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Abstract 

 
 

Over the past years early detection and intervention in schizophrenia have become a 

major objective in psychiatry. Early intervention strategies are intended to identify and 

treat psychosis prior to fulfilling diagnostic criteria for the disorder. To this aim, reliable 

early diagnostic biomarkers are needed in order to identify a high-risk state for psychosis 

and also predict transition to frank psychosis in those high-risk individuals destined to 

develop the disorder. Recently, machine learning methods have been successfully 

applied in the diagnostic classification of schizophrenia and in predicting transition to 

psychosis at an individual level based on magnetic resonance imaging (MRI) data and 

also neurocognitive variables. 

This work investigates the application of machine learning methods for the early 

identification of schizophrenia in subjects at high risk for developing the disorder. The 

dataset used in this work involves data from the Edinburgh High Risk Study (EHRS), 

which examined individuals at a heightened risk for developing schizophrenia for 

familial reasons, and the FePsy (Fruherkennung von Psychosen) study that was 

conducted in Basel and involves subjects at a clinical high-risk state for psychosis.  

The overriding aim of this thesis was to use machine learning, and specifically Support 

Vector Machine (SVM), in order to identify predictors of transition to psychosis in high-

risk individuals, using baseline structural MRI data. There are three aims pertaining to 

this main one.  (i) Firstly, our aim was to examine the feasibility of distinguishing at 

baseline those individuals who later developed schizophrenia from those who did not, 

yet had psychotic symptoms using SVM and baseline data from the EHRS study. (ii) 

Secondly, we intended to examine if our classification approach could generalize to 

clinical high-risk cohorts, using neuroanatomical data from the FePsy study. (iii) In a 



 x 

more exploratory context, we have also examined the diagnostic performance of our 

classifier by pooling the two datasets together. 

With regards to the first aim, our findings suggest that the early prediction of 

schizophrenia is feasible using a MRI-based linear SVM classifier operating at the 

single-subject level. Additionally, we have shown that the combination of baseline 

neuroanatomical data with measures of neurocognitive functioning and schizotypal 

cognition can improve predictive performance. The application of our pattern 

classification approach to baseline structural MRI data from the FePsy study highly 

replicated our previous findings. Our classification method identified spatially 

distributed networks that discriminate at baseline between subjects that later developed 

schizophrenia and other related psychoses and those that did not. Finally, a preliminary 

classification analysis using pooled datasets from the EHRS and the FePsy study 

supports the existence of a neuroanatomical pattern that differentiates between groups of 

high-risk subjects that develop psychosis against those who do not across research sites 

and despite any between-sites differences. 

Taken together, our findings suggest that machine learning is capable of distinguishing 

between cohorts of high risk subjects that later convert to psychosis and those that do not 

based on patterns of structural abnormalities that are present before disease onset. Our 

findings have some clinical implications in that machine learning-based approaches 

could advise or complement clinical decision-making in early intervention strategies in 

schizophrenia and related psychoses. Future work will be, however, required to tackle 

issues of reproducibility of early diagnostic biomarkers across research sites, where 

different assessment criteria and imaging equipment and protocols are used. In addition, 

future projects may also examine the diagnostic and prognostic value of multimodal 

neuroimaging data, possibly combined with other clinical, neurocognitive, genetic 

information. 
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Lay Summary 
 
 

One of the major goals in clinical psychiatry today is to diagnose individuals destined to 

develop a psychiatric disorder as early as possible and treat them accordingly, with the 

ultimate aim of either preventing disease onset or at least ameliorating clinical outcome 

and course. The work presented in this thesis focuses on examining the feasibility of 

achieving an early diagnosis for individuals considered at high risk for developing 

schizophrenia and other related psychoses. 

To do so, a machine learning method called Support Vector Machine (SVM), was 

implemented and structural imaging data from individuals at high risk for schizophrenia 

and other related psychoses were used. Two cohorts of high risk patients were utilised; 

the Edinburgh High Risk Study (EHRS) cohort, which examined individuals at a 

heightened risk for developing schizophrenia for familial reasons, and a cohort of 

individuals from the FePsy (Fruherkennung von Psychosen) study that was conducted in 

Basel and involved subjects at a clinical high-risk state for psychosis.  

Taken together, the findings produced suggest that machine learning is capable of 

distinguishing between cohorts of high risk subjects that later convert to psychosis and 

those that do not based on patterns of structural abnormalities that are present before 

disease onset.  
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1.1 Introduction 
 

Schizophrenia is one of the most severe and debilitating mental disorders, posing a 

huge burden on the affected person and the society as well, as most people with 

schizophrenia are unable to continue in employment or education. It is estimated that 

approximately 1% of the population worldwide suffers from the disorder, which 

generally manifests itself in adolescence and early adulthood although its symptoms 

are chronic and devastating. Schizophrenia has a variable phenotypic expression 

although its most common symptoms primarily include a severe decline in cognitive 

function and abnormal social behaviour. Despite numerous years of scientific 

research, the aetiology and the underlying pathophysiological mechanisms of 

schizophrenia still remain elusive. The risk for developing schizophrenia, however, 

primarily involves a major genetic contribution and environmental factors, possibly 

interacting with genetic susceptibility.  

 

 
 

1.2 General overview 
 

Schizophrenia was first described by the German physician Emil Kraepelin. In 1887, 

Kraepelin introduced the term Dementia Praecox to describe a disease of early age of 

onset that was characterised by progressive decline of emotional and cognitive 

processes. Based on his clinical experience, Kraepelin observed various psychotic 

conditions that he thought were manifestations of a single disease entity (of a single 

aetiology) that ultimately resulted in cognitive deficits and executive dysfunctions 

(Kraepelin, 1919). Kraepelin distinguished schizophrenia from other types of 

psychoses, such as manic-depressive psychosis, and also developed a classification 

system of mental illnesses that influenced contemporary classification guidelines. 

It was in the early twentieth century, however, that the term Schizophrenia was first 

coined by the Swiss psychiatrist Eugen Bleuler who not only dissociated the disorder 

from a deteriorating course, but also hypothesised that the disease primarily involved 

a loosening of thoughts and feelings, in the context of a ‘split mind’ (Bleuler, 1911).  
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The term schizophrenia (from the greek words: ‘σχίζειν’ =split and ‘φρην’=mind) 

has, however, led to much confusion about the nature of the illness, in that it is often 

mistakenly thought of as a split personality disorder; a condition totally unrelated to 

schizophrenia. 

Bleuler believed that at the core of schizophrenia lies the loss of association between 

thought processes, emotion and behaviour. He introduced the concept of primary 

symptoms, which he thought were particularly characteristic of the disorder, and 

secondary symptoms of schizophrenia. Based on his clinical experience, he 

concluded that the four fundamental symptoms of schizophrenia included 

associational disturbances, ambivalence, affective disturbances and autistic 

behaviour (the so-called four A’s, now considered as negative symptoms) whereas 

hallucinations and delusions were deemed as secondary (or accessory) symptoms of 

the disorder. 

 

 
 
1.3 Current diagnosis and clinical description 

 
Our current conceptualization of schizophrenia derives fundamentally from the 

descriptions of Kraepelin, Bleuler and Schneider, who described a number of first-

rank symptoms that are considered particularly characteristic of the disorder and now 

best describe the positive symptomatology (Schneider, 1959). 

Diagnosis of schizophrenia is nowadays typically attained through structured 

interviews and meeting criteria in the Diagnostic and Statistical Manual for Mental 

Disorders, fifth edition (DSM-5) established by the American psychiatric 

Association (APA, 2013) or the International Classification of Diseases and Related 

Health Problems, 10th edition (ICD-10), established by the World Health 

Organization (WHO, 1994). 

Both the ICD-10 and DSM-5 classifications are based on expert clinical observation 

and scientific research and provide operationalized criteria that are used to make a 

reliable diagnosis of schizophrenia. Tables 1.1 and 1.2 provide a summary of the 
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criteria needed to reach a diagnosis of schizophrenia. Differences between the DSM-

5 and ICD-10 exist in terms of symptom duration with the former suggesting a more 

chronic course (symptoms have to be present for 6 months whereas in ICD-10 one 

month is required) and requiring an accompanying deterioration in functioning in 

order to reach a diagnosis. In addition, both systems require that other diagnoses such 

as mood disorders with psychotic symptoms, schizoaffective disorders and drug-

induced psychoses should be first ruled out. Despite their discrepancies, however, 

definitions in both diagnostic systems are sufficiently similar to promote 

standardization across centers and ensure international agreement.   

Although the use of standardized criteria is clinically relevant and enhances 

reliability in the diagnostic process, most of the attributes defining schizophrenia are 

primarily inferential and depend on self-reported subjective experience. The clinical 

presentation of the disease itself is complex, with patients manifesting heterogeneous 

symptomatology, comorbidity with other psychiatric disorders, variable illness 

course and adherence to treatment.  

Two broad types of symptoms, including positive or psychotic symptoms and 

negative symptoms, characterize schizophrenia. Positive symptoms are associated 

with the presence of dysfunctions or abnormalities and include disturbances of 

perception and inferential thinking, such as hallucinations and delusions, 

disorganized thinking and speech. Patients with schizophrenia may hear voices that 

other people do not hear, may think that someone else is controlling their thoughts or 

reading their minds or even believe they are victims of a plot with the intention to 

harm them. They often have a hard time organizing their thoughts or speaking in a 

logical, coherent manner. These symptoms usually become apparent at the early 

stages of the disease, in adolescence or early adulthood and are usually mitigated 

with the use of anti-psychotic treatment, although recurrent relapses and remissions 

commonly go on throughout the patient’s life.  

Negative symptoms generally succeed this florid psychotic phase and are mostly 

linked to a lack of motivation and emotional responsiveness, a loss of interest in 

oneself, social isolation and withdrawal. Current anti-psychotic medication does not 

seem to treat negative symptoms, which tend to persist for longer than positive 
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symptoms and are generally associated with a poorer outcome (Hunter & Barry 

2012). Disturbances in cognitive functions form another cluster of signs and 

symptoms of schizophrenia, although they are not widely considered as distinct a 

dimension of the disorder as positive and negative symptoms. Impairments in 

executive functions, working memory and attention are generally signs that might 

precede the florid psychotic stage of the disorder and might be apparent in the 

prodrome to overt psychosis, and usually persist or even deteriorate during the course 

of the disease.  

No single symptom can be considered pathognomonic for schizophrenia and patients 

usually present with different constellations of symptoms. Symptom heterogeneity 

across patients can be described in the context of distinct clinical subtypes that are 

captured in the previous DSM-IV and the ICD-10, and include among others: 

paranoid, disorganized, catatonic and undifferentiated schizophrenia. Clinical 

presentation of patients is not, however, limited to only one subtype, nor this subtype 

remains stable throughout the course of the illness, thus rendering the subtyping of 

schizophrenia diagnostically unstable and possibly unreliable (Tandon et al. 2009). 

As a result, descriptions of subtypes have been removed in the most recent DSM-5 

(Tandon et al. 2013). 

Comorbidity with other psychiatric disorders such as depression or comorbid 

substance-use disorders is common among schizophrenia patients. Depressive 

symptoms might be present at any point during the illness, with the majority of 

patients suffering from them in the pre-morbid (pre-psychotic) phase of the disorder 

or during acute psychotic exacerbations, and usually as an adverse side effect of anti-

psychotic medication. Substance abuse, such as nicotine, alcohol or cannabis is 

highly prevalent among schizophrenia patients and is linked to poorer outcome, 

including increased psychotic symptoms and poorer adherence to treatment (Dixon 

1999, Winklbauer et al. 2006).  
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Table 1.1 DSM-5 Diagnostic criteria for schizophrenia 

 
 
 
 
Table 1.2 ICD-10 Diagnostic criteria for schizophrenia 

Criterion A. 
Two (or more of the following), each present for a significant period of time during a 1-month 
period (or less if successfully treated). At least one of these should include 1-3. 
 
1. Delusions 
2. Hallucinations 
3. Disorganised speech 
4. Grossly disorganized or catatonic behaviour 
5. Negative symptoms, e.g. avolition, alogia, diminished emotional expression 
 
Criterion B. 
Social/ Occupational Dysfunction 
 
Criterion C. 
Duration of at least six months, with at least one month of active symptoms. 
 

Either at least one of the syndromes, symptoms, and signs listed under (1) below, or at least two of the 
symptoms and signs listed under (2) should be present for most of the time during an episode of 
psychotic illness lasting for at least 1 month (or at some time during most of the days). 
 
(1)  At least one of the following must be present: 
 (a)  thought echo, thought insertion or withdrawal, or thought broadcasting; 

(b)  delusions of control, influence, or passivity, clearly referred to body or limb movements 
or specific thoughts, actions, or sensations; delusional perception; 
(c)  hallucinatory voices giving a running commentary on the patient’s behavior, or 
discussing the patient among themselves, or other types of hallucinatory voices coming 
from some part of the body; 
(d)  persistent delusions of other kinds that are culturally inappropriate and completely 
impossible (e.g., being able to control the weather, or being in communication with aliens 
from another world). 
 

(2)  Or at least two of the following: 
(a)  persistent hallucinations in any modality, when occurring every day for at least 1 
month, when accompanied by delusions (which may be fleeting or half-formed) 
without clear  
affective content, or when accompanied by persistent overvalued ideas; 
(b)  neologisms, breaks, or interpolations in the train of thought, resulting in 
incoherence or irrelevant speech; 
(c)  catatonic behavior, such as excitement, posturing or waxy flexibility, negativism, 
mutism, and stupor; 
(d) negative symptoms, such as marked apathy, paucity of speech, and blunting or 
incongruity of emotional responses (it must be clear that these are not due to 
depression or to neuroleptic medication). 
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1.4 Epidemiology of schizophrenia 
 

Schizophrenia is one of the most severe and devastating mental disorders, ranked by 

the World Health Organization as one of the top ten illnesses contributing to global 

burden of disease (Jablensky 1997). Epidemiological studies provide a useful tool in 

the understanding of the disorder by studying and describing the distribution pattern 

of schizophrenia in populations and across cultures and identifying factors that 

convey risk for the development of psychosis. 

Based on epidemiological studies conducted over the last century, the prevalence of 

schizophrenia (i.e. the number of cases at any time point) in the general population is 

approximately 1% (Jablensky et al. 1992). Based on the only global study that 

directly generated incidence data (WHO-10 nation study, Jablensky et al. 1992), the 

annual incidence of schizophrenia (i.e. the number of new cases) was estimated to 

range from 16-40/100,000 per year using broad diagnostic criteria (ICD-9, WHO-

1978) and 7-14/100,000 using narrow criteria (CATEGO class S+, Wing et al. 1974). 

Since incidence is a measure of the number of new cases with a disease over the 

number of cases who are at-risk for developing the illness over a specified period of 

time, this measure is highly dependent on the diagnostic criteria used, and thus 

incidence rates exhibit some variation across sites. A recent meta-analysis of all 

published studies from 1965 to 2001 reported a median incidence rate of 15.2 per 

100,000 per year with 80% confidence interval rates (10th to 90th decile) ranging 

from 8-43 per 100,000 per year (McGrath et al. 2004). The notion that the incidence 

rates of schizophrenia vary across sites has also been supported by another meta-

analysis of the same research group (McGrath et al.2008), which further reported that 

sex, urbanicity and migration (Cantor-Graae & Selten 2005) are associated with a 

higher risk for developing schizophrenia.  

Gender differences in schizophrenia have been widely reported by a host of studies, 

showing differences in disease onset, course and outcome (Leung & Chue 2000). A 

recent meta-analysis reported higher incidence of schizophrenia in men versus 

women (Aleman et al. 2003). A recent review quantified a median male to female 



 8 

rate ratio of 1.4: 1 (McGrath et al. 2004, McGrath et al. 2008). Differences in age of 

onset have been widely reported, with men having an earlier disease onset than 

women (Leung & Chue 2000, Castle et al. 1998, Goldstein et al. 1989, Gureje 1991), 

although this finding is not universally replicated (Folnegovic 1994, Addigton et al. 

1996, Murthy et al. 1998). In addition, earlier studies reported a worse course of 

illness in male patients, who tend to exhibit more severe negative symptoms (Castle 

& Murray 1991, Gur et al. 1996, Riecher-Rossler & Hafner 2000) and have worse 

outcome resulting in higher rates of relapses and institutionalizations (Haro et al. 

2006).  

Women with schizophrenia usually have better social functioning, fewer admissions 

to hospitals (Morgan et al. 2008) and better response to treatment (Goldstein et al. 

2002, Usall et al. 2007). A possible explanation for the better level of functioning 

might be the later age onset of schizophrenia in women that enables them to attain a 

certain level of social functioning by the time they develop full-blown symptoms and 

are first admitted to clinical services, thus contributing to a better clinical outcome. 

The effect of oestrogen in women has also been suggested as a protective factor in 

the development of schizophrenia (Hafner 2000). 

 

 
1.4.1 Premorbid phase and onset 
 
The typical onset is between the ages of 16 and 30, with rare cases developing 

schizophrenia by the age of 12 (childhood-onset schizophrenia) (Russel 1994) or 

after the age of 45 (late-onset schizophrenia) (Folsom et al. 2006). The onset of 

schizophrenia is often preceded by a premorbid phase where subtle and non-specific 

abnormalities in motor, cognitive and social functioning are observed (Figure 1.1; 

Schenkel & Silverstein 2004). The premorbid phase is usually followed by a 

prodromal phase that can last from several months or even years and it is 

characterised by non-specific changes in the person's behaviour and a noticeable 

decline in functioning. At this stage, academic, work and/or social functioning might 

show signs of impairment; the individual might report increased anxiety, 
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suspiciousness or a non-specific feeling that the world seems different. The 

individual is considered at-risk for developing psychosis and often presents with 

attenuated or transient psychotic symptoms; however these are not severe or frequent 

enough to warrant a diagnosis of schizophrenia or any other psychotic-related 

disorder. Onset of schizophrenia is usually accompanied by prolonged and/or acute 

episodes of psychosis that lead individuals to their first hospital admission and 

possibly the first administration of anti-psychotic treatment. There is often significant 

delay from the index individual and his family in seeking clinical management and 

treatment that can last up to 1-2 years (McGlashan 1999). Negative symptoms tend 

to occur later or become more severe over the course of illness (Fuller et al. 2003). 

 

 

 
Figure 1.1 The stages of schizophrenia. Figure adjusted from Tandon et al. 2009. 

 
 

The course of schizophrenia varies substantially across patients. After the first 

psychotic episode, the majority of individuals have one or more relapses in the 

course of illness that may lead to hospitalization. The first ten years of schizophrenia 

are usually characterized by repeated relapses of psychotic episodes of variable 

extent and severity, followed by varied periods of symptoms’ remission (Ciompi 

1980, Andreasen et al. 2005) and accompanied by a decline in cognitive functioning 
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over the course of illness. Over the long-term of the illness, positive symptoms seem 

to subside and become less devastating, partly on account of the anti-psychotic 

medication, and negative symptoms and cognitive dysfunction seem to persist. 

 

 

1.4.2 Outcome 
 
Despite advances in treatment, the outcomes for most schizophrenia patients remain 

poor. Only a small fraction of patients achieve full recovery. The majority of 

patients, after a long course of relapses and remissions, reach a stable phase in the 

illness trajectory where social isolation, impaired social and cognitive functioning 

remain. Most patients have trouble finding or keeping a job and being active in the 

community. Individuals with schizophrenia have higher risk of attempting and/or 

committing suicide (Hawton et al. 2005), increased incidence of comorbid medical or 

psychiatric illnesses (Leucht et al. 2007, Carney et al. 2006) and lower quality of life 

(Eack & Newhill 2007) than the general population.   

The outcome of schizophrenia is influenced by several factors, including premorbid 

functioning, the characteristics of the illness symptomatology and course, and social 

variables. A favourable outcome in schizophrenia has been linked with an acute 

onset of the illness, a later age of onset, the female gender and absence of substance 

abuse. On the contrary, insidious disease onset, early age of onset, the presence of 

negative symptoms and poor compliance to treatment are factors linked to poor 

prognosis. 

The outcome of schizophrenia is also influenced by socioeconomic variables. In the 

multinational World Health Organization study, patients in developing countries had 

a better outcome than patients in developed countries (Jablensky 1992).  
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1.5 Aetiology of schizophrenia 
 

1.5.1 The neurodevelopmental model                

 

The neurodevelopmental hypothesis of schizophrenia has been one of the 

predominant models in schizophrenia research over the past two decades. This model 

postulates that schizophrenia is the result of aberrative neurodevelopmental processes 

that commence long before the onset of clinical symptoms (Weinberger 1987, 

Murray & Lewis 1987) and are caused by genetic and environmental factors 

(presented in more detail in the following subsections) or a combination of both. 

Converging evidence from a wide range of research studies supports the 

neurodevelopmental model. Patients affected with schizophrenia are more likely to 

have experienced pre- and/or perinatal adverse events (such as hypoxia during their 

birth or exposure to maternal virus when in utero) than healthy controls (Geddes & 

Lawrie 1995, Keshavan et al. 2006, Gilmore & Murray 2006, Byrne et al. 2007). 

Additionally, schizophrenia patients often exhibit increased rates of minor physical 

anomalies (Compton and Walker 2009, Ismail et al. 1998) and motor, cognitive and 

behavioural impairments (Weinberger 1996) long before illness onset (even present 

in childhood), thus further supporting the neurodevelopmental hypothesis. Subtle 

brain structural abnormalities have also been found in patients prior to illness onset 

(Lawrie et al. 2001b, Pantelis et al. 2003, Pantelis et al. 2005; to be discussed in more 

detail in Chapter 2). 

To explain the gap between the early developmental insults and the onset of 

schizophrenia in adolescence or early adulthood, researchers have postulated that 

these early developmental abnormalities are likely linked to aberrant brain 

maturational processes (such as excessive synaptic pruning), possibly in synergy 

with some stressor, that ultimately lead to the development of psychotic symptoms 

and schizophrenia.  

The controversy between a neurodevelopmental and neurodegenerative origin of 
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schizophrenia goes back to the years of Kraepelin and is still a matter of debate 

(Lieberman 1999, Woods 1998). However, the idea that these are not mutually 

exclusive and may both characterize the development and course of schizophrenia 

gains significant momentum nowadays. 

 
 
 
1.5.2 Genetics 
 
Genetic predisposition appears to be a major risk factor for the development of 

schizophrenia. A plethora of family, twin and adoption studies have examined the 

contribution of genetic factors to the development of schizophrenia. As already 

mentioned above, the lifetime risk for the development of schizophrenia is estimated 

around 1% in the general population, while having an affected family member 

substantially increases the risk for the disorder (McGuffin et al. 1995, Tandon et al. 

2008). It is estimated that having a second or third degree relative increases the risk 

of developing schizophrenia to 2-6% (Gottesman et al. 1987), while a first-degree 

relative (e.g. sibling, parent) can increase the risk up to 15% (Tandon et al. 2008). A 

useful approach for elucidating the genetic underpinnings of vulnerability to 

schizophrenia is the study of monozygotic and dizygotic twin pairs who are 

discordant for schizophrenia (Sullivan et al. 2003). Dizygotic twins share on average 

50% of their genes, so if one twin is affected, the other has 10-15% risk of 

developing schizophrenia while monozygotic twins discordant for schizophrenia, 

who share almost 100% of their genetic material have 40-50% risk of schizophrenia 

(Gottesman et al. 1987, Sullivan et al. 2003). 

Despite the fact that the role of genetic risk is undisputed, it remains unclear which 

genes or genetic variations confer this risk for schizophrenia from one generation to 

the next. Converging evidence suggests that no single gene is sufficient or necessary 

for the development of schizophrenia but instead many, even thousands of genes 

might act in additive or interactive ways to mediate risk for the disorder (Walker et 

al. 2010). Findings from genome-wide association studies (GWAS) have implicated 

a large number of putative risk genes and susceptibility loci that may be linked to 
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abnormal neurodevelopmental processes associated with schizophrenia. Failure to 

replicate findings in genetic association studies has, however, seriously impeded the 

definite consideration of genes for their involvement in developing schizophrenia 

(Tandon et al. 2008). In one of the largest molecular genetic studies of schizophrenia 

that combined numerous GWAS genotypes into a single analysis, the authors found 

108 independent genomic loci, some of which were not previously reported, that 

increase the risk for the development of schizophrenia (Ripke et al. 2014).  

 

1.5.3 Environmental factors 
 
A series of environmental factors have been postulated to convey an added risk for 

schizophrenia. Maternal virus infections, nutritional deficiencies during pregnancy 

and complications during birth delivery have been linked to an increased liability to 

schizophrenia (Maki et al. 2005, Tandon et al. 2008). Birth during winter or early-

spring months (Torrey et al. 1997) and older paternal age have also been associated 

with a greater probability for developing schizophrenia (Malaspina et al. 2001).  

There is also evidence suggesting that urbanization and migration are significant risk 

factors for the development of schizophrenia (Boydell & Murray 2003, Hickling et 

al. 1999). Finally cannabis abuse during adolescence has been consistently linked to 

an increased risk for schizophrenia (Moore et al. 2007) that was estimated to be 2-

times higher than the relative risk for schizophrenia on an individual level 

(Arseneault et al. 2004). Although a direct causational relationship between cannabis 

use and schizophrenia has not yet been found, it is postulated that cannabis can 

precipitate schizophrenia in vulnerable (or at-risk) individuals (Barnes et al. 2006). 

For a detailed review of the risk factors in schizophrenia, the interested reader is 

referred to Lawrie et al. 2011.  

In general, it is highly likely that a combination of genetic and environmental factors 

interact to cause schizophrenia. It remains, however, elusive exactly which and how 

these factors are involved in the development of schizophrenia. 
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1.6 High-risk paradigms  
 

As explained above, the onset of schizophrenia is usually preceded by a prodromal 

phase characterized by mild, sub-threshold positive symptoms and functional 

decline. Research into the early phases of psychosis may provide important clues to 

the pathophysiological mechanisms underlying transition to psychosis, without the 

confounding effects of anti-psychotic medication. Early intervention strategies 

during this prodromal stage are of great interest because they have been shown to 

provide better outcome and ameliorate the burden of psychosis (Marshall & 

Lockwood 2006). 

Two research paradigms have been employed in order to explore vulnerability 

markers to psychosis. Utilising a clinical high-risk (HR) paradigm, individuals 

presenting with prodromal signs of psychosis are considered at an imminent, 

increased risk of making a transition to full psychosis (also often described as at an 

‘at-risk mental state’ or ARMS) (Fusar-Poli et al. 2013a, Cornblatt et al. 2002, 

Phillips et al. 2000). In general individuals at clinical HR most often present with 

attenuated positive symptoms, brief limited intermittent psychotic symptoms 

(Riecher-Rossler et al. 2007, Yung et al. 2004), mild cognitive deficits (Brewer et al. 

2006, Lencz et al. 2006, Riecher-Rossler et al. 2009) and/or might have a family 

history of psychosis with an accompanying reduction in functioning.  

In familial HR paradigms, individuals are characterised on the basis of having at 

least one affected first or second-degree relative (Lawrie et al. 2001b, Cannon & 

Mednick 1993, Erlenmeyer-Kimling et al. 1997, van Haren et al. 2004). 

Schizophrenia is known to have a heritable component (Harrison & Weinberger 

2005). Thus by examining individuals from multiply affected families diagnosed 

with schizophrenia, it is possible to evaluate whether and to what extent brain, 

clinical and cognitive abnormalities are mediated by a genetic risk to the disorder.  

It should be noted, however, that this delineation of HR subjects is not 

straightforward as many individuals at familial HR often exhibit pre-psychotic 

symptoms and clinical HR subjects might also have a family history of the disorder. 
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A recent systematic review of clinical and familial HR cohorts reported overlapping 

brain changes in the frontal, temporal and cingulate regions (Smieskova et al. 2013). 

In addition, individuals in both HR paradigms also share a higher probability of 

developing schizophrenia than a healthy population, suggesting that several aspects 

of their risk might represent vulnerability markers for the development of the 

disorder. 

 

 
1.7 Aims and outline of the present thesis  
 

The overriding aim of the present thesis was to apply machine learning in order to 

identify predictors of transition to schizophrenia in subjects at high risk for 

developing the illness. Initially, data from the Edinburgh High Risk Study (EHRS), 

which were immediately available, were used with the intention of identifying 

neuroanatomical-based markers of transition and also replicating earlier findings in 

the EHRS literature (Johnstone et al. 2005). The second aim was to examine if our 

classification technique could generalize to other high risk cohorts and especially to 

high-risk individuals that were identified on the basis of having prodromal symptoms 

(clinical HR cohorts). To this aim, baseline neuroanatomical data from the FePsy 

(Fruherkennung von Psychosen) study (Riecher-Rossler et al. 2007) were obtained. 

Finally, the prognostic performance of our classifier was tested by pooling data from 

the EHRS and the FePsy datasets. 

Overall the thesis spans two main areas of study; neuroimaging and machine 

learning. Therefore, relevant concepts from the fields of neuroimaging and machine 

learning are presented in Chapters 2 and 3, respectively. Chapter 2 gives an 

introduction to Magnetic Resonance Imaging (MRI), including an overview of the 

pre-processing steps and standard univariate methods of analysis. A review of MRI 

findings in schizophrenia is additionally presented. Chapter 3 provides an 

introduction to machine learning approaches and the steps of a machine learning-

based classification pipeline. In addition, a literature review of machine learning 

studies in schizophrenia is presented. Chapter 4 presents the subject material in the 
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present thesis and describes the methodology used. Subsequent chapters constitute 

the main experimental sections of the present thesis. Chapter 5 addresses the first aim 

of the thesis and presents the results of applying our classification technique in 

distinguishing at baseline those high-risk subjects that later developed schizophrenia 

from those who did not, yet had psychotic symptoms. Chapter 6 addresses the second 

aim and presents results pertaining to applying the classifier to baseline data from the 

FePsy study. Chapter 7 addresses the final aim of the thesis and examines the 

performance of the classifier on the pooled dataset. Finally, Chapter 8 comprises an 

overall summary of the main findings presented in this thesis and a general 

discussion of limitations and considerations for future work. 
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CHAPTER 2 

 Background: Brain Imaging 
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2.1 Introduction  
 

Recent advances in neuroimaging have enabled scientists to visualize and study the 

human brain in vivo and develop methods to understand its anatomy and function. 

Commonly used neuroimaging modalities include X-ray computed tomography 

(CT), positron emission tomography (PET) and magnetic resonance imaging (MRI). 

The work presented in this thesis will focus on MRI, which is described in the 

following subsections, after a brief introduction to human brain anatomy. 

 

 

2.1.1 Neuroanatomy 
 

The human brain is broadly divided into three parts: the cerebrum, the cerebellum 

and the brain stem. The cerebrum is the largest part of the brain and is composed of 

the cerebral cortex and several subcortical structures, such as the hippocampus and 

basal ganglia. The cerebrum is divided into two hemispheres, left and right, which 

are connected together by a flat bundle of neural fibers, the corpus callosum. 

Outermost to the cerebrum lies the cerebral cortex, which is divided into four lobes: 

frontal, parietal, occipital and temporal (Figure 2.1).  

In general, each lobe in the cerebral cortex specializes in different functions. The 

frontal lobe, which lies at the front of the brain and behind the forehead, is 

responsible for reasoning and planning. It also plays an important role in long-term 

memory. Posterior or caudal (behind) to the frontal lobe, and dorsal (superior) to the 

occipital lobe is the parietal lobe, which is primarily responsible for visuo-spatial 

processing, recognition and navigation. Ventral (inferior) to the parietal lobe is the 

temporal lobe, which is mainly responsible for auditory processing and is associated 

with memory and speech. Finally, the occipital lobe, which lies at the back of the 

cortex, is the visual processing center of the brain.  
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At the back of the brain, underlying the occipital and temporal lobes is the 

cerebellum, also known as 'the little brain', which is responsible for movement 

coordination and balance.  

 

 

(a)                                   (b)                                          (c) 

 

Figure 2.1 The human brain and anatomical planes and directions. (a) A sagittal 
view of the human showing the four lobes and cerebellum. (b) An axial slice of a 
structural MRI scan highlighting the grey matter, white matter and the ventricles (c) 
The anatomical directions and planes in current medical terminology. 

 

 

 

The cerebral cortex has a typical grey color due to grey matter (GM), which is also 

distributed at the depths of the cerebrum (e.g. thalamus, hypothamalus etc.), the 

cerebellum and the spinal cord. The grey matter consists mainly of neuronal cell 

bodies that are responsible for neural processing and several functions. In contrast, 

white matter (WM) consists mostly of glial cells and myelinated axon tracts that 

transmit information (i.e. signals) from one part of the brain to the other and act 

supportively to the function of neurons (e.g. by providing nutrients to the neurons 

etc.). At the center of the brain are the ventricles, which are filled with cerebrospinal 

fluid (CSF) that facilitates the transmission of several substances across brain regions 

and acts like a 'cushion' to the cortex, by protecting it and absorbing pressure.  
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2.1.2 Magnetic resonance imaging 
 

Magnetic resonance imaging (MRI) utilizes the phenomenon of nuclear magnetic 

resonance (NMR) of the hydrogen atom in order to produce high-quality, detailed 

images of internal body structures and any other tissue.  

In order to obtain a structural MRI, the patient is placed inside a MRI scanner. A 

MRI scanner is a cylinder-shaped magnet that generates a powerful static magnetic 

field. The strength of the magnetic field determines to a great degree the quality of 

the produced images. Scanners currently used can generate magnetic fields that range 

from 1T to 4T.  

MRI exploits the spin of the hydrogen nuclei. In the presence of a static magnetic 

field Bo, protons of the hydrogen nuclei tend to align parallel or anti-parallel to the 

direction of the magnetic field and rotate along the axis. A slightly larger number of 

protons spin (or precess) in the direction that is parallel to the field and have less 

energy than those that are anti-parallel, thus creating a net longitudinal magnetic field 

in the z-direction (Figure 2.2a). 

When a radiofrequency (RF) pulse is introduced and emitted at the precession 

frequency of the hydrogen atom, lower-energy protons are excited and jump to a 

higher-energy state, where they align anti-parallel to the field and precess in phase. A 

new transversal magnetic field is thus created in the (x,y)-plane (Figure 2.2). When 

the RF pulse is then switched off, the excited protons gradually release their 

previously absorbed energy and return to the initial lower-energy state in their 

parallel orientation (relaxation phase). This results in a gradual increase in the 

longitudinal magnetic field, which is characterized by the longitudinal T1 relaxation 

time. In addition, in the absence of the RF pulse, protons begin to precess again in 

different phases. This causes a gradual decline in the net transversal magnetic field, 

which is characterized by the T2* relaxation time.  
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 (a)                       (b)                          (c)                        (d) 

 

Figure 2.2 Behavior of hydrogen atom after an RF pulse. (a) The system of 
conventional axes: z–axis is defined by the line that connects toe to head of the 
subject. The xy–plane is parallel to the z–axis. (b) The net longitudinal magnetic 
field in the +z direction, before the introduction of the RF signal. (c) The application 
of an RF pulse flips some protons to the –z direction and this reduces the longitudinal 
magnetic field. (d) Application of RF pulse makes protons rotate in phase, creating a 
transversal (in xy–plane) magnetic field. 
 
 

The construction of contrast images is based on the differing T1 and T2* relaxation 

properties of various brain tissues. In most structural MRI studies, a T1 contrast is 

used to obtain the images, while a T2* contrast is used for functional MRI.  

Two imaging parameters are of great importance in MRI: the time to repeat (TR) and 

the time to echo (TE). TR represents the time interval between two consecutive 

applications of the RF pulse and TE the time lapse from the moment the RF pulse is 

applied and the moment when the signal is measured. For a more thorough 

description of the MRI one can refer to Hashemi et al., 2004.  

 
 
 
2.1.3 Functional MRI 
 
Functional MRI (fMRI) is used to visualize brain activation in response to an 

external stimulus or a certain task. Functional MRI builds on the same technology as 

MRI, with the difference that it exploits the ratio of oxygenated to deoxygenated 

blood instead of the hydrogen atom. It is considered an indirect measure of brain 
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activity, since fMRI does not capture neural activity per se but the hemodynamic 

response instead (Huettel et al. 2004, Lazar 2008). 

When a brain region becomes active, oxygenated haemoglobin flows to that area in 

order to increase blood concentration. What is measured in an fMRI task is the 

difference of oxygenated to deoxygenated haemoglobin. Deoxygenated haemoglobin 

is more paramagnetic than oxygenated haemoglobin (the atoms of a paramagnetic 

material tend to align themselves in the presence of an external magnetic field, thus 

increasing the field strength). This difference induces change in the local magnetic 

field and thus affects the MR signal through the Blood Oxygenation Level 

Dependent (BOLD) contrast (Ogawa et al., 1990). The BOLD signal gives an 

indication of neuronal activity. 

 

 

2.2 Image Processing 
 
The present work is based on the analysis of brain imaging data that were acquired 

using MRI. Each MRI brain scan consists of volume units called voxels, in which an 

aspect of a specific function or structure is recorded.  

In order to achieve spatial correspondence of voxels between subjects, normalization 

of brain scans to a common standard space is required. In addition, a certain number 

of pre-processing steps are usually performed before analysing the data and making 

inferences for specific effects. The scientific question to be investigated and the type 

of task at hand generally determine the processing procedures to be followed. 

