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Thesis Abstract 

Helminth infection affects around a quarter of people worldwide, with no 

effective vaccines available. Future vaccines against helminth infection will 

require a more precise understanding of the cellular and molecular basis of 

protective immunity. In addition, it is notable that the prevalence of allergic 

and autoimmune diseases has increased, whilst that of helminths infections 

has reduced. This suggested that immune responses are dampened through 

direct immunomodulation by helminths infections or their excretory secretory 

products.  

Based on initial observations that Heligmosomoides polygyrus excretory 

secretory products (HES) can improve disease scores in a chronic T cell 

induced colitis, we explored the role of (HES) in an innate RAG-/- CD40 

colitis. We found that HES did not affect inflammatory scores and disease 

activity in this model of colitis, however reduced the infiltration of 

inflammatory cells into the peritoneum. 

Immunity to intestinal helminth Nippostrongylus brasiliensis and H. polygyrus 

requires innate and adaptive mechanisms co-ordinated through the Type 2 

IL-4R/STAT6-dependent pathway. We have now found that macrophage 

migration inhibitory factor (MIF) is also essential for development of immunity 
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to infection. MIF-deficient mice are slower to expel N. brasiliensis, while in 

wildtype animals, the expression of MIF is upregulated in macrophages in 

response to infection.  

Cellular analyses in the MIF-deficient mice demonstrate reduced recruitment 

of innate lymphoid cells, eosinophils and alternatively activated 

macrophages. Type 2 epithelial responses were reduced in the mice showing 

reduced tuft cell hyperplasia and almost absent RELM-ß protein in goblet 

cells. 

In order to assess if this was a developmental abnormality, we administered 

4-IPP, an inhibitor of MIF to infected wild type mice. Mice receiving 4-IPP

were unable to expel parasites and demonstrated similar cellular and

epithelial responses as the MIF-deficient mice. IL-25 has been shown to

accelerate expulsion of N.brasiliensis via the recruitment of ILC2s.

Administration of rIL-25 is able to completely rescue the MIF-deficient cellular

and epithelial cell phenotype. The ligands for MIF are hypothesised to be

CXCR2, CXCR4 and CD74. We demonstrate that ILCs and macrophages

express CXCR4. CXCR2-deficiency did not result in the epithelial cell

phenotype, therefore it is unlikely that MIF is acting via CXCR2 in the gut. A

deficiency of CXCR2 however, altered the immune response to N.

brasiliensis in the lung with reduced alternative activation of macrophages.

In parallel, we assessed the immune responses in H. polygyrus. From 

previous work, we know that MIF-deficient mice are less able to expel H. 

polygyrus primary infection, and in addition, do not mount protective 

secondary immune responses or protective responses to immunisation with 

HES. We found no difference in the percentage of Foxp3 positive T 

regulatory cells or HES specific antibody levels. As in the N. brasiliensis 

model, MIF-deficient mice produced fewer alternatively activated 

macrophages confirming a defect in the innate immune compartment. A 

microarray had previously been performed comparing BALB/c and MIF-
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deficient duodenum, finding genes arl2bp, phc2 and s100a8 being 

downregulated in the MIF-deficient mice. In order to assess the role of 

S100A8 deficiency in helminths infections, we infected s100a9-/- mice in 

which the A8/A9 complex cannot form. We found no difference in the primary 

or secondary clearance of H. polygyrus suggesting that S100A8 is not 

important in the pathogenesis of helminths infection. ARL2BP is known to be 

important for STAT3 nuclear retention. We assessed STAT6 and STAT3 

phosphorylation and found no difference between the BALB/c and MIF-

deficient mice in phosphorylation of STAT3/6. 

We conclude that in Type 2 infection, MIF plays an important role in the 

protective Type 2 response, potentially at two levels: firstly in activation of 

ILCs in a manner which is upstream of, and rescued by, IL-25; and secondly 

in promoting alternative activation of macrophages in synergy with IL-4.  
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Lay Abstract 

Infection with worms affects approximately a quarter of the world population. 

There are no effective vaccines to treat worm infections. In order to be able 

to develop vaccines, we need to better understand how the immune system 

reacts to help get eliminate the worms. There has also been a marked 

increase in auto-immune diseases (where the body’s immune system reacts 

to itself), whilst improved sanitation has resulted in reduced worm infections. 

This may be because the worm itself is able to reduce the immune response 

towards it by secreting a cocktail of molecules that can directly act on 

immune cells.  

We first assessed a mouse model of inflammatory bowel disease, to assess 

if the helminth secreted products can modify the immune system. 

Inflammatory Bowel Disease is a condition that results in the immune system 

attacking the guts/intestine resulting in pain in the stomach, diarrhoea, loss of 

weight and low blood count. We found giving products of the worm 

Heligmosomoides polygyrus (HES) (which commonly affects wild mice) was 

able to reduce the number of immune cells during a model of inflammatory 

bowel disease, however it did not affect the severity of the disease or the 

damage to the tissues generated during the inflammatory bowel disease 

process. 

We looked at how a molecule called Macrophage Migration Inhibitory Factor 

(MIF) affects the immune response to worms. MIF is called a signalling 

molecule that attracts cells to the site of damage caused by the worms. We 

infected mice that do not produce the MIF molecule with two types of worm 

models that closely ressemble human hookworms called Heligmosomoides 

polygyrus and Nippostrongylus brasiliensis. We found that the mice that do 

not have MIF cannot get rid of the parasites. These mice also do not produce 
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an important arm of the immune system which are the first responders to 

infection and are called innate lymphoid cells, macrophages and eosinophils. 

The lining of the gut is also important in creating an adverse environment for 

the worms to live for example by increasing mucus production, by pushing 

the worms out of the gut and by making molecules that bind the parasite 

directly and reduce nutrient supply. We found that the lining of the gut does 

not respond appropriately in the mice that do not have MIF. We looked at the 

lining of the gut alone in the mouse that does not produce MIF, and found 

that it responded normally to appropriate levels of alarm signals that are 

produced by immune cells suggesting that there is not enough alarm signal 

produced in the mice that do not produce MIF. Overall, this suggests that 

MIF is most important to start the immune responses that eventually get rid 

of the worms 

Abbreviations 
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Chapter 1-Introduction

1.1 Helminths and the Hygiene Hypothesis 

Parasitic worms infect around a quarter of the people in the world (Hotez et 

al., 2008) and would have inhabited most humans in historic times. Many 

helminths establish long lasting chronic infections and are the cause of 

approximately 4.98 million years lived with disability (YLD) attributable to soil 

transmitted helminths (Pullan et al., 2014). In children they cause stunting of 

growth, and learning (Hotez et al., 2008).  

Helminths achieve chronic infestation by causing downregulation of the host 

immune response. Therefore, an understanding of the immune mechanisms 

elicited towards helminth infections can lead to a better understanding of how 

to clear the infections. Heligmosomoides polygyrus and Nippostrongylus 

brasiliensis are rodent parasites related to the human hookworms which are 

widely used to model human helminths diseases. 

Strachan established the Hygiene Hypothesis based on an epidemiological 

survey of family size and birth order in British school children with allergic 

conditions (Strachan, 1989). He found the prevalence of allergy was much 

reduced in younger siblings of larger families and thus proposed that early 

childhood infections may be protective to the later development of 

allergic/autoimmune disease. Improved hygiene and less crowding have lead 

to the elimination of helminths. However, there has been an association with 

increased prevalence of autoimmune diseases such as IBD and diabetes 

(2016; Molodecky et al., 2012).  One hypothesis is that helminths and their 

immunomodulatory molecules directly modulate the immune system to allow 

them to establish long lasting infections. This may provide an opportunity to 

study the parasites for potential molecules that may help modulate 

autoimmune disease.  
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The hygiene hypothesis has been elaborated by many other authors and 

initially was suggested to be a balance between TH1 and TH2 arms of the 

immune system, in which TH1-driving microbes inhibited TH2-mediated 

allergy. However many other inflammatory conditions are themselves TH1 

(and/or TH17) therefore would not be blocked by TH1/17-activating 

microbes.  With the observation that Tregulatory cells are also greatly 

expanded in helminth infections, the hygiene hypothesis was refined to that 

of immunosuppressive regulatory cells which could be a means by which 

infections could dampen both TH2 allergies and TH1/17 autoimmunity 

 

 

1.2 Helminth models of infection 
 

1.2.1. H. polygyrus 
 

H. polygyrus is a natural parasite of wild mice. Infective H. polygyrus can 

enter the GI tract orally and start to invade the intestinal mucosa in 24 hours. 

The helminth passes though two larval stages before emerging as adults in 

the intestine. H. polygyrus is so called as it winds tightly round the villus. The 

adult worms coil around the small intestinal villi and produce eggs that are 

excreted in faeces. The eggs hatch in the environment undergoing two 

moults to become L3 larvae. The means of transmission in the wild is 

through the faecal-oral route, however, in the lab the larvae can be gavaged 

directly into the stomach (Reynolds et al., 2012). The infection can be 

assessed by counting the number of eggs per gram faeces, and by counting 

the number of adult worms remaining in the small intestine. There is variation 

in the different strains of mice to expel the H.polygyrus parasite. Slow 

responder strains that take over 20 weeks to expel worms include the CBA, 

C3H, and A/J mice; intermediately responsive strains which expel mice within 

20 weeks include the C57BL/6 and 129/J mice; mice capable of rapidly 

expelling the parasite are the BALB/c, NIH , SJL and SWR strains (Reynolds 
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et al., 2012). There is also considerable variation in the corresponding 

immune response in these various strains of mice (Filbey et al., 2014). 

 

 

At the site at which the larvae of H. polygyrus invade, granulomas form. In 

general these are more abundant in resistant strains. Granuloma formation is 

dependent on IL4Rα signalling. Granulomas in primary infection have 

neutrophils, macrophages, DCs and eosinophils, whereas in secondary 

infection they are predominantly composed of CD4+ TH2 cells and 

alternatively activated macrophages (Anthony et al., 2006; Patel et al., 2009). 

 

 

The mammalian stages of the worm can also be cultured in vitro to produce 

H. polygyrus excretory-secretory antigens (Hewitson et al., 2011).  Proteomic 

analysis has found 374 HES proteins that were different to those in the 

somatic extract of the worm. The major products were the part of the venom 

allergen like family (Hewitson et al., 2011). These products have been 

fractionated by the Maizels lab and specific proteins have been found 

including a TGFβ mimic (Johnston et al., 2017) and HpARI which binds and 

inhibits IL-33 (Osbourn et al., 2017).  A more detailed explanation of the 

production of HES is in the methods section and in a JOVE video (Johnston 

et al., 2015). 
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1.2.2. N.brasiliensis 
 

Larvae of N. brasiliensis enter through the skin, migrate to the blood vessels 

and travel to the lung. The larvae moult once within the lung and then 

migrate to the airways within 48 hours where they are coughed up and 

swallowed, thereby reaching the GI tract. N. brasiliensis is very rapidly 

expelled in mice within 2 weeks, and is hence a model of an acute helminth 

infection (Camberis et al., 2003). The adult worms mature in the duodenum 

where they mate and produce eggs. Faecal egg burdens, and worm counts 

in the gut can be used to assess the immune response. Adult worms are 

believed to feed on host intestinal tissue (Bansemir and Sukhdeo, 2001). 

 

H. polygyrus remains in the intestine chronically, whereas N. brasiliensis is 

very rapidly expelled. One way in which N. brasiliensis more closely 

represents the human hookworms Ancylostoma duodenale and Necator 

americanus is by having a migratory phase through the lung tissue. This 

results in long term emphysematous damage (Marsland et al., 2008). 

Importantly, N. brasiliensis is a natural rat parasite that most mouse strains 

can expel within 7-9 days, while H. polygyrus is a natural mouse parasite 

able to modulate host immunity and establish longer-term infection in a 

strain-dependent manner. Thus, by comparing both models we are able to 

establish the importance of MIF in immunity during acute (N.brasiliensis) and 

chronic infection (H.polygyrus). In addition, we were also able to assess the 

lung phase of infection with N.brasiliensis which is absent from H. polygyrus 

which always remains within the gastrointestinal tract..  

 

Most of the papers described below administer parasites as a bolus, 

however, in the natural environment there will be repeated low inoculum 

infections, which may well contribute to a different dynamic response. 
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Figure1.1 Lifecycle of N.brasiliensis 

The larval stages infect the host through the skin between 0-6 hours. Within the lung 

the larvae moult from L3 to L4 stages (18-72 hours) causing tissue damage. The L4 

emerge in the alveoli and are transported to the pharynx where they are coughed 

and swallowed. The L4 larvae arrive in the duodenum, moult into adult worms, and 

mate producing eggs that are excreted (adapted from Allen et al 2014(Allen and 

Sutherland, 2014)). 
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Figure1.2 Lifecycle of H.polygyrus 

The larvae are ingested orally. In 24 hours they have penetrated through the wall of 

the small intestine to the submucosa where they undergo two molts. On the 10th day 

the adult worms have emerged through the submucosa into the gut lumen. The 

adult worms mate and produce eggs that are excreted in the faeces. (Adapted from 

Reynolds et al 2012 (Reynolds et al., 2012)). 
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1.3 Immune responses to helminths 
 

1.3.1 T cell responses 
 

CD4+ T helper cells can be subdivided into TH1, TH2, TH17 and T regulatory 

cells. CD4+ T helper cells are important for immunity. Antigen-presenting 

cells (APC) present MHC-bound peptide antigen that activates the T cell via 

the T cell receptor (TCR); costimulatory molecules present on the T cell and 

APC stabilise the MHCII-TCR interaction. Following this a third signal is 

mediated by cytokines secreted by the APC and help polarise the T cell to 

the appropriate phenotype (Gutcher and Becher, 2007). TH1 cells are primed 

by IL-12, produce cytokines IFNγ and are under control of the master 

transcription factor T-bet. TH2 cells are controlled by GATA3 and produce IL-

4, -5, -9 and -13. TH17 are under the control of master transcription factor 

RORα and produce IL-17. T regulatory cells are under the control of master 

transcription factor forkhead box protein 3 or Foxp3, and are able to produce 

TGFβ and IL-10. Blocking all CD4+ T cell responses by administering an 

antibody to CD4 resulted in ablation of protective immunity to H. polygyrus 

(Urban et al., 1991) and to Trichuris muris (Koyama et al., 1995). CD8+ T 

helper cell depletion had no effect on immunity to H.polygyrus or T.muris 

(Koyama et al., 1995; Urban et al., 1991).  

 

 

The co-stimulatory signal is also essential for the development of immunity to 

H. polygyrus- CD86 deficiency resulted in greater egg production in 

H.polygyrus infection (Greenwald et al., 1999). 
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TH2 responses are essential for immunity to helminths, however, overactivation 

of TH2 responses can lead to fibrosis.  Primary H. polygyrus infection induces 

TH2 cytokine expression in cells from both the mesenteric lymph nodes and 

Peyer’s patches (Svetic et al., 1993). Culturing mesenteric lymph node cells 

with helminth-derived antigens results in secretion of IL-4, -5, -13 protein, 

confirming that the TH2 response is parasite antigen-specific (Rausch et al., 

2008; Reynolds et al., 2012). The Th2 response is controlled by master 

transcription factor GATA3 (Hoyler et al., 2012), which leads to TH2 cell 

commitment and blocks TH1 development (Ouyang et al., 1998). GATA3 

increases expression of several IL-4 enhancer regions (HSS, IE, HSS-IL/4P-IE) 

in TH2 cells (Lee et al., 2001). In helminth infection, TH2 cells produce the 

cytokines IL-4 and IL-13 that directly result in proliferation of leucocytes, and 

affects epithelial cells and myenteric neurones that express IL-4Ra. TH2 

respones contribute to the weep and sweep responses (Anthony et al., 2007). 

 

 

Although helminth infections predominantly elicit the TH2 response, there is 

evidence of other T helper subset involvement. TH17 cells for example, are 

most effective at controlling bacterial, fungal  and anti-helminth responses 

(Sutherland et al., 2014). These cells produce IL-17 and upregulate 

neutrophil migration. In S .mansoni, the neutralisation of IL-17 dampens 

down granulomatous inflammation(Zhang et al., 2012). 

 

 

In human helminth infections, a state of T cell hyporesponsiveness or anergy 

is frequently observed, that can be reversed by drug-mediated removal of 

parasites (Taylor et al., 2012).  Hyporesponsiveness is elicited by the T 

regulatory cell population. In humans, T regulatory cells (Treg) increase after 

helminth therapy, especially in hosts that develop immune dependent 

pathologies during filarial infections such as elephantiasis (Maizels and 

McSorley, 2016). Inducible T regulatory cells (iTregs) develop from naïve T 

cells and produce TGFβ and IL-10.  Helminth infections induce regulatory T 
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cells (Grainger et al., 2010; McSorley et al., 2008) and these Tregs allow the 

helminths to survive in its host. Boosting Tregs in a H.polygyrus model by 

administration of rIL-2: anti-IL-2C increases worm survival although it was 

shown that low level Treg activity is also required as complete ablation of 

Foxp3 cells paradoxically increases worm burden through creation of a 

incoherent cytokine storm (Smith et al., 2016) .   

1.3.2 B cells and humoral immunity in helminth infections 
 

In primary infections, μMT mice (in which B cells do not develop) had similar 

H. polygyrus infection kinetics to wild-type mice; however, they were unable 

to expel parasites as rapidly as wild type mice in a secondary infection model 

in which drug-mediated clearance of parasites is followed by a challenge 

infection (Wojciechowski et al., 2009). However μMT mice also have defects 

in lymphoid tissue organogenesis, so in order to assess if it is the specific 

deficiency of B cells that is important, μMT were sublethally irradiated and 

reconstituted with bone marrow from C57BL/6 or μMT mice. Mice that were 

reconstituted with C57BL/6 bone marrow were able to expel H. polygyrus, 

confirming that it was indeed the B cell compartment that is essential for 

immunity to challenge (Wojciechowski et al., 2009). Furthermore, the 

production of high-affinity antibodies is critical to the immunity that B cells 

afford, as AID-deficient mice, which have B cells and IgM-secreting plasma 

cells but cannot undergo isotype class switch or somatic hypermutation are 

not able to mount a protective response to secondary H.polygyrus infection 

(McCoy et al., 2008). 

 

 

B cells are not only capable of antibody production but also can produce 

cytokines depending on which T helper cell subset they are primed with. B 

cells primed by TH1 cells make IFNγ and IL-12. IL-4 from T cells promotes B 

cell class switching to IgE and IgG1. IgE activates mast cells and basophils, 

however IgE does not have a role in H.polygyrus or N.brasilienis infection 

(Harris and Gause, 2011).  



 

 

Chapter 1- Introduction 

25

 

1.3.3 Innate Lymphoid Cells  
 

The TH2 cells of the adaptive immune system are not the only source of the 

IL-13 and IL-4 cytokines. Group 2 innate lymphoid cells were originally 

discovered using reporter mice for IL-13 and IL-4 as a distinct population of 

CD45+ cells that had none of the classical lineage markers (T, B, NK, 

myeloid or DC-associated) that produce Th2 cytokines on stimulation with IL-

25 and IL-33. ILC2 are involved not only in expulsion of helminths but are 

also involved in allergic disease (Nausch and Mutapi, 2018). Human ILC2s 

have been similarly described as not having lineage markers, being CD45 

and CD127 positive (Nausch and Mutapi, 2018). 

 

 

Innate lymphoid have similar cytokine secreting profiles as TH1/2 and 3 

(Innate lymphoid cells can be divided into ILC1/2/3). The ILC2 population 

produce type 2 cytokines IL-5, IL-9, IL-13 and amphiregulin. ILC2s also 

express GATA3 in addition to TH2 cells (Hoyler et al., 2012). ILC2 

differentiation depends on RORα (Wong et al., 2012), T-cell factor 1 and 

GFI1 (Nausch and Mutapi, 2018). 

 

 

ILC2s are the major responsive cells to epithelial alarmins IL-25, IL-33 and 

TSLP. Initial studies demonstrated that the RAG-/- mouse, which does not 

have T cells produces IL-4 and IL-13 to expel N.brasiliensis (Voehringer et 

al., 2006). Fallon (Fallon et al., 2006) found that a population of cells 

produced IL-5 and IL-13 in N.brasiliensis and this was in response to IL-25. 

The ILCs responsive to IL-25 expressed KLRG1, whereas those responding 

to IL-33 produced ST2. IL-4/13 production from innate cells and T cells is 

responsible for epithelial cell responses such as goblet cell hyperplasia and 

secretion of Mucin5ac and RELMβ in the small intestine(Oeser et al., 2015). 
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There is evidence of cross talk between ILC2 and TH2 cells. Group 2 ILCs 

secrete IL-4 and differentiate T cells to TH2 (Pelly et al., 2016). ILCs have 

been reported to express MHCII, and experimental deletion of the MHCII on 

IL-13 expressing ILCs showed that T cell responses are amplified by ILC2s 

in an MHCII-dependent manner. Human ILC2s also expressed MHCII with 

costimulatory molecules and presented antigen to T cells (Oliphant et al., 

2014). In addition, PD-L1 expression by ILC2s stimulated GATA3 and 

production of IL-13 by TH2 cells, with a conditional ILC2 PD-L1 deletion 

impairing TH2 polarisation (Schwartz et al., 2017). 

 

 

The nervous system is also involved in a newly described circuit between 

ILC2s and epithelial cells. The release of the peptide Neuromedin U by 

neurons was found to be a fast and potent regulator of type 2 lymphoid cells  

via the neuromedin U receptor 1 (Nmur1) on ILC2s in both the lung and small 

intestine (Cardoso et al., 2017; Klose et al., 2017; Loser and Maizels, 2018). 

The same receptor is also expressed on human ILC2s, and its importance 

emphasised by the finding that NMUR1-deficient mice had increased 

N.brasiliensis burdens (Klose et al., 2017). 

 

 

1.3.4 Alternatively Activated Macrophages 
 

The intestine has the largest population of macrophages in the body. 

Constantly exposed to pathogens and foreign antigens, cells must 

discriminate pathogenic from harmless stimuli in order to mount protective 

responses and avoid pathogenic insults. A feature of intestinal macrophages 

is that exposure to bacteria does not automatically trigger a proinflammatory 

response. They do however express low levels of IL-10 and TNFα in steady 

state (Bain and Mowat, 2014).  
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In the context of TH2 cytokines, tissue resident macrophages develop an 

alternatively activated  (M2) phenotype (Jenkins et a., 2013).  Macrophages 

of the M2 phenotype express high levels of Arginase1, RELM-α and YM1. 

Using these markers, it was found that M2 macrophage percentages are 

increased in the more resistant SJL and BALB/c strains of mice during H. 

polygyrus infection (Filbey et al., 2014). In both H. polygyrus and N. 

brasiliensis infection, depletion of macrophages using clodronate liposomes 

increased susceptibility(Filbey et al., 2014; Zhao et al., 2008). Arginase 

inhibition results in diminished immunity to N. brasiliensis (Zhao et al., 2008) 

although the role of Relmα and YM1 are less clear. 

 

 

They can be tissue resident or derived from blood as monocytes. The 

resident macrophages of the small intestine are CD4+ TIM4+ (Shaw et al., 

2018). Interestingly, ddifferent tissue environments have recently been found 

to express specific amplifiers for AAMs. Surfactant protein A enhances AAM 

proliferation in the lung, while in the peritoneal cavity C1q amplifies AAMs 

(Minutti et al., 2017b).   IL-33 induces macrophage population to proliferate in 

the peritoneal cavity (Jackson-Jones et al., 2016). In addition, AAms can be 

a source or retinoic acid and can expand T regulatory cells (Broadhurst 

2012).  Depletion of macrophages via clodronate reduces the 

hypercontractility response to helminths (Zhao et al., 2008). Inhibiting 

arginase by use of its inhibitor BEC (S-(2-boronoethyl)-1-cysteine)  impaired 

intestinal smooth muscle contractility (Zhao et al., 2008).  

 

 

From our laboratory experience, preparations of live cell suspensions from 

the lamina propria for flow cytometry are difficult to obtain from helminth-

infected mice due to high levels of apoptosis and mucus secretion, 

Therefore, the peritoneal cavity is utilized to assess immune responses to 

helminth infections. 
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1.3.5 Dendritic cells 
 

Another subset of antigen presenting cell include the dendritic cells (DCs). 

Intestinal DCs are classified into three distinct subsets dependant on 

expression of Cd11b and CD103 as well as interferon regulatory factor 4 or 8 

(IRF4 or IRF8) for development and/or survival (Tamura et al., 2005). The 

three different subtypes are CD103-Cd11b-, CD103+Cd11b-,Cd103-CD11b+) 

and one minor CD103-Cd11b- subset. All four subtypes are found in the 

migratory compartment of intestinal lymph nodes (Joeris et al., 2017). 

 

 

TH2-inducing DCs are generated by exposure to helminths, TSLP and 

innocuous allergens (Liu et al., 2007). These TH2 inducing DCs are 

dependent on the transcription factor IRF4 (interferon regulatory factor 

4)(Gao et al., 2013) and are CD11b+CD103- (Mayer et al., 2017). IRF8 

positive DCs promote TH1 immune responses. Therefore it may be that 

different subsets are capable of driving TH2 immunity in different directions 

(Sorobetea et al., 2018).  

 

 

DCs recognise microbial pathogens through ligands of the innate Toll-like 

receptors (TLRs) such as LPS and CpG. Simultaneously DCs up-regulate 

costimulatory molecules CD40, CD80 and CD86 and then also release IL-12 

to direct T cell polarisation towards TH1 (MacDonald and Maizels, 2008). DC 

production of RELMα primes TH2 responses and controls TH1 responses 

(Cook et al., 2012). 
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1.3.6 Eosinophils  
 

Eosinophils, basophils and mast cells develop from a GATA1+ granulocyte-

monocyte precursor (GMP) that is distinct from the GATA1- GMP that gives 

rise to neutrophils, monocytes and macrophages (Weller and Spencer, 

2017). Eosinophils contain granules of cationic proteins, and therefore stain 

with acidic dyes such as eosin. Eosinophils can be recognised in mice as 

Siglec-F+ and SSChi although the exact markers depends on the tissue sites. 

The cationic granules can degranulate and kill helminths in vitro. Initially, 

eosinophil differentiation and recruitment is dependent on the cytokine IL-5 

secreted predominantly by ILC2s (Nussbaum et al., 2013). 

 

The role of eosinophils in helminth infection can vary according to the 

helminth in question. In vitro studies have shown that eosinophils are able to 

bind to and kill N.braslliensis larvae (Shin et al., 2001).In filarial infection 

models, eosinophils are required for clearing B. malayi microfilariae in 

primary but not secondary challenge infection (Cadman et al., 2014) 

 

 

1.3.7 Neutrophils 
 

Neutrophils are also granulocytes, which have recently also been found to be 

important effectors of Type 2 immunity. They are present in the nodules 

formed around L. sigmodontis, and in the H. polygyrus granulomas (Allen et 

al., 2015). Neutrophils act with macrophages to kill S.stercoralis larval forms 

in vitro (Bonne-Annee et al., 2013), they prime an effector macrophage 

phenotype that can expel N.brasiliensis (Chen et al., 2014), and they are 

important in primary immunity to H. polygyrus (Hewitson et al., 2015; Pentilla 

et al., 1985). Sutherland et al. describe an N2 phenotype emerging in the 

lung of mice infected with N.brasiliensis, and in this setting neutrophils 

mediate IL-17 dependent larval killing (Sutherland et al., 2014) 
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1.3.8 Immune cell cytokines and effectors 
 

The cells of the type 2 immune system use cytokines and effector molecules 

to enhance helminth expulsion. IL-4 is essential for effective immunity to 

H.polygyrus (Urban et al., 1998), as well as to  T. muris, (Bancroft et al., 

1998); however it is not required for immunity to N. brasiliensis (Urban et al., 

1998). IL-13 is required to expel N. brasiliensis (Urban et al., 1998) and T. 

muris. (Bancroft et al., 1998). IL-13 supports DC migration. There is some 

redundancy between IL-4 and IL-13 because they share the IL4Rα subunit.  

IL4Rα expression is not required on immune cells to provide immunity to T. 

spiralis, and IL4Rα expression on non bone marrow cells was required to 

expel N. brasiliensis (Urban et al., 2001). Therefore, it is likely to be the non-

immune cell compartment that ultimately responds to IL-4/13. 

 

 

IL-5 is crucial for eosinophil recruitment and differentiation. In N. brasiliensis 

infections, mice overexpressing IL-5 had reduced worm burden during 

secondary infection but primary infection is unaffected by the absence of 

eosinophils. In secondary infection, the larvae are intercepted en route to the 

lung and this interception is eosinophil mediated (Knott et al., 2007). IL-5 was 

not required to clear S. mansoni, T. spiralis or T muris (Allen and Sutherland, 

2014; Betts and Else, 1999; Herndon and Kayes, 1992; Sher et al., 1990). 

 

 

IL-9 recruits mast cells, and IL-9 overexpression results in expulsion of T. 

spiralis (Faulkner et al., 1997), adoptive transfer of TH9 cells results in 

expulsion of  N.brasiliensis (Licona-Limon et al., 2013). T helper cells and 

ILC2s are largely responsible for producing IL-9 (Licona-Limon et al., 2013). 

Mast cells themselves can secrete IL-9 and IL-13 in response to IL-33 and 

mast cell protease 1 (Chen et al., 2015).  
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Arginase 1 is produced by alternatively activated macrophages, and is an 

enzyme in the urea cycle. It functions to convert arginine to ornithine and 

urea and is under the control of IL-4, IL-10, IL-13 via STAT3/6 (Vasquez-

Dunddel et al., 2013). The ornithine produced is converted to polyamines 

required for cell proliferation and prolines required for the synthesis of 

collagen (Rodriguez et al., 2017). Arginase competes with iNOS for arginine, 

thereby reducing NO-mediated activation of the classically activated 

macrophage (Allen and Sutherland, 2014). Arginase1 dependent depletion of 

arginase from the environment also arrests T cell development (Van de 

Velde et al., 2017). The inhibiton of arginase by BEC-1 resulted in impaired 

secondary immunity to H. polygyrus (Anthony et al., 2006). Arginase-

deficient macrophages were found to have increased fibrosis in the liver 

(Pesce et al., 2009a) but unaltered inflammatory responses in the lung 

(Barron et al., 2013). Antibodies from H. polygyrus-challenged mice induced 

adherence of macrophages to larvae in vitro, immobilising them, while 

macrophages that did not express Arginase-1 had reduced larval trapping in 

vitro (Esser-von Bieren et al., 2013). Arginase-1 expressing macrophages 

are important in healing after infection (Maizels and McSorley, 2016). 

 

 

YM1 is also produced by alternatively activated macrophages, and belongs 

to a family of Chitinase-like proteins (CLPs). These are part of a family that 

includes chitotriosidase and acidic mammalian chitinase (AMCase) that 

cleaves and therefore provides defences against chitin in arthropods, 

parasites and fungi. In mice there are three CLPs: YM1, YM2 and BRP-39. 

YM1 was found to be the dominant CLP in the Lung (Sutherland et al., 2014), 

and its overexpression increases neutrophil recruitment in the lung. 

Conversely, neutralising YM1 reduces the accumulation of neutrophils and 

IL-17. The source of the IL-17 was found to be the gamma-delta T cells 

(Sutherland et al., 2014). 
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The RELM family, are made up of RELM-α, RELM-β, RELM-γ. They are 

similar to resistin, which is an adipocyte-secreted factor regulating response 

to insulin(Nair et al., 2006). RELMα is expressed in bronchial epithelial cells 

and the wall of the intestine, but it is also expressed by macrophages in a 

STAT6 dependent fashion (Stutz et al., 2003). RELMα production is 

upregulated by IL-4/13 (Munitz et al., 2012) and Resistin like alpha (Retlna-/-) 

deficient mice had higher levels of IL-4,5 and 13 producing CD4+ T cells and 

exacerbated lung inflammation in S. mansoni infection (Nair et al., 2009; 

Pesce et al., 2009b). RELMα was found to upregulate pro-inflammatory IL-6, 

TNFα secretion compared with LPS alone(Munitz et al., 2008).  

