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Abstract

The development of sustainable and green technologies powered by renewable energy sources

is highly desired to address the growing global energy need and water scarcity problems.

Heterogeneous photocatalysis emerged in the past decades as promising solar-powered

technology for environmental remediation applications such as wastewater treatment. The

photoactivity of the materials is believed to be governed by complex mechanisms, still it

was shown that it may be critically dependent on the following material properties (i) ability

and effectiveness to absorb incident photons, (ii) charge separation efficiency, (iii) charge

utilization efficiency, (iv) morphology including the size and shape of the nanostructure and

its distribution and (v) the crystal structure, phase composition and crystallinity...etc Hence,

most strategies aiming to improve the performance of photocatalytic materials may focus on

one or more of the aforementioned aspects.

Beside developing new materials or modifying existing systems, the development of

sustainable, easy-to-operate systems are highly desired for developing countries such as

Africa where almost half of the population are affected by water scarcity of some sort. For

this motivation the immobilization of powder catalyst could be one attractive solution.

In this thesis three experimental systems are presented. In the first two the effect of

material properties on the photoactivity whereas in the third chapter the immobilization of

powder catalyst was investigated.

The first experimental project aimed to study the effect of synthesis parameters of WO3

nanostructures on its morphology, phase composition, optical properties and ultimately

on the photoactivity. Understanding the role of process parameters to gain control over
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the material properties is still a challenge but is of great interest in photocatalysis. Here,

a hydrothermal synthesis method was employed to synthesize WO3 nanostructures with

various morphologies, crystal phases and optical properties. The effect of the solution pH,

the polymeric surface modulator and the added EtOH was investigated on the material

properties and on the photocatalytic activities. It was found that the crystal structure and the

morphology of WO3 was influenced by the solution pH in the first place. It was proposed

that stabilization effects between the crystal phase and the morphology could also influence

the crystallization process beside supersaturation. It was revealed that despite the highest

surface area of W-2.01-P20E, reduced oxidation state did not promote high photoresponse.

Instead the photoactivity of WO3 was seen as the compromise of the material properties

including the optical, structural properties and the oxidation state.

In the second experimental project the effect of Ag co-catalysis was studied on TiO2-

Cu2O heterostructure formation. Coupling a wide band gap (TiO2) and a narrow band gap

(Cu2O) semiconductor could benefit from extended light absorption properties and addition-

ally from enhanced charged separation. In this study a facile wet chemical synthesis method

was coupled with a UV treatment step to fabricate TiO2-Ag-CuxO ternary hybrid nanomate-

rials. The effect of the Ag loading (1-5%) and the synthesis sequence of the Ag deposition

step was evaluated on the material properties as well as on the visible photocatalytic activity.

It was revealed that both the amount and the order of the Ag-deposition altered the material

properties considerably. Typically TiO2/CuxO/Ag (TCA) catalysts had better visible light

absorption properties but reduced affinity to adsorb methyl orange (MO) to their surface.

Whereas, TiO2/Ag/CuxO (TAC) catalysts in general had better dye adsorption properties

relative to TCA and had more efficient decoloration properties under visible light. TOC and

HPLC-MS analysis revealed that MO and possibly its degradation products were mainly

mineralized and/or adsorbed to the surface of TAC catalyst with 5% nominal Ag content in

the visible process generating limited amount of byproducts in the final solution.
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The third experimental project focused on the immobilization of the previously prepared

powder TiO2-Cu2O nanostructure. In this work a fluorine-doped tin oxide (FTO) glass sheet

was used as a substrate and the doctor-blade coating technique has been employed to make

TiO2-Cu2O thin films. Although this technique has a widespread use in the fabrication of

solar cells to the best of our knowledge this is the first report on supported TiO2-Cu2O

photocatalytic systems prepared by this method. To optimize the performance of the TiO2-

Cu2O thin film under visible light irradiation, the chemical composition of the doctor-blading

paste and the temperature of the final thermal treatment step was studied. It was found

that both the paste composition and the heat treatment step played an important role in the

material properties. When the film contained ethyl cellulose the minimum temperature to

remove organic additives was 350 ◦C. Whereas for the films containing only alpha terpineol

300 ◦C was sufficient. It was revealed that the higher temperature treatment resulted in more

oxidized films which were also shown in their deeper colour. The most effective film under

visible light irradiation was TC-0-300 which contained no cellulose and was treated at the

lowest temperature.





Lay Summary

Photocatalysis is a process where a solid material makes use of the energy of the light. The

interaction of the light and the solid material (also called catalyst) can initiate chemical

reactions. This is interesting because these reactions can be potentially used to decompose

harmful chemicals from water for example. This way the purification of wastewater may be

possible by solar light using a photocatalytic material. Unfortunately, it is not easy to find

and develop a material which can effectively eliminate toxic chemicals from water and at the

same time work under solar light.

The sunlight mainly consists of visible light but about 5-8% of it falls into the UV

range. Because of this, Visible active materials are preferred to be used in photocatalysis to

maximize light harvesting. Because WO3 structures can utilize part of the visible light, in the

first part of the work we focues on WO3 materials. We prepared these materials in the nano

range in various sizes and shapes to take advantage of the high surface area. Our aim was to

study how the different synthesis conditions affect the material properties and performance

in photocatalysis to find the best WO3 materials.

It was earlier observed that the combination of different photocatalytic materials could

positively affect the photoactivity. Therefore, in the second project we turned our attention

towards more complex systems. To still benefit from visible light response, a TiO2-Cu2O

material was modified by metallic Ag. The effect of the Ag amount and the preparation order

was studied on the material properties and photocatalytic activities.

It was also noted that the handling and recycling of powder catalysts is not ideal. The

catalyst recycling could be more difficult and they could also represent health and safety
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issues. Therefore, nanomaterials can be either fixed on macroscopic supports or be directly

prepared on them. In our final project, our aim was to transfer the previously prepared

TiO2-Cu2O material onto a glass slide as a thin film. By changing the temperature and the

chemicals used in the fixing process, we wanted to find the best preparation conditions.
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Chapter 1

Introduction

1.1 Motivation

The concerning global trends of growing energy demand and water shortage problems are

driving the development of novel sustainable technologies.

It was forecasted by the World Energy Council that the global energy consumption may

reach 30 TW by 2050 which is double as much as the demand in 2012 [1]. Figure 1.1 shows

that in the past decade and still currently over 80% of the global energy consumption was

provided by fossil fuels such as coal, oil and natural gas [1, 2]. This trend cannot be sustained

endlessly since fossil fuels are effectively non-renewable energy resources and additionally

they have a negative impact on the environment.

Due to climatic change and rapidly growing population it was reported that in 2005 about

one third of the population experienced water scarcity of some sort [3]. Predictions indicate

that the number of people affected by shortages of clean water would continue to increase

and it can reach 3 billion by 2025. A geographical highlight for water usage and availability

is shown in Figure 1.2 [4]. The map shows that by 2025 prominent decrease in the available

water could be experienced in local areas within America, Europe, Africa and Asia compared

to historical data from 1995. For example, in 1995 the US typically used up 20% of the

available water sources whereas it is estimated that by 2025 the water consumption would



2 Introduction

Fig. 1.1 Pie chart showing the contribution of energy sources in the past 15 years. Figure is
taken from the following source: [1]

increase up to 40%. As a consequense of unsafe drinking water about 3.1% of the population

is reported to die worldwide [5]. Current water remediation technologies include membrane

filtration, advanced oxidation processes or even biological methods, however most of them

are limited by high operating cost, low efficiency and negative enviromental impact [6].

Because of these, producing energy and purifying water in an energy- and cost-effective

way by enviromental-friendly technologies is highly desired.

As an alternative, solar energy is one of the most abundant renewable energy sources. It is

estimated that about 36 thousand TW power provided by the Sun is available to be harvested

on the Earth which is orders of magnitudes higher than the worldwide energy consumption

of 17 TW reported in 2012. Beside its abundance, it is also a waste- and a greenhouse gas

emission-free energy source [7]. These benefits make the solar energy driven applications as

a promising way to generate clean energy and play a role in environmental remediation.

Solar light utilization is possible by the direct conversion of solar energy into electricity

by photovoltaic devices or by solar energy conversion into chemical energy in photocatalytic

processes [2]. Contaminants could be decomposed using chemical energy. In a photocatalytic
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Fig. 1.2 Graphical representation of localized water withdrawal given as a percentage of the
total available water. Figure is taken from the following source: [4]

water treatment process the photocatalytic material would be activated ideally by solar light

which could convert toxic chemicals into harmless compounds such as water and carbon

dioxide. The utilization of solar light in enviromental remediation is a promising green

alternative to current technologies and therefore it represents an active research area.

In this thesis, photocatalytic material development and immobilization was in the research

focus to contribute in research for water treatment application. To aid sustainable material

development, my goal was to work towards photocatalytic systems that would work with visi-

ble light for easiness of operation and that would have low-toxicity. By investigating catalyst

immobilization, my motivation was to study easy-to-use and cost-effective photocatalytic

systems to be used in developing countries such as Africa.

1.2 Structure of thesis

The thesis is structured into seven main chapters.

The second chapter is the literature review and theory part that presents detailed back-

ground for the original research projects that includes the discussion of the principle and

benefits of photocatalysis, material modification approaches and immobilization techniques.
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In each part highlights of the relevant literature are given with the presentation of key concepts

and theories.

The third chapter details the experimental procedures and methodologies that were used

in multiple chapters.

The fourth, fifth and sixth chapters contain the original research works. These chapters

give a short introduction of the research goals that is followed by the presentation of the results

and discussion. In the fourth chapter a single semiconductor oxide, WO3 is investigated in

its different structural and crystal forms. The effect of synthesis conditions and material

properties is presented for the visible photocatalytic activities of the materials. In the fifth

chapter a ternary hybrid structures containing Cu2O, TiO2 and Ag are studied. In this work

the effect of Ag-cocatalysis with respect to the amount of Ag and to the synthesis sequence

are studied. Detailed work is presented for the optical properties of the nanostructures.

Study on the dark adsorption and apparent visible activities of the nanomaterials is also

performed. The sixth chapter focuses on the development of an immobilization procedure

for a TiO2/Cu2O system. The effect of the preparation conditions such as the heat treatment

and chemical composition of the paste is investigated. The characterization of the prepared

thin films are provided along with the apparent visible activities.

And finally the seventh chapter concludes the thesis and summarizes the key findings.

Additionally, improvements and future research investigations are proposed at the end of the

conclusion chapter.



Chapter 2

Theory and Literature Review

2.1 Photocatalysis

2.1.1 Benefits and challenges

Since the discovery of light-induced water-splitting on a TiO2 photoanode presented by

Fujishima and Honda in 1972, the interest in light conversion systems by means of photo-

catalytic processes increased exponentially [8–10]. Photocatalytic processes are attractive

options to decompose harmful chemicals from wastewater because the process takes place at

ambient conditions, it has the potential to be fuelled by solar energy and to fully decompose

contaminants to harmless compounds such as water or CO2. Moreover, the oxygen need of

the process can be conveniently supplied from air [9].

The early research works predominantly focused on TiO2 nanostructures since then

several other semiconductor materials (ZnO, WO3, Fe2O3, SnO2, Cu2O etc) have been

associated with photocatalytic activities, too [11–13]. Nevertheless TiO2 has not lost attention

in photocatalytic material development and became a benchmark material for its numerous

benefits [14, 15]. As a wide band gap semiconductor oxide (Eg ≈ 3.2 eV) it exhibits

excellent stability and chemical resistance which makes it a robust catalyst in versatile
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systems with good retained activity over multiple cycles [14]. Thanks to the suitable position

of its conduction and valence band edges it can facilitate water splitting into oxygen and

hydrogen without applying external voltage [15, 8]. Also its adequate redox potential could

enable the complete mineralization of organic contaminants into CO2 and H2O [16]. Its

application is environmental friendly and economical considering its lack of toxicity, low

cost and widespread availability. Most of these parameters are key requirements for an ideal

photocatalytic system.

However, from the photocatalytic material development viewpoint TiO2 comes with

certain shortcomings, too. Importantly, its light absorption ability is restricted to the UV

range which takes up only 3-5% of the solar spectrum resulting in a rather poor solar light

utilization [14]. On the other hand, as most single materials it could suffer from relatively

short diffusion length (around 100-1000 nm) for holes which may limit its photoefficiency [17,

18]. The penetration depth of photons typically lies in the micrometer range (circa 10 µm)

whereas the diffusion lenght of electrons or holes of most semiconductors ranges from 20 nm

to several hundreds of nm [19]. The mismatch between these two characteristics could cause

recombination of a substantial part of the charge carriers before successful migration to the

catalyst/liquid interphase and participation in photocatalytic reactions. Therefore intensive

research effort has been paid to overcome these challenges and improve on the photocatalytic

character of TiO2 and develop novel systems.

2.1.2 Fundamentals

In principle, in photocatalysis band-to-band promotion of electrons takes place after the

material absorbs the incident light which inevitably results in the production of positive

holes in the valence band [20]. The electronic structure of semiconductors is ideal for light

switched activation due to the width of their forbidden band gap over which electrons can be

excited typically by UV or visible light. After light-activation the photo-generated electrons
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Fig. 2.1 General pathway of photocatalysis showing the generation of light-induced charge
carriers and their possible surface redox reactions

and holes could undergo two distinct pathways [21]. They may migrate to the surface of the

catalyst given the long-enough lifetime of the charge carriers or alternatively they may relax

back to the ground state by recombination via radiative (like fluorescence, phosphorescence)

or non-radiative routes.

Importantly, the photo-generated electrons and holes could participate in reduction or

oxidation reactions with surface-adsorbed species, respectively. Figure 2.1 depicts the general

pathway of activation and subsequent surface reactions of photocatalytic systems. Large

variety of surface redox reactions may be possible which could involve the generation of OH·

radicals or O2- species from water or surface-adsorbed oxygen, respectively. These radicals

may participate in further reactions or directly photodegrade the organic contaminants [16,

22].

However, it is worth mentioning that there is a thermodynamic precondition for gener-

ating certain radicals and participating in redox reactions which lies in the position of the

conduction (CB) and valence band edge (VB) of the catalyst. In fact, the bottom of CB

should be more negative and the upper edge of VB should be more positive with respect to

the standard electrode potential of the electron acceptor or donor system for reduction or



8 Theory and Literature Review

Fig. 2.2 Band structure positions of a few semiconductor materials relative to the normal
hydrogen reference electrode (NHE)

oxidation to occur, respectively [20]. Figure 2.2 shows the approximate band structure of

common semiconductors based on literature data [23, 21]. It can be seen from the position

of the valence and conduction band edges of typical photocatalytic materials that wide band

gap semiconductors such as TiO2 or ZnO could benefit from the possibility to generate both

OH· and O2- radicals while narrow band gap semiconductors such as CdS or Cu2O could

form only one type of radical. On the other hand, due to the wide band gap of TiO2 and ZnO,

they could only be excited by more energetic light radiation like UV light. To benefit from

both systems the formation of semiconductor heterostructures are commonly performed.

When a narrow and a wide band gap semiconductor is coupled, the composite system could

take advantage of improved ligth utilization and interfacial electron transfer between the

semiconductors that could potentially promote photocatalysis. Considerations of the band

structures and thermodynamic conditions are important aspects of photocatalyst material

design. Further discussion on this topic is presented in Section 2.2.2.
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2.1.3 Nanomaterials in photocatalysis

Nanomaterials have gained key importance in photocatalysis. The growing interest in

nanoscale architectures is driven by the unique properties of nanomaterials relative to their

bulk counterparts. Since their size is comparable to the wavelength of photons and to the

length of the electronic wave function, quantum mechanical rules start to dictate the properties

of these structures [24]. In nanoscale, owing to the substantially reduced number of building

constituents distinct energy levels starts to dominate the material character in contrast to

the quasi-continuous energy band structure of bulk materials [25]. This quantization has a

prominent effect on the material properties which will be discussed shortly.

Fig. 2.3 Representation of the energy level distribution for bulk and nano-sized semiconductor
material along with the distinct energy levels of an individual molecule which highlights the
influence of the scale of the material on the width of the forbidden band gap

When the size of semiconducting materials is reduced to nanoscale, the electronic band

structure is affected. Figure 2.3 depicts the effect of energy level separation on the effective

band gap of a general semiconductor. Both theoretical and experimental results confirmed

that size reduction close to the Bohr radius of a material (see Equation 2.1) could lead to

the broadening of the effective band gap between the upper edge of the valence band and

the bottom of the conduction band [26]. This phenomenon in often referred as quantum



10 Theory and Literature Review

confinement effect in the literature. Based on the extent of the band gap widening weak or

strong quantum confinement (QC) effect can be defined. In particular, weak QC effect occurs

at sizes exceeding the Bohr radius (aB) whereas strong QC effect is expressed at sizes smaller

than the aB.

aB =
ε h̄

µ0e2 (2.1)

µ0 =
me ·mh

me +mh
(2.2)

Where ε is the dielectric constant, h̄ is the reduced Planck constant, µ0 is defined as the

fraction of the product of the effective mass of the electron and the hole and the sum of the

effective mass of the electron and the hole in the semiconductor given as (me ·mh)/(me+mh)

and finally e is the charge of the electron [27]. The concept of effective mass was firstly

introduced for the description of the parabolic curvature of the energy spectrum (E(p)) (which

correlates the energy to the quasi-momentum (p)) close to its minimum and maximum

value. And hence the effective mass of the electrons and holes (me and mh) written for

the conduction and valence band (Ec and Ev), respectively can be expressed as shown in

Equation 2.3 and 2.4 [28].

me =
p2

2Ec
(2.3)

mh =− p2

2Ev
(2.4)

This phenomenon is particularly important to light-driven applications such as photo-

catalysis since the optical properties of the nanomaterial defines the longest wavelength from

which the activation of the catalyst could take place and the amount of the irradiated light

that could potentially be harvested.
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Another appealing feature of nanomaterials is the possibility for versatile structure

formulation that could offer increased surface area relative to their bulk counterparts. High

surface area catalyst was shown to lead to increased photoactivities in the past [29].

2.1.4 Influencing factors

It is known that the photocatalytic efficiency is the complex functions of many parame-

ters [20]. The material properties such as the structural and optical characteristics along with

the operation conditions of the photocatalytic reaction could both play an important role

in the overall photodegradation efficiency [9]. In this section, some of the common factors

will be reviewed starting the discussion with the material characteristics followed by the

operating conditions.

It has been generally accepted that structural properties such as the morphology and the

crystalline phase of the nanostructures could have a profound effect on the photocatalytic

activity. Smaller nanocrystals may exhibit higher surface area that was shown to typically

enhance the photoactivity. Also, the shape and the exposed crystal facets of the nanomaterials

was linked to the effectiveness of charge transport and to the adsorption properties of

the material towards reactant molecules which could greatly influence the photoactivity.

Moreover, the crystallinity and the number of microstrains and defect sites in the material was

found to impact the e–/h+ recombination which has a reversed effect on the photoactivity [30].

In line with this, high surface area mesoporous TiO2 nanofibers were prepared by Zhang

et al. that exhibited superior photoactivity over P25 nanoparticles towards Rhodamin B.

The authors reported that the TiO2 nanofibers could be characterized with high surface area,

faster electron transport, longer-lived charges and higher dye adsorption relative to P25. The

enhanced photocatalytic activity was attributed to the benefits of these factors [31]. Similarly,

other high surface area nanostructures such as CdTe quantum dot decorated ZnO nanowires
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and hierarchical nanostructures such as hollow sphere WO3 were shown to exhibit improved

photocatalytic activities [32, 29].

Morphology-dependent photocatalytic activity was noted by Ho et al. who prepared cubic

Cu2O with distinct morphologies of cubic, octahedral and hexapod shapes. It was found

that the various morphologies exhibited significantly different photoactivities. Octahedral

Cu2O possessed the highest whereas cubic shaped Cu2O nanomaterials showed the lowest

photoactivity. The authors suggested that the {111} crystal facet which dominated the

octahedral but not the cubic morphology could cause such a prominent difference in the

photoactivity of Cu2O. It was also noted that the {111} crystal facet favoured the adsorption

of negatively charged dye molecules which could lead to the promoted photoactivity [33].

By varying the synthesis conditions Cui et al. prepared a low-defected C3N4 photocatalyst

with 6-times higher photocatalytic hydrogen evolution efficiency than a reference C3N4

nanostructure. The authors revealed that the different synthetic approach provided more

structural control and resulted in a nanostructure with high surface area, fewer defects and

ordered crystallinity [34].

Beside structural characters, the optical property of nanomaterials is highly relevant to

the photocatalytic activity. With respect to the light utilization, the width of the forbidden

band gap defines the threshold of lowest energy incident photons that could activate the

photocatalyst. Additionally, nanomaterials with direct electron transition over the band gap

typically possess high absorption coefficient that increases the probability of efficient light

absorption [21]. However, in this type of semiconductors not only the excitation of electrons

is likely to take place but the recombination of the photo-induced charges as well. As the

diffusion of charge carriers is limited in most semiconductors the high light absorption ability

in the subsurface areas could promote the photoactivity [20, 35].

It is also known that by varying the operation conditions the effectiveness of the photocat-

alytic material can be altered. For example, it was shown that a Cu2O thin film in the absence
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of H2O2 exhibited only minimal photocatalytic activity while the same film in the presence

of H2O2 could considerably improve the photoefficiency of methyl orange degradation. The

enhancement of the photobleaching reaction was explained by the role of H2O2 as an electron

acceptor agent which could hinder the fast electron/hole recombination of the Cu2O thin

film [36].

To optimize the performance of the photocatalytic system Byrappa et al. investigated the

effect of the solution pH, the reactant and photocatalyst concentration and finally the effect of

the temperature on the photocatalytic activity of ZnO nanocrystals towards Rhodamin B. It

was found that high Rhodamin B dye concentrations led to decreasing photoefficiency which

was explained by the reduced path length of the incident photons at higher dye concentrations.

The effect of the ZnO loading was found to drop dramatically beyond the optimal level which

could be caused by increased light scattering. The photobleaching efficiency was found

to reach a minimum at pH 7 whereas more acidic and alkaline conditions increased the

photoactivity considerably. The authors attributed the increased degradation rate to the

facilitated radical formation at both higher and lower pH values. Increasing temperature

was found to promote photocatalysis which was explained by the mitigation of electron/hole

recombination [37].

Also other factors such as the light characteristics and various reactor designs could affect

the photoactivity which is not detailed further in this thesis [9].

2.2 Material development techniques

2.2.1 Doping

The desire for developing efficient photo-response catalysts has been the subject of intensive

research since decades. However, the exclusive UV activity of photocatalyst such as TiO2 or

ZnO practically limits their application. Various approaches aiming to overcome this limita-
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tion were proposed for extending the light absorption to the Vis range. Among others, doping

is one of the techniques which enables the band structure engineering of semiconductors.

Although doping has been carried out with various semiconductor oxides (e.g. ZnO) the

most extensive research in the field still belongs to TiO2 therefore in this thesis we primarily

focused on TiO2 to discuss doping processes.

Doping is associated with heteroatom introduction into the crystal lattice in the effort to

engineer the band gap and enhance photoactivity. In a special situation when similar effects

are achieved but without external heteroatom introduction the process is often referred as

self-doping [38]. These modulations ultimately alters the local symmetry of the crystals

and changes the character of the intrinsic semiconductor. Figure 2.4 highlights the different

possible routes for heteroatom incorporation into a host lattice. Dopants may be incorporated

into the crystal lattice by means of substitution or interstitial occupation [39]. In the former

case the dopant substitutes some of the host cations or anions in the crystal lattice whereas in

the latter case the dopants are located in a lattice site and are able to diffuse throughout the

lattice. Depending on the homo-valence or hetero-valence nature of the dopant additional

ions or vacancies may be formed in the lattice as shown in Figure 2.4 a) and d). The material

properties such as the band structure, the spatial distribution of the dopant, the level of lattice

distortion and the amount of O-vacancies were shown to be affected by multiple factors such

as the synthetic approach, the ionic radius, concentration and the nature (anionic or cationic)

of the dopant. The photocatalytic activity is believed to be the complex function of these and

similar effects [40].

Metal doping

By incorporating metal cations into the crystal lattice of TiO2 the visible light utilization

can be enhanced. The improvement in the optical properties is typically explained by the

generation of new impurity bands in the forbidden band gap which can be responsible for
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Fig. 2.4 Possible routes of incorporating impurities into the host lattice a) and b) shows
substitution of homo-valence ions with small or large ionic radius, respectively c) and d)
depicts the substitution of hetero-valence ions with interstitial ion or vacancy formation due
to charge balance requirement, respectively and finally e) shows interstitial dopant occupation.
This figure is reproduced from [39] (http://dx.doi.org/10.1039/C3NR00368J) with permission
of The Royal Society of Chemistry

secondary absorption [41]. Both theoretical and experimental results showed that for example

Mn is a capable transition metal to significantly extend the light absorption properties of

TiO2 to the visible region [42]. Among others also Fe-, V-, W- and Cr-doped TiO2 showed

enhanced optical properties relative to undoped TiO2 [43–46]. In agreement with experimen-

tal findings, the theoretical calculation of Khan et al. demonstrated that substitutional or

interstitial W-doping of TiO2 could result in significantly altered optical properties. Their

calculations revealed that substitutional W-doping induces the formation of W 5d states

below the conduction band of TiO2 whereas interstitial W-doping results in the formation

of localized interband 5d states. Owing to this distinct mechanism the optical properties of

substitutional doped TiO2 is more enhanced than the interstitial doped one they found [46].

However, in some cases instead of shifting the light absorption into the visible range,

blue-shift in the optical band gap edge has been noticed when doped with certain metal
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cations. For example, the band gap of a Zr4+-doped TiO2 was shifted towards higher energies

to an extent proportional to the amount of doped Zr4+ [47]. Also, Nb- and Ta-doping of TiO2

was found to increase the energy of the effective band gap as reported by Cimieri et al [48].

Concerning the photoactivity of metal-doped TiO2 both positive and negative outcomes

have been reported. Although the Zr4+-doped TiO2 showed no enhancement in the light

absorption still improved photoactivities were measured for the doped semiconductor oxide.

The authors believe that the Zr4+ sites could enhance the separation efficiency and the lifetime

of the electron-hole pairs by acting as an electron trap [47]. A number of other authors also

support the idea that by trapping one type of charge carriers metal dopants could influence the

lifetime of the counter charge carrier which may enhance the likeliness of successful surface

migration and photocatalytic reactions to take place [49, 46]. Elsewhere, a 10% Ta-doped

TiO2 was shown to have improved photoactivity compared to 10 or 20% V-, Nb- and 20%

Ta-doped TiO2. The photocatalytic test was carried out in a stainless steel batch type reactor

under Ar/O2 atmosphere to degrade gaseous ethanol into CO2 and H2O under visible light

irradiation. The authors suggested that the enhanced properties could be related to the close

matching ionic radius and crystallite size of Ta to that of Ti [48].

Beside the benefits, also detrimental effect on the photoactivity was reported when

doping or codoping TiO2 with certain metal cations [50, 51]. The negative effect was

mostly explained by the generation of the newly formed in-gap states that could act as

recombination centers for the charge carriers which impair the photocatalytic activity. Obata

et al. found that a substitutional Cr-doped TiO2 was deactivated compared to undoped

TiO2 in the photodecomposition reaction of NH3 into H2 and N2 under UV light irradiation.

They argued that due to the charge balance requirement, beside Cr3+ ions Cr6+ could also

be formed in the crystal lattice when substituting Ti4+. These Cr6+ sites were accounted

for the reduced photoactivity by serving as recombination centers for the photo-generated

charges [43]. Elsewhere, a Fe/Zn-codoped TiO2 catalyst has been investigated with 2:1
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Fe:Zn ratio and doping concentration ranging from 0.06 to 1.2% with respect to the Fe

content. It was found that the Fe/Zn-codoping approach worsened the photoactivity of TiO2

towards phenol under UV-Vis light irradiation. Under visible light irradiation up to circa

9% improvement in the photodecomposition has been achieved at a doping concentration of

0.24%. The authors accounted the loss of efficiency in the UV-visible test for the reduced

crystallinity of the samples and highlighted that excess level of metal doping could diminish

the photoactivity [52].

To prepare metal-doped TiO2 different synthesis strategies have been presented. Among

others sol-gel, hydrothermal, solid-state and microemulsion approaches has been explored

for fabricating metal-doped TiO2. The importance of the various methods on the optical

and photocatalytic properties of the materials has been highlighted by some research works.

According to Venkatachalam, although most metal doping processes employ impregnation

and co-precipitation methods, the effectiveness of substitutional doping is low for wet-

impregnation processes [47]. Similar conclusion has been drawn by Obata et al. who

attempted to synthesize Fe-doped TiO2 by both solid-state reaction and impregnation method.

