with a membrane 

spanning cytochrome, similar to tetrahaem cytochrome c3  (LeGall & Fauque, 1988). 

Cytochrome c3  most likely accepts electrons from periplasmic hydrogenase, 

which oxidises molecular hydrogen. In the hydrogen cycling model, the cytoplasmic 

membrane separates the hydrogen generating system from the periplasmic hydrogen 

utilising system (Odom & Peck, 1981). The hydrogenase in the cytoplasm is thought 

to obtain electrons from fermentation of pyruvate or lactate. The hydrogen then 

11 
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Figure 1.3. : Postulated electron transport and energy conversion pathways from Desulfovibrio. 
Purple arrows indicate electron-transfer reactions. The abbreviations are: APS adenosine 
phosphosuiphate, Hyd pp periplasmic hydrogenase, ('3 cytochrome c3, ForH formate hydrogenase, 

C553 cytochrome c553, Hyd cp cytoplasmic hydrogenase, Fd ferredoxin, F! flavodoxin, APS red 
adenosine phosphosuiphate reductase. S032  red sulphate reductase. The donor to APS reductase is 
unknown. (After Pettigrew & Moore, 1987). 
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diffuses across the membrane and is utilised in the periplasm. Electrons are donated to 

the membrane electron transport chain, from where they are passed to the sulphite 

reductase. This forms a central step in the metabolism of Desulfovibrio spp.. The 

physiological partnership of the two enzymes was proposed as early as 1968 (Yagi et 

aL, 1968). 

1.4. CYTOCHROMES c3  

1.4.1. Introduction 

Cytochromes c all contain mesohaem IX as the redox active cofactor. 

Cytochromes c3  as they will be referred to hereafter, contain multiple haem groups 

with bis-histidine ligation (Ambler, 1980). Thus far cytochromes c 3  have only been 

identified form prokaryotic organisms. Two extensive reviews have recently been 

published about tetrahaem cytochrome c3  (Coutinho & Xavier, 11994; Cusanovich el 

al., 1994). Little sequence similarity with class I and class II cytochrome c has been 

observed. The motif CXXCH or occasionally CXXXXCH, forms the usual binding 

site for haem (where Xaa is any amino acid). Thioether linkages are formed by 

reaction between the two haem vinyls and the two cysteine thiols. The sixth histidine 

lies in a part of the sequence remote from the thioether forming motif The axial 

ligation of the haem iron in class III cytochromes c is different from class I and 11. 

Cytochromes c3  all contain six co-ordinate iron, with the imidazole nitrogen of 

histidine as the fifth and sixth ligands. As a result the haem irons are low-spin and the 

redox potentials are low and nonidentical. This discussion will be concerned with low 

molecular weight (11-15 kDa), tetrahaem cytochromes c3, but cytochromes c3  with 3, 

8 and 16 haems have been identified. The accommodation of four haems in such a 

short peptide chain is remarkable among redox proteins. The array of linkages and 

interactions between the haems and the protein backbone also lead to a very stable 

structure. The small size of the protein, leads to short edge-to-edge haem distances. In 

the structures completed so far, there are none greater than 2 nm. 

The physiological mechanisms of intra-molecular and inter-molecular electron 

transfers by cytochrome c3  are still not fully understood. The physiological donor is 

13 
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most likely periplasmic hydrogenase, which catalyses the oxidation of hydrogen to 

two protons. The hydrogenase contains an acidic patch of residues which can 

complement the lysine rich patch on cytochrome c3. Some possible models for the 

intra- and inter-protein electron transfer mechanisms are detailed in Figure 1.4. A 

variety of spectroscopic techniques and genetic methods have been used to probe the 

properties of cytochrome C3. 

: 

Figure 1.4. : Some possible models for electron transfer in cytochrome c3 , the haems are shown in red. 
Bold arrows represent intermolecular electron exchange, dotted arrows represent intramolecular 
electron exchange. The first figure denotes intermolecular electron exchange only. The second shows 
pairwire intramolecular and intermolecular electron exchange. The third shows intramolecular 
exchange between haems and intermolecular exchange with only one centre (After Pettigrew & Moore, 
1987) 

1.4.2. X-ray crystal structures 

To date crystal structures have been obtained for five cytochromes c3  from the 

sulphate reducing bacteria: 

1 )Desulfomicrobium baculatum Norway 4, [formerly Desulfovibrio baculatum and 

Desuifovibrio desulfuricans] (Haser et al., 1979; Pierrot et al., 1982; Czjzek et al., 

1994) - DbN 

2)Desulfovibrio desufuri cans ATCC 27774 (Morais et al., 1995) - Dd 

3)Desul,fovibrio vuigaris Hildenborough (Matias et al., 1993) - DvH 

4)Desulfovibrio vuigaris Miyazaki (Higuchi et al., 1981; Higuchi et al., 1984) - DvM 

5)Desulfovibrio gigas (Matias et al., 1996) - Dg 

14 
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Cytochrome c3  

It is immediately apparent from the structures that the haem core architecture 

is highly conserved. The position of the four haems, and their binding regions, show 
homology as can be seen in 

little variation between proteins despite the low sequence  

Figure .1.6. The variations in the sequence tend to occur as peptide inserts in the 

surface loop regions of the protein . The proteins have very similar iron-to-iron 

distances and present the same haem plane orientations. The haems are numbered H
1  

to H, ac
cording to the position of the cysteine residues which form the thioether 

iflho & Xavier, 1994). The inter-haem 
linkage, in the amino acid sequence (Cout  

distances vary between 1.1 and 1.8 nm and the planes defined by the haems 
H1  and Hiv 

erpendicular to haems H11  and H11 which 
are roughly parallel and both approximately p  

are mutually perpendicular. The haem edges are much more accessible to the solvent 

than in mitochondrial cochrome c. 
The cochromes also show a highly charged, 

high lysine content region near haem Hr,, at the C-terminus of the protein. This patch 

has been proposed as a recognition site for a redox partner of cochrome 
c3  is absent 

in the protein from Dsm. bacula/Um (Stewart al., 1988). 

1.4.3. Sequence alignment 
The amino acid sequences for a number of cytochromes 

c3  have been 

determined (Haser et al., 1979; Bruschi et al., 1981; Shinkai ci al., 1980; VoordouW 

he cochrome c3  
& Brenner, 1986) and six are aligned in Figure 1.7. Even within t  

group only 25-45% pai1i5e identity is observed (Pettigrew & Moore, 1987) and can 

be as low as 20% (Morais ci al., 1995). The smallest homology is observed between 

Dsm. baculatum and D. vulgaris 
which are the least phylogefleticallY related 

organisms (Devereaux et al., 
1990). Most of the invariant residues in the sequence are 

involved in binding and oordinatiflg the haems, no role for the other invariant 

residues has been proposed yet. 
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Figure 1.5. : The three dimensional structure of the cytochrome c3  from D. vulgaris. The bis 
histidine ligation of the haem irons can be clearly seen. 
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4k 
D. vulgaris Miyazaki 

D. gigas 

D. desuifuricans ATCC27774 D. baculatum Norway 4 

Figure 1.6. : The conservation of the haem core architecture between cytochromes c3  obtained from 
different sources 
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CytochrOme c3  

1.4.4. Redox potentials 
The short haem-haem distances in cytochrome C3 greatly complicate the redox 

behaviour of the protein. There is evidence for interactions between the four haems. A 

liiil consideration of thermodynamic and kinetic relationships is required to describe 

ial of the molecule is referred to as the 
the function of the protein. The redox potent  

macroscopic potential. The redox potential of an individual haem is referred to as the 
le oxidation states for 

microscopic potential or micropotential. There are five possib  

the molecule (Figure 1.8.), which give rise to four macroscopic potentials. One can 

measure the macroscopic reduction potentials through techniques such as cyclic 

voltammetly or uv / visible redox potentiometlY. This indicates nothing of the 
of the 

complexity of the protein but gives useful insights into the apparent midpoints  

haems. 
A more complex study will assign microscopic redox potentials (Figure 

to each haem (micropotefltials) The reduction (or oxidation) of the protein takes the 

form of five different stages (or steps) (Moura et al., 
1982; Moura etal., 19881  Gayda 

etal., 1988; Benosman etal., 1989; Park et al., 
1995). Each stage corresponds to the 

al) of one equivalent of electrons to the protein. The presence of 
addition (or remov  he 16 possible 
four non-equivalent haems leads to an equilibrium between t  

microstates (Figure 1.8). The microstates 	
will be in within one reduction stage  

equilibrium with each other by intramolecular electron exchange. There will be yet 

another equilibrium between molecules of different redox stage, these can exchange 

electrons via intermolecular collisions. The situation is complicated even further by a 

network of homotropic (& I &) interactions between the haems (Park et al., 
1996a). 

This leads to modification of the potential of adjacent haems upon reduction (or 

oxidation). Both positive and negative cooperativities have been observed for 

cochrome c3. HeterotroPic cooperativitY (e I H referred to as redox Bohr effect) 

has also been observed for cytochromes c3  and the related parameters were 

determined (Turner et al., 
1994; Park & Kang, 1996b; Turner et al., 1996). EPR and 

NMIR techniques have proved particularly suitable for studying the interactions 

between haems and the individual microstates. 
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ORGANISM 1 5 10 15 20 
1)Dsm.b ADAPGDDYVISAPE - GMKAKPKG 

2)D.d(EA) VDAPADN - VI KAPA - GAKV - T K - 

3)D.s V D A P GDM - VLKAPA - GAKM - TK -- 

4)D.v(H) A P K P AD G L KM K - - - 	- - - - 	- AT K - 

5)D.v(M) A P K A P A D G L K M D - - - 	- - - - 	- KTK -- 

6)Dg V D V P A D G A K I D F I A G G E K ----- 

25 30 35 40 45 
1)D 	K P GAL Q K TV P F P H T K HAT - V E C V C H H 

2) - 	- - - - - A P - VA F S H KG H A S 	- MD C KT C H H 

3) - 	- - - - - AP - VD F S H K GHAA - L DC T C H H 

4) - 	- - - - - Q P - VV F N H ST H KS - V K C G  C H H 

5) - 	- - - - - Q P - V V F N H S T H K A - V K C G C H H 

6) - 	- - - - - N L - V V F N H S T H K D 	- V C BB C H H 

50 55 60 65 70 75 
DT LEAD G - GA V K K CT T S G C H D S L E FR D K A 

2)K 	- - W D GAG Al Q P C Q AS G C H ANT K SK - KG 

3) K 	- - W D G K A E V K K C S A E G C H V B T S 	K K G K K 
4)P--VNGKEDYRKCGTAGCHDSMDKK DK -- 

5)P 	- - V N G KEN Y Q K C A TAG C H D N MD K D K - 
6)z 	- - - PG B K Q Y AG CT T D G C H NIL D K D K - 

80 85 90 95 
1)N A K D I K L V E S A F H T - - - - - 	- - QCID C H A 

2)- 	D D S F Y - - - MA F H ER K S E - 	K - S C VG C H K 

3)S 	T P K F Y - - - S A F H SK S DI - 	- - SC VG C I-I 	K 

4)S A KG Y Y - - - H V M H D K NT K F K - S C VG C H V 

5)S A KG Y Y - - - HAM H D KG T K F K - S C VG C H L 
6)S V N SW Y - - - K V V I - 	ID A KG GA K PT C 	IS C H K 

100 105 110 115 
1)L 	K K K D - - - - K K PT G P T A C - 	- G K C 	I -  IT TN 

- 	- - - - - - SMKKG - - PTKC --TECHP K 

- 	- - - - - AA L K K A T G PT K C - 	- G C HP K K K 

4)EVAGADAAK K K D - - L T G C K K SK C HE 

5)E TAG AD K E K K K E - - L T G C KG S K C HS 

6)D 	K A G  D - - L K K K - - L T G C K GSA C HP S 

FIGURE 1.7. : Alignment of cytochrome c3  sequences from the organisms: 

1)Dsm.b-Desulfomicrobium baculatum, 2)D.d(EA)-Desulfovibrio desulfuri cans El Agheila Z, 3)D.s-

Desulfovibrio salexigens, 4)D. v(H)-Desulfovibrio vulgaris Hildenborough, 5)L).v(M)-Desulfovibrio 
vulgaris Miyazaki, 6)D.g-Desulfovibrio gigas. (From Moore & Pettigrew, 199 1) 
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FIGURE 1.8. A schematic representation of the redox states of cytochrome c3. Each box denotes 
one of the 16 microstates with either ferri-haems (open circles) or ferro-haems (filled circles). The 
five macroscopic redox states (Si) are indicated in columns. The addition of an electron between 
redox states corresponds to the macroscopic redox potentials of the protein. The numbers denote 
haem numbers. (After Fan et al.. 1990b). 
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Cytochromes c3  are low potential proteins, thus strong reducing agents such 

as dithionite (E° -500 mV at pH 7.0) or the H2  / Hase (hydrogenase) system at pH> 

7.0, are required to achieve full reduction. Estimates of the redox potentials for the 

proteins have been made using electrochemical methods (Bruschi et al., 1984; Bianco 

& Haladjian, 1981; Niki et at., 1984; Mus-Veteau et at., 1992; Niviere et at., 1988) 

and spectroelectrochemical data (Fan ci al., 1990a; Coletta et at., 1991). The 

macroscopic potentials determined in these and other studies all lie between -30 mV 

and -400 mV, see table 1. 

Redox titrations monitored by one-dimensional (1D) NIVIR have been carried 

out for the cytochromes c3  from D. gigas (Picarra-Periera ci at., 1993; Santos ci al., 

1984), D. vulgar/s Miyazaki (Fan et al., 1990a), D. vulgar/s Hildenborough (Turner 

et at., 1994) and show similar microscopic potentials for the four haems. The 

titrations also showed that the redox state of one or more haems influenced the 

micropotentials of the other haems (determined as the haem-haem interaction 

potentials). Furthermore, the pH dependence of individual haem micropotentials was 

demonstrated. 

Redox linked PKa values have been determined for the cytochromes from D. 

gigas (Coletta ci at., 1991; Santos et at., 1984) and D. vulgar/s Hildenborough 

(Turner ci at, 1994). Abnormalities were noted in the visible spectrum of cytochrome 

C3 reduction by hydrogenase and attributed to haem-haem interactions (Yagi ci at., 

1984). Interactions have also been observed using EPR (More et al., 1990), 

Mossbauer spectroscopy (Utuno ci at., 1980) and resonance Raman spectroscopy 

(Verma ci al., 1988). The interaction potentials determined by NIvIR take both 

positive and negative values and so cannot be explained simply on the basis of 

electrostatic effects. 

Negative values are co-operative and positive values, anti-co-operative. The 

existence of negative values for interacting potentials have been explained in terms of 

a structural modification linked to the change in redox state of the molecule. Redox 

titrations of the cytochromes c3  from Dsm. baculatum Norway 4 and Dsm. baculatum 

(DSM 1743) monitored by EPR (Gayda ci at., 1985; Gayda et al., 1988; Moura ci 

at., 1988) and NMIR have shown three micropotentials similar to those for D. vulgar/s 
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and D. gigas (More et al., 1990; Xavier etal., 1979; Benosman etal., 1989) and also 

a fourth which is considerably higher. No important haem-haem interactions were 

observed for the Dsm. baculatum proteins. 

TABLE 1.1. : Macroscopic potentials determined for cytochromes c3  

Organism Ei 

Potential (mV) 

E2 	E3  E4  

Dsm. baculatum (Norway 4) a -400 -365 -305 -165 

Dsm. baculatum (Norway 4) b -410 -370 -310 -210 

D. vulgaris (Miyazaki) ' -360 -322 -300 -242 

D. vulgaris (Hildenborough) wt d -380 -350 -320 -280 

D. vulgaris (Hildenborough) H70M d -350 -320 -260 -80 

D.gigase -330 -315 -295 -195 

D. desulfuricans (Berre Sol) f  -375 -335 -305 -225 

D. desulfuricans (El Agheila) f  -320 -290 -265 -235 

D. desulfuricans (ATCC 27774) g -380 -370 -260 -140 

D. africanus - basic c3 h  -290 -280 -260 -90 

D. a/ri canus - acidic c3 h  -270 -260 -240 -210 

D.eiongatus -165 -165 -165 -30 

T. communed -280 -280 -280 -140 

References 
Bianco & Haladjian (198 1) 
Dolla etal. (1987) 
Sokol etal. (1980) 
Mus-Veteau et al. (1992), wt is wild type c3  and H70M is an axial ligand mutant 
Nivière etal. (1988) 
Bruschi etal. (1984) 
Morais etal. (1995) 

ii) Pieulle et al. (1996) 
Samain etal. (1986) 
Hatchikian etal. (1984) 
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Some of the redox micropotentials determined by NMR and EPR are shown in 

Tables 2 and 3 respectively. The macroscopic redox potentials are predicted from the 

micropotentials and the inter-haem interaction potentials. 

The intermolecular electron exchange rate for the cytochromes c3  from D. 

gigas is slow on the NMIR timescale. This means that a different set of signals is 

observed for the haem protons belonging to each different stage. For these proteins it 

is easy to follow the redox stages, as well as measuring the degree of oxidation of the 

haems and their different potentials (different microscopic potentials) at each stage. 

The slow inter-molecular exchange allowed assignment of redox potentials to specific 

haems in the structure. Two-dimensional (2D) NIMIR was used to follow the 

connectivities of haem methyl resonances, previously identified in the fully reduced 

state, throughout the five redox stages, up to the fully oxidised state (Picarra-Pereira 

et al., 1993; Salgueiro et al., 1992; Xavier et al., 1993). The results agree only partly 

with those obtained from direct interpretation of 2D-NMR data acquired for the 

oxidised D. vulgar/s proteins which were mainly based on tentative assignments of 

haem connectivities (Park et al., 1991a; Park et al., 1991b; Sola & Cowan, 1992). An 

attempt was made to assign the redox potential of haem I-HV from D. vulgar/s 

Hildenborough by making a mutation at one of the axial ligands. The potentiometric 

results obtained for the H70M enzyme are, however, thought to be ambiguous (Mus-

Veteau et at., 1992). 

Despite the haem core similarity, some of the properties of the Dsm. 

baculatum c3  differ considerably from those of the Desulfovibrio proteins. Firstly, the 

potential of one haem is more than 120 mV higher than those of the other three 

(Guerlesquin etal., 1985; Moura et al., 1988; Gayda et at., 1985; Gayda etal., 1988; 

Guigliarella et al., 1990). Secondly, the cytochromes c3  from Dsm. baculatum show 

fast intermolecular exchange on the NMR timescale (Coutinho et al., 1993; 

Guerlesquin et at., 1985) and so resolved haem methyl peaks corresponding to the 

different redox stages are not observed. Assignments of the higher potential haem 

(Coutinho et at., 1993) and of the lowest one (Coutinho etal. 1995) were obtained by 

following the chemical shifts of selected resonances from the haems using ID N1vfR 

data. 
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TABLE 1.2. : Microscopic redox potentials determined for cytochrome c3  using nuclear magnetic 
resonance data. (After Coutinho & Xavier, 1994) 

Redox potentials (mV) 

Organism ei  e2  e3  e4  pH 

Dsm. baculatum a  -335 -296 -286 -120 7.8 

D. vulgaris Miyazaki b,  -340 -328 -302 -270 7.1 

D. vulgar/s Miyazaki -325 -291 -355 -321 

D.gigas' °  -295 -260 -225 -180 5.5 

D.gigas R -255 -290 -255 -240 

D.g/gas'' °  -360 -305 -280 -205 9.8 

D.gigasR -340 -285 -280 205 

References 
Coutinho & Xavier (1994) 
Fan etal. (1990b) 
Coletta et al. (199 1) & Santos etal. (1984) 

0) Potentials when other haems are oxidised 
R) Potentials when other haerns are reduced 

TABLE 1.3. : Microscopic redox potentials determined for cytochroine c3  using electron 
paramagnetic resonance data. (from Coutinho & Xavier, 1994) 

Redox potentials (mV) 

Organism e1  e2  e3  e4  

Dsm. baculatum (DSM 1743) a -355 -300 -280 -70 

Dsm. baculatum (Norway 4) b -355 -325 -270 -150 

Dsm. baculatum (Norway 4) -345/ -352 -320/ -330 -275/ -300 -150 

Dsm. baculatum (Norway 4)  d -355 -330 -300 -150 

D. vulgar/s (Miyazaki) e 
 -355/-360 -335/-330 -325/-320 -250/-220 

D. vulgar/s (Hildenborough) f  -365 -350 -320 -300 

D.gigas 9  -315 -306 -235 -235 

References 
Moura etal., 1988. 
Gayda etal., 1985. 
Gayda etal., 1988. 
Guigliarelli et al., 1990. 
Benosman etal., 1989. 
Coutinho & Xavier., 1994 
Xavier et al., 1979. 
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Cytochrorne 03 

These assignments agree well with data obtained in a single-crystal EPR 

redox study (Guigliarelli el al., 1990). 