 

 

Amphiregulin is an EGF-receptor ligand that is expressed by epithelial and 

mesenchymal cell types but also immune cells including ILC2s, eosinophils, 

and TH2 cells (Zaiss et al., 2015). Amphiregulin is produced by lung ILCs 

and restores lung function and tissue remodelling after influenza virus and 

nematode-induced lung damage (Monticelli et al., 2011; Turner et al., 2013). 

AREG-deficient mice had reduced proliferation of gut epithelial cells and did 

not expel T. muris (Zaiss et al., 2006). EGF expression by CD4+ cells results 

in resistance to H. polygyrus  and N.brasiliensis (Minutti et al., 2017a).   

 

 

1.3.10 Final mechanisms in helminths expulsion 
  

 

Type 2 immune responses (TH2 cells, ILC2s, M2 macrophage, eosinophils, 

basophils and mast cells) are activated upon tissue damage caused by 

helminth infections. The pathways lead not only to helminth expulsion, but 

also a wound healing response. M2 macrophage products result in 

myofibroblast activation and tissue repair. Eosinophils release material that 

can also contribute to wound healing responses (Gause et al., 2013).  
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The final common pathway that results in helminth expulsion from the gut 

occurs in the intestinal epithelial cells themselves. The release of cytokines 

by the epithelium and immune cells results in a series of cascading events 

that eventually lead to intestinal peristalisis and epithelial fluid egress 

resulting in a “weep and sweep” model of expulsion. IL-13 signalling 

increases epithelial cell electrolyte secretion and permeabililty, to increase 

the intestinal epithelial cell turnover (Cliffe et al., 2005), and to change the 

production of mucins from MUC2 to a less degradable Muc5ac (Hasnain et 

al., 2011); mast cell proteases degrade tight junctions allowing the fluid to 

leak into the lumen (McDermott et al., 2003). The epithelial cells upregulate 

their turnover to produce an epithelial escalator to dislodge the worms (Cliffe 

et al., 2005). Infection with many species of intestinal nematode also induces 

changes in the muscle contractility. The hypercontractile response is 

dependent on the IL-4 STAT6 pathway (Zhao et al., 2003). The epithelial cell 

subtypes, their functions and alarmin signals will be explored further in the 

following section. 

 

The lung is another epithelial site which primes immune protection to 

secondary infections in N.brasiliensis. Lung-restricted infection was sufficient 

to generate protective immunity against tissue-migrating parasites, as 

immunity to secondary infection could be achieved when primary infection 

only occurred in the lung (Harvie et al., 2010).  
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1.4 Immune mechanisms in the GI tract 
 

1.4.1 Gut Mucosa 
 

The gut mucosa is central to the mechanism by which the host senses the 

invasion by a large multicellular organism and finally by which it attempts to 

expel the pathogen as explained by the “weep and sweep” hypothesis. It is 

likely that tissue damage initiated by multicellular helminths is the initial 

stimulus from which TH2 immunity is driven in helminth infection. The 

damage results in secretion of alarmin cytokines IL-25, IL-33, TSLP and 

various other molecules ((Gause et al., 2013). These molecules 

communicate with immune cells such as the ILC2s that secrete cytokines 

e.g. IL-13 leading to multiple processes that expel the worms. The gut 

mucosa both senses pathogen and allows for physical removal of 

multicellular organisms (Figure 3). 
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Figure1.3 Intestinal immune response in helminth infection 

Tuft cells sense invading worms and release IL-25 which recruits ILCs to the site of 

infection. The ILCs secrete IL-13 which starts a cascade of events that results in 

worm expulsion but also proliferation of intestinal tuft cells in a positive feedback 

loop. ILC derived IL-5 also recruits eosinophils and alternatively activated 

macrophages which themselves secrete further cytokines and mediate anti-helminth 

immunity. 
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The intestine is a barrier surface that both protects the host from pathogens 

and obtains nutrition. The epithelial layer must be able to discriminate 

between harmful and protective stimuli. The epithelium consists of the 

epithelial monolayer, the basement membrane and the lamina propria. 

 

The intestinal immune cells reside within the gut-associated lymphoid tissue 

(GALT) consisting of lymphocytes which are present throughout the 

epithelium and lamina propria, but also in areas of organised tissues. These 

organised tissues are the Peyer's patches, mesenteric lymph nodes and 

isolated lymphoid follicles. Overlying the Peyer's patch is an area of follicle-

associated epithelium (FAE) and the subepithelial dome (SED). This 

epithelium has microfold (M) cells which lack surface microvilli or a mucus 

layer, and are available to bind pathogens and antigens. The M cells function 

to pass on molecules to antigen presenting cells in the epithelium or the 

SED. They then present to T cells in the Peyer's patch or travel to the MLN to 

present antigen.  

 

The cells of the epithelial monolayer are formed by enterocytes, goblet cells, 

neuroendocrine cells, paneth and tuft cells.  The epithelium releases 

alarmins in response to pathogenic stimulus. In helminth infections, three cell 

types are of interest: these are the goblet cells, paneth and tuft cells.  

 

Goblet cells are responsible for synthesising secretory mucin glycoproteins 

(MUC2) and epithelial membrane bound mucins (MUC1, MUC3, MUC17), 

trefoil factor peptides (TFF) and resistin-like molecule B (RELMβ). The 

mucus layer formed by the mucins  forms a gel-like structure which acts as  a 

defence against injury from trauma or chemical injury (Kim and Ho, 2010).  

 

The intestinal epithelium is divided into finger like projections called villi, and 

invaginations called crypts. Paneth cells reside in the base of the intestinal 

crypts and contribute to first line defence by secreting granules of lysozyme, 

phospholipase A2, defencins and REGIIIγ. After differentiation, the Paneth 
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cells remain in the crypts, however, the other cells migrate to the villi 

(Martinez Rodriguez et al., 2012). 

 

Tuft cells have been described in 1956 (Jarvi and Keyrilainen, 1956; Rhodin 

and Dalhamn, 1956), in the trachea and the gastro-intestinal tract by electron 

microscopy because of their morphology. They had a tuft of long and thick 

microvilli projecting into the lumen (Gerbe and Jay, 2016). Although little was 

known about their function (Grencis and Worthington, 2016) they were 

thought to be chemosensory in nature. In 2016 three groups found these to 

be the epithelial cell producers of IL-25. Gerbe et al (Gerbe and Jay, 2016; 

Gerbe et al., 2016) found that in the absence of Pou doumain, class2, 

transcription factor 3 or POU2F3, mice were unable to make tuft cells and did 

not express IL-25. Organoid cultures demonstrated that IL-4/13 was able to 

induce the production of Tuft cells in wild type organoids, therefore likely part 

of an epithelial cell feedback loop. Moltke et al (von Moltke et al., 2016) also 

found via the use of an IL-25 reporter mouse that the tuft cells were the 

source of the IL-25. Tuft cells express double-cortin like kinase 1 (DCLK1) 

and transient potential receptor cation channel subfamily M, member 5 

(TRMP5). They are upregulated 8.5 fold on infection with N.brasiliensis. I 
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1.4.2 Epithelial cell alarmins and their functions 
 

The epithelium produces several alarmin cytokines in response to the 

physical damage caused by helminths that amplify the effective T cell 

responses required to eventually expel the invading pathogens. 

 

IL-25 is part of the IL-17 cytokine family. IL-25-deficient mice are unable to 

expel N. brasiliensis (Fallon et al., 2006). The major cell type thought to be 

responsive to IL-25 is the innate lymphoid cell (Price et al., 2010): injection of 

wild type ILCs but not IL-13-deficient ILCs into IL-17Br-/- mice restored IL-25 

responsiveness and leads to expulsion (Neill et al., 2010). IL-25-deficient 

mice also fail to eradicate T. muris (Owyang et al., 2006). In the lung, IL-25 is 

responsible for allergic responses and fibrosis (Hams et al., 2014).  

 

IL-33 is a member of the IL-1 family. IL-33 induces IL-13 producing ILCs or 

nuocytes. IL-33 can also promote TH2 cells to secrete IL-13 (Guo Nature 

Immunology 2015).  The IL-33 receptor is expressed on T cells, 

macrophages, endothelial cells, epithelial cells and ILC2s on all of which it 

binds the ST2 receptor (Cayrol and Girard, 2018). IL-33 is released from the 

nucleus in necrosis, however, during apoptosis Il-33 is inactivated by 

caspase cleavage.  A deficiency of IL-33 or its receptor results in 

susceptibility to several helminths (Coakley et al., 2017),  

 

Mice that do not have IL-33 or its receptor (ST2) are unable to mount a type 

2 immune response to N. brasiliensis (Hung et al., 2013). IL-33 may have a 

critical time window when it is active, as administering rIL-33 early promotes 

immunity to T muris, whereas when given in chronic T muris infection, it has 

little effect and is unable to redirect already polarised TH1 cell responses 

(Humphreys et al., 2008). Recently Osbourn (Osbourn et al., 2017) et al have 

discovered an H. polygyrus derived molecule HpARI which suppressed IL-33 
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while extracellular vesicles secreted by H. polygyrus are able to suppress 

expression of the IL-33 receptor (Buck et al.). 

 

Thymic stromal lymphopoietin (TSLP) is a member of the IL-2 cytokine family 

(Ziegler et al., 2013). The major responsive cells are the myeloid derived 

dendritic cells but it also affects monocytes, T cells and B cells  (Ziegler and 

Artis, 2010). ILC2 activation in the skin is dependent on TSLP (Kim et al., 

2013). N brasiliensis and H.polygyrus develop normally in TSLP-deficient 

mice (Harris and Loke, 2017). In T. muris however, TSLP blockade made 

resistant mice susceptible (Taylor et al., 2009) via suppression of IL-12p40 

on dendritic cells. A hypothesis as to why TSLP deficient makes no 

difference to  N.brasiliensis or H polygyrus is because these parasites 

secrete molecules that inhibit host IL-12p40 directly (Massacand et al., 

2009). Another reason may be that TSLP is expressed in the large intestine 

rather than the small intestinal niche of these parasites (Taylor et al., 2009). 

 

Mucins trap the parasite T. muris, and deficiency of mucins delays the 

expulsion of the worm (Hasnain et al., 2010). In the normal intestine MUC2 is 

the major mucin forming the gel-layer whereas Muc5A is normally expressed 

in diseased states such as ulcerative colitis and in parasitic infections 

(Forgue-Lafitte et al., 2007). Muc5A is expressed in the caecum of mice 

resistant to T. muris in an IL-13 dependant manner and associated with 

worm expulsion.  Muc5A deficient mice have delay in expulsion of T. spiralis 

and N. brasiliensis  (Hasnain et al., 2011).  

 

RELMβ is a protein which is part of a family of resistin-like cytokine 

molecules. It is produced by the goblet cells and secreted into the lumen. It is 

upregulated during helminth infections. RELMβ directly binds the parasite 

and interferes with its access to nutrients (Artis et al., 2004). The RELMβ 

deficient mouse found to be resistant to chronic T. muris inflammation and 

failed to acquire a chronic infection (Nair et al., 2008). In the context of H. 

polygyrus and N. brasiliensis however, intestinal RELMβ was important for 
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worm expulsion and IL4Rα expression was required on intestinal epithelial 

cells for the production of RELMβ (Herbert et al., 2009). 

 

1.5 Macrophage migration inhibitor factor (MIF) in helminth infections 
 

The main focus of this thesis is on the cytokine Macrophage migration 

inhibitory factor (MIF) and its role in helminth infections. MIF is a cytokine first 

discovered in the 1960s as a product of activated T cells (Bloom and 

Bennett, 1966; David, 1966). Since then it has been found to be constitutively 

expressed by many tissues especially at mucosal sites and by a large 

number of immune cells with multiple functions (Calandra and Roger, 2003). 

 

69% of the mouse and human gene sequence is identical (Kozak et al., 

1995), and numerous homologues of MIF have been found in all members of 

the animal kingdom including helminths and in fishes (Prieto-Lafuente et al., 

2009; Sato et al., 2003). Defects in the MIF gene have been found in human 

diseases such as inflammatory bowel disease (Zhang et al., 2013) and 

autoimmune hepatitis (Assis et al., 2014). MIF can be strongly pro-

inflammatory (Bernhagen et al., 1998; Calandra et al., 1994), and high levels 

in septic shock are associated with poorer outcomes (Chuang et al., 2014). 

MIF more broadly regulates immune responses in inflammation. MIF 

activates the ERK1/ERK2/MAPK (Lue et al., 2006) pathways, the NF-KB 

pathway (Kim et al., 2017) and up-regulates the expression of Toll-like 

receptor 4 that recognises endotoxin-expressing bacteria.  

  

The receptors for MIF have been reported as CXCR2 and CXCR4 

(Bernhagen et al., 2007), with CD74 (Leng et al., 2003) being a co-receptor 

for MIF (Calandra and Roger, 2003). MIF is responsible for mononuclear 

arrest at site of human aortic endothelial cells, and this arrest is abrogated 

with the addition of anti-CXCR2 (Bernhagen et al., 2007). MIF has also been 

found to bind CXCR2 through a pseudo-ELR motif (Weber et al., 2008). This 

cytokine has also been found to have enzymatic activities incuding D-
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dopachrome tautomerase, phenylpyruvate keto-enol isomerase and thiol-

protein oxidoreducase activity. However, it is not clear if the enzyme activity 

is important for the in vivo biological effects of MIF (Calandra and Roger, 

2003).  

 

The level of MIF needs to regulated in order to achieve a balanced immune 

response towards a pathogen (Calandra and Roger, 2003). A low dose of 

pathogen in a MIF-deficient environment results in mice succumbing to 

infection as in the S.typhimurium model (Koebernick et al., 2002) whereas 

wildtype animals do not. However, in septic shock models where the wildtype 

mice die of lethal sepsis, MIF deficiency was protective (Calandra et al., 

2000): this was found in several models including lipopolysaccharide (Bozza 

et al., 1999), E. coli, caecal ligation & puncture (Calandra et al., 2000) and 

staphylococcal toxic-shock syndrome toxin 1 models of sepsis.  

 

MIF has been studied previously in the context of helminth infections. 

Rodriguez-Sosa et al (Rodriguez-Sosa et al., 2003) found that MIF-deficient 

mouse have impaired immunity to the helminth Taenia crassiceps. In a 

Schistosoma mansoni infection model, the MIF-deficient mice had smaller 

granulomas and fewer eosinophils (Magalhaes et al., 2009).  A recent paper 

by Damle et al 2017 (Damle et al., 2017) found MIF-deficient mice to be able 

to clear N.brasiliensis infection more easily than wild type mice, however, 

much of the focus was on the parasitological responses and the work was 

predominantly done on a C57BL/6 background of mouse. Bezencon 

discovered that MIF is expressed in tuft cells approximately two fold above 

the levels in the remaining intestinal epithelial cell population (Bezencon et 

al., 2008). Recently, Haber et al discovered that MIF is upregulated 

specifically in enterendocrine cells in the third day of H. polygyrus infection 

(Haber et al., 2017). 

 

In contrast to the older literature indicating that MIF drives classical 

inflammatory pathways, more recent data point to its ability to promote 
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alternative activation of macrophages, often termed M2 cells. Our group 

previously reported that murine MIF and Brugia malayi MIF (a homologue of 

MIF found in the filarial nematode B. malayi) synergised with IL-4 to induce 

bone marrow derived macrophages to upregulate the alternatively activated 

products Arginase-1, RELMα and Ym-1 (Prieto-Lafuente et al., 2009). MIF 

was also found to be important in alternative activation of tumour associated 

macrophages (Yaddanapudi et al., 2013). As M2 macrophages are 

implicated as key effectors of immunity to helminth parasites (Anthony et al., 

2006; Filbey et al., 2014), the question arose of whether MIF contributes to 

protective immunity to helminth infection. 

 

1.6  Inflammatory Bowel Disease and Helminths 
 

Ulcerative Colitis (UC) and Crohn’s disease (CD) are both inflammatory 

bowel diseases (IBD) resulting in significant long term morbidity and mortality 

(Molodecky et al., 2012). IBD is a chronic relapsing remitting disease of the 

GI tract. In the case of Crohns’ disease it can lead to fistulation, abscess 

formation, and over the long term increases the risk of neoplasia. 

 

Potent anti-TNF treatments are available, however, contraindications, 

primary non-response, loss of response and intolerance occur often. 

Consequently, IBD is associated with a high economic impact, not only from 

hospitalisation and surgery but also loss of productivity at work (van der Valk 

et al., 2014).  In adults, the incidence has risen to 24.3/100000/yr for UC and 

12.7/100000/yr for CD in Europe (Molodecky et al., 2012). There is strong 

epidemiological evidence of the role of the environment in IBD phenotype (as 

is the case for smoking in CD).  

 

 

1.6.1 Role of helminth derived products in Inflammatory Bowel Disease 
(IBD). 
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Helminths are multicellular parasites that have co-evolved with humans for 

many millennia and have adopted mechanisms to down-modulate 

inflammation. Several studies have evaluated the role of helminths in 

managing inflammatory diseases-such as IBD- these are referred to directly 

in Chapter 3. As part of the thesis, we wanted to investigate if helminth 

infection modifies the innate immune responses in TH1/17 predominant 

models of infection such as IBD.  

  

1.6.2 T regulatory cells in IBD 
 

T regulatory cells play a role in IBD disease development (Powrie et al., 

1993; Salas and Panes, 2015). Mutation of the Foxp3 gene results in a 

syndrome of diabetes, enteropathy and endocrinopathy (IPEX) (Wildin et al., 

2001). Regulatory Treg development represents an antigen-specific 

mechanism to inhbit harmful autoreactive responses. The cells can be 

thymus-derived (tTreg) or peripherally-derived pTreg).  

 

T reg cell administration is currently being evaluated to treat patients with 

several autoimmune disease such as graft-versus-host disease (GVHD), 

type 1 DM, organ transplants. Canavan et al (Canavan et al., 2016) 

demonstrated that T regs count be expanded in vitro, and are stable enough 

not to convert to TH17 cells that are proinflammatory, they also express 

integrins and home to the gut. The only trial to date showed a short term 

response in the CDAI in patients infused T regulatory cells (Desreumaux et 

al., 2012). Measures to further the use of T regulatory cells have been limited 

because of a lack of knowledge of the self antigens involved, and the short 

lived life span of T regulatory cells in vivo (Salas and Panes, 2015). There is 

therefore potential to use therapies that expand and stabilise Foxp3 T 

regulatory cells. For some time, we have been aware that helminth 

secretions induce de novo T cell FOXP3 expression via the TGFβ 

pathway(Grainger et al., 2010), and recently a novel helminth molecule with 

TGFβ activity has been found that can be used to reduce rejection in skin 
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grafts (Johnston et al., 2017). Foxp3 positive T regulatory cells induced by H. 

polygyrus infection have been used to supress pathology in a T cell model of 

colitis (Hang et al., 2013). 

 

TH17 cytokines are elevated in human IBD (Fujino et al., 2003). TH17 cells 

were distinguished as a different subset from TH1 and TH2 cells in 2005, as 

a phenotype which produced IL-17 but not IFNγ or IL-4 (Bouchery et al., 

2014). These cells are pro-inflammatory and express IL-17, IL-22 IL-5 and 

TGFβ under the control of RORγt. 

 

TH17-derived IL-17 in the T cell transfer model of colitis increases the 

severity of colitis and was associated with upregulated IFNγ in the colon. 

IL12 and IL23 are secreted by DCs, and polymorphisms of IL23R were 

associated with IBD risk. IL-23 blocade reduced the colitis in a RAG-/- CD40 

model of colitis. 

 

ILC3 in the Helicobacter hepaticus RAG-/- model of colitis (Thy1+ Rorgt+ve 

SCA1+ve cells) produce IL-23 mediated gut inflammation (Buonocore et al., 

2010).  These cells are also implicated in human IBD. The different human 

ILCs closely resemble the T cell lineages, as is also the case for mouse 

ILCs. ILC1s accumulate in the terminal ileum of patients with Crohn's disease 

(Bernink et al., 2013).  IL-22 is also produced by TH17 cells and may protect 

against colitis, but may have context dependent effects: IL22+T cells in 

Crohn's disease increased expression of cytokines in the subepithelial 

myofibroblasts, but in UC were associated with amelioration of symptoms 

(Broadhurst, Sci Trans Med 2010). 

 

A positive consequence of the TH2  and T regulatory cell skew by helminths 

(away from TH1 and TH17 immunity) can modify autoimmune disease such 

as IBD. 
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1.6.3 Innate cell populations in IBD and IL-10 
 

Alterations to innate cell populations e.g. macrophages can result in 

autoimmunity: macrophages lacking IL10R caused spontaneous colitis in 

mice and pediatric mutations in IL10R result in more pro-inflammatory 

macrophages and an IBD type phenotype in mice and in a pediatric cohort 

(Zigmond et al., 2014).  

 

T cell transfer models depleted of macrophage populations have less severe 

colitis (Kanai et al., 2006), as do mice in which innate lymphoid cells are 

depleted with anti-Thy1 antibody (Buonocore et al., 2010). Another important 

gene locus is NOD2, as the odds ratio for a carrier of two susceptibility 

alleles of NOD2 is 17.1 for Crohn’s disease (95% CI 10.7-27.2) (Economou 

et al., 2004) and this is heavily expressed in macrophages (Forrest et al., 

2014).  

 

1.6.4 Microbiota and IBD 
 

Alterations in the composition of microbiota may play a role in the 

pathogenesis of IBD. Short chain fatty acids produced by fermentation by 

some Clostridial spp can upregulate T regulatory cells. Bile salt hydrolase 

enzymes from bacteria within the intestinal tract contribute to the 

enterohepatic circuit, and these are reduced during flares of IBD (Ni et al., 

2017). This suggests that microbiota may be a key target for novel therapies 

in IBD (Ni et al., 2017). 

 

1.7 Thesis rationale 
 

 

MIF is a cytokine with wide ranging effects: it has been explored extensively 

in the context of type 1 infections with data focusing on macrophages.  
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Little data are available in type 2 responses, and the mechanisms by which 

MIF mediates type 2 immunity. MIF-deficient mice were compared with wild 

type mice to explore the differences in innate immune cells such as 

macrophages, eosinophils and innate lymphoid cells. In addition the epithelial 

phenotype (crucial in expelling N. brasiliensis) was assessed. The 

importance of MIF in organogenesis, led us to look at inhibiting MIF during 

the infection through 4-IPP as well as using the MIF-deficient mouse. We 

assessed the ability of rIL-25 to rescue the MIF phenotype due to the 

importance of MIF in recruiting innate lymphoid cells. The ligands of MIF are 

known to be CXCR2. CXCR4 and CD74. We finally assess the MIF ligand 

CXCR2 and how a deficiency of CXCR2 affects the immune responses to 

N.brasiliensis. We explored the response to primary infection (using N.

brasiliensis and H. polygyrus), and secondary infection (using H. polygyrus).

Work in our laboratory is being conducted into the effects of HES on 

pathology generated in 3 different models of colitis, evoked by T cell transfer, 

DSS in drinking water, and anti-CD40 antibody treatment. The T cell transfer 

model involves infusion of the CD45RBhi subpopulation of CD4+ cells from 

normal BALB/c mice into recombination activating gene (RAG) deficient mice 

(Powrie et al., 1993), DSS-mediated colitis induces a chemical colitis from 

damage to the epithelial layer(Kiesler et al., 2015). The anti CD40 model of 

colitis involves injection of anti-CD40 which subsequently activates CD40+ 

APCs. In RAG deficient mice, this results in a systemic inflammatory 

response that results in weight loss and diarrhoea that is mediated by the 

innate immune system (Uhlig et al., 2006). Therefore, in order to explore the 

effect of HES specifically on the innate system we used the anti-CD40 model 

of colitis (Chapter 3). When assessing the effect of recombinant molecules, 

few previous studies have utilised modified recombinant proteins as controls. 

We aimed to further the work with HES by exploring recombinant proteins 

shown to modify other immune models such as TGM. 
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Chapter 2: General Methods 

2.1 Mouse strains 

BALB/c, C57BL/6, MIF-/-, RAG1-/- STAT3LysMCre , F1 (C57BL/6 x CBA) 

mice were bred in-house in Edinburgh and Glasgow. The MIF-/- mice were 

obtained by Rick Maizels from Dr Abhay Satoskar, Ohio State University in 

July 2006 and are on a BALB/c background (Bozza et al., 1999). The RAG1-

/- mice were acquired from Professor David Gray, and are on a C57BL/6 

background (Mombaerts et al., 1992). The STAT3LysMCre were obtained 

from Dr Susanne Nylen at the Karolinska institute. These were housed in 

individually ventilated cages (IVCs) according to UK Home Office guidelines. 

MIF-/- have a neo cassette disrupting 2-3 exons of the MIF gene abolishing 

gene expression: this was electroporated into 129S4/SvJae-derived J1 

embryonic stem (ES) cells injected into C57BL/6 blastocysts. The chimeras 

were backcrossed to BALB/cAnNTac mice for a minimum of 6 generations 

(Jax.org). 

2.2 Cell isolation and culture 

2.2.1 L929 culture (M-CSF) 

The L929 fibroblast cell line was grown in cDMEM and incubated at 37°C 

with 5% CO2 in T75 flasks. Supernatants were harvested 3 days later when 
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cells were confluent and passed through a 0.22μm filter. The supernatant 

was stored at -20°C until it was required for macrophage growth. For L929 

cell line passage, cells were dissociated with trypsin and resuspended in 

cDMEM. 

 

2.2.2 Bone marrow macrophages 

 

Approximately 10 million bone marrow derived cells were obtained from the 

tibia and femurs per  mouse(Wagner et al., 2014). A single cell suspension 

was formed in 10mls of PBS by passing through a 23g needle. This was 

filtered through a 100µm nylon cell strainer. Cells were plated at a density of 

6 x 10^6 cells/ plate on 90mm petri dishes (Fisher 11309283) in 10ml 

cDMEM with 20% L929 media as a source of M-CSF and incubated at 37°C 

with 5% CO2. A further 5ml of cDMEM with 20% L929 was added on day 3. 

Macrophages were harvested on day 7 using 3mM EDTA/10mM glucose in 

PBS. Cells were washed in PBS, resuspended in cDMEM and plated at 2 x 

10^5 cells/ well in 96 well plates for stimulation. 

 

 

2.2.3 Anti-CD40 antibody purification 

 

The FGK45 hybridoma cell line was gifted to the laboratory by Dr David Gray 

(Edinburgh): it produces an IgG2a anti-CD40 antibody. It was grown up 

initially in T25 cRPMI before resuspending at 5 x 10^5 cells in cRPMI with 

low IgG FCS. Supernatants were collected 7 days later, when the cells were 

confluent, and sterile filtered. 100mls of supernatant was then applied to a 

HiTrap Protein G 5ml column in binding buffer (2x PBS). The immunoglobulin 

was then eluted in 0.1M glycine-HCL (pH 2.7) either using the AKTA 

chromatography system or manual elution with a minipuls pump. Samples 

were collected in 120µl 1M Tris-HCL pH9.0 for each 2ml fraction to be 

collected. 
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3mls of eluted antibody was then dialysed 3 times in 5 litres of PBS at 4°C. 

This was then sterile filtered through a 0.22µl filter, and protein concentration 

was measured on a Nanodrop instrument. The antibody was then diluted to 1 

mg/ml PBS for use in vivo, with mice receiving 200 µg in 200 µl. An isotype 

control antibody was used as a comparator in experiments (ThermoFisher 

Catalogue no. 10700). 

 

2.3 Ex vivo techniques 

 

2.3.1. Peritoneal lavage 

 

Five ml of ice cold cDMEM was instilled into the peritoneal cavity of mice. 

This was then gently shaken in order to dislodge any cells. Up to 5 ml was 

then aspirated out of the peritoneal cavity. This process was repeated once 

more and samples pooled for each mouse. Fluid was then taken for CBA and 

ELISA, cells were taken for flow cytometry analysis and qPCR. The cells 

were spun down and then resuspended in 1 ml of red blood cell lysis buffer 

(11814389001 Roche) for 3 minutes at room temperature. The cells were 

then resuspended in 3 ml cDMEM for counting on Nexelecom cellometer. 

 

 

2.3.2 Mesenteric lymph node single cell suspension 

 

Mesenteric lymph nodes were retrieved from the abdominal cavity of mice 

and placed in cRPMI on ice. These were then mashed through a 70 µm cell 

strainer and resuspended in 10 ml of cRPMI for cell counting manually using 

the Trypan blue assay or through the Nexelecom cellometer. 
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2.3.3 Peritoneal populations isolation  

 

Peritoneal lavage was obtained from mice by flushing two 5ml washes of  

ice-cold cDMEM into the peritoneal cavity to obtain peritoneal exudate cells 

(PEC). The samples for each mouse were placed on ice till the following 

step. The cells were spun down at 350g for 5 minutes at 4°C (this was for 

every spin step) and counted using a Nexelecom cellometer. The cells were 

processed using the Miltynei macrophage isolation kit (peritoneum), mouse 

(Cat 130 110 434) as follow.  First, the cell suspension was centrifuged at 

300g at 4°C for 20 minutes, and the supernatant discarded, pelleted cells 

were resuspended in 36 µl of PBS with 0.5% BSA.  Following this, 10µl of 

Macrophage Biotin-Antibody Cocktail were added per 107 cells and incubated 

for 10 minutes at 4°C. Cells were then washed in Automacs buffer and then 

resuspended in 80 µl of PBS with 0.5% BSA with 20 µl of Anti-Biotin 

Microbeads. These were incubated for 15 minutes  at 4°C and washed in 1ml 

of Automacs buffer, spun at 300g at 4°C for 10mins, then resuspended in 

500µl of PBS with 0.5% BSA. Magnetic separation was performed with the 

autoMACS Pro Separator using the deplete operation. Cells were then 

resuspended in Trizol for RNA extraction downstream. The full protocol is 

available as below: 

 

 

(http://www.miltenyibiotec.com/en/products-and-services/macs-cell-

separation/cell-separation-reagents/monocytes-and-

macrophages/macrophage-isolation-kit-peritoneum--mouse.aspx ) 

 

 

In order to assess which of the immune cells in the peritoneum expressed 

MIF during N.brasiliensis infect, peritoneal exudate cells were isolated from 

BALB/c infected and uninfected mice for cell sorting by Dr Maddie White. 

These were surface stained with AF647 Siglec F, FITC CD19, PercpCy5.5 

CD4, PB Cd11b and PeCy7 F4/80 as per protocol in 2.5.1. The cells were 
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then sorted on a FACS ARIA directly into Qiagen RLT buffer (Qiagen: 79216) 

at a ratio of 100µl of volume into 300µl of RLT buffer.  

 

 

 

 
 

2.4 Helminth Infection 

 

2.4.1 Nippostrongylus brasiliensis infection  

 

N. brasiliensis was maintained by serial passage through Wistar or Sprague-

Dawley rats following a protocol similar to that described by(Camberis et al., 

2003). Third stage larvae (L3) were washed three times in sterile PBS and 

then injected subcutaneously with a 23G needle into the back of the mice. 

Mice were infected with 250-400L3 of N. brasiliensis on D0 in 200µl PBS.  

 

 

2.4.2 Heligmosomoides polygyrus infection model 

 

H. polygyrus were maintained by serial passage through male CBAxC57BL/6 

F1 mice(Johnston et al., 2015). The third stage larvae (L3) were obtained 

from charcoal larvae plates and were washed three times in distilled water. 

Mice were gavaged with 200 L3 in 200 µl of distilled water.  

 

 

2.4.3 Egg and Worm counts 

 

For faecal egg counts, two faecal pellets were obtained per mouse and 

weighed, then suspended in 1 ml of distilled water; 1 ml of f saturated salt 

solution was added just before counting in a McMaster egg counting 
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chamber. Egg counts were adjusted to represent eggs per gram of faeces. 

For adult worm burdens, the small intestine was removed and sliced 

longitudinally, and worms were counted as they were manually removed from 

the intestinal lumen. 