In this work, structural MRI data were pre-processed by employing voxel-based 

morphometry. A general overview to the voxel-based morphometry theory and 

methodology is given below. More details about specific steps (and parameters) 

followed in the pre-processing of the MRI scans in this thesis can be found in 

Chapter 4 - Materials & Methods.  
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2.2.1 Voxel-based Morphometry  
 

The aim of voxel-based morphometry (VBM) is to identify differences in the local 

concentration of brain tissue (usually GM), after correcting for large-scale 

differences in gross anatomy and position (Ashburner & Friston, 2000, Mechelli et 

al. 2005). VBM involves spatially normalizing all the structural images to the same 

stereotactic space, extracting GM and WM from the normalized images, smoothing 

the normalized GM and WM segments and finally performing voxel-wise statistical 

comparisons to make inferences about group differences (Figure 2.3). 

One important aspect of VBM is that it is not restricted to a specific brain region, like 

a region-of-interest (ROI) analysis that requires a priori assumptions, but examines 

the whole brain in an unbiased and objective manner.  

 

Figure 2.3 Overview of VBM pre-processing stream. 
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2.2.1.1 Spatial Normalization 

Spatial normalization involves the registration of all images to the same template 

image, by minimizing the residual sum of squared differences. The first step in 

spatially aligning each brain image involves matching the image by estimating the 

optimum 12-parameter affine transformations (Ashburner & Friston 1997). The 

second step accounts for global non-linear shape differences, which are modeled by a 

linear combination of smooth spatial basis functions. This step involves estimating 

the coefficients of the basis functions that minimize the residual squared difference 

between the image and the template, while simultaneously maximizing the 

smoothness of the deformations. Spatial normalization does not aim to match every 

cortical feature exactly but merely correct for global brain differences. 

 

2.2.1.2 Segmentation 

The spatially normalized brain images are then segmented into grey matter, white 

matter and cerebrospinal fluid. Segmentation employs a mixture model cluster 

analysis to identify voxel intensities matching particular tissue types combined with 

an a priori knowledge of the spatial distribution of these tissues in normal subjects, 

derived from tissue probability maps. The segmentation step also incorporates an 

image intensity non-uniformity correction (Ashburner & Friston, 2000) to address 

image intensity variations caused by different positions of cranial structures within 

the MRI head coil. 

A unified segmentation approach has also been adopted in currently used pre-

processing streams (Ashburner & Friston 2005). Unified segmentation is a 

probabilistic framework in which image registration, tissue classification and 

intensity non-uniformity (bias) correction are all combined in the same generative 

model. In this way, the inherent circularity found in standard VBM approaches, 

where image registration requires an initial tissue classification and in turn tissue 

classification requires an initial registration, is here resolved. 
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2.2.1.3 Smoothing 

The normalized, segmented images are then smoothed using an isotropic Gaussian 

kernel. The intensity in each voxel of the smoothed data is a locally weighted 

average of grey matter  (or white matter) density from a region of surrounding 

voxels, the size of the region being defined by the size of the smoothing kernel 

(Ashburner & Friston, 2000). Smoothing also renders the data more normally 

distributed, thus increasing the validity of the following parametric statistical tests. 

Additional pre-processing steps can be included in the standard VBM processing 

pipeline. Creation of GM and WM study specific templates and skull extraction can 

be performed prior to the initial normalization step so that errors pertaining to 

misclassification of tissue can be avoided.  

In the optimized protocol suggested by Good et al. 2001, study-specific templates for 

GM and WM are created by averaging the smoothed normalized GM and WM 

images from all subjects in the study. Then an iterative procedure of normalization 

and segmentation steps is followed. First, the original structural MRI images in 

native space are segmented. The resulting GM and WM images are then spatially 

normalized using the GM/WM study-specific templates to derive the optimized 

normalization parameters. These parameters are then applied to the original, whole-

brain structural images in native space before a second segmentation step takes place.  

Details for the creation of study-specific priors and the exact steps of the pre-

processing pipeline that were followed in this work can be found in Chapter 4 of 

Materials & Methods. 

Following the pre-processing of structural MRI data, voxel-wise statistical analysis 

can then be performed.  
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2.2.2 Univariate methods of analysis 
 
In univariate methods of analysis, each voxel is treated independently in order to 

examine an effect of interest. Parametric statistical models are assumed at each 

voxel, using the General Linear Model (GLM) in order to describe the data as a 

linear combination of experimental effects, potentially confounding variables and 

some error (Friston et al. 1995). Classical statistical inference is then used to test 

hypotheses that are expressed in terms of GLM parameters. Inferences in 

neuroimaging settings may be about structural differences when comparing one 

group of subjects to another (e.g. voxel-based morphometry- Ashburner & Friston 

2000), or neurophysiological indices of brain function (fMRI- Friston et al. 1994).  

 
 
2.2.2.1 Statistical Parametric Mapping 

Statistical Parametric Mapping is the most prevalent approach to characterizing 

effects pertaining to structural and functional anatomy. Two steps are involved in the 

characterization of regionally specific effects: i) modelling the data, i.e. estimating 

parameters using a GLM and ii) making inferences via t- or F-statistics.  

 

 

Figure 2.4 General Linear Model. The General Linear Model assumes that the 
acquired signal intensities in Y are the combination of three components: the design 
matrix X that contains the actual data for the two groups of interest along with 
confounds that model some source of noise. A weight assigned to each component of 
interest (β1) or confound (β2) and some error e.  Source: SPM-Zurich course notes. 
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A GLM model that describes the signal intensities in voxel Y can be expressed in 

terms of some experimental parameters B and some residual variability (error) E. For 

characterising group differences in this voxel, this can be expressed as: Y = XB + e, 

where X is the design matrix that contains the data for the two groups (Figure 2.4). 

Parameters in B are determined for each voxel either using students t-Test or analysis 

of variance (ANOVA). Following the estimation of parameters, t- or F-scores are 

constructed from contrasts, which basically define the hypothesis (i.e. the scientific 

question) to be investigated. Statistical scores are then compared to the expected 

distribution under the null hypothesis, allowing the computation of a p-value for each 

voxel. P-values should be corrected for multiple comparisons to ensure that voxels 

did not reach statistical significance levels by chance on account of the large number 

of voxels that are treated independently. Standard Bonferroni correction could be 

used to control for multiple comparisons. However, given that it requires all tests to 

be independent, this adjustment is too harsh and possibly inappropriate in 

neuroimaging settings where voxels are highly correlated. In contrast, Random Field 

Theory (RFT) takes into account that contiguous voxels are not independent (Brett et 

al. 2003, Worsley et al. 1996, Worsley et al. 2004) and provides a more 

parisimonious approach to controlling for type I errors.  

Type I errors occur when the null hypothesis is rejected when in fact it is true (also 

known as false positive error). For example, a brain region (or voxel) is shown to be 

activated during a particular task when it is actually not or a difference in 

experimental conditions is detected but such a difference does not truly exist.  On the 

other hand, a type II error (or false negative error) occurs when the null hypothesis 

(e.g. no difference between two experimental groups or no voxel activation during a 

task) is accepted when it is actually false. While controlling for type I errors is a 

widely accepted practice in neuroimaging studies (through Bonferroni correction or 

RFT), type II errors are more rarely considered (Bennett et al. 2009). Although, the 

focus on controlling for type I errors is clearly necessary in that it ensures that most 

observed effects represent true differences, it could, also, result in a number of 

negative consequences, such as an increase in type II errors and deficient meta-

analyses (Lieberman and Cunningham 2009). The key in neuroimaging studies is to 
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find a balance between the two types of error; a tricky endeavour in which one must 

consider the desired power and the purpose or nature of the study. This balance could 

be achieved by increasing the sample size in single neuroimaging studies, which is 

not always cost-effective and easy to perform, or by considering studies in the 

aggregate through systematic meta-analyses that can compensate for the low 

statistical power. Increasing sample size will result in less conservative thresholds 

being needed to control for false positives and provide more statistical power to 

detect the more subtle differences and as a result this will reduce false negative errors 

as well. Another possible solution would be to restrict the amount of multiple 

corrections to be performed by either focusing on specific regions of interest or by 

means of small volume corrections (SVC) that would allow for more liberal p-values. 

 

 

 

Figure 2.5 Example of an unthresholded T-map. Axial, coronal and sagittal views of 
T-map overlaid over a single subject anatomical image. 

 

 

Finally, the results of statistical parametric analyses can be illustrated in 3D maps, 

often called SPM maps, where statistically significant differences in brain voxels can 

be highlighted (Figure 2.5). 
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In terms of neuroimaging packages, SPM software is currently the most prevalent 

one for the pre-processing and analysis of brain imaging data. It was first made 

available to the neuroimaging community in 1991 (Friston et al. 1991) and has been 

available ever since from the Wellcome Trust Centre for Neuroimaging at University 

College London (http://www.fil.ion.ucl.ac.uk/spm), along with detailed 

documentation and related publications. The latest version of SPM released is the 

SPM12. However, in this work I have mainly used SPM5 because I found this 

version to be relatively more stable to work with than the other SPM versions. 

 

2.3 MRI findings in schizophrenia 
 
Since the time of Kraepelin and Bleuler, it was strongly believed that schizophrenia 

was an organic brain disorder. Since then, brain imaging studies have attempted to 

unravel the pathophysiology of schizophrenia and reported a host of structural and 

functional brain abnormalities associated with the disorder.  

 

 

2.3.1 Neuroanatomical abnormalities in established and first-episode 
schizophrenia  
 

The first CT study of schizophrenia (Johnstone et al. 1976) reported abnormally 

enlarged lateral ventricles in patients with schizophrenia; a finding that has been 

highly replicated in most subsequent MRI studies (Shenton et al. 2001). Early MRI 

studies have also reported significant reductions in total brain volume in 

schizophrenia patients compared to healthy individuals (Shenton et al. 1997). In 

Lawrie & Abukmeil 1998, the authors reported about 3% global brain volume 

reduction in patients, mainly attributed to grey matter volume loss (of about 4%).  In 

an extensive meta-analysis of regional brain volume studies in schizophrenia, Wright 

et al. 2000 reported that the mean cerebral volume of patients was 2% smaller than 

the mean volume for healthy controls in 58 studies that involved 1,588 schizophrenia 

patients.  

http://www.fil.ion.ucl.ac.uk/spm
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Temporal and frontal lobe volume reductions have also been consistently reported in 

studies comparing schizophrenia patients and healthy controls that employed either 

ROI or VBM (Lawrie & Abukmeil 1998, Wright et al. 2000, Shenton et al. 2001, 

Zakzanis et al. 2000, Honea et al. 2005, Haijma et al. 2013). Medial temporal lobe 

structures, particularly the hippocampus (Velakoulis et al. 2006), amygdala (Lawrie 

& Abukmeil 1998, Nelson et al. 1998) and superior temporal gyrus (Honea et al. 

2005, Sun et al. 2009b), were found to be greatly reduced among patients. In a recent 

meta-analysis conducted by Honea et al. 2005, 50% of the studies included reported 

grey matter deficits in schizophrenia in the left superior temporal, parahippocampal 

and inferior frontal gyrus. Findings in the parietal and occipital lobes have been less 

consistently replicated in schizophrenia research. Moderate evidence for 

abnormalities in the parietal lobe (in 60% of studies reviewed) has been reported in a 

review conducted by Shenton et al. 2001. A certain number of VBM studies and 

meta-analyses have reported volumetric reductions in parts of the parietal or occipital 

lobes (Honea et al. 2005, Ellison-Wright et al. 2008, Hulshoff Pol et. al 2001). 

Divergent evidence has been reported for findings concerning the cerebellum and the 

anterior cingulate. Two recent meta-analyses have reported decreased volume in the 

anterior cingulate in schizophrenia patients (Baiano et al. 2007, Fornito et al. 2009), 

whereas other studies reported increased volume in that region (Kopelman et al. 

2005, McCormick et al. 2005). Similarly, some studies have reported volumetric 

deficits in the cerebellum in schizophrenia patients as compared to healthy 

individuals (Honea et al. 2005, Ellison-Wright et al. 2008), while others have 

reported grey matter increase in the area (Wilke et al. 2001, Suzuki et al. 2002). 

Diversity in findings in schizophrenia studies might be partly attributed to 

methodological differences in the implementation of the pre-processing approaches 

selected and the choice of parameters in the VBM pipeline. Specifically it has been 

suggested that the smoothing kernel and the choice of statistical analysis (either 

voxel-level or cluster-level significance) can significantly impact results (Honea et 

al. 2005). 

Differences in patient groups can be another possible explanation for the 

controversies in the structural abnormalities reported. Patient groups may vary with 
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respect to age, anti-psychotic treatment and/or treatment duration, symptom severity, 

presence of comorbidity and substance use.  

Traditional meta-analyses, that pool together statistical findings from individual 

research studies are invaluable in summarizing the effect size of research findings 

and also identifying and explaining the heterogeneity in findings across different 

studies that may be due to the plethora and diversity of the participating cohorts. A 

recent meta-analysis conducted by Bora et al. 2011 reported that GM abnormalities 

in the bilateral insula, superior temporal and anterior cingulate gyrus and the 

thalamus were more widespread in studies consisting of more males than females or 

where more chronic cases of schizophrenia, with more severe negative symptoms 

were included.  

Prospective meta-analysis efforts, such as those performed by the Enhancing 

NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium (Thompson 

et al. 2014) have the added benefit of standardizing the analyses across individual 

sites and thus promoting their consistency rather than the ad hoc aggregation of 

statistical results. The ENIGMA is one of the largest consortia to date that aims to 

integrate and meta-analyze data sets across the world in order to delineate the 

neurobiological, clinical and genetic underpinnings of various psychiatric disorders. 

In schizophrenia, the ENIGMA-Schizophrenia Working Group provides a 

framework that ranks brain measures based on their effect sizes for the comparisons 

between patients and healthy controls.  In a recent meta-analysis of data from 2,028 

patients and 2,540 controls, the ENIGMA-Schizophrenia Working Group found that 

deficits in hippocampal volume had the largest effect size in differentiating between 

patient and controls (van Erp et al. 2015), followed by deficits in the amygdala, 

thalamus and accumbens. Significant positive associations were also found between 

duration of illness and also age, with putamen and pallidum volume increases in 

schizophrenia patients. 

 

Other studies tried to link the structural brain alterations to distinct clinical 

syndromes in schizophrenia, in an effort to delineate the neurobiological 
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underpinnings of clinical heterogeneity in schizophrenia. It was suggested that 

schizophrenia syndromes can be broadly subdivided into three different nosological 

profiles, each of which highlight the prevalence of either positive, negative or 

disorganized symptoms (Buchanan & Carpenter 1994, Andreasen et al. 1995, Grube 

et al. 1998). A significant number of studies have employed either ROI (Flaum et al. 

1998, Gur et al. 2000, Crespo-Facorro et al. 2004) or VBM (Sigmundsson et al. 

2001, Koutsouleris et al. 2008, Nenadic et al. 2010) approaches in order to evaluate 

whether these three symptom domains engage different patterns of structural 

abnormalities, thus linking symptoms to different neural surrogates. Specifically, 

Koutsouleris et al. 2008 reported that the three clinically defined schizophrenia 

subgroups possibly share common structural abnormalities compared to healthy 

controls in prefrontal and perisylvian structures but specific and extended GM 

density reductions affecting the medial prefrontal, limbic and temporal cortices 

bilaterally were observed in the disorganized symptom dimension. Positive 

symptoms were associated with pronounced alterations in perisylvian regions of the 

left hemisphere and extended GM density reductions in the thalamus while negative 

symptoms were mostly linked to extended alterations within orbitofrontal, medial 

prefrontal, lateral prefrontal and temporal cortices as well as limbic and subcortical 

structures (Koutsouleris et al.  2008). A more recent study employing an advanced 

morphometric analysis method that provides superior sensitivity and specificity 

compared to VBM approaches by accounting for the interrelatedness of spatial 

information, confirmed the prefronto-perisylvian grey matter reduction pattern found 

in the schizophrenia group as a whole, but also revealed marked brain volume 

changes within the three subgroups, including pronounced reductions in the 

cerebellum in the negative symptom dimension, marked GM volume losses in the 

ventro-medial prefrontal and occipitotemporal cortex associated with positive 

symptoms (Zhang et al. 2015). The disorganized symptom dimension presented a 

relative preservation of GM compared to the other symptom dimensions (Zhang et al. 

2015). 
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Similar structural abnormalities to those described above in schizophrenia patients 

have also been identified in groups of patients in the first episode (FE) of the disorder 

(Kubicki et al. 2002, Steen et al. 2006). First-episode refers to individuals who have 

experienced their first psychotic episode, and are thus in the early phase of 

schizophrenia, and is operationally defined as the first psychiatric hospitalization 

(Lawrie et al. 2001b, DeLisi et al. 1991, Chua et al. 2003) or first contact with 

psychiatric services or even the first administration of anti-psychotic treatment (Cahn 

et al. 2002, Zipursky et al. 1998). In general most MRI studies corroborated a similar 

network of regions being affected in FE as in the chronic schizophrenia (Shenton et 

al. 2001). Specifically, MRI-based studies reported deficits in total brain volume 

(Vita et al. 2006, Steen et al. 2006), GM volume reductions in temporal and 

prefrontal areas including the anterior cingulate gyrus (Kubicki et al. 2002) and the 

thalamus (Meisenzahl et al. 2008a, Watson et al. 2012), volumetric deficits in the 

hippocampus (Velakoulis et al. 2006, Vita et al. 2006, Meisenzahl et al. 2008a, 

Watson et al. 2012, Steen et al. 2006) and an enlargement of the lateral ventricles in 

FE patients compared to healthy controls (Steen et al. 2006, Vita et al. 2006). 

These structural abnormalities are however less pronounced in FE compared to the 

established state, possibly suggesting active disease processes around the time of 

onset, although genetic factors, substance misuse, antipsychotic drug treatment and 

other factors may be partly responsible (Meisenzahl et al. 2008a, Olabi et al. 2011). 

Additionally, the fact that more extended brain alterations are observed in chronic 

schizophrenia compared to FE suggests that additional cortical and sub-cortical brain 

regions become involved in the disease process in the advanced stages of 

schizophrenia (Meisenzahl et al. 2008a).  

However, there is no consensus in findings in FE schizophrenia studies with regards 

to the brain regions involved. Kubicki et al. 2002 did not report any reductions in 

medial temporal lobe structures and interestingly enough, a meta-analysis by Vita et 

al. (2006) did not confirm volumetric reductions in the temporal lobe and amygdala 

in FE patients.  

Despite any controversies in structural findings, the study of FE schizophrenia is 

useful because it allows the detection of regional effects of the disease at the time of 
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onset and represents a useful tool in assessing hypotheses about progressive brain 

changes in the longitudinal course of schizophrenia. 

Converging evidence reveals that ongoing brain volume changes in schizophrenia 

might not be limited to the early, first-episode phase of the disorder but progress over 

the course of the illness. Longitudinal studies of schizophrenia have suggested 

continuous progressive lateral ventricle increases (Van Haren et al. 2008a, DeLisi et 

al. 2004, Hulshoff & Kahn 2008, Olabi et al. 2011), progressive whole-brain volume 

loss (Van Haren et al. 2008a) and brain tissue volume decreases, especially in frontal 

(DeLisi et al. 2004) and temporal GM volume (Hulshoff & Kahn 2008) in chronic 

patients with schizophrenia compared to healthy individuals. Ongoing volume 

reductions in the right caudate and thalamus have also been reported (Van Haren et 

al. 2007). No progressive volumetric changes in chronically ill schizophrenia patients 

in the hippocampus were found (Wood et al. 2001). More widespread and 

pronounced alterations in brain tissue were found to be associated with poor 

outcome, severe negative symptoms and more pronounced neuropsychological 

impairment (Hulshoff & Kahn 2008). Specifically, progressive ventricular 

enlargement was found to be associated with poorer outcome (Lieberman et al. 2001, 

Ho et al. 2003), greater frontal and temporal volume reductions were correlated with 

less improvement in negative symptoms (Gur et al. 1998, Mathalon et al 2001, Kasai 

et al. 2003) and poorer neurocognitive and executive functioning was associated with 

more pronounced frontal and parietal GM volume reductions (Lieberman et al. 2005, 

Hoet al. 2003) as patients progressed from their first episode to the chronic state.   

The ascertainment of progressive brain changes is of fundamental importance as to 

whether schizophrenia is a neurodevelopmental or neurodegenerative disorder. The 

fact that ongoing brain alterations continue over the course of the illness in chronic 

patients suggests that one or more active pathophysiological processes take place 

during the illness. Identification of those pathophysiological processes is of high 

clinical relevance as it could advise strategies to stop or reverse the disease process 

and possibly provide better outcome. In this direction, longitudinal studies of healthy 

controls are highly relevant in order to distinguish normal brain changes, possibly 

associated to age, gender or other factor, from aberrant alterations associated with 
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schizophrenia. 

A potential confounding factor in most schizophrenia studies is the effect of anti-

psychotic medication since it is very difficult to establish whether (progressive) brain 

volume changes are a result of anti-psychotic treatment (or not) and to what extent 

(Van Haren et al. 2008b). Volume increases in the basal ganglia, and specifically the 

caudate nucleus, have been consistently linked to antipsychotic treatment (Chakos et 

al. 1994, DeLisi et al. 2006, Keshavan et al. 1994). Cumulative dose of anti-

psychotic drug treatment was linked to progressive cerebral GM volume deficits, 

particularly in the superior medial frontal gyrus (Cahn et al. 2002) and also 

progressive decreases in frontal lobe volumes (Madsen et al. 1999). Another study 

compared the effect of typical (haloperidol) and atypical (olanzapine) anti-psychotic 

medication and reported progressive whole-brain GM volume loss in both first-

episode and chronically ill patients receiving haloperidol compared to olanzapine, 

where no such effect was found (Lieberman et al. 2005). Administration of typical 

and atypical anti-psychotic medication seems to affect the basal ganglia volume 

differently as well, as volume decreases were reported when changing to atypical 

antipsychotic treatment (Chakos et al. 1995, Scheepers et al. 2001). 

 

 

2.3.2 Neuroanatomical abnormalities in high-risk individuals 
 
In order to minimize the confounding effect of anti-psychotic medication and shed 

light to the nature and extent of pathophysiological processes underlying 

schizophrenia researchers have begun to study anti-psychotic naive individuals at 

imminent risk of developing the disorder either due to sub-threshold clinical 

symptoms (clinical HR paradigms- Fusar-Poli et al. 2013) and/or increased genetic 

liability (genetic HR) (Cannon et al. 2005).  A detailed presentation of the two HR 

paradigms can be found in Chapter 1.  

Converging evidence suggests that baseline structural abnormalities, qualitatively 

similar to the established state, are already evident before the onset of schizophrenia 
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albeit to a lesser extent. The identification of neuroanatomical abnormalities already 

present in HR cohorts would allow the evaluation of correlates of vulnerability to 

psychosis, possibly reflective of its neurodevelopmental origin, and serve as a basis 

for the further distinction of markers of transition to psychosis (Bois et al. 2015, 

Borgwardt et al. 2011). Clinical high-risk studies employing VBM methodology 

have reported structural abnormalities in frontal, lateral temporal, medial temporal 

and limbic regions already present in HR subjects compared to healthy individuals 

(Borgwardt et al. 2007a, Borgwardt et al. 2007b, Borgwardt et al. 2008, Meisenzahl 

et al. 2008b, Mechelli et al. 2011, Dazzan et al. 2012). In Job et al. 2003, the authors 

found GM density reductions in the anterior cingulate (bilaterally) and left 

parahippocampal gyrus in individuals at HR for familial reasons against healthy 

controls. 

 A recent voxel-based meta-analysis concluded that individuals at HR, for both 

clinical and familial reasons, showed reduced GM volume in the right superior 

temporal gyrus, left precuneus, left medial frontal gyrus, right middle frontal gyrus, 

bilateral parahippocampal, hippocampal regions and bilateral anterior cingulate 

(Fusar-Poli  et al. 2011) compared to healthy control subjects. Another meta-analysis 

of whole-brain VBM studies employing familial HR cohorts found GM reductions in 

the right superior frontal gyrus, left insula, thalamus and putamen but surprisingly 

increased GM volumes in the left medial frontal gyrus (Cooper et al. 2014).  

 

A plethora of studies have also examined the high risk individuals, who go on to 

develop psychosis (HR-T) against individuals that do not make a transition (HR-NT) 

with the aim of identifying the neuroanatomical markers associated with transition to 

schizophrenia, and other related psychoses. Neuroanatomical deficits in HR subjects 

who later developed psychosis were found in clusters of brain regions spanning the 

frontal, orbito-frontal, temporal and medial temporal lobe structures, the cerebellum 

and the cingulate gyri (Borgwardt et al. 2007a, Borgwardt et al. 2007b, Borgwardt et 

al. 2008, Pantelis et al. 2003, Koutsouleris et al. 2009a, Mechelli et al. 2011, Dazzan 

et al. 2012). The meta-analysis conducted by Fusar-Poli and colleagues (2011) 

concluded that HR-T individuals showed GM volume reductions in the right inferior 
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frontal and the right superior temporal gyrus at baseline, compared to HR-NT 

subjects. Another meta-analysis reported subtle GM volume decreases in the 

cingulate, insular and prefrontal cortex and the cerebellum (Smieskova et al. 2010) 

occurring in HR-T subjects.  

Longitudinal studies have also focused on the progressive changes underlying the 

onset of psychosis. In a study conducted by Pantelis et al. (2003), the authors 

reported continuous GM volume reductions in the left parahippocampal, fusiform, 

orbitofrontal and cerebellar cortices and the cingulate gyrus in HR-T individuals 

compared to HR-NT. Another study found longitudinal volume reductions in the 

superior frontal, orbitofrontal, inferior temporal medial and superior parietal cortex 

and in the cerebellum (Borgwardt et al. 2008). In the only genetic HR study, the 

authors reported progressive GM density reductions in the left inferior temporal 

gyrus, uncus and the right cerebellum (Job et al. 2005).  

 

 

2.4 Functional MRI findings in schizophrenia 

 

Functional MRI studies in schizophrenia have focused on identifying a network of 

brain regions that are responsible for abnormal functioning in the disorder. The goal 

behind these studies is to demonstrate how failure to activate a network of brain 

regions (and/or an over-activation of another network) leads to behavioural and 

cognitive deficits related to the illness. Functional MRI tasks in schizophrenia 

include motor, working memory, verbal learning and memory, emotion processing, 

and decision-making tasks. Several studies have examined the fronto-temporal 

connectivity, a circuitry that is considered to play an essential role in executive 

functioning, learning and memory and reported abnormal activation in a network of 

brain regions, particularly implicating the prefrontal cortex (Meyer-Lindenberg 2010, 

Fusar-Poli et al. 2007) and connectivity from it to the rest of the brain (Lawrie et al. 

2002). 
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The majority of fMRI studies have demonstrated a reduced connectivity in patients 

in all subgroups of schizophrenia (chronic schizophrenia and first-episode patients, 

high-risk individuals) relative to healthy control subjects (Petterson et al. 2011) and 

an involvement of frontal brain regions with thalamic and cerebellar regions 

(Whalley et al. 2005) or temporal regions (Lawrie et al. 2002). A reduced activation 

in the prefrontal cortex and in the anterior cingulate was observed in schizophrenia 

patients compared to healthy controls in a meta-analysis of 41 executive fMRI tasks 

(Minzenberg et al. 2009) and in a working memory task (Glahn et al. 2005).  

A recent meta-analysis by Fusar-Poli and colleagues (2007) found that 

neurophysiological abnormalities in the prefrontal cortex, particularly involving the 

dorsolateral, ventrolateral and anterior prefrontal cortex, are present in HR subjects. 

Similar functional dysfunctions are also found in first-episode patients to a greater 

extent (Fusar-Poli et al. 2007). Another meta-analysis focusing on genetic HR 

cohorts, reported increased activation in the right posterior superior temporal gyrus 

and hypo-activation of the left thalamus and cerebellum in HR subjects compared to 

controls (Cooper et al. 2014). 

In a cross-sectional study of familial HR individuals, increased activation in the left 

parietal lobe and decreased activation in the anterior cingulate cortex was observed 

in HR subjects that subsequently developed schizophrenia relative to healthy controls 

(Whalley et al. 2006). Compared to HR-NT, HR-T individuals demonstrated smaller 

increases in activation with increasing task difficulty in the right lingual gyrus and 

bilateral temporal regions (Whalley et al. 2006). 
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2.5 Conclusions 
 
The advent of MRI has provided promising leads towards the identification of the 

neurobiological processes underlying schizophrenia. In general, it appears that 

neuroanatomical and neurophysiological abnormalities occur at different stages of 

the disorder and progress as patients transit to a more chronic state of the illness. 

Active neurobiological alterations might also take place before the onset of 

schizophrenia; some of which may be specifically linked to a later onset of 

psychosis, as opposed to an increased vulnerability. The identification of markers of 

transition to psychosis is of high clinical relevance because early intervention 

strategies could provide a significant effect on clinical outcome. 

However, the identification of neuroanatomical and neurophysiological markers in 

schizophrenia warrants some degree of concensus in imaging finding. As it has been 

presented and discussed in the previous sections of this chapter, this has not always 

been the case. Contrasting findings in the imaging literature on schizophrenia may 

reflect either differences in the clinical populations or methodological issues. Clinical 

populations often differ in the number of subjects included in the analysis which 

significantly influences results and statistical power of the analyses (Salmond et al. 

2002). Additionally, clinical cohorts may differ with respect to age, duration of 

illness and symptom severity scales, the use and type of antipsychotic medication 

(typical or atypical), substance abuse and the existence of comorbid illnesses (such as 

depression). These factors have been shown to have modulatory effects on 

neuroimaging findings (Bora et al. 2011, Fusar-Poli et al. 2011, Haijma et al. 2013, 

Van Erp et al. 2015) and may partly account for the existing variability. 

From a technical point of view, variation in the preprocessing and the image analysis 

methodology applied (Fusar-Poli et al. 2010), such as the size of the smoothing 

kernel, the method used for correcting for multiple comparisons or the significance 

and thresholding scheme, are likely to have influenced imaging findings (Fusar-Poli 

et al. 2011). Differences in image acquisition parameters and the quality of the 

acquired images (with respect to the signal to noise ratio) could significantly impact 
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on segmentation procedures, which is in turn a potential cause of varied brain 

measures and findings (Abdulkadir et al. 2011, Fusar-Poli et al. 2011). Such 

variation in image findings leads to an urgent need for replication studies and also 

meta-analyses that could estimate the effect sizes of those findings across individual 

studies and account for the confounding effect of clinical- and technical-related 

factors. 

Another important anchor in the identification of biomarkers in schizophrenia is their 

potential for clinical translation which requires a shift away from considering 

differences at the group-level and towards making inferences at the individual level. 

Mass-univariate methods of analysing imaging data are, however, limited to making 

inferences at the group level.  Moreover, region-of-interest (ROI) methods require a 

priori assumptions to be made about regionally specific effects and are thus confined 

to predefined brain regions. Voxel-based morphometry and other approaches to 

computational morphometry on the other hand, provide an unbiased, whole-brain 

approach to studying brain abnormalities but require brain averaging and can neither 

determine subtle and diffuse networks of neuroanatomical and neurophysiological 

abnormality across the brain nor capture individual deviations from the norm 

(Davatzikos 2004). To address these limitations, the neuroimaging community has 

turned to machine learning methods in an effort to detect the MRI correlates of 

clinical relevance and utility both because of their ability to examine voxels jointly 

and their potential for making inferences at a single-subject level.  
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CHAPTER 3 

Background: Machine learning 
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Work in this chapter has been presented in: 

Zarogianni E, Moorhead TWJ, Lawrie SM. Towards the identification of imaging 

biomarkers in schizophrenia, using multivariate pattern classification at a single-

subject level. Neuroimage Clin. 2013;3:279-289.  

 

 

3.1 Introduction  

 

In this chapter, I present the application of machine learning in the analysis of 

structural and functional MRI data in diagnosing schizophrenia, particularly for 

making an early prediction in people at high-risk of developing the disorder. Firstly, 

a brief overview of machine learning theory is given along with a description of the 

most common processing steps in the image analysis pipelines. Then, I present and 

discuss the studies that have employed machine learning in schizophrenia research 

and finally, I analyze the main practical challenges and limitations that machine 

learning methods suffer from, in the context of their potential integration into routine 

clinical practice, before concluding with future research directions.  

 

 

3.2 Overview of machine Learning 

 

Machine learning (ML) is a term used to describe a set of methods for detecting 

patterns in data that would enable reliable future predictions. There are two major 

methodological approaches: supervised and unsupervised machine learning 

techniques. In supervised learning, the goal is to find a mapping from the data 

instances xi to a set of desired outputs yi, given a set of labeled input-output pairs 

D={xi, yi}, for i=1..N instances. Here, D is the training set, consisting of feature 

vectors xi and their corresponding labels drawn from label set yi and N is the number 

of the training instances. If yi is a categorical or nominal variable drawn from a finite 

set, for instance yi = {1, 2 ,....C}, then the problem is known as a classification 
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problem. In its simplest form where C = 2 (and thus yi = {-1, 1}) this is a binary 

classification problem, whereas if C > 2, then there is a multi-class classification 

problem. On the other hand, if yi is a real-valued (continuous) variable, the problem 

is known as regression. In unsupervised learning, on the other hand, the goal is to 

identify an inherent structure in the data in order to classify given data instances D= 

{xi} into groups (clustering). 

 

 

 

3.2.1 Classification pipeline  

 

The following steps in the image analysis pipeline are common to most machine 

learning methods: 

 

Preparation of the training set. The first step in an ML analysis is the creation of the 

training set. This procedure involves two main processes: i) feature extraction and ii) 

feature selection. Feature extraction involves the transformation of the original data 

set into a form that would be meaningful for the classifier to process. In the context 

of neuroimaging, this procedure entails the extraction of feature vectors 

corresponding to intensity values of voxels from each subject's scan. Feature 

selection involves a procedure for selecting those feature vectors that are better at 

discriminating between the classes and thus could facilitate and speed up the 

classification process. Feature selection can be performed either with a 

dimensionality reduction technique (such as Principal Component Analysis) or by 

constraining the research to specific brain areas for which the research team 

possesses prior knowledge about their likely involvement in the condition under 

investigation. Feature extraction is an obligatory step in the classification pipeline, 

but feature selection approaches are optional. 

 

Model training and testing. In the model training step of the pipeline, the chosen 

algorithm has to learn the relationship between the training set and the labels 
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associated with it, while trying to optimize the algorithm's parameters in order to 

maximally discriminate between the groups. In the testing phase, the algorithm tries 

to predict the class label (in the case of classification) or the continuous variable (in 

the case of regression) of previously unseen data instances. It is very important that 

the algorithm generalizes well to new instances. That is, the testing set should not 

include instances of the training set to avoid circularity or data overfitting. Cross-

validation techniques are a popular way to ensure this. In k-fold cross validation, the 

original data set is split into k non-overlapping sets and then the algorithm is trained 

using k-1 subsets and the left-out set is used in the testing phase. The procedure is 

repeated k times, so that every subgroup is used in the testing phase. 

 

Performance evaluation. The final step is the evaluation of classification 

performance of the method. This usually includes measures such as sensitivity, 

specificity and accuracy. Sensitivity refers to the proportion of actual positive cases 

correctly identified (e.g the number of schizophrenia patients identified as in the ill 

group or class) while specificity refers to the proportion of the negatives cases 

correctly classified (e.g healthy controls correctly identified as being healthy). 

Accuracy refers to the overall amount of correct classifications across the groups.  

 

 

 

3.3 Machine learning in psychiatry 

 

Machine learning methods have already been applied in the analysis and 

interpretation of functional and structural MRI data (Pereira et al. 2009, LaConte et 

al. 2005, Lemm et al. 2011), in 'mind reading' paradigms (Cox & Savoy 2003, 

Haynes & Rees 2006), the classification of cognitive states (Mitchell et al. 2004, 

Mourao-Miranda et al. 2005), and in lie detection approaches (Davatzikos et al. 

2005a). More recently, classification algorithms have been applied to diagnose 

neurological and psychiatric disorders (Kloppel et al. 2011, Orru et al. 2012, Bray et 

al. 2009), such as dementia (Kloppel et al. 2008a, Kloppel et al. 2008b, Davatzikos et 
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al. 2011), depression (Fu et al. 2008, Mourao-Miranda et al. 2011) and schizophrenia 

(Fan et al. 2008a, Davatzikos et al. 2005b, Koutsouleris et al. 2009b, Koutsouleris et 

al. 2012a). Multivariate pattern recognition techniques provide the possibility of 

making inferences about a subject's health status at an individual level and, thus, are 

well suited for clinical decision making purposes. 

 

 

 

3.3.1 Machine learning in schizophrenia  

 

In the past few years, an increasing number of studies have employed machine 

learning to investigate the neuroanatomical and neurophysiological correlates of 

schizophrenia. These studies can be divided into three main categories: (i) studies 

that examine the diagnostic power of machine learning in distinguishing between 

healthy controls (HC) and schizophrenia patients (SCHZ), (ii) studies which examine 

the potential of machine learning to make an early diagnosis of schizophrenia 

(prediction) by comparing scans at baseline of people at high risk (either for familial 

or clinical reasons) of making a transition to the disorder and (iii) studies which 

examine the performance of machine learning in predicting progression of the 

disease and response to treatment, usually by examining the baseline scans of first-

episode (FE) patients with a later known clinical outcome or treatment response.  