They found that substitutional Fe-doping was only achieved by the former process. As a

consequence, the visible light absorption property of the materials was only improved when

the Fe-doped TiO2 has been prepared via solid-state reaction route. Similarly, the photocat-

alytic activity of the substitutional Fe-doped TiO2 was also superior over the impregnated

catalyst [43].

Non-metal doping

Similarly to metal-doping, non-metal elements are typically incorporated into the crystal

lattice of TiO2 in order to extend its light absorption character into the visible range and

enhance its photoactivity. Non-metal elements such as N, C or S can alter the optical

properties of TiO2 by two distinct mechanism. They could contribute in the narrowing of
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the effective band gap by mixing N, C or S respective 2p or 3p orbitals with O 2p orbitals

which could result in the upward shift of the valence band maximum of TiO2 [53]. Or

alternatively, they may create localized mid-gap states in the forbidden band gap of TiO2 [54,

44]. Depending on several factors such as the type of the dopant or the spatial distribution

of the non-metal element, one of the aforementioned mechanism or the combined effect of

these two are normally responsible for the modulation of the optical properties [55, 56].

Positive effect on the visible light harvesting ability of TiO2 has been demonstrated by

several non-metal dopant incorporations. Yalcin et al. for example reported that the effective

band gap of TiO2 could be reduced to 2.48 eV from 3.20 eV by 1% of substitutional sulphur

doping. The measured band gap of S-doped TiO2 was even smaller than that of the 1%

substitutional N- or interstitial C-doped TiO2 (2.70 and 2.50 eV, respectively) synthesized by

the same author [54]. In another report more modest improvement in the light absorption

abilities was reported by similar non-metal elements. Substitutional C-doping of TiO2

nanotubes was found to only slightly affect the band gap of undoped TiO2 by red-shifting it

to 2.92-2.95 eV [57]. On the contrary, theoretical calculations predicted and experimental

results confirmed that other elements such as fluorine atom could not effectively reduce

the band gap of TiO2 due to the F 2p states being positioned below the valence band of

TiO2 [58, 59].

Some authors accounted the limited success of visible light absorption enhancements

of non-metal doping to the difficulty to synthesize bulk doped TiO2 by substitution. They

believe that the high energy demand for breaking the Ti-O chemical bond and the limited

thermodynamic/kinetic solubility of substitutional dopants in the bulk of the material hinders

further improvement of the material properties [55, 56]. To overcome these difficulties Liu

et al. presented a B,N codoping approach to achieve substitutional doping of TiO2 with

nitrogen by a two-step synthesis approach. Firstly interstitial boron ions were introduced

into the crystal structure by hydrothermal and calcination processes which were believed to
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weaken the Ti-O bond prior to N-doping. In the second step, substitutional N-doping was

achieved in a gaseous ammonia atmosphere. The resulting red catalyst had absorption in the

full Vis range with 1.94 eV energy band edge and was tested in visible light induced water

splitting reactions [56]. Elsewhere an Al-reduced self-doped TiO2 was shown to facilitate

the substitution of guest heteroatoms into the crystal lattice. The oxygen-deficient structure,

which was prepared by reduction, could welcome non-metal elements more easily. Lin et

al. used this technique to synthesize H, N, I and S doped TiO2 with the highest solar light

utilization efficiency of 85%. Moreover, the authors claim that the as-prepared black N-doped

TiO2 is the best performing titania photocatalyst up to date [55].

Although great improvements have been reported when doping with non-metal elements,

some works demonstrated that extended visible light absorption is not always resulted in

enhanced photocatalytic activity. For example Zhou et al. reported that a B,N-codoped

TiO2 showed extended light absorption character which was found to be the function of

the temperature treatment step. High temperate treated samples at 600 and 650 ◦C showed

much improved absorption in the whole visible region which was indicated by their dark

green and black colours as well. Whereas samples treated at 500 and 550 ◦C showed limited

improvement by an add-on shoulder peak in the optical properties. Despite the improved

light absorption, the high temperature treated samples exhibited the lowest photoactivities

both under UV and visible light irradiation among the B,N-codoped TiO2. The reduced

performance was explained by the presence of more abundant oxygen defect states owing

to the higher applied temperature that could act as recombination centers for the charge

carriers [60]. Due to the hetero-valence nature of nitrogen with respect to O atoms, nitrogen

doping has been shown to facilitate the formation of oxygen vacancies in the crystal lattice

yielding a highly defective system [53, 41, 61]. In photocatalytic systems the role of oxygen

vacancies have been associated with both positive and negative effect.
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Self-doping

As the name reflects, self-doping is an intrinsic type of doping without introducing heteroatom

from external source into the crystal structure. Similarly to extrinsic heteroatom doping the

alteration of the electronic character in self-doped semiconductors may be caused by anion or

cation vacancies. For example, in a self-doped TiO2 donor-type O-vacancies are introduced

into the crystal lattice of TiO2 [62]. Whereas in copper-deficient chalcogenide nanocrystals

the generation of cation vacancies leads to the self-doped state [63].

Self-doped TiO2 nanostructures have been presented by different synthesis techniques

including those under harsh and mild conditions. Among techniques employing high tem-

perature, hydrogenation and chemical reduction methods are common techniques. Zuo et

al. used an ethanol-based combustion technique with 2-ethylimidazole at 500 ◦C to produce

blue-coloured self-doped TiO2 [64]. Elsewhere Wang et al. reported an Al-reduction tech-

nique in a tube furnace at temperatures between 400 and 600 ◦C which resulted in dark grey

and black TiO2 [62].

Also, techniques employing milder conditions have been researched with the hope to

fabricate self-doped TiO2. Yin et al. presented a carbon sphere templated sol-gel method

using NaBH4 as reducing agent to synthesize off-white self-doped TiO2 hollow spheres [65].

Others reported a microwave-assisted heating method where ethylene glycol was used

as an environmental friendly and mild reducing agent [66]. Also Zhang et al. used an

electrochemical reduction approach to prepare light grey-coloured Ti3+-doped TiO2 nanotube

arrays [67]. As the lighter colours of the self-doped TiO2 may suggest typically milder

conditions could not achieve as prominent increase in the visible light absorption as the harsh

condition routes.

Regarding the photocatalytic activities of the as-prepared self-doped TiO2 nanostructures,

the generation of Ti3+ states into the crystal lattice is argued by some researchers to induce

fewer structural defects formation in the crystal structure than the traditional heteroatom
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doping strategy. Also the improved photoactivities relative to undoped TiO2 nanoparticles

were explained by the presence of O-vacancy donor states [66, 64]. Yet others believe

that the generated Ti3+ states may mostly act as recombination centers which impair the

photoactivity [62, 55]. These questions are not yet clarified in the literature. Furthermore,

comparing photoactivities across studies are complicated due to the various testing conditions

and apparatus used. Moreover, the reference system is mostly commercial TiO2 nanoparticles

which shows effectively no activity under visible light irradiation and that way it does not

serve as a sensitive scale for the improvements.

Despite these, an especially effective model system has been demonstrated by many

researchers that combines self-doping and non-metal doping strategies of TiO2. Lin et al. for

example achieved substitutional nitrogen doping of a black self-doped TiO2 which could

absorb 85 % of the solar spectrum and was claimed to exhibit superior photocatalytic activity

over all previously reported titania catalysts in H2 generation up to date [55]. Elsewhere

Yang et al. presented a very similar method to prepare S-doped black TiO2. In his method

oxygen-deficient TiO2 was achieved by an Al-reduction method which was then heated at

600 ◦C in H2S atmosphere [68]. They also reported rapid H2 evolution in the photocatalytic

test. Both authors attributed the excellent photoactivities to the mixed doping strategy where

the nonmetal heteroatoms could readily occupy the abundant oxygen vacancies generated in

the first step of the process. This process not only resulted in narrowed band gaps but also

reduced the number of recombination centers in the TiO2 in favour of photocatalysis they

argued [55, 68].

Besides TiO2, for example self-doped copper chalcogenide nanocrystals has been re-

ported, too [63, 69]. Interestingly, researchers found that copper cation vacancies arising

from the copper-deficient structure could behave as free-moving holes and when at high

concentration these structures exhibit increasing plasmonic resonance effect similarly to

noble metals (which will be discussed under Section 2.2.3). This unique character was
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firstly associated with a Cu2-xS nanocrystal in 2009 by Zhao et al [38]. Since then Cu2-xS

and similar structures received growing attention. And although stochiometric Cu2S has

been already investigated in photocatalytic reactions, its self-doped form has been rarely

studied in photocatalysis [70, 71]. One of the reports is from Chen et al. who fabricated a

Cu2-xS/graphene oxide nanocomposite with a Cu:S ratio of 7:4 that showed photocatalytic

activity under solar and visible light irradiation [72].

2.2.2 Semiconductor heterostructure formation

Beside doping, another approach to address the shortcomings of TiO2 is to form semicon-

ductor heterostructures. The formation of hybrid semiconductor nanostructures has attracted

widespread interest due to the potential to prepare highly effective visible-response photo-

catalytic systems [23]. One attractive feature of such a system is the possibility of effective

charge carrier separation which could ensure improved utilization of the photo-generated

charges.

Band alignment in heterostructures

Based on the band structure of the materials a number of authors have adopted the classifica-

tion of semiconductor heterostructures into three groups with some variations [23, 2, 73]. A

schematic representation of these groups can be viewed in Figure 2.5.

Type I band alignment shown in Figure 2.5 a) is satisfied when both the valence (VB)

and conduction band (CB) edges of one of the semiconductors lie within the respective

band edges of the other semiconductor. This is also called straddling configuration in the

literature [73]. At this band alignment both the photo-generated electrons and holes would

thermodynamically favour to accumulate in the nested narrower band gap semiconductor

therefore no electron-hole pair separation would take place. In other words, type I band

alignment could support charge carrier recombination which is typically not desired for
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Fig. 2.5 Schematic representation of the semiconductor heterostructure classification based
on the band structure a) depicts type I band alignment b) shows quasi-type II and c) represents
type II configuration between two semiconductor materials

photocatalytic processes [73]. Examples for type I arrangement would include CdSe/CdS,

ZnS/CdSe or CuO/TiO2 heterojunctions [74].

In the quasi-type II arrangement shown in Figure 2.5 b) either the CB or VB of the two

semiconductors are closely located allowing delocalization of one type of charge carrier while

the other band confines the counter charge carrier due to the different band positions [2]. In

this set-up the electron/hole relaxation could be delayed owing to the delocalized nature of one

of the charge carriers. Hence converting type I heterostructures to type II may be beneficial

with respect to e-/h+ recombination. An experimental example for such a conversion was

presented by Wu et al. who synthesized CdSe@CdS nanorods with an original type I band

alignment which was later tuned to quasi-type II alignment. They achieved the conversion

by adjusting the size of the CdSe quantum dots and the thickness of the CdS nanorods that

ultimately altered the optical properties of the semiconductors. Tuning the band structures

was possible because of the large difference between the valence band edge positions and the

small offset between the conduction band edges of CdSe and CdS [75].
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The third group is the type II band alignment (in Figure 2.5 c)), also referred as staggered

configuration. At this occasion the VB and CB of one of the semiconductors is located at

less positive and more negative energies with respect to the other, respectively. Hence this

alignment could result in preferential electron and hole accumulation on the CB and VB sites

of different semiconductors, respectively. As a result of charge separation the inhibition of

fast recombination of the charge carriers could take place in a type II heterojunction that

would expectedly increase the photoactivity. For this potential a special interest has been

paid to type II systems. Various semiconductor combinations provide with type II alignments

such as Cu2O/g-C3N4, TiO2/Cu2O, TiO2/WO3 ...etc [76].

Charge separation efficiency

Beyond meeting the thermodynamic condition for e–/h+ separation the structural properties

of the heterostructures could have a profound effect on how efficiently the charge carrier

separation may take place through a heterojunction [73, 77]. The different synthesis tech-

niques and approaches could have a significant role in providing with different structural

configurations influencing the morphology, surface and interphase area, the number of defect

states, crystal structure of the semiconductors and other similar material properties men-

tioned in Section 2.1.4 and 2.1.3. For example it was demonstrated that typically physical

mixtures of specific heterostructures are less effective photocatalyst than a nanocomposite

material. In agreement with this, Chen et al. found that the photocatalytic activities of

a mechanically mixed g-C3N4-Cu2O material was lowered compared to the same hybrid

structure that was synthesized by one-pot reduction method. It was concluded that thanks to

the more intimate contact the nanocomposite structure exhibited more enhanced preformance

in photocatalysis [76].

Zheng et al. highlights that the compatibility of crystal phases of the different materials

is an important factor in effective heterostructure formation [78]. Closely matching lattice
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parameters could support heterostructure formation whereas in the alternative event the

heterointerphase formation may need to be aided by auxiliary materials such as surfactants

or enhanced by linker molecules. It was also suggested by the same author that increasing

lattice mismatch at interphases may result in more abundant defect sites where the charge

carriers could possibly recombine.

In accordance with this nanosized alloy formation in the interphase region of a ZnO-CdS

core/shell nanocomposite was found to affect the number of defect sites in the interphase

which was ascribed to the significantly enhanced photocatalytic activity of the material [79].

The authors believe that the CdZnS alloy could play an important role in the core/shell

interphase by suppressing the lattice mismatch between the semiconductor layers. The ZnO-

CdS core/shell nanocomposite prepared by chemical vapour deposition exhibited superior

performance in photocatalytic H2 generation over TiO2-CdS core/shell nanocomposite where

no such alloy formation was noticed in the interphase. They argue that the fewer defects

could improve the charge carrier transfer efficiency which resulted in the high photoactivity.

Elsewhere Liu et al. reported a 3-mercaptopropionic acid aided hydrothermal synthesis of a

Cu2O nanocrystal/TiO2 nanobelt heterostructure with close interaction [80]. The bifunctional

acid could act as a linker molecule that could ease the interphase formation between Cu2O

and TiO2. The highest visible photocatalytic activity measured in a methyl orange solution

was presented by the 6% Cu2O/TiO2 nanobelts overperforming both bare Cu2O and TiO2.

As a means of enhancing interaction between semiconductor nanocrystals and improving

the crystallinity of the material, calcination is often performed especially after wet-chemical

processes. The benefit of thermal treatment on the photoactivity was demonstrated in a

number of cases.

Huo et al. for instance synthesized a CdS-TiO2 hybrid structure that showed high activity

and stability in the photocatalytic degradation of 4-chlorophenol [81]. The calcination of

the as-prepared nanomaterials was performed under supercritical condition to ensure strong
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interaction between the semiconductor nanocrystals and to retain high surface area at the

same time. Elsewhere, Mioduska et al. found that higher calcination temperatures between

500 and 800 ◦C increased the photoactivity of a WO3/TiO2 nanocomposite by a factor of

1.5 with respect to the 400 ◦C treated sample. The authors believe that the crystallinity of

the samples was improved by the elevated temperature treatment that could lead to higher

performance in the photocatalytic decomposition of phenol [82].

Also fabricating core-shell materials is considered as a promising way to enhance contact

area between the semiconductors which could promote the charge separation efficiency in

type II heterojunctions [83]. Semiconductor thin films have been synthesized around the core

materials by different methods including various deposition techniques (chemical vapour

deposition, atomic layer deposition, sputter deposition), sol-gel or hydrolysis approaches.

For example, Su et al. coated uniformly octahedral Cu2O nanoparticles with TiO2 film by a

hydrolysis method [84]. Myung et al. deposited CdS shell on pre-grown ZnO nanowires by

chemical vapour deposition technique with controlled shell thickness [79]. Others presented

a method to fabricate WO3/TiO2 core/shell nanowires by the combination of sputtering

deposition and thermal oxidation [85]. Elsewhere, WO3/TiO2 core/shell nanofibers were

prepared by electrospinning and atomic layer deposition techniques [86]. In certain cases

it was reported that the core/shell configuration showed superior performance over single

materials and other nanocomposite structures. Chu et al. presented a Cu2O/TiO2 core/shell

material that overperformed both Cu2O/TiO2 nanocomposite and physically mixed Cu2O

and TiO2. The authors attributed the high photocatalytic activity towards methyl orange to

the enhanced interphase and close contact of the core/shell nanocomposite [87].

Photocorrosion

Although narrow band gap semiconductors such as Cu2O (2.4 eV), CdS (2.4 eV) or Ag2O

(2.39 eV) could act as effective visible photosensitizers and by rational material design they
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may also suppress fast charge carrier recombination, they often suffer from photocorrosion

over the course of photodecomposition [77, 81, 88]. The poor stability could significantly

affect their activity over repeated cycle of use. Therefore, different approaches has been

trialed to overcome this shortcoming.

Liu et al. presented that partial coverage of Cu2O nanospheres with TiO2 nanoislands

could effectivily enhance the stability of Cu2O over multiple cycles. The heterojunction was

prepared by a two-step method including a hydrolyzation and a solvent-thermal step. They

proposed that the improved stability could be accounted for the partially covered surface

which allowed the holes accumulated on the VB of Cu2O to react with water [89].

Elsewhere, atomic layer deposition (ALD) was employed to deposit a conformal TiO2

layer over a CdS quantum dot decorated TiO2 nanorod arrays [90]. It was reported that the

photodecomposition rate of methyl orange was enhanced by the deposition of TiO2 overlayer

compared to the bare heterojunction. The ALD layer was also shown to serve as protection

against photocorrosion of CdS. The authors suggest that the passivation of the CdS surface

and the more enhanced charge separation provided by the TiO2 thin film could play role in

the improved stability. Independently, other researchers also found that the passivation of

CdS surface by one layer of ALD-deposited TiO2 or Al2O3 thin film enhanced its stability

by the factor of 14 [91].

Improved stability was also reported by Huo et al. who investigated a CdS-TiO2 photo-

catalyst prepared by supercritical in-situ sulfurization reaction of doped TiO2. The authors

believe that the inherent interaction between the CdS and TiO2 nanocrystals could protect

CdS from serious photocorrosion [81].

2.2.3 Modifications with non-semiconductors

The third main approach to improve the efficiency of solar absorption and/or the photoactivity

of semiconductor materials is the modification with non-semiconductor materials or elements.
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This category could include e.g. surface modification with metal elements, visible active

dyes or carbon-related material.

Modification with metals

Metals alone are typically not great photocatalysts but as surface deposits on semiconductor

materials they were demonstrated to be able to improve the photoactivity [92]. The en-

hancement of photocatalytic processes may stem from improved light absorption by surface

plasmon resonance effect and/or facilitated charge separation.

Surface plasmon resonance effect (SPR) of metal nanoparticles arises from the collective

oscillation of surface electrons when they interact with light [93]. The SPR phenomenon

is based on the matching frequency of incident photons and oscillating electrons which is

characteristic for the particular metallic element. It is well-established that beyond the nature

of the metal, its size and geometry also significantly affects the intensity and wavelength

of SPR [94]. The improved light absorption properties induced by plasmonic metals were

typically attributed to the so-called near-field enhancement phenomenon and to increased

light scattering [93]. In the former case, the generated surface plasmons could induce local

electric field in the proximity of the metal nanoparticles that concentrate the light flux and may

create a local ”hot spot” [94]. Thanks to these high intensity spots, the generation of photo-

induced charges is facilitated locally. Additionally, the improved light scattering character of

plasmonic photocatalyst could enhance the light utilization efficiency by reflecting some of

the unabsorbed portion of the light back to the catalyst surface [93].

In order to understand the characteristics of charge separation induced by plasmonic metal

nanoparticles, we need to consider the semiconductor-metal interphase that is formed when a

metal is brought in contact with a semiconductor. To describe the underlying mechanism of

interfacial electron transfer between metal and semiconductor, the concept of work function

(written in Equation 2.5) is generally introduced.
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φ = EF −EI (2.5)

where EF is the Fermi energy and EI is the ionization energy. Considering a p-type

semiconductor (S) the relationship between the work function (φ ) of the semiconductor and

the metal (M) should satisfy φM < φS in order to electron transfer to occur from the metal to

the semiconductor until thermodynamic equilibrium is reached [95, 96]. For example Cu2O

(φ : ca. 5.0 eV) and Ag (φ : 4.7 eV) fulfills the above condition, therefore it is expected that

the Fermi level of Cu2O is upward shifted to establish a new equilibrium [97, 98]. This way

the projection of visible light excited electrons from the conduction band of Cu2O to metallic

Ag became favoured which could limit fast charge recombination and accordingly enhance

photocatalysis.

Similarly when an n-type semiconductor and a metal gets in contact and φM > φS holds

true then electron flow from the semiconductor to the metal may occur. For example at a

TiO2 (φ : ca. 4.6-4.7 eV) and Pt (φ : 5.4-5.6 eV) interphase the electron transfer is favored as

described above. In contrast, at a TiO2-Ag interphase where the Ag (φ : 4.7 eV) represents

close values for the work function of TiO2 no significant electron transfer would be expected

to take place between the two materials. This was previously supported by experimental

findings as well when the photocatalytic activities of a Pt- (φ : 5.4-5.6 eV) and Ag-modified

TiO2 was studied [99]. The authors found that Ag had only minor effect on the overall

photocatalytic performance whereas the Pt notably enhanced the photoactivity of TiO2. The

better performance of TiO2/Pt catalyst was attributed to the more beneficial work potentials

of Pt relative to TiO2 that could promote effective charge separation.

Plasmonic photocatalysts with different morphologies can be fabricated by various

methods including chemical reduction and photoreduction routes. A range of noble metals

including Ag, Au, Pt or Pd has been already coupled with various semiconductors in the

literature and utilized as plasmonic photocatalysts.
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Fig. 2.6 Schematic representation of the work function values for an n-type semiconductor
(TiO2), a p-type semiconductor (Cu2O) and for a metal (Ag)

A chemical reduction technique has been employed by Dinesh et al. who used function-

alized ZnO nanorods to prepare ZnO/Ag core/shell nanostructures. Significant visible light

absorption has been shown by the core/shell nanomaterials thanks to the electronic coupling

of ZnO and Ag. The photocatalytic studies revealed that the hybrid ZnO/Ag nanorods could

faster eliminate the R6G dye compared to ZnO nanorods [100]. Elsewhere, the chemical

reduction of Ag nanoparticles was performed in a successive ionic layer adsorption reac-

tion (SILAR) onto WO3-loaded TiO2 nanowires. The enhanced photocatalytic activity of

the ternary nanostructure over TiO2 nanowires was attributed to the extended visible light

absorption and the effective charge separation. Although it was noted that excessive Ag

coverage hindered the photoactivity probably due to the increased reflection of the metal

nanoparticles and to the reduced level of methyl orange adsorption [101].

Having employed a photoreduction approach Qamar et al. presented the synthesis

of Au- and Pt-WO3 nanostructures. The authors found that the Pt-deposition onto WO3

beneficially affected the photoactivity while the Au modification reduced its performance.
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The negative effect on the photodegradation of methyl orange was accounted for the different

size distribution of 2-4 nm and 10-15 nm of Pt and Au noble metals, respectively [12].

Beside deposition techniques, direct mixing of metal and semiconductor nanostructures

has been presented as well. Pan et al. for example separately synthesized 3-5 nm small

Au nanoparticles functionalized with oleylamine and Cu2O nanowires protected with an

o-anisidine layer by a chemical reduction approach and hydrothermal reaction, respectively.

In the final step the pre-synthesized and functionalized materials were ultrasonically treated

in chloroform to prepare Cu2O-Au nanostructures. The light absorption of bare Cu2O was

improved by the Au nanoparticles that exhibited a plasmon resonance peak at around 517 nm.

The coupled Cu2O-Au hybrid structures were also shown to exhibited superior photoactivity

over Cu2O in the degradation of methylene blue [13].

Beyond the benefits of plasmonic metals, some research works highlighted that the

metal deposites might not always show excellent stability over multiple cycle of use in

photocatalytic reaction [93]. Also some authors mentioned the increasing price of using

noble metals and the possibility of undesired secondary pollution as challenges of plasmonic

photocatalysis [101].

Dye sensitization

Another strategy to extend the light absorption of semiconductors further to the visible range

is to couple them with visible-response dyes [102]. In a semiconductor-dye arrangement,

the dye can effectively absorb the incident photons and act as a photosensitizer to generate

the electron-hole pairs. In the event of adequate band alignment between the dye and the

semiconductor the separation of charge carriers could be established by transferring the

photo-generated electrons from the CB of the dye to the CB of the semiconductor [103].

Then the injected electrons can be utilized in surface reactions as it is depicted in Figure 2.7.

Same Figure also shows that as an alternative route the dye may go through degradation
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Fig. 2.7 Schematic representation of the charge transfer mechanism between a dye and a
semiconductor in a dye sensitized photocatalyst. This figure is reproduced from [103] with
permission of Springer.

processes in the presence of oxygen which is an undesired process. Despite this challenge,

this mechanism has gained widespread utilization in dye-sensitized solar cells and also has

been researched for photocatalytic application.

Varius dyes has been coupled with semiconductors including those of natural and syn-

thetic origins. For example, Wahyuningsih et al. prepared a natural anthocyanin dye sensitized

TiO2 photocatalytic system by adsorbing the dye onto the semiconductor surface. The au-

thors highlighted that the benefit of this system was the non-toxic nature of the dye and the

ability to completely photomineralize the target organics, namely Rhodamine B. However,

it was also noted that the dye was inactivated in the first run of the photocatalytic process

therefore TiO2 needed to be retreated with the dye for further use [104]. Elsewhere, TiO2

thin film was sensitized by the natural dye extract of Picramnia sellowii and tested for the

photocatalytic treatment of real waste water. It was reported that the natural dye could cover

the entire visible spectrum. Furthermore, the total organic carbon measurements revealed

that the senzitised thin film was more efficient relative to reference TiO2 thin film. It was
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also found that the recycling of the sensitized thin film was possible up to five cycles without

major loss of photoactivity [105].

Beside TiO2 other complex systems have been coupled with dyes, too. Jin et al. pre-

sented an eosin Y-sensitized CuO/TiO2 system for photocatalytic hydrogen evolution under

visible light irradiation in the presence of diethanolamine that acted as a sacrificial elec-

tron donor [106]. It was found that the complex photocatalytic system overperformed both

CuO/TiO2 and a Rhodamine B-sensitized CuO/TiO2 catalyst. The authors attributed the

enhanced photoactivity to the Eosin Y dye that significantly improved the light absorbance of

CuO/TiO2 and could transfer electrons to the CB of TiO2 and finally to the CB of CuO. The

dye sensitized CuO/TiO2 system has also demonstrated good stability over several tens of

hours. Elsewhere a range of different dyes including thionine, eosin Y, methylene blue ...etc

has been employed to sensitize TiO2 and TiO2/Pt systems. The authors found that the eosin

Y-sensitized TiO2/Pt produced the highest amount of hydrogen over visible light irradiation

in the presence of electron donors. It was also concluded that for the sake of catalyst stability

the photocatalytic system should be freed from oxygen [107]. Similarly a cyanoacrylic acid

synthetic dye/TiO2/Pt photocatalyst has been presented by Kang et al.. The authors believe

that the organic dye derivatives could establish strong adsorption to the TiO2 surface via

chemical bonding thanks to the -COOH side chains. The photocatalytic H2 generation was

performed under nitrogen atmosphere in the presence of electron donors. It was found that

the functional groups of the dye critically affected the effeciency. In fact, it was concluded

that hydrophilic side groups were more beneficial for the photocatalytic hydrogen generation

over hydrophobic ones [108].

Modification with inorganic carbon materials

Inorganic carbon-semiconductor nanocomposites has attracted considerable attention for

their benefits to improving the photocatalytic activities of semiconductor nanomaterials. It
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was revealed that using for example graphene, graphene oxide (GO), reduced graphene oxide

(rGO) or carbon nanotubes (CNTs) in conjunction with other semiconductors or composite

structures could effectively improve the material properties that may include retarded elec-

tron/hole recombination, improved stability or hindered aggregation of the nanocrystals. It

has been recognized that these carbon related materials could mediate electrons and holes

effectively which could promote interfacial charge transfer and may enhance the lifetime of

the charge carriers [5]. This mechanism could be especially adventageous in semiconductors

with limited charge carrier mobility and short diffusion length of charges [23].

Jin et al. reported that a Cu-TiO2 structure that was homogeneously distributed on a

graphene nanosheet could significantly enhance both the optical and visible photocatalytic

properties of TiO2. The authors suggested that the graphene sheet could facilitate the

adsorption of methylene blue to the catalyst surface via π −π stacking between the dye

and the graphene sheet which could promote the photoactivity. Also the inhibited charge

recombination by Cu and graphene was accounted for the better photoactivity [109].

