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Abstract

Compressed sensing (CS) is an emerging technique that exploits the properties of a sparse or

compressible signal to efficiently and faithfully capture it with a sampling rate far below the

Nyquist rate. The primary goal of compressed sensing is to achieve the best signal recovery

with the least number of samples. To this end, two research directions have been receiving

increasing attention: customizing the measurement matrix to the signal of interest and opti-

mizing the reconstruction algorithm. In this thesis, contributions in both directions are made

in the Bayesian setting for compressed sensing. The work presented in this thesis focuses on

the approximate message passing (AMP) schemes, a new class of recovery algorithm that takes

advantage of the statistical properties of the CS problem.

First of all, a complete sample distortion (SD) framework is presented to fundamentally quan-

tify the reconstruction performance for a certain pair of measurement matrix and recovery

scheme. In the SD setting, the non-optimality region of the homogeneous Gaussian matrix

is identified and the novel zeroing matrix is proposed with an improved performance. With the

SD framework, the optimal sample allocation strategy for the block diagonal measurement ma-

trix are derived for the wavelet representation of natural images. Extensive simulations validate

the optimality of the proposed measurement matrix design.

Motivated by the zeroing matrix, we extend the seeded matrix design in the CS literature to

the novel modulated matrix structure. The major advantage of the modulated matrix over the

seeded matrix lies in the simplicity of its state evolution dynamics. Together with the AMP

based algorithm, the modulated matrix possesses a 1-D performance prediction system, with

which we can optimize the matrix configuration. We then focus on a special modulated matrix

form, designated as the two block matrix, which can also be seen as a generalization of the

zeroing matrix. The effectiveness of the two block matrix is demonstrated through both sparse

and compressible signals. The underlining reason for the improved performance is presented

through the analysis of the state evolution dynamics.

The final contribution of the thesis explores improving the reconstruction algorithm. By taking

the signal prior into account, the Bayesian optimal AMP (BAMP) algorithm is demonstrated

to dramatically improve the reconstruction quality. The key insight for its success is that it

utilizes the minimum mean square error (MMSE) estimator for the CS denoising. However, the

prerequisite of the prior information makes it often impractical. A novel SURE-AMP algorithm

is proposed to address the dilemma. The critical feature of SURE-AMP is that the Stein’s

unbiased risk estimate (SURE) based parametric least square estimator is used to replace the

MMSE estimator. Given the optimization of the SURE estimator only involves the noisy data,

it eliminates the need for the signal prior, thus can accommodate more general sparse models.
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Chapter 1

Introduction

1.1 Introduction

Compressed sensing (CS) has become a popular topic for signal processing since around 2004.

As a non-conventional technique, it advocates acquiring a compressed representation of a sig-

nal at a sub-Nyquist rate during the sampling stage and obtaining a faithful recovery with

the computational power afterwards. A re-examination of the “arms race” between the cam-

era manufactures and the image compression software engineers is often used to explain the

motivation of the CS paradigm [5]: while the hardware engineers are passionate about mak-

ing multi-megapixel cameras, the software engineers are racking their brains for developing

clever algorithms for image compression, because storing and transmitting the original enor-

mous computer files are often impractical. Moreover, with proper compression algorithms, it

is usually impossible to tell the differences between the original and compressed images with

the naked eye. Since only a few data is required to adequately describe a signal and most of the

finely sampled data would end up being discarded, one would like to have the data compression

built directly into the data acquisition procedure. That is what CS mainly about.

The group testing example is also frequently referred to explain the CS concept in layman’s

terms. The group testing problem appears in many forms, one of which dates back to World War

II when a huge blood sample population needs to be tested for syphilis where very few patients

had the disease. Instead of performing the individual and often expensive testing, the blood

samples were partitioned into groups and mixed according to some pre-designed rule. One

measurement per group was then obtained for testing. Given the low possibility of infection,

this strategy largely reduced the number of testing required thus the cost. In the CS context, the

blood testing results for all samples are the original signal. The measurements are the samples

drawn from the mixed blood. The design of the blood mixing rule plays the same role as the

measurement matrix in compressed sensing, in the sense that it enables an efficient set of test

results containing enough information to determine a small subset of items of interest [6].

The first step in CS is the sensing mechanism to obtain the information of a signal x ∈ R
n,
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which can be written mathematically as

yi =< Φi,x >, i = 1, · · · ,m (1.1)

where < ·, · > is the inner product operator. That is, m measurements of the signal x are

obtained by taking the inner product with the sensing vectors Φ1, · · · ,Φm. For the standard CS

setup, the number of measurements is much less than the signal dimension m≪ n. Assembling

all sensing vectors together, we will have an under-determined linear system

y = Φx (1.2)

where y = [y1, · · · , ym] is the observation vector and Φ ∈ R
m×n is the measurement or

sensing matrix with the vectors ΦT
1 · · ·ΦT

m as the rows. The CS reconstruction task is to obtain

a unique solution x̂ that matches the observed vector y and some additional prior information.

The seemingly magic power of compressed sensing to obtain original signals with a sub-

Nyquist rate relies on two principles. Firstly, it exploits the fact that most signals that we are

interested depend on a much smaller number of degrees of freedom than its bandwidth or sig-

nal length suggests. Given a proper basis Ψ, they can have a concise representation with a few

numbers without losing much information. Such signals are said to be sparse or compressible

and are the targets for CS techniques.

Secondly, the sensing vectors Φi must have a dense representation in the sparse basis Ψ [7]. A

example of signal with dense representation is a Dirac function spreading out in the frequency

domain. This is where the randomness enters the picture. With high probability, a measurement

matrix with independent identically distributed (i.i.d.) Gaussian entries is largely incoherent

with any fixed Ψ. Thus the homogeneous Gaussian measurement matrix is widely considered

in CS works. However, it is not necessarily the optimal choice for CS reconstruction. An

interesting research avenue is to design the structured measurement matrix to obtain better

reconstruction with few measurements. For practical signals, one would expect more properties

than just sparsity. Tailoring the measurement matrix with the additional prior information would

also benefit reconstruction. In this thesis, designing and optimizing the structured measurement

matrix in accordance with the original signal form a major contribution.

Another important ingredient for CS is the reconstruction algorithm. For signal recovery, CS

leverages the highly nonlinear methods. The conventional tractable algorithms include the lin-
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ear programming (LP) and greedy methods. Extensive research for the reconstruction perfor-

mance and convergence analysis for both types of algorithms can be found in the CS literature.

In 2009, Donoho and co-authors introduced the novel approximate message passing (AMP)

algorithm, which utilized the graphic model approach for the CS reconstruction. As an iter-

ative algorithm, AMP is particularly of interest in two aspects. First of all, a distinguishable

feature of AMP is the state evolution (SE) formalism, which can accurately predict the asymp-

totic algorithm behaviour in the large system. Secondly, AMP is able to incorporate the signal

prior information and thus deliver improved recovery in comparison with the conventional al-

gorithms. As a relatively new CS algorithm, there are a lot unanswered questions and possible

applications to be explored. In this thesis, AMP is used as the primary reconstruction tool. The

SE dynamics are deployed for optimizing the structured measurement matrix. Modification and

enhancement of the generic AMP algorithm is also investigated and leads to novel AMP based

algorithms in this thesis. More recent study reveals the recursive Gaussian denoising nature of

the AMP reconstruction. It means that there are opportunities to marry various off-the-shelves

denoising methods with the AMP framework to solve practical signal processing problems.

1.2 Original Contributions

The contribution in this thesis is twofold: the structured measurement matrix design and en-

hancing the generic AMP algorithm. In particular, three main points are listed below to give a

short overview.

• Optimized sample allocation for the compressed imaging

The non-optimality of the homogeneous Gaussian matrix for the compressed imaging

has been identified in the literature for a long time. Driven by the need for an analyt-

ical bandwise sampling scheme, we establish a sample distortion (SD) function for the

wavelet multi-resolution image model and introduce a tractable sample allocation method

assuming the independence of the wavelet bands. Essentially we address the following

problem: given a fixed number of CS measurements, how many samples should be al-

located for each wavelet band to achieve the optimal reconstruction. To our knowledge,

the work presented in this thesis is the first analytical result for optimizing the bandwise

sampling of CS imaging. Furthermore, the novel sample distortion framework provides

us with the accurate prediction for the reconstruction error associated with the optimized

measurement matrix.
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• Modulated matrix design with the one dimensional state evolution dynamics

Apart from the bandwise independent measurement matrix, the spatial coupling structure

has also been applied for the CS reconstruction to reduce the recovery error. The main

contribution in this respect is the introduction of the modulated matrix design, which can

be seen as a concatenation of Gaussian random sub-matrices with different variances. In

this thesis we show that such measurement matrix is able to achieve the perfect recon-

struction with a sampling ratio approaching the theoretical limit for sparse signals. For

compressible signals, it also offers improved reconstruction quality. More importantly,

we introduce a simple one dimensional (1-D) state evolution formalism to characterize

the AMP behaviour with the modulated matrix, with which we can predict the recon-

struction error and optimize the matrix configuration.

• Parametric SURE-AMP algorithm with the Bayesian optimal reconstruction

The final main contribution of the thesis lies in the introduction of the novel parametric

SURE-AMP algorithm, which is a variant for the generic AMP algorithm. Leveraging

the intrinsic signal denoising nature of the AMP iterations, an adaptive parametric de-

noising module is introduced to the AMP framework. At each iteration, the denoiser

is optimized by minimizing the Stein’s unbiased risk estimate (SURE) of the recov-

ered signal. Since SURE is the unbiased estimate of the mean squared error (MSE),

the parametric SURE-AMP progresses by directly minimizing the least squared error of

the reconstructed signal. The proposed parametric SURE-AMP algorithm improves the

generic AMP performance and is able to achieve the Bayesian optimal recovery as if the

true signal prior is known for reconstruction.

1.3 Thesis Organization

The rest of the thesis is organised as follows:

Chapter 2 presents the background information related to the topic of this thesis. It starts with

a summary of the key concepts and theoretical results of compressed sensing. This is followed

by a detailed overview of AMP, from the derivation of the algorithm to a summary of the AMP

variants. This chapter finishes with a short overview of the state evolution dynamics for the

AMP algorithms. Overall the AMP algorithms have been used throughout the work for both

the measurement matrix and the reconstruction algorithm design. Thus this chapter lays the

foundation for the rest of the thesis.
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Chapter 3 establishes the sample distortion framework for quantitatively evaluating the recon-

struction error for certain pairs of measurement matrix and recovery scheme. The intrinsic

convex property of the SD function leads to the hybrid zeroing matrix design. After a brief

discussion of the bandwise independent wavelet model, the SD framework is applied to natural

images to optimize the sample allocation for the block diagonal measurement matrices. With

the convexified SD function for the wavelet image model, a reversed water-filling scheme is

applied to achieve the optimal sample allocation. Finally, the wavelet tree structure is incorpo-

rated with the bandwise sampling and a more general measurement matrix for natural images

based on the average image statistics is derived.

Chapter 4 introduces a novel dense measurement matrix to improve the SD performance for

both sparse and compressible signals. The proposed matrix, designated as the modulated ma-

trix, is inspired by the hybrid zeroing matrix presented in Chapter 3 and the seeded matrix in

the literature. After a description of the matrix structure, a simple 1-D SE equation is derived to

characterize its asymptotic behaviour when used together with the AMP algorithm. Under the

modulated matrix framework, the two block matrix is then presented as a special realization.

Finally the chapter concludes with a simulation for both sparse and compressible signals to

illustrate the effectiveness of the modulated matrix design.

Chapter 5 presents the novel parametric SURE-AMP algorithm. The Gaussian behaviour of

the AMP residual and the recursive denoising nature of AMP are first revisited in this chap-

ter. The pros and cons of the existing AMP based algorithms are also analysed to motive the

parametric SURE-AMP algorithm. The proposed algorithm incorporates an adaptive denoising

function family with the AMP iteration and select the denoiser with the minimum mean squared

error (MMSE) at each step. Three different kernel families are then introduced as the base func-

tions to form the denoisers. Simulation with both sparse and compressible signals demonstrate

that with proper design of the denoiser family, the parametric SURE-AMP algorithm is able to

deliver state-of-the-art performance in terms of both reconstruction quality and computational

complexity.

Chapter 6 concludes this thesis with a discussion of the limitations of the presented work and

the directions for potential future research.
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1.4 Publications

Work presented in this thesis has previously submitted or published in the peer reviewed jour-

nals and conference proceedings. A full list of the publications is as follows,

Peer Reviewed Journal Articles:

1. Chunli Guo and Mike E. Davies, “Near optimal compressed sensing without priors: Para-

metric SURE Approximate Message Passing” is accepted by IEEE Transactions on Sig-

nal Processing.

Part of this paper has found its way into the background in Chapter 2 and the whole of

Chapter 5 has been taken from this publication.

2. Norbert Goertz, Chunli Guo, Alexander Jung, Mike E. Davies and Gerhard Doblinger,

“Iterative recovery of dense signals from incomplete measurements”, in IEEE Signal

Processing Letters, vol 21, pp.1059-1063, 2014.

The k-dense signal model from this publication is introduced in Chapter 2 and used in

both Chapter 4 and Chapter 5. This paper was a joint paper and the MATLAB code for

iterative dense recovery has been supplied by the first author of the paper.

3. Chunli Guo and Mike E. Davies, “Sample distortion for compressed imaging”, in IEEE

Transactions on Signal Processing, vol. 61, No. 24, pp 6431-6442, 2013.

The work presented in Chapter 3 has mainly been taken from this paper.

Conference Proceedings:

1. Chunli Guo and Mike E. Davies, “Bayesian optimal compressed sensing without priors:

parametric SURE approximate message passing”, in Proc. European Signal Processing

Conference (EUSIPCO), September 2014.

This publication contributes part of Chapter 5.

2. Chunli Guo and Mike E. Davies, “Modulated measurement matrix design for compressed

sensing”, in Proc. IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing, May 2014.

This paper presented the work that can be found in Chapter 4 of this thesis.

3. Chunli Guo and Mike E. Davies, “Sample allocation for statistical multiresolution com-
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pressed sensing”, in Proc. IEEE International Conference on Acoustics, Speech and

Signal Processing, May 2013.

This paper discuss the issues that can be found in the Chapter 3.

4. Mike E. Davies and Chunli Guo, “Sample-distortion functions for compressed sensing”,

in Annual Allerton Conference on Communication, Control and Computing (Allerton),

2011 (Invited Paper).

This early publication contributes to the theoretical work in Chapter 3.
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Chapter 2

Background

2.1 Introduction

The compressed sensing problem we consider throughout this thesis is formulated as the fol-

lowing under-determined linear system

y = Φx+ ξ (2.1)

where x ∈ R
n is the sparse or compressible signal that we would like to reconstruct, y ∈ R

m

is the CS observation vector, Φ ∈ R
m×n is the measurement matrix with the sampling ratio

γ = m
n < 1, and ξ ∈ R

m is the additive white Gaussian noise (AWGN) vector with i.i.d.

entries ξi ∼ N (0, σ2ξ ). The noiseless case is incorporated in this model by setting ξ = 0. Given

Φ, y and the signal prior p(x) in some scenario, the goal of CS is to reconstruct x as best as

possible though appropriate algorithm and measurement matrix design.

In this chapter, we review some basic knowledge of compressed sensing, with the emphasis on

the AMP algorithm. We start with one of the most important principles that compressed sensing

relies on, the low dimensional signal structure. Then the CS measurement matrix properties are

shortly discussed. Three different types of existing CS algorithms are briefly summarized. We

then focus on the presentation of the AMP related information. Since AMP is derived from

the canonical message passing algorithm over the graphic model for CS, the key concept of

the factor graph and the sum-product algorithm are reviewed. It is followed by a detailed re-

derivation of the Bayesian optimal AMP (BAMP) algorithm as a working example. Three types

of AMP-based algorithms: BAMP, ℓ1-AMP and generalized AMP (GAMP) are summarized.

Finally one of the most distinguishable features of AMP-base algorithms, the state evolution

formalism, is discussed with the basic intuition and detailed formula. It will be shown later in

Chapter 3 that the SE dynamics provides a theoretical basis for the sample distortion framework.

Further it can be used as a tool for optimizing the measurement matrix configuration as shown

in Chapter 4.
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2.2 Low Dimensional Signal Models

As stated in Chapter 1, the success of compressed sensing relies heavily on the fact that the

number of degrees of freedom for high-dimensional signals is often much smaller than their

ambient dimensionality. In this section, we explain the most common low-dimensional struc-

tures encountered in compressed sensing from both a deterministic and stochastic perspective.

2.2.1 Sparse and Compressible Signals: Deterministic Model

Signals can often be well-approximated by a linear combination of just a few elements from a

known basis. When the approximation is exact, we say the signal is sparse. From the determin-

istic perspective, the sparsity is often quantified by the ℓ0-norm in the CS literature. Suppose

x ∈ R
n is the signal to be acquired, we say x is k-sparse when it has at most k non-zero

components

‖x‖0 ≤ k, k < n (2.2)

Typically in CS we are dealing with signals that are not sparse in the time domain but a trans-

formed domain. Suppose x can be expressed as a linear combination of θ ∈ R
n in some

orthonormal basis Ψ ∈ R
n×n, which is x = Ψθ, we still refer to x as k-sparse if ‖θ‖0 ≤ k.

In practice, few real-world signals are exactly sparse. Most of them are only well approximated

by a sparse signal. Such signals are denoted as compressible signals. A typical compressible

signal example is the natural image represented with a multi-resolution wavelet transform. As

shown in Fig. 2.1, most of the wavelet coefficients of the cameraman image are so small that

we can hardly tell the difference between the original and the approximated image, which is

obtained by setting the small coefficients to zero. This procedure yields the best k-term approx-

imation of the image, i.e. the best approximation of the signal using only k basis elements.

One possible definition of compressible signal is the one whose coefficients, when sorted in a

descending order, satisfies the following inequality

|xi| ≤ ci−q (2.3)

where c, q > 0 are constants [20]. Fig. 2.1(d) displays the sorted wavelet coefficients for

each wavelet scale of the cameraman image in the log-log scale. It is clear that its wavelet

coefficients are compressible within each wavelet scale.
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Figure 2.1: Compressible representation of the cameraman image via a multiscale wavelet

transform and its best k-term approximation. (a) Original image. (b) db2 wavelet

decomposition. Large coefficients are represented by light pixels, while small co-

efficients are represented by dark pixels. Note that most of the wavelet coefficients

are close to zero. (c) Approximation of the image obtained by keeping the largest

10% of the wavelet coefficients. (d) Sorted wavelet coefficients in a descend order

for each scale.
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2.2.2 Sparse and Compressible Signals: Stochastic Model

When considering the CS reconstruction problem in the stochastic setting, probabilistic Bayesian

models to characterize the signal sparsity/compressibility are naturally required. To be specific,

we seek distributions whose i.i.d. realizations are strictly sparse or can be well approximated

as sparse.

Based on the deterministic description of sparse signals, it is straightforward to model sparsity

with the following distribution

pX(xi) = ρF (xi) + (1− ρ)δ(xi) (2.4)

where δ(·) is the Dirac delta function and F (·) characterizes the statistical property of non-zero

coefficients . Given the form in (2.4), the signal sparsity level is invariant to Γ(·) but con-

trolled by the sparsity ratio ρ = k
n . In this thesis, we broadly use the Bernoulli-Gaussian (BG)

distribution as an exemplary sparse signal model with Γ(·) being the Gaussian distribution.

For compressible signals, the appropriate distribution should be ’peaky’ around zero to capture

the concentration of small magnitude components and have heavy tail to represent the large

magnitude components. In [8], a specific definition of compressible distribution is given and

the way of identifying compressible distributions is discussed. Here we present two specific

non-Gaussian distributions that we will use in this thesis to model compressible signals.

First, a popular probabilistic model for heavy-tailed non-Gaussian distributions is the general-

ized Gaussian distribution (GGD) [9, 10]. The pdf for the GGD can be written as

p
GGD

(x) =
α

2
√
βσΓ( 1α )

exp

(

−
∣
∣
∣
∣

x√
βσ

∣
∣
∣
∣

α)

(2.5)

where β = Γ(1/α)/Γ(3/α), σ is the standard deviation and α is the shape parameter. As α

goes to zero the distribution has increasingly heavy tails. For the special cases of α = 1 we

have the Laplace distribution and when α = 2 we have the Gaussian distribution. The GGD

provides a good approximation to the distribution of the wavelet coefficients for natural images

(at a fixed wavelet scale) with α ∼ [0.3, 1].

Another commonly used distribution to model compressible signals is the two-state Gaussian
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Figure 2.2: Solid lines illustrate the sorted magnitude of the db2 wavelet coefficients of the

cameraman image in five different scale. Dashed lines show the expected order

statistics of the GGD and GMD models with the parameters estimated directly

from cameraman. (a) Wavelet/GGD. (b)Wavelet/GMD.

mixture distribution (GMD). The pdf for the GMD is written as

p
GMD

(x) =p(x|s = 1) + p(x|s = 0)

=p(s = 1)N (x; 0, σ2L ) + p(s = 0)N (x; 0, σ2S )

=λN (x; 0, σ2L ) + (1− λ)N (x; 0, σ2S )

(2.6)

where s = {0, 1} are the hidden states, σ2
L

and σ2
S

are the large and small Gaussian variance,

respectively. The density ratio for compressible signals is λ, which represents the portion of

the significant elements. The two-state GMD model is quite effective at capturing the heavy

tailed nature of compressible signals by adjusting λ. A random vector with i.i.d. two-state

GMD components can be seen as generated either from the small or large variance Gaussian

distribution, depending on the hidden states s. Since coefficients with small magnitude are

expected to dominate the signal domain for compressive signals, we normally observe λ < 0.5.

In Fig. 2.2, we plot the magnitude-ordered wavelet coefficients for the cameraman image in the

log-log scale. For comparison, we also present the expected order statistics 1 of both GGD and

GMD models. The specific parameters for both distributions are estimated directly from the

wavelet coefficients of cameraman via moment matching. It is clear that both GGD and GMD

are able to well capture the marginal statistical properties of the image.

1The i.i.d realizations of signal models are generated and expected magnitudes of the signal coefficients are

sorted in a descending order [11]
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Finally, we introduce another canonical CS signal model, the k-dense distribution. As opposed

to the k-sparse concept, the k-dense signal has most of its elements taking their value from the

discrete set D ≡ {−β,+β} with β being a real positive constant. The remaining k elements

are real valued and taken from the open continuous set C ≡ (−β,+β). The pdf of the k-dense

signal is written as

pKD(x) =
1− λk

2
δ(x + β) +

1− λk
2

δ(x− β) + λkU(−β, β) (2.7)

where λk = k
n and U represents the pdf of the continuous components. In this thesis, we

consider U being the uniform distribution. The k-dense signal may stem from a source with

real components that are clipped. Another example is a binary modulated signal received at

a relay in cooperative communication [12]. In the CS literature, the k-dense signal has been

considered before as the k-simple signal in [13]. The face counting theory has been established

to bound the minimum sampling ratio for its perfect reconstruction via the convex optimization.

In [14], the soft thresholding function with the adaptive thresholding level is suggested for the

AMP algorithm. In this thesis, we will take it as a special non-sparse signal model to test our

measurement matrix design and the proposed CS reconstruction algorithm in Chapter 4 and

Chapter 5.

The concept of sparsity/compressibility of a signal cannot be discussed without the represen-

tation domain. With the orthonormal basis Psi fixed, the sparsity/compressity can be checked

by the definition. However, finding the sparse basis may not be trivial.

2.3 Sensing Matrices

As stated in Chapter 1, one of the main contributions in this thesis is the measurement matrix

design. Before embarking on that topic, it is important to understand the CS measurement ma-

trices properties that preserve the signal information to enable practical algorithms to accurately

and efficiently recover the original signal. A key measurement matrix condition, used to study

the general system’s robustness, is known as the restricted isometry property (RIP) [15].

Definition 1. A matrix Φ satisfies the RIP of order k if for all k-sparse vectors x there exists a

constant 0 < δk < 1 such that

(1− δk)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δk)‖x‖22 (2.8)
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The smallest constant δk (as a function of k) for which (2.8) holds is defined as the RIP constant.

For any two distinct k-space vectors x1 and x2, denote the difference as e = x1 − x2. Con-

sequently, the support size of e is at most 2k and ‖e‖2 > 0. If a matrix Φ satisfies the RIP of

order 2k, we have

‖Φx1 −Φx2‖22 = ‖Φe‖22 ≥ (1− δ2k)‖e‖22 > 0 (2.9)

It implies that the CS observation y1 = Φx1 and y2 = Φx2 are also distinct. In other words,

if the measurement matrix Φ satisfies the RIP of order 2k, the distance between any pair of

k-sparse signals in the high dimension can be approximately preserved when projected into a

lower dimension. Thus RIP is a very useful condition to guarantee the existence of practical

algorithms for reconstructing sparse and compressible signals from noisy measurements. See

[15] for more details.

Although checking the validation of RIP for a given matrix is difficult, it has been proved

that many random measurement matrices satisfy RIP with high probability, which includes

the measurement matrices whose entries following the i.i.d. Gaussian distribution, Bernoulli

distribution, and the partial Fourier matrix. For these matrices, the order 2k RIP condition is

satisfied with overwhelming probability if the number of measurements satisfies the inequality

m ≥ Ck log(n/k) (2.10)

where C is an constant depending on the specific measurement matrix instance [16, 17]. In

other words, for the above mentioned matrices, there exists an algorithm with which the exact

recovery of the sparse signal is achievable with overwhelmingly high probability.

Another more computable measurement matrix condition for analysing the CS recovery guar-

antee is the coherence [18].

Definition 2. The coherence of a matrix Φ, µ(Φ), is given by the largest absolute inner product

between any two of its columns Φi, Φj

µ(Φ) = max
1≤i<j≤n

|〈Φi,Φj〉|
‖Φi‖2‖Φj‖2

(2.11)

It can be shown that the coherence of a matrix is bounded by µ(Φ) ∈ [
√

n−m
m(n−1) , 1] [19]. The

connection of coherence and RIP is explained in the following lemma.
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lemma 1. ( [20]) If a matrix Φ has unit-norm colums and coherence µ(Φ). Then Φ satisfies

the RIP of order k with δk = (k − 1)µ(Φ) for all k < µ(Φ)−1.

For random measurement matrices with elements generated i.i.d. from the Bernoulli, Gaussian

and sub-Gaussian distributions, their coherence is roughly

µ ∼
√

lnn

m
(2.12)

Then lemma 1 implies that for these matrices, the exact recovery happens with high probability

when the number of measurements satisfies

m ≥ ck2 lnn (2.13)

where c is a constant depending on the matrix ensemble.

2.4 Compressed Sensing Reconstruction

There exists a wide variety of algorithmic approaches to the problem of recovering a sparse

or compressible signal from an under-determined linear system. We now briefly review three

typical types of methods in the literature.

2.4.1 ℓ1-Minimization

To retrieve the unknown signal x as well as preserve its sparsity from the noiseless CS mea-

surements, it is natural to consider the following optimization problem

x̂ = argmin
x
‖x‖0 s.t. y = Φx (2.14)

Unfortunately, the ℓ0 minimization problem in (2.14) is not convex and lacks a practical pro-

cedure for even finding a solution that approximates the true minimum [21]. Alternatively, a

more computationally tractable approach which relaxes the ℓ0-norm objective to the ℓ1-norm

has been proposed and is called the Basis Pursuit (BP) [22]:

x̂ = argmin
x
‖x‖1 s.t. y = Φx (2.15)
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Equation 2.15 can then be solved by many off-the-shelf linear programming (LP) solvers. The

use of ℓ1-minimization to promote sparsity has a long history, dating back to the work of Beurl-

ing on Fourier transform extrapolation form partial observations [20]. In [22], extensive empir-

ical evidence suggests that the solution of (2.15) indeed recovers the sparsest solution in many

cases. Donoho and co-authors further established a condition on the measurement matrix Φ,

for which the BP solution is equivalent to solving the ℓ0-minimization problem in (2.14) [23].

Further work studying the relationship between (2.14) and (2.15) was conducted by several

research groups, see [24–30].

