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Abstract 

There are many experimental situations in which the system under study can 

be reasonably described as two dimensional. Examples include molecules ad-

sorbed on a solid surface, colloidal thin films, surfactant molecules at a water-air 

interface, biological membranes, many magnetic materials with strong exchange 

interactions within two dimensional layers but weak interactions between lay-

ers. In addition, qualitatively different physics can emerge in two dimensions 

as compared to three dimensions. Motivated by this large diversity of two di-

mensional condensed matter systems, various two dimensional systems were 

investigated using computer simulation. 

The structure and dynamics in a monolayer of dipolar soft spheres were studied 

using Molecular Dynamics simulation. This is a model for colloidal ferrofluids. 

The particles form into chains on account of the favourable nose-to-tail configu-

ration of the dipole-dipole interaction. The effect of this chaining on the structure 

and dynamics has been invesigated. The fact that particles are confined within 

chains has a pronounced effect on the dynamics. Various time autocorrelation 

functions reveal processes occurring over two different timescales - the slow 

motion of chains and rings as a whole and the fast oscillatory motion of parti-

cles within those chains. 
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Langevm Dynamics simulations have been employed to study the aggregation 

kinetics of the dipolar chains and rings starting from a 'random' configuration. 

Clusters were identified using an energy criterion, and classified as chains, rings 

or defect clusters. The mechanisms by which these clusters form are discussed. 

At high density, there is a network structure at intermediate times with a high 

concentration of defects. This suggests that the phase transition proposed by 

Tlusty and Safran [Tiusty, Safran, Science 290, 1328 (2000)] could be recovered 

as a metastable phase transition if the system could be kinetically trapped in the 

transient network structure. 

The dynamics of antiferromagnetically coupled Heisenberg spins on a kagome 

lattice has been studied using numerical simulation. This system is highly frus-

trated - the lattice places competing constraints on the spins. We investigate the 

effect of breaking bonds in the lattice, which relieves the frustration to a certain 

extent. The excitations in the system are found to be local, consisting of mo-

tions of small groups of spins. As bonds are broken, certain spins are able to 

align antiferromagnetically and undergo motions characteristic of unfrustrated 

antiferromagnets. 

The phase diagram of a two dimensional system of hard disk timers has been ex-

plored by Monte Carlo simulation. This might serve as a coarse grained model 

for the aggregation of proteins in a biological membrane. Many proteins are 

roughly triangular in shape or form trimeric units. The model consists of three 

hard disks fused together in a triangular arrangement. One of the disks interacts 

with the corresponding disk on other timers via a square-well potential, repre-

senting specific interactions between the protein molecules. In the fluid phase at 

low density the timers form aggregates containing typically four to six timers. 

In the solid phase, the timers pack such that individual disks are on a triangular 

lattice. There are different possible packings of the timers consistent with this 



iv 

packing of individual disks. At low temperature, the solid exhibits an orienta-

tionally ordered structure built up of repeating motifs, dependent upon which 

packing is adopted by the trimers. 
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CHAPTER 1 

Introduction 

In this thesis we report the results of computer simulations of various two-

dimensional condensed matter systems. This may seem rather strange, given 

that we live in a three dimensional world, but there are in fact many experimen-

tal situations in which the system under study can reasonably be described as 

two dimensional. One example is a system of molecules adsorbed onto the sur-

face of a solid. The molecules can be thought of as constituting a two dimensional 

fluid on the surface (although, note that a system of molecules grafted to a sur-

face in fixed positions cannot be considered to be two dimensional in this way). 

Another example is what is known as a 'Langmuir-Blodgett' film. Amphiphiic 

molecules in water will arrange themselves at the surface with the hydrophilic 

head groups in the water and the hydrophobic tails pointing out of the water. 

Again the molecules are confined to a two dimensional plane. Soft condensed 

matter systems are often studied experimentally as thin films. This is necessary 

for example to perform light scattering in otherwise opaque materials. Direct 

imaging by microscope also requires a thin film or at least an exposed surface. 

Often the film thickness is comparable to the size of the particles which com-

prise the material and hence the particles are confined in the plane of the film. 
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Two-dimensional systems are very prominent in magnetism. There are many 

magnetic materials with strong magnetic exchange interactions within two di-

mensional layers, but very weak interactions between the layers. 

Qualitatively different physics can emerge in lower dimensions. A well known 

example of this can be seen in the comparison of the phase behaviour of hard 

spheres in three dimensions with its two dimensional analogue, hard disks. In 

the hard sphere system, there is a first-order phase transition between fluid and 

solid with an associated fluid-solid phase coexistence when the system is at the 

transition pressure or chemical potential. In the two-dimensional hard disk sys-

tem on the other hand, Kosterlitz, Thouless, Halperin, Nelson and Young [1-

4] proposed that the first order phase transition is replaced by two continuous 

phase transitions - from the fluid to a 'hexatic' phase and then from the hexatic 

to solid phase. An order parameter is constructed which measures the extent 

of the sixfold bond ordering around a given particle as would be seen on a per-

fect triangular lattice. The solid phase has long-range bond orientational order, 

whereas in the fluid phase the bond orientational correlations die away expo-

nentially with distance. In the intermediate hexatic phase the sixfold bond orien-

tation correlations die off much more slowly, as a power-law. Another example 

of the different physics than can emerge in lower dimensions is provided by the 

Heisenberg model of magnetism. In three dimensions, a system of Heisenberg 

spins can show long range order below a critical temperature. In one or two di-

mensions, it was shown by Mermin and Wagner [5] that there can be no long 

range order at any finite temperature (but note that the Mermin-Wagner theo-

rem only applies to short-range forces. In particular, it does not apply to the 

long-range dipole-dipole interaction). 

Motivated by the wide variety of two-dimensional condensed matter systems, 

we have studied some model two-dimensional systems by computer simulation. 
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In Chapters 3 and 4 we study a system of soft spheres with central point dipoles 

confined to a plane. This model is of particular interest because of the tendency 

of the dipole moments on neighbouring particles to align 'nose-to-tail', causing 

the formation of chains. In chapter 3, we perform molecular dynamics simula-

tions which shows the profound effect this chaining has on the particle dynamics. 

In Chapter 4, we study the aggregation kinetics as the system comes to equilib-

rium starting from a configuration generated by a soft sphere simulation with the 

dipole moments 'switched off'. Our results have impact on the possibility of ob-

serving the defect-mediated phase transition proposed by Tiusty and Safran [61 

(see Section 1.1). 

Chapter 5 reports simulations of the dynamics of antiferromagnetically coupled 

Heisenberg spins on the sites of a kagomé lattice. This system is highly frustrated 

- the lattice places competing constraints on the spins. Motivated by experimen-

tal observations, we investigate the effect of breaking a fraction of the bonds on 

the lattice which will relieve some of the frustration. 

Finally, in chapter 6, we study the phase behaviour of a two dimensional sys-

tem of hard disk trimers with an attractive interaction between one of the disks 

and corresponding disks on other timers. This represents a crude model for 

protein molecules in a biological membrane, which can be thought of as a two-

dimensional system. As explained in Section 1.3, the use of such simple coarse 

grained models has been successful in the past in the study of the phase be-

haviour of systems containing a large number of protein molecules. 

In the remainder of this chapter, we give an introduction to the real physical 

systems we aim to simulate, and describe the models that are used to represent 

them. 
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1.1 Dipolar fluids 

The closest physical realisation of the dipolar soft sphere model studied in Chap-

ters 3 and 4 is the colloidal ferrofluid. A ferrofluid is a colloidal suspension of 

roughly spherical ferromagnetic particles (e.g. Fe, Co, magnetite (Fe 304 )) dis-

persed in a solvent. The particles are typically around lOnm in diameter and are 

usually coated with a layer of surfactant or polymer to stabilise them against irre-

versible agglomeration. The steric repulsion of the surfactant or polymer coun-

teracts the short range attractive van der Waals interaction when the particles 

come into contact. The particles are small enough that they contain a single mag-

netic domain. Ferrofluids are therefore often modelled as consisting of spherical 

particles with a central point magnetic dipole moment. Reviews of experimental 

and simulation work on dipolar fluids can be found in Refs. [7-9]. 

Dipolar fluids are often described by the pair potential 

U(r) = Usr(r) + Al L2 

r3  - 
3(.zi . 	. r) 

T 5 
(1.1) 

r is the vector between particles 1 and 2 with dipole moments p i  and t2. The 

first term is a short-range potential, often a hard sphere or soft sphere, which 

prevents the particles interpenetrating. In the case that a Lennard-Jones form is 

used, the overall potential is called a Stockmayer potential. The dipole-dipole 

interaction is highly anisotropic. The minimum energy; —2p 2 /r3 , comes when 

the dipole moments, p i  and /12, point in the same direction and along the inter-

particle vector, i.e. they are aligned 'nose-to-tail'. There is a secondary minimum 

for 'side-by-side' dipoles pointing in opposite directions (- 2 /r3 ). 

The preference for nose-to-tail alignment causes the particles, at low density and 

temperature, to self-assemble into chains, as first pointed out by de Gennes and 

Pincus [10]. With an externally applied magnetic field, these chains line up with 
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Figure 1.1: Monolayer of cobalt ferrofluid containing particles of 16 nm diameter, 
imaged by transmission electron microscopy [21]. 

the field direction, but the chains also exist in the absence of a field, oriented ran-

domly. Such chains have been observed in numerous computer simulations [11-

19]. 

Experimentally, it has proved harder to image the chains. The particles in the 

most common magnetite dispersions have rather low dipole moments (see for 

example Ref. [20], where no chaining was observed at all). The dipole moment 

needs to be large enough that the dipole-dipole interaction dominates over ther-

mal fluctuations. Imaging is usually carried out in thin films, where the thick-

ness of the film is comparable to the particle diameter. This is because ferrofluids 

tend to be very opaque. For this reason, light scattering studies must also be 

performed in thin films. 

Chaining has been observed in cobalt [21] and iron [22-24] dispersions. These 

have a much larger dipole moment than magnetite. Puntes et al. [211 prepared 

cobalt ferrofluids and observed the self-assembled structures in a thin film using 

transmission electron microscopy (TEM). Fig. 1.1 shows a network of chains in a 

dispersion with particles of diameter 16 nm. 

Butter and co-workers [22-24] have obtained images of thin films of iron ferroflu- 

ids using cryogenic transmission electron microscopy (cryo-TEM). In this tech- 
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Figure 1.2: Cryogenic electron micrographs of iron ferrofluids with particles of 
various radii: (a)2.1 nm; (b) 6.0 nm; (c) 6.6 nm; (d) 6.9 nm; (e) 8.2 nm. 

nique, the film in liquid form is rapidly frozen. The solvent molecules become 

trapped in a glassy state, rather than in their positions on a crystal lattice. Fig. 1.2 

shows images obtained for dispersion of particles of increasing size. Since the 

dipole moment of a particle is proportional to its volume, the larger particles 

have stronger dipoles. For the weakest dipoles (smallest particles) in Fig. 1.2(A-

Q, the isotropic steric repulsion due to the polymer coatings is dominant, and 

no aggregation of the particles is seen. For the larger particles in Fig. 1.2(D), the 

dipole-dipole interaction is now strong enough relative to the thermal energy 

that chaining can occur, although there are still many free particles. With the 

largest particles (E), almost all the particles are included in a chain. 

More recently, magnetite ferrofluids have been synthesised containing larger 

particles than was previously possible. The larger particles have larger dipole 
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moments, and chaining can be observed in these dispersions [25, 261. 

Wen et al. [27] have studied the aggregation process in a system of magnetic 

microspheres. Glass spheres of size 47 pm were coated with a thin layer of nickel 

(2.5-4 pm). The particles were dispersed into a small volume of alcohol or oil. 

This system can also be described by the dipolar fluid model. Pictures taken 

using a charge-coupled device (CCD) camera showed that the particles formed 

chains and rings. 

It should be noted that as well as chains, closed rings can also be formed. For 

a cluster containing more than three particles, this is in fact the ground state 

structure [28]. The rings can be seen in simulations of quasi-two-dimensional 

dipolar fluids, but are rarely seen in three dimensions. This is because of the 

larger entropy cost associated with connecting the two dangling ends of a chain 

in three dimensions. 

The magnetic susceptibility spectrum for a ferrofluid has been measured exper-

imentally by Butter et al. over a large frequency range (1-10 Hz) [23]. They 

prepared suspensions of magnetite (Fe 304 ) in toluene with different particle di-

ameters (and hence different dipole moments). For the particles with the smallest 

diameters (6.0 rum and 6.6 run) there is a high frequency peak in the spectrum. 

The system is not aggregated here and the peak corresponds to the rotation of 

single dipoles. There are two mechanisms by which the dipoles may rotate: the 

dipole moments of the atoms within the particle may rotate (Mel relaxation), or 

the particles themselves may rotate (Brownian relaxation). For the 6.0 nm diame-

ter particles, the maximum is at very much higher frequency than the equipment 

can measure, probably indicating Mel relaxation is dominant here. For the 6.6 

nm particles, the maximum is at approximately 4000 Hz and is probably due to 

Brownian relaxation. In the usual models employed in simulations of dipolar flu-

ids, the dipole moment of the particle is represented as a single point dipole, and 
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no account is taken of the individual atoms of which the particle consists. This 

model of particles with a single point dipole and a fixed value of the moment of 

inertia cannot make a distinction between the two relaxation mechanisms. The 

model particles have a single, fixed moment of inertia For the largest diameters 

(6.9 nm and 8.2 nm), where chaining does occur, there is a low frequency peak 

(respectively at approximately 150 Hz and at less than 1 Hz) associated with the 

rotation of entire chains. 

In Chapter 3, we study the effect of chaining on the structure and dynamics of 

the quasi-two-dimensional dipolar fluid by molecular dynamics simulation. The 

structure has been extensively studied by computer simulation, but so far there 

has been very little work on the dynamics, at least in the strongly dipolar regime 

where chaining occurs. In our simulations, we see a separation of timescales 

between the motions of chains and rings and the motion of individual particles 

within those chains, similar to the separation of timescales observed by Butter as 

mentioned above. 

In Chapter 4, we use Brownian dynamics simulations to examine the processes 

occurring as the particles aggregate into their chains and rings starting from 

a 'random' configuration. Our most significant observation is that there is a 

high transient concentration of 'Y' defects associated with the branching of two 

chains. This has relevance to the possibility of observing the defect-driven phase 

transition proposed by Tiusty and Safran [6]. The issue of phase transitions in 

dipolar fluids will be discussed more fully in Section 3.1. 

1.2 Frustrated magnets 

In Chapter 5, we investigate the dynamics of spins in a geometrically frustrated 

antiferromagnet. Before explaining the concept of frustration, we must intro- 
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duce the Heisenberg model which is a very widely used model for the so-called 

'exchange interactions' between spins on a lattice. 

It is possible for the energy to depend on the spin state despite the absence of 

spin-dependent terms in the Hamiltonian. To see why, let us consider first the 

hydrogen molecule which has two electrons. The possible spin states are given 

by 

Xs =( I1)-I1)) 	 (1.2) 

XT1 = III) 	 (13) 

XT2 = 	( I1) + I1)) 	 (1.4) 

XT3 = IJJ)  

The singlet state, Xs  is antisymmetric and has S = 0. The triplet states are sym-

metric and have S = 1. The overall wavefunction will be the product of the 

spatial and spin parts, and must be antisymmetric with respect to exchange of 

both spin and spatial variables. If the spin part is the singlet state, the spatial 

part must therefore be symmetric and if the spin part is in a triplet state, the spa-

tial part must be antisymmetric. Whether the system is in the singlet or triplet 

state depends on which of the corresponding spatial states are lowest in energy. 

Ignoring any higher energy excited states, we can use an effective Hamiltonian, 

= (Es +3ET)— (Es —ET)S l  •S2 , 	 (1.6) 

which has eigenvalues Es for the singlet (S = 0) state and ET for the triplet 

(S = 1) state. The first term can be removed by redefining the zero of energy, 

giving 

(1.7) 
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where J is the exchange constant, giving the splitting between the singlet and 

triplet states. 

The Hamiltonian can be generalised to the case where there are more than two 

ions situated at sites on a lattice, giving the 'Heisenberg Hamiltonian', 

(1.8) 

where S, and S3  are the spin angular momenta on sites i and j. Usually only 

interactions between spins on neighbouring sites are considered. The spins are 

also often approximated as classical vectors which may point in any direction. 

For materials in which J = Es - ET > 0, the triplet energy is lower than the 

singlet energy, and the energy is minimised when spins on neighbouring sites 

are parallel. These are called ferromagnets. In 'antiferromagnets' on the other 

hand, J < 0, and energy is minimised when neighbouring spins are antiparallel. 

The phenomenon of frustration arises in antiferromagnets when competing con-

straints are placed upon the spins. For example, consider the triangular plaque-

tte in Fig. 1.3(a). The first two spins can be oriented antiparallel, as expected 

from the exchange interaction. The third spin, however, cannot be antiparallel 

to both. The system is said to be 'frustrated'. A compromise can be found by 

orienting the spins at 120° to one another (Fig. 1.3(b)). Any lattice built up from 

these triangular plaquettes will exhibit frustration. Examples are the triangular 

lattice, formed by edge-sharing triangles, or the kagome lattice (Fig. 1.4), formed 

by corner-sharing triangles. The frustration prevents the system from finding a 

unique ground state. The ground state will be highly degenerate. This confers 

many unusual properties on these materials. 

The frustration described above is known as 'geometric frustration'. For reviews, 

see Refs. [29-31]. In general, geometrically frustrated magnets exhibit a phase 
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(a) 	 (b) 

Figure 13: (a) Frustrated triangular plaquette (b) compromise 1200  configura-
tion. 

Figure 1.4: Kagome lattice 

transition at a particular temperature, which can be identified for example by a 

cusp in the susceptibility or heat capacity. Below this temperature, the behaviour 

varies from material to material. Sometimes a long range ordered state may be 

established. Another possibility is a 'spin glass' in which the spins become frozen 

in a random state. In a 'spin liquid', in contrast to the spin glass, some spins 

remain dynamic down to T = 0. The 'spin ice' is a special case of the spin liquid, 

which applies to Ising spins on the pyrochiore lattice. 

Frustration can also occur as a result of disorder in materials known as 'spin 

glasses' [32]. An example is an alloy of copper with a low concentration of 

manganese. The magnetic manganese is distributed randomly throughout the 

non-magnetic copper host. The type of exchange interaction in this materials is 



Chapter 1. Introduction 	 12 

strongly dependent on distance and may fluctuate between ferromagnetic and 

antiferromagnetic as a function of distance. Again, this places competing con-

straints on the spins, giving rise to frustration. Below a transition temperature, 

T1  the spins freeze into a random configuration, corresponding to a local min-

imum in the free energy. In this glassy state, there are many nearly equivalent 

minima separated by high barriers. 

Below T1, there will be no long range order. This will show up as a lack of mag-

netic Bragg peaks in the neutron diffraction pattern below T1 . Other signatures 

of the spin glass phase include a frequency dependence in the ac susceptibility,  

measured in an oscillating magnetic field. The static susceptibility can be mea-

sured by first cooling the sample with an applied magnetic field or with zero 

applied field. The susceptibility is then measured for increasing temperature. 

In spin glasses below T1, different values are measured in the field-cooled and 

zero field-cooled cases. The heat capacity at low temperatures often shows a T' 

dependence. Measured using some experimental method which can probe the 

spin dynamics, such as inelastic neutron scattering or muon spin relaxation, the 

relaxation time shows a sharp increase below T1 . 

In general magnetic materials, in the paramagnetic regime at high temperature, 

the susceptibiity, x, follows a Curie-Weiss law 

C 
XTO 

where C and 0 are constants. This follows from mean field theory. In ferromag-

nets, 0 Tc, the critical temperature for the transition between ferromagnetic 

and paramagnetic states. In antiferromagnets, 0 is negative and 101 TN,  where 

TN is the Neél temperature, the critical temperature for the transition between 

antiferromagnetic and paramagnetic states. In frustrated antiferromagnets, how -

ever, the 'ordering' temperature is usually found to be much lower than the 
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Curie-Weiss constant. 1/X should be linear with respect to temperature. Since 

the mean field theory from which the Curie-Weiss law is derived neglects corre-

lations between spins, deviations from linearity occur as the correlation length 

rises with decreasing temperature towards the critical temperature. Deviations 

can set in at temperatures much greater than the critical temperature. In frus-

trated magnets, the correlation length does not increase at such high tempera-

tures, and the inverse susceptibility remains linear to much lower temperature, 

even well below the Curie-Weiss temperature. 

Schiffer and Daruka [33] examined the susceptibility of a selection of different 

frustrated magnets. They proposed a model in which there are two different 

populations of spins. There are clusters of antiferromagnetically correlated spins 

and also a population of 'orphan spins', not included in clusters, which are only 

weakly correlated with their neighbours. They proposed a fit to the susceptibility 

data using two Curie-Weiss laws. They fit the experimental inverse susceptibility 

using the function 

- 

I
TC1 	C2 -1

+o1 + 
T+82] 	

(1.10) 

This was found to describe well the experimental susceptibility for all the mate-

rials considered. 

One family of materials which are often given as a physical realisation of the 

kagome Heisenberg antiferromagnet are the jarosites. These have the general 

formula AFe3 (SO4 ) 2 (OH)6 , where A+  is a univalent cation e.g. N a+, K+, Rb+, 

Ag, NHt or H30+-Cr3  can be substituted for the Fe 3t Figure 1.5 shows the 

crystal structure of potassium jarosite. Fig. 1.6 shows a layer of Fe0 6  octahedra 

within the structure. This shows that the Fe 3+  ions sit on the sites of a kagome 

lattice. Neighbouring Fe3+  ions interact via an antiferromagnetic exchange inter-

action. Between layers, the exchange pathway is long so interlayer interactions 
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Figure 1.5: Crystal structure of KFe 3 (SO4 )2 (OH)6 . 

are weak. Thus this system can be describe by a two dimensional system consist-

ing of spins located on the sites of a kagome lattice. The Fe 3+  ions have a high 

value of spin angular momentum, S = 5/2. It is therefore reasonable to describe 

the system using a Heisenberg model in which the spins are represented as clas-

sical vectors which can point in any direction (formally corresponding to S = oc). 

Another material which was said to contain a kagome lattice is SrGai2_Cr02 

(SCGO). However, this does not correspond exactly with the model studied by 

theorists because it contains an extra triangular layer between the kagome layers. 

The magnetic properties of the jarosites have been extensively studied experi-

mentally because of the high degree of frustration which leads to unusual be-

haviour. All the jarosites show a transition at temperature T( ,  of the order of 50K 

to a state with long range order. The transition can be identified as a cusp in the 

susceptibility as a function of temperature. The magnetic structure adopted by 

the spins in the ordered phase can be determined by neutron diffraction. Below 
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Figure 1.6: Layer of Fe0 6  octahedra. 

the transition temperature, Bragg peaks occur due to both scattering for the nu-

clei and to magnetic scattering. Above Tc  the system is no longer exhibits long 

range order. By comparing the diffraction peaks above and below T., the mag-

netic Bragg peaks can be identified. The diffraction studies reveal that the struc-

ture of the spins in the long range ordered state is of the q = 0 form (Fig. 1.7(a)) in 

which the spins have adopted their compromise 120° orientations. This is rather 

surprising given that many theoretical and simulation studies conclude that an-

other compromise structure, the 0 x (Fig. 1.7(b)) is more stable than the 

q = 0 structure. 

The hydronium (A = H :3 0+) or deuteronium (A = D 30) appears to be an 

exception [34-38]. Magnetic susceptibility measurements show a transition at a 

temperature T1  15K. Below this temperature, the system enters a spin-glass 

like state. Neutron diffraction confirms the absence of long range order. The evi-

dence that this is a spin-glass state is as follows. Below If , there is a divergence 

between the field-cooled and the zero-field-cooled dc susceptibility. Measure-

ments of the ac susceptibility showed a decrease in T1  as frequency is increased. 

This behaviour is typical of a spin glass. The behaviour of the heat capacity is 



Chapter 1. Introduction 
	

16 

	

(a) 	 (b) 

Figure 1.7: Compromise 1200  ground state configurations of the kagome antifer- 
romagnet: (a) q = 0 (b) x Nfl 

less conventional. In a conventional spin glass, the heat capacity has a T' depen-

dence on temperature as T 4 0. In hydronium jarosite, the heat capacity goes as 

T2 . This is more typical of a conventional two-dimensional long range ordered 

state. The same behaviour was also found in SCGO. 

The fact that the hydronium jarosite freezes into a spin-glass state whereas all the 

other jarosites show long range order is a little puzzling. There are no obvious 

structural differences between the two cases. The only difference is in the cov-

erage of the magnetic lattice. The jarosites are rather difficult to prepare in pure 

form. Fe3+  ions can be lost from the structure, leaving vacancies. The coverage 

of the magnetic lattice is typically around 89%. The coverage is usually higher 

(-97%) for hydronium jarosite. Wills et al. [35, 361 suggested that this might 

account for the difference in behaviour. In order to test this hypothesis, they 

prepared hydronium jarosite doped with non-magnetic aluminium in which the 

coverage of the magnetic lattice is 89%. In this material, spin glass behaviour dis-

appeared and was replaced by a transition to a long range ordered state at 25.5K, 
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similar to the other jarosites. No divergence was observed between field-cooled 

and zero-field cooled dc susceptibility. 

The simple model of isotropic Heisenberg spins on a kagome lattice may not ap-

ply exactly to the jarosites. It was shown by Mermin and Wagner [5] that the 

Heisenberg model on a one or two dimensional lattice cannot show long range 

order at any non-zero temperature (although it does not rule out the possibil-

ity of long range order at T = 0). Examples of perturbations from the stan-

dard Heisenberg model include anisotropies, interactions ranging beyond near-

est neighbours, interlayer interactions, or the site dilution mentioned above. In 

chapter 5, we investigate the possibility of bond dilution. This is motivated by 

the suggestion that in hydronium jarosite, a proton may migrate from the inter-

layer hydronium ion onto one of the OH -  ions that bridge between neighbouring 

Fe3+ ions [30]. This will weaken the exchange interaction between the Fe3+  ions. 

We consider the extreme case that the exchange is zero; the bond is effectively 

'broken'. 

1.3 Coarse grained models of biological membrane proteins 

In Chapter 6, we explore the phase diagram for a two dimensional system of 

triangular molecules. This could serve as a very crude model for proteins in a 

biological membrane. It may seem too simplistic a model, but as we shall see 

this kind of coarse grained model has been successful in the past in the study of 

the phase behaviour of proteins. Some of motivation for this study is discussed 

below. 

Integral membrane proteins are proteins which are found in the phospholipid 

bilayers which constitute a biological membrane. These proteins perform a va- 

riety of functions. They can serve as selective channels allowing molecules of 
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a specific species to pass in or out of a cell. In order to understand how pro-

teins perform their function, it is necessary to have a detailed knowledge of their 

structure, not only which atom is connected to which but also how the protein 

is folded up. The usual way to do this is to produce three dimensional crystals 

of the protein which can then be analysed using X-ray crystallography. More re-

cently, an alternative approach has been developed [39]. Membrane proteins can 

be reconstituted into a two dimensional crystal along with lipids. The resultant 

structure can then be imaged directly using electron microscopy or atomic force 

microscopy. 

There are many proteins which are roughly triangular in shape, or which form 

trimeric units of three protein molecules (see for example Refs. [40-491). We high-

light some examples of the vast numbers of studies into the aggregation of such 

proteins. The outer capsid shell of the rotavirus consists of a protein called VP6. 

The protein molecules form into trimers which then form the basic units for the 

further aggregation of these proteins [40]. Fig. 1.8 shows a projection density 

map of a two dimensional crystal of VP6 as determined by cryo-electron mi-

croscopy. The trimers pack together in a manner determined by their roughly 

triangular shape, forming a crystal with two trimers per unit cell and p6 sym-

metry. The prion protein PrP 27-30 also forms trimeric units [45]. In the two 

dimensional crystal, the trimers pack together onto a triangular lattice (space 

group p3) (Fig. 1.9). In Ref. [43],  two dimensional crystals of AmtB, a protein 

involved in transport of ammonium across cell membranes, have been imaged 

using atomic force microscopy (Fig. 1.10). The molecular envelope of the protein 

molecules can be seen, which clearly shows the association of the proteins into 

trimers. Again, the trimers pack together to form the crystal structure. 

Coarse grained models like the one we use in Chapter 6 have in the past been 

successful in the study of the self-assembly of membrane proteins. Here, we 
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Figure 1.8: Projection density map of a two dimensional crystal of VP6, obtained 
by electron microscopy [40]. 
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Figure 1.9: Projection map of prion protein PrP 27-30 obtained by electron mi-
croscopy [45]. 

present two examples of this kind of study. In Section 6.1 we will give a more 

detailed justification of the use of coarse grained models. The first example is the 

membrane protein bacteriorhodopsin found in certain bacteria. It is known that 

these proteins self-assemble into a structure known as the 'purple membrane'. 

The proteins are shaped like 120° sectors of a circle. In the purple membrane 

the molecules associate into trimeric units, completing the circle. Jagannathan et 

al. [50] performed Monte Carlo simulations in which the protein molecules were 

modelled as hard circle sectors. With the addition of an attractive interaction 

between the straight edges of the sectors to mimic specific interactions between 

parts of the molecules, the particles spontaneously form into trimers. At high 

density, these trimers then form a crystalline phase with the trimer units forming 
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Figure 1.10: Atomic force microscope image of a two dimensional crystal of 
AmtB [43]. 

a triangular lattice. The trimer units display no orientational order, in contrast 

to the real system. It was found that if there is an additional specific interaction 

between the curved parts of the molecules, this could cause the system to adopt 

a structure with orientational order. The main features of the bacteriorhodopsin 

molecule responsible for the formation of the purple membrane structure have 

thus been identified. 

Bates et al. [51, 521 carried out a similar study to investigate the phase behaviour 

of the membrane protein annexin V. These proteins form tightly bound trimers 

which then become the basic units for the further collective self-assembly. Elec-

tron microscopy and atomic force microscopy show there are two possible struc-

tures. In one of these, of p6 symmetry, there is an rigid honeycomb structure. In 

a certain proportion of the holes in the structure there is a more loosely bound 

trimer (Fig. 1.11(a)). The other possible structure is a triangular structure of p3 

symmetry (Fig. 1.11(b)). The p6 structure is more stable at low density. Bates etal. 
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Figure 1.11: Projection maps of annexin V in the p6 (a) and p3 (b) phases, obtained 
by electron microscopy 1511. 

carefully constructed a model to capture the essential features of the annexin V 

trimers. The trimers were modelled as hard spheres with angle-dependent inter-

actions at specific sites representing specific interactions in the real trimers. Their 

Monte Carlo simulations showed at low density the honeycomb structure of the 

/)6 phase (Fig. 1.12(a)). As density is increased, more loosely bound trimers start 

to fill up the holes in the honeycomb (Fig. 1.12(b)), exactly as seen in experiment. 

As density is increased further, eventually all the holes are filled up (Fig. 1.12(c)). 

The only way to pack the trimers any closer is now to adopt a new structure. 

The system undergoes a first order phase transition into the p3 phase, which has 

more efficient packing (Fig. 1.12(d)). 

Observing the success of these simulations of very simple models in elucidating 

the bulk properties of proteins and considering the many membrane proteins 

which form trimeric units led us to investigate the hard disk trimer system dis-

cussed in chapter 6. The hexagonal close packing of the disks observed in our 

system is not dissimilar to the kinds of structures observed in two dimensional 

crystals of membrane proteins. As mentioned above, with these kind of models 
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Figure 1.12: Configurations from Monte Carlo simulations of a model of annexm 
V. (a)-(c) pG phase at increasing density (d) p3 phase [51]. 

we cannot hope to study the detailed mechanisms by which these proteins op- 

erate but we are more interested in the bulk phase behaviour. In any case, the 

function of many proteins is dependent on the formation of some kind of pattern. 

1.4 Summary 

In this introductory chapter, we have presented a range of different two-

dimensional experimental systems. These are the real systems that we hope to 

gain some insight into by the simulations reported in Chapters 3-6. Each of these 

studies has required different set of computational techniques to be used. In 

Chapter 2, we briefly introduce these techniques, and also some general aspects 

of computer simulation. 



CHAPTER 2 

Computer simulation 

Traditionally, there have been two ways in which condensed matter research has 

been carried out - by experiment and by theory. The aim of theory is to try to 

provide some explanation of experimental results. In order to proceed, we need 

to construct some model of the system under study. Very few cases are exactly 

solvable analytically. To make progress, many approximations have to be made. 

The ultimate test of a theory is to compare its predictions with experimental re-

sults. However, if there is a discrepancy, it may mean the theory is wrong, or it 

may mean that the model is not an adequate description of the real system. 

With the advent of computers, an alternative mode of research has become possi-

ble. Computer simulation plays a role intermediate between theory and experi-

ment. Computer simulations provide essentially 'exact' results for the particular 

model used, against which theories can be tested. On the other hand, simulations 

can act as 'computer experiments' which can stimulate further theory. Simula-

tions can also be compared directly with experiment, and can aid in interpreting 

the experimental results. In this regard, computer simulation is a useful tool be-

cause of the link it makes between the microscopic and macroscopic levels of 

description. 

