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Lay Summary

The maritime environment is full of energy in the form of waves, currents, and wind.

Humans have been harvesting a fraction of this energy for their own use for millennia.

Without the predictable energy flow associated to trade winds, for example, large-scale

global trade would not have occurred before the exploitation of combustion for ship

propulsion.

Today wind energy can be converted into electricity using wind turbines. Large offshore

wind turbines, which can be twice as tall as the Big Ben tower and power thousands

of households, already populate the shallows of the North Sea. Since they are typically

fixed to the seabed, the extent to which they can be built is severely limited by water

depth.

Beyond about fifty metres depth, turbines can no longer be made to sit on the seabed

economically and floating solutions are preferable. Although only a few floating pro-

totypes have been tried thus far, this technology is rapidly improving and the wind

industry is ramping up investment to prepare the installation of the first floating wind

farms.

A fundamental challenge for design engineers is the prediction of the mechanical be-

haviour of a floating wind turbine under the action of wind, waves, and currents. For

example, they must prove that their turbine will stay afloat without capsizing during

a storm. Fail in doing this and you might experience a power interruption from the

turbine. Further, it may be found washed up on the nearby beach the following day!

Anticipating the mechanical behaviour of a floating wind turbine system and its main

parts – rotor, platform, and moorings – is the focus of this thesis. This is done using a

range of different software, to highlight critical features which are vital for a correct de-

sign. The outcomes of this work are expected to help the safe and effective development

of future floating wind turbines.
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Abstract

Floating wind technology has the potential to produce low-carbon electricity on a large

scale: it allows the expansion of offshore wind harvesting to deep water, indicatively

from 50–60 to a few hundred metres depth, where most of the worldwide technical

resource is found. New design specifications are being developed for floating wind in

order to meet diverse criteria such as conversion efficiency, maintainability, buoyancy

stability, and structural reliability. The last is the focus of this work.

The mechanics of floating wind turbines in wind and waves are investigated with an

array of numerical means. They demand the simulation of multiple processes such

as aerodynamics, hydrodynamics, rotor and structural dynamics; understanding their

interaction is essential for engineering design, verification, and concept evaluation. The

project is organised in three main parts, presented below.

Aero-hydro-mechanical simulation, characterising the rigid-body motions of a float-

ing wind turbine. An investigation of multi-physical couplings is carried out, mainly

through EDF R&D’s time-domain simulator CALHYPSO. Wave forces are represented

with the potential-flow panel method and the Morison equation. Aerodynamic forces

are represented by a thrust model or with the blade element momentum theory.

Main findings: Exposure of finite-angle coupling for semi-submersible turbines with

focus on heave plate excursion; characterisation of the aerodynamic damping of pitch

motion provided by an operating vertical-axis turbine.

Dynamic mooring simulation, focussed on highly compliant mooring systems, where

the fluid-structure interaction and mechanical inertial forces can govern line tension.

EDF R&D’s general-purpose, finite-element solver Code Aster is configured for this use

exploiting its nonlinear large-displacement and contact mechanics functionalities.

Main findings: Demonstration of a Code Aster -based workflow for the analysis of cate-

nary mooring systems; explanation of the dynamic mooring effects previously observed

in the DeepCwind basin test campaign.

Aeroelastic analysis of vertical-axis rotors, aimed at verifying novel large-scale float-

ing wind turbine concepts in operation, when aeroelastic-rotordynamic instabilities

may occur. The finite-element modal approach is used to qualify rotor vibrations and

to estimate the associated damping, based on the spinning beam formulation and a

linearised aerodynamic operator.

Main findings: Characterisation of the vibration modes of two novel vertical-axis rotor

concepts using the Campbell diagram; estimation of the related aerodynamic damping,

providing information on the aeroelastic stability of these designs.
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Part 1

Introduction

Over the last few decades, the globalisation of the economy has radically changed the

functioning principles of society. The geographical redistribution of industrial activities,

previously concentrated in the OECD countries, has provided access to skilled labour

and increasing wealth to other regions of the World, among which the most spectacular

example is probably south-eastern Asia [1]. As a consequence, whilst the primary energy

demand in the most developed countries tended to stabilise, the aggregate worldwide

demand kept growing at a fast pace1. This has placed significant stress onto the global

energy system which has been reflected in recent years by energy commodity price hikes

and volatility [2, 3]. Secure and affordable sources of energy must be made available

and integrated in future mixes to support global prosperity.

In the same timeframe a different form of pressure has been impacting the development

of energy systems, which is related to climate policy. Having recognised the need for

climate risk mitigation as a fundamental challenge of our times (see Rockström et al. [4]

for a high-level perspective), politics have engaged in a set of plans of increasing ambi-

tion for the decarbonisation of the economy. These include support to the development

of new renewable energy technologies, as a contribution to the transformation of the

energy system. This, in fact, is responsible for a large share of the anthropogenic CO2

emissions; in particular the electricity/heat sector is under the spotlight, accounting for

an estimated 42% of the man-made CO2 in 2012 [5].

The combined policy push and market pull mechanisms outlined above have been the

main drivers behind the development of electrical wind power since the 1970s, which

– even when intermittency is factored in – appears today as one of the most cost-

effective forms of low-carbon electricity generation, at least up to a certain level of grid

penetration [6, 7]. Toward the end of the 1990s the wind industry began expanding

to the maritime continental shelf, mostly in the North Sea shallows, to harness the

superior wind resources found offshore and mitigate the societal impact of windfarm

installations. Despite its higher cost, recent years witnessed a rapid expansion of offshore

wind centred in northern Europe, where the installed capacity nears the 10 GW mark

1In excess of 2% per year in the last two decades [2].

1
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Figure 1.1: Repartition of operating and under construction offshore wind capacity in
mid 2015. Data from NREL [11].

at the time of writing with over 70 windfarms operating across eleven countries [8].

The UK detains at present over half of the worldwide capacity (Figure 1.1, left) and

is reportedly the most attractive market for offshore wind business development [9],

largely as an outcome of its proactive policy [10].

A new player, France, has recently launched two GW-scale offshore windfarm con-

senting rounds in 2012 and 2014 for a total capacity of nearly 3 GW, scheduled for

commissioning around 2020, and a third one is expected at the turn of this year. Other

regions are entering the offshore wind market, including North America and the Pacific

with the United States [11], as well as eastern Asia, where China has already begun

large-scale deployment [10]. Other developed countries such as Japan and South Korea

prepare ambitious plans in this respect [12]. The attainable scale of the industry in

countries with limited shallow maritime space, Japan above all [11, 13, 14], will depend

on the availability of deep-water technology; this leads to discussing the object of this

work, floating offshore wind.
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1.1 Floating wind power

In recent years floating wind power has been increasingly regarded as an attractive

option for the production of low-carbon electricity, thanks to the potential to unlock vast

resources which are inaccessible using fixed substructures; these are expected to become

gradually unviable for depths beyond 50 m–60 m according to most observers including

the European Wind Energy Association [15] and leading technology developers [16].

Being able to deploy wind turbines in deep water will be crucial to determine the

scale of the industry within regions where the maritime continental shelf is steep. In

spite of the presence of vast shallow areas especially in the North Sea, an estimate of

the technical resource potential in Europe by the HiPRWind consortium indicates a

deep-water share of about 70% [17]. Preliminary estimates for France lie in the range

between 60% [18] and 80% [17], although a rigorous assessment is yet to be published.

In Japan, now a prominent country in floating wind development, 80% of the offshore

wind resources are located in deep water according to a landscape study by Main(e)

International Consulting [19]. Musial and Ram [20] maintain that the deep-water share

of the offshore wind resource potential for the United States amounts to about 2/3.

Part of this abundance is related to the higher mean wind speeds typically found far

offshore, where water depth is tendentially larger; nevertheless, it is expected that early

commercial floating wind developments – presenting the highest economic value – will

tend to occur in sweet spots where deep water is found relatively close to shore [21]

and to existing grid nodes such as large cities.

Numerous countries hold most of their offshore wind potential in deep water, but only

a handful have hosted utility-scale machine deployment so far. Statoil of Norway has

commissioned the first operating MW-class floating demonstrator, Hywind, in 2009 [22].

Portugal has followed by hosting Principle Power’s WindFloat prototype (Figure 1.2,

left), deployed in 2011, and more recently two Japanese consortia have successfully in-

stalled floating test units off Goto city (Figure 1.2, right) and the coast of the Fukushima

prefecture (see [19, 23, 24]). All but one commissioned, large-scale prototypes adopt tur-

bines of about 2 MW capacity, mounted either on spars or semi-submersible platforms.

As suggested by the installation of a 7 MW2 unit at the Fukushima testing site in

summer 2015, the industry is looking to exploit the economies associated to further

wind turbine upscaling3. The ongoing industrialisation initiatives are also seeking to

extend the operational floating wind turbine (FWT) design envelope with the use of

tension-leg platforms, with the first utility-scale prototype currently under construction

2A rating which is close to the upper boundary of current wind power technology per se.
3Upscaling helps to reduce installation and maintenance costs and is reported as one of the major

drivers of the cost reduction trend observed in UK offshore wind projects [25]. As pointed out by
Henderson and Witcher [26], another expected benefit of upscaling in the floating realm comes from
the relaxation of design space constraints for certain platform types.
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Figure 1.2: WindFloat assembly in the Mitrena Shipyard near Lisbon (left), photo
courtesy of Principle Power. Haen-kaze demonstrator sited off Goto in Japan (right),
courtesy of David Ingram.

[27], barge-type platforms [28], and vertical-axis aerogenerator technology [29]. The

combined energy supply, industrial development, and innovation potential of offshore

wind in France has fostered the birth of a dedicated industrial ecosystem starting from

the late 2000s. Large firms such as EDF, Engie, Alstom and Areva teamed up with

national SMEs and international partners in order to provide the country with a fully

operating offshore wind supply chain by around 2020. The overarching policy set by the

French state to coordinate sustainable energy development is enshrined in the 2007 and

2010 Grenelle de l’Environnement laws and since more recently in the energy transition

law approved by the parliament in 2015. In application of the European directives, the

2009 national plan for renewable energy assigns a capacity target of 6 GW for offshore

wind by end-2020 [30].

Concerning floating wind, the French policy is encouraging a fast-track course to in-

dustrialisation, with the likely intention to leverage on the country’s engineering and

maritime expertise to achieve a leading position in a few-year timeframe. After funding

the Vertiwind project [29] – looking at vertical-axis technology for floating applications

– and the consenting of a first pilot farm in the Mediterranean labelled Provence Grand

Large, French authorities have launched a pilot floating windfarm round in summer

2015. This should enable to identify up to four 20-50 MW projects by spring 2016 that
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¬ 

®

Figure 1.3: Bottom-fixed and floating offshore wind turbines, after Smith et al. [11].

will be co-financed by the funding body ADEME [31].

Benefitting from its participation to the pioneering Vertiwind/INFLOW programme,

the EDF Group is readying to take part in the national pre-commercial deployments

outlined above, first and foremost as the owner of the Provence Grand Large project.

The longer-term aims of the utility hinge on the industrialisation and standardisation

of FWT technology in order to establish itself as a leading project developer on the

international scene. A permanent R&D programme accompanies EDF’s business units

in the process of evaluating alternative engineering solutions, verifying proposed design

and modelling approaches, and de-risking the prototyping and deployment projects.

A brief presentation of floating wind technology is provided next, which has also been

reproduced in a technology watch report of EDF [32].

1.2 Technology

The present work focusses on utility-scale, single-turbine floating units. Setting an

offshore wind turbine afloat corresponds to choosing water as the reactive rotational

(and vertical) support instead of the seabed4. The fundamental advantage comes along

4Excluding tension-leg arrangements.
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with increasing depth: the water remains close to the point of application of rotor

thrust and wave forces, assuring a short load path; if these are transmitted to the

seabed, an increasingly longer load path is obtained instead, causing the associated

moment to grow with depth. This in turn governs the dimensioning and hence the cost

of a bottom-fixed turbine’s substructure [26]. The significantly lower steepness of the

projected cost curves as a function of depth for floating wind (see e.g. Myhr et al. [33])

is explained by this simple consideration.

1.2.1 Floating platform

In order to transfer its weight to the water a FWT must dispose of adequate buoyancy,

which is proportional to the displaced volume of its hull. Moreover, due to the sensitivity

to skewed flow of conventional aerogenerators and to structural integrity requirements,

the allowable inclination under the action of the met-ocean loads is subjected to limita-

tions. The vital function of guaranteeing sufficient buoyancy is fulfilled by the floating

platform, whilst stability is provided jointly by the platform and the mooring system.

The principle used to provide a FWT with adequate rotational stability defines three

technological options currently considered in platform design, shown in Figure 1.3:

¬ semi-submersible/barge,  tension-leg and ® spar. Let 4 denote the structure’s

displacement, and considering the vertical distances at equilibrium between the keel

point K, the buoyancy centre B, and the metacentre M, its stability with respect to

small inclinations is quantified by the linearised restoring coefficient,

k = 4(KB + BM−KG) + km , (1.1)

where the first term of the second member is associated to hydrostatic stability and the

second to the added stability provided by the mooring system. No active stabilisation

devices such as pumped ballast are considered here. This enables to distinguish the

platform families introduced above: owing to their large waterplane area, barges and

semi-submersibles rely on a large metacentric height BM. Deep spar substructures, con-

versely, adopt bottom-mounted ballast to achieve large values of KB−KG. Equation 1.1

also shows that a reduction in platform displacement, sought by the optimisation of

fabrication cost, tends to deteriorate the stability of any hydrostatically stabilised FWT

regardless of its type.

The design constraints identified by Henderson et al. [34] by stretching an idealised

cylindrical platform, reproduced in Figure 1.4, indicatively show the conflict among the

key design parameters of a hydrostatically stabilised FWT with simple geometry. No

limitation on the available water depth is assumed in the following interpretation of

the diagram. Stability may become insufficient when the hull is too short and/or its

waterplane area too small (top-left part of the figure), which roughly translates into
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Figure 1.4: Identification of viable design space of an idealised floating wind turbine
platform (green area) using five exclusion criteria. After Henderson et al. [34].

a lower boundary for floater size, depending on the expected overturning moments.

Conversely, large and highly stable platforms (bottom-right) tend to entail unacceptable

fabrication costs. Intertwined with these considerations is the problem of avoiding

excessive motions in waves (top and centre-right), which can hinder the operability and

integrity of the aerogenerator. Finally, deep and/or slender floater structures (bottom-

left) may become too prone to fatigue, mainly related to bending.

The conflict between stability and cost is put in evidence by their diametrical opposi-

tion. Coupled with the large restoring demand associated to wind overturning, this ob-

servation poses one of the fundamental dilemmas of floating wind system optimisation:

should the designer allow for reduced stability or introduce complementary stabilising

mechanisms? TLPs resolve this dilemma by sacrificing hydrostatic stability in favour

of the complementary mooring system stiffness km of Equation 1.1, allowing to adopt

smaller platforms. In this case hull size is no longer governed by stability but by the

buoyancy needed to counter the weight of the FWT and the tendon pre-tension forces.

Discussed in 1.2.2 is the vertical-axis wind turbine option which may be used to reduce

the stability demand instead, thanks to its better compatibility with tilted operation.

No clear winner is emerging as yet from the competition among different technologies,

since trade-offs across construction, installation, and maintenance costs as well as

project risk tend to level the playing field. Rather, it is expected that different solutions

will prevail on a project-by-project basis due to the variance of site-dependent design

conditions, bathymetry above all.
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1.2.2 Aerogenerator

The horizontal-axis wind turbine (HAWT), seen in Figure 1.3, which presently monop-

olises the utility-scale wind industry has been transferred to the offshore and floating

sectors with relatively minor adaptations; this however does not necessarily apply to

future, optimised floating HAWTs. So far, then, floating wind prototypes simply tended

to adopt high turbine design classes (see e.g. [35]) to withstand the loads associated to

the enhanced dynamics, with particular concern for the tower whose flexural loading

is aggravated. Floating-specific arrangements also concern the rotor control software:

this requires at least a modification for the avoidance of negative aerodynamic damping

[36], whereas proposed solutions also envisage more advanced control laws for the active

mitigation of FWT motion response [37] and fatigue [38].

As anticipated above, a more radical re-designing of the aerogenerator may prove

beneficial in floating applications. The vertical-axis wind turbine (VAWT) arrangement,

practically abandoned since the 1990s at the utility scale, has reconquered significant

interest due to potential benefits related to integrated FWT design [39]. Firstly, the

aerodynamic performance of a VAWT tends to improve in skewed flow as pointed

out among others by Wang et al. [40] – whilst that of a HAWT [41] is expected

to deteriorate5 – permitting efficient operation at large trim (Figure 1.5). A drastic

relaxation of the stability constraint is the related design benefit6. Secondly, despite

the greater mass per unit power characteristic of VAWT rotors, the turbine’s centre

of gravity may be significantly lowered by siting the power train at the bottom of the

shaft (cf. [43, 44]), thereby reducing the negative contribution to stability represented

by KG. The same architecture should also allow for easier access to the power take-off

equipment compared to a HAWT [45]. Lastly, some analysts underline the benefits of

reduced system complexity [43, 45] and upscaling potential [44] of floating VAWTs.

Whether the beneficial features introduced above will suffice to revive large-scale vertical-

axis technology will ultimately depend on their combined ability to offset its well-known

aerodynamic efficiency limitations, the limited industrial track record available, and

potentially adverse characteristics such as the reduced ability to feather the blades in

high wind conditions.

5Although this effect is better characterised in the literature for yaw misalignment than for vertical
skew, see e.g. Boorsma [42].

6Provided that the blade airgap remains acceptable and, most crucially, that the turbine structure
can accommodate the increased gravitational loading.
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Figure 1.5: Japanese floating vertical-axis wind turbine concept allowing for large
inclinations. Reproduced from Akimoto et al. [46].

1.3 Coupled dynamic simulation

According to DNV GL, the first certification body to issue a design standard dedicated

to FWT structures [47], “A key technical barrier to making [global floating wind indus-

try] a reality is the ability to carry out a sufficiently accurate fully dynamic analysis,

which requires integration of several engineering disciplines.” [48]. The interfacing of

profoundly diverse areas of knowledge such as aerodynamics, offshore hydrodynamics,

structural dynamics, rotordynamics, electro-mechanics, control, etc. demanded by this

application is challenging the existing engineering practices and calls for an in-depth

review of the related design and verification principles. Understanding the interactions

between the above areas requires the development of multi-physical simulation tools.

Over the last years, the scientific and industrial communities have been developing a

range of such tools based on the combination of offshore hydromechanical and wind

turbine simulation modules in the time domain.

Platform hydrodynamics are often treated using the linear potential-flow approach com-

bined with the Morison equation. The panel method is a well established way to resolve

the potential-flow wave-structure interaction problem, producing a linear diffraction

and radiation database in the frequency domain. MIT’s WAMIT [49], ANSYS Aqwa

[50], and the presently used NEMOH of the Ecole Centrale de Nantes [51] all employ

this approach. Their output, a frequency-domain hydrodynamic database, underpins in

turn the computation of the wave forces on the structure in the time domain. Loads

on small members and around sharp appendices may be added using the Morison

approach, which requires calibration. This workflow, typical of present state-of-the-art

coupled FWT simulators such as NREL’s FAST [52], Principia’s DeepLines [53], and the
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presently used CALHYPSO of EDF R&D, may also provide a partial reconstruction

of nonlinear potential hydrodynamics based on quadratic transfer functions (see for

example Philippe et al. [54]). Weakly or fully nonlinear potential-flow models in the

time domain, such as that proposed by Dombre [55], may be used to compute the hy-

drodynamic forces with higher accuracy, albeit still neglecting viscosity. At the high end

of physical fidelity, more computationally and labour-intensive Eulerian Navier-Stokes

models are being used to predict the hydrodynamic loads on the floating platform [56].

Finally, in order to allow the physically consistent treatment of highly dynamic events

such as breaking wave impacts, the adoption of meshless Lagrangian hydrodynamic

approaches may be envisioned (see Tomasicchio et al. [57]).

The mechanical behaviour of the moorings is another major component of the system’s

dynamic response. Mooring lines are slender bodies offering significant compliance,

which demands the use of a large-displacement resolution of their kinematics. The

inexpensive quasi-static approach based on the catenary equation (see for instance

Masciola [58]), neglecting inertia and the hydrodynamic interactions on the lines, is

adopted by coupled simulation codes such as FAST and CALHYPSO. This method

is known to become inaccurate when highly dynamic simulations and/or deep-water

settings are concerned. A more reliable prediction of the mooring loads and also of the

feedbacks on the floating system’s motions can be obtained including the dynamics of

the mooring lines in a time-domain model. This generally implies longitudinal discreti-

sation via a lump-mass, multi-body, or finite-element formulation [59]; in this work the

latter option is adopted by exploiting the functionalities of Code Aster, EDF R&D’s

thermo-mechanical solver [60]. Said methodologies are currently in use in commercial

dynamic mooring simulators such as Orcina’s OrcaFlex [61], MARIN’s aNySIM [62],

and Principia’s DeepLines [53].

The mechanics of a wind turbine generator, to be coupled to the above described

systems, are dominated by aerodynamic excitation. In their simplest form, the aerody-

namic forces and moments acting on the rotor may be reduced to a punctual tensor

based on the turbine’s thrust and torque coefficients, following the approach utilised for

instance by Utsunomiya [63]. An exciter routine of this kind is also used in CALHYPSO

for the representation of HAWT aerodynamics. Wind turbine aerodynamics have been

largely studied with higher fidelity using derivations of Glauert’s Blade Element Mo-

mentum theory [64], which enables to represent the airflow in a time and space-averaged

form; FAST and Simo-Riflex [65], for example, feature libraries of this type. Programs

such as FloVAWT [66] and Simo-Riflex-DMS [67] implement the vertical-axis variant

of this method, originally developed by Paraschivoiu [68]. This is also the case for

CALHYPSO, where the priority on VAWT simulation prompted the development of

specific higher-grade aerodynamics. By simultaneously increasing numerical complexity

and physical fidelity one may then find the cascade, vortex, and panel methods, all
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based on potential-flow, incompressible aerodynamics. Finally, the viscous airflow past

the turbine may also be modelled with Navier-Stokes solvers as done for example

by Liu et al. [69] using the incompressible hypothesis. The simultaneous, multi-phase

representation of the aero and hydrodynamic flows interacting with the FWT system

has also been proposed in recent times [70].

Given the multiple physical processes described above and the related loads exerted

on a FWT, platform and especially rotor flexibility may need to be included in the

analysis depending on the outputs and fidelity demanded by each specific application.

The cited engineering-level simulators can often handle aeroelasticity, whilst hydroe-

lasticity is sometimes disregarded due to the relatively high rigidity of conventional

floater structures; at the current state of development, this is the case for EDF R&D’s

CALHYPSO, which can handle a flexible VAWT structure whilst treating the platform

as a rigid body.

For a comprehensive review of the current state of the art of coupled FWT simulation,

covering different levels of model complexity, the reader may refer to the work of Borg

and Collu [71]. The stochastic nature of met-ocean loads and the variety of normal

and abnormal operating conditions multiply the load cases to be taken into account

for a full analysis, even when a single design is considered. Thus, the mastery of

computationally efficient, engineering-level models – and of their limitations – is of

paramount importance in the concept evaluation and basic design stages. This type of

simulation is at the heart of the research project documented in this manuscript, whose

scope is articulated next.

1.4 Scope of work

A compact account of the main focus and physical processes treated in the technical

parts of the manuscript is provided in Table 1.1. This allows one to distinguish the

main areas of investigation which shape the structure of the EngD: global coupled

dynamics, mooring hydromechanics, and rotor aeroelasticity. A detail literature review

is organised contextually for each of these areas. Further, the diagram of Figure 1.6

provides a visual account of the relationships across these disciplines in the broader

frame of floating wind turbine mechanics.

A top priority in the mechanical analysis of FWTs is the ability to predict the global

dynamics (rigid-body motion) of the system in order to understand the structural de-

mand on its components [47, 72]. Wind and wave-induced accelerations are of particular

concern, as they tend to dominate the loading of critical system parts such as the tower-

top machinery (see the work of Sethuraman et al. [73–76]), providing an important

design criterion (cf. Figure 1.4). The combined action of aerodynamic, hydrodynamic,

and operating loads determines the complex dynamic response patterns which are the
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Table 1.1: Focus of manuscript parts and physical processes represented.

Part Focus Hydrodyn. Aerodyn. Deformability
Domain

frequency time

2 Global • • • •
3 Moorings • • •
4 Rotor • • •

focus of Part 2. In which, both the open-source frequency-domain diffraction and radi-

ation solver NEMOH and EDF R&D’s own time-domain offshore dynamics simulator

CALHYPSO are used to single out and characterise, for the first time, multi-physical

coupling mechanisms inherent in semi-submersible FWTs. As shown in Figure 1.6,

both the platform and the turbine are considered as rigid bodies in Part 2 in order

to simplify the analysis and focus on specific processes of interest; the wind turbine

generator’s drive train dynamics and control are also left out of the model.

Detailed FWT subsystem design and qualification cannot rely on global dynamic anal-

ysis alone because of the high elasticity and/or compliance of certain components of

the floating system. Hence, Part 3 treats the highly nonlinear dynamics of compliant

FWT moorings, which can strongly interact with the floater hydromechanics. The

large-displacement compliance of catenary mooring lines, the local fluid interaction

dominated by viscous effects, and the seabed contact constraint are brought together in

Code Aster, EDF R&D’s finite-element mechanical analysis software, for the first time.

The platform is once again treated as a rigid body, whilst the interaction between the

mooring lines and the seabed is simplified as an unilateral contact condition, removing

the need to represent soil mechanics (see Figure 1.6). In the presented case study, both

coupled and motion-driven time-domain simulations in regular and irregular waves are

carried out to benchmark the numerical outputs against published experimental results,

with particular focus on the prediction of mooring line tension.

Another highly deformable FWT component requiring close inspection is the rotor,

whose vibrations are at the centre of Part 4. The verification of the structural reliability

of this subsystem for a range of operating regimes includes the characterisation of its

aeroelastic behaviour: modal analysis, using finite structural elements equipped with

an internalised representation of the aerodynamic and rotordynamic forces, is used

to screen two VAWT prototypes of interest. This type of analysis is decoupled from

the floating platform and is carried out in the frequency domain assuming a steady

rotational speed. The outputs notably consist in the aeroelastic Campbell diagrams

and the associated aerodynamic damping plots, which permit to rule out the onset of

aeroelastic instability for a designated operating envelope.
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Floating wind turbine system mechanics

Mooring system Floating platform Aerogenerator

Compliant hydromechanics

Structure-soil interaction

Rigid hydromechanics Aerodynamics

Control

Hydroelasticity

Drive train mechanics

Part 3 Part 2 Part 4

Rotor mechanics

Figure 1.6: Disciplines involved in system-level floating wind turbine mechanics and
presently covered areas.



Part 2

Aero-hydromechanical

Simulation of Floating Wind

Turbine Dynamics

The work carried out in the field of offshore aero-hydromechanical simulation of FWT

dynamics is included in this Part. Section 2.1 begins by providing the generalities of the

coupled multi-physical behaviour of floating wind turbines, along with an introduction

to the key features which spurred the investigations presented. The methods employed

by the aero-hydromechanical simulator CALHYPSO to combine and resolve the system

dynamics are outlined in Section 2.2. A range of applications is then presented in

Section 2.3, which is mainly aimed at characterising a number of aero-hydrodynamic

interaction processes. A validation of the coupled model is also included in this Section,

which uses existing experimental data as a benchmark. The outcomes of the studies

presented are brought together in Section 2.4.

Much of this work has been described in the publications listed in Appendix H; parts

of it are also included in the VALEF2 project1 reports and in EDF R&D’s technical

documentation [78].

2.1 Introduction

Different from most conventional offshore floating structures, floating wind turbines

(FWTs) are relatively small bodies which can exhibit stronger nonlinearities in their

dynamic behaviour. They are also designed with the purpose of maximising the aerody-

namic interaction related to wind energy extraction, which gives raise to unusually large

aerodynamic load to displacement ratios. This may constitute an important source of

dynamic coupling, especially as FWT platforms tend to evolve toward more optimised,

lightweight solutions.

1A collaborative R&D project by France Energies Marines for the development, verification, and
validation of floating wind turbine design methodologies [77].

14
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Figure 2.1: Artist impression of the GustoMSC tri-floater supporting a 5 MW-class
turbine (left), and of an older concept variant superposed to the DSS-21 drilling vessel
of the same designer (right). After [81, 82].

The pioneering activities of the EDF Group in the field of floating wind power require

active R&D support for the de-risking of current prototyping and industrialisation

projects such as the pre-commercial farm development Provence Grand Large in the

Mediterranean. The proposed technical solutions must be thoroughly analysed to de-

risk and to steer these projects and to capitalise on the ongoing experience. More

specifically, the mechanical behaviour of FWT concepts is a fundamental subject of

investigation, due to the paramount role of the prediction and verification of the

system’s displacements and accelerations which govern the structural demand and the

efficiency of the aerogenerator.

Characterising the mechanical behaviour of a floating wind turbine for design and

verification purposes requires the coupling of wind turbine aerodynamics and control

with offshore hydromechanics. The understanding of such coupled dynamics under

complex met-ocean loading has recently been the driver of a novel generation of coupled

offshore dynamic models designed for the requirements of FWT mechanical simulation,

such as FAST [52, 65, 79], HAWC2 [65, 80], FloVAWT [66], Simo-Riflex [65, 67], and

CALHYPSO of EDF R&D, the software used for a large part of the work presented in

this Part.

2.1.1 Semi-submersible floating wind turbines

Semi-submersible, column-stabilised platforms are currently investigated as a FWT

substructure solution owing to their low draft and ease of handling. As anticipated

in Part 1, they count on widely spaced columns of large waterplane area to insure
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the stability necessary to counter wind-induced overturning moment. These columns

are generally interconnected by space frame structures or girder pontoons as in the

examples of Figure 2.1.

The present study focusses on two semi-submersible FWT designs: the Dutch Tri-

floater introduced by [83], which represents an industrially interesting case for its

ability to support aerogenerators of relatively large rating compared to its size (see

Figure 2.20), and the well-documented DeepCwind-OC4 platform used in combination

with a Darreius-troposkein turbine (Figure 2.29), a concept suitable for the study of

the aerodynamic damping of FWT motions provided by a vertical-axis aerogenerator.

2.1.2 Small offshore structure hydrodynamics

As of today, the semi-submersible structures considered for wind turbine support are

generally of smaller size compared to their conventional offshore counterparts. The

displacement of a material-efficient FWT with a capacity of around 5 MW, for example,

is around an order of magnitude less than that of a typical drilling semi-submersible

[82]. This is visually displayed in Figure 2.1 (right). Whilst future turbine upscaling

may change the picture, this consideration prompts to look more closely into small

offshore structure dynamics when present technology is concerned.

Compact floating platforms can exhibit increased hydrodynamic complexity when sub-

jected to ocean waves compared to larger bodies; for example it is more likely to

come across regimes where hydrodynamic drag plays an important part in excitation,

as was observed experimentally on the DeepCwind-OC4 platform by Coulling et al.

[84], and explained numerically in Masciola et al. [85]. These phenomena typically

affect structures featuring sharp-edged motion control devices, tanks, and pontoons,

which accentuate flow separation. Surface proximity effects can also manifest on these

appendices when their submergence is limited, such as increased vertical wave loading

(conjectured in Philippe et al. [86]) and run-up according to Cermelli and Roddier [87].

As shown by the experimental campaign carried out by Cozijnet al. [88] on a CALM

buoy equipped with a skirt, a semi-empirical numerical model implementing linear

potential diffraction/radiation and a Reynolds number-independent drag force formu-

lation can satisfactorily (but not comprehensively, as explained in 2.1.3) represent the

hydrodynamic forces acting on this type of structure for the calculation of dynamic

response. Similar conclusions have been drawn by Aubault et al. [89] whilst comparing

numerical and experimental motion results for a compact water-injection platform

concept, the predecessor of the WindFloat platform design. An analogous numerical-

experimental comparison carried out by Roddier et al. for the engineering design of

WindFloat itself broadly confirmed the accuracy of this type of numerical model [16].
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2.1.3 Water entrapment plates

Most proposed semi-submersible designs feature water entrapment devices located at

the column foot which provide extra added mass, wave damping, and drag, as well

as buoyancy far removed from wave excitation. The resulting heave added mass and

hydrodynamic inertia in roll and pitch can be very significant, and often reach the same

order of magnitude of the FWT’s own structural inertias. This effect is fundamental in

order to shift natural periods beyond the wave range while preserving sufficient stability

and simultaneously limiting floater size.

A brief introduction to water entrapment plate hydrodynamics and the main related

modelling challenges is presented next. These are investigated in detail in 2.3.1, leading

to the characterisation of their influence on a highly compliant FWT in 2.3.2. Pioneered

by Principle Power with the WindFloat prototype, the FWT heave plate appendix

consists in a thin reinforced structure installed coaxially below the platform’s columns,

as visible in Figure 2.2. The dynamic stability provided by the use of heave plates,

coupled with the extra static stability insured by a closed-loop active ballasting sys-

tem, reportedly allowed the WindFloat prototype to adopt conventional aerogenerator

technology [90].

Figure 2.2: Detail of a WindFloat prototype column. Photo courtesy of Principle
Power.

Modelling water entrapment appendices2 close to the free surface via linear diffrac-

tion and radiation plus a drag model should come with a caveat. As pointed out by

Cozijn et al. [88], the radiation-dependent vertical added mass of these structures is

suspected to suffer from the irrotational flow hypothesis (i.e. the model fails to take

into account the momentum transfer needed to impel fluid rotation around the edges,

causing underestimation of the added mass). Another issue consists in the sensitivity

of the separation pattern to flow regimes, and in particular to the Keulegan-Carpenter

2Here the term ‘appendix’ refers to a protruding hull component of limited size compared to the
platform.
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number KC as shown by Tao and Cai [91]. The resulting drag forces which dominate

the hydrodynamic damping for this type of platform may be affected by such regime

changes, thus requiring appropriate adjustments of the drag coefficient. Lopez-Pavon

and Souto-Iglesias have also recently observed that detail features which may seem of

secondary importance in the fluid-structure interaction of heave plates, such as stiffeners

and edge flaps, may play a significant role in their behaviour [92]. Finally, nonlinearities

caused by complex phenomena such as wave decomposition, described by Kojima et

al. [93], and breaking over the plates (see Yu et al. [94]) may perturb loading in ways

that are not captured by the most common wave-structure interaction models. A more

in-depth review of submerged plate hydrodynamics is included in 2.3.1.

2.1.4 Large inclinations

One of the routes to FWT CAPEX reduction is to save on the platform fabrication costs.

An immediate consequence is the push for the minimisation of platform mass and hence

size, that in turn entails the availability of smaller displacements and waterplane areas

which affect the hydrostatic stability. Subsequently, low hydrostatic stability platform

solutions are currently being proposed. One option is constituted by the tension-leg

platform (TLP) – see for example Zhao et al. [95] – whose restoring capacity to oppose

the aerodynamic overturning forces is built into the mooring system. An alternative

approach is simply the acceptance of large-angle operation caused by limited stability,

leading to the concept of highly compliant FWT technology proposed by NREL [96]

and others [97]. This, combined with other technological considerations, has caused

a range of tilt-tolerant floating VAWT designs to be spawned (see Borg et al. [44]

for a technical discussion and Cahay et al. [43] for an industrial application), which

may in turn foster radical innovation feedbacks at the system level, as it happened for

the innovative floating axis solution proposed by Akimoto et al. [46, 98, 99]. Although

conventional HAWT rotors are known to be tilt-adverse, especially with respect to their

aerodynamic efficiency, angles up to 10 ◦ are beginning to be considered acceptable as

the operational limit for this type of turbine. An example is provided by the materials

co-published by the FWT semi-submersible designer GustoMSC [100, 101].

Several widespread assumptions in the simulation of offshore structure dynamics are

challenged due to the relatively large angular displacements. First of all, the ubiquitous

hydrostatic linearisation may undermine the correct representation of these forces,

especially when the geometry around the waterline is complex and/or hull sides are

inclined (see for example the WINFLO concept [102]). The classic static representation

of the mass matrix in the inertial frame can also cause errors in the computation of

inertial reaction forces as large angles make the small displacement assumption invalid.

Also, the widespread linear superposition of small rotations may prove inaccurate, an

observation that has led to the development of FWT motion solvers by Wang and
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Sweetman applying sequential Euler angle changes to represent correctly the nonlinear

coupling between motions for a rigid-body [103, 104] and a multi-body system [105, 106].

Finally, in the present study the combination of limited draft, significant inclination,

and the presence of hydrodynamically sensitive appendices – typical of semi-submersible

FWTs unequipped with active wind load compensation – is shown to cause significant

potential for geometric nonlinearity3 in the diffraction/radiation behaviour of the hull,

as detailed in 2.3.1, in addition to the loading regime changes associated with viscous

effects (2.3.2).

2.1.5 Dutch Tri-floater experimental campaign

The dynamics of a semi-submersible FWT undergoing large inclinations are experi-

mentally documented in a campaign by Courbois [107], where the Dutch Tri-floater

is subjected to coupled wind-and-wave tests. The tests have been carried out within

the fresh-water ocean basin of the Ecole Centrale de Nantes at the 1/50th scale, for an

equivalent water depth of 250 m. A picture of the experimental equipment used is given

in Figure 2.3. The motion outputs of this campaign will be later used for the validation

of the present numerical model.

Figure 2.3: Experimental set-up of the Dutch Tri-floater tests. The nozzle of the wind
generation apparatus is visible behind the turbine rotor, whilst the wavemakers are
seen in the background. Reproduced from Courbois [107].

3A manifestation of the breaking of the small-displacement assumption of the linear sea-keeping
method.
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2.1.5.1 Scaling criteria

Coupled basin testing of FWTs challenges the conventional approaches of offshore

engineering, in that the notorious mismatch of the model- and full-scale Reynolds

numbers severely affects the ability to represent the full-scale aerodynamic processes in

the laboratory whilst preserving the vital geometric similarity and Froude similitude.

The approach utilised in Courbois’s campaign consists in an heuristic matching of the

rotor thrust force at the rated point (reportedly 830 kN at full scale and about 6.6 N

at reduced scale), measured at the model shaft, by simultaneous increase of the blade

sectional twist and incident wind speed. Active blade pitching is not used during the

tests, and the rotor speed is maintained constant by a controlled break and equal to the

nominal downscaled value, that is 85 rpm. The resulting mean thrust is hence made to

satisfy both the geometric and Froude scaling laws, whilst its dynamic component does

not obey any similitude. The incident wind speed used to obtain the nominal thrust

is much larger than what would be prescribed by plain geometrical/Froude scaling,

specifically around 4.6 m/s in lieu of 1.6 m/s. In these conditions, aerodynamic damping

is likely overrepresented in the basin.

2.1.5.2 Model definition

Brought at full scale, the Dutch Tri-floater platform geometry used in the experiments

is in almost all aspects identical to the variant here presented into detail in 2.3.1.3. The

only discrepancies are the thickness of the water entrapment plates4, which is down

to 0.15 m from 1.00 m, and the operating draft, which is reduced to 10.9 m from the

nominal value of 12.0 m. Both differences contribute to a reduction of the platform

volume, which is now equal to 5 = 2440 m3. Motion outputs are provided as displace-

ments of the system’s CoM (see Table 2.1) with respect to the fixed orthonormal frame,

using optical motion capture equipment. The potential-flow hydrodynamic modelling

of thin plates required to represent this platform model prompted the development of

the extrapolation approach described in 2.3.4.3.

Intended to represent the NREL 5 MW reference design [108], the experimental turbine

consists in a three-bladed rotor using the same profile distribution as in the reference

(profiles in geometrical similarity), modified with a radius-dependent increase of twist

between 15 ◦ and 30 ◦. A thin rigid mast connects the instrumented nacelle to the

platform, respecting the nominal hub height over the still-water level (SWL) of 90 m.

This height is slightly increased by the operating draft reduction reported above. The

full-scale rotor axial inertia is 3.88 · 104 t m2.

Table 2.1 provides the aggregate platform and parked turbine mass properties. The

small discrepancy between the computed mass and the target onboard mass required

4With a constant vertical position of the lower plate surface in the floater frame.
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Table 2.1: Full-scale experimental Dutch Tri-floater mass/inertia properties including
the turbine. Quantities are expressed with respect to the origin O at the still-water
level.

Mass [t] 2428
Vertical position of CoM (≡CoG) [m] 22.2

Roll moment of inertia [t m2] 5.409 · 106

Pitch moment of inertia [t m2] 5.421 · 106

Yaw moment of inertia [t m2] 1.753 · 106

to meet the system’s operating displacement in fresh water (12 t) is tolerated.

The mooring kit consists of two elastic aerial lines with negligible mass connecting

the FWT frontal bracings to the nozzle structure as visible from Figure 2.3. These

are slack when the platform sits in the undisturbed equilibrium position, as there are

no compensating aft lines. In the presence of a positive transitory (1st order wave) or

constant (wind thrust, wave drift) surge force, these lines become tensioned and are

expected to alter the restoring behaviour of the system. Due to lack of data, the likely

nonlinearities related to this arrangement cannot be easily replicated in a numerical

simulation.