Some researchers argue that the relatively few functional groups on the surface of

graphene makes it difficult to utilize it in nanocomposite material formation. As alternative

materials graphene oxide and reduced graphene oxide are commonly used. Kim et al. for

example coupled Cu2O with GO by an electrochemical deposition technique and tested the

photoelectrochemical performance of the material. The amount of GO was varied in the

composite thin film between 1% and 30%. It was found that the 1% GO-Cu2O film could

achieve the highest activity that was ascribed to its reduced band gap of 1.94 eV which was

the smallest among the prepared thin films [110].

Xu et al. synthesized a Ag-Cu2O/rGO hybrid material by a one-pot and two-stage

reduction method. The authors found that the absorption edge of the Ag-Cu2O could be

further red-shifted by coupling with rGO which resulted in the best visible light utilization

among single and binary hybrid reference materials. The highest photoactivity measured in
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the photobleaching reaction of methyl orange also belonged to the ternary hybrid material.

The enhanced performance was explained by the improved charge separation and better light

harvesting properties of Ag-Cu2O/rGO. Additionally it was also noted that coupling with

rGO could significantly improve the stability of Ag-Cu2O possibly through encapsulation

or protective layer formation over the nanocrystals that inhibited oxidative degradation

of Cu2O [96]. Elsewhere, Vinoth et al. synthesized rGO with AgI-mesoTiO2 composite

material in a sonochemical procedure. The authors found that the presence of rGO reduced

the optical band gap of the nanocomposite from 2.80 to 2.65 eV. It was suggested that the

chemical bonding between rGO and TiO2 could lead to narrowed band gap. The authors

also reported that the visible photoactivity of the ternary hybrid material toward methyl

orange was enhanced by 60% when compared to AgI-mesoTiO2. The good methyl orange

adsorption, the reduced electron/hole recombination and the fast charge carrier transport

properties of rGO was accounted for the improved photoactivity [111].

Carbon nanotubes (CNTs) are also an attractive option to fabricate nanocomposite

materials with semiconductors thanks to their unique tubular structure, enhanced surface

area and good electron transport properties. In the literature, carbon nanotubes with single-

(SWCNTs) and multiwall (MWCNTs) has been already synthesized and coupled with other

materials for photocatalytic application. For example single-walled CNTs has been linked to

a ZnO-TiO2 heterostructure by Liu et al. in a microwave-assisted chemical reaction. The

as-prepared ternary nanostructure was tested in the photocatalytic reduction of Cr(VI) under

UV light. The authors found that the 3 weight % CNTs containing nancostructure exhibited

the highest performance that was attributed to the improved light absorption and electron-hole

separation of the ternary hybrid structures [112]. Natarajan et al. fabricated multi-walled

CNTs/TNTs nanocomposites by a hydrothermal method in different weigth ratios. They

reported that the nanocomposites exhibited increased light absorption in the visible range.

The narrowing of their band gap was more pronounced for nanocomposites with higher
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MW-CNTs weight percentages. It was also found that the photodegradation of RhB-6G dye

under UV light was enhanced by the presence of carbon nanotubes with highest degradation

rate achieved by 10% MWCNTs/TNTs. This was explained by the enhanced dye adsorption,

increased surface area and porous structure of the nanotubes along with the reduced charge

recombination across the heterojunction which was proved by photoluminescence [113].

2.3 Immobilization techniques

In the past decades, immobilization of powder photocatalysts has gained increasing research

interest in circumventing difficulties associated with powder photocatalyst utilization in

potential environmental remediation technologies.

Although nano-sized powder catalysts are typically characterized of high surface area

and good mass transfer character between the liquid and solid phase, they are accounted for

complex post-treatment recovery, increased danger of leaching out and health and safety

concerns of breathing in fine powders when working with loose nanomaterials [114]. Also

the light utilization efficiency of suspended powders could be limited by increased turbidity in

liquid phase [14, 115]. To aid complete removal of suspended photocatalyst, the combination

of different techniques may be required such as sedimentation and high performance filtration

processes. However, fine powders could require long hours to sediment along with big

capacity tanks and expensive filtration equipments which considerably increase both the

capital and running cost of the process [9].

In this regard, immobilized photocatalysts are considered to be a promising option to

facilitate the post-treatment separation process, minimize the loss of photocatalyst and ensure

safer handling of the catalytic material [116]. Also with carefully designed and selected

support matrices enhanced light utilization could be achieved as well.

Immobilization of photocatalyst has been achieved on various type of solid materials.

For example glass, polymer, ceramics, silica, metal substrates possessing various shapes
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like sheets, beads, fibers, fiber mats or membranes have been already tested to support

photocatalytic materials [117, 118]. In some cases, the direct coverage of reactor walls or

other reactor specific parts have been also demonstrated [119]. Ideally support materials

are desired to be chemically and mechanically stable, to provide high surface area and

strong attachment of the catalyst and to retain or further improve the photocatalytic activity.

However, in reality meeting all these conditions is very challenging.

Various substrates were found to exhibit adequate inertness and chemical stability over

the photocatalytic process including ceramics, glass, metal or certain polymeric supports.

However, depending on the operation conditions the stability of these substrates could be

significantly affected. It was noted by Geltmeyer et al. that under non-harsh conditions

polyamide 6 membrane could be an ideal economical support material, while under highly

acidic conditions a silica based nanofibrous membrane could be effectively utilized [115].

In another study, Chin et al. compared the stability of various polymeric membranes under

UV light irradiation and oxidative conditions. They found that polytetrafluoroethylene and

polyvinylidene fluoride polymers exhibited good stability under these conditions whereas

polyacrylonitrile was found to be instable [120].

By immobilizing photocatalyst the mass transfer becomes limited as the contact area of the

catalyst typically gets reduced. To mitigate these difficulties substrates with increased surface

area could be used to support the photocatalyst such as nanofibrous mats or membranes. For

example, Geltmeyer et al. fabricated silica and polyamide 6 nanofibrous membranes that

were loaded with TiO2 nanoparticles for water treatment application to benefit from the high

surface area and the porosity of the support materials. The authors reported that the prepared

membranes exhibited high photoactivity towards methylene blue and isoproturon thanks to

the optimized TiO2 loading strategy [115]. Elsewhere a flexible fiberglass cloth was used

by Tasbihi et al. and his co-workers to provide high surface area support for commercially

available TiO2 nanoparticles. They used a ”binder”-sol to firmly attach the TiO2 powders
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to the flexible surface by a dip-coating method. The prepared fiberglass cloth showed high

potential to effectively degrade toluene in gaseous phase [118].

Beside the surface area, the light utilization efficiency is also an important factor for

photochemical application. To maximize light harvesting, floating photocatalyst has been

developed and tested for water remediation application [14]. The low relative density of the

support material could allow the catalyst to float in the liquid medium resulting in better

exposure to light and oxygen. This could represent a comparative advantage over suspended

powder catalyst that generally exhibit significant light scattering when suspended in water. It

is also worth noting that only a fraction of the light reaches the deeper regions of water due

to light attenuation [121]. In contrast, buoyant photocatalyst could effectively utilize light

and effectively target surface accumulated contaminations such as oil spills. Magalhaes et al.

has reported a floating photocatalyst by preparing TiO2/low-density polyethylene (LDPE)

composite beads. The photocatalytic activity was performed in methylene blue solution

under restricted conditions including the absence of agitation and/or oxygenation. Under

identical conditions, the immobilized catalyst showed significantly higher efficiency than P25

powder catalyst. The authors proposed that floating catalyst could be directly utilized in the

treatment of contaminated wastewater reservoirs eliminating the need of special equipments

providing stirring and oxygenation. The improved efficiency of the immobilized catalyst was

attributed to the better light and oxygen utilization [122]. Others used polypropylene fabric or

polystyrene beads to prepare buoyant TiO2 and ZnO photocatalyst, respectively [121, 123].

To retain high light harvesting ability of the photoactive materials, transparent solid

supports can be also used such as borosilicate, quartz, Pyrex or conductive glasses. Glass

beads and sheets have been extensively used to support various photocatalysts [124]. For

example, a TiO2 film/Cu2O microgrid has been fabricated by Zhang and his co-workers on a

quartz substrate [125]. Others used a microscope slide to deposit Cu2O thin film [36]. Wang
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et al. prepared porous glass beads supported TiO2 photocatalyst for the photobleaching of

methyl orange with high efficiency [126].

Immobilization of various semiconductor photocatalyst can be achieved by two main

approaches, namely by in-situ synthesis/deposition of the active photocatalyst or by the direct

immobilization of powder catalyst to the substrate surface.

2.3.1 In-situ synthesis coating techniques

One approach to fabricate immobilized photocatalysts is the in-situ synthesis of the pho-

toactive compound on the support material. These synthesis processes may be gaseous- or

liquid-phase approaches. Among the gaseous-phase techniques physical (PVD) and chemical

vapour deposition (CVD) methods are commonly utilized such as magnetron sputtering and

atomic layer deposition (ALD), respectively. Whereas typical liquid-phase techniques could

include chemical bath deposition, successive ionic layer adsorption and reaction (SILAR), sol-

gel or hydrothermal methods. Also, electrochemical routes can be utilized to coat substrates

with photocatalytic materials.

Physical vapour deposition techniques may apply different approaches like thermal

heating or ion bombardment to evaporate or sputter a source material that finally forms a

thin film via condensation [127]. Among PVD techniques, for example a radio-frequency

magnetron sputtering method has been used to deposite TiO2 film layer over a quartz substrate.

The as-prepared thin films were further modified with Au and Ag to create a plasmonic

composite film [128]. Others fabricated a TiO2/Cu2O microgrid heterojunction over a quartz

substrate where direct-current magnetron sputtering technique was used to deposite Cu2O

over the TiO2 film [125].

CVD methods are based on the chemical reaction facilitated on the surface of a substrate

material between gaseous reactants. It is widely utilized to coat substrates of different

geometries and complex shapes. For example, a fiberglass substrate has been coated by
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Cu2O using an atmospheric CVD method [129]. Elsewhere, a flame-assisted CVD technique

was employed to prepare Cu2O films on a glass substrate that exhibited high antibacterial

photoactivity [130]. Atomic layer deposition (ALD) is a modified CVD method that further

benefits from high level of control over the deposited film thickness. Due to the alternate

introduction of the reactant gases, in an ALD process, the film deposition is self-limited by

surface saturation and in theory the film thickness can be controlled by the number of ALD

cycles [131]. Levchuk and his co-workers used ALD to coat an aluminium foam substrate

by TiO2. The immobilized photocatalyst was tested in the photodegradation reaction of

formic acid and phenol and compared to the activity of suspended P25. It was found that

although the aluminum foam-supported TiO2 exhibited good photocatalytic performance,

the quantum efficiency of the powder P25 catalyst was still higher [132]. Also, Cheng

et al. reported the fabrication of a core-shell nanopillar-array SnO2-TiO2 thin film on a

ITO glass substrate. Both SnO2 and TiO2 layers were deposited by ALD technique over

an anodic alumina oxide (AAO) template that was removed by post-chemical dissolution.

The nanopillar-array composite film exhibited high surface area and good charge separation

character that promoted the photodecomposition of MB. It was found that the as-prepared

film could overperform even the flat layer-by-layer configuration of the SnO2-TiO2 composite

film [11].

In general, liquid-phase synthesis processes are facile and low-cost techniques by which

a range of semiconductors can be produced. The substrate may be immersed into the

reaction mixture or alternatively, especially for sol-gel processes, the precursor sol could

be sprayed or spread over the support material. Most of these processes are followed by

post-thermal treatment which was shown in some cases to improve the crystallinity of

the nanostructures and promote strong adherence to the substrate [133]. The combination

of different wet-chemical approaches is also commonly performed to fabricate e.g. high

aspect-ratio nanostructures or composite heterostructures.
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Multiple wet-chemical approaches have been employed by Nan et al. to fabricate ZnO

nanoarrays and ZnO/CdS core/shell heterostructures on an FTO glass substrate. The ZnO

nanoarrays were hydrothermally grown over a ZnO seed layer that was deposited by a

sol-gel spin-coating method. The ZnO seed layer was also thermally annealed at 510 ◦C after

deposition. To prepare the ZnO/CdS core/shell film a chemical bath deposition technique

has been employed that was followed by a calcination step up to 600 ◦C. The highest

photocatalytic hydrogen evolution was noted for the composite thin film annealed at 550

and 600 ◦C. The enhanced performance was believed to be caused by the reduced number

of defect sites at the interphase and by the improved crystallinity thanks to the thermal

treatment [134]. Others prepared WO3 and Ag-doped WO3 thin films on a microscope glass

slide by a chemical bath deposition method. The authors reported improved crystallinity

when the film was annealed at 600 ◦C. The characterisation of the thin film revealed a uniform

and dense coverage over the substrate. Additionally, the photodegradation reaction of methyl

orange and phenol was significantly improved by Ag-doping which was attributed to the

reduced charge recombination [135].

The SILAR approach is a modified chemical bath reaction where instead of using a

one-pot reaction mixture the substrate is sequentially made in contact with separate precursor

solutions. Similarly to ALD, the number of repetitions provide control over the thickness

of the deposited film [136]. Lv et al. used SILAR approach to deposit Bi2S3 and CdS

quantum dots (QDs) onto TiO2 nanotube arrays that was supported on a Ti foil. The highest

photocatalytic activity towards methyl orange dye was noted when the CdS deposition was

repeated 4 times and the Bi2S3 one time. The improved photoactivity was attributed to the

increased light absorption and enhanced charge separation [137]. Elsewhere BiVO4 film layer

has been deposited onto TiO2 thin film by SILAR technique. The heterojunction exhibited

improved light utilization in the visible range and showed good activity to decompose

Rhodamine 6G dye [138].
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Electrodeposition is another commonly employed technique to fabricate immobilized

photocatalyst. In this process, electrical current is applied to facilitate redox reactions to take

place such as the reduction of metal cations from their electrolyte solution [128]. Direct-

current electrodeposition and atmospheric-pressure chemical vapour deposition techniques

were employed by Chen and his co-workers to fabricate ordered TiO2-Pt nanotube arrays

on a Ti substrate. The Pt nanotubes were prepared via an anodic aluminium oxide (AAO)

templated electrodeposition method onto which the TiO2 film layer was deposited by CVD

technique followed by thermal treatment at 430 ◦C. The photoactivity of the as-prepared

composite film was tested against phenol which showed a significant improvement relative

to TiO2 reference film. The enhancement was attributed to the effective charge separation

between TiO2 and Pt [139].

2.3.2 Immobilization of powder catalyst

Beside the in-situ synthesis approach the direct utilization of powder photocatalyst is an

alternative technique. To immobilize powder catalysts mainly liquid based approaches are

employed where the suspension of the powder may be distributed by dipping, spraying,

spreading or spin-coating techniques, alternatively by impregnation. Strong adhesion of the

photocatalyst to the substrate surface are usually established by means of chemical bonding

and/or physical interactions over a thermal treatment step [124]. Non-liquid based methods

may attach the powder catalyst directly by thermal treatment.

During dip-coating the substrate is withdrawn from the catalyst suspension to form a film

layer. In an automated environment the pull-out rate can be adjusted to optimize the film

characteristics [124]. Spray-coating is another alternative technique in which the solution is

sprayed over the substrate surface. In both cases complex geometries such as spherical beads

or fibers can be coated as an advantage [116].
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For example, Park et al. used a set of organic and inorganic binders including poly(methyl

methacrylate) (PMMA), poly(vinyl alcohol) (PVA), sodium silicate and zinc phosphate to

immobilize ZnO and TiO2 powders by dip-coating and spray-coating methods. The strong

attachment of the nanoparticles was confirmed by XRD measurements before and after

10 minutes of sonication. The photocatalytic activities of the immobilized ZnO and TiO2

structures were tested in a photocatalytic Ag ion extraction reaction which revealed that

ZnO immobilized by zinc phosphate exhibited the highest performance among the supported

catalysts. As a reference the catalysts were also tested in a suspended powder form which

showed about 25% higher Ag extraction after 60 minutes than the best performing immobi-

lized system. Surprisingly immobilized TiO2 catalysts were inactived in the photocatalytic

process [114].

Some researchers argue that binders could potentially encapsulate the photocatalyst that

may significantly reduce their respective surface area and hence reduce their photoactiv-

ity [116]. To minimize embedding of the photocatalyst by the substrate Matsuzawa et al.

presented a dip-coating method to prepare polymer-supported TiO2 photocatalyst based on

electrostatic interaction between the surface of the catalyst and the substrate. To achieve this

the polyester nonwoven fiber was firstly coated with a SiO2 layer followed by a thin film of

polyvinyl chloride-polyvinyl acetate copolymer coating. The former layer was implemented

to protect the polymer fiber from photocatalytic damage whereas the second layer modulated

the surface properties of the polymer to favour electrostatic interaction with TiO2. The

photocatalytic test was performed both in liquid and gaseous phase using dyes (MO and

MB) and toluene, respectively. It was found that the immobilized TiO2 possessed high

performance in the degradation of different chemicals [140].

Beside dip-coating and spray-coating techniques another route to immobilize powder

photocatalyst is spread-coating. One way to achieve this is doctor blading. In this approach, a

coating knife fixed at a given distance is moved along the length of the substrate to uniformly
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Fig. 2.8 Schematic representation of doctor blading coating technique shown on the left
whereas ”knife-over-edge” coating technique is depicted on the right. This figure is repro-
duced from [141] with permission of the Royal Society of Chemistry.

spread the paste over its surface [141]. In laboratory, tapes can be used to mask the surface of

the substrate and to control the deposited layer thickness. In industry, this process can be also

used in a continuous fashion that is often referred as ”knife-over-edge” coating technique.

Figure 2.8 shows a schematic representation of both laboratory and industrial scale utilization

of this technique.

Jonstrup et al. fabricated borosilicate glass supported TiO2 thin films by a spread-

coating technique. An ethanol based TiO2 paste was spread over the glass surface and

subsequently treated at 550 ◦C. The photobleaching reaction of Remazol Red dye showed

that the performance of the immobilized catalyst was only slightly reduced compared to

that of the slurry TiO2 photocatalytic system [142]. Elsewhere, Lamdab et al. prepared

an InVO4-BiVO4 composite thin films with varying film thickness by doctor-blade coating

method. The deposited films were annealed at 250 ◦C. They found that the three-layer coating

heterojunction film exhibited the highest visible photoactivity in the photobleaching reaction

of methylene blue [143].

Impregnation is another method to coat porous or non-porous substrates. For example

Rachel et al. impregnated porous lavas with TiO2 that served as support matrices for the

photocatalyst. A TiO2 slurry was spread over the lava stone by a brush. To exhaust the

pores and to aid the penetration of the photocatalyst into the porous structure reduced
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pressure was applied. Finally the stones were left to dry at 100 ◦C. In the photodegradation

of 3-nitrobenzenesulfonic acid the pumice strone supported TiO2 showed higher activities

than dip-coated cement or red brick substrates [144]. Elsewhere, Shephard et al. prepared

TiO2 impregnated fiberglass sheets that were used in a special ”falling film” reactor. The

impregnated sheets were vertically fixed in the reactor and by a peristaltic pump a continuous

recirculation of the reaction mixture was provided as a falling film flow from the top of the

sheet. The photocatalytic activity of the impregnated TiO2 sheet was tested in the degradation

reaction of microcystins under UV light irradiation with fast degradation rates [145].

Other immobilization techniques may include thermal fixing or non-liquid based ap-

proaches. A dry immobilization procedure was presented by Tennakone and his co-workers

to immobilize TiO2 on a polythene film by simple heat treatment. The dry powder was

evenly spreaded over the polymer film, then covered by a paper and ironed at 74 ◦C. In the

final step the film was rinsed with NaOH and water and was left to dry. The as-prepared

film was shown to be active to decompose phenol under solar irradiation [146]. Others,

reported a thermal fixing immobilization approach where the polymeric substrates were

heated to their melting points. Velasquez et al. coated selected polymeric substrates such

as polypropylene and low-density polyethylene with TiO2 using a heat treatment method.

The photocatalyst was suspended in glycerine and mixed with the polymeric supports then

heated to the melting temperature of the particular polymer. The authors reported strong

adhesion and good stability of the immobilized photocatalyst along with high activity in the

degradation of 4-chlorophenol [147].

2.3.3 Summary of literature review

This literature review had three main parts. In the first part the benefits, basic principles

and fundamentals of photocatalysis and nanomaterials were outlined. In the second part
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the different material modification techniques were reviewed which included doping and

heterostructure formation. In the final part immobilization techniques were presented.

It was seen that semiconductor nanomaterials have the potential to photodegrade contam-

inants in solution or split water. However, as a single material their application is limited by

shortcomings. The motivation of material modifications often includes the desire for extended

light absorption into the visible range and the development of more efficient photocatalytic

systems.

By doping impurity heteroatoms into the crystal lattice good improvements were reported

in the light absorption properties of the materials especially in the case of non-metal doping.

However, these modifications often resulted in limited enhancement in the photoresponse

due to the generated recombination centers. Effective doped systems in photocatalysis were

reported in cases when the lattice distortion was minimized by closely matching the ionic

radius of the dopant to the host system like in the case of 10% Ta-doped TiO2 reported by

Cimieri et al [48]. Also, high photoactivities were reported by Lin et al. an N-doped black

TiO2 catalyst which was claimed to be the best performing titania up to date due to the

successful substitutional doping process [55].

Similarly to doping, heterostructure formation also showed good achievements in ex-

tending light absorption and improving the photoactivity. Effective charge separation was

commonly reported for type II heterostructure systems. However, negative effects of lattice

mismatch and photocorrosion of small band gap semiconductors was shown to limit the

efficiencies of these structures. To overcome this difficulty, Myung et al. reported an effective

ZnO-CdS core/shell nanocomposite system where they believed the interfacial CdZnS alloy

could mitigate the effect of lattice mismatch between the semiconductor layers and hence

further promote the photoactivity [79]. Also photocorrosion was shown to be effectively hin-

dered by the deposition of TiO2 nanoislands onto the surface of Cu2O nanosphares according

to the report of Liu et al [89].
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In the literature immobilized systems were seen to hold benefits for special applications.

By the formation of photocatalyst loaded nanofibrous membranes or flexible fiberglass,

treatment of wastewater could be effectively performed by filtration or water circulation for

example. Also, buoyant photocatalysts was shown to have the potential to be effectively

utilized in wastewater reservoirs where enhanced solar light harvesting and oxygen utiliza-

tion could be achieved compared to suspended catalysts. For instance, Magalhaes et al.

reported the development of a TiO2/low-density polyethylene system which showed higher

photoactivity than P25 under restricted testing conditions in a methylene blue solution [122].





Chapter 3

Materials and Methods

3.1 Materials

All chemicals were purchased from Sigma-Aldrich unless otherwise specified and were

used without further purification. Sodium tungstate dihydrate (Na2WO4·2H2O, 99+%, ACS

reagent) and ammonium nitrate (NH4NO3, 99+%, ACS reagent) were purchased from Acros

Organics. Hydrochloric acid (HCl, 37%, ACS reagent), poly(ethylene glycol) powder (PEG,

average Mn 3,350 gmol-1), poly(ethylene glycol) flakes (PEG, average Mn 20,000 gmol-1),

poly(ethylene oxide) powder (PEG, average Mn 200,000 gmol-1) and methyl orange (MO,

Reag. Ph. Eur) were purchased for the synthesis of WO3 nanostructures. TiO2 P25 nanopow-

der (Aeroxide® P25, 99.5%) exhibited 21 nm of primary particle size. Polyvinylpyrrolidone

(PVP, average Mn 40,000 gmol-1), copper(II) chloride dihydrate (CuCl2·2H2O, 99.0%, ACS

reagent), anhydrous sodium hydroxide pellets (NaOH, 98%, reagent grade), L-ascorbic

acid (BioXtra, 99.0%) and silver-nitrate (AgNO3, 99.0%, ACS reagent) were used to syn-

thesize Cu2O and related heterostructures. Ethyl cellulose powder (viscosity 10 cP, 5% in

toluene/ethanol 80:20 L) was purchased from Sigma-Aldrich and alpha-terpineol (97+%)

from Acros Organics. The FTO glass sheets (TCO30-8) were purchased from Solaronix.
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3.2 Experimental procedures and nomenclatures

3.2.1 Synthesis of WO3 nanostructures

The WO3 nanostructures were prepared via a hydrothermal synthesis process which was

inspired by an earlier publication [148]. In a typical synthesis, 2.0 g of Na2WO4·2H2O was

dissolved in 45 mL water, then 30 mL of 0.03 g/mL and 0.05 g/mL poly(ethylene glycol)

(PEG) and NH4NO3 solutions were added to the transparent Na2WO4 solution, respectively.

The pH was adjusted by 6 M HCl. All chemicals were analytical grade reagents. For

the ethanol/water based system the ratio of EtOH/H2O was set to 1:3 in volume. All the

as-prepared solutions were aged at room temperature for an additional 1.5 hours and then

transferred to a 150 mL Teflon-lined autoclave. The as-prepared mixtures were treated at

200 ◦C for 24 hours in a furnace, then left to cool down naturally. The solid precipitates were

collected by centrifugation using a Clinispin CT20 type centrifuge at 6500 rpm for 10 min

and then washed with distilled water and ethanol for several times. Finally, the as-prepared

powders were dried at 100 ◦C for 12 hours.

3.2.2 Synthesis of TiO2/Cu2O and Ag co-catalyzed nanostructures

Synthesis of TiO2/Cu2O nanostructure

In a typical synthesis route to make TiO2/Cu2O catalyst, firstly 30 mg P25 was suspended in

190 mL water in an Erlenmeyer flask. Then based on a literature procedure, 400 mg polyvi-

nylpyrrolidone (PVP) was dissolved in distilled water followed by the dropwise addition of

10 mL, 0.04 M CuCl2 and 4 mL, 0.4 M NaOH solution [89]. Finally, 4 mL, 0.2 M ascorbic

acid solution was added dropwise to the reaction mixture. The as-prepared solution was

stirred for 5 more minutes and then centrifuged using a Clinispin CT20 type centrifuge at

6500 rpm for 10 min and washed by distilled water and ethanol several times. The solid

matter was dried at 85 ◦C for 12 h.
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Synthesis of TiO2/Ag/Cu2O nanostructures

The method was inspired by previous publications [100, 149, 101]. In a typical synthesis

process, 300 mg P25 was suspended in 100 mL water in a beaker, then the required volume

of a 0.04 M AgNO3 solution was added dropwise to produce 1 w/w%, 3 w/w% or 5 w/w%

nominal Ag content. For example, to produce 5 w/w% nominal Ag content, 3.5 mL of 0.04 M

AgNO3 solution was added. The as-prepared solution was stirred under UV irradiation by

a PLS-SXE300 xenon arc lamp equipped with a PE300BF type light bulb (total Vis light

output between 390 nm- 770 nm: 5000 lumen, total UV output for λ < 390 nm: 2.6 Watts)

for 3 hours. Finally, the solution was centrifuged as previously, washed and the solid matter

was dried at 85 ◦C for 12 h.

Synthesis of TiO2/CuxO/Ag nanostructures

For preparing TiO2/CuxO/Ag catalysts, 30 mg of TiO2/Cu2O catalyst were suspended in

40 mL water followed the required volume of a 0.004 M AgNO3 solution to produce 1 w/w%,

3 w/w% or 5 w/w% nominal Ag content. For example, to produce 1 w/w% nominal Ag

content, 0.7 mL of 0.004 M AgNO3 solution was added. The as-prepared solution was stirred

under UV irradiation under the same conditions as TiO2/Ag/Cu2O catalysts. Finally, the

solution was centrifuged as previously, washed and the solid matter was dried at 85 ◦C for 12

h.

3.2.3 Preparation method for TiO2/Cu2O thin films

FTO glass sheets were used as substrates to prepare TiO2/Cu2O thin films. Firstly, the FTO

glass substrates were cut into 0.9 cm wide and 4.0 cm long pieces and cleaned ultrasonically

in a circa 5% detergent solution (Decon 90). Then the glass substrates were rinsed with tap

water, distilled water, ethanol and finally dried on air.
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Then the TiO2/Cu2O paste with either 0% or 100% ethyl cellulose content were prepared

as follows. In a general process, TC powder catalyst which were synthesized as described

in Section 3.2.2 were used to make TiO2/Cu2O paste. Firstly, 50 mg TC powder were

ground in a mortar for a few minutes. Then dropwise 0.05 mL distilled water was added

under continuous grinding. Then 0.3 mL ethanol was added gradually. The suspension was

transferred into a vial with 1 mL ethanol and stirred and sonicated for 10 minutes for each

step. While continuously stirred 0.22 mL terpineol was slowly added to the mixture followed

by further 10 minutes of stirring and sonication. If the TC paste contained ethyl cellulose

then 0.38 mL, 10 w/w% ethanol based ethyl cellulose solution was added dropwise to the

mixture and again stirred and sonicated for 10-10 minutes. Finally, a rotary evaporator was

used to evaporate the ethanol over the as-prepared mixture [133].