 

2.4.4 Secondary Heligmosomoides polygyrus infection 

 

For a secondary infection, we followed previously published protocols 

(Hewitson et al., 2011).  Mice were infected with 200 L3 H. polygyrus for 28 

days, following which they were administered 2 doses of 2.5mg pyrantel 

embonate (Strongid-p paste) dissolved in 200µl of distilled water on day 28 

and day 29. Mice were then re-infected with 200 L3 and levels of parasite 

infection evaluated 14 days later. 

  

2.4.5 Production of HES 

 

The  collection of HES is described in (Johnston et al., 2015) In brief, 8 week 

old F1 mice are gavaged with 400L3 of H polygyrus in 200ul of distilled 

water. On the 14th day of infection, 20cm of proximal intestine that has the 

adult worms is removed and placed in a petri dish with 5mls of Hanks’ 

solution in 30°C. The inside of the gut lining is scraped and worms removed 

with a glass slide. The worms from two petri dishes are then placed in a 

muslin bag and then funnel in Hanks’ solution at 37°C for 1-2 hours. The 

worms are then washed six times with Hanks solution. The worms are 

subsequently moved to a laminar flow hood and washed in RPMI 

supplemented with  supplemented with 1.2% glucose, 5U/ml penicillin, 

5μg/ml streptomycin, 2mM of L-glutamine and 1% gentamycin. The worms 

are aliquoted into vented T25 flasks, with approximately 1000 worms in 15ml 

of H.polygyrus media per flask and placed in 37°C at 5% CO2 for 3 weeks.  
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HES is collected from H. polygyrus cultured in the above parasite media for 

21 days, centrifuged at 400g for 10 minutes to remove eggs and then 

concentrated over a 3000 MW cut-off membrane in an Amicon Diafiltration 

pressue cell (Millipore). Approximately 1L of media was concentrated to 5ml, 

sterile filtered through a syringe-tip 0.2µm filter (Millipore) and frozen at -

80°C. 

 

 

2.4.6. Anti-CD40 colitis 

 

RAG1-/- mice on a C57BL/6 background were injected with 200µg in 200µl of 

anti-CD40 antibody or a Rat IgG isotype on D0 intraperitoneally. Mice were 

also given 10µg HES i.p. daily in 200µl PBS or 200 µl PBS daily from D-1 to 

D6.  The mice were then scored using a disease activity score (Table 2.4.1) 

for 7 days. Mice which reached severity threshold or lost greater than 25% 

body weight were culled prior to the intended end of the experiment. Mice 

were harvested at D7 and intestine embedded in paraffin for histology. 

Tissues were also taken for flow cytometry and qPCR. These mice were 

scored via a disease activity score (adapted by Dr Danielle Smyth from the 

David Artis lab) and a global histology score devised by Professor Mark 

Arends (Edinburgh) as presented in Table 2.4.2. The experiment was not 

blinded for disease activity score assessment and weights. However, the 

histology was blinded and was assessed by two independent 

histopathologists. 
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Parameter Score 

Body weight 0 No weight loss 

1 1-5%  

2 5-10%  

3 10-20%  

4 >20% 

Blood in stool 0 No blood 

1 Blood present in/on faeces 

2 Visible blood in rectum 

3 Visible blood on fur 

 

Stool consistency  

 

 

 

 

 

General appearance 

0 Well formed/normal 

1 Pasty/semi-formed 

2 Pasty/some blood 

3 Diarrhoea that does not adhere to anus 

4 Diarrhoea that adheres to anus 

 

0 Normal 

1 Piloerection only 

2 Lethargy, piloerection 

4 Motionless, sickly, sunken-eyes, ataxic 

Table 2.4.1 Anti CD40 colitis disease activity scoring 
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Histological parameter 

1 Degree of Crypt loss 

2 Ulceration 

3 Crypt abscesses 

4 Goblet cell loss 

5 Mucosal inflammatory infiltration 

6 Sub-mucosal inflammatory infiltration 

Table 2.4.2 Histology score 

 

 

 

 

 

 

 

 

 

 

 

  



Chapter 2- General Methods 

  56

2.5 Flow Cytometric analysis 

  

2.5.1 Surface staining for flow cytometry 

 

PEC were plated at 1 x 10^6 cells/well in 96 well round bottom plates 

(Corning). Cells were washed in PBS (all washes are performed at 350g for 5 

minutes in 4°C) and then incubated in 200μl of live/dead stain, followed by 10 

minutes in CD16/32 Fc block (eBioscience) and then surface stained in a 30 

µl  master mix of FACS buffer, at concentrations shown in table 2.5.1 . 

Fixation was performed by incubating in 200 µl of eBioscience (Foxp3) fix 

perm solution (diluted 1 part to 3 parts of the provided diluent) (ThermoFisher 

00-5523-00) for 45 minutes if transcription factor analysis was required..  

 

 

Where staining of intracellular proteins (such as Arg1, RELMα and Ym1) was 

required, surface fixation was performed using 200µl of eBioscience 

intracellular fixation buffer (Cat 00-8222-49) for 20 minutes. This surface 

staining method retained the forward side scatter properties of the cells 

better than the Foxp3 fix perm solution. Fluorescence minus one (FMO) 

controls were used for each experiment. Spare samples were pooled from 

both infected and uninfected mice, and these were stained with a cocktail 

that included all the stains but one. FMO controls were performed for each 

stain used.  

 

2.5.2 Intracellular staining 

 

For either transcription factor analysis or for intracellular proteins, cells were 

permeabilised using eBioscience Perm buffer and incubated for 20 minutes, 

followed by intracellular staining. Primary antibody for RELMα or Ym1 was 

applied for 20 minutes followed by secondary antibody for 20 minutes. The 

cells were then left in FACS buffer and acquired on BD LSRII, Fortessa or 
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Celesta. Between each step two washes were performed, in PBS (for the 

extracellular stains) or in Perm buffer for the intracellular staining steps. 

Single stains were performed on ebioscience compensation beads. Cells 

were filtered through a 100µm mesh prior to acquisition.  

 

 

2.5.3 Phosflow 

 

In order to assess differences in phosphorylation of signal transducer and 

activation of  transcription factors (STATs), the fixation is performed at 

specific time points, with any surface and intracellular staining performed 

afterwards. This is because phosphorylation of the STATs occurs early. 

Accurately stopping further reactions by fixation terminates further changes 

in phosphoration and allows for accurate comparisons. 

 

The phosphorylations is performed as per the BD Perm buffer IV protocol. 

50ml of 10x BD Lyse/Fix Buffer (Cat No. 558049) was diluted to 1x in distilled 

water and prewarmed to 37°C at prior to use. Cells were stimulated in FACS 

tubes and kept in a 37°C incubator between stimulation periods. Stimulations 

were performed in a 200µl maximum volume, at the end of stimulus 2 ml of 

prewarmed Lyse/Fix buffer was added to end any reactions. Following a final 

incubation at 37°C for 15 minutes, cells were centrifuged at 400 g  at 4°C for 

10 minutes and supernatant discarded. The fixed leukocytes were washed 

once in PBS, and pelleted at 400g for 10 minutes at 4°C. 1ml of 1.0x BD 

perm buffer IV (Cat 560746) was added dropwise to each tube and incubated 

at room temperature for a total of 15 minutes. This was then centrifuged at 

400g for 10 minutes at 4°C. Cells were washed twice in FACS buffer and 

then incubated in both intracellular and extracellular antibodies overnight at 

4°C. Cells were washed twice and data then acquired on BD 

Fortessa/Celesta instruments. 
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2.5.4. Lung digestion 

 

Mouse lung was collected in 5ml of PBS. Liberase TL was made up in water 

at 13U/ml of Liberase in water  (Sigma: 054010200001). A digest mix was 

made using HBSS with calcium and magnesium and 1% 

Penicillin/Streptomycin. 2U/ml of Liberase and 160 units/ml of DNAse added 

to this digest mix. The lung from each mouse was snipped into 2mm pieces 

and subsequently transferred into 1 ml of digest mix with liberase and 

DNAse. The bijoux are transferred into a 37°C shaking incubator (at around 

200rpm) for approximately 35 minutes. After incubation in the shaking 

incubator, the solution is topped with 5ml of cRPMI and mashed through a 

70µm cell strainer. The solution was spun at 400g for 5minutes at 4°C and 

red cell lysis was performed as previously described. 

 

 

2.5.5. Lamina propria preparation 

 

Lamina propria preparations followed the protocol set out for the lamina 

propria dissociation kit by Miltynei biotech (Cat 130-0970410). First, enzymes 

A, D and R (provided in the miltynei lamina propria kit) were reconstituted in 

HBSS (w) (HBSS with calcium and magnesium) as per protocol. Small 

intestine from 6-10 week old mice were flushed with PBS and then placed in 

a petri dish in HBSS (w/o) (HBSS without calcium and magnesium). Residual 

fat and peyer’s patches were removed and discarded. This is as residual fat 

is known to lead to less viability in the prep and inclusion of immune cells 

peyer’s patches will contaminate the lamina propria sample. The intestine 

was cut into 3cm pieces and then transferred into 50ml Falcon tubes 

containing 20ml predigestion solution (1x HBSS (w/o) containing 5mM EDTA, 

5% FBS, 1mM DTT). The sample was incubated for 20 minutes at 37° C 

under continuous rotation using the MACSmix Tube Rotator. The contents 

were then applied to a 100 µm smart strainer and transferred into a new 50ml 

tube containing 20 ml of fresh predigestion solution. This process was 
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repeated twice. The samples were then incubated for 20 minutes in HBSS 

(w/o) and then placed in the digestion solution  (1x HBSS (w) containing 5% 

FBS) in “Gentle MACS” C tubes on programme 37_m_LPDK_1. After the 

programme has run the sample is resuspended in PBS with 1% BSA. Full 

protocol details and buffers are available at 

http://www.miltenyibiotec.com/en/products-and-services/macs-sample-

preparation/tissue-dissociation-kits/lamina-propria-dissociation-kit-

mouse.aspx. 

 

 

2.5.6. Gating Strategy 

 

In Gating strategy 2.5.6.1, the flow cytometric analysis of peritoneal 

macrophages is described. In the top row from left to right, we first gate Side 

scatter against forward scatter to capture the majority of the cells in the 

lavage, going right we gate out the doublets by plotting FSC-H against FSC-

A. Next we gate out any cells that are positive for live dead stain (and 

therefore are alive). The last gate is Siglec-F against Cd11b, we gate out the 

cells that are Siglec-F positive and thus exclude eosinophils from the 

macrophage gate. In the next row we proceed then look at F4/80 vs Cd11b 

and this gate- we define the F4/80, Cd11b high populations as the 

macrophages in the peritoneal cavity. The next plots demonstrate the 

percentages of macrophages that are positive for Ym1 and RELMα and the 

isotype controls. 

 

In gating strategy 2.5.6.2, the gating for mesenteric lymph node innate 

lymphoid cells and TH2 cells is described. On the top line from left to right we 

gate out any duplicates by plotting FSC-A vs FSC-H, in the next plot we 

exclude dead cells, and cells that are beyond the expected FSC-A and SSC-

A subset.  On the next line we include CD45 positive cells, and split these 

into those that are positive for CD4, and those that are negative for CD4. We 

calculate the percentage of TH2 cells by gating the GATA3 positive 
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population of CD4 cells. We then go on to gate the CD4 negative cells and 

choose the cells that are negative for lineage markers but positive for ICOS. 

We have used the GATA3 staining to confirm the percentages of ICS2s 

(defined here as CD45+ CD4- Lin- ICOS+ GATA3+ cells). These are 

compared to their FMOs. 

 

In gating strategy 2.5.6.3, the gating strategy of peritoneal macrophages is 

described. In 2.5.6.3-1 from left to right we gate FSC-H against FSC-A to 

obtain single cells, then we gate the live population of cells by gating 

Live/Dead vs FSC-A. Then we gate out eosinophils as Cd11c int and Siglec 

F positive cells. In figure 2.5.6.3-2 we gate Cd11b vs Cd11c. Those 

populations that are positive for Cd11c and negative for Cd11b are gated 

against Siglec F. The population of cells that are positive for Siglec F are 

labelled alveolar macrophages. The population of cells that are Cd11b 

positive and F4/80 positive are labelled as interstitial macrophages.  

 

 

In gating strategy 2.5.6.4, the gating strategy of MLN FoxP3 positive CD4 

cells is described. From left to right  in the top figures we gate single, live 

CD45 positive cells. We then gate on CD3 and CD4 positve cells which are 

described as T cells. We then choose those CD4+ T cells that are positive for 

FoxP3. We also include CD25 as a separate marker, although this is not 

used in the analysis. 
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2.5.6.1 Gating Strategy- Peritoneal Lavage Macrophages (Alternatively 

Activated) /Eosinophils 

 

 

 

 

Figure 2.5.6.1 Peritoneal lavage gating strategy 
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2.5.6.2 Gating Strategy- MLN ILCs and TH2 

 

 

 

Figure 2.5.6.2 Gating Strategy MLN ILCs/TH2 
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2.5.6.3 Lung Macrophages Gating Strategy-1 
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2.5.6.3 Lung Macrophages Gating Strategy-2 

 

Figure 2.5.6. 3 Lung Macrophages Gating Strategy-2 
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2.5.6.4 MLN FOXP3 gating strategy 

Figure 2.5.6.4 MLN FOXP3 gating strategy 
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Table 2.5.1 FACS Antibodies 

 
 

  

  Table 2.5.1 Antibodies used for flow cytometry 
Specificity Flurochrome Clone Manufacturer Dilution Isotype Catalogue 

Number 
Live Dead stain 

Live/dead Ef506  ebioscience 1/1000  65-0866-14 
FC receptor block 

CD16/32 (Fc 
block) 

- 93 ebioscience 1/100 - 16-0161-82 

Macrophage Panel 
Cd11b PB M1/70 Biolegend 1/200 Rat 

IgG2b, 
k 

101224 

F4/80 PerCpCy5.5 
PeCy7 

BM8 
BM8 

Biolegend 
Biolegend 

1/200 
1/100 

 123128 
123114 

Arginase1 
 

PE 
 

Polyclonal R&D systems 1/100 
 

 IC5868P 

RELMα Uncoupled Polyclonal Preprotech 1/100 of 
100µg/ml 

 500-P214 

Ym1 
 

uncoupled 
 

Polyclonal R&D systems 
 

1/25 
 

 BAF2446 

Zenon AF488/AF647 
Rabbit IgG  

AF488, AF647 Polyclonal Life 
technologies 

1/200  Z25302 
(AF488), 
A20186 
(AF647) 

CD206 BV711 
AF647 

15-2 Biolegend 1/400  141727 
141712 

pSTAT3 PE pY705 BD 5µl per 
test 

IgG2a,
K 

562072 

pSTAT6 AF647 pY641 BD 5µl per 
test 

 558242 

Siglec F/CD170 PE 
BUV395  

E50-2440 
E50-2440 

BD 
BD 

1/200 
1/100 

 552126 
740280 

Ly6G APC 1A8 Biolegend 1/100  127614 
ILC/T cell Panel 

KLRG1 BUV395 2F1 BD 1/100  740279 
CD45 PERCPCy5.5 30-F11 Biolegend 1/100  103132 
GATA3 AF488 16£10A23 Biolegend 5µl/test  653806 
LIN BV421 17A2/RB6-

8C5/RA3-
6B2/Ter-
119/M1/70 

Biolegend 1/20  133311 

CD4 PE GK 1.5 Biolegend 1/100  100408 
FOXP3 T regulatory cell panel 

CD25 FITC 3C7 Biolegend 1/100  101908 
CD4 PerpCy5.5 GK1.5 Biolengend 1/100  100432 
CD45 PeCy7 I3/2.3 Biolegend 1/100  103114 
CD3e PE 145-2C11 Biolegend 1/100  100308 
FOXP3 Ef450 FJK-15s ThermoFisher 1/100  653808 

MIF Receptor Panel 
CD74 FITC   1/100   
CXCR2/CD182  AF647 SA044G4 Biolegend 1/100  149306 
CXCR4 BV711 L276F12 Biolegend 1/100  146517 
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2.6 RNA isolation and qPCR 

  

 

2.6.1 RNA isolation 

 

To isolate mRNA from whole tissue, samples were first immersed in Trizol 

(Qiagen)  and stored at -80°C until processing. The, samples were lysed for 

2 minutes in 1ml of Trizol in Qiagen. Samples were then spun down in 

centrifuge and supernatant aspirated, the supernatant from each sample was 

then placed in labelled RNA free tubes. Samples were isolated with Qiagen 

mRNA easy kits (Qiagen: 74106). If cell sorting of single cells was 

performed, these were sorted directly into RLT buffer and stored at -80°C 

until analysis.  

 

 

The following steps are part of the mRNA easy protocol (Qiagen). 140µl of 

chloroform was added to each tube and shaken vigorously for 15 seconds. 

Tubes were then stood on the benchtop at room temperature for 5 minutes. 

Samples were then centrifuged for 15 minutes at 12000g at 4°C. The upper 

aqueous phase was transferred to a new collection tube without interrupting 

the white phase between the two layers. 1.5 volumes of 100% ethanol were 

added, mixing thoroughly by pipetting and up and down several times. Up to 

700µl was placed in RNeasy spin columns and centrifuged 8000g for one 

minute at room temperature.  350µl of Buffer RW1 (which contains ethanol, 

RWT for the microRNA kit) was added onto the columns and centrifuged at 

8000g for 1 minute. Then, 10µl of DNase1 was added to 70µl of RDD buffer, 

and the 80µl mixed volume was placed onto spin columns and incubated for 

15 minutes.  A further 350µl of Buffer RW1 was added and centrifuged again 

at 8000g for 1 minute. 500µl of Buffer RPE was added, before centrifuging 

again at 8000g for 1 minute. A second aliquot of 500µl of Buffer RPE was 
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added onto spin columns and spun for 2 minutes at 8000g. The spin columns 

are transferred into new collection tubes and centrifuged at >1000g to 

remove the excess ethanol. These spin columns were then placed in RNA 

free tubes. Add 40µl of RNAse-free water to column (wait 2 minutes) and 

then centrifuge >8000g. The water will then elute RNA from sample and 

thereby you will have the final RNA in water. 

 

 

2.6.2 cDNA production with qScript (Quiagen) 

 

The cDNA synthesis kit includes oligo-DT which binds the 3’ end of the 

mRNA, a reverse transcriptase which makes the cDNA from template RNA 

and dNTPs. The RNA concentration and purity measured using a NanDrop 

2000 (Thermo Scientific). 1 μl of oligo-DT primer was added to 1μg RNA in 

15µl RNase free water and incubated for 10minutes at 70°C, after which the 

sample was cooled son ice for 5 minutes. 8μl of cDNA master mix was added 

before following the manufacturer’s protocol (Table 2.5.1) 

 

 

 

MasterMix Volume Protocol Time 

5xqSript Reaction Mix 4μl 22°C 5min 

qScript RT 1 μl 42 °C 30min 

RNA 250-500ng 15µl 85 °C 

4 °C 

5 min 

hold 

    

Table 2.6.2.1 cDNA synthesis 
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2.6.3 Real time PCR 

 

Primers used (synthesized by Eurofins or Sigma). Lyophylised primers were 

reconstituted at 100μM in RNA free water and stored in -20°C. 10μM working 

stocks were generated by dilution of primers in RNA free water.  

 

cDNA was diluted 1/5 and a 1µl of each sample pooled for use as a top 

standard. Standards were serially diluted ¼ to obtain at least 6 standards. 2µl 

of standard was added to 4µl of master mix and added to a 384 well plate. 

qPCR runs were performed using the Applied Bioscience Quantstudioflex 7. 

Analysis was performed by a delta-delta Ct method. 

 

 

 

Programme Cycles Target Hold  

Pre-incubation 1 95°C 2-3 minutes 

 

Amplification 40 95°C 

60°C 

 

15 seconds 

1 minute 

 

 

Melting curve  

 

 

1 

 

 

 

95°C 

65°C 

97°C 

 

5 

60 

continuous 

Table 2.6.3.1 qPCR cycling conditions 
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Table 2.6.3.2 Table of primers utilized for qPCR 

 

 

Primer Protein Primer sequence 
Arg1 
 

Arginase 1 
 

F: GTC TGT GGG GAA AGC CAA T 
R: GCT TCC AAC TGC CAG ACT GT 
 

ARL2BP ADP-ribosylation factor-like 
binding protein 

F: CGTATCCCAGGCTTCAACA  
R: TGTGAGCAGCATGTCAAAGA 
 

CXCR2 C-X-C motif chemokine 
receptor 2 
 

F: CTACTGCAGGATTAAGTTT 
R: GACGTATATTACAACCACA 

CHAT Choline Acetyl Transferase F: TCCTCTTAAAAGACTCCACC 
R: GACTTGTCATACCAACGATTC 
 

DCLK1 Doublecortin-like kinase 1 F: CAGCCTGGACGAGCTGGTGG 
R: TGACCAGTTGGGGTTCACAT 
 

GAPDH Glyceraldehyde-3-phosphate 
dehydrogenase 
 

F: ATGACATCAAGAAGG  
R: CATACCAGGAAATGAAAATGAGTTG 

GATA3 Transacting T-cell-specific 
transcription factor GATA-3 
 

F: GGG TTC GGA TGT AAG TCG AG 
R:CCA CAG TGG GGT AGA GGT TG 

HPRT Hypoxanthine 
phosphoribosyltransferase 1 

F: AGGGATTTGAATCACGTTTG 
R: TTTACTGGCAACATCAACAG 

IL-25 Interleukin 25 F: TGG AGC TCT GCA TCT GTG TC 
R: CGA TTC AAG TCC CTG TCC A 
 

IL-5 Interleukin 5 F: ACA TTG ACC GCC AAA AAG AG 
R: ATC CAG GAA CTG CCT CGT 
 

IFNG 
 

Interferon gamma F: TGAGTATTGCCAAGTTTGAG 
R: CTTATTGGGACAATCTCTTCC 
 

MIF Macrophage migration 
inhibitory factor  
 

F: ACA GCA TCG GCA AGA TCG 
R: GGC CAC ACA GCA GCT TAC T 

PGDS Prostaglandin-D synthase F: TTCAACAAGACAAGTTCCTG 
R: GAAGGTAGAGGTGAGATTGAG 
 

PHC2 Polyhomeotic 2 F: CCC ACA AAA TGG AAT GTA GAG G 
R: ACT CCT CCG CGA TCT CCT 
 

RETLNA Resistin-like alpha F: TAT GAA CAG ATG GGC CTC CT 
R: GGC AGT TGC AAG TAT CTC CAC 
 

RETLNB Resistin-like beta protein F: CGT CTC CCT TTT CCC ACT G 
R: CAG GAG ATC GTC TTA GGC TCT 
 

S100a8 S100 calcium binding protein 
A8 (calgranulin A) 

F: TCCTTGCGATGGTGATAAAA 
R: GGCCAGAAGCTCTGCTACTC 
 

YM1/ Chil3 Chitinase-like 3 F: TCA CAG GTC TGG CAA TTC TTC TG 
R: TTG TCC TTA GGA GGG CTT CCT C 
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2.7 Histology  

  

2.7.1. Swiss rolls 

 

Gut tissue from mouse models were removed intact, the intestines were 

washed in PBS and then everted onto a bamboo skewer. These were fixed 

for 4 hours in 10% NBF, then cut and rolled into the swiss roll structure. The 

rolls were stored in double height cassettes in 10% NBF overnight and then 

in 70% ethanol before paraffin fixation and cutting. The Swiss rolls were H&E 

stained by the Histopathology Department in Edinburgh Royal Infirmary and 

in the Sir Graeme Davies Building in Glasgow by Ms Nicola Britton. 

  

 

 

2.7.2. Periodic Acid Schiff Goblet cell staining and quantifications 

 

Slides were first de-paraffinised and rehydrated as follows. Slides were 

heated in an oven at 60°C for 20 minutes. The slides were washed and then 

immersed in Xylene 2 x 5 minutes, 100% ethanol 2 x 5 minutes, 100% 

ethanol 2 x 3 minutes, 90% ethanol 2 x 3 minutes, 70% ethanol 2 x 3 minutes 

and then rinsed in tap water for 3 minutes. They had a final rinse in distilled 

water. Following this the slides were stained in Alcian blue (pH 2.5) for 10 

minutes, washed in distilled water for 3-5 minutes and then treated with 

periodic acid 1% solution for 10 minutes. Slides were then washed and then 

stained in Haemalum Mayer for 30 seconds, followed by rinsing in running 

tap water. Excess stain was removed in running water. Slides were then 

dehydrated, cleared and mounted as follows: 70% ethanol 2 x 3 minutes, 

90% ethanol 2 x 3 minutes, 100% ethanol 2 x 3 minutes, xylene 2 x 3 

minutes. Slides were covered with a coverslip and mounting media and allow 

to dry. 
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Quantification was performed by counting the number of goblet cells per 

villus and crypt unit and taking an average of 100 counts per sample. 

 

 

2.7.3 DCLK1 and RELMß staining 

 

Slides were deparaffinised as above in the PAS staining protocol. The slides 

were placed for 8 minutes in hot 10 mM sodium citrate buffer (pH 6.0) in a 

microwave (high setting) and then left to cool down for 15 minutes. Slides 

were then placed in a bucket with running tap water. The slides were washed 

twice for 15 minutes in TBS and 0.1% Triton X-100. Samples were then 

circled with a wax pen, following which block (10% donkey serum in 0.1% 

Triton-X100/TBS) was applied for 1 hour at room temperature. 200µl DCLK1 

primary (abcam ab31704) was applied at a dilution of 1/1000 in TBS with 1% 

BSA and 0.1% Trition X-100. This was incubated overnight at 4°C.  The next 

day the slides were rinsed twice for 5 minutes in TBS with 0.1% Triton X-100 

and then apply 200 µl of secondary antibody (1:1000 donkey anti-rabbit 

AF555 ab150062; Abcam) in TBS with 0.1% Triton X-100. The slides were 

incubated for 40 minutes at room temperature. The slides were rinsed three 

times for 5minutes and then mount with mounting media containing DAPI. 

 

 

2.8 CBA and ELISA 

  

 

2.8.1 ELISA 

 

On  day 1 of the ELISA protocol, carbonate buffer was made up at 

appropriate dilutions. 96 well NUNC plate were coated with with 5 ml of 

coating antibody per plate, wrapped in clingfilm and placed in 4 °C overnight. 

On the second day of the protocol ELISA block buffer was made. The coating 
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antibody was thrown off and the plate washed in buffer four times. 150µl per 

well of block buffer was added to all plates and the plates were then wrapped 

in cling film. The plates were incubated for 2 hours at 37°C. Standards of the 

relevant cytokine were made up (these are the cytokines given at a certain 

concentration, that are doubling diluted down in order to give a standard 

curve against which the OD of our samples can be compared against) in 

PBS double diluted. After blocking, the plates were washed four times in 

TBS-T. 40µl of sample and 40 µl of standard was added to 96 well NUNC 

plate. These plates were wrapped  in cling film and incubated at 4°C 

overnight. On the third day of the protocol, the plates were washed  6 times 

in TBST and detection antibody was made up in block buffer at the 

appropriate dilution. The plates were wrapped in cling film and incubated at 

37°C for one hour. The plates were washed 4 times in TBST. The plates had 

50µl of extravadin-AP added per well and were incubated at 37°C for one 

hour (Sigma E2636). They were then washed in TBST and dH2O. 

SIGMAFAST p-Nitrophenyl phosphate tablets (Sigma: 224-246-5) in dH20.  

100 µl per well of detection reagent was added to the plates Plates were 

placed in a dark drawer for a couple of hours or overnight (depending on 

strength of signal) before reading on an Emax precision microplate reader 

(Molecular Devices) and concentrations extrapolated from standard curves 

determined by SoftMax Pro software (Molecular Devices). 

 

Specificity Capture 

Ab 

Conc Top 

standard 

conc 

Detection Ab Conc 

RELMα 

(Peprotech) 

Anti-

RELMα 

(500-

P214) 

250ng/ml 100ng/ml Biotinylated anti-

murine RELMα 

(500-P214BT) 

250ng/ml 

Ym1 

(R&D) 

Anti-Ym1 

(DY2446) 

2880ng/ml 10000pg/ml Biotinylated anti-

murine YM1 

(DY2446) 

36µg/ml 

Table 2.8.1 ELISA reagents and concentrations 
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2.8.2 Cytokine Bead Assays 
 

Make up standards at top dilution of 2500pg/ml. Double dilute standards for 

11 dilutions in CBA buffer (in a 96 well round bottomed plate-leave the first 

well as a blank). Add 50µl of sample into a 96-well round bottom plate. Make 

up capture beads master mix of each cytokine bead at 1/250 dilution and add 

50µl of this master mix to each of the standards, samples and blank. Wrap in 

foil and leave at room temperature for one hour. Make up detection antibody 

master mix at 1/250 dilution. Add 50µl per well and leave at room 

temperature for one hour. Wash the plate in 100 µl and then 200 µl per well 

of CBA buffer spinning at 2000rpm for 5 minutes. Acquire sample on 

MasQUANT. In order to calculate the concentration of cytokine in 

supernatants, the PE MFI of each bead population was extrapolated to a 

standard curve generated from standards. 

 

 

Capture Bead Bead Coordinate BD Flextest catalogue 

number 

IL4 A7 558298 

IL5 A6 558302 

IL13 B8 558349 

Table 2.8.2 CBA concentrations and reagents 
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Automacs buffer 

Carbonate Bufffer for ELISA 

PBS 
0.5% BSA 
2mM EDTA 

45.3ml sol. A (8.5g NaHCO3 in 100ml dH20) 
18.2ml sol. B (10.6g NaCO3 in 100ml dH20) 
936.5ml dH20 
pH 9.6 
10μl of a 5% sodium Azide solution 

cDMEM 

cRPMI (low IgG) 

500ml DMEM 
50ml FCS 
5ml L-Glutamine 
5ml Penicillin/Streptomycin (Gibco) 

500ml RPMI 
50ml FCS (Low IgG for hybdridoma culture) 
5ml L-Glutamine 
5ml Penicillin/Streptomycin 

CBA Buffer PBS 
0.5% BSA 
0.05% Sodium Azide 

ELISA blocking buffer TBS 
0.05% Tween 20 
10% FCS or 1% BSA for Ym1 and RELMα 
ELISAs. 

ELISA Washing Buffer 

FACS buffer 

5 L TBS 
2.5 ml Tween 20 

PBS 
0.5% BSA 

Macrophage dissociation media PBS 
10 mM Glucose 
3 mM EDTA 

Table 2.8.3 Buffers and Media 
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Chapter 4: Role of MIF in H.polygyrus infection. 

3.1 Introduction to MIF in H.polygyrus 

MIF has long been known to be important in amplifying Type 1 immune 

response (Calandra et al., 2000; Calandra and Roger, 2003). However, there 

is evidence that MIF may have a very context specific role. Current literature 

demonstrates that MIF is upregulated in the small intestinal epithelial cells at 

D3 of H.polygyrus infection (Haber et al., 2017), which requires Type 2 

immune responses to expel the parasite. Previous results from the laboratory 

have indicated that MIF-deficient mice have impaired immunity to 

H.Polygyrus both in primary and secondary infection.

The chronicity of H.polygyrus is in many ways more representative of human 

helminths infection with N.americanus and A.duodenale. There is clear 

literatures describing the immunophenotype of the innate type 2 immune 

response, the T regulatory cell responses and the adaptive TH2 and B cell 

humoral response to H.Polygyrus. Therefore the H.polygyrus parasite was 

used to assess the role if MIF in polarisation to the TH2 immune response. 

H.polygyrus is a model organism, a natural parasite of wild mice (Reynolds et

al., 2012). It can persist for many months in certain strains of mice. Slow

responding strains include the CBA, C3H, SL and A/J strains which take over

20 weeks to expel worms. Intermediately responsive animals include the

C57BL/6 strain (which can take between 20-8 weeks to clear infection). The

fast responsive strains include BALB/c (which can clear infection in 6-8

weeks). The SJL can clear parasites in 4-6 weeks and are amongst the most

rapid at clearance (Reynolds et al., 2012). The more resistant strains

produce a higher titre of antibody, produce macrophage rich granulomas,

and upregulate the markers of alternative activation (Filbey et al., 2014).
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The BALB/c background strain that we use here, results in expulsion of the 

parasite within 6-8 weeks (Filbey et al., 2014; Reynolds et al., 2012). 