2.1.6 Aerodynamic damping of global motion

One of the investigations included in this Part regards the aerodynamic damping of

global motions provided by an operating VAWT (2.3.3). Numerous existing studies

address the effects of rotor forces on the coupled dynamic response of horizontal-axis

FWTs, where the rotor control strategy is a key variable determining aerodynamic

damping of frontal rotor motion (see for instance Jonkman [109]). Unlike horizontal-

axis turbines, floating VAWTs have been seldom investigated with respect to global

aerodynamic damping in an explicit manner. Remarks on this phenomenon are found

for instance in the model-to-model comparison of Borg et al. [110]. The presence of

aerodynamic dissipation is observable from the results of the floating VAWT simulations

carried out by Wang et al. [111], and further commented in comparison with the

aerodynamic damping from a HAWT in [67]. Discussions on the effects of taking into

account the relative flow speed in double-multiple streamtube (DMST) modelling,

altering the aerodynamics of a Darreius rotor on a moving floating platform, are

available in Collu et al. [66] and Borg and Collu [112]. Past work by Merz [113] points

out the role of dynamic inflow in relaxing the turbine-flow interaction when a DMST

model is used, thereby potentially increasing the strength of aerodynamic damping for

pure horizontal motion.
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2.2 Methodology

Next the building blocks of the methodology underpinning the simulations of 2.3 are

presented. The terms entering the coupled dynamic equations of motion (EoM) are

punctually described, along with the theories enabling their calculation. Close-ups are

also provided on the unconventional (2.3.2.1 and 2.3.4.3) or relatively complex (2.2.3)

hydrodynamic and aerodynamic modelling strategies adopted.

2.2.1 Coupled rigid-body dynamics

The program CALHYPSO (CALcul HYdrodynamique Pour les Structures Offshore)

developed at EDF R&D incorporates the aerodynamic, hydrostatic, hydrodynamic,

structural inertial, and mooring forces exerted on a FWT to determine its dynamic

behaviour in the time domain. Whilst HAWT aerodynamics are here represented via

a reactive thrust module (2.2.2), CALHYPSO features a fully-fledged double-multiple

streamtube representation of VAWT aerodynamics (2.2.3). The offshore hydromechan-

ical part uses the common time-domain sea-keeping approach and a linearised or quasi-

static moorings model. This simulation tool has been both verified and validated in the

past in the context of EDF’s joint industrial projects, whilst a more recent experimental

validation of both the solver and the methodologies proposed here is included in 2.3.4.

FWT dynamics are implemented using a six degree of freedom (DoF), rigid body

assumption with the reference point O generally placed at the centre of the undisplaced

structure’s waterplane area. Although the choice of this point is entirely arbitrary for the

representation of rigid-body dynamics, when floating structures are concerned the above

choice of O allows to adopt the widespread metacentric representation of hydrostatic

stiffness without incurring in transportation errors. Based on Newton’s second law of

motion, the EoM of the system are written in the inertial system of reference centred

in O in the form:

(M + A∞)ẍ(t) = fh(t) + f e(t) + f r(t) + fv(t)+

f i(t) + fa(t) + fg(t) + fm(t) ,
(2.1)

where M denotes the rigid body’s generalised inertia matrix, A∞ the infinite-frequency

added inertia matrix, and ẍ the acceleration vector. The right-hand side member

consists of the summation of the instantaneous hydrostatic forces fh, the hydrodynamic

excitation forces f e, the wave radiation forces f r, the viscous hydrodynamic forces fv, the

slender-member inertial hydrodynamic forces f i, the aerodynamic forces fa, the rotor

gyroscopic forces fg, and the mooring restoring forces fm. These terms will be described

in the next paragraphs, starting from the modelling of the forces on the aerogenerator

and then moving on to the hydromechanical parts. This equation allows to calculate ẍ

at each time step, then the time domain motion is obtained by numerical integration of
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the acceleration vector. The preferred integration scheme is here the Newmark implicit

method, which is applied in acceleration-form (known as A-form, see Appendix B).

It should be noted that writing the rigid-body EoM of Equation 2.1 based on the

linearisation of rotations in the inertial system of reference, denoted R in the scheme

of Figure 2.4, is conditional to the small-displacement assumption. As shown in this

study, floating wind turbines may make this assumption invalid when wind forces induce

large rotations. This limitation is treated in 2.3.2.1 by redefining the linear tensors

describing the system’s mechanics about the inclined state. An alternative modelling

option consists in the choice of the frame bound to the rigid body (R′ in the figure) for

the resolution of Newton’s second law of motion, provided that the external forces be

re-expressed in its own coordinates at each time step.

R

R′

O

O′

x

Figure 2.4: Inertial and bound systems of reference R and R′. The solid form represents
the rigid body in its instantaneous position while the dashed form its initial undisturbed
configuration.

2.2.2 Reduced aerodynamic model for horizontal-axis wind turbines

The routine used for the computation of HAWT aerodynamics is a simple coupled

exciter module based on aggregated force coefficients. The aerodynamic forces acting on

the rotor and the tower are both assimilated to a thrust-type force, applied punctually

at the rotor’s and tower’s respective centres of thrust. The aerodynamic torque exerted

on the rotor is also computed. Given a steady operating condition characterised by a

thrust coefficient cT and a torque coefficient cQ, the thrust and torque on the rotor are

computed using a modified version of the coupled formulation used by Utsunomiya et

al. [63]:

Tr =
1

2
cTρaA|U − u|(U − u) cosϑ , (2.2)

Qr =
1

2
cQρaAR|U − u|(U − u) cosϑ , (2.3)

where ρa denotes the air density, A the rotor swept area, R the rotor radius, U the

incident wind speed at hub height, u the component of the hub velocity in line with
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the incident wind speed, and ϑ the instantaneous leeward inclination of the rotor due

to platform motions. This coefficient-based reactive model assumes that blade pitch

does not adjust to the aerodynamic fluctuations due to the motions of the FWT. Such

set-up loosely corresponds to an idealised implementation of a known control option for

floating HAWTs where the frequency of the controller is deliberately moved below that

of FWT motions, in order to avoid the appearance of negative damping (see Larsen

and Hanson [36]). The thrust Tr is applied horizontally in the direction of the incident

wind and its moments are calculated with respect to the EoM reference point using the

updated position of the hub. Qr is also applied as a horizontal torque vector in the wind

direction (it is assumed that the rotor is perfectly yawed into the wind at all times).

The use of a coefficient-based model ensures that the rotor’s aerodynamic excitation

tensor matches a prescribed (equilibrium) operating point, based on the specifications

supplied by the turbine designer. Apart from the averaging of rotor forces and the

absence of the effects of turbine control, an important limitation of such models consists

in the combination of motion-induced speed with the free-stream wind speed before

induction, which is larger than the real-world inflow velocity in the vicinity of the

rotor. This, along with the absence of a feedback mechanism relating the inflow speed

to the fluctuations of Tr and Qr, causes an overestimation of the aerodynamic forces’

variance in presence of windward/leeward motion which is particularly significant at

low frequency, when in reality the inflow has sufficient time to react5. An example is

given in Figure 2.5, where the thrust component in the x direction for a rigid NREL

5 MW rotor oscillating in the direction of the incident wind is shown as predicted by

the FAST software by NREL6 and by the present simplified model.

The incident wind speed and operating parameters of the turbine are set at the rated

point and a constant wind profile is used. The Figure shows how the coefficient-based

model provides the correct average thrust and a good approximation of the shape and

phasing of its evolution over time, but produces a significantly larger variance than the

more sophisticated Blade Element Momentum theory.

Finally, the thrust exerted on the tower is also computed with Equation 2.2, using

cT = cD, the drag coefficient for a cylindrical section. In this case A denotes the tower’s

projected area and u the component of the motion-induced velocity of the centre of

thrust in the direction of the incident wind. The set of generalised aerodynamic forces

resulting from the above model are summed and included in the term denoted fa.

5A useful discussion of inflow reactive features when using the BEMT for floating VAWT modelling
is available in a study by Merz [113].

6FAST v.8.08, using dynamic inflow. The rotor speed and blade pitch are fixed. Surge motion is
obtained with the application of a harmonic horizontal force as proposed in the NREL forum [114].
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Figure 2.5: Forced oscillation in the direction of wind (surge) of an operating NREL
5 MW rotor, for an excitation frequency of ωe = 0.40 rad/s.

2.2.3 Double-multiple streamtube model for vertical-axis wind tur-

bines

CALHYPSO includes an option enabling the dynamic linkage to a VAWT aerody-

namics resolution routine, which is documented in an internal EDF note [115]. The

representation of the aerodynamic forces is based on Paraschivoiu’s double-multiple

streamtube (DMST) method [68], which utilises Blade Element theory in combination

with a two-stage momentum loss formulation7. The inflow and wake aerodynamics

considered by this model are highly simplified in that velocity is considered in space- and

time-averaged form. The airflow is described by discretising the in and outflow over the

swept area of the rotor with an array of independent control volumes called streamtubes

(see Figure 2.6). By definition, the flow rate is constant along each streamtube, and the

flow speed is assumed homogeneous at any cross section.

Let ρa be the incompressible fluid’s density, s̃ the longitudinal streamtube coordinate

with the origin located at the turbine’s axis, negative upstream and positive down-

stream, A = A(s̃) the streamtube’s sectional area, and U = U(s̃) the flow speed, the

conservation of mass may be written as

ρaA(−∞)U(−∞) = ρaA(s̃)U(s̃) = ρaA(+∞)U(+∞) (2.4)

for the classic single tube. It appears clear for the above Equation that the (gradual)

flow speed decrease in the downstream direction associated to energy extraction must be

7This is the VAWT declination of the classic blade element momentum theory, which was originally
proposed by Glauert [64] for propeller modelling.
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Figure 2.6: Streamtube distribution over a Darreius rotor operating at rated conditions
in homogeneous wind. The colour of the point sprites provides the steady-state
induction factor at the upwind actuator surface.

accompanied by streamtube expansion, i.e. an increase in sectional area. The pressure

in the streamtube is related to flow speed through Bernoulli’s steady equation, plus a

pressure drop concentrated on the actuator surface.

When the DMST method is used, the tandem configuration required to model the

upwind and downwind blade sweeps is implemented by placing two streamtubes in

series, communicating through an intermediate flow speed Uint which roughly represents

the mean axial speed found centrally inside the rotor, as shown in Figure 2.7. Neglecting

turbine-scale flow expansion allows to equate the global momentum flux to the forces

related to the pressure drops ∆p using




ρaSV1 [Uup − Uint] = ∆p1S

ρaSV2 [Uint − Udown] = ∆p2S
, (2.5)

where S is any streamtube’s constant cross-sectional area at the rotor, which is imposed

by the user’s discretisation of the frontal area. The far upstream wind speed Uup is

imposed, whilst the far upstream flow speed Udown is unknown.

The local axial speed at the actuator surfaces V is defined by the unknown axial induc-

tion factors a and a′, such as V1 = Uup (1− a), V2 = Uint (1− a′). These also determine

the remaining elements in the left member of Equations 2.5: from the application of

the actuator surface theory on the upwind surface we derive Uint = Uup (1− 2a); the

same theory applied to the downstream tube yields Udown = Uint (1− 2a′). Substituting
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Figure 2.7: Sketch of streamtube with tilted operation.

these terms in Equations 2.5 provides





2ρaSU
2
upa(1− a) = ∆p1S = F1

2ρaSU
2
upa
′(1− a′)(1− 2a)2 = ∆p2S = F2

. (2.6)

As shown in the above Equations, for each of the two streamtubes in the tandem the

pressure drop force is equal to F , the axial force associated to the blade passages,

averaged over one rotor revolution. This is computed via the Blade Element theory

using the relative airspeed of the blade sections in their own sectional plane (the

spanwise component is disregarded), which in turn depends from the induction factors.

An iterative procedure is therefore required to resolve Equation 2.6 at each time step.

Within the Blade Element portion of the model, the instantaneous angle of attack and

Reynolds number are used to derive the instantaneous lift and drag coefficients, and

hence the corresponding forces. For this sake, this library relies on empirical lift and

drag coefficient curves stored in look-up tables.

2.2.3.1 Dynamic stall

The blade sections of a MW-scale VAWT operating at mid to low tip-speed ratio

(below a value of about 3) undergo relatively rapid and large changes in the local

angles of attack, which may cyclically exceed the stall limit of the concerned profiles.

Flow separation and reattachment on an airfoil are dynamic processes which require a

finite time for their establishment and cause the quasi-steady blade element method to

produce inaccurate forces in the stall region when this is crossed rapidly. This is the

reason why BEMT software usually employ the steady lift and drag coefficient curves

in combination with a dynamic stall model, which uses both the angle of attack and its
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derivatives to estimate the instantaneous aerodynamic coefficients.

Dynamic stall is here implemented using the Gormont model [116], originally developed

for the representation of unsteady aerodynamics on helicopter rotors, which empirically

reproduces the hysteresis cycle characteristic of dynamic stall. Due to the low tip-speed

ratio (TSR) regimes characteristic of VAWT operation and the associated large maximal

angles of attack the Gormont theory requires correction. The EDF model implements

Berg’s method [117] with respect to this need, which operates by interpolation between

the quasi-steady and unsteady aerodynamic formulations. The interpolation is governed

by a calibrating coefficient, which was fixed on the basis of an experimental campaign

carried out by a Vertiwind project partner.

2.2.3.2 Adaptation to the floating context

The application of DMST theory to floating turbines is an active subject of research.

In principle, it requires at least the inclusion of the local wind direction and velocity

perturbations caused by six-DoF motion in the numerical model. Wind skew, the first

phenomenon, has been the object of past studies in the context of rooftop [118–120]

and floating [40] wind power. In the present model, this is treated by anchoring the

streamtubes to the mean free-stream speed frame, while the instantaneous position

of the blade elements is continuously updated according to the combination of rotor

revolution and platform motion, as displayed in Figure 2.7. This set-up is essential

to preserve a correct physical representation of the flow when the rotor undergoes a

finite inclination. The second effect, the relative velocity perturbation induced by the

platform motions, is taken into account by updating the blade elements’ speed at all

time steps following the system’s 6-DoF motion and combining such speed with the

tangential (revolution) speed and the flow speed vectors. The orientation of the blade

elements in the fixed frame, required for the calculation of the sectional component of

the relative airflow, is constantly updated.

The modular nature of the DMST routine permits to couple it to the global dynamic

solver in the form shown in Figure 2.8. It has been verified that the large difference

between the timescale of the aerodynamic processes involved and the typical time steps

δt required by the global dynamic simulation (in the order of 10−1 s at the most)

allows to avoid iterating the process of Figure 2.8 at the single time steps without

compromising accuracy.

An operating FWT rotor undergoing large motions with respect to its own developed

streamtube set may also experience unsteady effects such as exposure to spatially

varying induction (frontal motion) and momentary interactions with the shear zone at

the peripheral streamtube boundaries (lateral motion). Accounting for these processes

should be object of further research.
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Global dynamics solver

x(t− δt), ẋ(t− δt)

DMST library

fa(t)

Figure 2.8: Information exchange between the global motion and double-multiple
streamtube routines at the time step taken from t− δt to t.

2.2.3.3 Other corrections and limitations

The tower wake is modelled via a downstream speed deficit formulation. A tip loss

formulation is available in the library, albeit not used in the Darreius turbine case

study considered in this manuscript. Not represented here are rotor deformability and

dynamic inflow (see Hansen et al. [121] for a comprehensive review of the aerodynamic

processes involved in wind turbine operation and their modelling). Dynamic inflow is a

process of particular importance when trying to assess global aerodynamic damping, as

it dictates the reactive behaviour of the flow as a whole in presence of a perturbation,

increasing the damping by a latency in flow adjustment [113]. Streamtube expansion at

the rotor scale [68] along with the associated 3D effects [115] and local flow curvature

[122] are also not considered, although the influence of these effects on floating VAWT

mechanics has been found to be limited by Borg et al. [123].

The DMST theory is known for its reliability in the mid TSR region for low-solidity

rotors [44, 68], but its accuracy in representing the rotor aerodynamic interaction

is generally constrained there by different limitations. The momentum Equation 2.6

gradually loses significance at very high (> 6) TSR, as stressed by Paraschivoiu [68]

and Islam et al. [124]. Due to the presented modelling hypotheses, complex flow features

such as 3D structures and wake vorticity cannot be represented with this model. This

is expected to become problematic for high-solidity rotors and/or at low TSR. The

results of 2D RANS (Reynolds-averaged Navier–Stokes) modelling carried out at EDF

R&D suggests that the effects of the eddies shed with the upwind blade passage become

significant in the momentum balance of the downwind sweep below TSR≈ 2 for the type

of turbine studied, translating into decreasing accuracy of the DMST theory at lower

TSR (cf. [125]). This limitation should be kept in mind with special attention when

evaluating the aeromechanical loading outputs at the cut-out point, which typically lies

around or below this TSR for multi MW-scale VAWTs.
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Figure 2.9: Verification of the output torque of the 5 MW Darreius turbine. Dots
represent the outputs of CALHYPSO and lines those of the comparable model Simo-
Riflex-DMS, digitised from Wang et al. [111].

2.2.3.4 Verification

The model has been successfully verified by EDF for a 2 MW-class helical VAWT (the

same shown in Figure 4.15) against the outputs of independently developed, comparable

software in the course of the Vertiwind R&D programme. Both the power output

(hence the integral torque) and the blade forces showed satisfactory agreement with

the alternative simulations [115]. In the present context, a code-to-code verification

was carried out using the Darreius rotor concept object of the case study of 2.3.3

in bottom-fixed configuration. Figure 2.9 shows a comparison with published results

obtained with a comparable, validated model exhibiting good agreement.

2.2.4 Rotor gyroscopic forces

Past studies by Philippe et al., Blusseau and Patel, and Akimoto et al. revealed the

importance of gyroscopic coupling in floating wind turbine dynamics [99, 126, 127]. An

oscillating structure bearing a rotor revolving at constant speed receives a gyroscopic

reaction moment qg that can be written using the d’Alembert principle [128],

qg(t) = −IrΩΓ(t)× ir(t) . (2.7)

In the above equation Ir represents the axial inertia of the rotor, Ω its rotational

speed and ir the associated unit vector, whilst Γ = (ẋ4, ẋ5, ẋ6) denotes the structure’s

rotational speed vector. The gyroscopic term included in Equation 2.1 is then written
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as

fg = (0, 0, 0, qg
1, q

g
2, q

g
3) . (2.8)

This type of reactive force becomes prevalent when the studied turbine disposes of high

operating momentum, that is when rotor inertia (e.g. in Blusseau and Patel’s study

[127]) and/or rotational speed is large.

2.2.5 Hydrostatic forces

The hydrostatic force is computed using the conventional sea-keeping linearisation:

fh(t) = −Kh x(t) . (2.9)

By assigning a seawater density ρw and calculating the waterplane area Aw, the third

diagonal hydrostatic stiffness coefficient is obtained as Kh
33 = ρwgAw. By denoting

the displacement ∆ = ρwg5, where 5 is the hull volume, and the transverse and

longitudinal metacentric heights over the CoG respectively GMT and GML, the roll and

pitch hydrostatic stiffness coefficients are written as Kh
44 = ∆ GMT and Kh

55 = ∆ GML.

For each of these, GM = KB + BM − KG (cf. Equation 1.1), using the transverse

metacentric height BM = BMT for roll and the longitudinal metacentric height BM =

BML for pitch. The remaining entries of the Kh matrix are nil for the types of structure

studied.

2.2.6 Hydrodynamic forces

As is frequently done in floating structure dynamic modelling, hydrodynamic wave

forces are calculated via a superposition of inertial and viscous components. The conven-

tional classification used for the evaluation of wave forces over a structure decomposes

the hull into small and large substructures (see for example Sarpkaya and Isaacson

[129]). For a FWT semi-submersible platform, this typically distinguishes a set of large

columns from the slender interconnecting bracings (see for instance Figure 2.16). The

former are dominated by inertial wave forces – with significant diffraction at low wave

periods and additional drag around sharp edges – whilst the latter are generally drag-

dominated. The two corresponding hydrodynamic regimes for a cylindrically shaped

structure are marked in Figure 2.10, where the governing parameters are the cylinder

diameter-to-wavelength ratio D/λ and the Keulegan-Carpenter number defined by

KC = UmT/D. Here Um represents the maximum flow velocity and T the period char-

acterising the unsteady flow. By assuming that this flow is associated to a deep-water

harmonic wave propagating across the cylinder, and that fluid-structure interaction

happens in the vicinity of the free surface, KC ≈ 2πã/D with ã denoting the wave

amplitude.
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Figure 2.10: Wave loading regimes characterised by the dominance of drag and that
of inertia/diffraction. Water depth = 100 m.

The inertial wave forces on the large members are computed by NEMOH, a potential-

flow, open-source linear diffraction and radiation solver developed by the Ecole Centrale

de Nantes [51], and imported within CALHYPSO in the form of a frequency-domain

hydrodynamic data base8. This is used in turn to recreate, in the time domain, the

incident wave excitation vector f e and the reactive force associated to wave radiation

f r in the form reported next.

The jth element of the wave excitation vector is defined for an N -component, bi-

dimensional wave train of incidence θ as

fej(t) =
N∑

n=1

Ψjnãn cos(−ωnt+ knx̄(t) cos θ+

+knȳ(t) sin θ + Φjn + φn) ,

(2.10)

where Ψjn and Φjn are the amplitude and phase of the nth excitation harmonic in the

jth DoF, ãn the amplitude of the corresponding spectral component (or simply the

incident wave amplitude if N = 1), ωn and kn the wave component’s frequency and

number which are bound by the linear wave dispersion relation, (x̄, ȳ) the structure’s

mean horizontal offset, and φn a randomly generated phase (φn = 0 if N = 1).

8NEMOH uses the widespread boundary-element formulation to obtain appropriate harmonic
solutions of the unsteady potential-flow problem associated to progressive gravity waves. A set of
3D panels discretises the body’s wetted surface, whilst the remaining boundary conditions are imposed
analytically. This popular methodology has been documented in numerous past works, for example in
[130–132] in relation to the analogous software Aquaplus.
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The radiation force vector f r is included using the linear impulsive model by Cummins

[133] via the convolution integral

f r(t) = −
∫ t

t−Tc

K̃(t− τ)ẋ(τ)dτ , (2.11)

where Tc is the convolution window length and K̃ the convolution kernel, which is de-

rived from the frequency-dependent radiation damping matrix with Ogilvie’s procedure

[134].

The viscous forces are computed by discretising the hull into segments and evaluating

the quadratic drag forces acting on each with the Morison formulation [135]. If deemed

necessary, this also allows to model the forces acting on slender elements based on the

Froude-Krylov pressure field and the relative flow-structure acceleration. Equation 2.12

provides the transverse (or normal) force F n per unit length l on a slender cylinder

with diameter D according to Morison:

dF n

dl
=

1

2
ρwc

n
dD(vn − ẋn)|vn − ẋn|+ ρw(1 + cn

a)
π

4
D2∂v

n

∂t
− ρwc

n
a

π

4
D2ẍn , (2.12)

denoting the component of the undisturbed flow velocity normal to the cylinder’s axis

with vn and the normal component of the structure’s local speed and acceleration with

ẋn and ẍn. The parameters cn
d and cn

a represent the normal-flow drag and added mass

coefficients respectively.

The axial and transverse components of the local relative flow are hence derived from

both the incident wave kinematics and the structure’s motion. Adopting axial and

normal-flow coefficients, dependent on element geometry, allows to calculate the corre-

sponding components of the hydrodynamic force. In the studies presented, the trans-

verse Morison coefficients of all cylindrical sections are assigned based on a (KC,

β)9 pairing for each member, representative of an average wave regime, using the

experimental data provided by Molin [136]. This procedure is adaptable to both full and

reduced-scale FWT simulations. The hull subcomponents which are already represented

in the potential hydrodynamic part of the model are loaded with drag only.

Using Equation 2.13, axial drag is applied exclusively on the heave plates and tanks in

integral form and proportionally to A, the transverse area of the appendix:

F a =
1

2
ρwc

a
dA(va − ẋa)|va − ȧa| . (2.13)

The axial component of the incident wave velocity field and of the local structure

motion are used here, denoted by a superscript ‘a’. The axial drag coefficient ca
d is

9For this type of problem, the Stokes parameter is defined by β = D2/νT = Re/KC , where Re
denotes the Reynolds number, and ν the kinematic viscosity of the fluid.
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assigned based on Robertson et al. [137] and Philippe et al. [86], where appropriate

values are derived by calibration of numerical simulations against basin test results.

Scale effects are disregarded for this particular coefficient: in a first approximation, this

approach may be justified by the presence of sharp edges governing flow separation,

thereby reducing the drag forces’ dependence from the Reynolds number.

The local drag forces are integrated over the hull to form the viscous force vector fv

at every time step, whilst the inertial fluid-structure interaction forces over the slender

members are integrated and included in the term f i.

This description of floating body hydrodynamics is subjected to the small-displacement

assumption. A phenomenon known as geometric nonlinearity may occur when motions

become sufficiently large, which makes the linearisation of hyrdodynamics inaccurate

using the classic sea-keeping procedure. FWT concepts which are sufficiently prone to

inclination may incur in this problem, which will be later addressed with a specific

methodological adjustment (2.3.1.3, 2.3.2.1).

2.2.7 Mooring forces

CALHYPSO includes the capability for a multi-segment, quasi-static representation

of catenary moorings and their forces (a similar model is described by Masciola [58].

However, mooring restoring forces are represented in this Part with a linearised model

employing the stiffness matrix Km,

fm(t) = −Km x(t) , (2.14)

in order not to incur offset-dependent mooring stiffness nonlinearity and response

bifurcation.

Equation 2.14 does not account for the undisturbed mooring (weight) force, which is

implicitly included in the model set-up by introducing a lump weight at the fairleads

in the weight count, which determines the system’s aggregate gravitational properties:

displacement and centre of gravity (CoG) location. These are equal in turn to the overall

weight force and the weighted integral of the position of the elementary gravity forces

over the body. The presence of the mooring system is disregarded when computing the

mechanical inertia of the FWT. This requires to distinguish the CoG from the inertial

centre of mass of the system, CoM, which is obtained as the weighted integral of the

position of the elementary masses, hence excluding the moorings.
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2.3 Applications

This Section presents four applications of the model described herein, related to the

investigation of aero-hydrodynamic coupling effects and the validation of the proposed

methodology. The potential flow method is used in 2.3.1 in a set of sensitivity studies

to provide a grounding for the interpretation of the heave plate excursion effect, which

is related to large wind-induced inclination of highly compliant semi-submersible plat-

forms. The following study of 2.3.2 employs the coupled aero-hydromechanical model

to identify the large-inclination effects on the dynamic response of a HAWT-type FWT.

The focus is moved upon vertical-axis turbine technology in 2.3.3, where the coupled

model is used for the characterisation of the aerodynamic damping of pitch motion for

different operating conditions of the aerogenerator. Finally, an experimental validation

of the model is included in 2.3.4.

2.3.1 Heave plate excursion and platform hydrodynamics

The focus of this study is the effect of varying heave plate submergence on the diffraction

and radiation loading of a semi-submersible FWT platform. A review of the submerged

plate problem is first presented in 2.3.1.1, followed by two applied cases.

Fluid-structure interaction is represented under the linear potential-flow hypothesis,

hence neglecting all viscous effects and holding only for small wave amplitude and slope.

Frequency-domain wave forces and hydrodynamic coefficients are obtained numerically

via NEMOH (see 2.2.6). In 2.3.1.2 a surface-piercing column equipped with a bottom

plate is analysed at different drafts. It follows the analysis of a Dutch Tri-floater variant

(2.3.1.3) at multiple trim angles, with rotations occurring about the upright centre of

waterplane. This is a floating platform’s static pivoting centre, assumed that it behaves

like a perfect vertical-walled (Scribanti) buoyant (see for example Journée and Massie

[138]).

2.3.1.1 Review of submerged horizontal plate problem

Offshore oil & gas structure researchers have in the past investigated water entrapment

device behaviour for motion control of deep draft floating facilities. Studies have been

made available by Lake, Thiagarajan, et al. which look at bottom plate forces [139,

140]; local flow separation in the same context is at the focus of works by Tao et al.

[91, 141]. None of these addresses the alteration of the diffraction/radiation problem of

a plate of varying submergence. Underwater horizontal plates have also been extensively

studied in the domain of coastal engineering; a general account of the material published

up to 2002 is given by Yu [142]. Large flat structures are regarded as a potential

breakwater solution exploiting fluid-fluid interaction [142], but also as wave focussing
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devices for wave energy extraction purposes according to McIver [143]; the issue of

variable submergence is largely covered in this field. Next follows a scrutiny of the

relevant coastal engineering and fluid mechanics research, noting that a heave plate,

although small compared to a breakwater, will be exposed to similar surface proximity

effects if brought close enough to the still water level.

The wave diffraction problem of a thick plate has been addressed by Zheng et al. [144]

under linear approximation and by Kojima et al. [145] up to the II order, while that

of a thin plate is discussed by Porter [146]. Its formulation for an arbitrarily shaped,

submerged cylinder is also proposed by Vada [147]. Martin and Farina and Porter

studied the linear wave radiation problem of a heaving horizontal disc [146, 148]. The

latter study treats an infinitely long flat plate as well, while Zheng et al. analyse the

wave radiation resulting from the oscillation of a thick rectangular pontoon [144]; this

work also shows that the wave forces and coefficients obtained with the BEM approach

fit well the results of the popular approach based on eigenfunction expansion matching.

The recapitulative messages for our use deriving from the above review are:

• The submergence of a plate- or pontoon-shaped structure can strongly influence

first and higher order wave forces and hydrodynamic coefficients (see for example

Figure 2.11).

• The behaviour of the first order quantities above consists in increased response

as submergence is reduced, with the partial exception of added mass.

• First order forces prevail if submergence is sufficiently large compared to the

horizontal size of the structure. At very small submergence (one order of magni-

tude below the structure’s size or less), non-linear effects dominate and numerical

resolution becomes increasingly difficult.

• Most modelling efforts are based on potential flow. The majority of these sub-

divide the fluid domain and match the resulting eigensolutions of the Laplace

equation to deduce the potential.

• This method yields good agreement with the experimental results obtained in

terms of wave forces, given that viscous effects be superposed using calibrated

drag coefficients.

• At first order, the results of the above models are virtually equivalent to those

found with the BEM approach.

The wave-plate interaction problem is rendered complex by effects of more difficult

treatment such as wave trapping, treated by Parsons and Martin [149] and Linton

and Evans [150], and other non-linear phenomena including wave decomposition (see

Kojima et al. [93]) and breaking (Yu et al. [94]) over the plate’s topside, occurring

when wavelength and plate extension are large enough compared to submergence. The

aforementioned studies neglect or superpose the viscous hydrodynamic effects. The

complete representation of viscous wave flow over a submerged plate has been attempted
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Figure 2.11: Variation of the non-dimensional heave added mass a∗r = ar/(ρwr
3) of

a thin horizontal disc in infinitely deep water, depending on its submergence s = d/r.
Disc radius and draft are denoted r and d respectively, ar is the dimensional added
mass and ρw the fluid’s density. k = ω2/g denotes the wave number. Digitised from
Martin and Farina [148].

by Yu and Dong [151] using the finite volume method.

This knowledge can now be reconducted into FWT hydrodynamics, to better charac-

terise the wave forces acting on a low-draft structure fit with bottom plates.

2.3.1.2 Submergence sensitivity of a platform column

The considerations of 2.3.1.1 apply to water entrapment devices in that their vertical

excursion impacts the forces arising from incident, diffracted, and radiated waves.

An isolated axisymmetric column with attached bottom plate is extracted from the

modified Dutch Tri-floater concept, detailed in 2.3.1.3. A parametric study is here

organised by varying the column’s relative submergence s and regenerating the wetted

surface mesh at each draft. Relative submergence is defined as s = d/r, where d

denotes upper plate surface depth and r (constant) plate radius (see Figure 2.12).

The remaining geometric proportions are fixed with q/r = 4/9 and tp/r = 1/9. Solving

the diffraction problem yields the wave excitation exerted on the structure: Figure 2.13

shows the variation of the heave force response amplitude operator (RAO) obtained

when submergence is perturbed, given an infinite water depth and a unit incident wave

amplitude. It is possible to observe that smaller draft leads to increased excitation as

anticipated in 2.3.1.1, conversely the vertical force RAO tends to zero for an infinite

draft for any wave harmonic of finite period. This well-known effect is mostly observable

at values of kr larger than the heave excitation suppression point, a range where the

rapid exponential decay of wave potential affects the plate’s depth range and diffraction
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r q

Figure 2.12: Mesh of modified Dutch Tri-floater column at baseline draft. Only half
the structure is represented since the solver can exploit planar symmetry to reduce the
size of the discrete problem. Quote q denotes the column’s radius, r the heave plate’s
radius, tp its thickness, and d the depth of plate topside below the free surface.

is strongly affected by plate submergence.

Figure 2.14 reports the frequency-domain vertical added mass and wave damping

coefficients found as a function of the wave scattering parameter kr. As expected, the

column’s heave radiation characteristics are also found to be affected by submergence:

added mass (Figure 2.14, left) shows little alteration for s > 1; for s ≤ 1 it is observed

a pattern similar to what seen in Figure 2.11; the wave damping coefficient’s behaviour

(Figure 2.14, right), analogous to that of heave excitation, consists in exponential

increase in a definite band as relative draft is reduced. The outputs of the radiation

calculation suffer from a certain amount of numerical noise that could neither be

attributed to insufficient mesh resolution nor to incomplete convergence of the matrix

inversion. This especially affects the radiation damping coefficient for certain values of

kr, where the size of the anomaly reaches a magnitude comparable to the signal for

s > 1.5. In this region of high submergence, however, wave damping forces become

small and hence the impact of said anomaly on FWT motion can be deemed negligible.

One can look at the surface proximity effect from a different standpoint: identifying

the combined scattering parameter and submergence envelope where perturbing draft

causes a significant change in wave forces. Figure 2.15 exemplifies this idea for the heave

load: by defining the quantity f∗h = fh/(ρwgr
2), where fh is the heave force per unit

amplitude incident wave, its derivative with respect to submergence −df∗h/ds may be

used as a proxy for sensitivity to vertical excursion. This quantity, mapped against kr

and s, exhibits a monotonic decrease as submergence is increased, and a maximum at

kr ≈ 1.3 for any constant submergence. The blue region on the right represents the

range for which waves are so small that their vertical penetration is not sufficient to

reach the depth of the heave plate; the low-valued areas to the left and towards the top
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Figure 2.13: Variation of non-dimensional heave force f∗h = fh/ρwgr
2 (with fh heave

force response amplitude operator) when the column with water entrapment plate is
displaced vertically in infinite water depth.

of the plot are associated in turn to large-scale wave kinematics compared to structure

size, and to large plate submergence: the former requires large vertical excursions to

determine a change of loading regime (hence sensitivity is small), whilst the second is

associated with vertical extinction of wave potential. The region of highest sensitivity

sits where pronounced decay of the diffraction potential occurs just around the plate’s

depth.

From these simple numerical experiments one can anticipate a low-draft semi-sub

platform’s behaviour: when its columns lose submergence, the plates interact more

strongly with surface waves, causing wave-structure interaction alterations which are

most significant in a specific band. In the case of the FWT concept analysed next,

this region largely coincides with the dominant wave energy band. Finally, it should

be remarked that the presence of multiple columns in the wave field will cause more

complex diffraction and radiation patterns to appear next, where the interference

between the columns grows with their size and declines with their mutual distance.

This is taken into account but not discussed in the following study. More complex wave

phenomena found in a multi-column setting such as trapped modes cannot be treated

using the present model and should be studied in the future.
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Figure 2.14: Non-dimensional heave added mass and wave damping b∗r = br/ρw

√
gr5

of column with water entrapment plate for varying submergence. For reference, the
classic potential solution for the added mass of a disc of infinite submergence, available
in Lamb [152], is a∗r = 8/3.

2.3.1.3 Inclination sensitivity of a semi-submersible platform

The column studied above is derived from a MW-scale FWT platform design, the Dutch

Tri-floater, documented by Philippe et al. in [86, 153] and by Courbois [107]. This has

been slightly modified as explained below. A perturbation analysis is conducted on

platform potential hydrodynamics similar to what has been done in 2.3.1.2, only with

variation of inclination in lieu of draft. Only the large members are treated, implying

that all the slender cross-members are disregarded in the linear potential flow solution

consistently with the approach presented in 2.2.6. The distance of the columns from

the FWT’s static pivoting point determines both plate excursion and rotation, causing

a change in the resulting wave force patterns.

The Dutch Tri-floater is a three-column semi-sub platform concept designed to support

HAWTs with a rating of around 5 MW. Its stabilising system is passive, unlike in other

designs where slow-varying wind overturning moments are compensated with active

ballast shifts (see [154]). Since the original concept features thin water entrapment

plates, which cause numerical problems when treated with the panel method (an issue

which was later overcome with the method outlined in 2.3.4.3), it was decided to modify

the floater by thickening its plates to an acceptable level; the introduction of extra

submerged volume at platform bottom required contextual re-distribution of its mass

in order to restore the originally intended degree of hydrostatic stability. The modified

floater geometry is shown in Figure 2.16, while its main defining parameters are given

in Table 2.2.

The structure is next subjected to incremental isocarenic trimmings of ±5 ◦ about the
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Figure 2.15: Vertical wave load sensitivity to submergence for a column with heave
plate.
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Figure 2.16: Modified Dutch Tri-floater geometry and system of reference.

pitch axis y. Heave plates rigidly follow, undergoing the same rotations plus a vertical

excursion of about ±1.7 m (aft columns) and ±3.4 m (fore column). These in turn cause

plate mean submergence s to vary in the range between 0.84 and 1.60 at ±5 ◦, while

in the upright configuration all columns are are characterised by s = 11/9 ≈ 1.22 (cfr.

Figure 2.15). Actualising the mean wetted surface enables to evaluate the wave load

variations. Water depth is assumed to equate 50 m, allowing to relate these results to

the case study of 2.3.2, and the chosen direction of propagation of the incident waves

is along the x axis.

The graphs included next show the platform’s vertical and vertical-rotational excitation

features. Figure 2.17 displays the heave and pitch force response for the upright and

trimmed configurations. It is possible to observe that the imposed inclinations signifi-

cantly modify wave excitation in the central portion of the studied range, which largely

overlaps with the ocean wave band. For instance around kr = 1.5 (where the incident

wave period is T ≈ 5 s), an inclination of +5 ◦ practically doubles heave excitation and
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Figure 2.17: Inclination effects on the modified Dutch Tri-floater’s heave force and
pitch moment response in regular waves.

increases that of pitch by 30%–50% compared to the upright platform forces. Trimming

also alters the radiation problem: while diagonal added masses are little impacted (cf.

2.3.1.2), radiation damping is magnified by plate proximity to the surface as visible in

Figure 2.18.

Moreover, radiation-induced coupling appears in the trimmed configurations, due to

the loss of hull axisymmetry. This is observable in Figure 2.19, where the introduction

of heave-pitch hydrodynamic coupling is evidenced by the appearance of significant

extra-diagonal terms. It is straightforward to relate the results of the current section to

what presented in 2.3.1.2: reading the values of Figure 2.15 at the initial submergence

of the platform plates, s ≈ 1.22, helps to explain the divergence of the load response

curves, which is most marked in the scattering parameter interval kr ∈ [0.5, 4.0].

This investigation has shown that significant changes of linear wave-structure interac-

tion can occur when a semi-sub FWT platform equipped with water entrapment plates

undergoes mean inclinations in the order of 5 ◦ or more, undermining the validity of

the classic small displacement assumption used for the computation of wave loads.

Table 2.2: Modified Dutch Tri-floater geometric parameters.

Design draft [m] 12.0
Hull volume at design draft [m3] 3048

Column centre-to-centre spacing [m] 68.0
Column diameter [m] 8.0

Column depth incl. plate [m] 24.0
Plate diameter [m] 18.0
Plate thickness [m] 1.0

Bracing diameter [m] 1.0 to 2.0



2.3. Applications 43

0 1 2 3 4 5
0.0

0.5

1.0

·106

kr [−]

B
3
3
[k
g
/s
]

−10◦

−5◦

0◦

+5◦

+10◦

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0
·109

kr [−]

B
5
5

[ k
g
m

2
/s
]

−10◦

−5◦

0◦

+5◦

+10◦

Figure 2.18: Inclination effects on the modified Dutch Tri-floater’s heave and pitch
radiation damping.
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Figure 2.19: Inclination effects on the modified Dutch Tri-floater’s heave-pitch
coupling added mass and wave damping.

The study presented in 2.3.2 further builds on these considerations by evaluating the

dynamic response of the fully assembled system subject to wind and wave loading, where

the geometric non-linearity concurs to altering global motion response in presence of

large mean inclinations.
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2.3.2 Large-inclination coupling study

Following from 2.3.1, the modifed Dutch Tri-floater will be the subject of a fully fledged

large-inclination dynamic response study. The structure is subjected to inline and cross

wind and wave regimes using a homogeneous wind profile and regular or irregular

waves as inputs. In the irregular wave cases, the standard JONSWAP formulation is

used to calculate the input spectrum, employing γ = 3.3. All wavetrains propagate in

the positive x direction, exciting the structure in presence of zero, inline, and cross wind

at rated speed, constant over time. The wind turbine’s operating conditions are parked

for zero wind speed and rated for the cases including wind. A compact definition of the

loading cases considered is given in Table 2.3.

The floating platform is coupled to a NREL 5 MW reference offshore wind turbine

[108], using the structural adaptation by Philippe [153], totalling 3124 t of displacement

(Figure 2.20). Station keeping is assured by the chain-wire hybrid, 6-point mooring

system defined by the same author [153] with two lines departing from the outer

bottom of each column, at a radial distance of 4.0 m from the centre of the column.

The line properties are given in Table 2.4. A water depth of 50 m is assumed. The

parameters defining the platform’s mass features are given in Table 2.5, whilst the

wind turbine generator’s mechanical parameters required to model it in rigid form are

given in Table 2.6. The operating parameters in rated conditions are also provided.