1.4.5. Genetics 

The antigenic cross-reactivity of the cytochromes c3  from different species of 

s considerable variability (Singleton ci al., 19821  
sulphate reducing bacteria show  

Voordouw el al., 1987). 
Even strains of a single species showed considerable 

variability when compared using PCR (Kwoh ci al., 1993). The gene for D. vulgaris 

Hildenborough cytochrome c3  has been cloned and sequenced (Voordouw et al., 

1986). This gene was used to probe the genomes of 16 further strains of 

DesuifovibriO, 
using southern blotting to indicate the presence or absence of a similar 

gene (Voordouw ci al., 1987). 

Attempts to functionally express the cytochrome c3  gene of D. vulgaris 

Hildenborough in E. co/i were unsuccessful, apparently because of the inability of E. 

coil to insert c-type haems (Pollock ci al., 989). Functional expression of the D. 

fication of holocytochrome c3  was achieved in 
vulgaris Hildenborough gene, and purl 

 

D. desuifuricaflS G200 (Voordouw ci al., 1990). The system using D. desuifuriCa1I' 

G200 
has also been employed for site directed mutagenesiS of the 

D. vulgaris 

Hildenborough cytochrome c3  (Mus-Veteau ci al., 1992 Saraiva ci al., 1996). 

Successful production of D. vulgaris cytochrome c3  was also achieved in the purple 

photosynthetic bacterium Rhodobacter sphaeroideS (Cannac et al., 1991), the authors 

were hopeful that this system may lead to protein over-production. 

1.4.6. Kinetics 
haems in cytochrome c3  allows the possibility of both 

The presence of four  
electron transfer and inter-molecular, second-order 

intra-molecular, first-order  

electron transfer reactions. 

The intra-molecular rate constants for cytochrome c3  have not yet been 

determined but attempts have been made to estimate them. In NMIR studies of 

cytochrome c3 
 samples in slow intermolecular exchange, the absence of 

individualised haem resonances indicates a fast exchange rate, >i 	
Resonance 

25 



Cytochrome c3 	
Chapter 1: Introduction 

Raman results for DesulfOVibriO vulgaris (Miyazaki) showed discrete bands, at 

positions characteristic of reduced and oxidised haems. This indicates that the lifetime 

of microstates is longer than the spectral timescale limit (Verma 
ci al., 1988). 

However, the transit time of electrons between haems could still be exceptionally fast. 

The postulated rates are still faster than most intramolecUlar electron transfer (ET) 

processes in proteins containing multiple metal centres, with the obvious exception of 

the photosynthetic reaction centre. The short haem-haem distances and the extensive 

covalent and noncovalent linkages through the backbone probably help to facilitate 

intramolecular electron flow. More recent Resonance Raman results for 
DesulJbvibriO 

vulgaris (HildenbOroUgh) and DesulfOmicrobwm baculatum (Norway 4) cytochrome 

c3 , did not indicate peak splitting (Kazanskaya et al., 1996). 

First-order ET rate constants have been calculated for a paired cytochrome 
c3  

ferredoxin complex using stopped flow data (Capeillere-Blandin ci 
al., 1986). The 

idered as a dimer and rate constants for the forward and back 
proteins were cons  

i 	
has also been studied in the presence of 

reactions were acquired. Cytochrome C3  

dithionite and methyl viologen radicals using pulse radiolysis (Van Leeuwen 
ci at., 

1982, Favaudon et al., 1978). 
The data provided the first indication that the four 

haems were kinetically nonequivalent during bimolecular reduction with inorganic 

redox partners. Stopped flow kinetic data for a reaction between 
Dsm. haculatum 

cytochrome c3 
 and dithionite is biphasic. The fast phase, corresponds to reduction of 

25 % of the total protein and the slow phase to, reduction of 75 % of the protein. 

Comparable biphasic data have also been observed for the cytochromes 
c3  from D. 

vulgaris and D. gigas (Capeillere-Blandin ci al., 1986; Catarino ci al., 1991). The 

latter study used a network of thermodynamic parameters from another study (Coletta 

et at., 1991) 
including haem micropotentials and interaction potentials, to establish 

intermolecular ET rates for each haem. Similar results were observed for 
D. vulgaris 

(HildenborOugh and Miyazaki strains) reduced by small molecules followed by flash 

photolysis (Akutsu et al., 1992). The ionic strength of the solution and the formal 

charge of the reductant were found to influence the rate constants. 
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1.4.7. Summary 

In spite of the wealth of data which has been obtained for cytochrome c3  from 

an increasing variety of sources, no physiological function has been conclusively 

assigned to any of the proteins. Even though the proteins are very small, and have 

well conserved haem orientations, they seem to show considerable differences in some 

of their properties i.e. haem midpoint potentials, isoelectric points, electron exchange 

rates. 

Xavier and coworkers have related data from the D. gigas and D. vulgaris 

(Hildenborough) cytochromes c3  to one of the postulated physiological functions, as 

an electron acceptor from hydrogenase (Xavier, 1985; Xavier, 1986; Coutinho & 

Xavier, 1994; Louro ci at., 1996; Louro ci at., 1997). When a multiredox centre 

protein is studied in vitro, all possible redox states are attained by the protein. For 

cytochrome c3  this means that all 16 microstates (Figure 1.8.) are populated in 

accordance with the attendant 32 redox pairs (Xavier, 1986). Hence, the resulting 

data reflect the chemical equilibrium state of the protein. It is quite possible that in 

vivo a number of these states will not be accessible to the protein. This would result if 

electrons were given (or received) by a specific haem and then given (or received) so 

fast that chemical equilibrium conditions are not obtained. 

The cooperativity (electron/electron) shown by the D. gigas cytochrome c3  

gives it the properties necessary to function as a two electron donor/acceptor and a 

scheme has been proposed (Xavier, 1985: Xavier, 1986). In the scheme, transfer of 

two electrons only occurs after reduction/oxidation of a third haem. Thus, two haems 

are considered as regulatory (dispatcher centres) and the two positively cooperative 

haems, can then deliver two electrons rapidly. The regulatory haems overcome the 

need for selective electron transfer. 

The functional significance of the cooperativity (proton/electron) in D. 

vulgaris (Hildenborough) cytochrome c3  has also been considered. The 

thermodynamic relationship between electrons and protons participating in redox 

reactions, is commonly referred to as the redox-Bohr effect (Papa et at., 1979). It is 

commonly used to explain proton-pumping across membranes, where it is referred to 

as the membrane-Bohr effect. The properties observed for cytochrome c3  suggest that 
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it can support a concerted proton-assisted 2& step (Louro et al., 1996; Louro et al., 

1997). 
The coupled uptake of protons and electrons would make the cytochrome c3  

an excellent partner for hydrogenase which catalyses the reaction: 

H2 -2H+2e 

During physiological function, cytochrome c3  could act as a "proton thruster" (Louro 

et a!, 1997). 
This involves taking up protons and energised electrons, then releasing 

electrons and energised protons. This would allow energy transduction without the 

need for membrane confinement, in accordance with Williams (1978). 

It is quite possible that the low molecular weight cytochromes 
c3  found in 

different bacteria may fulfil different physiological functions. This hypothesis is 

supported by the discovery of two very different tetrahaem cytochromes c3  in a single 

organism, Desu!fovibrio africanuS (Pieulle ci al., 1996). The cytochromes were 

referred to as the acidic c3  and basic c3  by the authors, reflecting differences in 

isoelectric point and other properties. The majority of cytochromes 
c3  which have 

been identified so far are readily reduced by the periplasmic hydrogenase from the 

corresponding organism (e g. Pieulle et al., 1996; Verma ci al., 1988; Bianco ci a!, 

1992). This is the case for basic D. africanus cytochrome c3. The D. africanuS acidic 

cytochrome c3  on the other hand, is not reduced by hydrogenase in the absence of 

basic cytochrome c3. In general, the basic cytochromes c3  have conserved surface 

lysine residues. Complex formation can be facilitated by interaction between the lysine 

residues and complementary, negative residues on the surface of an acidic redox 

protein e.g. ferredoxin, flavodoxin and rubredoxin (Cambillau et al., 1988; Stewart et 

al., 1988; Guerlesquin ci al., 1984). Additionally, the cytochromes c3  exhibit an 

asymmetrical charge distribution. This could produce a dipole moment and aid protein 

recognition (Cambillau ci al., 1988). The same type of interaction probably occurs 

between cytochrome c3  and the periplasmic hydrogenaSeS. The differing specificities 

of the D. africanuS cytochromes c3  could thus be rationalised on the basis of their 

differing electrostatic charges. Most importantly, the role of low potential 

cytochromes C3 
cannot be assumed to be as a coupling factor between hydrogenase 

and a respiratory electron transport chain. 
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1.5. Aims 

During an attempt to purify the haem domain of S. 
putrefaciens NCIMB 400 

flavocytochrOme c3, expressed in a flavocytOChrome C3 deficient strain of the 

bacterium (Gordon, 1996), another cytochiome c3  was identified. 

The main aims of the work described in part one of this thesis were to: 

To purify the protein and obtain a biochemical and biophysical characterisation of 

it. 

To sequence the cytochrome c3  gene and flanking regions in the hope of obtaining 

information about the physiological function of the protein. 

29 



Part 1-Cytochrome C3 

Chapter 2: MATERIALS AND 
METHODS 



Cytochrome c3 	 Chapter 2: Materials and Iviethods 

2.1. MEDIA AND GROWTH CONDITIONS 

2.1.1. General 

All plastic disposables were sterilised by autoclaving at 121°C for 20 mm. as 

was all growth medium. Temperature sensitive solutions such as antibiotics were 

sterilised by filtration through 0.2 tm filters (Sartorius). Ultrapure deionised water 

(resistivity -18 M) was used for all solutions and high purity chemical were used 

throughout. 

E. coil were grown at 37°C throughout and S. putrefaciens were grown at 23-

25°C. Starter cultures (5 mL) were inoculated from agar plates using a sterile loop 

and used to inoculate large cultures (0.5 L). Large scale cultures were grown 

anaerobically in flasks typically containing 1/2 volume of culture media. Aerobic 

cultures were grown in flasks containing no more than 1/5 volume of medium. 

Bacteria were harvested by at 16000g for 10 minutes in a Sorvall RC-5B centrifuge 

and then stored at -20°C until required. 

2.1.2. Bacterial strains used 

S. putrefaciens NCIMB 400 - wild type 

S. putrefaciens EG3 01 - Flavocytochrome c3  deficient mutant 

E. coil AR 120 

2.1.3. Luria-Bertani growth medium 

per litre: 

Bacto-tryptone 	log 

Bacto-yeast extract 5 g 

NaCl 	 5 g (10 g for S. putrefaciens) 

1.5 % agar was added to the above for plates 

2.1.4. Long term bacterial storage 

To maintain stocks of bacterial strains 70 L DMSO (7 % v / v) was added to 

1 mL of exponentially growing culture in a sterile microcentrifuge tube. The tube was 
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chilled on ice for 10 mm. and then frozen at -80°C. The culture was recovered by 

scraping a small sample with a sterile pipette tip and transferring to an agar plate. The 

plate was then streaked for single colonies. 

2.1.5. Antibiotics 

Filter sterilised antibiotics were added to previously autoclaved broth and 

plates (once the temperature was below 50'Q in the following concentrations: 

Ampicillin 100 ig / mL, Kanamycin 50 xg / mL, Streptomycin 25 g / ni.L, Rifampcin 

10 ig/mL. 

2.2. PROTEIN PURIFICATION 

2.2.1. General 

Unless otherwise stated, all steps were carried out at 4°C. Buffers were made 

up according to standard practise ( Dawson R. M. C. et al., 1984 ). UV / visible 

spectroscopy between 250 nni and 800 nm was used to monitor the protein during 

purification. 

2.2.2. Cell lysis 

Anaerobically grown S. putrefaciens cells (100 g), frozen at -20°C were 

thawed. Using a homogeniser the cells were suspended in 200 mL of 100 mM 

sodium phosphate buffer (pH 7.0). The cells were sonicated, on ice, at full power for 

1 mm. total using a sonicator (HEAT SYSTEMS-ultrasonic processor). To separate 

cell debris from the soluble fraction, the lysed cells were spun at 39000g for 30 mm.. 

The red supernatant was carefully decanted and the pellet of debris discarded. 

2.2.3. Ammonium sulphate precipitation 

The addition of ammonium sulphate causes salting-out of less soluble proteins. 

It is an excellent method for removing a large bulk of the unwanted protein from 

solution. The volume of supernatant containing soluble proteins was determined. 

Ammonium sulphate was added slowly to the supernatant at 4°C in order to make a 

31 



ytochrome c3 	 Chapter 2: Materials and Methods 

50 % saturated solution. The resultant solution was spun at 39000g in an SS-34 rotor 

for 20 mm. The supernatant, which contains cytochrome c3  was carefully pipetted 

away from the protein pellet and was ready for chromatography. 

2.2.4. Chromatography 

Hydrophobic interaction chromatography (HIC) 

Hydrophobic columns consist of alkyl or aryl ligands, usually immobilised on a 

base matrix of hydrophilic carbohydrate. No single theory has been proposed to 

explain HIC. Most are based on the unfavourable entropy associated with water 

solvating the immobilised hydrophobic ligands and the solvent accessible hydrophobic 

groups of the protein. In high-salt solutions the hydrophobic protein groups will 

interact with the immobilised ligands and exclude water. As the salt concentration is 

decreased, more water is "free" to solvate the protein and ligands, and protein is 

eluted from the column. 

The use of a hydrophobic column provides a useful method for desalting and 

purifying protein immediately subsequent to ammonium sulphate precipitation 

(Ziomek et al., 1984). A column of Phenyl Sepharose CL-413 (Pharmacia) 2.5 cm by 

10 cm was equilibrated with 100 mM phosphate pH 7.0 containing 50% saturated 

ammonium sulphate. The protein solution was loaded onto the column and washed 

with two volumes of the equilibration buffer. The protein was eluted with a gradient 

from 50%- 0% ammonium sulphate in 100 mM phosphate buffer pH 7.0. The 

fractions containing cytochrome c3  were dialysed against two changes of phosphate 

buffer to remove residual salt prior to the next chromatography step. 

Anion exchange column 

Ion exchange chromatography uses the difference in net charges between 

proteins to effect separation. An example is DE-52 which contains diethyl-aminoethyl 

groups bound to a supporting cellulose matrix. The side groups bear a positive charge 

and interact specifically with proteins passing down the column. Negatively charged 
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proteins bind to the amino groups resulting in longer retention times. Neutral and 

positively charged proteins bind less favourably resulting in short retention times. 

DE-52 (Whatman) was equilibrated according to the manufacturer's 

instructions in 100 mM phosphate buffer pH 7.0. Column dimensions were typically 

2.5 cm diameter and 10 cm length. The soluble cell lysate was loaded straight onto the 

column resulting in a tight red band. Two column volumes of 100 mM phosphate 

buffer were used to elute impurities before a gradient was set up. Elution of 

cytochrome c3  was achieved using a stepwise gradient of 0-250 mM NaCl in 100 mM 

Phosphate buffer pH 7.0, fractions were collected. 

Gelfiltration chromatography 

Gel filtration chromatography utilises the huge distribution of molecular 

weights found in proteins. Beads of cross-linked dextran make up the gel and result in 

a three dimensional network of molecular pores. Buffer carrying protein flows around 

beads and through the pores. Small proteins can enter the pores but larger ones are 

excluded. The net result is fast elution of large proteins and retention of smaller ones. 

Sephadex G-50 was degassed and packed under gravity in a large column (2 

cm diameter, 150 cm length), with 20 mlvi phosphate buffer pH 7.0. Samples from the 

previous chromatographic step were too dilute to be directly applied to the column. 

The fractions with absorbance at around 407 nm were pooled and spun in centricon 

concentrators (Vivascience) with a molecular weight cut-off of 5000 Da. When the 

sample volume reached 2 mL, it was loaded onto the column and run with 20 mM 

phosphate. Once the cytochrome bands reached the end of the column, fractions were 

collected. The fractions were checked for an oxidised Soret peak at 407 nm and the 

purest were pooled. Cytochrome c3  typically eluted after 8 hours. 

Hydroxyapatite chromatography 

Hydroxyapatite is insoluble calcium phosphate. The mode of action is most 

likely due to electrostatic effects from the ions present. Instead of single isolated 

charges (c.f anion and cation exchangers), the crystalline lattice consists of adjacent 

positive and negative charges. A simplistic view is that dipole on the protein surface 
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can interact with dipoles on the lattice surface. Separation is achieved as a result of 

the different interaction strengths of different proteins. 

Hydroxyapatite Bio-Gel (Bio-Rad) was prepared in a slurry following the 

manufacturers instructions (particular care being taken to remove fine particles). A 

column of size 2 cm diameter by 10 cm length was poured with 20 mlvi phosphate pH 

7.0 as the starting buffer. The purest fractions from the previous step were diluted 

with an equal volume of deionised water and loaded onto the column. The column 

was washed with two volumes of 20 mM phosphate buffer followed by a linear 

gradient (20 niM-100 mM phosphate). Fractions were collected and assessed by 

spectrometrically. 

2.2.5. Polyacrylamide gel electrophoresis (PAGE) 

Tris-Glycine buffer system 

A discontinuous buffer system is employed for separation of proteins. The 

optimal molecular weight range is varied by changing the acrylamide content (%) in 

the separating gel (see below). Gels were cast in mini-PROTEAN (Bio-Rad) 

apparatus and all chemicals were electrophoresis grade. Gels were run at 200 V for 45 

minutes. 

Stock Solutions 

Acrylamide / Bisacrylamide Mix 

Protogel (30 % T, 2.67% C) Acrylamide, 37.5:1 acrylamide/ bis ratio 

1.5 M Tris-HCI, pH 8.8 (stored @ 4°C) 

Tris base 18.15 g / 100 mL, adjust pH with 1 N HCl 

0.5 m Tris-HCI, pH 6.8 (stored @ 4°C) 

Tris Base 6 g / 100 mL, adjust pH with 1 N HC1 

10%SDS 

Sodium dodecylsulphate 10 g / 100 mL 

5X Running Buffer (stored @ 4°C) 

Tris base 1.5 g/ 100 m 
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Glycine 7.2 g / 100 mL 

SDS 0.5 g/ 100 mL 

4X Sample Buffer 

Distilled water 4.0 mL 

0.5 M Tris-HC1, pH 6.8 

Glycerol 0.8 mL 

10 % SDS 

2--mercaptoethano1 

0.05 % (w / v) bromophenol blue 

TEMED (N, N, N', N'-tetramethylethylenediamine) 

10 % w/v Ammonium persulphate (made up fresh in dH20) 

4 % Stacking Gel Composition 

Solution Volume (j.tL) 

dH2O 3050 

30 % Acrylamide stock 650 

0.5MTris-HC1 1250 

10 % SDS 50 

10 % Arnmoniuin persulphate 25 

TEMED 5 

Variable Separating Gel Composition 

Solution 

Solution volume (.tL) for required % acrylamide gel 

10% 12% 15% 

dH20 1900 1600 1100 

30 % Acrylamide stock 1700 2000 2500 

1.5MTns-HC1 1300 1300 1300 

10%SDS 50 50 50 

10 % Arumonium persulphate 50 50 50 

TEMED 2 2 2 
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Coomassie Staining 

Gels were soaked in stain solution for approximately 30 mm. and then in 

destain for 1-3 hours. Prior to drying the gels were soaked in distilled water. 

. Gel Stain 

1 g / L Coomassie blue R-250 in 40 % methanol, 10 % ethanoic acid 

Destain 

40 % Methanol, 10 % ethanoic acid 

Haem Staining 

Haem staining determines the location of cytochrome bands in the gel. The 

gel was equilibrated in solution 1 for 5 mm., then transferred to the TMBZ solution 

where it was incubated in the dark for 15 mm.. The stain was developed by adding I 

mL of 30 % hydrogen peroxide solution. Once sufficient colour had developed, the 

gel was fixed in solution 1 and soaked in distilled water before drying. 