In the presence of noise, another important problem broadly considered in the compressed

sensing community is to solve

x̂ = argmin
x
‖x‖1 s.t. ‖y −Φx‖2 ≤ ε (2.16)

Provided that the constraint in (2.16) is convex, the minimization is computationally feasible.

See [31, 32] for some good solvers for (2.16). In the CS literature, more effort has actually

been put into considering the unconstrained version of the optimization problem in (2.16):

x̂ = argmin
x
‖y −Φx‖22 + κ‖x‖1 (2.17)

It is also known as the Basis pursuit denoising (BPDN) or LASSO (Least Absolution Shrinkage

and Selection Operator). With appropriate choice of κ, the solution of LASSO coincides with

that of the constraint minimization in (2.16). Several approaches for choosing κ are discussed

in [33, 34].

The convex optimization technique is a powerful framework for recovering sparse signals

since there exists accurate numerical solvers. The potential drawback of applying the ℓ1-

minimization for the CS reconstruction though is that it may not be very efficient for large-scale

problems.

2.4.2 Greedy methods

Another important class of CS reconstruction algorithms is the greedy method. They attempt to

directly approximate the solution for (2.14) by iteratively identifying the support and value of

the signal until a convergence criteria is met. Prominent examples of greedy methods include

orthogonal matching pursuit (OMP) [35], stagewise OMP (StOMP) [36], compressive sam-
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pling matching pursuit (CoSamp) [37] and iterative hard thresholding (IHT) [38]. Many greedy

algorithms have been shown to have the similar performance guarantee as the ℓ1-minimization

method [37,38]. They also sometimes outperform the ℓ1-minimization based methods in terms

of speed, storage and ease of implementation requirement for algorithms. Since the greedy

methods are not the primary focus of this thesis, we refer the interested readers to [39–46] for

a variety of existing algorithms.

2.4.3 Approximate Message Passing Based Methods

A very recent development for CS reconstruction is the approximate message passing algo-

rithms, which is closely related to the approximate belief propagation for the CDMA multi-user

detection problem [47–49]. The AMP was first introduced by Donoho and co-authors in [14].

It generally takes the iterative form

x̂t+1 = ηt(x̂
t +ΦT zt)

zt = y −Φx̂t +
1

γ
zt−1〈η′t−1

(
x̂t−1 +ΦT zt−1

)
〉

(2.18)

where {ηt(·)}t>0 is a sequence of scalar non-linear functions applied elementwise to the vector

x̂t +ΦT zt with t indicating the iterations and η′t(·) is the derivative of ηt(·) with respect to its

first augment. With different selection of the non-linear function ηt(·) and possible extension

of the algorithm, one would end up with different AMP variants. With a slight abuse of ter-

minology, the term AMP is used to refer to both the class of AMP algorithms and the generic

form in (2.18).

In the original AMP paper [14], the non-linear function takes the soft thresholding form

ηS(x; b) =







x− b if x > b

0 if− b ≤ x ≤ b

x+ b if x < −b

(2.19)

The generic AMP algorithm has a very similar structure with the iterative soft threshold-

ing (IST) algorithm. The only difference is that the IST does not have the additional term

1
γz

t−1〈η′t−1

(
x̂t−1 +ΦT zt−1

)
〉. The IST approach is an iterative thresholding method for solv-

ing the LASSO problem in (2.17). The application of the soft thresholding function was first

introduced for compressed sensing in [42]. It has also been proved in [42] that for ‖Φ‖2 < 1,
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(a) (b)

Figure 2.3: The QQ plot for the IST (a) and AMP (b) residual at the 10th iteration. The linear-

ity of the QQ plot indicates the Gaussian behaviour.

the IST is guaranteed to converge towards to the solution of a LASSO minimizer.

With Φ being the measurement matrix with Gaussian distributed elements, the inclusion of the

extra term 1
γz

t−1〈η′t−1

(
x̂t−1 +ΦT zt−1

)
〉, which is designated as the “Onsager” reaction term,

has fundamentally altered the IST behaviour. With the Onsager term, the AMP reconstruction

can be interpreted as a recursive Gaussian denoising problem [14, 50, 51]. To be specific, the

residual x̂t + ΦT zt − x can be well modelled as an AWGN vector at each AMP iteration.

The Gaussian behaviour of the AMP residual is demonstrated in the quantile-quantile (QQ)

plot alongside the one for the IST residual in Fig. 2.3. In Fig. 2.3, the sample quantile is

plotted against the theoretical quantile from a Gaussian distribution. The linear behaviour of

the sample quantile in Fig. 2.3(b) implies the Gaussian nature of the AMP residual. In contrast,

the IST residual does not demonstrate such behaviour. The difference is exactly introduced by

the Onsager term.

Given such observation for AMP, the non-linearity ηt(·) essentially acts as the denoising func-

tion to remove the Gaussian noise to obtain a clearer data estimate at each AMP iteration. It

also implies that better denoising function could be employed for this purpose. When the sig-

nal prior is available for reconstruction, the MMSE estimator is undoubtedly the best denoising

choice. The corresponding BAMP algorithm is thus able to deliver better reconstruction than

the generic AMP with the soft thresholding function [52]. When the signal prior is unknown, it

has been proposed that a expectation-maximization (EM) learning procedure can be combined

with the generic AMP algorithm as discussed in [53, 54]. In Chapter 5, we also propose an

alternative which marries the Stein’s unbiased risk estimate with the AMP formula and delivers
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a BAMP-like performance without the knowledge of the signal prior. A short review of AMP

based algorithms will be presented later in section 2.7.

Another distinguishable feature that AMP possesses is the state evolution formalism, which

analyses the asymptotic behaviour of AMP in the large system limit. Given the generic AMP

algorithm defined in (2.18), the state evolution is a recursive function of the state variable τ2t ,

which is the rescaled MSE for the signal estimate at iteration t

τ2t = σ2ξ +
1

γ
E{[ηt(X0 + τt−1Z)−X0]

2} (2.20)

The expectation is taken with respect to the independent random variable Z ∼ N (0, 1) and

X0, whose distribution coincides with the signal of interest x. There will be more detailed

discussion about SE later in Section 2.8. In the large system limit, the convergence point τ2∗ of

(2.20) accurately predicts the MSE of the AMP reconstructed signal x̂ [14, 55]

lim
n→∞

1

n
‖x− x̂‖22 = E{[ηt(X0 + τ2∗Z)−X]2} = γ(τ2∗ − σ2ξ ) (2.21)

Numerical evidence to support the SE dynamics can be found in [14] for i.i.d. Gaussian,

Rademacher and partial Fourier matrices. The agreement between the SE prediction and the

Monte Carlo simulation is remarkably good for signal dimension of the order of a few hundreds.

In [55], the authors proved that in the large system limit, SE holds for random measurement

matrices with i.i.d. Gaussian entries. They also commented that although the proof technique

heavily relies on the Gaussian assumption, the SE is expected to hold for a broader range of

random matrices. The benefits of having the SE dynamics is twofold. First, the expected MSE

of an AMP-based algorithm can be obtained without running Monte Carlo simulations. We

will see later in Chapter 3 how it can be used to quantify the reconstruction performance for a

certain pair of measurement matrix and recovery scheme. Second, the SE dynamics provides

a systematic way for optimizing the non-linear function ηt(·) in the AMP iteration. In Chapter

5, the parametric SURE-AMP is proposed by choosing ηt(·) that minimizes the right hand side

of (2.20). A detailed summary of the SE dynamics for different AMP variants and the intuitive

explanation for SE will be presented in section 2.8.

Theoretically and empirically speaking, AMP is a class of computationally efficient algorithms

with the state-of-the-art performance [14, 50, 56]. It will be the main reconstruction tool that

we resort to throughout the thesis.
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Figure 2.4: Theoretical phase transition for ℓ1-minimization [1, 2].

2.5 Phase Transitions

In section 2.3, the number of measurements required for exact recovery of sparse signals is

analysed by considering the RIP and coherence condition of the measurement matrix. Although

the order of bound derived from RIP for random measurement matrices in (2.10) is optimal, the

unknown constant C makes the bound of little practical use for real engineering applications.

The phase transition is then proposed to provide a more specific guidance for sampling as well

as a fair scheme to compare the undersampling-sparsity tradeoff for various CS algorithms.

The phase transition phenomenon was first empirically observed and rigorously characterized

in [1, 2] for the ℓ1-minimization method. We assume γ and ρ are fixed as m,n → ∞. For a

fixed signal support size, there is a well-defined ’break-down’ sampling ratio above which ℓ1-

minimization can successfully recover the original signal with overwhelmingly high probabil-

ity. The phase diagram indicating the probability of success and failure of the ℓ1-minimization

as a function of ρ and γ is shown in Fig. 2.4. The red line is the theoretical phase transi-

tion curve for ℓ1-minimization method assuming large system, whose derivation can be found

in [1, 2]. In the ’upper’ region of the plot, the probability of exact recovery tends to zero expo-

nentially fast. While in the ’lower’ region, the probability of successful recovery tends to one

exponentially fast [14]. In practice with finite problem size, the transition zone between failure
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and success becomes narrower as n increases and corresponds to the theoretical curve in the

large n limit.

The existence of the phase transition has also been observed for other algorithms. For example,

the phase transition of StOMP is shown to be comparable to the ℓ1-minimization methods in

[36]. The lower bound of the phase transition for IHT and CoSamp with Gaussian measurement

matrices and a certain distribution for non-zero coefficients are considered in [57]. In [14, 58],

the phase transition for AMP is rigorously derived with explicit expressions from the state

evolution perspective. Remarkably, the result coincides with the phase transition derived earlier

for the ℓ1-minimization in [1]. For more information on phase transition, please refer to [2, 13,

18, 44, 59].

2.6 Graphical Model for CS and AMP Derivation

After the brief summary of the CS related knowledge, the rest of this chapter is devoted to a

more detailed introduction for AMP. The AMP algorithm considers the CS reconstruction prob-

lem from a probabilistic perspective using the graphical model approach. Essentially it postu-

lates a joint probability distribution p(x,y) on (x,y) and infers x from y by approximating

the posterior distribution p(x|y). The graphical model approach manipulates the distributions

involved and factorizes them into a specific graph model to aid the inference procedure.

We take the stochastic CS prior in section 2.2.2 and model x as a vector with i.i.d. entries that

does not depend on Φ

p(x|Φ) =

n∏

i=1

[(1− ρ)δ(xi) + ρΓ(xi)] (2.22)

The compressible signal case is included by setting ρ = 1. From here on, Γ(·) refers to the

distribution of the non-zero coefficients. In practice, the estimation of the prior can be obtained

with moment matching method as illustrated later in Chapter 3. We assume the noise vector

has i.i.d. Gaussian random entries

p(ξ) =

m∏

i=1

N (ξi; 0, σ
2
ξ ) (2.23)

with σ2ξ = 0 corresponding to the noiseless scenario. Then the conditional distribution of y
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given x and Φ is calculated as

p(y|x,Φ) =
m∏

j=1

N (yj;
n∑

i=1

Φjixi, σ
2
ξ ) (2.24)

From Bayes’ theorem, the posterior is calculated as

p(x|y,Φ) =
p(y|x,Φ)p(x|Φ)

p(y|Φ)
=

p(y|x,Φ)p(x|Φ)
∫
p(y|x,Φ)p(x|Φ)dx

(2.25)

Applying (2.22) and (2.24) to (2.25), we have

p(x|y,Φ) =
1

Z(y,Φ)

n∏

i=1

[(1− ρ)δ(xi) + ρΓ(xi)]

m∏

j=1

1
√

2πσ2ξ

e
− 1

2σ2
ξ

(yj−
n
∑

k=1

Φjkxk)
2

(2.26)

where Z(y,Φ) = p(y|Φ) is the normalization constant. The MMSE estimate of x can be then

extracted using the conditional expectation

x̂ =

∫

xp(x|y,Φ) dx (2.27)

An important problem with the estimator in (2.27) is that its exact computation in general is

very hard. In this section, we will re-derive the BAMP algorithm which approximately infers

this estimate.

2.6.1 Factor Graph and Sum-Product Algorithm Review

Before embarking on the actual derivation, it is convenient to go through the basic knowledge

of the factor graph and the sum-product algorithm. A close observation of the complicated

global function in (2.26) reveals that it is a product of several simpler “local” functions, each of

which depends only on a subset of the variables. This factorized structure can be conveniently

described by its factor graph, a bipartite graph that connects local functions with their related

argument variables. In Fig. 2.5, the factor graph for the posterior in (2.26) is illustrated: there is

a “variable node” xi, i ∈ [n] for each signal entry and a “factor node” aj, j ∈ [m] for each term

aj(x) =
1

√

2πσ2
ξ

e
− 1

2σ2
ξ

(yj−
n
∑

k=1
Φjkxk)

2

. A variable node xi and a factor node aj are connected by

an edge if and only if xi is the argument of aj .

In [60], a generic message passing algorithm designated as the sum-product algorithm is pro-
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Coefficients Measurements

Figure 2.5: The factor graph associated with the probability distribution in (2.26). Empty cir-

cles represent variables xi, i ∈ [n] and yj , j ∈ [m]. Squares correspond to

measurement function aj . mi→j(xi) and mj→i(xi) are messages representing in-

teraction among nodes.

posed, which operates on the factor graph and calculates the “message” associated to each

directed edge in the factor graph. In Fig. 2.5, we denote the message sending from a variable

node to a factor node as mi→j(xi) and mj→i(xi) vice versa.

Algorithm 1 : Sum-Product Update Rule [60]

1: The message sent from a node ν on an edge e is the product of the local function at ν (or

the unit function if ν is a variable node) with all messages received at ν on edges other than

e, summarized for the variable associated with e.

According to [60], the update rule for the sum-product algorithm is summarized in Algorithm

1. To better explain it, we present a portion of the factor graph featuring one variable node x,

one factor node f and the related messages in Fig. 2.6. Here n(x)\f are all neighbour nodes

of x except the node f . Similarly, n(f)\x is the set of neighbours of f except x. Then the

messages exchanging between x and f can be computed as following

variable to local function:

mx→f (x) =
∏

hi⊂n(x)\f
mhi→x(x) (2.28)
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Figure 2.6: A factor graph featuring one variable node and one factor node, which is used to

explain the updating rule for the sum-product algorithm.

local function to variable:

mf→x(x) =
∑

∼x



f(κ)
∏

yi⊂n(f)\x
myi→f (yi)



 (2.29)

where κ = n(f) is the set of all arguments of the function f . As defined in [60], the operator
∑

∼(x) is the “not-sum” operation. Instead of specifying the variables being summed over,

the “not-sum” operation indicates the variables that are not summed over. For example, for a

function f with three variables x1, x2 and x3, the “not-sum for x2” is computed as

∑

∼x2

f(x1, x2, x3) ≡
∑

x1⊂A1

∑

x3⊂A3

f(x1, x2, x3) (2.30)

marginal function for variable node

m(x) =mf→x(x)
∏

hi⊂n(x)\f
mhi→x(x)

=mf→x(x)mx→f (x)

(2.31)

Together with (2.28), (2.29) and (2.31), we are well-equipped to derive a wide variety of al-

gorithms developed in signal processing, digital communication and artificial intelligence over

the appropriate graphical models. In fact, the sum-product algorithm can be seen as the gen-

eralization of the forward/backward algorithm, Kalman filter, Turbo decoding algorithm and

certain FFT etc [60]. Pearl’s belief propagation algorithm for Bayesian networks can also be
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derived as a special instance [61–67]. One thing worth noting is that although the sum-product

algorithm is not generally guaranteed to converge for graphs with closed loops, for example

Fig. 2.5, sometimes favourable results are obtained by performing the message passing in a

recursive manner until certain convergence criteria is satisfied [68].

2.6.2 Relaxed Message Passing for CS

There are several research groups that provided independent derivations of AMP from the stan-

dard message passing equations [53, 58, 69, 70]. In this section, we stick with the notation

in [53] and reproduce their derivation of the BAMP algorithm, which is widely used in this

thesis.

Given the factor graph representation for p(x|y,Φ) and the sum-product algorithm review in

section 2.6.1, we can explicitly write the canonical message passing equations, which consists

of 2mn probability functions or messages, namely mi→j(xi) and mj→i(xi) with i ∈ [n],

j ∈ [m].

mi→j(xi) =
1

Zi→j
[(1− ρ)δ(xi) + ρΓ(xi)]

∏

p 6=j

mp→i(xi) (2.32)

mj→i(xi) =
1

Zj→i

∫
∏

q 6=i

dxqe
− 1

2σ2
ξ

(yj−Φjixi−
∑

q 6=i Φjqxq)2 ∏

q 6=i

mq→j(xq) (2.33)

where Zi→j, Zj→i are normalization factors so that
∫
mi→j(xi)dxi =

∫
mj→i(xi)dxi = 1.

The CS reconstruction of xi is obtained through the expectation of the local belief on xi, which

is the product of all messages directed towards xi as in (2.31).

mi(xi) =
1

Z̃i

[(1− ρ)δ(xi) + ρΓ(xi)]
∏

j

mj→i(xi) (2.34)

Unfortunately the exact implementation of the message passing algorithm to propagate the pdfs,

i.e. from (2.32) to (2.34), is intractable. Hence a relaxed message passing system where the

messages are real numbers instead of the pdfs is derived to approximate the dynamics. For the

CS reconstruction problem, the messages that we are interested in are the mean and variance

of the marginal distributions for the desirable variables. The relaxation is valid in the large

system limit and by assuming all measurement matrix elements are Gaussian distributed and

scale as O(1/√m). First let us define the mean and variance of the variable-to-factor message
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mi→j(xi), i ∈ [n] as the following

αi→j ≡
∫

dxi ximi→j(xi) (2.35)

νi→j ≡
∫

dxi x2imi→j(xi)− α2
i→j (2.36)

With the definition (2.35) and (2.36), the factor-to-variable message mj→i(xi) can be approxi-

mated with the following Gaussian format in the large system limit

mj→i(xi) =
1

Z̃j→i

e−
Aj→i

2
x2
i+Bj→ixi , Z̃j→i =

√

2π

Aj→i
e

B2
j→i

2Aj→i (2.37)

where Z̃j→i is the normalization factor containing all xi-independent terms and Aj→i, Bj→i

are defined as:

Aj→i =
Φ2
ji

σ2ξ +
∑

q 6=iΦ
2
jqνq→j

(2.38)

Bj→i =
Φji(yj −

∑

q 6=iΦjqαq→j)

σ2ξ +
∑

q 6=iΦ
2
jqνq→j

(2.39)

The detailed derivation from (2.37) to (2.39) is given in the Appendix A, in which the second

order Taylor expansions of some exponential terms in mj→i(xi) are used and components that

are above the order ofO(1/m) are assumed vanishing as m→∞ . This simplified form (2.37)

basically shows that a pair of real numbers, namely (Aj→i, Bj→i), is enough to characterize

the factor-to-variable message mj→i(xi).

With (2.37), the variable-to-factor message mi→j(xi) in (2.32) becomes

mi→j(xi) =
1

Z̃i→j

[(1− ρ)δ(xi) + ρΓ(xi)]e
−x2i

2

∑

p 6=j Ap→i+xi
∑

p 6=j Bp→i (2.40)

To obtain the closed message passing iteration, we would like to obtain the mean and variance

of (2.40) to characterize the message as well. To this end, let us first define a general probability

distribution

p(x,R,Σ2) =
1

Ẑ(R,Σ2)
[(1− ρ)δ(x) + ρΓ(x)]

1√
2πΣ

e−
(x−R)2

2Σ2 (2.41)

where Ẑ(R,Σ2) is the normalization factor for the distribution. Then the mean and variance
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for p(x,R,Σ2) are calculated as

fa(R,Σ
2) =

∫

dx xp(x,R,Σ2) (2.42)

fc(R,Σ
2) =

∫

dx x2p(x,R,Σ2)− f2a (R,Σ2) (2.43)

Given the above definition, the mean and variance of the message mi→j(xi) can thus be ex-

pressed as

αi→j(xi) = fa(

∑

p 6=j Bp→i
∑

p 6=j Ap→i
,

1
∑

p 6=j Ap→i
) (2.44)

νi→j(xi) = fc(

∑

p 6=j Bp→i
∑

p 6=j Ap→i
,

1
∑

p 6=j Ap→i
) (2.45)

Finally the local belief on xi is approximated as

mi(xi) =
1

Z̃i

[(1 − ρ)δ(xi) + ρΓ(xi)]
∏

j

mj→i(xi)

=
1

Z̃i

[(1 − ρ)δ(xi) + ρΓ(xi)]e
−x2i

2

∑

j Aj→i+xi
∑

j Bj→i

(2.46)

Noticing the similarity between (2.46) and (2.40), we can easily obtain the corresponding mean

and variance of the local belief for xi as

αi(xi) = fa(

∑

j Bj→i
∑

j Aj→i
,

1
∑

j Aj→i
) (2.47)

νi(xi) = fc(

∑

j Bj→i
∑

j Aj→i
,

1
∑

j Aj→i
) (2.48)

Equations (2.38), (2.39), (2.44), (2.45), (2.47) and (2.48) all together form a closed message

passing algorithm, which is considerably simpler than the original sum-product iteration to

propagate pdfs. Yet fundamentally it is still a 2mn-message system. In the next section, we

will further reduce the complexity to obtain a system with only m+ n messages.

2.6.3 From Relaxed Message Passing to AMP

Close observation of the relaxed message passing equations in (2.44) and (2.45) reveals that the

messages αi→j and νi→j are almost independent of j. It is reasonable to think that in the large
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system limit, the dependencies on the instance are so weak that can be neglected. Although it

is tempting to directly replace αi→j and νi→j with αi and νi respectively to further simplify

the algorithm, special care must be taken when discarding the negligible terms. The success of

the further relaxation of the message passing system depends on whether we keep the correct

“Onsager” term as we mentioned in Section 2.4.3. Again we follow the procedure in [53] and

complete the final step to obtain the m+ n approximated message passing algorithm. Remem-

ber that the following approximation is always within the assumption that the measurement

matrix is dense and all its element scale as O(1/√m).

We begin by defining some scalars

ci =
1

∑

j Aj→i
, εi =

∑

j Bj→i
∑

j Aj→i
(2.49)

ωj =
∑

i

Φjiαi→j , Vj =
∑

i

Φ2
jiνi→j (2.50)

In the large system limit, ci and εi can be approximately expressed as

ci = [
∑

j

Φ2
ji

σ2ξ +
∑

q 6=i Φ
2
jqνq→j

]−1

= [
∑

j

Φ2
ji

σ2ξ + Vj − Φ2
jiνi→j

]−1 ≈ [
∑

j

Φ2
ji

σ2ξ + Vj
]−1

(2.51)

and

εi = [
∑

j

Φji(yj −
∑

q 6=iΦjqαq→j)

σ2ξ +
∑

q 6=iΦ
2
jqνq→j

][
∑

j

Φ2
ji

σ2ξ +
∑

q 6=iΦ
2
jqνq→j

]−1

= [
∑

j

Φji(yj −
∑

q 6=iΦjqαq→j)

σ2ξ + Vj − Φ2
jiνi→j

][
∑

j

Φ2
ji

σ2ξ + Vj − Φ2
jiνi→j

]−1

≈ [
∑

j

Φji
yj − ωj

σ2ξ + Vj
+ αi

∑

j

Φ2
ji

σ2ξ + Vj
][
∑

j

Φ2
ji

σ2ξ + Vj
]−1

= αi +

∑

j Φji
yj−ωj

σ2
ξ+Vj

∑

j Φ
2
ji

1
σ2
ξ+Vj

(2.52)

Next we are going to approximate αi→j in terms of αi. By doing so, we omit all terms that are

not linear with Φji

αi→j ≈ αi −Bj→iνi (2.53)
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The detailed derivation is given in Appendix B.

With (2.53), the scalar ωj can be further approximated as

ωj =
∑

i

Φji[αi −Bj→iνi]

=
∑

i

Φjiαi −
∑

i

Φ2
ji(yj −

∑

q 6=iΦjqαq→j)

σ2ξ +
∑

q 6=iΦ
2
jqνq→j

νi

≈
∑

i

Φjiαi −
yj − ωj

σ2ξ + Vj

∑

i

Φ2
jiνi

(2.54)

The approximation of Vj is similar to ωj . This time all the correction terms are assumed negli-

gible in the large system limit. Therefore, we have

Vj =
∑

i

Φ2
jiνi (2.55)

Equations (2.47), (2.48) together with the approximation terms in (2.51), (2.52) ,(2.54) and

(2.55) form a complete AMP algorithm. As mentioned before, messages are exchanged it-

eratively until convergence for loopy factor graphs. In the context of statistical physics, the

resulting iterative system corresponds to the Thouless-Anderson-Palmer (TAP) equations used

in the study of spin glasses [71]. It is thus designated as the TAP-AMP algorithm in [53] and

summarized here in Algorithm 2.

Algorithm 2 : TAP-AMP [53]

1: initialization: x̂0 = 0, z0 = y, c0 = σ2x
2: for t = 1, 2, · · · do

3: V t+1
j =

∑

i Φ
2
jiν

t
i

4: ωt+1
j =

∑

iΦjix̂
t
i −

yj−ωt
j

σ2
ξ+V t

j

∑

iΦ
2
jiν

t
i

5: ct+1
i =

[
∑

j

Φ2
ji

σ2
ξ+V t+1

j

]−1

6: εt+1
i = x̂ti +

∑

j Φji

yj−ωt+1
j

σ2
ξ
+V t+1

j

∑

j

Φ2
ji

σ2
ξ
+V t+1

j

7: x̂t+1
i = fa(ε

t+1
i , ct+1

i )
8: νt+1

i = fc(ε
t+1
i , ct+1

i )
9: end for

So far we have completed the major approximation steps to go from the standard message pass-

ing equations to the TAP-AMP iteration which involves only matrix multiplication. Throughout
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the derivation for the TAP-AMP, we leveraged on the assumption that the measurement matrix

is a dense matrix. Indeed, the simplification of the message passing for the system emerges

in the large system limit. As commented in [50], “this is one instance of the blessings of di-

mensionality”. One thing worth noting is that to perform TAP-AMP, the signal prior p(x) is

assumed known. Moreover, TAP-AMP is applicable for a general form of Gaussian measure-

ment matrix whose entries does not necessarily come from the same distribution. This special

feature will come into use later in Chapter 4 as the reconstruction algorithm for the modulated

measurement matrix.

2.7 AMP Based Algorithm Summary

In this section, we will summarize three different types of AMP variants. Previously we re-

viewed the approximation steps to obtain the TAP-AMP algorithm. We start with some further

simplification of TAP-AMP with the homogeneous assumption for the Gaussian measurement

matrix and present the BAMP algorithm, which utilizes the signal pdf for reconstruction. When

the signal prior is unknown, the ℓ1-AMP algorithm approximately optimizes the solution in the

maximin framework and obtains the same phase transition performance as the ℓ1-minimization

method for sparse signal reconstruction [72]. Finally, we will give a brief review of the GAMP

algorithm, which is capable of dealing with a wide range of noise models.

2.7.1 Bayesian optimal AMP

Evolving from the TAP-AMP to the BAMP we mainly leverage on the assumption that Φ is

a homogeneous matrix with i.i.d. Gaussian random entries Φij ∼ N (0, 1/m). In the large

system limit, the Φ2
ij terms in Algorithm 2 can be effectively replaced by 1/m. We can hence

neglect the dependence on the index j and consider all Vj to be the same. Consequently, cti in

line 5 of TAP-AMP can also be replaced with a scalar ct independent of i. With a change of

variable, TAP-AMP then transforms to BAMP as summarized in Algorithm 3.

Recall that fa(·) and fc(·) are defined as the mean and variance for the general probability

function p(x,R,Σ2) in (2.41). Actually this general form has a posterior interpretation: let

x be a random variable with p(x) = (1 − ρ)δ(x) + ρΓ(x) and r = x + ω be the noisy

data corrupted by the Gaussian noise ω ∼ N (ω; 0,Σ2). The likelihood then takes the form

of p(r|x) ∼ N (r;x,Σ2). From the Bayes’ rule, it is straightforward to show (2.41) is the

posterior p(x|r). As a consequence, the function fa(·) and fc(·) are the MMSE estimator and
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Algorithm 3 : BAMP [52, 69]

1: initialization: x̂0 = 0, z0 = y, c0 = σ2x
2: for t = 1, 2, · · · do

3: εt = ΦT zt + xt

4: x̂t+1 = fa(ε
t, ct)

5: υt+1 = fc(ε
t, ct)

6: zt+1 = y−Φx̂t+1 + 1
γz

t〈f ′a(εt, ct)〉
7: ct+1 = σ2ξ +

1
γ 〈υt+1〉

8: end for

the conditional variance of x given r respectively.

fa(R,Σ
2) = Ex|r(x|r = R) (2.56)

fc(R,Σ
2) = Varx|r(x|r = R) (2.57)

With the correct signal prior, we achieve the maximum denoising amount at each step using the

MMSE estimator and eventually obtain the optimal reconstruction in the least squared sense.