The TC thin films were prepared by doctor-blading technique. The clean FTO glass

substrates were masked by Scotch tape to allow a 0.9 cm x 2 cm active area to be covered

by the TC paste. After removal of the tape, the thin films were exposed to heat treatment at

specific temperatures of 300 ◦C , 350 ◦C or 550 ◦C under N2 atmosphere in a glass reactor

over a hot plate.

3.3 Characterization techniques

Scanning and transmission electron microscope images were recorded to study the morphol-

ogy and related crystal properties such as the crystal shape and the size distribution of the

nanomaterials. For WO3 nanostructures a LEO 1540XB type RÖNTEC Quantax field emis-

sion scanning electron microscope (SEM) and a Philips/FEI CM120 Biotwin transmission

electron microscope (TEM) were used. The rest of the catalysts were studied by a FEI F20

type transmission electron microscope equipped with a 8k x 8k CMOS camera and a Carl

Zeiss SIGMA HD VP Field Emission scanning electron microscope equipped with Oxford

AZtec energy dispersive X-ray analysis system (EDX). To record TEM images of the thin
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films part of the film was scrapped off the glass substrate for sample preparation. Samples

were prepared by depositing 4 µL ethanol suspension of the samples on a carbon film coated

200 mesh gold grid from Agar Scientific. In a typical TEM measurement 200 kV accelerating

voltage was applied. For the SEM imaging, the thin films on the FTO substrate were used. A

typical SEM image was taken with 20 kV accelerating voltage and by using a inlens detector

for the WO3 and secondary electron detector for the rest of the catalyst.

The crystal phases of the nanostructures were investigated by X-ray powder diffraction

(XRD) by a Bruker D2 PHASER diffractometer using the Cu Kα radiation wavelength

(λ = 1.542 Å). The powders were gently placed onto a glass sample holder and placed into

the machine. The diffractograms were collected with the following parameters: scan speed:

0.35 sec/step, high voltage: 30 kV, current: 10 mA , increment: 0.05◦. In the case of the

thin films, a 2 cm x 2 cm dimension ordinary glass substrate was used to make the thin films

specially for the XRD measurement to fit the specific sample holder in the diffractometer.

To estimate the forbidden band gap of the nanostructures solid-phase UV-Visible diffuse

reflectance spectra (DR) were recorded by a JASCO V-670 spectrophotometer equipped with

an integration sphere. The spectra were taken in the spectral range of 200-850 nm using

KBr or BaSO4 as a white reference. The immobilized photocatalyst were scrapped off the

glass support and were diluted with the white background material similarly to the powder

catalysts. The samples were thoroughly mixed with KBr in a mortar for several minutes

to give a homogeneous mixture with 1-5% sample concentration. The as-prepared mixture

was loaded into the sample holder and placed into the spectrophotometer for measurement.

The spectra were taken with the following parameter settings: data interval: 0.5 nm, UV-vis

bandwidth: 1.0 nm, scan speed 100 nm/min.

The solid samples were sent to the University of Birmingham for measurement and

calculation of the BET surface areas. The measured BET areas are reported in the thesis

but unfortunately the raw BET data are no longer available due to a hardware failure. The
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apparent surface areas of the catalysts were measured by a NOVA 2000 gas sorption analyser

from Quantachrome Corporation at the temperature of liquid nitrogen and calculated by

using the BET (Brunauer–Emmett–Teller) model. In the BET model the surface area of the

material is determined by means of physisorption of a non-absorbing gas onto the material

surface. The measurement is commonly carried out at the boiling temperature of nitrogen.

Usually the BET measurements are performed in a restricted range of relative pressure

(between 0.05 and 0.3). The linearized form of the BET equation can be seen in Equation 3.1

where w is the weight of the absorbed gas, p/p0 is the relative pressure, wm is the weight of

monolayer absorbed gas and c is a constant. By plotting 1
w[p/p0−1] versus p/p0 a straight line

can be obtained. From the slope and from the intercept constant c and wm can be worked out

which can be used to calculate the surface area according to Equation 3.2 where NAv is the

Avogadro number and σ0 is the cross-sectional area of the nitrogen [150].

1
w[p/p0 −1]

=
1

wmc
+

c−1
wmc

· p
p0

(3.1)

S = wmσ0NAv (3.2)

For surface analysis with regard the composition and chemical states of the catalysts

X-ray Photoelectron Spectroscopy (XPS) was employed. The samples were sent to the

University of Debrecen in Hungary to be measured by Prof. Erdélyi Zoltán’s research group.

XPS experiments were conducted by using Al k-α anode (E = 1486 eV) as a source of X-ray

and Phoibos 100 MCD-5 series hemispherical energy analyzer produced by Specs.

Attenuated total reflectance of the thin films (ATR-FTIR) was measured by a Perkin-Elmer

Spectrum65 type Fourier Transform Infrared Spectrometer (FTIR) with a MIRacleTM Single

Reflection ATR attachment from PIKE Technologies which were fitted with a diamond/ZnSe

crystal cell. The background measurement was taken in the empty equipment which is

shown in Figure 3.1. Subtraction of the background from the measurement spectrum was
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Fig. 3.1 Background spectrum measured in the ATR-FTIR equipment

automatically done by the Perkin-Elmer SpectrumTM software. Typically the transmittance

values were measured between 3500 and 600 cm-1 with 0.2 sec/step scan speed.

For the total organic carbon (TOC) measurement a SHIMADZU Oceania TOC-V CS

instrument was used. The measurement was undertaken at the Budapest University of

Technology and Economics at the Department of Chemical and Environmental Process

Engineering. The process parameters were set to the following: air flux was set to 150

cm3/min, 200 kPa pressure was maintained and the combustion temperature of 680 ◦C was

employed. The TOC measurement required 10 mL sample and the analyzer repeated the

measurements three times.

High performance liquid chromatography (HPLC) mass spectroscopy (MS) analysis was

performed by a Shimadzu Nexera X2 HPLC-AB Sciex 6500 QTrap MS instrument. The

measurements were done by the Bálint Analitika Mérnöki Kutató és Szolgáltató Kft. An

Agilent PoroShell 120, 50*3 mm, 2.7 µm column was used applying the following process

conditions: elution mixture: A: 10 mM aqueous ammonium acetate, B: 10mM acetonitrile,

gradient program: 10% B hold for 1.5 min, 90% B reached by 7 min, hold for 1 min, reaching

10% B in 0.1 min. The flow rate was set to 0.5 mL/min.
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3.4 Photocatalytic testing

For testing the photocatalytic activity of the powder catalysts and the thin films, seperate

photocatalytic testing systems were employed whose schematic representations are shown in

Figure 3.2 a) and b), respectively.

The powder catalysts were studied in a batch-type jacketed quartz reactor under con-

tinuous air bubbling and agitation. In the jacket of the quartz reactor cooling water was

circulated in order to prevent heating of the reaction mixture. The reactor was irradiated

from 6 cm above the liquid level by a PLS-SXE300 xenon arc lamp. The lamp was equipped

with a PE300BF type light bulb which has an input power of 300 Watts and a total radiant

output power of 50 Watts which involves a total Vis light output of 5000 lumen between

390 nm–770 nm and 2.6 Watts of total UV output for λ < 390 nm. The light intensity

for the UV-Vis photocatalytic tests was calculated to be circa 5.5 Wcm-2. When using a

420 nm cut-off filter the light intensity was calculated to be circa 0.4 Wcm-2. In a typical

photocatalytic test, a given amount of powder catalyst was suspended in methyl orange (MO)

dye solution. The photocatalytic testing conditions for the powder catalysts are summarized

in Table 3.1. Before light exposure, the suspension was left to be stirred in darkness to allow

adsorption of the dye to the catalyst surface. At regular intervals, samples were taken from

the reaction mixture and the solid matter was separated from the solution by centrifugation.

Then using a UV-Vis spectrophotometer (Analytic Jena Specord250) the dye concentration

was determined from the absorption maximum at λ = 465 nm using WinASPECT Software.

Reference measurements were also carried out in complete darkness. In order to perform

repeated experiments after each cycle of use the powder catalysts were washed with distilled

water several times, rinsed with ethanol and dried at room temperature.

The photocatalytic activities of the thin films were studied in a quartz cell (Hellma®

Suprasil® quartz, 3500 µm) under continuous stirring. The quartz cell was irradiated 1 cm

apart from the side by a white LED (New Lumileds, LUXEON COB Gen3 White CoB
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Fig. 3.2 Schematic figure of the photocatalytic set-up a) for powder catalysts and b) for the
supported catalyst

Table 3.1 Photocatalytic testing conditions for powder catalysts

Powder catalysts
Catalyst MO solution Dark stirring

mg mL mg/L min

WO3 nanostructures 50 150 20 60
TiO2/Cu2O and Ag-cocatalysed systems 20 60 20 60

LED, 3500K 90CRI) which has emission λ >400 nm and a typical luminous flux of 2533 lm

along with 121 lm/W luminous efficacy. In a typical photocatalytic test, the thin films with

0.9 x 1.0 cm active area were immersed into 2.0 mL and 15 mg/L MO solution. Before the

light exposure the thin films were left in the stirred MO solution in darkness for 60 min. At

regular time intervals the thin films were removed from the solution and the concentration of

the MO solution was followed by a UV-visible spectrophotometer using the same equipment

and method as for the powder catalyst described previously. Reference measurements were

also carried out in complete darkness. The recycling test of the thin films were carried out

after the recovery of the films. After each cycle of use the catalysts were left to be stirred in a
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9% NaCl solution until complete desorption of the dye has been achieved. The films were

subsequently rinsed with distilled water, dried overnight at room temperature and used in a

repeated experiment.

3.5 Models and calculations

3.5.1 Calculation of the MO concentration

UV-visible spectroscopy

In the thesis, ultraviolet-visible (UV-vis) spectroscopy was used to follow the concentration of

a coloured dye, namely methyl orange (MO). The molecular structure of the dye is depicted

in Figure 3.3. In the UV-vis spectroscopy the interaction between the UV or visible light and

the chemical substance is recorded. By absorbing portion of the irradiated light, vibrational

and rotational electron excitation can be induced in a molecule that reflects the chemical

structure of the substance in a given environment [151]. From the incident and transmitted

light intensities (I0 and IT, respectively), the light absorbance (A) can be defined as shown in

Equation 3.3. According to the Lambert-Beer law, the light absorbance (A) may show linear

relationship to the solution concentration (c), where ε is the molar absorption coefficient, l is

the path length and c is the concentration in the solution (see in Equation 3.4).

A = log
I0

IT
(3.3)

A = ε · l · c (3.4)

By taking the absorption maximum at λ = 465 nm which is characteristic for MO, the

calibration curve of the dye could be constructed which is shown in Figure 3.4. From the

slope of the absorbance versus concentration curve, the molar absorption coefficient of MO
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Fig. 3.3 Chemical formula of methyl orange

could be determined. The linear relationship between the absorbance and concentration

allowed us to use the Lambert-Beer law to calculate the concentration of the dye. A sample

calculation for the MO concentration is given below.

c =
A

ε[Lmg-1cm-1] · l[cm]
=

1.215
0.0773 ·1

= 15.72 ppm (3.5)

Fig. 3.4 Calibration curve of MO absorbance plotted in the function of concentration
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3.5.2 Estimating the crystallite size

Scherrer-Debye formula

The crystallite sizes of the samples were calculated from their respective powder diffraction

pattern using the Scherrer-Debye equation (k=1, λ= 1.542 Å) where FWHM is the full width

of the peak at half maximum, k is a shape factor, λ is the wavelength, ds is the Scherrer

diameter, θ is the diffraction angle.

FWHM =
k ·λ

ds · cosθ
(3.6)

To provide sample calculation for the crystallite size determination, TC-0-300 thin film

sample was chosen as an example. The crystallite size of the anatase TiO2 content of the film

was calculated as follows. The Scherrer dimension was calculated based on the (101) hkl

peak of the anatase phase which appeared at 25.3◦.

ds =
k ·λ [Å]

FWHM · cosθ
=

1 ·1.542
0.005 ·0.9758

= 320 Å = 32 nm (3.7)

The calculated Scherrer dimensions (ds) are estimated values that involve certain as-

sumptions. Correction for instrumental peak broadening was taken into account prior to

calculation by using reference sample (corundum) provided to the XRD diffractometer.

Because the size-related peak broadening is usually notable for crystallites below 100 nm,

the instrumental broadening is typically measured by using a large enough well-crystalline

material that has only negligible effect on the peak broadening. This allows the determination

of the instrumental contribution [152–154]. Peak broadening was measured at the full width

at half maximum (FWHM) at a particular peak position for example for corundum reference

sample FWHM(25.5◦) = 0.06◦ was measured. The data collection of reference and sample

was performed under the same recording conditions. Within the range of (25.5◦–52.5◦°) the

peak broadening was measured to be FWHM= 0.063◦±0.006◦. For convenience and due
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to limited available peak positions in the reference XRD pattern the sample FWHM was

corrected by 0.063.

In reality apart from the instrumental contribution crystal imperfections also contribute

to the peak broadening. In the crystallite size calculations however, ideal crystals were

assumed that are microstrain-free (with no crystal defects or distortions). Therefore it should

be borne in mind that the goodness of estimation is also the function of the crystallinity of

the sample [155].

3.5.3 Estimating the optical band gap

Tauc plot and Kubelka-Munk theory

It is known that when the incident photon energy is close to the energy of the forbidden band

gap the light absorption of the material starts to follow an exponential trend [156]. This region

is often called as Urbach tail region. The exponential trend can be written as a power law in

the form shown in Equation 3.8 where α is the molar absorption coefficient, hν is the photon

energy, Eg is the forbidden band gap, A is a constant and n takes 1/2 or 2 values depending

on the direct or indirect type of electron transition of the material, respectively [157].

αhν = A(hν −Eg)
n (3.8)

The calculation of the optical band gap is possible using the above equation. By plotting

(αhν) against hν photon energy the so-called Tauc plot can be drawn. Fitting a tangent line

to the linear portion of the high absorption region of the plot and extrapolating its value to

hν = 0 provides an estimate to the optical band gap [35].

In order to convert the diffuse reflectance spectra into the equivalent absorption coefficient

the Kubelka-Munk (K-M) theory was applied [158, 159]. The Kubelka-Munk equation can
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be expressed in the following form, where R stands for the absolute reflectance, k is the

molar absorption coefficient and s is the scattering coefficient.

f(R) =
(1−R2)

2R
=

k
s

(3.9)

Taking the example of R = 0.434 at hν = 3.6 eV, f(R) can be calculated to be 0.934

based on Equation 3.9. Then the as-calculated f(R) can be used to calculate (hνf(R))(1/2) to

construct the Tauc plot for indirect semiconductors such as WO3. This gives

(hν f (R))1/2 = (3.6 ·0.934)1/2 = 1.834 (3.10)

After repeating this process for each of the measured reflectance values, the Tauc plot

can be constructed and the band gap can be determined as detailed above.

The K-M relationship involves certain assumptions such as that the incident light is

perfectly diffuse, the particles are uniformly distributed within a non-absorbing matrix

material, the level of dilution is infinite and that the thickness of the measured sample layer

is infinite [160].To fulfil these assumptions highly diluted samples were used between 1-5%

sample dilution. Also, isotropic sample distribution was ensured by thorough mixing of the

white non-absorbing matrix material with the sample in a mortar.



Chapter 4

Photoactivity of WO3 nanocrystals

This work has been published in the RSC Advances [161] under an Open Access licence. It

has been written by the first author who is also the author of present thesis. The introduction

and the conclusion part is reproduced from original paper with some modifications.

4.1 Introduction

Semiconductor nanostructures are technologically important materials that have received

widespread interest for their unique electrical and optical properties [162, 25, 163]. The

striking features of such nanoscale materials are particularly determined by their size and

shape. In the mid 1980’s quantum dots were shown to exhibit a strong relationship between

their size and the longest absorbed wavelength, which was of particular interest for fine-tuning

the optical properties of nanostructures by simple size-control [164]. Later, 1D nanomaterials

were recognised to have enhanced charge carrier transport properties owing to their beneficial

shape, which attains less interfacial interaction with grain boundaries and therefore produces

longer-lived charges [165, 166].

Although many applications of nanomaterials are determined by the size- and shape-

dependent properties, it is still a great challenge to synthesise these materials by precise
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control over their microstructure. WO3 is an n-type semiconductor oxide which has gained

widespread interest due to its attractive properties for enhancing visible photoactivity of

wide band gap semiconductors such as TiO2. It is also widely used for the fabrication

of electrochromic devices, cost-effective displays, smart windows, optical switches or gas

sensors [167, 26]. Similarly to other materials, WO3 is popularly synthesised by hydrothermal

processes owing to its facile arrangement, cost effective nature and the possibility of versatile

product formation [168, 169]. As the shape of nanodimensional materials prepared by wet-

chemical processes is mainly driven by nucleation and growth kinetics, many factors were

shown to be decisive for the final morphology [170].

A great variety of structure directing agents were found to modulate the crystal growth

including inorganic salts, organic acids, polymers and surfactants [171–173, 32]. Adhikari et

al. used fluoroboric acid to obtain nanocuboid WO3 and optimized the product morphology

by varying the acid concentration, the reaction time and the temperature [174]. Other factors

such as the processing temperature, the time, the precursor concentration and the pH were

also shown to affect the nanostructures. Bai et al. concluded that the temperature and the

time of the hydrothermal synthesis influenced strongly the diameter of the obtained WO3

nanorods [175]. Peng et al. showed that the increasing concentration of the capping agent

notably changed the morphology of WO3 [176]. In addition to these, Sonia et al. revealed

that hexagonal superstructure and twin octahedral WO3 can be formed at pH 1 and pH 5.25,

respectively [177].

Although substantial experimental work has been devoted to interpreting the relationship

between process parameters and microstructure in nanomaterial synthesis, theories and

the current understanding are still limited to explaining the crystal growth mechanism and

limited to fabricating designed nanostructures due to the lack of sufficient and comparable

experimental data [178–180]. The classical nucleation theory proposed by LaMer and

Dinegar has been widely used to explain the crystal growth mechanism. However, it cannot
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be generally applied to explain the effect of process parameters on the microstructure, and

experimental results were found to contradict the theory [180–182].

In this study, I focused on WO3 polymorphs to study the effect of hydrothermal synthesis

conditions, such as solution pH, the chain length of polymeric surface modulator and mixed

solvent medium on the crystal growth, morphology and on the photocatalytic efficiency. I

investigated what is the drive of the morphology evolution beyond the influence of supersatu-

ration. In addition to this, I intended to study the correlation between the optical property

and the crystal phase and size of the nanostructures by calculating the band gap energies.

The prepared WO3 nanostructures were characterised by XRD, SEM, TEM, XPS, BET and

solid phase diffuse reflectance and tested for photocatalytic application.

4.2 Results and Discussion

4.2.1 Nomenclature

The WO3 catalysts presented in this thesis are named to reflect the synthesis conditions of

the nanostructures. The first number refers to the applied pH of the reaction mixture followed

by the indication of the carbon chain length of the applied poly(ethylene glycol) (PEG)

additive. For example W-0.10-P3350, W-0.51-P20E, W-1.52-P200E means that the catalysts

were prepared at pH 0.10, 0.51 and 1.52, respectively and the PEG additive had an average

molecular weight of 3350, 20000 and 200000 g/mol, respectively. The sample prepared in an

EtOH/H2O precursor solution was named as W-EtOH.

4.2.2 Investigated process parameters

The synthesis of WO3 nanostructures by hydrothermal processes is typically achieved under

acidic conditions. Equation 4.1 and 4.2 highlights that the formation of WO3 nanostructures

depends on the concentration of H+ [183]. Although, relatively few studies reported the
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formation of WO3 nanomaterials either under highly acidic conditions (pH < 1) or above

pH 3 [177]. Therefore, in this study in order to investigate the effect of the solution pH,

experiments were designed at pH levels of 0.10, 0.51, 1.05, 1.52 and 2.01 while other

synthesis parameters such as the process temperature and time along with the amount of

reagents (except the acid) was kept constant.

WO2−
4 +2H+ = H2WO4 (4.1)

H2WO4 =WO3 +H2O (4.2)

A second factor studied in this work was the effect of the chain length of PEG. Polymeric

surface modulators such as PEG are commonly employed additives in wet-chemical processes

to promote anisotropic crystal growth of e.g. ZnO or WO3 nanomaterials [148, 184].

They are believed to act through selective coordination to specific crystal faces of the

nanomaterial like WO3 at the early stages of the crystallisation process [185]. In some cases

also the character and chain length of the polymer has been found to affect the nanocrystal

formation [184]. In order to study the role of PEG on the crystal growth kinetics, in this work

three PEGs with average molecular weights of 3350, 20 000, 200 000 g/mol has been tested

at pH levels of 0.10 ± 0.04 and 1.50 ± 0.04.

Furthermore, the affinity of polymeric surface modulators such as PEG towards the

crystal nuclei could be also affected by the solvent medium [184]. To explore such influence,

as a third factor the effect of EtOH/H2O ratio of 1:3 at pH 1.68 has been investigated.

4.2.3 Crystal structure

To investigate the effect of the process parameters on the crystal structure, XRD diffrac-

tograms of WO3 nanomaterials were recorded and analysed. Table 4.1 and 4.2 summarizes
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Fig. 4.1 XRD diffractograms of the WO3 nanostructures a) W-0.10-P20E, b) W-0.51-P20E,
c) W-1.05-P20E, d) W-1.52-P20E and e) W-2.01-P20E

the material properties of the prepared nanostructures including the crystal phase, morphol-

ogy, optical properties and specific surface area values.

It was revealed that by varying the solution pH from 0.10 to 2.01 different crystal phases

were favoured. Figure 4.1 shows the XRD diffractograms of the nanostructures. In general,

the reflection peaks were sharp and intense which suggested that the obtained nanostructures

were well-crystalline. Furthermore, it was found that at the lowest pH level of 0.10 monoclinic

phase (m-)WO3 was obtained which was evidenced by 43-1035 JCPDS card. As a result of

elevating the pH to 0.51 and to 1.05 a new crystal phase appeared beside m-WO3 which could

be assigned to orthorombic (o-)WO3·0.33H2O by 35-0270 JCPDS card. From the XRD

pattern no other crystal phases of WO3 or other crystalline impurities could be identified to

either W-0.51-P20E or W-1.05-P20E samples. At pH 1.52, also two crystal phases could

be assigned to the reflection peaks. Beside o-WO3·0.33H2O, hexagonal (h)-WO3 could be
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identified with some ammonia incorporated to the crystal lattice as indicated by 58-0151

JCPDS card of (NH4)0.33−xWO3−z. Similarly to W-1.52-P20E, at pH 2.01 h-WO3 could be

assigned to the XRD peaks but this time as a pure phase. For simplicity these phases are

referred as h-WO3 throughout this text.

When altering the chain length of the PEG or studying the effect of EtOH in the reaction

mixture, no significant effect on the crystal structure has been revealed by the XRD patterns.

At pH 0.1, for all three PEG sources (Mg: 3350, 20 000, 200 000 g/mol) pure m-WO3

could be assigned to the diffraction peaks whereas at pH 1.5 h-WO3 with co-existing o-

WO3·0.33H2O crystal phase was identified. Although the main crystal phases have been

preserved for the different PEG capping agents at pH 0.1 and pH 1.5, slight changes were

noted in the XRD pattern of samples prepared at pH 1.5. It was noted that the relative

intensities of h-WO3 and o-WO3·0.33H2O crystal phases have been slightly altered. This

was indicated by the changing intensity of the reflection peak of the orthorombic phase at

circa 18◦ relative to the reflection peak of the hexagonal phase at circa 14◦ when different

PEG additives were used. No clear trend could be seen between the chain length of the PEG

and the varied relative intensities. Figure 4.2 c) shows the XRD patterns of W-1.52-P3350,

W-1.52-P20E, W-1.52-P200E and W-0.10-P3350, W-0.10-P200E prepared at pH levels of

1.52 and 0.10, respectively.

For W-EtOH sample h-WO3 phase could be assigned to the XRD peaks that can be seen

in Figure 4.3 c).

4.2.4 Morphological structure

The morphology of the nanostructures has been investigated by SEM and TEM. The effect

of varied pH levels is depicted in Figure 4.4. It can be seen that both the size and the

shape of the fabricated nanocrystals changed considerably over the 0.10-2.01 applied pH

range. At the lowest pH level of 0.10, cuboidal nanoplates were formed that could be
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Fig. 4.2 Effect of the chain length of the polymeric surface modulator a) SEM image of
W-0.10-P200E as an example for typical morphology prepared at pH 0.10, b) SEM image
of W-1.52-P3350 as an example for typical morphology prepared at pH 1.52 and c) XRD
diffractograms of the WO3 nanostructures: W-1.52-P3350, W-1.52-P20E and W-1.52-P200E
prepared at pH level 1.52 and W-0.10-P3350 and W-0.10-P200E prepared at pH level 0.10

Fig. 4.3 Effect of the presence of EtOH in the reaction mixture a) SEM image, b) TEM image
and c) XRD diffractogram of W-EtOH with reference card
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Fig. 4.4 SEM images of the WO3 nanostructures a) W-0.10-P20E, b) W-0.51-P20E, c)
W-1.05-P20E, d) W-1.52-P20E and e) W-2.01-P20E

characterised by 30-50 nm average thickness and couple of hundreds of nanometers of length

as it can be seen in Figure 4.4 a). At pH 0.51, considerably bigger nanostructures were

synthesised that exhibited nanorod-like shape which is shown in Figure 4.4 b). Typically

these nanocrystals were 50-100 nm thick and several hundreds of nanometers long. When

the pH further rose to 1.05, mixed morphologies could be observed that is depicted in Figure

4.4 c). Beside the 50-100 nm thick and circa 800-1000 nm long nanorod structures, a much

finer nanoneedle-shaped crystal phase has appeared. These nanoneedles possessed about

10-15 nm in thickness. Under even less acidic conditions, at pH 1.52, the bigger nanorod

structures disappeared and uniform nanoneedles could be identified that is shown in Figure

4.4 d). The pH level of 1.05 was therefore realized as a transition point for the morphology.

The nanoneedles structures in W-1.52-P20E typically exhibited about 10 nm in thickness

and 200-300 nm in length. And finally at pH 2.01, 5-10 nm thin but significantly longer

nanowires were formed. A lower magnification SEM image in Figure 4.4 e) is provided

to highlight the length of the 1D nanostructures which was in the micrometer range. Due

to the significant increase in the length of W-2.01-P20E, the aspect ratio (that is defined as

the ratio between the length and the thickness of the nanostructure) was found to follow an
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Fig. 4.5 Box plot showing the change in the aspect ratio of the WO3 nanostructures prepared
at various pH levels

exponential trend over the 0.10-2.01 pH range. A Blox plot shown in Figure 4.5 reflects

the variation of the aspect ratio with increasing pH levels. The lowest length to thickness

ratio could be estimated for W-0.10-P20E nanostructure that gradually increased up to pH

1.52. The aspect ratio of these structures were most typically between 10-20. In contrast, in

W-2.01-P20E sample this number was close to 100 showing almost an order of magnitude

increase.

When the PEG surface modulators were varied at pH 0.1 and 1.5, typical 30-50 nm thick

cuboid nanoplate and 10-15 nm thick nanoneedle morphologies were observed, respectively.

Figure 4.2 a) and b) shows the typical SEM images at pH 0.1 and 1.5. Additionally, it was

noted that the nanoneedles formed at pH 1.5 often formed star-shaped assemblies. This

feature could be observed for all three PEG surface modulators [186].

And finally Figure 4.3 a) and b) shows the SEM and TEM images of W-EtOH sample,

respectively. It can be seen that very similar morphologies could be discovered to the EtOH-

free samples that were prepared under similar acid concentration as W-EtOH. The star-shaped

assemblies were observed for this sample as well.



72 Photoactivity of WO3 nanocrystals

Table 4.1 Synthesis conditions and characterization of WO3 nanostructures

Nanostructure pH Crystal phases Morphology Colour Eg
[± 0.03 eV]

W-0.10-P20E 0.10 m-WO3 cuboidal nanoplates yellow 2.70
W-0.51-P20E 0.51 m-WO3, o-WO3·0.33H2O nanorods yellow 2.70
W-1.05-P20E 1.05 m- and h-WO3, o-WO3·0.33H2O nanorods, nanoneedles yellow 3,25
W-1.52-P20E 1.52 h-WO3, o-WO3·0.33H2O nanoneedles yellow 3.10
W-2.01-P20E 2.01 h-WO3 nanowires blue, yellow 2.93
W-0.10-P3350 0.10 m-WO3 cuboidal nanoplates yellow
W-0.10-P200E 0.10 m-WO3 cuboidal nanoplates yellow
W-1.52-P3350 1.48 h-WO3, o-WO3·0.33H2O nanoneedles yellow 2.91
W-1.52-P200E 1.45 h-WO3, o-WO3·0.33H2O nanoneedles yellow 2.87
W-EtOH 1.68 h-WO3 nanoneedles blue 3.13

Table 4.2 Specific surface area of the WO3 nanostructures

Nanostructure Specific surface area
[m2g−1]

W-0.10-P20E 7.8
W-0.51-P20E 6.6
W-1.05-P20E 19.2
W-1.52-P20E 32.3
W-2.01-P20E 43.8

Therefore, it could be concluded that the morphologies of the synthesized WO3 nanos-

tructures were primarily affected by the solution pH since there was no significant effect

associated with the utilization of different PEGs or EtOH/water mixed solvent.