Normally the primary infection can be cleared by antihelminthic treatment 

with pyrantel pamoate or ivermecin, subsequently the mouse develops an 

effective memory response clearing the infection the second time more 

rapidly. BALB/c mice are particularly able to mount an effective immune 

response post secondary infection, as are all strains of mice. 

 

 

Strains that produce high levels of antibody result in level of IgG1 and IgE to 

HES is associated with reduced worm survival after a primary worm infection 

(Reynolds et al., 2012). B cells produce antibodies, cytokines and 

costimulatory molecules that amplify the T cell response. In N.brasiliensis, 

however, the TH2 response develops independently of the B cell 

responses(Liu et al., 2010). μMT mice lacking B cells cannot clear 

H.polygyrus.  Therefore, H.Polygyrus is a useful model in which to assess 

antibody responses to infection. 

 

Foxp3 expressing T cells are immunoregulatory and are important in 

reducing immune-mediated pathology. T regulatory cells can be grouped into 

natural Tregs, and induced Tregs (which were Foxp3 negative) –these are 

converted to Foxp3 expressing cells through exposure to TGF-β and IL-10. T 

regulatory cells expand in the lamina propria and the MLN of infected mice 

(Smith et al., 2016). The kinetics of Foxp3+ cells are complicated: partially 

depleting Foxp3+  T regulatory cells with anti CD25 antibody results in 

stronger TH2 responses and parasite clearance. Complete depletion in 

DEREG mice causes a cytokine store, high levels of IFNγ in response to 

bacterial translocation during parasite migration, and inhibition of the Th2 

response, hence parasite survival (Smith et al., 2016). 
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3.2 Results: MIF in H.polygyrus  
 

3.2.1 MIF deficiency impairs immunity to H. polygyrus in primary and 
secondary infection 
 

At the outset of this thesis work, it had been found that MIF-deficient mice 

are significantly impaired in their ability to expel H. polygyrus. These data are 

presented in Figure 3.1 to provide context for the further experiments 

described in this chapter. In primary infection with H. polygyrus, BALB/c mice 

sharply reduce adult worm production (Fig3.2.1A) and egg  (Fig3.2.1B) 

between day 14 and day 28. In contrast, the MIF deficient mice show higher 

egg counts, which like adult worm numbers show little reduction at day 28. In 

the context of a secondary infection, by D21 the MIF-deficient mouse is 

unable to expel the adult worm (Fig3.2.1C) whereas the wild type has 

expelled most of the adult H.polygyrus worms. The MIF-deficient is also 

unable to mount an effective immune response after immunisation with 

secreted parasite antigens (HES) with a regimen that drives sterile immunity 

in the wildtype animals (Fig 3.2.1 D). As MIF is likely to be important in the 

development of the immune system, experiments were conducted in wild 

type animals with an inhibitor of MIF, 4-IPP. Burdens of both eggs (Fig 3.2.1 

E) and adult worms (Fig 3.2.1 F) at D28 were significantly elevated in the 

group administered 4-IPP. 
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Figure 3.2.1 A-E MIF-deficient mice have increased worm burden in primary 
and secondary infection 

A,B. Immunity in a primary infection. BALB/c and MIF-/- mice were infected with 200 
H.polygyrus L3 larvae by oral gavage in a primary infection. Adult worm burden (A) and 
egg counts (B) enumerated at d14 and d28 of a primary infection.  
C. Immunity in a secondary infection. At d28 following a primary infection with 200L3 
H.Polygyrus, BALB/c and MIF-/- administered 2.5mg of pyrantel embonate in 200μl of 
water. At d21 after infection, adult worm counts were enumerated. 
D,E. The MIF inhibitor 4-iodo-6-phenylpyrimidine (4-IPP) inhibits immunity in BALB/c 
mice infected with 200 L3 of H.polygyrus. 1mg of 4-IPP was injected i.p. at d -1,-2,4 and 
6 of infection. Adult worms (D) and egg counts (E) taken at d28 p.i. 
Data analysed by one-way ANOVA, and corrected for multiple comparisons by a 
Sidak’s  test. All experiments performed on one occasion. For all panels, * = p<0.05, ** 
= p<0.01, *** p<0.001. Experiments part of K.Filbey’s thesis. 
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3.2.2 MIF-deficient mice have impaired cell expansion in the peritoneal 
cavity during H.polygyrus infection 
 

BALB/c and MIF-deficient mice were infected for 3 and 6 days, the peritoneal 

exudate cells were harvested to compare the myeloid compartments as 

previously the Maizels’ lab has demonstrated that MIF synergises with IL-4 to 

upregulate the products of alternative activation in bone marrow derived 

macrophages (Prieto-Lafuente et al., 2009). H. polygyrus infection induces a 

significant cellular expansion in the peritoneal cavity, including a strong 

alternatively activated macrophage population (Jenkins et al., 2013). It was 

observed that MIF-deficient mice have reduced cellular responses in the 

peritoneal cavity during H. polygyrus infection at d3 and d6 (Fig3.2.2A). By 

D6, there is almost a two-fold increase in the number of cells in the peritoneal 

lavage of the wild type mice, with a mean yield of over 3 x 10^6 cells; in 

contrast, the MIF deficient mice averaged 1.4 x 10^6 cells. Some of this 

increase can be accounted for by a greater expansion in macrophage 

numbers in the BALB/c than the MIF-deficient mice. At d0 there is an 

average of 0.28 x 10^6 CD11b+ F4/80+ population in the peritoneal cavity of 

BALB/c mice; this increases to 0.59 x 10^6 in D6 BALB/c infected mice. In 

the MIF-deficient mice the naïve mice have 0.31 x 10^6 CD11b+ F4/80+ cells 

and the D6 infected mice have 0.40 x 10^6. At d6 the total numbers of 

CD11b+ F4/80+ peritoneal macrophages are greater in the BALB/c infected 

mice than in the MIF-deficient mice, but this is not significantly (Fig3.2.2B).  

Strikingly, however, there is a marked difference in the total numbers of 

Siglec F+ eosinophils in the peritoneal cavity at d6 of H. polygyrus infection 

(Fig3.2.2C). The BALB/c mice have 0.5 x 10^6 Siglec F+ eosinophils in the 

lavage, 5-fold greater than in naive wildtype animals (p=0.001), whereas the 

MIF-deficient mice have only 0.02 x 10^6 SiglecF+ eosinophils, not 

significantly higher than the baseline in uninfected animals. 
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Figure 3.2.2 A-C MIF-deficient mice have impaired cell infiltration in the 
peritoneal cavity during H.polygyrus infection 

BALB/c and MIF-/- mice were infected with 200 H.polygyrus L3 larvae by oral gavage. 
Peritoneal exudate cells were taken at d3 and d6 p.i. Cells were stained for analysis by 
flow cytometry. 
(A) Total cells in peritoneal lavage at d3 and d6 p.i in BALB/c and MIF-/- mice.  
(B) Total numbers of macrophages (Mφ) in the peritoneal cavity during H.polygyrus 
infection, determined as CD11b+ F4/80+ cells at d3 and d6 p.i in BALB/c and MIF-/- mice. 
(C) Total numbers of eosinophils in the peritoneal cavity during H.polygyrys infection 
determined as CD11b+ SigF+ cells at d3 and d6 p.i in BALB/c and MIF-/- mice. 
Experiment completed once. Data analysed by one-way ANOVA, and corrected for 
multiple comparisons by a Sidak’s test. For all panels, * = p<0.05, ** = p<0.01, *** 
p<0.001. 
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3.2.3 MIF-deficient mice have impaired type 2 alternative activation of 
macrophages in the peritoneal cavity during H. polygyrus infection 
 

Alternatively activated macrophages and their products are correlated with 

resistance to H. polygyrus infection (Anthony et al., 2007; Filbey et al., 2014). 

In Fig3.1 we infected BALB/c and MIF-deficient mice for 3 and 6 days with 

200L3 of H.polygyrus by oral gavage. Peritoneal lavage was taken to assess 

the peritoneal exudate cells by flow cytometry. Peritoneal macrophages were 

therefore evaluated for alternative activation in wildtype and MIF-deficient 

mice.  The M2 marker Arginase-1 was highly expressed by peritoneal 

macrophages by D3, with 32.9% positive in the BALB/c mice but only 7.9% in 

the MIF-deficient mouse (Fig3.2.3A). Similar results were found with two 

other M2 markers, RELMα and YM1, which while not significantly increased 

by D3, did show substantial expression by D6, with 49.3 and 14.0% positive 

macrophages respectively in BALB/c infected mice (Fig 3.2.3B,D).  In 

comparison, the percentage of peritoneal macrophages that are positive for 

RELMα and YM1 at d6 were 28.7% and 2.5% in the MIF-deficient mice. 

Consistent with this pattern of macrophage expression, soluble RELMα 

(Fig3.2.3D) and YM1 (Fig3.2.3E) protein could be recovered in peritoneal 

lavage fluid of wildtype mice, while MIF-deficient animals showed reduced 

RELMα and absence of Ym1.RELMα seems to be least affected by the 

deficiency of MIF. 
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Figure 3.2.3 A-D MIF-deficient mice have impaired type 2 alternative activation 
in the peritoneal cavity during H.polygyrus infection 

BALB/c and MIF-/- mice were infected with 200 H.polygyrus L3 larvae by oral gavage. 
Peritoneal exudate cells were taken at  d3 and d6 p.i. Cells were stained for analysis by 
flow cytometry 
A Reduction in percentage of CD11b+ F4/80+ Arg1+ cells at d3 post infection. Data in A 
is pooled from two experiments 
B,D Percentage of CD11b+ F4/80+ YM1+ (B) and RELMα+ (D) cells in peritoneal cavity 
at d3 and d6 post infection.  
C,E Levels of YM1 (C)  and RELMα (E)  in peritoneal lavage at d6 p.i. 
Data in B-E obtained from one experiment 
Data analysed by one-way ANOVA, and corrected for multiple comparisons by a 
Sidak’s test. For all panels, * = p<0.05, ** = p<0.01, *** p<0.001. 
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3.2.4 MIF-deficient mice have reduced numbers of CD4+Foxp3+ cells in 
the MLN at D28 of infection 
 

Because T regulatory cells are known to control susceptibility to H. polygyrus  

(Smith et al., 2016), we evaluated levels of CD4+Foxp3+ Tregs in the 

mesenteric lymph nodes of BALB/c and MIF-deficient mice. T regulatory cells 

are known to increase 28 days after infection with H.polygyrus (Finney et al., 

2007). We infected BALB/c and MIF-deficient mice with 200L3 H.polygyrus 

for 28 and 14 days to compare the MLN CD4+ Foxp3+ populations. The 

overall cell numbers in the mesenteric lymph nodes was much greater in wild 

type mice with 28.3 X 10^6 at day 28, whereas the MIF deficient mouse had 

7.5 x 10^6 cells recovered at day 28, although the data did not attain 

statistical significance. 

 

It was found that the frequency of Foxp3+ cells in the MLN did not differ 

between wild type and MIF deficient mice. In general, there was a trend 

towards a higher percentage of CD4+Foxp3+ cells in the MLN of both groups 

(Fig3.2.4B), increasing between naïve mice to d28 infected mice from 10.8 to 

14.5% of all CD4+ MLN cells in BALB/c, and 7.3 to 13.5% in MIF-deficient 

mice.   

  

Because of the marked difference in MLN cellularity between the two strains, 

there are much greater total numbers of CD4+Foxp3+ cells in the MLN of 

BALB/c mice at d28 of infection, compared to the MIF deficient mice., with 

2.1 x 10^6 CD4+Foxp3+ cells of the wildtype, but only 0.37 x 10^6 cells in the 

MIF-deficient animals (Fig3.2.4C).  
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Figure 3.2.4 A-C MIF-deficient mice have reduced numbers of CD4+ FoxP3+ 
cells in the MLN at d28 of H.polygyrus infection. 

BALB/c and MIF-/- mice were infected with 200 H.polygyrys L3 larvae by oral gavage for 
14 and 28 days: analysis of MLN by flow cytometry. 
A. Total numbers of cells in the MLN at d14 and 28 p.i. with H.polygyrus in BALB/c and 
MIF-/- mice.   
B. Percentages of CD4+ FOXP3+cells at d14 and 28 p.i. with H.polygyrus in BALB/c and 
MIF-/- mice.  
C. Numbers of CD4+ FOXP3+cells at d14 and 28 p.i. with H.polygyrus in BALB/c and 
MIF-/- mice.  
Experiments conducted once, data analysed by one-way ANOVA, and corrected for 
multiple comparisons by a Sidak’s test. For all panels, * = p<0.05, ** = p<0.01, *** 
p<0.001. 
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 3.2.5-6 MIF-deficient mice have intact antibody responses to parasite 
antigens 
 

B cell and antibody responses are essential for the expulsion of H.polygyrus, 

with the IgG1 isotype regarded as the most important. We assessed the HES 

specific antibody responses in BALB/c and MIF deficient mice by ELISA, and 

determined the dilution curves, overall the MIF-deficient mice have intact 

IgG1 antibody responses (Fig 3.2.5A), however, IgA (Fig 3.2.6A) is much 

higher in the MIF-deficient mice. 

 

 

 

 

 

Figure 3.2.5 A MIF-deficient mice have intact IgG1 antibody responses 

BALB/c and MIF-/- mice were infected with 200 H.polygyrus L3 larvae by oral gavage: 
and sera serially diluted to determine titre. 
A. Standard curve created of dilution titre for IgG1.   
Experiment completed once.  
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Figure 3.2.6 A MIF-deficient mice have intact IgA antibody responses. 

BALB/c and MIF-/- mice were infected with 200 H.polygyrus L3 larvae by oral gavage: 
and sera serially diluted to determine titre. 
A. Standard curve created of dilution titre for IgA.   
Experiment completed once. 
. 
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3.2.7 Gene expression comparison of whole duodenum comparing d3 
infected BALB/c and MIF-/- mice 
 

MIF has so far been shown to slow expulsion of H.Polygyrus in primary 

infection, and induce innate cell M2 polarisation along with eosinophilia. The 

mechanism by which this phenotype occurs is not understood. Therefore, in 

order to better understand how MIF may lead to altered early immunity to 

H.Polygyrus, we undertook a microarray analysis of whole duodenum. 

BALB/c and MIF-deficient mice were infected for 3 and 7 days with 200 L3 

H.polygyrus, whole duodenum and MLN from the infected and uninfected 

mice was homogenized for RNA extraction. The RNA extraction was 

performed by Dr D J Smyth, sent for analysis at Edinburgh Bioinformatics 

and analysis by Dr Al Ivens using the using R package lumi.  

 

Figure 3.2.7 is a volcano plot comparing BALB/c and MIF-deficient 

duodenum at D5 of an H. polygyrus infection. Of the top 10 sequences found 

to be differentially upregulated at d5 in the BALB/c mouse compared to the 

MIF deficient mouse are MIF, ARL2BP, PHC2. Other genes did not reach the 

statistical threshold for multiple testing or the effect size was not above two 

fold different, however s100a8 was of borderline significance and therefore 

we choose to look at this in some further detail. 
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Figure 3.2.7 A Gene Expression comparison of whole duodenum comparing 
BALB/c and MIF-/- mice infected with H.polygyrus for 3 days. 

BALB/c and MIF-/- mice were infected with 200 H.polygyrus L3 larvae s.c. for 3 days: 
analysis of whole duodenum. 
A. Volcano plot of gene expression comparing d3 BALB/c and MIF-/- infected 
duodenum. Contributions: RNA extraction by K.Filbey, analysis by Dr A Ivens, p<0.05 
after correction. 
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3.2.8 qPCR validation of targets found in microarray in 3.7 
 

In Figure 3.2.8, we next validated the targets found on microarray by qPCR 

of the RNA extracted from 3.7. We found that the levels of s100a8 (Fig 

3.2.8A) ARL2BP (Fig 3.8B), PHC2, (Fig 3.2.8C) were upregulated by 11, 2.5 

and 6 fold respectively in the proximal duodenum of BALB/c infected mouse 

compared to the MIF deficient mouse at d5 of H.polygyrus infection. S100a8 

and s100a9 are calcium binding proteins that are important in neutrophil 

migration and are released in inflammatory states as damage associated 

molecular signals. ARL2BP is important in STAT3 nuclear localisation and 

PHC2 is important in skeletal organogenesis and in immunity.   

 

 

 

Figure 3.2.8 A-C Gene expression quantification and validation of microarray 
by RT-qPCR. 

BALB/c and MIF-/- mice were infected with 200 H.polygyrys L3 larvae by oral gavage for 
5 days. MLN was frozen in RNA later for RNA extraction and qRT-PCR. 
A-C Gene expression analysis by qRT-PCR of MLN for transcription levels of s100a8 
(A), ARL2BP (B) and PHC2 (C); data is representative of two experiments.  
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3.2.9 H. polygyrus primary and secondary infection of S100a9-/- mice 
 

In order to further assess the role of s100a8 in H. polygyrus infection, we 

obtained mice lacking s100a9 (Manitz et al, 2003), without which s100a8 is a 

homodimer and functionally inactive and infected them with H. polygyrus in 

both primary and secondary infection settings. For the primary infection, both 

groups of mice were evaluated after 28 days. For secondary infection, we 

used a previously described protocol (Hewitson et al., 2011) as outlined in 

Fig3.2.9A. Unexpectedly, the s100a9-/- mice were better at expelling primary 

infections, with worm counts at day 28 being 43 in the s100a9-/- mouse 

compared to 118 in the BL/6 mice (Fig3.2.9B). Furthermore, there was no 

difference in the ability of the S100a9-deficient mice to expel the secondary 

challenge infection (Fig3.2.9B,C).  Overall, these data demonstrate that the 

s100a8/9 complex is not required for immunity against H. polygyrus infection. 
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Figure 3.2.9 s100a8/9 is not important in worm expulsion in primary or 
secondary infection with H.polygyrus. 

s100a9-/- mice and wild type BL/6 mice were infected with 200 L3 H.polygyrus by oral 
gavage 
A. Schematic of experimental design for primary and secondary infections to assess the 
importance of s100a8 in H.polygyrus expulsion. In primary infection, the mice are 
infected for 28 days. Analysis of egg and worm counts at d28 p.i. In secondary 
infections, at d14 following a primary infection with 200L3 H.Polygyrus, BL/6 and 
S100a9-/- mice are administered 2.5mg of pyrantel embonate in 200μl of water. At d14 
of reinfection the mice were reinfected for 14 days. Worm and egg counts were 
enumerated at d14 p.i.   
B-C. Adult worm (B) and egg (C) counts enumerated in wild type and s100a9-/- mice 
during a course of primary and secondary infection. Experiment performed once. 
Contributions: mice obtained from Dr R.Gray (Edinburgh). 
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3.2.10 STAT3 and STAT6 phosphorylation studies in bone marrow 
derived macrophages 
 

STAT6 is the transcription factor activated by IL4Rα ligation, and is essential 

for expulsion of intestinal helminths such as N. brasiliensis (Kaplan et al., 

1996; Urban et al., 1998). Both IL-4 and IL-13 activate the IL4Rα-STAT6 

signalling pathway. On binding of IL-4 or IL-13 to IL-4Rα, STAT6 is 

phosphorylated, dimerises and then translocates to the nucleus. P-STAT6 

then promotes the expression of the master regulator of Type 2 cyokines, 

GATA3(Maier et al., 2012). STAT6 also directly drives polarisation of 

macrophages to the M2 phenotype secreting factors Arg1, RELMα and 

Ym1(Jang and Nair, 2013).  Evidence exists to support STAT6 independent 

TH2 signaling(Ouyang et al., 2000). More recently, STAT3 may have a role 

in M2 activation: in myeloid-derived suppressor cells STAT3 was found to 

regulate Arginase-1(Vasquez-Dunddel et al., 2013).   

 

To investigate if MIF affects STAT6/3 phosphorylation leading to reduced 

alternative activation of macrophages shown in vitro (Prieto-Lafuente et al., 

2009) and by these experiments in Fig3.2.2 B, we attempted to assess the 

kinetics of STAT6 phosphorylation. Day 7 bone marrow derived 

macrophages were stimulated with ligands IL-4 for STAT6 and IL-10 for 

STAT3 for 30 minutes and measured the phosphorylation of STAT6/3 

between BALB/c and MIF-deficient bone marrow derived macrophages. We 

found that early STAT6 phosphorylation kinetics was not altered in the MIF 

deficient mice. From 0-30 minutes, phosphorylation of STAT6 occurred 

equally in the bone marrow macrophages of MIF deficient and wild type mice 

(Fig3.2.10 B). 

 

We assessed STAT3 phosphorylation kinetics using the ligand IL-10. We 

found that the MIF deficient bone marrow macrophages were as able to 

phosphorylate STAT3 as BALB/c macrophages (Fig3.10 B). There may 

however, be subtle differences in the kinetics of STAT3 which cannot be 
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measured by simple phosphorylation studies such as nuclear localisation and 

retention which is the function of ARL2BP (Muromoto et al., 2008).  

 

Figure 3.2.10 MIF-deficient bone marrow derived macrophages have no deficit 
in early phosphorylation of STAT6 or STAT3. 

Bone marrow derived macrophages were differentiated for 7 days in cDMEM with 20% 
L929 (M-CSF source). These were then stimulated up to 40 minutes with IL-4 for 
phosphorylation of STAT6 and IL-6 or IL-10 for phosphorylation of STAT3. 
A. BALB/c and MIF-/- stimulated with 20ng/ml of IL-4-MFI of pSTAT6 quantified. 
Experiment has been repeated 2 times  
B. BALB/c and MIF-/- stimulated with 100ng/ml of IL-10-MFI of pSTAT3 quantified. 

Experiment has been performed once. 
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3.3 Discussion: MIF in H.polygyrus 
 

Helminths classically induce macrophages of the M2 phenotype: these are 

classically Arg1, RELMα and YM1 (Allen and Sutherland, 2014). These 

alternatively activated macrophages are correlated with increased resistance 

to infection (Filbey et al., 2014).  Curiously, MIF derived from mouse (and 

parasite derived MIF homologues) synergises with IL-4 increasing the 

production of these three molecules (Prieto-Lafuente et al., 2009) although 

the exact mechanism by which this occurs is yet to be determined.  

 

In secondary immunity, the AAM product Arginase-1 was found to be 

important in eliciting memory Th2 responses (Anthony et al., 2006).  In N. 

brasiliensis infection Arginase-1 was found to induce intestinal smooth 

muscle contraction resulting in worm expulsion (Anthony et al., 2006; Assis 

et al., 2014; Zhao et al., 2008). We found that the BALB/c mouse was able to 

elicit a strong AAM response, but this was impaired in the MIF-deficient 

mouse during an H.polygyrus infection, this may explain part of the 

susceptibility in the MIF-deficient mouse system (Anthony et al., 2006). 

 

A notable feature was severely impaired eosinophilia in the MIF-deficient 

mouse. Eosinophils are responsive to IL-5 from ILC2s and Th2 cells. Some 

authors have reported that eosinophils directly bind helminths in vitro (Shin et 

al., 2001), and IL-5-/- mouse had higher worm burdens in secondary infection 

during N.brasiliensis infection (Knott et al., 2007). At D6 of infection, the MIF-

deficient mouse had fewer eosinophils. Eosinophils have a clear relationship 

to worm resistance in N.brasiliensis infection. However, this is not the case 

for every parasite, and may well depend very much on timing and 

background strain of the mouse(Allen and Sutherland, 2014).   

 

Th2 cell responses examined by Dr K.Filbey previously, and were found to 

be sufficient in the MIF deficient mice, we therefore examined the role of T-
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regulatory cells. There was no defect observed in the T regulatory cell 

recruitment to the MLN. There were higher numbers but not percentages of 

CD4+ Foxp3 + cells at D28 in BALB/c mice when compared to the MIF-

deficient mice (Fig 3.4D); therefore MIF-deficient mice have a proportionately 

appropriate Foxp3+ response to H.polygyrus infection. 

 

 There was no observed defect in HES specific antibody responses 

suggesting that antibody immune mechanisms were in tact.  Therefore MIF 

seems less important in adaptive processes than innate processes.  

 

MIF is known to affect MAP kinase signalling downstream, however, previous 

work in our lab suggests that MIF also results in IL4Ra upregulation in bone 

marrow derived macrophages(Prieto-Lafuente et al., 2009). We were 

therefore, interested in the ability of MIF to affect downstream IL4Ra-STAT6 

signalling. Experiments utilised bone marrow derived macrophages to 

explore if MIF affects STAT6 signalling, as BMDM can be alternatively 

activated by MIF. We found that MIF adequately induces phosphorylation of 

STAT6 in BMDMs, indicating that the effect of MIF on Type 2 immunity is 

likely not via interfering with the IL4Ra-STAT6 signalling cascade. We also 

explored STAT3 as a novel pathway that affects TH2 signalling, and found 

no difference in the phosphorylation of STAT3. As ARL2BP was reported to 

be important in STAT3 nuclear retention, we also assessed nuclear STAT3 

localisation at extended time points with an imaging flow cytometer (data not 

shown). We found no difference in the ability of the MIF-deficient 

macrophages to localise STAT3.  

 

A gene array was used to compare whole duodenum from BALB/c and MIF-

deficient mice infected for 3 and 7 days with naïve duodenum from BALB/c 

and MIF-deficient mice. The rationale for conducting this microarray was to 

look for novel genes that may be involved downstream of the MIF deficient 

phenotype, that may help explain susceptibility. The analysis has highlighted 
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some interesting genes that have not previously been known to be 

associated with MIF or resistance to helminth infection.  

 

 

 

S100a8/9 are described as danger-associated molecular patterns (DAMPs) 

and promote inflammation. They are part of the s100 calgranulin family. They 

form a heterodimer or calprotectin and are expressed by neutrophils and 

monocytes. They are 45% of all cytosolic proteins in neutrophils, and are 

important in neutrophil exocytosis traps. The protein is normally released 

from activated or necrotic neutrophils. TLR4 and RAGE are potential 

receptors (Schiopu and Cotoi, 2013). The role that s100a9 has in myeloid 

cells is unclear, as S100a9-/- had normal mature phagocytes. We found that 

S100a8 was upregulated in the BALB/c mouse compared to the MIF-deficent 

mouse (Fig3.8A). We assessed s100a8 deficiency using an s100a9 deficient 

mouse (which is functionally deficient in s100a8 as both the molecules found 

a heterodimer). Whilst the s100a8 deficient mouse seemed more effective at 

expelling a primary infection, there was no difference in the immunity 

secondary infection. The mice that we used were in the process of being 

back crossed onto a C57BL/6 background and therefore may have 

harboured some of the features of their original strain. The greater immunity 

exhibited by the s100a8 deficient mice therefore may be because of 

background immunity differences rather than being due to s100a8 deficiency. 

In secondary infection, however, all strains are effective at expelling the 

parasites. There were no difference in immunity secondary infection, 

therefore the difference observed in primary infection may be related to 

adifference in background genetics (Fig 3.9).  

 

 

ARL2BP is an ADP ribosylation factor like 2 binding protein: it has been 

found to be important for nuclear retention of STAT 3.  Therefore, we 

assessed expression of ARL2BP in the mesenteric lymph nodes of BALB/c 
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versus MIF-deficient mice. We found that ARL2BP was upregulated in the 

BALB/c mouse but not the MIF-deficient infected mouse. Assessment of 

ARL2BP suggests that STAT3 may be the mechanism by which MIF is 

capable of amplifying Type 2 responses. No differences in phosphorylation of 

STAT3 were noted between BALB/c and MIF-deficient bone marrow 

macrophages. 

PHC2 is a polycomb protein involved in histone acetylation and may be 

involved in epigenetic regulation. PHC2 forms part of the polycomb group 

that is involved in specification of anterior-posterior (A-P) polarity by 

regulating the Hox cluster genes.  PHC2 mutants have abnormalities of 

skeletal development and premature sensence of mouse fibroblasts.(Isono et 

al., 2005) PHC2 was found to be upregulated in the BALB/c infected mice but 

not the MIF-deficient infected mice. The link between MIF and PHC2 in 

immunodeficiency is also very interesting and worthy of subsequent follow 

up. 

Further work may involve assessing the role of ARL2BP and PHC2 in the 

context of helminths infection. Although we undertook a microarray of whole 

tissue, this does not give in-depth information with regards to the differences 

in cell specific responses, therefore future experiments may involve isolating 

particular cellular populations in wild type and MIF-deficient mice, and 

assessing the gene responses within specific cellular populations. We had 

started to assess differences in signalling in the MIF-deficient and wild type 

macrophages. Although there was no difference in the phosphorylation of 

STAT3 in the MIF-deficient and wild type macrophages, we could have 

assessed nuclear translocation of STAT3 (As ARL2BP has been shown to be 

important in STAT3 nuclear translocation (Muromoto et al., 2008)). Although, 

we have looked at the cellular immune responses, it is clear from the 

H.polygyrus model that the main mechanism of gut helminths expulsion

occurs via the epithelium- and we use the N.brasiliensis model in the next

chapter to explore the epithelial cells responses.
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Chapter 4- Impact of MIF deficiency on N.brasiliensis infection 

4.1 INTRODUCTION 

The previous chapter demonstrated that MIF is important for polarisation of 

macrophages to the alternatively activated phenotype by way of production 

of Arg-1, RELMα and Ym1. In addition, MIF-deficient mice show reduced 

eosinophilia in response to H.polygyrus infection suggesting a deficiency in 

the innate immune compartment. 

Nippostrongylus brasiliensis is a nematode whose primary host is the rat, but 

is able to infect a variety of rodent species. It is less adapted to completing its 

life cycle in the mouse and thus rapidly expelled in comparison to 

H.polygyrus. This makes N.brasiliensis an excellent model organism to study

the innate immune system of the mouse. Recent findings made using this

parasite include the discovery of innate lymphoid cells type-2 (ILC2) (Fallon

et al., 2006). The release of ILC2-derived IL-13 results in a weep and sweep

(Anthony et al., 2007) model of parasite expulsion: the epithelial cells weep

fluid into the lumen and increased peristalsis and epithelial cell turnover

(Cliffe et al., 2005) results in physical expulsion of the parasite, underlining

the importance of ILC2-epithelial cell crosstalk for resistance to this parasite

(Gerbe and Jay, 2016). The epithelial responses (the effectors of helminths

expulsion) have been best characterised in Nippostrongylus brasiliensis,

therefore this helminth has been chosen to explore the effect of MIF on the

epithelial cell response.

The lung is an important priming site for immunity to N. brasiliensis infection 

(Harvie et al., 2010). N. brasiliensis has a larval stage that migrates to the 

lung (which is absent in H. polygyrus), therefore allowing us to explore the 

importance of MIF in lung type 2 immune responses to helminths. 
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Mechanisms by which immunity may occur are not completely discerned. 

Recent data has demonstrated the role of lung neutrophils in priming long 

lived effector macrophages which result in expulsion of adult worms from the 

gut (Chen et al., 2014). Therefore, by studying N. brasiliensis, we can 

analyse the role of MIF in the two complementary settings of the lung and the 

gut. 

 

Whilst comprehensive literature on MIF in type-1 immunity (Calandra and 

Roger, 2003) is available, the function of MIF in type-2 associated 

immunopathology and its effect on the epithelium is largely unknown. 

Comparisons of data presented in chapter 3 on MIF functions during 

H.polygyrus infection with obtained results using the N.brasiliensis model will 

allow us to assess if the effect of MIF on anti-helminth immunity is 

generalizable.  