23 
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We have performed simulations of the two-dimensional systems introduced in 

Chapter 1. In this chapter, we introduce the basic simulation techniques used 

in these studies, and then describe some of the quantities which are measured 

during the simulations to obtain information about the system. Full coverage of 

the methods of computer simulation can be found in the textbooks by Allen and 

Tildesley [53] and Frenkel and Smit [54]. 

2.1 Fluid systems 

2.1.1 General aspects of computer simulation 

Interaction potentials 

We describe our model of the system of interest by a function which gives the po-

tential energy for a given configuration of the particles in the system. Usually, the 

assumption is made that the potential is pairwise additive. That is, we calculate 

the potential energy for each pair of particles, which is expressed as a function of 

their relative positions (and possibly orientations) and we assume that the total 

potential is just the sum of these interactions for all pairs of particles. 

Perhaps the simplest model of an atom is to regard it as an impenetrable hard 

sphere. This may be represented by the potential 

00 T<0 
U(r) = 	 (2.1) 

0 r > o,  

where r is the distance between the particles and cr is the particle diameter. The 

hard core interaction which prevents the particles from overlapping provides a 

good representation of the Pauli repulsion which operates at short distances and 
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has its origin in the exclusion principle. Another widely used pair potential is 

the Lennard-Jones potential, 

I(o.\ 12  
U(r) = 	

-

( o,)61 

	
(2.2) 

where r is the distance between the particles, cr is a distance parameter and € is a 

parameter giving the depth of the minimum in the potential. At large distances, 

this has the asymptotic 1r 6  dependence of the van der Waals interaction, and the 

1r12  term approximately describes the hard core repulsion when the particles 

come close together. This potential provides a good description for argon. 

For short range potentials, we can truncate the potential at a certain distance be-

yond which the interactions are negligible. This means that any two particles 

further apart than this distance do not need to be considered when calculating 

the total potential energy, speeding up the simulation. The discontinuity in the 

potential can cause problems, however. A discontinuous potential means an in-

finite force (since F - VU), which can lead to numerical instabilities. One way 

to avoid this is to multiply the potential in the vicinity of the cut-off by a function 

which brings it smoothly to zero. 

Periodic boundary conditions 

In a simulation of a finite number of particles, a significant fraction of the parti-

cles will be at the edges of the system. The environment of these particles will be 

very different to the environment of a particle within a bulk system. In order to 

reduce this problem, periodic boundary conditions are normally employed. We 

make copies of the system in all directions (Fig. 2.1). When a particle leaves the 

central simulation cell at one side, its periodic image enters from the other side, 

thus conserving the number of particles in the central simulation cell. 
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Figure 2.1: Periodic boundary conditions 

Technically, every particle interacts with every particle in all cells, but often the 

minimum image convention is used. When calculating the force on a particle, the 

only interaction that is considered is that due to only the nearest of the periodic 

images of a particular particle. 

Reduced units 

When carrying out a computer simulation it is convenient to define a set of re-

duced units in terms of the potential parameters of the system under study [53]. 

For example, for a Lerinard-Jones fluid, with the pair potential given by Eq. 2.2, 

distances can be expressed in terms of the parameter a, and energies can be ex-

pressed in terms of E. We also use the mass of the particles in the system as a 

fundamental unit (i.e. m=1). From these fundamental definitions, we can ob-

tain other quantities in reduced units. Some reduced units for the Lennard-Jones 

potential are listed below. 
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Distance = r/a 

Density P* = pa  

Energy E* = E/e 

Temperature T* = kBT/c 

Pressure Pt = PO' 3 /c 

Time t" = (€/ma 2 ) 1 /2 t 

The most important reason for using reduced units is that there are many differ-

ent states in real units that correspond to the same state in reduced units. The 

use of reduced units means we do not have to repeat the simulation for each of 

these states. Another advantage is that values in reduced units will be of order 

unity, hence we avoid the potential problems of using the very small numbers 

of atomic systems on a computer. The use of reduced units also simplifies the 

potential, allowing us to set the parameters of the potential to one. We do not 

need to choose specific values of these parameters. 

2.1.2 Techniques 

Monte Carlo 

We wish to obtain ensemble averages, i.e. average of some quantity A over all 

the states of the system weighted by the Boltzmann probability of each state, 

(A) = 	A i  exp(-3E), 	 (2.3) 

where 0 = 11kB T and Z = E j  exp(-3E) is the partition function. The sum is 

over all accessible states, A, is the value of A in that state and Ej  is the energy of 

state i. One way to obtain this average might be to sample all possible states and 

use the values of A i  and Ej  for each state. However, in general there will be a vast 

number of possible states. It is not feasible to attempt to sample all of these states. 
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Moreover, a great many of these states will have a small Boltzmann weight and 

so contribute very little to the ensemble average. What we need is some way to 

sample those states which make the largest contribution to the ensemble average. 

This is provided by the importance sampling Monte Carlo technique. 

The algorithm in the canonical ensemble is as follows: 

Prepare the system in some initial configuration. 

Choose a particle at random and give it a random displacement within 

some prescribed interval. 

If the trial move results in a decrease in energy, it is accepted uncondition-

ally. If the trial move results in an increase in energy it is accepted with a 

probability 	where LE is the difference in energy between the trial 

configuration and the previous configuration. To implement this in a pro-

gram, a uniformly distributed random number is generated in the interval 

,11 0.0 to 1.0. If it is less than e_E,  the move is accepted, otherwise the move 

is rejected. 

The process is then repeated with the next randomly selected particle. 

Using this scheme, states are sampled with a probability proportional to their 

Boltzmann weight. The ensemble average can then be calculated as a simple 

unweighted average over the states visited. The method can be adapted to spin 

systems by making moves involving flips or small rotations of the spins. 

In order to perform Monte Carlo simulations in the isobaric-isothermal ensemble 

(constant NPT), we introduce trial moves which increase or decrease the volume 

of the system. We make a change in volume from V'to V = V'+ LW, where LW 

is a random number between LVmax  and +LWmax . This move is accepted with 
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a probability 

min{i exp (- 
	

[U(V') - U(V) + p(V' - V) - kBTN ln(V'/V)]) } . (2.4) 

In this ensemble the enthalpy is important rather than energy. 

Molecular Dynamics 

An alternative method of obtaining ensemble averages is molecular dynamics. 

We follow the actual dynamics of the system by integrating the classical equa-

tions of motion in order to follow the particle trajectories in time. The equations 

of motion will be a set of coupled differential equations which in general can only 

be solved using numerical methods. This is usually done using finite difference 

methods. Given knowledge of the particle positions and momenta at some time 

t, we obtain the positions and momenta a short time later, t + At. A well-known 

example is the Verlet algorithm: 

r(t + At) = 2r(t) - r(t - At) + a(t)At' 	 (2.5) 

The velocities are not needed in the calculation of the trajectory, but they can be 

estimated by 
r(t + At) - r(t - At) 

(2.6) V(t) 
- 	2At 

We proceed as follows: we have the positions and momenta of the particles in the 

system at time t. The force on each particle due to all the others is then calculated 

via the pair potential, from which we get the accelerations from Newton's Second 

Law, F = ma. The positions and momenta can then be updated to time t + At 

using Eqs. (2.5) and (2.6). 

The velocities are not handled very satisfactorily by the Verlet algorithm. The 

errors in the positions are of order At', whereas the errors in the velocities using 
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Eq. (2.6) are of order Lt 2 . An alternative algorithm, the 'velocity Verlet', has 

update equations for both the positions and velocities: 

r(t + At) = r(t) + v(t)1t + a(t)Lt2 	 (2.7) 

v(t + t) = v(t) + 
I 
 At [a(t) + a(t + At)] . 	 (2.8) 

The algorithm is implemented as follows. The positions are updated according 

to Eq. (2.7). The velocities are then updated to half-timestep: 

v(t + At) = v(t) + a(t)Lt. 	 (2.9) 

The forces and accelerations at time t + At are then calculated using the newly 

calculated positions r(t + At). Finally, the update of the velocities can be com-

pleted: 

v(t + At) = v(t + 	t) + Ata(t + Lit). 	 (2.10) 

Since energy is conserved by the Newtonian equations of motion, the molecular 

dynamics method simulates a microcanonical (constant NVE) ensemble. Note 

also that the total momentum is conserved. The conservation of energy and mo-

mentum serves as a useful test of the program. 

Various methods exist to perform molecular dynamics in a constant temperature 

ensemble. The most extreme is to rescale the velocities of all particles at each 

time step to ensure they correspond with the equipartition theorem. A system 

at constant temperature is considered to be coupled to a heat bath. In the An-

derson thermostat, every so often a particle is chosen at random and its velocity 

is reassigned from the Maxwell-Boltzmann distribution. This corresponds to the 

collision of the molecule with an imaginary heat bath particle. The Nose-Hoover 

method is an 'extended Lagrangian' method in which an additional degree of 
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freedom representing the heat bath is added to the equations of motion. An 

alternative is to use the Brownian Dynamics technique described in the next sec-

tion. 

Brownian Dynamics 

If we wish to simulate a colloidal suspension, in which there are relatively large 

particles surrounded by very many much smaller solvent particles, there is a 

separation of timescales. The motion of the solvent molecules will be on a very 

much shorter timescale than the motion of the colloidal particles. If we explicitly 

try to simulate the solvent molecules, we will need a short timestep to deal with 

the solvent motion but long runs will be needed to be able to observe the motion 

of the colloidal particles. We are not usually interested in the dynamics of the 

solvent molecules themselves. In Brownian dynamics, we replace an explicit 

description of the solvent with a random force, representing the forces from the 

solvent molecules which give rise to Brownian motion, and a drag force. 

Brownian dynamics is based on the Langevin equation rather than the Newto-

nian equations of motion. This can be integrated using a finite difference algo-

rithm in the same way as in molecular dynamics. The Langevin equation is 

m'i(t) = —'yi(t) + F(t) + f(t), 	 (2.11) 

where r(t) is the position of particle i at time t. The first term on the right hand 

side represents the friction force, which is proportional to velocity with friction 

coefficient 'y.  F(t) is the usual conservative force derived from the pair potential, 

exerted on the particle by the surrounding particles, and 1(t) is the random force. 

It is assumed that the random force averages to zero, 

(f(t)) = 0 
1 	 (2.12) 
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and has a Gaussian distribution with variance given by 

(fja(t)fjc(0)) = 2mk B Ty8(t) , 	 (2.13) 

where fia(t) is the x, y or z component of the force on particle i. The random 

force is related to the friction coefficient, since the drag force on a particle is also 

due to random collisions it experiences as it moves through the fluid. 

2.1.3 Measurable quantities 

In order to probe what is happening in a simulation, we make 'measurements' 

of certain quantities. What we can observe are functions of the configuration of 

the system at a particular step in the simulation. We are usually interested in en-

semble averages of the measured quantity rather than the instantaneous values. 

As mentioned before, in Monte Carlo this is a simple average over all the states 

visited and in molecular dynamics, this would be an average over different time 

origins. Throughout this thesis, the ensemble average of a quantity is signified 

by placing the quantity in triangular brackets. 

Structure 

The structure of a fluid is often characterised by a quantity called the radial 

distribution function. We first introduce the n-particle reduced distribution, 

p (ri, ... , rn ), which is the probability density for finding any set of n particles 

at the given positions. For an ideal gas, 

p2 (ri ,r2) = p2 (1 - N - ') 	 (2.14) 

where N is the number of particles. The last equality assumes that the quantity 

N 1  is negligible for systems with large N. We can thus quantify the deviation 
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Figure 2.2: Radial distribution function for a Lennard-Jones fluid at density p = 
0.8 and temperature T* = 1. 

of the structure from the random ideal gas structure using the function 

g(r1,r2) 
- p2 (r1 ,r2 ) 

(2.15) 
- 	p2  

In an isotropic fluid, this is a function only of the separation of the two particles, 

r 1r2 - ru. In this case, g(r) is called the 'radial distribution function'. The 

radial distribution function measures the probability of finding a pair of particles 

a distance r apart, relative to the probability in a random (ideal gas) structure. A 

typical g(r) for a liquid is shown in Fig. 2.2. The co-ordination shells around 

a given particle give rise to the peaks. g(r) eventually decays to 1 as r -f oc 

as correlations between particle positions die away. The liquid has short range 

order. 

We next introduce the static structure factor [55] which can also be measured in 

X-ray or neutron scattering experiments, so it provides a link between experi-

ment and simulation. First we define the 'local particle density', 

p(r) 	ö(r - ri), 	 (2.16) 
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where r, is the position of particle i. Its spatial Fourier components are 

p = j exp(—iq . r)p(r)dr 	 (2.17) 

= 	exp(—iq. r i ). 	 (2.18) 

The structure factor is defined as an autocorrelation function of the Fourier corn-

portents: 

S(q) = (PqP-q) . 	 (2.19) 

It can be shown that the structure factor is related to the Fourier transform of the 

radial distribution function, g(r): 

S(q) = 1 + pf [g(r) - 11 _zq.r, 	 (2.20) 

where p is the average density. Thus, the both radial distribution function and 

the structure factor provide information about the structure. 

Time correlation functions 

Time correlation functions are useful probes of the dynamics of the system, i.e. 

the time dependent properties. The time correlation function between two time-

dependent quantities A(t) and B(t) is defined as 

CAB(t) = (A(t)B(0)) 	 (2.21) 

and the autocorrelation function is 

CAA(t) = (A(t)A(0)) . 	 (2.22) 

To see what kind of information a time correlation function provides, let us ex- 

amine the limits of the autocorrelation function. At t = 0, CAA (t) = (A(0)A(0)) = 
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Figure 2.3: Velocity autocorrelation for a Lenriard-Jones fluid at density p = 0.8 
and temperature T* = 1. 

(A 2 ). As t -* 00, the system eventually 'forgets' what was happening at t = 0, 

and A(t) becomes uncorrelated with A(0). Therefore (A(t)A(0)) - (A (t)) (A(0)). 

Since most of the quantities we consider average to zero, their autocorrelation 

functions decay from (A 2 ) to zero as correlations die away. 

- If the decay is assumed to be exponential, CAA(t) 
CAA(0) 

- exp(—t/r), then r can be 

found by 

f CAA(t)
T=CAA (0) 

(2.23) 

Thus the integral of a correlation function gives a measure of the correlation time. 

Figure 2.3 shows a typical velocity autocorrelation function, (v (t) . v(0)) in a high 

density liquid. This is usually averaged over particles. At short times, there is 

a negative portion in the curve. This is attributed to the particles colliding with 

their surrounding co-ordination shells and reversing their velocities. Eventually 

particle velocities become decorrelated with their initial values and the velocity 

autocorrelation function decays to zero. 
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Figure 2.4: Mean square displacement for a Lerinard-Jones fluid at density p' = 
0.8 and temperature T* = I. 

Diffusion 

The diffusion of particles can be measured using the mean square displacement, 

AR 2(t) = KIri(t) - 	 (2.24) 

where r, (t) is the position of particle i at time t. This is usually averaged over par-

ticles as well as taking the ensemble average in order to obtain better statistics. 

A typical graph of mean square displacement versus time is plotted in Fig. 2.4. 

At short times, the particles have not yet collided with any of their neighbours. 

The particles move with constant velocity and therefore /.R2 OC t2 . This is the in-

ertial or ballistic regime. At longer times, we enter the diffusive regime. A given 

particle has made many collisions with neighbouring particles and its progress 

through the system slows down. The long time behaviour is given by the Em-

stein relation, 

LR 2 (t) = 2dDt 	 (2.25) 

in d dimensions. Thus the diffusion coefficient, D can be obtained from the gra-

dient of the asymptotic linear portion of the curve. 
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The diffusion coefficient is also related to the velocity autocorrelation function, 

	

TO
D 	= 

-l 	
(v(t) v(0)). 	 (2.26) 

d 

We can also measure a rotational diffusion coefficient in an analogous way from 

the angular velocity autocorrelation function: 

t oo 

	

DR 	
1 

- J (LO (t) LO (0)) , 	 (2.27) 
30 

where w is the angular velocity. 

Heat capacity 

The canonical heat capacity (at constant volume), Cv = ()is related to fluc-

tuations in the energy. In a simulation at constant temperature, the heat capacity 

can be calculated by 
(E2 ) - (E) 2  

(2.28) 
kBT 

Instantaneous temperature 

A measure of the instantaneous temperature is provided by the 'kinetic temper-

ature'. This is based on the equipartition theorem which states that each degree 

of freedom which appears as a quadratic term in the energy contributes !kBT to 

the average. Thus, in a three-dimensional system, the average kinetic energy at 

equilibrium is 3kBT (three translational and three rotational degrees of freedom). 

We therefore define an instantaneous kinetic temperature by 

T = 3'k 	
m j v 	 (2.29) 
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We can also define a separate translational and rotational temperature. It is use-

ful to check that energy is correctly partitioned between translational and rota-

tional degrees of freedom. 

Of course, velocities are not available in Monte Carlo simulations. An alterna-

tive measure of the instantaneous temperature is the configurational temperature 

based only on the positions (or orientations) of the particles in the system. The 

translational configurational temperature can be found from [56] 

'ç-Nj2 
I ____________________ 
tbB trans - 	N .-'N 

- 	
V,ij 	

jj 

where F, is the total force acting on particle i, Fij  is the contribution to the force 

on particle i due to particle j and rij  is the distance between particles i and j. The 

rotational configurational temperature can be found from [57] 

kBTrot  
(r) - - ((V0)2) 	

(2.31) 
- (V0r)  

Here Tj  is the torque on particle i, 0 is the pair potential, Vç is the angular gra-

dient operator, and V is the angular Laplacian. 

2.2 Spin systems 

2.2.1 Simulation techniques 

Spin Dynamics 

The static thermodynamic properties of many different models of magnetism 

have been studied extensively using Monte Carlo simulations. Spin dynamics 
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has received much less attention. Spin dynamics simulations consist of the in-

tegration of the equations of motion for spins on the sites of a lattice. We can 

derive a semi-classical equation of motion for the Heisenberg model as follows. 

The Heisenberg Hamiltonian is 

7-t = —J 	. .§3 . 	 (2.32) 
[ij] 

is a unit vector pointing in the direction of the spin angular momentum on 

site i. The sum is over all pairs of spins which are nearest neighbours on the 

lattice. J is the exchange energy. In quantum mechanics, the rate of change of an 

observable, 0 is given by 

	

090  
at 	h 

= 	[7-(, 0] 	 (2.33) 

Using Eqs. 2.32 and 2.33, we get 

aj 

--= 	
— J>Sj.S3,S, 	 (2.34) 

at 	h 

= 	 , 	 (2.35) 

where the sum is over the nearest neighbours of spin i. Expanding out the com-

mutator, 

	

, ] = IS-Si-+SMSJY+SiAZISi] 	 (2.36) 

= 	S] + [SS, S]  + 	S] + 

	

S] + lsiysj y , S] + 	S,] + 

	

[SS, S] + 	S] + 	S] 	(2.37) 
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Each of these terms can be evaluated using the relation [AB, C] = [A, C]B + 

A[B, C], and then using the usual commutation relations for angular momentum: 

[Sr , Sy ] = ihS 	 (2.38) 

[Sw , S] = ihS 	 (2.39) 

[Se , S] = ihS 	 (2.40) 

We arrive at 

[,§, - , ] = ih(SS - S Z S Y ) + ih(SS - SS 3 ) 	(2.41) 

- 	 (2.42) 

= ihSxS 
	

(2.43) 

Finally, substituting Eq. 2.43 into Eq. 2.35, the equation of motion for spin i is 

dt 
= 	< 	 (2.44) 

We proceed to integrate these equations of motion by a finite difference algorithm 

in the same manner as in molecular dynamics [58-61]. Commonly used algo-

rithms include a predictor-corrector algorithm or an algorithm based on Suzuki-

Trotter decomposition of exponential operators. A commonly used predictor-

corrector is the explicit Adams-Bashforth four step predictor followed by the 

implicit Adams-Moulton three step corrector. This provides a solution to the 

differential equation '(t) = f(y(t)). 

y(t+zt) = y(t)+t[55f(y(t)) —59f (y(t—t))+37f (y(t-2zt)) —9f(y(t-3zt))], 

(2.45) 
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followed by the implicit Adams-Moulton three step corrector 

y(t + t) = y(t) + 
24 

 At[9f(y(t + At)) + 19f(y(t)) - 5f(y(t - At)) + f(y(t - 2t))], 

(2.46) 

where we feed in the result for y(t + At) from the predictor step. 

The equations of motion (Eq. 2.44) conserve energy and magnetisation, >j 	In 

order to perform a simulation at constant temperature, initial configurations for 

the dynamics runs can be provided by a Monte Carlo simulation at a prescribed 

temperature. A canonical ensemble average can then be obtained by averaging 

over the trajectories generated. 

2.2.2 Measurable quantities 

In magnetic systems, we define the magnetisation as the sum of all the dipole 

moments 

M 
	

(2.47) 

The susceptibility is defined as x = (*) 
11=0' 

where H is the magnetic field. This 

related to the fluctuations in the magnetisation by 

(112) - (M) 2  
= 	

(2.48) 
kBT  

We next introduce the dynamic structure factor in the context of spin systems al-

though it can also be measured for fluid systems. This quantity makes an impor-

tant link between simulation and experiment as it can be obtained from inelastic 

neutron scattering experiments. The intermediate scattering function is defined 

by 

F(q, t) = (M(q, t) . M(q, 0)), 	 (2.49) 
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where M(q, t) is a Fourier component of the magnetisation, 

N 
J%'I(q, t) = 	j(t)et(1?1 	 (2.50) 

j=1  

The temporal Fourier transform of F(q, t) yields the dynamic structure factor 

00 

	

S(q, 	
= I-: F(q, t)e tdt. 	 (2.51) 



CHAPTER 3 

Structure and dynamics of a quasi-two-dimen- 

sional dipolar fluid 

3.1 Introduction 

In this chapter, we study the structure and dynamics of the dipolar fluid using 

molecular dynamics simulations. This model is most closely relevant to ferroflu-

ids. In experiments on ferrofluids, thin films are often used, especially when the 

aim is to image the structure. We thus study a quasi-two-dimensional system 

where the centres of mass of the particles are confined to a plane, but the dipoles 

are able to rotate in three dimensions. 

The energy of two dipoles is minimised when they align 'nose-to-tail', and this 

leads, for high dipole moment, to the formation of chain-like aggregates. This ag-

gregation has a profound effect on the dynamics. In particular, our results show 

a separation of timescales between the fast motion of particles within chains, and 

the slow motion of the chains as a whole. 

43 
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Before describing more recent work on quasi-two-dimensional dipolar fluids, we 

shall discuss some of the issues which have been considered in the literature for 

the three dimensional case. 

The structure of dipolar spheres in three dimensions has been surveyed in many 

studies [12-14]. Camp and Patey [14] performed Monte Carlo simulations of a 

system of dipolar hard spheres and observed the structures formed at different 

densities along an isotherm. At the lowest densities, the structure consists of 

isolated chains and rings. As the density is increased, there is a network of in-

terconnected chains. At a higher density still, aggregation breaks down, and the 

structure appears as that of a 'normal' liquid. 

Camp and Patey also computed the static structure factor, S(q). One finding 

which will be relevant to the present work was that at lower density, where 

chaining occurs, the structure factor displays a power-law scaling at low q. The 

low wavevector (long wavelength) region corresponds to correlations over dis-

tances greater than one particle diameter, and therefore this is the region in which 

chaining would make its presence felt. The structure factor was found to scale 

as S(q) q_D  with D = 1. This is the scaling expected for rod-like molecules, as 

we will show later. 

Wei and Patey [62] showed evidence from their molecular dynamics simulations 

that in three dimensions dipolar soft spheres can form a ferromagnetic liquid 

state at high densities near the freezing transition. They measured the first and 

second rank orientational order parameters, (P1 ) and (F2 ) which are usually used 

in the study of liquid crystals to identify ferroelectric nematic states. In a ferro-

magnetic state with a net magnetisation and dipoles preferentially aligned along 

a director, both (F1 ) and (F2 ) would be expected to be non-zero. Wei and Patey 

found that as a function of density the order parameters displayed large jumps 

at densities of p 0.65 and p 0.87. This they assigned to phase transitions 
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between the isotropic fluid and ferromagnetic fluid and between the ferromag- 

netic fluid and ferromagnetic solid state. Monte Carlo simulations by Weis and 

Levesque [12, 13, 63] also confirmed the presence of a ferromagnetic liquid state. 

A long-standing question is whether the dipolar fluid exhibits a liquid-vapour 

phase transition in the absence of any additional attractive interactions. Al-

though the works cited below are concerned with the three dimensional case, 

the question is also important in the two dimensional case. The issue was first 

raised by de Gennes and Pincus [10],  who noted that the angle-averaged dipole-

dipole interaction gives an attractive interaction which has a 1r 6  dependence 

on distance, like the van der Waals interaction. On this basis, they conjectured 

that the phase diagram should be similar to that for the Lennard-Jones potential, 

which does display liquid-vapour coexistence. Early theoretical work appeared 

to confirm this, as did a simulation study by Ng et al. [64]. However, they sim-

ulated a very small system of only 32 particles. Later simulations showed no 

evidence of a liquid-vapour transition. Caillol [65] performed Monte Carlo sim-

ulations along the isotherms T* = 0.22 and T* = 0.18 in the isobaric-isothermal 

(constant NPT) ensemble and also using the Gibbs ensemble method. These 

two isotherms are below the critical temperature estimated by Ng et al. [64]. If 

this were indeed the correct critical temperature, we would expect to see phase 

coexistence at some point along isotherms at lower temperature. For various 

pressures along each isotherm, the probability distribution for values of density 

was calculated. At first, in simulations with N = 100 or 256 particles, it seemed 

that there may be two peaks in this distribution, which would indicate phase co-

existence. However, with N = 512 particles, the curves showed only one peak 

at all pressures. The results of the Gibbs ensemble simulations also showed no 

phase coexistence. Weis and Levesque [12, 13] carried out a Monte Carlo study 

in the canonical (constant NVT) of the phase behaviour of a system of dipolar 
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hard spheres over a wide range of densities and reduced temperatures T*  be-

tween 0.08 and 0.25 in the fluid region of the phase diagram. Their simulations 

failed to show any evidence of the system dividing into a low density and high 

density region, i.e. no liquid-vapour coexistence was observed. 

It appears that additional attractive interactions are necessary to recover the 

liquid-vapour transition. van Leeuwen and Smit [66] added a dispersive (van 

der Waals) 1/r 6  term to the dipolar soft sphere potential. They used Gibbs en-

semble Monte Carlo simulations to investigate the phase behaviour of a system 

whose particles interact via the following pair potential: 

12 

4 	- A 
(u)6] 

+ 	
- 3 (i r j )( . r) 	

(3.1) 
rij 	rij 	0. 	 r5 

23 

When A = 0, this is just the dipolar soft sphere model. When A = 1, it becomes 

the Stockmayer potential. The liquid-vapour coexistence curve was obtained 

for values of A in the range 0.3-1. No phase coexistence was observed for A < 

0.3. Instead, in the region where the coexistence is expected, chaining occurred. 

For A > 0.3, the critical temperature and pressure decrease with decreasing A. 

Extrapolation to A = 0 shows that if there is a liquid-vapour transition, the critical 

temperature must be much lower than previously predicted. 

Contrary to all this, Camp et al. [15] performed three independent sets of simu-

lations which appear to suggest that there is at least one and possibly two fluid-

fluid phase transitions. They obtained the equation of state from simulations in 

the NPT ensemble along the isotherm T* = 0.1322. There appears to be three 

distinct branches in the equation of state. It may that one of the branches rep-

resents metastable states. A metastable state is a state in which the system is 

trapped, even though it is not the most thermodynamically stable state (i.e. it is 

not the state of lowest free energy). The system may be trapped in a local free 
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(a) 
	

(b) 
I 
	 ... 

Figure 3.1: Snapshots of the three phases observed by Camp et al. [15] (a) low 
density phase (b) intermediate density phase (c) high density phase. 

energy minimum, surrounded by high free energy barriers, making the conver-

sion from the metastable state to the true thermodynamically stable state an ex-

tremely slow process. Snapshots of the structure in the three branches are shown 

in Fig. 3.1. In the low density phase, the particles are clearly aggregated into 

chains. In the intermediate density phase, chains are still discernible, forming a 

network structure. In the high density phase, the structure is more like that of a 

'normal' fluid. Grand canonical Monte Carlo simulations also indicated the exis-

tence of three different isotropic fluid phases. Finally, the Helmholtz free energy 

along several isotherms was calculated by thermodynamic integration. At the 

lowest temperatures studied, the free energy showed three weak minima as a 

function of density. The densities at which these minima occur is consistent with 

the densities at which the three phases identified earlier appear. Above about 

T* = 0.15, the free energy was found to be a monotonic function of the density, 

showing that the distinction between the phases disappears above this temper-

ature. This suggests a critical temperature of T* = 0.15 - 0.16. The isotherms 

studied by Caillol would thus be supercritical, which may be the reason why no 

liquid-vapour coexistence was observed in that case. 

The phase transition in the dipolar fluid must be of a different nature to the tra- 

ditional liquid-vapour phase transition. In a 'normal' liquid-vapour transition, 

there is a vapour phase with high energy and high entropy and a liquid phase 
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with low energy but low entropy. It is these large differences in energy and en-

tropy which drive the transition. In the dipolar fluid, however, there is chaining 

at both low and high density, meaning that the energy and entropy are low in 

both cases. Hence, there must be some other driving force for a phase transition 

in dipolar fluids. Dusty and Safran [6,67] have proposed a topological transition 

in which the low density phase has a high concentration of end defects and the 

high density phase has a high concentration of 'Y' defects, creating an intercon-

nected network of chains. A similar kind of transition may also be seen in other 

network-forming systems [68, 691 e.g. wormlike micelles, gels, microemulsions. 

Thus, dipolar fluids provide simple model system which can act as a paradigm 

for our understanding of a large range of other systems. 

More recently, attention has turned to the simulation of the quasi-two-

dimensional dipolar fluid. In this case, the particles' centres of mass are con-

fined to a plane, but their dipole moments are free to rotate in three dimensions. 

This corresponds to the experimental situation of having a thin film of ferrofluid, 

which is often used in imaging. The thickness of the film is often comparable to 

the particle diameter and this can be thought of as a two-dimensional system. 

As in the three dimensional case, it is unknown whether the quasi-two-

dimensional dipolar fluid exhibits a liquid-vapour phase transition. No evidence 

has as yet been reported. Also, ferromagnetic liquid state which is observed in 

three dimensions does not occur in two dimensions. 

The quasi-two-dimensional dipolar fluid was studied by Weis using Monte 

Carlo simulations [161. It was confirmed that chaining occurs in the quasi-two-

dimensional case as it does in three dimensions. It was also shown that the dipole 

moments have a strong tendency to he within the plane because they are lined 

up nose-to-tail along the chains. The variation of structure with density was sur-

veyed. A more detailed study of the structural and conformational properties 
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was carried out by Weis, Tavares and Telo da Gama 117, 18]. They used a dis-

tance criterion to identify the aggregates and classified them as chains, rings or 

defect clusters. 

There is a vast literature on dynamics of weakly polar fluids. For reviews, see 

Refs. [70],  [71]. There have been far fewer studies on the dynamics of strongly 

polar fluids in the regime where chaining occurs. Murashov, Camp, and Patey 

performed both molecular dynamics and Brownian Dynamics simulations of a 

three-dimensional strongly polar system in order to study the dielectric spec-

trum (or, strictly, the magnetic susceptibility spectrum in the case of magnetic 

dipoles) [19]. This is related to the Fourier transform of the bulk magnetisation 

time autocorrelation function. They found that the spectrum exhibits a low fre-

quency band and a high frequency band. The high frequency peak became very 

weak at high density, where the particles show little tendency to form chains. The 

high frequency peak is thus due to the presence of chaining, and was attributed 

to oscillations of individual dipole moments within the chains, while the low 

frequency band was attributed to the rotation of whole chains. This is an exam-

ple of the separation of timescales mentioned earlier, and reflects the behaviour 

observed by Butter et al. [23] in their measurements of magnetic susceptibility 

spectra in real ferrofluids. 

Murashov et al. [19] made an interesting comparison between their molecular dy-

namics and Brownian Dynamics results. Brownian Dynamics might be expected 

to be a more realistic model for colloidal systems such as ferrofluids because the 

effect of solvent is included in the form of the stochastic forces. Murashov et al., 

however, found their results were essentially the same using either technique. 

In the present work, we employ molecular dynamics simulations in the con-

stant NVE ensemble. This is the natural ensemble for molecular dynamics, since 



Chapter 3. Structure and dynamics of a quasi-two-dimensional dipolar fluid 	50 

the Newtonian equations of motion conserve energy. Schemes to perform sim-

ulations at constant temperature do well with calculating static thermodynamic 

properties, but inevitably cause perturbation to the particle dynamics. Since it is 

the dynamics we are most interested in, we use ordinary molecular dynamics in 

the NVE ensemble. 

