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Abstract

Background and Aims

It is now well established that mutant Wlcf mice show slow Wallerian

degeneration after nerve injury: The aim of the present thesis was to extend

knowledge and understanding of the protective effect of the Wlcf gene, and its

protein product on neuromuscular synapses. I used homozygous and heterozygous

Wlcf mice in studies that addressed three hypotheses:

1. Neuromuscular synaptic protection is more sensitive to Wlcf gene dose than

axon protection.

2. Age-dependent loss of neuromuscular synaptic protection is related to

changes in Wlds protein expression levels.

3. Synaptic degeneration in Wlcf mice can be further altered by other extrinsic

factors including nerve stump length and blocking neurotransmitter release.

Methods and Results

To test the first hypothesis, rates of synaptic degeneration were measured in

young (2 months old) heterozygous Wlcf mice crossbred with mice expressing

Yellow Fluorescent Protein (thyl. 2-YFP16 strain) in motor neurones. The results

suggest that synaptic degeneration in Wlcf mice is more sensitive to Wlcf gene-dose

dependence than axon degeneration
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The second hypothesis was addressed by comparing synaptic degeneration in

young (2 months old) heterozygous and homozygous Wlcf mice with, older (>6

months) homozygous Wlcf mice. The old mice were also crossbred with

thy.l-YFP16 mice but some data were also obtained using fluorescence

immunocychemistry for neurofilament and synaptic vesicle proteins. Confocal

microscopy and PDD's were used to obtain and analyse the data as before. The rate

and pattern of synaptic degeneration in old homozygous Wlcf mice were similar to

those in young heterozygous Wlf mice and wild-type mice. Immunofluorescence

measurements showed significant difference between Wlds protein levels in young

homozygotes and old homozygous Wlcf mice. Therefore, the loss of synaptic

protection in old Wlcf mice may also be explained by its sensitive gene-dose

dependence.

The third hypothesis was addressed first by comparing synaptic degeneration

protected by the length of nerve stump; specifically by comparing sciatic nerve

section and tibial nerve section. Second, the role of synaptic transmission was

examined by injecting botulinum toxin into the hind foot, sufficient to cause local

paralysis. Surprisingly, the result following sciatic/tibial cut did not show apparent

protection by increasing nerve stump length. The result from injection of botulinum

toxin into young Wlcf mice suggested that blocking transmitter release can delay

synaptic degeneration. However, in old Wlcf mice its effect disappeared. Therefore

neither the paralysis nor the length of nerve stump is sufficient to prevent or delay
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synaptic degeneration.

PDD

Testing these hypotheses was facilitated by a novel geometric method was

facilitated by novel devised for representing different stages in the breakdown or

retraction of motor nerve endings. These representations (Polyhedral Degeneration

Diagrams, PDD) demonstrated clear differences in the rate and pattern of synaptic

degeneration following nerve injury in the different experimental groups of mice

examined.

Conclusions

Overall, the data I obtained provide evidence in support of a compartmental

neurodegeneration model which proposes that the survival or death of cell bodies,

motor axons and terminals of motor neurons are controlled by independent

regulatory mechanisms. The data further suggest that motor nerve terminals are an

especially vulnerable neurodegenerative compartment. Geometric PDD analysis of

synaptic degeneration may also find general utility and applicability to studies of

development or pathological models of neurodegenerative disease.
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Abbreviation

cx-BTX Alpha-bungarotoxin
Ach Acetylcholine
AchR Acetylcholine receptors
ALS Amyotrophic lateral sclerosis
ATP Adenosine Triphosphate
BSA Bovine Serum Albumin

BTX Bungarotoxin
BoTox Botulinum toxin

CAP Compound action potential
CFP Cyan fluorescent protein
CGC Cerebellar granule cells
CK Creatine kinase

CNS Central Nervous System
CNTF Ciliary Neurotrophic Factor
EM Electron Microscopy
EPP End-Plate Potential

FALS Familial amyotrophic lateral sclerosis
FDB Flexor Digitorum Brevis
FF Fast fatiguable
FITC Fluorescein Isothiocyanate
FR Fast resistant

INOS Inducible Nitric Oxide Synthase
MAG Myelin-Associated Glycoprotein
MEPP Minature End-Plate Potential

NAD Nicotinamide Adenine Dinucleotide

NF Neurofilament

NGF Nerve Growth Factor

NMJ Neuromuscular Junction

Nmnat
Nicotinamide Mononucleotide Adenylyl
transferase

PBS Phosphate Buffered Saline
PDD Polyhedral Degeneration Diagram
PNS Peripheral Nervous System
SALS Sporadic amyotrophic lateral sclerosis
SD Standard Deviation

SEM Standard Error of the Mean

SNAP-25 synaptosome-associated protein of 25000 daltons
SOD Superoxide dismutase
sv Synaptic Vesicles
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TRITC Tetramethylrhodamine Isothiocyanate
Ube4b Ubiquitination Factor E4b
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1. Introduction
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The vertebrate nervous system is an extraordinarily complex communication

system that sends and receives information simultaneously in parallel pathways. The

nervous system has two distinct parts: the central nervous system and the peripheral

nervous system (the nerves outside the brain and spinal cord). Afferent and efferent

axons in the peripheral nervous system are gathered into nerve trunks, forming

defined peripheral nerves.