 

 

3.3.1.1 Diagnostic Studies of Schizophrenia 

The first study to apply a sMRI-based classification method was conducted by 

Davatzikos et al. (2005b), who tested the performance of Support Vector Machine 

(SVM) in classifying 69 schizophrenia patients (46 men, 23 women) and 79 matched 

healthy controls (41 men, 38 women), reaching a 81% classification accuracy via 

leave-one-out cross-validation. The authors also tested individual men and women 

classifiers and observed similar classification results (85% accuracy for the male and 

82% for the female classifier), possibly implying good generalisability of the MRI-
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based diagnostic system. In another study by the same group, Fan et al. 2007 

achieved an impressive 91.8% and 90.8% accuracy in distinguishing between the 

same 23 female SCHZ patients and 38 female HC and 46 male SCHZ patients and 41 

male HC respectively. Here, the development of an adaptive regional feature 

extraction method, that automatically grouped morphological traits of similar 

classification power, along with a SVM-Recursive Feature Elimination method, that 

selected features with the highest discriminatory power, may possibly account for 

what still remains one of the best diagnostic performances observed in chronic 

schizophrenia diagnostic studies published to date. The researchers achieved this 

diagnostic performance by using just 39 features for the female and 44 features for 

the male individual classifiers. This diagnostic result was, however, obtained from a 

feature set that might be specific to this sample group and the result may well not 

generalize to other data samples. In the context of examining family members of 

schizophrenia, only one study has up to date investigated the role of genetic factors 

in the disorder, using MRI-based machine learning (Fan et al. 2008a). Fan et al. 

2008a observed that unaffected family members share similar phenotypic patterns to 

their affected schizophrenia relatives. Although these initial results are encouraging, 

longitudinal studies are, however, essential in determining whether this 

endophenotypic pattern is present before disease onset and how it relates (if so) to 

transition to psychosis in unaffected relatives. 

Evaluating a classifier on a totally independent cohort is of course the ideal way of 

examining the generalizability and robustness of the classifier (Nieuwenhuis et al. 

2012, Schnack et al. 2014). Unfortunately, the consequent need for large data sets 

makes this endeavor very difficult. In an impressive two-stage study, Kawasaki et al. 

2007 observed a 80% classification accuracy using a partial least squares model that 

was trained on 30 male HC and 30 male SCHZ patients and tested on a new, 

independent cohort of 16 male controls and 16 SCHZ patients. In a particularly large 

classification study employing an independent test set, diagnostic accuracy was 

however only about 70% (Nieuwenhuis et al. 2012), when testing a SVM classifier 

developed on 239 participants (128 SCHZ) on a completely independent sample of 

277 subjects (155 SCHZ). The use of a larger validation set may partly account for 

the lower diagnostic accuracy, if one takes into account the possible inclusion of 
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more variable schizophrenia phenotypes in this larger group.  

 
 
 
Table 3.1 Studies employing machine learning and structural MRI to distinguish 
patients with schizophrenia from healthy controls. 
 

Author Sample (N, diagnostic 
classification) 

 ML methods and 
scanner field 

strength 

Classifier's 
Performance 
(accuracy %) 

Davatzikos et al. 

(2005b)  

HC=79, SCHZ=69 
 

DSM-IV 

SVM 
1.5T 

81.1 

Fan et al. (2007)  HC1=38 (females) 
SCH1=23 (females) 

HC2=41 (males) 
SCH2=46 (males) 

 
DSM-IV 

SVM-RFE 
1.5T 

HC1 vs SCH1= 91.8 
HC2 VS SCH2=90.8 

Kawasaki et al. 

(2007) 

Train set: HC=30 
SCHZ=30 (males) 
Test set: HC=16 

SCHZ=16 (males) 
 

DSM-IV 

DA & MLM 
1.5T 

80 

Yoon et al. 

(2007)  

HC=52, SCHZ=53 
 

DSM-IV 

SVM 
1.5T 

>90 

Sun et al. 

(2009a)  

HC=36, ROS=36 
 

DSM-IV 

SMLR 
1.5T 

86.1 

Karageorgiou et 

al. (2011)  

HC=47, ROS=28 
 

SCID-I for DSM-IV 
 

sMRI & 
Neuropsychological 

Data 
PCA-LDA 

3T 

92 

Kasparek et al. 

(2011)  

HC=39, FE=39 
 

ICD-10 

MLDA 
1.5T 

72 

Greenstein et al. 

(2012)  

HC=99, COS=98 
 

DSM-IIIR/IV 

RF 
1.5T 

73.7 
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Abbreviations: ARMS-T, at-risk mental state with transition to sch izophrenia; COS, child-

onset schizophrenia; DA, discriminant analysis; DSM-IV, Diagnostic and Statistical Manual 

of Mental Disorder Fourth Edition; DSM-IIIR,  Diagnostic and Statistical Manual of Mental 

Disorder Third Edition Revised ; FE, first-episode schizophrenia patients; HC, healthy 

controls; ICD-10, the International Statistical Classification of Disease and Related Health 

Problems; LDA, linear discriminant analysis; MLDA, Maximum-uncertainty linear 

discrimination analysis; MLM, multivariate linear model; PCA, principal components 

analysis; RF, random forests; ROS, recent-onset schizophrenia; SCHZ, schizophrenia 

patients; SCID-I, Structural Clinical Interview; SMLR, sparse multinomial logistic 

regression; SVM, Support Vector Machine; SVR, Support Vector Regression; SVM-RFE, 

Support Vector Machine with Recursive Feature Elimination; 

 

 

 

 

Several studies have, alternatively, employed fMRI in an attempt to establish the 

diagnosis in groups of people with schizophrenia and controls (Table 3.2). These 

studies have included various cognitive tasks (Costafreda et al. 2011, Yoon et al. 

2012) or resting-state fMRI (Calhoun et al. 2006, Shen et al. 2010, Venkataraman et 

Nieuwenhuis et 

al. (2012) 

Train set: HC=111 
SCHZ=128 

Test set: HC=122 
SCHZ=155 

 
DSM-IV 

SVM 
1.5T 

70.4 

Zanetti et al. 

(2013)  

HC=62, FE=62 
 

DSM-IV 

SVM 
1.5T 

HC vs FE =73.4 

Borgwardt et al. 

(2012) 

HC=22, FE=23 
ARMS-T=16 

 
DSM-IIIR 

ensemble SVM 
1.5T 

HC vs FE=86.7 
HC vs ARMS-T=80.7 
FE vs ARMS-T= 80 

Schnack et al. 

(2014) 

Train set: HC=66, 
SCHZ=66  

 
Test set: HC=43, 

SCHZ=46  
DSM-IV 

SVM 
 

1.5 T: train set 
3T: independent test 

set 

HC vs SCHZ 
i) Cross 

validation: 
90 

ii) Independen
t test set:76  
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al. 2012), in which the subject is simply instructed to remain still during scanning, 

not to think of anything in particular and not fall asleep. In recent fMRI studies, 

resting-state paradigms are often preferred to task-related approaches, as they are 

free from task-related confounds and easier for patient populations to perform, 

although they do have limitations (Morcom & Fletcher 2007). The diagnostic 

accuracy of resting-state fMRI-based classification methods ranged from 75% (Jafri 

& Calhoun 2006, Venkataraman et al. 2012) to 92% (Costafreda et al. 2011, Shen et 

al. 2010), suggesting that resting-state fMRI has the potential to be useful in clinical 

practice. Results should, however, be interpreted with caution since the sample sizes 

in most cases (Shen et al. 2010, Anderson et al. 2010) were very small, potentially 

introducing a bias to the classification (Demrici & Calhoun 2009). 

A recent meta-analysis of 38 multivariate pattern recognition studies, including a 

total of 1602 schizophrenia patients and 1637 healthy controls and both structural 

and functional MRI studies, concluded that neuroimaging-based phenotypes can 

differentiate patients from controls with an overall sensitivity and specificity of 80%, 

with age and disease stage having significant effects on sensitivity and antipsychotic 

medication significantly impacting on specificity levels (Kambeitz et al. 2015).  

Sample size is, also, an important consideration in neuroimaging-based studies and 

might also affect classification performance. Although counterintuitive, based on the 

studies presented here (see Tables 3.1, 3.2 and 3.3), classifiers using small sample 

sizes seem to have favored diagnostic performance (Fan et al. 2007, Kawasaki et al. 

2007, Yoon et al. 2007, Sun et al. 2009b, Anderson et al. 2010, Yang et al. 2010) 

whereas in studies that emloyed larger participating cohorts, the classification 

accuracy was lower (Greenstein et al. 2012, Zanetti et al. 2013, Nieuwenhuis et al. 

2012), possibly due to the fact that the latter studies have included more variable 

patient and/or control cohorts, exhibiting a wider range of phenotypic manifestations. 

However, despite this observation, it should be particularly noted that large sample 

sizes are needed for building (and testing) reliable and robust models as well as 

encompassing the range of clinical profiles of schizophrenia patients presented in 

routine clinical practice.  

 Differences in the image analysis and classification pipelines might, also, partly 
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explain such variation in findings. The introduction of refined feature selection 

methods can boost classifiers' performance, as it was observed in Fan et al. 2007, 

compared to a previous study of the same group (Davatzikos et al. 2005b). The 

choice of the machine learning method is another crucial factor in the performance of 

the diagnostic model as well. Notably, SVM's tend to provide better classification 

results (Pereira et al. 2009) (Table 3.1) than other pattern recognition methods, 

although, a direct comparison between the machine learning methods used in the 

presented studies and classification performance cannot be performed due to other 

differences in the imaging and clinical characteristics of the samples used.  

The clinical characteristics of patients may play a significant role in the observed 

fluctuations in accuracy across diagnostic studies (Greenstein et al. 2012, Zanetti et 

al. 2013). Machine learning in FE schizophrenia studies seem to deliver worse 

diagnostic performance (Kasparek et al. 2011, Zanetti et al. 2013, Yoon et al. 2012) 

than studies of established schizophrenia (see Tables 3.1 and 3.2), possibly due to the 

less pronounced brain alterations in the former group (Kambeitz et al. 2015), 

although diagnostic accuracies can be as high as 92% (see Table 3.1). As was 

previously mentioned, the first-episode stage of schizophrenia is characterized by 

less marked brain changes than in chronic schizophrenia, and this could partly 

account for the accuracy fluctuations observed. In addition, comorbid disorders and 

patient recruitment procedures may, also, have an effect on the sensitivity of the 

classifier in detecting disease-specific patterns. For instance, Zanetti et al. (2013) 

recruited a population-based sample of FE patients with comorbid substance use 

disorders, using epidemiological methods in order to ensure representativeness of 

'real-world' individual cases, and observed just 73.4% accuracy in classifying them 

against HCs. In childhood-onset schizophrenia (COS), only one study examined the 

neuroanatomical correlates in 98 COS subjects (all below the age of 13) versus 99 

HCs (Greenstein et al. 2012) and observed moderate diagnostic accuracy (73.7%), 

possibly due to the young age of their patients and the fact that their unconsolidated 

brain structure may hinder the detection of clear, concrete brain patterns that would 

facilitate classification. Factors associated with the use of anti-psychotic drug 

treatment are, also, a serious consideration because medication may have an effect on 

brain structure (Pantelis et al. 2003, Navari & Dazzan 2009) possibly even up to a 
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point that the sensitivity of the classifier to detect morphological abnormalities 

specifically associated with schizophrenia diagnosis is compromised.  

A possible way to control for the confounding effect of anti-psychotic medication 

would be to remove from any analyses those brain regions that are known to be 

affected by anti-psychotic medication, as seen in the study conducted by 

Nieuwenhuis et al. 2012 where the authors masked out the stratium and tested the 

diagnostic accuracy of a SVM-based classifier by excluding (and including) this 

brain region. However, given the contrasting findings on the effects of anti-psychotic 

medication on brain structure (Smieskova et al. 2009), and especially gray matter 

(Shepherd et al. 2012), it would be challenging to decide which brain regions should 

be left out.  

Another analysis-based solution to controlling for any type of counfounding variable 

would be to stratify the participating cohorts into corresponding sub-groups (for 

instances users and non-users of anti-psychotic medication, or typical and atypical 

anti-psychotics users), estimate the effect on the aggregated data and on each stratum 

and then calculate the pooled estimate across strata (Tripepi et al. 2010). This 

stratification technique is a very informative strategy as it describes how the effect of 

the explanatory variable on the outcome of interest varies across subgroups of 

subjects with different characteristics.  

 

 

3.3.1.2 Early Diagnostic Studies of Schizophrenia 

Several recent neuroimaging studies have shown structural and functional 

abnormalities in subjects at high-risk of developing schizophrenia compared to 

healthy controls as well as compared to established patients (Lawrie et al. 2008, 

Smieskova et al. 2010, Mechelli et al. 2011). To date, there are no biological markers 

for the identification of emerging psychosis, which is currently identified by clinical 

symptomatology. The early identification of those high-risk individuals who are most 

likely to develop psychosis is of high potential clinical value, as early intervention 

and treatment planning could alleviate symptoms burden or even prevent disease 
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onset (Marshall & Lockwood 2006, Riecher-Rossler et al. 2006). Job et al. 2005 

were the first to assess the predictive value of grey matter reductions in genetic high-

risk subjects regarding the possible transition to schizophrenia but as previously 

discussed, they used univariate analysis methods, with their known limitations. More 

recently, machine learning has been applied in the context of making an early 

diagnosis of schizophrenia and even to predict disease transition at individual level 

(Table 3.3), by identifying the neuroanatomical correlates of vulnerability to 

psychosis in individuals at high-risk of developing the disorder mainly due to clinical 

reasons. 

 

 

 

Table 3.2 Studies employing machine learning methods and functional MRI in 

diagnosing schizophrenia. 

Author Sample (N, diagnostic 
classification, fMRI 

paradigm) 

ML methods and 
scanner field 

strength 

Classifier's 
Performance 
(accuracy %) 

Jafri et al. (2006)  HC=31, SCHZ=38 
 

DSM-IV 
Resting-state paradigm 

ICA & NN 
3T 

76 

Calhoun et al. 

(2008)  

HC=26, SCHZ=21 
 

DSM-IV 
AOD task 

ICA 
1.5T 

SCHZ vs N-SCHZ: 
sensitivity=92 
specificity=98 
HC vs N-HC: 
sensitivity=95 
specificity=88 

Shen et al. (2010)  HC=20, SCHZ=32 
 

DSM-IV 
Resting-state paradigm 

Unsupervised 
classifier based on C-

Means 
1.5T 

92.3 

Yang et al. (2010)  HC=20 , SCHZ=20 
 

DSM-IV 
AOD task 

FMRI & genetic data 
SVM 

3T 

87 

Anderson et al. 

(2010)  

HC=6, SCHZ=14 
 

DSM-IV 

ICA & RF 
3T 

85 
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Resting-state paradigm 
Castro et al. (2011)  HC=54 , SCHZ=52 

 
DSM-IV 
AOD task 

ICA & Composite 
kernels with RFE 

3T 

 95 

Costafreda et al. 

(2011)  

HC=40, SCHZ=32 
 

DSM-IV 
Verbal fluency task 

SVM 
1.5T 

SCHZ vs HC: 92 
 
 

Fan et al. (2011)  HC=31, SCHZ=31 
 

DSM-IV 
Resting-state paradigm 

ICA & SVM 
1.5T 

85.5 

Venkataraman et al. 

(2012)  

HC=18, SCHZ=18 
 

DSM-IV 
Resting-state paradigm 

RF 
3T 

75 

Yoon et al. (2012)  HC=51, FE=51 
 

DSM-IV 
Cognitive control task 

LDA 
1.5 T 

61.8 

Abbreviations: AOD, auditory oddball discrimination; BD, bipolar disorder; DSM-IV, 

Diagnostic and Statistical Manual of Mental Disorder Fourth Edition; FE, first-episode 

schizophrenia patients; HC, healthy controls; ICA, independent component analysis; LDA, 

linear discriminant analysis; NN, neural networks; N-BD, non-bipolar subjects; N-HC, non-

healthy controls; N-SCHZ, non- schizophrenia subjects; RF, random forests; SCHZ, 

schizophrenia patients; SVM, Support Vector Machine;  

 

 

Koutsouleris et al. (2009b) were the first to apply multivariate pattern recognition to 

evaluate individual vulnerability to psychosis and predict disease onset. In their 

work, a SVM classifier was built upon structural MRI data of individuals in early 

(ARMS-E, n=20) and late at-risk mental state of psychosis (ARMS-L, n=25) and a 

group of matched healthy controls (HC1, n=25). The performance of the classifier 

was validated by distinguishing sMRI data derived from baseline scans of individuals 

with subsequent transition to schizophrenia (ARMS-T, n=15), those who did not 

make the transition (ARMS-NT, n=18) and matched healthy controls (HC2, n=17). 

Three group and pairwise classifiers were constructed, all achieving classification 
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performance above 80% (with the exception for the binary classifier HC1 vs ARMS-

L =78%). In the most critical in terms of clinical utility, the ARMS-T vs ARMS-NT 

pairwise classifier achieved an accuracy of 82%, suggesting the potential of a MRI-

based system in predicting transition to schizophrenia. In a follow-up study, 

Koutsouleris and colleageus (2012a) emphasized the predictive potential of SVMs in 

classifying an independent cohort of 22 HC, 16 ARMS-T and 21 ARMS-NT 

subjects. The authors, here, constructed a robust classification method, based on 

SVM ensemble classifiers that performed feature selection, model learning and 

predictive ensemble learning wrapped in a nested cross-validation framework. The 

critical ARMS-T vs ARMS-NT pairwise classifier showed slightly improved 

classification results compared to their previous work (Koutsouleris et al. 2009b), 

whereas diagnostic performance was lower in the pairwise HC vs ARMS-NT 

classifier (66.9% accuracy as opposed to 86% in Koutsouleris et al. 2009b), possibly 

due to greater heterogeneity in the control sample.  

In an effort to identify neuroanatomical markers of transition to psychosis across 

clinically defined high-risk populations, Koutsouleris et al. (2015b) extended their 

previous single-site investigations (Koutsouleris et al. 2009b, Koutsouleris et al. 

2012a) by pooling two independent cohorts of subjects with ARMS recruited at two 

different early recognition centres. In this study, the authors constructed an ensemble 

SVM classifier by using baseline structural MRI data from a pooled data set of 33 

ARMS-T and 33 ARMS-NT subjects while an independent group of 7 ARMS-NT 

subjects was used to further validate the classification. The classifier’s performance 

was evaluated by cross-validation and classification of the independent test set (see 

Table 3.3) and achieved a balanced accuracy of 80.3% in the pooled data set 

(sensitivity=75.8%, specificity=84.8%) and 80.4% (sensitivity=75.8%, 

specificity=85%) in the entire dataset (N=73), suggesting the existence of a 

neuroanatomical signature across research centres, irrespective of between-site 

differences. Additional Kaplan-Meier survival analyses, also, enabled the prediction 

of time to transition, thus facilitating an individualized risk staging that has added 

benefits for clinical management.  

Despite the fact that these studies have delivered very encouraging results in the 



 55 

context of prediction of disease transition, it should be borne in mind that the at-risk 

mental state sample in those studies involved symptomatic, help-seeking individuals 

(Koutsouleris et al. 2012a) and it is therefore unclear if these classification results 

could generalize to asymptomatic high-risk groups as well. 

 

 

3.3.1.3 Predicting disease progression and treatment response   

Prediction of disease progression is also of interest and potential clinical utility in 

established cases of schizophrenia, with a view to establishing the prognostic context 

and/or therapeutic responsivity of psychosis. Based on neuroanatomical pattern 

classification methods, studies reported poor to modest diagnostic performance 

(Table 3.3) in predicting the outcome of psychosis in FE schizophrenia patients at 

baseline. In this context, Mourao-Miranda et al. (2012a) used a linear SVM to predict 

clinical outcome from baseline sMRI scans of 100 FE psychosis individuals, who at 

6-year follow-up were classified as having a continuous, episodic or intermediate 

course and a group of 91 matched HCs. Although classification accuracy was less 

than 75% in all contrasts, (see Table 3.3), this result serves as a promising starting 

point in predicting subsequent course type at the individual level. In another study, 

Zanetti et al. 2013 failed to predict 1-year outcome of FE schizophrenia patients. 

Despite the fact that the authors presented a robust method for feature generation and 

feature selection, their SVM classifier (based on the method proposed in Fan et al. 

2007), achieved 58.3% accuracy in predicting clinical outcome of 15 FE patients 

with a subsequent remitting course versus 21 first-episodes with a subsequent non-

remitting course. Differences in data samples (and/or data sample selection 

procedures) and in the duration of follow-up might partly explain the accuracy 

discrepancies observed between the two studies. 

A key determinant of prognosis in psychosis is diagnosis, both because 

schizophrenia tends to have a worse outcome than bipolar disorder, and because 

these conditions tend to respond differently to treatments. Early studies have shown 

the possibility of distinguishing group activation patterns on fMRI in schizophrenia 

and bipolar disorder (McIntosh et al. 2008), but little SVM work has thus far been 
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done in this vein, especially at first presentation when it might be most valuable.  

In the context of predicting response to treatment in schizophrenia, only one study 

that I am aware of has thus far employed machine learning to do so. Khodayari-

Rostamabad et al. (2010) used kernel partial least squares regression in order to 

predict response to clozapine in chronic schizophrenia subjects, based on pre-

treatment electroencephalography (EEG) data, providing 85% accuracy in 

identifying responders and non-responders to the medicine.  

 

 

Table 3.3 Studies using machine learning to predict transition, progression and 

treatment response in schizophrenia. 

Author Sample(N, diagnostic 
classification) 

ML methods 
and scanner 
field strength 

Classifier's 
Performance (accuracy 

%) 
Koutsouleris et 

al. (2009)  

HC1=25, HC2=17 

ARMS-E=20, ARMS-

L=25, ARMS-T=15, 

ARMS-NT=18 

 
at inclusion:DSM-IV 
at follow-up: ICD-10 

Structural MRI 
SVM 
1.5T 

 

HC1 vs ARMS-E vs 
ARMS-L = 81 

 
HC2 vs ARMS-T vs 

ARMS-NT = 82 

Khodayari-

Romastabad et 

al. (2010)  

Train set: SCHZ=23 
R=12, NR=11 

Test set: SCHZ=14 
 

at inclusion: DSM-IV 
post-treatment evaluation: 

PANSS 
 

EEG 
kernel PLSR 

 
 

R vs  NR= 85 

Koutsouleris et 

al. (2010)  

HC=28,ARMS=25 
ARMS-T=12, ARMS-

NT=13 
 

at inclusion: DSM-IV 
at follow-up: ICD 

Structural MRI 
SVR 
1.5T 

 

HC vs ARMS: r = 0.83  
HC vs ARMS-T vs 
ARMS-NT: r= 0.83 

Koutsouleris et HC=22, ARMS-T=16, Structural MRI HC vs ARMS-T= 92.3 
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al. (2012a)  ARMS-NT=21 
 

at inclusion: APS, BLIPS 
at follow-up: classification 

criteria by Yung et al. 
1998 

ensemble SVM 
1.5T 

HC vs ARMS-NT= 66.9 
ARMS-T vs ARMS-NT 

= 84.2 

Mourao-

Miranda et al. 

(2012a)  

HC=28, EP-PS=28 
CON-PS=28, INT-PS=32 

 
at inclusion: ICD-10 

at follow-up: WHO Life 
Chart  

Structural MRI 
SVM 
1.5T 

 
 

EP-PS vs CON-PS= 70 
CON-PS vs HC=67 
EP-PS vs HC= 54 

 

Zanetti et al. 

(2013)  

R-FE=15, NRsub-FE=21 
 

at inclusion: DSM-IV 
(SCID) 

at follow-up: DSM-IV 

Structural MRI 
SVM 

 
1.5T 

R-FE vs NRsub-FE=58.3 
HCsub vs NR-FE=64.3 

 

Koutsouleris et 

al. (2015b) 

Train set: ARMS-T=33, 
ARMS-NT=33 

Test set: ARMS-NT=7 

Structural MRI 
ensemble SVM 

1.5T 

ARMS-T vs ARMS=NT 
i) Cross-

validation: 80 
ii) Independent 

test set: 
Specificity: 

85 
iii) Overall BAC: 

80 
Abbreviations: ARMS, at-risk mental state; ARMS-E, at-risk mental state early; ARMS-L, 

at-risk mental state late; ARMS-T, at-risk mental state with Transition to schizophrenia; 

ARMS-NT, at-risk mental state without transition to schizophrenia; APS, Attenuated 

Psychotic Symptoms; BAC, Balanced accuracy; BLIPS, brief limited intermittent psychotic 

symptoms; CON-PS, continuous psychotic; DSM-IV, Diagnostic and Statistical Manual of 

Mental Disorder Fourth Edition; EP-PS, episodic psychotic; HC, healthy controls; ICD-10, 

the International Statistical Classification of Disease and Related Health Problems; INT-PS, 

intermediate psychotic; NR, non-responders; NRsub-FE, subgroup of non-remittent first-

episodes; partial least squares regression; PANSS, positive and negative syndrome scale; 

PSLR, partial least squares regression; R, responders; R-FE, remittent fist-episodes; SCHZ, 

schizophrenia patients; SCID, Structured Clinical Interview; SVM, Support Vector Machine; 

SVR, Support Vector Regression; WHO, world health organization. 
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3.3.2 Discussion 
 
Studies published so far demonstrate promising leads for the development of 

neuroimaging machine learning-based tools that could assist in establishing the 

diagnosis and prognosis of schizophrenia and therefore be useful in clinical practice. 

Machine learning methods are advantageous compared to standard univariate 

statistical methods, in that they have the potential to make inferences about effects of 

interest at a single-subject level and can detect subtle and widespread 

neuroanatomical and functional differences that span over large networks of brain 

regions, by virtue of their multivariate nature.  

The development of a MRI-based machine learning system could well aid in the 

identification of objective biological markers for schizophrenia, and could thus help 

overcome the subjectivity in traditional clinical assessments. There are, however, 

significant hurdles to be overcome before their integration of machine learning into 

clinical practice is possible. The classifiers' performance is a key element for the 

potential integration of machine learning into clinical decision-making. As a general 

observation, diagnostic classification performance in psychiatry may not supersede 

clinical expertise in the foreseeable future, no matter the techniques employed, since 

training a classifier requires prior knowledge of a subject's clinical status (Orru et al. 

2012). Where imaging and machine learning could still provide added clinical value 

is where early diagnosis, prognosis of long-term outcome and treatment response are 

difficult to predict. For example, the identification of high-risk individuals, likely to 

convert to schizophrenia is of high clinical value as a means to inform early 

treatment strategies that could result in better outcomes for the patients. It is, 

however, evident from the early diagnosis studies thus far (see Tables 3.1-3.3) that 

classification accuracy in the early detection of schizophrenia and predicting clinical 

course is not as high as in diagnostic schemes. This is probably explained by the fact 

that in the diagnosis of established groups of patients from controls, neuroanatomical 

and functional patterns of differentiation are more clearly and strongly established 

than in same group subjects who do or do not go on to show an outcome of interest 

and therefore present a more difficult classification problem.  
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It should be borne in mind that a classifier with high sensitivity and high specificity 

is desirable, and that overall accuracy is important, but the relative value of high and 

low sensitivity and specificity could have different implications in patients' clinical 

management, in different clinical scenarios, depending on the availability of 

treatment and the seriousness and frequency of adverse effects. Moreover, for an 

individualized patient high positive/negative predictive power is the most critical 

consideration (Lawrie et al. 2011). Furthermore, classification performance is 

primarily affected by the sample size. The limited number and nature of patient 

populations in SVM neuroimaging-based studies means that these encouraging early 

results may not generalize well to other patient groups. Recruiting patients for 

research studies can be difficult and patients with co-morbid conditions are often 

excluded, resulting in a limited representation of the various phenotypes across the 

spectrum of schizophrenia. Despite the fact that several machine learning methods 

can deal effectively with small sample size (Pereira et al. 2009), a limited number of 

data samples can cause model overfitting, resulting in poor generalization of the 

method to independent data sets. In such cases, cross-validation frameworks are 

often employed, to partition the original data set. However, cross-validation schemes 

should be performed with caution, as in many cases data samples in the validation (or 

training) set are also present in the testing set, seriously biasing the classifier's 

performance as a result. As a general rule, the greater the complexity of a method, 

the higher is the risk for overfitting the data (Mourao-Miranda et al. 2012a). Ideally, 

data for validation and training should be derived from completely independent 

cohorts, thus eliminating the need for performing cross-validation and the ensuing 

danger of poorly conducting one, and ensuring the robustness and reliability of the 

classification methodology (Kawasaki et al. 2007, van Haren et al.  2012).  

The need for large data sets could be addressed with pooling data from multiple 

research centres (Mechelli et al. 2011). The existence of a well-validated training 

dataset to be shared between neuroimaging centres is likely to be of importance for 

standardizing classification accuracy across laboratories. In addition, future multi-

site studies could provide the possibility for encompassing more heterogeneous 

clinical populations, demonstrating a range of clinical manifestations of a disorder 

(Borgwardt et al. 2012), for example subjects with various transition rates to 
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psychosis or subjects of lower diagnostic certainty, which could thus provide a more 

realistic mirroring of everyday psychiatric practice. Multi-site projects for the 

development of biomarkers for the Alzheimer’s disease already exist (Alzheimer’s 

Disease Neuroimage Initiative - Mueller et al.  2005) while only recently, multi-

centre projects have launched for the early diagnosis and management of early 

psychosis; the PSYSCAN (http://psyscan.eu) and PRONIA projects 

(http://www.pronia.eu). Data sharing among research centres faces, however, its own 

difficulties. Different scanners, imaging parameters and protocols result in varying 

image intensity and susceptibility profiles that will require careful consideration and 

compatibility solutions. One promising approach is however to generate metrics from 

individual scans that can then be compared to reference data sets (Tijms et al. 2012). 

Equally important, future studies should test the efficacy of machine learning in 

making a diagnosis of psychiatric disorders apart from schizophrenia, such as bipolar 

disorder, borderline personality disorder, depression, autism etc. Initial studies have 

already used machine learning to differentiate schizophrenia from bipolar disorder 

(and HC subjects) both by employing structural (Schnack et al. 2014) or functional 

MRI data (Costafreda et al. 2011, Cahloun et al. 2008) and delivering very 

encouraging diagnostic results. In the same context, another recent study has 

employed a neuroanatomical-based pattern classification technique to make a 

differential diagnosis of schizophrenia and mood disorders, namely major depression 

and bipolar disorder (Koutsouleris et al. 2015a). In order to explore the hypothesis 

that major depression, bipolar disorder and schizophrenia might represent different 

stages along the same neurobiological continuum (Lin et al. 2013), the authors first 

examined whether schizophrenia patients (n=158) could be distinguished from major 

depression patients (n=104) at the single-subject level and then quantified differential 

diagnostic decision values in order to characterize independent cohorts of clinically-

defined HR and FE individuals (n=112 in total) and patients with bipolar disorder 

(n=35). A cross-validation scheme delivered an 76% balanced accuracy in the 

schizophrenia versus major depression classification task, whereas the trained model 

assigned 74% of bipolar patients to the major depression group, possibly suggesting 

that major depression and bipolar disorder share similar neuroanatomical signatures 

that are differentiated from schizophrenia (Koutsouleris et al. 2015a). However, 

http://www.pronia.eu/
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replication of these early findings in studies that include larger samples and more 

cases across a putative psychosis spectrum is necessary in order to identify patterns 

that differentiate between these psychiatric disorders. 

From a methodological point of view, novel methods for feature selection and 

decision making of the classifiers could be introduced in order to improve diagnostic 

power in schizophrenia studies. For example, ensemble-learning methods could be 

introduced in order to improve the generalization ability of a classifier. Ensemble 

classifiers can achieve better predictive performance than single classifiers, by 

combining multiple weak learning models that decide upon the classification of a 

new instance through majority voting (Polikar 2006). Some well-known ensemble 

learning methods, such as bagging and random subspace methods have already been 

used in neuroimaging settings to identify biological markers for prodromal 

Alzheimer’s disease (Fan et al. 2008b, Liu et al. 2012), reporting excellent diagnostic 

results. Ensemble learning could be a useful approach in data fusion studies as well, 

where a single classifier could be built and trained for each imaging modality and/or 

clinical measures (such as neurocognitive measures) separately and outputs from 

each classifier could be combined to classify new instances. An example of this 

approach is the study of Yang et al. (2010), who developed SVM-based ensemble 

classifiers of genetic and fMRI data and combined them to a single module that 

decided upon classification of testing samples via majority voting, achieving better 

diagnostic accuracy than either SVM ensembles alone (87% for the combined 

module, 74% for the genetic data classifier and 83% for the fMRI classifier). Future 

studies could, also, possibly address the problem of 'tuning' a machine learning 

method to fit into neuroimaging settings. Refinements in the SVM method, for 

example, already exist. The SVM-Recursive Feature Elimination (SVM-RFE), a very 

popular method that performs feature selection during training and recursively 

removes data instances, and has already been successfully employed in cancer 

classification (Guyon et al. 2002), and SVM-Sequential Minimal Optimization 

(SVM-SMO) which facilitates and speeds up the classifier's training, are methods yet 

to be validated for their efficacy in neuroimaging settings.  
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3.4 Conclusions 

 

The application of machine learning methods for the purposes of diagnosing or 

making a prediction of psychosis onset has already demonstrated very encouraging 

results. The main advantage of machine learning methods, over standard univariate 

ways of analysing and interpreting neuroimaging data, is that they allow inferences 

to be made at subject-level; a key-feature in clinical practice. There are however, 

important difficulties yet to be fully considered and overcome, before their 

translation into routine clinical practice. The optimal means of multi-centre analyses, 

fusing imaging modalities and integrating various sources of information are critical 

considerations. Finally, once suitable techniques have been developed, they will 

ideally need to be tested, preferably in randomized control trials to ensure that they 

are acceptable and useful to clinicians and patients. 
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4.1 Introduction 
 
In the previous chapters, the concepts of neuroimaging and machine learning were 

presented along with a critical review of the application of machine learning in 

schizophrenia. As has been described in Chapter 1, the overriding aim of the present 

thesis is to apply machine learning in order to identify predictors of transition to 

schizophrenia in subjects at high risk for developing the illness. Initially, data from 

the Edinburgh High Risk Study (EHRS), which were immediately available, were 

used in order to examine the capability of SVM in identifying neuroanatomical 

markers that predict schizophrenia onset, and then data from the FePsy 

(Fruherkennung von Psychosen) study, which comprised clinical high-risk subjets, 

were put to the test with the intention of replicating earlier findings and examining 

the generalizability of the method in distinguishing clinical high-risk cohorts.  

In this chapter, the subject material of the EHRS and the FePsy studies is presented 

and the pre-processing and classification methodology is extensively described. To 

help the reader in the understanding and comparing the EHRS and FePsy study, 

Tables 4.1 and 4.2 provide a summary of the main cohort information and the main 

imaging findings in the two studies. 

 
 
4.2 Subjects 
 
4.2.1 Edinburgh High Risk Study 
 

The Edinburgh High Risk Study (EHRS) was a prospective, longitudinal study in 

which young people from multiply affected families with schizophrenia and matched 

groups of controls without family history were recruited. Comprehensive details of 

the recruitment process can be found in previous papers (Hodges et al. 1999, 

Johnstone et al. 2000). The original idea for this study was conceived by Professor 

Johnstone. The purpose of the EHRS was to determine the features that distinguish 
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high risk individuals who go on to develop schizophrenia from those who do not, and 

to compare relevant variables in affected and unaffected members of the high-risk 

sample with matched controls. 

The study took place between 1994 and 2004. High-risk subjects were selected on 

the basis of having two or more first or second-degree relatives with a confirmed 

diagnosis of schizophrenia using the OPCRIT (Operational Criteria Checklist) 

computer program (McGuffin et al. 1991). Potential high-risk participants were 

identified by examining case-notes of patients with schizophrenia. Upon completion 

of recruitment, a total of 229 high-risk individuals were identified throughout 

Scotland, from which 156 participants provided complete data at baseline. Ten to 

fifteen percent of the high-risk group was predicted to develop schizophrenia by the 

age of 30 on the basis of the known frequency of the disease in individuals with this 

degree of heredity, and the actual occurrence of schizophrenia by this age (Johnstone 

et al. 2002a). Based on this, comparable groups of control subjects were determined 

and recruited: 36 healthy control subjects and 37 individuals in their first episode of 

the illness, both with no known family history of schizophrenia. All study 

participants were given written information about the study and time to consider 

before formally consenting taking part in the study. They were, also, aware that they 

could withdraw at any time. The study was approved by the Lothian Research Ethics 

Committee for Psychiatry and Pathology. 

The high risk participants recruited had an age range between 16-24 years at baseline 

in order to ensure that the period of maximum risk of onset of schizophrenia would 

be covered. High-risk participants were followed up for up to 10 years during which 

they underwent a series of clinical, neuropsychological and neuroimaging 

assessments every 18-24 months.   
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Table 4.1 Outline of the EHRS and the FePsy study. 

 EHRS FePsy 

Cohort Familial High Risk Clinical High Risk 

Inclusion criteria 2 or more 1rst  or 2nd degree 
relatives with schizophrenia 

1. Basel Screening 
Instrument for psychosis 
(BSIP) 
2. PACE criteria: 
   - attenuated psychotic    
symptoms (APS) 
 
   - brief limited intermittent 
psychotic symptoms (BLIPS) 
 
   - genetic risk plus 2 risk 
factors 
 

Age at study inclusion 16-25 years 18-45 years 

Follow-up 
 

10 year; 
assessments every 18-24 months 

Up to 4-years; 
Monthly during 1rst year, 
months interval (2nd and 3rd 
year),  
annually thereafter 

Psychopathology Present State Examination (PSE); 
five-score psychopathological 
scale 

Brief Psychiatric rating Scale 
(BPRS); 
Scale for the Assessment of 
Negative Symptoms (SANS) 

Transition Criteria PSE, score 4. 
Further validated using the ICD-
10. 