3.2 Computational details 

Molecular dynamics simulations were performed on a quasi-two-dimensional 

system of soft spheres with a central point dipole. The potential is the dipole-

dipole potential plus a short-range repulsive potential, 

u(r) = uss(r) + 
i-Li 	- 3(ii r)(ji2  . r) 

r5  
(3.2) 

where r is the interparticle separation vector and i-Li and P2  are the dipole mo-

ments of particles 1 and 2, respectively u ss  is a short-range repulsive interaction, 

taken to be the repulsive part of a Lennard Jones potential, 

( 

uss(r) = 4e - 	. 	 (3.3) 
r 

c is an energy parameter and a is the particle 'diameter'. 

The particles are confined to a plane but their dipole moments are free to rotate in 

three dimensions. Periodic boundary conditions were applied with a square box 

of width L. The potential was truncated by multiplying between 0.9 x L/2 and 

L/2 by a switching function due to Andrea et al. [72] which brings the potential 

smoothly to zero. 

Long range potentials such as the Coulomb interaction or the dipole-dipole in- 

teraction present a problem in computer simulation. In the case of the Coulomb 
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interaction or the dipole-dipole interaction, for example, the range of the interac-

tion extends well beyond half the box length and each particle will interact with 

all periodic images of every particle. One simple way to deal with this might be 

just to cut off the potential at some distance setting it to zero beyond this 

distance. This can lead to problems. In the solid phase, for example, spherical 

truncation of a long range potential can lead to a distortion of the lattice. By ar-

ranging to be separated by a distance of rCUOff or greater, a pair of particles can 

lower their energy. We therefore see a distortion of the lattice in which parti-

cles tend to move towards the edge of a sphere of radius r 0ff around a given 

particle. The system can find a configuration with lower energy than the theo-

retical ground state. It is more usual to handle long range forces using Ewald 

summation or reaction field methods. 

At low density, in the fluid phase, the problems should not be so severe, and 

we cite Ref. [73] to justify our use of truncated potentials. This study considered 

the effect of truncating the potential at different ranges in a two-line system of 

dipolar spheres and concluded that a cutoff length of 5a is reasonable. Our cutoff 

range of L/2 is much longer than this, even at the highest density studied. At a 

density of = 0.5, L/2 = 21.9a. 

Reduced units are defined in terms of the energy (c) and distance (a) parameters 

in the potential as follows: surface density p = Na2 /A; temperature Tt = kT/c; 

dipole moment 1f = (,2/Ea3)1/2; time t = (e/mcr 2 ) 1 /2t and moment of inertia 

1* = I/ma2 . 

N = 961 particles, with m = 1 and 1* = 0.1 were used throughout. 1*  was 

chosen as the value of the moment of inertia in reduced units for a sphere of 

uniform density. I = 2/5mr2  for a sphere of radius r and mass m. Given that 
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1* = I/ma2 , we obtain for a sphere of radius a12, 

1* -- 
	 - 

2/5m(a/2) 2  - 1 

ma2 	
(3.4) 

Simulations were performed in the NVE ensemble. Equilibration was performed 

in the NVT ensemble at T* = 1.0. This latter ensemble was achieved by sim-

ple translational and rotational velocity scaling. Typical runs were of 0(10) 

timesteps after equilibration, with a timestep 8t* = 0.0025. This was chosen 

to ensure conservation of energy. The equations of motion were integrated us-

ing the velocity Verlet algorithm for translations and a leapfrog algorithm for 

rotations. Dipole orientations were represented using quaternions. 

3.3 Structure 

Figure 3.2 shows the variation of the structure with density at the highest dipole 

moment studied (if = 2.75). The particles self-assemble into chain-like aggre-

gates or closed rings. This is caused by the strong dipole-dipole interactions 

which align neighbouring dipoles in a nose-to-tail configuration. At a density 

P* = 0.05, the structure consists mainly of rings with a few isolated chains. A 

ring is the ground state structure for an aggregate containing four or more parti-

cles. At higher density the structure consists mostly of chains, with a few rings. 

This is because the aggregates are closer together on average and there will be 

more collisions between them, leading to the breakup of rings. At the highest 

density, p* = 0.5, we see a structure with different areas containing 'bundles' of 

parallel chain segments. The dipole moments of particles in neighbouring chains 

are either parallel or antiparallel. Figure 3.3 shows the variation of the structure 

with dipole moment at a fixed density of if = 0.2. Below jf = 2.0 there is little 

positional or orientational ordering. At if = 2.0, we see the onset of ordering, 
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vj&lq 

(a) 	 (b) 	 (c) 

(d) 	 (e) 

Figure 3.2: Snapshots showing the equilibrium structure at dipole moment f = 
2.75 and different densities: (a) p' = 0.05; (b) pt  = 0.1; (c) pt  = 0.2; (d) pt  = 0.3 
and (e) pt = 0.5. 

with the particles beginning to form very loose chain-like structures. At a dipole 

moment of jf = 2.5, most particles are now in chains or rings, although there are 

still a few free particles. At j = 2.75, there are almost no free particles. For all the 

densities considered L' = 2.0 marks the boundary between the non-aggregated 

and aggregated regimes. This observation is consistent with the results from 

some of the structural and the dynamical functions presented below. 

The structure was characterised using the radial distribution function, g(r). These 

are shown in Fig. 3.4. At low dipole moment, the dipole-dipole interaction has 

little effect on the structure; the radial distribution function appears typical of a 

normal fluid. Peaks which appear with increasing density at 1.3a and 2.60' cor-

respond to the first and second co-ordination shells. Above a dipole moment of 

= 2, the structure is very different. The radial distribution function displays 
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Figure 33: Snapshots showing the equilibrium structure at density p" = 0.2 for 
different values of dipole moment: (a) jf = 1.5, (b) f = 2.0, (c) = 2.5, (d) 

= 2.75. 

a long series of sharp peaks at distances close to integer multiples of u. This is 

due to the chaining which occurs in this regime. Neighbouring particles within 

chains will be roughly one particle diameter apart. 

Peak positions in g(r) shift to lower distances as the dipole moment increases 

because of the stronger interparticle interactions. In order to account for the 

positions of the first peak in g(r), we give the position of the minimum in the po-

tential for a pair of particles. We consider the case where the dipoles are aligned 

'nose-to-tail' as they are within chains, i.e., the dipoles point along their separa-

tion vector. In that case, p . = j 2  and p . r = p. . r = pr. With the soft sphere 
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potential given in Eq. (3.3), the position of the minimum is given by 

1 	2 

ro = 2 3 *_ a 	 (3.5) 

The value of the potential at that point is 

38 
u(ro) = —te 	 (3.6) 

For 1f = 0.5, we obtain r0  = 1.47a and for jf = 2.75, we obtain r0  = 1.01cr. These 

values roughly match the positions of the first peak in g(r). 

The structure can be further analysed by examining the static structure factor, 

S(q). This was calculated from the Fourier Transform of h(r) = g(r) - 1, 

S(q) = 1 + f h(r) exp(—iq r)dr, 	 (3.7) 

where q is the wavevector. 

Figure 3.5 shows the structure factor for various densities and for dipole mo-

ments jf = 0.5 and = 2.75. The peaks in S(q) in the region qa > 4.0 1006  

correspond to correlations between nearest neighbours. The peaks correspond 

to waves with wavelengths fitting into the nearest neighbour spacing. At high 

dipole moment where particles in chains are roughly a distance of a apart, this 

means that integer x\ = a. Therefore, there are peaks at q = (27r/A) = 27r, 47,67r 

(i.e. qa 1008 ,  10 1 . 1 ,  1013). These peaks shift to higher wavevector with increas-

ing dipole moment. In real space this corresponds to the decreasing separation 

between neighbouring particles. 

The most striking feature in the structure factor for high dipole moment is the 

power law scaling for qa < 5.0 	100.7 . A function S(q) 	q_D was fit to the 

data in this region, yielding D = 1.02 ± 0.01. A scaling of 8(q) q '  is expected 
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for rod-shaped objects, as we now show (see also Refs. [74, 75]). For particles 

arranged along a line, the number of particles within a radius r of a given par-

ticle scales as n(r) - P. The radial distribution function, h(r) = g(r) - 1, is 

proportional to the number of particles at a distance r, i.e. it is proportional to 

the number of particles in a shell of radius r (dm(r)) divided by the volume of the 

shell. In two dimensions the 'volume' of the shell is 27rdr, so h(r) scales as 

h(r) 	
_drt(r) 

(3.8) 
2irr dr 

1 
(3.9) 

2irr 

The structure factor is then 

S(q) 	f h(r)edr 	 (3.10) 

	

-iqr 	 (3.11) 

	

f dr  f  dOe— i os0. 	 (3.12) 

Making the substitution x = qr, 

S(q) 	I dx 	ix  
q J 

	Jdoe_c0s0. 	 (3.13) 

The integrals are independent of q, so we treat them as a constant, giving finally, 

S(q) (3.14) 

Thus the power law scaling in the structure factor is due to the fact that the sys-

tem is composed of chains. This scaling was also observed in a Monte Carlo 

study of the three-dimensional dipolar fluid [14]. The scaling only emerges for 

dipole moments > 2.0. This is consistent with the boundary between asso-

ciating and non-associating regimes identified earlier on the basis of the snap- 



Chapter 3. Structure and dynamics of a quasi-two-dimensional dipolar fluid 

6 

5 

4 
	

p*=o.05 - 

3 	------------------ 	 - 

2 
	 p*=O.2 - 

C 1 
	 p*=0.3 - 

0 
	

p*=0.5 - 

-1 

-2 
-1.2 -0.8 -0.4 0.0 0.4 0.8 	1.2 	1.6 2.0 

1og 10(q) 
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shots. There is an interesting 'pre-peak' in the structure factor for the case where 

= 0.5 and f = 2.75 at qo-  3.4 = 100-54 , corresponding to a distance in real-

space of 27/q 1.8a. This gives the typical separation between the parallel or 

antiparallel chain segments which can be seen in Fig. 3.2. 

3.4 Single-particle translational motion 

The presence of chaining should be expected to have a substantial effect on the 

motion of particles in the system. The single-particle translational motion was 

explored by measuring the velocity autocorrelation function. The velocity auto-

correlation function is defined as 

/1 N 

C11 M = 
	

v i  (t) .v(0)) (3.15) 

where v(t) is the velocity of particle i at time t. The triangular brackets denote 

an average over different time origins. This should be equivalent to the ensemble 

average, assuming ergodicity. We also average over particles. 
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Figure 3.6 shows the velocity autocorrelation function at a density p = 0.05 for 

different values of the dipole moment. At low dipole moment, the function de-

cays monotonically to zero. This behaviour is typical of simple fluids at low 

density. Above a dipole moment of if = 2, we see oscillations superimposed on 

the decay. We interpret this as a sign of chaining. A particular particle within 

a chain will oscillate around its 'equilibrium' position between its two neigh-

bours. The particle will also have a 'drift' velocity due to the motion of the chain 

as a whole. Over time, the motion of the chains in the system will become un-

correlated with their initial motion, hence the drift velocities of the individual 

particles will become uncorrelated with their initial values. It is this that leads to 

the main decay of the velocity autocorrelation function. Superimposed on that 

will be oscillations due to the motion of the particles between their neighbours. 

Thus, we see motions on two different timescales: the fast oscillatory motion of 

individual particles within chains and the slow motion of the chains as a whole. 
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To investigate single-particle translational motion further, we measured the dif -

fusion coefficient. This can be found by two methods. Firstly, it can be obtained 

from the integral of the velocity autocorrelation function via the Green-Kubo re-

lationship, 

f
00

C(t)dt 
	

(3.16) 

Secondly, it can be obtained from the gradient of the asymptotic linear part of 

the mean square displacement, (AR 2 ), as a function of time using the Einstein 

relation, 

(i.R2) = ( Ir(t) - r(0)I2 ) = 4Dt 	 (3.17) 

in two dimensions, where r (t) is the displacement of particle i. 

It is well established that in simple fluids, the velocity autocorrelation decays as 

t/2  at long times, where d is the number of spatial dimensions, rather than ex-

ponentially [55].  These so-called long time tails were first discovered by Alder 

and Wainwright in their molecular dynamics simulation of the hard sphere 
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fluid [76], and have since been seen in a range of other systems (see for example 

Ref. [77]). Their discovery came as a surprise since the theories of time predicted 

a faster exponential decay. Alder and Wainwright attributed the long time tail to 

hydrodynamic effects [76].  When a particle in a fluid moves, it will compress the 

fluid in front and leave a gap behind. Surrounding particles will flow from in 

front of the particle to behind, creating a vortex. Hydrodynamic theories, which 

treat the fluid over larger length scales and longer timescales, may be more suc-

cessful. Ernst et al. [78] showed that starting from the Navier-Stokes equations, it 

was indeed possible to derive the asymptotic t_ 112  behaviour. 

It can be seen from Eq. (3.16) that in two dimensions, when the long-time tail is 

present in the velocity autocorrelation function, it causes the diffusion coefficient 

to become divergent, and hence the diffusion coefficient does not really exist. 

The mean square displacement in our system is plotted in Fig. 3.8. It can be seen 

that the mean square displacement attains an apparent linear dependence on 

time at long times. The system therefore appears to exhibit diffusive behaviour, 

at least on the timescales accessible in our simulations. At the very lowest den-

sities, the case is not so clear, but we can look at longer times if we consider 

an unaveraged curve from a single time origin. Despite being rather noisy, this 

seems to show that the linear time dependence is also eventually attained here. 

What might account for an absence of the long time tail? The presence of chain-

ing might inhibit the formation of the hydrodynamic back-flow, postponing the 

hydrodynamic long time tail. The long time tail might then make its presence felt 

over timescales much longer than have been simulated here. Another effect of 

chaining are the long-lived damped oscillations in the velocity autocorrelation 

function described above. These oscillations could obscure the long time tail, 

meaning that very long runs would be necessary to observe the tail. 
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It would seem, then, that what is necessary is to perform the simulations to 

longer times. However, this is not an easy task. In examining the tail of a correla-

tion function at very long times, we are measuring a very small quantity. There 

will thus be a very small signal-to-noise ratio. Another problem is that, because 

of the periodic boundary conditions, a disturbance such as a sound wave can 

make its way across the simulation cell and re-enter from the other side. The 

time it takes for the sound wave to propagate across the simulation cell thus sets 

an upper limit on the time to which we calculate dynamical properties accurately. 

In addition to long timescales, this means larger system sizes would be required 

in order to increase the time in which the sound wave will reappear. 

We note that there are other systems in which the long time tail has been found to 

be absent in certain regimes of density. Hurley and Harrowell performed molec-

ular dynamics simulations of a two-dimensional system of soft disks, and found 

diffusive behaviour at very high density (p t  > 0.9) [79]. It was suggested that 

this is because at this high density, the motion of a particle may cause an elastic 

response in the surrounding particles, hindering the formation of the convective 
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back-flow patterns. Another case is the core-softened fluid studied by Camp [80]. 

Diffusive behaviour is observed at densities p > 0.25. This coincides with the 

density at which the particles start to aggregate. This seems to suggest that in 

this system, as in our dipolar fluid system, the aggregation of particles hinders 

the hydrodynamic back-flow which leads to the long time tails. 

It is not our purpose here to investigate the issue of long time tails in the dipolar 

fluid. We are merely interested in obtaining some sort of indication of the mobil-

ity of the particles. We therefore assume that we can extract a diffusion constant 

from the apparent linear portion of the mean square displacement curves. 

The reduced diffusion coefficients, D* = D/m/Ea2 , are plotted as a function of 

density for different dipole moments in Fig. 3.9. In calculating the mean square 

displacement, particles were allowed to diffuse out of the simulation cell. The 

diffusion coefficient decreases with density. This is to be expected because the 

particles are on average closer together and so will experience more collisions, 

impeding their motion. The variation with dipole moment is more interesting. 

For < 2.0, the dependence on dipole moment is minor. For higher dipole 

moments, however, the diffusion coefficient is very much diminished. This is 

because the particles are now trapped in chains, which restricts their motion. The 

boundary = 2.0 between associated and non-associated regimes is consistent 

with the boundary identified earlier on the basis of the snapshots and in the 

structure factor and velocity autocorrelation function. 
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3.5 Single-particle rotational dynamics 

The effect of chaining upon the rotational dynamics was investigated by measur-

ing the dipole moment autocorrelation function, 

'1N 

C11 M = 	tLi 	. Pi (0) 	 (3.18) 

where p i  ( t) is the dipole moment on particle i at time t. This has been normalised 

by dividing by 2,  so that C(0) = 1. The x, y, or z components are given by 

1 N ' 

CO' ( t) = k L(t)1L(0)), 	 (3.19) 

where a is x, y, or z and t(t) is the a component of the dipole moment on parti-

cle i at time t. C,(t) will provide information about out-of-plane rotations, while 

CY = + CIl will provide information about in-plane rotations. Fig. 3.10 shows 

for each density the in-plane and out-of-plane correlation functions for dipole 

moments 1f = 0.5 and = 2.75. Firstly, we note that for the low dipole moment 

(it* = 0.5), the initial values CY(0) = 0.67 and C(0) = 0.33 show that there is 
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no tendency for the dipoles to he either within the plane or out of the plane. In 

contrast, the values at high dipole moment (jf = 2.75) are C(0) = 0.966 and 

C(0) = 0.034, showing that the dipoles are strongly constrained to lie within the 

plane. This is because the particles adopt their nose-to-tail configurations within 

the chains. 

At the low dipole moment, there is dip to negative values in both C,(t) and 

CY(t), before they decay away to zero. This is due to the free rotation of the 

dipoles. After a certain amount of time a dipole will have rotated so that it points 

in the opposite direction, hence the negative portion in the correlation function. 

The correlations die away before we can see another period of the rotation. At 

low dipole moment, it is expected that the frequency of the rotation should be 

close to the free-rotor limit, w = JT*/I* 3.16; this is confirmed below. The 

free-rotor limit is derived as follows. There are two rotational degrees of freedom 

for the dipole moment vectors. The equipartition theorem states that each degree 

of freedom contributes 112kT to the ensemble averaged rotational kinetic energy, 

i.e., 

11 w 1  + I2W2  1w = kT 	 (3.20) 

=w=V 
	

(3.21) 

At high dipole moment, C(t) shows a very slow decay with a high frequency 

oscillation, whereas C(t) shows a damped oscillation about zero. This is a re-

sult of the oscillations of dipoles about their equilibrium nose-to-tail orientations 

within chains. The slow decay of Cy(t) shows that the motion of the chains as a 

whole is slow. As is the case with the velocity autocorrelation function, we again 

see two different timescales due to motion of individual particles and collective 

motion of the chains. 
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In order to obtain the oscillation frequency, the spectrum is calculated by taking 

the Fourier transform of the single-dipole autocorrelation function, 

x(w) = 
	

1 
 27rC(0) / 

C(t) exp(—iwt)dt. 	 (3.22) 

Because Cxy decays so slowly, it was not possible to obtain accurate Fourier trans-

forms of this function. The xy function decays on a timescale comparable to the 

entire 100000 timesteps length of the simulation, but it would only be possible 

to obtain quantities from one time origin, i.e., no averaging could be done. The 

truncation of the function at shorter time can create spurious low frequency fea-

tures in the Fourier transform. Therefore, a windowing function was applied to 

the correlation functions prior to taking the Fourier Transform. The Blackman 

window function was used: 

B(t) = 0.42 + 0.5 COS(7rt/t m ) + 0.08 COS(27Tt/t max ) 	 (3.23) 

where tmax is the time to which the correlation function was computed. Fig-

ure 3.11 compares xY(w)  and x(w) for a dipole moment of p * = 2.75 and density 

of p = 0.5. Although the low frequency end of the xy spectrum win be urreli-

able, the interesting features corresponding to the oscillations in the correlation 

functions will appear at high frequency. It can be seen that in both the xy and 

z cases, there is a clear high frequency peak at a reduced angular frequency of 

about w = 14.3. However, we will concentrate on the z component in what fol-

lows because it is easier to obtain an accurate Fourier transform. Figure 3.12 

compares the spectra for different values of the dipole moment at each den-

sity. The peak frequency increases with increasing dipole moment as a result 

of the stronger interaction between particles. The peak frequencies have been 
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estimated by fitting a Lorentzian function in the vicinity of the peaks: 

L(x)=aF 	
1 	

+ 
[1 + (w+wo) 2 T 2  

1 
1 + (w - w0 )2r2 

(3.24) 

The values of w are given in Table 3.1, and plotted in Fig. 3.13 as a function 

of dipole moment. The frequency is largely independent of density, indicating 

that interchain interactions are weak. It might have been expected that interchain 

interactions would be more important at higher density, where the average chain 

separation is smaller. At the dipole moment of = 0.5, the frequency is close 

to the free-rotor limit w* 3.16. In the associated regime > 2.0, a 

shoulder emerges in x(w) on the high frequency side of the main peak. This can 

be attributed to a coupling between the oscillation of particles within chains and 

the collective motion of those chains as a whole. 

Following Murashov et al. [19], we now present a simple theory for the rotational 

motion of the dipoles. Since interchain interactions are weak, we consider the 

motion of a single dipole in an infinitely long chain. The chain is assumed to 

lie along the x-axis, and we consider oscillations of the dipole in the xy-plane. 
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From From From From Eq. 
/1* pt (R 2 ) C,,  (t) D C(0) C7(0) C 1 (0) C(t) C0(t) 3.29 
0.0 0.05 5.3665(5) 

0.1 2.5995(1) 
0.2 1.2658(1) 
0.3 0.76670(6) 
0.5 0.4005(2) 

0.5 0.05 5.0245(7) 5.1 0.33 0.67 0.32 3.6 1.9 
0.1 2.5660(1) 2.3 0.34 0.67 0.33 3.5 1.9 
0.2 1.16939(5) 1.1 0.33 0.71 0.30 3.6 1.9 
0.3 0.7767(1) 0.69 0.34 0.72 0.30 3.5 1.9 
0.5 0.34884(7) 0.29 0.33 0.74 0.26 3.5 1.9 
0.05 4.9263(4) 4.8 0.33 0.68 0.30 3.6 4.9 
0.1 2.3549(3) 2.4 0.33 0.71 0.27 3.6 4.9 
0.2 1.2671(1) 1.1 0.33 0.83 0.21 3.7 4.9 
0.3 0.7873(1) 0.66 0.32 0.97 0.21 3.8 4.9 
0.5 0.37256(5) 0.34 0.31 1.3 0.17 4.2 4.9 

1.5 0.05 5.0490(3) 4.9 67 0.33 0.71 0.26 3.7 8.4 
0.1 2.5057(3) 2.3 28 0.32 0.85 0.22 3.9 8.4 
0.2 1.30367(8) 1.1 14 0.30 1.1 0.13 4.2 8.4 
0.3 0.86287(6) 0.71 6.5 0.28 1.4 0.14 4.5 8.4 
0.5 0.36543(5) 0.31 2.6 0.23 2.1 0.082 5.2 8.4 

2 0.05 4.791(9) 4.9 29 0.29 0.95 0.20 4.0 12.4 
0.1 2.3659(3) 2.2 11 0.25 1.4 0.17 4.7 12.4 
0.2 1.1561(1) 1.0 3.5 0.20 2.2 0.10 5.5 6.4 12.4 
0.3 0.8605(4) 0.63 1.7 0.17 2.3 0.067 6.4 7.7 12.4 
0.5 0.35307(9) 0.30 0.70 0.13 2.8 0.049 7.6 8.3 12.4 

2.5 0.05 4.090(4) 2.3 9.0 0.082 6.7 0.055 10.3 12.2 16.6 
0.1 1.1661(2) 0.93 2.4 0.068 11 0.043 12.4 12.2 16.6 
0.2 0.58647(9) 0.47 0.65 0.057 8.5 0.034 12.7 12.3 16.6 
0.3 0.34714(4) 0.31 0.37 0.057 2.2 0.028 12.5 12.4 16.6 
0.5 0.13754(3) 0.13 0.17 0.052 3.3 0.022 12.7 12.4 16.6 

2.75 0.05 1.3862(8) 0.78 0.95 0.035 11 0.023 14.0 14.2 18.9 
0.1 0.6392(3) 0.48 0.42 0.036 15 0.021 14.3 14.3 18.9 
0.2 0.18736(6) 0.33 0.17 0.035 111 0.023 14.6 14.3 18.9 
0.3 0.2666(1) 0.21 0.11 0.035 250 0.019 14.6 14.3 18.9 
0.5 0.03158(9) 0.079 0.095 0.034 280 0.016 14.3 14.5 18.9 

Table 3.1: Dynamical and transport properties of the quasi-two-dimensional dipolar fluid: Trans-
lational diffusion coefficient, Dt, obtained from radial distribution or velocity autocorrelation 
function as explained in the text; rotational diffusion coefficient, obtained from angular velocity 
autocorrelation function; initial values of z component of single dipole autocorrelation function 
and xy and z components of bulk magnetisation autocorrelation function; oscillation frequencies 
obtained from Fourier transform of CmUZ(t) and Cc(t) or from the mean field theory leading to 
Eq. 3.29. 
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Figure 3.12: Fourier transforms of the z component of the single-dipole autocor-
relation function for different dipole moments at density (a) p* = 0.05 (b) 1f 0.1 
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(circles); p = 0.1 (squares); p = 0.2 (diamonds); p* 	0.3 (up triangles) and 
= 0.5 (left triangles). The dotted line is plotted at w = /iii and represents the 

free-rotor limit. 

Neighbours along the chain are separated by r0 , the position of the minimum 

in the potential, as given by Eq. (3.5). The tagged dipole is given, in terms of 

the angle ('y)  it makes with the chain, by ,.i = t [Cos 7(t), sin -y (t), 0)]. The other 

dipoles are constrained to point along the chain in the nose-to-tail configuration. 

The torque on the tagged dipole due to all the others is given by 

2 	
L 
12211 

- _42(3) 

(nro ) 3  j - 	 r3 
	
sin 	 (3.25) 

0 

where ( 1.202 is the Riemann zeta function. At high dipole moment, the am-

plitude of the oscillations will be small. In this limit sin 'y 'y.  The equation of 

motion is then 5' = —wy, where 

~03 (3.26) 
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The solution of the equation of motion is 

-y (0) cos w0t + 	sin w0t. 	 (3.27) 
WO 

Thus, for the orientational autocorrelation function we have, 

(j(t) i(0)) oc 1 - ( 1Y 2) + (1Y 2) Cos w0t. 	 (3.28) 

Combining Eq. (3.26) with Eq. (3.5) gives for the angular frequency of the oscil-

lation, 

w 	
\/2(p18/3((3) 

= 	 (3.29) 1* 

It is assumed that there is no friction, but even in the presence of friction, a peak 

should appear in the Fourier transform at a position given by Eq. (3.29). Table 3.1 

compares the frequency calculated from the present theory with those obtained 

from the peak position of the Fourier transform of C,' , ( t). In the aggregated high 

dipole moment regime, where the theory is relevant, the frequencies are over-

estimated by about 30%. This is because this rather crude model assumes that 

the chains are completely straight rigid objects, and it does not take into account 

the fluctuations in the shape of the chains. In a twisted chain of finite length, the 

average field experienced by a particular dipole will be reduced relative to this 

ideal case. Thus, the frequency of the oscillation will be reduced. 

Another function which can give information about the rotational dynamics is 

the angular velocity autocorrelation function, defined by 

N 

C0  (t) = ( 
	

.(o)) 	 (3.30) 

where 12(t) is the angular velocity of particle i. It is expected that this function 

should exhibit similar behaviour to the single dipole autocorrelation function. It 
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can be seen in Fig. 3.14 that this is indeed the case. These have been normalised 

by divided by the initial value, which in all cases was Cc(0) = 20. This comes 

from the equipartition theorem. There are two rotational degrees of freedom, 

and therefore, according to equipartition, (icl2) = U. The initial value of the 

autocorrelation function is then C0(0) = (11(0) . 11(0)) = (112) = 2kT1I = 20. 

At high dipole moment, there is again a high frequency oscillation and at low 

dipole moment, a damped oscillation. The frequencies were obtained from the 

Fourier transform as in case of the single dipole autocorrelation function. These 

are shown in Table 3.1. The Fourier transforms exhibit the same behaviour as for 

the single-dipole autocorrelation function, including the high frequency shoul-

der which develops at high dipole moment (Fig. 3.15). The peak frequencies 

obtained from the two functions are roughly the same. 

A rotational diffusion coefficient can be calculated from C0 (t) using a Green-

Kubo relation, 

f DR= 1 
	

- C0(t)dt. 	 (3.31) 
2  

Rotational diffusion is entirely analogous to translational diffusion but instead of 

considering the positions of the particles, we consider their orientations. The ro-

tational diffusion coefficients are given in Table 3.1. DR decreases with increasing 

dipole moment, again because the particles are confined within chains and con-

strained to point in their nose-to-tail configuration. DR decreases with increasing 

density due to increasingly restricted rotation of the chains. 

3.6 Collective rotational motion 

The problems with obtaining the Fourier transforms of the autocorrelation func- 

tions are even more severe in the case of collective rotational motion. Therefore, 

as before we will mostly concentrate on the z component of the magnetisation 
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autocorrelation function. The bulk magnetisation is defined as the vector sum of 

the dipole moments, 

M(t) = 	(t) 	 (3.32) 

The autocorrelation function for its c component is given by 

C(t) = 	(1(t)M(0)) 	 (3.33) 
NA 

The in-plane autocorrelation function, C(t) = [C(t) + CX1(t)J exhibits an ex-

tremely long decay time, orders of magnitude longer than the length of the sim-

ulation. In some cases, it hardly varied at all over the entire run. Nevertheless, 

we can extract some information from the t = 0 values, C41'(0). The in-plane 

susceptibility is proportional to (IV[X + M2).  The values of C(0) are presented 

in Table 3.1. These show that the in-plane susceptibility increases dramatically 

above f = 2.0. This is due to the presence of chains. 

The bulk magnetisation autocorrelation function for p = 0.5, with ,if = 0.5 

and W = 2.75 is shown as an example in Fig. 3.16. The bulk magnetisation 

autocorrelation function is plotted in Fig. 3.16 for different dipole moments at 

each density. This exhibits the same kind of features as C(t). In particular, at 

high dipole moment there is a high frequency oscillation. The frequency is higher 

than in the case of C(t). To obtain an estimate of the frequency, a function of 

the form Cj(t) cx exp(t/r) cosw 0t was fitted to the data in the region 0 < t < 

10. This yields w 25 and T* 3 for 1f 2.75, and w 5 and yt  0.5 

for jf = 0.5. The initial value of C 1 (0) provides a measure of the out-of-plane 

susceptibility. These are shown in Table 3.1. The values decrease sharply above 

= 2.0. This reflects the increasing planarity as dipoles line up in their nose-to-

tail configurations within the chains. It would then difficult to align the dipoles 

along a field perpendicular to the plane. If we recall that x = f, this then means 

that the susceptibility will be small. 
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The Fourier transform of C q (t) is reported here normalised by its zero-time 

value: 

x(w) = 	
1 	f C(t)exp(—iu.'t)dt 	 (3.34) 

27rC(0) ao  

This is plotted in Fig. 3.17. There is a sharp peak which shifts to higher frequency 

as dipole moment increases. For jf = 2.5 and 1f = 2.75, this peak corresponds to 

the position of the high frequency shoulder in the single-particle rotational spec-

trum. This lends weight to the idea that there is some kind of coupling between 

single-particle motion and collective motions of chains. This coupling also gives 

rise to the shoulder in the single-particle spectrum. 

Further work needs to be carried out to study the collective motions. In partic-

ular, it is possible that within the chains there could be excitations analogous to 

the spin waves in solid magnetic materials (see Chapter 5). This possibility could 

be investigated by measuring space- and time-dependent correlation functions 

such as (M(q, t) . M(q, 0)), where M(q, t) is a Fourier component of the bulk 

magnetisation, M(q, t) = >IY i(t) exp[—iq . r 3  (t)]. 

3.7 Conclusions 

We have investigated the structure and dynamics of quasi-two-dimensional dipo-

lar fluids by means of molecular dynamics simulation. A major feature of these 

systems is the self-assembly of particles into chain-like aggregates, caused by the 

preference of dipoles on neighbouring particles to align in a nose-to-tail fashion. 

Chains start to appear above a dipole moment f = 2. Below this boundary, the 

structure appears as that of a 'normal' fluid. 

In the structure factor, an important signature of the presence of chains is the 

power-law scaling at low wavevectors. The exponent was found to be a = 1.02 ± 

0.01, consistent with the q' dependence expected for rod-like objects. 
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In two dimensions, there is a possibility that the velocity autocorrelation function 

could possess a 'long-time tail', decaying as t 1, rather than exponentially. This 

can lead the diffusion coefficient as calculated from the Green-Kubo relation to 

be divergent. In all our simulations, the mean square displacement does appear 

to exhibit an asymptotic linear time dependence and we assume it is reasonable 

to extract diffusion coefficients using the Einstein relation. The diffusion coeffi-

cient decreases as density increases, as expected. However, there is a dramatic 

decrease as the dipole moment is increased above if = 2 at fixed density. This is 

because particles are trapped in chains, which restricts their motion. 

The chaining which occurs at high values of the dipole moment has a profound 

effect on the dynamics. We see a separation of timescales between the motion of 

individual particles on the one hand, and the collective motion of these chains as 

a unit on the other. 