For some special cases, i.e. BG or GMD, a closed form expression can be obtained for fa(·)
and fc(·). For more general signal distributions, the calculation of the conditional mean and

variance can be conducted through numerical integration over x.

When the explicit expression for fa(·) is not available, numerical calculation of its derivative

f ′a(·) can sometimes be non-trivial and introduce unnecessary error if not treated properly. With

the relationship proved in Appendix C, we can express f ′a(·) as a function of fc(·) and denote

the corresponding algorithm as BAMP-V2. The difference between BAMP and BAMP-V2 lies

Algorithm 4 : BAMP-V2

1: initialization: x̂0 = 0, z0 = y, c0 = σ2x
2: for t = 1, 2, · · · do

3: εt = ΦT zt + xt

4: x̂t+1 = fa(ε
t, ct)

5: υt+1 = fc(ε
t, ct)

6: zt+1 = y−Φx̂t+1 + υt+1

γc2
zt

7: ct+1 = σ2ξ +
1
γ 〈υt+1〉

8: end for

in line 6 for updating zt+1. In general, the BAMP algorithm benefits from its simple iterative

form and the ability of making use of the signal prior for reconstruction. It is the most efficient

CS reconstruction algorithm with the state-of-art recovery quality as far as the CS literature is

concerned.
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2.7.2 ℓ1-AMP

The counterpart of the ℓ1-minimization approach in the AMP family is the ℓ1-AMP algorithm,

which deals with the CS problem when sparsity/compressibility is the only prior information we

know for the signal. At each ℓ1-AMP iteration, the signal denoising is performed by using the

soft shrinkage function in (2.19). Theoretical analysis and extensive simulations confirm that

the ℓ1-AMP has the identical phase transition curve as the ℓ1-minimization based algorithms

for sparse signals reconstruction, but runs faster than conventional ℓ1-solvers [14].

We first present the BP-AMP algorithm, which amounts to solving the basis pursuit problem

in (2.15). The BP-AMP possesses both the low complexity feature of the iterative thresholding

Algorithm 5 : BP-AMP [52]

1: initialization: x̂0 = 0, z0 = y, c0 ← σ2x
2: for t = 1, 2, · · · do

3: εt = ΦT zt + xt

4: x̂t+1 = ηS(ε
t; ζct)

5: zt+1 = y−Φx̂t+1 + 1
γ z

t〈η′S(εt; ζct)〉
6: ct+1 =

‖z‖22
m

7: end for

algorithms and the computation power of the ℓ1-minimization, thus conquering the large system

size obstacle that often occurs in applications.

This is the first AMP algorithm that Donoho et al. proposed in their original paper [14]. In the

BP-AMP iteration, ζ is the constant which can be tuned optimally before applying the algorithm

based on the sampling ratio γ. In [14] the optimal ζ that achieves the maximum phase transition

for sparse signal reconstruction is proved to be

ζ(γ) =
1√
γ
argmax

z≥0
{ 1− 2/δ[(1 + z2)Ω(−z)− zφ(z)]
1 + z2 − 2[(1 + z2)Ω(−z)− zφ(z)]} (2.58)

where φ(z) = e−z2/2/
√
2π and Ω(z) =

∫ z
−∞ φ(x)dx.

For the LASSO problem in (2.17), its AMP counterpart is summarized as BPDN-AMP.

The construction of the graphical model for LASSO is detailed in [52, 58].
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Algorithm 6 :BPDN-AMP [58]

1: initialization: x̂0 = 0, z0 = y, c0 = σ2x
2: for t = 1, 2, · · · do

3: εt = ΦT zt + xt

4: x̂t+1 = η(εt;κ+ ct)
5: zt+1 = y−Φx̂t+1 + 1

γz
t〈η′(εt;κ+ ζct)〉

6: ct+1 = ct+λ
γ 〈η′(εt; ct + κ)〉

7: end for

Input Channel Output ChannelLinear Mixing

Figure 2.7: General linear mixing dealt with GAMP algorithm

2.7.3 Extensions for AMP

For completeness, some possible extensions of the AMP framework are briefly reviewed in this

section. We start with the GAMP algorithm [70]. In Fig. 2.7, a system plot featuring some

general input/output channel and linear mixing is depicted. In the plot, pX|S(xi|si) represents a

signal prior with some underlying hierarchical structure, i.e. the GMD with S being the hidden

states for the variables. The output channel is characterized by the conditional distribution

pY |Z(yj |zj) which is not necessarily AWGN, and generates the system output y. The goal of

the GAMP is to estimate x and z from the system input vector S, the output y and the linear

transform Φ. As its name implies, the GAMP provides a unified methodology incorporating

essentially arbitrary priors and output non-linearity. Compared to ℓ1-AMP and BAMP, the

novelty of the GAMP lies in its ability of dealing with arbitrary output distributions pY |Z(yj|zj).
Similar to other AMP variants, its derivation is also based on approximation of the message

passing algorithm over the system factor graph. The full GAMP algorithm and its derivation

would be long and beyond the scope of this thesis. The interested reader is referred to [70] for

more details.

Another line of AMP extension is motivated by the lack of practicality of the BAMP algorithm.

Although conceptually attractive with its low complexity and optimal MMSE reconstruction

performance, in practice, we rarely have the exact signal prior in advance. To overcome this

limitation, one possible solution is to incorporate the EM approach to jointly estimate the un-

known signal x and its prior. The resulting algorithm, denoted as the EM-GM-GAMP, is in-

troduced independently by Vila et al. [54] and Krzakala et al. [53]. In [54], the mixture of

Gaussians is used as the parametric representation for px and the EM method is applied to
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estimate the variance and weight for each Gaussian component within one AMP iteration. Ex-

tensive simulations over a wide class of distributions confirm the good performance for the

EM-GM-GAMP. Later in [73], the adaptive GAMP framework is proposed with an adaptation

function for prior estimation at each iteration. In this regard, the EM-GM-GAMP can be seen

as a special case of the adaptive GAMP algorithm with the maximum-likelihood (ML) estima-

tion being the adaptation function. More importantly, it is proved that in the large system limit,

the adaptive GAMP with the ML parameter estimation yields asymptotically the true value for

the signal prior when the distribution satisfies certain identifiability condition. It theoretically

provides a rigorous justification for the EM-GM-GAMP algorithm.

2.8 State Evolution Dynamics

As we have mentioned in section 2.4.3, among many advantageous properties that AMP pos-

sesses, the state evolution formalism is indubitably the most distinguishable feature compared

to all other CS reconstruction algorithms. Essentially the state evolution is a simple iteration

which is proved to characterize exactly the asymptotic limit of the AMP estimates asm,n→∞
in the case of a Gaussian measurement matrix [14]. It has been stated formally in the following

theorem.

Theorem 1. ( [55]) Let Φ(n)n≥0 be a sequence of sensing matrices Φ ∈ R
m×n indexed by

n, with i.i.d entries Φij ∼ N (0, 1/m), and assume m/n → γ ∈ (0,∞). Consider further

a sequence of signals x0(n)n≥0, whose empirical distributions converge weakly to a proba-

bility measure px0 on R with bounded (2k − 1)th moment, and assume Ep̂x0(n)
(X2k−2

0 ) →
Epx0

(X2k−2
0 ) as n → ∞ for some k ≥ 2. Also assume the noise ω has i.i.d. entries with a

distribution pW that has bounded (2k−2)th moment. Then, for any pseudo-Lipschitz 2 function

ψ : R2 → R of order k and all t ≥ 0, almost surely

lim
n→∞

1

n

n∑

i=1

ψ(xt+1
i , x0,i) = E [ψ(ηt(X0 + τtZ),X0)] (2.60)

with X0 ∼ pX0 and Z ∼ N (0, 1) independent.

2Denote the empirical distribution of a vector x0 ∈ R
n by p̂x0

. For k > 1 we say a fucntion φ : Rm → R
n is

pseudo-Lipschitz of order k if there exists a constant L > 0 such that, for all x, y ∈ R
m:

|φ(x)− φ(y)| ≤ L(1 + ‖x‖k−1 + ‖y‖k−1)‖x− y‖ (2.59)
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The derivation of the state evolution is inspired by the density evolution in coding theory [74].

The density evolution was first developed for analysing the low-density parity-check (LDPC)

codes with iterative decoding. It is known to hold asymptotically for sparse graphs with locally

tree-like structure. For CS problems, the underlying factor graph is, in contrast, a fully con-

nected bipartite graph. With some new mathematical ideas, the state evolution is derived as the

analog of density evolution in the case of dense graphs.

Another relevant asymptotic analysis for the message passing system is the replica method

[47, 75–77]. As a standard statistical physics method, it has been applied successfully to study

the typical compressed sensing performance in [78–81]. Although the prediction of the replica

method coincides with that of the SE equations, it is not a rigorous approach. In [53], a complete

replica analysis for the BAMP is provided without a proof. In this sense, the state evolution

provides a theoretical foundation for the replica method based CS work.

2.8.1 State Evolution Heuristics

The detailed proof for Theorem 1 in [55] is well beyond the scope of this thesis. Nevertheless,

it is useful to present the simple heuristic description to better understand the dynamics. This

section summarizes the basic intuition for AMP in [55] and highlights the key role played by

the “Onsager” reaction term in the update equation for zt. Recall the generic AMP algorithm

is defined previously as

xt+1 = ηt(x
t +ΦT zt)

zt = y −Φxt +
1

γ
zt−1〈η′t−1

(
xt−1 +ΦT zt−1

)
〉

(2.61)

The corresponding SE dynamics has the form:

τ2t = σ2ξ +
1

γ
E{[ηt(X0 + τt−1Z)−X0]

2} (2.62)

We present the argument in [14,50,55,72] to explain the rationale for (2.62). Instead of directly

considering the AMP in (2.61), we begin with the following modified recursion:

xt+1 = ηt(x
t +Φ(t)T zt) (2.63)

zt = yt −Φ(t)xt (2.64)
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Comparing to (2.61), we replace the fixed Φ with the independent copy of Φ(t) at each iteration

t, where Φ(0),Φ(1), · · · are i.i.d. Gaussian matrices of dimensions R
m×n with Φij(t) ∼

N (0, 1/m). Consequentially the observation vector at each step is yt = Φ(t)x+ ξ. Moreover

the last term in the update for zt is removed. Eliminating zt in (2.63) by plugging in (2.64)

gives us a simple recursion

xt+1 = ηt{Φ(t)Tyt + [I−Φ(t)TΦ(t)]xt}

= ηt{x+Φ(t)T ξ +A(t)(xt − x)}
(2.65)

where we define the new operator A(t) = I−Φ(t)TΦ(t). Using the central limit theorem, we

approximately have Aij(t) ∼ N (0, 1/m). Because A(t) is independent of xt−x, if we denote

τ̂2t = limn→∞‖x− xt‖2/n, then A(t)(xt − x) converges to a vector of i.i.d. entries with zero

mean and τ̂2t /γ variance. We next consider the statistical property of Φ(t)T ξ. It is a vector of

i.i.d. Gaussian entries with zero mean and 1
m‖ξ‖2 variance, which converges to σ2ξ by the law

of large numbers. Overall the sum of arguments in ηt(·) in (2.65) converges to X0 + τtZ with

Z ∼ N (0, 1) independent of X0 and

τ2t = σ2ξ +
τ̂2t
γ

τ̂2t = lim
n→∞

1

n
‖x− xt‖2

(2.66)

Given the recursion in (2.65), we have the MSE for xt+1 calculated as

τ̂2t+1 = lim
n→∞

1

n
‖x− xt+1‖2

=E{[ηt(X0 + τtZ)−X0]
2}

(2.67)

Combining (2.66) and (2.67) we finally have the state evolution equation (2.62) for the modified

iterative algorithm (2.63).

Note that the whole argument above relies on a crucial assumption: the measurement matrix Φ

is draw independently from the same Gaussian distribution at each iteration. However, for CS

problems the measurement matrix is constant across iterations. In this scenario, the aforemen-

tioned heuristics for the state evolution do not hold because Φ and xt are not independent. In

fact, with Φ fixed and the soft shrinkage for ηt(·), the iteration in (2.62) becomes the IST algo-

rithm. Extensive studies have shown that IST behaves significantly different from the ℓ1-AMP

and does not follow the state evolution prediction [14, 82].
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Algorithmically, IST and ℓ1-AMP differ only in the last updating term. Intuitively, this Onsager

term acts as the correlation cancellation for Φ and xt so that their dependence is neglectable in

the large system. As a consequence, the state evolution holds for AMP irrespective of the fact

that Φ is kept constant. Moreover, the Onsager term also guarantees the Gaussian behaviour of

the effective noise τ̂2t .

2.8.2 State Evolution Formula

To end we formally summarize the SE formula for different AMP-based algorithms presented

in Section 2.7. Given the CS system in (2.1), we have

The SE dynamics for BP-AMP ( [50, 52])

τ2t+1 = σ2ξ +
1

γ
E [ηS(X0 + τtZ; ζτt)−X0]

2
(2.68)

The SE dynamics for BPDN-AMP ( [52])

τ2t+1 =σ
2
ξ +

1

γ
E [ηS (X0 + τtZ;λ+ βt)−X0]

2

βt+1 =
βt + λ

γ
E
[
η′S (X0 + τtZ;λ+ βt)

]
(2.69)

The SE dynamics for BAMP ( [52, 53, 56])

τ2t+1 = σ2ξ +
1

γ
E
[
fa(X0 + τtZ; τ

2
t )−X0

]2
(2.70)

Similarly, the authors have claimed that the asymptotic behaviour of the components involved

in the GAMP iteration can be described by the scalar equivalent model for large Gaussian

measurement matrices as well. The parameters for the model can be tracked exactly by the

state evolution dynamics. We omit the explicit formula here. Please refer to [70] for its detailed

SE equations.

2.9 Summary

This chapter provides an overview of the compressed sensing problem focusing on the AMP-

based algorithms. The differences and advantages of AMP over the canonical ℓ1-minimization
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and iterative thresholding approaches are discussed. A detailed derivation of the BAMP algo-

rithm is presented following Krzakala’s procedure, which makes quadratic Gaussian approxi-

mation of the standard message passing algorithm in the large system limit. Finally the state

evolution dynamics with some intuitive explanation and specific formula is reviewed for AMP-

based methods. Although this chapter does not address all the aspects of the CS problem and

AMP, it prepares the mathematical background and algorithms that are necessary for the rest of

the thesis.
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Chapter 3

Sample Distortion Framework for

Compressed Sensing

In this chapter, we propose the notion of a SD function for data drawn i.i.d. from compres-

sive distributions to fundamentally quantify the achievable reconstruction performance of com-

pressed sensing for certain encoder-decoder pairs at a given sampling ratio. Two lower bounds

on the achievable performance and the intrinsic convexity property is derived. A zeroing ma-

trix is then introduced to improve non-convex SD functions. The SD framework is then applied

to analyse compressed imaging with a multi-resolution statistical image model using both the

GGD and the two-state GMD. We subsequently focus on the Gaussian encoder-BAMP decoder

pair, whose theoretical SD function is provided by the rigorous SE dynamics as explained

in Chapter 2. Given the image statistics, analytic bandwise sample allocation for bandwise

independent model is derived as a reverse water-filling scheme. Som and Schniter’s turbo ap-

proach is further deployed to integrate the bandwise sampling with the exploitation of the hid-

den Markov tree (HMT) structure of wavelet coefficients. Natural image simulations confirm

that with oracle image statistics, the SD function associated with the optimized sample alloca-

tion can accurately predict the possible compressed sensing gains. Finally, a general sample

allocation profile based on average image statistics not only illustrates preferable performance

but also makes the scheme practical.

3.1 Introduction

Traditionally in CS a lot of work has been done in improving reconstruction algorithms assum-

ing the optimality of the homogeneous random sensing matrix. There has recently been more

attention on tailoring the sensing matrix in accordance with the signal of interest. In this chap-

ter, we focus on designing a block diagonal measurement matrix for wavelet representation of

natural images, which falls under the general scope of bandwise sampling.

Donoho pioneered the use of band-wise sampling for compressed sensing in his original pa-

per [83]. Tsaig further expanded the idea through the concept of two-gender CS, which ran-
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domly samples the fine-scale wavelet coefficients while fully samples in the coarse-scale do-

main [84]. In [85], a specific sampling pattern is provided for the general multi-scale image

model. With the key component of weighing the wavelet band importance, it achieves consid-

erable improvement over the homogeneous measurement matrix. However, the weight for each

wavelet scale is assigned empirically. Despite all the attempts to improve the measurement

matrix, the prior works are algorithmic and lack a solid theoretical grounding.

Analytically optimizing the band-wise sample allocation of the sensing matrix was originally

considered in [86] and [87]. The authors sought to minimize the reconstruction uncertainty in

terms of the entropy of the CS approximation. However, directly quantifying the entropy is very

difficult, thus the authors resorted to an ad hoc solution, which only approximately optimizes

the InfoMax criterion [88].

In fact, the notion of optimized band-wise sampling dates back much further and was instru-

mental in Kashin’s proof of the optimal rates of approximation (n-widths) for certain classes of

smooth function [89], which was a key inspiration for the theory of compressed sensing [83].

Specifically, bandwise sampling forms the basis of Maiorov’s discretization theorem which

relates function n-widths to the n-widths of a sequence of finite dimensional ℓp balls [90].

In other recent work, the block diagonal spatially-coupled sensing matrix was used to reach the

fundamental undersampling limit of compressed sensing with almost perfect reconstruction [4],

[53], which we will explain in details later in Chapter 4. Unfortunately, to achieve the ground-

breaking improvement, a good level of compressibility that we do not normally observe in

natural images is required, which makes it impractical for compressed sensing of real images.

Main Contributions

In this chapter, we seek to better understand the nature of good sample allocation strategies for

multi-resolution images. To this end, we begin by setting up the sample distortion framework

for a stochastic CS model. The SD function is proposed with the purpose of assessing the per-

formance of different encoding and decoding methods quantitatively in terms of the expected

MMSE. Then an entropy based bound on the achievable MSE performance for any linear en-

coder (measurement matrix)-CS decoder (reconstruction algorithm) pair is derived following

the classic rate distortion theory. A tighter distribution specific model based bound is further

derived by leveraging the entropy based bound of the Gaussian source. We then prove that the

SD function is convex in nature. It comes with a key insight: any scheme whose SD function
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is concave over the sampling ratio interval [0, γc] can be improved for any γ in that interval, by

sensing a portion of the source at the rate γc and making no attempt to sense the remainder. The

zeroing procedure which can convexify the SD function comes naturally as a result.

As a broad definition, the SD function is applicable to any encoder-decoder pair, i.e. the Gaus-

sian homogeneous encoder with the linear ℓ2 decoder or the ℓ1 minimum CS decoder. In this

work, we mainly investigate the SD function for the BAMP decoder. As shown in Chapter 2,

the BAMP decoder can be tuned for optimal performance and admits a rigorous analysis in

the large system-limit with a large set of sub-Gaussian encoders, which naturally provides the

theoretical basis for its SD function [91], [55], [92]. Two compressible distributions: the GGD

and the two-state GMD are selected as the representative examples, because they are commonly

used models in the compressed imaging literature [93], [94], [95], [96].

The second part of this chapter makes a contribution to the understanding of analytically opti-

mizing the per-band sample allocation for a band-wise independent image model. For this we

use an orthogonal wavelet model to make sure our analysis is tractable. We have proved that the

optimal sample arrangement with the MMSE is achieved by performing a reverse water-filling

strategy, given the per-band statistics and by virtue of the convexified SD function. A similar

idea was used in [86] to design the sensing matrix that is most informative about the source. A

water-filling strategy is also used in [97] in the context of adaptive sensing. The reconstruction

quality can be quantitatively predicted and evaluated by the SD function for the multi-resolution

image model. Given the oracle image statistics, our SD function based sample allocation is the

best we can achieve in terms of minimizing the MSE. In practice, when the true image statistics

is not always available, the performance depends on the quality of the statistical estimation.

Finally wavelet dependencies are incorporated with the band-wise sampling by modelling the

wavelet coefficients with the HMT structure [93]. Several works have exploited the local de-

pendencies of the wavelet coefficients in the wavelet based compressed sensing literature, such

as [98], [99] and [100]. In this chapter we leverage Som and Schniter’s state-of-the-art turbo

approach to alternate between the CS decoding and the tree structure decoding [69]. Instead of

using a uniform distribution of samples across wavelet bands, we choose the optimized block

diagonal sensing matrix to sample independently in the CS decoding procedure. We see that

the exploitation of the wavelet tree structure enables the message propagating from coarse scale

bands to fine scale bands and eventually benefiting the reconstruction. Attempts are made to

find better sample allocation for the tree structure image model. Empirical results are obtained

for a specific image example. However, finding the truly best sample allocation for the turbo
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method is beyond the scope of this thesis.

The remainder of this chapter is organized as follows. We set up the sample distortion frame-

work in Section 3.2. In Section 3.3 optimizing sample allocation for multi-scale band-independent

wavelet image model. The combination of sample allocation with wavelet tree structure is dis-

cussed in Section 3.4. Simulation results are given in Section 3.5. Finally, conclusion and

future work are discussed in Section 3.6.

3.2 Sample Distortion Framework

3.2.1 Definition

Suppose the signal of interest x ∈ R
n is a random vector (source) with i.i.d. components

drawn according to the prior distribution p(x). The goal of statistical compressed sensing is to

reconstruct x using some Lipschitz regular mapping ∆ : Rm → R
n based on the knowledge of

y, Φ and p(x). In our work, we are interested in the reconstruction quality for certain encoder-

decoder pairs (Φ,∆) at a sampling ratio γ, which is evaluated by the expected error distortion

between the original signal x and the estimation ∆(Φx):

D{Φ,∆}(γ) =
1

n
E||x−∆(Φγx)||22 (3.1)

Along the lines of the classical rate-distortion function in the communication field [101], we

define a SD function for the compressed sensing setting.

Definition 3. The SD function is defined as the infimum of sampling ratios for which there is

an encoder-decoder pair, (Φ,∆), that can achieve an expected distortion D.

D(γ) = inf
Φ,∆,n

D{Φ,∆}(γ) (3.2)

We will use the term operational SD function to refer to the minimum distortion level a specific

encoder-decoder pair can achieve at a fixed sampling ratio for a given compressive source. In

this chapter we will concentrate on the Gaussian encoder-BAMP decoder pair. As we sum-

marized in Chapter 2, on the large-system limit assumption with i.i.d. sub-Gaussian Φ, the
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Figure 3.1: SD functions for GMD data p(x) = 0.38 N (0, 1.198) + 0.62 N (0, 0.004) and

lower bounds. The critical sampling ratio (defined later in page 47) to convexify

this SD function is γc = 0.61.

distortion iteration can be derived from the SE function [52], [53] 1

Dk+1 = E{[F (x̃ +

√

Dk

γ
z;
Dk

γ
)− x̃]2} (3.3)

where x̃ follows the choice of the compressive distribution, z ∼ N (0, 1) is independent of x̃,

and D0 = E(x̃2). The function F (·) is the (non-linear) scalar MMSE optimal estimator for x̃

given x̃+z. The expectation in (3.3) is taken with respect to x̃ and z and is in general calculated

numerically. The SD function for BAMP decoder D
BAMP

(γ) is then given by the convergence

point 2 of (3.3).

3.2.2 Lower bounds

To understand the fundamental theoretical limits of CS for compressible distributions, we now

derive two lower bounds for the SD function.

1When the large-system limit assumption does not hold, there is no analogous results like (3.3). The finite-n

case has been studied in a recent work by Rangan et al. [102].
2For the distributions considered in this chapter there is only one non-zero fixed point, i.e. BAMP exhibits no

first order phase transition. We will explain this concept further in Chapter 4
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Figure 3.2: SD functions for GGD data α = 0.4, σ = 1 and lower bounds. The critical

sampling ratio (defined later in Section. 3.2.3.1)to convexify this SD function is

γc = 0.15.

3.2.2.1 entropy based bound

We first prove the entropy based bound (EBB) which is a sampling analogy to the classical

Shannon Rate Distortion Lower Bound.

Theorem 2. Let x ∈ R
n be a realization of the random vector x = x1, · · · , xn, i.i.d. ∼ p(x),

Var(xi) = 1 and h(xi) < ∞. Let y = Φx, y ∈ R
γn, γ = m/n < 1. Then for any Lipschitz

reconstruction decoder ∆ : Rm → R
n, we have:

D∆(γ) ≥ (1− γ)22(h(x)−hg)/(1−γ) (3.4)

where hg = 1
2 log2 2πe is the entropy of a unit variance Gaussian random variable.

The proof is given in Appendix D.

Remark 1. The term h(x) − hg is also known as the negentropy of the distribution and is a

popular measure of non-Gaussianity, particularly within the field of independent component

analysis [103].

Remark 2. When the source x is Gaussian then the second term in the lower bound becomes
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1 and D
EBB

= 1 − γ. Here the EBB can be shown to be tight as this corresponds to the SD

function for the linear estimator (optimal for Gaussian source): x̂ = Φ†y, which is achievable

with any full rank linear encoder.

While the EBB in Theorem 2 provides a bound on the achievable performance of CS specifi-

cally for i.i.d. sources, it is not clear how close we can expect to get to it. The EBB for two

specific GMD and GGD distributions are plotted in Fig. 3.1 and Fig. 3.2. We can see that

at low sampling ratios, it is unlikely to be tight. Indeed, for any sparsity promoting decoder,

i.e. one for which supp(∆(y)) ≤ dim(y), we know that the MSE cannot exceed that of the

best m-term approximation. For such decoders the SD function must therefore approach 1 as

γ → 0 [8].

3.2.2.2 model based bound

We next define the model based bound (MBB) to compensate for the disadvantage of the EBB.

Inspired by the fact that the EBB is tight and achievable for Gaussian source, we resort to the hi-

erarchical Bayesian model to approximate the target compressible distributions. By introducing

the variance as a latent variable, the hierarchical representation of a compressive distribution

p(x) can be understood as the weighted sum of (possibly infinite) Gaussian distributions.

p(x) =

∫ ∞

0
p(x|τ)p(τ) dτ

=

∫ ∞

0
N (x; 0, τ)p(τ) dτ

(3.5)

where p(τ) is the weight for the Gaussian component N (x; 0, τ). The MBB is then derived in

the following manner: assume the source x is partitioned into different groups according to the

variance. For both encoder and decoder, we agree to transmit and reconstruct the source group

by group in the descendant order of the variance. For each Gaussian group, the SD function is

tightly bounded by its EBB. Then the lower bound for the whole procedure can be seen as the

weighted combination of the EBB of Gaussian components. Thus the MBB has the form:

D
MBB

(γ) =

∫ c

0
τp(τ) dτ (3.6)

with γ =
∫∞
c p(τ) dτ .

The two-state GMD model in (2.6) is intrinsically a discretized hierarchical Bayesian model
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with only two Gaussian components. Thus its MBB can be seen as the discretized version of

the general form given by:

D
MBB

(γ) =







(1− λ)σ2S + (λ− γ)σ2L 0 ≤ γ ≤ λ

(1− γ)σ2S λ < γ ≤ 1
(3.7)

For the GGD model, the detailed procedure for inferring its hierarchical Bayesian prior p(τ) is

relegated to Appendix E. As we can see in both Fig. 3.1 and Fig. 3.2, the MBB is much tighter

than the EBB for small sampling ratios, although neither the MBB nor the EBB dominates for

the whole range of the sampling ratios. The supremum of the two therefore yields a better lower

bound for the SD function.