1.1 Neurons

The neurons that project axon into peripheral nerves are either sensory or motor.

Both sensory and motor neurons consist of a large cell body (or soma) with

branching dendrites (signal receivers) and a projection called an axon, which

conducts the nerve signal (Fig 1.1). At the other end of the axon, the axon terminals

transmit an electro-chemical signal across a synapse (the gap between the axon

terminal and the receiving cell).

The cell body is the bulbous end of a neuron, containing the nucleus. The cell

nucleus is a key feature of the cell body. It is the source of most of the RNA that is

produced in neurons and most proteins are produced from mRNAs that do not travel

far from the nucleus. Other RNA comes from cytoplasm, such as tRNA.

An axon is a long, slender projection of a nerve cell that conducts electrical

impulses away from the neuron's cell body.Axons are in effect the primary
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transmission lines of the nervous system, and are bundled together to form nerves.

Individual axons are microscopic in diameter - typically about one micrometre

across (1pm) - but may extend to macroscopic (>lmm) lengths. The longest axons in

the human body, for example, are those of the sciatic nerve, which run from the base

of the spine to the big toe of each foot. These single-cell fibers of the sciatic nerve

may extend a meter or even longer.

In vertebrates, the axons of many neurons are sheathed in myelin, which is

formed by either of two types of glial cells: Schwann cells ensheathing peripheral

neurons and oligodendrocytes insulating neurons of the central nervous system.

Along myelinated nerve fibers, gaps in the sheath known as nodes of Ranvier occur

at evenly-spaced intervals, enabling a particularly rapid mode of electrical impulse

propagation called saltation.

This myelin sheath resembles insulation, such as that around an electrical wire.

Nerve impulses travel much faster in nerves with a myelin sheath than in those

without one. Velocity of impulse is a factor of axon diameter, myelin thickness and

internodal length. If the myelin sheath of a nerve is damaged, nerve conduction is

dramatically reduced (Tsao et al., 1994; Court et al., 2004).

Dendrites are the branched projections of a neuron that act to conduct the

electrical stimulation received from other neural cells to the cell body of the neuron

from which the dendrites project. Electrical stimulation is transmitted by upstream
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neurons onto dendrites, via synapses which are located at various points throughout

the dendritic arbor. Dendrites play a critical role in integrating these synaptic inputs

and in determining the extent to which subsequent action potentials are produced by

the neuron.

Synapses

The "Neuron doctrine" was first proposed by Santiago Ramon Y Cajal and his

colleagues in late of 19th century. He proposed that the connections between the

neurons are made at a specialized site. These sites were subsequently named

"synapses" by Charles Sherrington (Sherrington, 1897; 1906). Synapses are

symmetric and asymmetrical communication junctions formed between two neurons.

The term 'synapse' has since been extended to include communication between a

neuron and non-neuronal target cell; for instance, at the neuromuscular junction

(NMJ), between a motor neuron and a muscle cell.

Synapses play a critical role in neural function by transmitting signals from one

neuron to another or muscle fibres at NMJs. There are in fact two ways of synaptic

transmission occurs between neurons: electrical and chemical. At electrical synapses,

the ion channels bridge the pre and post-synaptic membrane and information may be

carried symmetrically between the two connected cells directly. The other, more

common form of synapses makes use of chemical intermediaries. At chemical

synapses, the two neurons are separated by a 30nm gap, the synaptic cleft. Signals
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are transmitted asymmetrically, when the presynaptic neuron releases a chemical

neurotransmitter by exocytosis from synaptic vesicles into the synaptic cleft. These

molecules are detected by the postsynaptic neuron through activation of specific

molecular receptors exactly opposite the release site of the presynaptic terminals. At

NMJ the receptors are acetylcholine receptors.

1.2 Neuromuscular Junctions

The vertebrate neuromuscular junction (NMJ) is arguably the best system for

studying the formation, maturation, elimination and regeneration of synaptic

connections. The NMJ is constructed from three main cellular components—nerve

terminal, muscle fibre, and terminal (presynaptic) Schwann cell (Sanes and

Lichtman., 1999). With the advent of electron microscopy, a clear picture of NMJ

strucuture became available, showing the synaptic cleft that separates the motor

nerve terminal and skeletal muscle fibre, numerous synaptic vesicles and

mitochodria in the presynaptic terminal, the electron dense postsynaptic membranes

thrown into numerous postsynaptic folds and a layer of extracellular matrix lining

the synaptic cleft (Figure 1.2). Many studies have been carried out on at the NMJs

since these observation were made.
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Figure 1.2

Diagram showing the cellular organization of the NMJ

Neurotransmitter 1HK gg| Myelin
vesicles J ;j; Axon of motor

neuron

Mitochondria

em? plate

Neurotransmitter
Skeletal muscle fiber receptors

(Image from Purves et al., Life: the Science of Biology, 4th Edition,

by Sinauer Associates and WH Freeman)