As defined in PACE criteria; 
further validated by ICD-10. 

Converters and non-
converters numbers 

- 17 converters (with complete 
clinical assessments and at least 1 
MRI scan) 
Non-converters: 
   -57 HR[symp]  
   -57 HR[well]  

- 16 converters 
- 19 non-converters 
- 2 HR subjects with no 
follow-up information 

Anti-psychotics 
(baseline) 
 

All anti-psychotic naïve. 30 subjects, some time prior 
to study inclusion. 

HR[symp]: High risk individuals that did not develop schizophrenia but yet exhibit psychotic 
or partially-held psychotic symptoms; HR[well]: High risk subjects that did not develop 
schizophrenia and did not have any psychotic symptoms. 
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4.2.1.1 Psychopathology 

Psychopathology was assessed at entry and follow-up by the Present State 

Examination (PSE, Wing et al. 1974), which involved a structured interview with a 

psychiatrist in order to identify any psychotic symptoms. The PSE is a very detailed 

instrument giving a standardised assessment of a wide range of symptomatology and 

therefore would be helpful in evaluating the extent of any psychopathology shown by 

the high-risk participants and controls. Based on the PSE profiles, a five-score 

psychopathological scale system (Johnstone et al. 2000, Johnstone et al. 2002a) was 

administered by three experienced clinicians (Professor Johnstone, Professor Owens 

and Professor Lawrie). A score of 4 was assigned for definite schizophrenia based on 

the PSE, and was further validated by the ICD-10 (World Health Organization, 

1993). A score of 3 was assigned for any fully-rated psychotic symptom; PSE items 

55-92 (including thought reading, echo broadcast auditory, visual or other 

hallucinations, delusions of control, misinterpretation, reference, persecution, 

grandiosity influence or other) or PSE behavioural items 128, 129 and 135-137 

(including blunted affect, incongruous affect, neologisms or idiosyncratic use of 

words, incoherence of speech, flight of ideas). A score of 2 was assigned if any of the 

features in 3 were partially held or present to a mild degree plus symptoms 49-54 

(perceptual disorders other than hallucinations), and behavioural items 108, 109, 118, 

125, 126 (self-neglect, bizarre appearance, behaves as if hallucinated, suspicious, 

perplexed) fully rated and items 133 (muteness) partially or fully rated. A score of 1 

was assigned in cases where none of the above features existed but any other fully 

rated PSE item (such as tension, depression, anxiety, instability, obsessions etc.).  

Finally a score of 0 was assigned if none of the above symptoms were observed.  In 

essence: 
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4= schizophrenia 

3= fully rated psychotic symptoms 

2=partially rated psychotic symptoms 

1= fully or partially rated non-psychotic symptoms 

0= no symptoms 

Subjects were further categorized according to the presence or absence of psychotic 

symptoms as individuals with fully or partially held psychotic symptoms (HR[symp], 

scores 2 and 3 combined), individuals without psychotic symptoms (HR[well], 

scores 0 and 1 combined) and individuals with schizophrenia (HR[ill], score 4).  

All subjects were antipsychotic-naive at study-entry and at follow-up or until they 

were clinically diagnosed with schizophrenia. From those HR subjects who provided 

complete clinical assessments and had a MRI scan, 17 were diagnosed at follow-up 

with schizophrenia (after an average of 929 days, SD=138) based on the ICD-10. 

Once diagnosis of schizophrenia has been established, these subjects did not undergo 

any further assessments. However, clinical management of those patients ensured 

that their diagnoses remained unchanged until the end of the study and no other 

psychotic diagnoses were recorded.  

Among the rest, 57 subjects experienced psychotic or possibly psychotic symptoms 

but were never ill enough to be given formal diagnosis of schizophrenia, up until the 

end of the 10-year follow-up period. However, these symptoms were too transient or 

mild to satisfy operational definition for schizophrenia or any related psychotic 

illness. The rest of the HR subjects remained well, with no symptoms. A summary of 

the main cohort characteristics and study criteria can be found in Table 4.1.  
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4.2.1.2 Main findings in the EHRS 

In terms of demographic details, there were no significant differences between high-

risk individuals and healthy controls with respect to age, sex, parental social class, 

alcohol and cannabis use at baseline (Johnstone et al. 2000). However, the high-risk 

group showed poorer educational and employment attainment than the control group 

(Johnstone et al. 2000).  

Early studies in the ERHS have reported differences in clinical, psychopathological, 

neuropsychological and neurological indices between the high-risk group and the 

control groups (Johnstone et al. 2000, Cosway et al. 2000, Johnstone et al. 2002a, 

Owens et al. 2006 Lawrie et al. 2001a, Miller et al. 2002a, Miller et al. 2002b, Byrne 

et al. 2003, Byrne et al. 1999). Additionally the performance of high-risk participants 

on some neuropsychological tests remained poor over time but did not deteriorate 

relative to controls, which may provide evidence of a stable trait deficit and a 

possible cognitive marker for schizophrenia. In terms of psychopathology, high risk 

individuals showed more symptomatology than controls, mostly including partial and 

definite psychotic and non-psychotic symptoms (Johnstone et al. 2002a, Johnstone et 

al. 2002b). These findings might indicate that what is inherited by high risk 

individuals due to genetic liability is not the disorder itself, but a state of 

vulnerability manifested by fairly widespread neuropsychological impairments.  

 

Significant predictors of schizophrenia have, also, been identified from a battery of 

behavioural and neuropsychological tests administered to high-risk individuals at 

baseline (Johnstone et al. 2005). Baseline memory and learning, as tested using the 

Rey Auditory Verbal Learning Test (RAVLT, Rey 1964) was significantly worse in 

high risk than control subjects (Byrne et al. 1999, Byrne et al. 2003) and particularly 

poor in those who developed the disorder (Whyte et al. 2006). Notably, over-time 

performance in the RAVLT was significantly improved across all HR and HC 

individuals and those HR that developed schizophrenia but also remained 

significantly different between the groups, possibly reflecting a familiarity with the 

test procedures at repeated assessments (Whyte et al. 2006). Previous studies have 

shown that the Rust Inventory of Schizotypal Cognitions (RISC, Rust 1998) and the 
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Structured Interview for Schizotypy (SIS, Kendler et al. 1989) were able to 

discriminate between schizophrenia patients and healthy controls. In the EHRS, 

baseline assessments of the SIS (total score, Miller et al. 2002a), RISC (Miller et al. 

2002b) and the RAVLT (Byrne et al. 2003) were able to distinguish at baseline those 

high-risk subjects that will go on to develop schizophrenia from the high-risk 

subjects who do and do not develop psychotic symptoms (Johnstone et al. 2005). 

Specifically, those individuals that developed schizophrenia differed those who did 

not on social anxiety and withdrawal, verbal learning and memory and other 

schizotypal features (Johnstone et al. 2005). In relation to studies that included high-

risk populations on the basis of symptomatic criteria or a combination of familial risk 

and symptomatic criteria, the EHRS cohort comprised non-help seeking individuals 

that presented much lower transition rates to schizophrenia. Most of these high-risk 

subjects were asymptomatic and functioned at a similar level to controls in terms of 

employment or further education. It can, also, be concluded that transient or partially-

held psychotic symptoms in this familial cohort occurred in many more individuals 

that might be anticipated to develop schizophrenia. In contrast, in clinical high-risk 

studies the presence of sub-threshold psychotic symptoms was associated with later 

development of psychosis. 

 

A significant number of studies have also reported a plethora of neuroimaging 

abnormalities within the groups of the EHRS (Lawrie et al. 2001b, Lawrie et al. 

2008, Owens et al. 2006). Significant reductions in the amygdalo-hippocampal 

complex and the volume of the thalamus were reported in high-risk subjects against 

controls (Lawrie et al. 1999). A previous VBM study showed significant grey matter 

reductions in the anterior cingulate and medial prefrontal lobes in high-risk versus 

healthy controls with more marked changes shown in first episode patients (Job et al. 

2002, Job et al. 2003). Job et al. 2005 found reductions in the concentration of grey 

matter in the temporal and prefrontal lobes in the high-risk group compared to the 

healthy controls but these were more pronounced in those subjects with a liability to 

develop psychotic symptoms. However these findings do not establish whether brain 

structure changes as a result of psychotic symptoms, or whether symptoms and 

changes in brain structure occur in unison. Additional grey matter density reductions 
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were presented in the left para-hippocampal uncus, fusiform gyrus and right 

cerebellar cortex in those that made a transition to schizophrenia against those who 

did not but had psychotic symptoms (Job et al. 2005). Progressive reductions over 

two successive MRI time-points (18-months apart) in the three previously specified 

regions showed significant diagnostic properties in predicting transition to 

schizophrenia, reporting positive predictive values as high as 60% and thus possibly 

suggesting their use as part of a positive predictive test for schizophrenia (Job et al. 

2006). These findings could be clinically relevant as part of a predictive test for 

schizophrenia in people at enhanced risk for familial reasons, for positive predictive 

power and in combination with other neurocognitive and behavioural predictive 

measures that were shown to have strong negative predictive power (Johnstone et al. 

2005). It should be noted, however, that while this might be the case, the values of 

sensitivity and specificity are not high enough for diagnosis of schizophrenia. 

Finally, in the context of associating brain structure with schizotypal measures, as 

assessed by the RISC and SIS, and verbal and learning memory RAVLT assessment, 

significant associations between grey matter density in the left superior temporal 

gyrus and the RISC measure was found for those high-risk subjects that made a 

transition to schizophrenia while the RAVLT was significantly correlated with grey 

matter density reductions in the right parahippocampal gyrus in high risk subjects 

that exhibited transient, isolated or partial symptoms (Lymer et al. 2006). 

Overall, the findings from the EHRS literature presented above have many strengths 

including the unprecendently large number of familial high risk individuals, all of 

whom were unmedicated at study-entry and at follow-up or until they met 

operational criteria for schizophrenia. However, as seen in all studies that involved 

high-risk subjects that later developed schizophrenia, the sample size was small and 

therefore findings require replication. Moreover, studies presented in this section 

only include findings from VBM analysis and are thus restricted to limitations 

inherent to this technique. It is widely recognised that VBM is sensitive to systematic 

shape differences, so the choice of the parameters in spatial normalization and the 

template used for that purpose can have an impact on the resulting brain measures 

(Job et al. 2003). The choice of kernel in the smoothing step can also obscure 

differences of lesser spatial extent and affect results. Finally, the use of small volume 
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corrections (SVC) and the size of resels along with the inclusion and exclusion of 

specific confounding variables such as age, sex and total intracranial brain volume in 

the modelling stage of VBM could partly explain the heterogeneity with previous 

EHRS studies and other neuroimaging studies in the field. 

 
 
 
4.2.2 The FePsy study 
 
The FePsy (Fruherkennung von Psychosen) study is a prospective, longitudinal study 

that aims to identify and investigate individuals considered to be at high risk of 

psychosis and matched groups of individuals at their first psychotic episode. Subjects 

were recruited through a specialized clinic for the early detection of psychosis at the 

Psychiatric Outpatient Department, University Hospital in Basel, Switzerland. The 

FePsy study started in March 2000 and inclusion of high risk participants was 

completed by February 2004.  

The study was approved by the local ethics committee of the University of Basel and 

written informed consent was obtained for each participant. 

 

 

4.2.2.1 Screening and psychopathology 

For screening purposes, subjects were assessed using the Basel Screening Instrument 

for Psychosis (BSIP, Riecher-Rossler et al. 2008). The BSIP is a 46-item checklist 

based on variables which have been reported as risk factors or predictors of 

psychosis (Riecher et al. 1990, Riecher-Rossler et al. 2006, Riecher-Rossler et al. 

2007), such as DSM-III-R-‘prodromal’ symptoms, social decline, drug abuse, 

previous psychiatric disorders or genetic liability for psychosis. The BSIP checklist 

was used in combination with the Brief Psychiatric Rating Scale (BPRS expanded 

version; Lykoff et al. 1986, Ventura et al. 1993) in order to evaluate the severity of 

pre-psychotic signs. All assessments were conducted by experienced psychiatrists 
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who underwent regular training.  

Subjects were identified as high-risk or an at-risk mental state (ARMS) if they met 

(one or more of) the following inclusion criteria that corresponded to the Personal 

Assessment and Crisis Evaluation (PACE) criteria (Yung et al. 1998), which have 

been already employed in other studies using individuals with an at-risk mental state 

(Phillips et al. 2002, Pantelis et al. 2003): 

i) Attenuated psychotic-like symptoms 

ii) Brief limited intermittent psychotic symptoms (BLIPS) 

iii) genetic risk: a first or second-degree relative with a psychotic disorder 

plus at least 2 further risk factors for or indicators of beginning 

psychosis according to the BSIP screening instrument. 

Inclusion because of attenuated psychotic symptoms required that change in mental 

state had to be present at least several times a week and for more than 1 week’s 

duration (a score of 2 or 3 on the BPRS hallucination item or 3 or 4 on BPRS items 

for unusual thought content or suspiciousness). 

Inclusion because of BLIPS required scores of 4 or above on the hallucination item 

or 5 or above on the unusual thought content, suspiciousness, or conceptual 

disorganization items of the BPRS, with each symptom lasting less than 1 week 

before resolving spontaneously. A more detailed description of these ARMS criteria 

can be found in Riecher-Rossler et al. 2007.  

Additionally, negative symptoms were assessed using the Scale for the Assessment 

of Negative Symptoms (SANS; Andreasen 1989), which was used in combination 

with the BSIP. The SANS assessment is a well-recognised rating scale for the 

assessment of negative symptoms in schizophrenia and consists of 19 items, which 

are grouped into five domains or factors (affective flattening, alogia, avolition-

apathy, anhedonia-asociality, and inattention). Further assessments to elicit 

neuropsychological and psychopathological indices were performed. However, their 

description is outside the scope of the present thesis, and additional information can 
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be sought in previous papers of the FePsy study (Gschwandtner et al. 2003, Riecher-

Rossler et al. 2009).  

 Exclusion criteria were age below 18 years, insufficient knowledge of German, IQ 

<70, previous episodes of schizophrenic psychosis (treated with major tranquillizers 

for more than 3 weeks), a clearly diagnosed brain disease or substance dependency 

(except for cannabis dependency), or psychotic symptoms within a clearly diagnosed 

depression or borderline personality disorder.  

In total, 37 ARMS individuals were recruited. Thirty of the 37 ARMS individuals 

never received antipsychotic medication. Seven participants had been administered 

low doses of antipsychotic medication for behavioural control by the referring 

psychiatrist or general practitioner (2 participants on olanzapine, 2 Chlorprothixene 

and 3 risperidone) at some time prior to study inclusion. 

Matched groups of healthy controls and first-episode patients were recruited as well. 

In short, 22 healthy controls (HC) with no personal or family history of any 

psychiatric disorder were recruited from the same geographical area as the ARMS 

group through local advertisements and were matched to the ARMS sample group-

wise for age, gender, handedness, and education level. The first-episode group (FE) 

consisted of 25 individuals who met operational criteria for first episode psychosis as 

described in Yung et al. 1998. More details regarding inclusion and operational 

criteria for the HC and FE group can be found in Riecher-Rossler et al. 2007. 

Transition to psychosis was monitored by means of the transition criteria defined in 

Yung et al. (1998) and based on the BPRS scale; that is BPRS scores of 4 or above 

on the hallucination item or scores of 5 or above on the unusual thought content, 

suspiciousness, or conceptual disorganization items; symptoms had to occur daily 

and persist for more than 1 week to be deemed a conversion to frank psychosis. In 

subjects who met these criteria the diagnosis was determined by an interview using 

ICD-10 research criteria at the time of transition, corroborated by a subsequent 

assessment at least one year post transition using the Operational Criteria for 

schizophrenia/schizoaffective disorder (OPCRIT) checklist for psychotic and 

affective illness (McGuffin et al. 1991). Based on these, the ARMS group was 
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subsequently divided into 16 ARMS subjects that made a transition to psychosis 

(ARMS-T) and 19 ARMS individuals that did not convert (ARMS-NT) (no follow-

up information was available for two ARMS subjects). See Table 4.1 for an outline 

of the FePSY study compared to the EHRS. 

 

Table 4.2 The main structural imaging findings in the EHRS and FePsy literature. 

 EHRS FePsy 
 

 
HR vs. HC  

 
↓   anterior cingulate (R+L) 
      medial frontal lobe (R) 
      middle temporal gyrus (L) 
      postcentral gyrus (L) 
      limbic lobe (L) 
     parahippocampal gyrus(R+L) 
      thalamus (R+L) 

 
↓   insula (L) 
     superior temporal gyrus (R+L)  
      hippocampus (R) 
      amygdala (R) 
      posterior cingulate gyrus 
      precuneus 
 

 
HR-T vs. HR-NT 

 
↓   cerebellum (R) 
     inferior temporal gyrus (L) 
     (para)hippocampal uncus (L) 
 
 
 
 
 
 

 
↓  insula (R) 
    inferior frontal gyrus 
    superior temporal gyrus (R) 
    anterior cingulate (R+L) 
 
 
↑  parahippocampal gyrus (R+L) 
     fusiform gyrus (R+L) 
     medial occipital gyrus (R+L)  
     thalamus(R+L) 
     supramarginal gyrus (R) 

R: right; L: left. 

 

 

4.2.2.2 Main Findings in the FePsy study 

In the FePsy study, individuals with an ARMS did not differ significantly from 

healthy controls with respect to age, sex, ethnicity, educational level and total brain 

volume. The ARMS subjects that later developed psychosis showed at baseline more 

pre-psychotic symptoms than ARMS subjects who did not, but less severe symptoms 

than the FE group, namely in all four BPRS subgroups (see Appendix IV, Figure 1) 
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but also for the BPRS global score measuring general psychopathology (Riecher-

Rossler et al. 2007). In the negative symptomatology scale as measured by the 

SANS, the anhedonia/ asociality scale was significantly different in those ARMS that 

developed psychosis versus those who did not (Riecher-Rossler et al. 2007).  It was, 

also, shown that a stronger weighting of clinical and cognitive variables in an 

intergrated model could predict transition to psychosis in the ARMS population 

(Riecher-Rossler et al. 2009). Specifically, suspiciousness (attenutated psychotic 

symptom/ BPRS subscale; see Appendix IV, Table 1), anhedonia/asociality (negative 

symptoms, SANS subscale) and reduced speed in information processing task (Test 

for Attentional Performance; TAP Go/NoGo false alarms; Zimmermann and Fimm 

1993) could achieve an overall predictive accuracy of 80.9%, with a sensitivity of 

83.3% and a specificity of 79.3% (Riecher-Rossler et al. 2009). 

At as structural level, ARMS individuals showed significant volumetric deficits in a 

cluster of regions that included the left insula, superior temporal gyrus, cingulate 

gyrus and precuneus against control groups of healthy individuals and first-episode 

patients (Borgwardt et al. 2007b). Within the ARMS group, those individuals that 

later made transition to psychosis demonstrated grey matter volume deficits in the 

right insula, inferior frontal and superior temporal gyrus compared to the AMRS 

individuals that did not develop psychosis (Borgwardt et al. 2007b), suggesting that 

transition to psychosis is associated with alterations in regional grey matter volume, 

particularly in the inferior frontal and medial temporal cortex as seen in the EHRS 

(Job et al. 2005). In addition, ARMS-T individuals showed relatively greater grey 

matter volume in the parahippocampal gyrus, the parietal and posterior temporal 

cortex, and the thalamus contrary to their initial hypotheses. The finding of larger 

parahippocampal gyri is of particular interest as in the EHRS literature transition to 

psychosis was associated with a progressive reduction in medial temporal volume in 

high risk individuals due to familial reasons (Job et al. 2005). 

Another study compared only the ARMS-T group against healthy controls and found 

grey matter volume reductions in the posterior cingulate gyrus, the precuneus, 

paracentral lobule bilaterally and in the left superior parietal lobule while compared 

to first-episodes, ARMS-T individuals showed greater volume in the temporal gyrus 

bilaterally, possibly suggesting that temporal lobe abnormalities seem to occur later 
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in the course of illness (Borgwardt et al. 2007a). 

Table 4.2 provides a summary of the main MRI findings in the EHRS and FePsy 

study. 

4.3 Preprocessing of the MRI scans 
 
Preprocessing of the MRI scans was based on the VBM methodology, as described 

in Ashburner & Friston (2000) and Good et al. 2001, and was performed using the 

SPM5 toolbox (http://www.fil.ion.ucl.ac.uk/spm/software/spm5), running in Matlab 

version 7 (The MathWorks, Natick, MA) on a linux machine operating GNOME 

version 2.2.8.2. The same preprocessing pipeline was followed for both the EHRS 

and the FePsy dataset. Study-specific templates and study-specific brain tissue a-

priori maps were constructed for each dataset separately, as described below. 

 
 
4.3.1 EHRS study-specific templates and priors 
 

A study-specific template was constructed from all 146 HR and 36 control 

structurally normal MRI scans. Since this group contained scans from subjects of 

mixed outcome (i.e., those without psychotic symptoms (HR[well]), those with 

isolated or partial psychotic symptoms (HR[symp]) and those who were later 

diagnosed with schizophrenia (HR[ill]), it was believed to represent the entire study 

population and therefore minimised bias for spatial normalisation. The scans were 

normalised to the generic SPM T1 template using 12-point linear affine 

transformation to minimise the residual sum of squares differences between the 

images and the template. A study-specific T1 template was created from the mean 

image calculated from all the normalised T1 images and smoothed at 8-mm full-

width at half maximum (FWHM). 

To generate study-specific brain tissue a priori maps, the normalised images were 

segmented into grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF)  
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using an SPM cluster analysis with a modified mixture model and the SPM-derived 

GM, WM and CSF a-priori probability maps. A brain tissue mask was produced 

using the “Xtract brain” function. This removes the extra-cerebral voxels from both 

the GM and WM segmented images using a series of dilation functions and adds 

together the segments forming a binary image of extracted brain tissue. 

Multiplication of this image with the original segmented images removes the extra-

cerebral voxels. Mean images were calculated and extracted GM and WM segments 

were smoothed at 8-mm FWHM to produce study-specific a priori maps.  

 
 
 
4.3.2 FePsy study-specific templates and priors 
 
Study-specific templates and customized prior probability maps were constructed 

based on all 82 subjects (i.e. 35 ARMS, 22 HC and 25 FE). Again, scans were 

normalised to the generic SPM T1 template using 12-point linear affine 

transformation to minimise the residual sum of squares differences between the 

images and the template. A study-specific T1 template was created from the mean 

image calculated from all the normalised T1 images and smoothed at 8-mm full-

width at half maximum (FWHM). 

The normalised images were, then, segmented into GM, WM and CSF using the 

generative segmentation approach in SPM5 that involves image registration, bias 

correction and tissue classification all combined in the same probabilistic model 

(Ashburner & Friston, 2005; for more details see chapter 2). To generate study-

specific brain tissue a priori maps, mean images for the normalized GM, WM and 

CSF segments were produced and then smoothed at 8-mm full-width at half 

maximum (FWHM). 
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4.3.3 Image acquisition 

 

Details of the scanning protocols are given in relevant subsections of Chapters 5 and 

6. 

 

4.3.4 Image processing pipeline 

 

Before any pre-processing, I manually set the origin of the images to the anterior 

commissure using the ‘Display’ function in SPM.  The pre-processing stages for both 

datasets were identical and were as follows. Firstly, T1 brain scans were segmented 

(using the unified segmentation approach in SPM5) in native space into GM, WM 

and CSF using study-specific images for GM, WM and CSF, after which the SPM 

brain extraction function returned a tissue mask for each scan. These masks were, 

then, applied to the original T1 images in order to remove non-brain tissue. T1 brain 

images were, then, spatially normalized to the study-specific T1 template using a 12-

parameter linear affine transformation. Bilinear interpolation was used to resample 

the normalized images and write MNI-normalized images into the stereotactic space 

at a 1x1x1mm voxel resolution. These normalized images were again segmented 

using the study-specific a priori templates and spatially normalized segments for 

GM, WM and CFS were returned. Finally, the spatially normalized, segmented 

images were smoothed with an 8mm full-width at maximum (FWHM) isotropic 

Gaussian kernel to further 'remove' differentiation patterns between subjects. 

 
 
 
4.4 Pattern Classification Analysis 
 
4.4.1 Support Vector Machine 
 
This section gives a brief introduction to Support Vector Machine (SVM). Despite 

the fact that one cannot claim that SVM is universally the best classification method 
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to date, it has, however, been widely used in neuroimaging-based studies of various 

psychiatric disorders (Kloppel et al. 2008a, Kloppel et al. 2008b, Mourao-Miranda et 

al. 2011, Fu et al. 2008, Davatzikos et al. 2011) including schizophrenia (Fan et al. 

2007, Fan et al. 2008a, Davatzikos et al. 2005b, Koutsouleris et al. 2009b, 

Koutsouleris et al. 2012a, Nieuwenhuis et al. 2012, Mourao-Miranda et al. 2012a,  

Zanetti et al. 2013, Schnack et al. 2014, Zhang et al. 2015, Koutsouleris et al. 2015a) 

and has thus far delivered rather satisfactory classification results. For a critical 

review on the application of SVM in psychiatric disorders, see Orru et al. 2012. 

Therefore, the reason for selecting this classification method lies, on the one hand, on 

its wide use by the neuroimaging community and, on the other hand, on the fact that 

it can deal effectively with high dimensional data and deliver good classification 

performance. The diagnostic and prognostic accuracy of the SVM models 

implemented in schizophrenia studies has ranged from 70% (Mourao-Miranda et al. 

2012a, Nieuwenhuis et al. 2012) to over 90% (Fan et al. 2007, Yoon et al. 2007, 

Costafreda et al. 2011, Koutsouleris et al. 2012b), which is very impressive 

considering the high-dimensionality of the brain imaging data, with thousands of 

voxels being used as input in the classifiers. For a detailed description and discussion 

of the variability in the performance of the SVM models in schizophrenia research, 

one can go back to Chapter 3, section 3.3.1. The rest of this section comprises of a 

description of the rationale and the mathematical background of SVM models. 

 

The SVM methodology is based on statistical learning theory as originally proposed 

by Vapnik and Chervonenkis (1971). In the original implementation described in 

Vapnik (1995) SVM was a linear classifier but other modifications exist that describe 

the classification for non-linear cases (Boser et al. 1992).  

The main goal of SVM is to construct a decision boundary that would allow the 

classification of individual observations into two (or more) distinct classes, while 

simultaneously trying to maximise the margin between those classes (training stage). 

A hypothetical example of a binary SVM classifier is illustrated in Figure 4.1. The 

optimal separating hyperplane is determined by maximising the distance between the 

nearest data instances of opposite classes (i.e. the support vectors; Figure4.1b). Once 
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determined, the optimal hyperplane can be used to classify new, previously unseen 

data instances (testing phase). 

 
 
 
 
 
(a)             (b) 

  
 
Figure 4.1 Representation of a linear, binary SVM classifier. (a) Illustration of the classification 

problem between two groups (i.e. circles represent patients, squares represent healthy controls) for the 

simplified case of two voxels. The dashed lines represent a subset of possible separating hyperplanes, 

described by a weight vector w and an offset b. (b) The optimal separating hyperplane is the one with 

the largest margin of separation between the two groups and is described as a function of f(x)= w*x+b, 

where w is a weight vector that is normal to the hyperplane, b is an offset and b/ ||w|| is the distance 

from the hyperplane to the origin. Points in the dashed lines represent the support vectors. During the 

training phase, the SVM classifier computes the optimal decision function f(x) and in the testing phase, 

this decision boundary is applied to new data instances. 

 

    

Here, a linear support vector machine (SVM) classifier was used for the classification task.  

    

4.4.1.1 Linear Support Vector Machines  

A linear binary SVM implies that data instances of two classes can be separated by 

either a line (in case of two dimensions) or a hyperplane (in case of more than two 

dimensions). Each data instance is represented by an n-dimensional vector of 
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features and each instance belongs to only one of the two classes (i.e. +1 for the 

positive class; patients and -1 for the negative class, i.e. control subjects).  

 

Now, let's assume that we have l  training instances, where each data instance ix has 

n  attributes, and belongs to one of the two possible classes iy = {-1, +1}.  This set of 

instance-label pairs is called training set and is of the form:  

            ( )ii y,x   where i = 1.... l , ( )li +y 11,−∈   and  nRx∈    (1) 
 
 

In the training phase of the SVM, the classifier computes a decision function 

(hyperplane) that maximises the distance between the opposite classes. This linear 

decision function is based on the linear discriminant function of the form: 

( ) b+xw=xf ii

⋅ , where w is a weight vector, normal to the hyperplane, b  is a bias 

term and 
w
b
  is the distance from the hyperplane to the origin (Figure 4.1). As it is 

observed in Figure 4.1, the margin between the classes is equal to
w
1 , however 

maximising this quantity is equivalent to minimising 2

2
1 w .  

For each class (y=+1, y=-1), one needs to solve: 

1+≥⋅ b+xw i


  when iy = +1            (2) 

1−≤⋅ b+xw i


  when iy = -1                                          (3) 

Equations (2) and (3) can be combined to:     1)( ≥⋅ b+xwy ii
  

This problem now becomes a primal optimisation one and we therefore need to: 

 

          2

2
1 wmin     subject to   ( ) iii b+wxy ∀≥−⋅ 01

    (4)

  
 

The above is an optimization problem with a convex quadratic objective and only 
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linear contraints and its solution gives the optimal margin classifier. The constraint in 

this formulation ensures that this maximum-margin SVM classifies data instances 

correctly and no data points of the one class lie on the opposite class. In practice, 

however, data are not often 'exactly' linearly separable. A greater margin can, thus, 

be achieved by allowing some misclassification. To allow some errors in the data 

classification the optimisation problem, in Equation (4), now becomes: 

 
 
 

    ∑
l

=i
iξC+wmin

1

2

2
1     s.t.     ( ) iiiii ξξb+wxy ∀≥−≥⋅ 0,1

   (5) 

 
 

where 0>C is a regularisation parameter of the error term (or else a penalty 

parameter that controls the trade-off between having no training errors and allowing 

some misclassification) and iξ  is a positive slack variable that allows 

misclassification of points.  

If 10 ≤≤ iξ , then the corresponding data point lies in the margin, while if 1≥iξ the 

data point is misclassified. This formulation is called soft-margin SVM. 

 

In order to solve ths constrained optimization problem one can, also, use the 

Lagrangian multipliers a  and thus obtain the dual formulation of the optimization 

problem expressed as: 

 

    max  j
T
ijij

l

=i

l

=j
i

l

=i
i xxaayya 

⋅− ∑∑∑
1 11 2

1      subject to    0≥∀ ia , 0
1

=ay i

l

=i
i∑          (6) 

 
 

This is also a convex quadratic optimization problem but with N variables ( ia , i=1,.., 

L) where L is the number of samples. The dual formulation leads to the expression of 

w as a linear combination of the training vectors in the form: ii

l

=i
i xya=w ∑

1
. The dual 

formulation is computationally more efficient as the decision function is only 
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computed by a subset of the training data for which: Cai ≤�≤�0 , and additionally 

there is no need to access the original data but only dot products. Data instances from 

this subset are called support vectors and are data points that lie upon the separating 

hyperplane (see Figure 4.1).  For a complete description of the derivation of the dual 

formulation please see Appendix II. 

 

Additionally, the dual formulation problem lends itself to the kernel trick (Aizerman 

et al. 1964), where instead of computing the ordinary dot product between data 

instances; one can only compute the kernel function: 

 

      max ),(
2
1

1 11
j

T
ijij

l

=i

l

=j
i

l

=i
i xxaayya 

Κ− ∑∑∑     subject to   0≥∀ ia  , 0
1

=ay i

l

=i
i∑      (7) 

 

The use of kernels is highly efficient in order to get optimal margin classifiers in 

high-dimensional space and especially in cases where the data are not linearly 

seperable. However, the mathematical description of non-lineal SVM models is 

outside the scope of this chapter.  

 

Having computed the decision function, each new previously unseen data instance 
'x  can be classified to one of the two classes by computing the decision function

( )b+xwsgn '
⋅ .  

 
 
 

4.4.1.2 LIBSVM 

There are a wide range of SVM toolboxes available. We used LIBSVM library for 

the implementation of the linear SVM classifier (Chang & Lin 2011), running in 

Matlab version 7. This toolbox requires that each data instance is represented as a 

vector of real numbers, so transformation of the original data set into LIBSVM 
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format was necessary before running the method (Hsu et al. 2010). In addition, 

scaling to [0, 1] range was performed in order to ensure that attributes in greater 

numeric ranges would not dominate those in smaller ranges.  

A ‘grid-search’ on the C parameter using cross-validation was also performed. 

Various C values were tried and the one that gave the best cross-validation accuracy 

was picked. More details on the C parameter can be found in the following results 

chapters of this thesis. 

   

 

 

4.4.2 Feature Extraction 

As described in Chapter 3, feature extraction is a fundamental and obligatory step in 

every pattern recognition image analysis pipeline. 

Prior to using the SVM, all smoothed and normalized GM maps were mapped to the 

Automated Anatomical Labeling (AAL) brain atlas (Tzourio-Mazoyer et al. 2002). 

The AAL template is an atlas that provides a parcellation of the human brain in 116 

brain regions and serves as a basis for the correspondence between sets of co-

ordinates and their anatomical labels (Figure 4.2). For its construction, the AAL atlas 

was based on the spatially normalized MNI single-subject MRI brain template, 

which was obtained by repeatedly scanning a young man (27 times) and averaging 

each MRI acquisition to produce the final MRI brain template. For a detailed 

description of the delineation and parcellation process, one can see the Tzourio-

Mazoyer et al. (2002) paper.   
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    a)                                        b)                                             c) 

              

Figure 4.2 Illustration of the AAL brain atlas. a) axial view, b) coronal view and c) 
sagittal view. 

 

 

A script in C programming language (Kernighan & Ritchie 1978) was implemented 

in order to extract the GM density volumes corresponding to the 116 pre-defined 

brain regions of the AAL template from each smoothed and normalized GM map in 

the EHRS and the FePsy datasets. Specifically, each subject’s smoothed and 

normalized GM image was mapped to the AAL-atlas template, where in each AAL-

specified region the intensity values of the voxels that comprised the brain region 

were summed up and their mean intensity was derived. These (mean) GM density 

values were, then, used as input features into the SVM classifier.   

For reasons of disc memory and speed efficiency, it was decided to use a ROI-based 

approach instead of a voxel-based one. The C code for mapping and extracting mean 

intensity values was already available in the lab. There are a number of advantages to 

choosing such an approach, which include a faster calculation of the separating SVM 

hyperplane, since the number of features in the ROI-based classification is 

significantly lower than in the voxel-based case, a faster and more efficient feature 

selection and interpretation of the involved brain regions. On the other hand, because 

the signal intensity is averaged in the AAL-defined ROI, this could possibly lead to 

loss of information since there is no way one could detect differences or significant 

information in voxels or voxel clusters (and subregions) within the ROI.  
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4.4.3 Feature selection 
 

In machine learning, feature selection is an important step in the analysis pipeline for 

a number of reasons: meeting computational and time constraints, facilitating the 

interpretation and visualization of results and enhancing the generalization 

performance (Guyon & Elisseeff 2003). A variety of feature selection methods exist. 

Filters are the simplest and most computationally efficient feature selection methods, 

in which features are ranked and eliminated based on a selection criterion during the 

pre-processing stage and just before the data enter the classifier. Filter methods are, 

therefore, independent of the classifier. The main disadvantage of filters is that these 

methods do not examine features jointly with respect to how significant they are in 

the classification task (as a group) but rather rank them independently of one another. 

Thus, filter methods are not well suited for situations where apart from removing 

redundancy, one is also interested in increasing classification performance because a 

group of features might be able to provide better accuracy than another and filter 

methods cannot examine this in any way. To this end, embedded methods are better 

suited because they aim to find a combination or a subset of features that would 

provide maximum classification accuracy. To do that, embedded methods utilize the 

classifier to exmamine the quality of the features by incorporating variable selection 

as part of the training process of the classifier and by implementing a ranking 

criterion that is bound to the cross-validation performance.  

In the present work, a series of feature selection methods was tried out. Initially filter 

methods, such as the F-score (Chen and Lin, 2006) and the Pearson Correlation 

coefficient, which is closely related to the t-Test criterion (Guyon & Elisseeff 2003), 

were examined. A detailed descrition of these filter methods can be found in 

Appendix III. However, both of these methods failed to increase the classification 

accuracy (both when tried with linear and nonlinear SVM classifiers), which was one 

of the reasons for applying feature selection in the first place, apart form removing 

redundancy.   

An embedded feature selection method, called Recursive Feature Elimination (RFE), 
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was then put to the test. It was observed that the classification performance was 

significantly improved after implementing the Recursive Feature Elimination, as 

opposed to not incorporating it in to the SVM classifier. However, for the sake of 

consistency, the performance of the SVM classifier with and without RFE will be 

given in the following results chapters. A detailed descrition of the RFE 

methodology is given below. 

 

 
4.4.3.1 Recursive Feature Elimination 

Recursive Feature Elimination (RFE) is one of the most effective feature selection 

methods, proposed and originally implemented by Guyon et al. (2002) for gene 

selection in cancer classification. It is a backward sequential feature elimination 

approach, embedded in an SVM classifier that selects features based on their 

influence on the determination of the maximum margin hyperplane. 