3.2.3 Convex property

Inspired by the convex property of the rate distortion function, we first prove that the SD func-

tion defined in (3.2) is necessarily convex in this section. A direct application of this property

is then illustrated to effectively improve the reconstruction quality of the Gaussian encoder-

BAMP decoder in the low sample ratio regime.

Theorem 3. The SD function D(γ) in (3.2) is convex.

Proof. Consider two achievable SD points (γ1, D(γ1)) and (γ2, D(γ2)). To prove the SD

function is convex, we only need to show the convex combination of the two points is also

achievable. Let γt = tγ1 +(1− t)γ2, 0 ≤ t ≤ 1. To sample the source x ∈ R
n at the sampling

ratio γt, we could split x into two parts x = [x1,x2]
T , where x1 ∈ R

tn, x2 ∈ R
(1−t)n, and

apply encoders with sampling ratio γ1, γ2 to x1, x2, respectively. Then the reconstruction of

x1 and x2 has achievable MSE: tnD(γ1) and (1− t)nD(γ2). So the MSE of the reconstruction

of X is:

nD(γt) ≤ tnD(γ1) + (1− t)nD(γ2) (3.8)

Therefore

D(tγ1 + (1− t)γ2) ≤ tD(γ1) + (1− t)D(γ2) (3.9)
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Figure 3.3: Hybrid zeroing Gaussian matrix as the convex combination of a trivial decoder

x̂ = 0 and a BAMP decoder ∆. Elements equal to 0 are represented with white

blocks.

3.2.3.1 hybrid zeroing matrix

The convexity property is applicable to the operational SD function for any specific encoder-

decoder pair in the large-system limit. The application of Theorem 3 is that for a given encoder-

decoder pair with a concave operational SD function between γ1 and γ2 (γ1 < γ2), there exists

a hybrid system with better SD performance: it can be easily achieved by applying the two

encoder-decoders to different portions of the source to get the convex combination of D(γ1)

and D(γ2). A special case is when γ1 = 0 with the corresponding trivial decoder (x̂ = 0) and

γ2 = γc with γc being the crucial sampling ratio. In this case, instead of sampling the source x

with a full Gaussian matrix, Φ ∈ R
γn×n, we split x as before with x1 ∈ R

tn and x2 ∈ R
(1−t)n,

t = γ/γc. We then sample x1 with the Gaussian matrix, Φ̃ ∈ R
γn×tn and reconstruct, while

the remaining x2 we reconstruct as zero. Since this is equivalent to setting part of the encoder

to zero, Φ = [Φ̃,0], we call this the zeroing procedure, as illustrated in Fig. 3.3.

Close observation of the operational SD functions for the Gaussian encoder-BAMP decoder

system in Fig. 3.1 and Fig. 3.2 reveals that the curves are convex for large sampling ratios

but concave for small sampling ratios. By applying the hybrid zeroing Gaussian matrix, we

convexify the SD function for γ below the critical sampling ratio γc.

Definition 4. To best improve the SD performance, γc is chosen as the largest sampling ratio

below which the SD function is concave.

The Gaussian sensing matrix has been widely assumed within the CS community to be optimal

in terms of CS performance. Indeed this has been proved to be the case for the distributions

that exhibit exact sparsity [104]. However, under the assumption that the BAMP achieves the
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Figure 3.4: EBB for GGD model with α = 0.4 (left most curve), 0.5, · · · , 1.0 and α = 2.

Bayes optimal reconstruction - this would follow, for example, if the replica method could be

proved to be rigorous [53] - then the zeroing procedure resulting from Theorem 3 indicates this

assumption to be false.

3.3 Measurement Matrix for Multi-resolution Image Model

In this section we build upon the aforementioned SD framework and study the SD behaviour of

the compressive imaging. We investigate the optimal band-wise sampling strategy with a fixed

sample budget, in a similar manner to [86], but in terms of minimizing the expected MSE. We

begin by introducing the bandwise independent multi-resolution statistical model for natural

images.

3.3.1 Compressible Distributions

Given that we consider the CS problem in the stochastic setting, the probability density function

to characterize the compressible signals is required. For this section, we consider two specific

non-Gaussian distributions introduced in Chapter 2, the two-state GMD (2.6) and the GGD

(2.5), to model the wavelet coefficients of natural images.
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Figure 3.5: Ten 512×1024 HDR Images. From left to right, top to bottom: Chapel, Dog, Pine,

Sea, Man, Wedding, Hill, Penguin, Room, Sign.

Fig. 3.4 shows a plot of the EBB for GGD distribution with different shape parameter α. While

the right most curve, DEBB = 1 − γ, is always achievable, in CS we are mainly interested

in distributions that can be well approximated at significant undersampling ratios, i.e. we want

D ≪ 1 and γ ≪ 1 simultaneously. From Fig. 3.4 we can conclude that the Laplace distribution

(α = 1) cannot admit such a low distortion at significant undersampling ratios. Indeed, low SD

functions appear to require very small values of α ∼ 0.4. For images we are typically interested

in the GGD with α ∼ [0.3, 1] since these distributions provide a good approximation for the

distribution of the wavelet coefficients in a given band for natural images. This is illustrated in

Fig. 3.6 (a) and Fig. 3.9 (b).

Examples of the theoretical prediction for the SD function of GMD and GGD data using BAMP

decoder can be found in Fig. 3.1 and Fig. 3.2 respectively. The function F (·) has a close-form

expression for the GMD [53], [69] and can be solved numerically for the GGD.

3.3.2 Band-wise Independent Image Model

Natural images are typically transform compressible: they have a more concise representation

in the wavelet domain. The wavelet decomposition of an image f(X) has the form [105]:

f(X) =
∑

k

µi,kφi,k(X) +
∑

j≥i,k

ωj,kψj,k(X) (3.10)

where φi,k(X) = 2
i
2φ(2iX − k) are the scaling functions, ψj,k(X) = 2

j
2ψ(2jX − k) are the

prototype bandpass functions such that together they form an orthonormal basis. The variables

µi,k are in turn the scaling coefficients at scale i and ωj,k are the wavelet coefficients at scale j.

We can group the coefficients into a single vector according to the scale and assign each a band

index: denote the scaling coefficients as band 0, the coarsest wavelet coefficients as band 1 and

so on. In this manner we obtain the vector θ = [µ0,µ1,µ2, · · · ]. Next we follow [9], [10]
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Figure 3.6: GGD parameters for six wavelet bands of HDR images in Fig. 3.5.

and consider a simple statistical model defined directly on the wavelet coefficients. The band

0 is always treated as Gaussian since these coefficients typically exhibit no sparsity. This can

be seen as a worse case assumption in terms of its SD function. For the other bands, we model

the wavelet coefficients within each band as mutually independent and impose a compressive

distribution for each wavelet band. To be specific, ωj,k at scale j can be modelled as

ωj,k ∼ GGD(0, σ2j , αj) (3.11)

or

ωj,k ∼ GMD(λj , σ
2
L,j , σ

2
S,j), (3.12)

where typically for natural images the distributions exhibit a self-similar structure with an ex-

ponential decay across scale, i.e. σ2j = 2−jβσ20 for the GGD and σ2a,j = 2−jβσ2a,0, a = S,L for

the two-state GMD for some β > 0. For the bandwise independent image model, we assume

an uniform activity rate λj for each wavelet band in spite of the coefficient index. In particular,

we define λj := Pr{sj,k = 1}.

Extensive statistic studies for both natural images (Fig. 3.8) and high resolution high-dynamic

range (HDR) images (Fig. 3.5) are conducted and presented in Fig. 3.6, Fig. 3.7 and Fig. 3.9.

The parameters for GGD and GMD model are derived through moment matching. The log-log

scale plots of the variance confirm the power law decay assumption. And the shape parameter

estimation agrees with our previous analysis for the GGD model that α normally has the value

between 0.3 and 1 for images.
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Figure 3.7: Two-state GMD parameters for 6 wavelet bands of HDR images in Fig. 3.5.
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Figure 3.8: Nine 256 × 256 Natural Images: (a)Concordant (b) football (c) Gantry Crane (d)

M83 (e) Spine (f) Kids (g) Rice (h) Peppers (i) Cameraman
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Figure 3.9: GGD parameters for 6 wavelet bands of natural images in Fig. 3.8.
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3.3.3 Band-wise Sampling

3.3.3.1 Sample Allocation Strategy

To keep things tractable we restrict ourselves to the class of linear encoders, y = Φθ, that are

block diagonal and sample the different wavelet bands separately with the following form:

Φ =











Φ0

Φ1

. . .

Φ
L











(3.13)

where Φi ∈ R
mi×ni ,mi ≤ ni puts mi measurements to sample the ith band. The equality

holds when the ith band is fully sampled with Φi being an identity matrix. Otherwise Φi is

a possibly zero padded (for convexity) Gaussian random matrix. And y
i
= Φiωi is the CS

observation for each block. To derive the SD function for the multi-resolution images, we

first consider the L wavelet bands as independent and parallel. The question then is how to

allocate a fixed number of samples to the various bands, with the aim of minimizing the total

reconstruction distortion. First let us assume for now that mi, ni be continuous and γi =

mi/ni ∈ [0, 1]. The problem is reduced to the following optimization

min
mi

L∑

i=1

σ2i niDi(mi/ni)

s.t.

L∑

i=1

mi = m and 0 ≤ mi ≤ ni, i = 1, . . . , L.

(3.14)

where Di is the (convex) SD function for band i normalized to have unit variance. Using

Lagrange multipliers, we construct the objective function

L =−
∑

i

σ2i niDi(mi/ni)− λ(
∑

i

mi −m)

−
∑

i

µi(mi − ni) +
∑

i

νimi

(3.15)

Differentiating with respect to mi and setting equal to 0 we have

∂L

∂mi
= −σ2i ni

∂Di

∂γi
· ∂γi
∂mi

− λ− µi + νi = 0 (3.16)
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or

− σ2i
∂Di

∂γi
− λ− µi + νi = 0 (3.17)

Define the distortion reduction function as

ηi(γi) = −σ2i
∂Di

∂γi
, (3.18)

noting that this function is non-increasing in terms of γi. Now applying the Kuhn-Tucker (KT)

conditions we arrive at:

ηi(γi)− λ− µi + νi = 0, (3.19)

with

µi(ni −mi) = 0, µi ≥ 0, (3.20)

and

νimi = 0, νi ≥ 0. (3.21)

We therefore have three cases for the distortion reduction function. First, if 0 < mi < ni then

µi = νi = 0 and the sampling ratio, γi, is set so that ηi(γi) = λ. Next suppose that mi = ni so

that γi = 1. In this case, the KT conditions imply that

ηi(γi) ≥ λ, ∀γi (3.22)

In the final case we have mi = 0 and γi = 0. Here the KT conditions imply:

ηi(γi) ≤ λ, ∀γi (3.23)

This gives us an optimal sample allocation strategy which is similar to the reverse water-filling

idea in rate distortion theory [106]. We allocate samples to the band with the greatest distortion

reduction value until another band has a greater one or that band has been fully sampled. The

procedure is stopped when the total distortion reaches the desired level.

To apply this idea to natural images we need to take account of the fact that mi, ni and L are

all discrete and finite. Thus we define a discretized distortion reduction (DR) function for each

wavelet band.

ηi(mi) = σ2i [Di(mi/ni)−Di((mi + 1)/ni)] (3.24)
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Figure 3.10: Distortion reduction function of six bands Daubechies 2 wavelet decomposition of

cameraman image using GMD model (including the low-pass band). The statis-

tics is reported in Table 3.1 in page 63.

Suppose thatmi samples have been allocated to the ith band. The DR function gives the amount

of distortion decreased by adding one more sample to that band. Then the number of samples

allocated to the band i is

mi =







0 if max ηi(mi) < κ

ni if min ηi(mi) > κ

m̂i s.t. ηi(m̂i) = κ otherwise

(3.25)

where κ is chosen so that
∑

imi = m. With a convex SD function, the optimal allocation

is again achieved by performing a greedy sample allocation strategy. The DR function for a

six-band Daubechies 2 decomposition of the “cameraman” using the two-state GMD model is

illustrated in Fig. 3.10. One thing worth noting is that neither the convexity property nor the

resulting greedy sample allocation method is restricted to the form of the decoder. For example

the optimized bandwise sensing matrix can be designed in the same manner for the CS ℓ1 and

ℓ2 decoder. The consequential SD lower bounds can be obtained as well as demonstrated in

Fig. 3.10.

55



Sample Distortion Framework for Compressed Sensing

3.3.3.2 Comparison to the Theory of Widths

In [9], parallels are drawn between the statistical wavelet model we have considered here and

the family of Besov function spaces. In particular, the authors argue that under appropriate

conditions realizations drawn from the GMD or GGD based wavelet model almost surely lie in

an associated Besov space. It is therefore interesting to explore the similarities and differences

between the achievable distortion rates derived here and those known in the deterministic setting

for Besov spaces.

n-widths of Besov spaces Consider the Lipschitz class of r-smooth functions on the interval

[0, 1] and the unit ball, Br
p, defined as:

Br
p := {f : ‖f (r)‖p ≤ 1} (3.26)

where f (r) denotes the rth derivative of f and the Lp ball acts as the deterministic counterpart

to the coefficient prior above.

The ℓ2 error of the best n-dimensional linear approximation for these spaces is known to scale

as ∼ n−r+1/p−1/2 for 1 ≤ p ≤ 2 [107, Chapter 14, Theorem 1.1]. In contrast, the ℓ2 error for

the best CS reconstruction is characterized by the Gelfand width of Br
p which can be written

as:

dn(Br
p) := inf

Φ
sup
h
{‖h‖2, h ∈ N (Φ) ∩Br

p}. (3.27)

and measures the uncertainty in Br
p within the null space of Φ. Here, for 1 ≤ p ≤ 2 the

best CS approximation error decays at the faster rate of ∼ n−r, i.e. inversely proportional to

the smoothness [107, Chapter 14, Theorem 1.1]. This result was derived in Kashin’s seminal

paper [89], which is better known in the CS community for accurate bounds for the n-widths of

lp balls in R
n.

Similarities and differences Interestingly Kashin’s result relied on a discretization theory of

Maiorov [90] that uses a similar bandwise sampling to our own. Specifically Maiorov uses a

subband decomposition of spline spaces to bound the n-width ofBr
p in terms of a weighted sum

of finite dimensional n-widths for the individual subbands - effectively performing a bandwise

sampling. Furthermore in both the deterministic and stochastic settings the allocation scheme

is broadly the same: fully sample the first few low resolution subbands; then partially sample

a number of intermediate subbands; and finally set coefficients of all the higher resolution sub-
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bands to zero. However, in Kashin’s theory, the number of partially sampled subbands grows

as the distortion decreases and, indeed, it is this that accounts for the different rate of approx-

imation compared with the best linear approximation. In contrast, in the sample allocation

framework, the number of partially sampled bands, P , is bounded by the range of the distortion

reduction function:

P < β log2(η(0)/η(1)). (3.28)

For the two-state GMD model this bound is finite since from the MBB we can deduce that:

η(0)

η(1)
<
σ2L,0
σ2S,0

(3.29)

Note the same bound applies to the SD function for the MBB oracle decoder where the band-

wise sampling is optimal. Hence, the fact that we do not get a growing number of partially

sampled subbands implies that in the large system limit the CS approximation error will decay

at the same rate as for the best linear approximation. We can therefore conclude that the gains

in CS solutions over optimal linear approximation for such a model are fundamentally limited.

We can see this, for example, in Fig. 3.10 where we would only ever partially sample at most 3

subbands for the convexified BAMP decoder.

3.4 Sample Allocation with Tree Structure

Until now we have developed an analytic sample allocation method for a multi-resolution image

model by assuming the independence of the wavelet band. In this subsection we look beyond

the signal sparsity and incorporate the wavelet dependencies with the aim of getting closer to

the model based bound. We will start with the review of the wavelet quad-tree structure. Then

the HMT-based compressed imaging is introduced and the turbo inference scheme is presented

as the tool. Finally the combination of the sample allocation and the turbo reconstruction is

discussed.

3.4.1 Hidden Markov Tree Model

Beside the primary properties, i.e. multi-resolution and compressibility, the wavelet coefficients

are well known for some secondary properties, one of which is known as persistence across

scale (PAS) [93]. When modelled with the two-state GMD, the wavelet coefficients for 2D

images naturally form a quad-tree structure, as illustrated in Fig. 3.11(a). Except the “root”

57



Sample Distortion Framework for Compressed Sensing

(a) a (b) b

Figure 3.11: (a) An illustration of the image quad-tree structure. (b) A zoomed in factor graph

of the HMT structure featuring a typical variable node ( the hidden state) sj,k
connected with its four children {sj+1,cki}4i=1 and parent node sj−1,pk by the

factor nodes (the transition matrix).

(wavelet coefficients at the coarsest scale, also noted as band 1), each wavelet coefficient has

a “parent” in the upper wavelet scale and serves as the parent for four “children” in the next

scale. The HMT connects the hidden states across scale and readily models the PAS [93]. Here

we repeat the GMD model in (2.6) for the wavelet coefficient ωj,k.

pGMD(ωj,k) =p(sj,k = 1)N (ωj,k; 0, σ
2
j,L) + p(sj,k = 0)N (ωj,k; 0, σ

2
j,S) (3.30)

=λj,kN (ωj,k; 0, σ
2
j,L) + (1− λj,k)N (ωj,k; 0, σ

2
j,S) (3.31)

The PAS property states that if the parent is large, some of its children are likely to be large;

if the parent is small, all of its children tend to be small. In other words, the activity rate λj,k

for ωj,k depends on the activity rate of its parent on scale j − 1, λj−1,pk . To take the Bayesian

approach, we model the parent-children relationship across scale by the transition matrix Tj .

Tj =




p(sj+1 = 0|sj = 0) p(sj+1 = 0|sj = 1)

p(sj+1 = 1|sj = 0) p(sj+1 = 1|sj = 1)



 =




t00j 1− t11j

1− t00j t11j



 (3.32)

where t00j is the probability of a child state at scale j + 1 being 0 given its parent’s state at

scale j is 0. Similarly, t11j is the probability of a child state being 1 if its parent’s state is 1.

For the HMT structure, the activity rate for a child wavelet ωj+1,cki can be calculated with the
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transition matrix and the activity rate of its parent




1− λj+1,cki

λj+1,cki



 = Tj




1− λj,k
λj,k



 (3.33)

In summary, for a L level wavelet decomposition, we can specify the HMT structure with the

following set of parameters

Θ =
[

{λ1,k}n1
k=1, {t00j }L−1

j=1 , {t11j }L−1
j=1 , {σ2j,L}Lj=1, {σ2j,S}Lj=1

]T
(3.34)

where {λ1,k}n1
k=1 are the activity rates for the root coefficients. In our work, we assume the

variances for the Gaussian components are known. We can either estimate the variances from

the wavelet coefficients or adopt a general image model. Then the parameter set is reduced to

Θ̂ =
[

{λ1,k}n1
k=1, {t00j }L−1

j=1 , {t11j }L−1
j=1

]T
(3.35)

We can further treat the activity rate and the transition probability as random variables and

impose some pdf to complete the statistical model for the HMT structure. In [69], Beta and

Gamma hyperpriors are assumed.

One of the important applications of HMT is the signal estimation from noisy observation. The

denoising algorithm was introduced in [93] and can be summarized as a two-step procedure:

Given the noisy data, we first fit an HMT model Θ to the data. Then we use the model as the

prior to compute the conditional mean as the denoised estimate. Since the factor graph of the

HMT model has a loop-free structure, the exact calculation of the posteriors can be obtained

using two passes of the sum-product algorithm [62]. In [93], the upward-downward algorithm

was introduced for the model fitting. The denoising power of the HMT model can serve as

an assistant for the compressed imaging. It will help further enhance the confidence about the

activity rate for each coefficients through the dependency across wavelet levels, and thus should

improve the image reconstruction.

3.4.2 Turbo Decoding

Several authors have investigated the HMT-aided compressed sensing reconstruction: In [98],

the Markov-chain Monte-Carlo (MCMC) techniques are exploited; In [108], the Variational

Bayes based approach is introduced. In this work, we focus on a HMT-based compressive imag-
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CS HMT

(a)

CS HMT

(b)

Figure 3.12: Top: factor graph for the compressive imaging with HMT structure. Bottom: two

sub-graphs for the turbo decoding. The likelihood from one sub-graph is used as

the prior for the other sub-graph.

ing scheme based on the loopy belief propagation (LBP), first proposed by Schniter in [109]. It

has been shown to have the state-of-art reconstruction performance with a low complexity.

In the Bayesian compressed sensing setting, the reconstruction of the wavelet coefficients ω

from the CS observation y is interpreted as approximating the posterior mean of the density

p(ω|y). When introducing dependencies across wavelet scales, the factor graph for the whole

reconstruction system has a loopy structure as illustrated in 3.12(a). Although exact inference

of p(ω|y) is known to be NP hard, the marginal posterior p(ωi|y) can be approximated using

the LBP. In [109] and [69], the LBP is conducted through the “turbo” decoding approach, which

we summarize as follows.

To perform the turbo decoding, we first split the factor graph for the whole system as two decou-

pled sub-graphs, with one representing the compressed sensing mixing and the other exploiting

the HMT structure, as shown in Fig. 3.12(b). The essence of turbo decoding is to exchange the

local belief of the hidden state sj,k between the CS decoding and HMT decoding alternately. To

be specific, the likelihood on sj,k derived from the HMT decoding is treated as the prior for the

active rate in the CS decoding. When the CS reconstruction terminates, the resulting likehood

on the active rate is used for the next round HMT decoding. The turbo reconstruction con-

verges when both decoding procedures terminate. The CS decoding is performed through the

AMP based algorithms. For the HMT decoding, the aforementioned upward-downward algo-
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rithm can be applied. Although there is no rigorous convergence analysis for the turbo scheme,

Schniter et al. have demonstrated some promising results for compressed imaging in [69].

3.4.3 Sample Allocation with Tree Structure

In this subsection, we discuss the application of the turbo decoding approach with the sample

allocation strategy. Let ω = [ω1,ω2, · · · ,ωL]
T denote the collection of the wavelet coeffi-

cients of different bands and s = [s1, s2, · · · , sL]T be the corresponding hidden states vector.

Assume y = [y1,y2, · · · ,yL]
T is the CS observation vector using the block diagonal sensing

matrix. Then the posterior p(ω|y) has the form:

p(ω|y) = Z−1p(y|ω)
∑

s

p(s)p(ω|s)

= Z−1
∑

s

p(s)
∏

j

[
∏

t

p(yj,t|ωj)][
∏

k

p(ωj,k|sj,k)]
(3.36)

where Z = p(y). The factor graph plotted in Fig. 3.13 visualizes this global function [58], [60].

Here, unlike [69], the AMP decoder is bandwise independent due to the block diagonal form of

Φ. The interaction across different wavelet bands only comes from the HMT decoding.

The SD function for the bandwise independent image model is unlikely to be optimal for the

turbo decoding scenario since it does not take the HMT decoding into consideration. The role of

the HMT decoding is to better provide estimation of the activity rate λj,k for the scalar MMSE

estimator of each wavelet coefficient, instead of using an identical λj over the coefficient index

k, thus improving the reconstruction quality. To see the impact of the HMT decoding, we feed

the BAMP decoder with the soft information, λ̂j,k, defined as follows:

λ̂j,k =
p(ωj,k|sj,k = 1)

p(ωj,k|sj,k = 1) + p(ωj,k|sj,k) = 0

=
N (ωj,k; 0, σ

2
j,L)

N (ωj,k; 0, σ
2
j,L) +N (ωj,k; 0, σ

2
j,S)

(3.37)

This provides a soft estimate of the state of the GMD and thereby gives a better prediction

of individual coefficient variances. The empirical SD curve for the BAMP decoder with soft

information is generated from the Monte Carlo simulations with synthetic GMD data and illus-

trated in Fig. 3.1 page 43. To be specific, we use the λ̂j,k in (3.37) instead of λj for the scalar

MMSE estimator of each synthetic GMD component. Fig. 3.1 demonstrates that providing

the BAMP decoder with good estimation of activity rate information dramatically improves the
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band 2

HMT 

band 1 band 3

AMP 

Figure 3.13: Factor graph for band-wise sampling with HMT decoding. The upper graph il-

lustrates a quad-tree structure of the wavelet hidden states. The lower graph is

the band-wise independent random mixing.

reconstruction quality, with the SD function lying very close to the lower bound.

Based on the per-band image statistics, the SD function for BAMP decoder with soft infor-

mation can be obtained empirically for each wavelet band in the same fashion. Then the DR

function with soft information for the multi-resolution image model can be established follow-

ing the aforementioned definition, as shown in Fig. 3.10 page 55. To clarify the terminology,

we denote the corresponding sample allocation profile as the HMT based sample allocation,

or HSA. And we use the term SA to denote the sample allocation derived from the bandwise

independent wavelet model. We should note here that neither SA nor HSA is optimal for turbo

decoding. The problem with SA is that it tends to undersample the fine scale bands since they

contain less energy than the coarse bands when treated independently and we are less confident

on the activity rates. While HSA is served as the benchmark by assuming we have the accurate

activity rate information for each wavelet coefficient. The optimal sample allocation for turbo

decoding should combine the merits of both SA and HSA.

3.5 Simulations

Reconstruction performance for natural images with the band wise sampling matrices intro-

duced in Section 3.3 and Section 3.4 is demonstrated and compared with several existing sens-

ing matrices in this section. We start with the 256 × 256 cameraman image as an introductory

example. With the knowledge of the image statistics, we show that the bandwise independent

image model based SD function can accurately predict the reconstruction quality for the pro-

posed sample allocation scheme. It also confirms the theoretical optimality of our band-wise

sensing matrix. We then extend the scheme to practical compressive imaging by designing the

general sample allocation with the average image statistics estimated from the training set of
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the Berkeley dataset [3]. Simulation with ten images from the test set further confirms that

with good statistical estimation, the proposed SD sample allocation exhibits state-of-the-art

performance.

3.5.1 Sample Allocation with Oracle Image Statistics

The cameraman image is decomposed into six bands using the Daubechies 2 wavelet. GGD and

GMD model parameters estimated directly from the wavelet coefficients are reported in Table

3.1 as the oracle image statistics, using moment matching [10] and the EM algorithm [110]

respectively. Given the parameter estimation, we are able to generate the image SD function

and the subsequent band-wise sample allocation using the aforementioned method.

subband b0 b1 b2 b3 b4 b5

GGD
α 2 0.7 0.4 0.3 0.3 0.4

σ2 261.4383 2.0822 0.4559 0.0902 0.0167 0.0033

GMD

λ 1 0.4155 0.5309 0.4842 0.3664 0.2792

σ2L 261.4383 4.4215 0.8542 0.1856 0.0453 0.0115

σ2S 0.3331 0.0038 0.0004 0.0002 0.0001

Table 3.1: Statistics for Daubechies 2 wavelet coefficients of cameraman

To show the sample allocation method is not restricted to the form of the decoders, we consider

three reconstruction options: the linear ℓ2 decoder, the CS ℓ1 decoder, and the BAMP decoder.

The SPGL1 toolbox 3 is used to implement the ℓ1 decoder. Its SD function can also be derived

using the SE formalism [55]. Both the ℓ2 and the ℓ1 decoder are considered for the GGD and

the GMD model. Although in [54] the authors show that the BAMP decoder is applicable

to the GGD data by approximating it with the finite term of Gaussian mixture distribution,

the approximation error may contribute to the final reconstruction distortion. Thus the BAMP

decoder results are only reported for the GMD model here. The detailed algorithm can be found

in [69], [53].

For quantitative comparison, the peak signal-to-noise ratio (PSNR) is used for both theoretical

prediction and simulations. We examined the cameraman image at four different sampling

ratios: 10%,15.26%,25% and 30% associated with m = 6554, 10000, 16384, 19661 noiseless

measurements. Two different wavelet image models are considered. First, the wavelet bands are

assumed to be mutually independent. The proposed SA matrix is compared with five sensing

3http://www.cs.ubc.ca/labs/scl/spgl1/index.html
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HSA

Figure 3.14: Sample allocation per band for Daubechies 2 wavelet with the GMD model. SA:

sample allocation based on the bandwise independent model. HSA: sample allo-

cation based on the empirical SD functions for BAMP decoder with soft informa-

tion. ESA: empirically optimized sample allocation for turbo decoding.

matrices: the homogeneous Gaussian matrix (Uniform), the two-gender matrix (2 Gender) [84],

the informative sensing matrix (InforSA) [87] and the multi-scale sensing matrix (MBSA) in

[85]. The 2 Gender matrix is implemented as fully sampling the scaling band and uniformly

allocating the remaining samples to all the wavelet bands. As a statistic-dependent sample

allocation scheme, InforSA is also generated based on Table 3.1.