Solution 1 

0.25 M sodium acetate, pH 5.2 in 30 % aqueous methanol solution 

TMIBZ solution 

400 mg / mL TMIBZ in solution 1 

Tris-Tricine buffer system 

The discontinuous tris-tricine system (Schagger & von Jagow, 1987; 

Schagger, 1994) allows resolution of small proteins of molecular weight 1-100 kDa at 

a much lower percentage acrylamide in the gel than glycine- SD S -PAGE systems. 

Resolution of small proteins and peptides is achieved without the inclusion of urea in 

the gel. The tris-glycine system operates well over a broad range of molecular weight, 

however proteins below 20 kDa are not separated from the bulk SDS in the stacking 

gel. The use of tricine overcomes these stacking problems. 
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A mini-gel system (BlO-RAD mini-PROTEAN II) was used for all 

experiments. All gels consisted of a stacking gel, a spacer gel and a separating gel. 

The solutions were made up as detailed below and the APS and TENTED solutions 

were added to promote polymerisation immediately prior to pouring. The separating 

gel was poured first to a length of 4.5 cm and then the spacer gel was carefully 

layered on top using a syringe, to a length of 1 cm. Distilled water was carefully 

layered on top of the gel solution to exclude air during polymerisation. After 30 mm. 

the water was removed and the stacking gel was poured and left to polymerise. 

Samples and markers were prepared by addition of 1/4 volume of sample buffer and 

heating to 95°C for 5 mm. The gel was run in a refrigerator at 4°C with a potential of 

150 V across the gel for approximately 3 hours or until the dye front from the loading 

buffer was at the end of the gel. The gel was stained for approximately 1 hour and 

then destained for 2 hours. 

Stock Solutions 

Acrylamide / Bisacrylamide Mix (store @ 4°C) 

BlO-RAD (40 % T, 3.3 % C) Acrylamide, 29:1 acrylamide / bis ratio 

Anode Buffer, pH 8.9 

0.2 M Tris-HCl 

Cathode Buffer, pH 8.25 

0.1 MTris-HCI 

0.1 MTricine 

0.1% SDS 

Gel Buffer, pH 8.45 

3 M Tris-HCl 

0.3 % SDS 

Sample Buffer (4X) 

30 mL Na-SDS (20 % w/v) 

15 g Glycerol 

0.91 gTris 

Adjust pH to 6.8-7.0 with HC1 
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Make up to 47 mL with dH20 

Dissolve 40 mg Coomassie blue G 

Add 3 mL mercapto ethanol, store at room temperature 

10 % APS (Ammonium Persulphate) made fresh 

TEMED (N, N, N', N'-tetramethylethylenediamine) 

Gel Stain 

0.025 % Coomassie®  Blue G 

10 % Acetic Acid solution 

Gel Destain 

10 % Acetic Acid Solution 

Gel Composition 

Solution Separating Gel 

(16%) 

Spacer Gel 

(10%) 

Stacking Gel 

(4%) 

40 % Aciylamide 6 mL L

Gel 

1.5 mL 1.25 ml- 

GelBuffer 5 inL 2 mL 3.1 niL 

dH2O 1.5 mL 2.5 niL 8.15 mL 

80 % Glycerol 2 mL  

10%APS 75L 30 4L 100 p 

TEMED 7.5 .tL 3 jL 10 iL 

Total Volume (ml-) 15 mL 6 mL 12.5 ml- L 

2.3. 2.3. REDOX POTENTIOMETRY 

Haem group redox potentials were measured using the method of Dutton 

(1978). A nitrogen atmosphere glove box with oxygen level < 5 ppm was used and 

temperature was maintained at 25°C . Spectra were recorded with a Shimadzu 1201 

spectrometer. Potential were measured with a WPA meter and Russell platinum 

electrode, containing a silver I silver chloride reference system (potential +196 mV 

relative to SHE). The electrode was calibrated using the Fe (III) / Fe (II) couple. 

Mediators were used to aid electron transfer between the protein and the electrode. 
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Mediators are chosen to give a wide potential span and varied between experiments to 

ensure that chemical interaction is not occurring. The following were used: 

Methyl viologen MV -446 mV 

Benzyl viologen BV -359 mV 

Flavin mononucleotide FMIN -205 mV 

Hydroxynapthaquinone HNQ -145 mV 

Phenazine methosulphate PMS +60 mV 

A selection of mediators were added to a solution of approximately 2 p.M oxidised 

cytochrome (5-8 mL) in 100 mM phosphate buffer. Mediator concentration was 

around 20 p.M in the working solution. Small volumes of a freshly made sodium 

dithionite solution (10 mM) were introduced with a microliter syringe, so as to shift 

the potential downwards a few mV. The spectrum of the haem c and 3 peaks were 

recorded after each addition as was the potential. Once the protein had been fully 

reduced, oxidation was carried out with stepwise additions of potassium ferricyanide 

(10 mM), to ensure that the process is reversible. 

2.4. NMR SPECTROSCOPY (recorded by Dr. Emma Beattie and Lez Holden) 

Approximately 0.5 mL of 0.2 mM cytochrome c3  solution was used, dissolved 

in 20 mM phosphate buffer, pH 7.0. Pre-saturation of the H20 peak was required 

before a 1D pulse sequence was applied. Chemical shifts were assigned relative to the 

H20 peak at ö 4.8 ppm. 

2.5. EPR SPECTROSCOPY 

All measurements were made at 10 K using a Bruker ER 200D spectrometer 

fitted with a cryostat and helium transfer system (Oxford instruments). Samples 

contained '-0.2 mM protein in 100 mM phosphate buffer pH 7.0. 
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2.6. MOLECULAR BIOLOGY 

Buffers were made according to standard recipes (Sambrook et al., 1989) and 

sterilised by autoclaving before use. 

2.6.1. Oligonucleotide primers (5' to 3') 

PCR 

C31 - CAC GAA TTC GAR TTY CAY GTN GAR ATG 

C32 - GCG AAG CTT YTT NAR NGG YTC NCC 

Sequencing 

C33 - GTTTTCACAGCCACC 

C34 - CTT CTG CAT CAT TTG C 

C35 - ATA CCT CTT TAT AGG 

C36 - CAT GTA ACT CGA TGG 

C37 - CAA TGC ACT TAG TAG 

C39- CAA TGT ACT GCGTTACC 

C310 - GCT GTT ATG TAG CGC TC 

Cli - CCTGGATGTTACGACG 

C12 - ATC ATA TTG ACC TTG CC 

C313 - CTA AGT TGT TAT ATG TG 

C314 - CAG ACT TAC ATT TAG CC 

2.6.2. Isolation of the cytochrome c3  Gene ( carried out by Dr. Euan Gordon) 

Two PCR primers were designed from protein sequence and codon usage data 

from known Shewanella sequences. Two rounds of PCR were used to amplify the 

coding sequence from S. putrefaciens genomic DNA. The single product obtained 

was purified and ligated into vector pTZ 1 9r, resulting recombinant clones were 

sequenced, confirming the fragment identification. Plasmid DNA was used to generate 

a radioactive probe for a Southern blot. Positive hybridisation was seen with 4kb NsiJ 

digested fragments. Bands of this size were purified from a similar gel and ligated into 
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PstI cut pTZ I 8r, forming a library. Two positive clones were obtained, these were 

used to determine the DNA sequence of the insert. 

2.6.3. DNA sequencing (carried out in conjunction with Dr. Euan Gordon) 

Single stranded DNA preparation 

The 4 kb fragment containing the cytochrome 0 gene was inserted into the 

phagemid vector pTZ I 8r which has anfl origin of replication. Two clones, pEG700 

and pEG700r were used for production of all single stranded DNA. The only 

difference between the two clones is the orientation of the insert. This allowed 

production of both DNA strands for sequencing. 

Bacteria containing the relevant vector were grown to mid-log phase and then 

infected with helper phage M13 K07 (m.o.i.1) and shaken for 1 hour at 37°C. 

400p.L of infected culture was added to a 250 mL flask with selective medium (10 

mL) containing 70 p.g / mL kanamycin for selection of phage uptake. The culture was 

shaken vigorously overnight at 37'C. 

A microcentrifuge tube filled with 1.5 mL of culture was spun at 13000 x g for 

5 minutes to remove cells. To precipitate the phage, 1.2 mL supernatant was added to 

0.3 niL of 2.5 M NaCl / 20 % PEG 8000. The solution was mixed and incubated at 

room temperature for 15 mm. before centrifugation, 5 mm. at 13000 x g. All 

supernatant was removed and the pellet was resuspended in 100 [IL of TE buffer. The 

solution was extracted with 50 iL phenol: chloroform: isoamyl alcohol (25:24:1) 

mixture and then with 50 mL chloroform:isoamyl alcohol (25:1) mixture. To 

precipitate the DNA, 0.1 volume sodium acetate (pH 5.2) and 3 volumes of ethanol 

were added, followed by incubation at -20°C for 1 hour. A DNA pellet was obtained 

after centrifugation, 13000 x g for 10 mm. at 4°C. The pellet was washed with 80 % 

ethanol from the freezer, dried and suspended in 50 L TE buffer ready for use. 
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Manual Sequencing Reactions 

Sequencing of single stranded DNA was achieved using the 

SequenaseTM  Version 2.0 kit (Amersham). The primers used for sequencing are listed 

in Section 2.6. 1. The procedure consists of three steps. Firstly, primers are annealed 

to the single stranded template. Secondly, the primers are extended and radio-label is 

incorporated into the DNA. Finally, the inclusion of dideoxy nucleotide of a single 

type causes the extension reaction to stop at the location of that base. 

To anneal primer and template, 1 tg of---3 ng .tL' solution was added to 7 .tL 

of template (approximately 1 .ig DNA) and 2 mL of 5 x reaction buffer (200 mM 

Tris-HC1, pH 7.5; 100 mM MgCl2; 250 mM NaCI) and heated to 65°C for 2 mm. in a 

water bath. The mixture was allowed to cool slowly and iced, once it had reached 

350C. 

For DNA labelling, the following were added to the 10 .tL annealing mixture: 

1 x labelling mix (1.3 .iM each dGTP, dTTP, dCTP), 5 pCi [a-35S]dATP, I p.L 0.1 M 

DTT, 0.5 units Sequenase enzyme in enzyme dilution buffer (10 mM Tris-HCl pH 

7.5, 5 mM DTT, 0.5 mg / mL BSA). The mixture was incubated at room temperature 

or below for 5 mm.. 

The four termination reaction mixtures contained ddATP, ddCTP, ddGTP and 

ddTTP (2. 5 .iL) in pre-warmed tubes at 37-45°C, to which 3.5 L of labelled DNA 

was added. After 5 mm., 4 tL of STOP solution (98 % formamide, 10 mM EDTA pH 

8, 0.025 % xylene cyanol, 0.025 % bromophenol blue) was added. The reactions were 

used immediately or stored at -20°C. For sequences with high G-C ratio, termination 

mixes containing dITP instead of dGTP were used. 

dGTP Termination Mixtures 

ddTTP- 80 p.M dTTP, dCTP, dGTP, dATP, 8 p.M ddTTP, 50 mM NaCl 

ddCTP- 80 p.M dTTP, dCTP, dGTP, dATP, 8 p.M ddCTP, 50 mM NaCl 

ddGTP- 80 p.M dTTP, dCTP, dGTP, dATP, 8 p.M ddGTP, 50 mM NaCl 

ddATP- 80 p.M dTTP, dCTP, dGTP, dATP, 8 p.M ddATP, 50 mM NaCl 
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. dITP Termination Mixtures 

ddTTP- 80 jiM dTTP, dCTP, dITP, dATP, 8 jiM ddTTP, 50 mM NaCl 

ddCTP- 80 p.M dTTP, dCTP, dITP, dATP, 8 p.M ddCTP, 50 mM NaCl 

ddITP- 160 p.M dITP, 80 mM dTTP, dCTP, dATP, 1.6 p.M ddITP, 50 mM NaCl 

ddATP- 80 p.M dTTP, dCTP, dITP, dATP, 8 p.M ddATP, 50 mM NaCl 

2.6.4. Denaturing polyacrylamide gel electrophoresis 

Gel solutions (60 mL) consisted 6 % acrylamide, 8 M urea dissolved in TE 

buffer (10 mM Tris-HC1, 1 mM EDTA pH 8.0). Glass plates were carefully cleaned, 

one plate was silanised and they were clamped with 0.4 mm spacers. The gel was 

polymerised with 10 % ammonium persulphate (150 p.L) and TEMIED (150 p.L) and 

left to set for 1 hour. The gel was clamped vertically in a BRL sequencing tank, 

immersed in TE buffer and run at 60 W for 1 hour to pre-warm. The samples were 

denatured by heating to 75°C for 2 mm., loaded onto the gel and run at 60W. 

Once electrophoresis was complete, the gel was transferred to a sheet of filter 

paper and soaked in 15 % methanol / 5 % acetic acid for 5 mm. to remove urea. The 

gel was dried at 80°C and autoradiography was performed in direct contact with the 

film at room temperature. 

Sequencing compressions were resolved by adding 40 % formamide to the 

standard gel mixture. 

2.6.5. Sequence Analysis 

All sequencing data was analysed using the GCG version 9.0 program 

(University of Wisconsin). 

43 



Part 1-Cytochrome C3 

Chapter 3: RESULTS AND 
DISCUSSION 



ytochrome c3 	 Chapter 3: Results & Discussion 

3.1. PROTEIN PURIFICATION AND CHARACTERISATION 

3.1.1. Introduction 

Shewcxnella putrefaciens can utilise an unparalleled variety of terminal electron 

acceptors when respiring anaerobically. As was stated in Chapter 1, Shewanella 

synthesizes a large number of c-type cytochromes during anaerobic respiration. A 

previous study attempted to identify the cytochromes produced in response to 

different terminal acceptors by Shewanella NC1MB400 (Morris, 1987). One of the c-

type cytochromes made in response to anaerobiosis is flavocytochrome c3. 

Flavocytochrome c3  functions as a respiratory fumarate reductase and consists of a 

haem and flavin domain. The smaller domain contains four bis-histidine ligated haems 

with low redox potentials (Pealing et al., 1995). The haem domain has similar 

biophysical properties to the Desulfovibrio cytochromes c3, but shows little sequence 

similarity with them. 

Morris also observed a cytochrome which bound very tightly to anion 

exchange columns. However, little further analysis of this protein was carried out. It 

appears that this protein is a low molecular weight cytochrome c3  which is related to 

the cytochrome domain of flavocytochrome c3. We have identified the gene which 

encodes this cytochrome c3  from Shewanella NCIMIB400 and cloned it. We have 

purified the protein to homogeneity and carried out a biochemical and biophysical 

studies of it. The cytochromes c3  were until recently, thought to be prevalent only in 

the strictly anaerobic, sulphate-reducing bacteria. However, they have now been 

identified in more diverse bacteria such as the purple phototrophic bacterium H1R 

(Ambler, 1991). A cytochrome c3  has also been identified in the Shewanella 

putrefaciens MR-1 strain (Tsapin et al., 1996). A typical purification table for 

cytochrome c3 is shown in figure 3.1. 

Figure 3.1.: Purification table for cytochrome c3  based on bOg wet weight of Shewanella 
NCIMB400. Cytochrome c3  concentration based on absorbance measurements taken at 407 nm. 

Step Total c3  (mg) Ratio (A407  : A280) Yield Purification 
(%) factor 

Cell lysate 15.4 0.149 100 1 
Phenyl sepharose 13.2 1.0 86 6.7 
DE-52 10.3 4 67 26.9 
Gel filtration 6.2 10.8 40 72.5 
Hydroxyapatite 2.3 16 16 107.4 
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3.1.2. Molecular weight determination 

3.1.2.1. Polyacrylamide gel electrophoresis 

Denaturing polyacrylamide gel electrophoresis is a useful technique for 

determining the molecular weight of proteins. The protein sample is treated with SDS, 

heat and a reducing agent in order to fully denature it. SDS molecules induce protein 

is unfolding and bind to it. Approximately one SDS molecule binds for every two 

amino acids, giving the protein a large net negative charge. When the SDS-protein 

complex is run through a cross-linked acrylamide gel matrix (using an applied electric 

field), separation of different sized proteins is effected. The mobility of a protein is 

generally proportional to the log of its molecular weight. Proteins used as molecular 

weight markers are chosen because they follow this behaviour. However, ideal 

behavior is not always observed for a variety of reasons. Shewanella NCIMB400 

cytochrome c3  does not migrate as a single tight band on gels run with either tris-

tricine or tris-glycine buffer. Instead we see a broad band at around 16000 Da. This 

behaviour is probably a result of incomplete unfolding of the protein due to the 16 

linkages (8 thioether and 8 iron ligands) between the backbone and the four haems. 

This structural stability would not allow typical denaturation with the SDS, perhaps 

resulting in a lower net charge and unexpectedly low mobility. There could also be a 

strong tendency for this small protein to refold. 

3.1.2.2. Electrospray mass spectrometry 

Electrospray ionization is a particularly effective method for analysing small 

proteins and polymers. The technique is very sensitive and detection limits in the sub-

femtomole range have been obtained. Electrospray spectra can yield molecular masses 

for proteins because the ionisation method is capable of attaching many charges to 

large molecules. The net result is that a polypeptide of molecular mass 60000 Da 

with, 30-60 net positive charge, has a mass-to-charge ratio (m!z) of 1000-2000 which 

is well within the mass range of most modern spectrometers. From Figure 3.2. and 

Figure 3.3., the molecular mass of the major peak is 11778 Da. This is in excellent 

agreement with the calculated mass from the protein sequence, plus four haems (see 
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later). The results from the mass spectra support the hypothesis that the molecular 

weight determined by gel electrophoresis is anomalous. 

1001 1683.6 

1473.2 

1309.7 

1963.9 
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1071.0 

0 
1000 1200 	 1400 1600 6800 	 2000 

Figure 3.2. : Mass spectrum of the cytochrome c3  sample showing mass to charge ratios. The peaks 
correspond to protein molecules with net charge ranging from 1 1(far left) to 6 (far right). 

100 11711 

11117 

h11937 

11165 

11876 

11096 

0. 

11049 

an. 
 11030 	 11760 	 11756 	 11800 	 11830 119" 	 11950 

Figure 3.3. : Mass spectrum showing molecular weight values yielded by analysis of Figure 3.1. 
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3.1.3. Redox potentiometry 

The macroscopic redox potentials of cytochromes c3  from a number of 

sources have been measured using EPR, NIVIR, cyclic voltammetry and spectroscopic 

titrations (see Section 1.4.4. ). The potentials of the different cytochromes c3  show a 

very considerable variation. This is in spite of the highly conserved haem-core 

architecture in the structures solved so far. For example, cytochrome c3  from 

Desulfomicrobium baculalum has potentials spanning over 200 mV, ranging from - 

165 to -400 mV (Bianco & Haladjian, 1981). Desu?fovibrio gigas cytochrome c3, on 

the other hand, has potentials which span less than 100 mV from -235 to -315 mV 

(Cusanovich et al., 1994). 

The spectra in Figure 3.4. were obtained for the a/13  region of the S. 

puirefaciens cytochrome c3  spectrum during a redox titration and are corrected to 

allow for concentration changes (due to evaporation) during the experiment. The 

absorbance data were summed and averaged over the region between the two 

isosbestic points at 510 and 560 nm, rather than using a single wavelength value. It 

was assumed the protein was fully oxidised (or reduced ) when no further spectral 

change was seen on addition of oxidant (or reductant). The data are shown in Figure 

3.5. Using the non linear least squares method, the data was fitted to an equation 

containing two Nernst functions with Microcal Origin. This yields macroscopic 

midpoint potentials, with values of-58 ± 10 and -200 ± 10 mV (relative to S1-[E). We 

attempted to fit the data to a function containing four Nernst equations but found it 

fitted badly and yielded two pairs of potentials. The pairs of potentials were almost 

identical to those obtained from the two Nernst equation function. 

Similar redox behaviour was observed for the four haems of flavocytochrome 

C3, which titrate in a pairwise fashion, at approximately -220 and -320 mV (Morris et 

at., 1994). The haem potential values determined for cytochrome c3  are higher than 

those for flavocytochrome c3  A recent re-examination of flavocytochrome c3  gave 

potentials closer to, but still lower than those of cytochrome c3  (M. Doherty - 

personal communication). The differences in potential are not entirely suprising. 

Flavocytochrome c3  has a large flavin domain bound to the cytochrome domain and 

shows differences in its amino acid sequence. 
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Figure 3.4. : Spectra obtained during a redox titration of cytochrome c3, performed as described in 
materials and methods section. 