Dale et al (1939) were first to describe chemical neurotransmitter release in

the synapses of the vertebrate NMJs. After that, a series of experiments on

electrophysiology of chemical synaptic transmission at NMJs were carried out by

Fatt and Katz (Fatt and Katz, 1951; Fatt and Katz, 1952). They suggested that the

• 9+

change in permeability of the nerve terminal membrane to Ca ions triggers

synaptic transmission, exocytosis of synaptic vesicles, releasing quantal packets of

acetylcholine. Subsequent analysis established that neurotransmitter is released in

packets of 5000-molecule "quanta" and that this occurs randomly and spontaneously

at resting synapses. Excitation of the nerve terminal, for example by a depolarizing

action potential, leads to influx of Ca2+ ions, leading to synchronous synaptic release



of many tens or hundreds of synaptic vesicles (Fatt and Katz, 1952; del Castillo

and Katz, 1954; Katz and Miledi, 1969; Wood and Slater, 1997). Within the

presynaptic nerve terminal, synaptic vesicles containing neurotransmitter

acetylcholine are clustered near to the presynaptic membrane (Palade and Palay,

1954; Robertson, 1956; Whittaker et al., 1964). Synaptic vesicles often aggregate

around the 'active zones' and neurotransmitters are secreted by exocytosis of

synaptic vesicles at these sites which produces postsynaptic activation. Using

electron microscope tomography in the frog's NMJ, Harlow et al (2001) suggested

that active zone material facilitates vesicle docking and localizes calcium channels to

release sites.

Many proteins play crucial roles in regulating and driving the synaptic vesicle

cycle, namely docking, fusion, endocytosis, and recycling (Betz and Angleson 1998).

P-type calcium channels are distributed throughout the presynaptic membrane and

are important for vesicle exocytosis as they allow Ca2+ to enter. Voltage-gated

potassium and calcium channels are also found to localize within active zones of

presynaptic membrane to help increase the release of neurotransmitter (Uchitel et al.,

1992, Robitaille et al., 1993.; Day et al., 1997). One study suggests that the

presynaptic membrane protein plays an important role in vesicle docking at the

presynaptic membrane (Pevsner et al., 1994). Integrins also help facilitate

neurotransmitter secretion. They attach the nerve terminal, which assist

neurotransmitter release sites anchored firmly on the postsynaptic receptors (Chen
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and Grinnell, 1995).

The membrane opposite presynaptic nerve terminals is corrugated into

junctional folds. At the rat neuromuscular junction, the postsynaptic folds appear to

enhance the safety factor for neuromuscular transmission (Wood and Slater, 1997).

Moreover, the presynaptic active zones (transmitter release sites) in the presynaptic

terminal position are positioned directly opposite the opening of junctional folds in

the postysynaptic membrane (Patton et al., 2001). The majority of nicotinic

acetylcholine receptors (AChRs) are located at peaks of the junctional folds of the

postsynaptic membrane (Salpeter and Loring, 1985). Voltage-gated sodium channels

are located in the troughs of the folds (Flucher and Daniels, 1989). The muscle

action potential is triggered by the local endplate potential produced by activating

the AChRs, which then leads to voltage-dependent activation of these sodium

channels.

Many cytoskeletal elements are thought to play an important role in generating

and maintaining the postsynaptic folds (Sanes and Lichtman, 1999). For example, at
l

the top of junctional folds, a-dystrobrevin-1, a member of the dystrophin family of

proteins (Bewick et al ., 1992; Peters et al., 1998), rapsyn (Wang et al., 1999), and

utrophin (Gramolini et al., 2000) are associated with the AChRs. Other proteins such

as a-dystrobrevin-2 (Peters et al., 1998) ankyrin (Zhou et al., 1998) and P-spectrin

(Wood and Slater., 1998) are found in the depths of the junctional folds.
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Terminal Schwann cells are a non-myelinating population around the nerve

terminals. They cover the terminal and isolate it from the surrounding environment.

These Schwann cells are distinct from those that form myelin sheaths (Waxman,

1997) around the axon. Although, non-myelinating Schwann cells and

myelin-forming Schwann cells come from the same progenitor, they express

different genes during development. For instance, myelin basic protein Po and

myelin associated glycoprotein (MAG) are expressed higher in the axonal Schwann

cells than S-100 and N-CAM, in contrast to S-100 and N-CAM which are expressed

higher in the terminal Schwann cells than protein Po and MAG (Mirsky and Jessen,

1996). Myelin-forming Schwann cells help increase conduction velocity, along the

axon, moreover the cells may supply trophic factors that support the axons. On the

other hand, terminal Schwann cells play an active role in the formation, maintenance

and repair of developing NMJs (Meier and Wallace, 1998). For example, at

developing neuromuscular junctions, Schwann cells appear to support motor neurons

through the release of neurotrophic factors, such as, CNTF, GDNF, BDNF, and NT-3.