The corresponding PSNR results are shown in Fig. 3.15 and Fig. 3.16 for GGD and GMD

model, respectively. The SD function predicts the expected distortion quite accurately for all

three choices of the decoder with SA. For both image models, SA achieves the best performance

among the five sensing matrices. The advantages of SA over the Uniform matrix and the 2 Gen-

der matrix is significant in spite of the sample ratio. MBSA has a relatively good performance

since it has the essence of putting more samples to the coarse bands. Provided with the same

image statistics, InforSA tends to allocate more samples to the fine wavelet bands compared

with SA. Thus it is not as effective as SA in the low sampling ratio regime. Interestingly the CS

scheme, even with an optimized sample allocation, only provides modest reconstruction gains

over the classical linear approximation with similarly optimized sample allocation. This sug-

gests the discussion in Section 3.3.3.2: the rate of decay of error is the same for both the BAMP

and ℓ2 decoder (though the constants are different). Thus we do not observe overwhelmingly

better performance for the BAMP decoder even when SA is performed.

Secondly, the quad-tree structure is exploited with the GMD model. Within the turbo decoding

regime, simulations are reported for four different sensing matrices: Uniform (amounts to the

algorithm proposed in [69]), SA, HSA, and the empirically optimized sample allocation, or
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ESA. As analysed in section 3.4, ESA should be the balance between SA and HSA. For the

cameraman image, the ESA is obtained by adaptively reallocating samples from band four to

band five based on SA, with the step size of 100 samples, until the PSNR does not increase.

The sample allocation per band under four specific sampling ratios are reported in Fig. 3.14.

We see that the scaling band and the coarsest wavelet band always have priority over the fine

wavelet bands. For this particular image, around 2000 samples are reallocated to the finest

scale band to achieve the ESA. For the turbo decoding, the soft information in (3.37) is used.

It is fixed if band j is fully sampled during the HMT decoding. For partially sampled bands,

activity rates λj in Table 3.1 are used to initialize the turbo decoding and updated by the HMT

decoding for each turbo iteration. Other hyperparameters to initialize the HMT decoding are

set in accordance with the recommendation in [69]. For various choices of sample allocations,

we ran 20 turbo iterations, within which 500 BAMP iterations are performed.

As evident in Fig. 3.16, adding the HMT decoding ingredient indeed improves the recon-

struction quality. it is the joint use of optimized bandwise sampling and the tree structure

that delivers by far the best PSNR performance. Again, sample allocation shows its impor-

tances when there is a tight budget of samples: even without the turbo decoding procedure,

SA+BAMP is 1.5 dB better at γ = 0.1, 0.15 than Uniform+TurboAMP. In the large sampling

ratio regime γ = 0.3, the effectiveness of the sample allocation is not as obvious and the HMT

alone is responsible for the excellent performance: SA+TurboAMP is 0.5 dB better than the

Uniform+TurboAMP. It shows that both sample allocation and the HMT play a role in im-

proving the performance of compressive imaging, and which matters more depends on several

factors, including the sampling ratio. We also observe that the ESA is only slightly better than

the SA, which means that even when we have the luxury of manipulating samples, the benefit

is limited because of the exponential energy decay of the multi-resolution model.

The 256 × 256 cameraman image along with the reconstructed images by different encoder-

decoder pairs are visualized in Fig. 3.17 at the sampling ratio γ = 15%. It further confirms that

given accurate image statistics, our proposed SA is the optimal distribution of samples.

3.5.2 Sample Allocation with General Image Statistics: The GSA

In practice, we may not have access to the accurate image statistics. In this section, recon-

struction results for a general sample allocation (GSA) which is not tuned to a specific image

distribution are presented. The GSA is designed based on the fixed per-band natural image
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Figure 3.15: PSNR comparison of different encoder-decoder pairs for cameraman Daubechies

2 wavelet with the GGD model. The lines are theoretical predictions with the SD

function. While dots represent simulations with the cameraman image.
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2 wavelet with the GMD model. The lines are theoretical predictions with the SD

function. While dots represent simulations with the cameraman image.
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(g) InforSA+TurboAMP (25.47 dB)

(b) Uniform+BAMP (22.98 dB)(a) Original Cameraman

(h) MBSA+TurboAMP (25.63 dB) (i) SA+TurboAMP (25.81 dB)

(c) 2 Gender+BAMP (23.04 dB)

(f) SA+BAMP (25.40 dB)(d) MBSA+BAMP (23.56 dB) (e) inforSA+BAMP (23.78 dB)

Figure 3.17: Reconstruction using 10000 (15%) samples of the 256 × 256 cameraman image

with different encoder-decoder pairs. The GMD is used to model the Daubechies

2 wavelet coefficients statistics. The encoding matrices for the cameraman simu-

lations are explained in details in Sec. 3.5.1.
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Figure 3.18: Ten test images from the Berkeley dataset [3]. From left to right, top to bottom

are: car, plane, eagle, sculpture, surfer, tourists, building, castle, man and fish.

statistics. We estimated the GMD statistics for the six-band Daubechies 2 wavelet decomposi-

tion of 200 training images from the Berkeley Segmentation Dataset [3]. Each training image is

cropped to the size of 256× 256. The pixel intensity value is normalized between 0 and 1. The

average per-band GMD parameters are reported in Table 3.2 and used to generate the general

(albeit dictionary and algorithm dependent) sample allocation profile.

subband b1 b2 b3 b4 b5

λ 0.5108 0.4374 0.4076 0.3616 0.3137

σ2L 3.6910 0.7506 0.1595 0.0385 0.0081

σ2
S

0.4596 0.0490 0.0075 0.0015 0.0003

Table 3.2: Average Statistics for Daubechies 2 wavelet coefficients of 200 test images from the

Berkeley dataset [3]

The resulting GSA is then applied to ten test images outside the training set, as shown in Fig.

3.18, and again compared with the Uniform matrix, the 2 Gender matrix, MBSA and InforSA.

Table 3.2 is also used to generate InforSA. The BAMP decoder is used as the reconstruction

algorithm. The PSNR performance for sampling ratio γ = 0.1, 0.2, 0.3 are reported in Table

3.3, Table 3.4 and Table 3.5, respectively.

The reconstruction quality of GSA depends on the accuracy of the image statistics. We see that

with reasonable image statistics estimation, GSA outperforms the Uniform matrix and the 2

Gender matrix with roughly 2 dB gain consistently for all cases. The MBSA and InforSA have

comparable yet slightly worse performance except three images at sampling ratio γ = 0.3. It is

due to the actual image deviates from the average image statistics. Not surprisingly, adding the

HMT decoding component can only improve the reconstruction quality, if not significantly.
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Image GSA InforSA MBSA Uniform 2 Gender SA+TurboAMP

car 22.52 21.67 22.28 20.61 20.65 23.12

plane 25.87 25.27 25.63 24.16 24.26 26.57

eagle 25.23 24.53 24.88 23.39 23.44 26.30

sculpture 22.42 21.72 22.36 20.75 20.81 22.68

surfer 22.37 21.58 22.11 20.42 20.59 23.14

tourists 22.17 21.35 22.08 20.41 20.50 22.52

building 22.01 21.42 21.84 20.39 20.41 22.73

castle 21.40 20.93 21.26 19.82 19.78 21.74

man 26.86 26.02 26.42 24.84 24.89 28.52

fish 24.60 23.52 24.43 22.57 22.63 24.85

average 23.55 22.80 23.33 21.74 21.80 24.22

Table 3.3: Image reconstruction results for ten 256 × 256 test images from the berkeley image

database [3] with γ = 0.1. Entries are the peak signal-to-noise ratio (PSNR) in

decibels, PSNR := 10 log10(N/||x̂ − x||22). All results use the aveargae image

statistics reported in Table 3.2 and the BAMP decoder.

3.6 Summary

The main contribution of this chapter is to understand the nature of the sampling for multi-

resolution images. For this, the complete sample distortion framework with the definition,

lower bounds and the convex property is presented. Given the image statistics, we have derived

a tractable sample allocation method for minimizing the reconstruction distortion and shown

that it provides an accurate prediction of the achievable SD performance. We have also shown

that when the optimized sample allocation is performed, the reconstruction gain of the CS

decoder is limited over the linear reconstruction techniques. To get closer to the model based

bound, we have deployed the tree structured sparsity within the optimized band-wise sampling

framework by the turbo decoding approach. Various encoder-decoder combinations examined

with the cameraman image illustrate the merit of band-wise sampling, especially in the regime

of very low sampling ratios. For practical sample allocation, a general sampling profile is

constructed based on average image statistics and demonstrates competitive performance.
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Image GSA InforSA MBSA Uniform 2 Gender SA+TurboAMP

car 25.56 24.11 25.29 22.92 22.98 25.92

plane 28.28 27.32 28.13 26.19 26.25 28.52

eagle 28.66 27.84 28.59 26.31 26.44 28.95

sculpture 23.81 22.89 23.54 22.05 22.61 24.58

surfer 25.37 24.00 25.13 22.81 22.95 25.65

tourists 24.15 22.93 23.75 22.08 22.37 24.53

building 24.84 23.59 24.66 22.48 22.55 25.37

castle 23.65 22.76 23.41 21.02 21.42 23.96

man 30.32 29.33 30.08 28.05 28.49 30.80

fish 27.26 27.57 26.76 24.62 24.83 27.76

average 26.10 25.23 25.93 23.85 24.09 26.60

Table 3.4: Reconstruction PSNR for test images with γ = 0.2

Image GSA InforSA MBSA Uniform 2 Gender SA+TurboAMP

car 26.21 26.24 26.15 25.00 25.22 26.97

plane 28.96 29.20 28.89 28.21 28.54 29.82

eagle 29.97 29.22 29.17 28.61 28.94 30.25

sculpture 24.94 23.93 25.02 23.00 23.11 25.72

surfer 26.04 25.96 25.85 24.91 25.05 26.85

tourists 25.35 24.22 25.15 23.35 23.57 25.79

building 25.50 25.28 25.32 24.28 24.42 26.17

castle 24.32 24.21 24.16 23.04 23.06 24.75

man 31.56 30.85 30.77 30.05 30.29 33.09

fish 28.76 27.97 28.26 26.31 26.53 29.31

average 27.16 26.71 26.87 25.68 25.87 27.87

Table 3.5: Reconstruction PSNR for test images with γ = 0.3
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Chapter 4

Modulated Matrix Design

In this Chapter, the modulated matrix design is proposed as an extension of the seeded matrix

in the CS literature. The structure of the modulated matrix can be seen as the product of

a homogeneous Gaussian matrix and a rescaling matrix. A 1-D SE equation is derived for

the modulated matrix by modifying the block SE function for the seeded matrix. Thus, the

corresponding SD performance can be accurately predicted. The relatively simple form of the

modulated matrix potentially reduces the complexity of the parameter optimization procedure

while retains the ability to perform as well as the seeded matrix. The two block matrix is

then presented as an exemplary realization of the modulated matrix design. Interestingly, the

zeroing matrix introduced in Chapter 3 falls into the two block matrix framework. Since the

performance of the proposed measurement matrix depends on the first order phase transition

(FOPT), we analyse this signal property using the SE equation. We have shown that for sparse

and dense signals with a FOPT, exact reconstruction can be achieved in the region where the

homogeneous Gaussian matrix is not optimal. For compressible signals without a FOPT, the

two block matrix can effectively improve the SD function, with the zeroing matrix being the

empirically optimal choice.

4.1 Introduction

One of the major focuses in compressed sensing is the optimal configuration for recovery, i.e.

the optimal measurement matrix and reconstruction algorithm. In [104], an extensive study of

the optimal CS reconstruction for sparse signals is reported with some rigorous proof. As we

have shown already in Chapter 3, there is no such thing as the universally optimal measure-

ment matrix. The optimality of the measurement matrix is highly related to both the signal

prior and the recovery scheme. Despite the general advantages of the homogeneous Gaussian

matrix, there have recently been a number of studies on tailoring the measurement matrix Φ

with the signal distribution and the reconstruction algorithm, aiming for better CS performance.

In Chapter 3, a hybrid zeroing matrix was introduced by exploring the convex property of the

SD function, which successfully convexifies the SD function in the low sampling regime, thus
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improving the reconstruction quality. Another measurement matrix design attracting a lot of

attention has the spatially coupled structure. The spatial coupling concept was first developed

and implemented in the coding theory [111–113]. Kudekar et al. first presented the effective-

ness of the spatial coupling in CS in [111]. Krzakala and colleagues further promoted its usage

in CS and denoted the corresponding matrix as the seeded matrix [4]. Designed as the spatially

coupled block diagonal matrix, it has been shown heuristically that exact recovery of the sparse

signal can be obtained under a sampling ratio approaching the sparsity level. Rigorous proof for

its success is given in [114]. Asymptotic analysis and state evolution prediction for the block

matrix structure are derived in [53] using the replica method. The application for compressible

signals is considered in [115].

In this chapter, we propose a new block measurement matrix structure, by introducing a ran-

dom rescale distribution to modify the homogeneous Gaussian matrix. The proposed matrix

is denoted as the modulated matrix. Different from the block diagonal structure of the seeded

matrix, the modulated matrix ΦM ∈ R
m×n consists of several m-row Gaussian matrices with

different variances. The variances admit a probability density function specified by the rescale

distribution. By varying the variance for the sub-matrices, we are essentially reweighting the

signal prior. Another key difference between the modulated matrix and the seeded matrix is

the complexity of the SE analysis. For the seeded matrix, the dimension of the SE dynamical

system is on the order of the number of the blocks. For the modulated matrix, we derive a 1-D

SE equation to track the performance when used with the AMP based reconstruction algorithm

in the large system limit. The 1-D equation makes the analysis and the optimization of the mea-

surement matrix relatively easy. Inspired by the zeroing matrix in Chapter 3, we then consider

a rescale distribution consisting of two Dirac delta functions. The rest of the chapter will focus

on the special form of the modulated matrix, known as the two block matrix.

In [115], Barbier et al. pointed out the sub-optimal sampling region for BAMP with the ho-

mogeneous Gaussian matrix and the associated first order phase transition phenomenon for the

signal. It is shown that with the presence of a FOPT, the seeded matrix is empirically able to

improve the reconstruction and reach the optimal achievable MSE. As an important property,

the FOPT is explained using the replica method in [115]. In this chapter, it is interpreted from

the state evolution point of view. Three different types of SE behaviour are presented and the

cause of the FOPT is analysed. We further drive the necessary and sufficient condition for

signals without a FOPT.

The work in [4, 115] emphasizes on achieving the perfect reconstruction for sparse signals
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with a sampling ratio that near the sparsity level with the seeded matrix. Here, we focus on im-

proving the reconstruction quality with the full range of the sampling ratio. The performance

of the modulated matrix is evaluated by the SD function. We show that in the SD framework,

the FOPT is related to the position of the critical sampling ratio defined in the Chapter 3. For

signals with a FOPT, the two block matrix is able to reduce the critical sampling ratio. In the

case of the sparse and dense signal priors, this means the exact reconstruction is available in the

region that the homogeneous Gaussian matrix fails. For compressible signals without a FOPT,

theoretically we prove that the two block matrix will retain this non-FOPT property. Empirical

results indicate applying the two block matrix will not change the position of the critical sam-

pling ratio. Regardless of the FOPT, the two block matrix delivers a significantly improved SD

performance. Finally, the theoretical and empirical SD functions for sparse, compressible and

dense signals confirm the 1-D SE analysis and demonstrate the power of the two block matrix

design.

4.2 Seeded Matrix Review

The ultimate principle of compressed sensing is acquiring only enough information necessary

to restore the original signal. For a sparse signal with k non-zeros elements in n dimension

k < n, essentially the knowledge of the k + 1 components is enough to represent the signal.

In principle, exact recovery of the signal is possible with m measurements with m > k. In

compressed sensing, ideally we would like to have a measurement matrix and a reconstruction

algorithm that achieves exact recovery with a sampling rate reaching the optimal limit, i.e.

m/k → 1, in the large system limit.

In [4], the fundamental reconstruction limit is achieved in the limit of large systems for sparse

signals. Krzakala et al. proposed the seeded belief propagation (s-BP) procedure, which is

essentially the TAP-AMP summarized in Chapter 2 and presented the carefully designed mea-

surement matrix, designated as the seeded matrix.

It was demonstrated both numerically and analytically that the seeded matrix together with

s-BP is able to exactly reconstruct sparse signals with m very close to the sparsity level k.

In [115], the compressible signal reconstruction with the seeded matrix is investigated. The

authors pointed out that for compressible signals with a FOPT, the homogeneous Gaussian

measurement matrix together with BAMP does not truly achieve the optimal Bayes inference

in the small sampling regime. The important contribution of [115] is the explanation of the
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Gaussian with 1/N variance

Gaussian with         variance

Gaussian with         variance

Null elements

Figure 4.1: Construction of the seeded matrix for compressed sensing [4].

FOPT phenomenon and the demonstration of how the seeded matrix is able to aid the BAMP

algorithm to achieve the optimal Bayes inference.

This section presents a brief summary of the seeded matrix, including its structure, heuristic

explanation for its working principle and the theoretical state evolution dynamics, as the back-

ground information for the modulated matrix design.

4.2.1 Seeded Matrix Structure

The seeded matrix has a spatial coupling structure. The measurement matrix Φ is divided into

Lr×Lc blocks with each being Φqp ∈ R
mq×np , q = 1, · · · , Lr, p = 1, · · · , Lc. Consequently,

the signal of interest can be seen as divided into Lc equal-sized blocks. For non-zero blocks,

the components for each block are drawn i.i.d. from the Gaussian distribution with zero mean

and variance Jqp/n. The standard seeded matrix has the block diagonal structure, as illustrated

in Fig. 4.1. The principle diagonal blocks have Gaussian elements with variance 1/n. The

coupling blocks sitting above and below have variance J2/n and J1/n, respectively. Empirical

experiments suggest good reconstruction is obtained with large J1 and small J2. The seeded

matrix in Fig. 4.1 is not the only valid structure to achieve the reconstruction optimality. More

designs can be found in [53], all of which have the general spatially coupling structure.

There is a heuristic explanation for the working principle of the seeded matrix. To approach

the theoretical limit for the perfect reconstruction of sparse signals, the first block of the seeded

matrix Φ11 is chosen to be near square shaped to achieve almost exact reconstruction for the

first signal block. Then the reconstruction propagates through the coupling matrices as a wave

for the following blocks, making good reconstruction possible even for blocks with very small

sampling ratio γq = mq/np. Reconstruction with the seeded matrix has an analogy to the

crystal nucleation. For the supercooled liquid trapped in a glassy state, a large enough seed
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of crystal will enable it to escape from the metastable state and let the crystal grow from its

seed. For the seeded matrix, the first square shaped block acts as the nuclear seed to embark

the perfect reconstruction.

4.2.2 When Does Seeding Work?

In crystallization, the reason that the nuclear seed is able to trigger the procedure is essentially

because the liquid is in the unstable glassy state. In physics, the way liquid changes into solid is

a typical example of a system undergoing a first order phase transition. For CS reconstruction,

we borrow this physics term to describe the scenario when the signal reconstruction is trapped

at a sub-optimal solution. Equivalently, the seeded matrix triggers better reconstruction for

signals exhibiting an unstable state, or undergoing a first order phase transition. In the context

of the sample distortion framework, the FOPT is a discontinuous drop of the MSE with the

increasing sampling ratio. More precisely, for a fixed sparsity level, there exists a sampling

ratio γBP that separates a phase with a small MSE, obtained at γ > γBP, from the phase with a

large MSE for γ < γBP. The MSE discontinuity happens at γ = γBP.

It was argued heuristically in [4] and shown empirically in [115] that only if the FOPT is

present, the optimal Bayes inference can be restored by the spatially coupling measurement

matrix. For sparse signals with a FOPT, BAMP is able to obtain exact recovery for γ > γBP.

Below γBP an unstable state appears. Instead of finding the original signal, the BAMP recon-

struction gets stuck in a sub-optimal solution. In this case, the seeded matrix achieves the

optimal Bayes inference in the sense that the exact reconstruction is obtained. For compress-

ible signals with a FOPT, the optimal Bayes inference corresponds to a solution with a smaller

MSE, while the BAMP with the homogeneous Gaussian measurement matrix terminates at one

with a larger MSE. In this scenario, the seeded matrix improves the BAMP recovery by leading

the algorithm to converge to the optimal Bayes inference result.

As an important factor effecting the signal reconstruction, we will provide more detailed expla-

nation for the FOPT later in Section 4.4.

4.2.3 State Evolution for Seeded Matrix

As we have shown in Chapter 2, the behaviour of the AMP-based algorithm with the homo-

geneous Gaussian matrix can be characterized by the SE dynamical system in the large limit.

For the s-BP algorithm with the joint use of seeded matrix, the same analysis can be applied to
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track its MSE behaviour. In [4], the authors presented the detailed derivation of the SE equation

for the seeded matrix from the replica method perspective. Here we summarize the conclusion

and present the resulting 2Lc-D dynamical system:

E(t+1)
p = E

{[

F (x+
z
√
τp
;
1

τp
)− x

]2
}

(4.1)

τp =

Lr∑

q=1

mqJqp
Lc∑

r=1
JqrnrEt

r

(4.2)

The SE prediction for s-BP with the seeded matrix has the same interpretation as for the homo-

geneous matrix: z ∼ N (0, 1) is the Gaussian noise which is independent of x. The function

F (·) is the non-linear denoising estimator of x given x + z. Given the signal prior, F (·) can

be the MMSE estimator. The expectation in (4.1) is taken with respect to both x and z. E
(t+1)
p

represents the reconstruction MSE for the pth signal block. This dynamical system allows us

to obtain the theoretical performance for the seeded matrix. Moreover, it can be used to opti-

mize the matrix parameters, Lc, Lr, J1 and J2 for good reconstruction quality. However, the

optimization may not be trivial as the number of blocks grows.

4.3 Modulated Matrix Framework

As stated in [53], the seeded matrix is not the only choice for improving the CS reconstruction.

In this section, we introduce the modulated matrix design, as a general measurement matrix

framework, which possesses a much simpler SE dynamics. The two block matrix is then pre-

sented as a special realization of the modulated matrix design.

4.3.1 Modulated Matrix Structure

Instead of dividing both columns and rows of the measurement matrix into blocks, the mod-

ulated matrix ΦM is composed of Lc m-row sub-matrices Φi ∈ R
m×ni , i = 1, · · · , Lc, and

∑

i ni = n. Each consists of i.i.d. random elements drawn from the Gaussian distribution with

zero mean and Ji/n variance.
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Figure 4.2: Construction of the modulated matrix. Gaussian random elements with different

variances are indicated by different shade.

Let us define the rescaling matrix R ∈ R
n×n as:

R =











√
J1I1 0 · · · 0

0
√
J2I2 · · · 0

...
...

. . .
...

0 0 · · ·
√
JLcILc











(4.3)

where Ii ∈ R
ni×ni is the identity matrix. The modulated matrix is then the product of the

homogeneous Gaussian matrix G and the rescaling matrix:

ΦM = GR (4.4)

A plot illustrating the modulated matrix structure is shown in Fig. 4.2. As opposed to the

standard seeded matrix, the modulated matrix has a dense structure. The different shade in Fig.

4.2 corresponds to difference rescaling parameter Ji sorted in a decreasing order.

4.3.2 1-D State Evolution

The state evolution equations in (4.1) and (4.2) are not exclusive for the seeded matrix. They

actually provide a general formulation to track the MSE evolution for any block structured

measurement matrix. Thus they can also be used to derive the SE dynamics for the modulated

matrix as a special case. To be specific, for the modulated matrix we set Lr = 1 in eq. (4.2).
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Then for each signal block, we have:

Et
i = S(τ ti ) (4.5)

= E

{[

F (x+ z
√

τ ti ; τ
t
i )− x

]2
}

(4.6)

τ
(t+1)
i =

∑

k JkεkS(τ
t
k)

γJi
(4.7)

where εk = nk/n. The total reconstruction MSE at each iteration is the average over all blocks:

Ēt =
1

Lc

Lc∑

i=1

Et
i (4.8)

Eq. (4.5) to (4.7) are a straightforward implementation of the general SE dynamics for the

block sensing matrix. The distinctive feature of the modulated matrix though, is that its SE

dynamical system has a 1-D form. To show this we define a rescaled variable τ̂ = Jiτi, which

is independent of the block index i. Then the update rule for τ̂ becomes:

τ̂ (t+1) =

∑

k JkεkS(τ̂
t/Jk)

γ
(4.9)

Unlike the update of τp in (4.2), the evolution of τ̂ involves only its previous state and thus

forms a 1-D SE equation. When the iteration of τ̂ converges to τ̂∗, the CS reconstruction MSE

can be accurately predicted by

Ē =
1

Lc

∑

k

S(
τ̂∗

Jk
) (4.10)

We can also extend the aforementioned modulated matrix design to the stochastic setting by

introducing a random rescaling parameter J for each column. That is, set Lc = n and J with

the distribution p(J). In the limit of large systems, the SE equation (4.9) and the distortion

prediction (4.10) become

τ̂ (t+1) =
1

γ
E

J

{

JS

(
τ̂ t

J

)}

(4.11)

Ē = EJ

{

S

(
τ̂∗

J

)}

(4.12)

where the expectation is calculated with respect to J .

Both the deterministic (4.9) and stochastic (4.11) dynamics are described by a 1-D SE equation.
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Gaussian with 1/N variance

Gaussian with         variance

Figure 4.3: Construction of the two block matrix.

It makes the analysis and the optimization of the modulated matrix easier than the general

seeded matrices of [4].

4.3.3 Two Block Matrix

In Chapter 3, we have proved the convexity of the SD function and showed the hybrid zeroing

matrix can effectively convexify the concave SD function. It has been illustrated analytically

that better performance can be achieved in the concave region by setting a portion of the mea-

surement matrix to zero. Motivated by this design, we consider a special form of the rescaling

matrix

R̂ =




In1 0

0
√
J2In2



 (4.13)

where n1 + n2 = n and Ini ∈ R
ni×ni . We denote the corresponding Φ̂M as the two block

matrix. Fig. 4.3 illustrates the structure of the two block matrix.

There is a strong link between the two block matrix and the hybrid zeroing matrix: Setting

J2 = 0 and γ1 = γ/γc with γc being the critical sampling ratio results in the hybrid zeroing

matrix and the convexified SD function. Here, we consider J2 being non-zero and without loss

of generality assume 0 < J2 < 1. The SE equation and the MSE prediction for Φ̂M become:

τ̂ (t+1) =
1

α
M(τ̂ (t+1)) (4.14)

=
1

α

[

γ1S(τ̂
t) + (1− γ1)J2S(

τ̂ t

J2
)

]

(4.15)

Ē = γ1S(τ̂
∗) + (1− γ1)S(

τ̂∗

J2
) (4.16)

The two block matrix design is closely related to the seeded matrix with four sub-matrices.
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According to [4], the four block seeded matrix Φs takes the form:

Φs =




G1

√
J2G2

√
J1G3 G4



 (4.17)

where Gi is the homogeneous Gaussian matrix. For the seeded matrix to work it requires

J1 ≫ J2. If we set J1 = 1/J2, which is close to what was found to be optimal in [4], the two

block matrix Φ̂M turns out to be the rescaled seeded matrix.

Φ̂M =




G1

√
J2G2

G3

√
J2G4



 (4.18)

=




I1 0

0
√
J2I4



Φs (4.19)

where the index matrix Ii has the same number of rows as Gi.

The intuitive idea behind the two block matrix design is that it simply shrinks a fraction of

the signal to be very small. This leaves fewer large coefficients which can consequently be

recovered through the reconstruction algorithm. In the SE dynamics, when the uncertainty

for large coefficients is small enough, it acts as noise for the rescaled signal so that the two

parts denoise together. Compared to the seeded matrix, the two block matrix has a relatively

simple SE dynamics and fewer parameters to be selected, which makes analytical optimization

possible. The potential downside maybe a reduced robustness to noise.