Figure 3.5. : Data from a redox titration of cytochrome c3; points in blue correspond to reduction 
with sodium dithionite, points in red correspond to oxidation with potassium ferricyanide. The blue 
trace is fitting of the data to two Nernst equations. All potential values are relative to the calomel 
electrode (i.e. SHE -244 my) 
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The cytochrome c3  from Desulfobulbus elongatus, the haems appear to titrate 

in two stages (Samain et at., 1986). The first stage corresponds to one haem and the 

second, to the remaining three haems (based on the magnitude of the spectral change). 

It is apparent from NIVI1R and EPR titrations that many of the cytochromes c3  

have closely spaced redox potentials. In cyclic voltammetry and pulse polarography 

experiments, different numbers of haem potentials are resolved for some cytochromes 

C3 (Bruschi et at., 1984; Niviere et al., 1988). Four distinct potentials have never been 

resolved using theses techniques Although our data fit well to the equation describing 

two pairs of potentials, it is possible that cytochrome c3  for S. putrefaciens has four 

discrete redox potentials. 

3.2. SPECTROSCOPIC TECHNIQUES 

3.2.1. Optical spectroscopy 

This technique monitors transitions between different electronic states. Most 

electronic transitions observed in the visible region are between haem it bonding and it 

anti-bonding orbitals or between ligand and iron (charge transfer or CT transitions). 

In the UV region of the spectrum, most transitions are due to movement of electrons 

between ligand it bonding and it anti-bonding orbitals. Other contributions to the 

spectrum come from aromatic amino acids (tyrosine, tryptophan and phenylalanine). 

The absorption of the haem dominates the spectra. The characteristic haem 

absorptions (in order of increasing energy) are named a, 13 & y (or Soret) bands. The 

very intense Soret band usually lies between 390 nm and 430 nm and the cx & 13 bands 

lie between 500 and 600 nm. Each class of cytochrome has a characteristic spectrum. 

The exact position of absorption peaks due the haem aromatic system are affected by 

the ligation, and hence spin state, of the iron and by the substituents on the haem. The 

spectrum in Figure 3.6. shows peaks at positions, consistent with other cytochromes 

C3. 
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The oxidised and reduced spectra of S. putrefaciens cytochrome c3  are shown 

in Figure 3.6. The oxidised Soret peak lies at 407 nm and the oxidised a/f3 band lies at 

532 nm. The reduced Soret band lies at 417.5 nm and the a & 13 bands lie at 551.5 nm 

and 521.5 nm respectively. 

Two methods were used to estimate an extinction coefficent for the haem 

Soret peak. The first is based on a theoretical value extinction coefficient calculated 

from the contribution of the aromatic amino acids and per haem at 280 nm. The 

program, protparam at http://expasy.hcuge.chlchi-bin!protparam, gives a protein only 

extinction coefficient of 1280 M' cm'. The haem contribution was calculated using 

the extinction per haem of 13850 M' cm' (Moore & Pettigrew, 1990). This yields an 

overall coefficient of 6280=56680 M 1  cm'. Using this value an extinction coefficient of 

6417.5=793500 M 1  cm' was calculated for the reduced Soret peak. The second method 

used the bicinchoninic acid assay method to quantitate the protein concentration. BSA 

(bovine serum albumin) was used as a standard. The extinction coefficient for the 

reduced Soret band was calculated as 507700 M' cm' based on the protein 

concentration. 

The value obtained using BSA as a standard is prone to quite a large error. 

The standard does not even contain the same chromophores and the experiment may 

give different results if cytochrome c were used as a standard. However the two 

results lie within the same order of magnitude. The value based on theoretical 

contributions from each chromophore lies close to that determined for Shewanella 

NCIMB400 flavocytochrome c3  (Morris et aL,1994) 

The sequence for Shewanella NC]MB400 cytochrome c3  contains three 

methionine residues which could act as axial ligands to iron. However, the absence of 

the characteristic band at 695 nm eliminates this possibility. Also, the methionines 

could only provide a maximum 3 of the total 8 ligation to haems. Since only one type 

of haem is seen by UV-visible, EPR and resonance Raman spectroscopy, 

heterogeneity of ligands is unlikely. The most likely ligands to the haem irons are the 

eight histidine residues present in the protein. 
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Figure 3.6. UV-visible absorbtion spectrum of the oxidised (red trace) and reduced (blue trace) 
states of cytochrome c3. Reduction was performed with sodium dithiomte which has a large spectral 
contribution below 350 nm. 
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3.2.2. NMR spectroscopy (Spectra run by Dr. Emma Beattie and Lez Holden.) 

NIvIR studies of proteins are usually restricted to small soluble proteins 

because of problems such as signal strength and line broadening in large molecules. 

Large protein molecules in solution have slow tumbling rates, which enhance 

relaxation processes and result in large linewidths. The problems of enhanced 

relaxation are also encountered in proteins containing paramagnetic centres, i.e. 

unpaired electrons (Moore & Pettigrew, 1990). Paramagnetic centres cause through-

bond and through-space (or dipolar) relaxation effects. As a result, the haem and axial 

ligand resonances are most strongly affected. The broadening generally increases with 

the number of unpaired electrons present and is particularly pronounced in high spin 

cytochromes such as cytochrome c'. A further effect induced by paramagnetic centres 

is an increase of the spectral width. Most resonances found in proteins usually occur 

in the -2 to 10 ppm region (hence the cluttered nature of one dimensional protein 

NMIR spectra). However, paramagnetic centres induce large shifts of up to 100 ppm 

or more. 

Cytochromes c3  are, in fact, ideal proteins for NN4R studies. This fact is 

reflected in the proliferation of literature (e.g. Moura ci al., 1977; McDonald ci al., 

1974; Park & Kang, 1996a; Salgueiro ci al., 1997a & b - and references therein) on 

the subject. The proteins are very soluble allowing them to be used at high 

concentrations. The low molecular weight (12-14 kDa) of the proteins means that the 

tumbling rate in solution is fast. Hence, relaxation rates are relatively slow, leading to 

narrow linewidths. The bis-his ligation of the haem iron make it low-spin. This means 

that, a fully oxidised cytochrome c3  containing four d5  configuration iron atoms, has 

four unpaired electrons. The effects on chemical shift, like the relaxation effects are 

most pronounced in the haem and axial ligand resonances. The one dimensional 'H-

NMIR spectra of oxidised cytochromes c3, typically have haem methyl resonances 

shifted as far as 35-40 ppm.. Shewanella NC1MB400 cytochrome c3  is no exception 

as can be seen in Figure 3.7. 
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Figure 3.7. : One-dimensional 'H nuclear magnetic resonance spectrum of Shewanella NCIIVIB400 
cytochrome c3  
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3.2.3. EPR spectroscopy (Run by Dr. W. J. Ingledew - St. Andrews University) 

Electron paramagnetic resonance spectroscopy detects unpaired electrons. 

The magnetic moments of electrons are much larger than for nuclei. As a result much 

lower magnetic field strengths are required for EPR than for NMIR. The technique is 

sensitive to the distribution of electrons around the paramagnetic centre and hence 

structural data can be inferred. The different haems in a molecule of cytochrome c3  

are characterised by g tensors which have only slight differences. This results in an 

important overlap between the spectra relative to each haem (Gayda et al., 1988). For 

EPR redox titrations spectral simulations are used to resolve the individual peaks. 

As has already been noted, fully oxidised or ferricytochrome c3  contains four 

paramagnetic haems per protein molecule. The spectrum of the protein in the oxidised 

state is shown in Figure 3.8. A single set of g-values at gx 1.53, gy = 2.22 and gz 

2.83 is observed for S. putrefaciens cytochrome c3. These values lie well within the 

range commonly observed for low spin, six coordinate, bis-histidine ligated 

haemoproteins (Walker ci al., 1984). The spectrum obtained for Dsm. baculatum 

cytochrome c3  in the fully oxidised state has peaks at gx = 1.52, gy = 2.28 and gz = 

2.95 and similar peak shapes to Shewanella NCIMB400 cytochrome c3  (Gayda ci al., 

1988). 
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Figure 3.8. : Electron paramagnetic resonance of Shewanella NCIMB400 cytochrome c3  obtained 
at 10 K. A single set of signals are observed, comprising; g=2.83, g=2.22 & g=1.53. 
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3.2.4. Resonance Raman spectroscopy (Spectra run by Dr. Luca Quaroni - Dept. of 

Pure and Applied Chemistry, Strathclyde University) 

Resonance Raman spectroscopy is a vibrational technique which has been used 

extensively in the study of haemoproteins. The technique involves irradiating the 

molecule under study with monochromatic light at a frequency corresponding to an 

electronic transition using a laser. The electronic transitions used are usually the a, 13 

and Soret bands of the haem. In practice, the excitation values used are limited by the 

available laser lines. The laser frequency of 514.5 nm is commonly used, even though 

it does not correspond exactly to an absorption maximum of the haem. When a 

protein is excited at or near the absorption maximum of haem, the resulting haem 

signals will be much more intense than other backbone contributions. The resulting 

spectrum thus gives information about the haem; the oxidation state, the axial ligation 

and the spin state. 
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Figure 3.9. Resonance Raman spectrum of Shewanella NCJIvIB400 cytochrome c3  obtained by 
irradating with laser light at 514.5 nm. 

56 



ytochrome c3 	 Chapter 3: Results & Discussion 

A number of bands which are characteristic markers of the haem spin and 

oxidation state, are found in the 1300-1700 cm region of the spectrum for 

cytochromes c3  (Kazanskaya et al., 1996). The stretching frequencies are seen at 

distinct and different positions in the fully oxidised states. Splitting of the main bands 

at intermediate oxidation states has been reported for Desulfovibrio vulgaris 

(Miyazaki), (Verma et al., 1988) but not for Desulfovibrio vulgaris (Hildenborough) 

and Desulfomicrobium baculatum (Norway 4), (Kazanskaya et al., 1996). 

The spectrum of oxidised Shewanella NCIM1B400 cytochrome c3  is shown in 

Figure 3.9. The observed stretching frequencies are compared with those obtained for 

oxidised D. vulgaris (Miyazaki) in table 1. The NCIMB400 bands lie very close to 

those from the other two proteins. The presence of the oxidation state marker at 1373 

nm indicates that the haem is in the Fe 3+  state. The position of the spin-state sensitive 

bands (v2 ) and (v3 ) at 1588 nm and 1506 nm respectively, indicate that all 4 haems 

are low spin. The spin-state / coordination-state marker 1639 nm confirms that the 

protein is six coordinate and low-spin. 

Table 1: Stretching frequencies determined for Shewanella NCIMB400 cytochrome c3  using 
Resonance Raman spectroscopy compared with two other cytochrome c3  (using the nomenclature of 
Abe et al., 1978). 

Stretching Mode 	Shewanella cyt c3 	D. v (M) cyt c3 j_D.v (H) cyt 0 

v10  1639 1636 1637 

V2 1588 1585 1587 

Vii 1566 1566 1565 

V3 1506 1506 not given 

V29 1406 1409 1407 

V4 1373 1374 1374 

V21 1317 1319 not given 

Values for D.v (M), D. vulgaris (Miyazaki) cytochrome c3  taken from Verma et al., 1988; values for D.v (H). D. vulgaris 

(Hildenborough) taken from Kazanskaya et al., 1996. 
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3.3. CLONING AND SEQUENCING THE CYTOCHROME c3  GENE 

The gene encoding cytochrome c3  was cloned by Dr. Euan Gordon (ICMIB, 

University of Edinburgh) using PCR primers designed on the basis of amino acid 

analysis data to create a library probe, as described in the methods section. Sequence 

was obtained using the dideoxy chain-termination method. The plasmid (pEG700) 

construct containing a 4 kb insert from the Shewanella NCIMB400 genome was used 

to generate single stranded template DNA. 

3.3.1. Sequence analysis 

In Figure 3. 10 we can see the amino acid sequence translated from the the 

gene sequence for Shewanella NC1MB400 cytochrome c3, cctA. A putative periplasm 

directing leader sequence is also indicated in Figure 3.10. A leader sequence is 

common to all of the known cytochromes c3  which are known to be exported into the 

periplasm (LeGall & Peck, 1987). The coding region is 333 bp long and the signal 

sequence indicated is 25 amino acids in length. There are three consecutive ATG 

codons within the putative signal sequence. However, initiation from any of these 

sites does not give an N-terminal secretory sequence characteristic of periplasmic 

proteins. It appears most likely that translation initiates at a GTG codon, this is a low 

usage start codon. Although GTG encodes valine when it is within a coding sequence, 

it is translated as an N-formyl methionine when it is the initiator codon. The resulting 

signal sequence which is shown in magenta in Figure 3.10 has a long hydrophobic 

region and a basic N-terminus (Nielson et at., 1997). A putative ribosome binding 

site, shown in Figure 3. 10, lies just 9 bp from the GTG codon which is consistent with 

it being the site of translation initiation. Immediately downstream from the stop codon 

is an invert repeat region (shown by arrows in Figure 3. 10.)which is common in 

bacterial Rho-independent transcriptional terminators, implying that cctA is not 

cotranscribed with any other coding sequence. 

Downstream from the cctA gene is a second coding sequence in the same 

orentation. The sequence encodes a putative protein product similar to the 

molybdenum containing nitrate and formate reductases. The reading frame is 

58 



Cytochrome c3 
	 Chapter 3: Results & Discussion 

particularly closely related to the assimilatory nitrate reductases (41% identical with a 

cyanobacterial sequence, Figure 3.11 A). Assimilatory nitrate reductases are 

cytoplasmically located enzymes involved in the utilisation of nitrate as a nitrogen 

source. The initiation codon for the nitrate reductase lies 285 bp downstream of the 

cctA termination codon. Upstream of cctA is another reading frame, again in the same 

orientation. This coding sequence shows extensive similarity with the 3-

hydroxyisobutyrate dehydrogenases (31% identical with E. coil sequence, Figure 

3.11. B). In bacteria, these cytoplasmic NAD-dependent enzymes are required for 

valine catabolism. The coding sequence lies 395 bp away from the cctA gene. 

As no function has yet been ascribed to this cytochrome c3, any sequence 

information is potentially useful. In bacteria, genes with related function are often (but 

not always) located together as an operon. The operon has a single promoter site and 

results in a single, polycistronic mRNA transcript molecule. This means all of the 

genes can be expressed simultaneously. Related genes are not always nested together 

in an operon. This appears to be the case with Shewaneiia putrefaciens cytochrome 

C3. The two coding sequences flanking cctA are clearly unrelated to anaerobic 

respiration and neither of them have periplasm directing signal sequences. It is likely 

that cc/A is transcribed as a monocistronic RNA and so no information about its 

physiological function can be inferred from neighbouring sequences. 
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Figure 3.10. : The sequence determined for the cloned fragment of the Shewanella putrefaciens 
genome, containing the cytochrome c3  gene, cctA. The cytochrome c3  protein sequence is shown in 
red with the putative periplasm directing leader sequence indicated in magenta. The underlined 
region of protein sequence has also been obtained from amino acid sequencing. The putative 
ribosome binding site is shown in uppercase as are the sequences similar to the Rho-independent 
terminator. Two other coding sequences with the same orientation as the cctA gene are indicated in 
light blue (see section 3.3. 1.). 

aaccgcttcagcagatgttgcacgtgaaattgccgcgtaCattgagCCaCttaacatcgc 
1 ---------+---------+---------+---------+---------+---------+ 60 
ttggcgaagtcgtctacaacgtgcactttaacggcgcatgtaaCtCggtgaattgtagcg 
TA S A DV AR ETA A Y I E P L N IA 

attcttagacgcgccagtttCaggtggtCaagCCggtgCCgaaaatggtgcgttaacggt 
61 ---------+---------+---------+---------+---------+---------+ 120 

taagaatctgcgcggtcaaagtccaccagttcggcCaCggCttttaCCacgcaattgcca 
FL D A P V S G G Q A GA EN GAL TV 

gatgatgggtggtgaccaagctcattttgataCtgttaaaCcCgtCatatCggcatacag 
121 ---------+---------+---------+---------+---------+---------+ 180 

ctactacccaccactggttcgagtaaaaCtatgaCaatttgggCagtatagccgtatgtc 
MM G G 	Q A H F D TV K P VISA Y S 

ctgcgctgaattgttagggccagttggggCggggCagttgaCtaaaatggttaaccaaat 
181 ---------+---------+---------+---------+---------+---------+ 240 

gacgcgacttaacaatcccggtcaaCCCCgCCCCgtCaaCtgattttaCCaattggttta 
C A E L L G P V G A G Q L T K N V N Q I 

ttgtattgctggtgtagtgCaaggcCtCgCagagggaCttCattttgCtaaaagtgctgg 

241 ---------+---------+---------+---------+---------+---------+ 300 
aacataacgaccacatcacgttCCggagCgtCtCCCtgaagtaaaaCgattttCacgacc 
C I A G V V Q G L A E G L H F A K S A G 

tttagatggcttaaaagtgattgaagtgatCagcaaagggCgggCaCaaagctggcagat 
301 ---------+---------+---------+---------+---------+---------+ 360 

aaatctaccgaattttcactaaCttCaCtagtCgtttCCCgCCCgtgtttCgaccgtcta 
L D G L K V 1EV IS KG R A Q SW Q M 

ggaaaatcgctataaaacgatgtggCaaggtCaatatgattttggttttgCtatcgattg 

361 ---------+---------+---------+---------+---------+---------+ 420 
ccttttagcgatattttgctacacCgttCCagttataCtaaaaCCaaaacgatagctaac 

EN R Y K TM W Q G  Q Y D F 	F AID W 

gatgcgtaaagatttgggtattgcattagatgaagcccgtcgtaatggtagccatttacc  
421 ---------+---------+---------+---------+---------+---------+ 480 

ctacgcatttctaaacccataaCgtaatCtaCttCgggCagCattaCCatCggtaaatg 
MR K DL G IA L DEAR RN G S 	L P 

ggtagccgcattagttgatCaattttattctgaagttCaagCaatgaaaggtaatcgctg 

481 ---------+---------+---------+---------+ + + 540 
ccatcggcgtaatcaactagttaaaataagaCttCaagttCgttaCtttccattagcgac 