As said the mooring forces are included with a simple restoring term; the undisturbed

downwards mooring force, equal to 183.5 t, is accounted as a single weight lumped at

fairlead height in the gravitational set-up of the system. Equation 2.15 defines the values

Table 2.3: Definition of loading cases. Angles are measured in the horizontal plane
counter-clockwise starting from the x axis (90◦ is aligned with y).

Regular waves
ω ∈ [0.1, 1.5] rad/s

Loading case name LC0 LCX LCY
Wind speed [m/s] 0.0 11.4 11.4
Wind direction [deg] - 0.0 90.0
Turbine operation parked rated rated
Wave height [m] 4.0 4.0 4.0
Wave direction [deg] 0.0 0.0 0.0

Irregular waves

Loading case name LC0i LCXi LCYi
Wind speed [m/s] 0.0 11.4 11.4
Wind direction [deg] - 0.0 90.0
Turbine operation parked rated rated
Sig. wave height [m] 4.0 4.0 4.0
Peak period [s] 10.0 10.0 10.0
Wave direction [deg] 0.0 0.0 0.0
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Figure 2.20: Modified Dutch Tri-floater with 5 MW class horizontal axis wind turbine.
The latter is adapted from a graphical model made available by Somerville [155].

Table 2.4: Properties of a Dutch Tri-floater mooring line.

Component studless chain wire
Material steel steel
Nominal diameter [m] 0.15 0.16
Unstretched length [m] 190 225

assigned to the mooring stiffness tensor, as calculated by Philippe [153]. The units used

are [m, rad] for displacements and [N, Nm] for the generalised forces:

Km =




1.6·105 0 0 0 1.9·106 0
1.6·105 0 −1.9·106 0 0

1.5·105 0 0 0
1.1·108 0 0

sym. 1.1·108 0
1.7·108


 . (2.15)
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Table 2.5: Modified Dutch Tri-floater mass/inertia properties. Quantities are expressed
with respect to the origin O at the still-water level.

Mass [t] 2263
Vertical position of CoM [m] -0.1

Roll/pitch moment of inertia [t m2] 1.535 · 106

Yaw moment of inertia [t m2] 2.522 · 106

Table 2.6: Adapted 3-blade upwind 5 MW NREL offshore wind turbine data.
Mechanical quantities are expressed with respect to the origin O at still-water level
with the exception of the rotor’s inertia.

Mechanical parameters

Overall mass [t] 678
Overall vertical position of CoM [m] 83.0

Overall roll/pitch moment of inertia [t m2] 3.779 · 106

Overall yaw moment of inertia [t m2] 5.220 · 103

Rotor axial inertia [t m2] 3.876 · 104

Elevation of tower/platform interface [m] 25.0
Rotor diameter [m] 126

Hub height [m] 90.0

Rated operating parameters

Incident wind speed [m/s] 11.4
Rotor speed [rpm] 12.1

Rotor thrust coefficient cT [-] 0.82
Rotor torque coefficient cQ [-] 0.066

Tower drag coefficient cD [-] 1.0

2.3.2.1 Treatment of mean inclination

The approach adopted here to treat the FWT’s relatively large wind-induced incli-

nations is based on re-linearising the dynamic system about the tilted and offset

configuration attained by the FWT under pure wind loading. It is assumed that further

dynamic oscillations of small amplitude will occur around this position.

A preliminary computation is required to obtain the offset configuration referred to: in

this study this consists in applying the rotor forces obtained with the desired operational

regime and running the dynamic simulation in the absence of incident waves until the

steady-state, static offset is reached. When this method is applied to the Dutch Tri-

floater, small static rotations are found about the z axis (up to around 0.2 ◦) and about

the horizontal axis aligned with the wind (up to around 0.4 ◦). These are respectively

due to the eccentricity of the thrust force with respect to the z axis and the stator’s

reaction to the rotor torque. Such secondary rotational components are neglected whilst

the larger leeward equilibrium angle due to wind overturning is used to rewrite the EoM

terms with the methods explained next.

As it will be pointed out in 2.3.2.2, because of the nonlinearities present in the model
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the effective mean inclinations in the wind-and-wave dynamic simulations do slightly

depart from the static values obtained as described above. Although this problem may

be solved iteratively, in the present simulations this relatively small discrepancy between

input and output mean inclination is tolerated.

Rigid-body inertia. The generalised inertia matrix is actualised to the mean rotated

position using

M =




m 0 0 0 mzC −myC
m 0 −mzC 0 mxC

m myC −mxC 0
J11 I12−mxCyC I13−mxCzC

sym. J22 I23−myCzC
J33


 , (2.16)

J11=I11+m(y2
C+z2

C) ,

J22=I22+m(x2
C+z2

C) ,

J33=I33+m(x2
C+y2

C) ,

(2.17)

where the terms denoted by the variable I are the elements of the central inertia

tensor. Vector (xC, yC, zC) represents the position of the CoM in the inertial frame

after applying the rotation.

Hydrostatics. A set of preliminary calculations has determined that the changes in

hydrostatic stiffness never exceed 1% for the treated hulls and their mean inclinations.

Regarding vertical hydrostatic stiffness they consist in computing the updated water-

plane area, whilst for the rotational terms the positions of G (centre of gravity), B

(centre of hull volume), and M (longitudinal/transversal metacentre) are recalculated

after applying an isocarenic inclination. Thus their heights over the reference keel

point K concur to determining the updated hydrostatic restoring moment arm GM =

KB + BM − KG and finally the stiffness terms Kh
44 and Kh

55 as described in 2.2.5.

Following these considerations, it was decided to neglect the nonlinear hydrostatic

effects due to the mean inclination, (which is in the order of 6 ◦ to 8 ◦ in the present

studies). Concerning the rotational terms, the above finding is consistent with the well-

known behaviour of wall-sided floating bodies, which exhibit linear hydrostatic restoring

up to trim/heel angles of about 10 ◦ (see for instance Journée and Massie [138]). Thanks

to the choice of point O at the SWL, no extra-diagonal terms appear within the Kh

matrix following a static inclination.

Potential-flow hydrodynamics. The geometric nonlinearity affecting the hull’s wave

diffraction and radiation in the presence of a significant inclination can be treated as

in 2.3.1 by updating the hydrodynamic mesh to the new mean position, effectively re-

linearising the inertial hydrodynamic forces about a new equilibrium point. To date, a

few published studies implement this approach. In particular, Philippe et al. actualise

the mesh of a circular barge supporting a FWT to characterise its motion under

simultaneous wind and wave loading [126], as well as that of a semi-submersible FWT

hull for similar purposes [86, 153, 156], although the water entrapment plates are

removed from the potential flow problem. The same approach is presently employed
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Figure 2.21: Wetted surface discretisations used for the wave diffraction and radiation
calculations. (a) upright, (b) with rotation about y, and (c) with rotation about x.

Figure 2.22: Snapshot of transverse drag forces exerted on a platform column by a
12 s wave of 4 m height. The arrow size is proportional to the computed magnitude of
the local force.

with a full incorporation of the large platform appendices: Figure 2.21 shows the

upright potential hydrodynamic mesh of the modified Dutch Tri-floater (see 2.3.1)

and the actualised meshes following application of wind overturning in the x and y

direction. It can be noticed that in the presence of a rotation about the x axis the xz

planar symmetry is lost, leading to the need to discretise the entire wetted surface.

An important remark based on this figure is that the water entrapment plates undergo

significant vertical excursion in (b) and (c), causing the potential flow hydrodynamic

regime perturbations scrutinised in 2.3.1.

Viscous hydrodynamics. The process of calculating the hydrodynamic drag forces

includes updating the position of the discrete hull elements at every time step as a

consequence of the motion of the structure. Thus the preliminary computation of the

mean inclination described above needs not be an input, since the correct Morison

element displacements are continuously applied in the time domain. This implies that

the elements are exposed to wave particle kinematics of varying intensity depending on

their vertical excursion and of varying phasing, the latter depending on their horizontal

excursion. Figure 2.22 provides a visual example of the lateral drag force exerted on a

platform column undergoing excursion.
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Mooring forces. All nonlinearities related to the catenary mooring system are here

neglected to keep the focus on platform hydrodynamics, hence the initial linearised

stiffness matrix Km is employed unchanged.

2.3.2.2 Results

This section presents the results of the above defined simulations. The preliminary offset

calculation yields the generalised position vectors

LCX & LCXi: x=(3.96 0.08 0.00 0.41 6.37 0.18)T ,

LCY & LCYi: x=(−0.08 3.96 0.00 −6.37 0.41 0.18)T ,
(2.18)

with displacements given in [m] and rotations in [deg]. As one may expect, the most

significant static offsets are displacements in the wind direction, which are resisted by

the mooring system, and a leeward rotation mainly countered by hydrostatic restoring.

The symmetric stiffness features of the system also emerge from Equations 2.18. The

FWT’s dynamic response in regular waves exhibits nearly harmonic form at steady

state. Obtaining the pseudo-transfer function of motion in any DoF i requires post-

treating the time-domain signal, which in this case is done by

ri(ω) =
max[xi(t, ω)]−min[xi(t, ω)]

H
, (2.19)

where H = 2ã is the incident wave height. It must be pointed out that because of

the nonlinearities present in the model, the pseudo-transfer function magnitude is

dependent on the excitation magnitude within certain bands. When the wind force is

applied, the response characteristics ri are to be interpreted as the normalised amplitude

of the dynamic response to wave excitation about the mean wind-induced offset.

Figure 2.23 displays the ensemble of the pseudo-transfer functions calculated for the

loading cases defined in Table 2.3. For each DoF the corresponding uncoupled, un-

damped natural frequency ωn is reported to facilitate interpretation. It can be seen

that the most important response features lie in the xz plane (surge, heave, pitch),

which is expected for a 2D wavetrain propagating in the x direction over a roughly

symmetric structure. Most resonances are confined at the far left of the studied band,

a desirable hydromechanic feature in the light of the distribution of wave energy and

the subsequent first-order excitation. An in-depth screening of these results is given in

2.3.2.3.

Figure 2.25 provides a snapshot of a dynamic simulation in regular waves after the

steady state is reached. The quasi-harmonic motion time histories of surge and pitch

are shown with their respective aerodynamic excitation signals, for an incident wave

frequency of 0.40 rad/s and two different loading cases. The mean forces and by con-

sequence the offsets obtained when wind is applied are immediately evident. This case
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(a) Surge. ωn ≈ 0.18 rad/s.
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(b) Sway. ωn ≈ 0.18 rad/s.
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(c) Heave. ωn ≈ 0.46 rad/s.
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(d) Roll. ωn ≈ 0.25 rad/s.
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(e) Pitch. ωn ≈ 0.25 rad/s.
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(f) Yaw. ωn ≈ 0.18 rad/s.

Figure 2.23: Pseudo-transfer functions of the modified Dutch Tri-floater subjected to
wind and regular wave excitation.
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(c) Heave.
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(d) Roll.
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(e) Pitch.
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(f) Yaw.

Figure 2.24: Power spectral density of the motions of a modified Dutch Tri-floater
subjected to wind and irregular wave excitation.
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Figure 2.25: Time-domain output motion and aerodynamic forcing in surge (left) and
pitch (right), for an incident wave of 0.40 rad/s.

will be used later to clarify the inter-DoF aerodynamic coupling observed around said

frequency.

The motion outputs of the irregular wave simulations are shown in Figure 2.24 in

spectral form. The underpinning time series have a duration of 2 hours and represent

the fully developed dynamic response of the structure in a stationary sea state. The

input spectral realisation, defined by a particular choice of component phases, is the

same for all loading cases. These results will be used in 2.3.2.3 to contextualise the

dynamic response features of the system for a specified, realistic met-ocean condition:

the fact that most of the input wave energy lies between 0.5 rad/s and 0.9 rad/s brings

out the response features of the studied FWT in this central band.

Finally, the mean leeward inclination angles attained in the steady-state phase of

all dynamic simulations are plotted (in absolute value) in Figure 2.26. It appears

that although limited in magnitude, discrepancies exist between the assumed mean

inclination and that effectively produced by the dynamic simulations in regular waves.

This is especially pronounced for load case LCX, where nonlinear forces with non-

zero mean are present (i.e. hydrodynamic drag) which have a large component in the

same plane of the leeward inclination. The subsequent deviations from the statically

calculated inclination do not exceed 4% and are deemed tolerable.
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Figure 2.26: Mean leeward angles obtained from wind-and-wave dynamic simulations.

2.3.2.3 Discussion

Numerous elements of interest can be derived from the results shown in 2.3.2.2. They

will be discussed in the following by considering each motion degree of freedom in turn,

then the key findings will be related to existing experimental results.

Dynamic response analysis. Response in surge (Figure 2.23a) is not particularly

affected by the presence of rotor forces and platform inclinations. Only when the

rotor is aligned with the surge motion (LCX) a minor dampening effect occurs due

to aerodynamic damping thereby reducing the amplitude of the oscillation at the

peak, located at 0.18 rad/s. The reduction in off-peak response is instead related to

the alteration of inertial hydrodynamic excitation of the surge-pitch coupled mode.

Observing Figure 2.24a reveals the significance of these features in irregular waves.

As expected, and visible from Figures 2.23b and 2.24b, sway response is identically zero

when the structure receives wave excitation only (directed along the x axis). Resonant

inter-DoF coupling and loss of hydrodynamic xOz symmetry respectively cause small

sway response for collinear and cross-wind loading cases.

Heave motion (Figure 2.23c) exhibits a marked dependence on rotor forces and in-

clinations in the case of collinear wind and waves: excitation suppression around ω ≈
0.7 rad/s becomes less pronounced mainly because of the simultaneous vertical excur-

sion of two heave plates toward the free surface (see Figure 2.21, centre). This in turn

triggers (1) an increase (and a phase shift) of the inertial wave excitation, an effect

already discussed in 2.3.1, and secondly (2) an increase in hydrodynamic drag under the

action of stronger wave kinematics. Whilst effect (2) significantly contributes to altering

response in said central band, effect (1) is solely at the root of the increased response

observed at higher frequencies. The slight reduction of motion amplitude observable
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around the resonance peak is also an effect of the large inclination due to heave-pitch

coupling deriving from imbalance in wave radiation forces (in the model: significant

extra-diagonal terms appear in the added mass tensor, see 2.3.1). The prevalence of

these effects in the central band makes them significant in the studied irregular wave

scenario, as observable from Figure 2.24c. In the low-frequency band, the heave response

operator is less than unit; this is primarily due to vertical mooring restoring and,

secondarily, to a numerical excitation deficit related to the representation of the bracing

forces with the Morison equation. In fact, this method does not account for the small

inertial force imbalance at the intersections with the free surface.

Roll (Figure 2.23d) is another DoF whose response is nil in the upright position and

in the absence of rotor forces. Whilst the results are practically unchanged for LCX

apart from a small resonance effect, a broad, albeit limited motion response is present

in cross-wind conditions because of the loss of symmetry in port-starboard column

excitation (see Figure 2.21, below), which is also detectable in Figure 2.24d.

Figure 2.23e reveals that pitch response at low frequency is particularly affected by the

action of wind forces and the subsequent inclination in the collinear case. As expected,

the resonance peak around ωn = 0.25 rad/s is attenuated by the aerodynamic damping,

whose impact is otherwise insignificant in the cross-wind case. The increased response

manifested by LCX at the far right of the peak is exclusively due to the plate excursion

effect (1) described above. A most prominent feature of pitch motion for the collinear

loading case is the appearance of significant response in the immediate vicinity of the

resonance peak, where wave excitation is suppressed for LC0 and LCY. This is caused

by two concurring factors: heave plate excursion and the aerodynamic excitation of

pitch caused by surge motion. This aerodynamically sourced, inter-DoF coupling will

be further clarified next. In the irregular wave case studied, these pitch response features

lose significance due to the low energy available below 0.5 rad/s (Figure 2.24e).

Figures 2.23f and 2.24f display the response in yaw, which rests unexcited by the waves

in the absence of wind. The combination of gyroscopic coupling and resonance produces

a limited response peak for LCX. It is the cross wind-and-wave cases LCY and LCYi

that display the largest motions: the immersion of the port column and the emersion

of the starboard column (Figure 2.21, below) cause an imbalance creating the potential

for broad yaw forcing across the studied frequency band, that combines with the

aerodynamic excitation due to the lateral motion of the hub. Where this excites resonant

motion, in the band around 0.18 rad/s, the dynamic response becomes very significant.

It should be noted that since the present model omits the damping contributions of

mooring line drag and rotor yawing, peak yaw response is likely overestimated.

Aerodynamic inter-DoF coupling. In the present case, the band between 0.25 rad/s

and 0.55 rad/s is rich in inter-DoF coupling, which intertwines with the effects of

wind-induced inclination in a complex fashion. As pointed out above, aerodynami-
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Figure 2.27: Time-domain surge speed (left) and pitch acceleration (right) of loading
case LCX, for an incident wave of 0.40 rad/s. The respective aerodynamic force and
moment signals are also shown.

cally sourced surge-pitch coupling explains in part the observed difference in response

between LCX and the other regular wave loading cases (cf. Figure 2.23e). LCX is the

sole case where the rotor operates in line with the hub speeds induced by pitch motion.

Reactive aerodynamic damping is a well-known consequence of this set-up. Within the

frequency band centred on 0.4 rad/s, however, wave-induced pitch response is relatively

small and the aerodynamic force oscillations due to the motion-induced hub velocity

tend to be more associated with surge response. This is made evident by rearranging

the LCX results of Figure 2.25 (left) in terms of surge speed and aerodynamic force, as

displayed in Figure 2.27 (left). Hence it emerges the relationship between surge and the

aerodynamic force in the x direction: such force appears to react to surge motion, being

in near phase opposition with surge velocity. At the same time, its fluctuations cause

variations in the external pitch moment. The phasing between aerodynamic excitation

and pitch acceleration visible in Figure 2.27 (right) for case LCX reflects this inter-DoF

coupling effect, as the aerodynamic reactions are driving, not dampening, pitch motion.

Of course, the retroactions present in the dynamic system close the loop and ultimately

render the one-way cause-and-effect dynamic explained less clear-cut. The effect of

the rotor control strategy – conventional, low-frequency [36], or with active motion

damping [37] – on the intensity of this coupling is likely significant, although not treated

here. It should also be pointed out that since the present thrust-based model tends to

overestimate the aerodynamic reactive force (see 2.2.2), the strength of this coupling

mechanism is likely overestimated as well, at least in the absence of active motion

damping by control.

Experimental evidence of heave plate excursion effect. The observed interac-

tion between heave plates and wave forces in the presence of large vertical excursions

is only accounted for by nonlinear fluid dynamic models or, to a certain extent, by
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re-linearising a linear model about the offset position as done here, thereby limiting

the errors caused by geometric nonlinearity. A past publication by Philippe et al.

[86] shows that the experimentally observed dynamics of a similar FWT subjected

to collinear wind and waves are not entirely captured using the conventional modelling

method based on linearising the fluid-structure interaction about the initial equilibrium.

Virtually equivalent results are also available in [107, 153]. The predictions of pitch –

a key DoF for FWTs – shown by these authors are particularly inaccurate in the

0.25 rad/s to 0.50 rad/s band, that is around the excitation suppression point next

to the resonance peak: said numerical models underestimate the relatively large pitch

motion obtained experimentally. On the contrary, the modelling strategy presented in

this study may enable a more accurate representation of FWT dynamics in this range,

as suggested by the sustained pitch response of LCX to the right of the main peak

in Figure 2.23e. The validation cases presented in 2.3.4, which concern a very similar

floating system, verify this capability against experimental data. The pitch response

deficit caused by neglecting the geometric nonlinearity and hence the excursion effect

is shown in Figure 2.28, which also permits to quantify the remaining effects in the

vicinity of 0.4 rad/s, dominated by aerodynamic surge-pitch coupling.
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Figure 2.28: Pitch response characteristic predicted with and without treatment of
the geometric nonlinearity.
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2.3.3 The pitch aerodynamic damping of a floating vertical-axis tur-

bine

This study concentrates on the aerodynamic damping impacting the pitch motion of an

operating, floating VAWT concept, depicted in Figure 2.29. The time-domain coupling

tool CALHYPSO introduced in 2.2 is used in conjunction with the EDF R&D’s DMST

aerodynamics library (outlined in 2.2.3), to extract pitch damping information from

the simulation outputs. Given the large hydrostatic stability of this FWT, limiting the

mean roll and pitch inclinations to 1 ◦ to 3 ◦ during operation, the large-angle treatment

method of 2.3.2.1 is not adopted. The steady-state mean yaw angle is limited below 5 ◦

by the restoring power of the mooring system.

The following sections briefly describe the FWT concept employed as a case study and

the post-treatment strategies. A range of numerical decay test results is then presented,

followed by simulations in regular waves. The observed aerodynamic damping effects

are contextually discussed.

x

z

y

Figure 2.29: Floating vertical-axis wind turbine concept proposed by Wang et al.
[111].
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2.3.3.1 Floating wind turbine concept

The floating VAWT concept used for this study has been proposed by Wang et al.

[111] and further characterised in published work by Borg et al. [110]. It consists of a

combination of a 5 MW Darreius-troposkein turbine developed by Vita [157] for floating

applications and the OC4-DeepCwind semi-submersible support structure detailed in

a report by NREL [137]. As previously said, this concept uses catenary mooring lines

for station-keeping: its particulars are available in [137], as well as the values of the

corresponding linearised restoring coefficients. Incidentally, these are also the object of

a moorings model verification carried out in Part 3 (see 3.4.3). The principal turbine

properties, floater geometric parameters, and aggregated mass/inertia characteristics

are given in Table 2.7. The fundamental parameter requiring calibration in the hydro-

dynamic model is the vertical drag coefficient on the lower columns, which is fixed at

4.80 based on past work by Masciola et al. [85].

Table 2.7: Properties of floating vertical-axis wind turbine concept. The mooring
weight is included in equivalent lump form. Inertias are expressed with respect to the
origin O at the still-water level.

Turbine geometry Floater geometry
Rotor radius [m] 63.74 Design draft [m] 20.0
Rotor height [m] 129.56 Hull volume at design draft [m3] 13919
Airfoil type NACA 0018 Column centre-to-centre spacing [m] 50.0
Blade chord [m] 7.45 Diameter of central column [m] 6.5

Turbine operation Diameter of upper offset column 12.0
Rated power [MW] 5.0 Diameter of lower offset column [m] 24.0
Rated rotor speed [rpm] 5.26 Height of lower offset column [m] 6.0
Rated wind speed [m/s] 14.0 Bracing diameter [m] 1.6

Aggregate mass and inertia
Displacement [t] 14267 Roll/pitch moment of inertia [kg m2] 1.500 · 1010

Height of CoG from keel [m] 11.27 Yaw moment of inertia [kg m2] 1.262 · 1010

2.3.3.2 Post-processing

When a symmetric, two-bladed turbine is operating, the motion outputs of any dynamic

simulation contain a periodic fluctuation of period T2P, that equals a half of the rotor’s

revolution period. This effect is particularly marked for a Darreius VAWT because of

its large force swings, and implies that output data must be post-processed in order to

retrieve certain sets of information. In this study FWT motion is characterised after

having filtered out the aforementioned fluctuation. In the case of decay tests, a moving

average approach is employed to smoothen the signal and retrieve the appropriate

oscillation peak amplitudes for computation of the damping ratio. Concerning motion

under regular waves, pseudo-RAOs are retrieved from steady-state motion using the

amplitude of the Fourier component which corresponds to wave forcing. These two
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Figure 2.30: Filtering of 2P component from the pitch decay signal (left) and Fourier
transform of the steady-state pitch response in waves (right).

processes are depicted in Figure 2.30.

In case numerical decay tests are carried out, filtering the 2P motion component leaves

a decaying, oscillating signal whose peaks are denoted x̂i. Positive linear damping

in underdamped dynamic systems results in exponentially decaying, sinusoidal free

oscillations. Although the system in question contains significant nonlinearities and

hence motion extinction does not exactly assume this form, it is nevertheless possible

to evaluate the equivalent linear damping ratio ζ for any number of oscillation cycles

N with

2πNζ = log

(
x̂i
x̂i+N

)
. (2.20)

By imposing N = 1 in Equation 2.20, the equivalent damping ratio for each oscillation

cycle is obtained. This is the quantity ultimately used to characterise the aerodynamic

damping affecting the free pitch oscillations of a floating VAWT.

2.3.3.3 Decay tests

This section reports the key outcomes of the time-domain simulations. Motion decay

is presented in terms of evolution of the single-cycle damping ratio over time. Pitch

response in waves is supplied in the form of pseudo-transfer functions. In all cases a

baseline operating condition is defined where rotor and wind speed are constant and

respectively equate Ω = 5.217 rpm and U = 14.00 m/s. A set of operating points is

also generated around the above pairing by perturbing in turn Ω and U . The imposed

incident wind is stationary, with a homogeneous vertical profile.

Pitch motion decay about the mean equilibrium position is obtained for a range of
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operating conditions. Due to significant inter-DoF coupling, it is chosen to allow the

structure to oscillate in pitch only, otherwise the observed dissipation would be as-

sociated to concurring multi-DoF mechanisms rather than pitch alone. In order to

isolate the damping originating from rotor forces, all sources of hydrodynamic damping

are zeroed; the only exception is the hydrodynamically damped case, reported for

comparison, where the aerodynamic forces are suppressed instead.

All tests are set up by applying an initial pitch displacement of +5 ◦ at t = 0 s from

the mean offset attained with the rotor in operation (see Table 2.8), before releasing

the structure into a free oscillation regime. The incident wind propagates along the

x axis. Applying Equation 2.20, with N = 1, to the first ten motion cycles leads to

the results of Figure 2.31. The first cycle does not appear where a moving average is

used (i.e. for Ω 6= 0 rpm). In the ‘hydrodynamics only’ case, damping decays over time:
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Figure 2.31: Damping ratio ζ of pitch oscillations with hydrodynamics only and parked
rotor (left), varying rotor speed (centre), and varying incident wind speed (right).

this reflects its quadratic nature, caused by the dominance of drag-type forces: at the

natural period of pitch, Tp ≈ 31 s, linear radiation damping is close to nil. The observed

aerodynamic damping ratios vary between 2% and 4%, and keep nearly constant over

time. This reveals that the system is almost linearly damped, a feature that will be

further discussed in 2.3.3.5. It can be noted that in the ‘parked rotor’ configuration

of Figure 2.31 (left) all damping descends from the action of aerodynamic drag forces:

the rotor’s azimuth is constant and corresponds to that shown in Figure 2.29, implying

that the flow is perpendicular to the chord of all blade elements. As it will be discussed,

the resulting damping ratio is also constant over time in virtue of the presence of a
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relatively large incident wind speed U .

There is one exception to the above statement on nearly-constant aerodynamic damp-

ing, which is case a): the oscillation of ζ observed in Figure 2.31 (centre) is explained

by the excitation of pitch resonant motion by the 2P aerodynamic load, with Tp/T2P ≈
2.09. In this particular case, inferring damping from peak amplitude decay is incorrect.

The mean trim angles found for the different operating points examined are provided

with Table 2.8. These are limited below 5.3 ◦, providing a reduction of the projected

swept area of less than 0.5%. On this basis, and considering the skewed-flow tolerance

of Darreius turbines, it may be argued that the aerodynamic damping of the studied

FWT is unlikely to be significantly influenced by the variations of the mean trim angle

in the considered range of operating conditions.

2.3.3.4 Regular wave simulations

Incident regular waves propagating along positive x (hence collinear with the wind) are

used here to excite the system, which is free to move in the six DoF. Only pitch motion is

analysed, which is presented in the frequency domain through pseudo-transfer functions.

These are obtained by normalising the amplitude of the motion’s Fourier component of

choice over the incident wave amplitude, H/2, where H = 2 m is the wave height. The

frequency of this component is equal to the wave frequency.

Figure 2.32 displays pitch response for a subset of the operating conditions considered

in 2.3.3.3. When the turbine is operating, significant aerodynamic damping of pitch

around the resonance peak is observed. In the case of the studied FWT concept, this is

far removed from the prevalent 1st order wave force band, hence variations in resonant

motion amplitude due to varying damping bear a minor impact on the turbine’s motion

in waves. Nevertheless this may not be the case for response characteristics in different

degrees of freedom (e. g. horizontal, where higher-order loads can cause large resonant

motions), and in general for floating systems whose natural periods are closer to the

wave band.

With respect to the hydrodynamics-only case, the peak amplitude of pitch is reduced

Table 2.8: Calculated mean trim angle for an aerodynamically excited Darreius floating
wind turbine in operation.

Case Mean angle [deg] Case Mean angle [deg]

a) 1.4 g) 4.7
b) 1.8 A) 2.0
c) 2.4 B) 2.3
d) 3.1 C) 2.6
e) 3.8 E) 3.8
f) 4.2 F) 5.3
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Figure 2.32: Pseudo-transfer function of pitch for different operating conditions.

by 25% to 50% thanks to the presence of rotor forces; it should be pointed out that

this reduction potential is dependent on the incident wave amplitude due to the role of

viscous hydrodynamic dissipation, which gains importance when response is larger. The

differences in peak height across the operating cases reflect the amounts of aerodynamic

damping at play and are in general agreement with the values of ζ shown in Figure 2.31.

However, minor apparent inconsistencies manifest, such as the larger resonant motion

damping of case g) compared to case F). These, along with the undulating shape of

the peaks, are due to a significant roll-pitch coupling arising from the rotor gyroscopic

effect, that causes an increasing participation of roll in the system’s dynamic response

when rotor speed and/or motions are large.

2.3.3.5 Aerodynamic damping dependencies

The results presented in 2.3.3.3 and 2.3.3.4 suggest that the aerodynamic damping of

pitch motion significantly depends on the turbine’s operating parameters, namely rotor

speed and incident wind speed (relative direction also matters, which is not treated

here). Rearranging the results in terms of tip-speed ratio can help in understanding the

underlying patterns. This is accomplished by extracting the values of ζ corresponding

to the 2nd pitch oscillation from the curves shown in Figure 2.31. These values are

displayed as a function of TSR in Figure 2.33. The most striking feature of this graph

is that for TSR < 2.5 the main parameter influencing ζ is wind speed, with ζ positive

function of U , whilst damping is relatively insensitive to changes of rotational speed.

Conversely, for TSR > 2.5 it is the rotational speed that mostly influences the damping

ratio.

In the light of the blade profile-scale analysis of Appendix C, the dependence of damping
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Figure 2.33: Damping ratio of second pitch oscillation for varying tip-speed ratios.
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Figure 2.34: Top-down view of airfoil angles of attack for all blade azimuths on a
Darreius wind turbine.

from U can be associated to the drag mechanism, whilst where damping is most affected

by Ω the variations can be mainly attributed to lift forces. This identifies a critical

TSR ≈ 2.5 where a shift occurs between a drag-dominated and a lift-dominated regime.

The shaded area in the figure represents the region where the fidelity of the DMST

model is challenged by increasing flow complexity (see 2.2.3), which prompts for a

more careful interpretation of the model outputs. This range is nonetheless retained in

the analysis for its significance with respect to typical cut-out conditions, i.e. point F).

Within this region, the qualification of aerodynamic damping bears on the numerical

model itself than on the real-life VAWT system.

In support of the above interpretation, Figure 2.34 shows the distribution of the angles

of attack over a 360 ◦ blade sweep for three selected operating conditions, using a

bottom-fixed turbine. Any datum with |α| ≤ 10 ◦ is coloured in green denoting attached
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flow in the linear region of CL (α) (cf. Figure C.2). The green-white-red transition

defines local angles of attack with |α| ∈]10, 17.5[ ◦, where the flow is attached and the

slope of the CL (α) function is generally declining. |α| = 17.5 ◦ is the critical angle of

attack for which CL reaches its maximum. Beyond this point – the red areas in the

figure – stall occurs and the airfoil is no longer capable of reacting to an increase in

the angle of attack with an increase in lift force. The lift-induced damping mechanism

breaks.

The azimuth regions generating most aerodynamic damping in pitch are upwind and

downwind, respectively to the left and to the right of the sweep plots of Figure 2.34. In

the subcritical operating condition b) the blades are stalled over most of the upwind

and downwind sweeps. This in turn implies that the lift-based damping mechanism

is marginal, and that aerodynamic damping in pitch mainly arises from U -dependent

drag (affecting both blades and tower). In the transcritical case d) part of the up-

wind/downwind sweep occurs in attached flow regime and part is stalled. Finally, the

supercritical operating condition f) is characterised by mostly attached flow over a blade

sweep: here the Ω-dependent lift mechanism becomes most important in determining

aerodynamic damping.

2.3.4 Experimental validation

The validation of the coupled dynamic simulations carried out with CALHYPSO has

been made possible by EDF’s participation to the VALEF2 initiative, which unites a

consortium of French firms around the subject of coupled FWT modelling. The subset of

cases reported in this section regards the analysis of the motions of the ‘experimental’

variant of the Dutch Tri-floater, mounting a downscaled NREL 5 MW turbine. The

experimental campaign and physical mode set-up are described in 2.1.5.

2.3.4.1 Loading cases

Regular long-crested wavetrains directed in the positive x direction (using the same

convention of Figure 2.16) are used to hydrodynamically excite the structure in the

loading cases selected for the validation. When wind excitation is introduced in the

experiments, a homogeneous, low-turbulence (σx < 4% over the rotor-swept section

located about 2 m downstream of the nozzle outlet) wind profile is generated in line

with the waves, while the rotor operates at the thrust-matched nominal condition. This

level of turbulence is ignored in the numerical model, where the incident wind speed

is assumed constant. Table 2.9 specifies the incident wave and wind combinations used

in the numerical model. It should be noted that the wind speed is corresponds to the
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Table 2.9: Regular wave and constant wind loading cases considered.

Wave height [m] Wave period [s] Wind speed [m/s]

0.69 7.01 0.0
0.92 7.87 0.0
2.32 12.57 0.0
2.78 13.92 0.0
3.68 15.60 0.0
4.23 16.75 0.0
5.51 18.85 0.0
6.53 21.04 0.0

0.66 7.01 11.2
0.91 7.84 11.2
2.32 12.57 11.2
2.79 13.92 11.2
3.68 15.60 11.2
4.37 16.91 11.2
5.52 19.25 11.2
6.54 21.04 11.2

selected full-scale operating point rather than the thrust-matching laboratory value10.

2.3.4.2 Numerical model inputs

The comparison of numerical and experimental outputs is carried out at the full scale,

which is also the scale of choice in dimensioning the numerical model excluding the

choice of the Morison hydrodynamic coefficients. As done in 2.3.2, a plate axial drag

coefficient of 5.7 is adopted from Philippe et al. [86]. As explained next in 2.3.4.3, a

numerical limitation of the diffraction and radiation solver used prompted the concep-

tion of a special methodology for the treatment of the particularly thin heave plates

mounted on this platform. This combines with the large-angle inclination method when

wind overturning is present (2.3.2.1). Table 2.10 reports the imposed full-scale operating

parameters of the turbine, which reflect the neglection of stator torque and tower drag.

Moorings are modelled with the diagonal stiffness coefficients provided by the parameter

identification carried out by Philippe [153], which correspond to Km
11 = 6.5 · 104 N/m,

Km
22 = 6.5 · 103 N/m, and Km

66 = 6.3 · 107 Nm/rad.

10See 2.1.5 for the description of the aerodynamic thrust matching procedure employed in this
campaign.
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Table 2.10: Numerical model input parameters chosen to represent the experimental
turbine at the full scale.

Rotor speed [rpm] 12.1
Rotor thrust coefficient cT [-] 0.866
Rotor torque coefficient cQ [-] 0.0

Tower drag coefficient cD [-] 0.0

2.3.4.3 Thin heave plate modelling

A hydrodynamic modelling challenge related to semi-submersible FWT platforms is

the representation of the hydrodynamic behaviour of thin heave plates, as these may

be difficult to handle with certain numerical diffraction and radiation solvers. In the

report where the Dutch Tri-floater structure is first detailed [83], for instance, numerical

instabilities are said to be encountered when the plates are included in the input

geometry. Hence, the authors choose to increase the thickness to 1.0 m as a workaround

for the generation of the hydrodynamic data base (HDB).

As an alternative, a Morison term may be used to estimate the loads on the plates as

done for example by Philippe [153]. However, in the light of the size of these appendices

and their proximity to the free surface, it can be expected that they may originate

significant diffraction, as already discussed in (2.3.1). Thus, it is presently decided to

include the thin plates in the diffraction/radiation problem; on the wake of Bulder et

al. [83] it is observed that their presence causes numerical issues using NEMOH (v2.02)

below a thickness of about 0.5 m. This problem is linked to the limited resolution

available for the discretisation of the Green function in space 11.

As it will be shown in the following, the thickness increase workaround leads to signif-

icant errors while computing the hydrodynamic forces. As a consequence, a different

strategy has been devised and verified for the representation of the thin plates. The

present strategy uses linear extrapolation to derive the HDB terms at the target

thickness based only on the reliable NEMOH outputs obtained for larger thicknesses.

Extrapolation of the hydrodynamic data base. Four wetted surface geometries

are considered in the diffraction and radiation calculation. An example of the related

meshes is reproduced in Figure 2.35 where a single floater column is shown. Hull

mesh (A) represents the target geometry, brought at the full scale. The geometries

characterising cases (B), (C), and (D) have been obtained by moving the upper and

lower plate surfaces to z = dp± tp/2, where dp is the original plate (mean) draft and tp

the modified plate thickness. A two-point linear extrapolation is used to recreate a new

HDB (E) at the target thickness using the (B) and (C) values as inputs, as shown in

Figure 2.36. The HDB values obtained for case (D) are only used for control purposes.

11The issue described is reportedly due to be resolved with the next version of the software.
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Figure 2.35: Mesh of column and heave plate with increasing plate thicknesses.
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Figure 2.36: Sketch of linear extrapolation method. The extrapolated quantities are
the real and imaginary part of the excitation force response amplitude operator, and
all of the added mass and wave damping coefficients.

Application to the experimental Dutch Tri-floater The extrapolation strategy

described is used to derive a reliable HDB for the thin-plated ‘experimental’ Dutch

Tri-floater object of the case study detailed in 2.3.4. Table 2.11 specifies the thick-

ness values used in this application. Figure 2.37 displays the in-plane force response

amplitude characteristics (surge, heave, pitch) of the above defined cases as well as a

few benchmarking points, denoted NWT, which have been obtained using EDF R&D’s

potential-flow, fully nonlinear numerical wave tank developed by Dombre [55], using

tp = 0.15 m. In this case the first-order harmonic of the time-domain force signal was

extracted using the Fourier transform.

Table 2.11: Heave plate thicknesses used while applying the extrapolation method to
the ‘experimental’ Dutch Tri-floater.

Geometry (A),(E) (B) (C) (D)
tp [m] 0.15 0.50 1.00 1.50
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Figure 2.37: In-plane generalised force transfer functions of the experimental Dutch
Tri-floater with wave propagation along the x axis (cf. 2.3.4).

Firstly, the tendencies found by increasing heave plate thickness can be said to be

consistent and close to linear for cases (B), (C), and (D). The surge force tends to

increase with thickness over all the studied range (Figure 2.37a), whilst heave and

pitch excitation forces increase at low periods and decrease beyond the phase-shift

regime found between 11 s and 15 s (Figures 2.37b and 2.37c). Secondly, it can be noted
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that the results of the extrapolation procedure (E) are the ones in best agreement with

the NWT. Compared to this, the direct resolution of linear fluid-structure interaction

with NEMOH at tp = 0.15 m (A) exhibits a systematic error which manifests itself in

the behaviour of the vertical quantities (heave, pitch). Another important remark is

that the adoption of artificially thicker plates with a thickness of 1.00 m (C) induces

very significant errors in the computation of all force RAOs across the studied range.

An interesting feature is the observed behaviour of the pitch moment phase (2.37d): the

phase is most sensitive to plate thickness between about 12 s and 16 s. The phase shifting

range moves to increasingly higher periods when the plate thickness is increased.

The above comparison is repeated in Figure 2.38 for the diagonal hydrodynamic coef-

ficients deriving from the solution of the wave radiation problem. On the added mass

side, the coefficients steadily increase with plate thickness although with changes which

are less dramatic than those characterising wave excitation, and suffer only a modest

overestimation if the 1.00 m thickness approximation (C) is used. Figures 2.38a, 2.38b,

2.38g, and 2.38h also confirm the equivalence between (A) and (E) for horizontal

quantities (surge, yaw). In the vertical motion domain, HDB (A) shows a rebound

in the value of the heave and pitch added mass coefficients compared to (B) which is

likely a numerical artefact (Figures 2.38c, 2.38e). The wave damping coefficients are

also varying less than the excitation forces; here we limit our remarks to a warning:

both (A) and (E) produce slightly negative, unphysical results in the central band when

vertical motion coefficients are concerned (Figures 2.38d, 2.38f).

Based on the above evidence, the extrapolation method denoted by (E) is retained in

the calculation chain.

2.3.4.4 Results and discussion

As usual the point of resolution of rigid-body motion in the fixed frame is chosen at the

centre of the undisturbed system’s waterplane area at the operating draft, whilst the

output motions are computed at the CoM and treated with Equation 2.19 to obtain

the response amplitude transfer functions.

Waves only. A comparison of the simulated and experimental in-plane motions

in regular waves with no incident wind is provided in Figure 2.39, which exhibits a

satisfactory agreement between the two. The estimated uncoupled natural frequencies

ωn are indicated for each DoF. In Figure 2.39a the surge motion amplitudes obtained

numerically closely follow the experiments, with no apparent over/underestimation

patterns. Figure 2.39b reveals two moderate mismatches in the low-frequency band

for heave. Firstly, the apparent convergence of the numerical RAO slightly below unit

reflects a limited lack of low-frequency excitation which may be due to the model’s

inability to accurately represent the inertial wave forces at the intersection of the nu-
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Figure 2.38: Diagonal hydrodynamic coefficients of the experimental Dutch Tri-
floater.
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(c) Pitch. ωn ≈ 0.23 rad/s.