4.4 First Order Phase Transition

As previously mentioned, the FOPT is a crucial phenomenon indicating the possible improve-

ment for the spatially coupling matrices. The cause of FOPT is first explained in [115] using the

statistical physics tool. In the section, we will first summarize their analysis. Then we provide

our own explanation for the FOPT phenomenon from the state evolution perspective and derive

the necessary and sufficient condition for signals without a FOPT. Finally we analyse how the

two block matrix effects the FOPT thus the reconstruction dynamics.
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4.4.1 Analysis via Statistical Physics

To study the typical performance of CS in the large system limit, many works are published

using statistical physics methods, whose principle goal is to study the macroscopic properties

of physical systems from the principle of microscopic interactions. As randomness plays a

key role in CS, it falls under the general scope of statistical physics. Although non-rigorous,

empirical works in many research fields, i.e. compressed sensing [78–81], multi-user detection

[47, 77], have shown promising results with the statistical physics analysis.

To explain the FOPT for BAMP reconstruction, the potential function (also known as the free

energy function) is leveraged to characterize the CS system. The potential function is a statis-

tical physics concept, which is originally used to characterize the thermodynamic properties of

a disordered system. It has been shown in [53] that the fixed points of the message passing of a

CS system are the stationary points of the corresponding potential function. In [4], the authors

provide the detailed procedure to derive the potential function for a given sparse/compressible

signal prior. Here we use the potential function for the two-state GMD in [115] to explain the

cause of the FOPT.

Given the probability

p(x) = w1N (x; 0, σ21) + w2N (x; 0, σ22) (4.20)

where w1 + w2 = 1, the corresponding potential function for BAMP with the homogeneous

Gaussian matrix is formed as [115]:

Λ(E) = −γ
2

(

logE +
w1σ

2
1 + w2σ

2
2

E

)

+
2∑

a=1

wa

∫
e−z2/2

√
2π

log






2∑

b=1

wb
e

(t2σ2
a+t)z2

2(t+1/σ2
b
)

√

tσ2b + 1




 dz

(4.21)

where t = γ
E andE is the reconstruction MSE. The BAMP iterations correspond to the gradient

ascent of Λ(E). Initialized with x̂0 = 0, BAMP obtains a better signal estimate thus a smaller

E at each iteration. Consequently, Λ(E) is in general increasing as the BAMP proceeds. When

the BAMP terminates, the potential function Λ(E) arrives at one of its maximas.

In Fig. 4.4, we plot potential functions associated with two GMD priors and one BG model

under various sampling ratios. The potential function Λ(E) for BG priors can be obtained by

setting σ22 = 0 in (4.21). For the GMD without a FOPT in Fig. 4.4.(c), all potential functions

have only one global maximum irrespective of γ. Moreover, the value of the global maximum

evolves smoothly, in the sense that it is a continuous function of γ. In Fig. 4.4.(c), we only
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Figure 4.4: The potential function Λ(E) for different signals at various sampling ratios with

the homogeneous Gaussian matrix: (a) Bernoulli-Gaussian data with FOPT,

pBG(x) = 0.4N (x; 0, 1) + 0.6δ(x); (b) Gaussian-mixture data with FOPT, pGM1 =
0.4N (x; 0, 1) + 0.6N (x; 0, 5e − 4) (c) Gaussian-mixture data without FOPT,

pGM2 = 0.4N (x; 0, 1) + 0.6N (x; 0, 0.003). The diamond-shaped dots represent

the global maximums, while the star-shaped dots are the secondary local maxi-

mums.
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plotted the potential functions for γ = 0.4, 0.5, 0.6, 0.7. One can imagine that if we apply a

finer sampling ratio grid, connecting all the global maximum dots will form a continuous curve.

As we increase the sampling ratio γ → 1, the global maximum will appear atE → 0, achieving

the exact recovery. Since the iteration of BAMP acts like the steepest ascent of the potential

function, we are expecting a continuous SD function, thus a SD function without FOPT for this

particular prior. Later, the simulation results in Fig. 4.9 confirm this analysis.

Things are different for priors that induce a FOPT for BAMP. In Fig. 4.4.(a) we plot the

evolution of the potential functions for the BG prior. In the small sampling ratio regime, i.e.

γ = 0.4, there is only one maxima for Λ(E) and the MSE of the BAMP recovery is the

corresponding E = 0.2007. As we increase γ, a secondary local maxima shows its presence

with the global maxima remaining at E → 0. The reconstruction quality will then highly

depend on the initialization of BAMP. If we could somehow initialize the algorithm from any

point beyond the local maxima, in principle, BAMP is still able to reach the global maxima

of Λ(E), thus the exact recovery. However, such initialization barely happens in practice.

With x0 = 0, one can accurately estimate the starting variance E0, which is normally larger

than the one associated with the local maxima for Λ(E). In such a scenario, BAMP with the

homogeneous Gaussian measurement matrix will eventually get stuck at the local maximum

instead of finding the optimal Bayes inference with the global maximum. The FOPT occurs

when this spurious local maximum starts to vanish as we keep increasing the sampling ratio. In

Fig. 4.4.(b), BAMP converges at E = 0.0546 for γ = 0.58. For γ = 0.59, the disappearance

of the local maximum for the potential function leads to the significant change of MSE. Instead

of having a MSE in the vicinity of E = 0.0546, BAMP converges to the global and the only

maxima at E → 0. This is how the sudden drop of the MSE, or the FOPT, happens in the SD

function, as we will see later in Fig. 4.7.

The same phenomenon can be observed for GMD priors when the small Gaussian variance is

neglectable, for example in Fig. 4.4.(b). As γ increases from 0.59 to 0.6, the local maximum

∼ 10−2 vanishes. In the SD function, we are expecting to see a sudden drop of the MSE from

∼ 10−2 to∼ 10−4 in the sampling region between 0.59 and 0.6. In [115], the authors define γBP

as the sampling ratio at which the MSE discontinuity happens (the largest γ that the potential

function has two maximas) and γopt as the sampling ratio for which the two maximums has the

same height. According to the previous analysis, it is in the region γopt < γ < γBP that BAMP

with a homogeneous Gaussian measurement matrix is sub-optimal, in the sense that it does not

reach the global maximum. Also this region is where the spatial coupling measurement matrix
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Figure 4.5: The schematic plot of three types of SE behaviour to explain FOPT. The dash line

is the baseline γτ t. The solid lines are S(τ t) for BAMP with the homogeneous

Gaussian matrix. The number of non-zero intersection points with the baseline

varies for different types of signals.

could improve the recovery quality. In other words, the FOPT needs to be present for the seeded

matrix to restore optimality.

4.4.2 Analysis via State Evolution

Although the analysis using the statistical physics tool coincides with the asymptotic behaviour

of the AMP reconstruction, there is no rigorous proof for the connection. In contrast, SE dy-

namics is theoretically valid for characterizing the AMP behaviour. In this section, we study the

FOPT phenomenon by analysing the SE equation for BAMP with the homogeneous Gaussian

measurement matrix.

To better illustrate the dynamics, a schematic plot for three typical types of SE behaviour is

presented in Fig. 4.5, which corresponds to the three types of the potential functions illus-

trated in Fig. 4.4. As summarized in Chapter 2 eq. (2.70), the SE equation for BAMP with a

homogeneous Gaussian measurement matrix has the 1-D form:

τ t+1 =
1

γ
S(τ t)

=
1

γ
E{[F (x+

√
τ tz; τ t)− x]2}

(4.22)
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Let us define τ∗ as the convergence point of (4.22). In the SE dynamics, the intersection points

of the baseline function γτ t and the function S(τ t) are the fix points of the SE equation. They

are also the possible values for τ∗. For any arbitrary prior, zero is always a fix point representing

the exact recovery. As previously stated, whether BAMP can achieve the perfect reconstruction

depends on the signal prior as well as the algorithm initialization. The curvature of S(τ t) is

determined by the signal prior. Changing the sampling ratio γ varies the baseline angle θ in

Fig. 4.5, and the position of the fixed points.

As demonstrated in Fig. 4.5, for the compressible signal without a FOPT, apart from zero,

there is only one non-zero fix point τ∗1 . Since the BAMP iteration starts with a large τ0, it

will always converge to τ∗1 with τ∗ = τ∗1 . As we gradually increase γ, the non-zero fix point

decreases continuously to zero with γ approaching 1. It therefore leads to a smooth transition

of τ∗ with respect to γ, thus a continuous SD function. It corresponds to the potential functions

with only one maximum in Fig. 4.4.(c).

For compressible signals with a FOPT, S(τ t) consists of three smooth arcs. For small γ, the

baseline intersects with S(τ t) at three non-zero fix points. Since BAMP initializes with a large

τ0, the BAMP iteration always terminates at the largest fix point τ∗2,1 associated with the first

concave arc. As we gradually increase γ, τ∗2,1 and τ∗2,2 will move closer to each other and

merge as one eventually. The FOPT happens when we keep increasing γ beyond this point.

The baseline will surpass the first (concave) and the second (convex) curvature, resulting in

only one non-zero fix point at τ∗2,3. Because of the existence of the convex curve between the

two concave arcs, we cannot obtain a continuous transition of τ∗ between τ∗2,3 and the merged

τ∗2,1/τ∗2,2. The sudden vanishing of τ∗2,1 is the FOPT. We observe the same dynamical change in

the potential function analysis in Fig. 4.4.(b).

When using the homogeneous Gaussian encoder and the BAMP decoder, sparse signals may

also belong to the category of signals with a FOPT. However, their SE function behaves slightly

different. As illustrated in Fig. 4.5, its S(τ t) consists of a convex and a concave arc. The

evolution of the convergence point is similar to the one for a compressible signal with a FOPT.

For small γ, the baseline intersects with the concave curve of S(τ t) at fix points τ∗3,1, τ∗3,2 and

AMP converges at τ∗3,1. Once γ is large enough for the two points to merge, the convergence

point τ∗ will suddenly drop to zero as γ keeps increasing. Thus a discontinuity of the MSE to

zero is expected in the SD function. For sparse signals, the local gradient of their SE dynamics

at zero is such that the local stability is lost only when m ≤ k. The corresponding type of

potential function is shown in Fig. 4.4.(a).
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4.4.3 FOPT Condition

Based on the FOPT analysis from the state evolution perspective, the baseline γτ t must always

lie below S(τ t) for any τ t ∈ [0,∞) if we want a smooth transition for the convergence point

τ∗. Mathematically speaking, the slope of the baseline must be less than the gradient of the

SE function for any τ∗ > 0. Here we present the necessary and sufficient condition for signals

without a FOPT.

f(τ∗)
τ∗

< η(τ∗) for all τ∗ > 0, and η(τ) =
df(τ)

dτ
(4.23)

where γτ t+1 = f(τ t) is the general form of the SE equation.

4.4.4 Two Block Matrix Effect on FOPT

The way that the seeded matrix enables BAMP achieving the optimal Bayes inference, looking

from the SE perspective, is that it changes the SE dynamics so that the sub-optimal fixed point

vanishes. It is interesting to ask how the proposed two block matrix alters the SE dynamics.

To better illustrate the two block matrix effect on the FOPT, S(τ t) − γτ t is plotted against τ t

for three types of SE behaviours in Fig. 4.6 with both homogeneous Gaussian and two block

measurement matrix. The fixed points for SE iterations are the ones with S(τ t) = γτ t.

For sparse signals with a FOPT, the two block matrix is capable of fundamentally altering the

shape of the SE function to remove the spurious fixed points. As shown in Fig. 4.6.(b), with

proper choice of the rescaling parameters, both non-zero fix points are eliminated so that the

exact recovery is achievable at γ = 0.58 for the BG prior. This improvement can also be seen

in the simulation in Fig. 4.7.

For the compressible prior with a FOPT as in Fig. 4.6.(c), the two block matrix is also capable

of changing the structure of the SE function and accelerating the FOPT. For the homogeneous

Gaussian measurement matrix with γ = 0.58, there are three non-zero fixed points and BAMP

terminates at τ∗2,1, associated with some relatively large MSE. When the two block matrix is

applied, there is only one non-zero fixed point left, associated with some very small MSE. It is

as if the baseline angle θ is increased so that the intersection with the SE curve happens only at

τ∗2,3 in Fig. 4.5. The actual SD function for is signal prior is shown in Fig. 4.8.

Finally, for signals which have no FOPT with the homogeneous Gaussian matrix, the dynamics
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Figure 4.6: Fixed points of the SE evolution for both homogeneous Gaussian matrix and

the two block matrix. (a) The compressible prior pGM2(x) = 0.4N (x; 0, 1) +
0.6N (x; 0, 3 × 10−3) with γ = 0.58. For the homogeneous Gaussian matrix,

the SE function has only one non-zero fixed point at τ∗1 = 0.1181. Applying

the two block matrix J2 = 1e − 3, γ1 = 0.9206 will not alter the shape of

the SE function, it only shrinks the function so that the fix point is moved to

τ̂∗ = 0.0222. (b) The sparse prior pBG(x) = 0.4N (x; 0, 1) + 0.6δ(x) with

γ = 0.55. For the homogeneous Gaussian matrix, the SE function has two non-

zero fixed points at τ∗3,1 = 0.1619 and τ∗3,2 = 0.01020. With the two block ma-

trix γ1 = 0.847, J2 = 10−3, the SE evolution successfully removes the spurious

fixed points and leads to perfect reconstruction. (c) The compressible signal is

pGM1(x) = 0.4N (x; 0, 1) + 0.6N (x; 0, 5 × 10−4) with γ = 0.58. For the ho-

mogeneous Gaussian matrix, the SE equation has three non-zero fixed points at

τ∗2,1 = 0.1006, τ∗2,2 = 0.017 and τ∗2,3 = 3.4 × 10−3, With the two block matrix

γ1 = 0.847, J2 = 10−3, the fix point is moved to τ̂∗ = 0.0008.
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of the two block matrix keeps this property. This can be seen in Fig. 4.6.(a). Although the

two block matrix successfully reduced the value of the convergence point of AMP, the general

shape of the SE equation is unaltered. The following theorem confirms such observation.

Theorem 4. If the SE equation for signals with the homogeneous Gaussian matrix S(τ) sat-

isfies the no FOPT condition, then the SE equation for using the two block matrix M(τ) also

satisfies the no FOPT condition.

Proof. To prove the signal does not have FOPT with the two block matrix, we only need to

check the gradient of M(τ).

κ(τ) =
dM(τ)

dτ
(4.24)

= γ1η(τ) + (1− γ1)η
(
τ

J2

)

(4.25)

< γ1
S(τ)

τ
+ (1− γ1)

J2
τ
S

(
τ

J2

)

(4.26)

=
M(τ)

τ
(4.27)

where η(τ) = dS(τ)
dτ and the inequality is based on the no FOPT condition for the homogeneous

matrix.

Theorem 4 is true for any modulated matrix. Later in Section 4.5.2 we will also see that as the

two block matrix delivers an improved SD performance, the critical sampling ratio for the SD

function as defined in Chapter 3 remains the same as the one for the homogeneous Gaussian

matrix. .

4.5 Simulations

In this section, we investigate the SD performance using the two block matrix for three different

types of signals: BG, two state GMD and the k-dense prior. We also demonstrate the SD

function of the homogeneous Gaussian measurement matrix for three priors as the performance

benchmark. The seeded matrix performance is only demonstrated for the BG data since there

are many parameters involved and the optimal configuration is only suggested for BG data

in [4]. Throughout, we assume a noiseless scenario for all simulations. The theoretical SD

functions with the two block matrix are calculated according to (4.14), (4.15) and (4.16). The

empirical curves are obtained through Monte Carlo simulations with signals of length N =
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Figure 4.7: The normalized SD function for the sparse signal pBG(x) with different measure-

ment matrix configuration. For two-block matrix, γ1 = γ/γc for γ < γc, where

γc1 = 0.59 is the perfect reconstruction ratio for the homogeneous Gaussian ma-

trix. The three-block matrix is the achieved by convexify the SD function of the two

block matrix with γ1 =
γ
γc1

, γ2 = γ
γc2
− γ

γc1
, γ3 = 1− γ2 − γ3, where γc2 = 0.45

is the perfect reconstruction ratio achieved by the two block matrix.

5000. The distortion performance for each sampling ratio is an average over 100 problem

realizations. For reconstruction, the TAP-BAMP algorithm summarized in Chapter 2 is used,

which does not assume the normalized columns for the measurement matrix. It is realized with

the MATLAB toolbox provided in [70].

4.5.1 Two Block Matrix for Sparse Signal

First, we demonstrate the results for the sparse signal generated from the BG prior.

p
BG
(x) = 0.4N (x; 0, 1) + 0.6δ(x) (4.28)

In Fig. 4.7, we plot the average MSE against the sampling ratio, under various choices of

the rescaling parameter, J2. With the two block matrix we can reduce the sampling ratio for

perfect reconstruction by decreasing J2: the perfect reconstruction ratio is moved from 0.59 to

0.45 with J2 = 10−8. However, further shrinking of J2 does not improve the reconstruction to
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Figure 4.8: The normalized SD function for the compressible signal p
GM1

(x) with different

measurement matrix configuration. For two-block matrix, γ1 = γ/γc for γ < γc,
where γc = 0.6 is the critical sampling ratio for the homogeneous Gaussian ma-

trix.

the optimal limit (the sparsity level). Setting J2 = 10−14 moves the perfect reconstruction ratio

back to 0.59. In fact, its SD function is very close to the hybrid zeroing matrix performance

with J2 = 0. Comparing to the seeded matrix, the two block matrices exhibit an improved

reconstruction for γ < 0.4. With the suggested configuration, the seeded matrix achieves the

perfect reconstruction at γ = 0.5.

One thing worth noting is that even with the improved performance, the two block matrix still

has a concave SD function up to a new critical sampling ratio. A further convexifying procedure

with a three-block structure can then be easily applied to achieve a slightly better reconstruction.

In fact, if we introduce multiple Ji, we conjecture that this approach will tend to the optimal

recovery as with the seeded matrix. Note again that for the multi-block matrix structure, the SE

equation is still 1-D. The Monte Carlo simulation implies that for the finite size problem the SE

prediction is accurate.
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4.5.2 Two Block Matrix for a Compressible Signal

In this section, we present the SD functions for two different two-state Gaussian mixture priors.

In Fig. 4.8, we have the SD functions for

p
GM1

(x) = 0.4N (x; 0, 1) + 0.6N (x; 0, 5 × 10−4) (4.29)

As demonstrated in Section 4.4, this signal model also exhibits a FOPT. It is not surprising to

see a very similar SD curve as in Fig. 4.7 for BAMP with the homogeneous Gaussian matrix,

since the small Gaussian variance is very close to zero. For the homogeneous Gaussian matrix

with BAMP, the FOPT happens at γc = 0.6. For the two block matrix with J2 = 10−2, we can

successfully remove the discontinuity point of the SD function to γc = 0.56. Decreasing the

rescaling parameter J2 to 10−4 further improves the SD performance.

Next we show some results for a compressible signal without FOPT. The signal is drawn i.i.d.

from

p
GM2

(x) = 0.4N (x; 0, 1) + 0.6N (x; 0, 0.003) (4.30)

which is motivated from the statistics of natural images. The SD functions, as well as the

achievable model based bound for the prior are shown in Fig. 4.9. Similarly to the sparse

signal case, the two block matrices outperform the homogeneous Gaussian matrix up to the

same critical sampling ratio γc. Also, the SD performance is better as we decrease J2. We

obtained an excellent agreement between the SD prediction and the Monte Carlo simulation.

Empirically, we observed that the optimum weighting for J2 is zero for the compressible signal

without FOPT. This suggests that without FOPT, the only gains come from the convexification

of the SD function. However, the proof remains an open question.

4.5.3 Two Block Matrix for Dense Signals

In this section, the two block matrix design is applied to the k-dense signal model, which has

been defined in Chapter 2.

pKD(x) = 0.45δ(x + 1) + 0.45δ(x − 1) + 0.1U(−1, 1) (4.31)

It has been observed in [116] and proved in [117] (Proposition 3.12) that the k-dense signal can
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Figure 4.9: The normalized SD function for the compressible signal p
GM2

(x) with different

measurement matrix configuration. For the two-block matrix, γ1 = γ/γc for

γ < γc, where γc = 0.63 is the critical sampling ratio for the homogeneous

Gaussian matrix.

be reconstructed with high probability by solving the following convex optimization problem

x̂ = argmin
x̃

‖ x̃ ‖ℓ∞ s.t.y = Φx̃ (4.32)

In both [13] and [14], the authors concluded that the sampling ratio is required to be more than

0.5 to ensure successful recovery for the k-dense signal with convex optimization. In [116], an

iterative, fast method is proposed to solve (4.32). We plot the empirical SD function for the

convex optimization with the homogeneous Gaussian measurement matrix as the benchmark in

Fig. 4.10.

The resulting SD functions for different measurement matrices and reconstruction algorithms

are presented in Fig. 4.10. As expected, the convex recovery algorithm with the homogeneous

Gaussian matrix will not achieve perfect reconstruction until γ = 0.62. While BAMP with

the homogeneous Gaussian matrix pushes the perfect sampling ratio down to 0.49. Similar

to the sparse signal with a FOPT, there is also a sudden drop of MSE at the perfect recovery

ratio. Thus we can expect a similar fixed point change as in Fig. 4.6.(b) when the two block

matrix is applied. Unsurprisingly, the two block matrix manages to largely reduce the perfect
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Figure 4.10: The SD function for the dense signal with different measurement matrix config-

uration. With γ1 = 0.6, J2 = 10−5, the two block matrix is able to move the

perfect reconstruction sampling ratio from 0.49 to 0.29.

recovery to γc = 0.29. The combination of the two block matrix and TAP-AMP demonstrates a

dramatic improvement over both convex optimization and BAMP with homogeneous Gaussian

measurement matrix. Moreover, the reconstruction performance can be further improved by

convexifying the SD function of the two block matrix. Monte Carlo results also confirm the

1-D SE prediction.

4.6 Summary

In the chapter, a novel measurement matrix, the modulated matrix, is introduced. With the

simple 1-D dynamics and the flexible rescaling matrix, it provides us a whole range of mea-

surement matrix design. As a special case, we understand the advantage and limitation of the

two block matrix based on the analysis of the first order phase transition. Extensive simulations

with sparse, compressible and dense signals demonstrate that with the two block matrix, better

recovery quality is achievable in the least squared sense. For the sparse signal, the two block

matrix does not push the perfect reconstruction sampling ratio down to the sparsity level but

close. Part of the reason is that the two block design is still crude. A further research direction
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involves examination of multi-block modulated matrices and parameter optimization. Different

rescaling distributions should also be considered. As discussed in [53], the additive noise level

has a significant impact on the reconstruction performance for the seeded matrices. As a relative

measurement matrix design, we believe the modulated matrix is also likely to be sensitive to

the noise level. Understanding the relationship between the noise sensitivity of the modulated

matrices in comparison with the seeded matrices is the topic worthy of further investigation.
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Chapter 5

Bayesian optimal reconstruction

without priors: parametric

SURE-AMP algorithm

The generic AMP algorithm reviewed in Chapter 2 is revisited here to present some motivations

for the enhancement of the algorithm. As we can see from the previous chapters, both theo-

retical analysis and empirical evidence confirm that the AMP algorithm can be interpreted as

recursively solving a signal denoising problem: at each AMP iteration, one observes a Gaussian

noise perturbed original signal. Retrieving the signal amounts to a successive noise cancella-

tion until the noise variance decreases to a satisfactory level. In this chapter we incorporate the

SURE based parametric denoiser with the AMP framework and propose the novel parametric

SURE-AMP algorithm. At each parametric SURE-AMP iteration, the denoiser is adaptively

optimized within the parametric class by minimizing SURE, which depends purely on the noisy

observation. In this manner, the parametric SURE-AMP is guaranteed with the best-in-class

recovery and convergence rate. If the parameter family includes the family of the MMSE esti-

mators, we are able to achieve the BAMP performance without knowing the signal prior. In the

chapter, we resort to the linear parameterization of the SURE based denoiser and propose three

different kernel families as the base functions. Numerical simulations with the BG, k-dense

and Student’s-t signals demonstrate that the parametric SURE-AMP does not only achieve the

state-of-the-art recovery but also runs more than 20 times faster than the EM-GM-GAMP algo-

rithm.
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Bayesian optimal reconstruction without priors: parametric SURE-AMP algorithm

5.1 Introduction

Recall that the generic AMP algorithm for the CS system (2.1) takes the simple iterative form:

rt = x̂t +ΦT zt (5.1)

x̂t+1 = ηt(r
t) (5.2)

zt+1 = y −Φx̂t+1 +
1

γ
zt < η′t(r

t) > (5.3)

Initialized with x̂0 = 0 and z0 = y, AMP iteratively produces an estimation of the original sig-

nal x̂t with a scalar non-linear function ηt(·), which is applied elementwise to rt. Throughout

this chapter we assume the elements of Φ are drawn i.i.d from N (Φi,j, 0,m
−1). As discussed

in Chapter 2, the key feature of AMP is the Onsager reaction term 1
γz

t < η′t(r
t) >, which

guaranteed the Gaussian behaviour of the AMP residual rt − xt at each iteration. We display

the Gaussianity of the residual for AMP iterations again in Fig. 5.1. The QQ plot of the em-

pirical pdf of rt − x against the normal distribution at various iteration conform its Gaussian

behaviour. In other words, we approximately have rt ≈ x +
√
τtz

t, zi ∈ N (zi; 0, 1), where

τt is the effective noise variance [14, 72] at each AMP iteration. Then the non-linearity ηt(·)
essentially acts as a denoising function to remove the Gaussian noise

√
τtz

t.
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Figure 5.1: QQ plots tracking the effective noise of the AMP algorithm under various iter-

ations while reconstruction a 40% sampled Bernoulli-Gaussian data with pdf in

(5.35). The residual of AMP remains Gaussian because of the Onsager reaction

term. Decreasing slope as the iteration increasing indicates the decreasing stan-

dard deviation.
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Treating AMP reconstruction as an iterative denoising procedure, we can reconsider the ℓ1-

AMP and BAMP algorithm introduced in Chapter 2 from the signal denoising prospective. In

the original AMP paper [14, 118], the denoising is achieved with the simple soft thresholding

function. Despite the fact that the noisy vector rt has multiple i.i.d. distributed elements, the

ℓ1-AMP treats the denoising as a 1-D problem. However, since the true signal pdf is visible in

the noisy estimate in the large system limit and the effective noise variance is estimated at each

AMP iteration, we should be able to exploit such information to achieve better recovery than

the ℓ1-AMP. The BAMP algorithm deploys the MMSE estimator for denoising and achieves the

best reconstruction in the least square sense. However, the requirement of p(x) to be known in

advance can be restrictive in practice. The advantages and limitation of BAMP also motive us

to find an alternative approach which is able to fill the gap between the ℓ1-AMP and the BAMP,

or even performs as well as BAMP without knowing the signal distribution a priori.

Main contributions

In the large system limit, the true prior for x at each AMP iteration is essentially embedded in

the data rt, which is the convolution of the original signal with the Gaussian noise kernel. To

improve the recovery, we could either estimate the pdf and then deduce the associated MMSE

estimator, or directly optimize the denoising. In this chapter, we adopt the latter approach and

propose the parametric SURE-AMP algorithm. Realizing the recursive denoising nature of

the AMP iteration, we introduce a class of parameterized denoising functions to the generic

AMP framework. At each iteration, the denoiser with the least MSE is selected within the

class by optimizing the free parameters. In this manner, the parametric SURE-AMP algorithm

adaptively chooses the best-in-class denoiser and achieves the best possible denoising within

the parametric family at each iteration. When the denoiser class contains all possible MMSE

estimators for a specific signal, the parametric SURE-AMP is expected to achieve the BAMP

recovery without knowing the signal prior in the large system limit.