The algorithm starts with all feature variables in the training set and gradually 

removes one feature at a time (or for speed reasons, more than one feature could be 

eliminated). At each step, a linear SVM classifier is trained using a subset of the 

original feature set and the coefficients of the w vector are used to compute a feature 

ranking score. For the linear case, the feature ranking criteria is the: ( )2ii w=c , for all 

features i. Based on this ranking criteria, the feature with the smallest ranking score 

is eliminated from the feature set and the method iterates in the same way until a 

specified number of features have been eliminated or until the classifier reaches its 

best classification performance (see Panel 1). However, in this implementation, the 

RFE method continued until all features were eliminated from the feature set while at 

each elimination step the performance on the validation step was recorded so that the 

(smaller) subset of features that achieved the highest performance on the validation 

set was determined and retrieved. Feature elimination based on this ranking criterion 

corresponds to eliminating that feature whose removal changes the objective function 

the least, thus, having the least contribution on the margin definition. Recall from the 

previous section, the objective function is 2

2
1 w=J , which justifies the use of ( )2

iw
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as the ranking criterion. This approach is based on linear SVM, although other 

implementations of the methodology exist for non-linear classification problems 

(Rakotomamonjy 2003). 

 
 
 
 
Panel 1. Algorithm for the Recursive Feature Elimination. 

 
 
 
 
4.4.4 Classification performance 
 
Measures of classification performance are needed in order to assess the 

generalizability of the classifier to independent testing cases. The most widely used 

metric is the accuracy, which measures the proportion of correctly predicted data to 

the total number of the test data. 

In the following subsections I present the performance metrics employed in this 

study and also describe the technique of cross-validation, which was used in order to 

assess the classifier’s performance. 

 

   

  1. Start:  training examples [ ]Tlk2 x,x,x,x=X .....10  

      class labels [ ]Tlk2 y,y,y,y=y ....1  
      ranked feature subset R=[],  

      surviving feature subset S=[1,2,.., n] 

  2. Repeat until S=[] 

       a) train a linear SVM with features in set S 

      b) compute the weight coefficients 

      c) compute the ranking score ( )2ii w=c for each feature in S 

      d) find the feature with the smallest ranking score ( )icargmin=f  

      e) Update the R=[f, R] and S=S-[f]. 

  3. Output: Ranked feature list R 
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4.4.4.1 Performance metrics 

The performance of a classification method can be visualised using a confusion 

matrix (Table 4.1), which contains information about the actual and predicted 

instances classified by the chosen classifier (Kohavi & Provost, 1998). The correctly 

labelled instances are located on the diagonal and consist of the true positives (TP) 

that refer to correctly classified patients and the true negatives (TN) that represent the 

correctly labelled controls. Instances that are incorrectly labelled are divided in false 

positives (FP) and false negatives (FN) that describe the proportion of control 

subjects incorrectly labelled as patients and the number of patients incorrectly 

identified as controls respectively. 

 

                  

Table 4.1 Confusion matrix of a binary classifier. The confusion matrix aims to 

classify positive cases (i.e. patients) and negative examples (i.e. control subjects).  

 

The accuracy is the proportion of the total number of correct classifications and is 

given by the formula: 

 
 

   100×
+++

+
=

FNFPTNTP
TNTPAccuracy % 

 
 

In cases where the two classes are unbalanced, the accuracy is not a very reliable 

measure of the classification performance. It is, thus, important to report other 

performance metrics. 

Sensitivity refers to the proportion of the actual cases in the positive class correctly 

classified and is given by: 
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Sensitivity= TP

TP+FN
× 100

% 

Specificity refers to the proportion of actual cases in the negative class correctly 

classified and is computed by: 

 

   
Specificity= TN

TN+FP
× 100

%  
 
Positive predictive value (PPV) gives the probability that a person identified by the 

classifier as having a disease actually has the disease:   

 

100×
FP+TP

TP=PPV  % 

 

Negative predictive value (NPV) refers to the probability that a person identified as 

free of a disease truly does not have it and is given by the:  

100×
FN+TN

TN=NPV  % 

 
 
 

 

4.4.4.2 Cross-validation 

In cases where the data set is large enough, one would be advised to split the set into 

a training set and a holdout set that would serve for evaluating the classifier’s 

performance (test set). However, it is not always ‘affordable’ to set aside a portion of 

the original data set for testing purposes, especially when this data set consists of 

limited cases; as is often the case in neuroimaging studies. To this end, cross-

validation is usually performed (Kohavi 1995).  

Here, a leave-one-out (LOO) cross-validation (CV) approach was employed. Leave-

one-out CV can effectively deal with over-fitting and provide an almost unbiased 

estimate of the generalisation error. It involves a repeating procedure, where in each 

trial data from all but one subject (k-1 of k subjects) are used for training and the left-
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out subject is used for testing the classifier's performance. This procedure is repeated 

k times, until all data instances have been used in the test set and then classification 

accuracy is averaged across all runs.  

 
 
 
4.4.5 Permutation Testing 
 
Permutation testing was used to evaluate the probability of obtaining accuracy levels 

higher than the ones obtained during the cross-validation procedure. An illustration 

of how permutation tests work is given in Figure 4.3. This test is used to derive a p-

value that gives an estimate of the statistical significance of the classifier and 

determines whether classification accuracy exceeded chance levels (50%). After 

having completed the RFE procedure, and using the final set of selected features, I 

permuted the class labels 1000 times, by randomly assigning patient and control 

labels to the training subjects. I then counted the number of times the permuted 

accuracy exceeded the one obtained for the true labels and by dividing this number 

by 1000, the p-value for the classification was derived.  

 
 

 
 

Figure 4.3 Permutation testing. The significance of a classifier’s performance is assessed 
using permutations tests. The ‘true’ labels are randomly permuted to obtain “baseline” model 
performances. The “true” model performance is then compared to the baseline level obtained 
from the permutations. Typically, a model performance is significant if the performance 
obtained by chance does not exceed or is equal to the true model performance more than 5% 
of the time (p < 0.05). 
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CHAPTER 5 

Individualized prediction of schizophrenia in subjects at high familial risk 
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5.1 Introduction 

     

As seen in previous chapters, schizophrenia is associated with a number of brain 

abnormalities. However, it remains unclear whether these brain abnormalities occur 

prior to disease onset, or in high-risk individuals coming from multiply affected 

families or only those high-risk subjects that go on to develop schizophrenia. The 

EHRS was conceptualized with the aim of shedding light to those questions and 

identify predictors of vulnerability and transition to schizophrenia. Findings from 

previous EHRS studies using univariate methods of data analysis have been 

discussed in previous chapters. 

The scope of this chapter is to investigate the utility of baseline structural MRI data 

in predicting transition to schizophrenia in high-risk subjects, who took part in the 

EHRS and were identified at a heightened risk for developing psychosis for familial 

reasons, using a Support Vector Machine (SVM) approach. Additionally, the 

diagnostic performance of the classifier was examined by combining baseline 

neuroanatomical information with baseline schizotypal and neurocognitive variables 

that were previously reported as good predictors for the development of 

schizophrenia. It was hypothesized high risk subjects who later go on to develop 

schizophrenia could be distinguished at baseline from HR subjects who do not and 

that a combination of structural brain imaging, schizotypal and neurocognitive data 

would enhance predictive performance compared to either individual measures alone. 

 

 

5.2 Background   

 

Psychiatric research interest has recently shifted from studying schizophrenia to 

attempting an early detection of the disorder before diagnosis of full-blown psychosis 

can be established. Making an early diagnosis of schizophrenia and other psychoses 

is, however, quite challenging mainly because of the underlying difficulty of 

identifying an 'at-risk' state for the disorder (Riecher-Rossler et al. 2006). 
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As seen in previous chapters, a plethora of risk factors for psychosis have been 

identified; the most predominant of which include the existence of subclinical 

psychotic symptoms and genetic risk. Individuals conceptualised as at clinical HR 

(or as having an ‘at-risk mental state’- ARMS) present with early signs of psychosis 

such as attenuated positive symptoms or brief limited intermittent psychotic 

symptoms (Fusar-Poli et al. 2013a, Phillips et al. 2000). In familial HR paradigms, 

individuals are characterised on the basis of having at least one affected first or 

second-degree relative (Cannon & Mednick 1993, Erlenmeyer-Kimling et al. 1997, 

Mirsky et al. 1995). Several aspects of the familial and clinical HR paradigms, 

however, overlap as many individuals at familial HR often exhibit pre-psychotic 

symptoms and clinical HR subjects might also have a family history of the disorder.  

Nevertheless, both HR paradigms are associated with an increased risk for 

development of psychosis and share various neurocognitive and neuroanatomical 

alterations (Smieskova et al. 2013), some of which might even be predictive of future 

disease transition (Lawrie et al. 2001b, Brewer et al. 2006, Smieskova et al. 2013). 

Neurocognitive dysfunctions are cardinal to schizophrenia (Heinrichs & Zakzanis 

1998) and some of them can even be detected early in the course of the disease 

(Fusar-Poli et al. 2012a, Seidman et al. 2006). Previous studies reported significant 

neurocognitive impairments in the domains of attention, working memory, executive 

function, verbal learning/fluency and memory in HR compared to healthy control 

(HC) subjects (Seidman et al. 2006, O’Connor et al. 2009, Brewer et al. 2005, Pukrop 

et al. 2006, Byrne et al. 2003, Gschwandtner et al. 2003, Wood et al. 2003). Reduced 

baseline performance in verbal fluency and memory was also found to distinguish 

HR subjects who later converted to psychosis from those who did not, both in 

clinical (Fusar-Poli et al. 2012a, Pukrop et al. 2007, Lencz et al. 2006) and familial 

HR paradigms (Johnstone et al. 2005, Erlenmeyer-Kimling et al. 2000, Whyte et al. 

2006). Furthermore, prediction performance of multivariate models was shown to 

improve, up to 80% accuracy (Lencz et al. 2006), when neurocognitive functioning 

and symptom severity scores were integrated in a stepwise risk assessment (Riecher-

Rossler et al. 2009, Lencz et al. 2006). Studies employing prognostic index, in a 

multilevel context that combines individualized risk estimation and stratification, 
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have also reported remarkable results in predicting transition to psychosis. The 

combination of data from different domains such as neuropsychological data and 

clinical HR criteria (Ruhrmann et al. 2010) or neurophysiology measures with 

premorbid adjustment (Nieman et al. 2014), has resulted in positive predictive value 

of up to 83% (Ruhrmann et al. 2010) and as a second step enabled an individualized 

risk classification in terms of magnitude and time to transition, that has an added 

benefit for informing targeted prevention strategies.  

As seen in previous chapters, VBM studies have shown that schizophrenia is 

associated with grey matter (GM) volume reductions in frontal, superior temporal 

and anterior cingulate gyri and medial temporal lobe structures (Bora et al. 2011). 

Subtle GM reductions in prefrontal, medial temporal, limbic and temporo-parietal 

regions were also found across the whole HR population (Smieskova et al. 2010, 

Borgwardt et al. 2011, Meisenzahl et al. 2008b, Job et al. 2003, Pantelis et al. 2003) 

suggesting that they might be correlates of vulnerability to psychosis (Fusar-Poli et al. 

2011). Transition to schizophrenia was found to be associated with further GM 

volume reductions in temporal, cingulate and cerebellar regions in clinical HR 

samples (Borgwardt et al. 2006, Koutsouleris et al. 2009a, Pantelis et al. 2003). In 

our own EHRS, progressive GM reductions in the inferior temporal gyrus, uncus and 

right cerebellum were reported in those HR subjects that later transited to 

schizophrenia versus those who did not (Job et al. 2006).  

What is more needed in clinical practice, however, is moving from a characterisation 

of group differences to models that could simultaneously capture individual 

variations from the norm while making inferences at a single-subject level. To this 

end, pattern classification techniques, including the Support Vector Machine (SVM), 

have emerged as powerful brain image analysis tools and have already been applied 

in diagnosing various neurological and psychiatric disorders (Kloppel et al. 2012, 

Orru et al. 2012, Davatzikos et al. 2005b, Kloppel et al. 2008a, Mourão-Miranda et al. 

2011). As seen in the literature review in Chapter 3, SVM has achieved high 

diagnostic accuracy, ranging from 77% (Koutsouleris et al. 2012b) to 84% 

(Koutsouleris et al. 2012a) in predicting future transition to psychosis in ARMS 

subjects, either using neurocognitive (Koutsouleris et al. 2012b) or neuroanatomical 
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data (Koutsouleris et al. 2012a, Koutsouleris et al. 2009b). 

However, these studies have only focussed on using a single type of data at a time. A 

limited number of studies have examined the diagnostic performance of combined 

data in distinguishing schizophrenia or first episode patients (Pettersson-Yeo et al. 

2013) against HC, mostly by combining genetic data with either functional or 

structural MRI (Yang et al. 2010) or clinical information (Struyf et al. 2008), and 

have produced quite encouraging results (Sui et al. 2012).  To our knowledge, only 

one study has combined structural MRI with neurocognitive data (Karageorgiou et al. 

2011), reporting good classification performance (89% sensitivity and 93% 

specificity) in the context of distinguishing recent-onset schizophrenia patients from 

HC subjects. 

 

 

5.3 Materials and Methods 

 

5.3.1 Subjects 

 

The subject material was gathered as part of the Edinburgh High Risk Study (EHRS). 

A detailed description of the EHRS recruitment and assessment procedures was 

given in Chapter 4, section 4.2.1, and can also be found in previous papers (Hodges 

et al. 1999, Johnstone et al. 2000).  

Briefly, 160 individuals aged 16-25 years, with no previous history of psychiatric 

problems, were drawn throughout Scotland and were identified as HR on the basis of 

having two or more relatives affected with schizophrenia. Subjects were followed up 

for up to 10 years during which they underwent a series of clinical, behavioural and 

neuroimaging assessments every 18 months.  

Psychopathology was assessed at entry and follow-up by the Present State 

Examination (PSE; Wing et al. 1974) and allowed the classification of subjects into 

five categories: 0, no symptoms; 1, non-psychotic symptoms; 2, partially held 

psychotic symptoms; 3, definite but isolated and/or transient psychotic symptoms 
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and 4, diagnosis of schizophrenia, which was further validated by the ICD-10.  

All subjects were antipsychotic-naive at study-entry and at follow-up or until they 

were clinically diagnosed with schizophrenia. From those HR subjects who provided 

complete data and had a MRI scan, 17 were diagnosed at follow-up with 

schizophrenia (after an average of 929 days, SD=138). Among the rest, 57 subjects 

experienced psychotic or possibly psychotic symptoms (points 2 and 3 combined) 

but these were too transient or mild to satisfy operational definition for schizophrenia 

or any related psychotic illness (Johnstone et al. 2000). The rest of the HR subjects 

remained well, with no symptoms.  

In this study, the aim was to contrast the two groups who exhibited psychotic 

symptoms and were the most difficult to discriminate against on any basis: the one 

group of subjects that surpassed the clinical threshold for schizophrenia (HR[ill]) and 

the other remaining below the threshold for clinical diagnosis (HR[symp]) but yet 

exhibited psychotic symptoms. In that way, our study groups could indirectly relate 

to other studies in this area, which study ARMS individuals who typically present 

psychotic symptoms, although these were identified based on different assessment 

criteria than the present study.  

To build the classifier, 17 of the 57 HR[symp] subjects were randomly selected to 

contrast with the 17 HR[ill] subjects (Table 5.1), a practice seen in other studies in 

this area (Koutsouleris et al. 2015b, Mourao-Miranda et al. 2012a, Koutsouleris et al. 

2010, Koutsouleris et al. 2009b), primarily in order to alleviate class imbalance 

issues that can result in a classification bias towards the majority class (Japkowicz 

2000, Akbani et al. 2004, Weiss 2004). The data of the remaining 40 subjects were 

used to further validate the classification (Table 5.2- HR[symp]test), after training and 

cross-validation. A more detailed discussion on the reasons for choosing this 

technique to manage the class imbalance can be found in section 5.4.4 of this 

chapter. 
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5.3.2 Schizotypal and Neurocognitive Measures 

 

We aimed to include in our analysis those variables that constituted the best 

predictors of schizophrenia in the EHRS literature (Johnstone et al. 2005), namely 

the Rust Inventory of Schizotypal Cognitions (RISC) questionnaire (Miller et al. 

2002b) and the Rey Auditory Verbal Learning Test (RAVLT). 

Briefly, the RISC is a self-completed, 26-item questionnaire that evaluates 

schizotypy and schizotypal cognitions, rather than overt psychotic symptoms, 

primarily associated with the positive symptoms of schizophrenia (Rust 1988). The 

areas tapped include ritualistic thinking, psychotic symptoms such as delusions of 

grandeur, schizophrenic symptoms such as auditory hallucinations and defense 

mechanisms such as reaction to disturbing ideas. A few indicative examples of the 

cognitions measured in the RISC are: ‘I never use a lucky charm’ and ‘sometimes I 

get a weird feeling that I am not really here’. Here, a uni-dimensional test score was 

calculated for each participant at study-entry through the cumulative summation of 

the item scales.  

The RAVLT instrument evaluates verbal memory and learning, by repeatedly (5 

times) presenting the individual with a list of words and asking to recall as many as 

he/she can (Byrne et al. 2003). The final test score produced is equal to the total 

number of words recalled across all five trials. Previously, an equal mis-classification 

costs cut-off on the RISC score showed 94% negative and 50% positive predictive 

power while the same approach to the RAVLT trials 1-5 total score showed figures 

of 85% and 11%  respectively (optimal cut-off points: 39.5 and 48.5 respectively; 

Johnstone et al. 2005). 

 

 

 

 



 100 

5.3.3 Image Acquisition and Preprocessing 

 

In the present thesis, only baseline neuroimaging scans were considered. In the 

EHRS study, all baseline scanning was performed on a 1.0 T Siemens Magnetom 

scanner (Erlangen, Germany). After localisation and a double spin-echo sequence to 

identify any gross brain abnormalities, T1-weighted MRI scans were acquired using 

a three-dimensional Magnetization Prepared Rapid Acquisition Gradient Echo 

(MPRAGE) sequence with the following parameters: TR=10 ms, TE=4 ms, TI=200 

ms, relaxation delay time=500 ms, flip angle= 12o, FOV= 250mm x 250mm, 

resulting in 128 contiguous, 1.88-mm thick “slices”. To correct for inhomogeneity of 

the RF coil and any scanner changes over time, an oil phantom was scanned 

immediately after each subject, using the same coil and in the same orientation as the 

subject’s head (Job et al. 2002). An example of a typical structural MRI scan of a 

high-risk individual in the EHRS is given in Figure 5.1.  

 

 

                       Figure 5.1 A typical MRI scan in the EHRS dataset. 

 

A detailed description of the steps in the preprocessing pipeline can be found in 

Chapter 4, section 4.2. 
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Table 5.1 Baseline sociodemograpchic and behavioural assessment variables of the 
study groups 

 

HR[ill] 
 

HR[symp] 
 

P 
 

 Number of participants 17 17 
  Mean age at baseline (SD) 20.07(2.37) 20.03(2.6) nsa 

 Male (%) 11(64.7) 11(64.7) nsb 
 Mean RISC score (SD) 39.88(10.6) 25.23(11.75) <0.01a 
 Mean RAVLT, trials 1-5 (SD) 47.64(7.49) 53.41(7.45) nsa ** 
 Mean WAIS-IQ (SD) 98.64(12.93) 98.98(14.7) nsa 
 Handedness 

  
nsb 

         Right 16 15 
          Left 0 1 
          Mixed 1 1 
  Social Class of origin 

  
nsb 

         I and II 2 3 
          III and IV 13 10 
         V and VI 2 3 
        unclassifiable 0 1 
  Cannabis use at baseline 

  
nsb 

         None 8 12 
          Occasional 5 4 
          Frequent 4 1 
 Smoking cigarettes 

  
nsb 

         None 7 9 
          <10 6 4 
         10-20 3 2 
          >20 1 2 
  Symptoms severity (PSE rating)  

  
nsb 

        No psychotic symptoms 2 7 
         Neurotic symptoms only 4 3 
         Partially held psychotic symptoms 9 6 
         Isolated and/or transient psychotic 

symptoms 2 1 
   

HR[ill]: individuals at high familial risk who developed schizophrenia during follow-up 
period; HR[symp]: individuals at high familial risk who remained well but developed 
psychotic symptoms during follow-up period; IQ, Intelligence Quotient; RISC, Rust 
Inventory of Schizotypal Cognitions; RAVLT,  Rey Auditory Verbal Learning Test; WAIS-
R, Wechsler Adult Intelligence Scale- Revised. Social class of origin was based on the 
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father's occupation at the time of the subject's birth using the Occupational Classification of 
the Registrar General (HMSO 19991). a Student’s T-test.  b Fisher’s exact test.  **effect size 
was r=0.54 

 

Table 5.2 Socio-demographic and behavioural variables for the two HR[symp] 
groups 

 

HR[symp] 
 

HR[symp]test 

 
P 
 

 Number of participants 17 40 
  Mean age at baseline (SD) 20.03(2.6) 21.07(4.59) nsa 

 Male (%) 11(64.7) 14(35) nsb 
 Mean RISC score (SD) 25.23(11.75) 33.45(13.39) nsa 
 Mean RAVLT, trials 1-5 (SD) 53.41(7.45) 51.15(11.59) nsa 
 Mean WAIS-IQ (SD) 98.98(14.7) 96.42(12.64) nsa 
 Handedness 

  
nsb 

         Right 15 34 
          Left 1 4 
          Mixed 1 2 
  Social Class of origin 

  
nsb 

         I and II 3 7 
          III and IV 10 22 
         V and VI 3 10 
        unclassifiable 1 1 
  Cannabis use at baseline 

  
nsb 

         None 12 26 
          Occasional 4 10 
          Frequent 1 4 
 Smoking cigarettes 

  
nsb 

         None 9 21 
          <10 4 12 
         10-20 2 4 
          >20 2 3 
  Symptoms severity (PSE rating)  

  
nsb 

        No psychotic symptoms 7 13 
         Neurotic symptoms only 3 13 
         Partially held psychotic 

symptoms 6 13 
         Isolated and/or transient 

psychotic symptoms 1 1 
 Note: please see legend of Table 5.1 
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5.3.4 Multivariate Pattern Classification Analysis 

 

A detailed description of the pattern classification analysis pipeline can be found in 

Chapter 4, section 4.3. 

 

5.3.4.1 Support Vector Machine 

A linear Support Vector Machine (SVM) was used for the classification task. A 

detailed description of the linear SVM classifier can be found in Chapter 4, section 

4.3.1.1. Briefly, a binary SVM classifier works by finding an optimal decision 

function that separates the two classes. The classification procedure consists of two 

phases: training and testing. During the training phase, the classifier is trained by 

providing examples of the form (xi, yi), where xi represent a spatial patter (e.g. grey 

matter map) and yi represent class labels (here, HR[ill] and HR[symp]) in order to 

determine a hyperplane that optimally separates the two groups. Once the decision 

function is learned, it can be used to predict the class of a new test example. 

As described before in chapter 4, the linear SVM has a slack variable that controls 

for the desired amount of misclassifications. Here, a ‘grid-search’ on the C parameter 

was performed, as recommended by Hsu et al. 2010, in order to identify the optimal 

value for the parameter (that is the value that produced the highest accuracy in the 

cross-validation). However, the grid search was only performed in the inner cross-

validation loop of the nested cross-validation scheme (described in more detail 

below), whereas in the outer cross-validation loop the default C value was used (i.e. 

C=1). 

Apart from the linear SVM, non-linear SVM classifiers were also tried out. Briefly, 

when the relationship between the class labels and the features is nonlinear, one can 

choose to map the original data into a higher dimensional space where the data 

samples are linearly separable. To do that, the kernel trick is employed (recall from 

section 4.4.1.1); the most widely used nonlinear kernel is the Radial Basis Function 

(RBF). In the following Results’ section, the results pertaining to the use of the 
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nonlinear RBF SVM will be briefly presented.  

 

 

5.3.4.2 Feature Extraction 

As previously described, prior to using the SVM, all smoothed and normalized GM 

maps were mapped to the Automated Anatomical Labeling (AAL) brain atlas 

(Tzourio-Mazoyer et al. 2002) and GM density volumes corresponding to the 116 

brain regions of the template were returned. The 116-length vector of GM density 

values was then concatenated with the baseline RISC and RAVLT scores and was 

used as input to the classifier. To ensure commensurability of the different data types, 

the features were scaled to [0 1] in the training set and then the same scaling was 

applied to the testing set. 

 

5.3.4.3 Feature Selection 

To identify the most significant features in the classification task, recursive feature 

elimination (RFE; Guyon et al. 2002) was applied. As previously described, RFE is a 

backward feature selection technique, that recursively removes features from the 

original dataset with the aim of removing the most redundant features, while keeping 

the most significant. During RFE, a linear SVM classifier is trained and the method 

removes one (or more) features based on a feature-ranking criterion that is computed 

as the square of each weight vector coefficient (wi2). 

Here, apart from removing the least significant features, I was also interested in 

improving diagnostic performance. A nested leave-one-out cross-validation (LOO-

CV) framework was, thus, employed (Mourão-Miranda et al. 2012, DeMartino et al. 

2008) in which one subject was removed from the original data set to comprise the 

test set and then a second split where the remaining subjects were again repeatedly 

repartitioned to form a validation and a training set was performed (Figure 5.2). The 

nested LOO-CV provided an unbiased estimate of the expected diagnostic accuracy 

on new cases. 
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The testing points had no involvement whatsoever in the RFE and the training 

process. The feature set that produced the maximal accuracy on the validation set 

was selected and applied to the testing set. The final accuracy was calculated as the 

mean accuracy over all test subjects. 

The feature set that contained the most significant features in the classification 

process and produced maximal accuracy was returned. Each feature is associated 

with a weight vector wi that gives an indication of the relative importance of each 

feature in predicting one class over the other. Given the labels +1 and -1 for the 

HR[ill] and HR[symp] groups respectively, a positive weight vector implies a  higher 

importance of this feature in classifying the HR[ill] group whereas a negative value 

means this feature is more important in classifying HR[symp] individuals over HR[ill] 

ones. Figure 5.3 presents an illustration of the most discriminating regions based on 

their weight vectors (Figure 5.3). 

 

Finally, it should be noted that the implementation of the RFE methodology for 

nonlinear SVM classifiers was fairly complicated and was not attempted; therefore 

results pertaining to the nonlinear SVM classifier (and specifically RBF SVM) 

include a single leave-one-out cross-validation loop. The lower predictive accuracy 

of the RBF-SVM classifiers and the entailed difficulty in implementing the RFE 

method were the main reasons for opting out of the nonlinear SVM and continuing 

with the linear classifiers. 
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Figure 5.2 Pattern classification analysis pipeline. (1) Feature extraction: after 
standard scan preprocessing, GM segments were mapped to the AAL atlas and 
transformed into feature vectors containing GM volume information. In the second 
analysis, baseline clinical variables were concatenated to form the SVM input 
vectors. (2) Nested LOO-CV SMV-RFE. A nested LOO-CV was employed where I 
repeatedly excluded one subject from our data set to comprise the test set and the 
remaining subjects (33) were again repeatedly repartitioned in an internal validation 
loop where one subject was left out for validation and the rest (32) formed the 
training group. In this loop, RFE was repeatedly performed and the mean accuracy 
on the validation group at each elimination level was recorded until all features were 
removed. The feature set that produced the maximum accuracy on the validation set 
was selected and applied to the testing set of the outer testing loop. (3) Mean 
accuracy, sensitivity and specificity measures were returned. 
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5.3.4.4 Permutation testing 

Permutation testing was performed in order to determine whether our classifier has 

produced these accuracy levels simply by chance. The rationale and implementation 

of the permutation testing was described in Chapter 4, section 4.4.5 

 

 

5.4 Results 

 

Demographic details for the two study groups are presented in Table 5.1. Student’s 

T-tests were performed on the continuous variables (i.e. age, RISC, RAVLT and IQ 

measures) and Fisher’s exact tests were performed on the rest, categorical variables. 

There were no significant differences in age, handedness, socio-economic 

background of origin, IQ, smoking, cannabis use and symptom severity at study-

entry between the study groups (Table 5.1), except for the baseline RISC score which 

differed between the HR[ill] and HR[symp] group (p<0.01).  

Additionally, I compared the 17 HR[symp] subjects against the 40 HR[symp]test 

subjects that were used to further validate the classification and found no significant 

differences in any of the reported variables (Table 5.2). 

 

 

5.4.1 SVM classification based on structural MRI data  

 

The nested LOO-CV linear SVM-RFE framework was applied to neuroanatomical 

data alone and a combination of neuroanatomical, schizotypy and neurocognitive 

data.  

The SVM approach achieved 88% accuracy in predicting disease conversion based 

on structural MRI data alone (Table 5.3). Thirteen out of 17 subjects in the HR[ill] 

and all subjects in the HR[symp] group were correctly assigned to their group, 

(sensitivity/specificity: 76%/100%; PPV/NPV: 100%/81%; permutation test 

p=0.001).  
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Without the RFE method, the simple LOO CV linear classifier gave a classification 

accuracy of 63.5% (sensitivity/specificity: 57%/70%). When applied to the same 17 

HR[ill]-17 HR[symp] dataset, the RBF-SVM classifier, using the entire feature set, 

gave a mediocre performance in predicting transition to schizophrenia, with an 

accuracy of 55.8%, a sensitivity of 64.7% and a specificity of 47.05%.   

The spatially distributed network that discriminated between the two groups was 

quite extensive and consisted of GM abnormalities in a spatially distributed network 

covering all four lobes and the cerebellum. Although, with these methods, it is not 

possible to make local inferences on the discriminating regions, it is noteworthy that 

the anatomical regions with the highest contribution to the discrimination between 

groups include the cerebellum, the lateral and medial temporal lobe, the amygdala, 

the medial frontal lobe, the putamen and the superior parietal lobe covering the 

supramarginal gyrus bilaterally and extending to the right fusiform gyrus (Table 5.4). 

Table 5.4 presents a list of the most discriminating regions in the classification task, 

namely the brain regions with the highest (absolute) weight value that contributed 

relatively higher to the decision function. 

Discrimination maps showing the spatial pattern by which the groups differ are 

illustrated in Figure 5.3A. It must be emphasized that the discrimination map should 

not be interpreted as a standard statistical parametric map resulting from a mass-

univariate statistical test but rather as a spatial representation of the decision 

boundary, where no local inferences should be made based on the SVM weights. 

. 

 

Table 5.3 Diagnostic performance of the classifier, using sMRI data only. 

sMRI analysis TP TN FP FN Sens 
(%) 

Spec 
(%) 

BAC 
(%) 

FPR 
(%) 

PPV 
(%) 

NPV 
(%) 

HR[ill] vs 
HR[symp] 

13 17 0 4 76.4 100 88.2 0 100 80.9 

HR[symp]test - 27 13 - - 67.5 - 32.5 - 100 
Overall 13 44 13 4 76.4 77.2 76.8 22.8 50 91.6 

Note: sMRI-analysis refers to the classification analysis when only baseline GM volume 
data were considered. The diagnostic performance was evaluated by means of sensitivity 
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(Sens), specificity (Spec), balanced accuracy (BAC), false positive rate (FPR) and 
positive/negative predictive value (PPV/NPV). 
 

 

Only 13 out of 40 independent HR[symp]test subjects were wrongly assigned to the 

HR[ill] group (specificity 67.5%, FPR 32.5%). The diagnostic performance in the 

entire dataset (the 17 HR[ill] and  57 HR[symp]) attained a balanced accuracy of 77% 

(Table 5.3).  

 
 
 
Table 5.4 List of the most discriminative regions for the HR[ill] vs HR[symp] 
contrast using sMRI data alone. 
 

Lobe Region/Hemisphere w 

Negative weights 
  Cerebellum Cerebellum_4_5_R -0.8256 

 
Cerebellum_3_R -0.4076 

 
Cerebellum_6_L -0.299 

 
Vermis_10 -0.1135 

Temporal Temporal_Pole_Sup_R -0.0298 

 
Temporal_Pole_Mid_L -0.1987 

 
Temporal_Inf_R -0.1093 

 
Fusiform_L -0.2405 

Frontal Frontal_Inf_Oper_R -0.4115 

 
Frontal_Mid_L -0.3032 

 
Frontal_Sup_Medial_R -0.1166 

Parietal Paracentral_Lobule_R -0.6526 

 
Paracentral_Lobule_L -0.5691 

Occipital Occipital_Sup_R -0.4378 
Limbic Amygdala_R -0.2295 

 
Cingulum_Mid_L -0.5633 

Basal ganglia Putamen_L -0.4387 

 
Pallidum_R -0.2149 

 

  
Positive weights 

Cerebellum Cerebellum_4_5_L 0.2036 

 
Cerebellum_Crus1_R 0.1993 

Temporal Fusiform_R 0.6462 

 
Temporal_Inf_L 0.5056 

Frontal Frontal_Med_Orb_L 0.1159 
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Precentral_R 0.2116 

Parietal Precuneus_R 0.3113 

 
Precuneus_L 0.1127 

 
Parietal_Inf_R 0.0191 

Limbic Hippocampus_R 0.6802 

 
Cingulum_Post_L 0.6145 

Basal Ganglia Putamen_R 0.3042 

 
Pallidum_L 0.2891 

 

Inf, inferior; L, left hemisphere; Mid, middle; Med, medial; Orb, orbital; Oper, 
opercularis; Post, posterior; R, right hemisphere; Sup, superior; w, weight vector of 
corresponding features in the classification process. 
 
Note: The SVM weight vector is a linear combination or weighted average of the support 
vectors and defines the decision boundary. The weight vector is therefore a spatial 
representation of the decision boundary. Every feature contributes with a certain weight to 
the decision boundary or classification function. Given a positive and a negative class 
(+1=HR[ill]; -1=HR[symp] group), a positive weight means the weighted average in that 
voxel was higher for the HR[ill] group, and a negative weight means the weighted average 
was higher for HR[symp] group. 
 

 

 

 

5.4.2 SVM classification based on combination of sMRI and behavioural data 

 

Subsequent inclusion of baseline RISC and RAVLT scores delivered higher 

diagnostic accuracy than before. The proposed method achieved 94% accuracy in 

predicting at baseline subsequent transition to schizophrenia in HR for familial 

reasons subjects (Table 5.5). All subjects of the HR[ill] group were correctly 

assigned to their group while 2 subjects of the HR[symp] group were wrongly 

classified as HR[ill] (sensitivity/specificity: 100%/88%; PPV/NPV: 89%/100%; 

permutation test p<=0.001). Only 8 out of 40 independent HR[symp]test subjects 

were wrongly classified as HR[ill] (specificity 80%, FPR 20%). The diagnostic 

performance in the entire dataset attained 91% balanced accuracy (Table 5.5). 

Again without the RFE, the linear classifier gave a mediocre performance in 

distinguishing between HR[ill] and HR[symp] with a 56.5% accuracy 

(sensitivity/specificity: 65%/48%). Conversely, the RBF-SVM classifier applied to 
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the 17HR[ill] and 17HR[symp] individuals gave a higher predictive performance 

with the introduction of the RISC and RAVLT variables, with an accuracy of 73.5%, 

a sensitivity of 70.5% and a specificity of 76.5%.   

Baseline RISC and RAVLT scores were selected by the SVM-RFE method, 

implying their contribution in the discrimination process. The neuroanatomical 

decision function consisted of a less extensive spatial pattern than before that 

involved, however several cortical and subcortical brain structures and the 

cerebellum (Figure 5.3B – Table 5.6). Specifically, the regions contributing more to 

the classification of HR[ill] subjects included the left superior temporal lobe 

extending to the left fusiform gyrus, the left thalamus, right superior and inferior 

frontal lobe regions, the insula bilaterally and parts of the cerebellum bilaterally, 

whereas regions with a higher weighted average for the HR[symp] group were the 

right putamen, right hippocampus and fusiform gyrus and parts of the cerebellum. 

Please see Table 5.6 for a list of the most discriminating brain regions that jointly 

formed the decision boundary of the classifier.  

 

 

 

Table 5.5 Diagnostic performance of the classifier, using sMRI data combined with 
baseline bevavioral variables 

sMRI-
behavioural 
analysis 

TP TN FP FN Sens 
(%) 

Spec 
(%) 

BAC 
(%) 

FPR 
(%) 

PPV 
(%) 

NPV 
(%) 

HR[ill] vs 
HR[symp] 

17 15 2 0 100 88.2 94.1 11.7 89.4 100 

HR[symp]test 0 32 8 0  80  20  100 
Overall 17 47 10 0 100 82.5 91.2 17.5 62.9 100 

Combined sMRI-behavioural refers to the results when a combination of baseline 
GM, RISC and RAVLT data was employed in the analysis. Again, diagnostic 
performance was evaluated by means of sensitivity (Sens), specificity (Spec), 
balanced accuracy (BAC), false positive rate (FPR) and positive/negative predictive 
value (PPV/NPV). 
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Table 5.6 List of the most discriminative regions for the classification of HR[ill] vs 
HR[symp] in the combined analysis of baseline sMRI, RISC and RAVLT data 
 

Lobe Region/Hemisphere w 

Negative weights 
  Cerebellum Vermis_8 -0.5159 

 
Cerebellum_6_L -0.3129 

 
Cerebellum_7b_R -0.1477 

Temporal Temporal_Sup_R -0.5579 

 
Temporal_Pole_Sup_L -0.2867 

 
Fusiform_L -0.4874 

Frontal Frontal_Inf_Tri_L -0.5111 

 
Frontal_Inf_Orb_R -0.3109 

 
Frontal_Sup_Medial_R -0.2992 

 
Frontal_Sup_L -0.2873 

 
Frontal_Mid_Orb_R -0.1477 

 
Frontal_Inf_Oper_R -0.0377 

Parietal Paracentral_Lobule_L -0.3965 
Occipital Occipital_Mid_L -0.262 

 
Cuneus_L -0.2818 

Limbic Thalamus_L -0.2449 
perisylvian Insula_R -0.3669 

 
Insula_L -0.2763 

Positive weights 
  Cerebellum Cerebellum_Crus2_L 0.3704 

 
Cerebellum_4_5_L 0.2634 

 
Cerebellum_Crus1_R 0.263 

Temporal Fusiform_R 0.3337 
Frontal Frontal_Sup_Orb_L 0.3542 

 
Precentral_R 0.3201 

Parietal Parietal_Inf_R 0.0393 

 
Parietal_Inf_L 0.3 

Occipital Lingual_L 0.373 

 
Occipital_Sup_L 0.357 

Limbic Hippocampus_R 0.169 

 
Cingulum_Post_L 0.333 

Basal ganglia Putamen_R 0.356 

 
Pallidum_L 0.6429 

 
Inf, inferior; L, left hemisphere; Mid, middle; Med, medial; Orb, orbital; Oper, 
opercularis; Post, posterior; R, right hemisphere; Sup, superior; w, weight vector of 
corresponding features in the classification process.  
Note: The SVM weight vector is a linear combination or weighted average of the support 
vectors and defines the decision boundary. The weight vector is therefore a spatial 
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representation of the decision boundary. Every feature contributes with a certain weight to 
the decision boundary or classification function. Given a positive and a negative class 
(+1=HR[ill]; -1=HR[symp] group), a positive weight means the weighted average in that 
voxel was higher for the HR[ill] group, and a negative weight means the weighted average 
was higher for HR[symp] group. 
 