The velocity autocorrelation function at high dipole moment displays an oscilla-

tion superimposed on the ordinary decay. This is attributed to back-and-forth 

motion of particles between their neighbours in the chains, while the chains 

themselves are moving with some 'drift' velocity. 

The single-dipole autocorrelation function at high dipole moment exhibits oscil-

lations due to the oscillation of individual dipoles about their equilibrium nose-

to-tail configuration within chains. The characteristic frequencies of the oscil-

latory motion were extracted from the Fourier transform of the single-dipole 

autocorrelation function or the angular velocity autocorrelation function. The 

frequencies were found to be largely independent of density in the aggregated 

regime, indicating that interchain interactions are negligible. At low dipole mo-

ment, the frequency approaches the free-rotor limit. A high frequency shoulder 

develops on the peak in the spectrum, which we attribute to a coupling between 

single particle and collective motions. The collective dynamics is consistent with 



Chapter 3. Structure and dynamics of a quasi-two-dimensional dipolar fluid 	81 

this; the peak in the spectrum of the bulk magnetisation autocorrelation function 

appears at the same frequency as the shoulder. 



CHAPTER 4 

Aggregation kinetics of the dipolar fluid 

In this chapter, we explore the mechanisms by which the structures in the dipo-

lar fluid observed in Chapter 3 are formed during equilibration. We prepare the 

system in a 'random' configuration by performing a simulation at high temper-

ature with dipole moment = 0. Starting from one of these configurations, we 

'switch on' the dipoles and monitor the aggregation progress by counting the 

clusters formed, classified as chains, rings or defect clusters. 

We have already discussed the previous experimental and simulation work on 

dipolar fluids in Chapters 1 and 3. Here we will highlight the work that is most 

relevant to the study presented in this chapter. 

Weis, Tavares and Telo da Gama [17,181 carried out a detailed Monte Carlo study 

of the equilibrium structure of the quasi-two-dimensional dipolar fluid in the 

chaining regime. The aggregates were classified into three types: chains; rings 

and defect clusters. A distance criterion was used to identify which particles 

were in the same cluster. The clusters were characterised by their internal energy 

and the length distribution and conformational properties of the different types 

EM 
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Figure 4.1: Ring formation mechanism proposed by Wen et al. [271. 

of cluster. The fact that we have a system composed of linear structures in chem-

ical equilibrium, with chains constantly breaking and reforming or exchanging 

segments suggests an analogy with equilibrium polymers. A comparison was 

made between the simulation results and various scaling laws from the standard 

theory of equilibrium polymers. The agreement was found to be favourable. In 

the work reported in this chapter, we have adopted the same classification of 

clusters into chains, rings or defect clusters to study the size distribution and 

conformation of the clusters changes during the aggregation process. 

Wen et al. [27], as well as observing the aggregation of glass microspheres coated 

with nickel, also performed complementary molecular dynamics simulations. 

They proposed a mechanism for the formation of rings. This is illustrated in 

Fig. 4.1. Particles initially form into short chains (Fig. 4.1(a)). Chains which hap-

pen to be in the correct orientation join together to form longer chains (Fig. 4.1(b) 

and (c)). Side-by-side chains tend to form with their net magnetisation in op-

posite directions. Rings can form by the joining together of the ends of these 

neighbouring chains (Fig. 4.1(d)). We find, however, that chains are more likely 

to form by the joining together of the two ends of the same chain (see below). 
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Also relevant to the present chapter is the discussion on the existence of a vapour-

liquid phase transition. Tlusty and Safran [6, 671 have proposed that there may 

be a different kind of phase transition which replaces the ordinary liquid-vapour 

transition. In their work they consider the chains of particles as the basic unit, 

rather than the individual particles themselves. The chains are free to break, re-

form and exchange segments. Y-shaped defects can be formed by the addition of 

one chain onto the side of another. The ends of a chain are also considered to be 

defects. Using a mean field theory, they demonstrated the possibility of a phase 

coexistence between a high density phase consisting of a network of chains con-

nected by Y defects and a gas phase of separate chains (rich in end defects). It is 

found, however, that the concentration of Y defects is always low at equilibrium 

which might make it seem unlikely that such a phase transition could exist. In 

this chapter, we report our finding that there is a high transient concentration of 

defects during the aggregation process. This suggests that it might be possible to 

observe Tlusty and Safran's transition as a metastable phase transition. 

4.1 Simulation details 

The aggregation process in the quasi-two-dimensional dipolarfluid was studied 

via Brownian dynamics simulations using the same potential as in Chapter 3. 

The simulation needs to be carried out in a constant temperature ensemble. Since 

we are watching the process as the system comes to equilibrium from some non-

equilibrium starting point, the potential energy is likely to decrease. If temper-

ature were not kept constant, the kinetic energy must rise in order to conserve 

energy and hence aggregation might not occur. 

We employ the Brownian dynamics algorithm derived by Jones and Alavi for 

particles with a preferred axis represented by a body-fixed unit vector (such as a 
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dipole moment vector) [81]: 

r(t + At) = r1 (t) + 	Fj (t)Lt + c 	 (4.1) 
kB T 

(t + At) Ai(t) + 	Ti M x  Ai  (t)zt + 	x j2(t). 	(4.2) 
kB T 

Here, r(t) and p i ( t) are the position and dipole moment, and F1 (t) and T1 (t) are 

force and torque on particle i at time t. Note that z(t) is a unit vector and it 

must be renormalised at the end of each time step. c and (2  are random vectors 

chosen from Gaussian distributions with the following moments: 

(c)=° ()=o 	 (4.3) 

= 4Dt t5, (Cr 
. 	= 6DrLt6ij  . 	 (4.4) 

This algorithm ignores short-time inertial dynamics. In such schemes, the mo-

mentum variables are dropped from the equations of motion. This is reason-

able if, as in this case, we are interested in the long-time configurational dynam-

ics [53]. As can be seen from the mean square displacement plots in Chapter 3, 

the inertial regime last for a time of order 1, whereas the aggregation processes 

considered in this chapter take place over times orders of magnitude longer. 

As in Chapter 3, the following reduced units are defined in terms of the energy 

(€) and distance (a) parameters in the potential: temperature T* = kT/€; den-

sity p = pa2 ; dipole moment 	= (/ 2 /f a3 ) 1 !2 ; time tt 	(E/ma2 ) 1 /2 t; trans- 

lational diffusion coefficient D = (m/€a 2 ) 1 /2 ; rotational diffusion coefficient 

= (ma 2 /6) 1 /2 . 

We use a timestep of At* = 0.01 and integrate for 106  timesteps. All simula- 

tions were carried out at temperature Tt = 1.0. A system size of N = 1024 was 
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used. The diffusion coefficients were chosen to correspond with a typical real 

ferrofluid. The diffusion coefficients can be found from the Stokes laws 

kT 
D = 	 (4.5) 

3iri,d 

and 

Dr 	
kT

=, 	 (4.6) 

where T is the temperature, ij is the viscosity of the solvent and d is the diameter 

of the particles. Using T = 298K, d == lOnm and i = 0.89 x 10 31?a s (the viscosity 

of water) yields Dt  = 4.90 x 10 11 m2s' and Dr  = 1.47 x 10 6s'. To convert to 

reduced units, we use the density of magnetite (5.046 x 103  kg m3) to calculate the 

mass of the particles. Since in all our simulations, T* = kT/e = 1.0, we substitute 

€ = kT. We arrive at D = 3.9 x iO and D = 1.2 x 10_2.  Initial configurations 

were prepared by simulations of soft spheres (i.e. u = 0) at T* = 10, providing 

an essentially random configuration. For each state point, results were averaged 

over runs started from five different initial soft sphere configurations. 

Aggregates were identified using the cluster counting method of Stoddard [82]. 

Clusters in which all particles are connected to exactly two others were counted 

as rings. Clusters in which any particle was connected to three or more others 

we call defect clusters. Otherwise the cluster is considered to be a chain. 

In the cluster counting algorithm, it is necessary to have some criterion to de-

cide whether a particular pair of particles are connected. In Refs. [17, 181, two 

particles were said to be connected if they are within a distance 1.15a of each 

other. In Refs. [12, 13],  an energy criterion was used. Two particles were said to 

be connected if their potential energy was lower than 0.7E0 , where E0 = — 21f 2  is 

the dipole-dipole energy for two particles with their dipoles aligned nose-to-tail 

at 'contact' (i.e. a distance a apart). It can be argued that the energy criterion 
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should be more reliable. The energy criterion only counts particles if they are 

in the nose-to-tail configuration, as they are within chains. The distance crite-

rion might tend to count particles that happen to come close to each other at a 

particular instant in time. For this reason, we chose to use an energy criterion. 

We chose the value of the threshold in the manner of Weis and Levesque [12, 

131, by considering the average dipole-dipole interaction energy with the first, 

second and third neighbours of a given particle. At a density p* = 0.1 and dipole 

moment W = 2.75, these were respectively E1  = — 13.3, E2  = —9.2, E3  = — 1.52. 

Since the particles are mostly in chains with two neighbours, we need to choose 

a threshold which will include the two nearest neighbours but exclude the third. 

The threshold chosen was 0.3E0 . This is a considerably higher threshold energy 

than that used by Weis and Levesque, but it was chosen to ensure that particles in 

a variety of arrangements such as at a defect or at a sharp corner that may occur 

as a ring fluctuates were counted as being connected. We also performed some 

test runs using a distance criterion and obtained essentially the same results. 

In order to check that the program is correctly sampling from the constant tem-

perature it would be desirable to measure the instantaneous temperature during 

the course of the simulation. The usual way to do this is to measure the kinetic 

energy and use the equipartition theorem. However, since the Brownian Dynam-

ics algorithm used in our case does not include inertial motion, the velocities, and 

hence the kinetic energy is not accessible. We therefore considered the configura-

tional temperature [56, 57] which is based rather on the positions or orientations 

of the particles. 
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Figure 4.2: Final equilibrium configurations from simulations at the densities 
shown. 

4.2 Results 

Snapshots of the final equilibrium state of the system at different densities are 

shown in Fig. 4.2. These can be seen to be very similar to the structures observed 

in Chapter 3. This confirms that the two different simulation techniques generate 

essentially the same equilibrium configurations. 

As a verification of the simulations, we measured the translational and orienta-

tional configurational temperatures. Fig. 4.2 shows the configurational tempera-

hire during the course of a run at density p = 0.05 and dipole moment = 2.75. 

Both the translational and rotational temperatures settle rapidly on the expected 

value of T* = 1.0. 
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Figure 43: Translational (red) and orientational (green) configurational temper-
ature for a run at density p = 0.05 and dipole moment p 	2.75. 

In the rest of this section, we take each density in turn and and examine the 

cluster distributions as a function of time during equilibration. We concentrate 

on the case of high dipole moment f = 2.75, where at equilibrium, almost all 

particles are included in chains. 

4.2.1 p' = 0.05 

Fig. 4.4 shows the number of clusters containing a particular number of particles 

as a function of time. We see that at time zero, virtually all the particles exist as 

monomers. As time increases, first dimers start to form and later trimers, then 

4-mers etc. The number of clusters of a certain size successively rises to a peak 

and then falls. This points to a mechanism by which dimers form first, which 

then aggregate to form short chain segments. The segments join together to form 

longer chains, leading to the eventual decrease in the numbers of clusters with 

lower numbers of particles. 
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At this low density, the equilibration process is extremely slow. Even after 10 6  

timesteps, the system has not yet come to equilibrium. At this density, the parti-

cles are on average far apart, and hence particles come into contact infrequently. 

The situation is exacerbated by the fact that we are using an integration algo-

rithm which neglects inertial motion. Particles will only move in response to 

forces from surrounding particles or from the random forces. Presumably, the 

number of clusters with 11 or more particles will eventually level off. 

We can further classify the clusters into chains, rings or defect clusters as men-

tioned in the introduction. Figure 4.5 shows the total number of each of these 

types of clusters as a function of time. The number of chains is initially high 

(monomers are counted as chains of length 1). After a certain amount of time, 

the number of chains declines and rings begin to form. Rings do not form until 

a significant number of chains has formed. This suggests that rings are formed 

from chains. 
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Figure 4.5: Total number of clusters of each type as a function of time at a density 
of p = 005. 

The mechanism of ring formation is illustrated in fig. 4.6. First, short chains 

form from monomers and dimers. These chains come together to form longer 

chains. The chains fluctuate, and eventually the ends of the chain might come 

close enough that they snap together. The chain ends will already be in the cor-

rect orientation to form the new nose-to-tail interaction in the ring. A different 

mechanism was proposed by Wen et al. [27] on the basis of their Molecular Dy-

namics simulations. They suggested that when short chains form in the early 

stages of aggregation, side-by-side chains will tend to form with their net polar-

isation in opposite directions. The chains must then be in the correct orientation 

so that their ends can join together to form a ring. However, according to our 

observations this seems to be a marginal process. It requires two or more chains 

to come together with very specific mutual orientations. 

4.2.2 p' = 0.1 

Figure 4.7 shows the cluster sizes as a function of time for a density of pP 	0.1. 

As before, the system passes to larger and larger cluster sizes, with each size suc- 
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Figure 4.6: Ring formation mechanism. Snapshots from a run at a density p 
0.05. 
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Figure 4.7: Number of clusters of a particular size as a function of time at density 
0.1. 5, 7, 9 and 10-mers are omitted for clarity. 

cessively reaching a peak and declining. The mechanism is again the formation 

of small chains which join together to form larger chains and rings. 

Figure 4.8 breaks down the cluster distribution into the different types. As before, 

we see the formation of rings only after a significant number of small chains has 

formed. At this density there are fewer rings, but more defect clusters compared 

to p = 0.05. This is due to the fact that at this higher density, particles are on 
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Figure 4.8: Total number of clusters of each type as a function of time at a density 
of p =0.1. 

average closer together. There will be more collisions between clusters, leading 

to the break-up of chains and the joining together of chains to form a defect. 

4.2.3 P* = 0.2 

Figure 4.9 shows the number of particles in clusters of a certain size. Again the 

formation of longer and longer chains is seen. The number of clusters with 11 

or more particles levels off as the system reaches equilibrium. Figure 4.10 shows 

the numbers of different types of clusters. There are less rings and more defect 

clusters than at lower density. The number of defect clusters increases, reaches a 

peak and declines again. A process involving the formation of a defect is shown 

in Fig. 4.11. Two initially separate chains wriggle about and one attaches to the 

side of the other. At this point, two things could happen. Either the attached 

chain falls off, or, as in the case of Fig. 4.11, the defect cluster can break in an- 

other way at the point of the defect, with a segment exchanged from one chain 

to the other. When chains form initially in the system, there are many chains 
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Figure 4.9: Number of clusters of a particular size as a function of time at density 
P* = 0.2. 5, 7, 9 and 10-mers are omitted for clarity. 

formed close to each other and so many defects form. By the kind of process de-

scribed above, chains continually interact and exchange segments. This allows 

the chains to disentangle, and the number of defects decreases as the system 

reaches equilibrium. 

The question arises whether we could have clusters with more than one defect. 

Figure 4.12 gives the number of clusters containing at least one defect and the 

number of defect particles, defined as particles with three or more neighbours. 

The number of defect particles is roughly equal to the number of defect clusters, 

meaning there is usually only one defect per defect cluster. 

4.2.4 pt = 0.3 

Figure 4.13 shows the same trend of initially small chains forming which join 

together to form larger aggregates. The processes occur more quickly because 

the particles are on average closer together at this higher density. 
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Figure 4.11: Process involving the creation of a defect. Snapshots from a run at 
= 0.2. 

Already in the 'random' initial configurations, some particles by chance are close 

together and are counted as dimers by the cluster counting algorithm, hence we 

see a small population of dimers and trimers at time zero. 

Figure 4.14 shows the distribution of cluster types. The numbers of rings and 

defect clusters are now approximately equal at equilibrium. The rise and fall in 

the number of defect clusters is again prominent. From Fig. 4.15 we can see that 

the actual number of defects is much greater than the number of defect clusters, 
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i.e. there are many chains with more than one branching point. There is an inter-

connected network of chains, at least in the intermediate stages of equilibration. 

4.2.5 P* = 0.5 

At this density, equilibration proceeds quickly (Fig. 4.16). The initial aggregation 

into short chains is very rapid, after which the chains link together to form longer 

chains. Significant numbers of particles have already, by chance, formed into 

dimers and trimers at time zero. 

Figure 4.17 shows that very few rings are formed at this density. The number of 

defect clusters increases and reaches a large maximum at intermediate time. The 

chains have little room for manoeuvre and defects form easily. Figure 4.18 shows 

that there are many defects per defect cluster. There are many branching points 

on each chain, giving an interconnected network of chains. The kind of processes 

outlined above whereby chains exchange segments will occur. This will eventu-

ally disentangle the network of chains and we are left with a 'stringy' structure 
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Figure 4.17: Total number of clusters of each type as a function of time at a den-
sity ofp* = 0.5. 

with areas of parallel chains (with dipole moments in neighbouring chains point-

ing parallel or antiparallel), as can be seen from the equilibrium snapshots in 

Fig. 4.2 and also in Chapter 3. This is reflected in the decline in the number of 

defect clusters seen in Figs. 4.17 and 4.18. 

4.2.6 Fits using solutions to Srnoluchowski coagulation equation 

In our system there is an aggregation process starting from monomers which join 

to form dimers which can then join with other monomers or previously formed 

dimers and so on, producing larger and larger aggregates. This kind of process 

has been studied extensively since 1917, when Smoluchowski studied the kinet-

ics in the context of the coalescence of liquid droplets [831. If we consider the 

elementary process of a cluster of size i combining with an cluster of size j to 

form an cluster of size i + j, its rate is given by 

Q) 10 
(I) 

C) 

0 

0 
Z 10 1  

100  
ic 

rate = R IJppJ  , 	 (4.7) 



Chapter 4. Aggregation kinetics of the dipolar fluid 
	

100 

120 

100 
a) 
C) 

ca 80 
0 

0 

60 

40 
0 

d 
20 

0' . 
0 	1 

, 	l's 

SI  

I 

I 	 S 	 - S S S 	 5I5 
S 	 S 

— s  
.. 

S 	 —S  
' 
5; 

10 	100 	1000 	10000 
Time 
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(dashed line) as a function of time at density p* = 0.5. 

where K, j  is the rate constant, p,  is the number of clusters of size i per unit vol-

ume and p is the number of clusters of size j per unit volume. The overall rate of 

production of clusters of size ii is then given by the Smoluchowski coagulation 

equation: 

dt 
= 1/2 	 - p 	A[p. 	 (4.8) 

i+J=fl 

The first term on the right hand side describes all the combinations of clusters of 

sizes i and j which form clusters of size n. The second term describes the removal 

of clusters of size n by combining with clusters of any size. In order to solve 

this equation for p,  we need some model of how the 'coagulation kernel', 

depends on i and .1.  The case where K53  is a constant K is straightforward [84]. 

We define p,, = jI p5  as the total number of clusters per unit volume. Sum-

ming Eq. (4.8) over all values of n gives 

= 	 pi p, - 	 (4.9) 
— iz=1 l+3=n 	

OC 
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Expanding the summation gives 

dpcj,c, 	K 2  
--- 

= 	p — Kp 	 (4.10)
2 00 	00 

K 2  

	

= ---p00 . 	 (4.11) 

The solution is 

Poo = 	PO 

	

 1 + Kpot' 	
(4.12) 

where Po = p(0) is the number of monomers per unit volume at time zero. For 

ri = 1, Eq. (4.8) becomes 

	

= —Kp 1p, 	 (4.13) 
dt 

the solution of which is 

Po 
Pi = (1 + Kpot)2 	

(4.14) 

For n = 2, we obtain 
POQ1  Kpot) 

P2 
= ( 1 + Kpot)3' 	

(4.15) 

and the general case is 
po(Kpot)' 

Pn = (1 + Kpot)+' 	
(4.16) 

Fits were made to the data for the number of clusters, with K as an adjustable 

parameter. The fit parameters obtained are shown in Table 4.1. The results are 

shown in Fig. 4.19. The Smoluchowski theory gives a qualitatively correct rep-

resentation of the data. Peak positions are roughly correct but the fitted curve 

deviates from the data at short times and long times. The rate constants increase 

with increasing density. This is because the particles are on average closer to-

gether, and so the aggregation process will be quicker. Although Eqs. (4.12) and 

(4.14)—(4.16) are derived with the assumption that the coagulation kernel is con-

stant, we have performed a separate fit for each cluster size. The fact that the 

value of k determined from the fit decreases as the size of the cluster increases 
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= 0.05 pt  = 0.05 

Kt 

pt  = 0.05 pt  = 0.05 pt = 0.05 

1-mers 0.072(4) 0.105(4) 0.170(4) 0.27(1) 0.63(4) 
2-mers 0.068(4) 0.111(4) 0.183(4) 0.33(1) 0.79(4) 
3-mers 0.060(4) 0.094(4) 0.168(5) 0.29(1) 0.85(5) 
4-mers 0.043(2) 0.078(3) 0.171(5) 0.273(7) 0.76(4) 
5-mers 0.040(2) 0.079(4) 0.180(5) 0.269(8) 0.72(3) 
6-mers 0.035(2) 0.066(3) 0.147(4) 0.264(7) 0.76(4) 
7-mers 0.028(2) 0.060(3) 0.136(3) 0.257(8) 0.77(4) 
8-mers 0.028(2) 0.057(3) 0.146(5) 0.254(8) 0.85(5) 
9-mers 0.031(3) 0.061(3) 0.128(6) 0.242(9) 0.79(4) 
10-mers 0.024(2) 0.041(3) 0.124(6) 0.217(9) 0.83(4) 

All 0.049(3) 0.085(4) 0.157(4) 0.250(8) 0.57(3) 

Table 4.1: Values of K as determined by fits using Eqs. (4.12) and (4.14)-(4.16). 

shows that this assumption may not be correct. The decrease may be due to 

the fact that in order for a chain to grow, other chains must usually add onto 

one of the ends, which becomes less likely for longer chains. Another assump-

tion of the Smoluchowski model is that the clusters can grow by the addition of 

monomers or other clusters, but do not break apart once formed. This may be a 

reasonable assumption at the early stages of the aggregation process, but clearly 

at longer times, much more complicated processes are occurring, as has been 

shown above. Thus the simple Smoluchowski model used here does not provide 

a good description of the aggregation process at long times. This is particularly 

the case at the highest densities, where the defect concentration is high, and, for 

example, events can occur exchanging chain segments (see Fig. 4.11). 

4.3 Phase transition 

We now consider the possibility of observing the phase transition proposed by 

Tlusty and Safran [6] between a low density phase with a high concentration 

of end defects and a high density phase with a high concentration of Y or X 

defects, forming a interconnected network structure. We would be most likely to 

observe the transition, then, under conditions where at low density phase there 



Chapter 4. Aggregation kinetics of the dipolar fluid 

10,  

10, 
 

0) 
0) co 

 

2 101 
0 

a 
z 

10,  

1 0' 

(a) 
	

(b) 

10 

102  
(I) 

0) 
0, 

2 10' 
0 

d 
z 

100  

10 1  
10 1  

103 

14 

103 
 

102  

01  
0) 
)0 

2 101 
0 

a 
z 

100  

10 1  ?.i ii 	 V ., 

 
10 1 	 i02 	 10' 	1  

102  

LO 
0) 
(0 

2 101 
0 
a 
z 

100  

(c) 
	

(d) 

LO 
0) 
03 

0 

0 

0 
z 

ii 

(e) 

Figure 4.19: Numbers of clusters of a certain size per unit area as a function of 
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p* =O.1  p* =O.5  

/L* V xo (t) X1 (t) X2 (t) x3  (t) xo (t) x i (t) X2 (t) x3  (t) 
2 00 0.65 0.27 0.06 <0.01 0.14 0.38 0.42 0.05 
2.25 x 0.29 0.34 0.30 <0.01 0.05 0.26 0.62 0.07 
2.5 00 0.05 0.15 0.73 <0.01 0.01 0.10 0.84 0.06 
2.75 00 0.02 0.06 0.83 <0.01 	<0.01 0.02 0.94 0.04 
2:75 80 0.55 0.39 0.19 <0.01 0.02 0.13 0.75 0.10 
2.5 80 0.41 0.39 0.12 <0.01 0.03 0.20 0.66 0.10 

Table 4.2: Fraction of particles, x(t), having n neighbours at time t" (equilibrium 
labelled as t' = oo) 

is a high concentration of end defects but low concentration of Y/X defects and at 

high density there is a high concentration of Y/X defects but a low concentration 

of end defects. Additionally, since the chains are the basic units in Tiusty and 

Safran's theory, we also require that particles are mostly in clusters, i.e. that 

there is a low concentration of free monomers. We demonstrate below that these 

conditions are best met at high dipole moment, at a time of tt 102  where there 

is a transient peak in the number of Y and X defects. 

We now use the densities p = 0.1 and p' = 0.5 to exemplify the low and high 

density phases implicated in the phase transition of Dusty and Safran. Table 4.2 

lists the fraction of particles, x, with n neighbours at equilibrium (t* = oo) and 

at an intermediate time during the aggregation process. The trends can be seen 

more clearly in Figs. 4.20 and 4.21, where the x are plotted as a function of time 

during the aggregation process for the two densities. 

Let us consider first the case at equilibrium. We require that there is a high con-

centration of Y defects in the high density phase but the concentration of Y de-

fects (x 3 ) is always low at equilibrium because the Y defect is energetically un-

favourable. Even at the highest density studied here, p = 0.5, the equilibrium 

structure consists of parallel chains with little cross-branching. If we go to lower 

dipole moment (or equivalently higher temperature), the Boltzmann weight for 

a state with Y defects may be higher because of the lower energy cost of defect. 
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Figure 4.20: Fraction of particles, x, having n neighbours as a function of time 
at density p = 0.1 and different dipole moments: f = 2.75 (solid lines); 1f = 2.5 
(dot-dashed line); = 2.25 (dashed line); 1f = 2 (long dashed line). 

(Alternatively, at higher temperature, states with higher energy are relatively 

more probable). It can be seen from Table 4.2 and Fig. 4.21 that at high density 

the equilibrium value of x 3  does indeed increase with decreasing dipole moment. 

However, the number of free monomers also increases as the dipole-dipole inter-

actions become weaker with respect to the thermal energy. 

As has been noted earlier, at high dipole moment and high density, there is a 

large transient concentration of Y defects. It can clearly be seen from Fig. 4.21 

that the peak value of x 3  at 1f = 2.75 is higher than the equilibrium value at any 

dipole moment. Similarly, at low density, it can be seen from Fig. 4.20 that the 

peak end defect concentration (x 1 ) at jf = 2.75 is higher than the equilibrium 
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Figure 4.21: Fraction of particles, x, having n neighbours as a function of time 
at density p = 0.5 and different dipole moments: jf = 2.75 (solid lines); = 2.5 
(dot-dashed line); 1f = 2.25 (dashed line); = 2 (long dashed line). The fraction 
of particles with four neighbours, x 4 , is shown in grey. 

value at any dipole moment. The conditions that the end defect concentration is 

high in the low density phase and the Y defect concentration is high in the high 

density phase are thus better met at a time of tt 102  with high dipole moment 

than at equilibrium with a lower dipole moment. What is not so ideal is that at 

the time t" - 10 2, there are still many free monomers which have not yet been 

included in any aggregates. However, comparison of the values of xo(t* = 80) 

for high dipole moment and xo(t* = oo) for low dipole moment shows that the 

transient high dipole case is at least competitive with the equilibrium low dipole 

case in terms of the number of free monomers. 
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The observation that the conditions for the Tiusty-Safran transition are best met 

at high dipole moment at intermediate times during aggregation leads us to sug-

gest that it might be possible to see the Tiusty-Safran transition as a metastable 

phase transition if the system could somehow be trapped in the transient net-

work state. Experimentally, this could be achieved by creating some sort of 

short-range force between the particles, e.g. a depletion force induced by adding 

a polymer to the system, or by some sort of chemical reaction. In this way, the 

transient network might be stabilised long enough for phase separation to occur. 

4.4 Conclusions 

The aggregation of dipolar particles to form chains and rings has been studied 

by Brownian dynamics simulation. At all densities, short chains quickly form 

from neighbours which happen to be close in the initial configuration. These 

chains can then join together to form longer chains. This kind of process is con-

tinually repeated, and we see the number of particles in clusters of increasing 

size successively rise to a peak and then decline. The equilibration process oc-

curs faster at higher density because the particles are on average closer together. 

Under assumptions about the coagulation kernel, solutions to the Smoluchowski 

equation can be obtained. In our case, we fit the solutions obtained for constant 

coagulation kernel [851 to our data for the numbers of clusters of different sizes. 

Better fits were obtained at higher density than at lower density. 

As well as chains, closed rings and defect clusters are formed. The most preva-

lent mechanism of ring formation seems to be the joining together of the two 

ends of the same chain. This is different to the mechanism proposed by Wen 

et al. [27],  whereby two or more neighbouring chains join together. Rings are 

most common at low density. Defect clusters become more common at higher 

density. At the higher densities, once some short chains have been created, a 
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highly branched network of chains is formed. This network disentangles by pro-

cesses which swap segments at the point of the defect, and by the time we reach 

equilibrium, only the occasional defect remains. 

We have discussed the possible relevance of our results to the phase transition 

proposed by Dusty and Safran [6]. They predict a phase coexistence between 

a high density branched network and low density gas of chains, which would 

replace the ordinary liquid-gas phase transition. For this scenario to be realised, 

we require that the structure at high density has a high concentration of junction 

(Y and X) defects but a low concentration of end defects and that the structure at 

low density has a high concentration of ends but low concentration of junctions. 

The problem is that few junction defects are ever seen at equilibrium, making the 

Tiusty-Safran transition seem unlikely. The best case at equilibrium is obtained 

at lower dipole moment, where the energy cost of a junction defect is not so high. 

However, we have shown that, at high density, the peak transient concentration 

of junction defects during aggregation is greater than the equilibrium concentra-

tion at any dipole moment. At low density, the peak transient concentration of 

end defects is greater than the equilibrium concentration at any dipole moment. 

This raises the possibility that Tlusty and Safran's transition may be observed as 

a metastable phase transition. 

Finally, our results may have a technological application. There are many appli-

cations where it may be desirable to have a networked material, e.g. in making 

electrical circuits, or as scaffolds for strong materials. It may be possible to make 

such a network using dipolar particles. If the particles also have a short range at-

traction or some chemical reaction occurs which causes them to stick irreversibly 

when they come into contact, the network might form and then stick together 

and we have formed the stable network we desired. 



CHAPTER 5 

Spin dynamics of the kagome antiferromagnet 

5.1 Introduction 

In this chapter, we study the effect of bond dilution on the spin dynamics of anti-

ferromagnetically coupled spins on a kagome lattice. There have been few simu-

lation studies of the spin dynamics in geometrically frustrated antiferromagnets. 

Keren [86, 87] has performed spin dynamics simulations of classical Heisenberg 

spins on a kagome lattice. Moessner and Chalker [88] performed numerical sim-

ulations of spin dynamics on the pyrochlore lattice (a three dimensional ana-

logue of the kagome lattice) to support their analytical conclusions. Also for the 

pyrochiore lattice, Reimers [89] performed Monte Carlo simulations and looked 

at the 'dynamics' over Monte Carlo 'time'. 

Keren [86] investigated the stability of long range order against excitation in the 

kagome lattice. The system was prepared in the '/ x (Fig. 1.7(a)) or q = 0 

(Fig. 1.7(b)) long range ordered states and one spin was rotated out of the plane. 

Next, the whole system was given an excitation with a certain energy from the 

ground state structures and the correlation function (S(t) S(0)) was measured, 

averaged over all the spins in the system. The q = 0 state was found to be more 

109 



Chapter 5. Spin dynamics of the kagome ant iferromagnet 	 110 

stable against small excitations than the 	x 	state. Correlations in time decay 

quickly in the \/ x 	state. The 'spectral density' was calculated as a Fourier 

transform of the single spin correlation function: 

j(w) = 2 f (S(t) . S(0)) coswtdt. 	 (5.1) 

Keren compared j(w) for the kagome lattice and also the square lattice, which 

is an unfrustrated lattice with the same co-ordination number. In the square 

case, as the temperature decreases, the value of j(0) increases and the spectral 

density is spread over a narrower range in frequency. This is characteristic of 

a paramagnetic phase. At low temperature, the correlation length reaches the 

size of the simulation box, and the system is effectively ordered (but note that in 

the thermodynamic limit, isotropic Heisenberg spins in two-dimensions cannot 

display long range order). Here, j(w) consists of a narrow peak at w > 0 and 

j(0) decreases. In the kagome case, as temperature decreases the spectral density 

narrows, j(0) increases continuously. This shows that there is no phase transition 

above T = 0. 