Furthermore, during denervation, terminal Schwann cells guide sprouting or

regenerating axons back to the original place of innervation (Reynolds and Woolf,

1992; Son and Thompson 1995).

Schwann cells express muscarinic and purinergic receptors, which are related to

the release of acetylcholine and ATP (Robitaille, 1995; Robitaille et al., 1997).

Synaptic activity leads to a rise in intracellular calcium, (Jahromi et al., 1992), which
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in turn may alter in gene expression. For example, the gene for glial fibrillary acidic

protein, which plays a role in the formation of the terminal Schwann cell sprout, is

stimulated by a blockage in synaptic activity (Love and Thompson, 1998).

1.3 Synaptic plasticity, development, degeneration

The nervous system has been described as a dynamic and flexible network that

responds to change in the surrounding environment. Information in this entire

dynamic neuronal system is mediated by neural activity, and this activity brings

about changes in the patterning and strengths of neuronal connections.

Activity-dependent plasticity of synaptic connection is important both in the CNS

and the PNS, for example, at the synapses in the visual cortex as well as at

neuromuscular synapses during development (Thompson et al., 1977; Ridge and

Betz, 1984; Walsh and Lichtman, 2003; Kasthuri and Lichtman, 2003; Buffelli et al.,

2003). However, arguably the most dramatic changes in motor nerve terminal form

and function occur after an axon is injured, separating the synaptic terminals from

their motor neuron cell bodies, an event that may also occur in neurodegenerative

diseases, such as motor neuron diseases (MND; Schaefer et al., 2005; Fischer et al.,

2004; Pun et al., 2006).

Withdrawal of motor terminals (synapse elimination) is a type of synaptic

rearrangement and plasticity which has been most heavily researched. Early studies

showed that in the neonatal mammals, each immature muscle fibre is supplied by
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two or more motor axons which converge on to a single end-plate, which thus

receives multiple "polyneuronal" synaptic inputs. At two weeks after birth all muscle

fibres are innervated by only a single motor axon (Redfen, 1970; Brown et al., 1976).

Similar changes in the innervation pattern are also found following axonal

regeneration in the adult muscle after nerve injury (McArdle, 1975;

Ribchester, 1988; Costanzo et al., 1999).

Synapse elimination has also been studied in regions of the CNS; for example,

the cerebellum (Lohof et al., 1996) the autonomic ganglia (Lichtman, 1977) and the

visual system (Hubel et al., 1977).

1.4 Wallerian degeneration

In 1850, Augustus Waller first described the orthograde degeneration of axons

after nerve injury, and what we now called this process "Wallerian degeneration".

Waller cut the glosspharyngeal and hypoglossal nerves of the frogs, then observed

the distal nerves that were separated from their cell axons becoming discontinuous,

and fragmented after parting from the cell bodies. He also suggested that "trophic

influence" plays a role in maintaining the distal extremities of a neuron, for example,

that distal axons degenerate after injury because the trophic substances can not be

supplied.

Due to the limitation of the staining techniques available in that period, Waller's
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findings were not accepted until in the late 19th century (1878). Ranvier, among

others, extended studies of Wallerian degeneration in axons. He observed the

fragmentation of the axon following nerve section and the later invasion of

phagocytotic leucocytes later. He first described Schwann cell division during this

process which was later confirmed by the findings of Biingner (1891). He was also

the first person to observe structures he named as "bands of Btingner". Band of

Btingner, also called the Schwann cell column, are formed by Schwann cells, which

lose contact with axons, proliferate, then form a cell strand within the basal lamina

tube. In 1928, these studies were confirmed by Ramon y Cajal who used silver

staining techniques to demonstrate the degeneration of the distal nerve stump after

axotomy.

1.4.1 Wallerian degeneration in the Axon

After a nerve has been transected, the lesioned axon begins to fragment; the

myelin sheath retracts from the nodes of Ranvier to form the large spaces called

'digestive chambers' or ellipsoids', and the nerves are separated in these

compartments (Allt, 1976). The axon fragments then proceed to a complete

degradation. While the distal stump continues to degrade, the debris of the axons is

cleaned by the phagocytosing Schwann cells and invading macrophages. At the same

time, Schwann cells transiently proliferate. Abercrombie and Johnson (1946)

demonstrated that in the rabbit sciatic nerve, the number of Schwann cells increased
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13-fold by 25 days post lesion. The proliferating Schwann cells form a cell strand

called Schwann cell column or band of Bungner (Biingner, 1891) within the basal

lamina tube. The regenerating axons from the proximal stump of the lesion are

guided by these bands back to the distal nerve segment. During this process, many

different growth and adhesive factors such as NGF (Heumann et al., 1987),

N-CAM( Nieke and Schachner, 1985) and cytokines (including members of the

interleukin (IL-x) family (for review see Fu and Gordon, 1997), all of which are

secreted from the Schwann cells, appear to play important roles in assisting axonal

regeneration.