4.2.5 Crystallite size calculation

In addition to the electron microscope images and the XRD crystal structure analysis, the

average crystallite sizes of the nanostructures have been calculated by the Scherrer-Debye

equation (3.6) using characteristic Bragg reflections of the different crystal phases.

In the calculation it was considered that the shape factor of the crystallites (k) could

affect the estimation of the Scherrer dimension. Figure 4.6 shows the influence of shape

factor k between 0.8 and 1.1 on the estimated crystallite size of the WO3 sample synthesized

at pH 0.10 (W-0.10-P20E). Although the exact value of k is most of the time unknown, it
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Fig. 4.6 On the left the crystallite size estimation for W-0.10-P20E sample is shown using
shape factor k between 0.8 and 1.1 is shown. On the right the relative change in crystallite
sizes is shown with respect the neigbouring peak.

typically lies close to unity [152]. For example, in the literature 0.94 and 1.07 typical values

are reported for spherical or cubic crystallites [152, 154].

From the left plot of Figure 4.6 it can be seen that for smaller crystallites the alteration

of k caused less variation in the calculated sizes regardless of 2θ (in the range of 13-30◦),

whereas for crystallites larger than 100 nm the deviation showed a considerable increase.

This could highlight the limitation of the Scherrer size prediction based on peak broadening

for crystallites larger than 100 nm which is in good agreement with literature findings [152].

Furthermore, it could be also found that the Scherrer sizes calculated under different k

values effectively followed the same relative trend. This is illustrated on the right handside

of Figure 4.6 where the difference between ds values at neighbouring diffraction angles were

plotted. It can be seen that the standard deviation of less than 50 nm size difference ranged

from as little as ±0.7 nm to ±4.3 nm by using different k values.

Given the relatively close calculated crystallite sizes for smaller nanostructures and the

good correlation between the relative trends when different shape factors were used, k was
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approximated with unity in the Scherrer-Debye equation to allow crystallite size estimation

of the synthesised WO3 nanostructures.

In general, it was seen that the Scherrer dimensions revealed anisotropic crystal growth

which is in good agreement with the observed WO3 morphologies in the SEM images. For

example, the crystallite dimensions of W-0.51-P20E were found to be 98 and 68 nm for

the (020) and (200) crystal planes of m-WO3, respectively. A sample calculation for the

crystallite size determination of W-0.51-P20E can be seen in Equation 4.3. The Scherrer

dimension of m-WO3 was calculated based on the (020) hkl peak which appeared at 23.7◦.

ds =
k ·λ [Å]

FWHM · cosθ
=

1 ·1.542
0.0016 ·0.97872

= 980 Å = 98 nm (4.3)

It was also noticed that the increase in the solution pH from 0.10 to 1.05 resulted in

a considerable crystallite size growth from 80 nm to 156 nm for the (020) plane of m-

WO3. However, both the m-WO3 and o-WO3·0.33H2O phases in W-1.05-P20E revealed

crystallite sizes greater than 60 nm which left the nature of fine nanoneedle phase unexplained.

Therefore, it is suspected that potentially another crystal phase (h-WO3) may be present in

the W-1.05-P20E sample. This hypothesis is also supported by the fact that at higher pH

levels of 1.52 and 2.01 similar fine nanoneedle and nanowire morphology was observed in

the SEM images. These phases were pure h-WO3 with minor o-WO3·0.33H2O phase in

W-1.52-P20E. It is likely that the XRD peaks of a potential h-WO3 in W-1.05-P20E were

more broadened due to their small dimension. Moreover, the characteristic peaks could

coincide with other crystal phase reflections. Therefore, an additional h-WO3 phase could be

hidden in the XRD pattern.

4.2.6 Mechanism of nanocrystal formation

Most widely, the classical nucleation theory of LaMer and Dinegar is used to explain the

mechanism of nanostructure growth and formation [172, 187, 188]. Although the theory
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was found to adequetly describe the formation mechanism of most crystals, there were

instances when experimental results were found to contradict the theory [183]. In this study,

the morphological evolution of the prepared WO3 nanocrystals could not be satisfactorily

explained exclusively by the classical nucleation theory, therefore other possible influencing

factors were investigated and proposed.

In general, two main steps govern the crystallisation process, the formation of crystal

nuclei and the subsequent crystal growth. These processes are believed to be influenced by

the level of supersaturation. At high supersaturation level, rapid crystal nuclei formation is

expected which limits the rate of the crystal growth step and yield many but limited-sized

crystals at a given precursor concentration. On the contrary, when the level of supersatura-

tion is low, the crystal nuclei formation step becomes rate-determining that results in the

production of fewer but well-developed, bigger nanocrystals.

The level of supersaturation can be modulated e.g. by the pH of the reaction mixture.

It was earlier shown in Equation 4.1 and 4.2 that the formation of WO3 nanostructures

depends on the solution pH and therefore the generation of initial crystal nuclei and their

subsequent growth can be modulated by the level of acidity level. In an acidic medium, the

starting material, sodium tungstate could react with H+ ions to form tungstic acid. Under the

hydrothermal reaction conditions tungstic acid may loose stoichiometric amount of water to

produce WO3 precipitates. By influencing the level of supersaturation in the reaction mixture,

the number of initial crystal nuclei is affected which could alter the size and morphology of

the formed WO3 nanocrystals. It is also worth mentioning that additives such as PEG are

often added to the reaction mixture to influence the crystal formation. These materials are

believed to work through selective binding to the crystal faces at the early stages of crystal

formation. These specific interactions may lead to diverse morphologies [189]. By changing

the pH level the interaction between the developing crystals and the surface modulator could

be affected which may also had an impact on the final morphology of the WO3 nanostructures.
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The SEM images in Figure 4.4 along with the calculated crystallite sizes of the WO3

nanostructures revealed that the decrease in the degree of acidity yielded a prominent growth

in the size of nanostructures which finding is in good correlation with the classical nucleation

theory. This trend held true up to pH 1.05. However, unexpectedly beyond this point a

sudden size drop was observed. The appearance of fine nanoneedles in W-1.05-P20E sample

and the formation of thin nanowires in W-2.01-P20E could not be explained as a result of

altered level of supersaturation any more.

To further explore the possible reasons for the crystal development, the material characters

were carefully investigated over the applied pH range. It was noted that the degree of

supersaturation failed to give explanation for the mechanism of the crystal growth beyond pH

1.05. This pH level was also recognised as a transition point not only for the morphology but

also for the crystal structure. Below pH 1.05 monoclinic whereas above this pH hexagonal

WO3 formation was preferred. Hexagonal WO3 is a metastable phase where the presence of

stabilizing foreign cations support the hexagonal channel structure [174, 190]. For nanosized

materials in general, but especially for metastable crystal phases such as the hexagonal

phase of WO3, the question of stability could be highly relevant. It is believed that the

morphology could have stabilizing effect on the formed crystal phase of nanostructures that

has been recently highlighted by Zheng et al. as well who stated that ”the morphology of

the nanostructures can have a significant effect on obtaining stable phases” [26]. Hence it is

suggested, that the interaction of the crystal structure and the morphology could possibly be

a leading factor in the crystal development observed above pH 1.05. The crystalline structure

of the material could favour the formation of certain morphological structure, that in return

may have a positive effect on the stability.

This idea is further supported by the fact that h-WO3 is commonly fabricated in the form

of 1D nanostructures that could imply the beneficial effect of this spatial arrangement on the

metastable crystal structure [176, 190–194]. In the contrary, monoclinic WO3 has seldom
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been reported in 1D shape. In those few occasions, typically substrates with an initial seed

layer were employed to promote the growth of 1D nanostructures [148, 195, 196].

4.2.7 Optical properties and chemical states

To study the light absorption properties of the various WO3 nanostructures, solid-state UV-

vis diffuse reflectance spectra were recorded. The calculation of the optical band gap (Eg)

was performed by converting the experimental data into Kubelka-Munk function prior to

using the Tauc model. Both of these models are depicted in Figure 4.7. Additionally, the

Kubelka-Munk function also served information on the light absorption behaviour of the

nanostructures.

The Tauc plot (defined in Equation 3.8) is a widely used model for the estimation of

direct and indirect semiconductor materials. As an n-type semiconductor oxide with indirect

electron transition, the optical band gap of WO3 nanostructures are commonly determined

from the Tauc plot [157, 35]. To estimate the band gap, firstly the Kubelka-Munk function

(f(R)), which is defined in Equation 3.9, was used to obtain the equivalent absorption

coefficients from the diffuse reflectance spectra. Then by plotting (f(R)hν)1/2 versus hν the

Tauc plot could be constructed. The high absorption region of this plot was used to fit a

tangent line and extrapolate to hν=0 in order to estimate the band gap. Beside the Tauc plot,

the K-M function was also plotted against hν to observe the absorption properties of the

catalysts and to highlight special feature of their absorption behaviour like in the case of the

blue samples.

Band gap energies

In general, the forbidden band gap energies of the WO3 nanostructures ranged from 2.7±0.03 eV

to 3.25±0.03 eV. Table 4.1 summarizes the calculated Eg values that were found to be in

good agreement with reported band gap energies for nanosized WO3 structures [197–199].
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Fig. 4.7 Optical properties of the WO3 nanostructures as shown in the Tauc plot (top figure)
and in the Kubelka-Munk function versus photon energy plot (bottom figure)



4.2 Results and Discussion 79

It was found that WO3 nanostructures prepared at low pH levels of 0.10 or 0.52 exhib-

ited the smallest energy band of Eg = 2.70 eV among all the prepared nanomaterials. At

higher pH levels in W-1.05-P20E, W-1.52-P20E and W-2.01-P20E samples, the band gap

energies were calculated to lie between 2.93 and 3.25 eV that showed a blue shift in the

light absorption threshold relative to W-0.10-P20E and W-0.51-P20E. Both theoretical and

experimental findings revealed that the distortion of the WO6 octahedra is typically followed

by the widening of the energy band gap [200–202]. In agreement with this, it was also

generally found in the literature that m-WO3 structures possessed smaller whereas h-WO3

nanomaterials exhibited higher energy gap values [203]. The Eg values calculated for the

WO3 samples are consistent with this expectation since the lowest energy band belonged to

W-0.10-P20E and W-0.52-P20E samples that showed monoclinic phase WO3 while wider

energy band gaps were calculated for W-1.52-P20E and W-2.01-P20E samples that showed

the presence of hexagonal phase WO3.

Furthermore, beyond the effect of the crystal structure, the size of the fabricated nanoma-

terials could have a pronounced effect on the width of the band gap, too. It is known that

the reduction of the characteristic dimensions of nanostructures could increase the band gap

due to quantum confinement effects [203]. This effect was found to be especially dominant

when the size of the nanostructures approaches the Bohr radius of the material which equals

to 3 nm for WO3 [26, 204]. Therefore, the blue shift in the absorption edge of h-WO3

nanomaterials, like in the case of W-1.52-P20E and W-2.01-P20E, could be also induced

by the thin nanoneedle and nanowire morphology that exhibited 5-15 nm in thickness and

several hundreds or thousands of nanometers in length, respectively.

It was therefore found that the variation in the solution pH affected remarkably the width

of the forbidden band gap. Figure 4.8 shows the general trend between the Eg and the solution

pH. It can be seen that the highest energy band was associated with the sample prepared at

pH 1.05. At this pH level not only the transition from bigger nanoplates to fine nanoneedle
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Fig. 4.8 Correlation between the band gap energies of the WO3 nanostructures and the
solution pH

phase took place, but also the crystalline phase changed from monoclinic to hexagonal. At

this pH, various morphologies and all three crystal phases co-existed. The pH 1.05 also

represented a peak in the band gap energies, lower or higher level of acidity resulted in a

decrease in the Eg.

Light absorption

In addition, it was noted that generally the WO3 samples were pale yellow in colour, except

two samples, W-2.01-P20E and W-EtOH. The Kubelka-Munk function revealed that beyond

the apparent ligth absorption threshold, the absorption started to rise again in the far-red

region of the visible spectrum. This unique optical behaviour, which is shown at the bottom

part of Figure 4.7, could cause the greyish blue appearence of these nanomaterials. Switching

the color of WO3 from yellow to blue is a well-known phenomenon that is most typically

induced by gasochromism or electrochromism [205, 206]. In the former case reducing gas



4.2 Results and Discussion 81

medium, whereas in the latter case electricity induced ion insertion leads to blue colour. It

is worth mentioning that the colorization of WO3 is an interesting opportunity for e.g. the

fabrication of smart windows and energy saving displays [207]. Rarely, other conditions were

also reported to lead to colorized WO3. Kurumada et al. found that the fabrication of WO3

nanostructures with characteristic dimension less than 10 nm resulted in blue colour [208].

However, to the best of our knowledge there was no previous report indicating the colorization

of WO3 by means of EtOH.

The light absorption of W-EtOH and W-2.01-P20E could be characterized by a transmis-

sion window between the apparent Eg and the increasing absorption in the far red-region.

Similar optical behaviour has been previously associated with the presence of interband

localized states of reduced W atoms in the literature [206]. Reduced W atoms may have

been generated in the W-EtOH sample by excessive surface OH functional groups due to

the EtOH/water mixed solvent phase. To confirm this, the W-EtOH sample was annealed at

250 ◦C under air for 12 hours. As expected, the initial bluish colour turned into off-white

which could be an indication of reoxidation of the sample by for example the removal

of the excess amount of hydroxil groups from the surface. For W-2.01-P20E sample, the

accommodation of increased amount of NH+
4 cations into the hexagonal channel could be a

reason for the presence of reduced oxidation state W atoms that was also indicated by the

XRD diffractogram.

Oxidation states

To further confirm the oxidation states of W atoms in the blue and yellow WO3 samples,

XPS studies have been performed. Figure 4.9 shows the high resolution O 1s, W 4d and

W 4f XPS spectra for the nanostructures. It can be seen that distinct binding energies

belonged to the O and W atoms in the yellow and the blue WO3. Both blue and yellow

WO3 samples showed characteristic peaks in the O 1s XPS spectrum for surface adsorbed
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Fig. 4.9 Typical high resolution XPS spectra a) O 1s, c) W 4d and e) W 4f for for W-EtOH
(blue) and b) O 1s, d) W 4d and f) W 4f for W-0.10-E20E (pale yellow) WO3 nanostructures
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O in the form of hydroxide at binding energies of 532.6 and 533.7 eV and lattice W-O

bonds at 531.2 and 531.4 eV, respectively. These values were found to be in agreement

with literature reports [209–212]. In the W 4d spectrum of the blue sample two peaks

could be deconvoluted from the XPS spectrum. These peaks could be attributed to reduced

W4+ and metallic W peaks appearing at 246.2 and 243.8 eV, respectively. In contrast, the

yellow sample showed only one peak at 248.1 eV which could be assigned to W6+ based on

literature references [212, 213]. The W 4f spectrum is used most commonly in the literature

to describe WO3 nanomaterials. In accordance with this, the most remarkable differences

between the blue and yellow samples could be seen in this spectrum. Characteristically,

the blue sample showed a broad, convoluted spectrum whereas the yellow WO3 could be

described by two slightly overlapping peaks. Similarly to W 4d spectrum both metallic

W and reduced W4+ peaks could be ascribed to the four resolved peaks. W4+ 4f 5/2 and

7/2 peaks appeared at 34.6 and 32.4 eV, respectively. In the yellow sample W6+ 4f 5/2 and

7/2 peaks appeared at 37.9 and 35.8 eV, respectively. In agreement with these finding, in

the literature reduced WO3 nanostructures were characterized by peaks appearing at lower

binding energies in both W 4d and W 4f XPS spectrum. W6+ peaks are typically reported in

the range of 35.5-37.6 eV and 36.6-37.9 eV for W 4f 7/2 and 5/2, respectively. While W and

W4+ peaks are typically reported around 31.0-32.5 and 33.2-34.6 eV for W 4f 7/2 and 5/2,

respectively [214–216, 209, 157, 217].

4.2.8 Photocatalysis

The prepared WO3 nanostructures with various material properties were tested in photo-

catalysis using methyl orange (MO) as a model compound. The dark adsorption of the MO

was typically around 1-2%. The fewest dark adsorption was found for W-0.10-P20E and

W-1.05-P20E with only 0.1 and 0.6%, while the highest value was measured for W-EtOH
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with 3% MO adsorption in 60 min. A possible route for the photocatalytic degradation of

MO in the presence of WO3 photocatalyst is proposed in Equation 4.4, 4.5 and 4.6.

WO3 +hν =WO3 + e−CB +h+V B (4.4)

h+V B +H2O = OH ·+H+ (4.5)

OH ·+MO = degradation products (4.6)

In general, the photocatalytic tests revealed that the photoactivities of WO3 nanomaterials

were a compromise of the crystal structure, morphology, optical properties and the oxidation

state. It was found that the best performing catalyst was W-1.52-P20E, closely followed

byW-0.10-P20E and W-1.05-P20E. W-EtOH and W-2.01-P20E samples showed considerably

lower photocatalytic activities.

Interestingly, the highest photocatalytic performance (under present conditions) belonged

to W-1.52-P20E, that exhibited one of the highest band gap energy (Eg = 3.10 eV). This

meant that owing to the relatively wide band gap it could harvest less portion of the incident

light compared to e.g. W-0.10-P20E catalysts that exhibited Eg = 2.70 eV. Regarding the

morphology and the crystal phase, W-1.52-P20E possessed 10-15 nm thick nanoneedle

structure that mainly consisted of h-WO3 with coexisting o-WO3·0.33H2O phase. Compared

to W-0.10-P20E, the fine nanoneedle phase could serve higher surface area for the photocat-

alytic surface reactions which was evidenced by the BET measurements and it is summarized

in Table 4.2. However, compared to W-2.01-P20E, which showed high aspect ratio nanowire

morphology of pure h-WO3, W-1.52-P20E had more limited surface area. Still, it showed

significantly higher photocatalytic performance than W-2.01-P20E. In this case, it is worth

mentioning that the colours of the two catalysts were different. W-1.52-P20E had a pale
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Fig. 4.10 Photocatalytic activities of the WO3 nanostructures in the photobleaching reaction
of methyl orange

yellow colour whereas W-2.01-P20E catalyst was blue. The UV-vis diffuse reflectance and

XPS analysis confirmed that the blue WO3 had unique light absorption behaviour. After

the apparent band gap, the light absorption rose again in the far-red region of the visible

spectrum. The XPS studies further evidenced the presence of reduced W atoms that could

be responsible for the additional light absorbance in the far-red region by the generation of

in-gap defect states. It is likely, that at these interband defect sites the photogenerated charges

could more easily recombine which had an adverse effect on the photoactivity of blue W-

2.01-P20E catalyst. Therefore, the remarkably better photocatalytic activity of W-1.52-P20E

with respect to W-2.01-P20E is likely to be the result of the more oxidized composition of the

WO3. This is supported by earlier literature reports which showed that WO3 nanostructures

exhibited significantly different efficiencies in photocatalytic reactions when the oxidation

level of the material was altered [206].
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In agreement with this, the other pale-yellow catalysts of W-0.10-P20E and W-1.05-P20E

showed good photoactivities after W-1.52-P20E, as well. These strucures were characterized

by the lowest and highest band gap energies of 2.70 eV and 3.25 eV, respectively. Although

W-1.05-P20E showed the highest energy band, the presence of three different crystal phases

and various morphologies could compensate the limited light harvesting ability of W-1.05-

P20E. In some cases, the contact between different crystal phases was found to enhance the

photoactivity. For example, it is well-known that the mixture of anatase and rutile phase

TiO2 in P25 overperforms the single phases in photocatalysis [218]. Also the different

morphologies provided somewhat higher surface area for W-1.05-P20E compared to W-0.10-

P20E as it can be seen from Table 4.2.

The recycling test of the prepared nanostructures was performed to study the reusability

and chemical stability of WO3 photocatalyst over multiple cycles. To test this, W-0.10-P20E

sample has been reused three times. Figure 4.11 shows that the photocatalytic activity of

W-0.10-P20E was well-preserved over the three cycles. In all three cases the final c/c0

was measured to lie around 0.4. No significant loss of photoactivity could be observed

over the repeated experiments which suggested good stability of the nanostructure. This

finding correlates well with other literature reports where good chemical stability and retained

photoactivity was reported for WO3 nanostructures [219, 12].

4.3 Conclusion

In this work, WO3 nanostructures were synthesised in nanoplate, nanorod, nanoneedle and

nanowire morphology by a facile hydrothermal method. It was found that the crystalline

phase and the morphology of the nanomaterials were determined by the solution pH in the

first place.

The pH 1.05 was a transition point for the monoclinic/hexagonal phase, crystal size and

for the band gap. M-WO3 was preferentially prepared in a lower pH range of 0.10 and 1.05



4.3 Conclusion 87

Fig. 4.11 Repeated photocatalytic test of W-0.10-P20E nanostructure

whereas h-WO3 was favoured at a pH above 1.05. The aspect ratio of WO3 nanostructures

increased significantly with the pH and reached close to 100 at pH 2.01 where good quality

nanowires were formed.

The morphological evolution of the WO3 nanostructures could not be fully explained by

the nucleation theory of LaMer and Dinegar. The appearance of fine nanoneedle phase at pH

1.05 could not be interpreted from the viewpoint of supersaturation and crystal nucleation.

Considering the metastable nature of h-WO3 and the potential impact of morphology on the

stability of the nanostructure, the crystalline phase may also play an important role in the

determination of the morphology.

The band gap energies of synthesised WO3 nanostructures ranged from 2.70±0.03 eV to

3.25±0.03 eV. The highest band gap was observed at pH 1.05, which was the transition point

of crystal phases and morphology. The higher band gap energies of h-WO3 nanostructures

in comparison to m-WO3 can be explained by the effect of QC and the crystal structure.

W-EtOH and W-2.01-P20E samples exhibited blue colour while the rest of the samples were
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pale yellow. The absorption spectra of the blue samples revealed that the light absorption

further increased beyond the apparent band gap energy in the far red region of the visible

spectrum. The optical behaviour implied that in-gap states were formed due to reduced W

atoms. Additionally, for the W-2.01-P20E the accommodation of NH4+ ions into the crystal

lattice resulted in a slight band gap narrowing.

The photocatalytic tests showed that the photocatalytic efficiency of nano WO3 was a

compromise of the band gap, crystal phase, morphology, and the oxidation state. The best

catalyst was W-1.52-P20E (Eg = 3.10 eV) that was closely followed by W-0.10-P20E (Eg

= 2.70 eV) and W-1.05-P20E (Eg = 3.25 eV) samples. W-0.10-P20E and W-1.05-P20E

exhibited similar photoefficiencies despite the fact that these samples showed the lowest

and highest calculated band gap energies, respectively. It was suggested that the presence

of multiple crystal phases and morphologies in W-1.05-P20E could compensate the limited

light absorption property of the material. The blue samples (W-2.01-P20E and W-EtOH)

typically exhibited reduced photoactivity. It was suggested that the presence of in-gap defect

states could act as recombination centres for the photo-generated charges which could result

in lowered overall photoefficiency.



Chapter 5

Effect of Ag co-catalysis on TiO2/Cu2O

The content of this chapter has been presented at the E-MRS Spring Meeting, in Strasbourg,

France between 22-26 May 2017. This project has been also awarded by the Graduate

Student Award.

5.1 Introduction

TiO2 is still one of the most studied photocatalyst owing to its excellent chemical stability,

inexpensive and non-toxic nature. It also possesses adequate valence and conduction band

edge positions for water-splitting. However, as most single materials its activity was found to

be inefficient for industrial processes [16].

Inefficiencies may arise from exclusive light absorption, fast e–/h+ recombination and/or

short diffusion length of the charge carriers [220]. To improve one or more of these shortcom-

ings, different approaches were investigated in the past including (i) heteroatom doping, (ii)

semiconductor coupling or (iii) surface modifications. For instance, by forming a nanocom-

posite with a narrow band gap semiconductor, both the light absorption can be extended

into the visible range and the charge carrier recombination can be suppressed. This holds

true when a type II band alignment is induced between the semiconductors [221]. Addi-
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tionally it was found that further enhancement in the photoefficiency may be possible by

combining one or more approaches. For example, the synergetic effect of noble metal surface

modification and semiconductor coupling was reported for a Ag/TiO2/multi-walled carbon

nanotube heterostructure and a g-C3N4/Pt/ZnO photoanode [222, 223]. In both cases the

ternary hybrid nanostructures overperformed the visible photocatalytic activity and photo-

electrochemical performance of the binary counterparts, respectively. In other cases, doping

and nanomaterial coupling was found to beneficially affect the photoefficiency. Chen et

al. for example investigated a nitrogen-doped graphene/ZnSe nanocomposite system that

exhibited improved photoactivity towards methyl orange [224]. Elsewhere, Nguyen-Phan et

al. studied an Sn-doped TiO2 coupled reduced GO system. The doped nanocomposite was

found to exhibit increased specific surface area, enhanced visible light absorption and higher

photoactivity than the undoped nanocomposite [225].

Recently Cu2O, a non-toxic and earth abundant p-type semiconductor, has gained much at-

tention for visible-response photocatalysis, electrochemical and gas sensing applications [226–

228].

Its narrow direct band gap ( 2.2 eV) and high light absorption abilities makes it ideal

to be utilized in solar-response systems [229]. However, due to the rapid charge carrier

recombination, it is often coupled with other semiconductor oxides such as TiO2 [230]. In

such a system, the adequate band alignment could facilitate effective electron-hole separation

which can further promote the photocatalytic performance [231]. Therefore, binary het-

erostructures such as Cu2O/Ag, Cu2O/TiO2 or Cu2O/ZnO are commonly prepared in order

to mitigate charge recombination [232–235]. Yet, the combination of different approaches

like nanocomposite formation and surface modification has been only rarely investigated for

Cu2O type catalysts. For example, an Ag/Cu2O/ZnO triplejunction photoelectrode has been

fabricated by Liu et al. for photocatalytic hydrogen generation [227]. Others prepared and

tested a Cu2O/Ag/TiO2 thin film in photocatalysis [236]. In both cases, promising results
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and enhanced performance was reported for the composite structures that was explained

by the improved visible light absorption, higher charge separation and enhanced electron

transfer. Although some investigations have been already carried out in the preparation of

ternary hybrid structures and metal-modified systems, it is still a rather unexplored field for

Cu2O related systems.

Therefore, the motivation of this work was to further extend the current studies on TiO2-

Cu2O systems by combining different modification techniques. To the best of our knowledge,

TiO2/Ag/Cu2O powder system has not yet been investigated. Therefore uniquely, in this

study not only the amount of Ag content was studied but also the effect of the synthesis

sequence of the Ag deposition step as well. The Ag modification was carried out between

1% to 5% which resulted in effective plasmonic photocatalysts in the past [94, 237, 238].

The hybrid nanostructures were prepared by a facile wet-chemical technique and subsequent

UV-treatment. The nanostructures were fully characterized by SEM, TEM, XRD and UV-

visible diffuse reflectance along with the dark adsorption kinetics. Because the materials

exhibited both indirect and direct electron transitions over the forbidden band gap, multiple

techniques were employed for the band gap estimation.

5.2 Results and Discussion

5.2.1 Nomenclature

The TiO2/Cu2O and Ag related powder catalysts presented in the thesis are named as

follows. The first letter indicates the type of semiconductor and the related number refers

to the nominal composition. For example catalysts T, C or TA1C stands for TiO2, Cu2O or

TiO2/Ag(1%)/Cu2O catalysts. The TAC and TCA nomenclature reflects the order of synthesis

steps. For example, in TA5C catalyst firstly Ag was synthesised in a TiO2 suspension which
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was followed by the Cu2O synthesis step. TAC or TCA notation is used to discuss general

material properties regardless the nominal Ag percentage.

5.2.2 Crystal structure

The crystal structure of the nanomaterials has been investigated by X-ray powder diffraction

(XRD).