In Ref. [87], Keren considered the effect of non-magnetic impurities, which in 

simulations is equivalent to leaving vacancies on the lattice. The single spin 

correlation function (S(t) . S(0)) was measured. With increasing dilution, the 

asymptotic value increases from zero. This is due to the fact that as spins are 

removed from the system, some spins may become isolated with no neighbour-

ing spins. These spins will therefore not move and will remain correlated with 

themselves for all time. It is was found that the initial relaxation of the correlation 

function is independent of vacancy concentration, however. This is true even for 

concentrations below the percolation threshold, where we can no longer trace a 

path across the whole system. This is further evidence that the dynamics consists 

not of collective motions of whole system, but local motions of small groups of 
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spins. The correlation time was found from the time integral of the single spin 

correlation function: 

T = f (S(t) S(0)) dt 	 (5.2) 

r is found to be monotonically increasing at T - 0. Given that the order pa-

rameter corresponding to the x state increases below T = 0.01J [90], we 

might expect the correlation time to decrease as the system becomes more or-

dered. This suggests again that the excitations in the kagome lattice consist of 

local motions. The low temperature dependence of the correlation function was 

found to be consistent with T oc T 1 . This corresponds with theories of critical 

dynamics for a critical temperature T = 0, for which r 0 T_tz, with ii = 1/2 and 

z=2. 

Because of the frustration, a system of spins on a kagome lattice cannot find a 

unique ground state. The ground state is highly degenerate. A compromise 

can be reached by placing neighbouring spins at 120° to one another. Harris et 

al. [91] performed a linear spin wave analysis for classical Heisenberg spins on 

the kagomé lattice for excitations from the q = 0 and v13 x 	states. It was found 

for both these structures, the dispersion relation includes a dispersionless zero-

energy mode. These 'zero modes' are identified with particular local motions 

of spins around the hexagons in the lattice. Chalker et al. [92] and Reimers and 

Berlinsky [90] discuss an 'order-by-disorder' mechanism whereby thermal fluc-

tuations can select a subset of the ground state manifold at finite temperature. It 

is states in which the spins are coplanar that are selected (not necessarily in the 

plane of the kagome layer). Two such planar states are the q = 0 and 	x 

Chalker et al. attribute the selection of planar states to the fact that planar states 

have more zero modes than any non-planar state [92]. 

Reimers and Berlinsky in their Monte Carlo simulations measured order param 

eters m ,/-3- and m0  corresponding to the v'  x 	state and the q = 0 state, re- 
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spectively [90]. m was found to rise considerably below T = 0.01J. They also 

established that the \/ x 03 state is more stable than the q = 0 state by per-

forming warming runs from both of these states. The results indicated that the 

q = 0 state is out of equilibrium. Chalker et al. [92] also found from an analysis 

of their Monte Carlo simulations that the x state is the one formed. Har-

ris et al. [91] also considered the effect of further neighbour interactions. They 

found that when J2  > J3 , where J2  and J3  are the exchange constants for second 

and third neighbour interactions, q = 0 is the more stable, whereas for J2  < J3 , 

x 	is more stable. 

In this chapter, we perform spin dynamics simulations for the highly frustrated 

kagome antiferromagnet. We are particularly interested in the effects of bond 

dilution which should relieve some of the frustration. As mentioned in Chap-

ter 1, this is motivated by the suggestion that in hydronium (H 30) jarosite, a 

proton might migrate onto one of the OH -  ions bridging between the magnetic 

Fe 3+  ions, weakening the exchange interaction. We investigate the static thermo-

dynamic properties and the single-spin correlation function. We also investigate 

the collective dynamics by measuring the dynamic structure factor. This function 

makes an important link with experiment since it can be measured by inelastic 

neutron scattering. 

5.2 Method 

The dynamics of a system of antiferromagnetically coupled Heisenberg spins 

on the sites of a kagome lattice was studied using the spin dynamics technique. 

The kagome lattice is shown in Fig. 5.1. The simulation cell was parallelogram 

shaped with size La x La spins, where a is the nearest neighbour distance. In the 

jarosites, the nearest neighbour distance is a = 3.4A. A system of size 40a x 40a 

was simulated. The kagome lattice was generated by creating a triangular lattice 
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and removing every second site in every second row. We simulated lattices with 

different fractions, x, of bonds broken. In the bond-diluted cases, five different 

realisations of bonds broken in the lattice were generated, and the results were 

averaged over five distinct runs. 

The exchange interaction is described by the Heisenberg Hamiltonian 

(5.3) 
i<j 

where I = JS(S + 1)h2,§i and , are unit vectors in the direction of the spin 

angular momentum at site i and j, and the sum is over all nearest neighbour pairs 

of spins on the lattice. The equations of motion for this system (see Chapter 2) 

are given by 

! =+J/S(S+1)hjA>j, 	 (5.4) 
dt 

where the sum is over nearest neighbours of site i. Note that these equations of 

motion conserve both magnetisation and energy. They were integrated using an 

explicit Adams-Bashforth predictor, followed by an implicit fourth order Adams-

Moulton corrector step. (The Runge-Kutta fourth order algorithm was used for 

the first three time steps [931). 

We define the reduced temperature T* = kT/J and time V = 	+ 1)ht, 

with the effective exchange coefficient, J as the fundamental unit of energy. 

For each realisation of the lattice, 1000 dynamics trajectories were sampled for 

periods up to iO time steps, with a timestep of Lt* = 0.01. The initial config-

urations were drawn from a Monte Carlo simulation at intervals of 200 Monte 

Carlo cycles, after an initial 10000 Monte Carlo cycles for equilibration. Since 

the dynamics are initiated from configurations drawn from the Boltzmann dis-

tribution, canonical averages can be estimated by averaging over the different 

dynamics runs. 
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Figure 5.1: Kagome lattice 

Monte Carlo simulations can be used to obtain static thermodynamic properties 

such as the energy, heat capacity and susceptibility. The heat capacity is mea-

sured using the usual fluctuation formula: 

CH 
= (fl2) 

- (7)2 	
(5.5) 

kBT 2  

In reduced units, the heat capacity per spin is given by 

(5.6) 
NkB 	N(kBT) 2  

Since (m) = 0 in a two dimensional antiferromagnet in the thermodynamic limit, 

where m = + M + M.,2  is the magnitude of the magnetisation per spin, we 

replace the usual fluctuation formula for the susceptibility per spin with 

(m2 ) 

X= NkBT 
(5.7) 

Dynamical quantities were measured in the spin dynamics simulations. The 

single-spin correlation function is defined as 

C(t) = 	 . 	(0)) 	 (5.8) 
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Collective dynamics can be studied using the intermediate scattering function 

S(q, t) = 
1
- (1/I(q, t) 
N 	

M(q, 0)) 	 (5.9) 

where 

	

.M(q, t) = 	j (t) e_1 	 (5.10) 

is a spatial Fourier component of the magnetisation. An important quantity is 

the dynamic structure factor, which is the temporal Fourier transform of the in-

termediate scattering function. It is accessible experimentally from inelastic neu-

tron scattering. The dynamic structure factor is given by 

+00 

	

S(q, w) = J 	S(q, t)e tdt. 	 (5.11) 

A Gaussian windowing function is applied to S(q, t) before taking the temporal 

Fourier transform (as used in, e.g., Refs. [60, 94]). S(q, t) is multiplied by 

I (tw) 2 l 
exp 	

2 1— ] 	

(5.12) L 
tw is given by 

Aw = 1.2 	 (5.13) 
tcutoff 

where tcutoff is the time to which the equations of motion are integrated. The 

windowing function severely reduces the size of the discontinuity in S(q, t) at 

the cutoff time, and thereby reduces the spurious features which can appear in 

the Fourier transform due to the truncation. 

The primitive lattice vectors of the simulation cell (not the lattice) are a 1  = L(1, 0) 

and a2  = L(—, ). The corresponding reciprocal lattice vectors can be deter- 

mined from the relations b . a3  = 27n5jj  between the reciprocal lattice vectors, b, 
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and the direct lattice vectors, a 3  [95].  This gives 

27r 	1 
b1 =7) 	 (5.14) 

27r 	2 	
(5.15) b2 = 7(0 

i)•  

Therefore, the wavevectors which are commensurate with the periodic boundary 

conditions are given by linear combinations of b1  and b2 . We consider wavevec-

tors along the x and y directions. To be commensurate with the periodic bound-

ary conditions these must be 

q1 = mi (2b 1  - b2) = 27rn1 (2,0) 	 (5.16) 

and 

q2 = mMA= L 
27rm2 (0, 2 	

(5.17) 

where n 1  and n2  are integers. The wavevectors must also fit with the underlying 

kagome lattice. Allowed wavevectors must correspond to waves with wave-

length equal to an integer times the spacing between lines of spins in the lattice. 

In the x direction, this means that 

= ma, 	 (5.18) 

where a is the spacing between points in the lattice. So we have, 

47rm 1 	27r 

	

qiI = L = ma 	
(5.19) 

Hence, m 1  must be equal to L/2ma. In our system, we have L = 40a, so the 

allowed values of n 1  are 1,2,4,5,10,20. In the y direction, the spacing of the lattice 
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planes is 	so the allowed wavelengths are 

	

,\=mvia. 	 (5.20) 

Thus, 
47rri 1 	2ir 

1q21 =(
5.21) 

We again find n2  must be equal to L/2ma, and the allowed values of ri2  for L = 

40a are n2  = 1, 2, 4, 5, 10, 20. 

5.3 Thermodynamic quantities 

Before exploring the dynamics, let us first consider the static thermodynamic 

quantities obtained from Monte Carlo simulations. Figs. 5.2- 5.4 show the en-

ergy, heat capacity and susceptibility, respectively, against temperature for sys-

tems with varying bond fractions, x. As the temperature is increased, random 

thermal motion increases, and the energy (Fig. 5.2) tends to zero for all bond frac-

tions. In the fully bonded case (x = 1), the energy tends to —1.0 at T = 0. This 

is the energy per spin of the compromise ground state configuration in which 

neighbouring spins are oriented at 120° to each other. As the bond fraction de-

creases, the breaking of bonds in the lattice relieves the frustration in some of 

the triangular plaquettes, allowing some pairs of spins to attain an antiparallel 

alignment. This accounts for the initial decrease in energy at a given tempera-

ture. As more bonds are broken, however, fewer pairs of spins are interacting 

and the energy eventually rises towards zero. 

The heat capacity is shown in Fig. 5.3. The data is subject to rather large statistical 

errors at low temperature. Nevertheless, it can be seen that the data is consistent 

with the exact theoretical low temperature limit of C/Nk = 11/12 [92]. 
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Figure 5.2: Energy as a function of temperature for systems with different bond 
fractions, x: x = 1.0 (solid line); x = 0.8 (dotted line); x = 0.6 (dashed line); 
x = 0.4 (long-dashed line); x = 0.2 (dot-dashed line); x = 1.0 (solid brie). 
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Figure 53: Heat capacity as a function of temperature for systems with different 
bond fractions, x: x = 1.0 (solid line); x = 0.8 (dotted line); x = 0.6 (dashed line); 
x = 0.4 (long-dashed line); x = 0.2 (dot-dashed line). 
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Figure 5.4: Inverse susceptibility as a function of temperature for systems with 
different bond fractions, x: x = 1.0 (solid line); x = 0.8 (dotted line); x = 0.6 
(dashed line); x = 0.4 (long-dashed line); x = 0.2 (dot-dashed line). 

The susceptibility is shown in Fig. 5.4. The high-temperature series expansion 

of Harris et al. [91] gives a good description of the data in the fully bonded case 

for T* > 1.0. An interesting question is whether the kagome antiferromagnet 

exhibits a phase transition at T = 0. It is known that a two-dimensional system 

of Heisenberg spins cannot show long range order at finite temperature [5],  but 

this says nothing about T = 0. In frustrated systems long range order may not 

even be possible at T = 0 because of the large ground-state degeneracy. For a 

critical point at T = 0, we would still expect a divergence in the susceptibility in 

the limit T - 0. In previous work there is no consensus about this issue. Reimers 

and Berlinsky [90] performed a finite size scaling analysis using Monte Carlo 

simulations and concluded that their data was consistent with a T = 0 critical 

point. Harris et al. on the other hand speculate that an exact theoretical result 

for the inverse susceptibility would not show the downturn towards zero at low 

temperature [91]. Our data appears to suggest that there is no phase transition 

in the fully bonded case (x = 1.0); 1/X tends to 2J' rather than 0J' (i.e. there 

is no divergence). 
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Figure 55: Inverse susceptibility from Monte Carlo simulation (dashed lines) 
and fits using Eq. 5.22 (solid lines). From top to bottom: x = 0.9; x = 0.7; x = 0.5; 
x = 0.3; x = 0.1. 

Following Schiffer and Daruka [33],  we fit our susceptibility data using two 

Curie-Weiss terms: 

= [C1 /(T + e 1 ) + C/(T + 	. 	 (5.22) 

This is based on the assumption that there exist two different populations of 

spins - clusters of antiferromagnetically correlated spins and 'orphan' spins al-

most uncorrelated with their neighbours. The first term represents the spins in 

clusters and the second term represents the orphan spins. The fit parameters are 

shown in Table 5.1 and the resulting fits are compared with the Monte Carlo data 

in Fig. 5.5. A good fit is obtained, for both the asymptotic high temperature lin-

ear dependence and the downturn in the curve at low temperature. Schiffer and 

Daruka's proposal is thus plausible in our system. The downturn in x' then 

would be due to the relatively high susceptibility of the orphans spins at low 

temperatures compared to the spins in correlated clusters. Table 5.1 shows that 

the orphan spins have a 'transition' at temperature e2  0. 
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Table 5.1: Fits to Monte Carlo susceptibility data using Eq. 5.22 for different val-
ues of bond fraction, x. 

C, e 1  C2  62 

0.1 0.36(3) 0.39(5) 0.64(3) -0.002(2) 
0.2 0.62(1) 0.50(2) 0.39(1) -0.003(1) 
0.3 0.765(8) 0.62(2) 0.242(8) -0.0028(9) 
0.4 0.820(5) 0.80(1) 0.191(5) -0.0025(8) 
0.5 0.891(4) 0.95(2) 0.126(4) -0.0030(7) 
0.6 0.962(2) 1.11(2) 0.064(3) -0.0002(5) 
0.7 0.947(3) 1.35(2) 0.0085(3) -0.0024(9) 
0.8 0.992(2) 1.45(1) 0.042(2) -0.0005(5) 
0.9 1.032(2) 1.64(2) 0.0122(6) -0.0012(2) 

5.4 Single spin dynamics 

We now turn to the dynamics as studied by spin dynamics simulations. The 

single-spin correlation function at various temperatures is shown in Fig. 5.6. In 

the fully bonded lattice (x = 1), these functions decay to zero as expected. In the 

bond diluted cases the asymptotic value is non-zero and increases as the bond 

fraction, x, decreases. This is due to the possibility that in a realisation of the 

lattice, a particular spin may have had all of its bonds to neighbouring spins 

broken; this isolated spin will then remain correlated with itself for all time. 

The correlation functions mostly show a featureless decay, apart from a small 

feature which is most prominent at higher temperature. If conventional spin 

waves involving the whole system were present, we would expect to see some 

oscillatory behaviour in the correlation function. The fact that no such feature is 

present suggests that the main excitations in the system must instead consist of 

local motions of small groups of spins. Keren [86, 871 identifies these excitations 

with the localised 'zero modes' discussed by theorists [91]. We present further 

evidence for this below. 

In the bond diluted case, the breaking of bonds means that the excitations which 

occur can only involve localised motions of small groups of spins. The fact that 
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Figure 5.6: Single spin autocorrelation functions at different bond fractions and 
temperatures. (a) x = 1.0 (b) x = 0.9 (c) x = 0.8 (d) x = 0.7. From left to right 
for each bond fraction T* = 2, T* = 1, T" 0.5, T* = 0.2, T* = 0.1, T = 0.05, 
T* = 0.02, T* = 0.01. 

the initial relaxation is independent of the bond fraction indicates that the same 

kind of dynamics is occurring, and hence the excitations involved must be local 

even in the fully bonded lattice. Keren studied the effect of site dilution and came 

to the same conclusion [87]. 

A single-spin correlation time can be found using 

r = f C(t)dt. 	 (5.23) 
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Figure 5.7: Correlation times from the single spin autocorrelation function: x = 
1.0 (circles); x = 0.9 (squares); x = 0.8 (diamonds); x = 0.7 (triangles). Obtained 
from time for correlation function to fall to 1/e (open symbols) or from integral 
of correlation function (filled symbols). The solid lines are fits using (T) = 
-r(oo) + AT 

In the strongly bond diluted cases, the correlation functions die away over a 

much longer time scale than that accessed in the simulation and therefore equa-

tion 5.23 could not be used. In these cases, the correlation time was taken to be 

the time it took for the correlation function to fall to l/e of its initial value. In 

those cases in which both methods could be used, the correlation times obtained 

are consistent. The correlation times for different bond fractions are plotted as a 

function of temperature in Fig. 5.7. In general, the correlation time decreases as 

temperature increases due to the increased thermal motion. According to theo-

ries of critical dynamics [96], the correlation time scales as T if there is a critical 

point at T = 0, with the critical exponents ti = 1/2 and z = 2. A function of the 

form T(T) = -r(oo) + AT was fitted to the correlation time data. The resulting 

fit parameters are given in Table 5.2. For x = 1, the value vz = 1.023 ± 0.042 is 

consistent with the expected scaling of T'. 
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Table 5.2: Fits to temperature dependence of correlation time using the function 
r(T) = r(oo) + AT. 

X 	T(OO) 	 A 
0.7 0.887(94) 0.218(42) 1.485(54) 
0.8 0.927(38) 0.151 (14) 1.625(26) 
0.9 0.952(53) 0.139(19) 1.551(38) 
1.0 0.848(55) 0.296(46) 1.023(42) 

5.5 Collective dynamics 

The collective dynamics were studied by means of the dynamic structure fac-

tor. This function is important because it can also be measured in experiment 

by inelastic neutron scattering. In Figs. 5.9 and 5.10 we show the dynamic struc-

ture factor at T* = 0.1 for wavevectors in two different directions in reciprocal 

space. This corresponds to a typical experimental temperature; given that in the 

jarosites the exchange constant, J is of the order of 250 K, it corresponds to a real 

temperature of about 25 K. We also performed a few test cases for wavevectors 

in other directions and found no significant differences in the dynamic structure 

factor, comparing wavevectors with the same magnitude. For x = 1, there is one 

peak in the spectrum, in a certain range of wavevectors, at a reduced angular 

frequency w = w/ (J./§-(S+ i)h) 1.5. At lower bond fractions, peaks appear 

in the spectrum at w" 1. 5, 2.3, 3.1. For the fully bonded lattice, we determined 

the peak frequency by fitting two Lorentzians to the dynamic structure factor. 

The peak frequency versus wavevector - the dispersion relation - is plotted in 

Fig. 5.8. We include wavevectors in both the q1 and q2 directions. The solid line 

is the dispersion relation obtained by Harris et al. [91] using linear spin wave the-

ory, which is applicable at temperatures close to zero. For our case this is given 

by w = 2 sin (I q  I a)  I. The theory and our data correspond qualitatively with each 

other, but our data is consistently lower than the theory. The discrepancy is due 

to the fact that we have rather broad features in the spectra and thus it is diffi-

cult to obtain an accurate fit. Also, the linear spin wave theory is constructed to 
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Figure 5.8: Dispersion relation for x = 1. Wavevectors in the q1 direction (open 
symbols) and in the q2 direction (closed symbols), dispersion relation from linear 
spin wave theory (solid line). 

deal with low-lying excitations from the ground state and hence is appropriate to 

much lower temperatures than we have simulated here. There is a general trend 

that the peak in the dynamic structure factor decreases as temperature increases 

(see, for example, [60]).  The fact that our peak frequencies are lower than the 

dispersion relation derived in the limit T 4 0 is consistent with this. 

With increasing bond dilution, peaks emerge at w' 	2.3, 3.1. The position of 

these peaks are independent of wavevector, i.e. they are dispersionless. Disper-

sionless modes are often due to localised motions. It is true that the dynamics in 

the fully bonded case is also local but these new peaks appear due to the relief of 

frustration as bonds in the lattice are broken. Groups of spins win now be able 

to attain antiparallel alignment which will then undergo motions characteristic 

of unfrustrated antiferromagnets. 

We note that some inelastic neutron scattering experiments have been carried out 

on the K+  and  D30+  jarosites [97]. The dynamic structure factor for K+  jarosite at 
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Figure 5.9: Dynamic structure factors for different bond dilutions and wavevec-
tors in the q 1  direction: (from top to bottom) (27,,0) (black); (7r,0) (red); (7r/2,0) 
(green); (27/5,0) (blue); (7/5,0) (grey); (ir/10,0) (brown). 

a wavevector 1.75 A - i showed peaks at approximately 7meV, 16meV and a pos- 

sible peak at -24meV. In order to make a comparison, we convert our data into 

real units by noting that the typical nearest neighbour spacing in the jarosites is 

3.4 Aand the exchange constant is 1 250 K. Our closest wavevector is (27r,0) 

which corresponds to 1.85 A. The position of the three peaks in real units for the 

bond diluted cases is 11.6 meV, '17.8 meV and '24.0 meV, in rough accord 

with experiment. However, in K jarosite, there are perturbations to the Hamil-

tonian, such as single-ion anisotropy, and the D 30 1  jarosite is perhaps a better 

case for comparison with our simulation results. The experimental analysis has 

not yet been completed, but the indications seem to be that these kind of peaks 
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Figure 5.10: Dynamic structure factors for different bond dilutions and wavevec-
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do not appear in the dynamic structure factor, although only a rather narrow 

range of energies can be measured experimentally at low enough wavevector. 

5.6 Conclusions 

We have carried out spin dynamics simulations of antiferromagnetically coupled 

Heisenberg spins on a kagome lattice. The equations of motion were integrated 

using starting configurations sampled from canonical Monte Carlo simulations. 

We have investigated the effect of bond dilution on the thermodynamics and 

dynamics of the system. 

I 
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Static thermodynamic properties were measured using Monte Carlo simulations. 

Upon increasing bond dilution the energy at a given temperature initially de-

creases due to the relief of frustration but eventually increases towards zero as 

less and less pairs of spins interact. The T* = 0 limit of the heat capacity in the 

case x = 1 was found to be consistent with the theoretical value of 11/12. 

At high temperatures, the susceptibility data corresponded well with Harris et 

al.'s high temperature expansion [91]. The inverse susceptibility, I/x in the fully 

bonded case tends to the value 1/2 as T -* 0, i.e. the susceptibility does not 

diverge. This appears to indicate that there is no phase transition at T = 0, 

in contrast to Reimers and Berlinsky's conclusions from their finite size scaling 

analysis. This is an unresolved question in the literature. 

A fit of two Curie-Weiss terms to the susceptibility following Schiffer and 

Daruka [33] was found to give a good description of the data. This is based on 

the idea that in a diluted frustrated magnet, there are two populations of spins - 

small clusters of correlated spins and 'orphan spins' which are almost uncorre-

lated with their neighbours. 

The dynamics was studied using the spin dynamics technique. The most im-

portant conclusion is that the main excitations in the system consist of local mo-

tions of small groups of spins, rather than conventional spin waves spanning the 

whole system. The single spin correlation functions show a featureless decay, 

with no oscillatory behaviour as would be expected if spin waves were present. 

The fact that the initial decay of the correlation functions is independent of bond 

fraction is also consistent with the picture of local excitations. The correlation 

time was extracted from the single spin correlation function either by its integral 

or by the time for the function to fall to 1/e. The correlation time rises contin-

uously as T -i 0. A fit to the correlation time, r as a function of temperature 
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showed the data is consistent with the scaling relation r X T 	for a critical 

point at T = 0, with the critical exponents ii = 1/2 and z = 2. 

The collective dynamics was studied by measuring the dynamic structure factor, 

S(q, w). In the fully bonded lattice, S(q, w) exhibits a single broad peak. The dis-

persion relation shows qualitatively the same features as that obtained by Har-

ris et al. [91] from their linear spin wave analysis, although the simulation data 

consistently gives a lower value than the theory. The discrepancy is probably 

due to the difficulty in obtaining an accurate estimate of the peak frequencies 

from the dynamic structure factor and the fact that the spin wave analysis is 

only designed to deal with low-lying excitations. In the bond diluted cases, fur-

ther peaks appear in S(q, w). These peaks are dispersionless, again suggesting 

local excitations. These extra peaks arise because of the relief of frustration as 

bonds are broken. Some neighbouring spins are now able to attain their pre-

ferred antiparallel alignment and undergo motions characteristic of unfrustrated 

antiferromagnets. 

In summary, we have studied the spin dynamics on the kagome lattice. This was 

motivated by many experimental studies on the jarosites which reveal a range of 

puzzling behaviour, mostly due to the fact the real experimental systems are not 

quite as simple as models studied by theorists. There has been a suggestion that 

in HO+  jarosite, the exchange interaction between two F e3+ ions could be re-

duced by the migration of a proton onto the oxygen bridging between the ions. 

This led us to explore the consequences of bond dilution on the spin dynam-

ics. There are some indications that our results may be consistent with inelastic 

neutron scattering experiments on K+  and  H30+  jarosites, but there is nothing 

conclusive as yet. 



CHAPTER 6 

Phase behaviour of a system of amphiphilic 

trimers 

6.1 Introduction 

In chapter 1, we introduced the experimental study of two dimensional protein 

crystals. The structure of membrane proteins can be studied by reconstituting 

them into lipid bilayers. The resulting two dimensional crystals can be imaged 

by electron microscopy or atomic force microscopy. Some examples of this kind 

of study were given in chapter 1, particularly focusing on proteins which are 

either inherently triangular shaped or which form trimeric units from which the 

structure is built. These kind of studies motivated our investigation of the phase 

behaviour of a two dimensional system of hard disk trimers with one attractive 

disk. This model may seem far too simplistic to deal with complicated protein 

molecules, but as we discuss below, coarse grained models are very successful in 

the study of bulk behaviour. Indeed, the kind of close-packed structures we see 

in our simulations are very reminiscent of the structures of the two dimensional 

protein crystals. 

130 
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Coarse grained models have been studied since the early days of computer sim-

ulation. In particular the study of the hard sphere system has yielded many 

insights into the fundamental questions of condensed matter theory. It is a 

very simple system on which to build theories of the liquid and solid states. 

The hard sphere system was one of the first models to be studied by computer 

simulation [98-100]. An example of the kind of insight gained is the fact that 

hard spheres can exhibit a first order fluid-solid phase transition. This is per-

haps surprising because there are no attractive interactions between the particles. 

The phase transition is entirely entropy driven. Hard particle systems of vari-

ous shapes have been studied by computer simulation, e.g. dimers [101, 102], 

pentamers and heptamers [103], rectangles [104] and hard pentagons and hep-

tagons [105]. These systems are of interest in their own right. Despite the sim-

plicity of these hard particle models, they can reproduce many of the features of 

real systems. 

To gain an understanding of the detailed biological function of a particular pro-

tein, it is necessary to use a detailed model where all the atoms are taken into 

account. However, it is the case that the function of some proteins is dependent 

on their formation of some sort of pattern. In this case, we are interested in the 

collective phase behaviour of a large number of molecules. It would be pro-

hibitively expensive to simulate every molecule in full atomistic detail and some 

kind of coarse grained model becomes necessary. The phase behaviour does not 

anyway depend on the exact details of every interaction between each molecule. 

In fact, it can be argued that the coarse grained models can give us great insight 

into which features of a molecule are really important in determining the collec-

tive behaviour. For example, in order for a molecule to display liquid crystalline 

phases, all that is necessary is for the molecules to be roughly rod-shaped [106-

108]. This is something we may not have learnt from a fully atomistic simulation 

of a particular molecule which is known to show liquid crystalline phases. 
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We presented in Chapter 1 two studies which demonstrate that very simple 

coarse grained models can provide a reliable description of protein molecules 

for the purposes of understanding the bulk phase behaviour of a large system of 

these molecules. In this chapter we report a study of the phase behaviour of a 

coarse grained model that might provide a description of a trimeric protein. We 

obtain the phase diagram by Monte Carlo simulation and describe the structures 

in the different regions of the phase diagram. 

6.2 Model and simulation details 

We study a two-dimensional system of amphiphiic trimer molecules by Monte 

Carlo simulation. The model trimer consists of three hard disks fused together in 

a triangular arrangement, with the disks just touching. One disk on each trimer 

interacts with the corresponding disk on other trimers via an attractive square 

well potential with a range of 1.25a, where a is the hard disk diameter. This 

could model specific interactions between parts of the protein molecules. Sys-

tems of 120 of these trimers were simulated either in the NPT or NVT ensemble. 

A typical simulation consisted of a few hundred thousand Monte Carlo cycles. 

As well as ordinary translational and orientational moves, trial moves were at-

tempted in which the trimers were rotated by multiples of 1200.  These moves 

were attempted on average every fifth time. For NPT simulations in the solid 

phase, the x and y dimensions of the simulation cell were allowed to vary inde-

pendently. In the fluid phase, the x and y dimensions were kept equal. 

We define dimensionless reduced units in terms of the square well depth, c, and 

the hard disk diameter, a, as follows: density p = p/a -2 ; temperature T* = kT/€; 

pressure P* = Po,  2/kT. 
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Figure 6.1: Phase diagram in the density-temperature plane. Filled circles 
mark the fluid-solid coexistence region. Open circles mark the crossover be-
tween clustered fluid and normal fluid or orientationally ordered solid and non-
orientationally solid. The numbered points are referred to in Figure 6.7. 

6.3 Results 

The phase diagram in the density-temperature plane is given in Fig. 6.1. Before 

explaining how the boundaries between phases were determined, we first de-

scribe the structures in the four main regions of the phase diagram. 

Figure 6.2(a) shows a snapshot of the structure at low density and temperature 

in the region marked "Fluid II" in the phase diagram. The trimers self-assemble 

into clusters containing typically three to six trimers, caused by the coming to-

gether of the attractive disks. The attractive disks within each cluster are packed 

closely rather than a more open structure in which the attractive disks are ar-

ranged on the circumference of a ring. The close packing of the attractive disks 

allows more direct contacts between the attractive disks. In the ring structure, 

each disk interacts only with its two neighbours - particles across the other side 
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of the ring are outwith the interaction range. Hence, the close packed structure 

has a lower energy. 

The range of the attractive interaction has an important effect on the structure of 

the fluid. When the range of very short, the disk must come very close together 

and tight clusters are formed which then only have room to accommodate three 

or four trimers. At the other extreme, with a long range, rather loose clusters are 

formed containing more members. If the interaction range, ) > it is possible 

for an attractive disk to interact with another trimer even if it approaches from 

'behind'. In this case, no aggregation occurs. 

We can further characterise the fluid structure by measuring the cluster size dis-

tribution. We use the criterion that two trimers are in the same cluster if their 

attractive disks are within the interaction range of the square well potential. In 

Fig. 6.3, we show the size distributions for states along the isotherm T* = 0.3. 

The maximum of the distribution shifts to larger sizes as the density increases. 

At lower density, entropy has a bigger role to play. This is because the gain in 

entropy as a particle leaves a cluster is greater. Hence, smaller clusters tend to 

form at lower density. The maximum shifts towards six as we approach the solid 

region. The solid phase is built up of motifs containing six trimers. 

At higher temperature we enter the region marked 'Fluid I'. The snapshot in 

Fig. 6.2(e) shows that no aggregation occurs here because entropy becomes more 

important at higher temperature. The fluid shows the structure of a 'normal' 

fluid with no translational or orientational ordering. 

Figures 6.2(c) and (f) show the structure in the 'Solid I' and 'Solid II' regions of 

the phase diagram. The individual disks adopt a hexagonally close-packed struc-

ture, just as a system of hard disks does in the solid phase. There are different 

ways of packing the trimers that are consistent with the hexagonal close packing 
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Figure 6.2: Snapshots of configuration from different regions of phase diagram. 
(a) Fluid II T* = 0.25. pt  = 015, p = 0.222 (b) Metastable state Tt = 0.25, 

= 2.85. 	= 0.295 (c) AB solid P = 0.25, pt  = 12, p 	0.349 (d) AA solid 
Tt = 0.25, pt  = 20, pt  = 0.356 (e) Fluid I Tt = 2, pt  = 2.5, p = 0.259 (f) Solid I 

= 2, = 12, pt  = 0.345 
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Figure 6.4: Packing structures in the solid phase (a) AA (b) AB (c) C. 

of the individual disks (see Fig. 6.4). The structures we call 'AA' and 'AB' are 

built from rows within which the trimers point alternately 'up' or 'down'. In the 

'AA' structure, the rows are all aligned (Fig. 6.4(a)). In the 'AB' structure, alter-

nating rows are shifted along one space (Fig. 6.4(b)). There is another possible 

packing (structure 'C') with all trimers pointing 'up' (Fig. 6.4(c)). 
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At low temperature (Solid II), there is also orientational ordering of the trimers. 

The trimers rotate to allow their attractive disks to interact with the attractive 

disks on other trimers. In the AA crystal there is a repeating pattern formed from 

a motif of four interacting trimers (Fig. 6.2(d)). This arrangement allows two of 

the disks to interact with three neighbours. The energy of this state is then —5/4€ 

per trimer (assuming there are no defects), since in each unit, two disks interact 

with three others and two interact with two others, and four trimers participate. 

In the AB packing it is now possible to form a lower energy structure, built from 

a motif of six interacting trimers (Fig. 6.2(c)). In this motif, two of the disks 

interact with four others, two of the disks interact with three others, and two 

interact with two others, giving an energy of —3/2€ per trimer. We thus assume 

that the AB structure is the thermodynamically stable state. We shall return to 

this point later. 