Figure 2.39: Measured and computed motion transfer functions of the Dutch Tri-
floater under regular waves. The experimental response amplitude operators are a
courtesy of the VALEF2 project consortium using data from Courbois [107].
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merous hull bracings with the free surface. Secondly, the heave response characteristics

suggest that the numerical natural frequency may be higher than the physical model’s;

this may be explained by the (uncalibrated) vertical added mass computation on the

heave plates, which neglects the effect of flow rotation (cf. 2.1.3). Pitch response, plotted

in Figure 2.39c, shows a good agreement with the exception of the extremity data points.

Whilst both the numerical and physical models present a motion suppression region

at low frequency, there appears to be a shift between the two. The delicate, markedly

coupled12 pitch dynamic equilibrium of the Dutch Tri-floater in this band (cf. 2.3.2.3)

makes it difficult to pinpoint the possible causes.

Wind and waves. The plots of Figure 2.40 display the transfer function outputs of

the coupled wind and wave cases for the same three DoF. It is important to remark

that the mean leeward inclination predicted by CALHYPSO is significantly larger

than the physical model’s, more specifically 8.6 ◦ versus 6.4 ◦. This issue has been

encountered by other partners engaged in the software benchmark and could be caused

by the appearance of rotational mooring stiffness in the presence of thrust-induced line

tension13, which is not represented numerically.

Regarding the dynamic component of motions, the simulations predict the RAOs pro-

duced from the experiments relatively well, apart from the discrepancies discussed

next. Surge response is well matched excluding the moderate numerical overestimation

observable at low frequency in Figure 2.40a. This may be caused by a larger aerody-

namic damping in the experiment (see 2.1.5.1). Similar to what is observed in regular

waves only, Figure 2.40b reveals a possible natural frequency overestimation for heave,

whereas dynamic response is well predicted for the rest of the spectrum. Figure 2.40c

shows that the modelled and measured pitch response curves are in good agreement

with errors mostly limited below 10%. Only in the vicinity of the resonance peak the

physical model’s response shows signs of larger dampening, which can be related to an

experimental overrepresentation of the dynamic part of the thrust force (2.1.5.1).

Finally, comparing the pitch characteristics of Figures 2.40c and 2.39c one can recognise

the pattern already observed in purely numerical form in the large-inclination coupling

study presented in 2.3.2. The motion suppression region found in the waves-only case

between 0.3 rad/s and 0.5 rad/s is characterised by sustained pitch response in presence

of wind, when the thrust force causes a significant platform inclination and alters the

coupled dynamic behaviour of the system. The multi-DoF aerodynamic coupling process

detailed in 2.3.2 also concurs to determine the simulated pitch response, which is in

agreement with the physical observations.

12Large surge motion produces a significant knock-on on the excitation-suppressed pitch motion.
13Both diagonal and off-diagonal pitch stiffness components may manifest since the fairleads are

located above the free surface, and depart even farther from it when the structure is inclined by wind.



2.3. Applications 73

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.00

0.25

0.50

0.75

1.00

1.25

ω [rad/s]

P
se
u
d
o
-T

R
F
r 1

[m
/m

] Experiment
CALHYPSO

(a) Surge. ωn ≈ 0.13 rad/s.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.00

0.25

0.50

0.75

1.00

1.25

ω [rad/s]

P
se
u
d
o-
T
R
F
r 3

[m
/m

] Experiment
CALHYPSO

(b) Heave. ωn ≈ 0.45 rad/s.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.00

0.20

0.40

0.60

ω [rad/s]

P
se
u
d
o-
T
R
F
r 5

[d
eg
/m

] Experiment
CALHYPSO

(c) Pitch. ωn ≈ 0.23 rad/s.

Figure 2.40: Measured and computed motion transfer functions of the Dutch Tri-
floater under regular waves and wind. The experimental response amplitude operators
are a courtesy of the VALEF2 project consortium using data from Courbois [107].
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2.4 Conclusion

The use of CALHYPSO, EDF R&D’s coupled aero-hydromechanical solver in conjunc-

tion with original methodologies has permitted to study a range of interactions between

the aerodynamic and hydrodynamic processes with respect to their impact on global

FWT motion. The numerical representation of part of these effects has been validated

against scaled experiments. Among the forms of aero-hydrodynamic interaction which

have been detected and characterised are the hydrodynamic regime alteration by the

geometric nonlinearity associated to wind-induced platform inclinations, a form of

inter-DoF aerodynamic coupling, and the aerodynamic damping of global motions of a

floating VAWT. These findings have been the object of a set of publications [158–160].

The main conclusions follow next.

Large wind-induced inclinations. The hydrodynamically focussed frequency-

domain study provided in 2.3.1 has shown for the first time that, in presence of large

enough wind thrust, low-draft water entrapment plates undergoing vertical excursion

alter the inertial wave loads on a FWT tri-floater. This phenomenon is significant when

the semi-submersible platform studied reaches mean angles in the order of 5 ◦ or more,

which can easily be attained by currently proposed concepts. It is shown that the small

motion assumption customary in sea-keeping may no longer be valid, demanding a dif-

ferent modelling approach. The identification of the plate excursion effect has prompted

further investigation by EDF using CFD methods to include viscosity and separation in

the analysis, while other actors in the French ocean engineering community are planning

bespoke basin tests for a better appraisal of this issue.

The use of a time-domain model with an inclination-dependent, yet linear implementa-

tion of potential-flow hydrodynamics complemented by position-updated Morison forces

has enabled in 2.3.2 to evaluate the influence of wind inclination on the motions of the

Dutch Tri-floater, a floating semi-submersible HAWT. Both in-line and cross wind-and-

wave cases have been treated, showing that the geometric nonlinearity which descends

from the leeward inclination of the FWT significantly affects dynamic response through

the vertical excursion of the columns and water entrapment plates. With respect to the

direction of wave propagation, in-plane response (surge, heave, pitch) is mostly affected

for collinear wind and waves, whilst out-of-plane response (sway, roll, yaw) is shown

to be altered by the application of cross wind. The present methodology has been

successfully validated against existing experiments in 2.3.4. It should be noted that

in normal operation the aerodynamic thrust acting on a HAWT reaches its maximum

in the presently studied rated condition, which by consequence is the most sensitive

to finite inclination couplings. For higher wind speeds thrust decreases again, likely

causing the geometric linearity to become less important in highly energetic states.

An original classification of the wind-induced inclination couplings is provided in Ta-
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Table 2.12: Summary of the observed wind-induced inclination effects on floating wind
turbine dynamics.

Incl. effect Nature of force Location Affected DoF Bandwidth LC type

plate excursion
hydro. inertial plates heave, pitch wide collinear
hydro. viscous plates heave narrow collinear
hydro. inertial plates roll wide cross

column excursion hydro. inertial columns yaw wide cross

ble 2.12 in the light of the above described investigation. Further work will be required

to broaden the characterisation of the inclination effects to cover more operating condi-

tions, different highly compliant designs (e.g. a soft spar), and possibly the interaction

of these phenomena with wind turbulence and rotor control. A high-level classification

of FWT concepts may also be performed, for instance by evaluating their motion

sensitivity to the inclination effects as a function of governing parameters such as the

wind load to displacement ratio.

Given that the cost optimisation of FWT systems may keep pushing the allowable wind-

induced inclinations further, the nonlinearities inherent to the coupled dynamic system

are likely to increasingly manifest, especially in the highly dynamic, dimensioning

loading cases. The dynamic modeller must then apply careful judgement: methodologies

of increasing complexity will be required, likely departing from conventional offshore

structure analysis. Although the present method can represent a computationally ef-

ficient alternative to treating geometric nonlinearity, higher-order resolution of fluid-

structure interaction is likely required to accurately compute the hydrodynamic loads

in the presence of larger inclinations. Nonlinear angular resolution of the EoM also

becomes appropriate where angles exceed magnitudes of 10◦ to 15◦ and the linear

superposition of rotations is no longer accurate.

Aerodynamic damping of pitch motion. The study presented in 2.3.3 has

characterised the aerodynamic damping of a floating VAWT affecting its pitch motion

in waves, exploiting the results of a set of dynamic simulations carried out with CAL-

HYPSO. Special attention has been paid to post-treating the motion outputs because of

the presence of a significant 2P (blade passage) response component. Decay simulations

in particular have been handled with caution since one deals with ‘excited’ motion

extinction: spurious phenomena can occur, such as resonance, which invalidate the

common procedure for the calculation of the damping ratio.

The aerodynamic damping in pitch supplied by the operating rotor has been found to

depend on both incident wind speed and rotor speed. It amounts to about 2%–4% of the

critical damping and provides a reduction in peak pitch response of 25% to 50% for the

studied wave conditions. The damping ratios emerging from the decay simulations are

consistent with the results of the simulations in regular waves, and their dependencies
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reveal the contribution of both lift- and drag-induced damping mechanisms. These have

been shown to function in an essentially linear fashion, a finding that is in agreement

with the experimentally observed behaviour of a floating HAWT (see Le Boulluec [102])

and with the analytic considerations given in Appendix C.

To the Author’s knowledge, the aerodynamic damping affecting the pitch motion of

a floating VAWT has been scrutinised for different operating conditions for the first

time. Analysing the dependencies of the damping ratio indicates that it exists a critical

tip-speed ratio below which drag dominates the variations in damping, while lift forces

explain the variations above the critical TSR. A thorough understanding of the knock-

ons of varying aerogenerator operating regimes on platform motion may provide an

extra tool to achieve motion mitigation by integrated floating system design.

It is important to notice that these results and interpretations do not necessarily

represent the physics of a real FWT system, but rather the behaviour of a numerical

model (Paraschivoiu’s DMST) that is widely used across the industry. The represented

aerodynamics do not give account of the rotor wake structures, which are expected to

affect the loads especially in the low TSR region. The computational model used is also

known to lose validity at very high tip-speed ratios because of the inadequacy of the

momentum equations beyond a certain threshold, although these are located outside

the studied operating envelope. Moreover, the non-stationarity due to platform motion

is treated under the quasi-steady hypothesis; a model upgrade to account for dynamic

inflow should be considered for an improvement in accuracy. Further numerical, and

possibly experimental investigation on the aerodynamic damping of floating VAWTs

will be required to verify and validate the phenomena shown.



Part 3

Finite-element Analysis of

Floating Wind Turbine Moorings

This Part presents the work carried out in the field of mooring system modelling,

which consists in the development of a workflow based on EDF R&D’s finite-element

(FE) tool Code Aster, enabling the static and dynamic analysis of mooring systems for

floating wind turbines. After the introductory Section 3.1, the numerical methodology

underpinning this study is explained in Section 3.2. Insights are there provided with

respect to the main Code Aster functions used to build the model and the related

assumptions. Section 3.3 moves on to describing the procedures developed to unlock

the mechanical representation of a mooring system in the given computing environment.

A range of applications is then provided with Section 3.4, demonstrating the model’s

capability to represent the main static features of catenary FWT mooring systems. The

focus moves onto dynamics in Section 3.5 where an articulate case study is presented,

corroborated by experimental data, ultimately attesting the dynamic performance of

the model. The conclusive remarks for this Part are drawn in Section 3.6.

The work described in this Part is included in a technical report of EDF R&D by

Peyrard and Antonutti [161].

3.1 Introduction

The station keeping of a floating wind turbine is achieved by transferring the mean

horizontal loads, which are dominated by wind thrust, to the seabed. The mooring

system, defined as the ensemble of components involved in the load path from the

fairleads to the soil, must be designed to resist cyclical and extreme loads with adequate

safety and, if required, a redundancy margin. For a general and relatively up-to-date

introduction to offshore mooring systems and their functions, design, and certification,

the reader may refer to Chakrabarti [162].

The most common type of mooring system found in permanent offshore applications

uses the catenary principle (Figure 3.1, left) to produce horizontal restoring, exploiting

77
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the gravitational potential of a heavy suspended line. On the contrary, the restoring

power of taut mooring arrangements (Figure 3.1, right) primarily relies on the elasticity

of the mooring lines. In this case, significant rotational restoring power may become

available, combining with the floating structure’s hydrostatic stiffness. Whilst the MW-

scale FWT prototypes installed to date (Hywind, WindFloat, and the units installed

at Goto and Fukushima) employ slack chain moorings, semi-taut, taut or tensioned

arrangements are also considered for floating wind applications. Examples of such

station-keeping solutions are found for instance within the DCNS Sea Reed design,

or in the Glosten PelaStar concept.

Figure 3.1: Catenary (left) and taut (right) mooring arrangement a classic offshore
platform, after Vryhof Anchors [163].

Although offshore renewable energy inherits considerable know-how from classic off-

shore engineering, which has developed around the oil & gas business, important dis-

tinctions must be made which clearly bear an impact on mooring design. In classic

offshore, loss of station during operation is often a high-impact catastrophic event,

potentially endangering human lives and entailing severe environmental consequences

especially if the structure is used to handle dangerous fluids. A broken oil riser caused

by excessive horizontal displacement or a faulty wellhead disconnection are elementary

examples of environmentally critical events.

In the case of floating wind, the mooring system risk assessment may lead to different

outcomes. A partial mooring failure threatens the integrity of the umbilical cable first;

its loss certainly represents an economic damage for the stakeholder, but may not come

with a critical risk for human safety or the environment since FWTs are unmanned

and do not contain significant amounts of hazardous fluids. A full loss of the station-

keeping system poses a threat to the remaining units in the windfarm as well as to

maritime traffic, other than being likely catastrophic for the concerned turbine. All in

all, the safety requirements of this novel application need to be reassessed, suggesting

a potential reconsideration of current engineering practices: already envisaged in the

current standards is the proposition of unconventional arrangements, provided that a

sufficient level of safety be demonstrated by the applicant (cf. for example [47]) – a
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task which demands accurate simulation tools; a possible outcome could also be the

acceptance of less conservative design approaches, although the added cost of insurance

may become a significant obstacle. At the same time, offshore renewable installations are

subjected to a higher pressure for project cost reduction compared to their counterparts.

Moorings are a significant cost driver: recent studies estimate that the mooring system

cost (including its installation) may represent 5%–15% of a floating windfarm’s CAPEX

[33]. Once again, the optimisation of a FWT mooring system relies among other factors

on the accuracy of the front-end simulations for engineering design.

The design of a permanent floating windfarm mooring system that is low-maintenance,

sufficiently reliable, and optimised for cost hence challenges the existing practices and

holds large potential for improvement by R&D. Given the above context, a thorough

understanding of its mechanical behaviour in the highly dynamic conditions found

offshore becomes fundamental. The current state-of-the-art software for the design and

analysis of offshore mooring systems (e.g. OrcaFlex, aNySIM, Flexcom, FASTlink1,

etc.) typically include dynamic simulation capabilities; the marked nonlinearity char-

acterising mooring line mechanics imposes the use of time-domain methodologies for

the resolution of the system’s motion in dynamic form.

As it will be confirmed once more by the results of this study, the historical quasi-static

approach to mooring modelling (documented for instance by Faltinsen [164]) cannot

guarantee a reasonably accurate prediction of the line tensions in conditions relevant to

line dimensioning, in other words dynamic effects dominate the tension variance. This

is especially true in domains where high energy and high deformability coexist, such

as floating systems for wave energy conversion (see for example Johanning et al. [165])

and deep-water offshore applications, as remarked by Mavrakos et al. [166] and Lin [59].

Also, since floating renewable energy structures tend to be subjected to higher and more

dynamic environmental loads (relative to their displacement) compared to conventional

offshore platforms, the role of mooring system dynamics in determining the global

dynamic response may become increasingly important, requiring accurate simulation

of inertial and damping retroactions on the floater. For example, the excitation of the

platform modes by unsteady aerodynamic loading or difference-frequency wave loads

may cause low-frequency resonant motion, whose amplitude can be governed by mooring

system dissipation for lightly damped platform DoF (see for instance [136], [162]).

The Code Aster -based dynamic mooring simulator presented in this Part joins the

modelling toolbox currently developed by EDF to enable comprehensive R&D support

to the Provence Grand Large project and the subsequent floating wind deployments of

the Group.

1A simulator coupling NREL’s code FAST and OrcaFlex.
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3.1.1 Finite-element modelling of floating wind mooring systems

After about half a century of offshore engineering experience, the role of dynamics in

the mechanical behaviour of mooring systems is vastly documented. It is commonly

accepted that the quasi-static representation of mooring lines becomes too inaccurate

for the sake of engineering design when the motions of the structure are highly dynamic,

when drag-intensive components are used (for instance, a mooring chain), when water

depth exceeds about 150 m, or with any combination of the above [167]. In such cases,

the dynamic effects due to inertial, hydrodynamic, and seabed contact loads are known

to magnify the dimensioning extreme and cyclical tensions of offshore mooring lines.

These guidelines apply directly in the floating wind context and dictate the use of

dynamic simulation tools, especially when mooring system mechanics are included in

the focus of the analysis. Past research (see for example Karimirad [65]) has shown that

the dynamic mooring effects tend to bear a limited impact on FWT motion, due to the

economical limitations to the practicable water depth – presently a few hundred metres

at the most. Yet even in these conditions the impact on platform motion may become

observable for extreme sea states, as pointed out by Masciola et al. [85] through a

numerical and physical modelling campaign assessing the dynamics of the DeepCwind-

OC4 concept. Increasing the water depth beyond this range rapidly augments the

sensitivity of platform motion to the mooring system dynamics, as reported by Matha

et al. [167]: for instance, a lumped-mass model is used by Lin [59] to reproduce the

coupled mooring-platform response of a spar FWT, using slack chains, for increasing

water depths (320, 600, and 900 m) confirming the growing importance of dynamic

line tension in determining the global response. A different picture can be drawn for

the dynamic effects on mooring line tension: among others, Coulling et al. [84] and

Masciola et al. [85] demonstrate that the quasi-static tensions severely underestimate

experimental measurements even at the limited depth of 200 m and for operational

met-ocean conditions.

A recent review of the dynamic mooring line theories developed so far is provided by

more recent work by Masciola et al. [168], distinguishing three main categories: lumped-

mass, finite-difference, and finite-element. Literature shows that both the popular finite-

element and lumped-mass theories provide accurate tension predictions when FWT

simulation is concerned, although with more stringent resolution requirements by the

latter approach [59, 168].

The finite-element method has been chosen by numerous authors in the FWT dynamic

mooring modelling field. A study by Jeon et al. [169] evaluates the response of a

spar-type FWT using a catenary system, evidencing the extensional vibrations of

the mooring lines. The dynamics of large multi-turbine platforms are analysed by

Kallesoe et al. [170] and by Kim et al. [171] incorporating a FE moorings model.

Finite bar-type elements are used in the coupled simulations of Cheng et al. [172]
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to assess different VAWT arrangements, and by Bachynski et al. [173] to determine the

severity of transient, wind turbine fault-related events on mooring tension. Coupled

motion response and dynamic mooring tensions are obtained by Zhang et al. [174] for

a MW-sized HAWT on a small semi-submersible platform, also using the FE method

to represent mooring dynamics. The global effect of the hydrodynamic damping forces

exerted on the mooring lines is characterised in the work of Hall et al. [175] for a spar-

type FWT using a nonlinear cable model. A tension-leg system has also been studied

with the FE approach by Bae and Kim [176], allowing to bring out the effects of 2nd

order sum-frequency wave excitation on structural response. The outputs of coupled

simulation software using a range of different mooring theories are benchmarked in a

report by Jonkman et al. [177].

A promising alternative for the representation of mooring dynamics is the multi-body

formulation, as maintained by Borg et al. [44] and Muskulus [178], which may enable a

reduction of computational effort compared to FE resolutions. For example, Matha et al.

[167] use this representation to demonstrate the onset of hydrodynamic non-linearities

in the behaviour of a FWT due to dynamic mooring effects.

3.1.2 Code Aster

Code Aster is EDF R&D’s all-purpose open-source FE solver for the thermo-mechanical

study of structures [60]. After over 20 years of development, this software offers in the

order of 400 finite element typologies for the discretisation of solids and a broad range of

solvers, all features which are thoroughly tested and validated. It most notably enables

the static, dynamic, and vibrational analysis of mechanically loaded structures as well

as modal analysis.

The current study looks to employ the nonlinear capabilities of this software to rep-

resent the static and dynamic behaviour of floating wind turbine mooring lines, which

are intrinsically characterised by nonlinear kinematics due to the presence of large

displacements and intermittent seabed contact. The features peculiar of mooring system

modelling which are not readily available in the classic Code Aster workflow have been

implemented by manually augmenting the command file with the necessary scripts, and

by developing practical methodologies based on appropriate sequences of simulations.

Although Code Aster is written in French language, the interested anglophone reader

can acquire a grip on this software by consulting specialised wiki pages which provide

examples and tutorials, such as [179]. Two related manuscripts have also been recently

published which are rich in hands-on examples [180, 181].

The version of the software employed for this study is 12.2.10 (development release).

Part of the ongoing developments, which will be integrated in the next versions of

Code Aster, consists in the implementation of drag forces over 1D elements whose

underlying formulation is outlined in 3.2.4.
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3.1.3 DeepCwind-OC4 experimental campaign

An experimental campaign was conducted at MARIN’s wind and wave basin with the

aim of calibrating and validating a coupled offshore hydromechanics model implemented

in NREL’s FAST. Its outcomes are documented by published work by Masciola et al.

[85] and Coulling et al. [84], where the outputs of different numerical implementations

are compared to the measurements. Other authors have recently utilised this campaign

for the sake of numerical model validation, using both the finite-element [182] and

lumped-mass [183] approaches to dynamic mooring modelling.

Object of this campaign is a 1/50th-scale model of the DeepCwind-OC4 FWT (Fig-

ure 3.2), which consists in a NREL 5 MW aerogenerator mounted on a three-column

semi-submersible platform, operating at an equivalent water depth of 200 m2.

Figure 3.2: Sketch of the DeepCwind-OC4 floating wind turbine (left) and a picture of
the scaled model under the action of wind and waves (right). Reproduced from Masciola
et al. [85] and Coulling et al. [84].

Included in the physical model is a downscaled mooring system, realised with a brass

chain, which closely resembles the full-scale three-leg arrangement specified in [137].

Load cells mounted at the fairleads provide the mooring tension signal. The series of

experiments carried out includes free-decay, pull-out, wind-only, wave-only, and coupled

wind-wave tests; the numerical model benchmarks clearly exhibit the limitations of the

quasi-static mooring modelling when it comes to assessing the dynamic tension ranges.

A subset of these experiments is used in Section 3.5 to validate the presented dynamic

simulation model and the underlying methods.

2The same platform geometry is employed in Part 2 in conjunction with a vertical-axis wind turbine.
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3.2 Methodology

The finite-element method enables the spatial discretisation of a continuum, reducing

the DoF of a solid to a finite set which can be treated numerically. A corresponding set of

equations written with respect to the system’s nodal DoF is then used to seek the static

or dynamic equilibrium configuration of the structure, under any given combination of

external loads and constraints.

3.2.1 One-dimensional discretisation

The centrepiece of the proposed methodology is the homogeneous, 1D finite element

denoted ‘CABLE’ available in Code Aster, which was originally developed to simulate

the mechanical behaviour of overhead electrical lines [184]. This two-node element is

a version of the classic ‘bar’ element, adapted to the large displacement context; as it

is explained in the following, this makes it suitable for representing highly compliant

mooring lines.

As discussed above, cables represent only one of many modelling possibilities: a sim-

pler and widespread option for dynamic mooring modelling is the lumped mass with

spring and damper connections, which requires higher mesh resolution than a cable.

Whether this approach can be successfully implemented in Code Aster remains to be

investigated. On the other side, the next FE type in terms of complexity is the beam.

Large-displacement beams are available in Code Aster – which may be used to model

mooring lines characterised by significant bending, torsional, or shear stiffness – but

have been shown to be prone to error accumulation when undergoing repeated large

rotations. They also prove overcomplex when the mooring line’s dominant mechanical

resistance is axial: a beneficial feature of cables with respect to beams is in fact the

halving of the global DoF at the nodes (rotational DoF are unassigned) which preserves

computational efficiency.

It should be finally noted that the absence of rotational reactions which characterises

the CABLE is a reasonable modelling hypothesis only for mooring line types which

oppose negligible resistance to bending and torsion. Whilst this is generally accepted

for chains [61], the behaviour of less flexible lines operating at low tension such as

short and stiff rope segments may not be accurately represented under this assumption,

especially in the vicinity of rotational constraints. Focussing on bending and assuming

a linear isotropic material and a constant line section, the classic beam theory provides

the governing parameter which if large enough causes elastic behaviour, the segment’s

relative bending stiffness EI/L. This is defined by the material’s Young’s modulus

E, the sectional bending inertia I, and the characteristic length of the segment L.

In presence of a low (homogeneous) tension T , this term may no longer be marginal

with respect to the contribution of geometric bending stiffness, which is proportional
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Figure 3.3: CABLE element before and after application of nodal displacements.

to TL and usually dominant in the reactive balance of a tensioned mooring line. The

underlying assumption of bending-soft segments may be then written as EI/L� TL.

3.2.1.1 Finite element constitution

A CABLE finite element is defined as a straight, two-node segment of length l with

a constant cross section of surface area A. The element’s sections are supposed to be

undeformable and to maintain a constant orientation in the local frame. Used in 3D

space, a CABLE disposes of six nodal DoF in the global inertial system of reference,

which correspond to the nodal translations qe = [q1
n; q2

n] (Figure 3.3). Linear shape

functions L are used to express the internal displacement vector ũ in the global frame

as a function of the normalised axial position on the element, ξ = s̃/l, as

ũ(ξ) = Lqe , (3.1)

using

L =




1− ξ 0 0 ξ 0 0

0 1− ξ 0 0 ξ 0

0 0 1− ξ 0 0 ξ


 . (3.2)

The mechanical reaction tensors characterising the system of interconnected cables

can be obtained by applying the Lagrange equations and hence assembling the DoF-

matched individual element contributions with the same procedure illustrated in 4.2.1.

In this case, however, no basis change is necessary thanks to the purely translational

constitution of this element type, which allows to write the kinematics directly in the

common global frame.

CABLE elements react to axial deformation only. Statically, the relationship between

tension T and strain ε is simply given by

T = EεA =
∆l

l0
EA , (3.3)
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where l0 is the length of the element when the axial load is nil and ∆l = l′ − l0.

Both T and ε are constant over the element length. The Code Aster implementation of

CABLE incorporates an option enabling to assign different Young’s moduli for tension

and compression. When chains and flexible ropes are modelled, it is appropriate to set

the compression modulus to zero [61]. This permits to incorporate the nil compression

stiffness associated to chain link separation or to the buckling of a soft rope segment.

3.2.1.2 Discretisation by cables

In this study the geometry of any mooring line segment is discretised along its length

with an arbitrary number of cable elements, as shown in Figure 3.4, where the extremity

nodes A and F represent the anchoring point and the fairlead respectively. As the

A

F

Figure 3.4: Mooring line (grey dashes) and its discrete representation (black).

elements have a first-order deformed shape, both the undisturbed and deformed states

of a cable are straight lines connecting two nodes. In principle, this implies that the mesh

resolution required to represent any curved topology must be larger where the expected

radii of curvature are smaller. Other criteria dictating the minimum mesh resolution

are the accurate representation of longitudinal changes in the properties of the line and

the combination of mesh resolution with the wave kinematic field differentials.

Finally, it should be remarked that in the present model it also exists an upper limit to

mesh resolution, caused by the increasing numerical instability affecting the dynamics

of small-length cable elements, particularly in presence of seabed contact. In practice,

beyond a certain mesh resolution the numerical instability arising from contact shocks

becomes so strong that the amount of algorithmic damping required to stabilise the

simulation starts to be significant with respect to the physical damping in the system,

which is essentially provided by drag.



3.2. Methodology 86

3.2.2 Large displacements

The presence of large displacements, whether due to deformation or rigid-body kinemat-

ics, introduces a nonlinearity in solid mechanics, causing the classic linearised methods

to lose their ability to accurately describe the displaced configuration of the structure.

When the finite-element method is used, writing the rotation kinematics is also more

complex because large rotations in 3D space cannot be represented with a vector. They

become in fact non-commutative and must be treated with more complex methods such

Euler angles or quaternions [185]. In the present model this only affects the support

beam elements (3.3.4), since the rotations of the CABLE elements take place implicitly,

following the nodal displacements (3.2.1.1).

Code Aster treats the large displacements with the updated Lagrangian method (UL)

originally introduced by Bathe and Bolourchi [186], which operates a reactualisation of

the structure’s geometry at every Newton-Raphson iteration. Contrary to the classic

static representation of matrices in linear solid mechanics, the assembled system matri-

ces are continuously recalculated. An example application of the updated Lagrangian

method to a 1D element is next given with reference to Figure 3.5. The structure’s

z

y

x

s0

P0

O

s1

P1

s2

P2

l0

l1

l2

Figure 3.5: Large displacements of 1D element in 3D space. Adapted from Yang and
McGuire [187].

response is represented in the global inertial system of reference, Oxyz, whilst the

CABLE axial deformation takes place along s in the local frame Ps. We may define the

initial, undeformed state of the element with the numeral 0, identifying an initial frame

P0s0 and an element length l0. It is then assumed that a new equilibrium must be found

for the next instant in time, which is characterised by a different loading state. Let the

configuration denoted with ‘1’ be reached after a first Newton-Raphson iteration takes

place (see Appendix D). The new coordinate s1 will then be associated to the internal
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strain of the element in the next iteration, whilst the local deformation is reset to zero as

the new configuration with length l1 becomes the reference geometry. The new reference

stress state must naturally be nonzero to account for past strain in the definition of the

element’s geometric stiffness [185]. The following Newton-Raphson iteration is carried

out by recalculating the system tangent matrix in the new configuration, leading to the

next displacement guess at 2. The procedure is repeated until convergence is achieved

within the time step.

3.2.3 Seabed contact

The interaction of a mooring line with the seabed is a complex subject which interfaces

structural and geotechnical engineering. The state-of-the-art seabed theory proposes

a combination of two non-linear dissipative phenomena for the representation of the

reactive soil forces: lateral friction and uplift-repenetration resistance [61]. A model of

this type is expected to provide a representation of seabed interaction which is accurate

enough for the accurate assessment of the fatigue life of mooring segments located at

the touchdown point, according to Randolph and Quiggin [188].

In the present study a smooth and rigid seabed model is used instead, which reduces

contact to a reversible conservative phenomenon. Among the contact modelling options

available in Code Aster, this is the simplest and most robust. The introduction of

dissipative contact is possible in Code Aster and may be sought by further work;

this will likely require the creation of shell elements to represent the seabed, and the

assignment of a master-slave hierarchy between the mooring line elements and said

shells (see the relevant documentation [189]).

Under the current hypotheses, the two variables governing surface contact are d, the

clearance between the structure (e.g. a node) and the contact surface, and σ, the normal

contact stress. The Hertz-Signorini-Moreau contact conditions are introduced (see for

example [190]):

• Impenetrability (kinematic condition): d ≥ 0 .

• Non-negative contact stress (dynamic condition): σ ≥ 0 .

• Complementarity (energetic condition): dσ = 0 .

Figure 3.6 represents these three conditions in graphical form. The resulting unilateral

contact law is then expressed as





d ≥ 0

σ ≥ 0

dσ = 0

, (3.4)

which is satisfied in the domain visualised in Figure 3.7. The positive, semi-definite d-σ
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Figure 3.6: Hertz-Signorini-Moreau contact conditions. White areas and thick black
lines indicate where these conditions are verified.

σ

d

Figure 3.7: Unilateral contact law. Thick black lines indicate where this is satisfied.

relationship found is non-univocal and is not differentiable in d = σ = 0: these features

make it a non-trivial numerical implementation. As it is further detailed in Appendix D,

unilateral contact is introduced in the model as a constrained optimisation problem

using Karush-Kuhn-Tucker (KKT) conditions [191], which are in practice applied to an

arbitrary set of nodal DoF [192].

On the user side, the unilateral boundary condition is imposed by applying an analyt-

ically defined inequality to the nodal displacements. When touch-down contact over a

flat seabed located at z = −H is considered, this assumes the form

∆z ≥ − (H + z0) . (3.5)

In the above expression ∆z denotes the cumulated vertical displacement of a node over

the simulation and z0 its initial vertical coordinate.

As shown in Appendix D, contact is physically introduced into the mechanical problem

by a modification of the equilibrium equation to take into account the related reaction

forces, depending on the verification of the contact condition.
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3.2.4 Mooring line hydrodynamics

The Morison approach is employed in the form detailed next to compute the hydrody-

namic forces on the lines by taking into account both the structure’s motion and the

wave particle kinematics. First, a simplification is made by disregarding the inertial

wave forces, i.e. the second term of the right member of Equation 2.12: due to the

small diameter of the mooring lines compared to the length of ocean waves, these are

negligible with respect to viscous forces (see 2.2.6). This modelling hypothesis is also

used by commercial mooring simulation software such as MARIN’s aNySIM [62]. The

last term appearing in Equation 2.12, associated to the fluid’s added mass force, is

accounted for in reactive form with the procedure outlined in 3.2.4.2 and removed from

the external loads. This leaves only the drag part of Equation 2.12, which is computed

as follows.

The mooring line is assimilated to a circular cylinder of equivalent volume whose diam-

eter is D, the mooring line’s volumetric diameter. An arbitrarily oriented orthonormal

frame Px̃ỹz̃ with x̃ ≡ s, is assigned for the decomposition of velocity. Unit vectors i, j,

and k define the directions of axes x̃, ỹ, and z̃ in the global frame respectively; following

from 3.2.1.1, let u denote the instantaneous position of a section and v the absolute

flow velocity at the section’s location in the fluid, the relative flow velocity is defined

by w = v − u̇. Subsequently the axial and normal components of vector w are, with

respect to the element’s frame,

wx̃ = w · i , wỹ = w · j , wz̃ = w · k . (3.6)

This forms the basis enabling the decomposition of the drag problem of a porous 1D

body in 3D space such as a mooring chain. The axial drag force per unit length is

written as
dFx̃
dl

=
1

2
ρwc

a
dD|wx̃|wx̃ . (3.7)

The transverse component of the relative velocity defined with

wn = w − wx̃i (3.8)

enters the computation of the normal drag force:

dFỹ
dl

=
1

2
ρwc

n
dD|wn|wỹ ,

dFz̃
dl

=
1

2
ρwc

n
dD|wn|wz̃ . (3.9)

Note that the axial declination of this formula uses the same reference diameter as the

normal one: this is customary in mooring analysis and requires a consistent choice of

ca
d and cn

d. Equations 3.7 and 3.9 can also be written equivalently with reference to the

nominal line diameter, which corresponds to the bar diameter for a mooring chain.



3.2. Methodology 90

3.2.4.1 Viscous forces

Equations 3.7 and 3.9 represent the viscous drag forces, which dominate wave-structure

interaction for slender bodies such as mooring lines, and enter the global EoM as a time-

and displacement-dependent excitation term (see D.2). The normal and axial drag force

components are treated as distributed loads and their integral over the length of each

element is approximated using the Gauss method. Using n Gauss points enables to

compute force distributions up to the (2n − 1)th order; in the present application,

n = 3 is used which should suffice to capture correctly the drag force variability over

mooring segments of limited length. In order to do this, the local speed u̇ is calculated

at each of the Gauss points by interpolation between the extremity nodes, whilst v is

obtained using the incident wave particle kinematics, providing the local drag force per

unit length. The integration of the approximating polynomial times the element shape

function finally yields the equivalent nodal forces, which enter the dynamic equilibrium

equation after being reexpressed in the global system of reference.

3.2.4.2 Inertial forces

The inertial fluid reactions may play a significant role in determining a line’s dynamic

response since they contribute to the effective modal mass. For a conventional steel

chain segment, for example, added mass represents about a tenth of the normal modal

mass. This is why the reactive part of the inertial hydrodynamic force is considered here

by means of a left-hand side (LHS) added mass force. Based on the methods commonly

employed by the present industrial software [62],[61], the axial-flow and normal-flow

added masses of a slender mooring segment are respectively expressed with

ma
a = ca

aρw5, mn
a = cn

aρw 5 . (3.10)

This formula employs the volumetric acception of the added mass coefficient ca. The

other defining parameters are water density, ρw, and the segment volume 5.

As it will be shown in 3.3.2, the hydrodynamic added mass is here summed to the

mechanical mass of the cables by an increase of material density; while on one hand

this benefits from the FE representation, allowing to include the added inertia moment

natively, on the other it assumes ma
a = mn

a = ma, which in most cases is incorrect.

For example, for mooring chains a reasonable normal to tangential added mass ratio is

in the order of 3 (see [62]). Fortunately, far from the fairlead excitation the dynamic

displacements of pre-tensioned mooring chain segments take place mostly in the trans-

verse direction, reflecting the low modes of a slender and axially stiff structure. It is

therefore reasonable to calibrate ca on the normal added mass at the expense of the

representation of axial fluid reaction. Although not being severe, this is a limitation

which should be addressed by further work.
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3.3 Model set-up

The present Section provides the user-side procedures which enable to carry out mooring

simulations with Code Aster. First, it describes the selection of an appropriate com-

bination of physical parameters for the simultaneous representation of gravitational,

buoyancy, structural inertial, and hydrodynamic added mass forces on the lines. Then

the catenary laying procedure is explained, which was developed to initialise the moor-

ing simulation. The representation of the FWT platform with its rigid-body dynamics is

also briefly outlined. Finally, an account is made of the selection of the time integration

scheme along with the choice of its characterising parameters.

3.3.1 Buoyancy force correction

In the present study it is assumed that the entirety of the mooring system is submerged,

and hence that all of its parts are subjected to a constant hydrostatic buoyancy force.

The buoyancy force exerted on a submerged mooring component is directed upwards

and can be expressed with

fA = ρw 5 g . (3.11)

In the above equation ρw is the water density and5 the component’s displaced volume.

The component is simultaneously subjected to a downward weight force,

fW = ρm 5 g , (3.12)

assuming it has homogeneous density ρm. In order to account for the presence of the

buoyancy force, it is possible to impose a corrected downwards gravitational acceleration

of magnitude g′ such that

ρm 5 g′ = ρm 5 g − ρw 5 g , (3.13)

which yields

g′ = g

(
1− ρw

ρm

)
. (3.14)

For a given water density, the corrected gravity acceleration found with Equation 3.14

depends only on the component’s material density. By introducing a third arbitrary

material density ρc, which is used in the computational model to represent a chain by

a mechanically equivalent CABLE element with hydrodynamic added mass (see 3.3.2),

one may reformulate Equation 3.13 as

ρc 5 g′′ = ρm 5 g − ρw 5 g . (3.15)
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Expliciting the corrected gravitational acceleration from Equation 3.15 finally gives

g′′ = g

(
ρm − ρw

ρc

)
. (3.16)

3.3.2 Chain-equivalent element

Mooring chains need to be treated with caution when assimilated to homogeneous

1D elements in a mathematical model. Their complex geometry and the presence of

articulated joints (Figure 3.8) translate in large longitudinal variations of the mechanical

properties at the link scale. In order to correctly represent a mooring chain segment

with a bar-type finite element, these attributes must be expressed in longitudinally

averaged form.

Figure 3.8: Studlink chain geometry.

A homogeneous CABLE element is defined by the material-specific quantities: Ec and

E−c , the Young’s moduli associated to tension and compression, and the volumetric

mass ρc. The following geometrical quantities also concur in defining the element: Ac,

the cable’s sectional area, and lc, the element span. Among these parameters, E−c is set

to zero for a chain, and lc is dictated by the input mesh for each element. To determine

the remaining parameters, the modeller must pay attention to the following aspects:

• Axial stiffness. The nominal axial stiffness found in the chain specifications, κ,

must be respected by the equivalent cable element, that is κc = EcAc = κ.

• Inertial mass per unit length. Another catalogue parameter is %, the chain’s

average mass per unit length. In order to assign the correct mass to the equivalent

cable element for the computation of inertial forces3, one must satisfy ρmAc = %,

with ρm denoting the chain material’s density.

The above relations combined identify the equivalent cable’s sectional area and Young’s

modulus as

Ac =
%

ρm
, Ec =

κ

Ac
=
κρm

%
. (3.17)

3Quasi-static mooring simulations frequently employ an ‘in-water’ equivalent mass value which
corrects the weight force to include buoyancy. This shortcut cannot be adopted in a dynamic simulation
because of the dependency of inertial forces from mass.
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Note that the quantities found with Equations 3.17 must be distinguished from the

physical chain’s geometric and material properties.

Since in the present implementation it is chosen to approximate the reactive added mass

force by an isotropic increase of inertial mass (see 3.2.4), an according correction on

material density must be introduced. Let ρw be the water density and ca the volumetric

added mass coefficient, the input equivalent cable density becomes

ρc = ρm + caρw . (3.18)

The corrected gravitational acceleration provided by injecting ρc in Equation 3.16 is

hence

g′′ = g

(
1− ca + 1

ca + ρm/ρw

)
, (3.19)

which insures that the correct weight per unit length, inclusive of the buoyancy force,

is applied in the simulation.

Input chain parameters:
Material density ρm
Mass per unit length %
Axial stiffness κ

Other inputs:
Water density ρw
Added mass coefficient ca
Gravitational acceleration g

Ac (Equation 3.17)

Ec (Equation 3.17)

ρc (Equation 3.18)

g′′ (Equation 3.19)

Figure 3.9: Definition of the simulation parameters from the input physical quantities,
for a chain-equivalent CABLE.