V A A L 	D Q F Y S E V Q AM K G 	R W 

ggatacttctagtttacttgCtCgCttagaaaagtCtCgCagttaatataaaCtgt 

541 ---------+---------+---------+---------+---------+---------+ 600 
cctatgaagatcaaatgaacgagcgaatcttttcagagcgtcaattatatttgtgattca  
D T S S L LA P. L E K SR 5 * 'f K H * V 

tgttatatgtgtaaatgtagccccaatatcgattggggcttttttattggctataagcca  

601 ---------+---------+---------+-------+ + + 660 
caattacacatttacatcggggttatagCtaaCCCCgaaaaaataaCCgatattcggt 
VI C V N V A P I S I GA FL LA IS Q 

atacattagcctttgctgtattagcttgtttctgctcttaagatgatttattgactaaaa  
661 ---------+---------+---------+---------+---------+---------+ 720 

tatgtaatcggaaacgacataatCgaaCaaagaCgagaattCtactaaataactgatttt 
Y IS L C C I S L FL L L R * F ID * K 
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accatcgagttacatgatatagCgCaCatCttCatCtaattatCgCtgCtattattactt 
721 ---------+---------+---------+---------+---------+---------+ 780 

tggtagctcaatgtactatatcgcgtgtagaagtagattaatagcgacgataataatgaa 
PS S Y MI * R T S S S 	Y P. C Y Y Y L 

aatctaaattaattttgcttaaagtggattgattaactacgtttatattgtCagttaatt 
781 ---------+---------+---------+---------+---------+---------+ 840 

ttagatttaattaaaacgaatttcacctaactaattgatgcaaatataaCagtCaattaa 
I * IN F A * S G L 	NY V Y IV S * F 

tgagattgtttataaatctttgataaacggtttataaacaaagttgttgaataaCCCtta 
841 ---------+---------+---------+---------+---------+---------+ 900 

actctaacaaatatttagaaactatttgccaaatatttgtttcaacaaCttattgggaat 
E IVY K SLING L * T K L L N NP * 

agcaaagtgtcgtgttgcagtgtgatgatCCgCgtCagataaaagaatgCggaCaCaCaC 
901 ---------+---------+---------+---------+---------+---------+ 960 

tcgtttcacagcacaacgtcacactactaggcgcagtctattttCttaCgCCtgtgtgtg 
A K C 	V AV * * S A SD K RN R T H T 

taaattGGAGGaatgaatagtgagCaataaaCtaCtaagtgCattgtttgCggCtggttt 
961 ---------+---------+---------+---------+---------+---------+ 1020 

atttaacctccttacttatcactcgttatttgatgattCacgtaaCaaaCgCCgaCCaaa 

K LEE * 	MS N K L L SAL FAA G F 

cgcggtaatgatgatgtcttctgcatCatttgCtgCtgatgagaCCCtCgCagagtttca 
1021 ---------+---------+---------+---------+---------+---------+ 1080 

gcgccattactactacagaagacgtagtaaaCgaCgaCtaCtCtgggagCgtCtCaaagt 
A V H M M S S A S F A A D E T L AE F H 

cgttgaaatgggtggctgtgaaaactgtCacgctgatggtgaaCCatCaaaagatggcgc 
1081 ---------+---------+---------+---------+---------+---------+ 1140 

gcaactttacccaccgacacttttgacagtgCgaCtaCCaCttggtagttttctaccgcg 

V EM G G CE N C H AD G EP S K D GA 

ttatgaatttgaacaatgtcaaagttgtCatggttCaCtagCtgaaatggatgataacca 
1141 ---------+---------+---------+---------+---------+---------+ 1200 

aatacttaaacttgttaCagtttcaaCagtaCCaagtgatCgactttacctactattggt 

YE F E 	C Q SC HG S LA EM D D N H 

taagccacatgatgggttacttatgtgtgCtgattgtCatgCgccacatgaagcaaaagt 
1201 ---------+---------+---------+---------+---------+---------+ 1260 

attcggtgtactacccaatgaataCaCaCgaCtaaCagtaCgCggtgtacttCgttttC 
K PH D G L L MC A DC H A PH E A K V 

aggcgaaaagccaacatgtgataCatgCCaCgatgatggCCgtaCtgCaaaataagttat 
1261 ---------+---------+---------+---------+---------+---------+ 1320 

tccgcttttcggttgtacaCtatgtaCggtgCtaCtaCCggCatgaCgttttattcta 
GE K PT CDT C H D D G R TA K * VI 

cttagatagcttgaaaaTACCGACataatGTCGGTATttttgtttttattcctcaagagt 
1321 ---------+---------+---------+---------+---------+---------+ 1380 

gaatctatcgaacttttatggctgtattacagccataaaaacaaaaataaggagttctca  

L D S L K I PT * CRY F C F Y S SR V 

atacatctcacttttatttttatacctctttataggtatttaaagtcttttgatttcaat 
1381 ---------+---------+---------+---------+---------+---------+ 1440 

tatgtagagtgaaaataaaaatatggagaaatatCCataaatttCagaaaactaaagtta 

Y IS L L FLY L FIG I * 5 L L 	S  

tagagcgctaCataaCagCgCagtCaatgCaCttttgttgCgCaaatgttgtatgcttt 
1441 ---------+---------+---------+---------+---------+---------+ 1500 

tctcgcgatgtattgtcgcgtcagttaCgtgaaaaCaaCgCgtttaCaaCattaCgaaa 

R AL H N S A V N ALL L R K C C N AL 

atttatctaaatatccatttctattataaatcagtgagttaattttctggcacagctttc 
1501 ---------+---------+---------+---------+---------+---------+ 1560 

t aatagatttataggtaaagataatatttagtCaCtCaattaaaagaCCgtgtCgaP 

F I * ISIS II N Q * V N F LA Q L S 
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gcagtaccttaccatgagatagtcaaagtgaaagggtagatgtatgtcagtggtCCaatC 
1561 ---------+---------+---------+---------+---------+---------+ 1620 

cgtcatggaatggtactctatcagtttcactttcccatctacatacagtcaccaggttag 
Q Y L TM R * S K * KG R CM S V V Q S 

aagttgtgcttattgtggtgtcggatgcggtgttagcgtgtcttcaaataaaccgaattg 
1621 ---------+---------+---------+---------+---------+---------+ 1680 

ttcaacacgaataacaccacagcctacgccacaatcgcacagaagtttatttggCttaaC 
SC A Y C G V G C G VS VS S 	K P NW 

gaccgatgtcgatgctgcagatttaatactagtcggtgacaacaagcatCCagCtaatta 
1681 ---------+---------+---------+---------+---------+---------+ 1740 

ctggctacagctacgacgtctaaattatgatcagccactgttgttcgtaggtcgattaat 
T DV D A A D L I L 	G 	N K H PAN Y 

cggtcatttatgtgccaaaggtgaacgcttactcgacagtttagcccaacCcaatgtact 
1741 ---------+---------+---------+---------+---------+---------+ 1800 

gccagtaaatacacggtttccacttgcgaatgagctgtcaaatcgggttgggttaCatga 
G H L C A K GE R L L 	S LA Q P N V L 

gcgttaccctaaacttcgttctggtatgccacttgattgggacaaggCgagCaCCttaat 
1801 ---------+---------+---------+---------+---------+---------+ 1860 

cgcaatgggatttgaagcaagaccatacggtgaactaaccctgttccgctCgtggaatta 
R Y P K L R S GM P L 	W D K A ST L  

tgctgatacctttgcgaaaaccattgcagaacatggtccagattcagtcgcactgtatCt 
1861 ---------+---------+---------+---------+---------+---------+ 1920 

acgactatggaaacgcttttggtaacgtcttgtaccaggtctaagtCagCgtgaCataga 
AD TEAK TI A E HG PD S V AL Y L 

ttctggccaattactcactgaagattattatgttgccaacaagtttgctaaaggCttttt 
1921 ---------+---------+---------+---------+---------+---------+ 1980 

aagaccggttaatgagtgacttctaataatacaacggttgttcaaacgatttCCgaaaaa 
S G Q L L TED Y Y V A N K F A KG FL 

aaaaacggctaacgtcgatactaactcacgcttatgtatgtcgtcagcggtgagCgCaat 
1981 ---------+---------+---------+---------+---------+---------+ 2040 

tttttgccgattgcagctatgattgagtgcgaatacatacagcagtcgCcaCtCgCgtta 
K TAN V D TN SR L C MS S A V SAM 

gcagcgtgcctttggtgaagatgtagttcctggatgttacgaCgatCtagagCaagCtga 
2041 ---------+---------+---------+---------+---------+---------+ 2100 

cgtcgcacggaaaccacttctacatcaaggacctacaatgctgCtagatCtCgttCgaCt 
Q R A F GE DV V PG C Y D DL E 	AD 

tgtgatagtgcttgtaggggccaataccgcttggactcatcccgttctttttCaaagaat 
2101 ---------+---------+---------+---------+---------+---------+ 2160 

acactatcacgaacatccccggttatggcgaacctgagtagggCaagaaaaagtttCtta 
V IV L 	GA N TA W T HP V L F Q  RI 

tttagccgcaataaaagccaataatgctcagttagtggtaatCgaCCCgttatCaaCagC 
2161 ---------+---------+---------+---------+---------+---------+ 2220 

aaatcggcgttattttcggttattacgagtcaatcaCcattagCtgggCaatagttgtCg 
LA A 1K A N N A Q L 	V ID P L ST A 

cacagcaaaacaagcagacttacatttagccattaaaccgggCgCtgatttaaCattatt 
2221 ---------+---------+---------+---------+---------+---------+ 2280 

gtgtcgttttgttcgtctgaatgtaaatcggtaatttggCCCgCgaCtaaattgtaataa 
TA K Q  A DL H LAIR P GAD L T L F 
tcatggcttctcggttacctagcagatcaaaatCgtgtCgaCCaCgCgtatattgCCgC 

2281 ---------+---------+---------+---------+---------+---------+ 2340 
agtaccgaatgagccaatggatcgtctagttttagcaCagCtggtgCgCatataaCggCg 
HG L L G Y LAD Q N R V D HAY IA A 

acatacagaaggctttgatactgtggttttgcaggCgCaaCaattaagtgCcaatttagc 
2341 ---------+---------+---------+---------+---------+---------+ 2400 

tgtatgtcttccgaaactatgacaccaaaacgtccgcgttgttaattCaCggttaaatCg 
H T F G F I) TV V L Q  A  Q Q L SAN LA 
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cgatcttgccacgcaagtcggtgtttcagtcactcagctgacgcaattctatcaaCttgt 
2401 ---------+---------+---------+---------+---------+---------+ 2460 

gctagaacggtgcgttcagccacaaagtcagtgagtcgactgcgttaagatagttgaaCa 
DL AT Q  V G VS VT Q  L T Q F Y Q  L  

agccaacaataaaaaagtacttacggcatcttgtcagggggttaatcagtcaaccattgg 
2461 ---------+---------+---------+---------+---------+---------+ 2520 

tcggttgttattttttcatgaatgccgtagaacagtcccccaattagtCagttggtaaCC 
A N N K K V L TA S C Q G V N Q  ST I G 

caccgatgcaaccaatgcgatgattaactgcCacctcgcgttagggCaCattggtCaagC 
2521 ---------+---------+---------+---------+---------+---------+ 2580 

gtggctacgttggttacgctactaattgacggtggagcgcaatcccgtgtaaCCagttCg 
T D A T N A MI N C H LA L G HI G Q  A 

tggttgtggttttttttcgttaacagggcagcctaatgccatgggcggtCgtgaggttgg 
2581 ---------+---------+---------+---------+---------+---------+ 2640 

accaacaccaaaaaaaagcaattgtcccgtcggattaCggtacccgCCagCactCCaaCC 
G C G F F S L T G Q  P N A MG G REV G 

tgggttggccactcagttagcatgccatatgggtttttcacaaccggagCagcagttatt 
2641 ---------+---------+---------+---------+---------+---------+ 2700 

acccaaccggtgagtcaatcgtacggtatacccaaaaagtgttggcctCgtCgtCaataa 
G LA T Q LA C H MG F S 	P E 	Q L L 

agctgatttttggaaagttgatagtattgcggatcaaaaaggattggttgcagttgagat 
2701 ---------+---------+---------+---------+---------+---------+ 2760 

tcgactaaaaacctttcaactatcataacgcctagtttttcctaacCaaCgtCaaCtCta 
AD F W K V D SIAN Q KG L 	A V EM 

gtttgatgcccttgccgaaggtaaaatcaaagcga 
2761 ---------+---------+---------+----- 2795 

caaactacgggaacggcttccattttagtttcgct 
FDA LA E G K 1K A 
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3.3.2. Protein sequence data 

After export into the periplasm, the N-terminal signal sequence of c-type 

cytochromes is cleaved. From the amino acid sequencing data, this appears to be the 

case for S. putrefaciens cytochrome c3. The mature cytochrome c3  protein, inferred 

from the gene sequence is only 86 amino acids in length, smaller than the 

Desulfovibrio & Desulfomicrobium proteins which typically contain 107-118 

residues. The only reported cytochrome c3  which is smaller is the protein from H1R at 

84 amino acids in length (Ambler, 1991). The predicted molecular mass for S. 

putrefaciens protein would be 9316 Da (excluding the haem groups). The haem 

binding motifs found in S. putrefaciens cytochrome c3  are all of the type CXXCH 

(where X is any amino acid). This is unlike the Desulfovibrio proteins which all 

contain at least one CXXXXCH motif (Coutinho & Xavier, 1994, Moore & 

Pettigrew, 1990). Attachment of four haems at the CXXCH motifs would yield a 

molecular weight of 11780 Da, which is in excellent agreement with the mass 

spectrometry data (section 3. 1. 1.2.). The protein has a very high content of acidic 

residues (10 aspartate, 10 glutamate) and few positive residues (5 lysine, 1 arginine). 

This gives a net charge of -14 to the polypeptide. 

The amino acid sequence has been aligned with those available in protein 

databases. The highest similarity was observed with the cytochrome domain of 

flavocytochrome c3  (Pealing et aL, 1992) and the cytochrome c3  from the organism 

H1R (Ambler, 1991) which can be seen in Figure 3.12. The similarity with 

Desulfovibrio cytochromes c3  is more distant and the haem attachment motifs are 

about all that is conserved. If haem attachment and ligation is consistent with other 

cytochromes c3, all of the 8 cysteine and 8 histidine residues in the sequence will be 

involved. 
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Figure 3.11. : Sequence alignments of the polypeptide sequences predicted by the reading frames 
flanking the cctA with close relatives. 

The reading frame downstream from cctA (blue sequence) aligned with the nitrate 
reductase from Svnechococcus sp. (black sequence, Swissprot entry NARB_SYNP7: Omata et al., 

1993). 
(OVERLEAF) The reading frame upstream from cctA (black sequence) aligned with the 

sequence of 3-hydroxyisobutyrate dehydrogenase from E. coil (blue sequence. Swissprot entry 
YHAE_ECOLI; Komine & Inokuchi, 1991). The alignments were produced using the program GAP 
(Wisconsin Package Version 9.0, Genetics Computing Group (GCG).) 

A 
1 MFDLSKFLPVITPLMIDT.AKTLCPYCGVGCGLEAVPPAQPGRATVRDREG 

IIIIIIII..I 	.1 	I 
1 ............... MSVVQSSCAYCGVGCGV. SVSSNKPNWTDVDAADL 

51 TPIWQIRGDRQHPSSQGMVCVKGATVPESVSKSR. LKYPMFRASLDDPFT 

35 I LV. -. . GDNRHPNYGHLCXGERLLDSLAQPNVLRYPKLRSGH..... 

100 EISWDEALDRLCDRIQQTQADYGKDGICFYGSGQFQTEDYYIAQKLVKGC 
:11.1 	:1 	.II::II: 	I 11 	11111:11 	II 

76 PLDWDKASTLI.ADTFPXTIAEHGPDSVALYLSGQLLTEDYYVMTKFAXGF 

150 LGTNNFDTNSRLcMSSAVSAYSLCLGSDGPPACYEDLDLADCLLIVGSNT 
II 

126 LKTMTVDTNSRLcMSSAVS2NQRAFGEDVVPGCYDDLEQ.ADVIVLVGANT 

200 AECHPI LFNRYRKRHRQGGTNLIVVDPRCTPT.AEVDLHLALKPGSDVAL 

I 	 I 	1:1:11 
176 AWTHPVLFQRI LAAIKNNAQLWIDPLSTATAKQADLHLAIKPGADLTL 

250 LNGLGWLLYQMGYVKKDFI2½NQTEGFEDWLAI IEDYPPQP.T. . PELTGLA 

226 FHGLLGYLADQNRVDHAY IAAHTEGFDTVVLQAQQLSNLADLATQVGVS 

298 VAELVRAADLIASAQRWLSLWSMGVNQSIQGTAKATSLINLHLLTRQIGL 

1:1. 	I:I..:I. 	11111 	II 	.:IIII 	II 
276 VTQLTQFYQLVMNKKVLTASCQGVNQSTI GTDATNAMINCHLALGHIGQ 

348 PGCGPFSLTGQPNNGGRETGGLAHLLPGYRXVIDPQHRADVETIWGLPM 

III 	IlIllIllIllIll 	1111 	: 	I:. 	. 
326 AGCGFFSLTGQPNAMGGREVGGLATQLACGFSQPEQQL. LADFW. .1W 

398 GSI SPQPGRTAWQMIEGLEQGAVGFLWVAATNPAVSLPDVKRAQAALKRS 

11.11 	1:1:1:1: 
373 DSIADQKGLVAVEMFDALAEGKIKA 
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Figure 3.11. B 

101 IAPLASREI SEALKAXGIDMLDAPVSGGEPKAIDGTLSVMVGGDKAI FDR 150 

I 	11111111: 	1.1 	1.11.111.1 	II 

2 ASPDVAREIAAYIEPLNIAFLDAPVSGGQAGAENGALTVMMGGDQAHFDT 51 

151 YYDLMKAMAGSVVHTGEI GAGNVTKLANQVIVALNIAM4SEALTLATKAG 200 

	

I 	II 
52 VKPVI SAYSCAEL. LGPVGAGQLTKMVNQICIAGVVQGLAEGLHFAKSAG 100 

201 VNPDLVYQAIRGGLAGSTVLDAKAPMVMDPNFKPGFRIDLHIKDLANALD 250 
1:1 	 ::: 	• 	: 	1111 	III 	III 

101 LDGLKVIEVI SKGRAQSWQMENRYKTMWQGQYDFGFAIDWMRKDLGIALD 150 

251 TSBGVGAQLPLTAAVMEMMQALBADGLGThDHSALACYYEKLAXVEVTR 299 
I 	1.1 	II 

151 EARRNGSHLPVAALVDQFYSEVQAMKGNRWDTSSLLARLEKSRS .....194 

1 11 21 31 41 	50 

Sh C3 ADETLAEFHV EMGGCENCH. ADGEPSKDG. AYEFEQCQSC HGSLAEMDDN 

H1R C3 AD.VLADMHA ENSGCETCH. ADGAPSEDG. AHEAAACADC HGGLADMEAP 

Fcc C3 AD.NLAEFHV QNQECDSCHT PDGELSNDSL TYENTQCVSC HGTLAEVAET 

MR1 c3 ADQKLSDFHA ESGGCESCH 

51 	61 71 81 91 

Shp C3 HKPHD ..... 	.... GLLMCA DCHAPHEAKV GEKPTCDTCB DDGRTAK 

HiP. C3 HPAHD ..... 	.... GMLECT DCHMI1HEDEV GSRPACDACH DDGRTA 

FCC C3 TKHEHYNAHA SHFPGEVACT SCHSAHEKSM . . . VYCDSCH SFDFNMPYAK 

Figure 3.12. 	Alignment of the amino acid sequences of cytochrome c3  from Shewanella 

NCIIvI13400 (Sh c3) with; the cytochrome c3  from the purple phototrophic bacterium H1R (I-hR c3), a 

partial sequence of flavocytochrome c3  from Shewanella NCIMB 400 (Fcc c3) corresponding to the 
N-terminal haem domain and the N-terminal sequence of the cytochrome c3  from S. putrefaci ens 

MR-i (MR1 c3). The amino acid residues highlighted in red indicate the well conserved haern 
binding motif. 
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3.4. CONCLUSIONS 

The variety of biochemical and genetic data collected for the Shewaneila 

NCIMB400 protein allow its designation as a cytochrome c3. The electrospray mass 

spectrometry data, along with inferred protein sequence from the cctA gene provide 

complementary information about the size of the protein. It appears to be one of the 

smallest cytochromes c3  yet identified. 

The electrochemical data for the cytochrome indicates macroscopic potentials 

within the range observed for cytochromes c3. It would be interesting to determine the 

microscopic potentials for the protein as its amino acid sequence is significantly 

different form the well studied Desuifovibrio proteins. 

The preliminary data indicate that the protein is an excellent candidate for 

study by NMIR. Given the size of the protein, it could be possible to determine the 

complete three dimensional structure. However, this requires good protein over-

production system to allow isotopic labelling of the protein. The host bacteria needs 

to be capable of inserting c-type haems efficiently, something which is apparently 

ruled out in E. coil. The paramagnetic nature of the oxidised haems should allow 

assignment of haem methyl peaks and examination of haem cooperativities and 

microscopic potentials. 

The EPR spectrum from Shewaneila NCIMIB400 cytochrome c3  indicates a 

single set of g-values, but as mentioned in discussion the peaks are probably 

compound in nature. The signals from the four haems are unresolved, indicating 

similar environments for the unpaired electrons. 

The cctA gene sequence has failed to provide clues to the function of the 

protein. The cytochrome c3  from Shewaneila NCTM3400 is produced from a small, 

monocistronic RNA. Its low redox potential and production during anaerobiosis 

suggest it could be involved in an anaerobic electron transport chain. 
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Future work 

One priority is the identification of the physiological role of the protein. The 

majority of the experimental evidence obtained for the Desulfovibrio species points to 

cytochrome c3  being involved in accepting electrons from periplasmic hydrogenase. 

Shewanella NCTM13400 is able to respire using hydrogen so this is a possible 

function. A strain of Shewanella NCIMIB400 has now been constructed with the 

cytochrome c3  gene deleted from the bacterial genome. Studies of the phenotype of 

this mutant should give an indication of the protein's function (Anne Hill-work in 

progress). 

The three-dimensional structure of Shewanella NCIMIB400 cytochrome c3  is 

also of great interest. It is evident that the protein has a high sequence homology with 

the cytochrome domain of flavocytochrome c3, the three dimensional structure of 

which has proved elusive. Current work (Pauline Cuthbertson) is concentrating on 

crystallisation of cytochrome c3 . 
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4.1. PROTEIN-MEDIATED ELECTRON TRANSFER 

4.1.1. Introduction 

Probably the simplest of all chemical reactions, is the transfer of a single 

electron between two redox centres. Generally, no making or breaking of bonds is 

involved. The simplicity is paramount when a single donor and acceptor species are 

present. An example of this, is the self exchange reaction between oxidised and 

reduced species of a metal ion in solution (e.g. Fe3  (aq) accepting an electron from 

Fe 21  (aq)). Even for such a simple system a number of parameters need to be 

considered when describing electron transfer. These include; ligand reorganisation 

energies, solvent sphere dipoles and solvent reorganisation energies. 