The key feature of the parametric SURE-AMP algorithm is that the denoiser optimization does

not require prior knowledge of p(x). To make this possible, we resort to the SURE based

parametric least squarer denoiser construction. There exists a rich literature on signal denoising

with SURE [119–125]. Since SURE is the unbiased estimate of MSE, the pursuit of the best

denoiser with the least MSE is nothing more than minimizing the corresponding SURE. More

importantly, for a Gaussian noise corrupted signal, the calculation of SURE depends purely on

the sampled average of the noisy data [126]. By leveraging the large system limit, the best-in-
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class denoiser can be determined without the prior information [125].

The success of the parametric SURE-AMP relies heavily on the parameterization of the de-

noiser class. The number of parameters as well as the linearity determine the optimization

complexity. In this chapter, we restrict ourselves to the linear combination of non-linear kernel

functions as the denoiser structure. The non-linear parameters of the kernel functions are set

to have a fixed ratio with the effective noise variance. The linear weights for the kernels are

optimized by solving a linear system of equations. We presented two types of piecewise linear

kernel family and one exponential kernel family for both sparse and heavy-tailed signal recon-

struction. The numerical simulation with the BG, k-dense and Student’s-t signals show that

with a limited number of kernel functions, we are able to adaptively capture the evolving shape

of the MMSE estimator and achieves the state-of-art performance in the sense of reconstruction

quality and computational complexity.

Related literature

The pre-requisite of the signal prior to implement BAMP has been noticed by several research

groups. To tackle this limitation, the prior estimation step was proposed to be incorporated

within the AMP framework. The corresponding EM-GM-GAMP has been summarized in

Chapter 2, page 33. The key difference between the EM-GM-GAMP and the parametric SURE-

AMP is that fitting the signal prior is an indirect adaptation for minimizing the reconstruction

MSE while we directly tackle the problem by adaptively selecting the best-in-class denoiser

with the least MSE. When the signal distribution can be well approximated by a GM model, fit-

ting the prior and minimizing MSE lead to subtle difference. However, for distributions that are

difficult to be approximated as the finite sum of Gaussians, as we demonstrate later in section

5.4, the parametric SURE-AMP algorithm provides a better solution. In terms of computational

complexity, the parametric SURE-AMP significantly outperforms the EM-GM-GAMP with the

linear parameterization of the denoisers.

In [73], the authors generalized the EM step with an adaptive prior selection function. The

proposed adaptive GAMP algorithm includes the EM-GM-GAMP as a special case. Although

the general form of the prior adaptation also enables other learning methods, i.e. ML, to be

deployed in the AMP framework, in principle the adaptive GAMP still focuses on fitting the

signal prior rather than directly minimizing the reconstruction MSE.

Another relevant work is the denoising-based AMP (D-AMP) algorithm [51]. The intrinsic
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denoising problem within AMP iterations has also been noticed by the authors. The intuition

for D-AMP is to take advantage of the rich existing literature on signal denoising to enhance the

AMP algorithm. In the paper, the existing image denoising algorithm BM3D has be utilized

as the denoiser in D-AMP and produced the state-of-art recovery for natural images. The

authors essentially share the same understanding as us for the AMP algorithm and point out the

possibility of using the SURE based estimator for denoising.

Structure of the Chapter

The remainder of the chapter is organized as follows: The parametric SURE-AMP algorithm is

presented in Section 5.2. Section 5.3 is devoted to introducing the construction of the SURE-

based parametric denoiser class. Three types of kernel families as well as the parameter opti-

mization scheme are discussed herein. The simulation results are summarized in Section 5.4. It

compares both the reconstruction performance and the computational complexity of the para-

metric SURE-AMP algorithm with other CS algorithms. We conclude the chapter in Section

5.5.

5.2 Parametric SURE-AMP Framework

5.2.1 Parametric SURE-AMP algorithm

Algorithm 7 : Parametric SURE-AMP

1: initialization: x̂0 = 0, z0 = y, c0 =< ‖z0‖2 >
2: for t = 0, 1, 2, · · · do

3: rt = x̂t +ΦTzt

4: θt = Ht(r
t, ct)

5: x̂t+1 = ft(r
t, ct|θt)

6: νt+1 =< f ′t(r
t, ct|θt) >

7: zt+1 = y−Φx̂t+1 + 1
γ ν

t+1zt

8: ct+1 =< ‖zt+1‖2 >
9: end for

We begin with a description of the parametric SURE-AMP algorithm, which extends the generic

AMP iteration defined in (5.1), (5.2) and (5.3) with an adaptive signal denoising module. The

implementation of the parametric SURE-AMP algorithm is summarized in Algorithm 7.

Most of the entities have the same interpretation as in AMP: rt is the noisy version of the

original signal, which can be effectively approximated as rt ≈ x +
√
ctzt, zi ∼ N (zi; 0, 1).
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Here ct is the estimation of the effective noise variance. A new signal estimate x̂t+1 is obtained

by denoising rt at each iteration. The key modification to AMP is the introduction of the

parametric denoising function ft(·|θt) and the parameter selection function Ht(·). Consider a

class of denoising functions F(·|Q) characterized by the parameter set Q. At each iteration,

the best-in-class denoiser ft(·|θt) ∈ F(·|Q) is chosen by selecting the parameter θt via the

parameter selection function Ht(·). We design Ht(·) as a function of the noisy data rt and the

effective noise variance ct to close the parametric SURE-AMP iteration.

The next question is what should be the parameter selection criteria for the parametric SURE-

AMP algorithm. Our fundamental reconstruction goal is to obtain a signal estimate x̂ with the

MMSE. Theoretically speaking, we want to jointly select the denoisers across all iterations.

However, solving the joint optimization is not trivial. Based on the state evolution analysis in

the subsequent section, we propose to break the joint selection into separate independent steps.

Specifically, the parameter vector θt at iteration t is selected by solving

θt = argmin
θ

E[(x̂t+1 − x)2]

= argmin
θ

E{[ft(rt, ct|θ)− x]2}
(5.4)

which achieves the MMSE among the parametric family. As the signal estimate x̂t is opti-

mized within the denoiser class at each step, one would expect to obtain a ”global” optimal

reconstruction as the algorithm converges.

5.2.2 SURE based denoiser selection

The Stein’s unbiased estimate is an unbiased estimate for MSE. It becomes more accurate as

more data is available, which is particularly apt for AMP since it is designed with the large

system limit in mind. It has been widely used as the surrogate for the MSE to tune the free

parameters of estimation functions for signal denoising. In [126], it has been proved that for

the Gaussian noise corrupted signal, the calculation of SURE can be performed entirely in terms

of the noisy observation. This property is summarized in the following theorem.

Theorem 5. [126] Let x be the signal of interest and r = x +
√
cz be noisy observation

with z ∼ N (z; 0, 1). Without loss of generality, we assume the denoising function f(r, c|θ) is

parameterized by θ and has the form

f(r, c|θ) = r + g(r, c|θ) (5.5)
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The denoised signal is obtained through x̂ = f(r, c|θ). Additionally, we assume as γ goes to

±∞, p(γ) dies off faster than g(γ, c|θ) grows. That is, p(γ)g(γ, c|θ)|∞−∞ = 0. Then SURE

is defined as the expected value over the noisy data alone and is the unbiased estimate of the

MSE. That is,

Ex̂,x{(x̂− x)2} = Er,x{[f(r, c|θ)− x]2}

= c+ Er{g2(r, c|θ) + 2cg′(r, c|θ)}
(5.6)

Proof. Given the parametric form of the estimator f(·) we have

Er,x{(f(r, c|θ)− x)2} (5.7)

=Er,x{(r + g(r, c|θ)− x)2} (5.8)

=Er{g2(r, c|θ)}+ 2Er,x{g(r, c|θ)(r − x)}+ Er,x{(r − xo)2} (5.9)

=Er{g2(r, c|θ)}+ 2Er,x{g(r, c|θ)(r − x)}+ c (5.10)

The middle term in (5.10) can be further written as

Er,x{g(r, c|θ)(r − x)} =Er{g(r, c|θ)[r − Ex|r(x|r)]}
(a)
=Er{g(r, c|θ)[r − r − c

p′(r)
p(r)

]}

=− cE(g(r, c|θ)p
′(r)
p(r)

)

=− c
∫

g(r, c|θ)p
′(r)
p(r)

)p(r)dr

=− c
∫

g(r, c|θ)p′(r)dr
(b)
=c

∫

g′(r, c|θ)p(r)dr

=cEr{g′(r, c|θ)}

(5.11)

where we use the following observation

• (a) The MMSE estimator for the Gaussian noise corrupted data can be written entirely in

terms of the measurement density [127]

Ex|r(x|r) = r + c
p′(r)
p(r)

(5.12)

The proof is in Appendix C.
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• (b) Apply integration by parts and the assumption p(r)g(r, c|θ)|∞−∞ = 0

Combine (5.11) with (5.10) completes the proof.

According to Theorem 5, the parameter selection for the parametric SURE-AMP algorithm can

thus be conducted via the minimization of SURE. By the law of large numbers, the expectation

in (5.6) can be approximated as the average over multiple realizations of the noisy data r. For

parametric SURE-AMP, we naturally have a vector rt at each iteration. Since the term c will

disappear in the minimization of (5.6), the corresponding parameter selection function is thus

defined as

θt = Ht(r
t, ct)

= argmin
θ

< g2(rt, ct|θ) + 2ctg′(rt, ct|θ) >
(5.13)

It fundamentally eliminates the dependency on the original signal for selecting the denoisers

with the minimum MSE. Applying (5.13) into line 4 of Algorithm 7 we have a complete para-

metric SURE-AMP algorithm.

5.2.3 State evolution

As reviewed in Chapter 2, the asymptotic behaviour of the AMP algorithm can be accurately

characterized by the SE formalism in the large system limit. As an extension of the AMP algo-

rithm, one expects the parametric SURE-AMP would also follow the SE analysis incorporating

the denoising adaptation. We hereby formally summarize our finding:

Finding 1. Starting with τ0 = ‖y‖2
m , the state evolution equation for the parametric SURE-

AMP algorithm has the following iterative form

θ̄
t
=Ht(x+

√
τ tz, τ t) (5.14)

τ t+1 =σ2w +
1

γ
E{τ tf ′t(x+

√
τ tz, τ t|θ̄t

)} (5.15)

where x ∼ p(x) has the same distribution as the original signal, z ∼ N (z; 0, 1) is the white

Gaussian noise. In the large system limit, i.e. m→∞, n →∞ with γ = m/n fixed, the MSE

of parametric SURE-AMP estimate at iteration t can be predicted as

E{(x− x̂t)2} = σ2w +
1

γ
E{

[

x− ft(x+
√
τ tz, τ t|θ̄t

)
]2
} (5.16)
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Figure 5.2: The actual MSE for the noiseless Bernoulli-Gaussian data reconstruction at each

parametric SURE-AMP iteration versus the state evolution prediction. The signal

is generated i.i.d. according to eq. (5.35). The first piecewise linear kernel fam-

ily is utilized within the parametric SURE-AMP algorithm, which will be discuss

in section 5.3.1.1. The reconstruction MSE is an average over 100 Monte Carlo

realizations.

We use the term Finding here to emphasize the lack of rigorous proof. However, the empirical

simulation supports our finding. In Fig. 5.2, the state evolution prediction for the noiseless

BG signal reconstruction with the parametric SURE-AMP algorithm is compared against the

Monte Carlo average at multiple iterations. It is clear from the figure that at various sampling

ratios, SE accurately predicts the MSE of the parametric SURE-AMP reconstruction.

Finding 1 coincides with the SE analysis for the adaptive GAMP algorithm in [73] when the

output channel is assumed to be Gaussian white noise and Ht(·) is the prior fitting function.

The authors have proved that when Ht(·) has the weak pseudo-Lipschitz continuous property

and the denoising function ft(·|θt) is Lipschitz continuous, the adaptive GAMP can be asymp-

tomatically characterized by the corresponding state evolution equations in the large system

limit. Unfortunately, their analysis does not apply directly to the parametric SURE-AMP al-

gorithm since our Ht(·) and ft(·|θt) do not satisfy the required pseudo-Lipschitz continuous

properties. The theoretical proof of Finding 1 is beyond the scope of this work and remains an

open question for further study.
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Figure 5.3: Kernel families used for linear parameterization of the SURE based denoiser: (a)

the first piecewise linear kernel family (b) The second piecewise linear kernel fam-

ily. (c) The exponential kernel family.

5.3 Construction of the Parametric Denoiser

The reconstruction quality of the parametric SURE-AMP algorithm primarily counts on the

construction of the adaptive denoiser class and the tuning of free parameters. Inspired by the

SURE-LET algorithm for image denoising in [124], we choose to form the denoiser ft(·|θt) as

a weighted sum of some kernel functions to give an adaptive non-linearity. To be specific,

ft(r
t, ct|θt) =

k∑

i=1

at,ift,i(r
t|ϑt,i(c

t)) (5.17)

where ft,i(r
t|ϑt,i(c

t)) is the non-linear kernel function with ϑt,i(c
t) summarizes all non-linear

parameters that depend on the effective noise variance ct. The linear weight for the kernel

function is represented with at,i. At each parametric SURE-AMP iteration, we need to select

the parameter set θt = [at,i,ϑt,i]
k
i=1 to obtain the best denoising function in the class. For the

rest of this section, we drop the iteration index t to simplify the notation.

This parameterization method for denoisers has been used before. In [125], the “bump” kernel

family is designed to approximate the MMSE estimator of the generalized Gaussian signal.

In [122–124], the exponential kernels are specifically designed for natural image denoising in

the transformed domain. In this section, we start by presenting three types of kernel families

for both sparse and heavy-tailed signal denoising. Then we will explain the parameter selection

rule for both linear and non-linear parameters of the kernels. Finally the constructed denoiser

is applied to three different signal priors to validate the design.
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5.3.1 Kernel families

5.3.1.1 First piecewise linear kernel family

The underlying principle for the kernel function design is to keep it simple and flexible at the

same time. One way to do this is to use the piecewise linear function as the kernel format and

proposed the first piecewise linear kernel family which consists three kernel functions:

f1(r|α1) =







0 r ≤ −2α1, r ≥ 2α1

− r
α1
− 2 −2α1 < r < −α1

r
α1

−α1 < r ≤ α1

− r
α1

+ 2 α1 < r < 2α1

(5.18)

f2(r|α1, α2) =







−1 r ≤ −α2

r+α1
α2−α1

−α2 < r < −α1

0 −α1 ≤ r ≤ α1

r−α1
α2−α1

α1 < r < α2

1 r ≥ α2

(5.19)

f3(r|α2) =







r + α2 r ≤ −α2

0 −α2 < r < α2

r − α2 r ≥ α2

(5.20)

where α1 > 0 and α2 > 0 are hinge points closely related to the effective noise level c. The

three kernels are plotted in Fig. 5.3(a). Eq. (5.20) is the soft thresholding function to promote

sparsity. It sets all vector elements whose magnitude smaller than α2 to zero and keeps the linear

behaviour of large elements. The linear part with positive gradient in (5.18) aims to soften the

“brutal” correction of the soft thresholding function on the small elements. It is designed for

removing the Gaussian perturbation for small but non-zero elements of compressible signals.

Eq. (5.19) is constructed to add a denoising transition between the small and large elements

to increase the denoiser flexibility. With proper rescaling of the three kernels and appropriate

setting for the hinge points, we expect the denoiser class constructed with the first piecewise

linear kernels to be flexible and accurate enough to capture the evolving shape of the MMSE

estimators for various CS signals at different noise levels.
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5.3.1.2 Second piecewise linear kernel family

As we presented in Chapter 2, the k-dense model is a non-conventional CS prior. In [14], the

soft thresholding function with the adaptive thresholding level is suggested as a generic AMP

algorithm for such signals. For the k-dense signals, we propose the second piecewise linear

kernel functions to construct the denoiser.

f1(r|β1) =







−1 r ≤ −β1
r
β1

−β1 < r < β1

1 r ≥ β1

(5.21)

f2(r|β1, β2) =







−1 r ≤ −β2
r+β1

β2−β1
−β2 < r < −β1

0 −β1 ≤ r ≤ β1
r−β1

β2−β1
β1 < r < β2

1 r ≥ β2

(5.22)

Similar to the first piecewise linear kernel family, the hinge points β1 and β2 depend on the

effective Gaussian noise level. With proper scaling of the second piecewise linear kernels, the

constructed denoiser is able to mimic the MMSE estimator behaviour for the k-dense signal

under different noise levels.

5.3.1.3 Exponential kernel family

For the third type of kernel family, we resort to more sophisticated exponential functions.

f1(r) = r (5.23)

f2(r|T ) = re−
r2

2T2 (5.24)

This kernel family is motivated from the derivatives of Gaussians (DOG) and has been used

for natural image denoising in the transformed domain in [122–124]. The virtue of DOGs is

that they decay rapidly and ensure a linear behaviour close to the identity for large elements

[123]. It has been demonstrated that with kernels defined in (5.23) and (5.24), the constructed

denoiser delivers the near-optimal performance regarding both quality and computational cost.

The parameter T in (5.24) has the same functionality as the hinge points for the piecewise linear
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kernels. It controls the transition between small and large elements and is linked tightly with the

effective noise variance. Given the fact that most natural images are compressible in the wavelet

or DCT domain, we believe that the exponential kernel family used for image denoising can

also be applied in the parametric SURE-AMP algorithm to recovery compressible signals.

One thing worth noting is that the proposed kernel families are not designed to fit any specific

signal prior, but are motivated from the general sparse or compressible pattern. Thus they

are, to some extent, suitable for many CS signal reconstructions. It is also straightforward

to construct new kernel functions to increase the sophistication of the constructed denoiser.

For the exponential kernel family, high order DOGs can be used. For the piecewise linear

kernel families, more functions with various hinge points could be added. In our work, we

find that with just three kernel functions, the constructed denoiser is able to deliver a near

Bayesian optimal performance. Moreover, we do not necessarily require the denoiser class to

contain the true MMSE estimator to achieve good reconstruction performance. As proved in

[128], denoisers constructed by the piecewise linear kernels are not eligible for the true MMSE

estimator since they are not in C∞(Rn). Nevertheless, they exhibit excellent performance for

the CS signal denoising and integrate well with the parametric SURE-AMP reconstruction as

we will see later. When the parametric denoiser class includes all possible MMSE estimators

for a specific prior, the parametric SURE-AMP algorithm is guaranteed to obtain the BAMP

recovery in the large system limit.

5.3.2 Non-linear parameter tuning for kernel functions

To cope with the developing noise level during the parametric SURE-AMP iteration, the afore-

mentioned kernel functions all have some non-linear dependency, i.e. the hinge point and the

variance for the exponential kernel. While the non-linearity is necessary, finding the global op-

timizer for the non-linear parameter can be computationally expensive. To mitigate this prob-

lem, we propose a fixed linear relationship between the non-linear parameters and the effective

noise level. Since at each parametric SURE-AMP iteration we obtain an estimated effective

noise variance ct, the non-linear parameters are consequently selected. In this section, we will

explain the non-linear parameter tuning for all three kernel families.
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5.3.2.1 First piecewise linear kernel family

In [82], the authors discussed the thresholding choice for iterative reconstruction algorithms

for compressed sensing. For iterative soft thresholding, they proposed to set the threshold as

a fixed multiple of the standard derivation of the effective noise variance. The rule of thumb

for the multiple is between 2 and 4. This threshold choice has been tested with the StOMP

algorithm [36] and the underlying rationale has been explained therein. For the first piecewise

linear kernel family which has the soft thresholding element, we take their recommendation

and set the hinge points as

α1 = 2
√
c, α2 = 4

√
c (5.25)

5.3.2.2 Second piecewise linear kernel family

In [129], a novel iterative dense recovery (IDR) algorithm is proposed to replace the MMSE es-

timator for the k-dense signal with an adaptive denoiser within the AMP iteration. The essence

of the IDR is the employment of a piecewise linear function with one flexible hinge point to

approximate the MMSE estimator class. Inspired by the selection of hinge point in [129], we

choose to fix the linear ratio for the second piecewise linear kernels as following

β1 =
1

1 + 6
√
c
, β2 =

1

1 + 2
√
c

(5.26)

The ratio in (5.26) is based on the empirical denoising experiments with k-dense signals under

different noise levels. Although not very critical, we find it to be a good choice for implement-

ing the parametric SURE-AMP algorithm to recover the k-dense signal.

5.3.2.3 Exponential kernel family

For the non-linear parameter of the exponential kernel, we adopt the recommendation in [123]

and set T as

T = 6
√
c (5.27)

It has been demonstrated through extensive simulations in [123] that the image denoising qual-

ity is not very sensitive to the ratio between T and
√
c. Eq. (5.27) is shown to be a practical

setting for removing various noise perturbation irrespective of the images. The denoising and

reconstruction simulations in the subsequent sections will also confirm that it is a plausible
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choice for both sparse and heavy-tailed signals.

5.3.3 Linear parameter optimization

With the non-linear parameters fixed with the effective noise variance, the only parameters left

to be optimized are the kernel weights ai. Denote ε as the MSE of the denoised signal using

the parametric function f(r, c|θ). With Theorem 5, we have

ε = c+ < g2(r, c|θ) + 2cg′(r, c|θ) > (5.28)

where

g(r, c|θ) =f(r, c|θ)− r

=

k∑

i=1

aifi(r|ϑi(c)) − r
(5.29)

Optimizing the weights ai to achieve the minimum MSE requires differentiation of ε over ai

and solving for all i ∈ (1, · · · , k).

dε

dai
=< 2g(r, c|θ) d

dai
g(r, c|θ) + 2c

d

dai
g′(r|θ) >= 0

⇐⇒
k∑

j=1

< ajfj(r|ϑj(c))fi(r|ϑi(c)) >= −c < f ′i(r|ϑi(c)) >
(5.30)

All equations can be summarized in the following matrix form








< f21 > · · · < f1fk >
...

. . .
...

< fkf1 > · · · < f2k >








︸ ︷︷ ︸

F








a1
...

ak








︸ ︷︷ ︸

A

= −c








< f ′1 >
...

< f ′k >








︸ ︷︷ ︸

D

(5.31)

The linear system can then be solve by

A = −cF−1D (5.32)

With only two or three basis functions, F is trivial to invert. In summary, the linear kernel

weights can be easily optimized by solving a linear system of equations. We will demonstrate

later that this linear parameterization is very advantageous in terms of the computational com-
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Figure 5.4: MMSE estimator and parametric SURE for the noisy Bernoulli-Gaussian data.

The noise variance c is 0.1. The reconstruction error for the MMSE estimator, the

SURE estimator with the first piecewise linear kernel and the SURE estimator with

the exponential kernel are 0.020615, 0.020788 and 0.022047, respectively.

plexity. This aforementioned approach is in spirit similar to the SURE-LET algorithm in [124],

only that the optimization is done recursively at each iteration for the parametric SURE-AMP

algorithm.

5.3.4 Denoising performance

To validate our proposed kernel families and the parameter optimization scheme, we compare

the optimized parametric denoisers alongside the MMSE estimator for BG and k-dense signals.

In Fig. 5.4 we can see that with just three kernel functions from the first piecewise linear

kernel family and the suggested parameter optimization in (5.25), the constructed denoiser

achieves an excellent agreement with the MMSE estimator for the noisy BG data. The MSE

difference between the denoised signal using the SURE based parametric denoiser and the

Bayesian optimal denoising is negligible. The exponential kernel family also does a good job

at capturing the key structure of the MMSE estimator, especially in the vicinity of small values

where most of the data concentrates.
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Figure 5.5: MMSE estimator and parametric SURE for the noisy k-dense data. The noise

variance c is 0.1. The reconstruction error for the MMSE estimator, the SURE with

the second piecewise linear kernel, the SURE estimator with the first piecewise

linear kernel and the IDR denoiser are 0.0243 and 0.0248, 0.0251 and 0.0315
respectively.

In Fig. 5.5 we compare the MMSE estimator, the SURE based parametric denoisers with the

proposed two piecewise linear kernel families, and the IDR estimator for the k-dense signal

denoising. As demonstrated in the plot, the denoiser constructed with the second piecewise

linear kernel fits the MMSE estimator better because the kernels are tailored to the k-dense

structure. The first piecewise linear kernel based denoiser performs slightly worse because of

the unbounded f3(·) in eq. (5.20). The IDR denoiser is a piecewise linear function with just

one hinge point. Thus it misses the subtle transition between the small and large elements and

performs the worst among the three.

To check the denoising power of the proposed kernel families for heavy tailed signals, we

present the averaged MSE for the Student’s-t signal denoising in Table 5.1. Since there is not

an explicit form for the MMSE estimator for the Student’s-t prior, we compare the SURE based

parametric denoiser with the GMD model based denoiser, which is the MMSE estimator for the

4-state GMD used to approximate the Student’s-t distribution. It essentially is the key denoisng

approach implemented by the EM-GM-GAMP algorithm. Each figure reported in Table 5.1 is

an average over 100 realizations with the signal length being 5000. The SURE based denoiser
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Effective noise level c 0.01 0.1 1 5 10 50 100

MMSE estimator for 4-state GM 9.9655e-3 0.0958 0.7285 2.1788 3.2088 6.5801 8.6543

Exponential kernel denoiser 9.9948e-3 0.0967 0.7200 2.1504 3.1606 6.9979 9.6347

Piecewise linear kernel denoiser 9.9383e − 3 0.0955 0.7191 2.1560 3.1764 6.6554 8.6245

Table 5.1: Denoising comparison for noisy Student’s-t signal with various denoisers

with the exponential kernel and the first piecewise linear kernel both deliver similar denoising

performance as the MMSE estimator for the 4-state GMD approximation, if not better. This

implies that the corresponding parametric SURE-AMP algorithm should be competitive with

the EM-GM-GAMP for the Student’s-t signal reconstruction.

5.4 Numerical Results

In this section, the reconstruction performance and computational complexity of the parametric

SURE-AMP algorithm, using the three types of kernel families introduced in Section 5.3, are

compared with other CS reconstruction algorithms. In particular, we experiment with the BG,

k-dense and Student’s-t signals to demonstrate the reconstruction power and efficiency of the

parametric SURE-AMP algorithm.

5.4.1 Noisy signal recovery

We first present the reconstruction quality for noisy signal recovery. For all simulations, we

fixed the signal dimension to n = 10000. Each numerical point in the plots is an average

of 100 Monte Carlo realizations. To have a fair comparison, the noise level is defined in the

measurement domain and quantified as

SNRy = 10 log10
‖Φx‖22
‖ξ‖22

(5.33)

The reconstruction quality is evaluated in terms of the signal to noise ratio in the signal domain,

defined as

SNRx = 10 log10
‖x‖22
‖x− x̂‖22

(5.34)

The elements of the measurement matrix Φ are drawn i.i.d. from N (Φij; 0,m
−1) and the

matrix columns are normalized to one. For all reconstruction algorithms, the convergence

tolerance is set as 10−6. The maximum iteration number is set as 100.
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5.4.1.1 Bernoulli-Gaussian prior

The BG data for the simulation are draw i.i.d. from

p(x) = 0.1N (x; 0, 1) + 0.9δ(x) (5.35)

We choose the noise level to be SNRy = 25 dB. For comparison, we show the performance

of the parametric SURE-AMP algorithm with both first piecewise linear kernel and the expo-

nential kernel family, the EM-BG-GAMP algorithm 1, the ℓ1-AMP algorithm 2 and the genie

BAMP 3 algorithm. The reconstruction quality SNRx for various sampling ratios are illus-

trated in Fig. 5.6.

It is obvious that the parametric SURE-AMP algorithm with the first piecewise linear kernel

exhibits the near-optimal construction: for γ ≥ 0.24, the difference between the parametric

SURE-AMP algorithm which is blind to the signal prior and the genie BAMP algorithm is

negligible. It also adequately demonstrates that SURE is a perfect surrogate for the MSE mea-

sure and the intrinsic signal property can be effectively exploited by the SURE-based denoiser.

Moreover, it shows again that the proposed hinge point selection strategy in (5.25) works very

well regardless of the effective noise level. Compared with the EM-BG-GAMP algorithm,

it delivers roughly 2 dB better recovery for 0.24 ≤ γ ≤ 0.3. This is probably because the

EM-BG-GAMP gets stuck at local minima for smaller sampling ratio. For γ > 0.36, EM-BG-

GAMP also delivers reconstruction performance that is very close to the genie BAMP result. It

is because the kernels used in EM-BG-GAMP to fit the data are essentially the prior for gen-

erating the data. For the parametric SURE-AMP algorithm with the exponential kernels, it is

roughly 1 dB worse than its counterpart with the first piecewise linear kernel and the Bayesian

optimal reconstruction for γ ≥ 0.26. This comes as no surprise as we have already seen in

Fig. 5.4 that the denoiser based on exponential kernels doesn’t capture the MMSE estimator

structure for data with large magnitude. Nevertheless, it still demonstrates significant improve-

ment over the ℓ1-AMP reconstruction for which no statistical property of the original signal is

exploited.