 

This chapter focuses on the impact of MIF on N.brasiliensis-induced 

immunopathology and delineates the immune mediators function in innate 

and epithelial cell responses. Different immune-interventions are presented 

as well, including experiments involving the MIF-inhibitor 4IPP and IL-25 

cytokine-rescue setups. 
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4.2 RESULTS 

 

4.2.1 Expulsion of N.brasiliensis is impaired in MIF-deficient mice. 

 

First, differences in parasitological outcomes in the absence of MIF were 

assessed. BALB/c and MIF deficient mice were infected with the mouse 

strain of N.brasiliensis at an inoculum of 250 L3 and small intestines were 

harvested to enumerate adult worm counts at d6 post infection (p.i.). In 

addition, daily egg counts were performed in a separate set of experiments 

from d6 until d10 (Fig 4.2.1A). The immunological analyses were 

predominantly performed at d6 post infection. Interestingly, worm counts 

obtained at d6 post infection demonstrate that MIF-deficient mice are unable 

to expel adult N.brasiliensis infection unlike the wild-type mice which, as 

previously shown (Maizels and Yazdanbakhsh, 2003), efficiently expel the 

worm at this time point (Fig 4.2.1B). This result is further supported by time 

course experiments monitoring egg counts over d6 to d10 p.i. (Fig 4.2.1C) 

showing that the MIF-deficiency results in increased egg burden throughout 

the course of the experiment, whereas wild-type animals are able to clear the 

infection by day 10 (Fig 4.2.1C). 
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Figure 4.2. 1 Impaired expulsion of N.brasiliensis by MIF  deficient mice 

 (A) Schematic of experimental design: BALB/c and MIF-/- were infected with 250 L3 
N.brasiliensis by s.c. injection. Small intestinal worm counts were enumerated on d6 
and fecal egg counts performed from d6 until d10. (B) Adult N. brasiliensis nematodes 
counted at d6. (C) Faecal egg burdens between d6-d10. Data are representative of 3 
independent experiments, statistically analysed by one-way ANOVA and corrected for 
multiple comparisons by a Sidak’s test. * p<0.05, ** p<0.01, *** p<0.001. Experiments 
performed by Mrs Yvonne Harcus, senior laboratory technician. 
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4.2.2 The total inflammatory response to N. brasiliensis is impaired in 

MIF-deficient mice. 

 

As MIF has been shown to induce inflammation in the context of type-1 

immunity in several models of infection, we aimed to assess the function of MIF  

in the type-2 inflammatory response induced following N. brasiliensis infection. 

By day 6 of infection, inflammatory cells have accumulated in the airway lumen 

(Fig 4.2.2A), peritoneal cavity (Fig 4.2.2B) and the MLN (Fig 4.2.2C) of BALB/c 

mice. This inflammatory response is impaired in MIF-deficient mice as 

demonstrated by total cell counts obtained at the respective sites. The increase 

in cell count observed in the BAL of BALB/c mice during N. brasiliensis infection 

(BAL cell count is 0.1 x 10^6 cells in naïve and 0.5 x 10^6 cells in infected mice 

at d6 p.i.), was not observed in the MIF-deficient mice (cell count in the naïve 

mice and infected mice remains at 0.15 x 10^6) (Fig 4.2.2A). The cell count in 

the peritoneal cavity of BALB/c mice augments during infection from a baseline 

of 3.8 x 10^6 cells to 3.79 x 10^6 cells. MIF-deficiency induced a decline in 

baseline PEC cells to 1.7 x 10^6 during immune homeostasis, which increased 

to 2.1 x 10^6 at d6 after N.brasiliensis infection (Fig 4.2.2B). A decreased 

number of cells at baseline was also detected in the MLN of MIF-deficient naïve 

mice compared to BALB/c mice (7.3 vs. 2.9 x 10^6 total cells respectively). N. 

brasiliensis infection increased the total cell number of the MLN to 10.5 x 10^6 

cells in BALB/c mice. This increase was significantly attenuated in MIF-/- mice 

(4.8 x 10^6 cells). 
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Figure 4.2. 2 A-C: Impaired inflammation in response to N.brasiliensis by MIF-
deficient mice. 

BALB/c and MIF-/- mice were infected with 400 L3 N.brasiliensis larvae by s.c. injection 
for 6 days. Cell counts of bronchoalveolar lavage (BAL) (A) and peritoneal exudate cells 
(PEC) (B) performed using an automated cell counter (cellometer). Manual cell 
counting was performed to enumerate total immune cells of the MLN (C). Data pooled 
from two independent experiments, represented as shaded and unshaded circles. Data 
was analysed by one-way ANOVA and corrected for multiple comparisons by a Sidak’s 
test. * p<0.05, ** p<0.01, *** p<0.001.  Contributions: preparation of lung and BAL by Dr 
S. Loeser. 
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4.2.3 MIF gene expression is upregulated in eosinophils and 

macrophages during N.brasiliensis infection 

 

MIF is expressed at several mucosal immune sites by most immune cells and 

many mucosal tissue sites (Calandra and Roger, 2003). MIF can also be stored 

intracellularly in the cytoplasm and released as required. In order to assess 

whether MIF expression varies in the context of N brasiliensis infection, four 

major cell populations from within the peritoneal cavity were sorted by 

fluorescence-activated cell sorting (FACS) to assess their transcription of MIF at 

day 6 of infection compared to naïve cells. We found that eosinophils (Fig 

4.2.3A) and macrophages (Fig 4.2.3B) significantly up-regulate the production 

of MIF during N.brasiliensis infection (30 and 140 fold over naïve respectively). 

Previous literature has shown that MIF is stored and released from 

macrophages upon inflammatory stimulation (LPS) (Calandra et al., 1994) and 

that human eosinophils when stimulated in vitro with phorbol myristate acetate 

release MIF (Rossi et al., 1998). MIF has also been shown to be expressed in T 

cells upon stimulation with glucocorticoid (Leng et al., 2009). In our experiment, 

we found that sorted CD19+ B (Fig 4.2.3C) and CD4+ T cells (Fig 4.2.3D) do not 

significantly upregulate the transcription of Mif in response to N.brasiliensis 

infection. At immune homeostasis T cells showed a higher baseline expression 

of MIF in comparison to the different sorted cell populations. 
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Figure 4.2. 3 A-E Mif gene expression is significantly upregulated in 
eosinophils and macrophages during N.brasiliensis infection 

BALB/c mice were infected with 400 L3 N.brasiliensis s.c. for 6 days and peritoneal 
exudate cells (PEC) were harvested and sorted by fluorescence-activated cell sorting 
(FACS) for consecutive gene expression analyses by qRT-PCR. MIF gene expression 
by sorted Siglec F+ eosinophils (A), F4/80+ CD11b+ M (B), CD19+ CD4- cells B cells 
(C) and CD19- CD4+ cells T cells (D) from naive and infected mice. Mif gene 
expression analysed comparing M, eosinophlls, T and B cells. Graphs A, B are 
representative of two individually performed experiments, C-D show pooled data from 
two individually performed experiments. Graph E was performed once. Data from 
different experiments represented as shaded and unshaded circles. Statistical analysis 
was performed using an unpaired students T test. * = p<0.05, ** = p<0.01, *** p<0.001. 
Contributions: Electronic sorting of cell populations performed by Dr M. White. 
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4.2.4 MIF-deficiency results in reduced numbers of CD4+ T cells and 

concentrations of type-2 cytokines. 

 

Despite MIF not being upregulated in CD4+ T cells during infection, we 

assessed if MIF influences CD4+ T cell proliferation or migration. To assess the 

ability of mice deficient of MIF to mount a type-2 immune response during 

N.brasiliensis comparable to WT mice, MLN tissue and peritoneal lavage fluid 

was harvested from mice at d6 p.i. Single cells prepared from MLN tissue were 

consecutively analysed for the presence of Th2 cells by flow cytometry and 

type-2 cytokine secretion into the peritoneal cavity was quantified by ELISA. It 

became evident that MLNs of BALB/c mice have a higher percentage of CD4+ T 

cells compared to MIF-deficient mice (Fig 4.2.4A), both at baseline (59% vs. 

46%) and following N.brasiliensis infection (56% vs. 46%). The total counts of 

CD4+ T cells in BALB/c mice increased from an average of 3.4 x 10^6 cells to 

8.9 x 10^6 cells when nematode-infected, whereas the increase in total CD4+ T 

cells induced by the helminth was significantly attenuated in MIF-deficient mice 

(BALB/c Nb vs. MIF-/- Nb: 8.9 x 10^6 cells vs. 1.6 x 10^6 cells) (Fig 4.2.4B). As 

the total numbers of MLN cells are also augmented in the BALB/c mouse (see 

Fig 4.2.2C), there is an overall 5-fold difference in total MLN CD4+ T cells 

between the two genotypes (Fig 4.2.4B).  

 

As the percentage and number of CD4+ T-cells is reduced in MIF-/- mice, also 

during infection, we analysed in addition if these cells are defective in polarising 

into Th2 cells. When analysed for expression of the type-2 specific transcription 

factor GATA3, a similar slight but not significant increase in the percentages of 

CD4+ T cells expressing this protein (Fig 4.2.4 C) was detected in MLN 

harvested from both genotypes infected with N.brasiliensis, confirming that MIF-

deficient CD4+ T cell are competent in polarising into Th2 cells. However, the 

total numbers of Th2 cells (GATA3+ CD4+) are significantly decreased in the 

infected MIF-/- MLN when compared to the wild-type BALB/c MLN (3.6 x 10^4 

versus 22 x 10^4 respectively) (Fig 4.2.4 D), due to the attenuated level of total 

immune cells in the MLN induced by MIF deficiency, presented in Fig. 4.2.2C.  
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To ascertain if the type 2 cytokine responses in vivo reflected the total CD4+ T 

cell profile, fluid was collected from the peritoneal cavity and assayed for levels 

of soluble type-2 cytokines as shown in Fig 4.2.4 E-G. There was, 

correspondingly, an increased production of IL-4 (Fig. 4.2.4E), IL-5 (Fig. 4.2.4F) 

and IL-13 (Fig. 4.2.4G) in the peritoneal lavage fluid of N.brasiliensis infected 

wild type mice, which was absent in MIF-deficient mice. 
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Figure 4.2. 4 A-G: MIF-deficient mice have reduced T cells and T cell cytokines 
but the ability of T cells to polarise remains intact. 

BALB/c and MIF-/- mice were infected with 250-400 L3 N.	brasiliensis larvae s.c. 
and sacrificed at d6 p.i. MLN tissue was harvested and processed for flow 
cytometric analyses and peritoneal lavage fluid frozen. (A) Percentage of CD4+ 
T cells of MLN total CD45+ immune cells. (B) Total MLN CD4+ T cells. 
Percentage of MLN GATA3+ TH2 cells of CD4+ T cells (C) and total number of 
MLN GATA3+ CD4 cells (D). Cytokine concentrations of IL-4 (E), IL-5 (F) and IL-
13 (G) were measured by cytometric bead array (CBA). Data pooled from two 
experiments. Data presented in Graph A are representative of two individually 
performed experiments, B-G show pooled data from two individually performed 
experiments. Data from pooled experiments represented as shaded and 
unshaded circles. Data was analysed by parametric one-way ANOVA, and 
corrected for multiple comparisons by a Sidak’s test (A, B) or Kruskal-Wallis 
test (C, D). * p<0.05, ** p<0.01, *** p<0.001. Contributions: experimental 
preparation with Dr S. Loeser. 
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4.2.5 MIF-deficient mice have impaired innate lymphoid cell responses 

 

Type-2 cytokines are secreted cells other than CD4+ TH2 cells during 

N.brasiliensis infection. It is now clear that a population of innate immune cells 

resemble an important part of the type-2 immune response by their capacity to 

secrete type-2 cytokines in an antigen-independent manner. Release of IL-13 

by ILC2s in response to N. brasiliensis infection was shown to effectively result 

in expulsion of the worm (Neill et al., 2010). We therefore assessed the ILC2 

response at d6 p.i. with 250-400 L3 in the MLN of both wild-type BALB/c and 

MIF-deficient mice. Significant numbers of ILCs at d6 p.i. were detected in the 

MLN, but not in the BAL or the PEC (data not shown). 

 

The ILC population was defined as CD45+ cells that are negative for CD4 and 

lineage markers CD3, Ly6C/G, CD11b, CD45R/B220, TER-119; but positive for 

ICOS. ILC2s were classified as ILCs that are positive for the type-2 transcription 

factor GATA3. We found that MIF-deficient mice showed a significantly reduced 

percentage (Fig. 4.2.5A) and total numbers (Fig. 4.2.5B) of ILCs in the MLN at 

d6 after N.brasiliensis infection. Due to the nematode infection, the percentage 

of total ILCs in the MLN increased from 0.17% of total live CD45+ cells to 0.59% 

in wild-type BALB/c mice. This increased migration or proliferation of ILCs to the 

MLN during infection is absent when mice are MIF deficient, where the 

percentage of ILCs in the MLN remains below 0.04% during infection (Fig 

4.2.5A). Correspondingly, the numbers of ILCs were found to be significantly 

higher (70 fold) in infected BALB/c mice when compared to infected MIF-

deficient mice (BALB/c Nb: 0.08 x 10^6 ILCs vs. MIF-/- Nb: 0.0011 x 10^6 ILCs) 

(Fig 4.2.5B). 

 

Next, the present ILC population was further analysed for expression of the 

type-2 transcription factor GATA3+ to identify ILC2 cells. An elevated 

percentage of ILC2 cells was detected in N.brasilliensis infected BALB/c mice 

when compared to uninfected mice. When compared to MIF-deficient mice, the 

percentage of MLN ILC2 cells mounted during infection was significantly higher 
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in wild-type BALB/c mice (0.55% vs. 0.03% respectively) (Fig 4.2.5C). This 

result was also reflected by calculated ILC2 total cells of the MLN, where mean 

numbers of ILC2s in the BALB/c infected mice were 0.08 x 10^6 cells and in 

MIF-deficient mice 0.0001 x 10^6 cells (Fig 4.2.5 D).  

 

The dot plots demonstrating the difference in ILCs are shown in Fig 4.2.5E and 

(WT) and 4.2.5F (MIF-deficient mice). These have been pregated for the live, 

single CD45+ and CD4- cells and demonstrate that the ICOS+ and Lin- 

population is expanded in the wild-type but not MIF-/- mice. 
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Figure 4.2.5 A-F: MIF-deficiency abrogates innate lymphoid cell responses 

BALB/c and MIF-/- mice were infected with 250 L3 N. brasiliensis larvae s.c. and 
sacrificed at d6 p.i.. MLN tissue was harvested and processed for flow cytometric 
analyses. (A) Percentage and (B) total number of CD45+ CD4- Lin- ICOS+ ILCs in 
MLN. (C) Percentage and (D) total number of GATA3+ ILCs (ILC2s) in MLN. Dot plot 
demonstrating ILCs of WT (E) and MIF-/- (F) mice at d6 p.i. All data are representative of 
two individually performed experiments. Data was statistically analysed by one-way 
ANOVA. Data in A. corrected for multiple comparisons by a Sidak’s test. Data 
presented in graphs B, C, D was analysed using the non-parametric one-way ANOVA 
Kruskal-Wallis test.* p<0.05, ** p<0.01, *** p<0.001. Contributions: experimental 
preparation with Dr S.Loeser. 
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4.2.6 MIF-deficient mice have impaired type 2 alternative activation and 

eosinophil responses 

 

ILC2 cells are crucial orchestrators of the anti-helminth type-2 response. They 

are an early source of type-2 cytokines which drives alternative macrophage 

polarisation (Filbey et al., 2018), however, MIF may directly affect macrophages 

(Prieto-Lafuente et al., 2009). 

  

Alternatively activated macrophages accumulate during helminth infection and 

secrete products Arg-1, RELMα and Ym1. Macrophages and their products are 

important in the anti-helminth immune responses. Clodronate depletion of 

macrophages and arginase inhibition abrogates the Th2 memory responses 

(Anthony et al., 2006). RELMα inhibits type 2 inflammatory responses(Chen et 

al., 2016; Nair et al., 2009). Ym1 is the dominant chitin like protein in the lung, 

and overexpression of Ym1 results in a reduced worm burden (Allen and 

Sutherland, 2014). Previous work in our lab had demonstrated the ability of MIF 

to directly affect bone marrow macrophages: MIF and IL-4 synergise to 

increase the production of Ym-1, RELMα and Arg-1 (Prieto-Lafuente et al., 

2009).  

 

We assessed intracellular expression of RELMα and YM1 in peritoneal exudate 

CD11b+ F4/80+ macrophages infection and found that the MIF-deficient mice 

had impaired intracellular production of these two proteins (Fig 4.2.6 A,C) at D6 

of N.brasiliensis.  The BALB/c and MIF-deficient naïve mice had a similar 

amount of intracellular RELMα (17 and 14% respectively) whereas the 

percentage of RELMα+ macrophages in the peritoneal cavity after 6 days of 

N.brasiliensis increased to 87% in the BALB/c infected mice compared to only 

43% in the MIF-deficient mice (Fig 4.2.6A).  The percentage of Ym1 positive 

macrophages increased from 0% to 11% in BALB/c infected mice, but YM-1 

was not produced by peritoneal MIF-deficient Mϕ even after infection (Fig 4.6C). 

The peritoneal protein concentration measured by ELISA was also a 
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significantly reduced for RELMα (Fig 4.2.6B) and YM1 (Fig 4.2.6D) in MIF-/- 

mice at d6 p.i. 

 

 

In addition to alternative macrophage polarisation, N. brasiliensis infection is 

associated with a marked eosinophilia, which we evaluated in MIF-deficient 

mice. At day 6 following infection, the percentage of SiglecF+ eosinophils in the 

BALB/c mice increased from 0.5 to 4.3% of the total live, single peritoneal 

exudate cells. In the MIF-deficient mice, the increase was also present to a 

lesser degree from 0.9 to 2% (Fig 4.2.6 E). The total numbers of eosinophils in 

the PEC of D6 N.brasiliensis infected BALB/c mice was 30 x 10^4 cells whereas 

this was 13 x 10^4 in MIF-deficient infected mice (Fig 4.2.6F).   

 

 

The lung is also a site where ILCs and M2 macrophages work together during 

N.brasiliensis infection(Bouchery et al., 2015), therefore we looked at 

alternative activation in the lung environment. MIF deficient mice had reduced 

percentages of RELMα+ macrophages in both the lung (Fig. 4.2.6.F) and the 

BAL (Fig 4.6G), correspondingly, the level of RELMα protein in the BAL of the 

BALB/c mice was 1.5 time the value in the MIF-deficient mice (Fig 4.2.6 H). 

13% of the BALB/c lung alveolar macrophages are positive for RELMα, 

however, only 7% of the MIF-deficient macrophages are positive for RELMα 

(Fig. 4.2.6F). In the BAL, 15% of the alveolar macrophages were positive for 

RELMα of BALB/c mice and this was 12% of the alveolar macrophages in the 

BALB/c mice.  
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Figure 4.2.6 A-H: MIF-deficient mice have deficient type 2 alternative activation 
and eosinophil responses in the peritoneal cavity during N.brasiliensis 
infection. 

BALB/c and MIF-/- mice were infected with 400 N. brasiliensis L3 larvae s.c., PEC, 
BAL and lung were analysed by flow cytometry at d6 p.i and peritoneal lavage fluid 
was frozen. (A) Percentage of RELMα+ Mϕ (CD11b+ F4/80+) and RELMα 
concentration (B) in collected peritoneal lavage fluid. (C) Percentage YM-1+ Mϕ of 
peritoneal exudate cells (PEC) and (D) concentration of YM-1 in peritoneal lavage 
fluid. (E) Percentage of Siglec F+ eosinophils in PEC. Percentages of Alveolar Mϕ 
(CD11c+ CD11b- Siglec-F+) in lung homogenate (F) and BAL (G) that are RELMα+. 
ELISA measurement of RELMα protein levels in BAL fluid(H). Data presented in 
graphs (A, C, E) are representative of two experiments, (B, D, F, G) are 
representative of one experiment and data presented in (H) pooled from two 
experiments. Data from pooled experiments represented as shaded and unshaded 
circles. All data analysed by one-way ANOVA, and corrected for multiple 
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comparisons by a Sidak’s test. Contributions: lung and BAL preparation by Dr 
S.Loeser. 
 

4.2.7 MIF deficient mice do not have a defect in neutrophilis at an early 

time point. 

 

We examined cell changes in the lung at an earlier time point (D3), as in 

N.brasiliensis, neutrophil infiltration is associated with the acute lung injury 

between 18-72 hours post infection when the L3 are transforming to L4 larvae 

in the lung. We found no difference in the numbers of CD11b+ Ly6G+ 

neutrophils in the BAL (Fig 4.7M) or the lung (Fig4.7N), although it could be that 

these neutrophils were functionally altered in some way. The differential counts 

in both MIF-deficient mice and wild type mice was broadly similar at D3 of 

infection for the alveolar macrophages and eosinophils also (Fig 4. E,F, I, J). 

 

By D6 of infection, the numbers of cells in the BAL increases 3 fold in the 

BALB/c mice but remains similar in naïve and infected MIF-deficient mice (Fig 

4.2.7 C). In the lung, there is a trend towards higher cell counts in the BALB/c 

infected mice, which have 16 x 10^6 cells in total, but the MIF-deficient mice 

have 112 x 10^6 cells (Fig 4.2.7D) but the difference does not reach statistical 

significance. The fold change differences are 1.5 and 1.3 comparing naïve and 

infected BALB/c and MIF-deficient mice respectively (Fig 4.2.7D). 

 

 We therefore found the absolute numbers of alveolar macrophages 

(Fig.4.2.7G, H), eosinophils (Fig4.2.7D,G) in the lung and the BAL, and the 

neutrophils in the BAL were increased at D6 of infection (Fig1.18H). At day 6 of 

infection the number of alveolar macrophages in the BAL had risen from 0.04 to 

0.21, however in the MIF-deficient mice this number had changed from 0.1 to 

0.04 x 10 ^ 6 cells (Fig 4.2.7G). In the lung, at day 6 of infection the number of 

alveolar macrophages in the BALB/c mice was 1.2 x 10^6 but only 0.4 x 10^6 in 

the MIF-deficient mice (Fig 4.2.7F). The fold change was 1.5 and 1.1 from naïve 

to infected mice in BALB/c and MIF-deficient mice respectively. The eosinophils 

in the BAL was 6.2 x 10^4 cells in BALB/c mice but was 2.8 x 10^4 cells in MIF-
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deficient mice. The difference was not statistically significant. The numbers of 

Cd11b+ Ly6G+ neutrophils in the BAL of BALB/c mice at D6 of infection rose to 

1.9 x 10^6 in BALB/c mice but was only 0.2 x 10^4 in MIF-deficient mice (Fig 

4.2.7N). 
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Figure 4.2.7 A-O: MIF-deficient mice do not have a defect in the neutrophil 
response at D3, but have reduced alveolar macrophages and eosinophils at 
D6 of infection 

BALB/c and MIF-/- mice were infected with 400 N. brasiliensis L3 larvae s.c. BAL and 
Lung are analysed by flow cytometry at d6 p.i. Numbers of cells in BAL (A) and lung (B) 
at d3 of infection; numbers of cells in the BAL (C) and lung (D) at d6 of infection. 
Numbers of CD11c+ CD11b-- SigF+ AMs in BAL (E) and lung (F) at D3 of infection.  
Numbers of AMs in the BAL (G) and lung (H) at D6 of infection. Numbers of CD11c-
CD11b+SigF+ eosinophils in BAL (I) and lung (J) at d3 of infection; number of 
eosinophils in BAL (K) and lung (L) at d6 of infecction.  Numbers of CD11b+ Ly6G+ 
neutrophils in BAL (M) and lung (N) at d3 of infection; numbers of neutrophils in the BAL 
(O) at d6 of infection. Contributions: lung and BAL prep by Dr S.Loeser. 
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4.2.8 MIF-deficient mice have impaired type-2 epithelial responses to 

infection 

 

In Fig 4.2.5 we demonstrate that the MIF-deficient mice had a deficit in ILCs. 

Tuft cells in the epithelium have recently been shown to expand rapidly in 

response to intestinal helminths infection, releasing IL-25 as an alarmin that 

activates innate lymphoid cells to initiate worm expulsion. We therefore 

examined tuft cell responses in MIF-deficient mice, mostly by 

immunohistochemistry utilising an antibody targeting the tuft cell specific marker 

DCLK1 (double cortin like kinase-1). 

 

Sections of small intestine harvested from mice infected with N. brasiliensis for 

6 days were stained for the tuft cell-specific marker DCLK1. The average tuft 

cell number per crypt/villus axis was subsequently calculated (Fig. 4.2.8A). 

Comparing representative light microscopy images acquired for all experimental 

groups (Fig. 4.2.8B), it became evident that wild-type mice infected with 

N.brasiliensis show tuft cell hyperplasia, a feature lacking in infected MIF 

deficient mice. DCLK1+ epithelial cells had proliferated in the intestine of 

infected BALB/c mice, reaching approximately 16 fold higher numbers 

compared to naïve BALB/c intestine. During infection, induced expansion of the 

tuft cell number was significantly augmented in the wild-type mice compared to 

MIF-/- mice, where the fold change from naïve was marginal at 2.5 times the 

number of DCLK1+ epithelial cells per crypt/villus axis (Fig 4.2.8B). 

Correspondingly the gene expression level of IL-25 in the proximal small 

intestine of BALB/c infected mice was significantly (2 fold) greater than the 

levels transcribed in the MIF-deficient mice when infected with the nematode 

(Fig 4.2.8C).  
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Figure 4.2.8 A-C: MIF-deficient mice have impaired Type 2 intestinal tuft cell 
responses. 

BALB/c and MIF-/- mice were infected with 400 N. brasiliensis L3 larvae s.c.; small 
intestinal tissue was fixed in 10% NBF at 4°C overnight and then paraffin embedded. 
Sections of small intestine were consequently stained for DCLK1 at d6 p.i. (A) 
Quantification of number of DCLK1 positive cells as an average count for 100 crypt/villus 
axis, representative of three experiments. (B) Gene expression analysis by qPCR of 
proximal duodenum to assess transcription levels of IL-24.  Data pooled from two 
experiments represented as shaded and unshaded circles. (C) Representative light 
microscopy images showing epithelial DCLK1+ (tuft) cells in uninfected and infected 
BALB/c and MIF-/- mice. Scale bar equals 100μm. Data analysed by one way ANOVA, and 
corrected for multiple comparisons using a Sidak’s multiple comparison test. * p<0.05, ** 
p<0.01, *** p<0.001. Contributions: Dr F Gerbe (Jay lab, Montpellier) performed DCLK1 
stainings. 
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4.2.9 MIF-deficient mice have reduced goblet cell hyperplasia and 

RELMß expression 

 

Tuft cell-derived IL-25 commences a positive feedback loop within the intestine 

by recruiting innate lymphoid cells that secrete IL-4/13 further amplifying the tuft 

cell response, goblet cell and tuft cell hyperplasia and eventual expulsion(Gerbe 

et al., 2016).  We therefore next examined goblet cell responses in the MIF-

deficient mice. 

 

The small intestinal epithelium of mice infected with N.brasiliensis for 6 days 

was Periodic Acid-Schiff (PAS) stained to enumerate goblet cells. Notably 

hyperplasia was evident in wild-type mice but limited in the MIF-deficient hosts 

(Fig. 4.9A). The numbers of goblet cells per villus increased from 8 to 16 in 

infected BALB/c mice, whereas the goblet cell number in the MIF-deficient mice 

increased only fractionally from 10 to 11 goblet cells per villus. Therefore there 

was approximately 1.5 times greater numbers of goblet cells in the BALB/c 

infected mice compared to the MIF deficient mouse. Similar sections were also 

stained for RELMß protein, which was found to be highly expressed in infected 

wild-type but absent from MIF-deficient mice (Fig 4.2.9 B). There was over a 

hundred fold difference in the BALB/c RELMß protein counts when comparing 

infected BALB/ and MIF-deficient small intestinal epithelium (BALB/c infected 

mice had RELMß count per crypt villus axis of 4.7 but in the MIF infected mice 

this was only 0.04). The level of RETLNB (RELMß) gene expression in the 

proximal small intestinal tissue was then assessed, and was 13 fold higher in 

the BALB/c infected mice compared to MIF-deficient infected mice (Fig 4.2.9 C).  

Representative images of intestinal tissue stained for RELMß protein from naive 

and infected wild-type and MIF-deficient mice are presented in Fig 4.2.9 D. 
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Figure 4.2.9 A-D MIF-deficient mice have impaired goblet cell hyperplasia, 
RELMβ production and RETLNB (RELMβ) gene expression in the small intestine. 

BALB/c and MIF-/- mice were infected with 400 N. brasiliensis L3 larvae s.c.. Small intestine 
was harvested at d6 p.i., fixed in 10% NBF at 4°C overnight and paraffin embedded. Cut 
sections were stained for RELMβ. Duodenum wasfrozen in RNA laterfor RNA extraction 
andqRT-PCR A Quantification of number of mucus+ goblet cells per villus (100 crypt 
villus/axes counted per section); performed once. B Average number of RELMβ+ cells per 
crypt/villus axis (100 crypt/villus axis assessed per section), representative of three 
experiments. C Gene expression analysis by qRT-PCR of proximal duodenum for 
transcription levels of RETLNB (RELMβ); data from pooled experiments represented as 
shaded and unshaded circles. D Representative light microscopy images of small intestinal 
sections stained for RELMβ in BALB/c and MIF-/-  naive and infected mice. Scale bar 
equals 100μm. Data analysed by one way ANOVA, and corrected for multiple errors by a 
Sidak’s multiple comparison test. * p<0.05, ** p<0.01, *** p<0.001. Contributions: Dr F 
Gerbe (Jay lab, Montpellier) performed RELMβ stainings. Some qRT-PCR performed by 
Ms N.Britton. 



Chapter 4 – MIF deficiency during N. brasiliensis infection 

 123

 

4.2.10 MIF-deficient mice have impared type-2 intestinal immune 

responses within the lymphoid compartment 

 

We next assessed protein expression of the transcription factor GATA3, who 

controls gene expression of type-2 cytokines in both ILC2s and Th2 cells. 

Therefore, differences in cell numbers positive for the protein GATA3 in the 

intestinal tissue suggests changes in ILC2 and/or Th2 cell numbers.  When light 

microscopy images of intestinal sections stained for GATA3 protein were 

assessed (Fig 4.2.10A), we found infected MIF-deficient mice (mean of 2.3 

GATA3+ cells/villus) to have significantly reduced numbers of cells expressing 

GATA3 within the intestinal epithelium compared to wild-type mice infected with 

N.brasiliensis (mean of 12 GATA3+ cells/villus) (Fig 4.10A).  Concomitant, gene 

expression of the transcription factor Gata3 in harvested duodenal tissue from 

N.brasiliensis infected MIF deficient mice was only marginally increased 

compared to the respective naïve control group and significant attenuated when 

compared to infected wild-type mice (Fig 4.2.10B). In line with the reduced type-

2 immune profile and diminished peritoneal eosinophilia (see Fig. 4.2.6E) in 

infected MIF-/- mice we also observed significantly dampened induction of IL-5 

gene expression in N.brasiliensis infected MIF-deficient animals (Fig 4.2.10C) 

when compared to the infected BALB/c group. These data indicated that there 

is a greatly reduced accumulation of either or both TH2 and ILC2s in the lamina 

propria of the intestine, in parallel with reductions shown by the flow cytometry 

of mesenteric lymph node cells (Fig 4.2.4-5). 
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Figure 4.2.10 A-D: MIF-deficient mice have impaired Type 2 intestinal 
responses 

BALB/c and MIF-/- mice were s.c. infected with 400 N. brasiliensis L3 larvae for 6 days: 
Sections cut of paraffin-embedded small intestine were stained for GATA3 by 
immunohistochemistry A-B). (A) Quantification of number of GATA3 positive cells per 
villus as an average of 100 counts was performed. Data representative of two 
experiments. qRT-PCR of proximal duodenum was performed to assess transcription 
levels of Gata3 (B) and IL-5 (C). 2 experiments pooled and shown in filled and shaded 
circles. (D) Representative light microscopy images of small intestinal sections stained for 
GATA3. Scale bar equals 100 μm. Data analysed by one way ANOVA, and corrected for 
multiple errors by a Sidak’s multiple comparison test. * p<0.05, ** p<0.01, *** p<0.001. 
Contributions: Dr F Gerbe (Jay lab, Montpellier) performed GATA3 stainings. Some qRT-
PCR performed by Ms N.Britton. 
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4.2.11-12 IL-25 rescues the immunological responses in the MIF-

deficient mouse 

 

IL-25 is produced by eosinophils (Terrier et al., 2010), basophils, mast cells and 

by epithelial cells (Oliphant et al., 2011). However, the most important source of 

IL-25 is the tuft cell. Mice that lack Pou domain class 2, transcription factor 3 

(Pou2f3) are deficient in the production of IL-25 and in helminth expulsion 

(Gerbe and Jay, 2016). This suggests that the most important physiological 

source of IL-25 is the epithelial tuft cell. IL-25 produced by tuft cells and has 

been found to be an important epithelial cell alarmin in the response to N. 

brasiliensis and results in upregulation of ILCs (Fallon et al., 2006; Gerbe et al., 

2016; Zhao et al., 2010). In this setting, IL-25 acts upstream, or independently 

of, IL-13 because administration of exogenous IL-25 is unable to rescue 

expulsion of N. brasiliensis in a IL-13-deficient mouse (Zhao et al., 2010). In 

addition, experiments in IL-25R chimeric mice demonstrate that loss of IL-25R 

in the haematopoetic compartment results in failure to expel H. polygyrus 

(Smith et al, unpublished results). We therefore explored whether exogenous 

IL-25 is able to rescue the phenotype of the MIF-deficient mouse.  