 
 
 
 
A 

 
 
B 

 
 
Figure 5.3 Discrimination maps for the classification of HR[ill] vs HR[symp]: a) just 
baseline MRI data were considered and b) baseline MRI were combined with RISC 
and RAVLT variables. The colours represent the weight of each feature in the 
classification function (the red scale represents positive weights and the blue scale 
represents negative weights). The SVM weight vector is a linear combination or 
weighted average of the support vectors and defines the decision boundary. The 
weight vector is therefore a spatial representation of the decision boundary. Every 
feature contributes with a certain weight to the decision boundary or classification 
function. Given a positive and a negative class (+1=HR[ill]; -1=HR[symp] group), a 
positive weight means the weighted average in that region was higher for the HR[ill] 
group, and a negative weight means the weighted average was higher for HR[symp] 
group. Therefore, the discrimination map should not be interpreted as a standard 
statistical parametric map resulting from a mass-univariate statistical test to find 
group differences, and no local inferences should be made based on the SVM 
weights.Note: features correspond to GM volume measures in the AAL-defined 
brain regions, and not voxels.  
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5.4.3. Voxel-based morphometry 

 

For comparative purposes, I conducted a two-sample T-test in SPM5, contrasting the 

17 subjects of the HR[ill] and the 17 subjects in the HR[symp]. Group differences 

were assessed using the General Linear Model (GLM) on the smoothed normalized 

GM segments, examining results at different statistical thresholds. No significant 

volumetric between-group differences in GM were observed when conventional 

VBM analysis was employed using a family error rate (FWE) of p<0.05. Even at a p-

value uncorrected for multiple comparisons of p<0.001, very few differences in very 

small clusters could be detected using VBM. Lowering the VBM threshold to p<0.05 

(uncorrected) resulted in significant differences in voxels covering the right fusiform, 

left cerebellum, right inferior and left superior parietal lobe, right supramarginal 

gyrus, left superior temporal and frontal lobe, the left anterior cingulate and the right 

precentral gyrus. The output maps for the VBM analysis are presented in Figure 5.4. 

Overall, the regions identified in the VBM analysis were similar to regions identified 

by our classification method. 

 

                                                  

Figure 5.4 Results of the conventional VBM analysis for the smoothed and 

normalized GM segments (p-value<0.05, uncorrected). 
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5.4.4 Additional analyses 

 

For purposes of clarity and thoroughness, classification results for other analyses that 

were conducted are reported in this section. Initially, I have ran the nested LOO-CV 

SVM-RFE method without performing any sampling and by using the total group of 

57 HR[symp] subjects against the 17 HR[ill] subjects. A classification bias towards 

the majority class (i.e. HR[symp] group) was observed, in that the classifier assigned 

every subject as HR[symp], resulting in very good specificity of 92% but zero 

sensitivity (accuracy: 70.3%), both when MRI data were used alone and when they 

were combined with baseline RISC and RAVLT variables.  

The class imbalance issue arises when there are more data examples in one class and 

fewer occurrences in the other class and it is a problem widely known in the machine 

learning community (Japkowicz 2000, Japkowicz & Stephen 2002, He & Garcia 

2009) and more recently acknowledged in imaging-based studies that employ 

machine learning methods (Dubey et al. 2014, Cuingnet et al. 2011, Yuan et al., 

2012). Class imbalance problems can be addressed in two ways (see Japkowicz & 

Stephen, 2002 for a review on this matter). 

One way is to adopt a model-based approach where the classifier is assigned 

different misclassification costs for each class. In soft-margin SVM, there is a C 

penalty that controls the trade-off between maximizing the margin and reducing 

misclassification error. By assigning a higher misclassification cost for the minority 

class instances than the majority class instances, the effect of class imbalance could 

be reduced. However, in the EHRS dataset, I did not observe any change in the 

behaviour of the classifier and again our model ended up with very good specificity 

(90-95%) and zero sensitivity. Other studies have also reported that this so-called 

reweighting (or cost sensitive learning) approach did not produce satisfactory results 

(Duchesnay et al. 2011,1).  

 
                                                           
1 http://stats.stackexchange.com/questions/94295/svm-for-unblanced-data 
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Using a data-driven approach is another way to deal with class imbalance issues. 

That is, one can either choose to oversample the minority class or undersample the 

majority class (He & Garcia 2009, van Hulse et al. 2007) or do both (Akbani et al. 

2004). Oversampling techniques randomly replicate (with or without replacement) 

existing (training) data from the minority class until a class balance is reached 

(Japkowicz 2000, Japkowicz and Stephen 2002). There are also oversampling 

techniques that generate new, synthetic data by randomly interpolating pairs of 

nearest-neighbour data instances (Chawla et al. 2002).  

The alternative to oversampling is undersampling. The simplest version is the 

random undersampling technique that removes data samples from the majority class 

at random until the classes are balanced. Cluster-based sampling techniques aim to 

group together data instances in the majority class into a number of clusters that is 

equal to the size of the minority class (Yen and Lee 2006). Here, I chose to perform 

random undersampling because it was the most straightforward technique to alleviate 

the class imbalance and also because other authors and imaging labs working with 

data in schizophrenia have done this before (Koutsouleris et al. 2009b, Koutsouleris 

et al. 2010, Koutsouleris et al. 2015b, Mourao-Miranda et al. 2012a). 

Therefore, an equal number of HR[symp] subjects was selected to match the 17 

individuals in the HR[ill] group and the rest of the HR[symp] subjects were used to 

further validate the classifier. 

 

Additionally, in order to alleviate the difference in RISC scores across the equally-

sized groups, I have repeatedly and randomly downsampled the original HR[symp] 

group that consisted of 57 subjects to groups of 17 subjects in order to match the 

HR[ill] group and repeated the entire SVM-RFE procedure 100 times in order to 

create a distribution of accuracies. In the case where only the neuroanatomical 

imformation in the AAL-defined brain regions were considered, the method 

produced an average accuracy of 98.1% (sensitivity/specificity: 96.9%/99.4%, p-

value= 0.09) whereas when baseline neuroanatomical information was combined 

with baseline RISC and RAVLT variables the mean accuracy of the method across 

all 100 runs was 98.7% (sensitivity/specificity: 98.4%/99.1%, p=value=0.1). 
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5.5 Discussion 

 

To the best of the author’s knowledge, this is the first study to evaluate the feasibility 

of an individualised prediction of psychosis in a cohort of subjects at HR for familial 

reasons, by combining baseline neuroanatomical data with baseline schizotypal and 

neurocognitive features using a multivariate pattern recognition technique. The high 

accuracy of our classification method was obtained by leave-one-out cross-validation 

which provides an almost unbiased estimate of the generalizability. The diagnostic 

performance of our classifier was further validated by reliably classifying the 

HR[symp]test subjects. 

The neuroanatomical pattern associated with transition to schizophrenia was quite 

extensive and was primarily associated with grey matter abnormalities covering the 

frontal, orbito-frontal and occipital lobe regions bilaterally as well as parts of the 

superior and medial temporal lobe regions, the left inferior parietal lobe and parts of 

the cerebellum, in keeping with previous VBM studies that reported similar baseline 

neuroanatomical reductions in converters versus non-converters located in inferior 

frontal and superior temporal brain regions (Fusar-Poli et al. 2011), the hippocampus, 

cingulate cortex and the cerebellum (Smieskova et al. 2010, Pantelis et al. 2003, Job 

et al. 2006).  

A conventional VBM analysis failed to detect any significant between-group 

differences after performing corrections for multiple comparisons. At a lower VBM 

threshold of p<0.05, uncorrected for multiple comparisons, however, differences in 

brain regions similar to those detected by the SVM classifier were found.  

However, as stated before, VBM analyses consider each voxel as a spatially 

independent unit and cannot provide predictive value at a single-subject level. On the 

contrary, SVM is a multivariate technique that examines voxels jointly and considers 

inter-regional correlations. Therefore, individual brain regions may display high 

discriminatory power either because there is a large difference in volume between the 

study groups in that region or this region is highly inter-correlated with regions in a 

spatially distributed network of brain regions. For this reason, the neuroanatomical 
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maps derived by SVM should be interpreted as a spatially distributed pattern where 

all its constituent parts (i.e. brain regions) contribute to the classification rather than 

making assumptions on effects locally.  

The neuroanatomical pattern that distinguished the HR[ill] from the HR[symp] 

individuals was similar in both analyses, i.e. when only baseline MRI data were 

considered and when those were combined with baseline RISC and RAVLT 

measures (see Figure 5.2). The neuroanatomical pattern in both cases consisted of a 

deficit network, consisting of brain regions that were relatively reduced in HR[ill] 

compared to the HR[symp] subjects and an excess network, including brain regions 

of relative increased volume in the HR[ill] compared to the HR[symp] group. 

Roughly, the neuroanatomical pattern consisted of regions showing relative GM 

volume reductions in the left fusiform gyrus, the right orbitofrontal and superior 

medial frontal lobe, left fronto-parietal lobe, right superior temporal lobe and parts of 

the cerebellum in keeping with other studies in this area (Koutsouleris et al. 2009b, 

Koutsouleris et al. 2012a). 

Interestingly, GM volume increases were observed in HR[ill] subjects compared to 

the HR[symp] in the orbital frontal lobe, left temporal and inferior parietal lobe 

regions and the parts of the cerebellum, in line with previous studies (Borgwardt et al. 

2007b, Koutsouleris et al. 2015b). Similar networks of relative increases were also 

reported in other SVM-based studies in high-risk or first-episode cohorts 

(Koutsouleris et al. 2009b, Koutsouleris et al. 2012a, Mourao-Miranda et al. 2012a). 

While, this may be counter-intuitive in that the aim is to predict schizophrenia, a 

condition characterised by generalised and multifocal reductions in GM volume, it 

partly represents the common use of linear multivariate modelling techniques to 

produce weights of spatially distributed relative differences which reflect relative 

changes in index regions and their networks. In addition, however, there is evidence 

that large brains and constituent parts may predict schizophrenia in populations at 

high risk (Fusar-Poli et al. 2011). 

Both baseline RISC and RAVLT scores were significant in discriminating between 

the study groups, in keeping with previous studies both in the EHRS literature 

(Johnstone et al. 2005) and elsewhere (Riecher-Rossler et al. 2006, Lencz et al. 2006, 
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Koutsouleris et al. 2012b) that have shown that neurocognitive variables are good 

predictors of transition to schizophrenia and could possibly enhance the predictive 

power of multivariate models (Lencz et al. 2006, Riecher-Rossler et al. 2009). 

Our classification performance using structural MRI data alone is also comparable to 

findings of previous studies that applied neuroanatomical-based SVM to predict 

transition in clinical HR cohorts (Koutsouleris et al. 2009b, Koutsouleris et al. 

2012a). Koutsouleris and collegues (2009b) built a SVM classifier upon structural 

MRI data of individuals in early and late at-risk mental state of psychosis subjects 

and a group of matched HC and evaluated its performance by distinguishing MRI 

data derived from baseline scans of ARMS subjects who developed schizophrenia 

(ARMS-T), those who did not (ARMS-NT) and a second matched group of HC. All 

three-group and pairwise classifiers achieved classification performance above 80%. 

In the most critical in terms of clinical utility, their ARMS-T vs ARMS-NT classifier 

achieved an accuracy of 82% (sensitivity, specificity: 83%, 80%), whereas in a 

follow-up study, the same group (Koutsouleris et al. 2012a) validated their previous 

analysis by classifying an independent cohort of HC, ARMS-T and ARMS-NT and 

achieved an improved accuracy in the ARMS-T vs ARMS-NT pairwise classifier 

(84%). Both studies described ARMS as help-seeking subjects, at imminent risk of 

psychosis on the basis that they exhibited prodromal symptoms. In contrast, our data 

sample was acquired from a neuroleptic-naive cohort of subjects at familial HR for 

the disorder that also presented significantly lower transition rates (nearly 13%) than 

the ARMS cohorts with transition rates of up to 43% (Koutsouleris et al. 2012a).  

Moreover, the study presented here is different from the other studies in the field in 

that it consists of a homogenous sample of individuas who have familial risk rather 

than samples of subjects with mixed clinical and familial factors. Finally, in this 

study the aim is to predict later diagnosis of schizophrenia rather than a single 

psychotic episode as it is the case in clinical-based HR studies. 

Certain limitations have to be considered in this study. Firstly, the sample size is 

modest and therefore our findings should be interpreted with caution. The modest 

sample size can be, however, explained by the already known difficulties in 

recruiting subjects in HR studies and the relatively low overall conversion rate (13%) 
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of our familial HR sample. Therefore, replication of our findings using a larger 

independent cohort is required in order to further validate our learning model. In 

addition, it is not clear whether this predictive performance could generalise to other 

HR cohorts. The HR group studied here was recruited on the basis of familial history, 

thus representing a genetic risk for the disorder, but also had psychotic symptoms. It 

is, thus, unclear whether our findings could generalise to HR cohorts, presented to 

clinical services with psychotic symptoms or other disturbances. 

Another limitation pertaining to the generalizability of our results in the context of 

machine learning methods in general, and of SVM in particular here is the choice of 

cross-validation. While the leave-one-out cross-validation employed in this study has 

a low bias, it suffers, however, from high variance. More specifically, the LOO 

cross-validation underestimates the variance, due to the repeated use of subsets of the 

data in most training sets. Of course this is an issue for most cross-validation 

schemes, although other validation techniques such as splitting the original data in 

half, for training and testing purposes, or choosing a 10-fold cross-validation might 

produce better estimates of the actual performance of the classifier. However, in light 

of the small dataset here I reckoned that the LOO-CV would be the most suited 

choice for the evaluation of the classifier’s performance. 

Finally, I acknowledge the limitation for having performed a random sampling of the 

data set. From the original group of 57 HR[symp] subjects, I randomly selected 17 

individuals to match and contrast the 17 HR[ill] subjects. I acknowledge that in case 

of undersampling, removing examples (data instances) from the majority class might 

cause the classifier to miss out important clues and characteristics pertaining to the 

majority class. However, studies in this field have shown that class imbalance issues 

can significantly impact the classifier’s performance (Dubey et al. 2014, Duchesnay 

et al. 2011) and highlighted the importance of having balanced groups of data (Wei 

& Dunbrack 2013). In particular, Wei and Dunbrack (2013) highlighted the 

importance of training the classifier using balanced training sets, regardless of having 

a balanced representation of the groups in the test set. Two other neuroimaging 

studies in schizophrenia that employ SVM have used similar sampling approaches 

(Koutsouleris et al. 2015b, Mourao-Miranda et al. 2012a). Specifically, in 
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Koutsouleris and colleagues (2015b), 33 out of 40 ARMS-NT individuals were 

selected to contrast the 33 ARMS-T subjects, and the rest 7 ARMS-NT were used to 

further validate their classifier. In Mourao-Miranda and colleagues (2012a), 91 HC 

individuals were initially recruited, but in the SVM analysis only 28 of them were 

selected to contrast the 28 individuals in the continuous and episodic first-episode 

groups. 
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5.6 Conclusions 

 

We examined the diagnostic performance of a SVM classifier in predicting transition 

to schizophrenia using baseline MRI scans and also reported the neuroanatomical 

pattern that differentiated the HR subjects that developed schizophrenia from a 

matched group of HR subjects that did not develop the disorder but manifested 

psychotic symptoms.  Additionally, it was shown that the integration of 

neuroanatomical data with measures of neurocognitive functioning and schizotypal 

cognition can not only improve predictive performance but can indicate which 

features contribute to that prediction and hence are in some way discriminative of a 

pattern that predicts a later diagnosis of schizophrenia. To date, there are few 

schizophrenia studies that have examined the diagnostic performance of combining 

data from various sources into a unified learning model. Taking into consideration 

that clinical, neurocognitive and neuroimaging assessments can individually describe 

a different aspect of pathology in schizophrenia, I believe that integration of these 

variables into a single learning framework might provide a clearer view of the 

patient's status and thus, a stronger insight into disease development and progression.  
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CHAPTER 6 

Individualized prediction of psychosis in subjects with an at-risk mental state 
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6.1 Introduction 
 
As discussed in Chapter 1, the onset of schizophrenia is usually preceded by a 

prodromal phase, which is often characterized by sub-threshold psychotic symptoms 

and a progressive decline in functioning. Individuals presenting with these 

characteristics are considered at an increased risk for developing schizophrenia and 

other psychosis-related disorders for clinical reasons and are identified as ultra-high 

risk (UHR) or at an at-risk mental state (ARMS) for psychosis. 

The aim of this chapter is to examine whether our previous findings can be replicated 

by evaluating the diagnostic performance of our MRI-based classifier in predicting 

disease conversion in subjects with an ARMS that were drawn from the FePsy 

(Fruherkennung von Psychosen) study. 

 
 
 
6.2 Background 
 
 

Over the past 20 years, a focus on the early intervention of psychotic disorders has 

emerged. Initially early intervention strategies were aimed at helping individuals in 

their first episodes of psychosis (Perkins et al. 2005, Marshall et al. 2005) while over 

the last few years, early recognition and intervention has moved towards individuals 

exhibiting prodromal signs of the disorder. Early detection and intervention centers, 

such as the Personal Assessment and Crisis Evaluation (PACE) in Australia (Yung et 

al. 1996), the Prevention through Risk Identification, Management and Education 

(PRIME) in the US (McGlashan et al. 2003), and the Outreach and Support in South 

London (OASIS) clinic (Fusar-Poli et al. 2013b), have been set up worldwide 

(Edwards et al. 2005) with the aim of providing case management and provisional 

treatment for individuals presenting with subthreshold psychotic symptoms. 

Converging evidence suggests that early intervention in psychosis may substantially 
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ameliorate response to treatment and outcome for the illness (McGorry 2002a), and 

delay (McGorry et al. 2002b) or even prevent disease onset (Amminger et al. 2010, 

Phillips et al. 2007). However the question of whether and at what stage early 

intervention is indicated is still a matter of much debate (Riecher-Rossler et al. 

2006). A number of ethical considerations and implications arise from treating 

patients early (Candilis 2003), including the possibility of treating false positive 

cases (people who will not later develop psychosis but are falsely labelled as such), 

which may result in unnecessary distress and exposure to putative side effects of 

medication, not to mention the associated stigma for the individuals and their 

families. The best approach would, therefore, lie in the establishment of an accurate 

risk assessment system that would quantify the risk of psychosis while reducing the 

rate of false positives.  

As has been discussed before, schizophrenia and other psychosis-related disorders 

may begin many years before the emergence of frank, clear symptoms, with 

nonspecific changes, perceptual alterations and often sub-threshold psychotic 

disturbances. Although individuals that exhibit prodromal symptoms have an 

increased risk of developing psychosis, not all individuals do so. Thus in order to 

delineate the prodrome of psychosis from a state of heightened risk the ultra-high-

risk (UHR) or the at-risk mental state (ARMS) or clinical high-risk (HR) paradigms 

have been introduced.  

Operationalized criteria for identifying subjects with an ARMS or at clinical HR 

have been developed. These criteria are based on a combination of trait and state risk 

factors inferred as increasing psychosis risk and have been used to categorize 

individuals in the following three subgroups based on the criteria identified by the 

PACE clinic (Yung et al. 2008, Yung et al. 1998). The first two subgroups specify 

state risk factors and are defined by the presence of either transient psychotic 

symptoms, called brief limited intermittent psychotic symptoms (BLIPS) or sub-

threshold, attenuated psychotic symptoms (APS). The third subgroup involves trait 

and state risk factors that are operationally defined by a significant reduction in 

functioning plus either an affected relative with psychosis or a pre-existing 

schizotypal personality disorder. Within the concept of basic symptoms as defined by 
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the Bonn group, additional prodromal criteria have also been identified that describe 

a set of subtle and subjective changes in affect, thinking, emotional and cognitive 

processing and perceptual disturbances of the self and the world (Huber and Gross 

1989, Schultze-Lutter 2009). It should be noted that individuals defined with an 

ARMS or at clinical HR are all help seeking which effectively means this is part of 

the criteria. 

With regards transition rates to psychosis, significant variation has been observed 

across sites studying UHR samples, with recent studies reporting a decline in the risk 

of transition (Yung et al. 2007). Transition rates are an important tool for evaluating 

the predictive validity of the operationalized clinical HR criteria and thus certifying 

the need for preventative intervention. A recent meta-analysis of studies employing 

clinical HR samples estimated that 18% of HR individuals develop psychosis after 6 

months of follow-up, reaching 36% after 3 years (Fusar-Poli et al. 2012b) with the 

age of participants, any received treatment and the diagnostic criteria used being the 

most influential moderators of transition risk. 

Valid and reliable prognostic markers are, thus, needed in order to improve 

prediction of conversion rates and reduce false positive rates. A series of putative 

biomarkers have been recently identified, suggesting that the at-risk mental state is 

characterized by abnormalities in the neurocognitive domain (Lencz et al. 2006, 

Fusar-Poli et al. 2012a, Koutsouleris et al. 2012b) and alterations at the 

neuroanatomical (Fusar-Poli et al. 2011, Smieskova et al. 2010) and neurofunctional 

level (Fusar-Poli et al. 2007). As it has been discussed in previous chapters, 

conversion to psychosis in ARMS subjects has been associated with reduced grey 

matter volume in the prefrontal and temporal cortices and other subcortical brain 

structures (Smieskova et al. 2010). 

Recently, multivariate pattern recognition approaches, including SVM methodology, 

have provided important leads towards the translation of neuroimaging findings into 

clinical practice, by taking into account inter-regional correlations between brain 

regions and working at the single-subject level (Orru et al. 2012). These methods 

may thus provide the means for an individualized risk assessment and prediction of 

psychosis conversion and possibly deliver increased sensitivity and specificity, both 
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of which are essential for informing individualized prevention care.  

Previous machine learning studies have shown that a neuroanatomical-based 

prediction of psychosis is possible at the single-subject level (Koutsouleris et al. 

2009b), providing diagnostic accuracy up to 84% (Koutsouleris et al. 2012a). The 

high diagnostic performance of our MRI-based SVM classifier presented in Chapter 

5 brings additional evidence to the feasibility of an individualized prediction of 

psychosis. Here, I aimed to examine whether our SVM approach for the prediction of 

psychosis conversion could be replicated in a second, independent cohort of subjects 

at high clinical risk for developing the disorder.  

 

 
 
6.3 Materials and Methods 
 
6.3.1 Subjects 
 
The subjects included in this analysis were part of a large prospective, early 

psychosis study; the FePsy (Fruherkennung von Psychosen) study. Details regarding 

recruitment and screening procedures have been described in Chapter 4, section 4.1.2 

and can also been found in previous studies  (Riecher-Rossler et al. 2006, Riecher-

Rossler et al. 2007). All aspects of the study were approved by the Ethics Committee 

of Basel, Switzerland, and written informed consent was obtained for each 

participant before study inclusion. 

Briefly, 37 subjects were identified as having an at-risk mental state (ARMS) for 

psychosis using a screening procedure based on the Basel Screening Instrument for 

Psychosis (BSIP), the Brief Psychiatric Rating Scale (BPRS- see Table 6.1) and the 

Scale for the Assessment of Negative Symptoms (SANS). These assessments were 

used in order to elicit psychopathology and rate (pre-) psychotic and negative 

symptoms.  

The BPRS consists of 24 items and is one of the most frequently used research 

instruments for evaluating psychopathological symptoms in patients with 
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schizophrenia (Velligan et al. 2005). Although there is no widely accepted factorial 

structure of the BPRS, several authors have proposed a four factorial structure. In the 

FePsy bibliography, the BPRS total score was used along with four subscales (i.e., 

Depression/Anxiety, Psychosis/Thought Disturbance, Negative Symptoms, and 

Activation) derived from the factorial structure of Velligan et al. 2005. (See 

Appendix IV, Table 1 and Figure 1 for a description of the BPRS subscores and the 

4-factor analysis based on Velligan et al. 2005). 

Additionally, the SANS assessment consists of 19 items, which are grouped into five 

domains or factors (Affective flattening, Alogia, Avolition-apathy, Anhedonia- 

Asociality, and Inattention). In the present study, the SANS global score and the five 

original subscales were used. 

Matched groups of healthy controls and first-episode patients were recruited as well. 

In short, 22 healthy controls (HC) with no history of any psychiatric disorder and 25 

first-episode (FE) individuals, who met operationalized criteria for first-episode 

psychosis as described in Yung et al. 1998, were recruited. The ARMS, FE and HC 

individuals did not differ significantly with respect to sex, ethnicity, handedness and 

current and previous alcohol use (Riecher-Rossler et al. 2007).  

Individuals were followed up at monthly intervals during the first year, at 3-month 

intervals during the second and the third year and annually thereafter until transition 

to psychosis was established or until the end of the follow-up period (in 2007). In 

general, all ARMS subjects were followed up for over 4 years during which they 

were also offered supportive counseling and clinical management. 

Transition to psychosis was operationally defined by meeting criteria described in 

Yung et al. 1998 (Table 6.1) and further determined by a diagnostic interview using 

the ICD-10 criteria at the time of transition. Follow-up information for 2 ARMS 

subjects was not available. In this regard, 16 of the 35 ARMS individuals with 

retained follow-up information made a transition to psychosis (denoted as ARMS-T 

subjects) and 19 did not convert (ARMS-NT). Seven out of the 35 ARMS 

participants have received low doses of antipsychotic medication, some time prior to 

study inclusion (2 participants on olanzapine, 2 chlorprothixene and 3 risperidone), 
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all for less than 3 weeks. 

 

 
Table 6.1 ARMS inclusion and transition to psychosis criteria. 

ARMS Inclusion criteria 
 

Inclusion into the study was based on the BSIP checklist and required one or more of 
the following: 

1. Attenuated psychotic-like symptoms: at least several times a week and for 

more than 1 week duration (a score of 2 or 3 on the Brief Psychiatric Rating 

Scale (BPRS) 

2. Brief limited intermittent psychotic symptoms (BLIPS): scores of 4 or above 

on the hallucination item or 5 or above on the unusual thought content, 

suspiciousness, or conceptual disorganization items of the BPRS, with each 

symptom lasting less than 1 week before resolving spontaneously 

3. Genetic risk: a first or second-degree relative with a psychotic disorder plus 

at least 2 further risk factors for or indicators of beginning psychosis 

according to the BSIP screening instrument. 

 

Criteria for transition to psychosis 

1. BPRS scores of 4 or above on the hallucination item or scores of 5 or above 

on the unusual thought content, suspiciousness, or conceptual disorganization 

items  

2. Symptoms had to occur daily and persist for more than 1 week. 

BSIP, Basel Screening Instrument for Psychosis; BPRS, Brief Psychiatric Rating 
Scale 
 
 
 

Here, I am mainly interested in contrasting the ARMS group that converted to 

psychosis (ARMS-T) against the ARMS group that did not (ARMS-NT; Table 6.2). 
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Table 6.2 Socio-demographic and clinical information of the 2 study groups 
 
           Study Groups   
  

ARMS-T ARMS-NT          P  
    Socio-demographic variables    

N 16 19  

Mean age at baseline, y (sd) 26.8 (6.5) 23.9 (6.2)        nsa 

Sex (male), n (%) 11 (69) 10 (52)        nsb 

Educational level          nsb 
     <9 y, n (%) 3 8  

        9-11 y, n (%) 7 7  
         12-13 y, n (%) 5 2  

      <13 y, n (%) 1 2  

Mean verbal IQ (MWT-B) (sd) 109.6 (12.6) 107.3(15.4)       nsa 

Cannabis use at baseline         nsb 
none 10 11  
rarely 1 1  

   Several times/month 0 2  
  Several times/week 4 0  

daily 1 5  

Antipsychotics before entry, n (%) 6 (37.5) 1 (5)      <0.05b 

Antidepressants at baseline, n (%) 7 (44) 5 (26)        nsb 

Family History          nsb 

No relative 15 16  

One 1rst degree 1 2  

One 2nd degree 0 1  

   Clinical variables    

Mean BPRS total score at baseline (sd) 42.3(10.6) 35.7 (7.1)        nsc 
Mean SANS global score at         
baseline (sd) 9.75(5.8) 7.7(4.2)        nsc 
Mean interval between MRI and 
disease onset, d (sd)              306.3 (318.3) na  

 
 
ARMS-T: at-risk mental state individuals that later developed psychosis; ARMS-NT: 
at-risk mental state subjects that did not make a transition. BPRS: the Brief 
Psychiatric Rating Scale; SANS: the Scale for the Assessment of Negative 
Symptoms. Verbal IQ Mehrfach-Wortshatztest-B 
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 a Student’s T-test.  b Fisher’s exact test. c  Mann-Whitney U-test 
 
 
6.3.2 Image Acquisition and Preprocessing 
 
Subjects were scanned using a Siemens (Erlangen, Germany) Magnetom Vision 1.5 

T scanner at the University Hospital Basel. Head movement was minimized by foam 

padding and velcro straps across the forehead and chin. A three-dimensional 

volumetric spoiled gradient recalled echo sequence generated 176 contiguous, 1 mm 

thick sagittal slices. Imaging parameters were: time-to-echo, 4 msec; time-to-

repetition, 9.7 msec; flip angle, 12; matrix size, 200 x 256; field of view, 25.6 x 25.6 

cm matrix; voxel dimensions, 1.28 x 1 x 1 mm. 

Before preprocessing, all structural MRI scans were converted from a sagittal 

orientation (i.e. slices were recorded from right to left) to an axial orientation (Figure 

6.1), using the FSL (FMRIB Software Library; Jenkinson et al. 2012) program.  

  
 
 
 
A 
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B 

 
 
Figure 6.1 FSL view of the orientation of MRI scans. (a) Initially MRI scans had a 
sagittal orientation (b) and then an axial orientation. 
 
 

Study-specific templates and customized prior probability maps were constructed 

using data from all subjects in the Basel study (i.e. 35 ARMS, 22 HC and 25 FE). A 

detailed description of their creation can be found in Chapter 4, section 4.2.2. 

After inspection for gross abnormalities and artefacts, the baseline MRI scans 

entered a pre-processing pipeline in SPM5 (Wellcome department of Cognitive 

Neurology, London, UK).  A detailed description of the steps followed can be found 

in Chapter 4, section 4.2.  

 
 
 

6.3.3 Multivariate Pattern Classification Analysis 

 

6.3.3.1 Support Vector Machine 

 As described in detail in previous chapters, a linear SVM classifier was 

implemented for the analysis of baseline neuroanatomical data derived from the 

FePsy study. The steps in the pattern classification analysis were exactly the same as 

the ones described in Chapter 5, section 5.3.4. 
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6.3.3.2 Feature Extraction 

This step is identical to the one described in Chapter 5 section 5.3.4.2. The result of 

this step is a 116-length vector consisting of GM density values. Again features were 

scaled to [0 1] before entering as input into the linear classifier. 

 

6.3.3.3 Feature Selection 

The rationale and implementation of the feature selection step is identical to what 

was presented and described in Chapters 5 and 4. Briefly, a recursive feature 

elimination (RFE) technique was implemented, which was embedded in a nested 

leave-one-out cross-validation (LOO-CV) in order to increase diagnostic 

performance of the classifier. A graphical representation of the SVM-RFE and the 

nested LOO-CV adjusted for the ARMS groups of the FePsy study is given below 

(Figure 6.2).  

A discrimination map was again generated based on the weight coefficients of the 

features that were selected by the RFE method (Figure 6.3). The discrimination map 

consists of brain regions that according to the RFE methodology are the most 

distinctive in the classification task and provides a spatial representation of the 

decision function in that every feature contributes with a certain weight to this 

function (or hyperplane). The SVM weight vector is a linear combination or 

weighted average of the support vectors and defines the decision boundary. The 

weight vector is therefore a spatial representation of the decision boundary. Every 

feature contributes with a certain weight to the decision boundary or classification 

function. Given a positive and a negative class (+1=ARMS-T; -1=ARMS-NT group), 

a positive weight means the weighted average in that region was higher for the 

ARMS-T group, and a negative weight means the weighted average was higher for 

ARMS-NT group. Since the SVM classifier is multivariate by nature, it should be 

noted that all brain regions constituting the decision function contribute to the 

classification. 



 134 

 

 
 
 
 
Figure 6.2 Representation of the nested LOO-CV SMV-RFE method. We employed 
a nested LOO-CV where I repeatedly excluded one subject to comprise the testing 
set and the remaining subjects were again repeatedly repartitioned in an internal 
validation loop where one subject was left out for validation and the rest formed the 
internal training group. In this loop, RFE was repeatedly performed and the mean 
accuracy on the validation group at each elimination level was recorded until all 
features were removed. The feature set that produced the maximum accuracy on the 
validation set was selected and applied to the testing set of the outer testing loop. 
Finally, mean accuracy was calculated across all outer CV loops. 
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6.3.3.4 Permutation testing 

Again, permutation testing was performed in order to derive a p value for the 

accuracy of our classifier. A detailed description of the permutation testing was given 

in Chapter 4, section 4.4.5. 

 
 
 
6.4 Results 
 
6.4.1. Socio-demographic and clinical findings 
 

The rate of conversion to psychosis was 45.7 % in this ARMS sample of 35 subjects. 

The mean interval between the baseline scan and disease conversion scan was 306 

days (median: 263, range: 25–1137 days). There were no significant differences 

between converters and non-converters to psychosis with regards to age, gender, 

educational level, verbal IQ, cannabis use at study entry, baseline global BPRS and 

SANS scores (Table 6.2). There were also no significant differences on any BPRS 

and SANS subscales between converters and non-converters, with the exception of 

the SANS subscale of Asociality/Anhedonia that was significantly different between 

the two groups (Mann-Whitney U-test= 92.5, p-value= 0.048), in keeping with 

previous findings in the FePsy study literature (Riecher-Rossler et al. 2007), where 

among the individuals who later developed psychosis, anhedonia and asociality were 

more frequent than in individuals who did not convert.  Additionally, the two groups 

significantly differed in terms of antipsychotic medication before study entry, with 6 

subjects that later developed psychosis (ARMS-T) and 1 subject later categorized as 

AMRS-NT having been taking neuroleptics some time before study inclusion (Table 

6.2). In fact, it could be that the difference in the SANS Asociality/Anhedonia scale 

reflects the higher use of antipsychotic medication in the ARMS-T group rather than 

any difference in psychopathology or symptom severity, with the consequent 

invalidation of the claim that this subscale can serve as a predictor of subsequent 

transition to psychosis since it might be not an aspect in the disease course itself but 
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merely a byproduct of medication. Previous studies have specifically linked the 

clinical ratings of anhedonia to antipsychotic medication through dopamine 

antagonism (Gard et al. 2008, Erhart et al. 2006). 

 
 
6.4.2 SVM classification analysis 
 
The application of our LOO-CV SVM-RFE methodology to baseline structural MRI 

data of the ARMS groups achieved 74% accuracy in predicting conversion to 

psychosis (Table 6.3). Six out of 16 subjects in the ARMS-T group were wrongly 

classified as ARMS-NT, while only 3 out of 19 subjects in the ARMS-NT group 

were incorrectly labeled as ARMS-T (sensitivity/specificity: 63%/84%; PPV/NPV: 

77%/73%; permutation test p=0.002).  

The likelihood ratio of a positive test result was LR+= 3.95 (Table 6.3), meaning that 

a positive prognostic test in a given ARMS subject would increase the probability of 

a subsequent transition to psychosis from 45.7% to 77% (posttest 

probability=posttest odds/posttest odds+1, posttest odds=pretest odds*LR+).  

The misclassified ARMS-NT subjects did not significantly differ from the correctly 

classified ARMS-NT in any of the socio-demographic or clinical variables (Table 

6.4). On the contrary, the misclassified ARMS-T subjects were significantly different 

from the correctly classified ARMS-T individuals in terms of gender distribution and 

use of antipsychotic medication before study entry (Table 6.4). This may partly 

explain the lower sensitivity of the SVM-RFE method, since the ARMS-T group 

consisted of a more inhomogenous group of individuals with regards to anti-

psychotic medication, which in turn might have hindered the identification of a 

common neuroanatomical signature across subjects in this group. The effect of 

antipsychotic medication in brain structure is widely acknowledged by the scientific 

community (Smieskova et al. 2009, Navari and Dazzan 2009), and might have 

played a major role in the classification of the ARMS subjects here, despite the fact 

the exposure was before study entry and relatively brief. 