Figure 5.1 a) shows the diffractogram of C and TC nanostructures. The bare Cu2O sample

was identified as cubic Cu2O based on 71-3645 JCPDS card. Typical peak positions of 2θ =

29.8◦, 36.6◦, 42.5◦ and 61.6◦ could be assigned to (110), (111), (200) and (220) (hkl) planes,

respectively. Additionally, it was also noted that the peaks were intense and sharp which

suggested good crystallinity. TC heterostructure showed characteristic peaks of anatase and

rutile TiO2 (based on 21-1272 and 72-7374 JCPDS cards, respectively) and also cubic Cu2O.

No other crystalline structure could be identified from the XRD pattern. Although it was

noticed, that the diffraction peaks of the TC sample were less intense compared to the bare

Cu2O.

Figure 5.1 b) depicts the diffractogram of T and TA5 nanostructures for comparison.

The bare TiO2 sample showed anatase and rutile reflection peaks as expected. Whereas the

Ag-modified TA5 nanomaterial showed evidence of the Ag-content beside the anatase and

rutile peaks of TiO2. Characteristic Ag diffraction peaks could be identified at peak positions

of 2θ = 44.4◦ and 64.5◦ that could be assigned to (200) and (220) (hkl) planes of cubic

metallic Ag (based on 04-0783 JCPDS card), respectively.

The XRD pattern of TA5C is shown in Figure 5.1 c) in comparison with the binary TC

hybrid structure. The diffractogram of TA5C showed characteristic peaks of anatase and

rutile TiO2, cubic Cu2O and cubic Ag without the indication of other crystalline impurities.

The diffraction pattern of TA3C and TA1C samples could be assigned to the same crystal

phases as TA5C only the intensity of metallic Ag peaks were found to be less intense.



5.2 Results and Discussion 93

Fig. 5.1 XRD diffractograms of the nanostructures

Finally, Figure 5.1 d) shows the diffraction pattern of TCA5 nanostructure. Uniquely, a

new crystal phase could be identified in the TCA hybrid structures. The newly appearing

peaks at 2θ = 35.6◦ and 38.8◦ positions indicated the presence of face-centered monoclinic

CuO (73-6023 JCPDS card) in the ternary TCA5 nanostructure. Although, there was

still indication to the presence of co-existing cubic phase Cu2O at 2θ = 42.5◦ and 61.6◦.

Therefore, TCA5 sample was interpreted as a mixture of face-centered monoclinic CuO and

cubic Cu2O. The partial oxidation of Cu2O is likely to be induced by the Ag-deposition

procedure since in TA5C, where the Ag-deposition was performed prior to Cu2O synthesis,

only cubic Cu2O could be identified in the XRD pattern. The partial oxidation of cubic Cu2O

was also evidenced at 1% Ag loading in TCA1 catalyst. With regard to the peak intensity, it
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was found that TCA5 catalyst exhibited less intense peaks in the XRD pattern compared to

TA5C sample which could be an indication of reduced crystallinity.

5.2.3 Morphological structure

The morphological structure of the nanomaterials has been explored by recording SEM and

TEM images that are presented in Figure 5.2 and 5.3, respectively.

In general, the SEM images revealed that the various nanostructures consisted of cuboidal

or irregularly shaped spherical nanocrystals that were typically less than 100 nm in size.

Furthermore, the TEM images revealed the co-existence of smaller and bigger nanostructures

in the hybrid materials.

It was found that the pristine Cu2O nanostructure exhibited uniform cuboidal nanocrystals

with a characteristic dimension of circa 60-75 nm as it can be viewed in Figure 5.2 a). The

hybrid nanostructures shown in Figure 5.2 b)-f) revealed more irregularity in the shape and

size of the nanocrystals. TC nanomaterial shown in Figure 5.2 b) and Figure 5.3 a) was

found to consist of smaller 15-30 nm and bigger circa 50-80 nm crystals. The nanoparticles

resembled cuboidal and irregular spherical shapes. The wider size distribution could be

caused by the hybrid nature of the sample. It was indicated by previous reports that anatase

and rutile phases of TiO2 exhibit different mean crystal sizes in P25 [159]. Also the primary

crystal size of TiO2 was 21 nm according to the analytical report of P25 used for this

study which is significantly smaller than the typical crystal size of the reference bare Cu2O

nanomaterial.

The shape and size distribution of TA1C and TA5C which is shown in Figure 5.2 c), d)

and Figure 5.3 b) were found to be similar to TC sample. The nanocrystals possessed both

cuboidal and spherical shapes and typically ranged from around 20 nm up to 80 nm.

And finally, Figure 5.2 e), f) and Figure 5.3 c) depicts TCA1 and TCA5 nanomaterials.

Although the TEM image reveals the presence of both smaller and bigger crystals, there



5.2 Results and Discussion 95

Fig. 5.2 SEM images of a) Cu2O, b) TC, c) TA1C, d) TA5C, e) TCA1 and f)TCA5 nanos-
tructures
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Fig. 5.3 TEM images of a) TC b) TA5C and c)TCA5 nanostructures

are fewer bigger nanoparticles compared to TC or TA5C samples. The reduced number of

50-80 nm nanocrystals correlates with the fact that in TCA samples the cubic Cu2O was

partially oxidized to face-centered monoclinic CuO as revealed by XRD. This could imply

that the bigger cuboidal shaped nanostructures are Cu2O which is also in agreement with the

typical morphology of the reference Cu2O sample. From the SEM image it could be noticed

that the nanocrystals in TCA1 and TCA5 samples were typically in close contact with each

other and they aggregated to form circa 80-100 nm or bigger clusters.

5.2.4 Optical properties

The light absorption properties of the nanostructures were studied by recording the solid-

phase diffuse reflectance (DR) spectra which is shown in Figure 5.4 a). To estimate the band

gap values (Eg) the Tauc model was used which can be seen in Equation 3.8 and displayed

in Figure 5.4 b)-d). As an additional method, differential reflectance method (DRM) was

also employed to obtain additional information on the band gap energies of the hybrid

nanostructures which is shown in Figure 5.5.

Importantly, in Equation 3.8 n coefficient takes different values depending on the mode

of electron transition of the material. In the case of indirect electron transition n= 2 whereas

for direct transition n= 1/2.
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Fig. 5.4 The light absorption properties of the nanostructures shown a) in the diffuse re-
flectance spectrum and b)-d) in the Tauc plot

It is known that P25, which was used as TiO2 source in the synthesis processes, is the

3:1 mixture of anatase and rutile phases of TiO2, respectively. However, the different crystal

phases of TiO2 are typically associated with different electron transition over the forbidden

band gap. The anatase phase is most typically reported to possess indirect transition while

both indirect and direct band transitions are commonly reported for the rutile phase [159, 35,

158]. Therefore the estimation of the band gap of TiO2 requires certain assumption. Becauce

anatase is the major phase, indirect transition was assumed in the Tauc plot. The calculated

band energy was found to be 3.28±0.03 eV which is in good agreement with other literature

report [159].



98 Effect of Ag co-catalysis on TiO2/Cu2O

Using indirect Tauc model, it was found that the absorption edge of the Ag-modified TiO2

samples has slightly red-shifted (ca. 0.05-0.08 eV) compared to the bare TiO2. Additionally,

an absorption peak centred around 450 nm appeared in the absorption spectra of TA1-

TA5 samples. This is believed to be caused by surface plasmon resonance effect which

is characteristic of metallic Ag and has been previously reported in the literature [239].

It could be noted that with increasing Ag content the intensity and distribution of the

characteristic absorption peaks increased. It is known that the resonance effect induced

by surface deposited noble-metals such as Ag is influenced by the size and shape of the

nanoparticles. Madhavi et al. reported that increasing the size of Ag nanoparticles could

induce broader absorption peaks which was explained by secondary radiations affecting the

surface plasmon resonance [240]. Therefore, it is possible that the increased intensity and

broadened absorption peak in TA5 sample is caused by the increasing number and/or size of

the Ag nanoparticles.

The optical band gap of Cu2O sample has been calculated to be Eg = 2.36±0.03 eV

by direct Tauc model [241]. The direct band gap of nanostructured Cu2O was reported

to typically range from 2.2 to 2.5 eV while the band gap of bulk Cu2O is reported to be

2.17 eV [242–244]. Our estimated band gap is in good agreement with reported literate data

and higher than that of the bulk form which is consistent with weak quantum confinement

effect caused by the nanoformulation.

To estimate the band gap of the hybrid nanostructures such as TC, TAC or TCA by the

Tauc model, firstly the mode of electron transition needed to be assumed. However, the

presence of both indirect (anatase TiO2) and direct nanostructures (rutile TiO2 and cubic

Cu2O or monoclinic CuO) complicated the assumption. In the literature, Perez-Gonzalez et

al. determined the optical band gap of an anatase TiO2/ZnO nanocomposite film (prepared

in different ratios) where the anatase TiO2 possessed indirect while the ZnO direct electron

transition over the band gap. The authors found that the band energies estimated by Tauc
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Eg [± 0.03 eV] Eg [± 0.03 eV] Eg [± 0.04 eV]
Indirect Tauc plot Direct Tauc plot Differential reflectance

TC

2.35 2.50 2.49
2.77 3.15 2.57

2.68

TA1C

2.35 2.50 2.50
2.61 3.15 2.56

2.66

TA3C

2.35 2.50 2.48
2.62 3.12 2.56

2.67

TA5C

2.34 2.48 2.48
2.62 3.15 2.56

2.67
Table 5.1 Summary of the estimated band gap values for the nanostructures by direct and
indirect Tauc plot and by differential reflectance method

model gave closer agreement with reported values when the major component’s mode of

transition was assumed in the Tauc relationship [245]. However, SEM-EDS results indicated

that in the prepared TiO2-Cu2O composite nanostructures the contribution of both direct

and indirect transitions was comparable. Therefore, the absorption threshold of the hybrid

nanomaterials was estimated by both direct and indirect Tauc plot. Additionally a third

approach, the differential reflectance method (DRM) has been also utilized that did not

require the assumption of the mode of electron transition. This technique has been previously

used in the literature to further validate estimated band gap energies especially for mixed

indirect/direct heterostructures [158, 159]. Moreover, Apopei et al. claimed that the band

gap estimation of mixed phase TiO2 by differential reflectance method could provide more

accurate values than Tauc plot [159]. The band gap estimation by differential reflectance

method was performed by plotting dR/dλ against the wavelength (λ ) from which the maxima

of the fitted peaks gave estimates for the band gaps. Figure 5.5 shows the transformed spectra.

In general, it was found that three band gaps could be estimated from the differential

reflectance curves for the binary TC and ternary TAC heterostructures while two band gaps
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Fig. 5.5 Band gap estimation based on the differential reflectance method for selected
nanostructures

could be derived from the Tauc plot both under direct and indirect transitions. Similarly to

us, Li et al. reported two apparent band gaps for an Ag2O/TiO2 double layer thin film by

Tauc model. The higher band gap was associated with TiO2 whereas the smaller band gap

with Ag2O [77]. Additionally, Apopei et al. found that in contrast to the Tauc model, by

DRM two band gaps could be determined for P25 intstead of one. One for the anatase and

one for the rutile phase [159]. Table 5.1 summarizes the calculated band gap energies by the

different methods and Figure 5.6 helps to visualize the differences between the estimated

values.

The absorbance spectrum of TC catalyst revealed extended light absorption into the

visible range compared to bare TiO2 thanks to light sensitization of Cu2O. By using different

methods, the estimated Eg values for the smallest band gap varied between 2.35 and 2.50 eV.
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Fig. 5.6 Comparison of the estimated band gap values by direct and indirect Tauc plot and by
differential reflectance method for a) TC and b) TA1C catalyst

The closest agreement between the estimated Eg values was found between direct Tauc

plot and DRM that differed only by 0.01 eV. This difference is smaller than the error band

associated with the Eg estimation (± 0.03 eV). On the other hand, the smallest band energy

calculated by indirect Tauc model lied 0.14-0.13 eV below these values.

Considering the higher energy gap, it could be noted that the direct Tauc plot estimated

significantly higher energy value (by at least 0.47 eV) than the rest of the methods. Whereas

the indirect Tauc plot and DRM showed closer matching Eg values that can be seen in Figure

5.6 a).

It is interesting to observe that closer agreeing Eg estimates could be achieved between

different methods when the electron transition of the intrinsic semiconductor was used in the

Tauc model. For example for the higher band gap, indirect Tauc plot gave close agreement

with DRM which is consistent with the electron transition of the major anatase TiO2 phase.

Similarly, for the smallest band gap, direct Tauc plot agreed better with DRM which is

consistent with the mode of transition of Cu2O.

For TAC ternary heterostructures similar light absorption behaviour to TC catalyst was

observed. Figure 5.6 b) demonstrates the estimated band gap energies of TA1C catalyst

obtained by different methods. It can be seen that TA1C shows very similar trend to TC.
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Finally, for TCA ternary nanostructures different optical behaviour was found. In general,

the DRM could not derive optical band gap energy for TCA catalysts due to the absence of

sharp drop in the absorbance spectra. The absence of sudden decrease in the light absorption

suggests light harvesting over the whole visible range although with decreasing intensity.

This unique optical behaviour could be most probably ascribed to the partial oxidation of

Cu2O into CuO. In the literature monoclinic CuO is characterised by narrower band gap

energy than Cu2O. Reported Eg values of monoclinic CuO typically lies between 1.55 and

2.00 eV for bulk and nanostructured CuO, respectively [246, 247].

5.2.5 Dark adsorption

Cu2O has been previously realized as promising photocatalytic adsorber material in the

literature [89].

To model dye adsorption most widely Lagergren pseudo-first order or pseudo-second

order kinetic models are used in the literature [248]. Therefore, to describe the dark adsorption

of the hybrid structures these kinetics models were fitted to our experimental data. Figure 5.7

b) and c) depicts the fitted kinetics models. To gain further insights into the sorption kinetics,

the intra-particle diffusion model by Weber and Morris was also applied. This is shown in

Figure 5.7 d).

The linearized forms of Lagergren pseudo-first order shown in Equation 5.1, pseudo-

second order in Equation 5.2 and intra-particle diffusion models in in Equation 5.3 takes the

following forms.

log(qe −qt) = log(qe)−
k1t

2.303
(5.1)

t
qt

=
1

k2q2
e
+

t
qe

(5.2)
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qt = kit1/2 +C (5.3)

where qe and qt are the amount of adsorbed dye at equilibrium and at any time t, respec-

tively and k1, k2 and ki are rate constants, t denotes the time and C is model parameter which

indicates the thickness of dye adsorbed at the boundary layer.

The pseudo-second order model shown in Equation 5.2 was first proposed by Ho and

McKay to describe the sorption kinetics of metal ions onto a peat sample [249]. The kinetic

equation by Ho and McKay could model the chemical bonding between the sorbent and

sorbate. The order of the empirical model is reflected from the power of the non-linearized

form of the kinetic equation which is shown in Equation 5.4. In the original paper the unit of

the pseudo-second order constant k2 was given as [g/mg min] [250].

dq
dt

= k2(qe −q)2 (5.4)

The amount of dye adsorbed was calculated according to Equation 5.5.

qt =
(c0 − ct)V

m
(5.5)

where c0 and ct are the initial and final concentration in [mg/L], respectively, V is the

volume in [L] and m is the mass of catalyst in [g].

Figure 5.7 a) revealed that the adsorption profile of TC, TA5C and TCA5 catalyst was

remarkably different. It could be noticed that the Ag-modified TA5C and TCA5 materials

showed lower dye uptake levels over time up to about 175 min. At this point TA5C reached

similar levels of dye uptake as TC catalyst. Interestingly, after the first couple of minutes

TCA5 sample did not even approach the dye uptake level of TC or TA5C. It showed sig-

nificantly lower dye adsorption ability which was saturated quickly. This showed that the

introduction of Ag into the binary TiO2-Cu2O nanostructure had much effect on the catalyst



104 Effect of Ag co-catalysis on TiO2/Cu2O

Fig. 5.7 Kinetic models for TC, TA5C and TCA5 catalyst a) qt versus time plot b) Lagergren
pseudo-first order model c) pseudo-second order model d) Weber and Morris intra-particle
diffusion model
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affinity to adsorb MO onto its surface. Although it is worth noting that in the case of TCA

structure beside the Ag modification, the oxidation state of the copper component was also

altered. This could also play a prominent role in the much reduced dye adsorption of the

catalyst. Typically, the adsorption characteristics reflect the physicochemical properties

of the material. And although the surface charge of semiconductor oxides could strongly

depend on conditions such as the solution pH, synthesis methods, purity of the material

. . . etc, it was found that bare Cu2O may possess positively charged surface under ambient

conditions [251]. According to the review of Marek Kosmulski, the pH level at the point of

zero charge is reported to lie between 5.0-11.5 for Cu2O [252]. This means that under more

acidic conditions than the pH of the point of zero charge, the surface of Cu2O is expected to

become positive. The surface properties of materials can be experimentally determined by

e.g. Zeta potential measurement. In agreement with this, Gao et al. for example realized

that bare Cu2O exhibited positive surface charge while a graphene-Cu2O composite showed

negative Zeta potential values in aqueous solution at 0.4 mg/mL concentration [253].

Silver on the other hand, was reported to show little adsorption towards the anionic

MO which was explained by its negatively charged surface character measured by Zeta

potential analyzer [254]. Reports suggested that the negative surface charges of silver

nanoparticles could originate from chemicals in the synthesis mixture such as citrate [255].

Ag nanoparticles synthesized from aqueous sea weed was also found to result in negatively

charged nanoparticles [254]. It is likely, that the opposing surface charges of Cu2O and Ag

could cause different affinity towards MO in the case of the Ag-cocatalyzed materials.

Figure 5.7 b) shows the log(qe-qt) versus time plot which fits pseudo-first order kinetic

model to TC, TA5C and TCA5 catalyst. It was found that TC and TA5C catalysts showed

significant deviation from linearity after circa 100 min. This was reflected in the correlation

coefficients of R2 = 0.943 and 0.952, respectively. Similarly, TCA5 catalyst showed poor

fitting to the Lagergren model.
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Sample ki [mg g-1 min-1/2] C [mg g-1] R2[−]

TC 3.47 12.64 0.996
TA5C 4.02 2.93 1

Table 5.2 Kinetic parameters of Weber-Morris intra-particle diffusion model

Figure 5.7 c) depicts the regression analysis for the pseudo-second order model which

revealed that TC and TA5C nanostructures exhibited significantly different features at the

early stages of dark adsorption. The least square linear fit revealed strong correlation

coefficient of R2 = 0.988 to the TC data points whereas R2 = 0.229 to TA5C. The poor fitting

of TA5C was caused by the significant deviation from linearity especially in the first 50

minutes. The early adsorption showed unique features which can be also viewed on the

adsorption capacity (qt) versus time plot on Figure 5.7 a). It can be seen that the dye started to

bind to the catalyst surface at a very slow pace in the first 25 min. After that, a gradual rise in

the adsorbed amount could be noted which essentially reached similar dye uptake rate as TC

catalyst after 50 minutes. Due to this delayed adsorption behaviour, none of the Lagergren

or pseudo-second order models could fully describe the adsorption characteristics of TA5C.

However, the dark adsorption of both TC and TCA5 sample could be satisfactorily modelled

by pseudo-second order kinetics. This finding correlates well with literature reports where

e.g. cubic Cu2O of various sizes and shapes were reported to follow pseudo-second order

kinetics for dark adsorption towards organic dyes such as MO or Congo Red [256, 251, 97].

It was also indicated by previous reports that systems obeying pseudo-second order kinetics

indicates chemisorption as dominant mechanism in the adsorption process. This reflects

dimeric chemical reaction taking place between the sorbent and sorbate mostly through the

sharing or exchange of electrons and ions [257–260].

In order to learn more about the adsorption mechanism, the intra-particle diffusion model

was also explored. A single linear relationship in the Weber-Morris plot (qt vs time1/2) which

passes through the origin implies that intra-particle diffusion is the sole rate-controlling
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step [251, 261]. However, in the event of multi-linearity the adsorption process may be

governed by multiple mechanism. Figure 5.7 d) depicts the Weber-Morris plot which clearly

shows multilinear regression for both TC and TA5C structures. The qt vs time1/2 plot reveals

three main linear regions. The first steep linear phase corresponds to external diffusion of

the dye molecules to the catalyst surface which also referred as film diffusion [262]. The

second linear portion indicates when the intra-particle diffusion is rate-controlling. Over

this step gradual adsorption of the dye is taking place. The last rather horizontal linear part

is the equilibrium plateau when the adsorption process reaches saturation coverage in the

system [263]. For TA5C catalyst it is noteworthy that the first linear portion was delayed in

time which is the result of disfavoured adsorption in the early phases of the process. The

calculated kinetical parameters which were derived from the intercept and the slope of the

linear lines are listed in Table 5.2 where the C values indicates the thickness of the boundary

layer. For both catalysts it was a non-zero value but it was remarkably higher for TC catalyst.

This indicates higher boundary layer effect in the dye adsorption onto TC [248, 263]. The

adsorption profile of TCA5 catalyst was different from TC and TA5C. Firstly, the adsorption

of MO onto TCA5 reached equilibrium more rapidly than for TC or TA5C. Secondly, the

amount of dye adsorbed was significantly less for TCA5 relative to TC or TA5C catalysts.

5.2.6 Apparent visible photoactivity

The apparent visible activities of the prepared heterostructures were studied after 60 minutes

of dark stirring under visible light irradiation. Figure 5.8 shows that most typically the

light irradiation significantly improved the decoloration efficiency of the Ag-cocatalysed

samples compared to the dark reference measurements. However, TC catalyst did not exhibit

considerable improvement under light illumination relative to the dark measurement under

this testing condition.
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Fig. 5.8 Apparent visible activities of TC, TA5C and TCA5 nanomaterials after 60 min dark
stirring shown with solid lines and dark activity shown with dotted lines

Following the Kinetic concepts of heterogeneous photocatalysis book chapter published

by Springer, the evaluation of the kinetic data was based on classical graphical methods. The

concentration-time plot was used to determine the kinetics rate values for the disappearance

of the orange colour of MO dye in the case of the different catalysts [264, 265].

Heterogeneous photocatalytic reactions commonly follow pseudo-zero and pseudo-first

order models. In the pseudo-zero order model the rate of reaction does not significantly

depend on the concentration of the target chemical. This is commonly the finding for systems

where the catalyst surface is saturated by the dye or when the reactant is present in large

excess in the solution. For systems obeying the pseudo-first order model, effectively a

single reactant is influencing the rate of the disappearance of the dye while the variance

of catalyst concentration remains negligible. Most photocatalytic systems using inorganic

semiconductors were reported to fall into the category of either pseudo-zero or pseudo-first

order kinetics [109, 74, 138, 266–271].
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Catalyst
Pseudo-zero order Pseudo-first order

k0 [mg L-1 min-1] R2 [-] k1 [min-1] R2 [-]

TA5C 0.1742 0.985 0.0332 0.950
TA3C 0.1777 0.982 0.0323 0.958
TA1C 0.1176 0.998 0.0255 0.890

TC 0.1124 0.982 0.0192 0.988
TCA1 0.0735 0.994 0.0042 0.990
TCA5 0.0557 0.989 0.0028 0.989

Table 5.3 Kinetic model parameters for the apparent visible activities after 60 min dark
stirring

In this work, TC and TAC catalysts showed good affinity to adsorb MO to its surface while

TCA catalysts showed more limited dye adsorption by one hour dark stirring. Considering

the local dye concentration by the catalyst surface pseudo-zero or -first order kinetics may

be followed under visible light exposure. It is also noted that in the current systems dye

adsorption and dye conversion could also take place under visible light irradiation. Keeping

this in mind the approximation of the overall process was attempted with power law kinetics

such as pseudo-zero or pseudo-first order models. The aim was to allow comparison of the

performance of the different catalysts under current operational conditions.

The linearized forms of the pseudo-zero and pseudo-first order kinetic models are shown

in Equation 5.6 and 5.7 [272, 273]. The calculated parameters and regression coefficients for

the models are summarized in Table 5.3.

c0 − ct = kt (5.6)

− ln
ct

c0
= kt (5.7)

After fitting the experimental data with the different kinetics models, both visual obser-

vation and the correlation coefficients confirmed that the pseudo-zero order model could
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Concentration [ppm] TC TA5C TA3C TA1C TCA5 TCA1

t0 11.7 15.3 15.7 10.9 20.2 19.2
t10 10.3 13.4 13.5 9.6 19.9 18.6
t20 8.7 10.8 11.2 8.2 19.5 18.0
t30 7.7 8.7 9.0 7.4 19.0 17.4
t40 6.3 6.5 6.7 6.0 18.4 16.8
t50 5.1 4.5 4.6 4.9 17.7 16.0
t60 3.8 3.0 2.9 3.6 16.9 15.0
t70 3.1 1.6 1.6 2.3 16.5 14.3
t80 2.4 0.7 1.0 1.4 16.0 13.4
t90 1.7 0.4 0.4 0.4 15.5 12.8

Table 5.4 MO concentrations in the Visible process of the different photocatalysts tabulated
in the function of irradiation times

adequately describe the process for all samples. The kinetics models are depicted in Figure

5.9 a)- b) and the concentration of MO solution derived from the UV-visible spectra is listed

in Table 5.4.

Based on the pseudo-zero order rate constants, the following decoloration efficiencies

could be established for the catalysts: TA3C > TA5C > TA1C > TC > TCA1 > TCA5.

In general, it could be seen that TAC catalysts showed the highest while TCA catalysts the

lowest rate constants in the visible process.

It could be noticed that catalysts with the lowest dark adsorption by 60 min (TCA1 and

TCA5) showed the lowest rate constants (circa 0.06-0.07 mgL-1min-1). Whereas catalysts

with medium level of dark adsorption (TA5C and TA3C) exhibited the highest rate constants

of circa 0.17-0.18 mgL-1min-1 under visible light irradiation. TC and TA1C showed the

highest dark adsorption, yet they exhibited medium efficiency under visible light.

Correlation between the amount of pre-adsorbed dye and the apparent photoefficiency

could be noticed for the nanocomposites. TC catalyst with highest dye uptake did not favour

further improvement under light irradiation. This may suggest that excessive dye adsorption

on the catalyst surface could exert an extensive shadowing effect. By absorbing an appreciable

amount of visible light less light may have reached the catalyst surface which inhibited the
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Fig. 5.9 a) Pseudo-zero order kinetic model and b) pseudo-first order model tested for the
catalysts

Fig. 5.10 Apparent visible activity of TC nanostructure after 20 min dark stirring shown with
solid line and reference dark activity shown with dotted line

photocatalytic reactions. Similar phenomenon was noticed by Sajjad and his co-workers who

tested the photocatalytic efficiencies of a WOx/TiO2 nanocomposite in varied concentration

of MO solutions. They found that beyond an optimal dye concentration the photobleaching

process was inhibited and lower efficiencies were measured [274]. They argued that the

path length of photons were reduced which could affect the performance of the catalyst
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Fig. 5.11 TOC conversion showed for TA5C catalyst in the function of time a) when it is
stirred in darkness and b) when exposed to visible light

detrimentally. They also mentioned possible competing effect of the dye adsorption with

other species such as with oxygen or OH- that play a key role in the photocatalytic process.

Similarly, Li et al. also reported that increased initial dye concentration (RhB) resulted in

lowered photoactivity of a magnetic Fe3O4/TiO2/SiO2 aerogel. The reduced efficiency was

explained by blocked active sites and the fraction of the light absorbed by the dye itself [275].

Although in our test the initial dye concentration was not directly altered, still the different

amount of MO adsorbed onto the surface of different catalysts may have led to similar effects

on the apparent photoefficiency. In oder to test if the apparent visible activity of TC was

affected by the amount of adsorbed dye, an additional experiment was conducted. In this

experiment, TC catalyst was only allowed 20 min of dark stirring. This limited the amount

of adsorbed MO to 23% from the previous circa 47%. As a result of reduced dye adsorption,

significant improvement was noticed under visible light irradiation compared to the dark

measurement as it can be seen from Figure 5.10. This finding further supported that the level

of dark adsorption could play an important role in the overall performance of the catalyst

under visible light irradiation which could be further investigated in the future.

In order to learn more about the underlying mechanism of the photocatalytic process

further investigations were carried out. Typically, TOC analysis is undertaken in order to
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provide insights in the nature of MO degradation considering complete mineralization and

the formation of other intermediates [276, 277]. TA5C was selected among the catalysts for

further analysis as one of the most active catalyst under visible light irradiation. It is worth

mentioning that due to the limited batch size of the photochemical reaction, the samples

needed to be diluted for the TOC measurements. This could reduce the certainty of detection

by the TOC analyzer which could especially affect the lower concentration region. Therefore

at this region the measurement may carry higher uncertainties. For reference, the dark

stirred TA5C liquid samples were also analysed by TOC. However, in the dark process, no

light-induced mineralization is expected nor the generation of organic degradation products.

Therefore, similarly to the UV-visible spectrum, the decrease of the MO concentration could

be attributed to the adsorption process. This is shown in Figure 5.11 a). The TOC conversion

curve measured for TA5C catalyst under light irradiation is provided in Figure 5.11 b).