 

Two groups of BALB/c and MIF-deficient mice were infected with N.brasiliensis 

L3 larvae and sacrificed at d6 p.i., one of these groups was administered rIL-25 

i.p. daily from d1-5 of infection (Fig4.2.11A) while the other group was 

administered PBS i.p. (vehicle) daily from D1-5. At day 6 p.i., both groups were 

compared to assess the ability of rIL-25 to rescue the immunological phenotype 

of the MIF-deficient mouse. 

 

The numbers of  Lin- CD4- ICOS+ ILCs (Fig 4.2.12A) and  GATA3+ ILCs (ILC2s) 

(Fig 4.2.12B) is rescued with the administration of rIL-25. The percentage of 

ILCs in the MLN in BALB/c mice increases from 0.011 to 0.09 and 0.5% in 

naïve, N.brasiliensis treated mice, and N.brasiliensis treated mice given rIL-25. 

In MIF-deficient mice, the percentage of ILCs in the MLN is 0.018% in naive 
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mice, and rises to 0.03% and 1.67% in N.brasiliensis treated mice and 

N.brasiliensis treated mice given rIL-25. The percentage of MLN that are ILCs 

rises almost 8 fold in the BALB/c mice on infection, but only 2 fold in MIF 

deficient mice on infection which is similar to the data presented in 5.5. It is 

clear that administering MIF deficient mice rIL-25 results in restoration of the 

percentage of ILCs.  This number similarly increases for ILC2s (Fig 5.2.12B). 

The number of T cells is not affected by the administration of rIL-25 at d6 of N. 

brasiliensis infection (Fig 4.2.12C). 

 

The cellularity of the peritoneal exudate cells was increased with the 

administration of rIL-25. The number of cells in the peritoneal cavity recovered 

at d6 p.i. was 3.78 x 10^6 in N.brasiliensis infected mice to 17 x 10^6 in 

N.brasiliensis mice given rIL-25 (Fig4.2.12D). This was however less obvious in 

the MIF-deficient mice with cell counts increasing from 1.2 x 10^6 to 3.4 x 10^6 

in MIF-deficient mice infected with N.brasiliensis and infected mice additionally 

given rIL-25 respectively. We looked at the peritoneal exudate cell CD11b+ 

F4/80+ macrophages (Fig 4.2.12E). We found that giving rIL-25 increased the 

percentage of RELMα+ macrophages in the peritoneal cavity from 46 to 78% in 

the wild type BALB/c mouse. In addition, administration of rIL-25 rescued the 

numbers of RELMα+ macrophages in MIF-deficient mice (the percentage of 

positive macrophages increased from 9% and 7% in naïve and N.brasiliensis 

infected mice to 93% in N.brasiliensis infected mice given rIL-25). We also 

found that administration of rIL-25 for five days increased the percentage of 

Siglec-F+ eosinophils in the peritoneal cavity in BALB/c mice, and rescued the 

numbers of eosinophils in the MIF-deficient mouse. The percentage of 

eosinophils in BALB/c mice rose from 9 to 12 to 27% in naïve, N.brasiliensis 

infected and infected mice given rIL-25 respectively. This rescue of eosinophils 

was noted in the MIF deficient mice also (This rose from 4.8 to 8.9 to 26% of 

the peritoneal exudate cell population in naïve, N.brasiliensis infected and 

N.brasiliensis infected mice given rIL-25 respectively). 

 

 



Chapter 4 – MIF deficiency during N. brasiliensis infection 

 127

 

 

 

 

 

Figure 4.2.11 rIL-25 is able to rescue the epithelial cell phenotype in the MIF-
deficient mouse. 

A. Schematic of experimental design to administer recombinant IL-25 to a group of 
infected mice.Two groups of BALB/c and MIF-/- mice were infected with 250-400 N. 
brasiliensis L3 larvae s.c. on d0. One of the infected groups of BALB/c and MIF-/- mice 
were also administered rIL-25 800ng in 200μl PBS, the other group were given control 
(200μL PBS was instilled) i.p. on d1-5. These were compared to naive BALB/c and MIF-

/- mice. Tissue was harvested on d6. Data analysed by one way ANOVA, and corrected 
for Multiple errors by a Sidak’s multiple comparison test. For all panels, * = p<0.05, ** = 
p<0.01, *** p<0.001. 
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Figure 4.2.12 A-F: MLN ILC, peritoneal M2 and eosinophil responses are 
rescued with administration of recombinant IL-25. 

BALB/c and MIF-/- mice were infected with 400-250 N. brasiliensis L3 larvae s.c for six 
days. Two infected groups were rescued with rIL-25, tissue harvested on D6 
Flow cytometry for (A) percentage ICOS+ Lin- CD4- ILCs, (B) percentage of GATA3+ 
ILCs,  (C) percentage CD4+ T cells, (D) Total PEC cell count, (E) percentage CD11b+ 
F4/80+ positive for RELMα (F) percentage SiglecF+ eosinophils at d6 of infection. Data 
pooled from two experiments combined. Data analysed by one way ANOVA, and 
corrected for Multiple errors by a Sidak’s multiple comparison test. For all panels, * = 
p<0.05, ** = p<0.01, *** p<0.001.  Contributions: sample preparation Dr S.Loeser. 
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4.2.13 IL-25 rescues the epithelial cell responses in the MIF-deficient 

mouse 

 

We quantified the DCLK1 positive events in the small intestine of the BALB/c 

and MIF-deficient mice that were rescued with rIL-25. We found that 

administering rIL-25 increased marginally the numbers of DCLK1 positive cells 

per crypt/villus axis in the small intestine of BALB/c mice (from 0.2 in naïve, to 

4.2 in N.brasiliensis infected mice and 6.19 in N.brasiliensis infected mice which 

were also administered rIL-25). The number of DCLK1+ events rose from 0.1 in 

naïve, to 0.2 in N.brasiliensis infected mice to a complete rescue of the 

phenotype to 6.1 DCLK1+ cells per crypt villus axis in MIF-deficient mice 

infected with N.brasiliensis and given rIL-25 (Fig 5.2.13 A). 

 

Similarily this is the case with the GATA3+ counts. Mean GATA3+ counts per 

villus increased from 1.15 to 8.5 and 10.2 in BALB/c naïve, N.brasiliensis 

infected mice and N.brasiliensis infected mice given rIL-25. In the MIF-deficient 

mice, there was rescue of the GATA3+ counts per villus with the administration 

of rIL-25. The average GATA3+ counts per villus rose from 0.77 to 2.27 and 

11.87 in MIF-deficient naïve, N.brasiliensis infected mice and N.brasiliensis 

infected mice given rIL-25 (Fig 5.2.13B). In keeping with this the level of mRNA 

transcription of Gata3 (Fig 5.2.13C) and IL-5 (Fig 5.2.13 D) are rescued with the 

administration of rIL-25 in the MIF-deficient mice given rIL-25 to the levels 

observed in BALB/c mice that were infected with N.brasiliensis. 

 

Administration of rIL-25 also rescued the production of RELMβ protein in MIF-

deficient infected mice to levels observed in BALB/c mice infected with 

N.brasiliensis (5.68 RELMβ+ cells per crypt villus axis in the MIF-deficient mice 

given rIL-25 compared to 5.75 RELMβ+ cells per crypt/villus axis in the BALB/c 

mice infected with N.brasiliensis). 
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Figure 4.2.13 A-F Duodenal GATA3 and RELMb are rescued with 
administration of recombinant IL-25 in MIF-deficient mice. 

BALB/c and MIF-/- mice were infected with 400-250 N. brasiliensis L3 larvae s.c for six 
days. Two infected groups were rescued with rIL-25, tissue harvested on D6 
(A) Average of 100 small intestinal DCLK1 counts per villus axis - representative of two 
experiments (BALB/c Nb IL-25 performed once) 
(B) Average of 100 small intestinal GATA3 counts per villus - performed once only 
qPCR for duodenal GATA3 (C) and IL-5 (D) transcription. 
Data representative of 2 experiments (E) Average of 100 small intestinal RELMβ counts 
per villus axis - representative of two experiments (BALB/c Nb IL-25 performed once). 
(F) Duodenal RETLNB gene expression by qRT-PCR (representative of two 
experiments) 
Data analysed by one-way ANOVA, and corrected for multiple errors by a Sidak’s multiple 
comparison test. For all panels, * = p<0.05, ** = p<0.01, *** p<0.001. Contributions: Dr F 
Gerbe (Jay lab, Montpellier) performed DCLK1 RELMβ and GATA3 stainings. Some qRT-
PCR performed by Ms N.Britton. 
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4.2.14 4-IPP- MIF inhibitor replicates the phenotype of the MIF-deficient 

mouse 

 
There have been several reports of the role of MIF during organogenesis 

(Kobayashi et al., 1999), and neonatal development (Bernhagen et al., 2007). 

Therefore in order to assess the effect of acute deficiency of MIF on the 

immune systemSo far we have utilised knockout mice and we wished to verify 

the results utilising, 4-IPP, an inhibitor of MIF which covalently modifies MIF 

(Winner et al., 2008) on BALB/c mice. We administered 50μg of 4-IPP i.p. in 

DMSO as a solubilising agent at d0, 2 and 4 in wild-type BALB/c mice which 

were infected with N.brasiliensis. Comparisons were made against three other 

groups: a naïve control group, a group that was infected with N.brasiliensis only 

and a group given DMSO vehicle without 4-IPP on D0, 2 and 4 along with the 

infection (Fig 4.2.14 A).  

 

Parasitology performed by Ms Yvonne Harcus, demonstrated that 

administration of 4-IPP increased the worm and egg burden in N.brasiliensis 

infection (data not shown). We found that 4-IPP is able to replicate the MIF-

deficient phenotype when examining DCLK1+ cells in the small intestinal 

epithelium (Fig 4.2.14B). We found that mice given DMSO and infected with 

N.brasiliensis had an average DCLK1+ count of 4.34 per crypt villus axis, mice 

given 4-IPP in DMSO had a reduced average DCLK1+ count of 0.92 per crypt 

villus axis  (Fig 4.2.14B). In addition the percentage of ICOS+ CD4- Lin- ILCs 

reduced from 0.18% to 0.06% of the MLN from the DMSO to the 4-IPP in 

DMSO respectively. There was a similar reduction in the population of ILC2 (Fig 

4.2.14D). 

 

There was also a mean reduction of 2.6 in the transcription of RETLNB in the 

duodenum in the mice administered 4-IPP when compared to DMSO, although 

high variance precluded this effect reaching statistical significance (Fig 

4.2.14E).  
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Figure 4.2.14 A-E 4-IPP, a small molecule inhibitor of MMIF can replicate ILC 
and epithelial tuft cell phenotype. 

 (A) Experimental schematic: BALB/c mice were infected with 400 N. brasiliensis L3 
larvae for 6 days. d0,2,4 mice were administered 1mg 4IPP in 50μl DMSO or 50μl 
DMSO vehicle i.p. (B) Quantification of DCLK1+ cells in average of 100 crypt villus axes. 
Flow cytometry for percentage of ICOS+ Lin- CD4- ILCs (C) and percentage of GATA3+ 
ILCs (ILC2) (D) in MLN. (E) Gene expression analysis by qRT-PCR for RETLNB 
transcription. Data in B,C,D representative of two experiments, data in D performed 
once.. Data analysed by one way ANOVA, and corrected for multiple errors by a Sidak’s 
multiple comparison test. For all panels, * = p<0.05, ** = p<0.01, *** p<0.001. 
Contributions: Dr F Gerbe (Jay lab, Montpellier) performed DCLK1 RELMβ and GATA3 
stainings. 
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4.2.15 MIF given intravenously is not able to rescue the phenotype of 

the MIF-deficient mouse 

 

We attempted to rescue the MIF-deficient phenotype by administering rMIF at a 

dose of 5μg i.v on d-1, 0, 2 and 4 of N.brasiliensis infection in MIF-deficient 

mice and compared parasitological responses to a MIF-deficient control group 

which only received N.brasiliensis infection. We found that MIF does not rescue 

the ability of the MIF-deficient mice in expelling N.brasiliensis infection. In fact 

there was a heavier worm burden in the MIF-deficient mouse given rMIF 

(Fig4.2.15A-B).   

 

We administered MIF IL-13 i.v. to assess its ability to amplifying the response of 

IL-13, as previously we have reported the ability of MIF to synergise with IL-4 in 

bone marrow macrophages (Prieto-Lafuente et al., 2009). We therefore injected 

wild type BALB/c mice with 200μg of recombinant IL-13 on D2-5 and MIF on 

D1,3 and 5. We found a small but non-significant rise in the number of DCLK1 

positive cells in the small intestine on administering MIF i.v. (Fig 4.2.14D). MIF 

did not affect the ability of rIL-13 to induce DCLK1 positive cells in the intestine.   
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Figure 4.2.15 A-D MIF IV does not rescue parasitology or cellular phenotype in 
the small intestine 

(A) Experimental schematic of rescue with IV MIF: MIF-/- were injected with 5μg of rMIF 
IV on d-1, 0, 2 and 4 and infected with 250L3 N.brasiliensis infection at d0. Parasitology 
was obtained at d10. These were compared to a MIF-/- control group that were infected 
with 250L3 N.brasiliensis only. This experiment was performed once. 
(B) Worm counts obtained at d10 of N.brasiliensis infection in MIF-/- mice and MIF-/- 
mice administered rMIF. (C) Experimental schematic attempt at inducing epithelial cell 
responses in BALB/c mice were injected with MIF IV and IL-13 200ng on d2-5 i.p.- 
parrafin embedded sections were stained for DCLK1. This experiment was performed 
once. (D) Quantification of average  DCLK1+ cells  per crypt villus axis .  Data from one 
experiment, analysed by one way ANOVA, and corrected for multiple errors by a 
Sidak’s  test. For all panels, * = p<0.05, ** = p<0.01, *** p<0.001. Contribuitons: IVs 
performed by Dr M.White 
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4.2.16 Expression of MIF receptors in the peritoneal cavity and 

mesenteric lymph node 

 

CXCR2 expression occurs on immune cells, epithelial cells and endothelial cells 

(Stadtmann and Zarbock, 2012). CXCR4 is expressed immune cells including T  

cells and endothelial cells (Chatterjee et al., 2014). CD74 is the invariant chain 

and is generally expressed in cells that have MHC2. We assessed the 

expression of MIF receptors CD74, CXCR4 and CXCR2 expression on immune 

cells in the peritoneal cavity to identify cells that may be involved in driving the 

effects of MIF on cellular recruitment. BALB/c mice infected with N.brasiliensis 

were assessed on the expression of the receptors for CD11b+ F4/80+ 

macrophages, CD11b+ Siglec-F+ eosinophils (in the peritoneum) and Lin- CD4- 

ICOS+ ILCs (in the MLN).  

Approximately 25% of the peritoneal cavity CD11b+ F4/80+ macrophages were 

positive for CXCR2, CXCR4 and 100% for CD74 (Fig 4.2.16 A-C). Additionally, 

we found that peritoneal CD11b+ Siglec-F+ eosinophils did not express CXCR2, 

CXCR4 or CD74 (4.2.16 D-F). We found no difference in the levels of 

expression between infected and naïve mice (data not shown). 

 

The ILC population of the MLN expressed CXCR4 (Fig 4.2.16 H) but not 

CXCR2 (Fig 4.2.16 G) or CD74 (Fig 4.2.16 I). Almost all of the ILCs were 

positive for CXCR4 expression. As there are very few ILCs in naïve mice, it was 

not possible to compare naïve and infected mice.  
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Figure 4.2.16 A-I MLN and Peritoneal exudate cell receptor expression at d6 of 
N.brasiliensis infection. 

 
BALB/c mice infected with N.brasiliensis for 6 days. Peritoneal exudate cells and 
mesenteric lymph node were prepared for flow cytometric analysis. Markers to 
deterimine cell types in PEC were CD11b, SigF, F4/80. In the MLN ILCs were 
determined by a combination of Lin, ICOS, CD4, CD45. These were co-stained with 
markers for CXCR2, CXCR4 and CD74 to determine which cells produced these 
receptors during N.brasiliensis infection. A-C. PEC Macrophage expression of CXCR2 
(A), CXCR4 (B) and CD74 (C) from BALB/c infected with Nb 250L3.  D-F PEC 
Eosinophil expression of CXCR2 (D), CXCR4 (E) and CD74 (F) from BALB/c infected 
with Nb 250L3.  G-I MLN ILC expression of CXCR2 (G), CXCR4 (H) and CD74 (I) from 
BALB/c infected with Nb 250L3.   
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4.3 DISCUSSION 

The effect of MIF in type 2 immunity have been explored in chapters 4 and 5 

of this thesis. MIF is a chemokine that results in cellular recruitment to sites 

of infection (Calandra et al., 1994). First and foremost, MIF affects cellular 

recruitment, as noted in N.brasiliensis model in the lung, BAL, peritoneal 

lavage and MLN. This has been replicated in the peritoneal lavage of the 

H.polygyrus model also.

Secondly the absence of MIF affects the recruitment of early innate lymphoid 

cells namely ILCs and TH2 cells. There is a paucity of TH2 cytokines IL-4, IL-

5 and IL-13 in the MIF deficient model at d6 of infection. The hypothesised 

receptors of MIF are CXCR2, CXCR4 and CD74 (which acts as a co-receptor 

for CXCR2) (Bernhagen et al., 2007). ILCs in the mesenteric lymph nodes 

are shown to express CXCR4 but not CXCR2, so could be directly affected 

by MIF. There are also a reduced number of GATA3 positive cells in the 

lamina propria of the MIF-deficient mouse (although without further staining it 

will not be possible to say if these are ILCs or TH2 cells but from the flow 

cytometric data –it is likely to be a reduction in both types of cells). The cells 

responsible for early TH2 cytokines are by far the ILCs. ILCs proliferate at 

the site of infection producing IL-5 which results in eosinophilia (Filbey et al., 

2018), and IL-13 which commences the epithelial cell responses in the gut 

resulting in weep and sweep of the intestinal contents (Grencis, 2015). They 

migrate to the appropriate site of infection and respond to IL-25. This then 

starts the epithelial cell feedback loop as describe by Gerbe and 

colleagues(Gerbe et al., 2016). IL-25 recruits ILCs that produce TH2 

cytokines that stimulate further tuft cell hyperplasia. 

Thirdly, MIF may directly act on macrophages and eosinophils. Previous data 

demonstrated that MIF synergised with IL-4 to induce the alternative 

activation of bone marrow derived macrophages in isolation of other cell 

populations (Prieto-Lafuente et al., 2009). We show that the MIF deficient 
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mouse has reduced percentage of alternatively activated macrophages, and 

reduced eosinophilia in the peritoneal cavity after infection. Peritoneal 

macrophages have been shown to express CXCR2, CXCR4 and CD74 and 

therefore, there is the potential for MIF to directly influence the macrophage 

activation status, although the signalling mechanisms are unknown. Previous 

data has shown MIF to promote eosinophil chemotaxis in vitro (de Souza et 

al., 2015). Within the MIF-deficient mouse, though, it is likely the alternative 

activation is aided by the increased production of IL-4 and 13 from the ILCs 

and T cells in the wild type mouse. MIF has also been shown to  

 

Fourthly, MIF is associated with a strong Type 2 epithelial cell phenotype- 

and is required for optimal upregulation of tuft cells, goblet cell hyperplasia, 

and RELMβ production. The data demonstrate a failure of the MIF deficient 

mouse to expand a suite of Type 2 cells -  ILC2s, TH2s, eosinophils and M2 

macrophages - during a helminth infection. This is however, likely due to the 

relative deficiency in cytokines IL-13 and IL-4. Thus, tuft cells in MIF-deficient 

organioids are equally able to proliferate when IL-4/IL-13 is added to the 

media. Dr C.Drurey has also shown in an organoid model, that rMIF on its 

own or with the addition of IL-13/4 did not affect DCLK1+ intestinal tuft cell 

proliferation in wild type organoids (unpublished data). This suggests that 

there is no deficit in the ability of epithelial cells to respond, but there is a 

deficit in the overall amount of cytokine required to initiate a Type 2 epithelial 

cell response. 

 

And finally this immunological phenotype is rescuable by administration of 

rIL-25, a cytokine known to up-regulate the ILC population, but which also 

has an effect in the myeloid and eosinophil compartment early in infection.  

IL-25 receptor chimera experiments have shown that it is the immune 

compartment that is responsive to rIL-25 (Katie Smith unpublished). The 

administration of rIL-25 results in recruitment of the ILC, TH2 cells and other 

type 2 immune cells. This then restarts the positive feedback circuit (Gerbe et 

al., 2016) that is required to initiate tuft cell proliferation in the MIF deficient 
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mouse. The fact that we can rescue the MIF deficient phenotype suggests 

that the machinery for a type 2 response is intact- and this is supported by 

the fact that STAT6 phosphorylation and signalling is intact. This may also 

explain the surprising fact that MIF is not rescuable by administration the 

cytokine IV, and in fact the administration of MIF results in failure of 

expulsion of parasites.  

 

MIF is blocked in its biological action by 4-IPP. This inhibitor results in 

reduced ILCs, eosinophils and alternative macrophage activation. The 

epithelium of the 4-IPP treated mice demonstrates reduced DCLK1+ 

intestinal tuft cells, and in addition, has a higher burden of N.brasiliensis 

worm 

 

This data has been summarised in the schematic shown in Fig 5.16. 

 

Further experiments will need to explore which of the immune cells are 

directly influenced by MIF, such as in ILC in vitro culture models. Work has 

been undertaken assessing the effect of MIF in organoid systems, which 

suggest that MIF affects the epithelial responses indirectly (by resulting in a 

diminished amount of IL-13/4 being produced). 

 

 

5.3.1 MIF Schematic 

 

Based on the data presented we have attempted to formulate this into a 

schematic describing the way MIF functions to accelerate Type 2 immune 

responses (Fig 5.3.1). Effectively the most important source of IL-25 is the 

epithelial tuft cell, these result in the accumulation of IL-25 responsive cells 

such as ILCs which produce IL-13 and forms part of a positive feedback loop (in 

blue). MIF is produced by the epithelium (Haber et al., 2017) (but also by other 

immune cells) in response to helminths infections. This leads to the recruitment 

of the IL-25 responsive cells including ILCs, which produce IL-13 and reinforce 
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the positive feeback loop. In the absence of MIF, there is not enough IL-13 to 

adequately stimulate IL-25 production in the epithelium. MIF acts via putative 

MIF receptors on macrophages, ILCs etc. Those receptors that were found to 

be expressed by flow cytometry are depicted schematically in the diagram 

below. 

 

 
Figure 4.3.1 MIF schematic- role of MIF in type 2 immunity 

A summary schematic figure demonstrating the effect of MIF on the various cell types of 
the immune system and the receptors potentially used by MIF to elicit Type 2 immune 
responses in the epithelium. 
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Chapter 5- Role of CXCR2 in helminths infections 

5.1 Introduction 

Chemokine receptors are present on leucocytes and are exposed to multiple 

chemokines, this leads to activation of intracellular signalling cascades and 

integrin binding to counter-receptors. The resulting process mediates 

adhesion to the endothelium and extravasation or transmigration. The 

chemokine receptors are part of the G-protein coupled receptor family.  

CXCR4 and CXCR2 are two chemokine receptors which also bind MIF 

(Calandra and Roger, 2003). The ligand for CXCR4 is CXCL12 (Walenkamp 

et al., 2017). The known ligands for CXCR2 are CXCL1, 2, 3, 5, 6, 7 and 8, 

the most potent being CXCL8 which is only expressed in humans 

(Stadtmann and Zarbock, 2012). Binding of CXCR2 to its ligand results in 

activation of G protein, which dissociates into two subunits, the Gα-subunit 

and the Gβγ, to activate different signalling molecules. The Gβγ mediates 

signal transduction by interacting with other proteins including 

phosphatidylinositol-3-kinases (PI3K) (Hur and Kim, 2002). Downstream 

effects of PI3K mobilisation include activation of ERK 1 and 2 

phosphorylation (Stadtmann and Zarbock, 2012), (Raghuwanshi et al., 

2012).  

CXCR2 and CD74 are part of a receptor complex and are responsible for 

monocyte arrest in areas of inflamed endothelium in response to MIF; MIF 

also mediates arrest of CXCR4 expressing T cells (Bernhagen et al., 2007).  

CXCR2 normally binds the cognate ligand CXCL8 via an N-terminal Glu-Leu-

Arg (ELR) motif. MIF expresses a pseudo-ELR motif (two nonadjacent but 

appropriately spaced residues (Asp and Arg)) that mimicks the ELR 

chemokines (Blucala, 2012). CXCR2 binds the pseudo-ELR motif of MIF 

(Weber et al., 2008).  Expression of the ligand CXCL12 results in arrest of 
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CXCR4 expressing cells, however, MIF has also been shown to be the ligand 

for CXCR4 (Bernhagen et al., 2007).   

CXCR2 is expressed on neutrophils and is essential for neutrophil egress 

from the bone marrow (Eash et al., 2010). In the context of a helminth 

infection, neutrophils produce type 2 products such as RELMα and 

YM1(Allen and Sutherland, 2014); in addition, neutrophils and macrophages 

have been reported to function sequentially to clear N. brasiliensis and 

generate immunity to secondary infection with H. polygyrus (Chen et al., 

2014). 

Recently, myeloid derived suppressor cells (MDSCs) have also been found 

to express CXCR2 (Katoh et al., 2013; Zhang et al., 2017). CXCR2 deficient 

mice have attenuated tumorigenesis in a DSS model and adoptive transfer of 

CXCR2-expressing MDSCs restores tumorigenesis (Katoh et al., 2013). 

Myeloid derived suppressor cells encompass two different populations: 

polymorphonuclear MDSCs (PMN-MDSCs) that are similar to neutrophils, 

and monocytic MDSCs (M-MDSCs) which are similar to monocytes. The M-

MDSCs are CD11b+Ly6G–Ly6Chi cells with low side scatter and PMN-

MDSCs are CD11b+Ly6G+Ly6Clo cells with high side scatter (Bronte et al., 

2016). Additional markers can differentiate between MDSCs and typical 

neutrophils/monocytes such as s100a9 (Zhao et al., 2012). The functional 

ability of MDSCs to supress immune cell is an important defining feature 

that can be measured by several assays, including inhibition of cytotoxic T 

lymphocyte activity (Bronte et al., 2016). 

Following on from the previous chapters, where we explore the effect of MIF 

deficiency, we chose to explore CXCR2, because is a known ligand for MIF 

(Bernhagen et al., 2007) and because of the known importance of CXCR2 in 

immune cells but particularly neutrophils (Eash et al., 2010) and myeloid 

derived suppressor cells.  We therefore chose to explore if we could replicate 

the MIF-deficient phenotype in a CXCR2 receptor knock out mouse model.  
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5.2 Results 

5.2.1 CXCR2-deficient mice expel N. brasiliensis within 7 days 

We assessed the parasitological responses of the CXCR2-deficient mice in 

comparison to those of wildtype mice in expelling N. brasiliensis parasites. A 

schematic of the experimental design is shown in Fig 5.2.1A, and all 

subsequent in vivo data was analysed at day 7 post infection. However, at 

D7 of infection, we found that both the wildtype and CXCR2-deficient mice 

had expelled their worm burdens completely. 

Cell populations were recovered from BAL, lung, peritoneum and MLN of 

CXCR2-/-, CXCR2-/+ and CXCR2+/+ mice at D7 of infection with 250 L3 

larvae of N. brasiliensis. There was an overall trend to reduced cell numbers 

in the lung (Fig 5.2.1 B) and BAL (Fig 5.2.1 C) of the CXCR2-deficient mice 

when compared to heterozygous and wildtype mice but this did not reach 

significance. 

The CXCR2-deficient mice have reduced total cell numbers in the peritoneal 

lavage; less than half of that found in heterozygous and wildtype mice (Fig 

5.2.1D). CXCR2-deficient mice had an average of 3.42 x 10^6 cells, with 

CXCR2 heterozygous mice and wildtype mice having 8.9 x 10^6 and 8.6 x 

10^6 cells respectively (Fig5.2.1D). There was an overall trend to reduced 

cells in the CXCR2-deficient mice in the MLN (Fig 5.2.1E), but again this did 

not reach significance. 
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Figure 5.2.1 Inflammation in response to N.brasiliensis by CXCR2-deficient 

mice. 

A BL/6, CXCR2-/- and CXCR2-/+ mice were infected with 250 N brasiliensis L3 larvae for 
7 days; Cell counts obtained by Nexelecom cellometer for Peritoneal Exudate Cells and 
BAL (C,D) and manual cell counting of Lung and MLN (B,E). Data pooled from two 
experiments, the two experiments are depicted as solid and open circles respectively 
Data analysed by one-way ANOVA, and corrected for multiple comparisons by a 
Sidak’s test. For all panels, * = p<0.05, ** = p<0.01, *** p<0.001. Contributions: 
experimental prep with Dr S. Loeser, mice obtained from Prof Graham. 
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5.2.2-3 Alternative activation of macrophages is impaired in response to N. 

brasiliensis in the lung of CXCR2-deficient mice. 

 

The lung markers CD11b, F4/80, CD11c, Siglec F were used to differentiate 

lung alveolar macrophages (CD11chi SiglecFhi CD11b-) or AM, from 

interstitial macrophages (CD11c- CD11b+ F4/80+) or CM, and eosinophils 

(CD11cint Siglec F hi). These markers were costained with intracellular marker 

RELMα for identification of the alternative activation/M2 phenotype. From this 

flow cytometry analysis, CXCR2-deficient mice had a trend towards a higher 

percentage of alveolar and interstitial macrophages in total lung single cell 

suspensions (Fig5.2.2 A,B), although their absolute numbers are comparable 

in all groups (Fig 5.2.2 C,D). Strikingly, however, there was greatly reduced 

expression of the M2 marker RELMα in CXCR2-deficient animals compared 

to wildtype or heterozygous mice (Fig5.2.3 E, F). In the case of alveolar 

macrophages, approximately 12% are RELMα+ in the CXCR2-deficient mice, 

whereas in the heterozygote and wildtype animals some 46% of AMs 

expressed this M2 marker.   An even starker difference was seen among 

interstitial macrophages, with approximately 2% of cells from the CXCR2-

deficient mice positive for RELMα, whereas 20% of heterozygote and 17 % 

of wildtype IMs were RELMα+ at D7 of N. brasiliensis infection. 