3.3.3 Catenary laying

Finding the static equilibrium configuration of highly flexible structures such as offshore

moorings is a known numerical challenge in finite element analysis (see for instance

Webster [193]). If one excludes the pre-generation of the equilibrium mooring geometry

using catenary formulae, the above challenge translates into finding a gravitationally

loaded static equilibrium configuration which is far removed from an arbitrarily chosen

initial geometry. The calculation strategy proposed here to solve this problem and

initialise the mooring simulation is described next for a single mooring line.

Let F and A be the fairlead and anchor point, whose location in space is known.

Assuming L, the unstretched mooring line length, as an input, a convenient starting
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geometry is obtained by breaking the mooring line into two straight segments4 AK and

KF lying in the vertical plane which contains A and F, with

AK + KF = L . (3.20)

This defines the initial configuration ΩI shown in Figure 3.10. The target static equi-

librium configuration ΩS also appears in the Figure. From the starting state ΩI, the

A

F

K

ΩI

ΩS

Figure 3.10: Initial controlled geometry before catenary laying (black dots) and target
equilibrium geometry (grey dashes).

quasi-static FE solver available in Code Aster (see Appendix D) cannot approach ΩS

through a sequence of quasi-static solutions by gradually increasing the load, since the

equilibrium geometry – neglecting elastic deformation – is the same for any magnitude

of the gravitational forcing. In the case of catenary laying the system must find the

equilibrium state mostly by undergoing rigid-body displacements, as opposed to elastic

deformations. Unfortunately, quasi-free rigid-body motion is characterised by a singular

tangent stiffness matrix (see D.1)
∂gn−1

i

∂u
, (3.21)

which makes the problem untractable with the quasi-static solver. In such cases, using

the dynamic solver (detailed in D.2) permits to reestablish the equilibrium between

internal and external forces thanks to the contribution of inertia (and damping) to the

tangent matrix.

Introducing inertia alone stabilises the calculation, but cannot provide the motion decay

required to attain ΩS. In other words, a source of dissipation is needed to remove the

potential energy differential between ΩI and ΩS from the system. This is achieved

with the introduction of a controlled amount of Rayleigh damping, which expresses the

4Defining the initial mooring line geometry as a set of straight lines in space is functional to both
mesh generation and the imposition of the unilateral contact laws of 3.2.3 in analytical form.
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damping matrix as a linear combination of the mass and stiffness matrices5:

Č = α̌ǨT + β̌M̌ . (3.22)

Only the mass-proportional Rayleigh damping component is used in this case, which

corresponds to choosing α̌ = 0 and β̌ > 0. After imposing the gravitational load, clump

boundary conditions in F and A, and the seabed contact conditions, a decaying dynamic

simulation with near-critical damping may be obtained by selecting an appropriate

value of β̌. Such a simulation generally leads to a satisfactory approximation of ΩS

in a few tens of seconds simulation time. At the end, a one-step static simulation is

run using ΩS as input, in order to eliminate any spurious dynamic effect; its output,

Ω0 = Ω(t0), is used to initialise the subsequent simulations of physical interest.

The above procedure applied to a mooring line provides a result of the type shown in

Figure 3.11, where the arrows indicate the local displacements. Since the only solution

of interest is the final static configuration, the transient states between ΩI and ΩS are

simply discarded after the catenary laying stage.

0.0 0.5 1.0
Normalised displacement [-]

Figure 3.11: Catenary laying of a mooring line with clump weight, output from
Code Aster.

5The check symbol is here used to distinguish the aggregate system’s mechanical tensors from the
rigid platform tensors of 3.3.4.
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3.3.4 Floating platform geometry and dynamics

Studying the mechanics of a complete FWT mooring system requires to link the fairlead

points to simulate the presence of the floater. A rigid platform model is presently utilised

for this sake, which consists in a set of massless, undeformable beam elements (see Fléjou

[194] for a description of beam elements in Code Aster) each connecting a fairlead to

the platform pivoting point. Figure 3.16 provides a visual example of this arrangement

in the context of a practical application. This representation underpins all the static

and motion-driven dynamic simulations presented in this Part.

It must be specified that adopting the motion-driven, i.e. uncoupled, approach in

dynamic mooring simulation does not permit to close the feedback loop between plat-

form dynamics and the dynamic component of the mooring system’s response (see

for instance Ormberg and Larsen [195]). In qualitative terms, the severity of this

limitation is proportional to the relative size of the mooring system with respect to the

floater, which is governed by water depth [59, 196]. Catenary lines of increasing length

react with larger dynamic forces, which may increasingly affect the platform motion.

At the same time, the frequency of the principal modes of the mooring system also

diminishes with line length, typically approaching the platform modes and increasing

the interaction. The dynamically uncoupled approach used in this study seeks to contain

the retroaction inaccuracy through the use of a quasi-static, nonlinear mooring model in

the preliminary calculation of platform motion, but does not include any representation

of dynamic mooring effects such as additional damping.

If the platform dynamics are not imposed and need instead to be resolved by the model

in a coupled simulation, that is the methodology labelled ‘Code Aster(1)’ in 3.5.3, a

rigid hydromechanical floating structure model (of the type included in CALHYPSO,

see 2.2.1) is to be introduced. This is presently done by lumping the aggregate structure

mass and stiffness tensors defined at the floating structure’s equilibrium, M and Kh

(see Equations 2.1 and 2.9), onto a 6-DoF punctual (0D) element [197] located at

the pivoting point, where the incident wave excitation is also applied. Only harmonic

(regular wave) simulations can be organised with this method, since the convolution

treatment of aharmonic wave radiation forces (Equation 2.11) is unavailable in this

model. By assuming that motion is monochromatic and that its frequency equals that of

the incident wave, ω, these forces may be represented in the LHS by assigning frequency-

independent, linear added mass and damping tensors to the above defined 0D element,

A(ω) and B(ω), based on the outputs of the frequency-domain radiation calculation.

Finally, the hull drag forces are imposed on the structure using an extra set of rigidly

connected massless beams and the method of 3.2.4.1.
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3.3.5 Numerical damping

Dynamic mooring analyses aim to precisely represent low frequencies (wave excitation

and mooring system modes) and tend to be affected by parasitic high-frequency oscil-

lations caused by the system non-linearities. This is a common problem in structural

mechanics, often addressed by suppressing high-frequency instability with controlled

numerical damping. In particular, Hilber et al. [198] proposed a dissipative time in-

tegration scheme of the Newmark family (see Appendix B), commonly referred to as

HHT, which introduces low numerical damping in the low-frequency band and high

damping at high frequency, thereby allowing to stabilise the simulation.

The HHT integration scheme is recommended for the dynamic treatment of cable

elements in Code Aster for the above reasons, especially in the presence of the shocks

caused by contact [184, 199]. The Newmark parameters β and γ are in this case

expressed as functions of a third parameter, α, such as

β =
(1− α)2

4
, γ =

1

2
− α , α ≤ 0 . (3.23)

The amount of damping introduced numerically is governed by α, which is used to man-

age the compromise between high-frequency and low-frequency dissipation. Imposing

α = 0 leads to the classic, nondissipative average acceleration scheme, whilst increasing

dissipation is obtained with increasingly negative values. In its full application, the HHT

scheme also introduces a weighing of the internal and external forces, always governed

by parameter α, which is described in the original article [198].

In the applications presented in Section 3.5, a viable value of α has been chosen by

gradually increasing its magnitude until the fairlead tension, used as reference output

signal, becomes free of high-frequency noise. An example of the results obtained by

imposing low and high-end values of α is provided in Figure 3.12, which draws from

the results of a regular wave loading case treated in the following.
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α = −0.05
α = −0.43

Figure 3.12: Upwave fairlead tension of the DeepCwind-OC4 floating wind turbine
under regular waves, with low and high numerical dissipation of high-frequency
components. Loading case = F, as defined in Table 3.5.
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3.4 Static applications

A set of verifications of the presented mechanical moorings model is provided in this

Section. All of them make use of the above described methods to predict the static

behaviour of FWT mooring systems, which by definition excludes all inertial forces

and hydrodynamic interactions. The restoring characteristics of a generic mooring line

and of a realistic mooring arrangement are compared herein with appropriate reference

results. It is also shown how the linearised mooring system stiffness matrix for a well-

documented FWT concept can be successfully reconstructed.

3.4.1 Restoring characteristic of a catenary mooring line

A single, homogeneous mooring line with the properties of a typical offshore chain

in relatively shallow water is here used as a basis for the verification of the static

performance of the Code Aster -based model. The horizontal restoring problem of a

single mooring line (Figure 3.13) is planar, and the parameters provided in Table 3.1

in nondimensional form are sufficient to define an univocal catenary configuration of

the mooring line which satisfies the static equilibrium. The normalising quantities used

are h, the fairlead height over the (flat) seabed, %, the mass per unit length, and g. By

Table 3.1: Single mooring line parameters.

Unstretched line length L/h [-] 6.140
Material density ρmh

2/% [-] 1.280·105

Water density ρwh
2/% [-] 1.682·104

Axial stiffness κ/%gh [-] 8.233·103

Horizontal force at equilibrium F h
0 /%gh [-] 9.033

Volumetric added mass coefficient ca [-] 0

imposing an initial horizontal pull force F h
0 in F and by assuming that the fairlead

is free to move horizontally and constrained vertically, the continuous quasi-static

approach (see for example [164] for theory and [58] for an implementation example)

provides an analytical solution for the horizontal distance between anchor and fairlead

at equilibrium, in the following terms:

r = r(F h) = s(F h) + AT, F h > 0 , (3.24)

where s denotes the scope, the projection of the suspended line on the seabed. By

posing r0 = r(F h
0 ) as the reference horizontal fairlead distance from A, the horizontal

displacement from this position is defined as δ = r − r0. The mooring line’s force-

displacement characteristic consists in the F h(δ) relationship, which is nonlinear and

convex.

Two mechanical modelling options are used for verification, which are inelastic and
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F h
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s

Figure 3.13: Quasi-static problem of a single mooring line.

elastic behaviour. In order to obtain a numerical result representative of the inelastic

behaviour, the axial stiffness κ is increased by two orders of magnitude in the numerical

model. In the analytical model the inelastic catenary simply translates into a special

case of the general elastic formulation. On the contrary, the elastic line adopts the axial

stiffness indicated in Table 3.1. In this case, comparing the analytical and numerical

model outputs requires to take into account the elongation of the line segment between

the anchor point A and the touchdown point T in the analytical model. After the

deformation, the length of this segment becomes

AT = AT
u
(

1 +
F h

κ

)
≈
[
L− TF
_0(F h)

](
1 +

F h

κ

)
, (3.25)

where AT
u

is the unstretched length of the seabed segment and TF
_0 represents the

suspended length calculated analytically in the inelastic case.

The convergence of the numerical solver for increasing mesh resolution is shown for the

elastic case in Figure 3.14 (left). In terms of force-displacement relationship about the

given equilibrium configuration, the results of the continuous (analytical) and finite-

element (numerical) quasi-static models are found to be practically equivalent for both

the elastic and the inelastic case, as shown in Figure 3.14 (right).
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Figure 3.14: Relationship between horizontal fairlead force and position of an elastic
line using increasing mesh resolution (left). Restoring characteristic of a mooring line
with inelastic and elastic behaviour (right), where the numerical results use l/h = 0.013.

3.4.2 Restoring characteristic of a mooring system

A three-leg mooring system designed by an industrial partner of EDF for the Vertiwind

floating wind turbine is documented in [200]6. In the reference document, a static anal-

ysis conducted with state-of-the-art mooring simulation software OrcaFlex is carried

out, including the evaluation of the aggregated force-displacement characteristic of the

mooring system for three different line lengths. Next is presented the equivalent analysis

based on the presented methodology with Code Aster. All reported quantities are made

nondimensional for confidentiality reasons using h, the fairlead height over the seabed,

%, the chain mass per unit length, and g as normalising parameters, as done in 3.4.1.

3.4.2.1 Definition of the mooring system

Three equally spaced steel chains moor the floating wind turbine to the flat seabed. Each

of these is equipped with a clump weight (which is here modelled with a concentrated

downward force) producing the undisturbed equilibrium geometry with discontinuous

slope already shown in Figure 3.11 for a single line. A sketch of this mooring arrange-

ment is provided in Figure 3.15. All the input data which are used in the present

study are available in the reference report [200] with the exception of the chain mass

per unit length, not explicitly indicated, which is presently derived from the chain’s

nominal diameter with the relationships found in [61], assuming a standard studlink

chain construction.

Three variants are considered, characterised by different values of the unstretched line

6Confidential.
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Figure 3.15: Mooring configuration of the Vertiwind floating system, after Cahay et
al. [43].

length L. Table 3.2 provides these values as well as the corresponding normalised pre-

tensions at the fairlead, T ∗F = TF/%gh. Both the reference and the calculated pre-

tensions are supplied, along with the percent error of the presented model. The slight

underestimation of the pre-tension by Code Aster may be explained by the estimation

of the chain mass per unit length based on practical formulae.

3.4.2.2 Force-displacement characteristic

The restoring characteristic of the mooring system defined above is therefore obtained

by applying finite increments to the horizontal load on the rigid floater assembly, Fx,

and allowing the platform to displace in the x direction, whilst restraining displacement

in the remaining rigid-body DoF. Figure 3.16 provides an example of the equilibrium

positions found for positive values of F ∗x = Fx/%gh. The Figure shows how the fore

line, to the right, is gradually unloaded as the structure is pushed forwards, whilst the

aft mooring lines become more tensioned topping at more than three times the initial

tension. The resulting normalised displacements δx/h are plotted versus the horizontal

force in Figure 3.17, where they are compared with the reference results, showing that

Code Aster can successfully reproduce the nonlinear static behaviour of a complete

catenary mooring system.

Table 3.2: Parameters of the studied mooring configurations.

Case # L/h [-] Reference T ∗
F [-] Calculated T ∗

F [-] Error [%]

1 12.75 15.57 15.28 -1.86
2 12.81 13.35 13.07 -2.08
3 12.93 10.43 10.15 -2.66
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Figure 3.16: Undisturbed equilibrium configuration of Case 1 and configurations found
with three incremental force increases of ∆F ∗x = 17.37. The color map provides the
nondimensional line tension.
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Figure 3.17: Comparison of three calculated (markers) and reference (lines) force-
displacement characteristics. The reference results are digitised from the Vertiwind
mooring design report [200].
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3.4.3 Mooring system stiffness matrix

Computational mooring simulators are often used to linearise the behaviour of mooring

systems about an arbitrary configuration, most commonly the undisturbed one. An

equivalent 6 × 6 stiffness tensor is computed about said central position, allowing to

approximate the mooring system’s restoring force to the first order (see 2.2.7).

Next the mooring stiffness matrix of the DeepCwind-OC4 concept, defined in [137], is

calculated with the static Code Aster methodology. The mooring system, designed for

a constant water depth of 200 m, is composed by three axisymmetric chain lines angled

at 120 ◦ from one each other. The geometric parameters defining the mooring system

and the chain characteristics are given in Tables 3.3 and 3.4 respectively.

A water density of 1025 kg/m3 and a nil added mass coefficient are assumed. The first

step is the usual calculation of the undisturbed equilibrium configuration, shown in

Figure 3.18. The distribution of tension along the lines is given by the colour map. The

nodal reaction vectors are also plotted, which indicate where the boundary conditions

intervene mechanically in this particular state. The magnitude of these vectors is to

scale, except for the seabed contact reactions (in white) which are magnified by a

factor of 102.

Finite, positive perturbations7 ∆xP
j , j = 1 : 6, are then applied in turn to each of

the nodal DoF at the pivoting point P, located at the intersection of the platform

centreline and the free surface, whilst the other five remain clamped. For each of the six

loading cases the corresponding boundary reaction qP(j) is extracted from the solution

after calculating the new static equilibrium. The perturbation in nodal reaction is then

obtained with ∆qP(j) = qP(j) − qP
0 with reference to the undisturbed reaction force.

Table 3.3: DeepCwind-OC4 mooring system geometry.

Fairlead depth below the free surface [m] 14.00
Fairlead radius from platform centre [m] 40.87
Anchor radius from platform centre [m] 837.6

Unstretched line length L [m] 835.5

Table 3.4: DeepCwind-OC4 studless mooring chain parameters.

Nominal diameter [m] 0.0766
Material density ρm [kg/m3] 7800

Mass per unit length % [kg/m] 125.1
Axial stiffness κ [N] 753.6·106

7Corresponding to a set of Dirichlet boundary conditions on displacement.



3.4. Static applications 105

0.9 · 103 1.1 · 103

Line tension [kN]

Figure 3.18: Undisturbed equilibrium configuration of the DeepCwind-OC4 mooring
system showing the line tension (colour map) and the nodal reactions vectors (arrows).

The positive-displacement mooring stiffness is derived with

Km+
ij =

∂qP
i (j)

∂xP
j

≈ ∆qP
i (j)

∆xP
j

. (3.26)

The same procedure is used to derive the negative-displacement stiffness terms, Km-
ij , by

imposing negative perturbations −∆xP
j . Finally, the tangent mooring stiffness matrix

is obtained with

Km
ij =





1
2

(
Km+
ij +Km-

ij

)
if sgn(Km+

ij ) = sgn(Km-
ij ) ,

0 if sgn(Km+
ij ) 6= sgn(Km-

ij ) .
(3.27)

Note that an equivalent approach would consist in perturbing the concentrated force

in P and computing the equilibrium displacements. The linear mooring stiffness matrix

obtained with Equation 3.27, Km, is equal to (in SI units):

Km =




7.02·104 −1.02·105

7.02·104 1.03·105

1.91·104

1.04·105 8.67·107

−1.04·105 8.67·107

1.16·108


 . (3.28)

Let Em represent the percent errors with respect to the absolute values of the homolo-

gous coefficients published in [137],

Em =



−0.8 −6.0

−0.9 −4.4
−0.1

−3.1 −0.7
−3.2 −0.7

−0.8


 . (3.29)
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With respect to the reference solution, the present model is capable of predicting

diagonal mooring stiffness coefficients with errors below 1% – which is by the way in the

order of the precision of the available results. Nevertheless, non-diagonal coefficients are

significantly underestimated, exhibiting discrepancies in the 3%–6% range which remain

unexplained. Error convergence was checked with respect to the spatial resolution of

the mesh and the magnitude of the perturbations ∆xP
j .

3.5 Dynamic applications

The present Section describes the set of dynamic simulations of a floating wind tur-

bine mooring system carried out with Code Aster using the above methodology. It is

next attempted to reproduce numerically a documented experimental campaign (3.1.3)

where a scale model of the DeepCwind-OC4 FWT is subjected to wave excitation

[84, 85]. The experimental setup incorporates the geometrically downscaled three-line

mooring system, enabling to compare the measured fairlead tensions with the numerical

predictions.

3.5.1 Experiment selection

Among the variety of loading cases presented in Masciola et al. [85], it is here chosen

to model the subset for which the authors provide experimental fairlead tension data.

This corresponds to six regular wave scenarios (here denoted with letters B to G) plus

an irregular wave case. Another low-energy regular wave scenario (A) is reproduced

from Coulling et al. [84]. In these tests wavetrains of varying properties are sent over

the structure in the negative X direction (consistently with the usual orthonormal

reference system shown in Figure 3.2); the main focus of the campaign is placed upon

highly energetic sea states, representing extreme oceanic conditions, which should help

to bring out the dynamic features of the mooring system. Tables 3.5 and 3.6 provide a

definition of the loading cases considered, with full-scale dimensions.

It can be seen that the regular waves used to excite the structure are moderately

steep, causing them to fall into the 2nd order Stokes field of the classic wave theory

classification (cf. Le Méhauté [201]). A relatively low peak enhancement factor, equalling

2.2, is used in the irregular wave case following the experiments carried out at MARIN.
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3.5.2 Numerical model parameters

As it is frequently the case in offshore engineering, the reference study compares

experimental and numerical outputs at the full scale; full-scale quantities are hence

used here as inputs. The geometric parameters of the OC4 floater correspond to those

previously given in Table 2.7. What varies here is the definition of the wind turbine

and ballast on the platform, and by consequence the aggregated mass and inertia of

the floating system, which are provided in Table 3.7. Since all the considered loading

cases feature a parked turbine, which intervenes in the model as a rigid onboard mass,

it is not necessary to reproduce the wind turbine particulars in greater detail.

The mooring system geometry is identical to that presented for the full-scale DeepCwind

turbine in 3.4.3, designed for a full-scale water depth of 200 m and adopting the defining

parameters of Table 3.3. However the model’s full-scale mooring chain properties,

provided with Table 3.8, depart slightly from nominal. The drag coefficients indicated in

the Table are assigned based on the values proposed by MARIN [62] for standard (full-

scale) chains, whilst the volumetric added mass coefficient is set to unit consistently

with [85].

The gravitational equilibrium requirement is satisfied by countering the undisturbed

mooring line weight with an equal vertical force applied at each fairlead. This reintro-

duces the need to represent the stabilising effect of the mooring system weight with

a corresponding gravitational correction in the computation of Kh (see 2.2.7), which

determines a height of the CoG over the keel of 9.743 m.

Table 3.5: Regular wave loading cases considered. Wavelength is calculated using the
Airy wave dispersion relationship in finite water depth.

Case Wave height Hw [m] Wave period Tw [s] Wave steepness Hw/λ [%]

A 1.92 7.5 2.19
B 7.58 12.1 3.32
C 7.14 14.3 2.24
D 7.57 20.0 1.25
E 10.30 12.1 4.52
F 10.74 14.3 3.37
G 11.12 20.0 1.84
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Table 3.6: Irregular wave loading cases considered.

Sig. wave height Hs [m] Peak period Tp [s] Spectrum
7.04 12.18 JONSWAP (γ̂ = 2.2)

3.5.3 Results and discussion

Next is presented a comparison of the outputs of the simulations carried out with

Code Aster and the MARIN experiments. The modelling strategies used are the fol-

lowing:

• CALHYPSO. The dynamic simulation uses the software described in Part 2,

where the mooring forces are calculated with the quasi-static method.

• Code Aster(1). The coupled system’s dynamics are calculated with the dynamic

moorings model.

• Code Aster(2A). The platform motions are derived with CALHYPSO as above

and hence imposed to the dynamic moorings model (motion-driven simulation).

• Code Aster(2B). Equivalent to Code Aster(2A), neglecting the incident wave

kinematics in the calculation of mooring drag forces.

For regular waves, both the motion and the fairlead tension outputs are given in

the RAO form using the definition of Equation 2.19, applied to the steady-state dy-

namic regime. Where irregular waves are concerned, the power spectral density of

the quantities of interest is presented. This is calculated for a stationary regime of

two-hour duration. Provided that the highest natural period of the structure, that

of surge motion, is in the order of 100 s, more than 50 resonant surge cycles are

allowed. Considering this feature, and that the input energy is located at smaller

periods, two hours seem sufficient to capture the variability of the stochastic processes

involved8. Samples of the underpinning time-domain tension signals are provided for

visual complement.

Table 3.7: Global mass and inertia properties of the DeepCwind-OC4 model brought
at full scale, moorings excluded.

Displacement [t] 14267
Height of CoM from keel [m] 9.792

Central roll/pitch moment of inertia [kg m2] 1.344·1010

Central yaw moment of inertia [kg m2] 1.396·1010

8Note that longer simulation times would be required to determine the extreme responses.
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Table 3.8: Parameters of the studless chain used to moor the DeepCwind-OC4 model,
brought at full scale. Drag coefficients are referred to the chain’s nominal diameter.

Nominal diameter [m] 0.0766
Material density ρm [kg/m3] 8500

Mass per unit length % [kg/m] 123.5
Axial stiffness κ [N] 753.6·106

Volumetric added mass coefficient ca [-] 1.0
Axial drag coefficient cad [-] 0.8

Normal drag coefficient cnd [-] 2.4

3.5.3.1 Response in regular waves

Figure 3.19 displays the platform dynamic response under regular wave excitation found

by the MARIN campaign, and through the simulations carried out with CALHYPSO

and the coupled dynamic moorings model. In-plane motions (surge, heave, pitch) are

the only rigid-body DoF excited.

As commonly found in slack-moored offshore structures, surge amplitude increases

with the oscillation period. Similar response operators are found for the two different

wave heights. In this DoF, the outputs of CALHYPSO and Code Aster are close to

equivalent, showing the limited effect of mooring dynamics on platform motion in this

particular case. With reference to the experiments, both models tend to underestimate

response slightly, especially for Tw = 20 s where the error is in the order of 10%. A

similar accuracy has been obtained in the reference study by modelling these cases

with NREL’s FAST [84].

The normalised dynamic response in heave is limited to a fraction of a unit at low

periods, whilst at the near-resonant period of Tw = 20 s it exceeds unit. The heave DoF

is also well predicted by both numerical models, which produce amplitude errors of a few

percent points. It is once again at 20 s that the models err the most, showing however

better performance than the FAST results reported by Coulling et al. [84]. This may

be explained by the explicit inclusion of platform drag in the present models, which

significantly contributes to exciting the structure vertically, where in the referenced

FAST simulation the drag model is only reactive. Said thesis is reinforced by the model-

to-model comparison provided by Masciola et al. [85].

Pitch appears to be a more problematic DoF to be simulated in this case. CALHYPSO

mostly underestimates pitch response across the studied range, with an error pattern

closely resembling that of the simulation outputs published by Coulling et al. [84]. In all

cases but A and B, the explicit inclusion of mooring dynamics enabled by Code Aster

seems to positively affect the accuracy of the simulated platform response. Once again,

the system dynamics at the wave period of Tw = 20 s appear to be particularly sensitive

to the modelling approach. For pitch, this is likely to be an effect of the proximity of the

semi-submersible platform’s excitation suppression point (discussed in Part 2), which
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Figure 3.19: Measured and computed motion response amplitude operator of the
DeepCwind-OC4 floating system in regular waves. The experimental data are digitised
from Coulling et al. [84].
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Figure 3.20: Measured and computed fairlead tension response amplitude operator in
regular waves. The experimental data are digitised from Coulling et al. [84].

reduces the effect on response of the inertial wave excitation, dominant elsewhere,

thereby exalting the importance of secondary force systems.

The measured and predicted fairlead tensions in regular waves are shown in Figure 3.20.

A first and most striking, if unsurprising, observation is that the quasi-static represen-

tation of CALHYPSO severely underestimates the tension variance across the entire

set of cases. All dynamic mooring model outputs provide a more accurate estimate

of the tension RAOs, both for the upwave fairlead F1 and the downwave fairlead
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F2, and exceed the performance of the dynamic mooring simulations presented in

Masciola et al. [85], which underpredict the response amplitude. The best performance

is provided by the coupled dynamic simulation, ‘Code Aster(1)’, with the exception

of downwave tension at 20 s (D, G) which is better predicted by the motion-driven

approach. Accuracy seems to deteriorate for larger wave heights, as observable from

period-matched case pairs such as B, E. The root cause may be sought in the extra

tuning required by the chain drag coefficients (governing the dynamic mooring effects

at high energy), which are currently static and calibrated at the full scale. Another

possible cause may be the absence of potential, 2nd order hydrodynamic excitation

(wave drift forces) in the present numerical models.

The three dynamic modelling approaches presented here exhibit good mutual agreement

with the exception of the downwave line tension for Tw = 20 s. In this case the

coupled simulation provides a tension RAO which is around 75%–80% of the motion-

driven one, possibly due to the differing pitch responses obtained by CALHYPSO and

Code Aster(1), as already seen in Figure 3.19c. Further work will be required to clarify

the system’s dynamics at this particularly sensitive period.

Finally, the motion-driven output tensions obtained by neglecting the incident wave

kinematics are shown to slightly undershoot the standard motion-driven results –

by up to 8% in the worst case. This result is used to justify the use of approach

‘Code Aster(2B)’, neglecting the wave kinematics, in the following to simulate the

mooring dynamics under irregular waves9.

3.5.3.2 Response in irregular waves

CALHYPSO is used here to compute the DeepCwind FWT motion response under

the irregular wave case defined in Table 3.6. Verifying the correct prediction of the

dynamic response features of the platform is a required passage before moving on to

analysing the dynamic fairlead tensions obtained with Code Aster. In order to facilitate

the interpretation of the output spectra, the uncoupled natural frequencies of the floater

and of the undisturbed mooring lines are provided in Table 3.9. The latter are calculated

with the method described in [202], based on the transverse-excitation modes of offshore

mooring lines, and disregarding the hydrodynamic added mass.

The power spectral density (PSD) of motion in the three excited DoF is provided with

Figure 3.21, where the experimental results are available only for the translational DoF.

The surge motion spectrum is bimodal, with two distinct response peaks descending

from the first-order and second-order (drag) hydrodynamic excitation on the platform;

both peaks exhibit good agreement with the measurements. It is important to remark

that satisfactory resonant response in surge is here obtained numerically without the

9Irregular wave kinematics are not implemented in Code Aster yet.
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Figure 3.21: Measured and computed power spectral density of the motions of
the DeepCwind-OC4 floating system in irregular waves. The experimental curves are
digitally imported from Masciola et al. [85].
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inclusion of potential-flow, difference-frequency forces. As it was also observed during

the VALEF2 project, the representation of hull drag forces on a position-updated basis

introduces a low-frequency forcing which can dominate the excitation of the surge

mode, depending on the type of structure studied. In light of this, the underprediction

of resonant response in surge by the numerical model utilised in Masciola et al. [85] may

be due to the missing actualisation of the Morison elements following the platform’s

displacements.

Heave response in the wave frequency band is also well represented by the numerical

model, whilst the adjacent peak which identifies resonant motion – excited by both

inertial and viscous wave forces – is slightly less well captured: whilst the excess motion

amplitude may be due to insufficient vertical dissipation in the model, the slight natural

frequency mismatch is likely due to the numerical added mass deficit on the Morison

elements. For pitch motion, first-order wave excitation combines with the pitch response

characteristic of the FWT providing the response energy visible in the central band.

Secondary peaks appear to the left of this band suggesting the presence of weak inter-

DoF couplings and pitch resonance.

Using the motion time histories above as input, the motion-driven dynamic simulation

performed with the ‘Code Aster(2B)’ method provides the fairlead tension spectra

displayed in Figure 3.22. Only the experimental spectrum of the upwave fairlead is

available for comparison. Both spectra are trimodal, with a low-frequency peak governed

by the resonant surge response of the platform, a broader wave frequency peak and a

high-frequency tail. The dynamically simulated spectrum matches the experimental

observations, net of the spectral noise caused at high frequency by the constant block

averaging resolution chosen for the post-processing. Mainly due to the angled geometry

of the downwave mooring lines with respect to the in-plane motion of the platform, the

dynamic component of the simulated tension is much lower than in the upwave line.

An important limitation of the present comparison consists in the random phases chosen

to translate the input wave spectrum into a time-domain signal. A more rigorous

numerical representation of the experiments could be carried out by matching the

basin test phases; unfortunately, these are unknown. Whilst the first-order dynamic

Table 3.9: Natural frequencies of the floating DeepCwind-OC4 system.

Subsystem Mode Frequency [Hz]

Platform Surge/sway 0.009
Platform Heave 0.059
Platform Roll/pitch 0.039
Platform Yaw 0.012

Mooring lines 1st transverse 0.077
Mooring lines 2nd transverse 0.153
Mooring lines 3rd transverse 0.230
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response is unaffected by phasing, response related to nonlinear processes combining

different harmonics is linked to the specific phase set in the realisation10. Due to missing

information regarding the spectral realisation of the basin tests (phases and duration

of experiment), the phasing issue is not assessed in the present study.

Included in CALHYPSO is a quasi-static moorings model, whose performance in terms

of tension prediction is satisfactory only at low frequency. In the wave frequency band

and above this model severely underestimates the tension range, especially at the

upwave fairlead. This is an expected outcome of the use of the quasi-static catenary

representation of mooring forces in a highly dynamic offshore structure simulation.

Although the first natural mode of the mooring lines sits in the vicinity of the first-

order excitation peak, a sensitivity analysis (not included) permitted to determine that

drag rather then inertia is the dominant process causing tension magnification in this

band, which is not captured with the quasi-static approach. This is a known feature of

catenary mooring systems in limited water depth.

Both numerical fairlead tension spectra obtained with Code Aster contain significant

high-frequency energy, due to the mechanical nonlinearities of the mooring system and

a possible excitation of the second transverse mode of the lines (see Table 3.9). This

prediction is confirmed by the available experimental spectrum. The broad frequency

spreading of this response feature may be explained with the parametric behaviour

related to the low-frequency variation of line tension and suspended length caused by

platform motion. The high-frequency energy content is relatively more important for

the downwave line, as it is also intuitively visible from Figure 3.23. A close inspection of

the tension time histories confirms the trimodal nature of the dynamic tension signals

and the absence of the high-frequency response from the quasi-static results.

10See for instance Roald et al. [203].
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Figure 3.22: Measured and computed power spectral density of the fairlead tensions
under irregular wave excitation. The experimental curve is digitally imported from
Masciola et al. [85].
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Figure 3.23: Excerpts of simulated line tension under irregular wave excitation using
quasi-static and dynamic mooring analysis.
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3.6 Conclusion

For the first time Code Aster, the open-source mechanical analysis software developed

by EDF R&D, has been used here to simulate offshore mooring dynamics. Successful

applications to the floating wind technology have been included in this Part. After

the presentation of the methodological choices, hinging on the 1D finite-element rep-

resentation of slender and compliant structures and unilateral contact mechanics, it

has been shown that appropriate model set-up and initialisation permit to handle the

hydromechanics of catenary mooring systems with this general-purpose tool.

A series of static simulations has been used first to document the accuracy and capabil-

ity of the model, enabling to reconstruct the nonlinear and linearised behaviour of slack

mooring systems for FWTs. Subsequently, a range of dynamic simulations has been

performed and compared with experimental results available from the literature. The

model has been shown to satisfactorily predict the coupled platform-moorings dynamics

of a FWT in regular waves. The dynamic fairlead tensions are in particular well

represented, albeit with seemingly decreasing accuracy as the wave height is increased. A

motion-driven simulation representing the system’s dynamics under irregular waves has

also been carried out and compared with experimental observations from the literature,

once again validating the accuracy of the fairlead tensions predicted via Code Aster. It

has been shown that all the constituents of dynamic tension response (low-frequency,

wave frequency, and high-frequency) are captured by the numerical solution, suggesting

that the model correctly reproduces the main physical processes at play. Accuracy may

be improved by further work: for instance, the choice of comparing the measured and

simulated response at the full scale brings with it a degree of scaling uncertainty, which

may affect in particular the viscous hydrodynamics of the mooring lines. Additional

calibration efforts may be sought in the future, perhaps by complementing the modelling

workflow with reduced-scale analyses.

A more thorough verification of the capabilities of this model will require the evaluation

of the behaviour of different platform and mooring system combinations, especially

considering that the presented validation case regards a large, academic-type floater

concept using a conventional slack mooring system. Considering the current trends in

FWT technology, priority may be placed on the implementation of fibre rope behaviour

(especially with respect to nonlinear stiffness characteristics) and on the verification of

taut/tensioned system simulation. The implementation of higher-order wave forcing on

the platform in the calculation chain should also permit to ascertain their influence on

the system’s dynamic response, especially considering that the low-frequency motions

and tensions obtained here seem to match well the experiments although no second-

order potential hydrodynamics are represented.

The inclusion of aerodynamic forcing, either steady or turbulent, is already possible

with the motion-driven approach, and should be investigated in the future for the
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characterisation of the effects of aerodynamics on the mooring line tensions. A further

step may consist in dynamically linking the finite-element solver to CALHYPSO to

enable fully coupled mechanical simulations.

In its current form, the presented Code Aster -based dynamic moorings model has

become part of EDF R&D offshore mechanics calculation chain and has already been

used for concept verification and classification (see Peyrard and Antonutti [161]); it

has been employed by the utility to evaluate FWT mooring arrangements of different

complexity, in the context of the Group’s calls for tenders – where solutions by MODEC,

Ideol, and other applicants were analysed – and of a joint industrial project (Vertiwind).

Further development efforts may be directed toward coefficient calibration, a more

detailed representation of the seabed interaction and of the fluid-structure interaction,

and a generalisation of the types of mooring components tractable (ropes, buoys,

etc.). In particular, finite elements of higher complexity (beams) may be used for the

representation of less flexible 1D equipment such as umbilical cables, provided that a

reliable large-displacement behaviour is implemented.



Part 4

Aeroelastic Analysis of

Vertical-Axis Wind Turbines

This Part presents the doctoral work carried out in the field of vertical-axis wind turbine

rotordynamics and aeroelasticity, with application on helical-type VAWT rotors of the

Vertiwind class. An introduction to the domain of aeroelasticity and an outline of the

aeroelastic stability problem are given in Section 4.1. The motivation of the present

study and a review of past research in this area are also contextually supplied. Sec-

tion 4.2 introduces the methodology used to establish the finite-element rotor-dynamic

model representing the structure in the absence of aerodynamic interaction. The classic

output of this type of model, the Campbell diagram, is also presented in Section 4.2

with application to two VAWT rotor architectures. The following Section 4.3 further

builds on the rotor-dynamic model leading to a representation of the integral aeroelastic

system. This serves to characterise and discuss the coupled vibrational-aerodynamic

behaviour of the two VAWT rotors of interest. Finally, Section 4.4 summarises the

conclusions of this Part, and points out its methodological limitations.

A subset of the materials contained in this Part has been used within an internal EDF

R&D deliverable by Relun and Antonutti [204].

4.1 Introduction

Offshore wind turbine rotors are among the largest rotating structures ever constructed.

Designing these machines to guarantee long-term structural integrity in a cost-effective

way is one of the main challenges faced by the wind industry, and constitutes a rich

research area. Due to the increasing size (especially offshore) and compliance of modern

rotor designs, admissible blade deformations are increasing (Figure 4.1). Because of

structure elasticity, the aerodynamic loads tend to become increasingly affected by

the turbine’s structural response, resulting in a coupling of two dynamic systems:

the structural system and the aerodynamic system, which combined form a dynamic

aeroelastic system (see Figure 4.2). As it will be later explained, such systems are

120
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Figure 4.1: Aeroelastic deflection of a wind turbine blade. After Siemens [205].

susceptible of entering self-excited dynamic states which may hinder the capacity of the

structure to resist normal operating loads, or even lead to rapid failure. This is why the

structural reliability of a large wind turbine rotor must be studied with an aeroelastic

approach: methodologies originally conceived for the study of subsonic aircraft wings

are today broadly used in this context.

Classic examples of aeroelastic systems are large-span suspension bridges and airplane

wings. These structures combine high aerodynamic loading with structural compli-

ance in different manners. On one hand, modern suspension bridge design allows for

large displacements to redistribute the internal stresses and achieve material efficiency.

The parasitic aerodynamic forces arising from the action of wind interact with said

displacements and may trigger adverse aeroelastic phenomena such as flutter, a self-

excited state which caused the notorious collapse of the Tacoma Narrows bridge. On

the other hand, aircraft wings are designed to produce large aerodynamic whereby

minimising structural weight: once again the outcome is a system which simultaneously

exhibits high aerodynamic loading and structural compliance, thus requiring aeroelastic

analysis for its design and verification. The aerodynamic complexities specific to the

above applications (chiefly vortex shedding for bluff civil engineering structures and

compressible aerodynamics for aircraft wings) will be left out of the present study,

enabling to concentrate on the aeroelastic features characteristic of a vertical-axis wind

turbine rotor.

As seen in Part 1, the EDF Group is currently pioneering the use of large-scale vertical-

axis rotors for use in floating wind projects. As it has been pointed out, verifying the

structural integrity of the rotor configurations proposed by the technology developers

requires to characterise their aeroelastic behaviour. The key question is whether the

proposed designs risk to be affected by aeroelastic instability. Verifying a rotor con-

figuration means, firstly, making sure that such instabilities are not triggered in the

machine’s operating envelope, and that sufficient margins lie between the operating
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envelope and any detected unstable states. Secondly, the presented method allows to

produce an estimate of the beneficial aerodynamic damping generated by the aeroelastic

interaction. Its prediction and incorporation in the design phase allows to avoid over-

designing the rotor, whose vibrations – especially in resonant conditions – can be

significantly reduced in amplitude by this phenomenon. In fact, given the typically

low structural damping of wind turbine rotors, the aerodynamic component tends to

dominate their vibrational damping [206].

The numerical model presented in this Part was developed for the purposes described

above. The upstream doctoral work exploits a pre-existing in-house finite element

environment written in C++ and includes the implementation of rotating beam theory,

linearised airfoil theory, as well as the separate resolution of the modal problem in the

Scilab programming environment. The model is hence applied to two rotor configura-

tions of interest. The first is related to an ongoing testing campaign for the qualification

of a 600 kW rated sub-assembly of the Vertiwind turbine (see Figure 4.11), which is

expected to provide full-scale experimental data enabling the validation of the numerical

model. The second application concerns the prediction of the aeroelastic vibrational

behaviour of the fully assembled 2 MW Vertiwind rotor for use in the EDF Group’s

pilot floating windfarm project Provence Grand Large.