During axonal fragmentation and degradation, Wallerian degeneration is

naturally accompanied by failure of conduction of action potentials in the nerve

(Mastalgia et al., 1976; Nicholls et al., 1992). The lag period after axotomy in the

axons varies in the different species. In mice, for example, the sciatic nerve fails to

conduct action potentials for 1 — 2 days following axotomy. This is in contrast to

the effect of axotomy in frogs, where the action potential can still be recorded up to 7

days post sciatic nerve axotomy (Levenson and Rosenbluth, 1990; Chaudry, Glass

and Griffin, 1992). Remarkably, in the giant squid, crayfish and fish, the isolated

axons are preserved even for months (Sheller and Bittner, 1992; Tanner et al., 1995;

Raabe et al., 1996).

The fragmentation of endoplasmic reticulum and distintegration of
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neurofilaments and microtubules in the 24-72 hours following nerve axotomy are the

early axonal changes observed by electron microscopy (Vial, 1958; Honjin et al.,

1959; Ballin and Thomas, 1969; Donat and Wisniewski, 1973; Schlaeper and Hasler,

1979a). A subsequent marker of degeneration is the swelling and dissolution of

axonal mitochondria. There is evidence that axonal degradation during Wallerian

degeneration is a calcium-mediated event when the intracellular calcium

concentration rises above a threshold concentration of 0.2mM, neurofilament

degradation occurs (Glass et al., 1994). Evidence in support of this hypothesis is

neurofilament can be maintained intact when incubated in calcium-free media

(Schlaepfer and Hasler, 1979b).

The velocity of Wallerian degeneration is dependent on temperature, the age of

the animal, and the myelination and caliber of the nerve. Low temperatures slow the

rate of Wallerian degeneration in mammalian, invertebrate and lower vertebrate

axons (Usherwood et al., 1968; Wang, 1985; Bittner, 1988; Sea et al., 1995; Tsao et

al., 1999). The rate of Wallerian degeneration in the optic nerve of cats is slower in

the older animals, (Cook et al., 1974). In a study with teased fibres of transected

phrenic nerves, the amount of Wallerian degeneration was shown to be least in the

thickest fibre at 24 hours (Lubinska, 1977). Thus, unmyelinated axons degenerate

first, then the smallest myelinated nerve fibres, and the largest myelinated fibres are

the last to degenerate (Weddel and Glees, 1941; Friede and Martinez, 1970). Recent

research suggests that mice which lack inducible nitric oxide (iNOS) also show slow
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Wallerian degeneration in myelinated axons (Levy et al., 2001), suggesting a role for

oxidative enzymes in this process.

In contrast to the rapid degeneration of the distal portion of an axotomised

neuron, the proximal portion does not degenerate, at least in adults. There are

however some distinct markers of change, in the cell body and its nucleus, the cell

body swells, the Nissl substance becomes dispersed, and the nucleus translocates, the

nucleus moves from the center of the cell soma to an eccentric location. In some

proximal axons motor neuron cell bodies degenerate after avulsion of the spinal

roots, a procedure which leaves a very short proximal nerve stump (see Adalbert et

al., 2006).

1.4.2 Wallerian degeneration in synaptic terminals

The progression of Wallerian degeneration at the NMJ has been

well-documented, in frogs, rats and mice, by such people as Birks, Katz and Miledi

(1960), Miledi & Slater (1968 and 1970), Manolov (1974) and Winlow and

Usherwood (1975). The degeneration of nerve terminals post axotomy occurs before

the degeneration of the axons. In some animals, like rat and frog, initial degenerative

changes in the nerve terminals occur within 3-8hours; (Manolov, 1974; Miledi and

Slater, 1970). These changes include the swelling and destruction of mitochondria;

reduction in the number, and clustering of synaptic vesicles, and subsequently

invasion of terminal Schwann cells into the synaptic cleft. More degenerative
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changes occur with passing time, like nerve terminals becoming completely

fragmented and the terminal Schwann cell engulfing the synaptic terminal.

The numbers and localization of the synaptic vesicle population in motor nerve

terminals changes following axotomy, as described by Manolov (1974) and Winlow

and Usherwood (1975). From 6hrs to 20 hours the numbers of synaptic vesicles

decrease dramatically (Manolov, 1974). Manolov and Winlow and Usherwood

described a small reduction in synaptic vesicle numbers occuring 3 hours after nerve

section. However, at 20 hours post-axotomy, the majority of nerve terminal profiles

had no vesicles left. Manolov found greatly increased neurofilaments, following the

reduction in number of synaptic vesicles and degeneration of mitochondria in many

nerve terminals which survive for more than 20 hours post axotomy.