In biological systems the situation is more complex, a typical cell contains 

many different donor and acceptor redox-proteins. Greater complication is added by 

the size of these proteins. Even small proteins contain tens of amino acids, with 

hundreds of atoms contributing to their redox characteristics. However, simple 

protein models and formalisms do allow predictions of biological function and 

electron transfer rates. 

In the chemiosmotic theory, (outlined in Chapter 1) the central feature of 

bacterial energy transduction is creation of a transmembrane proton gradient. The 

gradient is built up in a number of steps which require electron transfers between 

specific pairs of proteins. In eukaryotes, most cellular ATP is generated by the 

transfer of electrons from NADH to oxygen, again building up a proton gradient. 

Nature has evolved a number of mechanisms to ensure that guided electron-transfer 

reactions occur. One important consideration is selection of the correct physiological 

partner proteins. 

Fundamental processes such as photosynthesis, respiration and nitrogen 

fixation rely on many electron transfers. Many specialised proteins have evolved to 

perform these divese processes. Prosthetic groups such as haem, flavins, quinones, 

copper and iron sulphur clusters, are commonly found in redox proteins. Redox 

proteins can contain a single redox centre (e.g. rubredoxin, fiavodoxin, azurin) or 
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multiple centres (e.g. flavocytochrome c, cytochromes c3, photosynthetic reaction 

centre). They can be relatively simple, soluble entities or part of complex, highly 

organised membrane bound systems. The redox cofactors have well defined midpoint 

potentials in aqueous solutions. Inside the protein environment, these are modulated 

and 'fine tuned' to meet the specifications of the system. This allows a variety of 

functions to be performed with relatively few components. 

4.1.2. Factors affecting protein-mediated electron transfer 

Two stoichiometric mechanisms have been found to describe redox reactions 

where a metal centre is involved (Taube, 1984). The first, is the inner-sphere 

mechanism where the coordination spheres of the reacting centres share a bridging 

ligand. This bridging ligand provides a pathway during electron transfer. The second, 

is the outer sphere mechanism where the two complexes come into contact, but do 

not share a ligand during electron transfer. The outer sphere process occurs via 

through-space overlap of orbitals, but does not require the making or breaking of any 

bonds. On the basis of activation-energy requirements and steric and electronic 

considerations it has been argued that haem, iron-sulphur and copper containing redox 

proteins would favour an outer sphere mechanism (Wherland & Gray, 1977). Many 

theoretical descriptions of outer-sphere electron transfer processes have been made. 

One of the most developed is that of Marcus which has been adapted and applied to 

biological systems (Marcus, 1968; Marcus, 1996). Well established theory exists 

describing the factors which influence protein mediated electron transfer (e.g. Moser 

& Dutton, 1996; Chapman & Mount, 1995; Tollin et al., 1986) 

First, the factors which determine the kinetics and mechanisms of biological 

electron transfer will be outlined. We can consider a simplified reaction where a 

donor, D transfers an electron to an acceptor, A such that: 

D + A - 

reactants 	products 
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The electron transfer typically occurs if the two species are in close proximity 

such that they form an encounter complex. If the electron transfer process is 

radiationless and no energy is lost or gained during the reaction, then the combined 

energy of the system must stay constant until after the electron has transferred. This is 

a fundamental characteristic of electron transfer reactions. 

The Franck-Condon principle applies; i.e. the electron redistribution event is 

significantly rapid to prevent change in the nuclear coordinates of the reactants whilst 

it occurs. This approximation generally applies to biological systems. As a 

consequence D and A need to approach an optimum configuration, with equal 

internuclear distances and energies for both states, for electron transfer to occur. The 

optimised configuration will have higher energy than either reactants or products. As 

a result, this energy barrier is an important factor in determining the overall rate. The 

higher the energy the lower the overall electron transfer rate. 

Marcus theory represents the reactants and their immediate environment as a 

simple harmonic oscillator potential along a reaction coordinate (Figure 4.1.). The 

bottom of the potential well corresponds to the equilibrium geometry of the donor. 

The products are represented by a similar harmonic potential, except it lies displaced 

further along the reaction coordinate and lowered in potential by AG (the free energy 

of the electron transfer reaction). It is common to refer to AG as the driving force of 

the reaction, it is proportional to the difference in acceptor and donor redox 

potentials. The reorganisation energy (A') represents the change in geometry which 

must occur upon transfer of the electron. It is defined as, the energy required to 

distort the equilibrium geometry of the reactants to the equilibrium geometry of the 

products, without actually transferring the electron. In a simple, non-adiabatic 

electron transfer reaction, the height of intersection of the two parabolas above the 

bottom of the reactant parabola is analogous to the activation energy of the transition 

state in a traditional (adiabatic) chemical reaction. It is thus denoted as AG*, and a 

simple relationship is given in Equation 1. 

AG* = (AG +)2 / 4 	(1) 
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Energy 

Nuclear Rearrangement 

Figure 4.1. : Plot of nuclear rearrangement against free energy for the reactants (R) and products 
(P) during a non-adiabatic electron transfer reaction. Reaction proceeds via the route indicated by 
red arrows. In the Marcus theory description, the nuclear motion of reactants and products follow 
the simple harmonic oscillator potential. The bottom of the potential well corresponds to 
equilibrium geometry. The blue arrows indicate vectors for free energy change of the reaction 
(AG), activation energy barrier (AG*)  and the reorganisation energy, required to move from the 
equilibrium reactant coordinates to the product equilibrium geometry without transfer of the 
electron (?.). (After Moser & Dutton, 1996) 
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(b) 

Energy 

Nuclear Rearrangement 

Figure 4. 2. Typical energy profiles for the (a) normal (AG + X> 0), b) activationless (AG + 

= 0), and (c) inverted (AG + 2 < 0) regions predicted by Marcus theory. The black curve denotes 
reactants and the red curve denotes products, the blue arrows indicate the reaction pathway. (After 
Chapman & Mount, 1995). 
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These quantities are all shown in Figure 4.1. The activation energy predicts a 

simple Gaussian dependence of the electron transfer rate on free energy given by 

Equation 2: 

ket  = kmax 
eG + ?)2/4?.kT 	 (2) 

Where: ket is the observed electron transfer rate, k is the electron transfer 

rate when AG*  is zero, k is the Boltzmann constant and T is the absolute 

temperature. 

Since ? is always positive, the term (AG + X) determines the rate of reaction. 

Three cases can be distinguished for Equation 2: when (AG + X) is greater than zero, 

equal to zero, and less than zero. These conditions are shown in Figure 4.2. (a, b & c) 

and are referred to as the normal, activationless and inverted regions respectively. 

Using Equations 1 & 2 we can calculate the variation in ket with AG. This variation is 

shown in Figure 4.3. As the driving force of the reaction (AG) is increased the 

reaction rate rises to a maximum 	when AG*  is at a minimum. The reaction is 

activationless at this point. Paradoxically, Marcus theory predicts a fall in electron 

transfer rate for any further increase in thermodynamic driving force. The existence of 

this inverted region is due to an increase in the energy barrier of the system. Several 

systems have demonstrated the existence of this region (e.g. Closs et al., 1986; Miller 

etal., 1984). 

In the simplest model, the activationless electron transfer rate constant (lm ) is 

governed by two factors: the donor to acceptor distance and the intervening medium. 

The two factors influence the amount of overlap between donor and acceptor 

electronic orbitals. Orbital overlap decays exponentially with distance in accordance 

with Equation 3: 

HAB  = 'tAB e 
-V(d4 	(3) 
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max 

Normal 	 Activationless 	 Inverted 

In ket  

-AG0  

Figure 4.3. : The variation of the logarithm of electron-transfer rate constant (ket) with free 

energy between reactants and products (G0). 
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The electron-transfer rate constant (ket) is proportional to the tunnelling matrix 

element H&i. The electronic coupling at close contact (do) is HOAB and the coefficient 

is the rate of decay (in A) of coupling with distance d. A large 3 value, means 

electron transfer is only seen over short distances, e.g. 0=2.8 A' in vacuo. A single 3 

value of 1.4 A' provides a good estimate of k at any distance in the case of the 

photosynthetic reaction centre (Moser et al., 1992; Moser & Dutton, 1992).The 13  
values obtained for intraprotein electron transfer lie between the value for a vacuum 

and a rigid covalent linkage (13=0.7 A-'). Having a single 13 value means that protein 

can be thought of as an organic glass, i.e. the intervening medium is approximated as 

being homogeneous. This provides a reasonable description of the optimised 

photosynthetic reaction centre system but many proteins are best considered as 

consisting of a heterogeneous matrix (Winkler & Gray, 1992). An alternative 

approach, considering many different tunnelling pathways has been used to explain 

long distance electron transfer in proteins (Beratan et al., 1987; Beratan et al., 1991). 

Quantum mechanical considerations such as electron tunnelling, modify the 

theory to account for the relative temperature insensitivity of observed electron 

transfer (Beratan & Onuchic, 1996; DeVault, 1984). 

4.1.3 Intramolecular electron transfer in proteins 

Marcus theory has been applied to experimental data from redox proteins 

using relatively simple equations with only three parameters. In order to apply the 

theory it is necessary to have a well defined structure and kinetic and thermodynamic 

models. These allow determination of d, AG0  and ket respectively. Replacement and 

alteration of cofactors, along with site directed mutagenesis allow variation of AG. 

The rate constants obtained allow a plot of log ket v. AGO  from which approximations 

of X and k can be made, in accordance with Equation 2 (Moser etal., 1995). 

The bacterial photosynthetic reaction centre has provided a wealth of data 

since solution of the first structure from Rhodopseudomonas viridis (Deisenhofer et 

al., 1985). The system consists of a number of membrane spanning polypeptides 

which bind 13 redox centres in close proximity. The system has been successfully used 

to study protein mediated electron transfer and determine rate constants (Moser et al., 
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1992; 1995). The electron transfer rate constant data, which varies over 12 orders of 

magnitude (with distances from 3.6 A to over 20 A) yields a straight line plot for log 

k, against distance and a 0 value of 1.4 A-1. In this case then, the protein medium 

appears to behave homogeneously, meaning that edge-to-edge distance from donor to 

acceptor is the main factor affecting rate. 

Other approaches which have been used to study intraprotein electron transfer 

have involved; labelling the protein with inorganic redox reagents (Winkler & Gray, 

1994; Winkler et al., 1982) and replacing the haem groups in some proteins with 

porphyrin or zinc-containing porphyrin, both of which have useful photochemical 

properties (Ho el al., 1985; Winkler & Gray, 1992). Commonly ruthenium has been 

attached to surface histidine residues of proteins, which were naturally occurring or 

introduced by mutagenesis (Winkler & Gray, 1992; Bjerrum et al., 1995). The 

ruthenium atom introduces a photochemically active redox centre into the protein 

molecule. By engineering several binding sites for the ruthenium atom, it is possible to 

obtain rates for a variety of cofactor separations. In conjunction with ruthenation, 

swapping haems for zinc substituted porphyrins allows variation of the driving force 

(Axup etal., 1988; Winkler and Gray, 1992). 
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4.2. Saccharomyces cerevisiae FLAVOCYTOCHROME b2  

4.2.1. Introduction 

Flavocytochrome b2  was first identified in 1928 (Bemheim, 1928). Since then 

it has been extensively studied and the ensuing literature has been reviewed (Lederer, 

1991; Chapman et al., 1991). The gene encoding the protein has been cloned and 

sequenced (Guiard et al., 1985). The gene is over-expressed in E. coil (Black et al., 

1989) allowing over production of protein and construction of site directed mutants 

(Reid et al., 1988). The structure of the enzyme is known and it has been used as a 

model for studying both intra-protein and inter-protein electron transfer. 

4.2.2. Physiological function 

Flavocytochrome b2  is a soluble enzyme found in the intermembrane space of 

yeast mitochondria (Figure 4.4.). The protein contains the cofactors flavin 

mononucleotide (FMN) and protohaem IX, non-covalently bound. The enzyme is a 

primary dehydrogenase in one of the aerobic respiratory chains of the mitochondrion. 

This allows the yeast to respire L-lactate (Pajot & Claisse, 1974) even if the main 

respiratory chain is blocked. Flavocytochrome b2  catalyses the oxidation of L-lactate 

to pyruvate and subsequently passes electrons on to its physiological partner, 

cytochrome c. 

4.2.3. Three dimensional structure 

Flavocytochrome b2  has been isolated from the yeast Saccharomyces 

cerevisiae and the 2.4 A resolution, X-ray crystal structure of native wild-type 

enzyme has been solved (Xia & Matthews, 1990). The structure of the recombinant 

enzyme, purified from E. coil has been determined more recently (Tegoni and 

Cambillau, 1994). The wild-type contains a product molecule, pyruvate, bound at the 

active site. The recombinant enzyme was crystallised with a molecule of sulphite 

covalently bound at the active site. The presence of the highly charged sulphite causes 

perturbation of some residues at the active site, as will be discussed later. The 
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Figure 4.4.: Location and physiological function of flavocytochrome b2. In the box, the green 
tetramer represents flavocytochrome b2, the red circle represents cytochrome c, the membrane bound 
component is cytochrome c oxidase and the blue dots represent electrons. 
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'cM 

Figure 4.5. : The flavocytochrome b2  tetramer. One subunit is shown in spacefihl representation and 
the other three are shown in ribbon format, with the flavins in yellow and the haems in red. The 
different parts of the molecule are indicated on the spacefihled monomer. The red portion represents 
the haem domain, the blue portion is the hinge, the flavin domain is in yellow and the C-terminal 
tail is in purple. 
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recombinant enzyme also lacks the first 5 amino acids, which was an artefact of the 

cloning procedure (Black et al., 1989). The recombinant enzyme retains full activity, 

even with this modification. 

Flavocytochrome b2  exists as a homotetramer (Figure 4.5.), with a molecular 

weight of 230 kDa (monomer weight 57.5 kDa). The monomers consist of two 

distinct domains. At the N-terminus of the protein (residues 1 to 100) is the haem 

binding domain, termed the haem core. The haem core structure closely resembles 

that of cytochrome b5  family of proteins (Guiard & Lederer, 1979). The second 

domain (residues 101 to 487), called the flavin domain, has a classic a83  TIM barrel 

structure. The flavin domain has a very similar structure to the related proteins, 

spinach glycolate oxidase and trimethylamine dehydrogenase (Scrutton, 1994; 

Lindquist et al., 1991). It seems likely that the domain structure of the protein has 

arisen through a gene fusion at some stage. The flavin domain is responsible for 

binding FMN and also contains the protein active site. A short length of peptide, 

residues 89-103 (Sharp et al., 1994), termed the hinge joins the flavin and haem 

domains together. The remainder of the protein, residues 488-511, is termed the tail. 

The tail forms important inter sub-unit contacts which help to maintain the quaternary 

structural integrity. 

The crystal structure of the wild-type enzyme contains two distinct types of 

subunit (Xia & Matthews, 1990). In subunit 1 both domains are resolved and the 

FMN is in the fully reduced, hydroquinone state. No electron density attributed to 

either substrate or product is located in the active site. In subunit 2, electron density 

attributed to a molecule of pyruvate is seen at the active site. The flavin in this subunit 

is in the semiquinone state. Another feature of subunit two is the unresolved electron 

density for the cytochrome b2  domain which is attributed to positional disorder. The 

recombinant enzyme is essentially isostructural with the wild-type, it too contains two 

crystallographically distinct types of subunit (Tegoni & Cambillau, 1994). Only a few 

differences between the structures have been noted. There are larger disordered 

regions in the recombinant structure, residues 300-320. In the recombinant structure, 

arginine 289 may adopt two different conformations, one similar to the wild-type 

enzyme and one totally different. 
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4.2.4. The catalytic cycle 

Dehydrogenation of L-lactate at the active site generates two electron 

eqivalents. These electrons are then passed singly to two molecules of 

ferricytochrome c via the b2  haem. The three oxidation states of the fiavin (oxidised, 

semiquinone and hydroquinone) enable flavocytochrome b2  to act as a "molecular 

transformer". This refers to its use of a two electron donor and a single electron 

acceptor. There is negligible direct transfer of electrons from FMN to cytochrome c 

(Balme et al., 1995). The mechanism of L-lactate dehydrogenation has been 

extensively studied (Lederer, 1991 & references therein). The microscopic rate 

constants for the entire catalytic cycle have now been determined (Daffet al., 1996). 

Figure 4.6. illustrates the electron-transfer steps involved in a single turnover 

of the enzyme. Firstly, a molecule of L-lactate binds at the active site to form a 

Michaelis complex. Lactate then undergoes a two-electron oxidation to pyruvate. The 

two electrons generate a fully reduced fiavin. The second step involves an 

intramolecular electron transfer from FMN to the b2  haem. The next step involves 

binding of a cytochrome c molecule and an intermolecular electron transfer from the 

b2  haem to cytochrome c haem. The fiavin semiquinone is then able to transfer its 

remaining electron to the b2  haem. This constitutes the rate determining step for the 

whole cycle, as the rates in Figure 4.6. indicate. The final step in the cycle is reduction 

of another molecule of ferricyto chrome c which returns the enzyme to the start of the 

cycle. 

4.2.5. Interdomain electron transfer 

One turnover of the catalytic cycle of fiavocytochrome b2  involves two 

intramolecular electron-transfer steps. The first (following Figure 4.6) is from the 

flavin hydroquinone to b2  haem, with a rate estimated to be greater than 1500 s' (Daff 

et al., 1996). The second intramolecular electron-transfer is from the stable fiavin 

semiquinone to haem with a rate of 120 	The shortest distance from FMN to haem 

in the crystal structure of fiavocytochrome b2  is approximately 9.8 A. An optimised, 

activationless system would be expected to have a rate of —109 54  over a distance of 

10 A. The observed rates for fiavocytochrome b2  indicate it is obviously nowhere near 
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Figure 4.5 The catalytic cycle of flavocvtochrome b2  based on individual electron-transfer 
steps. The symbols F and H denote the flavin and haem of flavocylochrome b2  respectively. C 
represents cytochrome c haem. Blue dots denote electrons. Step 1: Reduction of FMN to its 
hydroquinone form, and oxidation of L-lactate to pyruvate. Step 2: Inter-domain electron-
transfer from fully reduced FMN to b2-haern, generaUng reduced haern and FMN 
semiqunone. Step 3 & 5: Binding and reduction of ferricytochoiue c by b2-haem. Step 4: 
Inter-domain electron-transfer from FMN semiquinone to b2-haem. (From Daff et al., 1996) 
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an optimised system. Even making alterations for the driving force and reorganisation 

energies do not lower predictions as far as the observed rate. Hence, another 

explanation is required. 

A number of structural elements have been identified which affect the rate of 

fiavin to haem electron transfer. The two domains of fiavocytochrome b2  are joined by 

a hinge polypeptide of approximately 10 residues in length, which allows them to 

move relative to each other. Both lengthening and shortening the hinge decrease the 

rate of interdomain electron transfer (Sharp et al., 1994; 1996a & 1996b). The 

maximum electron transfer rate is found in the wild-type enzyme suggesting the hinge 

length has been optimised. The dependence of rate on hinge length is probably a 

combination of distance and orientation effects. It was suggested that the rate is 

limited by the frequency of productive encounters between the two domains. A 

further study used mutagenesis to construct an enzyme containing the fiavin and haem 

domains from S. cerevisiae, joined by the hinge from Hansenula anomala 

flavocytochrome b2  (White et al., 1993). The two enzymes are homologous but the 

two hinges differ in length and sequence. The decrease in rate observed for the 'hinge-

swap' enzyme suggest that optimal hinge compositions have evolved for both 

enzymes. 

Strong interaction between the two domains has been ruled out by the 

evidence for mobility and the lack of interaction between the separate domains on 

mixing (Brunt et al., 1992). Examination of the crystal structure reveals a network of 

hydrogen bonds between the two domains. The residue, Tyr-143 forms significant 

hydrogen bonding interactions between the two cofactors. In subunit 1 of the crystal 

structure, it is hydrogen bonded to a haem propionate and a water molecule. In 

subunit 2, the haem domain is disordered and Tyr-143 forms a hydrogen bond with a 

molecule of pyruvate in the active site. Removal of this interaction, in the Y143F 

mutant enzyme significantly reduces the rate of fiavin to haem electron transfer (Miles 

et al., 1992), from >1500 	to 20 s4. The lowering of electron transfer rate was 

attributed to a reduction in the number of productive encounters between the two 

domains. If a pathway model for electron transfer were correct, this hydrogen bond 
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could play a significant part in facilitating flavin to haem electron transfer (Dafl 

1996). 