4.1.1 Aeroelastic stability of wind turbines

As said above, the discipline of aeroelasticity combines in its classic formulation struc-

tural and aerodynamic analysis; grounding in this domain is available for instance

in textbooks by Balakrishnan [207] and Clark et al. [208]. More specifically, structural

forces can be broken down into elastic and inertial components, which allows to identify

the field of dynamic aeroelasticity through the Collar diagram shown in Figure 4.2. It

Dynamic

aeroelasticity

Static aeroelasticity

Aerodynamic forcesElastic forces

Inertial forces

Stucture dynamics Flight dynamics

Figure 4.2: Relationship between structural and aerodynamic forces with respect to
typical dynamic systems, also known as Collar’s aeroelastic triangle.
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is straightforward to acknowledge that the interaction of inertial and elastic forces in a

solid defines the field of classic structural dynamics. When a free, unconstrained body

is subjected to aerodynamic loading, its dynamics are in essence determined by the

interaction of these loads with the body’s own inertial forces. This defines the field of

flight dynamics in Figure 4.2. When elastic forces interact with an aerodynamic system

with little participation of the structure’s inertial forces, the resulting motion is well

described by means of static aeroelasticity considerations as shown in the Figure. This

is for example the case of an idealised zero-mass airfoil which is compliant in pitch: the

pitch angle determines the lift force and hence the moment exerted on the airfoil, while

at the same time it is driven by these same external forces. In other words, a coupling

is present which links the aerodynamic and structural elastic subsystems.

Most rotating machinery using air as a working fluid – in essence all sorts of air pumps

and turbines – is comprehensively described by the dynamic aeroelastic scheme, where

the aerodynamic and inertial forces must however include the effects of rotation. On the

aerodynamic side, a homogeneous rotation of the structure around a fixed axis induces

a tangential airspeed on its components which is combined with the incident airflow.

The curved trajectory followed by any part of the structure located at a distance from

the revolving axis also causes a perturbation of the relative airflow compared to the

usual rectilinear flow considered in classic aeroelastic models. On the structural side

the distributed gyroscopic/Coriolis and centrifugal forces affect the rotor’s vibrations

and cause its modes to depart from those experienced at standstill. All structural

spinning effects are related to the principle of inertia and can hence be included in the

upper vertex of the Collar triangle. However they all depend from the rotational speed:

explicitating the distinction between them and the classic standstill inertial forces can

help in understanding the elements at play into the rotor-dynamic system, as it will

appear evident in Section 4.2. The corresponding picture may be provided visually by

rearranging the Collar triangle into a tetrahedron as done in Figure 4.3.

As anticipated in the introduction, the concept of aeroelastic instability descends from

the observation that in certain conditions aeroelastic systems can enter self-excited

states leading to the loss of stability, which may be due to either static or dynamic

effects. It is important to remark that these states are distinct from resonant vibration

and may prove far more dangerous if left unchecked: a rapid and complete failure

can easily occur after the onset of aeroelastic instability, or otherwise the structure

may resist by locking into undesirable and typically damaging limit-cycle oscillations 1.

Hence such instabilities need to be recognised in advance and typically designed out of

the operating envelope of the machine to prevent the incursion of catastrophic failure

1A limit-cycle oscillation is a high-amplitude vibrational state for which the system exhibits non-
linear dynamics. Refer for instance to Dutta and Bhattacharjee [209]. The associated cyclical loads
often exceed the elastic limits of the structure and/or produce a rapid escalation of structural damage.
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Figure 4.3: Extension of the Collar’s aeroelastic triangle to allow for rotor-dynamic
effects.

modes.

In the field of subsonic, attached-flow aeromechanics, a fundamental type of static insta-

bility is the the lift-induced divergence phenomenon: when a lift generating structure’s

marginal restoring force in the torsion mode becomes smaller than the marginal lift

moment increase associated to the same rotation, runaway rotation is the consequence.

Flutter, labelled as “the most dramatic physical phenomenon in the field of aeroelas-

ticity” by Clark et al. [208], is instead the key dynamic instability mechanism. This

takes place when coupled flapwise and torsional motion of a lift-generating structure

causes lift force oscillations which are in-phase with its motion; if the mode is not

damped enough, the net energy intake of each oscillation cycle is positive, leading

to increasingly large displacements and a risk of structural failure. When rotating

machinery is concerned, the flutter mechanism can interact with the effects of structure

rotation and may be triggered by a reduction of effective structural stiffness due to

spin-softening and/or centrifugal pre-loading. This form of instability commonly found

on rotors is denoted whirl flutter, for example by Buhl et al. [210]. A common prediction

found in the literature is that as wind turbines grow in scale and additional flexibility

is designed in to improve large-blade load management, lift-induced flutter (also called

classical flutter) may become increasingly important as a design constraint. Taken to

the extreme consequences, this tendency may cause a shift from load-driven design to

stability-driven design when very large and elastic rotors are concerned, as pointed out

by Bir and Jonkman [211], as well as Ashuri [212].

The aeroelastic stability of large wind turbine rotors of the horizontal and vertical-axis

kind remains today a relatively immature research area where a limited amount of

reported work is available. In addition, no experimental data has been published in this

field for utility-scale turbines to be used as a suitable validation basis. A comprehensive

review of the research in both aerodynamic and aeroelastic analysis of wind turbines
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by Hansen [121] concentrates on the horizontal-axis architecture. A close-up on the

aeroelastic stability problem of large wind turbines is provided in Hansen et al. [213].

Concerning the HAWT arrangement, there is agreement on the fact that two potential

instability types are prevalent: the lift-induced flutter mechanism described above and

the stall-induced vibration mechanism. Lift-induced flutter is shown to potentially affect

the stability of a pitch-controlled turbine, especially when in idling state under high

wind, whilst blade operation in the stall region is pointed out as a concurring source of

instability for stall-regulated HAWTs as remarked by Madsen et al. [214], Thomsen

et al. [215], and Holierhoek [216]. The latter phenomenon, due to the decrease of

reactive lift experienced during blade vibrations, becomes particularly important when

the blade airfoils exhibit abrupt stall characteristics. A study by Zhang and Nielsen

[217] shows that turbulent inflow can also provide a significant contribution to this

type of instability.

The aeroelastic behaviour of vertical-axis wind turbines has been described in the time

domain when rotor deformability is included in the model, for example in Wang et al.

[111], where the blade element momentum Theory is used to apply the aerodynamic

loads on a deformable Darreius VAWT. However, the characterisation of aeroelastic

stability is often not well documented when such coupled simulation models are used,

because the spinning effects, critical for the assessment of stability, are not explicitly

treated. A relatively simpler frequency-domain set-up allows direct determination of

the stable operating envelope and the estimation of the rotor’s aerodynamic damping

characteristics at limited computational cost, though generally accepting more stringent

hypotheses. This is the approach used for instance by Lobitz [218] to evaluate the flutter

propensity of an isolated HAWT blade, which is also studied using different modelling

options in Owens et al. [219]. An evaluation of the sensitivity of flutter for a HAWT

blade with respect to its construction parameters is provided by Lobitz [220] using the

same approach, as well as by Resor et al. [221].

More dated works by Lobitz and Ashwill, and Popelka [206, 222] evaluate the aeroelastic

features of a full VAWT assembly with an analogous method; vertical-axis rotors are also

investigated in Owens and Griffith [223], where several MW-scale concepts are treated.

The aforementioned studies address the aeroelastic problem by simplifying aerody-

namics through the use of blade element theory. More physical and computationally

expensive approaches potentially enable much greater accuracy in the characterisation

of the aeroelastic behaviour of a VAWT. For example a study combining the FE

and RANS methods, proposed by Raciti Castelli et al. [224], organises the coupled

aerodynamic-structural problem with full resolution of the aerodynamic flow.
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4.2 Modal analysis of vertical-axis rotors

This section describes the methodology underpinning the model used to identify the

vibrational modes of a VAWT rotor and the evolution of their characteristic frequency

with respect to rotational speed (Campbell diagram). Two Vertiwind-type rotors of

interest are then analysed, providing a direct industrial application example and a

basis for discussion of rotordynamic effects.

4.2.1 Methodology

The VAWT rotor assembly is studied here as a solid, elastic continuum undergoing

rotation about a fixed axis, with the position of the bearing assumed fixed in space. The

interaction with the surrounding fluid is disregarded: this part will be later introduced

in the form of a model augmentation in Section 4.3. The structure of the rotor is

hence undergoing large rotational displacements, whereby its vibrations can be assumed

to be small in amplitude. This enables to decouple the kinematic representation of

revolution from that of vibration: if one assigns a prescribed rotational speed to the

rotor, corresponding to a given operating condition, then the small deformations of the

solid around the equilibrium geometry may be expressed in the corrotating system of

reference, eliminating the need to re-actualise the structure’s geometry following the

variation of the azimuth angle. Thus by assuming linear material behaviour and small

vibration amplitude the vibrational dynamic problem can be linearised and solved in the

rotating, non-inertial frame attached to the structure. This treatment allows the use the

classic finite-element modelling tools (see for example Abbas [225]). The methodological

basis used to build the numerical model of a spinning rotor is next presented.

4.2.1.1 Kinematics

A point P in 3D space is shown in Figure 4.4. Given an inertial reference system XY Z,

and assuming that the point is rotating at constant speed Ω around Y , one can assign a

corrotating, non-inertial system of reference (SoR) x̄ȳz̄ where ȳ ≡ Y and x̄ = X, z̄ = Z

for t = 0. Vector r denotes the position of P in the corrotating system. A simplifying

hypothesis adopted in this study descends from the assumption that the rotor bearing is

fixed in the inertial system of reference – which in practice corresponds to disregarding

the offshore platform motions and the deformations of the structure which supports

the bearing. This permits to impose that the translations of the floating frame be

identically zero, as well as the rotations other than that associated to rotor speed in

operation, in our case ω̃1 ≡ ω̃3 ≡ 0. After imposing a generic constant rotational speed,

ω̃2 = Ω = const., a spinning matrix Ω is introduced to link the motion expressed in the
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Figure 4.4: Location of point P in a rotating system of reference x̄ȳz̄.

inertial and spinning systems of reference:

Ω =




0 0 Ω

0 0 0

−Ω 0 0


 . (4.1)

Let p, ṗ, and p̈ be the position, velocity, and acceleration vectors in the inertial frame,

under the above hypotheses the kinematics of P in XY Z are given by

p = r , (4.2)

ṗ = ṙ + Ωr , (4.3)

p̈ = r̈ + 2Ωṙ + Ω2r . (4.4)

For clarity, ṙ and r̈ represent the point’s speed and acceleration in the rotating frame, Ωr

the tangential spinning velocity, 2Ωṙ the Coriolis acceleration and Ω2r the centripetal

acceleration. As visible in Figure 4.4, a third (corrotating) local frame xyz is associated

to point P, which will later come in handy to express the beam deformations on a

convenient local basis. One may then define u = (u, v, w)T as the displacement of P in

xyz and

ū = RTu (4.5)

as the same displacement expressed in the global spinning frame x̄ȳz̄, where R repre-

sents the transformation matrix between the two systems of reference. Superscript ‘T’

denotes a transposition. R contains the components of the unit vectors defining the
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local frame xyz in the spinning global frame x̄ȳz̄:

R =



α11 α12 α13

α21 α22 α23

α31 α32 α33


 . (4.6)

By defining r0 as the (constant) position vector defining the origin of the xyz frame in

the x̄ȳz̄ SoR, the position of P after a displacement can be expressed with reference to

x̄ȳz̄ as

r = r0 + ū = r0 + RTu , (4.7)

and by consequence its speed is given by

ṙ = RTu̇ . (4.8)

4.2.1.2 Discretisation of the structure

The vertical-axis wind turbine rotors of interest are skeletal structures, in other words

solids mainly composed of long and slender parts (struts, blades, mast). The kinematic

hypotheses of the Euler-Bernoulli beam are known to be particularly fit for this type of

structure. A method suitable for writing the dynamic EoM representing the vibrations

of spinning beams of arbitrary orientation is available in Leung and Fung [226]. The

finite-element approach proposed in this article is hence followed, but a caveat must be

made: a fundamental assumption of this approach is that beam torsion and bending

are mechanically uncoupled. This renders the subsequent model only fit to represent

assemblies of slender structures whose sectional centre of gravity corresponds or lies

close to the elastic centre (this is the case for the studied Vertiwind rotor components).

In the local SoR xyz, the displacements u of any planar section of a 1D beam such as

x

y

z

1

2

3
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Figure 4.5: Beam element, local system of reference and nodal degrees of freedom.

that displayed in Figure 4.5 are found by interpolation between the coordinates of the

eth beam’s extremity nodes qe (the nodal DoF concerned are indicated in the Figure).

The generalised displacement and velocity vectors of the section are hence given by

u = Nqe and u̇ = Nq̇e . (4.9)
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In the above equation matrix N contains the shape functions which are commonly

derived by using the Galerkin method combined with elastic beam theory:

N =




N1

N2

N3


 , (4.10)

where the numbered terms are the shape function submatrices which (nondimension-

ally) describe the beam’s deformed geometry in its local SoR. The interested reader

may also refer to the Code Aster documentation [225, 227]. The Euler-Bernoulli beam

tensile and bending shape functions are explicited in Appendix E.

4.2.1.3 Dynamics in the spinning frame

From an energetic point of view, the dynamics of a deformable body can be expressed

using the Lagrange equations

d

dt

∂T ∗

∂u̇
− ∂T ∗

∂u
+
∂U∗

∂u
= f̃ . (4.11)

Here T ∗ and U∗ represent the body’s integral kinetic and strain energy, and f̃ the

external generalised force vector, which is set to zero when free vibration is considered.

By adopting the hypotheses of the Euler-Bernoulli beam, and by supposing that the

structure oscillates about an equilibrium configuration after being pre-tensioned by a

steady force (which in the present application is the centrifugal force), T ∗ and U∗ are

respectively yielded by

T ∗ =
1

2

∫
ρmAṗTṗds , (4.12)

U∗ =
1

2

∫
EA

(
∂u

∂s

)2

ds+
1

2

∫
EIz

(
∂2v

∂s2

)2

ds+
1

2

∫
EIy

(
∂2w

∂s2

)2

ds+

+
1

2

∫
F (s)

(
∂v

∂s

)2

ds+
1

2

∫
F (s)

(
∂w

∂s

)2

ds , (4.13)

where the integration occurs along the beam’s own longitudinal coordinate s, directed

along x. In Equations 4.12 and 4.13 E represents Young’s modulus, ρ the material

density, A the sectional area, Iy and Iz the sectional second moments of inertia with

respect to the section’s principal axes, and F (s) the axial force due to pre-tensioning.

The contribution of the (uncoupled) torsional mode of the beam is omitted from the

above expressions, following the theoretical presentation by Leung and Fung [226].

It is straightforward to recognise the components of the strain energy U∗ appearing

sequentially in Equation 4.13: the axial elongation term, two bending terms (around
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y and z) depending from curvature, and two terms representing the work of the axial

pre-tension force in presence of beam deflection.

For the discussed steady rotation of the beam around the Y axis (ω̃1 ≡ ω̃3 ≡ 0),

Equations 4.3, 4.7, and 4.8 can be used to express ṗTṗ in Equation 4.12. By employing

the shape functions as shown in Equation 4.9, the following nodal formulation of kinetic

energy for a beam element of length l, cross-sectional area A, and index number e is

obtained2

T ∗e =
1

2
q̇T
e Meq̇e +

1

2
qT
e KΩeqe + T ∗0e + q̇T

e fe + q̇T
e G̃eqe + fT

Ωeqe , (4.14)

where

Me =

∫ l

0
ρmAmds, KΩe =

∫ l

0
ρmAkΩds, G̃e =

∫ l

0
ρmAgds ,

fe =

∫ l

0
ρmANTRΩr0ds, fΩe =

∫ l

0
ρmANT[fΩx, fΩy, fΩz]ds ,

T ∗0e =
1

2

∫ l

0
ρmArT

0 Ω2r0ds ,

m =




NT
1 N1

NT
2 N2

NT
3 N3


 , g = Ω




0 b1N
T
1 N2 b2N

T
1 N3

0 b3N
T
2 N3

anti-symm. 0


 ,

kΩ = Ω2



a11N

T
1 N1 a12N

T
1 N2 a13N

T
1 N3

a12N
T
1 N2 a23N

T
2 N3

symm. a33N
T
3 N3


 ,

a11 = α2
11 + α2

13 , a12 = α11α21 + α13α23 , a12 = α11α31 + α13α33 ,

a22 = α2
21 + α2

23 , a23 = α21α31 + α23α33 , a33 = α2
31 + α2

33 ,

b1 = α11α23 − α13α21 , b2 = α11α33 − α13α31 , b3 = α21α33 − α23α31 ,

fΩx = Ω2(x0α11 + z0α13) , fΩy = Ω2(x0α21 + z0α23) , fΩz = Ω2(x0α31 + z0α33) .

In the above expressions the homogeneous material density is denoted by ρm. The

elementary matrices resulting from the above procedure are reported in Appendix F.

It should be noted that the nodal coordinates qe are still expressed in the local SoR

xyz. They must be re-expressed in a common frame if the system is to be assembled.

Here this is chosen as the global spinning frame x̄ȳz̄, and the transformation carried

out by decomposing qe into two translations and two rotation vectors and by using

Equation 4.5. Likewise, the vectors produced by the matrix operations need to undergo

2The size of the vectors and square matrices defining Equation 4.14 is 12, that reflects the 6 + 6
nodal displacements of Figure 4.5.
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a basis change. Generically speaking, combining these two transformations in presence

of a matrix-vector operation leads to writing

w = Su = SRū , (4.15)

where w represents the vector resulting from the operation, and S a generic 3 × 3

submatrix. Hence the basis change yields

w̄ = RTw = RTSRū = S̄ū , (4.16)

where

S̄ = RTSR . (4.17)

The overbar in the above equations denotes the quantities expressed in the global SoR.

The 12 × 12 beam element matrices are thus transformed by manipulating all 3 × 3

submatrices according to Equation 4.17. Assembling the element matrices expressed in

this form using the classic superposition approach ultimately yields the overall kinetic

energy:

T ∗ =
∑

e

T ∗e =
1

2
q̇T

t Mq̇t +
1

2
qT

t KΩqt + T ∗0 + q̇T
t f + q̇T

t G̃qt + fT
Ω qt . (4.18)

Now qt contains the aggregate nodal coordinates of the structure in the spinning SoR.

It is possible to treat the strain energy of a beam with the same method used above.

Through the use of the shape function matrix introduced with Equation 4.9, Equa-

tion (4.13) is re-expressed for the generic element e as follows:

U∗e =
1

2
qT
e (Kee + Kge)qe , (4.19)

where

Kee =



EAKa

EIyKb

EIzKc


 , Kge =




0

Kgb

Kgc


 ,

Ka =

∫ l

0
N′T1 N′1ds , Kb =

∫ l

0
N′′T2 N′′2ds , Kc =

∫ l

0
N′′T3 N′′3ds ,

Kgb =

∫ l

0
F (s)N′T2 N′2ds , Kgc =

∫ l

0
F (s)N′T3 N′3ds .

The resulting beam element matrices are reported in Appendix F. In the above ex-

pressions the prime symbol stands for a differentiation with respect to the longitudinal

coordinate of the beam s, with s ∈ [0, l]. Assembling the element matrices above yields
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the overall strain energy:

U∗ =
∑

e

U∗e =
1

2
qT

t (Ke + Kg)qt . (4.20)

Note that the calculation of the steady-state tensional state of the structure, due to

the presence of the distributed centrifugal force, is required for the evaluation of term

Kg. How this is achieved is detailed in Appendix E. By assuming that the structure

undergoes small oscillations around the steady-state configuration, we can describe the

nodal coordinates of the structure with

qt = qs + q , (4.21)

where qs represents the global steady-state displacement and q the global displacement

associated to said small vibrations. By using this convention and by posing G = 2G̃,

the Lagrange Equations 4.11 yield

Mq̈ + Gq̇ + (Ke + Kg −KΩ)q = 0 , (4.22)

which represents the law of oscillation about steady state (vibrational equations of mo-

tion) when no external forces are applied. Here one can recognise the classic structural

mass and stiffness matrices M and Ke, which describe a non-rotating elastic structure.

Three extra terms, that will be labelled “spinning effects” in the following, appear as a

consequence of rotation: the Coriolis matrix G, which is anti-symmetric and represents

a conservative planar coupling effect, the symmetric spin-softening matrix KΩ, and

the symmetric geometric stiffness matrix Kg. In order to make the system statically

determined, a set of boundary conditions must be applied. In the present case, this is

implemented by clamping the node which corresponds to the rotor bearing, assuming

negligible substructure deformations and a perfectly homogeneous shaft speed at the

bearing point – that is, no torsional vibrations are allowed at that location. The six

nodal displacements in the rotating frame are therefore identically equal to zero and

may be eliminated from the system.

By explicitating the dependence of the spinning effect matrices on Ω, Equation 4.22

may be written as

Mq̈ + ΩG1q̇ + [Ke + Ω2(K1
g −K1

Ω)]q = 0 , (4.23)

where a superscript ‘1’ denotes that the matrix is calculated per unit rotational speed.

This form lends to performing parametric studies with respect to rotational speed Ω: all

Ω-dependent terms are computed only once for a unit rotational speed (denoted with

a superscript ‘1’) in the FE development environment, then a range of values of Ω is
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imposed parametrically in the post-treatment phase preceding the modal computation3.

So long as the structure’s interaction with the surrounding fluid is disregarded, and

given that appropriate boundary conditions are imposed to make it statically deter-

mined, Equation 4.23 suffices to determine the rotor-dynamic behaviour of the structure

for small vibrations. This mathematical representation of the rotor as a linear dynamic

system enables to describe its motion in modal form as explained next.

4.2.1.4 Modes of a damped linear dynamic system

Equation 4.23 is a second-order differential equation which expresses the linearised EoM

of the damped and unexcited dynamic system, that can be generalised as

Aq̈ + Bq̇ + Cq = 0 , (4.24)

In the most general case, A,B,C ∈ Cn×n and q ∈ Cn, with n denoting the number

of degrees of freedom of the system. If it is assumed that the solution takes the form

q = q̂eλt, with λ ∈ C, Equation 4.24 can be reformulated as

(λ2A + λB + C)q̂eλt = 0n . (4.25)

If the time-dependent term is eliminated, one is left with a quadratic eigenproblem

(QEP) whose solution entirely defines the motion of the system under the above

assumptions. This consists in finding the (λ, q̂) pairings which satisfy

(λ2A + λB + C)q̂ = 0n , q̂ 6= 0n . (4.26)

The QEP can be transformed into an equivalent, linear generalised eigenproblem (GEP)

of size 2n:

Er̂ = λFr̂ , (4.27)

r̂ =

[
q̂

λq̂

]
. (4.28)

Matrices E and F are obtained by assembling the above defined dynamic system

matrices with prescribed auxiliary matrices; a range of construction options is available.

The details of the implementation of this procedure are given in Appendix G.

Denoting Q = F−1E, valid for F nonsingular, allows to reexpress the GEP in the

3After computation in the C++ environment, each matrix is saved to a separate file in sparse
format. The Scilab script used for post-treatment loads the matrices, parametrises the problem with
respect to rotational speed, assembles the system, and launches the eigen calculation detailed in 4.2.1.4.
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Table 4.1: Types of retained eigensolutions and their physical meaning.

Eigenvalue properties Mode type Characteristic free motion

Im(λ) = 0 Statically undetermined Unrestrained

Im(λ) > 0, Re(λ) < 0 Positively damped
Expon. decaying harmonic

(valid for ξ < 1)
Im(λ) > 0, Re(λ) = 0 Undamped Steady harmonic
Im(λ) > 0, Re(λ) > 0 Negatively damped Expon. amplifying harmonic

standard form with

Qr̂ = λr̂ , (4.29)

whose solutions are obtained numerically4. These are (λ, r̂), the eigenvectors and cor-

responding eigenvalues of matrix Q. The eigenvalues come in conjugate pairs; it is

sufficient, for instance, to discard the eigensolutions with Im(λ) < 0 to isolate the

desired range of physically meaningful solutions. One can classify system modes as in

Table 4.1.

The following quantities can be derived from the eigenvalues for each mode:

1. Damped natural frequency ω = Im(λ) .

2. Undamped natural frequency ω∗ =
√

Re(λ)2 + Im(λ)2 .

3. Damping ratio ξ = −Re(λ)/ω∗ .

These are the ultimate outputs of the modal analysis, along with the modal shapes

contained in the eigenvectors r̂. The sign of the damping ratio in particular (see

Table 4.1) is the key indicator of a system’s dynamic stability. Finally it must be

reminded that in the present application the eigenanalysis is set up in the rotating

frame; the resulting eigenfrequencies, called relative natural frequencies, differ from

those calculated in the inertial SoR, and are traditionally conveyed by a parametric

plot with rotor speed in abscissa: the Campbell diagram.

4.2.2 Model verification

Equation 4.23 describes an unexcited rotor-dynamic system. Since all the included

force terms are conservative (remember that G is anti-symmetric), the vibrational

modes of the system found by resolving Equation 4.26 are characterised by a nil

damping ratio i.e. ξ ≡ 0. Parametrising the modal calculation with respect to Ω

allows to obtain the rotor’s Campbell diagram, which displays the evolution of the

rotor’s relative natural frequencies (i. e. the natural frequencies ωi of the system in

the spinning SoR) for varying rotational speeds. Two benchmark studies are illustrated

4The model exploits the ARPACK (ARnoldi PACKage) library [228], accessible from the Scilab
5.5.0 environment [229]. This library is designed for resolving the eigenproblems of large sparse matrices.
Each modal computation is independent, enabling the use of multi-threading.
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Figure 4.6: Axial beam geometry.

next, where the Campbell diagram of a steadily rotating assembly of beams of circular

section is calculated and compared with exact and published results. Both of these

structures are treated under the assumption that material and sectional characteristics

do not vary over their extension. The cantilever boundary condition is always applied

on the node located in O, using the row and column elimination technique. Finally,

it should be reported that a broader range of cases featuring the same beams with

different orientations in space have been run for the sake of validation, which as expected

produced the same outputs as those reported next.

4.2.2.1 Campbell diagram of an axial beam

Figure 4.6 shows a straight, homogeneous beam that spins around its longitudinal

axis, which coincides with axis ȳ. The structure is represented by four equal Euler-

Bernoulli beams, whose parameters are given in Table 4.2. The fundamental bending

natural frequencies ω0 of a cylindrical cantilever depend on its geometric and material

characteristics: beam length lb, second order sectional moment with respect to bending

Table 4.2: Axial beam parameters.

Number of elements 4
Overall length lb [m] 10

Sectional area A [m2] 6.252·10−2

Bending inertia Iy = Iz = I [m4] 3.095·10−2

Young’s modulus E [GPa] 210
Shear modulus G [GPa] 80.8

Material density ρm [kg/m3] 7860
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axis Iy = Iz = I, Young’s modulus E and mass per unit length µ. When the first two

bending modes are concerned, beam vibration theory gives:

ω0
1 ≈

3.5156

l2b

√
EI

µ
, (4.30)

ω0
2 ≈

22.036

l2b

√
EI

µ
. (4.31)

The evolution of the ith natural bending frequency in function of the angular speed Ω

follows in this case the linear relationship

ωia(Ω) = ω0
i − Ω ,

ωib(Ω) = ω0
i + Ω .

(4.32)

The bending modes of the beam with respect to x̄ and z̄ coincide when the rotational

speed is nil. As soon as Ω 6= 0, two branches appear for each bending mode i, whose fre-

quencies are ωia(Ω) and ωib(Ω). These respectively represent the backward and forward

whirling modes of a spinning structure, which are well studied in rotordynamics5. The

resulting Campbell diagram is shown in Figure 4.7, where the whirling frequencies

corresponding to the first and second bending modes are obtained using both the

analytic solution above and the presented numerical implementation.
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Figure 4.7: Verification of axial beam Campbell diagram. Solid curves represent the
analytic solution and dots the results of the presented model. The dotted line represents
the synchronous excitation frequency.

5A visual example of rotor whirling is available in a video published by NASA [230].
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ȳ

z̄

Ω θ

γ

Figure 4.8: Articulated beam geometry. The quoted angles are fixed as θ = 30 ◦ and
γ = 45 ◦.

An element of interest, aside the agreement of the analytical and numerical solutions

in the Figure, is the identification of a critical speed: this is defined as a rotational

speed for which excitation (dashed line) meets a whirling mode, and vibration becomes

dramatically amplified by resonance if undamped. This criterion is used to study the

reliability of rotating structures in their operating range. For a three-bladed wind

turbine, for example, synchronous excitation and 3P (blade passage) excitation are

of main interest. Continuous operation around any critical speed associated to these

sources of forcing is hence avoided, typically using a combination of structural and

controller design (see for instance a guideline by Germanischer Lloyd [231]).

4.2.2.2 Campbell diagram of an articulated beam

A cantilevered beam with a broken line shape (Figure 4.8) is studied assuming that it

is revolving at constant speed around the ȳ axis. The structure is modelled with three

equal and homogeneous Euler-Bernoulli beam elements, two of which constitute the

straight segment departing from the origin. The parameters defining the system are

available in Table 4.3. The beam’s Campbell diagram obtained numerically is shown in

Figure 4.9 along with a published solution. The plot displays the first three vibrational

modes of the spinning structure along with the synchronous excitation line. It is possible

Table 4.3: Articulated beam parameters.

Number of elements 3
Length of segment 1 [m] 1.0
Length of segment 2 [m] 0.5

Overall length lb [m] 1.5
Sectional area A [m2] 4.909·10−4

Bending inertia Iy = Iz = I [m4] 1.917·10−8

Young’s modulus E [GPa] 200
Shear modulus G [GPa] 80

Material density ρm [kg/m3] 78500
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Figure 4.9: Verification of the Campbell diagram of an articulated beam. Solid curves
represent the reference solution, which is digitised from Leung and Fung [226], and
dots the results of the presented model. The dotted line represents the synchronous
excitation frequency.

to observe how natural frequencies shift as a consequence of rotation – in this case

upwards because of dominating geometric stiffening – and that the first bending mode

evolves once again into forward and backward whirling when the beam spins.

4.2.3 Applications and discussion

A modal rotordynamic analysis of two full-scale Vertiwind-class rotors is organised

next based on the representation of Equation 4.23. They are both three-bladed, helical

variants of the classic H-type VAWT rotor (Figure 4.10) and feature a diameter of

about 50 m. Most notably, the two machines differ in overall height and power output.

A 30 m tall configuration, rated at around 600 kW (electrical), is denoted 1H; an onshore

prototype with these characteristics has been built and tested in Fos-sur-mer (France)

in 2014. The larger configuration, denoted 4H and designed to produce about 2 MW at

rated conditions, is about three times taller and represents the baseline design for use

on the floating offshore prototype. The geometrical and structural parameters defining

these two rotors as assemblies of homogeneous beams are given by the designer in [232]

and [233] respectively6. The nomenclature adopted in this study to refer to the different

rotor components is provided in Figure 4.10.

6Confidential documents.
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Strut-blade
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Figure 4.10: Nomenclature of H-type rotor components. Adapted from Ottermo and
Bernhoff [234].

4.2.3.1 Analysis of 1H rotor

Figure 4.11 shows a picture of the onshore prototype mounting the 1H rotor which is

presently analysed. The rotor architecture is relatively simple as it is formed by three

blades supported by one strut each. Since the rotor is of fixed-pitch type, all joints are

cantilevered. The forces exerted on the rotor are transferred to the bearing/generator

assembly (stator) located at the top of the supporting tower, and then discharged into

the foundations with the help of three oblique beams. This arrangement provides a

rigid stator-ground coupling. The minimal shaft length used in this configuration also

makes the rotor considerably rigid up to the hub, where the struts are attached: the

consequence is an effective decoupling of the vibrations of the three strut-blade assem-

blies (SBAs) in the low-frequency part of the spectrum, which is the most important

band from the point of view of rotor structural design. The outputs of the modal

analysis directly reflect the above decoupling: rotor modes are grouped in a three-by-

three fashion, whilst in each group the eigenvalues are coincident and the eigenvectors

are symmetric with respect to the rotational axis.

As it is customary, structural modes are here numbered from the lowest frequency up.

The first eight SBA modal shape groups found at zero rotational speed are provided in

Figures 4.12 and 4.13. Structural deformations are exaggerated for clear visualisation.

As anticipated, the short and rigid shaft is practically unaffected by the low-frequency
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Figure 4.11: Full-scale prototype with 1H rotor, Fos-Sur-Mer, France, 2014. After
Dodd [235].

modal vibrations. The visualised modes involve simultaneous strut and blade displace-

ments dominated by bending, which is expected for an assembly of slender structures.

When a nonzero rotational speed is applied, the apparent force terms in the EoM begin

to alter the modal behaviour of the structure. Given an operating envelope (including

an overspeed margin) between 0 and 20 rev/min, the normalised Campbell diagram

of the 1H rotor is provided in Figure 4.14, where the nondimensional frequency f∗

corresponds to the ratio between any dimensional modal frequency and the frequency

of the rotor’s first mode. The standstill frequencies found are in good agreement with

those measured experimentally on the full-scale prototype at least up to the 30th mode

(as documented in [204]). As seen in the Figure, only modes 1 to 6 and 40 to 45 exhibit

significant dependence from the rotor speed, with a clear bifurcation into a forward and

a backward whirl branch. Not reproduced in the Campbell diagram are the synchronous

excitation line and its multiples, whose intersections with the modal curves identify

the critical rotor speeds.A later time-domain modelling campaign carried out at EDF,

where the model was upgraded to include of the incident wind speed and the subsequent

unsteady aerodynamic forces, suggests that most vibrational content during operation

is associated to modes 1 to 15 [204].
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(a) Modes 1 to 3. (b) Modes 4 to 6.

(c) Modes 7 to 9. (d) Modes 10 to 12.

0.0 0.5 1.0
Normalised displacement [-]

Figure 4.12: First 12 modal shapes of 1H rotor at standstill. A single strut-blade
assembly is shown.
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(a) Modes 13 to 15. (b) Modes 16 to 18.

(c) Modes 19 to 21. (d) Modes 22 to 24.

0.0 0.5 1.0
Normalised displacement [-]

Figure 4.13: Second 12 modal shapes of 1H rotor at standstill. A single strut-blade
assembly is shown.
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(d) Modes 34 to 45.

Figure 4.14: Campbell diagram of the 1H rotor.
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4.2.3.2 Analysis of 4H rotor

The second rotor analysed is one of the basic designs considered in the past. Conceived

in 2013, the 2 MW 4H rotor concept has since remained “frozen” to provide a reference

configuration for numerical model benchmarking. As the name suggests, its architecture

relies on four orders of struts to support the three fixed-pitch helical blades, totalling

about 100 m in height. A rendering of the 4H rotor is provided in Figure 4.15.

Figure 4.15: Sketch of the 4H rotor, adapted from Cahay et al. [43]. Note that the
strut sections are in reality profiled.

Although in the present model the structure is rigidly clamped at the bearing point

at the root of the shaft, which is the same boundary condition applied above to

the 1H rotor, the shaft itself is long and flexible enough to enable the existence of

global low-frequency modes which couple the vibrations of the three SBAs. The rotor’s

first eight (exaggerated) modal shapes are shown in Figures 4.16 and 4.17. Modes 1

and 2 represent global bending vibrations, for which the upper portion of the shaft

undergoes large displacements. Higher-frequency modes, however, describe vibrations

which mostly affect the rotor SBAs, with little participation of the shaft.

The evolution of the nondimensional modal frequencies with respect to rotor speed is

provided in the Campbell diagram of Figure 4.18. The analysis is once more restricted

to an operating envelope of 0 rev/min to 20 rev/min. The 4H rotor exhibits numerous

bending modes which evolve into forward and backward whirl branches at relatively low

frequencies. The standstill modes and the Campbell diagram found by EDF’s industrial

partners involved in the rotor dynamics benchmarking programme coincide with the

presented results.
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(a) Mode 1. (b) Mode 2.

(c) Mode 3. (d) Mode 4.

0.0 0.5 1.0
Normalised displacement [-]

Figure 4.16: First 4 modal shapes of 4H rotor at standstill.
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(a) Mode 5. (b) Mode 6.

(c) Mode 7. (d) Mode 8.

0.0 0.5 1.0
Normalised displacement [-]

Figure 4.17: Second 4 modal shapes of 4H rotor at standstill.
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(c) Modes 18 to 26.
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(d) Modes 27 to 37.

Figure 4.18: Campbell diagram of the 4H rotor.
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4.3 Aeroelastic analysis of vertical-axis rotors

The goal of the aeroelastic model presented next is to determine the role of aerodynamic

interactions in the vibrational behaviour of the rotor. This is realised by augmenting

the structural model presented in Section 4.2 with a linearised representation of the

aerodynamic forces which interact with the structural vibrations. The fundamental

output of interest is the aerodynamic damping affecting the rotor modes: if positive,

this phenomenon may significantly reduce the amplitude of resonant motion; if negative,

a form of aeroelastic instability may be triggered.

This section presents the methodology used to represent the airflow-structure interac-

tion (4.3.1), a verification of the coupled aeroelastic behaviour of the numerical solver

developed (4.3.2), and the results of the full aeroelastic analysis of the two Vertiwind-

type rotors introduced in the previous Section (4.3.3).

4.3.1 Methodology

The VAWT rotors object of this analysis operate at speeds between 5 rev/min and about

15 rev/min in normal conditions. By extending the operational envelope to include a

33% overspeed contingency, an upper speed boundary to the rotor-dynamic investiga-

tion may be set as 20 rev/min, as done in Section 4.2. Both the considered rotors are

characterised by a blade radius r of about 25 m (with a small vertical variability due

to the helical construction), and a chord length of c = 2.5 m. Disregarding the incident

wind speed allows to calculate the Mach and Reynolds numbers for the entirety of the

blades with

M =
Ωr

Ṽ
and Re =

Ωrc

ν
, (4.33)

where the parameters used to define the fluid are specified in Table 4.4 and Ω, the rotor

speed, is given in rad/s. The values of Re and M obtained for varying rotational speed

are plotted in Figure 4.19. As visible from the Figure, the aerodynamic regimes of the

blades are characterised by Reynolds numbers between 106 and 107 and Mach numbers

no larger than 0.15 in all operating conditions. This, combined with the attached flow

hypothesis (which is in general valid for streamlined profiles and for small angles of

attack) allows to use incompressible, inviscid aerodynamic theory to solve the fluid-

structure interaction problem.

Focussing on lift-induced instability due to the interaction of blade vibrations with their

Table 4.4: Air properties at standard sea level, for a temperature of 15 ◦C.

Density ρ [kg/m3] 1.229
Kinematic viscosity ν [m2/s] 1.408·10−5

Speed of sound Ṽ [m/s] 340.3
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Figure 4.19: Aerodynamic regimes of the Vertiwind turbine blades.

near wake permits – in the current simplified approach – to disregard the wind inflow

(see e.g. Lobitz [218]), which in physical terms corresponds to studying a rotor operating

in still air. When put in this terms, VAWT blade aerodynamics can be assimilated to

those of a wing subjected to a free stream airflow corresponding to the local tangential

speed. This assumes that the blade (or profiled strut) encounters calm air throughout

the full revolution, and that its airflow is unperturbed by the passage of the preceding

blade. Although limiting, these assumptions have proven acceptable in the past when

the aeroelastic behaviour of experimental VAWT rotors was successfully predicted by

this type of model [206, 222].

The portions of the rotor which provide most aerodynamic loading, namely the blades

and the outer parts of the struts, feature airfoil sections of relatively small thickness,

which are constant or only slowly varying over the span of the rotor components. These

considerations support the adoption of a range of methods founded on thin airfoil the-

ory: for a review of the basics the reader can refer for example to Abbott and Doenhoff

[236] or Dimitriadis [237]. The aeroelastic application of this theory, founded on the

work of Theodorsen [238], regards the representation of the reactive aerodynamic forces

arising when the airfoil oscillates and is typically detailed in aeroelasticity textbooks

and training materials [208, 239]. Its most valuable output, namely the aerodynamic

operator enabling the representation of aeroelastic coupling for a planar airfoil, are

presented in 4.3.1.2 in quasi-steady form and in 4.3.1.3 in their unsteady, harmonic

representation. These formulations serve as the building block of the aerodynamic

interaction model used in this study. Before presenting their complete formulation,

a canonical example of oscillating airfoil is used in 4.3.1.1 to show the fundamental

characteristics of an aeroelastic system.
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The 3D extension of the 2D airfoil model is detailed in 4.3.1.4, where the final coupled

structural-aerodynamic assembly is presented. The fully linear characteristics of the

resulting dynamic system and the internalisation of the external aerodynamic forces

enables to resolve the vibrational motion of the rotor as a free vibration through the

same modal approach used in Section 4.2.

4.3.1.1 The pitch-plunge airfoil

The so-called pitch-plunge airfoil, displayed in Figure 4.20 incorporates all the funda-

mental components of an aeroelastic system: it couples a compliant structure with an

aerodynamic excitation system. Its simplicity and the comprehensive documentation

available (for instance it is thoroughly treated by Clark et al. [208] and Stainier [239])

makes it most suitable for demonstrating the principles of aeroelasticity. The in-plane

L

G
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s
α

h

kα

kh

U

Figure 4.20: Outline of the pitch-plunge airfoil, inspired by Stainier [239].

position of the (symmetric) airfoil is described by two coupled DoF, namely the pitch

angle α and the plunge displacement h. In 2D aeroelastic terms plunge refers to the

motion of a section in the direction orthogonal to its undisturbed chord, whilst pitch

denotes the planar rotation around its elastic centre E. This should not be confused

with the notion of global pitch DoF widely used in Parts 2 and 3. The free stream

airspeed U is directed along the chord of the airfoil (in equilibrium position), hence

inducing an orthogonal lift force L at the centre of lift A when α 6= 0.