1A special case of the EM-GM-GAMP algorithm which approximates the signal prior with a mix-

ture of Bernoulli and Gaussian distributions. We use the implementation from http://www2.ece.ohio-

state.edu/ vilaj/EMGMAMP/EMGMAMP.html.
2We use the implementation from http://people.epfl.ch/ulugbek.kamilov.
3The true signal prior p(xo) is assumed known for the BAMP reconstruction. It is served as the upper bound for

SNRx.
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Figure 5.6: SNRx versus sampling ratio for CS recovery of noisy Bernoulli-Gaussian data.

5.4.1.2 k-Dense signal

In [129], extensive simulations have been conducted to compare the IDR algorithm perfor-

mance with the state-of-art algorithms for the noisy k-dense signal reconstruction. Thus in

this chapter, we use the same setting and mainly compare the parametric SURE-AMP using

two piecewise linear kernel families with the IDR, EM-GM-GAMP and the genie BAMP algo-

rithm. The k-dense signal is generated i.i.d. from

pKD(x) = 0.45δ(x + 1) + 0.45δ(x − 1) + 0.1U(−1, 1) (5.36)

The results are demonstrated in Fig. 5.7. The noise level is SNRy = 28 as in [129]. For the

EM-GM-GAMP algorithm we found that as the number of Gaussian components increase, the

reconstruction quality gets better. Thus we used 20-state GMD to fit the k-dense prior, which is

the largest number allowed for the EM-GM-GAMP MATLAB package. The parametric SURE-

AMP with the second piecewise linear kernel is only slightly worse than the genie BAMP re-

construction. There is roughly 0.5 dB difference between the two for γ > 0.5. Comparing to

the IDR reconstruction, there is a consistent 2 dB improvement for γ ≥ 0.55. This reconstruc-

tion quality gain is predictable as we have already demonstrated in the denoising section in Fig.

5.5. It is also reasonable that the first piecewise linear kernel based parametric SURE-AMP

does not perform as well as IDR and the second piecewise linear kernel. It is in general 2 dB
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Figure 5.7: SNRx versus sampling ratio for CS recovery of noisy k-dense data.

worse than the IDR and 5 dB worse than the genie BAMP bench mark. This is mainly because

the first piecewise linear kernel fails to correct the large coefficients to be ±1. However, it still

greatly outperforms the EM-GM-GAMP algorithm. The failure of the EM-GM-GAMP in this

case is probably because the algorithm gets stuck at some local minima when fitting the prior.

This example confirms the advantageous motivation for the parametric SURE-AMP algorithm:

minimizing the MSE is the direct approach to obtain the best reconstruction.

5.4.1.3 Student-t prior

To investigate the parametric SURE-AMP performance for signals that are not strictly sparse,

we consider the Student’s-t prior as a heavily-tailed distribution example. The signal is draw

i.i.d. according to the following distribution.

pT(xo) =
Γ((q + 1)/2)√
qπΓ(q/2)

(1 + x2o)
−(q+1)/2 (5.37)

where q controls the distribution shape. It has been demonstrated in [8] that the Student’s-t

distribution is an excellent model to capture the statistical behaviour of the DCT coefficients

for natural images. In the simulation, we set q = 1.67, SNRy = 25 dB as in [54]. The

parametric SURE-AMP using both exponential and the first piecewise linear kernel family are
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Figure 5.8: SNRx versus sampling ratio for CS recovery of noisy student-t data.

compared with the EM-GM-GAMP algorithm and LASSO via SPGL14 [130]. As we can see

from Fig. 5.8, the parametric SURE-AMP and EM-GM-GAMP have the similar reconstruction

performance. This can be expected from the denoising comparison in the previous section.

None of them achieves significant improvement over the ℓ1-minimization approach though.

This is probably because the signal is not very compressible [8]. The parametric SURE-AMP

and EM-GM-GAMP algorithm are likely to be already near the Bayesian optimal performance.

5.4.2 Runtime comparison

The parametric SURE-AMP algorithm with the simple kernel functions and linear parameteri-

zation does not only achieve the near optimal reconstruction, more importantly, it significantly

reduces the computational complexity. The authors in [54] have compared the EM-GM-GAMP

algorithm with most of the existing CS algorithms that are blind of the prior and proved EM-

GM-GAMP is the most efficient among them all. Thus in this section, we will use the EM-

GM-GAMP runtime performance as the bench mark to evaluate the efficiency of the paramet-

ric SURE-AMP algorithm. For this, we fixed γ = 0.5, SNRy = 25 dB and varied the signal

length n from 10000 to 100000. For the EM-GM-GAMP algorithm, we set the EM tolerance

4We run the SPGL1 in the “BPDN” mode. The MATLAB package can be found in

http://www.cs.ubc.ca/labs/scl/spgl1.
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to 10−5 and the maximum EM iterations to 20. The runtime for noisy recovery of the BG,

k-dense and Student’s-t data are plotted in Fig. 5.9, Fig. 5.10 and Fig. 5.11 respectively. Every

point in the plots is an average over 100 realizations. The algorithms tested here are the same

as described before.

For both the EM-GM-GAMP and parametric SURE-AMP algorithm, there is the computa-

tional cost for the matrix multiplication of the vector with the measurement matrix Φ and ΦT

at each iteration. However, we observed a dramatic runtime improvement across all tested sig-

nal lengths for three signal priors. The parametric SURE-AMP is more than 20 times faster

than the EM-GM-GAMP scheme. The algorithm efficiency can be attributed to the simple

form of the kernel functions, the linear parameterization of the SURE-based denoiser and the

reduced number of iterations. Consider the runtime comparison of the BG data reconstruc-

tion. The total number of the EM-BG-GAMP iterations is roughly twice as many as that of

the parametric SURE-AMP algorithm. Moreover, the per-iteration computational cost is much

more expensive for EM-BG-GAMP since fitting the signal prior requires many EM iterations.

While for each parametric SURE-AMP iteration, only a 3 dimensional linear system needs to

be solved to optimize the adaptive estimator. When compared with the ℓ1-AMP, the runtime

for each parametric SURE-AMP iteration is approximately the same. The improved runtime

performance here comes from the effective denoising so that fewer iterations are required for

the parametric SURE-AMP to converge. The best runtime performance of the IDR algorithm

for the k-dense data in Fig. 5.10 is understandable since it only applies an adaptive thresholding

function at each iteration and has no parameter optimization procedure.

5.5 Conclusion

In this chapter, the parametric SURE-AMP is presented as a novel compressed sensing algo-

rithm, which directly minimizes the MSE of the recovered signal at each iteration. Motivated

from the fact that the AMP can be cast as an iterative Gaussian denoising algorithm, we pro-

pose to utilize the adaptive SURE based parametric denoiser within the AMP iteration. The

optimization of the parameters is achieved by minimizing the SURE, which is an unbiased es-

timate of the MSE. More importantly, the minimization of SURE depends purely on the noisy

observation, which in the large system limit fundamentally eliminates the need of the signal

prior. This is also the first time that it has been employed for the CS reconstruction. The para-

metric SURE-AMP with the proposed three kernel families have demonstrated almost the same
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Figure 5.9: Runtime versus signal dimension for CS recovery of noisy Bernoulli-Gaussian

data.

reconstruction quality as the BAMP algorithm, where the true signal prior is provided. It also

outperforms the EM-GM-GAMP algorithm in terms of the computational cost. Directions for

further research would involve considering other type of kernel families and the rigorous proof

for the state evolution dynamics.
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Figure 5.10: Runtime versus signal dimension for CS recovery of noisy k-dense data.
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Chapter 6
Conclusions and Future work

6.1 Conclusion

In this thesis we have investigated two aspects of the compressed sensing reconstruction: the

measurement matrix design and enhancing one of the CS reconstruction algorithms. In Chapter

1, three main contributions made in this thesis were listed. Here we revisit these points and

summarise the main advances and findings.

While the CS reconstruction power for natural images in the transformed domain is well rec-

ognized, there is very little literature discussing how to optimize the measurement matrix in

a tractable manner and the performance bound for CS imaging. The main problem we ad-

dressed in Chapter 3 is that for the multi-resolution image model and the independent bandwise

sampling strategy, what is the optimal sample allocation for the measurement matrix? To be

specific, with a fixed number of samples, we would like to know how many samples should

be allocated for each band to achieve the reconstruction with the least MSE. To this end, we

proposed the sample distortion framework to quantify and bound the reconstruction MSE for

any combination of measurement matrix and recovery algorithm at different sampling ratios.

We subsequently derived the hybrid zeroing matrix to convexify the SD function and the greedy

sample allocation based on the convexified SD function for the multi-resolution image model.

The value of the study in Chapter 3 is twofolded. For one thing it confirmed the advantages of

the structured measurement matrix over the homogeneous one for multi-resolution CS imag-

ing. For another it theoretically quantifies and bounds the recovery performance of various

reconstruction algorithms for natural images. The key insight is that with the optimized sample

allocation, the reconstruction error decays at the same rate for both CS and the best linear recon-

struction for the multi-resolution image model. Thus the reconstruction gain of CS algorithms

over the linear techniques is fundamentally limited.

The structure of the measurement matrix can have a considerable impact on the CS reconstruc-

tion quality. In the CS literature, the spatially coupled measurement matrix was first proposed

to push the perfect reconstruction sampling ratio as low as the sparsity level for sparse signals.

Empirical simulation and theoretical analysis both confirm that with the specially designed
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measurement matrix, it is possible to reach the theoretical limit for the exact recovery of sparse

signals. While most of the work in the literature concentrates on achieving the perfect recovery,

this thesis focused on designing the measurement matrix that improves the overall sample dis-

tortion performance for both sparse and compressible signals. The proposed modulated matrix,

especially the two block design, can be seen as a special case of the spatially coupled seeded

matrix. The key feature of the modulated matrix is that it has a much simpler 1-D state evolution

dynamics to predict its asymptotic behaviour in the large system limit. This has a big impact

on optimizing the matrix configuration. Compared to the seeded matrix, it has much fewer free

parameters to tune. Moreover, this simple matrix construction does not necessarily degrade its

reconstruction power. Extensive simulation for both sparse and compressible signals in Chapter

4 validates the proposal.

While utilizing the ℓ1-AMP and BAMP for signal reconstruction in this thesis, we noticed

the performance gap between the two as well as the possibility to achieve the BAMP recovery

without requiring the explicit signal prior in advance. Since the AMP based algorithms have the

recursive Gaussian denoising nature, we proposed to utilize the SURE based parametric least

square estimator family to deal with the signal denoising. The corresponding parametric SURE-

AMP algorithm leverages the Gaussian behaviour of the AMP residual at each iteration and

adaptively selects the denoiser in accordance with the effective Gaussian noise variance. The

parametric SURE-AMP algorithm uses neither the ℓ1-minimization nor the Bayesian method,

but employs the parametric approach with the Stein’s unbiased risk estimate for reconstruction.

With proper parameterization of the denoiser, we are able to fundamentally eliminate the need

of the signal prior while still achieving the Bayesian optimal recovery.

6.2 Open Problem and Further Work

In this section we discuss some of the unanswered questions related to the work in this thesis

and suggest several possible directions for further pursuit.

• Extend Sample Allocation:

It has been demonstrated in Chapter 3 that the combination of the sample allocation and

the exploitation of the dependency across wavelet scales delivers the improved recon-

struction for natural images. However, there is still a gap to be filled between the best

achieved recovery and the theoretical MSE bound. This might be overcome by consid-

ering the truly optimized sample allocation for the wavelet tree structure or other more
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sophisticated image models. Or it might be possible to approach the theoretical bound

by allocating samples in an adaptive manner based on the reconstruction feedback from

previous steps.

Another interesting research area is to extend the sample allocation scheme to practical

imaging problems, e.g. magnetic resonance imaging (MRI) and computed tomography

(CT). The difficulty in designing a practical measurement matrix is that we will not have

all the freedom to allocate samples as in the theoretical analysis. For both MRI and CT,

the data acquisition is performed in the Fourier domain rather than the wavelet domain.

Since the wavelet bands typically do not have a finite k-space support, the analytical

results in Chapter 3 cannot be applied directly for MRI and CT imaging. The physi-

cal constraints of medical devices also need to be taken into consideration for sampling

pattern design. Despite all the difficulties, lots of heuristic CS sampling strategies for

MRI indicate that concentrating most of the samples in the low frequency components

while randomly sampling in the high frequencies benefits the overall construction. Thus

systematically optimizing the sample allocation with constraints would have great prac-

tical value. It would also be interesting to extend the sample allocation scheme to 3-D to

achieve acceleration for the MRI scanning.

• Modulated Matrix Design:

In this thesis we have demonstrated the advantageous reconstruction results using the

modulated matrix for both sparse and compressible signals. However, only heuristic

parameter settings for the two block matrix are presented without giving a parameter

optimization scheme. Thus, one possible research direction would be to derive a sys-

tematic approach for optimizing the modulated matrix parameters. One could adopt the

empirical strategy in [4] to obtain the optimal matrix setting, utilizing the state evolution

dynamics to empirically test the reconstruction performance for various parameter com-

binations and select the best among them. To analytically optimize the modulated matrix

configuration, new mathematical ideas need to be leveraged to exploit the state evolution

equations.

Another open question for the two block matrix design is the lack of theoretical proof for

the optimality of the hybrid zeroing matrix for compressible signals without first order

phase transition. We believe that analysing the state evolution dynamics might lead to a

further breakthrough. Moreover, in this thesis we only considered the combination of two

direct deltas as the rescaling distribution for the modulated matrix. More sophisticated
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distribution and parameter settings also need to be considered to obtain the improved

reconstruction performance.

• Parametric SURE-AMP Algorithm:

As we have pointed out in Chapter 5, the empirical Monte Carlo simulation exhibits ex-

cellent agreement with the proposed state evolution equations for the parametric SURE-

AMP algorithm. The next problem is to conduct the theoretical analysis to validate the

SE prediction for the asymptotic behaviour. To obtain a rigorous proof for the SE dynam-

ics, one might be able to leverage the technique used in [73] since they also considered an

adaptation module within the AMP framework. Alternatively, one might find inspiration

from the original state evolution analysis for AMP in [55]. The other unsolved problem

for the parametric SURE-AMP algorithm is the theoretical validation of the greedy ap-

proach for jointly optimizing the denoisers across all iterations. We believe that the proof

would rely on analysing the SE dynamics.

In Chapter 5, we only considered denoisers constructed by the exemplary piecewise lin-

ear and exponential kernel families with no more than three kernel functions. More

sophisticated and general kernel format can be exploited to increase the flexibility and

accuracy of the denoising functions. Different forms of parameterization of the denoisers

could also be deployed. Additionally, other off-the-shelve denoising algorithms would

be utilized to enhance the AMP reconstruction as suggested in [51].

The comparison of the parametric SURE-AMP and the EM-GM-GAMP algorithm is

conducted in terms of the reconstruction quality and the computational complexity. The

fundamental difference between the two is that one resorts to minimize the reconstruction

MSE while the other concentrates on minimizing the Kullback-Leibler divergence to fit

the signal prior. Although we noticed the differences, we did not address the intrinsic

relationship between the two approaches. One possible research direction would be to

understand under what conditions or with what form of kernel functions fitting the prior

would be equivalent to optimizing the reconstruction MSE.

• Enhancing AMP Algorithm:

While in this thesis the AMP based algorithms are employed as the major CS reconstruc-

tion tool, there is some fundamental work to be done to extend the AMP framework to a

more general problem setting. Currently the theoretical analysis for AMP relies heavily

on the Gaussian assumption of the measurement matrix, which can be restrictive when

applied to practical problems. Although in [14] different matrix ensembles including the
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Rademacher, partial Fourier and USE (columns i.i.d uniformly distributed on the unit

sphere) have been shown to follow the SE analysis of AMP, ideally we would like AMP

to work for arbitrary matrices, i.e. the complex measurement matrix or the Fourier matrix

with non-uniform sample allocation, to suit practical applications. This involves a better

understanding of the generic message passing approximation for the graphic representa-

tion of the CS system, especially the derivation of the “Onsager” reaction term.

In Chapter 3 the signal sparsity in the wavelet domain has been utilized to enhance the

AMP reconstruction. The graphic model for the CS observation with the tree structure

prior is presented. The corresponding turbo reconstruction scheme is successful in ex-

ploiting both the signal prior and the sparse property. It might be beneficial if more sparse

models on various orthogonal bases can be employed to aid the AMP reconstruction, i.e.

using two types of wavelet or exploring in both wavelet and Fourier domain. Thus one

possible avenue of research is to generate the graphic model for the CS measurement with

more than one sparse representation and derive the appropriate message passing for the

new system. The potential problem involved would be how to incorporate the estimate

from different sparse bases to obtain a better reconstruction.

124



Appendix A

Approximation of the

factor-to-variable Message

In this appendix, the detailed steps of approximating the factor-to-variable message mj→i(xi)

in (2.33) with (2.37) is provided. First, from the Hubbard-Stratonovich transform we have

e−
x2

2a =

√

1

2πa

∫

e−
t2

2a
+−

√
−1xt
a dt (A.1)

Let x =
∑

q 6=iΦjqxq, applying (A.1) we have

e
− (

∑
q 6=i Φjqxq)

2

2σ2
ξ =

1
√

2πσ2ξ

∫

dt e
− t2

2σ2
ξ

+

√
−1t

∑
q 6=i Φjqxq

σ2
ξ (A.2)

From (2.33) we have

mj→i(xi) =
1

Zj→i
e
− (yj−Φjixi)

2

2σ2
ξ

∫
∏

q 6=i

dxqe
− (

∑
q 6=i Φjqxq)

2

2σ2
ξ e

(yj−Φjixi)
∑

q 6=i Φjqxq

σ2
ξ mq→j(xq)

(A.3)

Combining (A.2) with (A.3) we arrive at

mj→i(xi) =
1

Zj→i
√

2πσ2ξ

e
− (yj−Φjixi)

2

2σ2
ξ

∫

dt e
− t2

2σ2
ξ

∏

q 6=i

[

∫

dxqmq→j(xq)e

Φjqxq

σ2
ξ

(yj−Φjixi+it)

]

(A.4)

We then expand the last exponential in (A.4) around zero to further simplify the message

mj→i(xi).
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∫

dxq mq→j(xq)e

Φjqxq

σ2
ξ

(yj−Φjixi+it)

(a)
=

∫

dxq mq→j(xq)[1 +
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σ2ξ

(yj − Φjixi + it) +
Φ2
jqx

2
q

2σ4ξ
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2σ4ξ
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(b)
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Φ2
jq

2σ4ξ
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(c)
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σ2ξ
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Φ2
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2σ4ξ
(yj − Φjixi + it)2νq→j

+
1

2
[
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σ2ξ
(yj −Φjixi + it) +

Φ2
jq

2σ4ξ
(yj − Φjixi + it)2νq→j]

2

(d)
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σ2
ξ

(yj−Φjixi+it)+
Φ2
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2σ4
ξ

(yj−Φjixi+it)2

(A.5)

In the above derivation, we use the following assumption and observations

• (a) The Taylor expansion of the exponential around zero ex ≈ 1 + x+ x2

2

• (b) The mean and variance of the message mq→j(xq) are defined as αq→j , νq→j in (2.35)

and (2.36) respectively as the new messages.

• (c) We assume all terms that are above the order O(1/m) are neglectable, thus Φ3
ji ≈

Φ4
ji ≈ 0.

• (d) The inverse of the Taylor expansion of the exponential around zero 1 + x+ x2

2 ≈ ex

Apply (A.5) to (A.4) we have

mj→i(xi) =
1

Zj→i
√

2πσ2ξ

e
− (yj−Φjixi)

2

2σ2
ξ

∫

dt e
− t2

2σ2
ξ

∏

q 6=i
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2σ4
ξ
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]

(A.6)

We then perform the Gaussian integral over t in (A.6). Define the following notation

A =
∑

q 6=i

Φ2
jqνq→j, B =

∑

q 6=i

Φjqαq→j, N = yj − Φjixi (A.7)
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Then we have

1
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where we have used the following observations

• (a) Gaussian integral
∫
dx e−ax2−2bx =

√
π
ae

b2

a .

• (b) We omit the terms that of the order O(1/m) and above, thus AB ≈ A2 ≈ 0.

• (c) The pre-defined notation N = yj −Φjixi.

Finally, we define the following notation

Aj→i =
Φ2
ji

σ2ξ +
∑

q→iΦ
2
jqνq→j

(A.9)

Bj→i =
Φji(yj −

∑

q 6=iΦjqαq→j)

σ2ξ +
∑

q 6=iΦ
2
jqνq→j

(A.10)

together with (A.8) we have the simplified version of the message mj→i(xi).

mj→i(xi) =
1

Z̃j→i

e−
Aj→i

2
x2
i+Bj→ixi Z̃j→i =

√

2π

Aj→i
e

B2
j→i

2Aj→i (A.11)

where Z̃j→i is the normalization factor containing all xi-independent terms.
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Derivation of Equation (2.53)

With (2.44) we have

αi→j = fa(

∑

p 6=j Bp→i
∑

p 6=j Ap→i
,

1
∑

p 6=j Ap→i
)

(a)
= fa(Ri, Σ

2
i ) + (
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p 6=j Bp→i
∑

p 6=j Ap→i
−

∑

pBp→i
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pAp→i
)
∂fa
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(εi, ci)

+ (
1

∑

p 6=j Ap→i
− 1

∑

pAp→i
)
∂fa
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(εi, ci)

(b)
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pAp→i(
∑
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∑
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p 6=j Ap→i

∂fa
∂ε

(εi, ci)

(c)
= αi −Bj→iΣ

2
i

∂fa
∂ε

(εi, ci)

(d)
= αi −Bj→ifc(εi, ci) = αi −Bj→iνi

(B.1)

where we have used the following observations

• (a) We use the Taylor expansion for the two-variable function

f(x, y) = f(a, b) + (x− a)∂f
∂x

(a, b) + (y − b)∂f
∂y

(a, b) (B.2)

• (b) Omit the correction term
Aj→i

∑

p Ap→i
∑

p 6=j Ap→i
≈ 0.

• (c) Omit the correction term
Aj→i

∑

p 6=j Bp→i
∑

p Ap→i
∑

p 6=j Ap→i
≈ 0.

• (d) With the definition in (2.42) and (2.43), we have the following relationship

fc(ε, c) = c
d

dε
fa(ε, c) (B.3)

The proof is provided in Appendix C.
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Appendix C

Relationship of Conditional Mean and

Variance for Gaussian Corrupted Data

Theorem 6. Let x be the signal that we are interested, r = x + w is the Gaussian noise

corrupted data with w ∼ N (w; 0,Σ2). Then the MMSE estimator F (r,Σ2) = E(x|r) and the

conditional variance G(r,Σ2) = Var(x|r) has the following relationship

G(r,Σ2) = Σ2F ′(r,Σ2) (C.1)

where F ′ is the derivative of F with respect to r.

Proof. Given the definition of the conditional mean and variance

F (r,Σ2) =
1

p(r)

∫

xp(r|x)p(x)dx (C.2)

G(r,Σ2) =
1

p(r)

∫

x2p(r|x)p(x)dx− F 2(r,Σ2) (C.3)

we have

Σ2F ′(r,Σ2) = Σ2dF

dr

=
Σ2

p(r)

∫

xp′(r|x)p(x)dx− Σ2p′(r)
p(r)

∫
xp(r|x)p(x)

p(r)
dx

(C.4)

Since p(r|x) = N (r;x,Σ2), we have

p′(r|x) = p(r|x)x− r
Σ2

(C.5)

From Miysawa [127] we know that the least squares estimator can be written entirely in terms

of the measurement density.

F (r,Σ2) = r +Σ2 p
′(r)
p(r)

(C.6)
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Combining (C.4) with (C.5) and (C.6) we have

Σ2F ′(r,Σ2) =
1

p(r)

∫

xp(r|x)(x− r)p(x)dx− (F (r,Σ2))− r)
∫
xp(r|x)p(x)

p(r)
dx

=
1

p(r)

∫

x2p(r|x)p(x)dx− F 2(r,Σ2)

= G(r,Σ2)

(C.7)

which completes the proof.
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Appendix D

Proof of the Entropy Based Bound

Proof:

Without loss of generality we will assume that Φ is an orthogonal projection operator and we

denote by Φ⊥ the orthogonal projection onto the null space of Φ. We can then split the signal

x into its observed and unobserved components: y = Φx and z = Φ⊥x. Since we directly

observe y we need only consider the component of the decoder that estimates z, ∆(z) : Rm →
R
n−m. We can then estimate x as:

x̂ = ∆(y) = ΦTy + [Φ⊥]T∆(z)(y) (D.1)

We can further write the squared error distortion in terms of ∆(z)(y) as

D =
1

n

∫

p(y)

∫

p(z|y)||z −∆(z)(y)||22 dzdy (D.2)

Now consider the following decomposition of the differential entropy h(x) of the vector x:

h(x) = h(y) + h(z|y)

= h(y) + h(z−∆(z)(y)|y)

≤ h(y) + h(z−∆(z)(y))

≤ m

2
log2 2πe+

n−m
2

log2 2πenD/(n −m)

(D.3)

where we have used the following observations

• (line 2) The decoder is a deterministic function of y and therefore the differential entropy

of h(z −∆(z)(y)|y) = h(z|y).

• (line 3) The conditional entropy is bounded by the marginal entropy: h(x|y) ≤ h(x).
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• (line 4) The entropy of a random variable with a fixed covariance is bounded by the

entropy of a Gaussian with the same covariance. Similarly the entropy of a random

vector v ∈ R
n−m under the constraint that E{vTv} = nD is bounded by the entropy of

a Gaussian random vector with covariance nD
(n−m)I .

The principle here is that the optimal projection should maximize the entropy of the observed

component h(y) while the decoder, ∆(y), should minimize the distortion possible. This is

similar to the concept of information sensing proposed in [86].

Substituting γ = m/n into (D.3) gives:

h(x) ≤ 1− γ
2

log2 2πe
D

1 − γ +
γ

2
log2 2πe (D.4)

where we have used the i.i.d assumption to write h(x) = nh(x). This can then be rearranged

to give the EBB.
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Appendix E

Derivation of the Hierarchical

Bayesian Model for GGD

Proof:

Here, we derive the hierarchical Bayesian model to describe the GGD, which is then used to

bound the MSE performance described in the main text in Sec. 3.2.2.2. We introduce two latent

variables c1 and c2 to simplify the expression of GGD:

c1 =
α

2
√
βσΓ( 1α )

c2 = (
√

βσ)α (E.1)

Then the pdf of GGD can be written as

p
GGD

(x) = c1exp(−|x|
α

c2
) (E.2)

Let p(x|τ) = N (x; 0, τ). To establish the hierarchical model, we need to find the prior p(τ)

which satisfies:
∫ ∞

0
N (x; 0, τ)p(τ) dτ = c1exp(−|x|

α

c2
) (E.3)

Using the substitution g(τ) = 1√
2πτ

p(τ), m = x2

2 and t =
√
2
α

c2
, the question becomes solving

g(τ) subject to
∫ ∞

0
exp(−m

τ
)g(τ) dτ = c1exp(−tmα

2 ) (E.4)

let z = 1
τ and G(z) = g(τ)|τ= 1

z
, we further transform the problem to find G(z) subject to

∫ ∞

0
exp(−zm)

G(z)

z2
dz = c1exp(−tm τ

2 ) (E.5)

Applying the integral formula [131]: if
∫∞
0 e−zty(t) dt = f(z), then y(t) = L−1(f(z)), we

obtain
G(z)

z2
= c1L−1exp(−x

α

c2
)] (E.6)
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where L−1(·) is the inverse Laplace transform. The inversion of Laplace transform in (E.6) can

be solved numerically [132]. From here we obtain the MBB for the GGD data in Fig. 3.2.
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