For the TOC measurement the same testing and sampling conditions were employed as

for the kinetical study of the apparent visible activities. From the TOC conversion plot it

can be immediately seen that the total organic carbon content of the MO solution shows a

declining trend over time similarly to the UV-visible curve of the solution using the same

material (see in Figure 5.8). It could be also noticed that the TOC conversion curve levels

off around 0.15 conversion and does not approach zero as closely as the UV-visible plot.

The somewhat higher level of final conversion in the TOC measurement compared to the

UV-visible conversion could indicate a degree of incomplete mineralization as opposed to

full decomposition of the dye into CO2 and H2O. This TOC result also suggests that most of

the MO removal in the case of TA5C under light exposure could be attributed to complete

mineralization and/or adsorption processes generating limited amount of byproducts in the

solution.

As a complementary technique, HPLC-MS analysis of TA5C was also performed in a

qualitative manner to identify potential degradation products. Analysing the liquid sample
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Fig. 5.12 HPLC-MS analysis of the MO solution after 90 min visible light irradiation when
using TA5C catalyst, a)-c) MS spectra of the recognised products and d) HPLC chromatogram

after 90 min of light irradiation, from the MS spectrum the identification of two degradation

products could be achieved. Their chemical formulas are displayed in Figure 5.12 d) along

with the supporting chromatogram and MS spectrum a)-c). No other degradation product

could be revealed from the light-irradiated intermediate samples. For reference, the HPLC

chromatogram of the dark stirred samples are also shown in Figure 5.13 at 0 and 60 min of

dark stirring along with the TA5C sample after 90 min of light irradiation. This supports

that the dark stirring does not produce degradation products, only the presence of inherent

chemicals can be discovered from both the 0 and 60 min dark-stirred liquid sample. However,

the changing peak profile of the 90 min irradiated sample implies that some degradation

products could be generated over the visible light irradiation. In agreement with the TOC

results, the HPLC-MS analysis also suggested that the major form of MO removal could be

attributed to the process of complete mineralization and adsorption. But, these results do not

exclude the possibility that intermediate products generated by the photochemical process

could also be physically adhered to the surface of the catalyst.
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Fig. 5.13 HPLC chromatograms of the MO solutions when stirred in the dark for a) 0 min
and b) 60 min and c) when irradiated with visible light for 90 min
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The effect of Ag-modification

It was generally found that both the amount of Ag and the order of the synthesis process

notably influenced the visible decoloration efficiencies of the materials.

In TAC catalysts, it was found that 1% Ag loading (TA1C) hardly changed the properties

of TC and hence very close performance was noticed for both catalysts under visible light

irradiation. However, 3% and 5% of Ag content, in TA3C and TA5C significantly enhanced

the rates of the apparent visible process as can be seen in Table 5.3. For TCA catalysts, less

effect was noticed when the amount of Ag content was varied. TCA1 which had 1% of Ag

loading showed somewhat higher rate constant in the visible process than TCA5 catalyst

with 5% of Ag loading.

When the order of the Ag-deposition step was altered, remarkable differences were

noted in the material properties of TAC and TCA catalysts. While TAC catalysts were

characterized as cubic Cu2O by XRD, TCA catalysts in general contained mostly monoclinic

CuO phase. The partial oxidation of Cu2O into CuO in the TCA catalysts could be the

result of the applied synthesis approach where the Ag-deposition step were conducted on

TC under UV light irradiation. Other material properties such as the morphology and the

optical properties were also affected by the order of the Ag-deposition step. As a result,

TCA catalyst in general exhibited significantly lower apparent visible activities compared

to TAC structures. This was reflected by the circa three times higher rate constant of TAC

catalysts in the visible process. It is worth mentioning that the overall lower performance

of TCA could originate from multiple factors. The restricted dye adsorption could limit the

rate of the surface photoreactions and also the photoactivity of the oxidized CuO phase was

reported to be different than that of the pure Cu2O. Especially in CuO/TiO2 systems, lowered

photocatalytic activity was reported in the literature [278].
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5.2.7 Mechanism

When TiO2 and Cu2O based heterostructures are fabricated a p-n junction is formed between

the two semiconductors due to their different nature of conductivity [279]. As a result,

the original valence and conduction bands are bended in order to reach equilibrium Fermi

levels [95]. For a TiO2-Cu2O system diffusion of electrons from the CB of Cu2O to the

CB of TiO2 is thermodynamically favoured whereas holes may accumulate on the VB of

Cu2O [22]. This way charge carrier separation could take place which is beneficial to produce

longer-lived charges for photocatalytic surface reactions [16].

When Ag is incorporated into the system, in theory, the projection of Vis-light excited

electrons from the conduction band of Cu2O to metallic Ag could take place. Hence, in

the ternary nanocomposites potentially both the Ag and the TiO2 could serve as electron

acceptors leaving the positive holes accumulate on the VB of Cu2O. This way an even more

sophisticated charge separation network may take place. In addition to the improved charge

separation, Ag was reported to show plasmon resonant behaviour when interacting with

visible light and was previously described as surface plasmonic co-catalyst. Several reports

showed that Ag- or Au-modified plasmonic metallic nanostructures exhibited improved

light absorption and/or photoactivities [94]. This may also contribute to the overall photo-

efficiency of the ternary nanocomposites under visible light irradiation.

However, beyond the expected improvements from increased charge separation and Ag

co-catalysis, our experimental results indicated the importance of the level of dye adsorption

on the apparent visible activities of the catalysts. The pseudo-zero order kinetics implied

a surface controlled process where surface chemical reactions directly between dye and

catalyst may have dominated the visible activity rather than the release of radicals to the

bulk solution. This hypothesis was further supported by the TOC analysis and HPLC-MS

studies which suggested that the decoloration of the MO solution was mainly achieved by
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complete mineralization and adsorption instead of the release or generation of intermediate

degradation products to the solution.

5.3 Conclusion

It was found that the TiO2/Cu2O and Ag-modified TiO2/Cu2O hybrid structures consisted of

smaller and bigger nanocrystals exhibiting less than a 100 nm in size regardless of the order

of synthesis or the amount of Ag.

The XRD studies revealed that the order of Ag-deposition significantly affected the crystal

phase composition of the ternary nanostructures. In TAC catalysts cubic Cu2O, anatase and

rutile TiO2 and cubic metallic Ag was formed whereas in TCA samples part of the cubic

Cu2O got oxidized yielding face-centered monoclinic CuO phase.

Because CuO exhibits smaller band gap than Cu2O the light harvesting ability of TCA

was affected considerably. The diffuse reflectance measurements showed that significant

visible light absorption could be achieved by TC and TAC catalysts while the light absorption

of TCA catalysts were extended to the whole visible region. The band gap estimation of

TC and TAC catalyst was performed by both direct and indirect Tauc plot and differential

reflectance method. It was found that two distinct band gaps could be estimated from the

Tauc model. Close agreement in the estimated band gap values were typically found between

differential reflectance method and indirect Tauc plot for the higher band gap and between

differential reflectance method and direct Tauc plot for the smaller band gap. This result

correlated well with the indirect transition of major anatase phase in TiO2 (higher band gap)

and the direct transition of Cu2O (smaller band gap).

The dark adsorption properties of the catalysts varied greatly between TAC and TCA

catalyst. TCA exhibited limited but fast adsorption of methyl orange to its surface while

TAC showed high adsorption uptake level and slower kinetics. As a reference, the adsorption

of TC was also performed which followed pseudo-second order kinetics. In contrast, TAC



5.3 Conclusion 119

catalyst could not be described by pseudo-first nor pseudo-second order kinetics because

uniquely the dye uptake was delayed until the first 25 min. This characteristics suggested that

the presence of Ag could influence the dye adsorption character of the material in a unique

way.

The decoloration efficiencies of the catalysts under visible light irradiation were studied

using methyl orange dye. It was found that both the amount of Ag content and the order of

the Ag-deposition step affected substantially the overall dye removal. The most effective

catalysts were TAC with 3% and 5% of Ag loading. And the lowest performing catalyst

was TCA with 5% of Ag-content. The apparent visible activities could be approximated

by pseudo-zero order kinetics and it was found that the level of dark adsorption could be

correlated to the apparent visible activities. The lower general performance of TCA may be

due to the increased level of charge recombination at CuO-TiO2 interphases. In contrast a

sophisticated charge separation network could be established in TAC catalyst. Furthermore,

it was revealed by TOC and HPLC-MS analysis that in the case of TA5C catalyst the total

organic carbon content of the final MO solution was significantly reduced which suggested

that the MO removal could mainly involve complete mineralization and adsorption.





Chapter 6

TiO2/Cu2O nanofilms

6.1 Introduction

Water scarcity is seen as one of the leading global problems in the 21th century. One of the

most affected places on the planet by drinking water shortage is Africa. According to the

United Nations, about 300 million people, almost half of the continent’s population were

affected by the lack of safe drinking water in 2006 [280]. Developing sustainable, robust and

easy-to-operate water treatment methods are essential to address water shortage problems in

developing countries such as Africa.

Due to their large surface area and good mass transfer character, photocatalysts in powder

form have been widely investigated and synthesized with abundant structural diversity

and tuned physico-chemical properties [281, 282]. However, for visible light aided water

purification for developing countries, powders are not an ideal form. The separation step

of powder catalysts from liquid medium is highly energy and time intensive process and

their complete separation from liquid medium is challenging [283, 116]. Downstream

processes may also require expensive equipments for membrane filtration or microfiltration

processes [9]. The immobilization of powder catalysts could be one attractive option for

facilitated operation and recycling of photocatalytic materials.
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Cu2O-based heterostructures have attracted substantial interest in the past in visible

photocatalysis and a TiO2-Cu2O system has been investigated in the previous chapter by

us as well. In addition to the powder form, immobilized Cu2O nanostructures have been

also reported in the literature. One promising approach to immobilize photocatalyst is to

deposit thin films onto solid substrates such as glass or polymers. TiO2/Cu2O has been

commonly fabricated in layer-by-layer arrangement by electrodeposition, reactive magnetron

sputtering or chemical vapour deposition techniques [284, 285]. However, some authors

argue that the layered configuration limits the surface area and the contact between the

semiconductors which could influence the effective charge carrier migration to the surface

and charge separation [125, 285, 74]. Moreover only the top layer is in direct contact with

the liquid interphase which could affect the photocatalytic performance of the film [125].

Therefore other thin film designs have been adopted as well.

For example, Zhang et al. presented a surface masking approach to synthesize Cu2O

textured TiO2 thin film. In their procedure, prior to Cu2O sputtering, the surface of the TiO2

thin film was masked by a monolayer of polystyrene spheres which were finally removed

by sonication. The patterned surface allowed good contact between TiO2 and Cu2O and at

the same time allowed the exposure of light and adsorbates to both semiconductors surfaces.

The positive effect of these was reflected by the photocatalytic test results where enhanced

photoactivity was measured for the TiO2/Cu2O microgrid heterojunction compared to TiO2

or Cu2O nanofilms [125]. Elsewhere, a TiO2 nanotube array has been loaded with Cu2O

nanocrystals. Electrochemical anodization and deposition techniques were used to fabricate

TiO2 nanotubes and load them with Cu2O nanocrystals. The as-prepared thin film exhibited

record fast bacterial inactivation towards Esherichia coli which was attributed to the efficient

charge separation and OH· radical generation [286].

A simple, low-cost, yet effective alternative method to fabricate high-performance thin

films is the doctor-blade coating technique. One of its key advantages is that it allows
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the direct immobilization of powder catalysts with versatile material properties providing

e.g. good contact between the heterostructures. TiO2-Cu2O hybrid structures showing

inherent contact between the semiconductors were presented in the literature. Among others,

Cu2O/TiO2 hollow spheres, Cu2O/TiO2 core-shell nanocomposites with octahedral structure,

Cu2O nanoparticles loaded TiO2 nanobelts and Cu2O nanospheres decorated with TiO2

have been prepared by hydrothermal, chemical precipitation and hydrolysis methods in the

past [287, 84, 288, 89]. An additional benefit of the doctor-blade coating technique is that it

allows the fabrication of porous films by using organic additives in the photocatalyst paste

that are burnt out over the thermal treatment step. Thin films fabricated by this method have

been already utilized in photocatalytic systems and in dye-sensitized solar cell application.

For example InVO4/BiVO4 composite film and CeO2/Bi2WO6 thin films has been tested in

photocatalysis while ZnO/TiO2 and various TiO2/dye composites were prepared in the past

for solar cell application [143, 289–291]. To fabricate hollow sphere Cu2O thin films Choi

et al. reported a doctor-blading procedure using a copper(II) complex ink [292]. They tested

the as-prepared thin films in gas sensing application which showed good performance.

Despite the benefits of this technique, to the best of our knowledge up to date there has

been no report on Cu2O/TiO2 thin films prepared by doctor-blade coating technique for

photocatalytic application. Therefore, in this work we pursued to study the deposition of a

previously prepared and characterized TiO2/Cu2O powder (presented in Chapter 5) as an

example for the fabrication of a TiO2/Cu2O thin film by doctor-blading method. The effect

of process parameters such as the temperature treatment and the organic composition of the

precursor paste was evaluated on the material properties and visible photocatalytic activities.

The TiO2/Cu2O thin films have been characterized by SEM, TEM, XRD, XPS, ATR-FTIR

and UV-vis DR. For the photocatalytic test methyl orange was used as a model compound.
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6.2 Results and Discussion

6.2.1 Nomenclature

The TiO2/Cu2O nanofilms were named based on the composition of the TC paste and on

the applied temperature over the heat treatment step. TC-0-350 and TC-100-550 nanofilms

indicates that the TC paste contained no ethyl cellulose and was heat treated at 350 ◦C

under nitrogen atmosphere, and that the TC paste contained the maximum amount of ethyl

cellulose and was heat treated at 550 ◦C under nitrogen atmosphere, respectively. Following

the same nomenclature TC-0-300, TC-0-350, TC-100-350 and TC-100-550 thin films have

been fabricated.

6.2.2 Crystal structure and surface properties

X-Ray Powder Diffraction

The TC powder used for the nanofilm preparation had a typical yellow colour and it comprised

of cubic Cu2O, anatase TiO2 and rutile TiO2 as it was confirmed by XRD in the previous

Chapter. However, after preparing and treating the TC nanofilms at different temperatures

their colour changed significantly. Figure 6.1 depicts the remarkable colour changes of

the nanofilms between no heat treatment and 550 ◦C. Knowing that Cu2O and its potential

oxidized form, CuO exhibits different colours (yellow and black, respectively), it was

reasonable to hypothesise alteration in the crystal phase and oxidation state of the nanofilm

constituents [293, 294]. To confirm this XRD and XPS studies were performed.

In general, TC nanofilms treated at 300 ◦C and 350 ◦C exhibited light or medium brown-

ish colour, respectively. Figure 6.2 b) - d) shows their diffraction patterns. In all three patterns

(TC-0-300, TC-0-350 and TC-100-350) anatase (a-) and rutile (r-) phases of TiO2 and cubic

(c-)Cu2O could be identified by the JCPDS cards of 21-1271, 72-7374 and 71-3645, respec-

tively. No other crystalline structure could be derived from the XRD patterns. Moreover,
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there was no clear indication of the presence of oxidized forms of Cu2O in the nanofilms

treated at up to 350 ◦C by XRD. Therefore, the nature of the colour change remained un-

explained. Similarly to our finding, Nair et al. reported that annealing Cu2O thin films in

nitrogen atmosphere up to 400 ◦C preserved the original composition of the films as indicated

by the XRD patterns. Same authors also found that annealing at 350 ◦C in air resulted in the

complete conversion of Cu2O nanostructures into CuO [136].

Fig. 6.1 Images showing the colour evolution of TC thin films treated at different temperatures

Increasing the sintering temperature to 550 ◦C showed clear evidence for the oxidation of

Cu2O into CuO in the XRD pattern of TC-100-550 (Figure 6.2 a)). This was also reflected

from the dark brown/black colour of the nanofilm which has been previously associated with

CuO in the literature [293]. In TC-100-550, characteristic peaks of face-centered monoclinic

CuO appeared at 2θ = 35.5◦, 38.7◦ and 48.8◦ which were assigned to (-111), (111) and

(-202) hkl planes by 073-6023 JCPDS card, respectively. There was no indication of cubic

Cu2O in the XRD pattern and all the other diffraction peaks could be assigned to anatase or

rutile TiO2 as expected. This is in good agreement with other literature reports [136].

Scherrer-Debye calculation

Based on the Bragg’s reflections of the particular material, the Scherrer-Debye equation

(Equation 3.6) was used to estimate the mean crystallite sizes of the nanostructures.
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Fig. 6.2 XRD patterns of (a) TC-100-550 b) TC-100-350 c) TC-0-350 and d) TC-0-300
nanofilms
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Nanofilm hkl Crystal phase 2θ [◦] Scherrer dimension [nm]

TC-0-300

101 anatase TiO2 25.3 32
110 rutile TiO2 27.4 49
111 cubic Cu2O 36.5 68
200 cubic Cu2O 42.4 60

TC-0-350

101 anatase TiO2 25.3 33
110 rutile TiO2 27.4 51
111 cubic Cu2O 36.5 59
200 cubic Cu2O 42.4 54

TC-100-350

101 anatase TiO2 25.3 29
110 rutile TiO2 27.4 38
111 cubic Cu2O 36.5 61
200 cubic Cu2O 42.4 54

TC-100-550

101 anatase TiO2 25.3 28
110 rutile TiO2 27.4 54
111 monoclinic CuO 35.5 41

-111 monoclinic CuO 38.7 29
Table 6.1 Scherrer dimensions calculated based on specific peaks from the XRD pattern of
nanofilms of TC-0-300, TC-0-350, TC-100-350 and TC-100-550

In the crystallite size estimation the shape factor k was assumed as unity which is a

commonly used value in the literature [295, 152]. In the Scherrer dimension calculation

individual peaks were selected at positions where no other characteristic diffraction is ex-

pected from other materials. Table 6.1 summarizes the details of the Scherrer size calculation

for the nanofilms. It is worth mentioning that the determination of peak broadening for

the less intense peaks such as the selected peak for rutile TiO2 at 27.4◦ position were more

challenging due to the relatively higher noise/peak ratio. Therefore some of the variation in

the crystallite size estimation of these peaks could be attributed to the reduced resolution.

It was found that the crystallite sizes of anatase TiO2 did not change significantly in the

different nanofilms. The mean of the Scherrer dimensions was calculated to be 30.5 ± 2.1

nm based on the most intense peak of (101) at 25.3◦ position. The narrow standard deviation

suggests that the heat treatment and the paste composition did not have significant influence

on the mean crystallite size of the anatase phase. At the same time, more variation was
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found for the rutile phase of TiO2. The calculated Scherrer dimensions were found to be

48.0 ± 6.0 nm across all the nanofilms. The higher standard deviation might be accounted

for the relatively higher noise/peak ratio in the rutile peak as discussed above. It can be noted

that the mean crystallite size of rutile TiO2 was larger than that of the anatase TiO2 which is

in good agreement with the analytical record of P25 [159].

Similarly to TiO2, cubic Cu2O also exhibited comparable crystallite sizes across the

different nanofilms. Its value varied around circa 60 nm which was generally higher than

both anatase or rutile phases of TiO2.

In TC-100-550 nanofilm the crystallite size of monoclinic CuO could be calculated

instead of Cu2O. It was found that the characteristic peaks of CuO in the XRD pattern were

broadened which suggested smaller crystallite sizes relative to Cu2O. Based on the (111) and

(-111) hkl planes 41 and 29 nm mean crystallite sizes were calculated for CuO, respectively

which is considerably smaller than the circa 60 nm mean crystallite size of Cu2O. This

finding is also confirmed by the SEM image of TC-100-550 (in Figure 6.3 d)) where more

uniform size distribution and fewer bigger nanoparticles could be seen compared to the SEM

images of TC-0-300 or TC0-350 nanofilms.

6.2.3 Morphological structure

The morphology of the nanostructures was studied by SEM and TEM in order to investigate

the effect of the heat treatment and the TC paste composition on the size and shape of the

nanostructures.

In general, it was found that the films were uniformly deposited onto the glass substrates

and they exhibited a porous structure with pore sizes in the range of a couple of hundreds

nanometers (see e.g. Figure 6.3 a)). No cracks or peeling-off from the surface of the FTO

substrate was observed. This could indicate good dispersion and limited aggregation of

the nanostructures. In the literature, aggregation issues of TiO2 in the micrometer range
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was reported to cause cracking and peeling-off effects resulting in poor quality thin films.

However, when the size of the aggregates were limited to about 200 nm no detrimental effect

on the film characteristics was observed by the same researchers [133].

It was noted from the SEM images shown in Figure 6.3, that the nanofilms typically con-

sisted of smaller than 100 nm nanostructures except for TC-100-350 where the nanoparticles

clustered to form blackberry-like spherical superstructures.

It was found that the nanofilms prepared from the cellulose-free paste (TC-0-300 and

TC-0-350 shown in Figure 6.3 a) and b)) exhibited very similar morphologies with two

main crystal sizes regardless of the applied temperature (up to 350 ◦C). The characteristic

dimension of the irregularly-shaped smaller nanocrystals measured circa 20-40 nm. Whereas

the bigger nanostructures fall typically in the range of 70-90 nm in size and resembled

irregular cubic-like shapes. Globally, the smaller and bigger nanostructures were found to be

uniformly dispersed.

When the nanofilm contained cellulose and was treated at 350 ◦C (TC-100-350), unique

features were observed in the morphology. Figure 6.3 c) shows that the surface of the

nanofilm was densily covered by larger spherical structures measuring typically 150-250 nm

in diameter. The rough surface resembling a blackberry suggested that possibly smaller

nanocrystals may have self-assembled to form larger nanostructures which appeared as a

closely packed well-defined entity. To gain more understanding on the nature of the spherical

assemblies TEM images were captured and electron diffraction (ED) pattern was recorded

which can be viewed in Figure 6.4. The TEM image confirmed the rugged surface of the

larger clusters and also highlighted the co-existence of smaller nanostructures which could

be situated mainly in the pore-structure and subsurface areas of the film. The selected-area

ED pattern of a spherical assembly shown in Figure 6.4 b) revealed that the nanocluster

contained both Cu2O and TiO2 nanostructures. For example, the diffraction spot assigned to
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Fig. 6.3 SEM images of a) TC-0-300, b) TC-0-350, c) TC-100-350 and d) TC-100-550
nanofilms
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Fig. 6.4 (a) TEM image of TC-100-350 and (b) SAED pattern of TC-100-350 colour-coded
for cubic Cu2O (white), anatase TiO2 (green) and rutile TiO2 (orange), selected area is shown
in the top-right corner

(110) hkl plane was characteristic to cubic Cu2O. Other diffraction spots could be uniquely

assigned to anatase or rutile TiO2 such as (204) or (301) hkl planes, respectively.

Figure 6.3 d) shows TC-100-550 sample when the cellulose containing nanofilm was

treated at 550 ◦C. It can be noted that the circa 250 nm assemblies formed at 350 ◦C com-

pletely disappeared leaving smaller, typically less than 100 nm nanoparticles behind. This

further supports the possibility that the blackberry-like spherical structures in TC-100-350

nanofilm were made of smaller crystals which could disassemble when heat treated at 550 ◦C.

The differently shaped and sized nanocrystals in TC-100-550 were uniformly dispersed and

were closely interconnected. The unique morphology of TC-100-550 to other samples could

be additionally related to the change in crystal phase and form of copper oxide which was

confirmed by XRD and XPS and is discussed in Section 6.2.2.

X-ray photoelectron spectroscopy

To further investigate the colour change of the nanofilms, the chemical states of surface Cu,

Ti and O elements were analysed by XPS. The high resolution XPS spectra of Cu 2p, Ti 2p
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and O 1s is shown in Figure 6.5 and 6.6. The characteristic core levels of Cu+ and Cu2+

in the Cu 2p XPS spectra allowed us to assess the presence of different oxidation forms of

copper on the surface of the nanofilms. In the XPS spectrum of TC-0-300 the peaks located

at 932.7 eV and 952.5 eV were assigned to the binding energies of Cu 2p3/2 and Cu 2p1/2

of Cu+, respectively. This agrees well with literature data [296, 297]. Whereas the peaks

positioned at 933.8 eV and 953.8 eV evidenced the presence of Cu2+ oxidation state which

corresponded to binding energies of Cu 2p3/2 and Cu 2p1/2, respectively. Cu2+ was further

supported by the characteristic satellite peak at 962.5 eV which originates from the Cu 3d9

unfilled shell [296, 298]. From the Cu 2p spectra of TC-0-300 (shown in Figure 6.5 a)) it

could be concluded that both Cu2O and CuO core levels were present in the thin film. The

presence of CuO may explain to the deepening of yellow colour of the TC-0-300 nanofilm.

Other researchers also reported that even low temperature treatment of Cu2O (synthesis and

drying under 100 ◦C at ambient conditions) yielded the formation of small portion of CuO in

the nanostructures which was detectable by XPS [89, 299].

Similar peak deconvolutions and analysis revealed that the surface of TC-0-350 and TC-

100-350 (shown in Figure 6.5 b) and c)) also composed of CuO and Cu2O with increasing

amount of Cu(II) compared to TC-0-300. The increasing Cu2+ content was clearly indicated

by the characteristic peak positioned at around 933.8 eV which was more intense in both cases

than in TC-0-300 nanofilm. Furthermore, the more enhanced satellite multipeak-complex

situated between 944 and 941 eV binding energies also suggested increased amount of Cu2+

species. It was also noted that the higher percentage of CuO in TC-0-350 and TC-100-350

was consistent with the dark brown appereance of the samples as shown in Figure 6.2. This

is speculated to be caused by the increased sintering temperature of 350 ◦C.

Finally, the Cu 2p XPS spectrum of TC-100-550 showed that both Cu2O and CuO were

present in the nanofilm although CuO appeared as major phase from the peak areas. This

was reflected primarily from the more intense photoelectron peaks positioned at 934.1 and
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Fig. 6.5 XPS spectra of Cu 2p of a) TC-0-300 b) TC-0-350 c) TC-100-350 d) TC-100-550
where the black line represents the measured spectra, the orange line shows the theoretical
overall fit and the dotted green lines show the fitted peaks

Fig. 6.6 XPS spectra of Ti 2p of a) TC-0-300 b) TC-0-350 c) TC-100-350 and d) TC-100-
550 along with the O 1s XPS spectra of e) TC-0-300 f) TC-0-350 g) TC-100-350 and h)
TC-100-550
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953.8 eV which corresponded to Cu 2p3/2 and Cu 2p1/2 of Cu(II), respectively. The increased

intensities caused the overlapping peaks to be skewed towards lower binding energies

suggesting more dominant CuO composition in the nanofilm. This is in good agreement with

the XRD result which revealed monoclinic CuO phase in TC-100-550. However, the Cu 2p

spectrum also revealed the co-existence of Cu2O which was not indicated by XRD. Similarly

to e.g. TC-0-350, where the presence of CuO could not be detected from XRD but it was

evidenced from XPS, this might be caused by the low content or small crystallite sizes of the

particular crystal phase, perhaps due to high dispersity [287, 89].

The Ti 2p XPS spectra shown in Figure 6.6 a)-d) revealed two main peaks. The peak at

lower binding energies could be assigned to Ti 2p3/2 whereas the peak appearing at higher

binding energies belonged to Ti 2p1/2 [287, 300]. It was also noted that the Ti 2p binding

energies of TC-100-350 was uniquely shifted towards higher energies. It may be assumed

that this shift is induced by the bigger blackberry-like assemblies that could allow stronger

connections between the constituents due to the closely packed arrangement. This may in

part change the local bonding enviroment of Ti. Other researchers also experienced a shift in

the binding energies of metal atoms when they closely interacted with other materials. Jing

et al. found that the Cu 2p3/2 peak of Cu2O appeared at higher binding energies when the

catalyst interacted with humic acid [256]. Elsewhere, similar shift towards higher energies

was realised when a Ag-modified Cu2O interacted with reduced graphene oxide which served

as support for the catalyst [96].

The high resolution O 1s XPS scan can be viewed in Figure 6.6 e)-h). In general, the

asymmetric peaks in the O 1s XPS scan reflected the different Cu-O and Ti-O bonding

enviroments. For example in TC-0-300 nanofilm it was found that the peak appearing

at higher binding energy of 531.1 eV could possibly belong to Cu-O, whereas the peak

positioned at lower binding energy of 530.0 eV to Ti-O bonds. These binding energies are in

good agreement with literature data [299, 296, 301].
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6.2.4 Optical properties

The light harvesting properties of the thin films was investigated by recording the UV-vis

diffuse reflectance spectra.