Assuming a thickness to chord ratio ta/c� 1 and treating the material density of the

airfoil as a chord-wise varying function ρs(s) enables to write (per unit span)

m =

∫

c
ρsds , (4.34)
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I =

∫

c
ρss

2ds = mr2
g , (4.35)

S =

∫

c
ρssds , (4.36)

which represent in turn the mass of the body and its first and second moments of inertia

with respect to rotation around the elastic centre. For small values of α, the vertical

displacement of a point located on the chord is given by w = −h−αs. The kinetic and

potential energy T ∗ and U∗ may then be written as

T ∗ =
1

2
=

∫

c
ρsẇ

2ds =
1

2
mḣ2 +

1

2
Iα̇2 + Sḣα̇ , (4.37)

U∗ =
1

2
kαα

2 +
1

2
khh

2 . (4.38)

The use of these two expressions within the Lagrange equation (Equation 4.11) enables

once again to write the equations of motion of the pitch-plunge airfoil:




mḧ+ khh+ Sα̈ = −L
Sḧ+ Iα̈+ kαα = M

, (4.39)

where L denotes the external lift force (note the direction convention) and M the

moment of this force along the pitch DoF.

In presence of a constant free stream airspeed U , the angle of attack of the relative

airflow on the airfoil is given by

αr ≈ α+
ḣ

U
, (4.40)

which is valid for low-amplitude motion. The effect of the presence of a nonzero speed in

the plunge DoF (downwash) is then an alteration of the instantaneous lift force exerted

on the airfoil. Using a quasi-steady, linearised formulation of the lift force allows to

write (per unit airfoil span)

L = qcCLα

(
α+

ḣ

U

)
= ρbU2CLα

(
α+

ḣ

U

)
. (4.41)

In this expression q represents the stagnation point pressure and equates 0.5ρU2, where

ρ is the air density, and CLα = dCL/dα the slope of the lift coefficient characteristic of

the airfoil for α = 0. The external pitch moment due to lift may be written as

M = ecL = 2ebL , (4.42)

with e = −sA/c representing the normalised eccentricity of the centre of lift of the

airfoil. The above manipulations enable the internalisation of the external aerodynamic
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forces into the dynamic system, that is the expression of the two right-hand side terms

of Equation 4.39 in reactive form:




mḧ+ Sα̈+ qcCLα

U ḣ+ khh+ qcCLαα = 0

Sḧ+ Iα̈− qec2CLα
U ḣ+ (kα − qec2CLα)α = 0

. (4.43)

The above system of equations can be conveniently vectorised as

Mä + Ka + Λ(a) = 0 , (4.44)

where an underline represents in-plane (per unit span) quantities and a is the pitch and

plunge displacement vector, with a1 = h and a2 = α. The system’s mass and stiffness

matrices and the aerodynamic operator are defined by

M =

[
m S

S I

]
, (4.45)

K =

[
kh 0

0 kα

]
, (4.46)

Λ = qc

[
CLα
U

d
dt CLα

− ecCLα
U

d
dt −ecCLα

]
. (4.47)

It is important to notice that pitch and plunge are mechanically coupled via the mass

matrix and aerodynamically coupled due to the full structure of Λ. If the displacement-

dependent terms are separated from the velocity-dependent terms, the aerodynamic

operator can also be written as

Λ(a) =

[
qcCLαU 0

−q ec2CLαU 0

]
ȧ +

[
0 qcCLα

0 −qec2CLα

]
a = Daȧ + Kaa . (4.48)

The presence of an airspeed-dependent negative stiffness coefficient in Ka is revealing:

one can intuitively understand that as soon as this term reaches the order of magnitude

of the corresponding structural stiffness term, the overall restoring capacity of the

structure is compromised. For an aeroelastic system this corresponds to a type of static

instability called divergence, which will be shown to affect the pitch-plunge airfoil at

high airspeeds in 4.3.2. Likewise, the simultaneous presence of positive and negative

aerodynamic damping terms within Da tells a similar story; in case the negative term

becomes dominant the onset instability is of dynamic type and is called flutter.

Injecting Equation 4.48 into Equation 4.44 and expliciting U and U2 in the aerodynamic
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operator damping and stiffness matrices finally yields:

Mä + UD1
aȧ + (K + U2K1

a)a = 0 , (4.49)

where the superscript ‘1’ denotes the matrices calculated per unit airspeed. This is the

equation used in 4.3.2 to characterise the stability of a special pitch-plunge airfoil.

4.3.1.2 Full quasi-steady aerodynamics

The aerodynamic system representation used above for the pitch-plunge airfoil is al-

ready explicative but does not exhaust the aerodynamic interaction of a 2D foil under-

going small oscillations in pitch and plunge. If the quasi-steady aerodynamic represen-

tation is adopted, and hence the memory effect of the wake is ignored, the thin airfoil

theory yields, for an incompressible flow, the following lift force components [240]:

1. Added mass type lift force associated to a translational acceleration,

L1 = ρπb2ḧ .

2. Added mass type lift force due to a rotational acceleration,

L2 = ρπb2(b− x̃E)α̈ .

3. Convective type lift force associated to rotational speed,

L3 = ρπb2Uα̇ .

4. Circulatory lift related to pitch,

L4 = ρbU2CLαα .

5. Downwash circulatory lift,

L5 = ρbU2CLα
ḣ

U
.

6. Circulatory lift due to virtual camber effect,

L6 = ρbU2CLα

(
3

2
b− x̃E

)
α̇

U
.

In the above expressions x̃ represents the chord-wise distance from the leading edge

such that s = x̃ − x̃E, where E is the sectional elastic centre. Thin airfoil theory gives

CLα = 2π and x̃A = c/4 for the circulatory lift component. Note that when thin airfoil

theory is fully reproduced, lift must be interpreted in its broader sense, that is the

aerodynamic force directed perpendicularly to the incident airflow (see Figure 4.20 for
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its orientation). Lift is here formed by both circulatory and non-circulatory components:

the former derive from the pressure differential due to circulation, while the latter

represent a reaction to the acceleration impelled on the fluid, which can be direct or

convective.

Similarly, the aerodynamic moment exerted on the airfoil with respect to its elastic

centre E results from a combination of multiple components:

1. Added mass type moment associated to translational acceleration,

M1 = ρπb2(x̃E − b)ḧ .

2. Added mass type moment associated to rotational acceleration,

M2 = −ρπb2
[
(x̃E − b)2 +

b2

8

]
α̈ .

3. Convective type moment associated to rotational speed,

M3 = −ρπb2U (2b− x̃E) α̇ .

4. Circulatory lift-induced moment related to pitch,

M4 = 2ρeb2U2CLαα .

5. Moment induced by downwash circulatory lift,

M5 = 2ρeb2U2CLα
ḣ

U
.

6. Moment induced by circulatory lift due to virtual camber effect,

M6 = 2ρeb2U2CLα

(
3

2
b− x̃E

)
α̇

U
.

Hence the full expressions of the aerodynamic lift force and moment exerted on an

oscillating airfoil are

L =

6∑

i=1

Li and M =

6∑

i=1

Mi . (4.50)

Once again these terms can be moved from the right-hand side of the pitch-plunge

airfoil EoM (as they appear in Equation 4.39) to its left-hand side (as in Equation 4.49)

through the use of an aerodynamic operator, now taking the full quasi-steady (FQS)
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form

Λ(a) = ρπb2

[
1 b− x̃E

b− x̃E (b− x̃E)2 + b2

8

]
ä +

+ ρbU

[
CLα CLα

(
3
2b− x̃E

)
+ πb

−2ebCLα πb (2b− x̃E)− 2ebCLα
(

3
2b− x̃E

)
]

ȧ +

+ ρbU2

[
0 CLα

0 −2ebCLα

]
a =

= Maä + Daȧ + Kaa . (4.51)

4.3.1.3 Unsteady harmonic aerodynamics

As thoroughly discussed by Leishman [241] and Paraschivoiu [68], two prevalent sources

of aerodynamic unsteadiness are found on a wind turbine rotor. These are the upstream

effect of the large-scale wake, which is disregarded in the current study, and the individ-

ual blades’ vicinity wake, which makes the object of the presented unsteady formulation.

The quasi-steady representation of aerodynamic forces on a thin airfoil is accurate for

vibrations occurring at κ� 1, where κ = ωb/U is the reduced vibrational frequency. In

case the structure undergoes higher-frequency vibrations, the inertia of the circulatory

system causes a lag in the establishment of circulation and the associated forces; for a

periodic oscillatory state, the reversing of motion before the steady circulatory forces

are attained causes a reduction of their amplitude as well as a phase shift. This in

turn can have a significant effect on the flutter phenomenon. The classic thin airfoil

formulation used by Theodorsen [238] allows to take these effects into account for

harmonic oscillations with the introduction of a complex operator C(κ) which multiplies

the circulatory force terms found in Equation 4.51. While its exact expression is given

by Bessel or Hankel functions of the reduced frequency, practical approximations of this

operator are available such as [242]:

C(κ) ≈ 1− 0.165

1− 0.0455
κ i

− 0.335

1− 0.30
κ i

. (4.52)

The values assumed by this function are reproduced in Figure 4.21. The quasi-steady

aerodynamic operator hence corresponds to the the nil-frequency case of the unsteady

harmonic operator, or κ = 0. The amplitude of the circulatory forces tends to half

its quasi-steady value for high-frequency vibrations, whilst the lag caused by flow

unsteadiness is shown to reach a maximum below κ = 0.5 and gradually rebound.

Note that the phase shift of the circulatory force never exceeds one fifth of a right

angle. As it will be seen in the following, including the unsteady effects tends to reduce

the importance of aerodynamic damping in the system.
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Figure 4.21: Modulus and argument of Theodorsen operator for varying reduced
frequency κ.

The unsteady aerodynamic operator of an airfoil section, valid for harmonic oscillations

only, is finally written as follows:

Λ(a) = ρπb2

[
1 b− x̃E

b− x̃E (b− x̃E)2 + b2

8

]
ä +

+ ρbU

[
C(κ)CLα C(κ)CLα

(
3
2b− x̃E

)
+ πb

−2ebC(κ)CLα πb (2b− x̃E)− 2ebC(κ)CLα
(

3
2b− x̃E

)
]

ȧ +

+ ρbU2C(κ)

[
0 CLα

0 −2ebCLα

]
a =

= Maä + Daȧ + Kaa . (4.53)

It should be noted that the complex operator C(κ) cannot be determined a priori

because of its dependence from the vibrational frequency ω, which is an output of

the aeroelastic calculation and also varies over the modal spectrum. Past studies have

solved this issue by iterating over the reduced frequency at each output point, or by

imposing a fixed, representative reduced frequency κ upfront, which is used for the

entire spectrum. In this study the modal frequencies obtained from the full quasi-steady

aeroelastic resolution (see 4.3.1.2) are used to calculate a representative value of κ for

each group of modes and impose it in the unsteady aerodynamic calculation. Since in

the presented applications (4.3.3) the modal frequencies are not significantly affected by

the upgrade from quasi-steady to unsteady aerodynamics, said approach can justifiably

replace iteration over the reduced frequency for the concerned applications.
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4.3.1.4 3D aerodynamic element and global dynamics

The preceding sections described the methods used to treat an airfoil subjected to a

planar airflow. If 3D flow effects and span-wise sectional changes are disregarded, the

aerodynamic interaction of a finite-span portion of a blade may be represented in lump

form by extension of the 2D model. The establishment of a local SoR xyz in 3D space as

x

y

z

c

l

E

Figure 4.22: Lump aerodynamic element centred on node E.

seen in Figure 4.22, where the airfoil plunge and pitch DoF correspond to a translation

in x and a rotation around z respectively, allows to rewrite the aerodynamic operators

found in Sections 4.3.1.2 and 4.3.1.3 with respect to the 6 nodal displacements qe using

qe1 = a1 and qe6 = a2 . (4.54)

The coefficients related to these two DoF are assigned accordingly and the remaining

are set to zero, yielding a per unit length aerodynamic operator Λ(qe) of size 6 × 6.

The span dimension l of the aerodynamic element comes into play with

Λe(qe) = lΛ(qe) , (4.55)

which represents the operator defining a lump aerodynamic element. The aerodynamic

system attached to the profiled segments of the rotor in 3D space is then discretised

over the segments’ span with a set of elements defined by the above formulation. The

local frame of each element is assigned by aligning y with the local tangential speed of

the element and imposing that z lies in the plane defined by the span direction and the
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Structural element Airspeed

Aerodynamic element
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Figure 4.23: Aerodynamic discretisation of a swept rotor blade.

Structural element

Airspeed

Aerodynamic element

Node

Figure 4.24: Aerodynamic discretisation of a tapered support strut.

tangential speed. The element centre E is located on the neutral fibre of the structure.

A visual example of this arrangement is shown in Figures 4.23 and 4.24 for the blade

and strut components of a Vertiwind-type rotor. Extending this discretisation method

to a Vertiwind-class rotor leads to the setup shown in 4.3.3 (Figures 4.27 and 4.30).

The next step is the expression of the element’s characterising airspeed U which defines

the aerodynamic operator coefficients (Equations 4.51 and 4.53) as a function of the

rotor speed Ω, that is

U = Ωre . (4.56)

Here re represents the distance of the aerodynamic element from the revolving axis.

The linear and quadratic dependencies from U observable in Equations 4.51 and 4.53,

combined with Equation 4.55, permit to write

Dae = ΩD1
ae , (4.57)

Kae = Ω2K1
ae , (4.58)
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where the matrices denoted by a unit superscript adopt a unit rotational speed and the

radius of the node re to calculate U with Equation 4.56.

Following the transformation of each element’s aerodynamic operator into the global

spinning frame and the aggregation of the element matrices (see 4.2.1.3), the operator

can be incorporated into the overall finite-element system by means of three system-

level aerodynamic matrices Ma,Da,Ka (see Equations 4.51 and 4.53). The offset due to

the steady-state displacement due to the presence of the centrifugal force is disregarded

by this aerodynamic model; such assumption is valid when the steady-state rotational

displacement (i. e. the pitch deformation) of the blade sections is sufficiently small.

Combining the global aerodynamic operator with the spinning structural model of

Equation 4.22 yields the full aeroelastic description of rotor vibrations:

(M + Ma)q̈ + (G + Da)q̇ + (Ke + Kg −KΩ + Ka)q = 0 . (4.59)

These are the EoM of an aeroelastic, steadily rotating structure expressed in the

spinning SoR bound to the rotor’s azimuth. As it has been shown with Equation 4.23

for the beam assembly and with Equations 4.57 and 4.58 for the aerodynamic system,

it is possible to exploit the dependency of the finite element model’s coefficients from

Ω to express Equation 4.59 as follows:

(M + Ma)q̈ + [Ω(G1 + D1
a)]q̇ + [Ke + Ω2(K1

g −K1
Ω + K1

a)]q = 0 . (4.60)

As seen already with Equation 4.23, all Ω-dependent terms are computed for a unit

rotational speed (denoted with a superscript ‘1’), then a range of revolution speeds is

imposed parametrically, hence enabling to parallelise the set of eigenproblems.

4.3.2 Model verification

At this point, having verified the rotordynamic behaviour of the model in 4.2.2 leaves

the task of verifying the aerodynamic operator, which is carried out here on the basis of

the standard pitch-plunge airfoil problem documented in the aeroelasticity literature.

The aeroelastic system defined in 4.3.1.1 proves useful to test the numerical solver’s

ability to identify the vibrational modes of a structure together with its aeroalastic

stability characteristics. A special (canonical) pitch-plunge airfoil case is defined by

the parameters given in Table 4.5, where b = c/2. These values are sufficient to

determine the ensemble of variables entering Equation 4.49, which is then resolved for

its eigenvalues using the numerical model with the procedure explained in 4.2.1.4 for

varying free stream airspeed U . Thanks to the limited size of the system of equations,

its eigenvalues may also be easily derived by resolving the following equation in a semi-
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Table 4.5: Pitch-plunge airfoil parameters.

Normalised CoG coordinate sG/b [-] 0.05
Normalised radius of gyration rα = rg/b [-] 0.5

Uncoupled plunge-pitch frequency ratio ωh/ωα [-] 0.5
System parameter m/πρb2 [-] 10

Normalised eccentricity of lift centre e [-] 0.2
Slope of airfoil lift characteristic CLα [-] 2π

analytical manner:

∣∣∣∣∣
kh + qcCLαU λ+mλ2 qcCLα + Sλ2

−q ec2CLαU λ+ Sλ2 kα − qec2CLα + Iλ2

∣∣∣∣∣ = 0 . (4.61)

The resulting normalised damped eigenfrequencies for pitch (1) and plunge (2) are

shown in Figure 4.25, where ω̄ is the pitch natural frequency at U = 0. The correspond-

ing damping ratios are also plotted. The numerical method developed in this study is

shown to be capable of identifying the behaviour of the structure’s eigenmodes and

their damping ratio for both stable and unstable regimes, systematically reproducing

the semi-analytical solution.
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Figure 4.25: Comparison of semi-analytical (lines) and numerical (dots) resolution of
the pitch-plunge airfoil vibration modes.

System states can be interpreted as follows: to the extreme left of the Figure, airspeed

is nil, and no aerodynamic interaction affects the airfoil’s vibrations. The ratio of the

plunge and pitch eigenfrequencies is 0.5 as prescribed in Table 4.5, and system damping

is nil. As the airspeed increases so does the relative importance of the aerodynamic

system. A first consequence consists in the progressive deviation of the eigenfrequencies

from the standstill values, caused by the aerodynamic alteration of the effective stiffness.
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Secondly, an increasing amount of aerodynamic damping affects the vibrational modes.

It is possible to remark that at low reduced airspeeds the behaviour of aerodynamic

damping is positive, hence the structure’s dynamic stability is improved by the presence

of the aerodynamic interaction. This is a typical characteristic of real-world aeroelastic

systems.

As soon as the airspeed becomes sufficiently large, two forms of instability appear in

Figure 4.25. A tendency toward static aeroelastic instability, introduced in 4.3.1.1, is

observable for a reduced airspeed (U/bω̄) exceeding 1.0: the plunge mode’s frequency is

progressively reduced as the airspeed increases; the extreme consequence of this process

is the loss of system restoring capacity (divergence), which happens when ω approaches

0. In case this occurs in a physical system, the slightest perturbation causes runaway

displacement and typically structural failure. Flutter, the other instability observable

using the canonical airfoil case, is of dynamic type and is revealed by the negative

damping ratio characterising the pitch mode. It appears clear from Figure 4.25 that

pitch is affected by flutter at a much lower airspeed than that required to destabilise

the system statically (less than 1/3). The modal damping ratios are next reproduced

on a semi-logarithmic plot in Figure 4.26 to pinpoint the airspeed at which the flutter

instability occurs. The critical airspeed for flutter (or simply, flutter speed) corresponds

to a reduced airspeed of about 0.5. It is important to keep in mind that although

weakly coupled for U = 0, the pitch and plunge DoF become increasingly subjected

to aerodynamic coupling at increasing airspeeds, and it is this coupling that permits

the onset of flutter. With respect to Figure 4.25, this implies that the further we move

toward high airspeeds, the more the two output modes represent a mix of pitch and

0.0 0.5 1.0 1.5

10−4

10−3

10−2

10−1

100

ξ1

ξ2

U/bω̄ [−]

ξ
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]

Figure 4.26: Modal damping of pitch-plunge airfoil. Semi-analytical (lines) and
numerical (dots) results.
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plunge vibrations rather than a single-DoF motion.

What happens if a rotor designer discovers that a similarly behaved blade may encounter

or get close to its critical flutter speed over its operating life? A common practical way

to increase the flutter speed and remove it from the operating envelope, as suggested

among others by Lobitz [220], consists in blade ballasting. Adding a controlled sectional

mass allows to displace the chordwise position of G and hence to alter the ratio between

the pitch (i.e. torsional) and plunge (i. e. flapwise) eigenfrequencies, which both affect

the blade’s flutter speed.

4.3.3 Applications and discussion

The vibration modes of the two Vertiwind rotor configurations presented in 4.2.3,

denoted 1H and 4H, are next obtained using the integral aeroelastic representation

of Equation 4.60. The documents7 defining the properties of the rotor structure and of

its aerodynamic profiling have been provided by an industrial partner [232, 233].

4.3.3.1 Analysis of 1H rotor

A rendering of the aeroelastic model implemented to study the 1H rotor is shown in Fig-

ure 4.27. Both the full quasi-steady and the unsteady formulations of the aerodynamic

x
z

y

Figure 4.27: Rendering of finite-element beams (black lines) and lump aerodynamic
elements (grey profiled volumes) of the 1H rotor. After Relun and Antonutti [204].

7Confidential.
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(d) Modes 34 to 45.

Figure 4.28: Aeroelastic Campbell diagram of the 1H rotor (squares). Dots reproduce
the classic Campbell diagram already shown in Figure 4.14.

operator are used, giving raise to significantly different predictions of modal damping,

as it will be shown below. Since these two options lead to calculating approximately the

same modal frequencies, a single set of aeroelastic frequencies is reproduced nondimen-

sionally in the Campbell diagram of Figure 4.28. The classic Campbell diagram already

shown in Figure 4.14 is also plotted for comparison. There is no significant difference

between the classic and the aeroelastic Campbell frequencies for low-frequency modes.

On the contrary, several higher modes exhibit a moderate aeroelastic effect on frequency,

in all cases tending to reduce it. These are the vibrations characterised by a relatively

large flapwise content. The results of Figure 4.28 may be used to justify the validity of

the classic rotordynamic approach of Section 4.2, which disregards all fluid-structure

interaction, for the prediction of the structure’s eigenfrequencies.

The fundamental added value of the aeroelastic formulation consists in the estimate of

the aerodynamic damping ratio of the output modes, which is shown in Figure 4.29.

A significant amount of aerodynamic damping affects most low-frequency vibration
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(d) Modes 34 to 45.

Figure 4.29: Modal damping plot of 1H rotor using quasi-steady (full dots) and
unsteady (empty dots) aerodynamics.

modes, which increases almost linearly with the revolution speed for the studied range,

up to levels of 4% to 6%. Higher modes and in general modes dominated by edgewise

vibration tend to be less affected, exhibiting damping ratios of around or less than

a percent point. The plots also reveal that the use of unsteady aerodynamic theory

reduces the damping-generating capacity of the aerodynamic system compared to the

quasi-steady implementation, up to about 15%. This is essentially due to the simul-

taneous phase shift and magnitude reduction of the aerodynamic forces which affect

harmonically vibrating airfoils (see Figure 4.21).
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4.3.3.2 Analysis of 4H rotor

Figure 4.30 provides a visualisation of the aeroelastic model representing the 4H rotor.

The aeroelastic Campbell diagram obtained for this rotor is shown in Figure 4.31

along with the classic Campbell diagram already reproduced in Figure 4.18. As seen

in the previous case study, the lower eigenfrequencies are not significantly affected by

aerodynamic interaction, whilst the contrary is true in the higher portion of the modal

spectrum. Once again, the main effect observed is a downward frequency shift associated

to the aerodynamic added mass. In the 4H rotor case this shift is more important and

represents up to 5% of the value found in the classic Campbell diagram (modes 18–26

provide a good example of this). Figure 4.31 also shows the impact of the stiffness

component of the aerodynamic operator on modal frequencies, which is reflected in the

alteration of the eigenfrequency curve slope. Shown in Figure 4.32 are the damping

x

z

y

Figure 4.30: Rendering of finite-element beams (black lines) and lump aerodynamic
elements (grey profiled volumes) of the 4H rotor. After Relun and Antonutti [204].
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(d) Modes 27 to 37.

Figure 4.31: Aeroelastic Campbell diagram of the 4H rotor (squares). Dots reproduce
the classic Campbell diagram already shown in Figure 4.18.

ratios corresponding to the same modes.

Similarly to what was found for the 1H rotor, numerous modes are significantly sta-

bilised by aerodynamic damping, which increases in a quasi-linear fashion with the

rotor speed. Depending on the mode type, damping varies between around 1% and

12% at 20 rev/min. The latter order of magnitude in particular characterises the (blade

vibration) modes ranging from 18 to 26, where accounting for aerodynamic damping

may provide a significant extension of blade fatigue life. Once again, the use of the

unsteady aerodynamic model exposes the moderate overestimation of aerodynamic

damping provided by the quasi-steady option, which is in the order of 10%–15%.
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Figure 4.32: Modal damping plot of 4H rotor using quasi-steady (full dots) and
unsteady (empty dots) aerodynamics.
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4.4 Conclusion

Using the present numerical model, EDF R&D has acquired the ability to qualify the

aeroelastic behaviour of proposed floating VAWT rotor concepts, helping to reduce

project risk and to understand the key parameters at play in the structural design of

the aerogenerator. An example of this capability is available in the report by Relun

and Antonutti [204]. This Part has detailed the finite-element model implemented and

used to carry out frequency-domain aeroelastic analysis of VAWT rotors, as well as its

application to two industrial concepts of interest. The entirety of the calculation chain

has been set up, from the implementation of the spinning beam element and lump aero-

dynamic operator methodologies into an existing in-house finite-element environment

to the organisation of the post-treatment stage where the system’s vibration modes are

resolved.

Choosing a corrotating frame for the description of the structure’s vibrations has

allowed to describe the structural dynamics under the classic small-displacement as-

sumption, thereby avoiding the explicit treatment of the displacements associated to

rotor revolution. In the absence of fluid-structure interaction (Section 4.2), identifying

the structure’s eigenmodes provides the classic Campbell diagram which is commonly

used for the detection of critical rotor speeds, where the vibrational and excitation

frequencies coincide. Two Vertiwind-type rotors have been analysed with this method,

leading to the results discussed in 4.2.3.

After the basic characterisation of the rotor modes, the structural model has been

augmented with the aerodynamic interaction model presented in Section 4.3, leading

to a coupled, linearised aeroelastic representation of rotor mechanics. This formulation

simplifies and internalises the aerodynamic forces into the left-hand side of the equations

of motion, enabling an integrated modal representation of the system. Hence, the same

two Vertiwind rotor concepts have been analysed in 4.3.3, leading to the following

findings:

• Classic modal analysis, which excludes aerodynamics, suffices for the prediction

of the lower rotor eigenfrequencies, while tends to overestimate them in the upper

part of the spectrum.

• Static aeroelastic instability, which is revealed by a dropping aeroelastic eigenfre-

quency, is not detected for the two rotors in the studied speed range. No signs of

its onset are present at high revolution speed.

• Dynamic aeroelastic instability (flutter), which is revealed by dropping aerody-

namic damping of the concerned mode, is not detected for the two rotors in the

studied speed range. No signs of its onset are present at high revolution speed.

• A significant amount of aerodynamic damping affects rotor vibrations, often pro-

viding an extra 5%–10% on top of the (presently disregarded) structural damping,
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which typically amounts to a few points percent on wind turbine structures.

• The use of quasi-steady aerodynamic theory causes an overprediction of modal

aerodynamic damping in the order of 15% compared to the unsteady representa-

tion.

Both rotor designs have been verified against the onset of aerodynamic instability

in the selected operating and overspeed range, and the stabilising contribution of

aerodynamic interaction is quantified, potentially enabling to feed this information back

into structural design to reduce conservatism. However, as it is further discussed below,

the present simplification of the aerodynamic process prompts the future adoption

of more complex time-domain methods for a more reliable assessment of aeroelastic

stability, possibly including nonlinear phenomena such as stall flutter.

Not treated in this study is the aerodynamic nonstationarity introduced by the free-

stream wind velocity in real operating conditions, and the subsequent operation of

the blade profiles at large and varying angles of attack. As seen in Part 2, MW-scale

VAWTs tend to operate at relatively low tip-speed ratios, where large angles and stall

are common. Hence the interest in further developing the model to permit a more in-

depth aeroelastic analysis, enabling to challenge the structural design of the rotor from

other standpoints such as fatigue life. This aspect has been later addressed by EDF

R&D with the merger of the present rotordynamic model with the double-multiple

streamtube aerodynamic solver detailed in 2.2.3, to form a time-domain aeroelastic

resolution module denoted MuBoWT8 [204]. The turbulent content of the incident wind

and the rotor wake linked to precedent blade passages, as well as 3D flow effects, are

also at the origin of additional aerodynamic nonstationarities which are not considered

here.

8Multi-body Wind Turbine. Using the multi-body theory, this software insures the coherence among
the descriptions of the two subdomains, rotor and platform, in the rotating (bound) and global frame
respectively.



Part 5

Conclusions and Further Work

A significant number of industrial actors worldwide is engaging in the development of

floating wind power, in order to overcome the bathymetric limitations of bottom-fixed

offshore wind. With utility-scale prototype demonstration well underway, floating wind

technology requires further de-risking, cost optimisation, and standardisation – in one

word: industrialisation – to unlock large-scale investment in the coming years. A key

requirement for this is the availability of robust simulation tools right from the pre-

design stage: these are at the focus of the presented work.

Global coupled dynamics. The system-level mechanical analysis of FWT structures

brings together the domains of aerodynamics and offshore hydromechanics. The out-

come is an aero-hydromechanical problem which often exhibits strong couplings and is

today an active subject of research. The rigid-body mechanics of FWTs are studied in

Part 2, where a multi-physical engineering-level simulator developed by EDF R&D is

employed to characterise a number of coupling effects for the first time.

A relatively compliant (i.e. inclination-prone) semi-submersible FWT concept is studied

in 2.3.2 with respect to the changes of its dynamic response in waves when sub-

jected to the aerogenerator’s operating forces, revealing the presence of significant aero-

hydrodynamic coupling due to the vertical excursion of the columns. The related close-

up investigation has been the object of a journal publication [158]. The platform’s large

motion control appendices (heave plates) are hence shown to represent an important hub

of such hydrodynamic sensitivity (2.3.1), which gives birth to different response knock-

ons depending on the direction of wind relative to the waves – an aspect investigated

in another journal article [160]. To the Author’s knowledge, a surge-pitch aerodynamic

coupling mechanism which significantly affects pitch response in the suppression band

typical of multi-column semi-submersible platforms is also described in detail for the

first time. It is largely the work performed in these areas that has produced new

knowledge with respect to the state of the art of floating wind turbine mechanics,

which may prove useful in the definition of future design practices.

Existing basin test results are used in 2.3.4 for a validation of the methods used

in the above studies, broadly confirming their accuracy and allowing methodologi-

170
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cal improvements which will be incorporated in the VALEF2 project1 reports. The

benchmark still suggests possible limitations in the current hydrodynamic modelling

approach, especially regarding the quantification of the vertical added mass for a

structure of the kind studied (multi-column floater equipped with heave plates and

multiple interconnecting braces).

A novel application of coupled aero-hydromechanical simulation, presented in 2.3.3

and published as part of conference proceedings [159], is the characterisation of the

aerodynamic damping of global pitch motion experienced by a large floating VAWT for

a range of operating conditions, where for the first time the patterns found shed light

on the causal mechanisms determining its pseudo-linear behaviour. In the treated case

study, such form of damping is capable of providing 2%–5% of the critical damping for

the uncoupled pitch motion, which translates into a significant potential for resonant

response reduction when the FWT is subjected to wave excitation. This understanding

may be used to introduce a feedback in turbine and controller design, aimed at achieving

a mitigation of resonant response by aerodynamic means.

Mooring hydromechanics. The detail study of the mooring mechanics of a floating

offshore system demands fully nonlinear, large-displacement dynamic simulation when

it comes to representing the highly dynamic and highly compliant arrangements typi-

cally found in the floating wind context2. Leveraging on the availability of a thoroughly

verified structural analysis tool, Code Aster of EDF R&D, Part 3 develops a novel set-

up strategy which enables the uncoupled and – currently within certain limits – coupled

dynamic simulation of offshore mooring systems with this unspecialised software, which

is shown effective for the study of catenary arrangements. Both these options are

now part of the EDF arsenal for the mechanical analysis of FWT arrangements as

documented in Peyrard and Antonutti [161].

Using a 1D finite-element formulation of structural kinematics, Section 3.3 describes

how the hydromechanical properties of a mooring chain are transferred to the simulator

(presiding a correct representation of the hydrostatic, hydrodynamic, and weight forces

simultaneously) as well as the initialisation of the hydromechanical problem, where

the equilibrium catenary state of the system is reached from an unstable, statically

ill-conditioned control configuration.

Static analyses of catenary mooring lines and systems are used in 3.4 for an initial

verification of the presented methodology. Then, existing small-scale experiments are

used in Section 3.5 for the validation of its dynamic functionality. The concerned

measurements are the dynamic response and fairlead tensions of a FWT model, moored

at an equivalent depth of 200 m by a three-leg catenary system and subjected to

1A collaborative R&D project by France Energies Marines for the development, verification, and
validation of floating wind turbine design methodologies involving industrial and academic bodies [77].

2The five MW-scale FWT prototypes installed to date use this arrangement.
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wave excitation. It is demonstrated that with the proposed methodology Code Aster is

capable of predicting both the fairlead tensions and the platform motions under regular

waves (coupled approach), as well as the tension spectra under irregular wave excitation

(motion-driven simulation). Among the observed tension response characteristics, the

simulations notably reproduce the high-frequency spectral content likely associated to

the excitation of the mooring lines’ eigenmodes.

Rotor aeromechanics. VAWTs of new conception are currently being proposed for

floating use, with an apparent R&D revival of this turbine type at the MW scale since

the abandonment of the prototyping programmes of the 1980s. Although marginal for

proven HAWT rotors, the aeroelastic stability question addressed in Part 4 is of vital

importance in the verification of the operational reliability of large-scale vertical-axis

concepts.

In Section 4.2 a mechanical rotordynamic model based on the finite-element beam

theory is deployed using the rotor’s own spinning frame as a reference, allowing to

produce the Campbell diagram of two rotor concepts of interest and hence identify

the evolution of their structural modes as a function of the rotational speed. This has

helped EDF to verify the methodology used by its industrial partners to demonstrate

the structural reliability of these designs [204].

The same model augmented with a linearised aerodynamic operator, internalising the

aerodynamic interaction forces in a simplified reactive form, is used in Section 4.3 to

verify the same rotor designs against the onset of aeroelastic instabilities, with particular

attention to self-excited (flutter) states. An estimate of the beneficial aerodynamic

damping found in the operating speed range (up to 10% depending on the modes) is

a byproduct of this analysis, potentially allowing to establish a feedback in the design

cycle aimed at reducing the conservatism in the sizing of the structure.

Bringing it all together. Using the presented tool set, EDF R&D is now able to

produce robust knowledge about the mechanical behaviour of the FWT arrangements

proposed by technology developers, and with relatively short notice. Both global dy-

namics and the structural reliability of critical subsystems may be scrutinised. The

analyses of multi-physical phenomena carried out also shed light on mechanisms which

may support the provision of design feedbacks from the part of EDF: while on one hand

potential dimensioning benefits are unlocked by the quantification and the controlled

use of aerodynamic damping, on the other unforeseen failure modes may now be

detected thanks to the knowledge of the coupling effects identified.

The presented numerical tools do not live in isolation, as linkages of different nature are

already exploited in the present work, while others have been created in the course of

further work carried out by EDF R&D. As it is shown in Part 3, the coupled moorings-

floater simulations already enable to evaluate the retroaction of the mooring system

dynamics on the global motion response. Conversely, the mooring simulation of Part 3
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may be driven by the motion history obtained with the FWT aero-hydromechanical

simulation of Part 2, neglecting the dynamic mooring force feedback. Using an azimuth-

updated basis conversion and an iterative, time-domain mechanical solver, EDF has also

been able to link the small-deformation description of rotor mechanics of Part 4 to the

global simulator CALHYPSO (Part 2), which has permitted to study the modes of

deformable rotors when mounted atop a floating platform (not treated here). Simi-

larly, the full bidirectional coupling of the finite-element dynamic representation of the

mooring system to the multi-physical FWT simulation environment is envisaged in the

near future, leading to the integrated time-domain simulation prospects explored in

Section 5.1.

5.1 Recommendations

This section accommodates a set of recommendations for the further development of

EDF R&D’s design tools as well as a broader overview of the challenges lying ahead.

5.1.1 EDF perspective

At the time of writing, the numerical models and methodologies presented have already

helped with the assessment of competing FWT designs and modelling strategies in the

context of the industrial projects of the EDF Group. Whereas these tools are being

developed well beyond what has been described in this manuscript, significant areas of

future work may be identified to assist the engineering and commercial units in their

perspective needs.

Restricting the perimeter to computationally efficient simulations for pre-design, verifi-

cation, and concept evaluation, further work may be organised around the integration

of different functions within CALHYPSO.

Aerodynamics. The aero-servo-elastic tool chain is now in place for the analysis

of VAWTs, including an option for the input of turbulent wind; the development of

HAWT compatibility may also be of interest, although the aerodynamic (BEMT)

calculation routines would need overhauling. Coupling with well-proven open-source

software such as NREL’s AeroDyn module could be envisaged as an efficient alternative.

The relationship between rotor control and the mechanical response of the FWT is an

aspect of particular interest, given the present tendency to propose active control for

motion mitigation. For both rotor architectures, the implementation of wake-resolving

aerodynamic theories such as the potential-flow vortex method could enable a more

accurate assessment of the coupled dynamic behaviour of the aerogenerator, albeit at

a compromised computational cost.
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Platform hydrodynamics. The integration of 2nd order wave forces is already under-

way in CALHYPSO, following the latest developments of the underlying hydrodynamic

solver NEMOH. Improvement margins may reside in the potential-flow representation of

sharp appendices, where a hybrid empirical method may be implemented to correct any

detected added-mass deficit. Concerning slender member hydrodynamics, the inclusion

of the diffracted and radiated wave fields in the calculation of fluid kinematics may

be sought to improve the accuracy of the Morison routine in the proximity of large

hull sections. Also, runtime adaptive coefficient calibration may be used to improve

accuracy in irregular waves. Improvements are also possible in the representation of the

intersections of the slender elements with the free surface and with other portions of the

hull. The geometric nonlinearity exhibited by FWTs undergoing large-angle operation

may be addressed with the systematic use of look-up tables for the calculation of the

hydrostatic and potential hydrodynamic forces, thereby generalising the methodology

presented in Part 2. Finally, implementing multi-directional wave excitation would

permit the representation of fully realistic sea states.

Structural dynamics. The deformability of platform structures and the excitation of

platform and tower modes by high-frequency harmonics (e.g. the sum-frequency wave

forces) suggest that a hydroelastic representation of FWT mechanics may be highly

valuable in the early engineering stage. The finite-element or multi-body theories can

be used to model the elastic processes, provided that the interface between the potential-

flow hydrodynamic solver and the structural solver be reorganised using the dynamic

pressure field in lieu of the aggregated hydrodynamic data base tensors. A successful

implementation of hydroelastic simulation should permit the description of nonlinear

coupled processes such as springing, which is known to affect the vertical modes of

TLPs.

Mooring dynamics. Further validation of the moorings model may extend to semi-

taut and taut arrangements, possibly incorporating different segment types typical of

offshore moorings (ropes, 6 DoF buoys, etc.). The integration of dynamic mooring simu-

lation within CALHYPSO may prove particularly helpful in the mechanical assessment

of tensioned FWT configurations, whose system modes tend to be excited by high-

frequency wave loads. As soon as a detailed fatigue assessment of the mooring lines

will be sought, accurate prediction of the loading states of catenary moorings will likely

demand the implementation of complex line-soil interaction processes such as tangential

friction and uplift-repenetration resistance. Finally, nonlinear material behaviour laws

should be adopted in the future to accommodate the mechanics of fibre rope segments,

which are frequently proposed as part of mooring systems for floating wind.

In the longer term, numerical studies of increasing detail will become necessary to

orientate design practices and to mitigate the technological risk associated to vital
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and/or less proven FWT components, as well as to highly dynamic transients.

Higher-order computational hydrodynamics, based on the resolution of nonlinear po-

tential or viscous flow in the time domain, may be used to improve the accuracy of

dynamic simulations, possibly in coupling with platform flexibility. Parametric mod-

elling campaigns may use models of this class to create a data base for the calibration

of engineering-level tools, for instance for the description of heave plate hydrodynamics.

Targeted shock and transient studies regarding fluid-structure interaction may also be

of particular interest in assessing concentrated, occasional structural damage. Breaking

wave impact, slamming, and the subsequent ringing are examples in this sense.

Model improvements on the mechanical side will be required to study structure durabil-

ity, where special focus may be placed on the fatigue life of the tower-base cradle and of

welded platform joints. The ageing of cost-saving materials such as reinforced concrete

in the offshore environment should also be investigated. Regarding the turbine rotor,

the implementation of composite material behaviour may be envisaged to qualify novel

component constructions. Component-specific mechanical models may be extended in

the future to cover complex parts such as the umbilical cable and the drive train.

On the aerodynamic side, viscous computational fluid dynamics may be employed for

a more accurate description of the aerodynamic loading on the superstructures, and

perhaps to investigate the complex interaction of an oscillating rotor with its own

wake. Innovative rotor concepts will require accurate aero-servo-elastic investigation to

single out their possible failure modes.

Finally, robust methods will be needed to identify the dimensioning load cases and

their likelihood based on the statistical analysis of met-ocean data and the knowledge

of the dynamic behaviour of the system on a case-by-case basis, in order to organise

the numerical simulations efficiently. This may underpin the adoption of reliability-

driven methodologies such as response-based design, allowing EDF to further leverage

on its modelling capability to challenge the technological solutions proposed. Valuable

further work could also be sought in the extension of the utility’s modelling capabilities

to special and abnormal operating states of a FWT (towing, installation, control or

grid fault, mooring failure, hull damage, etc.) in order to anticipate the spectrum of

questions posed by the industrialisation of floating wind technology.
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5.1.2 Further work

So far, floating wind turbine design has been largely based on the unharmonised combi-

nation of the historical know-hows of wind turbine engineering and ocean engineering.

As the industry matures, the need for more integrated approaches is increasingly

recognised. This translates into the need to deploy new design workflows based on

a range of simulation tools of different complexity, applied to a truly representative set

of dimensioning conditions. The following challenges can be anticipated:

• In presence of unlimited computing resources, the ideal coupled simulation would

include high-fidelity representations of all the involved processes: along with flow-

resolving aerodynamics and hydrodynamics, physically accurate structural and

drive-train models should be present. Unfortunately, in most applications the

allowable computational cost is subjected to limitations. Significant efforts will

be then required to establish the best modelling choices (coupled vs uncoupled,

time-domain vs frequency-domain, etc.) for each design task.