Mitochondria are used as an important marker for synaptic terminal

degeneration. Miledi and Slater (1970) studied the changes in normal NMJs and

axotomised NMJs. In normal nerve endings, diameter of mitochondria is 0.1 -0.2 jam,

whereas in endplates undergoing degeneration, mitochondria become swollen and

have large circular profiles with diameters as large as 0.7/am. The cristae in the

mitochondria often appear "disorganized and broken up into small vesicular

fragments" (Miledi and Slater, 1970). In Manolov's (1974) experiments, the same

phenomenon was reported as the occurrence of 'dense bodies'.
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1.5 Synapse Elimination at the Neruomuscular

junction

In rodents, neuromuscular synaptogenesis occurs after myoblast fusion during

development, when each motor neuron establishes synapses on different muscle

fibres randomly (Bennett and Pettigrew, 1974, Jennings, 1994). By the end of this

period each skeletal muscle fibre is supplied by more than one motor axon. Synapse

elimination then begins to refine these connections during the first two postnatal

weeks (Redfen, 1970; Brown et al., 1976; Betz et ah, 1979). Studies have shown that

synapse elimination also occurs in other species' nervous systems, such as humans

and kittens (Huttenlocher 1982 et ah, Bagust et ah, 1973).

In 1976, Brown and colleagues studied the elimination of polyneuronal

innervation in the soleus muscle of new-born rats. It was found that during the

poly-innervation to mono-innervation transition period, there was no significant

reduction in the number of motor neurons innervating the soleus muscle. Therefore

they concluded that the disappearance of supernumerary inputs reflects a decrease in

the number of synapses made by each motor neuron (Brown et ah, 1976). The

ultrastructure of nerve terminals on neonatal muscle fibres was studied using

electron microscopy. This provided evidence that synapse elimination involved

retraction of motor nerve terminals from the endplates rather than the Wallerian

degeneration process that occurs after nerve injury. No signs of degenerative
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processes were found in any nerve terminal during synapse elimination, either in rats,

or in rabbits' experiments (Komeliussen et al., 1976; Bixby, 1981). Moreover Bixby

described how the nerve terminals and axons are retracted from the endplates to form

retraction bulbs.

However, one study suggested that the supernumerary terminals are removed by

degenerative mechanisms. Rosenthal and Taraskevich (1977) described that signs of

abnormal ultrastructure were observed in neonate end-plates during the period of

synapse elimination. Some terminals had a high condensation of synaptic vesicles as

well as Schwann cell encroachment into the synaptic cleft, and it was evident that the

large areas of postsynaptic membrane opposed only with Schwann cell. All of these

characteristics are similar to Wallerian degeneration of motor nerve terminals in the

denervated adult mice. However, there have been no published reports to confirm

their findings, so they may be incorrect, more research is needed before ruling out

this mechanism entirely.

The majority of evidence from other studies support that the supernumerary

inputs are removed by withdrawal process rather than degeneration. Although

previously focused on reinnervated NMJs, in recent years, Lichtman and his

colleagues have studied the mechanism of synaptic elimination at the developing

neuromuscular junction using a time-lapse imaging technique. In 2001, they used

transgenic mice that express fluorescent proteins in subsets of axons. The results
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suggested that branch elimination within a same motor unit appears to be distributed

randomly and asynchronously, and that the local competitive environment plays a

critical role in deciding branch loss and maintaintenance (Keller-Peck et al., 2001).

Subsequently, Lichtman and his colleagues used two transgenic mouse lines

designated YFPH and CFP which expressed yellow and cyan fluorescent proteins in

different motor axons and developed the time-lapse imaging technique further. They

suggested that competition between two axons from two different motor neurons

innervating the same synaptic area leads to one axon's retraction accompanied by

another axon's expansion (Walsh et al., 2003). In the same year, they used the same

technique to further investigate the nature of the neuronal competitors. Their

findings suggest that motor neurons form a hierarchy indicated by the endplates they

acquire and exclude from other motor units (Kasthuri et al., 2003).

1.6 The Wlcf phenotype

The Witf mice mouse phenotype was first discovered by H Lunn, M.C. Brown,

and V.H. Perry, by accident while investigating the role of recruited myelomonocytic

cells in Wallerian degeneration of peripheral nerve (Lunn et al., 1989). Mice were

originally supplied by Harlan-Olac to Oxford and many other universities and

research institutes in the UK and abroad as C57/B16 mice. However, these mice bear

the spontaneous mutation that slows axonal degeneration, which neither C57/B16J

nor C57/B16 mice (nor any other mouse line studies to date) show. The initial studies
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of the mutant mice referred to them as "Ola" mice. The formal "Wlcf" was adopted

after the chromosomal location of the mutant gene was established (Lyon et a., 1993).

Evidently, at some point in the lineage of the Harlan-Olac C57/B16 mice there was a

spontaneous mutation that was conserved. The mutant mice breed easily and don't

show any discernible, neurological phenotype compared with wild type mice. The

most distinguishing characteristic of these mice is that Wallerian degeneration is

significantly delayed after axotomy or nerve injury. The distal axotomised section

and their nerve terminals are preserved completely for as long as 3 weeks in some

cases. Of note, the isolated distal axons are still be able to conduct action potentials,

and the motor neuromuscular nerve terminals continue to release neurotransmitter

and recycle synaptic vesicle for at least 3 days, and in some cases, up to 2 weeks

after axotomy (Tsao et al., 1994; Ribchester et al., 1995). Wallerian degeneration is

delayed in both sensory and motor axons in these mutant mice after peripheral nerve

injury. Moreover the mutation also delays axonal and synaptic degeneration in the

central nervous system (Perry et al., 1990a; Ludwin and Bisby, 1992; Gillingwater et

al., 2006a).