In addition, while no other significant differences with regards to the rest of the 
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demographic and clinical variables (SANS global score and its subscales, BPRS total 

score and subscales of Psychosis/Thought Disturbance, Negative Symptoms, and 

Activation) were observed, the scores in the Depression/Anxiety subscale of the 

BPRS scale were significantly different between the correctly and misclassified 

ARMS-T subjects (p-value <0.05, Mann-Whitney U-test), again possibly suggesting 

the existence of a cluster of individuals within the ARMS-T group that exhibited 

more severe psychotic symptoms which may have warranted the use of anti-

psychotic medication, which in turn may have impacted on brain structure.  

 

Table 6.3 Classification performance  
 TP TN FP FN Sens 

(%) 
Spec 
(%) 

BAC 
(%) 

FPR 
(%) 

PPV 
(%) 

NPV 
(%) 

LR+/LR- 

ARMS-T vs 
ARMS-NT 

 
10 

 
16 

 
3 

 
6 

 
62.5 

 
84.2 

 
74.2 

 
15.7 

 
77 

 
73 

 
3.9/0.45 

The diagnostic performance was evaluated by means of sensitivity (Sens), specificity (Spec), 
balanced accuracy (BAC), false positive rate (FPR) and positive/negative predictive value 
(PPV/NPV). LR+ was also calculated as sensitivity/1-specificity and LR- = 1-
sensitivity/specificity. 
 
 
The spatially distributed network that discriminated between the two groups was 

quite extensive and consisted of GM abnormalities in a spatially distributed network 

covering all four lobes and the cerebellum. Table 6.5 presents the most 

discriminating regions in the classification task, namely the brain regions with the 

highest (absolute) weight value that contributed relatively higher to the decision 

function. Specifically, the regions that contributed more in the classification of the 

ARMS-T subjects included the cerebellum, parts of the superior temporal pole 

bilaterally, the right anterior cingulate cortex, the right superior medial frontal and 

left orbitofrontal cortex and the insula bilaterally, whereas regions with a higher 

weighted average for the ARMS-NT group consisted of the right inferior parietal 

lobe, right medial temporal lobe, the right orbitofrontal cortex and the left pallidum 

(Table 6.5).  
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Table 6.4 Misclassification analysis 

 
a Student’s T-test.  b Fisher’s exact test. c  Mann-Whitney U-test 
 
 
 
 
 
 
 
 
 
 
 
 

 ARMS-T → 
ARMS-NT 

ARMS-T → 
ARMS-T 

P ARMS-NT → 
ARMS-T 

ARMS-NT → 
ARMS-NT 

P 

Socio-demographic 
variables 

      

N 6 10  3 16  
Mean age at baseline, y (sd) 29.2(9) 25.4(4.5) nsa 24.8(7.2) 23.8(6.2) nsa 

Sex (male), n (%) 2(33) 9(90) <0.05
b 

1 (33) 9(56) nsb 

Educational level   nsc   nsc 

<9 y, n (%) 1 2  2 6  
9-11 y, n (%) 2 5  1 6  

12-13 y, n (%) 2 3  0 2  
<13 y, n (%) 1 0  0 2  

Cannabis use at baseline   nsc   nsc 

none 4 6  2 9  
rarely 1 0  0 1  

Several times/month 0 0  1 1  
Several times/week 1 3  0 0  

daily 0 1  0 5  
Antipsychotics before entry 5 1 <0.05

b 
0 1 nsb 

Anti-depressants at baseline 3 4 nsb 2 3 nsb 

Clinical variables       
Mean BPRS total score at 

baseline (sd) 
45.7(11.5) 40.2(10.2) nsc 38.3(12.9) 37.5(6.2) nsc 

Mean BPRS 
Depression/Anxiety score (sd) 

12(3.5) 7.5 (2.3) <0.05
c 

7.3(2.1) 7.9 (3) nsc 

Mean SANS global score at 
baseline (sd) 

9.7(7.7) 9.8(4.8) nsc 10.3(5) 6.3(4.7) nsc 

Mean interval between MRI 
and disease onset, d (sd) 

427.5(483.6) 245.7(215.3) nsa    
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A discrimination map showing the spatial pattern by which the groups differ is also 

illustrated in Figure 6.3. We emphasize that this spatially distributed pattern should 

not be interpreted as a statistical map, but rather as a spatial representation of the 

decision boundary. 

 
 
 

 
 
Figure 6.3 Discrimination maps for the classification of ARMS-T vs ARMS-NT. 
The colours represent the weight of each feature in the classification function (the red scale 
represents positive weights and the blue scale represents negative weights). The SVM weight 
vector is a linear combination or weighted average of the support vectors and defines the 
decision boundary. The weight vector is therefore a spatial representation of the decision 
boundary. Every feature contributes with a certain weight to the decision boundary or 
classification function. Given a positive and a negative class (+1=ARMS-T; -1=ARMS-NT 
group), a positive weight means the weighted average in that region was higher for the 
ARMS-T group, and a negative weight means the weighted average was higher for ARMS-
NT group. Note: features correspond to GM volume measures in the AAL-defined brain 
regions, and not voxels. 
 
 
 

Finally, I used the EHRS dataset (the 17 HR[ill] and the 17-matched HR[symp] 

subjects described in Chapter 5) to train the SVM-RFE method and then tested it 

using the FePsy data in order to examine the performance of the method  when using 

one HR sample and testing on another. A 65.7% accuracy (sensitivity/specificity: 

37.5%/89.5%) was observed, with the method failing to classify above chance levels 

the ARMS subjects that later developed psychosis. This low sensitivity and 

classification performance might imply a divergent neuroanatomical pattern between 

clinical and familial HR cohorts. Additionally, it should be borne in mind that the 

HR[ill] sample in the EHRS was labelled as such on the basis of a later diagnosis of 

schizophrenia (according to PSE criteria and later the ICD-10), whereas the ARMS-

T subjects in the FePsy study were characterised as making a transition to psychosis, 

not schizophrenia per se, based on transition criteria of the PACE clinic (see Table 
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6.1-Yung et al. 1998).    

 
 
 
Table 6.5 List of the most discriminative regions for the classification of ARMS-T 
vs ARMS-NT 
 

Lobe 
 

Region/Hemisphere 
 

w 
 

Negative weights   
Cerebellum   
 Cerebellum_Crus2_R -0.0128 
 Cerebellum_3_R -0.0194 
 Cerebellum_4_5_R -0.0207 
 Cerebellum_6_L -0.0127 
 Cerebellum_7b_R -0.0146 
 Cerebellum_10_L -0.0247 
 Vermis_8 -0.0147 
Temporal   
 Temporal_Sup_R -0.0067 
 Temporal_Pole_Sup_L -0.0084 
 Temporal_Mid_L -0.0075 
Frontal   
 Frontal_Sup_L -0.0197 
 Frontal_Sup_Orb_L -0.0166 
 Frontal_Mid_R -0.0089 
 Frontal_Inf_Tri_R -0.0106 
 Frontal_Sup_Medial_R -0.0084 
 Frontal_Med_Orb_R -0.0098 
 Precentral_R -0.0176 
Parietal   
 Postcentral_R -0.0102 
 Paracentral_Lobule_R -0.012 
Limbic   
 Cingulum_Ant_R -0.017 
 Cingulum_Post_L -0.0081 
Basal ganglia   
 Putamen_R -0.0172 
Perisylvian   
 Insula_L -0.0134 
 Insula_R -0.0206 
Positive weights   
Temporal   
 Temporal_Mid_R 0.0069 
 Heschl_R 0.0069 
Frontal   
 Frontal_Sup_Orb_R 0.0101 
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Parietal   
 Parietal_Inf_R 0.0137 
Basal ganglia   
 Pallidum_L 0.0072 
 
Ant, anterior; Crus, crust; Inf, inferior; L, left hemisphere; Mid, middle; Med, medial; Orb, 
orbital; Post, posterior; R, right hemisphere; Sup, superior; w, weight vector of 
corresponding features in the classification process. Note: The SVM weight vector is a linear 
combination or weighted average of the support vectors and defines the decision boundary. 
The weight vector is therefore a spatial representation of the decision boundary. Every 
feature contributes with a certain weight to the decision boundary or classification function. 
Given a positive and a negative class (+1=ARMS-T; -1=ARMS-NT group), a positive 
weight means the weighted average in that voxel was higher for the ARMS-T group, and a 
negative weight means the weighted average was higher for ARMS-NT group. 
 
 
 
 
 
6.4.3. Voxel-based morphometry analysis 
 
No significant GM volume differences between the ARMS-T and ARMS-NT 

subjects were observed when conventional VBM analysis was employed using a 

family error rate (FWE) of p<0.05. At p<0.001 uncorrected for multiple comparisons, 

volumetric differences were observed within the cerebellum, left and right medial 

and inferior frontal lobe regions and the medial temporal lobe bilaterally. To 

compare our SVM results with those from the VBM analysis, I lowered the p-value 

at p<0.05 (uncorrected) and observed widespread volumetric between-group 

differences in the superior and medial temporal lobe bilaterally, the inferior and 

superior frontal lobe bilaterally, the left superior and inferior parietal lobe, the 

precentral gyrus bilaterally and parts of the cerebellum. 
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Figure 6.4 Results of the conventional VBM analysis for the smoothed and 

normalized GM segments (p-value<0.05, uncorrected). 

 
 
 
6.5 Discussion 
 
The present findings replicate the previous ones in that MRI-based classification 

methods were able to predict transition to psychosis in subjects at high clinical risk 

for developing the disorder using neuroanatomical data at study inclusion. The SVM-

RFE classifier achieved 74% accuracy in classifying ARMS-T against ARMS-NT 

subjects.  

The neuroanatomical decision function that discriminated the two groups was 

associated with GM abnormalities relying on a distributed network of regions 

covering most cortical and sub-cortical brain structures and the cerebellum. Our 

present findings agree with findings from a recent voxel-based meta-analysis that 

reported GM volume reductions in subjects that convert to psychosis in the insular 

and superior temporal lobe cortices (Fusar-Poli et al. 2011) and also with previous 

VBM findings on the same dataset (Borgardt et al. 2007a).  

Few significant between-group GM differences were detected using conventional 

VBM analysis at a p<0.001 but none was detected when correction for multiple 
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comparisons was performed. At a lower statistical threshold, p<0.05, significant GM 

volume differences were detected in a network of regions that was largely in 

agreement with the one identified by the SVM method. However, as stated in 

previous chapters, an SVM-based classification analysis is advantageous to the 

conventional VBM analyses in that it can detect subtle neuroanatomical alterations 

that are not confined to a circumscribed set of few brain regions but rather span 

across a complex network of inter-correlated brain structures that jointly produce a 

maximal degree of separation between converters and non-converters. The finding of 

complex and widespread networks of differentiation that can be achieved through 

SVM is in line with current disconnection hypotheses of schizophrenia (Friston 

1999) that state that the pathology of schizophrenia is associated with highly 

distributed brain alterations across a number of cortical and subcortical structures.  

Despite the fact that the classification accuracy observed in this investigation is 

significant, it is, however, lower than the accuracy observed in the familial high-risk 

group (Chapter 5) and that reported in another recent study that similarly 

implemented a MRI-based SVM classifier from the same ARMS cohort 

(Koutsouleris et al. 2012a). 

In the study conducted by Koutsouleris and co-workers, (2012a), their MRI-based 

SVM classifier achieved 84.2% accuracy in the critical ARMS-T versus ARMS-NT 

analysis, with only 2 ARMS-T subjects being misclassified as ARMS-NT and 4 

ARMS-NT subjects wrongly labeled as ARMS-T (sensitivity/specificity: 

81%/87.5%). However, their implementation of the SVM classifier was completely 

different and relied upon the construction of nonlinear SVM ensembles that 

incorporated feature selection, model training and predictive learning wrapped 

together in a repeated nested cross-validation framework. Ensemble learning 

approaches are usually selected on the basis that they can achieve higher predictive 

performance than single classifiers, by combining multiple weak learning models 

that decide upon the classification of a new instance through majority voting (Polikar 

2006). In contrast, our approach is based on a simpler SVM framework that is known 

to provide better generalization performance whereas more complex models tend to 

overfit the data in that they provide great training accuracy (small error on the 
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training set) but often misclassify unknown data instances (higher test error). 

Compared to the diagnostic performance of our classifier in the genetic high-risk 

cohort of the EHRS, the classification performance in the ARMS groups of the 

FePsy study was notably lower, contrary to what would be expected since the ARMS 

groups represent help-seeking individuals, most of whom already manifest putative 

transient and/or sub-threshold psychotic symptoms. Interestingly, 5 out of the 6 

ARMS-T subjects that were misclassified received anti-psychotic medication some 

time before study inclusion (Table 6.4) while the other misclassified ARMS-T 

subject was prescribed tranquilizers (Lorazepam). Many studies have reported the 

effect of antipsychotic medication on grey matter volume in the direction of 

significant regional reductions (Navari and Dazzan 2009, Smieskova et al. 2009), 

thus possibly suggesting a neuroanatomical heterogeneity expressed with divergent 

pathophysiological trajectories between subjects receiving and subjects not receiving 

any anti-psychotic treatment. Additionally, the misclassified ARMS-T subjects had 

significantly higher scores on the Depression/Anxiety subscale of the BPRS list 

compared to the correctly classified ARMS-T individuals (p<0.05; Table 6.4) while 

there were no differences between the groups in terms of anti-depressant medication 

use at baseline (Table 6.4). Depressive symptomatology is a common feature in 

populations at high clinical risk for psychosis (Hafner et al. 2005). However it 

remains unclear whether these symptoms are reflected at the neuroanatomical level 

and thus possibly suggest a depressive sub-syndrome in sub-threshold psychosis or 

the established state in the same way as positive, negative and disorganized sub-

syndromes in schizophrenia could be discerned (Nenadic et al. 2010, Zhang et al. 

2015). 

Despite the lower diagnostic performance, our MRI-based classifier managed to 

increase the diagnostic certainty from 45.7% to 77% in case of a positive test result, 

suggesting that an MRI-based pattern classification system could, with refinement, 

become a useful part of a multi-step diagnostic procedure that would reliably 

quantify the risk for conversion to psychosis and inform appropriate care and 

treatment strategies.  

Certain limitations of this study have to be considered. Again the sample size in this 

https://en.wikipedia.org/wiki/Lorazepam
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investigation is small. The rate of transition to psychosis amounted to nearly 46%, 

which is generally in keeping with other clinically at-risk cohorts (Koutsouleris et al. 

2009b, Yung et al. 2003, Klosterkotter et al. 2001). However, it is not clear how the 

classifier would perform if presented with an ARMS cohort with significantly lower 

conversion rates. Finally, the administration of antipsychotic and antidepressant 

medication might have confounded our results, despite the fact that any drug 

treatment was administered before study inclusion.  
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6.6 Conclusions 
 
In this investigation, previous classification results have been replicated, with current 

findings suggesting that an early diagnosis of psychosis based on neuroanatomical-

based classifier is feasible for cohorts present with sub-threshold disturbances and 

early signs of psychosis. It remains to be elucidated, however, whether these findings 

can be generalized to larger cohorts of at-risk samples that are recruited using 

different assessment criteria and scanned on different scanners and/or using different 

imaging protocols.  
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CHAPTER 7 

Towards the identification of neuroimaging-based biomarkers for the 

prediction of psychosis across familial and clinical high-risk cohorts 
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7.1 Introduction 
 
In the previous chapters, the diagnostic performance of SVM in predicting 

conversion to schizophrenia and psychosis-related disorders was examined in cohorts 

at high-risk either due to familial or clinical reasons. However, it remains unclear if it 

is feasible to detect biomarkers that generalize across research sites, where 

differences in the recruitment process, MRI scan acquisition and pre-processing 

might exist.  

In this chapter, I attempt a preliminary study of the feasibility of identifying MRI-

based biomarkers that can predict transition to psychosis among high-risk individuals 

recruited at two different research centers, using different assessment criteria and 

scanned on different scanners.  

 

 
7.2 Background 
 
Neuroanatomical pattern classification has recently facilitated the identification of 

imaging biomarkers for the diagnosis and early prediction of various 

neuropsychiatric disorders such as Alzheimer’s disease (Fan et al. 2008b, Kloppel et 

al. 2008b) and schizophrenia (Davatzikos et al. 2005b, Koutsouleris et al. 2009b), 

and has pointed in the direction of a translational application of MRI into clinical 

practice by evaluating distinct patterns of differentiation at the single-subject level.  

An important step in the investigation of the clinical utility of imaging biomarkers is 

to test their generalization performance in independent cohorts (Phillips et al. 2006). 

This, however, implies a need for large data sets, which is not always possible in 

single-site, MRI studies. A limited number of studies in schizophrenia have 

attempted to build classification models based on sets of patients and matched groups 

of control subjects and then tested their models’ performance by classifying 

independent samples of patients and controls (Kawasaki et al. 2007, Nieuwenhuis et 

al. 2012, Schnack et al. 2014), and reported good levels of classification accuracy 

ranging from 70% to 90%. For a detailed review of these studies, please see Chapter 
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3.  

The requirement for large data sets could be satisfied by pooling data across different 

research sites with the added benefit of both increasing statistical power and possibly 

enhancing the classifier’s performance by virtue of the higher number of samples 

used for training (Kloppel et al. 2009, Nieuwenhuis et al. 2012, Abdulkadir et al. 

2011). An increasing number of multi-center studies aim to combine data acquired 

on different sites (Mwangi et al. 2012, Koutsouleris et al. 2015b), despite any 

methodological and between-scanner variability (Stonnington et al. 2008, Moorhead 

et al. 2009, Suckling et al. 2011, Abdulkadir et al. 2011).  

In the first and, to date, only MRI-based cross-center study of prediction of 

psychosis, Koutsouleris and co-workers combined together two independent cohorts 

of subjects with an ARMS, recruited and scanned at two different early recognition 

centers, and examined the prognostic accuracy of their MRI-based SVM ensemble 

classifier (Koutsouleris et al. 2015b). Their classification system achieved a balanced 

accuracy of 80.3% in the pooled data set (sensitivity=75.8%, specificity=84.8%) and 

also enabled a risk staging procedure through additional Kaplan-Meier survival 

analyses that simultaneously quantified the risk of an ARMS subject in making a 

transition to psychosis along with an estimation of the time to transition.  

In this investigation, our aim is to pool baseline neuroanatomical data from high-risk 

subjects drawn from the Edinburgh High Risk Study (EHRS) and the Basel FePsy 

study and examine the feasibility of identifying MRI-based biomarkers across the 

two high-risk cohorts. No other study to date has attempted to pool genetic and 

clinical HR cohorts together and examine the existence of a neuroanatomical 

signature that exists across differently ascertained HR populations.  

 

Differences between the two high risk paradigms begin at the very conceptualization 

of the underlying risk to psychosis. As described in previous chapters, 

genetic/familial high-risk cohorts include monozygotic and dizygotic twins 

discordant for schizophrenia and/or individuals with first- or second-degree relatives 
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affected with the disease. On the other hand, clinical HR populations are presented 

with different aspects of sub-threshold positive and negative symptomatology and/or 

possibly mild cognitive and functioning impairments. The identification of clinical 

HR individuals presents some variability that is attributed to each early detection 

center and the corresponding high-risk criteria used (Smieskova et al. 2010). As a 

result, rates of transition to psychosis vary significantly across sites (Fusar-Poli et al. 

2012, Fusar-Poli et al. 2013a), with some reporting as many as 35% of subjects at 

clinical HR developing psychosis (Pantelis et al. 2003, Yung et al. 2004). It has been 

estimated that the average transition rate for clinical HR cohorts amounts to 30% 

whereas only 10% on average of the subjects identified at high-risk for genetic or 

familial reasons develops psychosis (Smieskova et al. 2013).  

Despite their discrepancies, several aspects of familial and clinical HR paradigms 

overlap, as several individuals identified at a clinical HR have a family history of 

psychosis and many individuals at familial HR often exhibit pre-psychotic 

symptoms. In addition, at a structural level clinical and familial HR cohorts seem to 

share similar volumetric abnormalities (Bois et al. 2015), especially in prefrontal, 

medial temporal and limbic regions, with individuals showing prodromal psychotic 

signs exhibiting additional insular and caudate structural deficits (Smieskova et al. 

2013). For a detailed discussion of structural MRI studies in HR cohorts see Chapter 

2 (section 2.3.2). 

In the following section, a comparative presentation of the familial and clinical HR 

individuals is given.  
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7.3 Materials and Methods 
 
7.3.1 Subjects 
 
The pooled dataset consists of 69 individuals at high risk for psychosis that were 

recruited in the prospective studies conducted independently in Edinburgh, at the 

Department of Psychiatry (Edinburgh High Risk Study, EHRS) and at the University 

of Basel, Switzerland (‘Fruherkennung von Psychosen’, FePsy). A detailed 

description of the studies was given in the three previous chapters. All aspects of the 

studies were reviewed and approved by the appropriate local ethics committees at 

both research sites. 

Briefly, a familial high-risk paradigm was employed in the EHRS, in that high-risk 

individuals were identified and included in the study on the basis of having one or 

more first- or second-degree relatives affected with schizophrenia. All high-risk 

subjects had no previous history of psychosis or any neuropsychiatric disorder and 

none of those subjects received anti-psychotic medication at any point during the 

study or until they fulfilled operational criteria for schizophrenia (when appropriate 

clinical management was advised and follow-up assessments were discontinued). As 

described in detail in chapter 4 (sub-section 4.1.1.1), psychopathology in HR subjects 

in the EHRS was assessed using the PSE criteria (Wing et al. 1974), which allowed 

the classification of subjects into a 5-scale system based on their PSE subscores 

(Johnstone et al. 2000). For facilitating future studies in the data set, the HR subjects 

were stratified based on the presence/absence of (psychotic) symptoms according to 

the PSE as:  fully or partially held psychotic symptoms (scores 2 and 3) HR[symp], 

absence of psychotic symptoms, (scores 0 and 1) HR[well]  or diagnosis of 

schizophrenia (score 4), HR[ill]. 

Additionally, all HR subjects underwent baseline and follow-up assessments to 

evaluate neuropsychological measures (such as verbal learning and memory- RAVL 

test, executive function, general IQ etc.), schizotypal cognitions via the Rust 

Inventory of Schizotypal cognitions (RISC) and the Structured Interview for 

Schizotypy (SIS; Miller et al. 2002b) and elicit psychopathological indices and 
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transition to schizophrenia again using the PSE. For a detailed review of the clinical 

and neuropsychological assessments see Johnstone et al. 2002a, Johnstone et al. 2005 

and Byrne et al. 2003. (Additionally, a detailed description of the PSE and the RISC 

items can be found in Chapter 4 (subsection 4.1.1.1) and Chapter 5 (5.3.2) 

accordingly). 

From those HR subjects who provided complete clinical assessments and had a MRI 

scan, 17 were diagnosed at follow-up with schizophrenia (after an average of 929 

days, SD=138) based on the ICD-10. Among the rest, 57 subjects experienced 

psychotic symptoms (HR[symp]) but these were too transient or mild to warrant a 

diagnosis of schizophrenia (Johnstone et al. 2000). The rest of the HR subjects 

remained well, with no symptoms (HR[well]). In this investigation I was mainly 

interested in the HR[ill] and HR[symp] groups. Again, as seen in Chapter 5, 17 out 

of the 57 HR[symp] subjects were used to train the classifier, and the remaining 40 

HR[symp] were used to further validate the classification performance.  

In the FePsy study, ARMS (at-risk mental state) subjects were identified on the basis 

of the ultra-high risk criteria of the well-established Personal Assessment and Crisis 

Evaluation (PACE) definitions (Yung et al. 2003). Briefly, ARMS inclusion required 

(a) Attenuated Positive Symptoms, and/or (b) Brief Limited Intermittent Psychotic 

Symptoms (both fulfilling specific time criteria) or (c) decline in global functioning 

combined with family history of psychosis. Additionally prodromal symptoms were 

assessed with the Brief Psychiatric Rating Scale (BPRS) and the Scale for the 

Assessment of Negative Symptoms (SANS). For a detailed description of the ARMS 

inclusion, exclusion and assessment criteria see Chapter 4 (subsection 4.1.2.1) and/or 

Chapter 6 (subsection 6.3.1 and Table 6.1). 

All subjects were followed up for over 4 years and were offered supportive 

counselling. Transition to psychosis was monitored monthly in the first year and 

quarterly thereafter and was based on the BPRS severity thresholds (see sections 

4.1.2.1 and Table 6.1) and further corroborated using the ICD-10. Based on these 

criteria, the ARMS groups were subdivided in 16 subjects with transition to 

psychosis (ARMS-T; diagnosed after an average of 306.3 days, SD= 318.3) and 19 

non-conversion individuals (ARMS-NT). Six out of the 16 ARMS-T subjects were 
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administered low doses of antipsychotic medication for behavioural control before 

study inclusion (1 participant on olanzapine, 2 Chlorprothixene and 3 risperidone) 

and also 1 ARMS-NT subject was on olanzapine before study entry. 

As it is clear from the descriptions above, the high-risk groups recruited across the 

two research sites differed in terms of criteria for inclusion and with regards to the 

assessment of psychopathological indices to elicit psychotic symptomatology and 

transition to schizophrenia and psychosis-related disorders. A comparative 

presentation of the PSE and BPRS items to be used as a reference is given in 

Appendix II (Table 1). Despite the fact that several aspects of psychopathology 

might overlap between the two assessments tools (such as the depression, anxiety or 

hallucinations items), severity ratings are appraised differently. For example the PSE 

scores symptoms as absent, partially/transiently or definitely present. As detailed 

previously (Johnstone et al. 2000), partial delusions and/or transient hallucinations 

were regarded as psychotic symptoms and correspond to the clinical high risk 

literature category of attenuated and/or brief psychotic symptoms. Non-psychotic 

symptoms are not, however, recorded in the same way between the two assessment 

tools nor is functional decline assessed in the PSE. Therefore, a direct comparison 

between the clinical and familial high-risk assessment criteria is not feasible- other 

than that similar positive psychotic symptomatology was assessed.  

To build the MRI-based classifier, 33 converters (17 HR[ill] and 16 ARMS-T) were 

pooled together to contrast 36 nonconverters (17 HR[symp] and 19 ARMS-NT), 

while the data of the remaining 40 HR[symp] subjects were used to further validate 

the classifier (Table 7.1). 
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Table 7.1 Demographic and clinical details 

 

ARMS-T:  subjects at a clinical risk mental state that later developed psychosis; ARMS-NT: at-risk 

mental state subjects that did not make a transition. HR[ill]: individuals at high familial risk who 

developed schizophrenia during follow-up period. HR[symp]: individuals at high familial risk who 

remained well but developed psychotic symptoms during follow-up period. Fisher’s exact tests were 

performed for variables of sex, handedness, cannabis use, antipsychotic medication and family 

history, and standard T-test was applied to the rest.  
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7.3.2 Image Acquisition and Preprocessing 

 

Baseline scanning in the EHRS was performed on a 1.0 T Siemens Magnetom 

scanner (Erlangen, Germany) and for the FePsy study on a 1.5 Siemens Magnetom 

Vision scanner (Erlangen, Germany). Details of the acquisition protocols can be 

found in Chapters 5 (section 5.3.3) for the EHRS scans and Chapter 6 (section 6.3.2) 

for the FePsy images.  

The preprocessing pipeline has been extensively described in Chapter 4, section 4.2 

and additional information has been given in relevant sections of chapters 5 and 6. 

The same pre-processing steps (and specific parameters) were applied to all brain 

images of the EHRS and the FePsy study. 

 

 

7.3.4 Multivariate Pattern Classification Analysis 

 

This is identical to what was described in Chapter 5 (section 5.3.4) and 6 (section 

6.3.3).  

 

 

7.4 Results 

7.4.1 Socio-demographic findings 

There were no significant differences between subjects in the study groups, within 

each research center, in terms of age, sex, handedness, cannabis use and family 

history (Table 7.1). However, as noted before, the use of antipsychotic medication 

was significantly different for converters and nonconverters in the Basel, FePsy 

study and thus in the pooled data set. Additionally, there were no significant ‘center 

* group’ effects for any of these variables, whereas there was a significant main 

effect of research center on age (factorial ANOVA; F=21.135, df=2, p=0.0001). 
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7.4.2 SVM classification analysis 

In the pooled dataset (N=69), the MRI-based system correctly classified converters 

and nonconverters with a balanced accuracy of 82.6% (Table 7.2, 

sensitivity/specificity: 79%/86%, permutation test p<0.001). From the independent 

set of 40 non-converters, HR[symp] subjects only 9 were wrongly classified as 

converters (specificity: 77.5, FPR: 22.5%). Thus the classification performance on 

the entire dataset (N=109) attained a balanced accuracy of 80.7% 

(sensitivity/specificity: 79%/82%). Given a pre-test probability of 30.3% (equals to 

transition rate: 33/109), the positive/negative likelihood rations of 4.3/0.26 indicate 

that an HR person with a positive/negative MRI finding will have a post-test 

probability of 65%/35% of developing psychosis.  

 

Both the misclassified HR-T and the misclassified HR-NT subjects did not 

significantly differ from the correctly classified HR-T and HR-NT individuals 

accordingly, on any of the socio-demographic variables (Table 7.3). Direct 

comparison on any clinical, neurocognitive and behavioural variables was not, 

however, possible becaure the EHRS and FePsy data samples did not use the same 

assessments to record these variables. 

 

Table 7.2 Classification performance 

Dataset TP TN FP FN Sens 
(%) 

Spec 
(%) 

BAC 
(%) 

FPR 
(%) 

PPV 
(%) 

NPV 
(%) 

LR+/LR- 

Pooled 26 31 5 7 78.8 86.1 82.6 13.9 83.8 81.5 5.67/0.25 

HR[symp]test 0 31 9 0 - 77.5 - 22.5 - 100 - 

Overall 26 62 14 7 78.8 81.5 80.7 18.4 65 89.8 4.26/0.26 

The diagnostic performance was evaluated by means of sensitivity (Sens), specificity 
(Spec), balanced accuracy (BAC), false positive rate (FPR) and positive/negative 
predictive value (PPV/NPV). LR+ was also calculated as sensitivity/1-specificity and 
LR- = 1-sensitivity/specificity. 
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The neuroanatomical decision function discriminating between converters and non-

converters involved an extensive spatial network of regions covering the superior 

temporal lobe bilaterally, the left middle temporal lobe, the prefrontal cortex 

bilaterally covering superior, orbitofrontal and ventromedial lobe structures and 

extending to inferior frontal and insular structures. These brain regions included the 

regions that contributed higher in the classification of the HR-T subjects; that is the 

regions that were more important in classifying HR-T instead of HR-NT subjects. In 

contrast, the regions contributing more to the classification of the HR-NT group 

consisted of regions covering the left inferior temporal lobe extending to perisylvian 

structures (right temporal pole, left insula), the right superior orbital and left medial 

orbital frontal lobe, the right inferior parietal lobe covering the right precuneus, the 

left parahippocampal gyrus and the vermal lobule 6 and cerebellar lobule 9. Table 

7.4 below presents a list of the most discriminating brain regions in the classification. 
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Table 7.3 Missclassification analysis 

 
a Student’s T-test.  b Fisher’s exact test 

 
 
 
 
 
 
 
 
 
 
 
 

 HR-T → 
 HR-NT 

HR-T →  
HR-T P 

HR-NT → 
HR-T 

HR-NT →  
HR-NT P 

Socio-demographic 
variables 

      

N 7 26  5 32  

Mean age at baseline, y 
(sd) 

21.3(2.5) 
 

23.9(6.5) 
 

nsa 
 

26.6(7.6) 
 

21.3(4.2) 
 

nsa 
 

Sex (male), n (%) 5 (71.4) 
 

17 (65.4) 
 

nsb 
 

4(80) 
 

17(53.2) 
 

nsb 
 

Neuroleptics before 
entry 

1 5 nsb 
 

0 1 nsb 
 

Cannabis at baseline   nsb 
 

  nsb 
 

none 3 15  2 22  
occassionally 2 4  2 7  

frequent/severe 2 7  1 3  

Family History   nsb 
 

  nsb 
 

no relative 2 13  3 13  
one 1rst degree 0 1  0 3  
one 2nd degree 3 4  1 5  

one 1rst & 2nd degree 2 5  0 9  
two 2nd degree 0 3  1 2  
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Table 7.4 List of the most discriminative regions in the classification of the pooled 
dataset 

 

Lobe Region/Hemisphere w 
Negative weights 

  Cerebellum 
  

 
Cerebellum_Crus1_R -0.5301 

 
Cerebellum_Crus2_R -0.5389 

 
Cerebellum_3_R -0.1346 

 
Cerebellum_4_5_R -0.3237 

 
Cerebellum_10_R -0.4523 

 
Vermis_8 -0.2955 

Temporal 
  

 
Temporal_Pole_Sup_L -0.3212 

 
Temporal_Pole_Sup_R -0.1507 

 
Temporal_Mid_L -0.2674 

Frontal 
  

 
Frontal_Sup_L -0.7231 

 
Frontal_Sup_Orb_L -0.475 

 
Frontal_Inf_Tri_R -0.3904 

 
Frontal_Mid_Orb_R -0.2946 

 
Frontal_Sup_Medial_L -0.1827 

Occipital 
  

 
Occipital_Mid_L -0.6979 

Limbic 
  

 
Cingulum_Mid_R -0.4449 

Basal ganglia 
  

 
Caudate_L -0.259 

 
Caudate_R -0.38 

Perisylvian 
  

 
Insula_R -0.5488 

Positive weights 
 

  Cerebellum 
  

 
Cerebellum_9_R 0.3593 

 
Vermis_6 0.2216 

Temporal 
  

 
Temporal_Inf_L 0.1709 

 
Temporal_Pole_Mid_R 0.3635 

Frontal 
  

 

Frontal_Sup_Orb_R 0.3211 
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Table 7.4 Continued 

 

Frontal_Med_Orb_L 0.653 
Parietal 

  
 

Parietal_Inf_R 0.7814 

 
Precuneus_R 0.254 

 
Paracentral_Lobule_R 0.4265 

Limbic 
  

 
Cingulum_Post_R 0.4616 

 
ParaHippocampal_L 0.1523 

Perisylvian 
  

 
Insula_L 0.3815 

Ant, anterior; Crus, crust; Inf, inferior; L, left hemisphere; Mid, middle; Med, medial; Orb, 
orbital; R, right hemisphere; Sup, superior; w, weight vector of corresponding features in the 
classification process. Note: The SVM weight vector is a linear combination or weighted 
average of the support vectors and defines the decision boundary. The weight vector is 
therefore a spatial representation of the decision boundary. Every feature contributes with a 
certain weight to the decision boundary or classification function. Given a positive and a 
negative class (+1=HR-T; -1=HR-NT group), a positive weight means the weighted average 
in that voxel was higher for the HR-T group, and a negative weight means the weighted 
average was higher for HR-NT group. 

 

 

 

 

Figure 7.1 Discrimination maps for the classification of the pooled dataset of HR-T 
vs HR-NT. The colours represent the weight of each feature in the classification 
function (the red scale represents positive weights and the blue scale represents 
negative weights). The SVM weight vector is a linear combination or weighted 
average of the support vectors and defines the decision boundary. The weight vector 
is therefore a spatial representation of the decision boundary. Every feature 
contributes with a certain weight to the decision boundary or classification function. 
Given a positive and a negative class (+1= HR-T; -1=HR-NT group), a positive 
weight means the weighted average in that region was higher for the HR-T group, 
and a negative weight means the weighted average was higher for HR-NT group. 
Note: features correspond to GM volume measures in the AAL-defined brain 
regions, and not voxels. 
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7.5 Discussion 

 

This chapter provides a preliminary analysis and evidence for the identification of an 

MRI-based signature that exists across two independent HR populations that were 

recruited using different ascertainment criteria and scanned with different scanners 

and imaging protocols. The predictive power of the classifier was tested using cross-

validation and by assigning an independent group of 40 HR subjects that did not 

develop schizophrenia at follow-up (HR-NT). The generalization performance of the 

SVM-RFE classifier in the entire dataset attained a balanced accuracy of 81%. 

The neuroanatomical pattern that distinguished between HR-T and HR-NT subjects 

revealed a network of spatially distributed regions in the brain cortex, covering 

prefrontal, temporal and cerebellar structures and extending to a few subcortical 

areas such as the caudate nucleus bilaterally that had a higher weighted average for 

the HR-T grop. These results are in keeping with previous findings that were 

described in Chapter 5 and 6, and other imaging studies reporting similar GM 

abnormalities (Fusar-Poli et al. 2011, Smieskova et al. 2013, Koutsouleris et al. 

2009b, Koutsouleris et al. 2011, Koutsouleris et al. 2015b). In contrast, regions 

contributing more to the classification of the HR-NT group included the orbito-

frontal, inferior temporal, parietal lobe and parts of the cerebellum, partly in line with 

previous studies (Borgwardt et al. 2007b, Koutsouleris et al. 2015b). 

To date, only one study has attempted to pool data together from subjects that were 

recruited and scanned at two different early psychosis centers and achieved 

comparable classification accuracy (Koutsouleris et al. 2015b). In this study, 

Koutsouleris and colleagues combined together data from 73 ARMS subjects that 

were recruited in two independent early recognition sites, in Munich and in Basel. 

Contrary to our case, both research sites employed the same ultra-high-risk inclusion 

criteria corresponding to the PACE definitions and transition to psychosis was 

corroborated using similar severity threshold scales, corresponding to criteria by 

Yung et al. 1998. Participants in both sites were scanned using the same platform, 
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Siemens Magnetom Vision 1.5T scanners, but different imaging parameters were 

selected at each site. No calibration of the scanners was performed but a voxel-level 

adjustment of the group-level means was performed post-hoc in order to correct for 

inter-scanner differences.  