A recent study used NMR to probe the mobility of the haem domain (Bell et 

al., 1996; Bell, 1997) in the wild-type enzyme, two hinge extension mutants and a 

disulphide bridged mutant. The results obtained for the wild-type enzyme somewhat 

contradict NtvllR results for Hansenula anomala fiavocytochrome b2  (Labeyrie et al., 

1988). The H. anomala study focused on the linewidths of paramagnetically shifted 

haem peaks which were narrower than expected for the large tetrameric enzyme. The 

narrow linewidths were explained in terms of intrinsic mobility of the haem domain. 

The results obtained by Bell, had linewidths close to those expected for a protein the 

size of the flavocytochrome b2  tetramer. However, the two mutant enzymes 

containing longer hinge peptides had shorter correlation times, supporting the theory 

of increased haem domain mobilty. 

The burden of experimental evidence suggests that the haem domain of 

fiavocytochrome b2  is mobile. The data from the point mutant Y143F indicates that 

interactions in the region between the two domains can have major effects on 

interdomain electron transfer. In the crystal structure, a number of residues lie 

between the domains and form interdomain contacts. The purpose of this study was to 

investigate the effect of two point mutations in this region, on interdomain electron 

transfer. The mutations made were, Arg289—*Lys and Lys296—Met. 
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5.1. GROWTH AND MAINTENANCE OF STRAINS 

5.1.1. Bacterial strains 

Name 	 Genotype 

E. coil TG1 	supE, hsd15, liii, .Alac-pro), F', trad36, proAB, iaqt', 

lacZziPvI15 

E. coil AR120 	A1v199, (F, gaiK2, LAM, prsL200), 

derivative (ci, zi-gal, nadA:. TnlO) 

5.1.2. Growth of bacterial cultures 

Liquid cultures of bacteria were grown by inoculating a given volume of broth 

containing appropriate antibiotic, with a single colony using a sterile loop. The 

cultures of E. coii were all grown at 37°C. Bacteria were stored for up to 1 month at 

4°C on LB agar plates containing antibiotic. 

5.1.3. Growth media 

Luria-Bertani Broth (per litre) 

Bacto-tryptoñe 	lOg 

Bacto-yeast 	5g 

NaC1 	 5g 

5.1.4. Antibiotics 

[stock] mg mU' 	 [working] tg mU' 

Ampicillin 	100 	 100 

Carbenicillin 	50 	 50 

Stock solutions were sterilised with 0.22 tm filters and stored at -20°C. Antibiotics 

were added to growth media once it had been autoclaved and cooled. 
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5.2. BUFFERS 

5.2.1. Protein purification buffer 

305 mL of 200 mM Na2HIP04  

195 mLof200mMNaH2PO4  

500 mL dH20 

0.96 g L-lactate (lithium salt) 

0.37 g EDTA (disodium salt) 

5.2.2. 10 mM Tris/HC1 buffer, pH 7.5, (11.0) 

NaCl 	5.265g 

1MHC1 	10 ML 

dH2O 	tolL 

pH adjusted to 7.5 with tris base 
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FlavocytOChr01 b2 

5.3. PURIFICATION OF FLAVOCYTOCHROME 
b2 

5.3.1. Cell Growth 

A starter culture c
ontaining about 50 mL of LB medium and 50 tg mL 

of the 

antibiotic carbenicillin, was inoculated with a single bacterial colony. The culture was 

grown overnight at 37°C in an orbital incubator. CarbeniCillin is used in preference to 

ampicillin because it gives a stronger selection for the plasmid 
pDSb2 and results in 

greater over-production of flavocytOchrome b2. 

A small aliquot (typically 5 mL) of the overnight culture was added to flasks 

co
ntaining 500 mL of LB and carbenicillin, typically 5 L was grown. The flasks were 

incubated overnight at 37°C. The cells were pelleted by centrifugation at l0000g for 

15 minutes. The resulting pellet was frozen at -20°C until it was required. 

5.3.2. Cell Lysis 
The pellet of cells were thawed and then 'snap-frozen' in liquid nitrogen to 

re allowed to thaw and then resuspended in about 200 
facilitate cell lysis. The cells we  
mL of purification buffer (100 mM phosphate pH 7, 1 mM EDTA, 10 mM L-lactate). 

EDTA assists cell lysis by r
emoving calcium ions which stabilise the cell walls, the 

maintain flavocOchrome b2  in it's stable reduced form. Lysozyme 
lactate helps to  

(0.2 mg niL1
) was added to the cell suspension and the mixture was stirred at 4°C 

for 90 minutes. The suspension was spun at 390009 for 20 minutes to remove cell 

debris and unlysed cells and the red / pink supernatant containing fl
avocytochiome b2  

was retained. If the cell pellet was still very red, it was subjected to another round of 

lysis. All supernatant was pooled for the next purification step. 

5.3.3. AinmOfliUfl 
sulphate precipitation 

This stage of the purification procedure removes bulk contaminants from the 

supernatant containing flavocytoChrome b2. 
It is based upon the different solubilities 

which proteins exhibit. As the salt concentration of a protein solution is increased, 

proteins begin to "salt out". 
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The volume of supernatant from the previous step was measured and 

ammonium sulphate was added, to give a 40% saturated solution. The solution was 

spun at 39000g for 15 minutes. The pellet containing impurities was discarded and the 

supernatant was retained. The ammonium sulphate concentration of the supernatant 

was increased to 70% saturation. The 70% saturated solution was spun at 39000g for 

15 minutes. A pink pellet, containing flavocytochrome h2  was obtained, the 

supernatant was discarded. 

5.3.4. Dialysis 

The protein pellets were dissolved in a small volume of protein purification 

buffer and added to seamless dialysis tubing (typically 12-14000 molecular weight cut 

off). The dialysis tubing is soaked in dH20 for around 30 minutes before use. The 

dialysis bag was sealed and placed in 5 L of half-strength dialysis buffer (50 MM 

phosphate). Nitrogen was bubbled through the buffer and the dialysis was left 

overnight. The protein was removed from the dialysis membrane and spun at 39000g 

for 10 minutes to remove any insoluble material. 

5.3.5. Ion-exchange chromatography 

The first chromatography step uses DE-52 anion exchange resin to remove 

impurities. Flavocytochrome b2  itself does not stick to the column but a number of the 

other proteins present do. 

The column matrix was swollen by addition of 100 mM phosphate buffer and 

fines were decanted from the slurry. A typical column would be poured to give 

dimensions of 2.5 x 15 cm. The pH of buffer eluted from the column was checked to 

ensure proper equilibration of the resin. The dialysed protein solution was loaded onto 

the column, washed through with buffer and collected as soon as it eluted. 

5.3.6. Hydroxyapatite column chromatography 

Flavocytochrome b2  binds tightly to hydroxyapatite allowing removal of the 

remaining impurities. A column of approximate dimensions 2.5 x 10 cm was poured 

and equilibrated with two volumes of purification buffer. Flavocytochrome b2  bound 
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onto the column giving a tight pink I red band near to the top. The protein was eluted 

with a 0 to 10% ammonium sulphate gradient. Fractions of flavocytochrome b2  were 

collected and their purity was assessed spectrophotometrically. The ratio UV / visible 

peaks (A279  / A423  ) give a useful measure of flavocytochrome b2  purity. For totally 

pure protein a ratio of 0.5 is expected. Fractions with a ratio below I were generally 

pooled. Protein for stopped flow kinetics was purified with greater stringency. 

5.3.7 Protein concentration and storage 

The pooled protein fractions were precipitated by the addition of ammonium 

sulphate to 70% saturation and spun at 39000g for 10 minutes. The pellets obtained 

were resuspended in a very small volume of tris buffer, keeping it as concentrated as 

possible. The protein solution was run down a G-25 (gel filtration) column of 

dimensions 1.5 x 15 cm in tris buffer. The G-25 column removes the salt and lactate 

from the protein. As the lactate is removed, flavocytochrome b2  becomes oxidised and 

changes colour from pink to orange. The oxidised protein is eluted and then frozen 

into small balls by dripping it into liquid nitrogen. In this state, protein is stored long 

term, without appreciable loss activity. 
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5.4. STEADY-STATE KINETICS 

5.4.1. Introduction 

The concept of the steady-state is widely applied to enzyme kinetics. It refers 

to the situation when, the quantity of a particular species is constant "in steady-state". 

The concept is generally applied to the concentration of enzyme bound intermediates. 

Steady-state applies to dynamic process where the rate of depletion of the species is 

balanced with the rate of formation. The steady state is an approximation, as substrate 

is being depleted over time. If activity is measured over short periods the change is 

negligible and the approximation is a good one. 

The initial rate, V, of an enzyme catalysed reaction tends towards a maximum, 

saturation value, Vm as the substrate concentration is increased. This type of 

behaviour is described well by the Michaelis-Menten equation: 

V/[Eto11=( kcat IS] ) / ( KM + [SJ) 

The experimentally determined parameters are; kcat, the catalytic turnover number-

representing the maximum number of substrate molecules converted to product per 

active site per unit time (units 1),  and KM, the Michaelis constant which in some 

cases is equal to K, the dissociation constant, for the enzyme-substrate complex ( 

units M). 

5.4.2. Kinetic parameter determination 

Flavocytochrome b2  obeys Michaelis-Menten kinetics, making its reactions 

relatively easy to study. For the turnover of lactate to pyruvate under steady state 

conditions, flavocytochrome b2  needs to pass the resulting electrons to an external 

acceptor. Either its physiological partner, cytochrome c, or the artificial electron 

acceptor ferricyanide, can be used. Reduction of either acceptor can be followed 

under saturating conditions, to obtain steady state turnover data for the enzyme. 

All experiments were performed on a Shimadzu 2101PC spectrometer. 

Kinetics were performed in 10 mM Tns-HC1 buffer, pH 7.5, ionic strength adjusted to 
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100 mM with NaCl. Assays were performed in quartz cuvettes of path length 0. 1, 0. 2, 

or 1 cm. 

The parameters, k at  and KM  were determined by carrying out assays at a range 

of substrate concentrations. All assays were done under conditions of saturating 

substrate concentration. Saturation values for the acceptors were determined by fixing 

the substrate concentration whilst varying the acceptor concentration. The data was 

manipulated using the Microcal Origin package. 

5.4.2.1. Ferricyanide 

Assays were carried out at 1 mM ferricyanide for the R289K mutant and at 5 

mM for the K296M mutant. The use of higher ferricyanide concentrations necessitates 

changing the path length of the cuvette to 0.1 or 0.2 cm. The activity was recorded as 

a rate of decrease in absorbance at 420 nm as the ferricyanide becomes reduced. The 

ferricyanide extinction coefficient Ai = 1010 p,ç1  cm-' was used. 

5.4.2.2. Cytochrome c 

Horse heart cytochrome c (type IV Sigma) was used at a saturating 

concentration of around 50 RM. The cytochrome c was made up freshly before use 

and its concentration was determined from the reduced spectrum. The extinction 

coefficient at 550 nm for reduced cytochrome c is 30900 MT1cm 1. Assays were 

monitored at 550 nm using the extinction coefficient /..coxrI = 22640 M 1cm 1  

(Hazzard etaL,1986). 

5.4.2.3. Flavocytochrome b2  

The enzyme concentrations were determined using the absorbance spectrum of 

the reduced enzyme. The Soret peak extinction coefficient at 423 mn is cred  = 183000 

M'cm 1. Enzyme was thawed on ice and only diluted to working concentration 

immediately before use. 
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5.5. STOPPED-FLOW KINETICS 

5.5.1 Introduction 

Steady-state kinetic data is useful for providing overall turnover rates. These 

may be a combination of rates for many individual steps. The stopped-flow technique 

allows analysis of some of these microscopic rates in a pre-steady-state situation. The 

basic experiment involves rapid mixing of a small, equal volume of enzyme and 

substrate which is monitored spectrophotometrically. The small lag time between 

mixing of the solutions and monitoring of the experiment, is referred to as the lag time 

(typically <1 ms). After the rapid mixing and a single turnover, the system will of 

course, go into steady state. For flavocytochrome b2, a number of electron transfer 

steps can be monitored; substrate to flavin (monitoring FMIN reduction by lactate), 

interdomain electron transfer from FMIN to haem (monitoring haem reduction by 

lactate). 

5.5.2. Experimental details 

All experiments were performed on an Applied Photophysics SF. 17 micro 

volume stopped-flow spectrofluorimeter. Data were collected and analysed using the 

SF. 1 7MV software package. All experiments were performed in 10 mM Tris-HCI 

buffer, pH 7.5 (1=0.1 M) at 25±1°C. 

5.5.3. Pre-steady-state oxidation of L-lactate 

Several traces were obtained using a suitable timebase and averaged before 

analysis. Reduction of the FMN prosthetic group was monitored at 438.3 nm which is 

a haem isosbestic point. Haem reduction was monitored at 557 nm. 

5.5.4. 'Super-steady-state' reduction of cytochrome c 

This experiment makes use of the fact that once reduced flavocytochrome b2  

and cytochrome c have undergone one turnover in the machine, they are effectively 

under steady state conditions. By monitoring the cytochrome c reduction rate as the 
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oxidised cytochrome c concentration falls, one has another method for determining 
kcat  and KM. 

A 2-3 mL solution of oxidised cytochrome c was made up to approximately 
30 riM. Flavocytochjome b2  was made up to about 0.1j..tM in tris buffer containing 10 

mM L-lactate. After mixing, this gives rise to a cytochrome c concentration of around 

15 iM which when reduced, reaches the practical limit for absorbance measurements 

on the equipment. The reaction is monitored at 550 rim. The two solutions were 
rapidly mixed and 1000 data points were collected over 5 seconds. A number of 

traces were obtained and then averaged. The data was analysed using Microcal 

Origin. A quick ferricyanide assay was performed to check the activity of the enzyme. 

The raw data was analysed as described by Short, 1996. 
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6.1. INTRODUCTION 

As has been mentioned previously, the two domains of flavocytochrome b2  are 

joined by a short length of polypeptide which is termed the hinge. It has been 

postulated that the hinge is flexible and allows movement of the haem domain relative 

to the flavin domain. This is supported by evidence from NMR data of the intact 

Hansenula anomala enzyme (Labeyrie et al., 1988). The linewidth of haem 

resonances in the intact enzyme were compared with those from the cytochrome b2  

core (the independently produced haem domain). It was concluded that the linewidths 

observed in the intact enzyme were too narrow unless the haem domain had intrinsic 

mobility. However, a recent NMR study suggested lower mobility for the haem 

domain in the S. cerevisiae enzyme (Bell, 1997). Other evidence for haem domain 

mobility comes from the crystal structure of flavocytochrome b2  (Xia & Matthews, 

1990). In subunit 2 the haem domain was disordered in the electron density map, this 

was attributed to mobility. 

In the X-ray crystal structure of the enzyme, a network of interactions can be 

seen between the two domains. These include several hydrogen bonds and an 

interdomain salt bridge (Figure 6.1.). The salt bridge is formed between lysine 296 on 

the flavin domain and a propionate on the haem domain. In order to probe the 

importance of this residue, the mutation Lys296—*Met was made. This retains most of 

the steric bulk of lysine but removes the charge. If this salt bridge is an important 

interdomain interaction, its removal may affect mobility of the two domains and hence 

the intraprotein electron transfer rate. 

This study is also concerned with residue Arg-289 which lies between the two 

domains, hydrogen bonded to the haem propionate via a water molecule. Arg-289 is 

also notable because it displays two different conformations in the crystal structure of 

recombinant flavocytochrome b2  (Tegoni & Cambillau, 1994). This suggests it may 

have some conformational flexibility. An explanation for the two conformations 

observed for Arg-289 is an electrostatic attraction to the sulphite molecule bound at 

the active site in this particular structure. 
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143 

Figure 6.1. : Some of the hydrogen bonding interactions observed in the crystal structure of 
flavocytochrome b2  . The blue circles indicate water molecules. The hinge peptide lies above the 
diagram in its present orientation. Arg-289 hydrogen bonds with a haem propionate via a water 
molecule, Lys-296 lies in the flavin domain and forms a salt bridge with a haem propionate-the only 
interdomain salt bridge. 
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In the wild-type crystal structure, a molecule of product, pyruvate is bound at 

the active site. The residue also stacks closely with Arg-376, which is known to bind 

and orientate the carboxylate group of lactate in the enzyme active site (Black et al., 

1989). Arg-376 is strictly conserved in the sequence of a number of fiavin containing 

dehydrogenases and oxidases, as is Arg-289 which is shown in Figure 6.2. (e.g. 

Hansenula anomala fiavocytochrome b2, spinach glycolate oxidase, Pseudomonas 

puilda mandelate dehydrogenase & rat kidney hydroxy-acid oxidase (Dafi, 1996). 

6.2. THE LYSINF296—)METfflONINE MUTANT 

6.2.1. Steady-state kinetic data 

The steady-state assay for fiavocytochrome b2, L-lactate dehydrogenase 

activity involves spectroscopic monitoring of electron acceptor reduction (ferricyanide 

or ferricytochrome c). Kinetic data were recorded over a range of lactate 

concentrations and fitted to a Michaelis function to yield values of "t  and KM. In 

order to ensure saturating conditions, electron acceptor concentrations were also 

varied. One effect of the mutation was an increase in the ferricyanide KM from 0.1 

mM in the wild-type, to 0.6 mM. The effect might be explained by the decrease in the 

overall positive charge of the enzyme due to the removal of a lysine. As the acceptor 

is negatively charged, there will be a reduced electrostatic attraction between the two. 

The KM for cytochrome c did not appear to be affected, but this is not unexpected. 

The interaction between flavocytochrome b2  and cytochrome c is complex and 

thought to take place primarily on the haem domain, at a site remote from the 

mutation. 

As can be seen from the data in Table 6.1., the steady-state characteristics of 

K296M for L-lactate oxidation are essentially unaltered from the wild type. 
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Table 6.1. : Steady-state kinetic parameters determined for L-lactate oxidation with saturating 
potassium femcyamde as the electron acceptor. (Tris/ HCI buffer, pH 7.5, 25°C, 1=0.1 M.) 

Lactate kcat (s') Lactate KM (mM) 

Wild-Type 407 ± 10 0.49 ±0.05 

K296M 375±50 0.5±0.2 

6.2.2. Stopped-flow kinetic data 

Kinetic parameters were obtained for the reduction of the flavin and haem in 

the mutant flavocytochrome b2.. As with the steady-state data, the kinetic 

characteristics were equal to the values obtained for wild-type, within experimental 

error. It seems apparent that the salt bridge seen in the crystal structure has little 

influence on the catalytic competence of the enzyme. It also indicates that Lys-296 

and the salt bridge it forms have no influence on the flow of electrons from flavin to 

haem. 

Table 6.2. : Stopped-flow kinetic parameters for reduction of the haem and flavin in 
flavocytochrome b2  observed upon mixing the enzyme with L-lactate (Wild-type values from Miles et 

al., 1992). (Tris/ HCl buffer, pH 7.5, 25°C, 1=0.1 M.) 

Haem Reduction rate (s t) Flavin Reduction Rate (s 1) 

Wild-Type 445 ± 10 604 ±60 

K296M 392 ±50 524 ±70 

6.3. THE ARGININE289—*LYSINE MUTANT 

The location of Arg-289, close to Arg-376 and the active site of 

flavocytochrome b2  is illustrated in Figure 6.2. It is possible that in the Michaelis 

complex the negative carboxylate of lactate could be neutralised by a combination of 

the charges on Arg-376 and Arg-289. 

109 



Flavocytochrome b2 	 Chapter 6: Results and Discussion 

Figure 6.2. : The location of arginine 289 relative to the active site of flavocytochrorne b2. The 
residue stacks against arginine 376, responsible for binding the carboxylate of the substrate, L-lactate 
(here a molecule of the product, pyruvate is shown at the active site). Also shown is residue tyrosine 
143 which known to influence interdomain electron transfer rates (Miles et al., 1992). 
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6.3.1. Steady-state kinetic data 

Sample data shown in Appendix 1. 