In the solid phase, the trimers are packed closely together, and in the Monte 

Carlo simulations it is not possible for them to move past each other. Therefore, 

the system will not convert from one packing structure to another during the 

course of the simulation, even though a different structure may be more thermo-

dynamically stable. We must thus choose which of the structures to simulate. In 

most of what follows, we have simulated the AB structure. 

The same consideration was also important in the hard homonuclear dimer sys-

tem studied by Wojciechowski et al. [101, 102]. In this system, because of the 

many ways of arranging the dimers, the close packed structure is highly de-

generate. This leads to a large entropy which stabilises a nonperiodic phase. 

In their Monte Carlo simulations, they employed collective moves of clusters 

of molecules to allow sampling of all the possible arrangements. In our case, 

it would be difficult to design such moves because of the need to ensure each 

molecule contains one attractive disk and two hard disks. 
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A snapshot of the high temperature, high density solid phase ('Solid I') is shown 

in Fig. 6.2(f). Here there is still hexagonal packing of the individual disks, but 

there is no longer any orientational order. This state has a higher entropy than 

the orientationally ordered Solid II, and thus is favoured at higher temperature. 

Having introduced the structures observed in the different regions of the phase 

diagram, we now detail how the boundaries between the phases were deter-

mined. In order to locate the boundary between fluid and solid phases, equations 

of state p(P) along different isotherms were obtained from expansion runs in the 

NPT ensemble. At each temperature, we performed a series of simulations at 

successively lower pressure. The final configuration from each simulation was 

used as the initial configuration for the next pressure and the system was allowed 

to equilibrate at each pressure before averages were taken. The first simulation of 

each series was initialised from a configuration in which the trimers are arranged 

in the AB packing but oriented at random. The orientational order observed in 

the solid II phase developed spontaneously during equilibration. 

We also performed some compression runs, starting from a state in the fluid 

region and increasing the pressure. These suffer from the problem that as the 

system enters the solid phase, parts of this system can become stuck in their 

fluid positions. These defects in the solid state then remained for the rest of 

compression sequence. We therefore used expansion runs for the purposes of 

obtaining the phase diagram. 

The equations of state obtained from the expansion runs are shown in Fig. 6.5. 

There are discontinuities in the density as the system changes from solid to fluid. 

We assume that this signifies a first order phase transition (although we remem-

ber the question of the nature of the phase transition in hard disks in two dimen-

sions mentioned in Chapter 1). In the vicinity of the phase transition, there are 

points marked as crosses in Fig. 6.5 which did not seem to fit on either the fluid 
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or solid branch of the equation of state. These are metastable partially melted 

states, as can be seen in Fig. 6.2(b), where part of the system is fluid while an-

other part is still crystalline. These points did not equilibrate even in runs of 

over 106  Monte Carlo cycles. 

The boundaries of the fluid-solid coexistence region were found as follows. Fits 

were made to the equation of state using a virial expansion in the fluid state, 

P=b1 p+b2 p2 +b3p3 +... , 	 (6.1) 

and a van der Waals equation of state in the solid phase, 

a 	
(6.2) 

1 - bp 

The metastable points are ignored in making these fits. We take the metastable 

points to be points which do not lie on either branch of the equation of state, 

or points where the configuration can be seen to be partially fluid and partially 

solid. The coexistence pressure is estimated as halfway between the highest den-

sity point identified on the fluid branch and the lowest density point identified 

on the solid branch. The fits were extrapolated to this pressure to give the coex-

istence densities. This method can only yield approximate values for the phase 

boundaries, but our purpose here is to map out the phase diagram of this new 

system, rather than obtain accurate values for the boundaries. 

Figure 6.5(a) shows the extension of the equation of state to lower density. We 

see an absence of any feature such as the van der Waals loops which would 

indicate a liquid-vapour phase transition. Long range attractive forces are re-

quired to stabilise the liquid phase. The range of attractions is probably not long 

enough in our system. In a simulation study of a system of hard particles with 
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Figure 6.5: Equations of state, P(p), along various isotherms: (a) T 8  = 0.25; (b) 
T 8  = 0.3; (c) T 8  = 0.4; (d) T 8  = 0.5; (e) T* = 0.75; (f) T* = 1.0; (g) T 8  = 1.5; (h) 
T* = 2.0. Circles are points determined from Monte Carlo simulations, crosses 
mark metastable points. The solid lines are fits to the data as described in the 
text. The vertical lines mark the coexistence densities. In (f), equations of state 
are shown for three different packing structures: AB (circles); AA (squares); C 
(diamonds). 
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a square well potential [109], it was shown that the liquid-vapour transition be-

comes metastable when the range of the square well is less than about 1.25a. 

We have also performed expansion runs for the isotherm T = 1 starting from 

the AA and C packing structures. The corresponding equations of state are also 

plotted in Fig. 6.5 along with the equation of state in the AB solid. For a given 

pressure, the AB solid is always at higher density than either the AA or C solid. 

This confirms that the AB structure is at least the most mechanically stable, if not 

the most thermodynamically stable. It seems unlikely that any entropic effect 

could stabilise one of the other structures. Further evidence of the thermody-

namic stability of the AB structure comes from the fact that it is this structure 

that forms spontaneously during compression runs starting from a fluid state. 

We next consider the crossover from the low temperature associated fluid (Fluid 

II), and the 'normal' fluid (Fluid I). The boundary between these two states 

marked on the phase diagram does not represent a sharp phase transition, but 

rather a crossover between the two regimes. In order to mark out a boundary 

between the two states, we performed some series of simulations along iso-

bars starting from an equilibrated low density fluid state. We obtained the en-

thalpy and heat capacity along each isobar. The constant pressure heat capacity, 

Cp = () , ,,was calculated using the usual fluctuation formula, 

cP= 
(H2) - (H) 2  

(6.3) 
kT 2   

where H is the enthalpy. In order to check consistency, the heat capacity was also 

obtained as the derivative of a Padé approximant fit to the enthalpy as a function 

of temperature. Padé approximants are given by 

H = a0  + a1 T + a2T2  +... 	
(6.4) 

1+b1T+b2T2+... 
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We identify the crossover between associated and non-associated regimes with 

the peak in the heat capacity since we expect a drop in the energy as clustering 

starts to take place. 

The crossover between the onentationally ordered Solid II state and the orienta-

tionally disordered Solid I state was marked out in a similar way. In this case, 

simulations were performed in the canonical (NVT) ensemble at different tem-

peratures along lines of constant density. The constant volume heat capacity,  

Ci,' = () v,was measured by the fluctuation formula, 

CV 	 (U2 ) - ( U) 2  
- 	

(6.5) 
kT 2   

or by differentiating Padé approximant fits to the energy as a function of tem-

perature. Again, the crossover was identified with the peak in the heat capac-

ity. We have performed one such set of simulations at the close-packed density, 

p, = 2V'/3 0.3849. It is impossible to pack hard disks any closer without 

overlaps. Fig. 6.6 shows the enthalpy and heat capacity at this density, along 

with the Padé approximant fit. The two methods of obtaining the heat capacity 

yield consistent results. 

Fig. 6.7 shows the heat capacity as a function of temperature along two isobars 

in the fluid phase and one isochore in the solid phase. The peak height decreases 

as density increases. This is because at higher density particles are on average 

closer together, and so some pairs of particles will be within interaction range 

even in the high temperature unclustered regime. We therefore expect a smaller 

drop in energy as we enter the clustered regime. 
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6.4 Conclusions 

We have explored the phase diagram of a two-dimensional system of hard disk 

trimers by Monte Carlo simulation. The model consists of three hard disks fused 

in a triangular arrangement, one of which interacts with the corresponding disk 

on other trimers via an attractive square well potential. This study was mo-

tivated by the kind of structures that have been observed in two-dimensional 

crystals of proteins. 

There are four main regions of the phase diagram. At high temperature and 

low density, there is a 'normal' fluid phase with no translational or orientational 

ordering (Fluid I). At low temperature (Fluid II), the attractive disks come to-

gether to minimise their energy, causing the formation of clusters of trimers. We 

counted number of particles in each cluster. The peak in the size distribution 

moves to larger cluster size. as the density increases. The cluster size moves to-

wards six as we approach the fluid-solid coexistence region. The clusters adopt a 

form with the attractive disks closely packed rather than a more open form with 

the disks on the circumference of a ring. This arrangement allows more contacts 

between the attractive disks and hence has a lower energy. 

In the solid phase, the individual disks within the trimer units are hexagonally 

close packed, just as in a system of hard disks. At high temperature (Solid I) there 

is no additional orientational ordering of the trimers. At low temperature (Solid 

II) there is an orientational ordering dependent upon the packing of the trimers. 

We have identified three possible ways of packing the trimers consistent with 

the hexagonal close packing of the individual disks. With the 'C' packing, the 

structure is built from motifs of three interacting trimers. With the 'AA' packing, 

a lower energy structure is possible, built from motifs of four interacting timers 

in which two of the disks interact with three others. The 'AB' solid adopts a 

still lower energy structure, with motifs of six timers. We assume that the 'AB' 
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structure is thermodynamically the most stable. This is borne out by the fact 

that this is the structure which forms spontaneously during compression runs. 

In the equations of state along an isotherm, the 'AB' solid always has a higher 

density for a given pressure, showing that the 'AB' packing is at least the most 

mechanically stable. Free energy calculations would be required to provide a 

definitive conclusion about which state is thermodynamically stable. 

The fluid-solid phase coexistence region was determined by measuring the equa-

tion of state, P(p) along different isotherms in the NPT ensemble. These showed 

a discontinuity in density which we take to be an indication of a first order phase 

transition. We demarcate the crossover between the unclustered Fluid I and the 

clustered Fluid II by measuring the equation of state along isobars in the NPT 

ensemble. The crossover was identified with the peak in the heat capacity as a 

function of temperature. The crossover between the orientationally disordered 

Solid I and the orientationally ordered Solid II was determined in a similar way, 

by carry out simulations in the NVT along lines of constant pressure and find-

ing the peak in the heat capacity as a function of temperature. Note that in both 

cases, we have a crossover between two regimes, rather than a thermodynamic 

phase transition. 

Despite the simplicity of our model, we have seen some interesting behaviour. 

This type of coarse-grained model, as well as being of intrinsic interest has been 

shown before to be useful in studying the bulk phase behaviour of membrane 

proteins. In our simulations we see structures in the solid phase similar to the 

structures typically observed in two-dimensional crystals of triangularly shaped 

proteins, and caused by the close packing of the molecules. 



CHAPTER 7 

Conclusions 

This thesis has reported on four separate computer simulation studies on two-

dimensional systems. 

The first system studied was a quasi-two-dimensional dipolar fluid, consisting of 

soft spheres with a central point magnetic dipole confined to a plane, but whose 

dipole moments were able to rotate in three dimensions. This system was studied 

using Molecular Dynamics simulations. The minimum potential for the dipole-

dipole interaction is when the dipoles are aligned in a 'nose-to-tail' fashion. At 

low density and temperature, this leads to the particles forming into chains and 

rings. Power law scaling in the structure factor as q -* 0 provides a signature of 

the chaining. At a temperature of T* = 1, chaining occurs for dipole moments 

,f > 2. This is accompanied by a drastic decrease in the diffusion coefficient. The 

presence of chaining was found to have a profound effect on dynamics. Auto-

correlation functions of various quantities were measured. In the chained regime 

these reveal processes over two different timescales: the fast oscillatory motions 

of individual particles within chains and the slow motion of the chains them-

selves. 
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We also investigated using Langevin Dynamics simulations the aggregation pro-

cess in the dipolar fluid from an initially 'random' configuration. An energy 

criterion was used to identify particles belonging to the same aggregate. The 

clusters were then classified into chains, rings or defect clusters. At low den-

sity, the number of clusters with increasing numbers of particles successively 

rise to a maximum and then decline again. This suggests a scenario in which 

monomers quickly form into dimers, then trimers and larger chains are built up 

from smaller ones. Rings mostly form by the joining together of the two ends of 

the same chains. At the highest density; there is a large transient concentration 

of defects which eventually declines. At intermediate times, there is a network 

of interconnected chains which eventually disentangles by processes such as the 

exchange of segments between chains. 

Spin dynamics simulations were carried out for classical Heisenberg spins on 

a kagome lattice coupled antiferromagnetically. In order to produce a canoni-

cal distribution, initial configurations for the dynamics are fed in from a Monte 

Carlo simulation. Canonical ensemble averages can then be obtained by aver-

aging over the different trajectories generated. We investigate the effect of bond 

dilution on the dynamics. The kagome lattice is highly frustrated, being com-

posed of triangular plaquettes which place competing constraints on the spins. 

Our main conclusion is that the dynamics consists of local excitations of small 

groups of spins rather than involving the whole system. The initial decay of the 

single spin correlation function is independent of bond fraction, indicating local 

excitations. The correlation time can be obtained from the integral of the single 

spin correlation function. This is seen to rise as T' as T -f 0, consistent with the 

expected dynamical critical exponents for a critical point at T = 0. We observe 

one peak in the dynamic structure factor for the fully bonded lattice. As bond 

dilution is increased, further peaks appear. The relief of frustration as bonds are 
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broken will allow some spins to align fully antiparallel and undergo excitations 

characteristic of an unfrustrated magnet. 

The phase behaviour of a system of trimeric molecules has been explored using 

Monte Carlo simulations. The model consists of three hard disks fused together 

in a triangular arrangement, one of which has an attractive square well interac-

tion with the corresponding disk on other trimers. This could provide a very 

crude model for a protein consisting of three 'domains', one of which might be 

hydrophilic. Four main regions of the phase diagram were identified. At high 

temperature and low density there is the 'Fluid I' region. The system behaves 

as an 'ordinary' fluid. As the temperature lowered, there is a crossover to 'Fluid 

II'. Here the trimers self-assemble into aggregates containing usually 3-6 trimers. 

There was no evidence of a vapour-liquid transition. In the solid phase at high 

density the trimers pack such that the individual disks are close packed in a tri-

angular arrangement. In the high temperature 'Solid I' phase, the trimers are 

oriented at random. The structure in the low temperature 'Solid II' phase de-

pends on the packing of the trimers. There are different packings of the trimers 

which are consistent with the triangular close packing of the individual disks. 

With the 'AA' packing, neighbouring trimers are oriented so as to create a re-

peating motif of four interacting hydrophilic disks, minimising the energy. With 

'AB', it is possible to form a motif of six disks, which has lower energy. The 

'AB' structure is mechanically stable over the 'AA' structure, and we suspect it 

is also thermodynamically more stable, although free energy calculations would 

be required to confirm this. 

We finish by giving some suggestions of how the work reported in this thesis 

could be extended. In the case of the dipolar fluid dynamics, more work is re-

quired on the collective dynamics. As was mentioned in Section 3.6, measuring 

functions such as (M(q, t) . M(q, 0)), where M(q, t) is a Fourier component of 
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the bulk magnetisation, it may be possible to identify excitations analogous to the 

spin waves in solid magnetic materials. It would also be interesting to extend the 

work on both the dynamics and the kinetics of aggregation in the dipolar fluid 

to the three dimensional case. In three dimensions it becomes essential to use 

Ewald sim-is to deal with the long range nature of the potential. 

In the work on the trimer system, it would be desirable to determine conclu-

sively which of the possible solid state structures is the thermodynamically stable 

one. This could be achieved by calculating the free energy via the Frenkel-Ladd 

method [110]. We could also try to determine the phase diagram more accurately. 

It might also be interesting to explore the phase behaviour of slightly different 

models, for example one in which two disks in each trimer have an attractive 

square well interaction. 

Finally, in the case of the spin dynamics on the kagome lattice, the Hamiltonian 

could be extended to study the effect of perturbations such as interlayer cou-

pling, next nearest neighbour interactions, Dzyaloshinsky-Moriya interactions, 

spin anisotropies etc. As was discussed in Chapter 1, a subtle balance between 

these kind of perturbations may be responsible for some of the puzzling proper-

ties of the real experimental systems we are trying to model. 



APPENDIX A 

Papers published 

P. D. Duncan and P. J. Camp, "Structure and dynamics in a monolayer of 

dipolar spheres", J. Chem. Phys. 121, 11322 (2004) 

P. J. Camp and P. D. Duncan, "Two-dimensional structure in a generic model 

of triangular proteins and protein trimers", Phys. Rev. E 73, 046111 (2006) 

P. D. Duncan and P. J. Camp, "Aggregation kinetics and the nature of phase 

separation in two-dimensional dipolar fluids", Phys. Rev. Lett. 97, 107202 

(2006) 

These are bound at the end of the thesis. 
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The structure and dynamics in a monolayer of dipolar soft spheres have been investigated using 
molecular dynamics simulations. This is a basic model of colloidal ferrofluid monolayers, and other 
magnetic liquids in planar geometries, which can exhibit self-assembled chainlike aggregates due to 
strong dipole-dipole interactions. The effects of such chaining on the structure, single-particle 
translational and rotational motions, and the collective rotational motions are examined. The 
signatures of aggregation in the various structural and dynamical functions considered in this study 
could prove useful in experimental investigations of strongly dipolar materials. © 2004 American 
Institute of Physics. [DOl: 10.1063/1.1812744] 

I. INTRODUCTION 

The structure and phase behavior of strongly interacting 
dipolar fluids continues to attract attention from workers 
in various disciplines.' The most familiar examples of dipo-
lar fluids are colloidal ferrofluids, consisting of roughly 
spherical ferromagnetic particles with diameters in the range 
10 nm–i am dispersed in a simple solvent. The particles are 
usually coated with a thin layer of nonmagnetic inert mate-
rial which prevents irreversible aggregation. The net interac-
tions between the particles are mainly dipolar in nature, with 
the coatings providing only relatively weak short-range dis-
persion interactions. 

These materials are of significant technological utility, 
because the rheological properties can be "switched" with 
applied magnetic fields. From a fundamental point of view, 
however, such materials are of interest because of the struc-
tural and dynamical complexity at the "molecular" level. 
One of the most striking structural characteristics of colloidal 
ferrofluids (even in the absence of applied magnetic fields) is 
the self-assembly of particles to form chains, arising from the 
"nose-to-tail" configuration favored by the dipolar forces. 
The earliest experimental evidence of clustering in colloidal 
ferrofluids was obtained from thin films using electron mi-
croscopy almost 40 years ago. 2  The experimental study of 
colloidal ferrofluids has recently been rejuvenated through 
the use of improved synthetic methods and high-resolution 
transmission electron microscopy. 3-5  The structural similari-
ties between colloidal ferrofluids and a diverse range of ma-
terials, such as living polymers, micelles and microemul-
sions, and biological actin gels, 6  have recently stimulated 
significant new theories of defect formation and phase 
behavior. 7,8 

The nature of clustering in strongly dipolar bulk fluids 
has been studied at great length, both theoretically 9-13  and by 
computer simulation; 14-16  for a comprehensive review, see 
Ref. 1. In these studies, the dipolar particles are modeled as 
either hard or soft spheres carrying a central point dipole. 
The pair potential is given by 

')Electronic mail: philip.camp@ed.ac.uk  

/L1/L2 	3( 1 .r)(i2 .r) 
u(r)usr(r)+ r

3  - 	r5 	
' 	 (1) 

where usr(r) is a short-range isotropic repulsive potential, 
and the remaining terms represent the dipole-dipole interac-
tion in which p.i  is the dipole on particle i, r is the interpar-
ticle separation vector, and r = I r. 

One observation which will be relevant to the present 
work is that the static structure factor S(q) of strongly dipo-
lar three-dimensional fluids exhibits a characteristic 1/q 
power-law scaling at low wave vectors. 16  This scaling arises 
from the presence of chainlike clusters with persistence 
lengths of the order of 10 sphere diameters. In principle, 
S(q) is accessible to scattering experiments, and hence the 
11q scaling provides one experimental fingerprint of chain 
formation. With regard to the phase behavior of bulk dipolar 
fluids, we note in passing that the existence of a bulk fluid-
fluid phase separation driven entirely by dipolar interactions 
is still an open question. 7,17,18 

Calculations on two-dimensional dipolar systems are 
more directly relevant to common experimental situations 
than are those on bulk systems, because the structural char -
acterization of highly aggregated ferrofluids in experiments 
is largely carried out on thin films or on monolayers. 35  
Monolayers of dipolar particles under more complex 
conditions—such as in static 19  or alternating applied 
fields20 ' 21—look set to provide new avenues for research. 
The current technological interest in thin-film devices and 
functional materials supplies an additional motivation. 

Recently, Weis and co-workers have used computer 
simulations and theory to survey and examine a large variety 
of structures formed by two-dimensional monolayers of 
strongly interacting dipolar spheres. 22-26  In Ref. 22 the di-
pole orientations are confined to a two-dimensional plane, 
whereas in Refs. 23-26 the dipoles are free to rotate in three 
dimensions. Not surprisingly, chain formation occurs in these 
quasi-two-dimensional systems, although it seems to persist 
over a higher concentration range than in three dimensions. 
This can be rationalized on the basis of an increased entropic 
penalty associated with clustering in higher dimensions. A 
diverse range of structures arises from the way in which the 
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chains "fold-up;" for instance, at high densities where the 
spheres are -  almost close-packed,--vortical-orientational order 
appears. The characterization of chainlike clusters at low 
densities has been achieved by adapting equilibrium theories 
developed for bulk dipolar fluids. "25  In none of the studies 
cited above has there been any evidence of a fluid-fluid 
phase separation. 

The discussion so far has been focused on the micro-
structural and thermodynamic properties of strongly dipolar 
fluids. Although the bulk hydrodynamic properties of mag-
netic fluids are well known, 27  the microscopic dynamics of 
strongly interacting dipolar particles appears to represent a 
rich area for further study. Wen et al. have carried out an 
interesting study of the aggregation kinetics of quasi-two-
dimensional dipolar fluids 28  by conducting experiments with 
nickel-plated glass beads, and carrying out molecular dy-
namics (MD) computer simulations. They showed that the 
formation of chainlike clusters consisted of rapid association 
of small numbers of particles to form short chains, followed 
by the slow aggregation of these chains to form larger 
chains, and rings. This suggests that there will likely be at 
least two characteristic time scales present in the equilibrium 
dynamics, one representative of single-particle motion, and 
the other due to the collective motions of particles within a 
chain. This scenario has been demonstrated in MD and 
Brownian dynamics simulations of highly aggregated three-
dimensional dipolar soft spheres. 29 The dielectric (or mag-
netic susceptibility) spectrum was seen to exhibit a high-
frequency feature arising from the oscillations of single-
dipole orientations within the chains, and a low-frequency 
feature arising from the relaxation of large aggregates. 

In this work we examine the structure and dynamics of a 
model quasi-two-dimensional dipolar fluid using MD simu-
lations. We consider a fluid comprising N dipolar soft 
spheres with mass m and moment of inertia 1, confined to a 
two-dimensional square plane of area A = L X L. The inter-
particle potential is given by Eq. (1) with the short-range part 
given by 

/ o-\ 12  
usr(r)4e( 	, 	 (2) 

where e is an energy parameter and o-  is the sphere "diam- 
eter." It is emphasized that the dipoles are three-dimensional, 
and that they interact via the appropriate three-dimensional 
potential in Eq. (1). We employ reduced units for various 
molecular, thermodynamic, and dynamical quantities, de- 
fined as follows: density p *=Nu2IA; temperature T* 

= kBT/ e, where kB is Boltzmann's constant; dipole moment 
moment of inertia 1* =I/MO-2 ; and time t'1' 

= tJ c/ma2 . 

We confirm that at high dipole moments, the low-q be-
havior of S(q) conforms to the same scaling law observed in 
three-dimensional dipolar fluids. 16  We investigate the trans-
lational and orientational dynamics of the two-dimensional 
system, paying particular attention to the characteristic prop-
erties of various time-correlation functions and their associ-
ated spectra. It is hoped that this work will provide useful 
experimental "fingerprints" for strong association in dipolar 
fluids. 

This paper is organized as follows: In Sec. II we sum-
marize the simulation methods used in this work. In Sec. 
ifi A we study the structure of the dipolar fluid, as repre-
sented by S(q) and the corresponding radial distribution 
function g(r). In Sec. TUB, we present results for the single-
particle diffusion coefficient and the velocity autocorrelation 
function, and assess the impact of chaining on these quanti-
ties. The single-particle rotational motion is studied in Sec. 
III C using the single-dipole autocorrelation function, and the 
single-particle angular velocity autocorrelation function. 
Collective rotational motions as evidenced by the bulk polar-
ization autocorrelation functions are considered briefly in 
Sec. hID. Section IV concludes the paper. 

MOLECULAR DYNAMICS COMPUTER 
SIMULATIONS 

In all cases MD simulations were performed in the 
N- V-E ensemble after equilibration in the N- V- T ensemble 
at a temperature T* = 1.0 (achieved by translational and an-
gular velocity scaling). We have used systems of N=961 
particles with m = 1 and 1* = 0.1 throughout. The dipole ori-
entations were represented using quaternions, and the dipolar 
interactions were handled using a spherical cutoff at L12; the 
potential was truncated smoothly between 0.9 X L/2 and L12 
using the switching function due to Andrea et al.  30 We justify 
our choice of a truncated potential (as opposed to calculating 
full Ewald sums) by reference to a recent study in which a 
cut-off r>So was found to be sufficient to saturate the 
three-dimensional dipole-dipole interactions in two-
dimensional arrays of particles. 3 ' For the system size simu-
lated in this work, the cutoff is rLI2"2l.92o, the lower 
limit corresponding to the highest density (p* = 0.5) consid-
ered. The equations of motion were integrated using a 
velocity-Verlet algorithm for the translational motion, and a 
leapfrog algorithm for the rotational motion. 32  Simulations 
consisted of O( 10) time steps after equilibration, one time 
step being St* = 0.0025. Periodic boundary conditions were 
applied. Typical simulation timings on a 1.3 GHz processor 
were 0.2 s per MD step. We have performed a series of 
N- V-E-MD simulations corresponding to a temperature T* 

= 1.0, and with various dipole moments (g * =0, 0.5, 1, 1.5, 
2, 2.5, and 2.75) and densities (p 0.05, 0.1, 0.2, 0.3, and 
0.5). 

RESULTS 

A. Structure 

Figure 1 shows some snapshots from simulations at the 
state points (A * =O.S,p" = 0.05), (,L* = O.S,p'' = 0.5), (.t* 
=2.75,p*0.05), and (*2.75,p*0.5). With the low-
est dipole moment (* = 0.5) there is very little positional or 
orientational order apparent in the snapshots, whereas with 
the high dipole moment ( tt *2.75) the system is almost 
completely aggregated over the entire density range consid-
ered in this study (0.05p*0.5). In the aggregated re-
gime, the particles are very strongly aligned in linear chains 
and rings, with the dipolar orientations adopting the nose-to-
tail conformation. At all densities simulated in this work, the 
onset of aggregation occurs at *>2.  This is illustrated in 
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p*0,05 

p*=O1 

p*=0.3 

p*al15 

(c) 	 (d) 

FIG. I. Snapshots showing the positional and orientational ordering of the 
particles in systems with dipole moment if" and density p*:  (a)  a*0.5, 

p*0.05; (b) /L''=0.5, p*=0.5;  (c) u*=2.75, p*=0.05; (d) *2.75, 
p* = 0.5. The particles are represented by gray spheres with diameter a, and 
the dipole orientations are shown as black lines of length 0.5a emanating 
from the centers of the spheres. 

Fig. 2 which shows snapshots from simulations at a fixed 
density ofp*=O.2. For dipole moments t.c*s2  the structure 
is quite uniform, although with 1u" =2 there are a few rela-
tively small and loosely clustered chainlike aggregates. Mov-
ing to higher dipole moments, however, results in a dramatic 
increase in the degree and extent of particle clustering. 

In order to characterize the in-plane ordering of the par -
ticle centers of mass, the radial distribution function g(r) 
was calculated in the usual way. 32  Some representative re-
sults are shown in Fig. 3 for weakly dipolar (/.z * = 0.5) and 
strongly dipolar (1u*=2.75)  systems. At a*=0.5  the struc-
ture is absolutely typical of a simple liquid, with peaks 

(tO  

21 	.• 	.1 	.I.•.•. 	I. 	I 	 • 	.1 	 .1.1 

-.0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 
log(r/a) 

FIG. 3. Logarithms of the radial distribution functions log 10[g(r)] as func-
tions of 1og 10(r/cr) from simulations with c *=0.5 (dashed lines) and 
=2.75 (solid lines), and at various densities in the range 0.05p*0.5. 
The curves are displaced by one unit along the ordinate for clarity. 

emerging at r= 1.2cr and r=2.6o-  with increasing density. In 
stark contrast, with the highest dipole moment ( a*2.75) 
and at all densities, g(r) shows pronounced peaks close to 
integer values of a-. This structure corresponds to chaining of 
the dipolar particles with the dipoles aligned "nose to tail;" 
the peaks shift to lower distances as the dipole moment is 
increased because of the strongly attractive interaction for 
dipoles in this orientation. To understand the position of the 
first peak in g (r), we consider the minimum-energy configu-
ration for pairs of dipoles interacting via the potential given 
by Eqs. (1) and (2). This configuration corresponds to the 
particles with dipoles parallel and colinear with the interpar- 
ticle separation vector, i.e., 1.c2=j.c 2 , t 1 •r=•r=ar. 
The position and depth of the potential minimum are given 
by 

r0=21 /3(*) o 	 (3) 

and 

- 

v......... 	ç 

. . 

I S 

u(r0)=- (,.t * ) 8/3 €, 	 (4) 

respectively. At il' = 0.5, the potential minimum occurs at 
r0 = 1.47cr, whereas at j.c*=2.75,  r0 = 1.01o, ; these rough 
estimates are in accord with the positions of the first peak in 
g(r) shown in Fig. 3. 

To examine the fluid structure further, we computed the 
static structure factor S(q) from the Fourier transform of 
h(r)g(r)- 1,33  

S(q) = 1 + J h(r)exp(-iq.r)dr, 

= 1 +2p IrJ0(qr)h(r)dr, 	 (5) 
Jo  

(c) 	 (d) 

FIG. 2. Snapshots showing the positional and orientational ordering of the 
particles in systems with density p=0.2 and dipole moment i*:  (a) 

1.5; (b) *=2;  (c) *=2.5 ;  (d) /L *=2.75. The particles are represented 
by gray spheres with diameter a, and the dipole orientations are shown as 
black lines of length 0.5cr emanating from the centers of the spheres.  

where J0(z) is a Bessel function of the first kind. In Fig. 4 
we present S(q) for systems with AL *=Ø5 and .c*=2.75  at 
densities in the range 0.05p*0.5.  In the weakly dipolar 
case, S(q) looks absolutely typical for a simple fluid, 
whereas with 4u" = 2.75 it shows significant complexity. As 
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FIG. 4. Logarithms of the static structure factors 1og 10[S(q)] as functions of 
log10(qa) from simulations with *=0.5  (dashed lines) and *=2.75 

(solid lines), and at various densities in the range O.OS'pO.S.  The 
curves are displaced by one unit along the ordinate for clarity. 

FIG. 5. Normalized velocity autocorrelation functions C(1)/C(0)  for sys-

tems with *=0.5  (dashed lines) and *=2.75 (solid lines), and at various 
densities in the range 0.05p0.5. The curves for each density are dis-
placed by one unit along the ordinate for clarity. 

the dipole moment is increased, the peaks at qo->2.5 
= 10040  shift to higher wave vectors, reflecting the decreased 
separation between near neighbors in the chains. At 1a't' 
= 2.75 and p" = 0.05, S(q) exhibits a power-law dependence 
on q in the range qo-<4.0= 10060;  a fit to these results in the 
range qu<4.0 shows that S(q)-q with a= 1.02±0.01. 
This is in good agreement with the observed scaling of S(q) 
for chainlike aggregates in three dimensions (a= 1),16  con-
firming that this is a reliable signal for aggregation in dipolar 
fluids in both two and three dimensions. In general, this kind 
of scaling is only apparent with dipole moments z*>2,  sug-
gesting that this inequality delineates a boundary between 
"dissociated" and "associated" regimes. This is in accor-
dance with Fig. 2 and the dynamical evidence presented be-
low. S(q) for the most strongly dipolar and dense system 
(*2.75,p*0.5) exhibits an interesting "prepeak" at 
qa3.4= 100 , corresponding to a real-space distance of 
about 27r/q- 1.8o; this feature is due to the local parallel 
ordering of chain segments, as is shown in Fig. 1(d). To 
summarize, at the highest dipole moments the molecular-
scale structure-as characterized by g (r) and S( q ) -is remi-
niscent of that observed in three-dimensional dipolar fluids. 16 

In both two and three dimensions, the fluid at low densities 
and temperatures consists of ringlike and chainlike clusters 
formed from particles in the nose-to-tail configuration, lead-
ing to an apparent 1/q scaling in the structure factor. 