1.7 The Wlcf genotype

Perry et al (1990b) showed that the mutant gene in Wlcf is autosomal dominant.

The mutant gene in Wlcf mice was then mapped to the distal end of chromosome 4

(Lyon et al., 1993), and was subsequently identified within the candidate region to be
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an 85-kb tandem triplication; this is a mutant unique to the Wlcf mice (Coleman et al.,

1998). From recent studies exons of three genes were found within the triplicated 85

kb domain (Conforti et al., 2000). Expression of two genes spanning the proximal

and distal boundaries of the repeat unit can be found in the nervous system namely

the N-terminal 70 amino acids of ubiquitin fusion degradation protein 2 (Ufd2) and

the C-terminal 302 amino acids of D4Colele were identified. In the Wlcf mutant,

these two transcripts form an open reading frame for a 43 kDa chimeric protein.

However, the third exon in the repeat unit, Rbp7 (a novel member of the cellular

retinoid -binding protein family), does not express in the nervous system (Conforti

et al., 2000; Figure 1.3). Naturally, attention was focused on the chimeric gene as the

best candidate for conferring the slow Wallerian phenotype. Ufd2 has now been

demonstrated to be homologous to the human ubiqutination factor E4b (Ube4b)

(Mack et al., 2001). Similarly, the novel sequence D4Colele is now shown to

incorporate a complete sequence that encodes Nicotinamide mononucleotide

adenylyl transferase-1 (Nmnat-1). This enzyme is a nuclear protein and is

responsible for NAD synthesis (Emanueli et al., 2001). In addition, the chimeric

gene (N70Ube4b/Nmant) includes an N-terminal sequence coding for an additional

18 amino acids in Wlcf mice. The gene sequence for this peptide is not normally

found in wild-type Nmnat. Mack et al (2001) made several lines of transgenic mice

expressing N70Ube4b/Nmnat. The amount and rate of Wallerian degeneration after

axotomy was shown to be gene dose—dependence (Figure 1.4). For instance, the
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data demonstrated that axonal preservation in the heterozygous transgenic mouse

line 4836Tg/+ was similar to that in the mutant Wlct mice after the same duration of

axotomy, In contrast, heterozygous Tg 4830 mice exhibited only half the axonal

preservation compared to Wlct homozygotes.

It is important to point out at this stage that homozygous Wlct mice therefore

express four copies of the chimeric Wlct gene, in addition to normal expression

levels of Nmnat and Ube4b that make up the mutant gene. Heterozygous Wlct mice

have only two copies of the chimeric gene. Evidence suggests that Wlds protein in

expressed in proportion to the number of copies of the Wlct gene (Mack et al., 2001;

see figure 1.3). Thus comparing phenotypes in homozygous and heterozygous Wlct

mice gives a simple and effective way of testing for the effect of the Wlct

"gene-dose".

A recent genome-wide analysis protein expression profile of Wlct mutant in

both the mouse cerebellum and human cell cultures revealed that the

Nmnat-1/Ube4b chimeric protein regulates a wide range of proteins both positively

and negatively. Two prominent candidates were examined in further detail: pituitary

tumor transforming gene-l(pttg-l) and erythroid differentiation regulator-1

(edrl/-EST). mRNA expression of pttg-1 was dramatically reduced by 10 fold,

whilst edrl/-EST mRNA expression was increased by 5 fold. Interestingly, Nmnat-1

and Ube-4b have different roles in regulating the expression of pttg-1 and edrl/-EST
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(Gillingwater et al 2006b). These data strongly suggest that the Wlcf gene product

has a gobal control over a large pool of genes in mediating a neuroprotective effect

in Wlcf mutant mice, with a similar pattern also observed in human cell lines.

1.8 Mechanism of Neurodegeneration in Wlcf mice

Work on finding the cellular mechanism of the slow Wallerian degeneration in

the WZcf mice has long preceded the understanding of its molecular nature. In 1989,

Lunn et al. first postulated that the failure to recruit systemic macrophages to the

distal stump cells in C57BL/6/01a mice (the line subsequently renamed C57B16/WZ<f

mice) accounts for the slow rate of degeneration. However, in subsequent

experiments, they refuted this hypothesis by performing transplant experiments

(Perry et al., 1990c) which suggested that slow degeneration was caused by an

intrinsic property of the peripheral nerve. This finding was confirmed by Glass et al

(1993), who found that axonal degeneration in Wlcf mice was host-dependent after

axotomy. In their experiments, Wlcf axons which regenerated through grafts of

peripheral nerve sheaths which containing wild-type Schwann cells degenerated

slowly after the regenerated axons were removed, whereas, wild-type axons

containing Wlcf Schwann cells still degenerated rapidly after removal. Moreover,

Wlcf axons still degenerated slowly after nerve injury when the perineurial sheath

was injected with the lysophosphatidyl choline to produce a demyelinating lesion

(Hall, 1993). Thus, Schwann cells don't appear to show any critical effect on the
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slow degeneration of axons in Wlcf mice. This conclusion is supported by studies of

the WZ^phenotype in vitro. However, Deckwerth & Johnson (1994) showed that

when NGF was deprived, in cultures of Wlcf neurons, the axons persisted, but the

cell bodies underwent apoptosis.