It is obvious from the data in Table 6.3. that the major effect of the mutation 

has been to increase the KM for L-lactate relative to wild-type. The altered KM, which 

corresponds to decreased substrate binding strength, might be explained by an altered 

interaction with the substrate. However, a local structural alteration cannot be ruled 

out. The mutant enzyme has approximately tenfold lower activity than wild-type with 

either ferricyanide or cytochrome c as the terminal acceptor. Although ferricyanide 

has no physiological relevance, it is a useful acceptor because it can accept electrons 

from both the flavin and haem domains. This is in contrast to the physiological 

acceptor, cytochrome c which can only accept electrons from the haem domain of 

flavocytochrome b2. Information about the rate of electron flow through the enzyme 

can be inferred from the ratio of keat using the two acceptors. The ratio is the same for 

R289K as for wild-type (within experimental error) implying no major perturbation of 

the flavin to haem electron transfer rate. It is most likely that the change in the kinetic 

parameters are due to effects at the enzyme active site. 

A kinetic isotope effect (KIE) was also determined for the mutant enzyme, 

using L-[2-2H]lactate as a substrate and ferricyanide as the acceptor. The KIE 

determined for steady state turnover was 4.4 ± 1.5 which is the same as wild-type (4.7 

± 0.4), implying a similar transition state in both enzymes. 

Table 6.3. : Steady-state kinetic parameters for L-lactate oxidation by wild-type and the R289K 
mutant enzyme using two different terminal electron acceptors. KM and k refer to lactate. (Tns/ 
HC1 buffer, pH 7.5, 25°C, 1=0.1 M.) 

Ferricyanide Cytochrome c 

kat (s') KM (mM) (s) KM (mM) 

Wild-Type 400 ± 10 0.49 ± 0.05 207 ± 10 0.24 ± 0.04 

R289K 33 ± 3.9 3.2 ± 0.4 17.7 ± 0.2 0.95 ± 0.03 
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6.3.2. Stopped-flow kinetic data 

Sample data shown in Appendix 1. 

The stopped flow kinetic data obtained for the R289K mutant are summarised 

in Table 6.4. The traces were fitted to double exponential curves to allow for 

rearrangement of electrons between protomers (Chapman et al., 1994, Capelliere-

Blandin, 1975). This electron rearrangement occurs after the initial reduction of the 

flavin and haem when no external electron acceptor is present. The rate of flavin 

reduction has fallen quite dramatically from that obtained for the wild type. The 

decrease can be attributed to transition state destabilisation. The rate observed for 

haem reduction is limited by flavin reduction. From Figure 4.5. it is apparent that the 

observed rate is influenced by step 1 and step 2 of the catalytic cycle. 

Table 6.4. : Stopped-flow kinetic parameters obtained for L-lactate oxidation by the R289K mutant 
compared with those for wild-type. No KM was determined for the mutant. (Tris/ HC1 buffer, pH 7.5, 

25°C, 1=0.1 M.) 

Flavin reduction Haem reduction 

k (s') K (mlN4) k (s') 

Wild-type 604 ±60 0.84 ± 0.2 445 ± 50 

R289K 20±2 1.7±0.5 15±2 

In order to obtain an estimate of the true rate for step 2 alone, the method of 

Daff et al. (1996) was used. The method involves mixing fully reduced 

flavocytochrome b2  with oxidised cytochrome c, this facilitates selective oxidation of 

the b2  haem. Monitoring the flavocytochrome b2  haem re-reduction by the flavin 

allows estimation of the electron transfer rate. It was clear from experiments that the 

rate was still very rapid as haem reduction all occurred during the dead time of the 

spectrophotometer. This supports the steady-state data which show no significant 

effect on interdomain electron transfer. 
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Kinetic isotope effects were determined for R289K using L-[2-2F[]lactate and 

are shown in Table 6.5. The value obtained for flavin reduction indicates that cleavage 

of the carbon-cc-hydrogen bond in lactate is the major rate limiting step in flavin 

reduction. Kinetic isotope effects measured for haem are unaltered, again supporting 

the view that flavin to haem electron transport is unaffected. 

Table 6.5.: Isotope effects obtained using L-[2-2Hjlactate( Tris/ HC1 buffer, pH 7.5, 25°C, 10. 1M.) 

KIE for flavin reduction KIE for haem reduction 

R289K 6.8±1.1 6.2±0.9 

Wild-type 8.1 ± 1.4 6.3 ± 1.2 

6.3.3. The R289K crystal structure 

The R289K mutant provided by us, has been crystallised in the lab of 

Professor Scott Matthews in St. Louis, preliminary data have allowed determination 

of a low resolution structure. Figure 6.3. shows the active site region from the R289K 

mutant structure overlaid on the wild-type structure. Due to uncertainty in the data, it 

is only possible to draw tentative conclusions. 

The main difference between the two structures is the position of the Arg-376 

side-chain. The side-chain of Lys-289 lies in essentially the same position as Arg-289. 

The movement in Arg-376 residue is probably responsible for the alteration observed 

in the kinetic characteristics of the enzyme, especially the increased KM.  Refinement of 

the crystal structure will allow distances to be assigned for the conformational shift of 

active site side-chains. 
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6.4. CONCLUSIONS 

A number of previous studies have investigated the domain structure of 

flavocytochrome b2  and the electron transfer from flavin to haem. It has been 

established that the interface between the flavin and haem domains contains residues 

which play a role in catalysis and interdomain electron transfer. Single mutations 

(Le. Tyr- 143--.Phe, Miles et al., 1992) have been shown to have substantial effects on 

the flavin to haem electron-transfer rate. In the case of the Tyr-143 mutation, a critical 

hydrogen bond between the two domains is removed. The Tyr-143 sidechain actually 

lies between the flavin and haem in the crystal structure and is thought to participate 

in the electron transfer between the two cofactors. Work which introduced mutations 

into the hinge region of the enzyme (Sharp etal., 1996a & b), also affected the rate of 

flavin to haem electron transfer. These results implied that the mobility of the two 

domains had been affected. The mobility is thought to be a factor governing the rate 

of flavin to haem electron transfer. In terms of Marcus theory, mobility of the two 

domains would affect the donor to acceptor distance. This also affects the nature of 

the intervening medium for through space electron transfer. The distance of 9.8 A 

between flavin and haem, observed in the crystal structure may be due to one of many 

conformations actually achieved in solution. NMR solution studies on 

flavocytochrome b2  probed the domain mobility but the results were ambiguous (Bell, 

1997). Bell also linked the two domains of the enzyme with a disulphide bridge to try 

and limit mobility. The result was an active enzyme which had lowered flavin to haem 

electron transfer rate. The position of the disulphide was decided on the basis of the 

crystal structure. The disulphide may thus lock the enzyme into a conformation which 

does not allow an optimal tunnelling pathway to the haem. 

Clearly much evidence exists to suggest some degree of domain mobility. The 

role of the two residues Arg-289 and Lys-296 is of interest in conjunction with 

mobility. It could be expected that interdomain interactions would limit the mobility of 

the two domains. In order for a separation of the domains these interactions would 

have to be broken. Furthermore the interactions may favour productive collisions 
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between the two domains and affect the electron transfer rate. The lysine residue was 

particularly interesting because it forms the only salt bridge between the two domains 

although it is not conserved in the closely related enzyme from Hansemda anomola. 

From the results obtained it is clear that changing Arg-289 or Lys-296 has no 

significant effect on the rate of flavin to haem electron transfer. Removal of the salt 

bridge between Lys-296 and the haem propionate (Figure 6. 1.) has no detectable 

effect on the catalytic competence of the enzyme. It can be concluded that this Lys-

296 is not a critical residue or else its contribution is too small to be detected. It may 

be interesting to introduce further salt bridges between the two domains to reduce 

their mobility. However introduction of a disulphide bond (Bell, 1997) showed that 

trying to close the 'gap' between domains will not necessarily enhance the rate of 

flavin to haem electron transfer. 

Alteration of Arg-289 significantly affects the catalytic efficiency of 

flavocytochrome b2. The steady-state results indicate a ten-fold fall in the rate of L-

lactate oxidation by K296M (compared to the wild-type). An increase in the KM for 

lactate indicates weaker substrate binding in the mutant. This was also observed in the 

R376K mutant (Reid et al 1988) though to a greater extent. The stopped flow rate of 

flavin reduction is decreased and this appears to limit the haem reduction rate which is 

also lowered. The stopped flow KIE for flavin indicates that cleavage of the a-

hydrogen bond of lactate is rate limiting, as for wild-type. The stopped flow KIE for 

haem reduction indicates no significant effect on flavin to haem electron transfer. This 

was confirmed by haem re-reduction in fully reduced flavocytochrome b2, after 

abstraction of a single electron by cytochrome c. 

The observed effects are attributed to an alteration of the Arg-376 

conformation, indicated by preliminary crystal structure data for K296M (Figure 6.3.). 

It is known that Arg-376 plays significant role in binding and orientating L-lactate in 

the active site of the enzyme. The alteration of Arg-289 results in movement of the 
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Arg-376. The conformation change probably results in binding of L-lactate at the 

active site, in a position which is not optimised for efficient catalysis. 

Mobility of the two domains of flavocytochrome b2  still provides a sound 

explanation for all experimental observations. There may still be critical residues lying 

in the interface of the two domains which promote their interaction. It is more likely 

that it is a compound effect of the hydrophobic and hydrogen bonding residues lying 

in the region. Studies of the separate domains indicate weak interactions between the 

two domains when their tether is removed. The enzyme is essentially a chimera, 

evolved from two convenient motifs (one to bind FMN and one to bind haem). The 

interface has probably evolved to remove repulsions rather than to maximise electron 

transfer. Hence single residues are likely to have minor or secondary effects as this 

study has shown. 
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Figure 6.3. The active-site residues from preliminary crystal structure data of the R289K mutant. 
The lysine at position 289 appears to adopt a conformation similar to that of the original argimne. 
The most striking difference from the wild type structure is the shift of residue Arg-376 which is 
responsible for binding and orientating the carboxylate group of lactate 
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APPENDIX 1- SAMPLE DATA FROM STOPPED-FLOW AND 
STEADY STATE EXPERIMENTS 



Rel.Absorbance 

0.030 

0.028 

0.026 

0.024 

0.022 

0.020 

0.018 

(ms) 

2.00 	6.00 	10.00 	14.00 	18.00 

6.14E-4 

-6.14E-4 1  .. V 

FILE: Avge_15 DATE: Tue,17 Mar 1998.17:48 
Disc Group: F302FL10 Origin: Fri,04 Mar 1994.15:20:01 
[3 trace av] 
Timebase=0.020s Ch:#1 Temp=25.3°C 
Wlength=438.3nm PM volts=594v Offset=4v Filter=Direct 
REGRESSION RESULTS: 
Library: Standard Software: SX18MV v4.34 
Function name: Single exponential, floating end point 
Formula: P( 1)*EXP(P(2)*X)+P(3) 
Parameter: 	 Value: Std.Error: 

Amp 	 3.36E-2 5.32E-4 
Rate 	 6.63E2 6.00EO 
Endpt 	 1.86E2 9.96E-6 

Norm. Variance: 	 4.92E-8 Fit range: 99-895 



Rel.Absorbance 

-0.030 

-0.035 

-0.040 

-0.045 

-0.050 

-0.055 

-0.060 

-0.065 

-0.070 

9.7 IE-4 

Time (ms 

20.00 	 60.00 	 100.00 	 140.00 

9.7IE-4 	 I  

FILE: Avge_02 DATE: Tue,17 Mar 1998.17:13 
Disc Group: 289F20 Origin: Mon,23 Oct 1995.13:27:53 
[3 trace av] 
Timebase=0.20s Ch:#1 Temp=25.1°C 
Wlength=438.3nm PM volts=630v Offset=4v Filter=Direct 
REGRESSION RESULTS: 
Library: Standard Software: SX18MV v4.34 
Function name: Single exponential, floating end point 
Formula: P( 1)*E(P(2)*X)+P(3) 

Parameter: 	 Value: Std.Error: 
P(l) 	Amp 	 3.51E-2 4.85E-5 

Rate 	 1.81E1 8.68E-2 
Endpt 	 -6.37E-2 5.39E-5 

Norm. Variance: 	 8.67E-8 Fit range: 28-733 



ReLAbsorbance 

0.080 

0.060 

0.040- 

0.020 

0.000 

Time (rrjs) 

5.00 	 15.00 
	

25.00 	35.00 

8.90E-4 

-8.90E-4 

Avge_02 
	

DATE: Tue,17 Mar 1998.17:23 
Group: IIOOWT 
	

Origin: Thu,28 Sep 1995.15:55:45 
4frace av] 

Tiihebase=0. lOs Ch:#1 Temp=24.8°C 
Wlength=557nm PM volts676v Offset=4v Filter--Direct 
REGRESSION RESULTS: 
Library: Standard Software: SX18MV v4.34 
Function name: Double exponential, floating end point 
Formula: P( 1) *E)(JJ(  P(2) *X)+p(3)*E)(J(.p(4) *X)+p(5) 
Parameter: Value: Std.Error: 

Amp 1 -1.48E-1 2.14E-3 
Rate 1 6.03E2 8.83E0 
Amp 2 -2.80E-2 4.80E-4 
Rate 2 8.43E1 2.04E0 
Endpt 7.47E-2 1.09E-4 

Norm. Variance: 8.41E-8 Fit range: 8-164 



Rel.Absorbance 

0.100 

0.090 

0.080 

0.070 

0.060 

0.050 

0.040 

0.030 

0.020 

0.010 	 Time (secon Is) 

0.2 	0.4 	0.6 	0.8 	1 

6.82E-4 

-6.82E-4 

FILE: Avge_05 DATE: Tue.17 Mar 1998.17:19 

Disc Group: 289114-1 Origin: Mon, 16 Oct 1995.16:41:22 

[4 trace av] 
Split Timebase=0.50s / 2.00s Ch:#1 Temp=25.1°C 
Wlength=557nm PM volts=661v Offset=4v Filter--Direct 

REGRESSION RESULTS: 
Library: Standard Software: SX18MV v4.34 
Function name: Double exponential, floating end point 
Formula: P( 1) *EYJ(.p(2) *X)+p(3) *E)J( .P(4) *X)+P(5) 

Parameter: 	 Value: Std.Error: 

Amp 1 	 -5.99E-2 1.87E-4 

Rate 1 	 1.92E1 1.25E-1 

Amp 2 	 -2.58E-2 1.25E-4 

Rate 2 	 2.25E0 3.99E-2 

Endpt 	 9.21E-2 1.34E-4 

Norm. Variance: 	 4.15E-8 Fit range: 5-258 
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Investigating the Importance of an Interface Residue in 
Interdomain Electron Transfer 

Andrew D. Pike', Stephen K. Chapman', Forbes D. C. Manson, Graeme A. 
Reidt., 
tDepartment of Chemistry, 'Institute of Cell and Molecular Biology, University of Edinburgh, 
Scotland E119 3JJ 

Muriel Condry, Florence Lederer 
CNRS, 91198 G/Sur- Yvette, Cedex, France 

INTRODUCTION 

Flavocytochrome b2  is a soluble dehydrogenase which catalyses the oxidation of L-
lactate to pyruvate in yeast mitochondria and subsequently reduces cytochrome c. 
Crystal structures have been obtained for both the wild-type and recombinant enzymes 
from S. cerevisiae and E. coli respectively (1, 2). The enzyme is homotetrameric, with 
two distinct domains per monomer (Fig. 1.). The largest domain binds FMN and the 
smaller binds protohaem IX. 

Fig. 1. The structure 
of flavocytochrome 
b2  showing the hinge 
(black) between the 
flavin and haem 
domains. 

F!avins and Flavoproteins 1996 
University of Calgary Press 	 571 
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: :.• 

Fig. 2. The location of Arg-289 relative to the active site 

During turnover lactate binds in the active site of the flavin domain and transfers a 
pair of electrons to flavin. The flavin group passes electrons singly to the b2  haem. The 
presence of the haem domain allows the enzyme to efficiently reduce cytochrome C, 

which the flavin domain alone is incapable of doing. 
The domains of flavocytochrome b2  are joined by a short flexible region of 

peptide referred to as the hinge. This was thought to allow mobility of the haem 
domain relative to the flavin domain. Previous work (3) has shown the hinge peptide 
length and sequence is optimised for efficient catalysis. As a consequence of domain 
mobility, several favourable interactions in the interface need to be constantly broken 
and reformed. A single salt bridge exists between domains; removal of this interaction 
by mutagenesis shows no effect on enzyme activity. The remaining majority of 
interdomain interactions are hydrogen bonding in nature. 

In the crystal structure Arg-289 forms several hydrogen bonds, including one to 
the haem propionate via a water molecule. The residue is conserved in a family of 
similar oxidases and dehydrogenases (4). In flavocytochrome b2  the residue lies 
between the two domains, close to the active site allowing a stacking interaction with 
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Arg-376 (Fig. 2.). This interaction is important because Arg-376 binds and orientates 
the carboxylate of lactate. Indeed, it is possible that in the michaelis complex the 
negatively charged carboxylate of the substrate may be neutralised by a combination 
of Arg-289 and Arg-376. An interesting observation in the crystal structure of 
recombinant flavocytochrome b2  (2) was that Arg-289 could adopt two different 
conformations. This was accounted for by a strong affinity for sulphite, which was 
bound in place of pyruvate at the active site. Nonetheless this would appear to indicate 
some mobility in the residue. The point mutant, Arg-289—'Lys, R289K was used to 
probe the importance of these interactions in catalysis and interdomain electron 

transfer. 

RESULTS 

Steady-state kinetics (25°C, pH7.5, Tris buffer 1=0. JOM) 

TABLE I: R289K and (wild-type) steady-state parameters for lactate oxidation. 

Electron acceptor 	 kcat  (s ') 	 Lactate KM (mM) 

Ferricyanide 	 33±3.9 (400±10) 	 3.2±0.4 (0.49±0.05) 

Cytochrome c 	 17.7±0.2(207±2) 	 0. 95±0.03(0.24±0.04) 

Saturating acceptor concentrations were; 1mM [ferricyanide], I 0iM [cytochrome c] 

kcat  values are expressed in terms of electrons transferred. 

The mutant enzyme R289K is well expressed in E. coil and was purified using 

standard procedures(5). Steady-state and stopped-flow kinetic parameters were 

determined at 25°C in 10mM Tris buffer pH7.5, 1=0.1 M. 
Table 1 shows the results of steady-state analysis of the R289K enzyme compared 

with wild-type flavocytochrome b,. The mutant enzyme has a kcat  approximately ten 

fold lower than wild-type with ferricyanide or cytochrome c as the terminal electron 
acceptor. Ferricyanide, although not physiologically relevant, is useful because it can 
accept electrons from both flavin and haem. Cytochrome c, however, can only accept 
electrons from the haem domain. The ratio of rates obtained for the mutant is 
unchanged (within experimental error) from that seen for the wild type enzyme. The 

increase in lactate KM  value, corresponding to decreased substrate binding strength, 
might be explained by an altered interaction with the substrate, but a local structural 
alteration cannot be ruled out. A steady-state kinetic isotope effect of 4.4±1.5 was 

determined using L-[2-2H]Lactate, the same within error as for wild type enzyme 
implying a similar transition state in the mutant enzyme. 
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Stopped-flow kinetics (25°C, pH7.5, Tris buffer 1=0. JOM) 

TABLE II: Microscopic rate constants for flavin and haem reduction 

Ic, KM  for FMN reduction (s', MM) 	Ic for haem reduction (s ') 
Wild-type 	 604±60, 1.7±0.5 	 445±50 

R289K 	 20±2, 0.84±0.2 	 15±2 
All values at saturating [substrate] 

Flavin and haem reduction rates were determined using stopped-flow 
spectrometry (Table H). The decrease in the R289K flavin reduction rate can be 
attributed to transition state destabilisation. The haem reduction rate is limited by the 
flavin reduction rate, hence the value obtained does not give a true measure of flavin 
to haem electron transfer. An estimate of the true flavin to haem electron transfer rate 
can be obtained by measuring re-reduction of b2  haem following oxidation by 
cytochrome c, as recently determined for wild-type enzyme(6). It was clear from 
experiments that the rate was still very rapid as the reduction all occurred during the 
dead time of the spectrophotometer. This supports the results obtained by steady-state 
methods which indicate no effect on interdomain electron transfer. 

CONCLUSION 

The mutation R289K, although conservative, has a major impact on catalytic 
efficiency and substrate binding in flavocytochrome b2. The interdomain contacts 
observed in the crystal structure seem to have little or no role in the enzymes ability to 
transfer electrons from flavin to haem. 
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