Despite the same rationale for pooling data together, a direct comparison of the 

present study with the study conducted by Koutsouleris and colleagues is not feasible 

due to the differences in the recruitment, assessment, scanning and pre-processing 

procedures of the study samples and the different implementation of the SVM 

methodology. However, both studies achieved comparable diagnostic accuracies in 

classifying HR-T against HR-NT subjects and share similar networks of relative GM 

volume reductions and increases of the neuroanatomical predictor, as discussed 

above. 

There are numerous advantages to pooling data from multiple sites together. The 

opportunity to accrue larger numbers of subjects allows the introduction of a 

phenotypic and demographic diversity of the cohort under study along with the 

possible inclusion of more rare cases of the diseased population. Additionally, the 

increased number of subjects allows for increased sensitivity and may also ensure 

enough statistical power to detect more subtle effects or even subgroups within a 

cohort that might share structural commonalities. All these combined may result in a 

deeper understanding of the under-study disease. 

On the other hand, combining data from multiple research sites may introduce some 

variability. In the case where the data are, also, acquired from different MRI scanners 

and imaging protocols, potential scanner-related confounds may be introduced that in 

turn may affect the integrity and robustness of the results and make their 

interpretation difficult.  

Variations in image intensity and the resulting necessity for standardizing intensity 

values is not a problem specific to multisite studies but also applies to longitudinal 

and/or cross-sectional studies where scanner drifts or upgrades may impact on the 

quality of the scans. Nonuniformity in the imaging sequence and the RF field coils 

and differences in the positioning of the patient inside the scanner can introduce 
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variability in image intensity with any given scanner. Intensity inhomogeneity, 

partial volume effects and variability in image quality (as measured with the signal to 

noise ratio) can in turn impact on segmentation (Clark et al. 2006, Acosta-Cabronero 

et al. 2008, Li et al. 2005, Klauschen et al. 2009). However, some of this variation 

can be attenuated with the use of segmentation processes that do not solely rely on 

voxel intensities but also incorporate spatial information and correction for bias field 

inhomogeneity as well. In this analysis, the use of the unified segmentation method 

in SPM5, which involves fitting spatial priors to the image and bias-field corrections 

to account for differences in head shape and positioning, ensured the robustness of 

the segmentation and the consistency of image intensities. 

A significant limitation of this preliminary analysis is, however, the potential 

introduction of confounds that might have occurred as a result of systematic 

between-site differences, which might have confounded ‘actual’ disease-related 

effects. As briefly described above, calibration and/or intensity standardization 

processes can be performed either before or after scanning in order to effectively 

account for scanner-related intensity differences.  

Briefly, test-retest and calibration studies can ensure the reliability and comparability 

of multi-center scans by repeatedly scanning a number of participants in all sites and 

measuring a phantom (van Haren et al. 2003, Jovovich et al. 2006, Tofts 1998). It is 

not, however, always possible to have a (sub) group of participants available to be 

scanned in all research sites in order to measure reliability between scans and ensure 

consistency and quality control.  

Post-scanning procedures are, thus, more attractive and include histogram matching 

or histogram standardization techniques that are designed to bring MRI intensities to 

a common scale, where similar intensities would have similar tissue meaning. 

Histogram matching methods try to match the subjects’ histogram to a standard 

(reference) histogram by either matching the intensities in a series of chosen 

landmarks (Nuyl & Udupa 1999) or by minimizing some information criteria (Jager 

& Hornegger 2009). Recently, advanced histogram matching techniques that employ 

spatial correspondence (between the image volumes and the reference image) and 

nonlinear transformations to account for the ‘nonlinear’ impact of the MRI scanner 
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to voxel intensities have also been proposed (Robitaille et al. 2012). (A thorough 

presentation and comparison of histogram matching techniques is out of the scope of 

the present thesis and the interested reader is referred to the listed citations for more 

information.) 

In the analysis presented here, the initial intention was to scale the image intensities 

between the two datasets, the EHRS and FePsy sMRI data, by matching their 

intensity histograms (that is by finding a correspondence between the study 

histograms), after pre-processing was completed and right before the smoothed, 

normalized GM maps entered the SVM analysis. However, the most reasonable thing 

to do would be to perform any histogram matching or equalization technique over the 

whole brain in order to account for the variance for all tissue types because from the 

segmentation step and downwards each preprocessing procedure depends on some 

point on voxel intensity values. Due to time constraints, however, this was not 

feasible in the present study and after observing similarities in the intensity 

histograms of the smoothed, normilized GM segments in the EHRS and FePsy 

datasets, it was decided to proceed with the data pooling without any scaling or 

matching. Please see Appendix V for the histograms of the two data sets and a more 

detailed discussion as to why scaling was not performed. 

It is not yet certain if and how scanner-related heterogeneity can impact on the 

performance of pattern recognition classifiers and specifically SVM. Previous SVM-

based studies have reported an improvement in performance when larger numbers of 

subjects were used for training (Kloppel et al. 2008, Abdulakadir et al. 2011), despite 

any scanner differences. However, these studies used structural MRI data acquired 

from different scanners for training and testing purposes separately and did not pool 

them together. It is, therefore, not clear how scanner-related differences affect the 

diagnostic performance and the robustness of the results, if data pooling and no 

correction for scanner effects is employed. 

 

Apart from scanner-related differences, differences in the assessments of 

psychopathology and transition criteria may have confounded the present analysis. It 
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is important to note that subjects in the FePsy study had significantly shorter 

transition intervals than subjects in the EHRS. This is, however, reflective of the at-

risk mental state, in which individuals already exhibit putative transient or sub-

threshold symptoms and are considered at an imminent risk for conversion. In 

contrast, HR-T subjects from the EHRS sample had their baseline MRI scan 

approximately 2.5 years before making a transition to psychosis. This heterogeneity 

in conversion times, from the baseline MRI scanning until conversion to psychosis 

was corroborated, might have been reflected at the neuroanatomical level, with 

divergent pathophysiological processes leading up to psychosis, which may have in 

turn confounded our results. Additionally, the heterogeneity in terms of 

psychopathological indices, clinical and neurocognitive measures did not enable the 

integration of sMRI data with other variables to test the classification performance. 

Further, one cannot exclude the possibility that the use of anti-psychotic medication 

in 7 subjects in the pooled data set may have confounded our classification results.  

 

 

 

7.6 Conclusions 

 

This preliminary investigation extends previous investigation of the EHRS sample by 

pooling these data and those of the FePsy study, which involved high-risk subjects, 

identified employing different high-risk paradigms, recruited using different 

assessment criteria and examined using different MRI scanners. We provide 

preliminary evidence for the identification of a sMRI biomarker that exists across 

independent high-risk cohorts. However, additional work is required in order to 

clarify the effect of center-related differences on the diagnostic procedure and more 

importantly to control for effects pertaining to scanner-related differences.  
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CHAPTER 8 

General Discussion 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 168 

 
8.1 Introduction 
 
The work described in this thesis has used machine learning in order to examine the 

diagnostic performance of MRI data, neurocognitive and behavioural variables in 

predicting transition to psychosis in individuals at high risk for the disorder. The 

classification method implemented in this thesis was used to classify subjects 

identified as high-risk for psychosis either due to familial or clinical reasons, derived 

from the Edinburgh High Risk Study and the Basel, FePsy study accordingly. 

As described in Chapter 1, schizophrenia is a highly complex brain disorder, 

expressed with heterogeneous constellations of symptoms across patients and 

variable clinical course. Diagnosis of schizophrenia is almost entirely based on self-

reported symptomatology and observation of behavioural signs and therefore is 

subject to the patient’s ability to collaborate and the clinical expertise and experience 

of the clinician. To avoid bias in clinical decision-making, objective biomarkers are 

pressingly needed in order to aid diagnosis of schizophrenia and support treatment 

strategies where needed. The potential of a biomarker, however, depends on its 

predictive capacity at the individual level (Phillips et al. 2006). 

It is likely that schizophrenia is associated with neuroanatomical abnormalities that 

are not limited to a circumscribed set of a few brain regions but rather span over 

spatially distributed, and possibly intercorrelated, networks. Structural MRI studies 

have significantly improved our understanding of the underlying pathophysiology of 

the disorder by systematically studying group-level differences in brain tissue but 

nevertheless have so far failed at impacting clinical practice. Mass-univariate 

methods of analyses such as voxel-based morphometry (VBM) examine differences 

between the experimental groups in localized brain regions at a mean-level. More 

recently used pattern recognition-based methods on the other hand, look for 

differences in patterns within the brain that could optimally discriminate between the 

study groups and furthermore have the potential of making inferences about new 

subjects at a subject-level. Additionally, by virtue of their multivariate nature, 

machine learning approaches allow the integration of localized differences over the 
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whole brain that would otherwise be too weak or too variable to detect if considered 

on their own.   

As described in detail in previous chapters, subjects presented with a family history 

of schizophrenia and/or sub-threshold, prodromal psychotic symptoms are 

considered at an elevated risk for developing schizophrenia and psychosis-related 

disorders. Studies examining subjects at high risk for developing schizophrenia and 

psychosis-related disorders have stimulated two HR paradigms; i) the clinical and ii) 

the genetic or familial high risk for psychosis. Magnetic resonance imaging-based 

studies of high-risk for psychosis cohorts can serve to delineate the extent to which 

neuroanatomical alterations form part of an underlying risk and vulnerability for the 

development of psychosis or are exclusively associated with the illness itself. To 

further disentangle the issue of whether (and which) specific volumetric 

abnormalities are associated with transition to psychosis, researchers have begun to 

study those HR subjects that develop psychosis against those HR individuals that do 

not. Identifying the neuroanatomical alterations that could distinguish at baseline 

those HR subjects that will later develop psychosis from those who will not would 

have significant implications in further elucidating the pathophysiology and 

aetiology of the disorder and possibly providing an opportunity for early intervention 

with the aim of either relieving the disorder’s symptom burden or even prevent its 

onset.  

 

This thesis, therefore, aimed: 

1) To identify neuroanatomical-based markers of transition to schizophrenia in 

subjects at high familial risk drawn from the Edinburgh High Risk Study, 

using an implementation of Support Vector Machine that includes subject 

classification and also feature selection. In addition to baseline structural MRI 

data, other neurocognitive and behavioural variables were included in the 

analysis with the aim of testing the classification performance and also 

replicating previous findings in the EHRS literature (Johnstone et al. 2005) 
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2) To examine whether the implemented classifier would be able to generalize 

to clinical high-risk cohorts, using neuroanatomical data from the FePsy 

study. 

3) And finally, in a strictly exploratory and preliminary analysis, to test the 

diagnostic performance of our classifier by pooling structural MRI data of the 

EHRS and the FePsy study together, despite the differences in the 

recruitment, assessment and imaging procedures.  

 

To do that, data from high-risk subjects that later developed psychosis were 

contrasted to data from high-risk subjects that did not make the transition. There 

were no specific hypotheses regarding the number or which brain regions would 

constitute the pattern based on which the study groups would be optimally 

discriminated against, although it was expected that previous findings, especially in 

the EHRS literature might be replicated. However, based on the multivariate nature 

of the SVM method, I expected that a host of brain structures across cortical and 

subcortical brain areas would comprise the decision function in each case. 

Additionally, it was hypothesized that the diagnostic ability of the classification 

method would be increased when baseline clinical and behavioural variables were 

combined with neuroanatomical data of the EHRS groups.  

 

Since each of the previous chapters contains a separate discussion section, the aim of 

this chapter is to offer a more general discussion integrating the main results from the 

previous chapters, discussing limitations of the current findings, and suggesting 

possible steps and ideas for future work. 
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Figure 8.1 Potential clinical setting for a pattern recognition-based system. 
Neuroimaging data are acquired in a specialized clinic and can then be combined 
with other variables. The classifier is trained using these features. Gold standard 
diagnosis can be established using i.e. post-mortem histological examination. The 
trained classifier could then, be used at another research/clinical site and applied 
directly to a new patient. Classification results for this patient could then be fed to 
the clinicial for appropriate clinical management.  (Figure adjusted from Klöppel et 
al. 2012) 

 

 

 

8.2 Summary of main results 

 

In this thesis, it was shown that it is feasible to make an early diagnosis of psychosis, 

and primarily schizophrenia, in subjects at high clinical or familial risk for the 

disorder, by using baseline neuroanatomical information. The findings presented here 

suggest that high-risk subjects who will subsequently develop psychosis may be 

already distinguished at baseline, above chance levels and before illness onset, from 

those high-risk individuals that will not make the transition. The diagnostic 

performance of the SVM classifier was mainly tested using cross-validation and also 

by classifying an independent cohort of high-risk subjects drawn from the EHRS 
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study that did not develop schizophrenia, yet showed psychotic symptoms at follow-

up (Results sections of Chapters 5 and 7). Table 8.1 provides a comparison of the 

classification results from the experimental Chapters 5, 6 and 7 of this thesis. 

The high-dimensional discriminative morphological map comparing high risk 

subjects with later transition to psychosis and high-risk subjects without illness 

transition revealed a complex pattern of regional volumetric abnormalities affecting 

grey matter across most lobar brain structures and the cerebellum. Although, the 

discriminating decision maps were different for each analysis of the EHRS, the 

FePsy and the pooled datasets, there were however common brain regions that 

comprised the discrimination maps in all cases-analyses. The brain regions that 

contributed the highest in discriminating between the study groups in all cases 

included superior and inferior frontal and superior temporal lobar structures, parts of 

the cingulate gyrus and the cerebellum, all which have been consistently reported as 

important in the pathophysiology of schizophrenia.  

 

 

Table 8.1 Comparison of classification results from Chapters 5, 6 and 7. 
  

 
 

sMRI data alone sMRI+ clinical data 

 
N/N                  BAC (%) N/N                   BAC (%) 

HR[ill] vs HR[symp] 17/17                  88.2 17/17                   94.1 

ARMS-T vs ARMS-NT 16/19                  74.2  -                              - 

HR-T vs HR-NT 33/36                   82.6  -                              - 

   The number of subjects in each diagnostic group (N/N) and the balanced accuracy 
are shown for the classifications based on baseline structural MRI data alone, and the 
combination of baseline MRI with clinical variables (just for subjects in the EHRS). 
Note: HR[ill] and HR[symp] refer to subjects from the EHRS, ARMS-T and ARMS-
NT refer to subjects drawn from the FePsy study and HR-T, HR-NT refer to the 
subjects from the pooled dataset, in accordance with Chapters 5, 6 and 7.  
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Despite the very encouraging results presented in this thesis, it is my personal 

opinion that neuroimaging-based pattern recognition methods have a long way to go 

before making an impact in the current diagnostic and prognostic clinical context of 

schizophrenia.  I believe that the research and imaging community is not yet in place 

to speak about imaging-based biomarkers in schizophrenia research but rather about 

neuroanatomical patterns that can differentiate one diagnostic group (in this case 

schizophrenia, or converters to schizophrenia) from another (healthy controls or non-

converters). Pattern recognition-based methods implemented to date are still rather 

crude to accommodate the idea of identifying neuroanatomical biomarkers, that 

warrant large effect sizes and therefore larger data samples, replication to 

independent cohorts, consistency in classification performances across cohorts, data 

samples that are representative of routine clinical cases (and therefore eliminate the 

associated selection bias), a meaningful and widely acknowledged interpretation of 

the classification results (i.e. classifiers weights) and effective ways and methods of 

dealing with confounding variables such as medication effects or comorbidity. These 

issues have yet to be examined and resolved, and could be probably best dealt with in 

large muti-site, longitudinal studies (please see section 8.4 for a more detailed 

discussion of the challenges and future directions of imaging-based machine 

learning) 

The ultimate goal for imaging-based machine learning is, however, to develop tools 

that could aid clinicians in everyday routine care and management. That is, machine 

learning-based systems, like the one depicted in Figure 8.1, that will be able to 

combine together various imaging, clinical and neuropsychological data and provide 

results for an individual that could be fed back quickly to the clinician in a way that 

would be helpful for clinical management. The major challenge for neuroimaging-

based pattern classification in significantly impacting clinical practice is, however, in 

the early diagnosis of individuals at an imminent risk of developing schizophrenia 

and other psychosis-related disorders and in refining prognostic distinctions; that is 

questions of whether an individual will develop schizophrenia over bipolar disorder 

or whether he/she will develop unipolar depression over bipolar disorder and 

ultimately whether the patient will benefit from one treatment over another. These 

are the clinical questions that could bear added benefit in clinical routine and would 
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likely help clinicians in a way that will move the field of clinical psychiatry forward, 

alongside the majority of other medical specialties where biological and clinical tests 

are routinely used to guide clinical decision-making and care. 

 

 

8.3 Strengths and Limitations 

 

One of the main strengths of the present thesis is the ability to include prospective 

studies of both familial and clinical high-risk cohorts. Additionally, the high-risk 

subjects from the EHRS cohort were anti-psychotic naïve at the time of study 

inclusion, which means that our results were completely unconfounded by 

medication effects.  

In this thesis, Support Vector Machine was chosen to implement the classification 

task. Among the machine learning algorithms, Support Vector Machine is one of the 

most frequently used multivariate approaches, mainly on account of its good 

classification performance and ability to deal effectively with high-dimensional data. 

The latter characteristic is due to the fact that in determining the optimal separating 

hyperplane the SVM only takes into account data samples that are closely located to 

it (these samples are called support vectors) in the feature space. In that way, the 

SVM classifier inherently focuses on subtle between-group morphological 

differences and not on gross differences that might be more easily identifiable. 

Additionally, as all pattern-classification methods do, the SVM enabled the 

prediction of illness onset at an individual level, which has added potential for 

clinical translation.  

In order to identify the most informative features in the classification process and 

possibly increase the diagnostic performance of the classifier, recursive feature 

elimination (RFE) was implemented in a nested cross-validation scheme. The RFE 

algorithm is a well-validated technique that iteratively removes the most redundant 

and least informative features while identifying the most discriminative ones. A 
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significant number of MRI-based pattern recognition studies have used RFE for the 

identification of the most discriminative features in the feature space and/or for 

improving the generalization performance (Ecker et al. 2010, Zacharaki et al. 2009, 

Marquand et al. 2011, Mourao-Miranda et al. 2012b, De Martino et al. 2008, Fan et 

al. 2007). 

Another important strength of the current thesis is the validation of the classifier 

using data from an independent high-risk cohort; a step that is crucial in the 

development and verification of imaging-based biomarkers in clinical settings (Fu & 

Costafreda 2013). Pooling together data from different research sites is additionally 

beneficial in examining whether prediction is robust enough to differences in 

prevalence, recruitment and image acquisition strategies.   

As stated before, taken together this thesis leads to the conclusion that machine 

learning can significantly impact the identification of MRI-based biomarkers for the 

early prediction of psychosis in high-risk cohorts. That is, even at the early stages of 

psychosis, subjects who later develop schizophrenia demonstrate already at baseline 

distinct patterns of grey matter volume differences that differentiate them from high-

risk subjects that do not develop the disorder. However, many challenges and 

limitations remain. The limitations encountered here arise either as a result of 

limitations inherent in the datasets or limitations attributed to the chosen 

preprocessing or analysis methodologies.  

The relatively modest sample size, especially in the cases where subjects from the 

EHRS and the FePsy study were considered separately (Chapters 5 and 6 

accordingly), is one of the main limitations of this study, which is also observed in 

most neuroimaging-based studies in this field. As a result of the limited sample size 

and the recruitment criteria followed, the study cohorts included only a limited 

representation of the whole spectrum of clinical and psychopathological 

manifestations of the high-risk state, which is not always the case in standard clinical 

practice. Comorbid substance abuse and comorbidities with other disorders such as 

depression or anxiety were part of the exclusion criteria, which is not a realistic 

mirroring of the cases encountered in health services. 
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Both in the EHRS and the FePsy study, more males than females developed 

schizophrenia, possibly confounding our classification results. The construction of 

different classifiers for males and females, as presented in the work of Fan et al. 

2007, was not feasible due to the already limited number of cases in the HR-T 

groups. The finding of the higher male morbidity may be, however, attributed to the 

higher incidence of schizophrenia in males than females (Aleman et al. 2003).  

Antipsychotics and other medications have been administered to some high-risk 

subjects in the FePsy study, some time prior to MRI scanning, and therefore one 

cannot rule out the possibility that medication effects may have contributed to the 

observed classification results (Chapter 6). Interestingly enough, most of the subjects 

that received antipsychotic medication were misclassified by the classifier possibly 

suggesting a divergent pathophysiology at the neuroanatomical level.  

Another potential limitation is the use of a 1.0T scanner in the EHRS samples that 

compared to most widely used 1.5T scanners (as in the FePsy study) might have 

failed to provide enough spatial detail to characterize subtle structural abnormalities.  

Regarding the classification task, one limitation of the SVM method and other 

machine learning methods in general, is that the features comprising the optimal 

decision function (that is often illustrated as a weighted brain map) are not easily 

interpretable, mainly due to their multivariate nature. As stated before, the brain 

regions constituting the discrimination map all contribute to the classification 

function (with a certain weight that indicates the degree of the contribution) and it is 

not possible to make inferences about localized alterations.  

Additionally, while the leave-one-out cross-validation is a well-validated and highly 

used technique in evaluating the performance of the classifier due to its almost 

unbiased estimation of the true error rate, it underestimates variance due to the 

repeated use of any subset of data in most training sets. The ideal scenario of 

splitting the dataset into non-overlapping sets of training data and test data instances 

could be realized in large, multisite cohort studies.  

Finally, one of the most important limitations with the data pooling is the 
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introduction of systematic scanner-related differences that may have confounded 

both the preprocessing of the baseline scans and downstream from there to the 

classification task. Future studies would be required that would account for scanner-

related differences between sites and tackle the issue of intensity standardization at 

the initial stage, before any preprocessing, by matching histograms for every tissue 

type (i.e. grey matter, white matter, cerebrospinal fluid etc.).  

 

 

8.4 Future work 

 

As seen and discussed in depth in previous chapters of this thesis, brain imaging and 

more specifically magnetic resonance imaging has contributed much in our current 

understanding of the pathophysiology of schizophrenia and psychosis-related 

disorders. However, it has so far made little impact in routine clinical practice where 

a MRI scan is usually ordered in order to exclude organic diseases, such as a brain 

tumour or brain haemorrhage and not to diagnose or inform targeted theurapeutic 

plans. Therefore, one of the basic aims for clinical psychiatry to move into the future 

is to develop objective, biologically based markers (biomarkers) that could map 

psychiatric disorders to brain structure and function. A careful investigation of the 

feasibility and main challenges in translating imaging research findings into routine 

clinical practice is necessary in order to pave the way for the development of 

clinically useful biomarkers for establishing diagnosis and illness course or treatment 

outcome in schizophrenia. 

In order for a diagnostic biomarker to be valid, it needs to attain certain levels of 

sensitivity and specificity. A perfect biomarker, with 100% sensitivity and 100% 

specificity, would detect only true positives and no false negatives and thus would 

accurately reflect the prevalence of schizophrenia in the true population. However, in 

practice such diagnostic levels are not always possible and thus the norm is to 

develop biomarkers that can minimize the error for false positives and false negatives 

as much as possible. Addtionally, the lack of consistency in the classification 
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performances observed in current diagnostic studies of schizophrenia and lack of 

replication studies that would confirm previous classification results hinder the 

identification of diagnostic biomarkers. 

The development of clinically relevant biomarkers for shcizophrenia is also hindered 

by the lack of a diagnostic gold standard for the disease. In traditional medicine, a 

biological test, such as a blood test, often suffices for a definitive pathological 

diagnosis. For Alzheimer’s disease, neuropathological confirmation can be achieved 

by post-mortem histopathological examination. On the contrary, there is no definite 

examination to confirm diagnosis of schizophrenia that leads directly back to brain 

structure (or function), and currently the closest one can get to a ‘gold-standard’ 

diagnosis for schizophrenia is the DSM/ICD criteria, which are empirically based 

and often limited by the patient’s willingness to cooperate and the clinical expertise 

and acumen of the clinician conducting the interview. 

Additionally, linking back to the importance of specificity in the development of a 

biomarker, most imaging-based studies have examined and contrasted schizophrenia 

patients to perfectly healthy, normal participants (see Chapter 3). In clinical practice, 

however, it is rarely the case that a clinician would wonder about whether to 

categorize (or label) an individual as a patient or as a healthy control and more often 

the question raised involves whether this patient has schizophrenia, or bipolar 

disorder etc. This is not to say that imaging findings contrasting schizophrenia 

patients to healthy controls were conducted in vain since these have provided the 

research community with invaluable information and insight into the 

pathophysiology of the disease, but to highlight the importance of including more 

pragmatic scenarios that could have an added benefit to clinical care. 

The differential diagnosis of schizophrenia from other psychosis-spectrum disorders 

such as bipolar disorder and mood disorders such as depression presents a major 

clinical challenge. Recent structural and functional MRI-based multivariate pattern 

recognition studies have achieved very promising classification performances in 

distinguishing schizophrenia patients from patients with bipolar disorder (Costafreda 

et al. 2009, Costafreda et al. 2011, Calhoun et al. 2008, Schnack et al. 2014, Bansal 

et al. 2012) or major depression (Koutsouleris et al. 2015a, Bansal et al. 2012). 
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However, future studies will be needed that would comprise of larger cohorts and 

possibly integrate various imaging modalities in order to unravel the 

neuroanatomical and neurophysiological correlates that differentiate schizophrenia 

from other psychosis- or mood-related disorders (Lawrie et al. 2011). This research 

direction will hopefully shed light into the question of whether these nosological 

entities are characterized by distinct and/or non-overlapping pathopshysiological 

abnormalities and help identify patterns of brain structure that are unique to 

schizophrenia. Unsupervised or semi-supervised machine learning methods could aid 

in that direction by grouping together (into clusters) subsets of patients that share 

similar neuroanatomical and/or clinical profiles and then possibly exploit supervised 

pattern recognition to examine the diagnostic differentiation between the clusters.  

Imaging findings need to be replicated in independent study cohorts in order to 

ensure the validity of imaging-based biomarkers in their way towards incorporation 

to routine clinical care. Currently, most researchers tried to develop diagnostic tools 

using one cohort of patients at a time while only a few have tested their classifiers 

using independent cohorts (Nieuwenhuis et al. 2012, Schnack et al. 2014, Kawasaki 

et al. 2007) with classification performance being lower on the independent sets, and 

ranging from 70% to 80% accuracy. Despite little effort being done, machine-

learning techniques could really contribute to the effort of replicating imaging 

findings across research sites because different teams could train classifiers using 

their own data sets and then once the classification functions are found, they could be 

shared among collaborating research sites in the context of creating a classifiers’ 

repository. 

Additionally, incorporating more ‘pragmatic’ cases for both patient and healthy 

control cohorts is another major clinical challenge. Apart from the limiting case of 

contrasting schizophrenia patients with healthy control individuals presented above, 

it should be noted that most control participants recruited include perfectly healthy 

individuals (‘hyper-normal’ cases) while excluding any individual presenting with 

any substance abuse or even family history of psychiatric conditions. Similarly, 

schizophrenia cohorts often exclude patients with any comorbid psychiatric disorder, 

or substance abuse, which is not the norm for cases of schizophrenia presenting in 
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everyday clinical practice. The need for more realistic representation of 

schizophrenia and healthy participants is in alignment with the need for larger data 

samples; a well-known hindrance in most research studies in terms of recruiting 

procedures and findings’ robustness. Multi-site studies could address the need for 

large data samples and additionally ensure the sufficient phenotypic and 

demographic representation of the under-study population. Prospective, longitudinal 

multi-site studies for the early diagnosis and management of early and first episode 

psychosis, such as the PSYSCAN and PRONIA projects have recently been launched 

with the aim of developing multimodal biomarkers for the prediction of onset, course 

and outcome of psychosis. However, multi-site initiatives warrant further calibration 

and standardization efforts in order to ensure the compatibility and reproducibility of 

imaging data across sites. Standardization procedures in the pre-processing and/or 

analysis pipelines as the ones suggested by the ENIGMA consortium could be used 

in order to reduce variability in findings. Test-retest reliability studies and novel 

histogram matching techniques could be used to account for site differences and 

guarantee the quality and standardization between follow-up scanning.  

 

To further understand which structural brain alterations take place before psychosis 

onset and/or are responsible for the transition from a state of heightened risk to 

psychosis, further longitudinal studies are needed that could perhaps involve follow-

up scanning before the onset of psychosis and while the subject still meets HR 

criteria. This might clarify the nature and extent of longitudinal changes that predate 

the onset of illness that are possibly not confounded by effects of antipsychotic 

medication and illness-specific alterations. Additionally, longitudinal studies of HR 

subjects with low probability of conversion to psychosis (Smieskova et al. 2012) 

and/or those HR subjects without transition (Addington et al. 2011) could reveal 

protective, resilience factors that would be clinically relevant in early intervention 

approaches. In the same context, longitudinal imaging–based studies in healthy 

control populations would help the research community in mapping normal, brain 

developmental trajectories in an effort to elucidate normal structural and functional 

variability before characterizing deviant, illness-specific trajectories.  
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Within the context of technical challenges, probabilistic machine learning might also 

be a promising tool in neuroimaging-based schizophrenia research. More 

specifically, probabilistic classification approaches such as Gausian Process classifier 

(GCP) (Rasmussen & Williams, 2006) and Relevance vector machine, can be used to 

quantify a degree of uncertainty in the prediction and could thus be applied in the 

context of predicting transition to psychosis or future clinical outcome, indicating for 

example a percentage of confidence for classification into one group or another (e.g. 

75% risk transition to schizophrenia and 25% not making a transition.). There are 

several examples of studies that have used probabilistic classifiers employing 

structural MRI data (Tognin et al. 2013), neurophysiological imaging data (either 

PET or fMRI) (Marquand et al. 2010, Phillips et al. 2011, Mourao-Miranda et al. 

2012b) and a multimodal approach where structural and functional imaging data 

together with genotype information are combined in the same probabilistic learning 

framework (Young et al. 2013). 

It is a priority that future studies also address the challenge and opportunity of fusing 

neuroimaging data from various imaging modalities, along with genetic and clinical 

information, that seem likely to interact in determining the development and outcome 

in schizophrenia (Lawrie et al. 2011). It would be reasonable to assume that the 

introduction of neurocognitive and other clinical measures could possibly enhance 

diagnostic power of the classifier. Just as a clinician takes a detailed report of 

symptoms and other clinical measures to diagnose a patient with schizophrenia, so 

might the integration of symptom severity measures and other neurocognitive scores, 

along with MRI scans aid to the classification process. Early studies have already 

shown that classification performance might well be improved (Yang et al. 2010, Sui 

et al. 2012), as in Karageorgiou et al. (2011) where the authors observed a 92% 

accuracy in classifying recent-onset schizophrenia when structural MRI data and 

neuropsychological variables (NP) were combined than when employing either 

quantitative measure alone (86.7% when only NP data were used and 70.7% with 

sMRI data alone). Other neuroimaging technologies such as arterial spin labeling 

(ASL) perfusion MRI and diffusion tensor imaging (DTI) have shown very 

promising leads in unraveling the neurobiological substrate of several psychiatric and 

neurological disorders (Pinkham et al. 2011, Sussmann et al. 2009, van Essen et al. 
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2012), and might as well be combined with MRI methods in schizophrenia research. 

The interpretability of such data is not, however, necessarily straightforward and, as 

a general rule, each additional diagnostic variable increases sensitivity at the expense 

of specificity. It is overdue, though, that combined features, such as symptoms, 

duration of illness, genomics and proteomics along with various brain imaging 

modalities are incorporated into imaging and other evaluations in clinical research 

studies, with the scope of making more reliable and objective judgements about the 

diagnosis of schizophrenia and to classifying patients into more homogenous 

subgroups (Lawrie et al. 2008). 

In conclusion, despite the fact that the medical and research community is currently 

far away from utilizing automated neuroimaging-based classification methods to 

diagnose schizophrenia and possibly predict its onset, clinical outcome and treatment 

response, in the long run MRI-based machine learning could significantly impact 

everyday clinical practice. Indeed, these methods could add value to current 

diagnostic procedures and aid clinicians in a complementary fashion in order to reach 

diagnosis and possibly inform appropriate treatment strategies after evaluating the 

risk of transition to psychosis in subjects at an increased risk. Clinical decisions 

based on imaging data could, thus facilitate the stratification of patient care and 

potentially reduce health-care costs. Further studies are, however, necessary that 

would involve large sample sizes, possibly using multicenter, longitudinal designs 

that could additionally examine the classification performance of combined data 

types, such as multi-modal imaging data, clinical, neurocognitive and genetic 

variables.   
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Appendix II 
 
 
 
Derivation of the dual form of SVM 
 
 
The primal formulation of the optimization problem is given by: 
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We need to minimize this Lagrangian with respect to w and b and simultaneously  
require that the derivative with respect to a  vanishes , all subject to the constraints 
that 0≥ia .  
 
 
If we set the derivatives with respect to w  and b to 0, we obtain: 
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We substitute the above into the equation ),,( abwp
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Λ  and obtain the dual 

formulation of linear SVM:  
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We seek to maximize the above Lagrangian with respect to a , subject to the 

constraints 0≥ia and 0
1

=∑
=

i

N

i
i ya .  



 232 

 
Appendix III 
 
 

• The F-score (Fisher score) is a simple and effective criterion to measure the 

discrimination between a feature and the label. Based on statistic 

characteristics, it is independent of the classifiers. Following Chen and Lin 

(2006), a variant of F-score is used. Given training instances lixi ,...,1, =


, the 

F-score of the jth feature is defined as: 
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Where +n  and −n  are the number of positive and negative instances, respectively; 

jx , )(+
jx , )(−

jx  are the average of the jth feature of the whole, positive-labeled 

and negative-labeled data sets; )(
,

)(
,

−

+

ji

ji

x
x

  is the jth feature of the ith 

positive/negative instance. The numerator denotes the inter-class variance, while 

the denominator is the sum of thye variance within each class. A larger F-score 

indicated that the feature is more discriminative.  

Although, the F-score is easy to implement, its deficiency, however, lies in that it 

cannot reveal any mutual information between features and only considers each 

feature separately. 

 
 
 
 

• the Pearson correlation coefficient, whose use in feature selection is closely 

related to that of the t-Test (Guyon and Elisseef 2003), measures the 

relevance of each feature to the classification task. The larger the absolute 
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value of the Pearson correlation coefficient, the more relevant the feature to 

the classification. Given a location, u , in the template space, the Pearson 

correlation coefficient between a feature, )(uf i  , of tissue i and class label y  

is defined as:  
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where j denotes the jth sample in the training dataset. Thus, )(uf i
j  is a 

morphological feature of tissue i in the location u of jth sample, and )(uf i  is 

the mean of )(uf i
j  over all samples. Similarly, jy  is a class label (controls -1 

or patients +1) of the jth sample, and y  is the mean of jy over all samples. 
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Appendix IV 
 
 

 
Table 1. A comparative presentation of the PSE and BPRS subscales  

PSE sub-categories BPRS subcategories 
-Situational Anxiety  -Somatic concern 
-Nervous Tension -Anxiety 
-Depression -Depression 
-Mania -Suicidality 
-Overactivity -Guilt 
-Incoherence/Disorganization -Hostility 
-Changed Perception -Elevated mood 
-Hallucinations -Grandiosity 
-Thought Disturbance  -Suspiciousness 
-Delusional Construction  -Hallucinations 
-Outside Control  -Unusual thought content 
-Negative Symptoms -Bizarre behavior 

 
-Self-neglect 

 
-Disorientation 

 
-Conceptual disorganization 

 
-Blunted affect 

 
-Emotional withdrawal 

 
-Motor retardation 

 
-Tension 

 
-Uncooperativeness 

 
-Excitement 

 
-Distractibility 

 
-Motor hyperactivity 

 
-Mannerism and posturing 
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Figure 1. Factorial analysis of the BPRS subscores and the derived four-scale model. 

Figure adapted from Velligan et al. 2005 
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Appendix V 
 

Here, I present the histograms, generated after concatenating all voxel intensity 

values of the smoothed GM segments of all scans from the EHRS and the FePsy data 

set. 

 

 

Figure 1. Histogram of the EHRS data set 

 

 

It should be noted that values in the x-axis correspond to probabilities of the voxels 

being GM, and the y-axis represent the number of voxels having the relevant 

probabilities.  The only noticeable difference between the histograms of the EHRS 

and the FePsy scans (Figure 1 and 2 accordingly) lies in the assignment of higher 

probability values in the EHRS data set relative to the FePsy one (the far-right side of 

the distributions). However, this can not be attributed to any difference in the 

preprocessing stage, since the pre-processing pipeline was exactly the same for the 
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two data sets but can be reasonably due to a much more accurate segmentation of the 

scans in the EHRS set.  

In this context, given the similarity of the distributions between the EHRS and the 

FePsy data sets, it was safe to assume that pooling together the data from the two 

data sets without performing any type of scaling or histogram matching would work 

fine and would not introduce much variability in the context of scanner-related 

differences. 

 

 

Figure 2. Histogram of the FePsy data set 

 

It should also be noted here, that even in the case where the distributions between the 

data sets were different, it would be most reasonable to perform some type of scaling 

or matching before any pre-processing is done and try to match all tissue types, that 

is GM, WM and CSF, and not just GM. However, this endeavour is quite complex 

and could be a project on its own and that is why it was decided not to attempt this 

and stick to pooling all of the available data without performing any scaling 

whatsoever.  
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