 

The expression of M2 products in the lung was further assessed by PCR for 

Arginase-1 and Ym1 (Chil3) as well as RELMα. There was a trend toward 

reduced transcription of Arginase 1 which was more than 2-fold lower than 

the wild-type level (Fig 5.2.3 A) but showing high variance, this did not reach 

statistical significance. RELMα expression was also reduced in the CXCR2-

deficient mice (Fig 5.2.3 B) by 12-fold and 8-fold compared to the 

heterozygotes and wildtype mice respectively. For YM1 the CXCR2 deficient 

mice had an even more marked 27- and 37-fold reduction Chil3 mRNA 

compared to heterozygotes and wildtype mice (Fig 5.2.3C) 
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Figure 5.2.2 Alternative activation of lung macrophages is impaired in 
N.brasiliensis infection of CXCR2-deficient mice 

B6 mice, CXCR2-/- and CXCR2+/- were infected with 250 N. brasiliensis L3 larvae at d0. 
Lung tissue taken at d7 p.i and digested for analysis by flow cytometry. Data from two 
experiments, depicted as solid and open circles respectively. (A) Alveolar macrophage 
(AM);(B) Interstitial macrophage percentages  (C) Alveolar macrophage; (D) interstitial 
macrophage total numbers; (E) Percentage RELMαpositive AMs; (F) Percentage 
RELMα positive IMs. For all panels, * = p<0.05, ** = p<0.01, *** p<0.001. Contributions: 
experimental prep with Dr S. Loeser, mice obtained from Prof Graham. 
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Figure 5.2.3 Alternative activation of lung macrophages is impaired in 
response to N.brasiliensis in CXCR2-deficient mice 

 

B6 mice, CXCR2-/- and CXCR2+/- were infected with 250 N. brasiliensis L3 larvae d0. At 
d7 post infection, lung tissue was taken for gene expression analysis by qPCR. Data 
pooled from two experiments depicted as solid and open circles respectively. Gene 
expression in lung homogenate tissue for ARG1 (A), RELMα (B) and YM1 (Chil3)(C). 
Data analysed by one-way ANOVA, and corrected for multiple comparisons by a 
Sidak’s test. For all panels, * = p<0.05, ** = p<0.01, *** p<0.001. Contributions: 
experimental prep with Dr S. Loeser, mice obtained from Prof Graham. 
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5.2.4-5 CXCR2-deficient mice have reduced airway eosinophila in 

response to N. brasiliensis  

 

N. brasiliensis infection provokes significant airway eosinophilia (Coyle et al., 

1998). Notably, CXCR2 is also expressed on human eosinophils on priming 

with IL-5 (Heath et al., 1997), while CXCR2-deficient mice, after exposure to 

the fungus Aspergillus fumigatus, demonstrated markedly reduced 

eosinophila, and production of type 2 cytokines (Schuh et al., 2002).  We 

therefore examined eosinophil numbers in tissues of N. brasiliensis-infected 

wildtype and CXCR2-deficient mice. 

 

We observed a profound reduction of eosinophilia in the lungs of CXCR2 

deficient mice, compared to both heterozygote and wildtype mice, in terms of 

both percentage (Fig 5.2.4A) and absolute numbers (Fig 5.2.4B). Thus, at D7 

of N. brasiliensis infection, the CXCR2-deficient mice had only 4%  of all live 

single cells consisting of eosinophils in the lung at D7 of N. brasiliensis 

infection, compared to 21% and 19% in the heterozygote and wildtype 

animals. In contrast, lung neutrophils increased proportionately in the 

CXCR2-deficient mice at D7 (Fig5.2.4C) and there was a similar trend for 

increased absolute numbers that did not attain statistical significance (Fig 

5.2.4 D). 

 

Analysis of cells in the BAL fluids revealed a picture similar to the lung. Thus, 

there is an increase in the percentage of alveolar macrophages, reaching 

36% in CXCR2-deficient mice compared to only 16 and 10% in the BAL of 

heterozygotes and wildtype mice (Fig 5.2.5A). Similar differences were seen 

as trends in absolute AM numbers (Fig 5.2.5 B). Significantly, there is a 

sharp reduction in expression of RELMα within the AM population (Fig 

5.2.5C). Moreover, the percentage of eosinophils in the BAL at D7 of N. 

brasiliensis infection was 15% in the CXCR2 deficient mice, but 63 and 62% 

in the heterozygotes and the wildtype mice (Fig 5.2.5D).  
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Figure 5.2.4 CXCR2 deficient mice have fewer eosinophils in lung after 

N.brasiliensis infection 

BL/6 mice, CXCR2-/- and CXCR2+/- were infected with 250 N. brasiliensis L3 larvae. 
Digestion performed of lung tissue at d7 post infection for analysis by flow cytometry. A 
represent eosinophil percentage and total cell numbers in the lung. C,D represent  
neutrophil percentage and total cell numbers in the lung.All data is pooled from two 
experiments; the two experiments are depicted as solid and open circles respectively. 
Data analysed by one-way ANOVA, and corrected for multiple comparisons by a 
Sidak’s test. For all panels, * = p<0.05, ** = p<0.01, *** p<0.001. Contributions: 
experimental prep with Dr S. Loeser, mice obtained from Prof Graham. 
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Figure 5.2.5 CXCR2-deficient mice have fewer eosinophils and alternatively 
activated macrophages in the BAL after N.brasiliensis infection. 

BL6 mice, CXCR2-/- and CXCR2+/- were infected with 250 N. brasiliensis L3 larvae D0. 
Digestion performed of lung tissue at d7 post infection for analysis by flow cytometry. 
Data demonstrates percentage alveolar macrophage (AM) (A); total cell numbers of 
AMs (B); percentage of RELMα positive AMs (C); percentage of eosinophils (D) and 
total numbers of eosinophils (E). Data pooled from two experiments and are depicted 
as solid and open circles respectively. Data analysed by one-way ANOVA, and 
corrected for multipe comparisons by a Sidak’s test. For all panels, * = p<0.05, ** = 
p<0.01, *** p<0.001. Contributions: experimental prep with Dr S. Loeser, mice obtained 
from Prof Graham. 
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5.2.6 CXCR2-deficient mice have reduced TH2 cytokines and reduced 

percentage of GATA3 positive T cells 

 

The T cell profile of wild-type and CXCR2-deficient mice was then examined. 

The overall percentage of T cells in the lung of infected mice is only slightly 

affected by the absence of CXCR2 (Fig 5.2.6A). However, in contrast, the 

percentage of T cells which express GATA3 is reduced in the CXCR2-

deficient mice (Fig 5.2.6B) at only ~7%, compared to ~35% in the 

heterozygotes and wildtype mice. Cytokines were measured by cytokine 

bead arrays for the TH2 cytokines IL-4, 5 and 13. There was approximately a 

7-fold increase in the amount of IL-4 (Fig 5.2.6C,D) and over a 5-fold 

increase in the amount of IL-13 (Fig 5.2.6E) in the BAL of heterozygotes and 

wildtype mice when compared to CXCR2 deficient mice. 
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Figure 5.2. 6 TH2 responses in the lung are impaired in the CXCR2-deficient 

mice 

BL/6, CXCR2-/- and CXCR2-/+ mice were infected with 250 N. brasiliensis L3 larvae for 7 
days. Digestion performed of lung tissue at d7 post infection for analysis by flow 
cytometry, BAL fluid frozen for CBA. Percentage of T cells of all live single CD45+ve 
cells (A); Percentage of T cells that are positive for GATA3 (B); measured levels of IL4 
(C), IL5 (D) and IL13 (E) in the BAL fluid by CBA. Data from two experiments depicted 
as solid and open circles respectively (A,B)  Data from one experiment (C-E).  
Data analysed by one-way ANOVA, and corrected for multiple comparisons by a 
Sidak’s test. For all panels, * = p<0.05, ** = p<0.01, *** p<0.001. Contributions: 
experimental prep with Dr S. Loeser, mice obtained from Prof Graham. 
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5.2.7 CXCR2-deficient mice have reduced ILCs in the Lung 

 

Finally, the percentage of ILCs within the infected lung was found to be 0.4% 

in the CXCR2-deficient mice, but reached 0.8-0.9 % in the heterozygotes and 

wildtype mice (Fig 5.2.7A). The subset expressing GATA3 and thus 

designated as ILC2 cells, were even more profoundly deficient in the 

absence of CXCR2 (Fig 5.7B). Fig 5.7 C and D present flow plots of lung 

cells gated on Lin vs ICOS, with fewer Lin- ICOS+ cells in the CXCR2-

deficient mice versus wildtype mice.  
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Figure 5.2.7 ILC response is impaired in CXCR2-deficient mice 

BL/6, CXCR2-/- and CXCR2-/+ mice were infected with 250 N. brasiliensis L3 larvae for 
7 days. Digestion performed of lung tissue at d7 post infection for analysis by flow 
cytometry. Analysis of percentage ILCs (A) and percentage ILC2s (B) of all live CD45+ 

cells in lung. Dot plots of Lin vs ICOS in CXCR2-/-  (C) and BL/6 (D) mice. Data in A, B  
Data from two experiments depicted as solid and open circles respectively (A, B). Data 
analysed by one-way ANOVA, and corrected for multiple comparisons by a Sidak’s test. 
For all panels, * = p<0.05, ** = p<0.01, *** p<0.001. Contributions: experimental prep 
with Dr S. Loeser, mice obtained from Professor Graham. 
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5.2.8 CXCR2-deficient mice have partially diminished alternative activation 

of macrophages in the peritoneum 

 

In the peritoneal cavity, N. brasiliensis induces a strong alternatively 

activated macrophage response as seen in chapter 5. As the phenotype in 

the lung of CXCR2-deficient mice shows reduced polarisation of 

macrophages to an M2 phenotype, we assessed if this was true in the 

peritoneal cavity, in which macrophage numbers were similar in all 

genotypes (Fig 5.2.8 A). Surprisingly, the CXCR2-deficient mouse was able 

to polarise peritoneal macrophages to produce M2 products RELMα (Fig 

5.2.8B) and Ym1 (Fig 5.2.8C), although RELMα expression was reduced 

around 50% compared to the wildtype and heterozygotes. Further evidence 

that the CXCR2-deficient phenotype is less penetrant in the peritoneal cavity 

came from eosinophil numbers, which were only slightly reduced in the 

CXCR2-deficient homozygotes (Fig 5.2.8D). 

 

The transcription of M2 products in whole duodenal tissue was also 

assessed. While arginase expression was little different, RELMα and Ym1 

levels showed some degree of reduction, although insufficient to attain 

statistical significance. Hence, the effects of CXCR2 deficiency appear to be 

more marked in the lung than at other sites. 
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Figure 5.2.8 M2 responses in the peritoneum and gut are intact in CXCR2-
deficient mice 

BL/6, CXCR2-/- and CXCR2-/+ mice were infected with 250 N. brasiliensis L3 larvae for 7 
days. Peritoneal exudate cells were taken for flow cytometry and duodenum taken for 
qPCR at d7 p.i. Percentage of CD11b+ F4/80+ macrophages in the peritoneal cavity (A); 
percentage of peritoneal macrophages positive for YM1 (B) and RELMα (C); 
percentage of SiglecF+ eosinophils (D). Gene expression quantification by qPCR for 
ARG1 (E), RELMα (F) and YM1/ Chil3(G). Data analysed by one-way ANOVA, and 
corrected for multiple comparisons by a Sidak’s test. For all panels, * = p<0.05, ** = 
p<0.01, *** p<0.001. Contributions: experimental prep with Dr S. Loeser, mice obtained 
from Prof Graham. 
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5.2.9 CXCR2-deficient mice have intact Type 2 epithelial cell responses 

 

To assess if the CXCR2-deficient mice have a similar epithelial cell 

phenotype as the MIF-deficient mice, we stained the intestine for DCLK1, a 

marker for tuft cells in the intestine. We quantified the number of DCLK1 

positive cells per villus (average of 100 villi) and found no significant 

difference between the CXCR2-deficient and the wildtype or heterozygous 

mice (Fig 5.2.9D). 

 



Chapter 5-Role of CXCR2 in helminths infections 

 158 

 

Figure 5.2.9 CXCR2-deficient mice have retained type 2 epithelial cell 
responses 

B6 mice, CXCR2-/- and CXCR2+/- were infected with 250 N. brasiliensis L3 larvae D0. 
Tissue taken at day 7 and paraffin embedded for analysis. From left to right staining for 
DAPI, DCLK1 and merged images for the following groups: CXCR2-/- (A), CXCR2-/+ (B), 
B6 (C). Scale bar is 200μM. DCLK1 positive cells counts per crypt villus axis (taken of 
an average of 100 crypt/villus axes) in small intestine at day 7 p.i. (D). Data from one 
experiment. Contributions: experimental prep with Dr S. Loeser, mice obtained from 
Prof Graham. 
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5.2.10 CXCR2-expression on immune cells in the lung 

 

To identify which cells express CXCR2 in the lung, we stained cells for 

surface CXCR2 expression. We found that CXCR2 was expressed highly on 

neutrophils and eosinophils. There was very little expression on T cells and 

macrophages. It is therefore likely that CXCR2 mediates its effect on the lung 

macrophages through an intermediate cell type such as the neutrophil or the 

eosinophil (Fig 5.2.10). This experiment was performed on one occasion 

only, and would have to be repeated using CXCR2 deficient mice as 

negative controls in order to verify the result. 

 

 

 

 

 
Figure 5.2.10 CXCR2 expression in lung occurs predominantly in neutrophils 
and eosinophils. 

 (A) Cells were harvested from the lung and gated using CD11b, Siglec F, CD3, CD4, 
Ly6G to determine populations of alveolar macrophages, neutrophils, T cells and 
eosinophils. These were superimposed onto a plot of CD11b versus CXCR2, to 
demonstrate the expression of CXCR2 in the various populations within the lung. 
CXCR2 expression is represented in green for neutrophils, orange for eosinophils, blue 
for T cells and red for alveolar macrophages. Data obtained from one experiment. 
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Figure 5.2.11 CXCR2 expression on bone marrow macrophages 

 (A) d7 Bone marrow derived macrophages (BMDMs) from 6-8 week BL/6 mice grown 
to 7 days old with L929 supernatant for M-CSF. D7 macrophages stimulated with 
different concentrations of rIL4 (10ng/ml) and rMIF (1μg/ml). These are analysed for 
CXCR2 expression by flow cytometry. Data from one experiment. (B) Flow cytometry in 
CXCR2-/- and BL/6 BMDMs  grown to 7 days and stimulated for 24 hours with different 
concentrations of rIL-4 for 24 hours, before staining for intracellular RELMα Data from 
one experiment. 
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5.2.11 CXCR2-expression on bone marrow derived macrophages 

 

In order to assess if the effect of CXCR2 deficiency directly affects the ability 

of macrophages to produce alternatively activated products in response to a 

type 2 stimulus, we looked at CXCR2 expression in bone marrow derived 

macrophages grown for 7 days in L929 media as a source of M-CSF and 

stimulated with IL-4 or MIF. MIF reduces the expression of CXCR2, and IL-4 

treatment upregulates CXCR2 expression but also rescues it from MIF 

reduction (Fig 5.2.11A). In order to assess if a type 2 stimulus has a direct 

effect on the macrophage population, we grew, and then stimulated wildtype 

and CXCR2 deficient bone marrow derived macrophages with IL-4 and MIF 

for 24 hours. We stained the macrophages with F4/80 and CD11b along with 

intracellular RELMα. We found that the CXCR2 macrophages produced 

slightly less RELMα, but there was no intrinsic inability of the CXCR2 

deficient cells to make RELMα (Fig 5.2.11 B). 

 

 

 

 

 

 

5.3 Discussion 

 

In this chapter, we report that the absence of CXCR2 in the context of an N. 

brasiliensis infection results in a predominant phenotype in the lung. Similar 

to the MIF-deficient mice, there is a deficiency of eosinophils, M2 

macrophages, and ILC2s. However, whilst the MIF-deficient mice have a 

reduction in the numbers of tuft cells and reduced alternative activation of 

macrophages, there is no difference in the number of tuft cells in the intestine 
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of infected CXCR2 deficient mice, and only limited changes in M2 cells in the 

peritoneal lavage. 

In the lung, CXCR2 is expressed on CD11b+ Ly6G+ neutrophils and on 

CD11b+ SiglecF+ eosinophils but is absent from alveolar macrophages and T 

cells (Fig 5.10A). At this time, we have not assessed whether interstitial 

macrophages may express CXCR2, but based on the data now available it is 

likely that the effect of the MIF-CXCR2 interaction in the lung is mediated via 

neutrophils.   

CXCR2 is highly expressed on neutrophils. Classically, neutrophils are 

known to mediate type 1 innate immune responses, but more recently have 

been found to facilitate type 2 immune responses during helminth infections. 

For example, in an N. brasiliensis infection, Chen et al (Chen et al., 2014) 

depleted neutrophils by injecting antibody to neutrophil surface antigen 

lymphocyte antigen 6 complex, locus G (Ly6G). Depletion of neutrophils 

during the primary phase of infection resulted in delayed worm expulsion in a 

secondary infection but not primary infection. Neutrophils may mediate an 

effector macrophage population. A group of naïve mice undergoing a primary 

N.brasiliensis infection were transferred fluorescent electronically sorted

macrophages from the lung of mice that had neutrophils depleted and

another group given macrophages from mice that had neutrophils. The naïve

mice that were adoptively transferred macrophages from mice that had

neutrophils during primary infection had less worms in the gut at day 5 post

infection when compared to mice given compared macrophages from the

lung of mice that had the neutrophils depleted with Ly6G antibody. Depletion

of neutrophils indirectly affected macrophages by reducing the M2

phenotypic markers Arg1 and Ym1(Chen et al., 2014).  It could therefore be

that a neutrophil defect is responsible for the observed deficiency of M2

macrophage polarisation in CXCR2-deficient mice.
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MIF has been shown to interact with CXCR2 on aorto-endothelial cells 

(Bernhagen et al., 2007). Our in vitro data further suggests that the surface 

expression of CXCR2 can be modified by MIF, raising the possibility that this 

constitutes a negative feedback loop. Interestingly we found CXCR2 to be 

upregulated with IL-4 on bone marrow derived macrophages, and that the 

absence of CXCR2 has a modest but measurable effect on the expression of 

RELMα in bone marrow derived macrophages. Taken together, these 

findings suggest that CXCR2 may also directly affect macrophage 

populations at sites where it is expressed, such as the peritoneum, and may 

thus be directly important in Type 2 macrophage immune responses.  

 

As MIF is not the only ligand for CXCR2, and MIF also utilises CXCR4 as a 

receptor (Bernhagen et al., 2007), there may be confounders in the 

phenotype observed. This may account for the difference we see in the 

penetrance of MIF and CXCR2 deficiency, as the absence of MIF results in a 

generalised impairment of Type 2 responses that extends to the gut, while 

the requirement for CXCR2 is much more evident in the lung.  Despite this, 

the published evidence that MIF signals through CXCR2 and the new data 

from this study argue strongly that the MIF-CXCR2 interaction is responsible, 

either directly or indirectly, for the development of a Type 2 immune 

response within the lung innate cell compartment.  

 

Futher work may involve assessing the interaction of MIF with CXCR4 in the 

context of helminth infections. However, the CXCR4 deficient mouse is a 

lethal phenotype, therefore this analysis may only be possible using 

pharmacological CXCR4 inhibitors, which can have off target effects. 

Although there are striking immunological differences, there were no 

differences in parasitology at D7, and this would have to be repeated in a 

time course experiment to verify that there is no difference in expulsion. If, 

however, there is truly no difference in the ability of the CXCR2 mouse to 

expel N. brasiliensis it is suggestive that MIF operates independently of 

CXCR2 in the gut. as the proliferation of tuft cells was equal in the CXCR2 
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sufficient and deficient mouse. The CXCR2 deficient phenotype resulted in a 

TH2 deficiency in the lung, but not in the gut. In contrast, the MIF-deficient 

phenotype results in a TH2 deficiency in both the lung and the gut. The MIF-

CXCR2 interaction may be important in the lung phenotype, however, 

CXCR2 is also vital for neutrophil recruitment to the lung and this may be the 

true reason for the CXCR2 phenotype. This will be explored in the lab 

through neutrophil depletion experiments in the future but is beyond the 

scope of this thesis. 
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Chapter 6: Helminth modulation of colitis 

6.1 Introduction to Helminth modulation of colitis 

6.1.1 Inflammatory bowel diseases 

Ulcerative Colitis (UC) and Crohn’s disease (CD) are both inflammatory 

bowel diseases (IBD) resulting in significant long term morbidity and mortality 

(Molodecky et al., 2012). Potent anti-TNF treatments are available, however, 

contraindications, primary non-response, loss of response and intolerance 

occur often. Consequently, IBD is associated with a high economic impact 

not only from hospitalisation and surgery but also loss of productivity at work 

(van der Valk et al., 2014). In adults, the incidence has risen to 

24.3/100000/yr for UC and 12.7/100000/yr for CD in Europe (Molodecky et 

al., 2012). There is strong epidemiological evidence of the role of the 

environment in IBD phenotype. In the case for CD, there is an almost two-

fold increase risk in smokers and previous appendectomy increases risk of 

CD. There is also an inverse association between IBD and number of

siblings, large family size, and exposure to pets. The hygiene hypothesis

(Strachan, 1989) proposed that early-life microbial infections modulated

immune responses away from inappropriate hyperactivity; more recently this

has broadened to recognise that parasites are very effective at dampening

immune reactivity of their host (Maizels et al., 2014). For example, as

parasitic infections have decreased, human autoimmune disease incidence

has risen, suggesting a role of parasites in modulating inflammatory diseases

(Hotez et al., 2008).
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6.1.2 Helminth modulation of inflammatory disease 

 

Colitis can be induced in a variety of different models.  These include models 

that are due to gene defects (such as IL-10, MUC2 & MDR1 deficient mice), 

models that disrupt the epithelial barrier (DSS), innate anti-CD40 colitis and 

the T cell dependant colitis models (Kiesler et al., 2015). In each of these 

models, authors have demonstrated the effectiveness of helminth infections, 

in reducing disease severity scores and inflammatory cytokine production, as 

well as improving histological inflammation (Table 6.1.1).  

6.1.2.1 Effect of helminths exposure in colitis models- H.polygyrus 

 

Mice infected with Heligmosomoides polygyrus L3 larvae orally showed both 

reduced severity of TNBS colitis and increased mucosal resistance (Sutton et 

al., 2008a) while the same parasite also protected against TNBS colitis in 

C57BL/6 mice (Setiawan et al., 2007a).  H.polygyrus supressed inflammatory 

responses in an IL-10-/- model of colitis (Elliott et al., 2004). In an IL-10-/-T 

cell and piroxicam model of colitis (where mice were reconstituted with IL-10-

/- T cells and a week later administered piroxicam in their feed for two weeks 

to induce colitis) transfer of intestinal DCs from H.polygyrus infected mice 

protected animals from IBD (Blum et al., 2012). In this model, protection was 

associated with Foxp3+ Tregs, as this subset when isolated from the 

mesenteric lymph node of H. polygyrus infected mice and adoptively 

transferred into RAG-/- animals conferred protection from piroxicam colitis, 

whereas Foxp3+ Tregs from uninfected animals did not (Blum et al., 2012; 

Hang et al., 2013). Furthermore, in an OVA-specific colitis model (RAG-/- 

mice reconstituted with ova specific T cells and IL-10-/- T cells then given 

piroxicam) protected mice from intestinal inflammation by inducing Foxp3+ 

Tregs (Leung et al., 2012). In a T cell transfer model of colitis, CD4+ and 
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CD8+ T cells were also required for worm induced protection (Metwali et al., 

2006). Furthermore, adoptive transfer of dendritic cells from H. polygyrus 

infected mice in a RAG-/- T cell transfer model improved histological 

inflammation: these DCs were able to block OVA induced cytokine secretion 

in vitro (Blum et al., 2012). In another study, short-term H. polygyrus infection 

as far as the 4th larval stage also improved disease score and histopathology 

in DSS colitis (Donskow-Łysoniewska et al., 2012).  

6.1.2.2 Effect of helminths exposure in colitis models- H.diminuta 

 

Other investigations testing live parasite infections included the cestode 

Hymenolepis diminuta which improved clinical scores and histopathology in a 

DNBS model of colitis. Infection of STAT6-/- mice did not affect colitis score 

or MPO activity suggesting that the protective effect is dependant on STAT6 

(Hunter et al., 2005a). Anti-IL-10 blocking antibodies (Hunter et al., 2005a), 

as well as clodronate macrophage depletion (Hunter et al., 2010b) reduced 

the effects of H diminuta. In addition, IL-22-/- mice have less severe DNBS 

induced colitis and had greater protection of the colitis phenotype when 

infected with H.diminuta. This was associated with IL-25 upregulation ; 

neutralisation of IL-25 in IL-22-/- restored susceptibility (Reyes et al., 2016a).   

6.1.2.3 Effect of helminths exposure in colitis models- Schistosoma 

 
Transcutaneous infection of rats with S.mansoni resulted in improved 

histological scores in a TNBS model of colitis. S.mansoni infection was 

associated with increased IL-4, IL-5, IL-10 and smooth muscle contractility 

(Moreels et al., 2004). Mice infected with S.mansoni were also resistant to 

DSS-induced colitis which is associated with increased lamina propria 

macrophage infiltration (Smith et al., 2007). 

Schistosome trematode parasites also have protective effects. Schistosoma 

mansoni eggs also reduce the severity of experimental colitis (Elliott et al., 

2003) in a TNBS model. In this model, Tregs were found to be increased in 

spleens of egg-treated mice compared to those subjected to TNBS alone 
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(Mo et al., 2007). Exposure of mice to S. japonicum eggs also resulted in 

reduced idiopathic bacterial transfer (measured by culture of blood, liver, 

spleen and mesenteric lymph node to identify micro-organisms ) during 

TNBS colitis (Zhao et al., 2009).  

6.1.2.4 Effect of helminths exposure in colitis models- Trichinella 

spiralis 

 
Two laboratories found that Trichinella spiralis infection could ameliorate 

DNBS colitis (Khan et al., 2002; Zhao et al., 2013).  

6.1.2.5 Human infection models 

 

Deliberate human infection with helminths has been performed to assess it 

as a potential treatment for gut inflammatory conditions. Trichuris trichiura 

has been used successfully to alleviate active ulcerative colitis in one case 

report, this was associated with increase IL-22 production (Broadhurst et al., 

2010).  This is an unusual report of someone who had chosen to self 

medicate with T.suis ova rather than conventional medical treatment during a 

flare, and remained in remission for 3 years, before re-infecting himself for a 

subsequent flare. It suggests the potential of helminths for treatment of 

colitis. On a much wider scale, the therapeutic potential of the related pig 

parasite Trichuris suis has been tested in two large scale clinical trials; 

however, a high placebo response rate obscured any treatment difference 

(Croft et al., 2012; Elliott and Weinstock, 2017; Fleming and Weinstock, 

2015).   

 

Macaques with idiopathic chronic diarrhoea (a serious cause of mortality in 

juvenile rhesus macaques) demonstrate a similar pathology to human IBD. 

Macaques were administered T.trichiura ova and faecal consistency scores 

were much improved and associated with increased mucosal CD4+ T cells 

producing IL-4 (Broadhurst et al., 2012). Although the safety profile of T. suis 

is favourable, ethical and practical considerations are likely to preclude wider 



Chapter 6- Helminth modulation of colitis 

 169 

use of live worm infections, however, the potential remains that worm-derived 

products may be effective future therapies. 

 

Model Detail  Suppression  Reference 
Heligmosomoides polygyrus 

TNBS colitis 
BALB/c d10 
infection, d4 colitis 

Histopathology, IFN-γ and 
TNF 

(Sutton et al., 
2008b) 

TNBS colitis 
C57BL/6 d14 
infection, d4 colitis 

Histopathology 
(Setiawan et 
al., 2007b) 

IL-10-deficient colitis 
C57BL/6 piroxicam-
induced 

 Histopathology, IFN-γ and 
IL-12 

(Elliott et al., 
2004) 

RAG transfer model 
IL-10-/- T cells + 
piroxicam 

Histopathology, IFN-γ and 
IL-17 

(Blum et al., 
2012; Hang 
et al., 2013; 
Hang et al., 
2010) 

OVA-specific colitis 
OVA-specific T cells 
and oral OVA  

Histopathology, IFN-γ and 
IL-17 

(Leung et al., 
2012) 

RAG transfer model 
IL-10-/- T cells + 
piroxicam 

 Histopathology 
(Metwali et 
al., 2006) 

 DSS colitis 
BALB/c mice, up to 
18 days 

Weight loss and faecal 
blood 

(Donskow-
Łysoniewska 
et al., 2012) 

Hymenolepis diminuta 
DNBS colitis Infection 8 days prior 

to DNBS 
Clinical score, 
histopathology and 

(Hunter et al., 
2005b) 

DNBS colitis Infection 8 days prior 
to DNBS 

Myeloperoxidase 
(Hunter et al., 
2010b) 

DNBS colitis Infection 8 days prior 
to DNBS 

Protection IL-25 dependent 
(Reyes et al., 
2016a) 

Schistosoma japonicum and S. mansoni 

TNBS colitis 
Rats infected with 
Sm 7 days prior to 
TNBS 

Histopathology and myelo-
peroxidase 

(Moreels et 
al., 2004) 

DSS colitis 
Mice infected with 
Sm  8 weeks prior to 
DSS 

Weight loss, colon 
shortening, disease activity 
index 

(Smith et al., 
2007) 

TNBS colitis 
Mice exposed to Sm 
eggs 

Histopathology, IFN-γ and 
mortality  

(Elliott et al., 
2003) 

TNBS colitis 
Mice exposed to Sj 
eggs 

Histopathology, IFN-γ  
(Mo et al., 
2007) 

TNBS colitis 
Mice exposed to Sj 
eggs (freeze-
thawed) 

Histopathology, IFN-γ and 
bacterial translocation  

(Zhao et al., 
2009) 

Trichinella spiralis 

 DNBS colitis 
Infection 21 days 
prior to DNBS 

Histopathology, IL-12 and 
myeloperoxidase 

(Khan et al., 
2002) 

 DNBS colitis 
Infection 21 days 
after DNBS 

Histopathology, 
myeloperoxidase and 
mortality 

(Zhao et al., 
2013) 

Table 6.1.1 Effects of helminth infection or exposure on intestinal 

inflammation in rodent models, adapted from Varyani et al, 2017. 
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6.1.2.6 Modulation of autoimmune diseases and IBD through parasite-

derived products 

 

Several groups have found that helminth Excretory/Secretory (ES) products 

and specific helminth derived molecules can supress immune-mediated 

inflammatory diseases and allergy (Johnston et al., 2009; McSorley et al., 

2013; Shepherd et al., 2015; Wu et al., 2017).  

6.1.2.7 Parasite extracts and excretory secretory products 

 

Crude extract from Ancylostoma (Cançado et al., 2011; Ferreira et al., 2013) 

and Trichinella spiralis (Motomura et al., 2009; Yang et al., 2014) protected 

from TNBS and DSS induced colitis. Shistosoma mansoni extract (Ruyssers 

et al., 2009) improved a TNBS and a T cell cell transfer model of colitis 

(Heylen et al., 2014). 

6.1.2.8 Specific parasite molecules 

 

To date, a range of parasite proteins have been shown to reduce disease 

activity in a variety of mouse IBD models (Table 6.1.2).  

Anisakis simplex recombinant macrophage migration inhibitory factor (As-

MIF) (Cho et al., 2011), B.malayi cystatin (rBMCys), B.malayi abundant larval 

transcript protein (rBMALT2) (Khatri et al., 2015a; Khatri et al., 2015b), 

Clonorichis sinensis Type 1 cystatin (CsStefin-1) (Jang et al., 2011a) and 

Toxascaris leonina galectin (Kim et al., 2010b)  improved disease activity 

scores in a DSS model of colitis. Brugia malayi cytoplasmic asparaginyl-

tRNA synthetase (rBMAsnRS) (Kron et al., 2013) improved a T cell model of 

colitis. S mansoni glutathione S-transferse (P28GST) and S.japonicum 

cystatin (Wang et al., 2016) improved TNBS colitis in rats (Driss et al., 2016). 

In colitis models, our group have also tested whether H.polygyrus ES 
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products (HES) can ameliorate pathology with encouraging results in T cell 

transfer colitis (unpublished data) 

The effect of parasite proteins is found not only in IBD, but also other auto-

immune diseases and in allergy. Our group have discovered a H. polygyrus 

TGF-β mimic (HpTGM) capable of inducing mouse and human FoxP3 T 

regulatory cells, and reducing inflammation in vivo in a skin allograft model 

(Johnston et al., 2017). ES-62 from Acanthocheilonema viteae inhibits TLR-

dependent inflammation in a variety of settings (Harnett et al., 2010). More 

recently, it has been reported in an Alternaria model of asthma, H.polygyrus 

Alarmin Release Inhibitor (HpARI) interferes in the IL-33 release pathway 

and eosinophil accumulation (Osbourn et al., 2017).    