B. Single-particle translational motion 

We now turn to the single-particle translational motions 
in the dipolar fluid. We have calculated the velocity autocor -
relation function C 5 (t) defined by 

cu (t)=( 	vi(t).v i(0)) 	 (6) 

where vi (t) is velocity of particle i at time t and the angled 
brackets denote an average over time origins. Some repre- 
sentative results are shown in Fig. 5 for systems with dipole 

moments i*=O.S  and ju *=2.75.  With alow dipole moment 
(*=0.5) C0 (t) exhibits a decay typical of simple dilute 
fluids. At higher dipole moments, however, there is a signifi-
cant modulation of the curves, and only very small negative 
portions at the highest densities. We interpret this as being 
another significant indication of particle chaining. Over short 
periods of time a tagged particle within a chain can oscillate 
about its "equilibrium" position between its two nearest 
neighbors, which might be expected to give rise to oscilla-
tory behavior in C(t).  The chain as whole is also moving, 
however, and so any given tagged particle will also have a 
"drift" velocity which is then modulated by its local motions 
within the chain. This scenario seems consistent with the 
results for *=2.75  presented in Fig. 5. 

It is well known that in simple two-dimensional fluids, 
hydrodynamic modes can give rise to a t "long-time tail" 
in C 5 (t). 33 '34  From the Green-Kubo relation 

1 '- 
I C 5 (t)dt, 	 . 	(7) 

2 Jo 

this long-time tail should lead to a divergent diffusion con-
stant D. Simulation studies of soft-sphere fluids 35  have 
shown that at high densities (p' >0.9) such hydrodynamic 
effects are absent. In the present case, the highly clustered 
structures of fluids with high dipole moments might mitigate 
against the hydrodynamic backflow that gives rise to the 
long-time tail in C0 (t). Although we cannot categorically 
rule out the presence of long-time tails, in practice no such 
features were apparent in C(t) within the statistical noise. 
With this in mind, we have calculated estimates of D using 
Eq. (7), and by computing the mean squared displacement, 

N 

R 2 (t)= 
(N i = l 

Iri ( t)_r i ( 0)1 2 ), 	 (8) 

where the angled brackets denote an average over time ori-
gins. In calculating AR 2 (t) we allow the particles to diffuse 
out of the central simulation cell. As far as we could tell from 
finite-length simulations, for all of the systems considered in 
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FIG. 6. Reduced diffusion coefficient (see text) as a function of density p 
at various dipole moments: 	(circles); 	=0.5 (squares); 	I 
(diamonds); =15 (up triangles); *=2  (left triangles); =25 (down 
triangles); p. = 2.75 (right triangles). The solid lines are cubic spline fits to 
guide the eye. Note that the curves for 0 2 are almost coincident. 

this work iR 2 (t) exhibited an approximately linear 
asymptotic dependence on time. If AR  exhibits a linear de-
pendence on time at long times, then the diffusion constant 
D can be defined in two dimensions by the Einstein relation 

LR 2 (t)=4Dt. 	 (9) 

We found that the values for D obtained from Eqs. (7) and 
(9) agreed with one another to within 1%. Although it is 
likely that hydrodynamic effects operate in some of the sys-
tems considered in this work, their impact on the measured 
values of D appears to be small. Nonetheless, the values of 
D obtained here provide some sort of measure of the single-
particle diffusion. In Fig. 6 we plot the reduced diffusion 
coefficient, D * = D 11M_ / eo-2 , as a function of density for sys-
tems with dipole moments in the range 0.5*2.75.  The 
first thing to note is that the diffusion coefficient decreases 
with increasing density, as expected. The variation with di-
pole moment at fixed density is more illuminating. For di-
pole moments p" 2, the curves are almost coincident sug-
gesting that the dipolar interactions in this regime have very 
little effect on the single-particle motion. For dipole mo-
ments /L*  2.5, however, the curves are displaced down-
wards. Essentially the particles become trapped in clusters 
for long times with the effect of increasing the time scales 
for single-particle diffusion. The onset of strong association 
for *>2  evidenced by these dynamical results is consistent 
with that observed in simulation snapshots and the structural 
quantities described in Sec. III A. For reference, the values of 
the diffusion constant are listed in Table I. 

C. Single-particle rotational motion 

To investigate the impact of chaining upon single-
particle rotational motion, we have calculated single-dipole 
orientation autocorrelation functions defined by 

N 

C(t)=(_ 	fL(04(0)) 	 (10)  

where a=x, y, z, and j is the component of the dipole 
vector on particle i along the a axis of the laboratory frame. 
The function C(t) = [C(t) + C(t)] will therefore charac-
terize the rotational motions of dipoles within the plane of 
the monolayer, whereas C(t) will reflect out-of-plane mo-
tions. In Fig. 7 we compare results for two systems at a 
density p" = 0.5 and with dipole moments 'u" = 0.5 and gil" 
= 2.75. With the lower dipole moment (/L* = 0.5) both in-
plane and out-of-plane functions show damped oscillatory 
behavior due to weakly hindered rotations of the dipoles. The 
quantities C(0)= 0.67 and C(0)=0.33 show that there is 
no preferred direction of alignment (either in plane or out of 
plane) for the dipoles at this state point. The weak dipolar 
forces are therefore insignificant, and so it is anticipated that 
the reorientational angular frequency in this system will be 
close to the free-rotor limit, w' = *11* = sfTh; this is con-
firmed below. With the higher dipole moment (u* = 2.75) 
the in-plane and out-of-plane functions are very different. 
First, the quantities C(0)=0.966 and C(0)=0.034 con-
firm that the dipoles are strongly constrained to lie within the 
plane. Second, at this admittedly quite extreme dipole mo-
ment, C(t) is seen to decay only very slowly but with a 
small oscillatory modulation. This is clearly a consequence 
of rapid single-dipole oscillations about the equilibrium 
nose-to-tail orientations within the chain, while the chain as 
a whole is rotating only very slowly. The separation between 
time scales for single-particle and chain rotational motions is 
analogous to that observed for single-particle and chain 
translations apparent in the velocity autocorrelation functions 
discussed in Sec. III B. The out-of-plane function C' (t) 
shows a clear damped oscillation about zero. In Table I we 
present the values of C(0) for all of the systems considered 
in this work. C(0) reflects a sharp change in orientational 
structure that occurs between fL * =2 and = 2.5. With 

2 the values of C(0) are only weakly dependent on 
density, and for the most part are in close agreement with the 
value for random dipolar orientations [C(0)= 1/3]. With 

*2.5 and  *=2.75  the values of C(0) are very much 
smaller, reflecting the preferential alignment of dipoles 
within the plane. 

In principle, the time scales for oscillatory orientational 
motions within the plane and perpendicular to the plane may 
differ as a result of interchain forces. However, even at the 
highest density (p* = 0.5) the mean separation between the 
chains is significant [see Fig. 1(d)] which suggests that 
C'(t) and C(t) will exhibit similar periods of oscillation. 
To this end, we have examined the Fourier transforms of 
C(t) and C(t). Clearly the decay time of C(t) for the 
system with 4u" = 2.75 and p'' = 0.5-as shown in Fig. 7-is 
very much longer than the duration of the simulation, pre-
cluding an accurate calculation of its Fourier transform. 
Nonetheless, if we use a windowing function, the high-
frequency oscillation should still give rise to some sort of 
peak in the Fourier transform. This extreme truncation will 
give rise to pathological low-frequency features in the spec-
trum, but the high-frequency region-where we expect the 
single-dipole oscillations to manifest themselves-should 
emerge relatively unscathed. Obviously, calculation of the 
the Fourier transform of C(t) presents no such problems, 
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TABLE I. Dynamical properties of the quasi-two-dimensional dipolar fluid: reduced translational diffusion 

- 	- - 
 

constant D*=D17; reduced rotational diffusion constant DZ=DRsJT?Th; single-dipole orientation 

autocorrelation function at t0, C'(0); autocorrelation functions at i0 for the in.laiOôláiiiàiidn, C,'(0j,---------

and the out-of-plane polarization, Ci,(0);  reduced characteristic angular frequencies o for single-particle 

rotational motion estimated from the Fourier transforms of C(t) and C0(i), and from the approximate 

theoretical expression in Eq. (15). 

U); 

* 	p* D D C(0) C (0) C,(0) From C '  (t) From C0(t) 	Eq. (15) 

0.5 	0.05 5.1 0.33 0.67 0.32 3.6 1.9 

0.1 2.3 0.34 0.67 0.33 3.5 1.9 

0.2 1.1 0.33 0.71 0.30 3.6 1.9 

0.3 0.69 0.34 0.72 0.30 3.5 1.9 

0.5 0.29 0.33 0.74 0.26 3.5 1.9 

0.05 4.8 0.33 0.68 0.30 3.6 4.9 

0.1 2.4 0.33 0.71 0.27 3.6 4.9 

0.2 1.1 0.33 0.83 0.21 3.7 4.9 

0.3 0.66 0.32 0.97 0.21 3.8 4.9 

0.5 0.34 0.31 1.3 0.17 4.2 4.9 

1.5 	0.05 4.9 133 0.33 0.71 0.26 3.7 8.4 

0.1 2.3 56 0.32 0.85 0.22 3.9 8.4 

0.2 1.1 27 0.30 1.1 0.16 4.2 8.4 

0.3 0.71 13 0.28 1.4 0.14 4.5 8.4 

0.5 0.31 5.2 0.23 2.1 0.082 5.2 8.4 

2 	0.05 4.9 58 0.29 0.95 0.20 4.0 12.4 

0.1 2.2 21 0.25 1.4 0.17 4.7 12.4 

0.2 1.0 6.9 0.20 2.2 0.10 5.5 6.4 	12.4 

0.3 0.63 3.4 0.17 2.3 0.067 6.4 7.7 	12.4 

0.5 0.30 1.4 0.13 2.8 0.049 7.6 8.3 	12.4 

2.5 	0.05 2.3 18 0.082 6.7 0.055 10.3 12.2 16.6 

0.1 0.93 4.8 0.068 11 0.043 12.4 12.2 16.6 

0.2 0.47 1.3 0.057 8.5 0.034 12.7 12.3 16.6 

0.3 0.31 0.74 0.057 2.2 0.028 12.5 12.4 16.6 

0.5 0.13 0.34 0.052 3.3 0.022 12.7 12.4 16.6 

2.75 	0.05 0.78 1.9 0.035 11 0.023 14.0 14.2 18.9 

0.1 0.48 0.83 0.036 15 0.021 14.3 14.3 18.9 

0.2 0.33 0.34 0.035 111 0.023 14.6 14.3 18.9 

0.3 0.21 0.22 0.035 250 0.019 14.6 14.3 18.9 

0.5 0.079 0.19 0.034 280 0.016 14.3 14.5 18.9 

1.1 

1.0 	75: C(t) 

0.9 

0.8 

0.7 	 --------- 
0.6 

0.5 

0.4 

0.3 lL°=O.3: C(t) 	--- 	---- 

0.2 

0.1 

0.0 
	2.75: c'( 

-0.l 

-0.2 	
l0 	10° 	10 

r. 
FIG. 7. Single-dipole autocorrelation functions C(t)=[C(:)+C(t)] 

and C(t) for systems at a density of p'O.S, and with dipole moments 

ji=0.5 (dashed lines) and j=  2.7S (solid lines). 

but nonetheless we have applied a Blackman windowing 
function throughout. 32 For the system with il' = 2.75 and 
p* = 0.5 we find peaks in the Fourier transforms of both 
Cf(t) and C(t) at a characteristic reduced angular fre-
quency of o' = 14.3. The conclusion is that even at this high 
density and dipole moment-at which interchain interactions 
might be significant-the estimates of reorientational time 
scales extracted from C(t) and C' (t) are essentially the 
same. In the following we therefore concentrate on C' (t) 
since it is easier to calculate Fourier transforms reliably. 59  To 
assist in comparisons, we present the function 

1 
x 	) 2rC(0) 

f C (t)exp( -  iwt)dt, 	(11) 

which is simply the Fourier transform of C(t) normalized 
to unit area. Figure 8 shows x( w) for systems at a density 
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FIG. 8. Normalized Fourier transform of the z component of the single-
dipole autocorrelation function x(w) for systems at a density of p" 
=0.5, and with dipole moments in the range 0.5p'2.75. 

= 0.5 and dipole moments in the range 0.5' LL * 2.75. At 
the lowest dipole moment (*=Ø.5)  the peak in x(w) is 
centered at approximately &) 0* = 3.5, which is close to the 
free-rotor limit co' = JT*/!*= 3.16. The position of this pri-
mary peak in x( w) shifts to higher frequency with increas-
ing dipole moment, reflecting stronger interactions and the 
presence of chaining which contrive to align dipoles in a 
"head-to-tail" conformation with their nearest neighbors. It 
is also clear that with increasing dipole moment a pro-
nounced high-frequency shoulder develops. We speculate 
that this feature is due to coupling between single-dipole 
orientational motions and collective rotational motions. We 
return to this point briefly in Sec. III D, but first we report the 
positions of the primary peaks in 4(w). We have fitted 
single Lorentzian functions to the spectra in the vicinity of 
the peaks to extract estimates of the peak positions; the re-
sults are shown in Table I. We note that at the highest dipole 
moments (IL* = 2.5 and = 2.75) w 0  is almost independent 
of density, reflecting the fact that chains are present over the 
whole density range considered, and that interchain interac-
tions (which would be more significant at higher densities) 
are actually very weak. Given this observation, we provide 
simple theoretical estimates of the variation of w 0  with di-
pole moment in the high-dipole-moment regime. 

In the highly-chained regime it is reasonable to think of 
the rotational motion of a single dipole in a cluster as being 
quasiharmonic in that its orientation oscillates about its equi-
librium position within the chain. Consider a tagged dipolar 
sphere as part of a perfectly straight chain oriented along the 
laboratory x axis in which all of the dipole moments (except 
the tagged dipole moment) are constrained parallel with the x 
axis. The equilibrium nearest-neighbor separation is r0  [Eq. 
(3)], and for simplicity we consider the motion of the tagged 
dipole in the xy plane; as shown above, it does not matter in 
which plane we consider the motion because the effects of 
interchain interactions are weak. If the tagged dipole is given 
by /L(t) = [cos y(t),sin(t),0]—where y is the angle sub-
tended by the dipole moment and the x axis—then the result-
ing torque due to the rest of the dipoles is oriented along the 
z axis and has magnitude 

2 	
- 22 

nr0

sin 	- 4 4tL 2  

r

C(3) 

n=i [ 	()3 

	
sin y, 	(12) 

0  

where (3)= 1.202 is the Riemann function. For high di-
pole moments the deviation from perfect alignment will be 
small, and hence sin y= y. In this limit the equation of mo-
tion is y= —wy where w 0  is given by 

WO - 

 

f42(3) 
\f Ir 	

(13) 

The equation of motion yields an oscillatory solution y(t) 
= y(0)cos wt+((0)Iw0)sin wet. The orientation autocorre-
lation function in the absence of damping (friction) is there-
fore proportional to 

i(t).(0))cz1 —(y2)+(y2) COS  wot 	 (14) 

and even with damping through rotational friction a peak 
should be apparent in the Fourier transform at an angular 
frequency given by Eq. (13). In Table I, a comparison is 
made between the peak positions obtained from simulations, 
and the result of combining Eqs. (3) and (13) which yields, 
in reduced units, 

J2(i*)8(3) (15) 
1* 

By construction Eq. (15) is consistent with the observation 
that w' is roughly independent of density at the highest di- 0 
pole moments, but it overestimates the simulation results for 
systems with the highest dipole moments_*=2.5  and 

*2.75_by  about 30%. It is easy to understand why Eq. 
(15) yields an overestimate: this approximation is based on a 
perfectly linear rigid chain, with no account taken of thermal 
fluctuations in the shape and extent of the chain. These ef-
fects will reduce in magnitude the average field experienced 
by—and hence the "vibrational" frequency of—any given 
dipole within the chain. 

We have measured the single-particle autocorrelation 
function of the angular velocity 11 given by 

C0(t) =
( 

i I 11 1 (t) .11(0) 
)_1 
	 (16) 

and performed a similar analysis to that carried out on C(t) 
above. As defined, CG(0)=2kB T/I. Unsurprisingly we find 
the same general behavior as with C(t), including the 
shapes and positions of the peaks in the Fourier transforms; 
for completeness, in Table I we have included estimates of 
w obtained from these peak positions. The estimates of w 
obtained from C0 (t) and C(t) are consistent, as expected. 
In Fig. 9 we show some examples of C(t) from simulations 
at a density of p" =0.5 and dipole moments in the range 
0.5*2.75. With low dipole moments (It*-- I) the re-
laxation of this function occurs very slowly, and at long 
times monotonically, reflecting the lack of strong interpar-
ticle interactions. With increasing dipole moment C0(t) de-
velops oscillations which can be identified with the quasihar-
monic motion described above. 

From C0(t) we have calculated the rotational diffusion 
constant DR given by 33 
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FIG. 9. Normalized angular velocity autocorrelation functions 

C0(t)1C0(0) for systems at p"=O.S with various dipole moments in the 

range 0.5 * 2.75. The curves for each dipole moment are displaced by 

one unit along the ordinate for clarity. 

FIG. 10. Normalized autocorrelation function of the z component of the 

bulk polarization C,(t)/C,(0) for systems at a density p''=0.5 and dipole 

moments tL*=0.5  (top) and *2.75  (bottom). The curves are displaced 

by one unit along the ordinate for clarity. 

DR= T fo, 
Cn(t)dt. 	 (17) 

Some results are shown in Table I. The calculation of DR 
was not possible at low dipole moments and low densities 
due to the very long decay of C0 (t) (see Fig. 9). For a given 
dipole moment, DR decreases with increasing concentration; 
at high dipole moments this trend probably reflects an in-
creased restriction of chain motions, as well as the quasihar-
monic motions of single dipoles. For a given density DR 
decreases with increasing dipole moment obviously due to 
increased aggregation. 

D. Collective rotational motion 

The problems encountered above with performing the 
Fourier transforms of single-dipole orientation autocorrela-
tion functions are exacerbated when we turn to the analysis 
of the collective rotational motion. For exactly the same rea-
sons as noted in Sec. III C, we will concentrate primarily on 
the autocorrelation function of the z component of the bulk 
polarization, rather than the x and y components. The bulk 
polarization is given by 

N 

P(t)= 	(t). 	 (18) 

We define an autocorrelation function of its a component by 

(Pa(t)Pa(0)) 
C(t)= 	NA 	. 	 (19) 

The function characterizing the in-plane polarization is 
Ci(t)=[C(t)+C(t)]. At high dipole moments this func-
tion decays extremely slowly, with a decay time orders of 
magnitude larger than the length of our simulations; in some 
cases it hardly varies at all over simulation runs of O( 10) 
MD time steps. This situation appears analogous to the pre-
dicted increase of the Debye relaxation time in three-
dimensional dipolar fluids as the dipole moment is 
increased. 37  A full analysis of Cy(t) is impractical, although 

the values of these functions at t =0 provide some measure 
of the in-plane susceptibility, this being proportional to 
(P+ P). Values of C(0) are presented in Table I; these 
results show that the in-plane susceptibility increases mark-
edly with increasing dipole moment [note that the trivial fac-
tor of 2  in the susceptibility is canceled in Eq. (19)]. This is 
due to the presence of long, almost linear segments within 
the chains which would be easily polarized with the applica-
tion of an external field. 

The autocorrelation function of the z component of the 
bulk polarization yields more information. For the purposes 
of illustration, we show C(t)/C(0) in Fig. 10 for two 
systems at a density p'' = 0.5, and with dipole moments a'' 
=0.5 and *=2.75.  C,(t) exhibits damped oscillatory 
behavior in both cases, but clearly at high dipole moments 
the oscillation is of higher frequency and far less damped; 
crudely fitting a function of the form C' (t) 
xexp(-t/r)cos ot in the range 0t*  10 yields r=0.5 and 
w0 5 for *=0.5, and r3 and w 0 25 for *2.75. 
The value of C,(0) is proportional to the out-of-plane sus-
ceptibility and is shown in Table I. The results show that the 
out-of-plane susceptibility decreases with increasing dipole 
moment due to the preferred in-plane orientations of the di-
poles. 

We now turn to the Fourier transform of C,(t), which 
for the purposes of comparison is defined as a normalized 
quantity, i.e., 

1 

2rC,(0) 
J x(&)= 	C(t)exP(_iwt)dt. 	(20) 

Figure 11 shows x(w) for systems with density p =0.5 
and dipole moments in the range 1.5.L*2.75;  results for 
lower dipole moments are omitted for clarity as they consist 
of increasingly broad and noisy peaks. As in the case of 
single-particle rotational motion, the characteristic frequency 
increases with increasing dipole moment. For the systems 
with jtL *_25 and *=2.75,  the peaks in x(w) are very 
sharp and well defined. In both cases, the positions of these 
peaks coincide with the high-frequency edge of the shoulder 
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FIG. 11. Normalized Fourier transforms of the z component of the bulk 
polarization autocorrelation function X ' (w) for systems at a density of p 
= 0.5, and with dipole moments in the range 1.5/L*2.75.  From left to 
right: = 1.5 (short-dashed line); *=2  (long-dashed line); *=2.5 
(dot-dashed line); p'=2.75 (solid line). 

in the corresponding single-particle functions, xu). We 
suggest that this is a signal of some sort of coupling between 
single-particle and collective motions which give rise to the 
high-frequency shoulder in x(w). 

It is reasonable to suggest that long-range dipolar forces 
can lead to collective orientational motions within chains 
over considerable length scales. A full examination of these 
properties will require the calculation of space- and time-
dependent correlation functions, 37  like (P(q,t)-P(— q,0)), 
where P(q,t)=' 1 ji1(t)exp[—iq.r(t)] is a Fourier com-
ponent of the bulk polarization. In the case of strongly 
chained systems at high dipole moments, this could lead to 
the identification of excitations analogous to spin waves in 
solid magnetic materials. In Refs. 37 and 38 relationships are 
derived between the single-particle relaxation time, r 
= 112D R , associated with the decay of ((t)-e(0)), and 
the Debye relaxation time T0 associated with the decay of 
(P(t).P(0)). In Ref. 38, for instance, the results are based on 
a micro-macro theorem stating that if the single-dipole cor -
relation function can be expressed as a sum of decaying ex-
ponentials, then so can the bulk polarization correlation func-
tion. It is not clear whether such theories can be applied 
successfully to the very high dipple moment regime where 
the correlation functions are highly oscillatory; in the current 
work we have been concerned with oscillation frequencies in 
the correlation functions, not the decay times. To study the 
latter, accessing the relevant time scales will require much 
longer simulations than those conducted here, particularly 
for the in-plane motions. 

IV. CONCLUSIONS 

In this work, MD simulations have been used to study a 
simple model of fluid monolayers comprising spherical dipo-
lar particles. Experimental realizations of these systems in-
clude colloidal ferrofluids and other magnetic liquids. The 
emphasis of this study has been on the effects of strong di-
polar interactions on structure, and translational and orienta- 

tional dynamics; these interactions favor the formation of 
chainlike aggregates, which profoundly affect the observable 
properties of the bulk material. 

The signature of chaining on the structure factor has 
been examined, leading to the identification of power-law 
scaling at low wave vectors, analogous to that observed in 
simulations of three-dimensional dipolar fluids. This should 
provide a very clear fingerprint of chainlike aggregates 
which should be accessible in scattering experiments. 

Dramatic effects of aggregation on the diffusion constant 
and the velocity autocorrelation function have been demon-
strated. With weak dipolar interactions these quantities are 
absolutely typical for a simple two-dimensional "atomic" 
fluid. At high dipole moments, however, the chainlike aggre-
gates lead to a discrimination between local "intracluster" 
motions and motions of clusters as integral units. The effect 
of the coupling between single-particle and collective mo-
tions is clearly visible in the velocity autocorrelation func-
tion. Unsurprisingly, aggregation is accompanied by a sharp 
drop in the single-particle diffusion coefficient, reflecting the 
fact that individual particles are strongly constrained by their 
nearest neighbors within the chain. 

The orientational motion has been examined, and char-
acteristic frequencies have been identified with particular 
types of motions. The characteristic frequencies for single-
particle orientational motion have been determined from the 
Fourier transforms of the appropriate autocorrelation func-
tions. At low dipole moments, the characteristic rotational 
frequency is close to the free-rotor limit. At high dipole mo-
ments this frequency is dictated by quasiharmonic oscilla-
tions of single-dipole orientations about the equilibrium ori-
entations within chains, and hence the frequency increases 
with increasing dipole moment. In general, the characteristic 
frequencies are independent of density which implies that the 
interactions between neighboring chains are weak; moreover, 
we did not detect any distinction between the time scales for 
in-plane and out-of-plane rotational motions. A simple analy -
sis of the effective field experienced by a tagged dipolar 
particle yields estimates of the characteristic frequencies ac-
curate to within about 30% at high dipole moments. The 
Fourier transforms of the single-dipole orientation autocorre-
lation functions develop high-frequency shoulders with in-
creasing dipole moment, which we suggest are due to the 
coupling between single-particle and collective motions. We 
have made a brief investigation of the collective rotational 
motions, the results of which are consistent with this hypoth-
esis. 

Further work is required, particularly in calculating 
space- and time-dependent correlation functions, and in mak-
ing a detailed connection between single-particle and collec-
tive orientational motions. In addition, simulations of the ag-
gregation kinetics in strongly polar fluids could shed light on 
the different time scales observed in recent experiments. 28  
This might best be achieved through the application of com-
putational methods devised for the study of energy 
landscapes. 39  These will be the topics of future studies. 
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Two-dimensional structure in a generic model of triangular proteins and protein triiners 
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Motivated by the diversity and complexity of two-dimensional (2D) crystals formed by triangular proteins 
and protein trimers, we have investigated the structures and phase behavior of hard-disk trimers. In order to 
mimic specific binding interactions, each trimer possesses an "attractive" disk which can interact with similar 
disks on other trimers via an attractive square-well potential. At low density and low temperature, the fluid 
phase mainly consists of tetramers, pentamers, or hexamers. Hexamers provide the structural motif for a 
high-density, low-temperature periodic solid phase, but we also identify a metastable periodic structure based 
on a tetramer motif. At high density there is a transition between orientationally ordered and disordered solid 
phases. The connections between simulated structures and those of 2D protein crystals—as seen in electron 
microscopy—are briefly discussed. 
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I. INTRODUCTION 

Two-dimensional (213) materials present some fascinating 
challenges to condensed-matter theory, with even the most 
simple 2D systems harboring surprises. One of the most fa-
mous problems involves the precise description of melting in 
2D solids made up of hard, disklike particles with short-
range repulsive interactions [1-4]. Specifically, does the fluid 
undergo a weak first-order transition to the solid, or is there 
an intermediate hexatic phase linked by two continuous 
phase transitions? Related avenues of research concern the 
existence of exotic phases in systems made up of more com-
plex particles, such as (non)periodic solids of hard-disk 
dimers [5,6], pentamers and hexamers [7], tetratic phases of 
hard squares [8] and hard rectangles [9],  and orientationally 
ordered solids of hard pentagons and heptagons [10]. The 
effects of additional interactions on the phase behavior and 
dynamics of 2D systems are also of interest, as evidenced by 
recent studies on dipolar potentials in the context of mag-
netic colloids [11]. Such models provide an ideal testing 
ground for condensed-matter theories, and in some cases 
challenge our most fundamental understanding of the prop-
erties of matter. 

Despite their simplicity, 2D models can provide reliable 
descriptions of some real, and rather complex, experimental 
situations. For example, in a number of recent studies, 2D 
models have been employed to help interpret and-understand 
the clustering and crystallization of proteins at interfaces. 
The conformations and interactions of proteins are central to 
biological activity, and ideally one would like to investigate 
these properties in vivo. Unfortunately, structural information 
is most commonly obtained from x-ray diffraction studies on 
crystals. There is a class of proteins, however, that can be 
studied under conditions resembling those in vivo. Mem-
brane proteins constitute a large class of molecules found 
within the lipid bilayers that constitute cell walls. They fulfill 
a variety of roles, such as controlling the selective transport 
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of ions and molecules across cell membranes, or providing 
binding sites for other molecules onto the membrane. The 
structures of membrane proteins can be studied by deposition 
onto a surface, alongside lipids, to form either low surface 
coverage or 2D crystals; the hydrophobic lipids help to 
mimic the interior of the membrane. Electron microscopy or 
atomic-force microscopy can then be used to image directly 
the clustering and packing of proteins at the solid-air inter-
face [12]. In many cases, the ordering of proteins can be 
rationalized on the basis of their gross shapes (the way in 
which those shapes would "tile the plane") and the presence 
of specific binding interactions between domains on different 
molecules. For example, the surface structure of bacterior-
hodopsin (a transmembrane protein) is comprised of a close-
packed array of trimers, each made up of monomers that 
resemble 120° sectors of a circle. Monte Carlo (MC) simu-
lations of hard sectors—with an additional attractive square-
well potential to mimic specific binding interactions—yield 
insight on the self-assembly and subsequent crystallization 
processes [13]. In another application, the ordering in 2D 
crystals of annexin V—another "triangular" membrane 
protein—was reproduced in simulations of a hard-disk model 
decorated with an appropriate orientation-dependent poten-
tial to mimic the locations of the specific binding sites on the 
protein [14,15]. Experimentally observed honeycomb and 
triangular structures were captured by the molecular model. 
These examples show that the basic physics of large scale 
structural order in 2D protein crystals can be studied with 
simple models, and without resorting to atomistically 
detailed—and hence very expensive—computer simulations. 

There are a large number of proteins which are either 
inherently triangular in shape, or otherwise form trimeric 
structures [16-22]. For example, rotavirus inner capsid pro-
tein V6 forms trimers resembling equilateral triangles, which 
pack in 2D crystals (space group p6) [16].  Specific frag-
ments of prion proteins found in vivo form trimeric units that 
crystallize into a 2D structure (space group p3) [21]. Finally, 
we highlight an example in which a membrane fusion protein 
(from the Semliki forest virus) is seen to form pentagons of 
trimers, with the center of the pentagon raised slightly out of 
the plane [20]. Some semblance of local fivefold coordina- 
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tion can also been seen in TetA—a roughly triangular trans-
porter protein—at moderate surface coverages [18]. 

-Motivated-by-the-diversity -of 2D-crystal-structures exhib-
ited by trimeric protein units, and also by the observation of 
fivefold coordination [20], we have investigated the structure 
and phase behavior of model trimeric molecules made up of 
hard disks. In order to mimic specific binding interactions, 
such as those that might give rise to local fivefold coordina-
tion, we focus on an equilateral triangle of three hard disks at 
contact, in which one disk can interact with the correspond-
ing disks on other molecules via a short-range attractive 
square-well potential. As we will show below, this raises the 
possibility of generating orientational order within simple 
close-packed structures, and also offers the opportunity of 
forming clusters at low surface coverages. Using MC simu-
lations, we map out the phase diagram of the model system, 
and characterize the structures of the low-density clustered 
fluid and high-density solids which are formed at low tem-
perature. The remainder of the article is organized as follows. 
In Sec. II we describe the molecular model, and summarize 
the simulation methods. The results are presented in Sec. III, 
and Sec. IV concludes the paper. 

II. MODEL AND METHODS 

The molecular model consists of three hard disks, each of 
diameter cr, fused at mutual contact to form an equilateral 
triangle. Two of the disks on each molecule are purely repul-
sive, and interact with all other disks in the system through 
the potential 

1 0, 	r — o, 

where r is the separation between the centers of two disks. 
The third disk on each molecule carries a central attractive 
interaction site; these "attractive" disks interact with each 
other via the potential 

3, 	r<o- , 

u(r) = 10,—e, 	or<Xo, 	 (2) 

 rXu, 

where X> 1 controls the range of the attraction. This poten-
tial crudely mimics an effective attraction between vertices 
of the molecular triangles, which might arise through specific 
interactions (e.g., hydrogen bonding, disulfide bridges, effec-
tive solvophobic interactions). 

The parameter X will clearly have a crucial role to play in 
the thermodynamics of the system. If X > 1 then one should 
anticipate a conventional phase diagram containing a vapor-
liquid transition, and a fluid-solid transition. The orientation 
of a trimer can be defined by a vector n joining the geometri-
cal center of the trimer with the center of the attractive disk. 
It is unlikely that there would be any periodic orientational 
ordering of n in the solid phase; if two trimers can interact 
favorably irrespective of the mutual orientation, then on en-
tropy grounds the orientations will be disordered. In the op-
posite extreme, X 1, the molecules will feel the orientation 
dependence of the net trimer-trimer potential, and ultimately  

we might expect the vapor-liquid transition to disappear from 
the equilibrium phase diagram. Indeed, in a pure square-well 
hard-sphere-fluid,- condensation becomes- metastable -with -re--
spect to freezing when X < 1.25 [23]. In the present case, an 
interaction range X < guarantees that attractive sites must 
face each other directly in order to interact; when X> V3 it is 
possible for an attractive disk to be within interaction range 
of a trimer even if it approaches from "behind." With these 
comments in mind, we have chosen to study a system with 
X= 1.25. The ratio of Xa-  to the (angle-averaged) diameter of 
the trimer is smaller than that in a pure square-well hard-
sphere system with the same value of X, and assuming some 
sort of correspondence between two- and three-dimensional 
systems, we do not anticipate there being a vapor-liquid tran-
sition in the equilibrium phase diagram. On the other hand, 
because the trimers have to attain quite specific mutual ori-
entations in order to interact favorably (since X < \/), we 
should expect to see some sort of nontrivial structure in fluid 
and solid phases at low temperatures. 