• In the above context, an overarching problem is the simulation length required

to contain the statistical uncertainty inherent to offshore dynamic simulations,

caused by the stochastic nature of the met-ocean loads. Due to low-frequency

excitation and response, the minimum duration of a simulation in stationary

conditions is typically in the order of a few hours. The applicability of high-

end, computationally intensive modelling strategies (such as wake-resolving aero-

dynamics, standard in wind turbine design) is hence restricted and intelligent

approximations must be established alongside. In particular, lightweight coupled

simulation approaches will be highly valuable for tasks such as pre-design opti-

misation and reliability-based design, which demand large amounts of load cases

to be computed.

• At the opposite end of model complexity, the establishment of robust high-

fidelity methods can benefit early design through targeted uses, for instance for

the calibration of simpler models. High-end tools may also permit to optimise

the system’s components at later stages. For instance, nonlinear and/or viscous

CFD may be used surgically to reduce design uncertainty in presence of specific

dimensioning issues.

• The drive-train is a design-governing component bringing in static and dynamic

constraints. Its detailed mechanical simulation is however very demanding in

terms of time step resolution; a direct coupling with stochastically excited system-

level simulations may be impractical. Cascading procedures using weakly coupled,

complementary approaches may be required to acquire a proper understanding

of drive-train reliability whilst keeping the computational cost at bay. This may

ultimately allow to optimise the system by removing unnecessary conservatism

and/or reduce reliability uncertainty.
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• Transient abnormal operating states are loosely defined by the existing design

standards, and have only been investigated until recently. Due to their frequent

occurrence, they can constitute an important source of damage and require to

be predicted by adequate coupled modelling. Transients may entail broad-band

excitation and set off critical response states (a basic example is the sudden

loss of rotor thrust causing a surge swing-back from the offset position). Also,

the selection of a suitable fault set will depend on the technology utilised, hence

demanding adaptation following future innovation. An example using forthcoming

technology is the occurrence of a turret swivel failure in a single-point moored

turbine.

• Similar considerations may be drawn for extreme met-ocean events of short

duration, such as rapid swings in the wind direction or freak waves. These often

challenge the applicability of the available modelling approaches.

• Persistent abnormal states, such as the flooding of a hull compartment or the

loss of a mooring line, are today poorly documented and should be made object

of systematic analysis. Developing efficient ways to model these occurrences and

combine them with the discretised met-ocean parameter space (and possibly with

the structural reliability space) in a statistically representative fashion will require

considerable work.

• Coupled physical modelling of floating wind systems has proven very challenging

so far, as satisfying the Froude and Reynolds number similitudes simultaneously

is desirable but impractical. Numerical simulation is currently being summoned

for the development of hybrid software-in-the-loop procedures in an attempt to

overcome this limitation.

These efforts should be aimed at relating mechanical simulations to the design criteria

in a consistent way, potentially leading to the generation of new standards truly fit for

the specificities of this novel application. Over time the best practices will eventually

emerge, enabling engineers to better answer the industry’s interrogatives concerning

the operability and survivability of floating offshore wind turbines.



Appendix A

Nomenclature

A.1 Symbols in Part 2

5 Hull volume

α Angle of attack

β Stokes parameter

γ JONSWAP spectrum peak enhancement factor

ζ Damping ratio

θ Angle of wave incidence

ϑ Leeward inclination angle

λ Wavelength

ν Kinematic viscosity

ρa Air density

ρw Water density

σx Axial turbulence intensity

τ Convolution time

φ Random phase

ω Angular frequency

ωe Excitation frequency

ωn Natural frequency

∆ Platform displacement

Φ Phase of excitation harmonic

Ψ Amplitude of excitation harmonic

Ω Rotor revolution speed

a Upstream axial induction factor

ar Heave added mass coefficient

a′ Downstream axial induction factor

ã Wave amplitude

178
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br Heave radiation damping coefficient

c Nondimensional coefficient (multiple are defined)

d Upper surface draft of a plate or disc

dp Mean plate draft

fh Heave force per unit wave amplitude

g Gravitational acceleration

k Wave number

l Length of a cylinder

m Mass

p Pressure

q Column radius

r Disc or plate radius

ri Response transfer function of the ith degree of freedom

s Plate submergence

s̃ Longitudinal streamtube coordinate

t Time

tp Plate thickness

u Motion-induced velocity

v Flow velocity

x̄ Coordinate of mean horizontal position

ȳ Coordinate of mean horizontal position

A Sectional area

Aw Waterplane area

CL Lift coefficient

D Cylinder diameter

F Force magnitude

H Incident wave height

I Central moment of inertia

Ir Axial inertia of a rotor

J Transported moment of inertia

KC Keulegan-Carpenter number

Qr Rotor torque

R Rotor radius

Re Reynolds number

S Cross-sectional area
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T Wave period

T2P Period of 2P excitation

Tc Length of convolution window

Tp Pitch natural period

Tr Rotor thrust

U Flow speed

Um Maximum flow speed

V Wind speed at actuator surface

Γ Rotational speed vector

f Generalised force vector

i Unit vector

q Gyroscopic moment vector

x Position vector

A Added mass coefficient tensor

B Radiation damping coefficient tensor

K Stiffness tensor

K̃ Convolution kernel

M Mass tensor



A.2. Symbols in Part 3 181

A.2 Symbols in Part 3

5 Line segment volume

α HHT algorithm parameter

α̌ Rayleigh damping coefficient

β Newmark algorithm parameter

β̌ Rayleigh damping coefficient

γ Newmark algorithm parameter

γ̂ JONSWAP spectrum peak enhancement factor

δ Horizontal displacement

ε Strain

κ Physical axial stiffness

κc Axial stiffness of a CABLE element

λ Wavelength

ξ Normalised axial coordinate

ρc Material density of a CABLE element

ρm Physical material density

ρw Water density

% Mass per unit length

σ Contact stress

ω Wave frequency

Ω System state

c Nondimensional coefficient (multiple are defined)

d Contact clearance

f Frequency

fA Buoyancy force

fW Weight force

g Gravitational acceleration

g′ Corrected gravitational acceleration (1)

g′′ Corrected gravitational acceleration (2)

h Height of fairlead over the seabed

l Length of finite element

lc Length of CABLE element

ma Added mass

r Horizontal distance between anchor and fairlead

s Mooring line scope
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s̃ Longitudinal coordinate

t Time

A Sectional area

Ac Sectional area of a CABLE element

D Cylinder diameter

E Physical Young’s modulus

Ec Numerical Young’s modulus for tension

E−c Numerical Young’s modulus for compression

F Drag force

Fx Horizontal force on floater

F h Horizontal fairlead force

H Water depth

Hs Significant wave height

Hw Wave height

I Sectional moment of inertia

L Length of mooring line

T Line tension

Tp Peak period

Tw Wave period

TF Fairlead tension

g Generalised internal force vector

i Unit vector

j Unit vector

k Unit vector

qe Element displacement vector

qn Nodal displacement vector

qP Reaction force vector at point P

u Position vector

ũ Displacement vector

v Absolute flow velocity vector

w Relative flow velocity vector

A Punctual added mass coefficient tensor

B Punctual radiation damping coefficient tensor

Č Damping tensor of mooring lines

E Error tensor
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K Punctual stiffness tensor

Ǩ Stiffness tensor of mooring lines

L Shape function matrix

M Punctual mass tensor

M̌ Mass tensor of mooring lines
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A.3 Symbols in Part 4

α Airfoil pitch degree of freedom

αij Component of transformation matrix

αr Airfoil angle of attack

γ Geometric angle

θ Geometric angle

κ Reduced frequency

λ Complex eigenvalue

µ Mass per unit length

ν Kinematic viscosity

ξ Damping ratio

ρ Air density

ρm Material density

ρs Chord-wise material density of an airfoil

ω Natural frequency

ω̃ Rotational speed component

Ω Rotor revolution speed

b Half chord length

c Chord length

e Normalised eccentricity of lift centre

f∗ Normalised modal frequency

h Airfoil plunge degree of freedom

k Stiffness coefficient

l Finite element length

lb Beam length

m Airfoil mass

q Stagnation point pressure

r Blade radius

rα Normalised radius of gyration

re Aerodynamic element radius

rg Radius of gyration

s Longitudinal coordinate (along beam axis or airfoil chord)

t Time

ta Airfoil thickness

w Transverse displacement of airfoil chord
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x̃E Distance of elastic centre from the leading edge

A Cross-sectional area

C Theodorsen operator

CL Lift coefficient

CLα Initial slope of lift coefficient curve

E Young’s modulus

F Pre-tension force

G Shear modulus

I Second sectional moment of inertia

L Lift force

M Moment of lift force

M Mach number

Re Reynolds number

S First sectional moment of inertia

T ∗ Kinetic energy

U Airspeed

U∗ Strain energy

Ṽ Speed of sound

a Airfoil pitch and plunge displacement vector

f̃ External force vector

p Position vector in the inertial frame

q Displacement vector in the rotating frame

qe Nodal coordinates of beam element e in the local frame

qs Steady-state displacement vector in the rotating frame

qt Nodal coordinates in the rotating frame

q̂ System eigenvector

r Position vector in the rotating frame

r̂ System eigenvector

u Displacement vector in the local frame

ū Displacement vector in the rotating frame

Λ Aerodynamic operator

Λ Per unit span aerodynamic operator

Ω Spinning matrix

A Inertia tensor of a dynamic system

B Damping tensor of a dynamic system
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C Stiffness tensor of a dynamic system

Da Aerodynamic damping tensor

Da Per unit span aerodynamic damping tensor

E Quadratic eigenproblem partial tensor

F Quadratic eigenproblem partial tensor

G Coriolis tensor

K Stiffness tensor

KΩ Spin-softening tensor

Ka Aerodynamic stiffness tensor

Ke Elastic stiffness tensor

Kg Geometric stiffness tensor

K Per unit span stiffness tensor

Ka Per unit span aerodynamic stiffness tensor

M Mass tensor

Ma Aerodynamic added mass tensor

M Per unit span mass tensor

Ma Per unit span aerodynamic added mass tensor

N Shape function matrix

Q Quadratic eigenproblem tensor

R Rotation (transformation) matrix
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The Newmark Integration

Scheme

Here is presented the Newmark implicit time integration scheme used to discretise

Equations 2.1 and D.8 in the time domain. Given a set of system parameters v, which

are supposed known at time t, the Newmark scheme enables to develop the system’s

kinematic state after a finite increment of time, ∆t, with [199]

v(t+ ∆t) ≈ v(t) + ∆t v̇(t) +
∆t2

2
[(1− 2β)v̈(t) + 2βv̈(t+ ∆t)] , (B.1)

v̇(t+ ∆t) ≈ v̇(t) + ∆t [(1− γ)v̈(t) + γv̈(t+ ∆t)] , (B.2)

which is the so-called A-form, expressing the parameters (displacements) and their

first time derivative (speed) with respect to their second derivative (acceleration). The

square-bracketed terms can be seen as weighted averages of v̈(t) and v̈(t+∆t), where the

weights are dictated by the selection of the Newmark parameters β and γ. Expliciting

v̈(t+ ∆t) in B.1 yields

v̈(t+ ∆t) ≈ 1

β∆t2
[v(t+ ∆t)− v(t)]− 1

β∆t
v̇(t) +

2β − 1

2β
v̈(t) , (B.3)

which, when injected in B.2, provides

v̇(t+ ∆t) ≈ γ

β∆t
[v(t+ ∆t)− v(t)] +

β − γ
β

v̇(t) +
(2β − γ)∆t

2β
v̈(t) . (B.4)

Equations B.3 and B.4 represent the Newmark prediction in D-form, that expresses the

speed and acceleration with respect to the system’s displacement.
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Quasi-linearity of Aerodynamic

Damping

As pointed out in 2.3.3.3, the nearly constant value of the aggregate aerodynamic

damping ratio ζ characterising the free pitch oscillations of a floating VAWT in a

given operating condition is a manifestation of the damping force linearity. In the

model all aerodynamic forces acting on the blades are computed with the lift and drag

formulation; although both of these quantities are a quadratic function of the airspeed,

they become essentially linear with respect to its perturbations as explained next.

The magnitude of the drag force exerted on an object in presence of an unperturbed,

constant airflow of speed U can be written in the following general form, assumed that

the object oscillates with instantaneous velocity ẋ in the same direction as U :

D =
1

2
ρACD (U − ẋ)2 =

1

2
ρACD

(
U2 + ẋ2 − 2Uẋ

)
. (C.1)

It is hence possible to express the instantaneous damping coefficient of motion in the

x direction from Equation C.1 with

− ∂D

∂ẋ
= ρACD (U − ẋ) ≈ ρACDU . (C.2)

It can be calculated that at most rotor stations the local velocity ẋ induced by pitch

oscillations (at the natural period Tp, with an amplitude of a few degrees) is at least

one order of magnitude smaller than U , given that U is in the order of 10 m/s. This

justifies the approximation in Equation C.2. It is found that the dominant component

of the drag-induced damping coefficient is ẋ-independent, implying linearity of drag

damping for large enough values of U/ẋ.

At the dead upwind blade passage (Figure C.1), within the region where large part of

the aerodynamic forcing is generally produced, the quasi-steady lift force arising on a

blade element oscillating with instantaneous speed ẋ in the direction of the incident

188



C. Quasi-linearity of Aerodynamic Damping 189

L0

δα

Uup (1− a)

Ωr

δU = ẋ

α0

L

ẋ

δLx

V0
V

Figure C.1: Snapshot of lift-induced damping mechanism at the upwind blade passage.
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Figure C.2: Lift coefficient characteristic of a NACA 0018 airfoil at high Reynolds as
computed by XFOIL [243], with its first derivative.

wind can be written as

L =
1

2
ρA

dCL
dα

∣∣∣∣
α=0

arctan

[
Uup (1− a)− ẋ

Ωr

]{
[Uup (1− a)− ẋ]2 + Ω2r2

}
, (C.3)

where a is the local axial induction factor and r the blade element radius. A linear

CL (α) relationship is assumed; in practice, as shown in Figure C.2, for a NACA 0018

profile this approximation is accurate for α ∈ [−10, 10] deg. By considering that this

limitation translates into [Uup (1− a)− ẋ] /Ωr / 0.2, and by introducing the small

angle approximation, the lift force can be re-expressed with

L ≈ 1

2
ρA

dCL
dα

∣∣∣∣
α=0

[Uup (1− a)− ẋ] Ωr . (C.4)
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Assuming Lx ≈ L, where Lx is the component of the lift force that is aligned with the

airfoil oscillation, which holds for small angles of attack, allows to write an approximated

expression of the instantaneous lift-induced damping coefficient in the x direction:

− ∂Lx
∂ẋ
≈ 1

2
ρA

dCL
dα

∣∣∣∣
α=0

Ωr . (C.5)

It can be noted that the above coefficient is proportional to the rotor speed. Another

way to look at this mechanism is focussing on the δLx lift component generated by

the airspeed perturbation shown in Figure C.1: in the absence of blade oscillations, the

combination of the relative airspeed components due to the element’s tangential speed

Ωr and to the transverse wind speed Uup (1− a) forms the local incident airspeed vector

V0. An oscillation-induced velocity perturbation, ẋ, causes it to be redefined as V , a

vector with different magnitude and, most importantly, different angle of attack over

the profile, α = α0 − δα. This causes a change in lift force which gives rise to an extra

component δLx that is opposed to ẋ for small angles of attack.

The key information emerging from the damping coefficient examples of Equations C.2

and C.5 is that i) lift and drag forces apply approximately linear damping in the x di-

rection at the upwind (and downwind) blade passage and ii) the drag-induced damping

coefficient is proportional to U whilst the lift-induced coefficient is proportional to Ω.



Appendix D

Nonlinear Solvers in Code Aster

Two nonlinear solver routines available in Code Aster are used in the present study to

find the static and dynamic equilibrium configurations of mooring systems, which are

respectively denoted static and dynamic solver. The present Appendix provides some

insights on their working principles in the mooring simulation context: 1D elements

undergoing large displacements in presence of contact and follower loads.

D.1 Nonlinear static solver

The static equilibrium configuration of a structure with nonlinear behaviour can be

computed within Code Aster using an iterative routine [244]. A pseudo-time discretisa-

tion can be used to parametrise the problem, and most notably to compute equilibrium

states which are far removed from the input configuration by gradually incrementing

the load.

Problem formulation

By imposing static equilibrium and a set of classic bilateral boundary conditions, the

nonlinear quasi-static problem can be written in the global frame as [245]:





g(u, t) + BTλ = f(t)

Bu = h(t)
, (D.1)

where g and f denote the generalised internal and external force vectors. Note that in

linear mechanics one has g(u, t) = Ku, with K representing the stiffness matrix of the

system. Vector u contains the displacements (expressed as an increment from the latest

reference configuration in case UL is used). The linear operator B is the boundary

condition matrix, h contains the Dirichlet boundary condition functions, and λ the

associated Lagrange multipliers (in physical terms, BTλ represents the opposite of the

nodal reaction forces). The problem unknowns are (u,λ) and the system is parametrised

through the use of the pseudo-time variable t.
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When the unilateral contact conditions presented in 3.2.3 are introduced, the quasi-

static problem becomes constrained and is written in the form [199]:





g(u, t) + BTλ + ATµ = f(t)

Bu = h(t)

Au ≤ d

(Au− d)� µ = 0

µ ≥ 0

. (D.2)

In the above expression � denotes component-wise multiplication. The additional terms

define the Hertz-Signorini-Moreau contact laws via A, the unilateral condition matrix,

and the contact distance vector d. Now the unknowns have become (u,λ,µ) = v, where

λ and µ are called the KKT (Karush-Kuhn-Tucker) multipliers.

Pseudo-time discretisation and resolution

By using a notation of the type x(u, ti) = xi, writing System D.2 at ti yields





gi + BTλ + ATµ = fi

Bu = hi

Au ≤ d

(Au− d)� µ = 0

µ ≥ 0

. (D.3)

Resolving the system corresponds to finding the root of the residual expressed by

ri(v, ti) =




gi + BTλ + ATµ− fi

Bu− hi

(Au− d)� µ


 (D.4)

under the given constraints. The root of the residual is typically found iteratively

using an algorithm of the Newton family. Among the options available in Code Aster,

the classic Newton-Raphson method is retained to remain consistent with the UL

approach1. Given that the state Ωi−1 of the system at the previous pseudo-time instant,

ti−1, is known and set as the zero-displacement reference, the present goal of this

algorithm is finding a new deformed state Ωi which zeroes the residual for the loading

and boundary conditions found at ti. This is achieved by constructing a sequence of

vectors vn which converge toward the sought root when applied to the continuously

1Quasi-Newton methods do not recompute the tangent matrix at the intra-step iterations.
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actualised geometry. At each Newton-Raphson iteration n, the system’s tangent matrix

(the Jacobian of the residual) is calculated using the previous iteration’s configuration

as

Jn−1
i =

∂rn−1
i

∂v
, (D.5)

and used to predict the unknowns with

vn = −(Jn−1
i )−1rn−1

i . (D.6)

Note that the UL approach prescribes that the new reference geometry found by

applying vn be used as the new zero-displacement geometry for the next Newton-

Raphson iteration. This, in combination with the carryover of the internal variables,

defines the new reference state Ωn
i , and by consequence the internal force vector gni .

More detailed information about the mathematical procedures used in Code Aster to

update the system state in presence of large displacements and rotations is available in

Fléjou [246].

The above procedure is repeated until convergence as shown in Figure D.1, that is when

the norm of the residual falls below an arbitrary threshold. Here it is chosen to use the

default relative residual criterion, which is defined with

rni =
‖rni ‖∞

‖fi −BTλni −ATµ‖∞
≤ η , (D.7)

where ‖ ‖∞ represents the maximum norm and η the relative precision (which assumes

a default value of 10−6). Once Inequation D.7 is satisfied at the end of the Newton-

Raphson iteration, Code Aster stores the converged equilibrium state for pseudo-time

ti, Ωi, and moves on to the computing the next. (I omitted the ”Euler” prediction

phase!)

ri

ΩiΩ1
i Ω2

iΩi−1

η

Figure D.1: Newton-Raphson algorithm iterations within a pseudo-time step i.
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D.2 Nonlinear dynamic solver

Nonlinear structure dynamics can be explicitly represented in Code Aster in the time

domain [247] using a function closely related to the quasi-static solver described in D.1.

Its underlying formulation is detailed next.

Problem formulation

Given the unknowns v = (u,λ,µ), the dynamic equilibrium problem consists in finding

a parameter evolution v(t) which satisfies [199]





w(u, u̇, ü) + g(u, u̇, t) + Cu̇ + BTλ + ATµ = f(u, u̇, t)

Bu = h(t)

Au ≤ d

(Au− d)� µ = 0

µ ≥ 0

, (D.8)

where the same nomenclature of System D.2 is adopted. The introduction of depen-

dencies from the first and second time derivatives of the displacement vector define

the set of Equations D.8 as a system of second-order differential equations. Compared

to the static equilibrium case, new terms contribute in the definition of equilibrium,

namely w, the inertial force vector, and the linear damping force vector Cu̇. Note that

w depends from displacement and speed, and not only from acceleration, in case finite

rotations are considered; in fact one may decompose it with

w(u, u̇, ü) = Mü + wLR(u, u̇, ü) , (D.9)

with M representing the system mass matrix and wLR a large rotations correction

term. Additionally, it should be remarked that dynamic mooring simulations require

the inclusion of hydrodynamic loads in the RHS term, which are of the follower type2

and cause its dependency from u and u̇.

2A follower load depends from the structure’s displacement.
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Time discretisation and resolution

Assuming that the state of the system is known at t = ti−1, the equilibrium at i is to

be found after a finite increase in time ∆t such as ti = ti−1 + ∆t. By using a notation

of the type x(u, ti) = xi, and considering Equation D.9, writing System D.8 at ti gives





Mü + wLR
i + gi + Cu̇ + BTλ + ATµ = fi

Bu = hi

Au ≤ d

(Au− d)� µ = 0

µ ≥ 0

. (D.10)

The D-form Newmark equations (see Appendix B) intervene at this point to express

the acceleration and speed which have been explicited in Equation D.10 in terms of the

unknown displacement vector u = u(ti) and the known variables from the last time

stamp. The terms in ui−1 = u(ti−1), u̇i−1, and üi−1 are then moved to the right-hand

side of the equilibrium formulation of Equation D.10:





K̂u + wLR
i + gi + BTλ + ATµ = f̂i

Bu = hi

Au ≤ d

(Au− d)� µ = 0

µ ≥ 0

, (D.11)

where

K̂ =
1

β∆t2
M +

γ

β∆t
C , (D.12)

f̂i = fi +
1

β∆t2
M

[
ui−1 + ∆t u̇i−1 + ∆t2

(
1− 2β

2

)
üi−1

]
+

+
1

β∆t
C

[
γui−1 + ∆t(γ − β)u̇i−1 + ∆t2

(
γ − 2β

2

)
üi−1

]
. (D.13)

The system of Equations D.11 is nonlinear because of the presence of terms wLR
i , gi,

and fi. From here, it is possible to resolve it iteratively for each time step: a Newton-

Raphson root-finding algorithm is hence used, which is equivalent to what presented in

D.1. Further details about the implementation of the above in Code Aster are available

in documentation by Greffet [199].



Appendix E

Calculation of Centrifugal

Loading on a Beam

The matrices enabling the representation of apparent and centrifugal force effects within

a structure in a corrotating frame are calculated in Part 4 for a beam element. This is

organised upon the assumption that the rotor undergoes small steady-state structural

deformations under the action of centrifugal loads. In this case it is possible to calculate

the terms of the elementary Coriolis and Softening matrices Ge and KΩe a priori,

that is before centrifugal loading is applied to the structure. These terms incorporate

dependencies from the mass and geometry characteristics of the beams, as well as from

the element’s orientation in space.

It is more complex to evaluate the terms of the geometric stiffness elementary matrix

of a beam, Kge, because of their dependency from the steady-state axial force arising

inside the beam under centrifugal loading, F (s). For a generic hyperstatic frame, this

force depends in turn on the deformed state of the whole structure, even under a small

displacement assumption, thus requiring the resolution of the static elastic problem.

The associated implementation can be broken down into four steps:

a) Calculation of the distributed centrifugal loading for each beam and its repartition

on the beam nodes.

b) Assembly of the elementary nodal forces into a global centrifugal loading vector

expressed in the global frame.

c) Resolution of the static elastic problem with the application of the above force

system.

d) Recovery of the internal axial force for each element, for use in the calculation of

Kge with Equation 4.19.

Whilst the functions fit for carrying out steps b) and c) were readily available in

the existing FE environment, steps a) and d) required fresh implementation. The

procedure developed for step a) is detailed next, whilst a description of the computations

required by step d) is provided in Leung and Fung [226]. Note that for a structure

undergoing linear elastic deformations, the outputs of this procedure are proportional

to the rotational speed squared.
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Equivalent centrifugal loads on a beam element

The notation defining the local beam SoR, xyz, and the global corrotating frame, x̄ȳz̄,

is adopted here consistently with Part 4. The latter is assumed to be revolving at

constant speed around the Y axis of the global inertial frame, that is coincident with

ȳ. The per unit length centrifugal force acting on a generic beam section of centre P

can be written in x̄ȳz̄ as:

fP = ρAΩ2vP , (E.1)

where ρ denotes material density and A the sectional area, two parameters which are

assumed to be homogeneous along the element. Here Ω represents the spinning matrix

as defined in Part 4 and vP the position vector of P in x̄ȳz̄. This force is exerted radially,

as visible in Figure E.1, showing a beam of arbitrary orientation in 3D space. In the

figure r represents the spin radius, that is the point’s distance from the spinning axis,

and f the magnitude of the per unit length centrifugal force as defined in Equation E.1.

A simplification is here adopted in writing the distributed load in function of the

position along the beam span, allowing a linearisation of the components of the per

unit length force vector: the orientation of fP is assumed coincident with that of fC,

which is the force exerted on the beam’s centre C. This representation is shown in

Figure E.2. The force magnitudes correspond to those of Figure E.1. Equation E.1 may

then be rewritten as

fP ' ρAsC |sP|
|sC| ,

sP = Λ2vP ,

sC = Λ2vC .

(E.2)

Note that |sP| = Ω2rP, |sC| = Ω2rC, where Ω is the scalar value of the rotational

speed. It is clear that the approximation’s accuracy deteriorates for beams spanning

tangentially featuring a large length-to-radius ratio.

For a beam of length l, this simplification allows to write the vector force acting on the

O

A

B

rA

rB

f A

f B

Ω

Figure E.1: Projected view of centrifugal forces acting on beam in 3D space. The
spinning axis is orthogonal to the drawing plane.
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O

A

B

rC

f B

f A

CΩ

Figure E.2: Projected view of approximated centrifugal forces acting on beam in 3D
space. The spinning axis is orthogonal to the drawing plane.

beam in the global SoR as

f(ξ) =



ξ
(
fB

1 − fA
1

)
+ fA

1

ξ
(
fB

2 − fA
2

)
+ fA

2

ξ
(
fB

3 − fA
3

)
+ fA

3


 , (E.3)

where ξ = x
l , ξ = 0 at node A and ξ = 1 at node B, ξ ∈ [0, 1]. The subscript

index indicates the vector’s components in the global corrotating frame, as in fA =(
fA

1 fA
2 fA

3

)T
.

In order to express these loads in the beam’s local system of reference, the corresponding

basis change matrix R is required. This is defined using the unit vectors identifying the

beam’s local frame in the global frame, as done with Equation 4.6. The transformation

permitting to express f̃ , the centrifugal force in the local frame, is hence written for

any point P as

f̃P = RfP. (E.4)

By formulating Equation E.4 at node points A and B through Equation E.2, we obtain

f̃A and f̃B, the elements necessary to express the local centrifugal force in function of

ξ:

f̃(ξ) = Rf(ξ) =




ξ
(
f̃B

1 − f̃A
1

)
+ f̃A

1

ξ
(
f̃B

2 − f̃A
2

)
+ f̃A

2

ξ
(
f̃B

3 − f̃A
3

)
+ f̃A

3


 . (E.5)

Following the assumptions of Leung and Fung [226] (uncoupled torsion), the nodal

degrees of freedom affected by the distributed centrifugal load f̃(ξ) reduce to 10 from

a total of 12. By assuming the Euler-Bernoulli beam shape functions for tension and
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bending

N =




1− ξ 0 0

ξ 0 0

0 2 ξ3 − 3 ξ2 + 1 0

0 ξ
(
ξ2 − 2 ξ + 1

)
l 0

0 3 ξ2 − 2 ξ3 0

0
(
ξ3 − ξ2

)
l 0

0 0 2 ξ3 − 3 ξ2 + 1

0 0 −ξ
(
ξ2 − 2 ξ + 1

)
l

0 0 3 ξ2 − 2 ξ3

0 0
(
ξ2 − ξ3

)
l




, (E.6)

the equivalent load applied at the nodes (i.e. the generalised external forces applied in

A and B doing the same work as the distributed load on the beam) is expressed by

components in xyz using Equations E.5 and E.6, as follows:

g̃ = l

∫ 1

0
Nf̃(ξ)dξ =




(f̃B
1 +2 f̃A

1 ) l
6

(2 f̃B
1 +f̃A

1 ) l
6

(3 f̃B
2 +7 f̃A

2 ) l
20

(2 f̃B
2 +3 f̃A

2 ) l2
60

(7 f̃B
2 +3 f̃A

2 ) l
20

−(3 f̃B
2 +2 f̃A

2 ) l2
60

(3 f̃B
3 +7 f̃A

3 ) l
20

−(2 f̃B
3 +3 f̃A

3 ) l2
60

(7 f̃B
3 +3 f̃A

3 ) l
20

(3 f̃B
3 +2 f̃A

3 ) l2
60




. (E.7)

By denoting the equivalent forces to be applied on nodes A and B respectively p̃A and

p̃B, and the equivalent moments m̃A and m̃B, we can then reconstruct these vectors
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from the components found by solving Equation E.7 with:

p̃A =
[
g̃(1) g̃(3) g̃(7)

]T
,

p̃B =
[
g̃(2) g̃(5) g̃(9)

]T
,

m̃A =
[
0 g̃(8) g̃(4)

]T
,

m̃B =
[
0 g̃(10) g̃(6)

]T
.

(E.8)

The vectors above require to be re-expressed in the global spinning SoR in order to be

applied as external forces within the global FE environment. This is done once again

by using matrix R, yielding

pA = RTp̃A,

pB = RTp̃B,

mA = RTm̃A,

mB = RTm̃B.

(E.9)

From this point, standard FE functions can be utilised to assemble the nodal forces

acting on all beams to form the rotor’s global centrifugal loading vector. The resolution

of the elastic deformation problem ultimately yields the internal tensile state of the

structure, which is used as an input for Equation 4.19.



Appendix F

Spinning Beam Matrices

The present Appendix reports the tensors deriving from the application of the Lagrange

Equations to a spinning mechanical beam following the procedure of 4.2.1.3, which is

in turn adopted from Leung and Fung [226].
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F.1 Elastic rigidity matrix
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F.2 Mass matrix
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F.3 Coriolis matrix

G̃e = (ρmAl/420)ω2

0 147b1 147b2 0 −21lb2 21lb1 0 63b1 63b2 0 14lb2 −14lb1

0 156b3 0 −22lb3 0 −63b1 0 54b3 0 13lb3 0

0 0 0 −22lb3 −63b2 −5b3 0 0 0 13lb3

0 0 0 0 0 0 0 0 0

0 4l2b3 14lb2 13lb3 0 0 0 −3l2b3

0 −14lb1 0 13lb3 0 3l2b3 0

0 147b1 147b2 0 21lb2 −21lb1

0 156b3 0 22lb3 0

antisymmetric 0 0 0 22lb3

0 0 0

0 4l2b3

0



.
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F.4 Spin-softening matrix
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F.5 Geometric stiffness matrix

Kge =
F1

30l




0 0

36 3l −36 3l

36 −3l −36 −3l

0 0

4l2 3l −l2
4l2 −3l −l2

0

36 −3l
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0

4l2

4l2
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.

In the above a = ρmAω
2
2(α11x0 + α13z0) and b = ρmAω

2
2(α2

11 + α2
13). The quantities x0

and z0 refer to the position of a reference end-node (arbitrarily chosen) of the beam

element in the spinning frame and F1 to the tensile force at the extremity after the

application of pre-loading.



Appendix G

Linearisation of Quadratic

Eigenvalue Problems

The eigenvalue problem of a damped linear system of size n assumes the quadratic form

(quadratic eigenproblem or QEP)

(λ2A + λB + C)q̂ = 0 , (G.1)

where in the general case all quantities are complex. It can be noted that in an

undamped system, where B ≡ 0, a variable substitution κ = λ2 can be made, and

the problem order is reduced to 1:

(κA + C)q̂ = 0 . (G.2)

In order to resolve the QEP of Equation G.1, it is possible to assemble an equivalent

linearised generalised eigenproblem of order 2n [248]:

Er̂ = λFr̂ , (G.3)

r̂ =

[
q̂

λq̂

]
. (G.4)

If F is nonsingular, defining Q = F−1E, allows to write the problem in standard form:

Qr̂ = λr̂ . (G.5)

The solutions of Equation G.3 (λ, r̂) are the eigenvectors and eigenvalues of matrix Q.

There are multiple options for assembling terms E and F. The rotor aeroelasticity

application requires the problem to be formulated for unstructured matrices, because

of the presence of nonsymmetric matrix addends representing the aerodynamic system.
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Two general forms, known as L1 and L2, are available [248]:

L1: E =

[
0n×n N

−C −B

]
, F =

[
N 0n×n

0n×n A

]
, (G.6)

L2: E =

[
−C 0n×n

0n×n N

]
, F =

[
B A

N 0n×n

]
, (G.7)

where N is an auxiliary matrix defined with

N = αI, α =
1

3n
(‖A‖+ ‖B‖+ ‖C‖) . (G.8)

The use of the re-equilibration factor α facilitates the numerical resolution of the

eigenvalue problem [249]. It is customary to choose between L1 and L2 depending

on the relative singularity of matrices A and C: if the two-norm condition number of

A is smaller than that of C (which characterises all applications in this study), then

the recommended formulation is L1 , otherwise it is appropriate to use L2 [249].



Appendix H

Published Work

The following publications describe part of the doctoral work presented in this manuscript:

• R. Antonutti, C. Peyrard, L. Johanning, A. Incecik, and D. Ingram, “The effects

of wind-induced inclination on the dynamics of semi-submersible floating wind

turbines in the time domain”, Renewable Energy. Forthcoming.

• R. Antonutti, C. Peyrard, L. Johanning, A. Incecik, and D. Ingram,“An investiga-

tion of the effects of wind-induced inclination on floating wind turbine dynamics:

heave plate excursion”, Ocean Engineering, vol. 91, pp. 208–217, 2014.

• R. Antonutti, N. Relun, and C. Peyrard,“Aerodynamic damping effect on the mo-

tions of a vertical-axis floating wind turbine”, in Proc. 14th Journées de l’Hydro-

dynamique, (Val-de-Reuil, France), 2014.
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Appendix I

Authorship

All of the applied studies presented can be attributed to the Author, including the

verification and validation cases. Conversely, the Author’s contribution to the numerical

models described in the methodological sections is limited to the following:

Part 2: Methodological and code contributions to the time-domain simulator CAL-

HYPSO. Amenable to the Author are improvements in the representation of the inertial

wave forces on slender hull elements and the entirety of the aerodynamic and gyroscopic

excitation functions described in 2.2.2 and 2.2.4. Developed in the course of this project

are also the case-specific methodologies described in 2.3.2.1 and 2.3.4.3.

Part 3: The entire model set-up strategy for Code Aster detailed in 3.3 represents an

original contribution.

Part 4: Among the outputs of this project are the implementation of rotating beam

theory (4.2.1.3) and of the aerodynamic operator (4.3.1) within an existing in-house

development environment of EDF R&D. Of the Author is also the implementation of

the resolution chain of the quadratic eigenproblem, using the form presented in 4.2.1.4.

The type and relative amount of effort dedicated to the different Parts of this work are

qualitatively indicated in Table I.1.

Table I.1: Research effort expressed over the engineering doctorate.

Part
Methodology
development

Code
implementation

Validation
Applied
studies

2 •• • • ••
3 •• ••
4 • •• • •
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offshore flottante soumise à l’action conjuguée de la houle et du vent. PhD thesis,

Ecole Centrale de Nantes, Nantes, France, 2013.

[108] J. M. Jonkman, S. Butterfield, W. Musial, and G. Scott, “Definition of a 5 MW

reference wind turbine for offshore system development,” Tech. Rep. NREL/TP-

500-38060, National Renewable Energy Laboratory, 2009.

[109] J. M. Jonkman, “Influence of control on the pitch damping of a floating

wind turbine,” Tech. Rep. NREL/CP-500-42589, National Renewable Energy

Laboratory, 2008.

[110] M. Borg, K. Wang, M. Collu, and T. Moan, “A comparison of two coupled

models of dynamics for offshore floating vertical axis wind turbines,” in Proc.

33rd International Conference on Ocean, Offshore and Arctic Engineering, (San

Francisco, CA, USA), 2014.

[111] K. Wang, T. Moan, and M. O. L. Hansen, “A method for modeling of floating

vertical axis wind turbine,” in Proc. 32nd International Conference on Ocean,

Offshore and Arctic Engineering, (Nantes, France), 2013.

[112] M. Borg and M. Collu, “Frequency-domain characteristics of aerodynamic loads

of offshore floating vertical axis wind turbines,”Applied Energy, vol. 155, pp. 629–

636, 2015.



REFERENCES 220

[113] K. O. Merz, “A method for analysis of VAWT aerodynamic loads under turbulent

wind and platform motion,” Energy Procedia, vol. 24, pp. 44–51, 2012.

[114] “NWTC • Rigid Wind Turbine with Harmonic Motions,” Aug. 2015. Online:

https://wind.nrel.gov/forum/wind/viewtopic.php?f=4&t=831.

[115] N. Relun, “Vertical axis wind turbine aero-dynamic models with emphasis on

Nénuphar Wind concept,” Tech. Rep. H-R22-2013-03014-EN, EDF R&D, 2013.

[116] R. E. Gormont, “A mathematical model of unsteady aerodynamics and radial

flow for application to helicopter rotors,” Tech. Rep. AD-767 240, Boeing Vertol

Compagny, 1973.

[117] D. E. Berg, “Improved double-multiple streamtube model for the Darrieus-type

vertical axis wind turbine,” in Proc. 6th Biennial Wind Energy Conference, vol. 1,

(Minneapolis, MN, USA), pp. 231–238, American Solar Energy Society, 1983.

[118] S. Mertens, G. van Kuik, and G. van Bussel, “Performance of an H-Darrieus in

the skewed flow on a roof,” Journal of Solar Energy Engineering, vol. 125, no. 4,

pp. 433–440, 2003.

[119] C. Ferreira, G. van Kuik, and G. van Bussel, “An analytical method to predict the

variation in performance of an H-Darrieus in skewed flow and its experimental

validation,” in Proc. European Wind Energy Conference, (Athens, Greece), 2006.

[120] C. Ferreira, K. Dixon, C. Hofemann, G. van Kuik, and G. van Bussel,“The VAWT

in skew: stereo-PIV and vortex modeling,” in 47th AIAA Aerospace Sciences

Meeting, (Orlando, FL, USA), pp. 5–8, 2009.

[121] M. O. L. Hansen, J. N. Sørensen, S. Voutsinas, N. Sørensen, and H. A. Madsen,

“State of the art in wind turbine aerodynamics and aeroelasticity,” Progress in

Aerospace Sciences, vol. 42, no. 4, pp. 285–330, 2006.

[122] P. G. Migliore, W. P. Wolfe, and J. B. Fanucci,“Flow curvature effects on Darrieus

turbine blade aerodynamics,” Journal of Energy, vol. 4, no. 2, pp. 49–55, 1980.

[123] M. Borg, A. Shires, and M. Collu, “Offshore floating vertical axis wind turbines,

dynamics modelling state of the art. part I: Aerodynamics,” Renewable and

Sustainable Energy Reviews, vol. 39, pp. 1214–1225, 2014.

[124] M. Islam, D. S. K. Ting, and A. Fartaj, “Aerodynamic models for Darrieus-type

straight-bladed vertical axis wind turbines,” Renewable and Sustainable Energy

Reviews, vol. 12, no. 4, pp. 1087–1109, 2008.

[125] C. Ferreira, The near wake of the VAWT. PhD thesis, TU Delft, Delft, the

Netherlands, 2009.



REFERENCES 221

[126] M. Philippe, A. Babarit, and P. Ferrant, “Modes of response of an offshore wind

turbine with directional wind and waves,” Renewable Energy, vol. 49, pp. 151–

155, 2013.

[127] P. Blusseau and M. H. Patel, “Gyroscopic effects on a large vertical axis wind

turbine mounted on a floating structure,” Renewable Energy, vol. 46, pp. 31–42,

2012.

[128] H. Fujiwara, T. Tsubogo, and Y. Nihei, “Gyro effect of rotating blades on

the floating wind turbine platform in waves,” in Proc. 21st Offshore and Polar

Engineering Conference, (Maui, HI, USA), 2011.

[129] T. Sarpkaya and M. Isaacson, Mechanics of Wave Forces on Offshore Structures.

New York, USA: Van Nostrand Reinhold Co., 1981.
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étude théorique et résolution numérique par la méthode des singularités. PhD
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