It was generally found that the absorbance of the coloured films increased in the 500-850

nm region when the thin films were treated at higher temperatures. This finding is in good

correlation with the colours and the composition of the films.

It was seen that the untreated TC film and TC-0-300 sample exhibited similar light

absorption character. In both diffuse-reflectance spectra the band edges of TiO2 and Cu2O

were reflected in the 400-500 nm and 500-600 nm regions, respectively. The heterostruc-

ture formation resulted in significant enhancement in the visible light absorption in good

agreement with the optical properties of the powder TC catalyst that was presented in the

previous chapter. This absorption pattern is also matching the literature references of similar

nanocomposite thin films [230, 302].

By increasing the temperature to 350 ◦C further increase in the light absorption was noted

in the far red region of the visible spectrum for both TC-0-350 and TC-100-350 films. This

phenomenon could reflect the increasing amount of oxidized copper oxide (CuO) ratio in the

thin films that was characterized by typical absorption in the 500-800 nm region in previous

studies [303]. This is further supported by the result of the XPS analysis which confirmed

that heat treatment performed at 350 ◦C resulted in higher portion of CuO in the thin films.

The brownish colour of the 350 ◦C treated films is also in alignment with this.

Finally the darkest thin film, TC-100-550 showed no clear evidence of typical Cu2O

absorption that formed a shoulder in the previous samples on the TiO2 absorbance curve. At

the same time the highest increase in the 500-800 nm region was noted for this sample which

suggested that Cu2O has been mostly transformed into CuO. This is also in agreement with

the XRD and XPS characterization of the thin film.
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Fig. 6.7 UV-vis diffuse reflectance spectra shown for the unheated TC film along with
TC-0-300, TC-0-350, TC-100-350 and TC-100-550 thin films

6.2.5 Temperature effect on the organic composition of the nanofilm

ATR-FTIR (shortly referred as ATR) is a commonly used technique to map e.g. the adsorption

of dyes to the catalyst surface during the photocatalytic test or to assess the presence of

other IR-active co-catalysts or substrates such as graphite oxides or chitosan etc. in the

nanostructures [256, 304, 305].

In this work, ethyl cellulose and/or alpha terpineol were used as additives to prepare TC

paste for the fabrication of the nanofilms. Both chemicals exhibit typical IR bands in the

range of 3000-2800 cm-1 and 1500-900 cm-1 (see Figure 6.8) which allowed us to study

their presence in the nanofilms after heat treatment at different temperatures. Because Cu2O

was proved to be sensitive to the applied temperature (by e.g. XPS) we wished to study the

effect of the heat treatment step at different temperatures on the organic composition of the

nanofilm to optimise its performance.
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In general, typical Cu-O, O-Cu-O and Cu-O-Cu lattice vibrations could be find in the

ATR spectra of the nanofilms in the 500-800 cm-1 range which is in agreement with other

reports [301, 256].

Figure 6.8 a) shows the effect of heat treatment at or below 300 ◦C on a cellulose-free

nanofilm. It was found that a temperature treatment less than 300 ◦C could not efficiently

remove the alpha terpineol content of the nanofilm. The ATR spectrum of the film treated at

300 ◦C shows that the characteristic peaks of alpha terpineol (e.g. between 2975-2847 cm-1)

disappeared. As a reference, the ATR spectrum of alpha terpineol is shown on the same

Figure.

Similarly, the temperature effect on the the cellulose containing nanofilm was also studied.

Figure 6.8 b) shows the spectrum of the 100% cellulose nanofilm treated at or below 350 ◦C.

It can be seen that residues of cellulose was still present in the nanofilm below 350 ◦C which

was indicated by the peaks appearing between 1190 and 945 cm-1 in the ATR spectra of the

nanofilm. This is in good agreement with other literature reports. For example, Choi et al.

reported that residues of ethyl cellulose were found in CuxO nanofilms that were calcinated

between 200 ◦C and 300 ◦C [292].

The termal treatment not only plays role in the removal of organic additives from the thin

film but it also ensures adequate binding of the nanostructures with the substrate surface [116].

Ito and his coworkers proposed that the chemical binding between the FTO substrate and the

catalyst involves the dehydration of surface -OH groups into M-O-M bonds over the sintering

process where M is a generalized form of metal atoms [133].

As a conclusion, the cellulose-free nanofilms could be treated as low as 300 ◦C whereas

the cellulose containing films should be treated at minimum 350 ◦C in order to remove the

organic additives from the nanofilms. Ethyl cellulose is typically added to e.g. TiO2 pastes to

enhance film porosity whereas terpineol is normally used to adjust viscosity and stabilize

the suspension [133]. Omitting cellulose from the paste formulation allowed us to apply
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Fig. 6.8 ATR spectra revealing the effect of temperature treatment on the organic composition
of the nanofilms a) sintering at or below 300 ◦C the cellulose-free nanofilm and b) sintering
at or below 350 ◦C the cellulose-containing nanofilm. In the bottom row the ATR spectrum
of alpha-terpineol and ethyl-cellulose is shown from the left to the right, respectively.

lower temperature treatment which was shown to contain the highest cubic Cu2O crystal

phase content among the nanofilms. In contrast, the 350 ◦C heat treatment resulted in a more

substantial part of the original Cu2O crystal phase to oxidize into CuO as it was confirmed

by XPS and the colour change of the nanofilms discussed in Section 6.2.2.

6.2.6 Visible photocatalytic activities and dark adsorption

The visible response of the nanofilms was investigated in a stirred quartz cell using methyl

orange (MO) as a model compound. For visible light source a white LED which has emission
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in the visible region from 400 nm to was used to irradiate the quartz cell from a perpendicular

direction.

Fig. 6.9 Apparent visible photoactivity measured after 60 min dark stirring is shown with red
line and as a reference dark stirring is shown with black line for a) TC-0-300 b) TC-0-350 c)
TC-100-350 and D) TC-100-550 nanofilms

In general, it was found that the nanofilms that were free from organic additives exhibited

substantial MO adsorption in darkness. The only exemption was TC-100-550 nanofilm where

only a few percentage of MO adsorption was measured in the dark reference experiment.

It was also generally found that the nanofilms did not exhibit further visible activity once

the adsorption/desorption equilibrium has been reached. This is not unusual for Cu2O

related nanostructures and similar findings has been reported in some cases. In fact, Zhang

et al. reported that a Cu2O@TiO2 nanobelts exhibited weak photoactivity beyond the

adsorption of metyl orange dye [288]. Elsewhere, Dong and his coworkers found that a
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Cu2O thin film exhibited only a few percent of MO removal in the absence of H2O2 after

the adsorption/desorption equilibrium has been reached [36]. The limited photoactivity after

reaching adsorption/desorption equilibrium might be due to unfavored conditions for the

photocatalytic surface reactions such as competitive surface occupation or extensive light

absorption by the surface adsorbed dye [274, 275]. However, we found that light irradiation

after 60 minutes of dark stirring could significantly enhance the MO removal for most of the

nanofilms as it can be seen on Figure 6.9.

Figure 6.9 a) depicts the apparent visible activity and dark adsorption of TC-0-300

nanofilm. By 60 minutes of dark adsorption circa 40% of the initial MO was adhered to

the surface of the nanostructures. When the visible light was turned on the apparent visible

activity exhibited close to 20% better performance when compared to the dark measurement.

After 2 hours of light irradiation the MO concentration dropped to about 10% and the MO

removal rate started to level off. By the end, 93% of the initial MO was removed from the

solution by TC-0-300. Other researchers found similar behaviour in e.g. the photocatalysis

of 4-nitrophenol by Cu2O-TiO2 nanocomposites under simulated sunlight irradiation where

the removal of the organic compound stopped at the concentration of circa 10% [87].

The performance of TC-0-350 nanofilm is shown on Figure 6.9 b). It can be seen that the

adsorbed amount of MO was much lower than that of the TC-0-300. Only 10% of the dye

was adsorbed by the nanofilm in 60 minutes as opposed to 40% for TC-0-300. Similarly to

the nanofilm treated at 300 ◦C, the visible light resulted in a significant improvement in the

performance of TC-0-350. By the end of the 5 hours test, the dye concentration was reduced

by 60% while only 18% of the initial dye concentration was removed in the reference dark

test. The overall dye removal efficiency of TC-0-350 was moderated relative to TC-0-300.

The cellulose containing films are shown on Figure 6.9 c) and d). For TC-100-350 the

initial dye adsorption was measured to be around 15% over the first hour of dark stirring.

This value was close to the dark adsorption of TC-0-350 which was treated at the same
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temperature but prepared from the cellulose-free paste. However, unlike TC-0-350 the dark

adsorption of TC-100-350 showed a continuous steady dye removal tendency throughouth

the dark reference experiment reaching as low as 55% MO removal by the end of 5 hour.

When the visible light was turned on the TC-0-350 nanofilm showed improved performance

compared to the dark measurement and achieved the removal of 78% of the initial MO.

The overall efficiency of TC-100-350 was in between TC-0-350 and TC-0-300. When the

cellulose containing nanofilm was treated at the highest temperature of 550 ◦C, nor the level

of dark adsorption, nor the apparent visible activity was shown to be significantly improved.

This can be viewed on Figure 6.9 d).

From the photocatalytic experiments it can be noted that the highest level of dark ad-

sorption and visible activity has been achieved when the nanofilm was treated at the lowest

temperature of 300 ◦C and it contained no cellulose. Increasing the sintering temperature

to 350 ◦C for both cellulose free and cellulose containing film and finally to 550 ◦C for the

cellulose containing film resulted in lower level of dark adsorption and moderated visible

activities. Over the heat treatment it was evidenced by the XRD and XPS results that the

composition of the nanofilms has changed. When the thin films have been treated at 350 ◦C

regardless the cellulose content higher portion of the cubic Cu2O was converted to mono-

clinic CuO compared to TC-0-300 film. And finally in TC-100-550, the majority of Cu2O

was coverted to CuO. It is known that CuO and Cu2O exhibits different physico-chemical

properties. For example, they possess distinct band gaps of 2.0-2.2 and 1.4-1.6 eV and hence

different colours of yellow and black for Cu2O and CuO, respectively [306, 307, 87]. Due to

the different positions of their respective valence and conduction band edges it was reported

by many researchers that CuO had detrimental effect on the photocatalytic performance of

e.g. TiO2/CuO heterostructures where CuO may have acted as a recombination center for

the photo-generated charges. Some researchers believe that CuO could exhibit a remarkable

”shading effect” [308, 74, 309]. In view of this, both adsorption and visible activities of the
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nanofilms with higher CuO portion could be influenced by the different properties of CuO

relative to Cu2O.

In addition to the effect of the crystal phase and oxidation state, the morphology has been

affected appreciably over the course of different fabrication conditions, too. For example,

in TC-100-350 bigger polycrystalline assemblies were formed than in either TC-0-300 or

TC-0-350. The altered morphology could affect the surface area of the nanostructures, the

sizes and structures of the pores and the spherical assemblies could provide a more intimate

contact between the different semiconductor crystallites. It was pointed out in earlier research

that the intimate contact between coupled semiconductors could have a great significance in

the effectiveness of interfacial charge carrier transfer and separation [74]. The overall effect

of these factors could also play role in the dark adsorption character and the visible activity

of the thin films.

Since the photocatalytic test involved both adsorption and photoactivity the underlying

mechanism of photocatalysis is difficult to interpret. Although it could be suggested that the

visible light (λ > 400 nm) can excite electrons from the valence band of Cu2O to its respective

conduction band. Between the Cu2O-TiO2 interphase the electrons are thermodinamically

favoured to migrate to the conduction band of TiO2 due to its less negative band edge

position than that of the Cu2O. This charge separation between Cu2O and TiO2 could play an

important role in enhancing the lifetime of the photo-induced charges. On the contrary, on a

CuO-TiO2 interphase both electrons and holes are favoured to accumulate on the conduction

and valence band of CuO, respectively [309]. This could facilitate the recombination of

charges which may negatively affect the photoactivity.

When all three semiconductor phases are present multiple charge transfer is possible.

Figure 6.10 shows the band alignment between the three semiconductor phases. In the

literature it was found that the conduction band edge of CuO could vary between -0,2 and

0,1 eV, whereas its valence band edge normally takes 1,4-1,5 eV values [310, 311]. The
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Fig. 6.10 Theoretical band structure alignment between CuO, TiO2 and Cu2O when all three
semiconductor phases are present at the heterointerface.

differences in the reported CB and VB values of CuO could arise from the various synthesis

conditions applied or the possible defect states, oxidation levels or chemical residues of

the samples ... etc [311]. Regardless of the exact value, it is likely that in our system the

photo-generated electrons would travel to the CB of CuO or TiO2 while the migration of

holes would thermodinamically be favoured to the VB of CuO or Cu2O. More exact charge

separation scheme is difficult to be given without further measurements. Moreover, due

to the different nature of p and n conductivity of the semiconductors, bending of the band

structure is possible. This could further modify the band edge positions. Huang et al. for

example reported that in a Cu2O/CuO/TiO2 ternary photocathode the conduction band edges

are approaching zero in the Cu2O, CuO and TiO2 order. Therefore the electrons were shown

to accumulate on the CB of TiO2, while the holes rested on the VB of Cu2O [278].

It is also worth noting that the visible photons could excite the molecules of the orange

coloured dye (MO) which could potentially also transfer electons between the semiconduc-



144 TiO2/Cu2O nanofilms

Fig. 6.11 ATR-IR spectrum showing the effect of 0, 1.5 and 4 hours of NaCl soaking of
TC-0-300 nanofilm after the visible photocatalysis test

tors. These electrons may contribute in the overall photocatalytic activities as well. This

phenomenon is known as photosensitization in the literature and it is a commonly used

technique to fabricate visible response solar cells [102].

6.2.7 Recycling test

In potential industrial application the efficiency of photocatalysts over repeated use is an

important feature. In order to study the reusability of the nanofilms recycling tests were

performed.

TC-0-300 was selected as one of the best performing catalyst to demonstrate the apparent

visible activities over multiple cycles. Following the visible photocatalytic test the TC-0-

300 nanofilm was recovered by a 9% NaCl solution until full desorption of the dye was

achieved. The successful recovery of the nanofilm was confirmed by ATR which is shown

in Figure 6.11. The main characteristic peaks of methyl orange were assigned as follows.

The region between 1447 and 1609 cm-1 could be assigned to the stretching vibrations



6.2 Results and Discussion 145

Fig. 6.12 Recycling experiments showing the apparent visible efficiency of TC-0-300
nanofilm over three repeated cycles, the vertical lines indicate the points when the visi-
ble ligth was turned on

Fig. 6.13 XPS spectrum of TC-100-350 as recorded after the first photocatalytic test followed
by recovery, the black line represents the measured spectra, the orange line shows the
theoretical overall fit and the dotted green lines show the fitted peaks
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of the aromatic ring. The stretching vibrations of -N=N- group could be found at 1420

cm-1, whereas the sulfonil group of MO is located at 1122 and 1024 cm-1 [288]. After one

and a half hour stirring in NaCl solution most of the dye molecules left the surface of the

nanostructures which was indicated by the diminished characteristic peaks of MO in the

whole 1609-1024 cm-1 range.

The desorption of MO from the nanostructure surface is believed to be achieved by

the increased ionic strenght of the solution [97]. Liu et al. reported that with increasing

ionic strength the adsorption capacity of Cu2O drops dramatically. This was explained by

the newly created negatively charged Cl– atmosphere around the positively charged Cu2O

surface which could make the adsorption of anionic dyes such as MO unfavored.

The recycling test revealed that the TC-0-300 nanofilm could undergo considerable

activity loss under repeated use. The level of dark adsorption gradually dropped from circa

40% to circa 10% over the three cycles (Figure 6.12). The decreased efficiency over the

dark stirring could imply increased CuO ratio in the nanofilm which was also suggested

by the deepening of the colour of the thin film after photocatalysis and recovery. XPS

spectra performed after the first cycle also confirmed increased ratio of CuO on the surface

of TC-100-350 film compared to before the photocatalytic test. This can be viewed in

Figure 6.13.

Narrow band gap semiconductors (typically Eg < 2.0 eV) such as Cu2O or CuO were

reported to be more likely to suffer from photocorrosion which affects significantly their

recyclability in photocatalysis. This can occur due to the more positive or more negative

position of their self-reduction/oxidation potential levels compared to that of the water [278].

In the literature most of the activity loss of Cu2O-related nanostructures were associated with

the accumulation of holes on the valence band of Cu2O which were shown to be responsible

for the self-oxidation of Cu2O into CuO [89, 312].



6.3 Conclusion 147

6.3 Conclusion

In this work, the fabrication of TiO2/Cu2O thin films on FTO glass substrates has been

presented by doctor-blade coating technique for the first time. This technique provided a

facile and cost-effective way to deposite powder TiO2/Cu2O nanostructures onto FTO. The

effect of the paste composition and the sintering temperature has been investigated with

respect to the material properties and the visible and dark activity.

The XRD results confirmed that the films treated at or below 350 ◦C mainly composed of

cubic Cu2O beside anatase and rutile TiO2 regardless of the cellulose content of the paste.

The XRD diffractogram of TC-100-550 could be assigned to face-centered monoclinic CuO

and anatase and rutile TiO2. XPS studies further revealed that TC-0-350 and TC-100-350

films exhibited higher CuO ratios on the surface of the films than TC-0-300 but CuO could

be detected in TC-0-300 as well. With good agreement with XRD, TC-100-550 was found to

compose of mainly CuO based on the XPS spectrum.

The SEM images confirmed that the nanostructures in TC-0-300 and TC-0-350 nanofilms

exhibited similar morphologies and dimensions and they were typically less than 100 nm.

Uniquely, in TC-100-350 larger spherical assemblies appeared that were in the range of

150-250 nm in size. TEM-SAED revealed that the assemblies composed of both cubic Cu2O

and anatase and rutile phases of TiO2. The polycrystalline nature of the large spherical

nanostructures were suggested by SEM and TEM as well. Additionally, the Scherrer-Debye

calculation revealed that the crystallite sizes of Cu2O were typically bigger than those of

TiO2 which may indicate that the bigger cubic-shaped structures in the SEM belonged to

Cu2O. Finally, the TC-100-550 thin film exhibited uniformly distributed irregularly shaped

nanostructures where no bigger nanocrystals were evident. In agreement with this, the

Scherrer calculation revealed that the CuO phase exhibited smaller crystallite sizes than

Cu2O.
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The optical properties of the thin films were investigated by UV-vis diffuse reflectace. It

was found that absorption pattern of the thin films could be well-correlated to their colours

and to their composition confirmed by XRD and XPS analysis.

The different sintering temperatures were found to be important not only for the material

properties but also for the removal of the organic additives of the paste. It was revealed by

ATR that at least 300 ◦C was necessary to remove the alpha terpineol, whereas 350 ◦C to

remove the ethyl cellulose content of the thin films.

It was found that the apparent visible activity and dark adsorption character of the films

significantly varied by the fabrication procedure. Among all the films, TC-0-300 exhibited

the highest total MO removal of circa 90% in 5 hours. The least effective thin film was

TC-100-550 with only a few percent of MO removal. Along with the visible activities, the

dark adsorption properties of the thin films were found to be different for the 300 and 350 ◦C

treated samples. Regardless the paste composition the 350 ◦C treated films adsorbed less

MO by 60 min. It was concluded that the dark and visible activities of the films could

be modulated by the material properties including the crystal phase, oxidation state and

structural properties of Cu2O and TiO2. These properties were greatly affected by the thermal

treatment and the composition of the doctor-blading paste.

The recycling test revealed that the film could loose considerable activity over repeated

use.
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Conclusion

In this thesis different aspects and stages of the development of photocatalytic materials have

been considered. Research investigations were carried out from the study of single materials

(WO3 nanostructures), through the study of more complex material systems (Ag-cocatalysed

TiO2/Cu2O systems), to the investigation of immobilization methods of a powder catalyst

(TiO2/Cu2O thin films).

WO3 nanostructures were synthesized by hydrothermal processes and the effect of process

parameters such as the solution pH, EtOH and the polymeric surface modulator was studied

on the material properties and on the photocatalytic activities. It was found that monoclinic,

hexagonal and orthorombic WO3 and WO3·0.33H2O could be synthesised by adjusting the

solution pH from 0.10 up to 2.01. Monoclinic WO3 formation was favoured at lower pH

levels whereas hexagonal phase WO3 at higher pH levels. Orthorombic WO3·0.33H2O was

formed at medium pH levels between 0.51 and 1.52. The solution pH not only influenced

the crystal phase but also the morphological structure and the band gap energies. As the pH

was increased cuboidal nanoplates, nanorods and finally fine nanoneedles and nanowires

were formed. The evolution of the morphological structure was discussed with respect to the

nucleation theory proposed by LaMer and Dinegar. It was found that the fine nanoneedle

formation at pH 1.05 could not be explained by the level of supersaturation. Instead it is
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speculated that the metastable hexagonal phase could potentially impact the morphology of

WO3 by means of stabilisation effects. The band gap energies ranged from 2.70±0.03 eV to

3.25±0.03 eV. The highest value was reached at pH 1.05. The variation in the forbidden band

gap energies could be attributed to quantum confinement effect and to the crystal structure.

The most significant effect of using EtOH in the synthesis procedure was found in the optical

properties and in the photocatalytic activities of the nanostructures. The W-EtOH sample

exhibited distinct absorption spectrum and blue colour instead of pale yellow. Despite its

extended light absorption in the far-red region of the visible spectrum it did not enhance

the photocatalytic activity compared to the pale yellow samples. This was suggested by the

formation of interband states that may have acted as recombination centers. The highest

photoactivities were noted for W-1.52-P20E and W-0.10-P20E samples. It was concluded

that the photocatalytic performance of WO3 nanostructure is a compromise of the material

properties including the energy band, crystal structure and the morphology.

The amount of Ag content between 1% and 5% and the effect of the synthesis sequence

was investigated on the material properties and on the apparent visible activities of Ag-

modified TiO2/Cu2O hybrid structures. It was found that the amount of Ag content has

not significantly affected the crystal phase, the morphology or the optical properties of the

ternary nanomaterials neither in TAC nor in TCA catalysts. However, it was revealed that

the dark adsorption and apparent visible activities of the materials were influenced by the

amount of deposited Ag. Increasing Ag ratio in TAC catalyst resulted in higher level of dye

adsorption to the catalyst surface and at the same time higher rate constants in the apparent

visible activities. For TCA catalyst it was found that increased amount of Ag caused a slight

decrease in both the dark adsorption and in the rate constants of dye removal of the catalyst

under visible light. When the order of the Ag-modification step was altered in the synthesis

process, significant impact on the material properties was found. It was revealed that uniquely

in TCA catalyst the co-existence of both cubic Cu2O and face-centered monoclinic CuO
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crystal phases was confirmed by the XRD diffragtograms. In contrast, TAC catalyst exhibited

pure cubic phase Cu2O. The partial oxidation of Cu2O in TCA catalyst was proposed to

be caused by the synthesis conditions of the final Ag-deposition step. The morphologycal

structure of TAC and TCA catalysts were similar. Both hybrid structure contained smaller

(20-30 nm) and bigger (70-80 nm) nanocrystals, however in TCA samples fewer bigger

nanostructures were found. It was found that the light absorption properties of TAC and TCA

catalyst were significantly different. TAC samples showed extended light absorption to the

visible range whereas TCA catalyst exhibited light absorption in the whole visible region.

The dark adsorption studies revealed that the TAC ternary structures exhibited delayed dye

adsorption in the first 25 minutes while TCA nanomaterials showed rapid although limited

dye adsorption to its surface. Under visible light irradiation it was found that TAC catalyst in

general showed higher rate constants in the decoloration of methyl orange than TCA samples.

TiO2/CuxO thin films were prepared on FTO substrates by doctor-blade coating technique.

The effect of the applied temperature treatment between 300 ◦C and 550 ◦C and the chemical

composition (cellulose or cellulose-free) of the paste was investigated. It was suggested by

ATR-FTIR that the lowest temperature treatment of 300 ◦C was only effective to remove

the alpha-terpineol content from the thin films but not the ethyl cellulose. Temperature

treatments above 350 ◦C were found to adequately eliminate both the alpha-terpineol and

ethyl cellulose content. XRD and XPS studies revealed that increasing sintering temperatures

yielded higher ratio of face-centered monoclinic CuO beside cubic Cu2O. At the highest

temperature treatment at 550 ◦C most of the cubic Cu2O was converted into CuO. The change

in the crystal structure and oxidation state of the copper oxide was also evidenced by the

colour change of the thin films from yellow to dark brown/black as the temperature was

elevated from 300 ◦C to 550 ◦C. It was found that the morphology of the thin films was

significantly influenced by the heat treatment and the composition of the doctor-blading

paste. Beside smaller nanocrystals, TC-350-100 thin film uniquely exhibited 150-250 nm big
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polycrystalline spherical assemblies which were evidenced to consist of both TiO2 and Cu2O

by TEM-SAED. Additionally, in TC-550-100 sample fewer 70-90 nm big nanocrystals were

present which was reflected by the SEM image and also suggested by the Scherrer-Debye

crystallite size calculation. The apparent visible activities of the nanofilms revealed that

TC-0-300 could remove the highest amount of methyl orange dye after 4 hours of visible light

irradiation whereas TC-100-550 was the least efficient. When increasing the temperature

of the heat treatment for the cellulose-free thin film to 350 ◦C (TC-0-350), both the dark

adsorption and apparent visible activities were found to decrease. However, the cellulose-

containing film treated at the same temperature (TC-100-350) showed improved efficiencies

under both dark conditions and light irradiation. It is suggested that the material properties

such as the crystal structure, oxidation state, structural properties could play a significant

role in the decoloration efficiencies of the thin films.

All in all,the author’s opinion is that all the studied nanostructures carried positive and

negative features, as well. With respect to stability and recyclability, WO3 catalysts like

W-0.1-P20E were found to be the best among the studied systems. In terms of fastest

decoloration, the Ag-modified TA5C and TA3C were shown to be the best powder catalysts.

It was seen that the final MO solution contained only minimal degradation products. Most of

the dye or its degradation products were mineralized and/or adsorbed to the catalyst surface

under visible light irradiation.

7.1 Future improvements

As a final remark, future improvements for the better evaluation of photocatalytic performance

are proposed.

In order to assess the photocatalytic activities of the nanomaterials dye target molecules

are commonly used. However, most often these coloured chemicals like methyl orange can

absorb part of the incident light. In this event, it is hard to exclude or estimate the extent of
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photosensitization by the dye itself in the overall photocatalytic degradation. To overcome

this limitation in the future colourless, UV-active model compounds could be also used to

evaluate the photoactivity under visible light irradiation such as 4-chloro-fenol or sodium

dodecylbenzenesulfonate.

In this work, only one target molecule has been used to describe the photoactivity. In

the future it may be beneficial to employ a range of UV-active compounds for example with

different adsorption abilities towards the photocatalyst that could provide further insights in

the mechanism and effectiveness of the photocatalyst. For example toluene or isoproturon

herbicide could be tested in the future for Cu2O based materials.

In addition to the target molecule, also the effect of process parameters of the photocat-

alytic test could be systematically mapped in the future to allow optimised working conditions

for specific photocatalyst that could allow better comparison of benefits and weaknesses of

different structures.

Stability measurements would be beneficial to be carried out to test the material capability

to be used in multiple cycles. This is an important property when considering industrial

application of a material.

To learn more about the underlying mechanism of the photocatalytic process it is advisable

to investigate both the remaining solution and the material after visible irradiation. The solid

material could provide information on the changes of the material crystal or morphological

structure. Also potential photocorrosion could be identified and further justified. HPLC-MS

and TOC analysis of the solution could reveal potential degradation products and serve

information on the mineralization and photobleaching processes.

Improvement on the catalytic material might be achieved by considering the following. In

the ternary TiO2-Cu2O-Ag composite system the surface chemical properties of the materials

could be fine-tuned for purpose when considering the use of capping agents such as polymers

or organic surface modulators (like 1-dodecyl-3-methylimidazolium chloride) in the reaction
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mixture. This way the surface charge of composite material can be modified and its effect

studied with respect to the target molecule.

Also in this work, the partial oxidation of Cu2O into CuO was experienced when Ag

was deposited onto the surface of TiO2-Cu2O material. By using different approaches for

the Ag-deposition the extent of the oxidation process might be limited or eliminated. This

could be possibly achieved by working under milder conditions or at lower temperature and

allowing fewer contact time. This way the effect of the partial oxidation could be minimized

when comparing to other ternary systems.

TA5C was identified as one of the best catalysts to remove MO from aqueous solution by

visible light. It is proposed that the performance of this material could be further enhanced

if H2O2 is added to the reaction mixture during photocatalytic testing. It is believed that

peroxide could considerably aid the release of OH· to the bulk solution and thus promote

photocatalytic processes including full mineralization of contaminants.
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