One mechanism by which some helminth products reduce disease activity is 

immune deviation to a Type 2 response. Another outcome was seen 

following administration of recombinant cystatin from Schistosoma 

japonicium (rSjcystatin), which induced Foxp3+ T regulatory cells and 

improved disease activity scores in a TNBS model of colitis (Wang et al., 

2016). In the case of Ancylostoma caninum adult excretory secretory 

products (AcES), protection from DSS-induced colitis appeared to be through 

induction of IL-4 and IL-10 double positive T cells and alternatively activated 

macrophage products (Ferreira et al., 2013).  

IL-10 production is known to be important in ameliorating colitis severity 

(Zigmond et al., 2014): As-MIF has also been shown to induce upregulation 

of IL-10 in intestinal epithelial cells and CsStefin-1 was shown to increase IL-

10 production in the large intestine, and of the IL-10 positive population there 

was an increase in the percentage of F4/80+ cells in this population (Jang et 

al., 2011b). Protection by P28GST (a schistosome enzymatic protein, the 28-

kDa glutathione S-transferase) was dependent on eosinophil infiltration, and 

the effect was lost in IL-5-/- mice (Driss et al., 2016). Dendritic cells pulsed 

with H. diminuta antigen were also successfully transferred to treat DNBS 

colitis (Matisz et al., 2015). Adoptive transfer of H. diminuta-stimulated 
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myeloid populations, which induced T cell IL-10 production, resulted in an 

attenuated colitis (Reyes et al., 2016b) 

 

Molecules Detail  Suppression  Reference 
Cestodes 
Hymenolepis diminuta 
extract  

DNBS induced 
colitis 

Clinical and histopathological 
score, (IL-10 and IL-4 levels 
increased in splenocytes) 

(Matisz et al., 
2015) 

H. diminuta antigen DNBS colitis in 
mice 

Histopathology and Disease 
activity score suppression 

(Reyes et al., 
2016b) 

Nematode Extracts and ES 
Ancylostoma caninum 
ES 

DSS colitis in 
BALB/c mice 

Histopathology, cytokines, 
myeloperoxidase 

(Cançado et 
al., 2011) 

A. caninum ES DSS colitis  
 Histopathology, cytokines, 
weight loss 

(Ferreira et 
al., 2013)  

A. caninum  soluble 
proteins 

TNBS colitis in 
Swiss mice 

Histopathology, MPO 
(Ruyssers et 
al., 2009) 

Trichinella spiralis larval 
extract 

DNBS colitis in 
C57BL/6 mice 

Histopathology, MPO, IL-1β 
respons; raised TGF-β, IL-13 

(Motomura et 
al., 2009) 

Nematode Proteins 
Anisakis simplex MIF 
homologue 

DSS colitis in 
C57BL/6 mice 

Disease Activity Index, Weight 
Loss 

(Cho et al., 
2011) 

Brugia malayi 
asparaginyl-tRNA 
synthase 

T cell transfer 
model 

Histopathology 
(Kron et al., 
2013) 

B. malayi Cystatin 
DSS colitis in 
BALB/c mice 

Disease Activity Score, 
Histopathology 

(Khatri et al., 
2015a) 

B. malayi 
ALT 2 protein 

DSS colitis 
Disease activity score, 
myeloperoxidase activity 

(Khatri et al., 
2015b) 

Toxascaris leonina 
Galectin 

DSS colitis in 
C57BL/6 mice 

Disease Activity Index, Weight 
Loss; raised TGF-β, IL-10 

(Kim et al., 
2010a) 

Trematode Extracts 
Schistosoma mansoni  
soluble proteins 

TNBS colitis in 
Swiss mice 

Histopathology, MPO, IFNγ 
response 

(Ruyssers et 
al., 2009) 

S. mansoni soluble 
extract 

T cell transfer 
model 

 Clinical disesase score, 
colonoscopy, myeloperoxidase  

(Heylen et al., 
2014) 

Trematode Proteins 
Clonorchis sinensis 
cystatin 

DSS colitis in 
C57BL/6 mice 

Disease Activity Index 
(Jang et al., 
2011a) 

S. mansoni 28-kDA 
glutathione S-
transferase (P28GST) 

TNBS colitis in 
rats 

Reduced clinical and 
histological scores, 50% 
reduction in colonic 
Myeloprexoidase 

(Driss et al., 
2016) 

Schistosoma japonicum 
cystatin 

TNBS colitis in 
BALB/c mice 

Histology, Cytokine responses (Wang et al., 
2016) 

Table 6.1.2 Helminth Products and Proteins in Intestinal Inflammation in 

rodent models- adapted from Varyani et al, 2017. 
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6.1.3 Innate immunity and colitis models 

 

Two important innate cell types in colitis are macrophages and innate 

lymphoid cells. Although colitis is largely T cell mediated, alterations in innate 

cell populations can result in a worsening phenotype of colitis. Moreover, 

macrophages lacking IL-10R are intrinsically pro-inflammatory and cause 

spontaneous colitis in mice, while paediatric patients with mutations in the IL-

10 receptor have more pro-inflammatory macrophages and an IBD like 

phenotype (Shouval et al., 2014; Zigmond et al., 2014). Another important 

gene locus is NOD2, as the odds ratio for a carrier of two susceptibility 

alleles of NOD2 is 17.1 for Crohn’s disease (95% CI 10.7-27.2) (Economou 

et al., 2004) and this gene is highly expressed in macrophages (Forrest et 

al., 2014). DNBS colitis in BALB/c mice was ameliorated with H.diminuta 

infection and this effect was associated with increased colonic expression of 

RELMα, ARG1 and CD14. On depleting the macrophages with clodronate, 

this protective effect was diminished. In T cell transfer models, depletion of 

macrophages by administration of a saporin-conjugated anti-CD11b antibody 

results less severe colitis (Kanai et al., 2006). Transfer of alternatively 

activated (polarised with IL-4/13) but not classically activated (polarised with 

IFNΥ) macrophages ameliorated colitis (Hunter et al., 2010a). 

 

Innate lymphoid cells (ILCs) are a family of lymphocytes that express 

subunits of cytokine receptors including IL2a (CD25) and IL-7RA (CD127) 

but unlike adaptive T and B cells they do not express antigen receptors and 

are not antigen-specific (Eberl et al., 2015; McKenzie et al., 2014). The ILC 

family includes NK cells and a non-cytotoxic family: ILC1, 2 and 3 including 

Lti cells. These are defined in both mice and humans by their differential 

expression of transcription factors and cytokines: ILC1 express Tbet and 

produce IFNγ and TNF. ILC2 express GATA3 and produce Th2 associated 

cytokines and initiate immune responses to helminths.  
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Depleting total ILC population by administration of an anti Thy-1 antibody in 

RAG-/- mice (which lack the recombination activating gene 1- and do not 

have mature B and T cells) results in improvement of inflammation in colitis 

and typhilitis scores (Buonocore et al., 2010). 

 

ILC1s accumulate in the terminal ileum of patients with Crohn’s’ disease 

(Bernink et al. 2013). A population of IL13Ra1+ c-Kit+ cells which impair MMP 

synthesis has been found in Crohn’s disease (Bailey et al. 2012) although 

further work needs to be undertaken in order to assess if these are truly 

ILC2s. The role of ILC2s has not been completely elucidated in humans 

(Goldberg et al., 2015). In a Helicobacter hepaticus RAG-/- model of colitis, 

the mice develop diarrhoea, ranging from watery to bloody, with ulceration 

from caecum to colon (Shomer et al., 1998). ILC3s (Thy1+ Rorgt+ SCA1+ 

cells) in the Helicobacter hepaticus RAG-/- model of colitis produce IL-23 

mediated gut inflammation (Buonocore et al., 2010).   

 

A follow up study (between 7 to 39 years) found no increase in susceptibility 

to particular diseases in patients who lacked ILCs (Vely et al., 2016), 

however, the study was small (18 patients) and longer follow up may be 

required. Despite the limited evidence available on how human ILCs impact 

disease, they remain an attractive target for drugs as they are present at 

mucosal sites and are therefore able to respond quickly to epithelial alarmins. 

 

6.1.4 Rationale for anti-CD40 antibody model of colitis 

 

The anti-CD40 antibody colitis model is mediated by activated cells of the 

innate immune system, using a protocol adapted from Uhlig et al 2006 (Uhlig 

et al., 2006). In this model, 200μg of anti-CD40 antibody is injected 

intraperitoneally into a RAG-/- mouse.  

 

CD40+ antigen presenting cells (APCs) interact with CD4+CD40L+ T cells.  

This CD40L-CD40 interaction leads to activation of the CD40+ APCs and 
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results in a feedback loop that activates APCs and T cells (van Kooten and 

Banchereau, 2000). Anti-CD40 stimulation in APCs of RAG-/- mice results in 

a global phenotype of weight loss and diarrhoea (Uhlig et al., 2006). The 

colon of mice given this antibody demonstrated epithelial cell damage, 

leucocyte infiltration, and goblet cell depletion. There is activation of the 

innate immune cell CD11c+ dendritic cells. Serum TNFα, IL-6 and IL-12p70 

were increased in the CD40 antibody treated group, and antibody against 

TNFα can rescue the phenotype. This model has been utilised to investigate 

the role of  IL23+ ILCs in innate colitis (Buonocore et al., 2010), and the NF-

kB protein c-Rel which regulates inflammatory ILC1s (Visekruna et al., 2015).  

 

Both innate (Dendritic Cells) and adaptive components (T Regulatory cells) 

of the immune system are modulated by HES which consists of over 350 

proteins including a TGF-β mimic (Hewitson et al., 2011). As we have 

demonstrated the role of HES in modulating T cell transfer colitis 

(unpublished data), we explored the anti-CD40 RAG-/- model as a means of 

assessing in vivo the ability of helminth excretory/secretory products and 

helminth-derived proteins to modulate the innate immune response in an 

autoimmune setting such as IBD.  
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6.2 Results 

 

6.2.1 HES does not significantly ameliorate body weight loss or colitis 

scores in the anti-CD40 model of colitis 

 

Fig 6.2.1A demonstrates the model utilised to evaluate the effect of HES in 

an anti CD40 disease model. On D0, two groups of RAG-/- mice were given 

200 μg of anti-CD40 antibody and one group received isotype control rat IgG. 

One of the groups given the anti-CD40 antibody was also administered HES 

i.p. daily from d1-5, the other group was instilled with 200μl of PBS i.p. as 

control. Daily evaluations of weight and colitis score were recorded. The 

experiment would be terminated if any of the mice lost over 25% of the body 

weight. 

 

Fig 6.2.1.B and 6.2.1.C demonstrate no significant difference in the colitis 

score obtained when we attempted to rescue the CD40 model with HES, 

although there was marginally less disease in the HES recipients.  This is in 

contrast to unpublished data available in the Maizels group that shows HES 

is capable of significantly modifying a T cell-mediated colitis. 
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Figure 6.2.1 HES does not affect the body weight and colitis score in anti-
CD40 model of colitis 

 (A) Schematic of experimental design assessing the ability of Heligmosomoides 
polygyrus excretory secretory product (HES) to modify the phenotype of the anti-CD40 
model. Experiment consisted of three groups of mice (n=4). Group 1 Naïve mice 
adminstered 200μg of rat IgG isotype control and 200ul of PBS i.p. from d-1 to 5; 
Group 2 mice administered 200μg of anti-CD40 antibody i.p. at D0 and 200μl PBS i.p. 
daily from d-1 to 5; Group 3 administered 200μg of anti-CD40 antibody i.p. at D0 and 
D0 10μg of HES in 200μl PBS from d-1 to 5.Daily weights (B) and colitis score (C) was 
recorded. Data is representative of two experiments. Points represent mean colitis 
scores with error bars representing standard deviations. Data analysed by a one way 
ANOVA. 
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6.2.2 HES results in reduced inflammatory infiltrate in the anti-CD40 

antibody colitis model. 

 

The major feature noted was the effect of HES on total cell numbers and 

especially macrophages in the peritoneal cavity exudate cells (Fig 6.2.2 A-C). 

Administration of HES resulted in a global reduction of inflammatory cell 

infiltrate in the peritoneal cavity when compared to the treatment with anti-

CD40 antibody only (Fig 6.2.2.A). The total cell count in the peritoneal cavity 

was reduced in mice treated with HES and anti-CD40 antibody from 50.4 x 

10^5 in anti-CD40 treated mice to 8.85 x 10^5 in HES and anti-CD40 

antibody treated mice. In order to assess the innate cell macrophages, 

eosinophil and neutrophil populations were stained the peritoneal cavity cells 

with CD11b, F4/80, SigF and Ly6G. The percentage of CD11b+ F4/80+ 

macrophages is reduced with HES treatment in an anti-CD40 antibody model 

from 62% of the cells in the peritoneal cavity being CD11b+ F4/80+ cells (in 

the CD40 group) to 12% in the HES-CD40 group (Fig 6.2.2 B). Similarly, the 

absolute numbers of CD11b+ F4/80+ cells were reduced with 31 x 10^5 cells 

in CD40 colitis to only 1.4 x 10^5 cells in HES-CD40 colitis (Fig 6.2.2 C). The 

percentage of SigF+ eosinophils is reduced in the peritoneal cavity from 24% 

in naïve mice to 3 and 4% in CD40 colitis and HES-CD40 colitis groups 

respectively (Fig 6.2.2D). Similarly, the numbers of eosinophils reduced from 

naïve 6.8 x 10^5 to 1.6 x 10^5 in CD40 colitis and 0.4 x 10^5 in HES-CD40 

colitis (Fig 6.2 E). There was no statistical difference in the percentage or 

number of eosinophils between the CD40 and HES-CD40 groups (Fig 6.2 

D,E). The percentage of CD11b+ Ly6G+ neutrophils rose from 1.4% in naïve 

mice to 10% in CD40 colitis and 20% in HES-CD40 colitis, although the 

difference between the CD40 colitis and HES-CD40 colitis groups were not 

statistically significant (Fig 6.2.2F). The numbers of CD11b+ Ly6G+ 

neutrophils was 0.002 x 10^5 cells in the naïve group, 0.06 x 10^5 cells in the 

CD40 treated group and 0.009 x 10^5 in the HES-CD40 treated group. 
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Figure 6.2.2 HES reduces the infiltration of inflammatory cells in anti-CD40 
antibody colitis 

(A) Total cell count of peritoneal exudate cells obtained at d6 of anti-CD40 colitis model
(details of experimental design in Fig 6.1A). Peritoneal exudate cells at d6 stained for
CD11b, F4/80, Siglec F and Ly6G. Percentage (B) and total numbers (C) of CD11b+

F4/80+ macrophages in peritoneal exudate cell lavage. Percentage (D), and total
numbers of (E) CD11b+ Siglec-F+ eosinophils in lavage at d6 p.i. Percentage (F), and
total numbers of (G) CD11b+ Ly6G+ neutrophils in lavage fluid at d6 p.i. Experiment
performed once, data represents mean with SEM. Data analysed by one way ANOVA,
and corrected for multiple errors by a Sidak’s test. For all panels, * = p<0.05, ** =
p<0.01, *** p<0.001.
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6.2.3 HES upregulates the production of Arg1 in peritoneal lavage 

exudate cells 

 

We assessed the transcription of anti-inflammatory cytokine IL-10 and pro-

inflammatory cytokine IFNγ in the peritoneal exudate cells and found no 

difference between the CD40 and the HES-CD40 groups (Fig 6.2.3 A,B). 

Next, we looked at the balance of M2 products which have been shown in 

other models to be affected by the administration of parasite products 

resulting in a type 2 macrophage phenotype.  There was no difference in the 

transcriptional expression of RELMα between the CD40 and the HES-CD40 

groups (Fig 6.2.3C), however, the level of ARG1 was upregulated in the 

HES-CD40 group when compared to the CD40 group. This result is 

inconsistent with other markers RELMα (which showed no difference in 

transcription in the peritoneal exudate cells (Fig 6.2.3C) or in the level of 

protein in the peritoneal lavage fluid (Fig 6.2.3E) or YM1 (which showed no 

difference in the level of protein in the peritoneal lavage fluid with HES 

treatment) (Fig 6.2.3 F). Presumably these proteins have been released by 

the macrophages before they disappeared. 
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Figure 6.2.3 HES upregulates the production of Arg1 in peritoneal lavage 
exudate cells. 

Peritoneal lavage cells taken at day 6 of an anti CD40 colitis model (experimental 
schematic Fig6.1A). Gene expression analysis by qRT-PCR of peritoneal exudate cells 
for IL-10 (A), IFNγ (B) RELMα (C) and ARG1 (D) at D6. Protein levels of RELMα E 
and YM1 (F) in lavage fluid. Experiment performed once. Data analysed by one way 
ANOVA, and corrected for multiple errors by a Sidak’s test. For all panels, * = p<0.05, ** 
= p<0.01, *** p<0.001. 
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6.2.4 HES does not affect the histology score in an anti-CD40 colitis 

model 

 

Sections of colonic tissue were assessed to obtain global histopathology 

scores for each mouse, performed by Dr Derakashan (Consultant pathologist 

at QEUH, Glasgow). He was blinded to the treatment groups and 

crosschecked the score with a second histopathologist. There was no 

significant difference in colon histology scores between groups which were 

administered HES versus those given the anti-CD40 antibody only 

(Fig6.2.4.A), although overall scores were lower in 2 of the 4 animals 

receiving HES. There were only two animals in the anti-CD40 group only as 

one of the samples had not been processed by accident. Figures 6.2.4.B-D 

illustrates colon samples stained with H&E from naïve mice (B), and mice 

with either anti-CD40 antibody alone (C) or anti-CD40 antibody with HES (D). 
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Figure 6.2.4 HES does not affect the colitis histology score in anti-CD40 model 
of colitis 

(A) HES colitis score performed by two histopathologists blinded to the underlying 
treatment. Score calculated based on following parameters: degree of crypt loss, 
ulceration, crypt abscesses, goblet cell loss, mucosal and submucosal inflammatory 
infiltrate. Histology score developed by Dr D J Smyth and Professor M Arends 
(University of Edinburgh). H&E staining of colonic tissue of Naive (B) CD40 (C) and 
HES CD40 (D) colitis models. Data analysed by one way ANOVA, and corrected for 
multiple errors by a Sidak’s  test. For all panels, * = p<0.05, ** = p<0.01, *** p<0.001. 
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6.3 Discussion 

 

The data presented in this Chapter suggest that HES does not have a 

significant effect on the disease score in a model of innate-mediated colitis 

driven by anti-CD40 antibody. This conclusion is in contrast to previous data 

from our laboratory suggesting that HES is able to ameliorate colitis in a T 

cell transfer model. However, it had also been found that HES has variable 

effects in another, acute, model of colitis provoked by DSS (Smyth, 

unpublished data).  

 

Both the anti-CD40 and DSS models of colitis can be categorised as innate 

forms of colitis. DSS causes extensive epithelial damage, resulting in a colitis 

phenotype in SCID mice. Similarly, anti-CD40 is injected into RAG mice 

(without T and B cells), and therefore allows us to assess the innate 

components of the immune system. Another contrast with the T cell transfer 

model is the severity of disease: with the anti-CD40-treated mice losing 20% 

body weight in the first four days of disease, compared to approximately 10% 

over three weeks in a T cell transfer model.  

 

We chose to use the peritoneal lavage as a readout, as we placed the colon 

in paraffin for H&E staining. Although we saw a reduction in the cellular 

infiltration in the peritoneal cavity and upregulation of Arginase 1 

transcription, this may not in itself have been enough to alter the acute 

severe pathology seen in DSS and the anti CD40. The loss of macrophages 

following infection is widely acknowledged to occur in many pathology 

models and has been attributed to adherence to tissues, increased cell death 

or emigration to draining lymph nodes (Davies et al., 2013). As there is an 

overall loss of the macrophages in the peritoneal lavage, the arginase here 

may have been produced by other cell types e.g. neutrophils. 

 

Potentially HES has a role in a more chronic model of inflammation such as 

the T cell transfer model, given that HES treated mice had reduced colon 
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histology scores and disease activity scores (D.Smyth unpublished results). 

HES has been recognised to induce Foxp3+ T regulatory cells (Grainger et 

al., 2010). In context of innate cells, HES has been shown to down-modulate 

IL-12 production in both DCs (Kemter et al, unpublished data) and 

macrophages (Coakley et al., 2017).  Despite the potential of HES to 

modulate these key cell types in vivo, the pathology induced in the DSS 

model may be too acute for HES to have a measurable impact. This model 

was tested to investigate the effect of HES on innate cell activation and 

pathogenesis, but the results were not promising enough to explore further. 

The anti-CD40 antibody was also produced in house, and batch variation in 

potency resulted in several unexpected deaths, making further work not 

possible. In addition, a longer-term goal would be to transfer innate cell types 

in an attempt to rescue colitis. However, with the widespread activation of 

macrophages and DCs by the anti-CD40 antibody, the possibility remained 

that transferred cells would also undergo activation by residual antibody; 

therefore we felt it best to conclude this part of the study as it stands. 

Potential future work in the more promising T cell transfer model of colitis, 

may involve adoptive transfer experiments, which will assess the effector 

cells that are involved in HES induced immunomodulation. Furthermore, as 

the lab has now produced recombinant proteins such as the TGF-beta 

mimick (Johnston et al., 2017).  
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Final Conclusion 

In Gastrointestinal immunity models, the immune mechanisms that are 

protective in colitis and result in expulsion of helminths is highly influenced by 

macrophage populations. It was therefore of interest when MIF was found to 

influence anti-helminth immunity.  

MIF was the first cytokine to be discovered in the 1960s (Bloom and Bennett, 

1966; David, 1966), as being important in delayed-type hypersensitivity 

reactions and has been investigated in several TH1 models of inflammatory 

disease (Calandra and Roger, 2003).  MIF is highly conserved between 

humans and mice, with proteins sharing >90% amino acid identify (Calandra 

and Roger, 2003). Homologues of MIF have also been found in filarial 

helminths(Pastrana et al., 1998).  Neutralising MIF results in protection from 

septic shock (Calandra et al., 2000). Polymorphisms in the MIF gene are 

associated with autoimmune diseases of the liver (Assis et al., 2014). MIF is 

produced by epithelial cells (Haber et al., 2017), but also at many other 

mucosal immune sites and by immune cells (Calandra and Roger, 2003). 

Here we have shown that MIF is upregulated in macrophages during 

N.brasiliensis infection.

From our data, a model has been developed in which MIF initiates 

inflammation in helminth infections predominantly via recruitment of innate 

lymphoid cells. Evidence to support this hypothesis includes the observation 

that the numbers of ILCs are approximately 15 fold higher in wild-type mice 

than in MIF-deficient mice (Fig 3.5A). This leads to a reduction in the 

production of GATA3-dependent cytokines IL-4, IL-5 and IL-13. Although 

there is also an reduction in the T cell population in the mesenteric lymph 

nodes of MIF-deficient mice, published data demonstrates the innate cell IL-

13 is important for the combined epithelial cell responses that expel N. 

brasiliensis that we observe in mouse models (Oeser et al., 2015; Voehringer 

et al., 2006). 
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ILCs were first described in RAG-/- mice as being IL-25 responsive cells that 

expelled N. brasiliensis by producing IL-13 (Fallon et al., 2006). The ILCs 

proliferated in this model and effectively led to the expulsion of N.brasiliensis 

in RAG-/- mice which lack T cells, therefore they are likely the predominant 

source of the IL-13 required to expel the parasite in this model. Indeed, we 

can administer IL-25 to the MIF-deficient mouse and effectively rescue the 

complete immunological and epithelial phenotype.  

 

ILCs have also been demonstrated to be the source of IL-5 required to drive 

initial eosinophilia (Nussbaum et al., 2013). The MIF-deficient mouse has 

been previously reported to lack eosinophils (de Souza et al., 2015; Falcone 

et al., 2001; Magalhaes et al., 2009; Yoshihisa et al., 2011). However, 

eosinophils do not seem to be required for primary immunity to N. brasiliensis 

(Knott et al., 2007), and hence in this context represent a marker of the 

changes in innate cell populations induced, directly or indirectly, by MIF. 

 

 

The experiments reported here are the first to describe the innate lymphoid 

and epithelial cell phenotypes of the MIF-deficient mouse, in which there is a 

deficiency of tuft cell hyperplasia, RELM production, goblet cell hyperplasia 

and IL-25. Studies have previously demonstrated that reduced RELM 

production (Herbert et al., 2009) or failure of tuft cell hyperplasia (Gerbe et 

al., 2016) can individually impair N.brasiliensis expulsion. A lack of IL-13 in 

itself reduces the “weep-and-sweep” (Anthony et al., 2007)phenomenon 

required to expel helminths. A compromised epithelial response is the most 

likely explanation for impaired N.brasiliensis expulsion in the MIF-deficient 

mouse, but was not known if MIF acted directly on the epithelial cell or the 

immune cell populations. Data by Dr Claire Druery (Postdoctoral Scientist, 

Maizels’ lab) demonstrated that  MIF-deficient organoids were as able as wild 

type organoids to respond to IL-4/13 to upregulate tuft cells production. This 

impolies that the underlying defect is in the total IL4/13 produced. 
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While this work was under way, Damle et al (Damle et al., 2017) reported 

that MIF-deficient C57BL/6 mice was in fact better able to expel N. 

brasiliensis, with increased cellularity and higher amounts of IL-13 

production.  It is difficult to account for this disparity, in view of the profound 

phenotype observed here including disruption of the essential epithelial cell 

response, and the effects in both the H. polygyrus and N. brasiliensis models 

of infection in BALB/c mice. Even in secondary infection with H. polygyrus, 

MIF-deficient mice are unable to mount an effective immune response, 

indicative of a robust phenotype. In addition, other laboratories have also 

reported that MIF is required for a protective Th2 response in models such as 

Taenia craciceps (Rodriguez-Sosa et al., 2003) and Schistosoma japonicum 

, so that at this point the reason for the discrepant report by Damle et al is not 

resolved. 

 

MIF deficient macrophages have been previously studied in the context of 

Type 1 immune responses, in which they are unable to mount an adequate 

TNFα response to infections with mycobacteria (Das et al., 2013), 

Toxoplasma gondii.and Leishmania major (Juttner et al., 1998). One 

explanation for this is that MIF-deficient macrophages are hypo-responsive to 

LPS, and perhaps other TLR ligands (Roger et al., 2001). Whilst most of the 

studies documented a reduction in cytokine production in the MIF-deficient 

mouse (or where antibodies were given to MIF), these were conducted prior 

to the knowledge of innate lymphoid cells. 

 

Subsequently, the suggestion that MIF may also be important in a Type 2 

context was prompted by the discovery that MIF synergises with IL-4 to 

upregulate Arginase production in bone marrow macrophages (Buck et al.; 

Prieto-Lafuente et al., 2009; Yaddanapudi et al., 2013). Data reported here 

confirm that MIF is important in polarisation of Type 2 macrophages in both 

H. polygyrus and N. brasiliensis infections. This may be direct or through the 

effect of innate lymphoid cells cytokine production. There is also a direct 
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effect of MIF on macrophages, and previous data suggested this was 

through IL4Rα (Prieto-Lafuente et al., 2009). However, our data shows that 

the downstream pathway (phosphorylation of STAT6) is unaffected. As yet 

there may be other contributing transcription factors important in Type 2 

polarisation, which have not yet been discovered, and may have an influence 

on the ability of MIF to initiate Type 2 macrophage polarisation. 

 

MIF has also been shown to be important in development, However, it was 

shown that in wild-type mice, the MIF inhibitor 4-IPP is able to replicate the 

MIF-deficient phenotype as seen in reduced ILC responses, and reduced 

DCLK1 expression in the epithelium. These data suggest that MIF plays an 

active role in the response to infection, and the absence of MIF signalling 

within the mature immune system results in the immunological phenotype of 

the MIF-deficient mouse. 

 

 

The receptors for MIF have been described as a combination of CXCR2,4 

and CD74 (Bernhagen et al., 2007; Kraemer et al., 2011). Most of the 

literature has focused on the interaction of CXCR2 and MIF that initiates ERK 

signalling downstream(Das et al., 2013). There is also strong evidence of 

CXCR4 being important in monocyte arrest mediated by MIF. Inhibition of 

CXCR4 or its receptor results in greater numbers of L. sigmodontis 

(Bouchery et al., 2012). 

 

 

Global deletion of the CXCR4 gene has an embryonic lethal phenotype, but it 

was possible to assess the phenotype of the CXCR2-deficient mouse in the 

context of an N.brasiliensis infection. CXCR2 is expressed on 

neutrophils(Eash et al., 2010) and tumor macrophages.(Katoh et al., 2013) 

MIF, however, is not the only ligand for CXCR2, and is in fact one of many. 

Infection of CXCR2 deficient mice led to a lung dominant phenotype of 

reduced alternative activation of macrophages, reduced ILCs and reduced 
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cytokines IL-4,-5 and -13 in the bronchoalveolar lavage. Taking into account 

the known expression profile of CXCR2, it seems likely that these effects of 

MIF in the lung act through an intermediary cell such as the neutrophil. 

Indeed, neutrophils are known to prime effector M2 macrophage 

development in the setting of helminth infection (Chen et al., 2014; 

Sutherland et al., 2014). 

 

 

Interestingly, however, there was no similar phenotype observed in the 

intestinal tracts of CXCR2-deficient mice. This suggests that MIF interaction 

with CXCR2 is not required for the epithelial cell responses that are 

compromised in the MIF-deficient mouse.  In many ways, these conclusions 

reflect the multi-faceted role of MIF, interacting with different cell types and 

tissues through different receptors and pathways. In both the lung and the 

gut, MIF can now be identified as an important cytokine for recruitment of 

ILCs, although in the lung this appears to be an indirect effect through 

CXCR4 receptor-positive third party cells. In the gut, however, impairment of 

MIF mediated ILC recruitment underpins defective epithelial cell responses 

and thereby leads to the failure of helminth expulsion.  In both tissues, further 

investigation of the role(s) of MIF is likely to uncover further key interactions 

for effective immunity. 
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Key novel findings that have advanced the field 

 

 This is the first study that identifies the role of MIF in Innate Lymphoid 

Cell proliferation and TH2 polarisation.  

 It identifies MIF as a highly context specific cytokine- amplifying 

multiple type 2 immune cell pathways in the context of helminth 

infection 

 MIF has its primary action on immune cells, either  or both ILC2 and 

Th2, and in its absence, the lack of Type 2 cytokines results in a 

compromised epithelial cell phenotype. 

 MIF acts upstream of the feed-forward loop which expands IL-25 

production in response to IL-13. 
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A summary figure of the above points is given below 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 A summary of the potential role of MIF in the lung versus the gut. 

A more comprehensive schematic of the role of MIF in the epithelium is 

presented in chapter 4. 
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New questions arisen from data and future directions: 

We propose that ILCs are the main initiators of the MIF response- this is 

because the MIF response occurs early (prior to when a TH2 response is 

known to develop). ILC in vitro cultures with and without MIF may help 

assess this question. If indeed ILCs do proliferate with the addition of MIF in 

vitro, then RNA Sequencing may identify downstream genes altered on 

exposure to MIF.  

There is a clear rescue of the IL-25 phenotype with MIF. A greater 

clarification of how MIF and IL-25 interact is vital. Therefore further 

experiments involving addition of MIF to IL-25R deficient mice may help 

address if MIF is upstream or downstream of IL-25. IL-25 was felt to act 

predominantly on ILCs, however, we have discovered an ILC independent 

effect of IL-25 (Smith et al., 2018), it may also be that MIF is pleiotropic and 

has effects on multiple cells, as has been discovered to be the case of IL-25. 

Further research needs to be performed to drill down the exact cell types that 

are important in MIF, the downstream cytokines (which can include IL-25), 

and MIF’s interactions with its own ligands such as CXCR4. Further work 

may also assess the microbial interactions with MIF, and the role of dendritic 

cells. This will be the focus of further work in the Maizels’ laboratory, but is 

beyond the scope of a 3 year PhD thesis. 
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