Systems of N= 120 trimers were studied using MC simu-
lations either in the isothermal-isobaric (NpT) ensemble or 
the canonical (NAT) ensemble [24]. The simulation cell was 
rectangular with dimensions LX  and L, and area A =LL. 
Each MC cycle consisted of one translational trial move and 
one rotational trial move for each of N randomly selected 
molecules. Displacement parameters were adjusted to give 
—50% acceptance rates. To help equilibrate dense phases, 
we included trial moves in which a randomly selected trimer 
was rotated by ±120'. In NpT simulations of solid phases, L 
and L were varied independently; in NpT simulations of 
fluid phases, the simulation cell was constrained to be 
square. For most thermodynamic state points typical equili-
bration runs consisted of - 10 5  MC cycles, but some points 
(close to phase transitions) required 106  MC cycles. Pro-
duction runs were typically— 10 5  MC cycles. We define the 
following dimensionless units in terms of the square-well 
depth, e, and the hard-disk diameter, u: number density p 
=Na2 1A; temperature T = kBTI €; pressure 

p* 
 =per2/kBT. 

III. RESULTS 

The phase diagram of the model trimers in the density-
temperature (p*T) plane is sketched in Fig. 1. Before de-
tailing the determination of the phase boundaries, the char-
acteristics of the different phases will be described. There are 
four distinct regions in the phase diagram. At low density 
and high temperature, a normal fluid phase is in evidence 
(fluid I). A typical simulation configuration is shown in Fig. 
2(a). There is neither translational nor long-range orienta-
tional order in the system. 

At high density and high temperature, the stable solid 
phase (solid I) possesses an orientationally disordered struc-
ture (in the sense that n is disordered) with the trimers close-
packed to form alternating rows displaced by o -/2. Figure 
2(b) shows both the lack of orientational order, and the rég-
istry between alternating rows. Notice the black bonds show-
ing how the disks are connected within the trimers; we call 
this an "AB" structure to denote the alternating alignment of 
the rows. The close-packed rows resemble those formed by 
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FIG. 1. Phase diagram of the model trimer system in the 
density-temperature (p*T*)  plane: (solid points and solid lines) ap-
proximate fluid-solid phase boundaries, assumed to be first order; 
(open points and dashed lines) boundaries between high-
temperature unclustered states and low-temperature clustered states, 
as evidenced by maxima in the heat capacity along isobars; (dot-
dashed line) close-packed density, p=2/3V3-=0.3849. 

VP6 [16], although the registry between the rows is different. 
At the end of this section, we will briefly discuss the possi-
bility of solids with other close-packed structures. 

At low temperature and low density we find a highly as-
sociated fluid (fluid II), in which the attractive disks aggre-
gate to form distinct clusters. A typical configuration is 
shown in Fig. 2(c), which exhibits a broad distribution of 

- 

w 
.e' •  

94't 
(a) 

(d) 	 (e) 	 (f) 

FIG. 2. (Color online) Configuration snapshots from NpT simu-
lations: (a) normal fluid phase (fluid I) at T=2, p=2.5, p 
=0.259; (b) orientationally disordered AB solid phase (solid I) at 
t'=2, p=12, p=0.345; (c) clustered fluid phase (fluid II) at T 
=0.25, p=0.75, p=0.222; (d) metastable state at 1"=0.25, p 
=2.6, p*=O  29ft (e) orientationally ordered AB solid phase (solid 
II) at T=0.25, p * = 12, 

p*=Ø•349;  (f) metastable orientationally or-
dered AA solid at T'=0.25, p=20, p=0.356. In each case the 
attractive disks are colored dark gray (red online), the repulsive 
disks are colored light gray, and all disks are drawn with diameter 
10% 
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FIG. 3. Cluster distributions for systems along the isotherm T 
=0.3: (a) p=0.5, p*=0  188 (b) p * = i ,  p*=0 230 (c) p*=15 p* 
=0.252; (d) p=2, pt =0.265; (e) p*=2.5,  p=0.280; (f) p=6, 
=0.329. In (a)-(e) the system is fluid, whilst in (f) the system is 
solid (II). 

cluster sizes. To identify clusters, we employ the obvious 
criterion that two trimers with attractive disks within inter-
action range belong to the same cluster. With this definition 
in mind, Fig. 2(c) shows that, in general, the attractive disks 
within the clusters form close-packed motifs, rather than 
loose arrangements of disks on the circumference of a ring. 
For clusters of three trimers there is no distinction, whereas 
for four or more trimers the close-packed arrangement is 
more favorable; in a ring, each disk would have two nearest 
neighbors, whereas close-packed motifs can accommodate 
more than two direct contacts. In Fig. 3 we show the prob-
ability distribution function of clusters containing n mol-
ecules, at different pressures along an isotherm with T* 

=0.3. As the pressure and density increase, the distributions 
show peaks at progressively higher values of n. At the high-
est fluid-density shown_p*=0.280,  Fig. 3(e)-the most 
probable cluster size is n=5. We had hoped that these clus-
ters would adopt a pentagonal structure, but instead the at-
tractive disks form "Olympic rings" motifs, such as those 
shown in Fig. 2(c). The maximum disk-disk separation in a 
perfect pentagon of disks at contact is 2(1 -cos 108°)u 

1.62a, which is longer than the range of the potential stud-
ied in this work. Hence, to minimize the energy, the cluster 
will contract to form a close-packed structure. Perhaps pen-
tagonal clusters would be formed in a system with 1.62 X 

V? (The upper limit means that there can be no other 
disks between two interacting attractive disks.) We did some 
test runs in the fluid phase with X= 1.7, but no pentagonal 
clusters were observed. If anything, fewer distinct clusters 
were in evidence as compared to X= 1.25, presumably be-
cause it is less crucial that the trimers attain a specific mutual 
orientation in order to interact. 

Upon compression of the low-temperature fluid we often 
encountered metastable structures, such as that shown in Fig. 
2(d). This clearly shows a predominance of n=6 clusters, 
with the attractive disks close packed to form a parallelo-
gram motif, but the clusters are not yet fully packed into a 
solid structure. This process is completed upon further corn- 

I) i 

(b) 

I .  . 
b 
c4 

.T 

• .p: 	• 

(c) 
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FIG. 4. Equations of state along isotherms with r=0.3 (solid 
symbols, solid lines), and 1=1 (open symbols, dashed lines): 
(circles) state points from NpT simulations of AB solid phase; 
(squares) state points from NpT simulations of AA solid phase (T* 

= 1 only); (diamonds) state points from NpT simulations of p3 solid 
phase shown in Fig. 6 (T= 1 only); (crosses) putative metastable 
state points; (triangles) approximate coexistence densities; (lines) 
fits to the fluid and solid branches (see text). The statistical errors in 
the NpT simulation points are smaller than the symbols. 

pression, to form a p2 periodic solid (solid II), a defective 
example of which is shown in Fig. 2(e). In simulations of the 
high-density solid II phase, the initial configuration consisted 
of the appropriate AB structure, but with n for each molecule 
chosen randomly from the three molecular arms; the orien-
tational structure shown in Fig. 2(e) develops spontaneously. 
The cluster distribution for such a solid at temperature T' 
=0.3 and density p*=0.329  is shown in Fig. 3(0. The pri-
mary peak is at n=6, but the presence of defects—such as 
those shown in Fig. 2(e)—gives rise to smaller "clusters" of 
attractive disks. 

The fluid-solid phase boundaries were located by moni-
toring the equation of state p(p) along selected isotherms in 
NpT simulations. For each isotherm, two sets of simulations 
were performed: a compression branch, starting from a low-
density fluid configuration; and an expansion branch, starting 
from the perfect solid structure corresponding to that found 
in the compression branch at high pressure. Portions of two 
representative examples (T'=0.3 and 7'=I) are shown in 
Fig. 4. Of course, the fluid equations of state extend to much 
lower densities, but these exhibit entirely conventional be-
havior and hence are not shown; in particular, there is no 
sign of a "van der Waals" loop which would indicate a 
vapor-liquid phase transition. The main features of interest 
are the apparent discontinuities in the density at what are 
assumed to be first-order phase transitions (we will not open 
up the can of worms associated with the precise nature of 
two-dimensional melting and freezing [1-4]). In Fig. 4 we 
indicate distinct fluid and solid branches in the equations of 
state, a number of putative metastable states (as discussed 
above), and approximate tie-lines connecting the fluid and 
solid coexistence densities, obtained as follows. The fluid 
branch was fitted with a virial expansion containing terms up  

to p5 , i.e., 	 while the solid branch was 
found to be fitted rather well by a simple van der Waals 
equation--  [-25]-- of -the form-- pIkT=ap/(-1 –bp) –cp2 ,--which-
contains a free-volume term arising from repulsive interac-
tions, and a mean-field term arising from the attractions. The 
coexistence densities were then estimated by extrapolating 
the fitted branches of the equation of state to a pressure half 
way between those in the highest-density stable fluid and the 
lowest-density stable solid; the metastable states were iden-
tified as those that did not fit onto either branch and/or for 
which the simulation configuration was clearly neither pure 
solid nor pure fluid, e.g., Fig. 2(d). Obviously this approach 
provides only very rough locations for the phase boundaries 
shown in Fig. 1, but some general trends are nonetheless 
apparent. At very low temperatures, the coexistence densities 
decrease as the system is cooled, and the transition appears 
to be getting weaker. At high temperatures (T 1) the fluid 
coexistence density 

(p*  0.30) is very similar to the density 
at which the pure hard-disk fluid undergoes its transition, 
either to a hexatic or a solid (disk density p*=0.899  [4], 
"trimer" density p*=0.300).  The apparent trimer solid coex-
istence density (p*=,032)  is significantly larger than the 
melting density of hard disks (disk density 

p* 
 0.9 14 [4] 

trimer density p* = 0.305). 
The final piece of the equilibrium phase diagram concerns 

the crossover from high-temperature orientationally disor-
dered states to low-temperature states that possess structural 
motifs arising from the clustering of the attractive disks. To 
delineate the boundary between these two regimes, we cal-
culated the heat capacity appropriate to the statistical me-
chanical ensemble being sampled. In general we used NpT 
simulations to measure C=(ôHh9T)—where H= U+pA is 
the enthalpy (minus the kinetic contribution)—as a function 
of temperature along an isobar. Since clustering must be ac-
companied by a drop in the configurational energy, and en-
thalpy, a peak in C,, would seem to be an obvious signal of a 
crossover from unclustered to clustered states. In simulations 
we evaluated the usual fluctuation formula, C=[(H2) 

–(H)2J/kB 7, and, as a check, differentiated an [n,n] Padé 
approximant fitted to the enthalpy as a function of T; 

a0 +a1 T+a2T2 + 
H= 

1+b1T+b2T2++b 	
(3) 

These two approaches yielded consistent results, and the 
peak in C,, was easy to locate accurately. In general the peak 
height is less pronounced at high densities, mainly due to the 
fact that even in the high-temperature phase there must be 
some attractive disks within interaction range due to the con-
finement. Thus, the most difficult situation obtains at close 
packing of the trimers, P:p=213  In this case we studied a 
perfect close-packed AB solid, and carried out NAT MC 
simulations with _t120'  rotations only. We show results for 
the configurational energy, U, and the excess constant-area 
heat capacity, CA=(dU18T)A,  in Fig. 5. A [5,5] Padé fit pro-
vides a reliable description of the energy, and the corre-
sponding results for CA are consistent with those obtained via 
the fluctuation formula. 
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FIG. 6. (Color online) Illustrations of an alternative close-
packed structure: (a) without an assignment of attractive disks; (b) 
and (c) mirror images of a possible structural motif for a periodic 
arrangement of attractive disks. The attractive disks are colored 
dark gray (red online), the repulsive disks are colored light gray, 
and all disks are drawn with diameter 10. 
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FIG. 5. Configurational energy U (left) and excess heat capacity 
CA (right) as functions of reduced temperature 7 at the close-
packed density p*=2/3\Jr=0.3849:  (circles) simulation results; 
(lines) results derived from a Padé [5,5] fit (see text). 

In Fig. 1 we show the positions of the maxima in Cr-and 
CA at p=2/3V-a1ong with separate cubic fits to the 
points in the fluid and solid regions of the phase diagram. It 
appears that the two branches would meet up somewhere in 
the fluid-solid coexistence region. We stress that the bound-
aries indicated do not represent thermodynamic phase tran-
sitions; rather, they separate different regimes of trimer asso-
ciation. 

Finally, we briefly consider the possibility of the trimer 
system adopting other solid structures, such as the p2 AA 
structure shown in Fig. 2(0,  in which the close-packed (hori-
zontal) rows are matched with the neighboring rows. In this 
case, the low-temperature, orientationally ordered solid ex-
hibits rhombic cluster-motifs containing only four attractive 
disks. Out of those four disks, two are interacting with two 
other disks, and two are interacting with three other disks. 
Hence, the minimum configurational energy for an AA solid 
is -e per trimer. In the AR structure, there are six attractive 
disks per parallelogram motif, of which two have two neigh-
bors, two have three neighbors, and two have four neighbors, 
giving a minimum energy of -e per trimer. Hence, on en- 2 
ergetic grounds, we should expect the AB structure to be 
thermodynamically favored. Even at high temperature, the 
AA structure appears to be less stable with respect to the AB 
structure. As an example, in Fig. 4, we show an AA solid 
branch of the equation of state at T=1, alongside the AB 
solid branch. For a given pressure, the AB solid has the 
higher density which makes this state at least mechanically 
stable with respect to AA. Indeed, we only ever observed the 
fluid spontaneously freezing into an AB structure. Although 
we have not performed free-energy calculations, it would be 
very surprising if an entropic effect could compensate for the 
relative energetic and mechanical stability of the AB phase 
with respect to the AA phase. 

Another possible close-packed structure is illustrated in 
Fig. 6(a), without any indication of the attractive disks. This 
structure resembles that adopted by 2D crystals of TetA [18], 
although we never saw this packing structure emerge spon-
taneously from our simulations. As far as our model is con- 

cerned, the absence of this structure at low temperature is 
easy to understand. In Figs. 6(b) and 6(c) we illustrate mirror 
images of the most obvious periodic arrangement of the at-
tractive disks (space group p3). The energy per trimer is only 
-1 e, and so this is not competitive with the AB structure that 
is seen to emerge spontaneously in our simulations. In Fig. 4 
we include some equation-of-state data for the p3 structure at 
74  =1, which show that this structure is marginally less me-
chanically stable than the AB structure. Nonetheless, free-
energy calculations would be of interest, particularly at high 
temperatures where entropy is everything. 

IV. DISCUSSION 

In this article we have described the structure and phase 
behavior of a generic model of trimeric molecules, largely 
motivated by recent experimental 2D microscopy studies of 
clustering and crystallization in triangular proteins and pro-
tein trimers. The molecular model consists of a triangle of 
hard disks, with one of the disks participating in attractive 
square-well interactions with similar disks on other trimers. 
The range of the square-well potential, Xc,-, was 1.25 times 
the disk diameter. This system crudely mimics the general 
shape and specific interactions of a wide range of proteins. 
The model system exhibits fluid and solid phases which, at 
low temperatures, possess interesting structural motifs aris-
ing from the clustering of the "attractive" disks. 

In the fluid, a distribution of clusters is in evidence, in-
cluding tetramers, pentamers, and hexamers (of trimers). In 
the pentamers and hexamers, the attractive disks close-pack 
to form Olympic rings and parallelogram shapes., respec-
tively. We had hoped to find more open pentagonal clusters 
of trimers, such as those reported in Ref. [20]. To investigate 
the formation of such clusters further, it might be interesting 
to study a system of hard isosceles triangles with the unique 
angle equal to 72°, and a short-range attraction operating 
between the corresponding vertices. 

In the low-temperature solid, the basic structural motif 
consists of clusters of six molecules, with the attractive disks 
close-packed to form a parallelogram. A metastable solid 
possessing a motif made up of four molecules was also iden-
tified. The fundamental difference between the two situations 
is the registry between neighboring close-packed rows of tn- 
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mers (AB versus AA). Even at high temperatures, the orien-
tationally disordered AB solid is at least mechanically stable 

-with -respecrto-the- AA-  solid. We-identified-a-third-structure-
based on hexagonal close packing, but this structure is not 
competitive either, at least in terms of energy. It would be 
worth performing free-energy calculations to study these is-
sues further. 

Finally, it is worth commenting that a diverse range of 2D 
structures can be generated from very simple molecular mod-
els. Fully atomistic calculations of 2D protein structures are  

expensive, and, it could be argued, yield little insight on the 
fundamental physics behind clustering and crystallization. As 
has-been --shown-in-a-  variety-of -cases,-including-the-present-
study, the process of developing and studying simple models 
of complex systems can yield some surprising results. 
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The kinetics of aggregation in a monolayer of dipolar particles are studied using stochastic dynamics 
computer simulations. Transient concentrations of end defects (at low density) and V-shaped defects (at 
high density) clearly exceed those at equilibrium. Although very large dipole moments are expected to 
disfavor such defects at equilibrium, it is found that the transient defect concentrations increase with 
increasing dipole moment. The results suggest that the conditions for defect-driven condensation—as 
proposed by Tlusty and Safran [T. Tlusty and S. A. Safran, Science 290, 1328 (2000)] —could be met by 
kinetic trapping, giving rise to a metastable phase transition between isotropic fluid phases. 

DOl: 10.1 lo3lPhysRevLett.97. 107202 
	

PACS numbers: 75.50Mm, 82.20.Wt, 82.70.Dd 

The structure, phase behavior, and dynamics of strongly 
interacting, dipolar fluids present considerable challenges 
to soft-matter physics. The most common realization of a 
dipolar fluid is a ferromagnetic colloidal suspension, or 
ferrofluid. In the ideal case, this consists of spherical, 
homogeneously magnetized monodisperse particles with 
diameters —10 nm, sterically stabilized and immersed in a 
nonpolar solvent. The resulting colloidal interactions are 
caricatured by the widely studied dipolar hard sphere fluid. 
Despite almost four decades of intensive experimental, 
theoretical, and simulation study [1,2], at least one out-
standing question remains to be answered definitively: are 
point dipolar interactions alone sufficient to drive vapor-
liquid phase separation? On the one hand, the Boltzmann-  
weighted, angle average of the dipole-dipole potential 
gives (to leading order) an isotropic, attractive pair poten-
tial that varies like - 1/r 6 , where r is the interparticle 
separation; this is expected to produce conventional con-
densation behavior [3].  On the other hand, simulations 
show that conventional condensation is preempted by 
strong aggregation, driven at low temperatures by the 
energetically favorable "nose-to-tail" conformation [4]. 
If phase separation occurs in 3D, then it is of a rather 
unusual nature; simulations suggest that the low-density 
phase mainly consists of chainlike aggregates, while the 
high-density phase resembles a network of interconnected 
segments [5].  One possible scenario involves a defect-
mediated phase transition [6] in which the chains' defects 
are the singly connected particles at the chain ends ("end 
defects"), while the network's defects predominantly con-
sist of particles with three near neighbors in a Y-shaped 
conformation ("V defects"). 

Recently, 2D dipolar fluids (with 3D magnetostatics) 
have received attention due to the. possibility of directly 
imaging aggregation in thin films using cryogenic trans-
mission electron microscopy [7-9]. The equilibrium struc-
ture [10,11] and dynamics [12] of 2D dipolar fluids have 
been studied in detail using computer simulations. At low 
density and low temperature (or large dipole moment), the 
dominant structural motifs are isolated chains and rings,  

while the high-density structure consists of a labyrinthine 
network of long chains (forming a "disordered lamellar" 
structure). There has never been any suggestion of a vapor-
liquid phase transition in the 2D system, although end and 
V defects are observed at equilibrium when the density and 
dipole moment are not too large; very large dipole mo-
ments disfavor Y defects because they are not ground-state 
conformations, while the excluded volume of V defects 
means that the disordered lamellar structure is favored at 
very high densities. Note, however, that a transition be-
tween isolated and system-spanning clusters at low density 
has recently been characterized [13]. 

This Letter reports the first simulation study of the 
aggregation process in monolayers of strongly dipolar 
particles. Starting from equilibrated configurations of non-
polar particles, cluster formation is monitored after the 
dipoles are "switched on". The main findings are that 
high transient concentrations of end and V defects are 
observed in aggregating systems with large dipole mo-
ments, and that these transient concentrations are always 
higher than the equilibrium values seen with smaller dipole 
moments. This suggests that the necessary conditions for 
defect-driven dipolar condensation might best be met by 
kinetically trapping transient, highly defective configura-
tions. The results yield new insights on the properties of 
two-dimensional dipolar fluids, and, significantly, suggest 
a new strategy for realizing defect-driven condensations in 
the laboratory. 

The system is modeled as a monolayer of monodisperse 
dipolar soft spheres. The interparticle potential is given by 

+ 
- 0- 12 r)(p 2  . r) 

u(r, /.L1, jt2) = 4€ 
	r3 	 r 

(1) 

where e is an energy parameter, u is the sphere diameter, 
is the dipole vector on particle i, r is the interparticle 

separation vector, and r = ri. To maintain a constant 
temperature in a physically relevant way, stochastic dy- 
namics (as opposed to molecular dynamics) simulations 
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were performed according to the integrated Langevin 
equations [14] 

	

Do 	

103 

r,(t + 8t) = r(t) + 2P-P-F8t + SW, 	(2) 
kBT 

,.2 At  + 60 = (t) + -- T i  A ft(t)6t + SW A p(t), 
kBT 

(3) 

where F, (Ti ) is the net force (torque) acting on dipole i at 
time t, fL i  = t./p. is a unit dipole orientation vector 
(renormalized after each time step), 61 is the integration 
time step, and D (D) is the translational (rotational) 
diffusion constant at infinite dilution. The components of 
the 2D vector 8Wf and the 3D vector 6W, were generated 
independently from Gaussian distributions subject to the 
conditions (6W=(6Wç)=0, (6W 6W) = 4D6t6, 
and (SW =  6D6 his t6. In t scheme the short-
time inertial dynamics are suppressed, but this is appro-
priate because with large dipole moments, single-particle 
motions occur on time scales (in reduced units) of order 1 
[12], while the collective motions of interest here are 
orders of magnitude slower. 

In all simulations, the integration time step was 	= 

0.01, where the reduced time is t = tlr and r = 

Results are presented for N = 1024 particles in 
an L X L simulation cell (with periodic boundary condi-
tions) at densities 0.1 :5 = No, 2 /L 2  -_ 0.5, and with 

dipole moments 2 :5 = 2.75; the tem-
perature T* = kBT/E = 1 throughout. Characteristic dif-
fusion constants were estimated from the (stick) Stokes-
Einstein laws yielding D = k fi T131r71cr = 4 X 

10 	M2  s-'and  Dr  = kT11r77cr - 1 X 106 s_ I  for o 
spherical particles with a-  = 10 nm in a solvent of viscos-
ity  71  = iO Pas at temperature T = 300 K; the dimen-
sionless quantities Dr/er2  = 0.004 and Dr = 0.01 were 
obtained using the mass of a 10 nm sphere with mass 
density —8000 kg in -  3  (typical for iron or cobalt) and 
energy parameter e = kBT. Self-assembly was initiated 
from configurations equilibrated with j.t "  = 0. For each 
density studied, five independent runs with different initial 
configurations were conducted and the results for each 
density were averaged, although the separate runs pro-
duced essentially identical results. The configurational 
temperatures associated with the positions and orientations 
of the particles were measured independently [15,16]. In 
each case the instantaneous configurational temperatures 
fluctuated about T 0  = 1, with rms deviations of about 0. 1, 
throughout the self-assembly process. 

Figures 1(a) and 1(b) shows representative results for the 
different types of clusters that form in fluids with large 
dipole moments (,a* = 2.75), and at low and high densities 
(p* 

= 0.1 and p = 0.5). Two neighboring particles are 
considered to belong to the same cluster if u(r, L1, ji2) 

_0.6*2 [17]. Clusters were classified as either chains  

.1 • .1 	.J 	OL 

lol 	102 	10  3 ' 
	id 

0.12 

k 
(c) 0.10 

0.08 

101 	102 	103 	104 t. 

FIG. 1 (color online). Cluster properties in systems with 	= 

2.75: numbers of clusters at (a) p = 0.1 and (b) p = 0.5, 
classified as chains (black circles), rings (red squares), and 
X/Y defect clusters (green diamonds); (c) fraction of particles 
with one near neighbor and (d) fraction of particles with three 
near neighbors in fluids at densities p = 0.1 (black circles), 

= 0.2 (red squares), p' = 0.3 (green diamonds), and p = 

0.5 (blue triangles). 

(including monomers), rings, or "X/Y defect clusters" 
containing at least one particle with three (Y) or four (X) 
neighbors (particles with five or more neighbors were not 
observed). At low density (p* = 0.1) the most common 
cluster is chainlike, followed by rings and then X/Y defect 
clusters. Chains are also favored at high density (p* = 

0.5), but X/Y defect clusters outnumber rings, and show 
a strong peak at t*  - 10; at equilibrium, the numbers of 
chains, rings, and X/Y defect clusters become comparable 
(and very small as the system undergoes almost complete 
aggregation). "Equilibrium" fluid structures at both den-
sities are shown in Figs. 2(a) and 2(b). These two densities 
represent distinct regimes of aggregation behavior and will 
be considered separately. 

Figure 3 shows the fractions of particles with n nearest 
neighbors, x,,, at time t during the aggregation processes at 
density p* = 0.1 and with dipole moments = 2, 2.25, 
2.5, and 2.75. The monomer fraction—x0—indicates that 
complete clustering is only established at equilibrium with 

~! 2.5. With :5 2.25, x 1  (signaling end defects) in-
creases to a finite equilibrium value. With larger dipole 
moments (* 

~! 2.5) x 1  shows strong maxima at t - 102 ;  
note that these maxima exceed all of the equilibrium values 
seen at smaller dipole moments (a* :5 2.25). The equilib-
rium values of x2  indicate that extensive chaining (beyond 
dimers) occurs only when ~ 2.5. At this low density, x3  
(signaling Y defects) is insignificant at all dipole moments; 
particles with four neighbors (X defects, not shown) are 
essentially absent. The lack of defect clusters suggests that 
aggregation proceeds by the sequential addition of parti-
cles or other small chains to the ends of existing chains, 
some of which fold up to form rings. 
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FIG. 2. Instantaneous configurations at various densities, di-
pole moments, and times. The black lines between particles 
denote "bonds" identified using the energy criterion. 

Results for x,, at a high density of p' = 0.5 are shown in 
Fig. 4. The equilibrium values of x0  and x2  show that the 
degree of chaining at equilibrium increases with increasing 
dipole moment, for obvious reasons. x 1  exhibits maxima at 

- 10, while the equilibrium values decrease with in-
creasing dipole moment, reflecting the energetic penalty 
of "dangling bonds". The behavior of x 3  depends sensi-
tively on the dipole moment. With :5 2.25, x3  increases 
from zero and plateaus at a value in the region of 0.05. At 
high density, even nonpolar particles are likely to have 
several near neighbors, some of which by chance may be 
oriented in such a way that when the dipoles are switched 
on, they cluster around a single particle to produce a V 
defect. With small dipole moments, the energetic penalty 
of this configuration is not so severe, and the defect may 
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1. 	 t. 

FIG. 3 (color online). Fractions of particles, x,,, with n neigh- 
bors during the aggregation process at density p = 0.1 and with 

	

dipole moments IL* = 2 (black circles), 	= 2.25 (red 
squares), 	= 2.5 (green diamonds), and 	= 2.75 (blue 
triangles): (a) x 0 ; (b) x 1 ; (c) x2 ; (d) x 3 . 

FIG. 4 (color online). Fractions of particles, x,,, with n neigh- 
bors during aggregation processes at density p t  = 0.5 and dipole 
moments /.t *  = 2 (black circles), 	= 2.25 (red squares), 	= 

2.5 (green diamonds), and = 2.75 (blue triangles): (a) x0; 

(b) x 1 ; (c) x 2 ; (d) x3  (filled symbols) and x4  (open symbols). 

persist at equilibrium. With larger dipole moments (* ~: 

2.5), however, x3  shows strong maxima at 1*  60, and 
then tails off to values less than 0.05; significantly, the 
maxima are approximately two-thirds larger than the equi-
librium values seen with smaller dipole moments. X de-
fects (signaled by x 4) are at least an order of magnitude less 
numerous than Y defects, and are hence insignificant. 
These results suggest that larger dipole moments promote 
the initial formation of V defects (as described above), but 
that since the associated Boltzmann weight of this configu-
ration is not optimal, the V defects "anneal out" to form 
the disordered lamellar phase as the fluid approaches 
equilibrium. 

Defect-driven condensation involves a low-density 
phase rich in end defects, and a high-density phase rich 
in V defects. It is therefore instructive to consider the 
equilibrium values of x 1 , x2 , and x3  at low density (p t  = 
0.1) and high density (p t  = 0.5), as shown in Table I. With 
small dipole moments (* 

:!:-: 2.25), the end-defect con-
centrations at p t  = 0.1 are significant (-0.3), while the 
V-defect concentrations at p = 0.5 are relatively small 

TABLE I. Equilibrium (t t  = oo) and transient values of x 1 , x2 , 
and x3  at densities of p t  = 0.1 and pt = 0.5, and at various 
dipole moments. 

/L t  t X1 
p*=0.l 

X2 X3 X1 

jf=O.5 
X2 X3 

2 oo 0.29 0.08 <0.01 040 0.41 0.05 
2.25 0° 0.32 0.32 <0.01 0.28 0.60 0.06 
2.5 oo <0.15 >0.73 <0.01 <0.10 >0.85 <0.04 
2.75 00 <0.06 >0.87 <0.01 <0.02 >0.94 <0.02 
2.5 100 0.40 0.16 <0.01 0.17 0.71 0.09 
2.75 80 0.43 0.19 <0.01 0.14 0.74 0.10 
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freeze the carrier solvent and trap transient defects. 
- _Alenatiyely, the addition of a strong short-range isotropic_ 

attraction (e.g., chemically, or with added polymer to 
induce depletion forces) might stabilize defects. In this 
scenario, the long-range dipolar interactions drive the ini-
tial formation of small clusters with end and V defects, 
while the short-range isotropic attractions preclude subse-
quent reorganization into the equilibrium structures. The 
relative ease with which 2D dipolar systems can be imaged 
directly may offer the best hope yet of realizing such a 
transition in the laboratory. 

We thank Gren Patey, Sam Safran, Paulo Teixeira, and 
Tsvi Tlusty for correspondence, and the School of 
Chemistry at the University of Edinburgh for support to 
P.D.D. 

(-0.05). With larger dipole moments ( 	
~- 2.5) the equi- 

librium end-defect and Y-defect concentrations become 
negligible. (Withthese large dipole moments, the approach 
to equilibrium is extremely slow, hence the inequality signs 
in Table I). This provides an explanation of why an equi-
librium defect-driven condensation has not been observed 
in 2D dipolar fluids: at all dipole moments (or tempera-
tures) there are insufficient concentrations of end defects 
and Y defects in the low-density and high-density states, 
respectively. 

Transient defect concentrations with f' = 2.5 and 
= 2.75 are also reported in Table I. In each case times 

are selected roughly halfway in between the positions of 
the peaks in x 1  at low density [Fig. 3(b)] and x 3  at high 
density [Fig. 4(d)]. The key point is that the transient end- 
defect concentration (at low density) and Y-defect concen- 
tration (at high density) are simultaneously greater than the 
equilibrium values with smaller dipole moments. In addi- 
tion, the transient end-defect concentrations in the high- 
density fluid are much smaller with 	~ 2.5 than are the 
equilibrium concentrations with 	:5 2.25. These find- 
ings can be made more tangible by looking at simulation 
snapshots. Figures 2(c) and 2(d) shows equilibrium struc-
tures with = 2.25, and p*  = 0.1 and p*  = 0.5; these 
are to be compared with the transient configurations at the 
same densities, but with = 2.75 [Figs. 2(e) and 2(f)]. 

Thus far, only two densities have been considered, but in 
Figs. 1(c) and 1(d) are shown x 1  and x3  for fluids with 
dipole moment 	= 2.75, and at a selection of densities in 
the range 0.1 S 	:5 0.5. x 1  peaks earlier and x 3  shows 
stronger maxima as the density is increased, due to the 
particles being in closer proximity when the dipoles are 
first switched on. It is clear that the extremes of this density 
range correspond to quite distinct regimes of aggregation 
behavior. 

In summary, at low density aggregation proceeds 
through the formation of chains, some of which go on to 
form rings; above a critical dipole moment (in the range 

= 2.25-2.5) transient concentrations of end defects 
exceed the equilibrium values observed with smaller di-
pole moments. At high density, increasing the dipole mo-
ment leads to a reduction (enhancement) of the equilibrium 
(transient) Y-defect concentration. When > p, there is 
a time window in which the concentrations of end defects 
in the low-density fluid (p*  0.1) and V defects in the 
high-density fluid (p*  0.5) are simultaneously close to 
their maximal values. Such defects are precisely those 
implicated in the defect-driven condensation of dipolar 
fluids [6]. It might therefore be possible to access a meta-
stable phase separation, even in thin films where no equi-
librium transition is expected, through kinetic stabilization 
of end defects (characterizing the low-density phase) and  
defects (characterizing the high-density phase). For in-
stance, in ferrofluids a rapid temperature quench could 
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