Recent researches have been focused on the molecular mechanism of axon

protection by the Wlcf gene. In particular, efforts have been made to reveal the

function of the N70Ube4b and NMNAT genes involved in protection of axons and

nerve terminals in the axotomised Wlcf mice. Hershko, Liechnover and colleagues in

1980 first described the role of ubiquitin (a small, 76 amino acid polypeptide) as a

macromolecular tag, which marks proteins destined for degradation to 26s

proteosomes (Glickman and Ciechnover, 2002). In 1984 Thomas and Wyman first

suggested that the ubiqutination pathway might be involved in the regulation of

synaptic connectivity. They described that abnormal synaptic connection between the

giant and the tergotrochanter motor neurons resulted from the disruption of the

ubiquitin gene in Drosophila. Therefore, one hypothesis is that the partial

incorporation of E4 ubiqutination factor Ube4b in the Wlcf may block degeneration

by interfering with protein ubiqutination (Gillingwater and Ribchester, 2001; Mack

et al., 2001; Coleman and Perry, 2002).

Nicotinamide mononucleotide adenylyl-transferased (Nmnat) is a whole

sequence in the Wld gene. This enzyme plays various roles in cells. It is involved in
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the NAD biosynthesis, electron-transport in the respiratory chain within

mitochondria, and regulates DNA repair and transcription. Therefore, Nmnat could

play a critical role in neuroprotective effects observed in the Wlcf mice. Araki et al

(2004) reported that increased nuclear NAD biosynthesis by SIRT1 activation could

prevent axonal degeneration. The SIRT1 is located in the nucleus and involved in the

regulation of transcription factors such as P53 and chromatin remodeling factors.

Thus Araki et al concluded that axonal protection in Wlct was mediated by increased

Nmnat activity. However, their study was partially refuted by Wang et al (2005), and

Conforti et al (2007) who showed that transgenic mice overexpressing Nmnat alone

did not show significant protection as in the Wlcf mice. However, other studies

suggested that overexpression of Nmnat in Drosophila does protect axons and

synapses from degeneration (Hoopfer et al., 2006; MacDonald et al., 2006). Taken

together, all these studies suggest that the role of Nmnat has yet to be fully resolved.

Slow Wallerian degeneration is not the only effect of the Wlct mutant gene.

Although Wlcf mice show no obvious difference from the wild-type in appearance

and behaviour, other phenotypic features can also be found in the operated and

unoperated Wlcf mice. In unoperated Wlcf mice, the soleus muscles have more fibres,

fewer resident macrophages and lower levels of acetylcholine sensitivity than in

wild-type mice. Moreover, the level of serum creatine kinase is lower in C57BL/01a

mice compared to wild type (Brown et al., 1991). As most creatine kinase (CK) is

expressed in muscles, a rise in the amount of CK released into the blood indicates
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that muscle damage has started to occur. In operated Wlcf mice, increases of both

acetylcholine and CK occurred more slowly compared to wild-type mice. This

slowly-occurring increase of supersensitivity to ACh is perhaps not surprising since

this could be partially induced by a release of products from nerve degeneration in

Wlcf mice (Brown et al., 1991). Schwann cells show different characteristics in wild

type and mutant Wlcf mice in response to axotomy. In vivo, the resident Schwann

cells play an important role in the maintenance of cell types producing maintenance

factors which are absorbed by the axon. In peripheral nerves, ciliary neurotrophic

factor (CNTF) is expressed in a subset of Schwann cells, when Wallerian

degeneration occurs, synthesis of CNTF is decreased. Subang et al (1997) showed

that both mRNA and protein levels of CNTF decreased quickly and synchronously

and quickly in the axotomised wild type mice. Nevertheless, in Wlcf mice following

axotomy, CNTF remains normal both as mRNA and protein level for up to 4 days.

During Wallerian degeneration, the levels of the CNTF protein decrease at a slower

pace than the levels of CNTF mRNA in Wlcf mice. This suggests that the stability of

CNTF protein in the axotomised Wlcf mice, may contribute to the protection of

axons. However, it is also plausible that the delayed response of Schwann cells to

nerve injury in Wlcf is due to the absence of signal from degenerating axons in Wlcf

mice (since the axons don't degenerate).

Chemotactic factors produced by the injured nerve, or the loss of inhibitory

factor produced by the intact axon could influence macrophage recruitment after
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axotomy (Perry et al., 1990c). In particular, one of the chemotactic factors, monocyte

chemoattractant protein-1 (JE) fails to be produced in the axotomised Wlct mice

(Carroll and Frohnert, 1998). Another chemoattractant, granulocyte macrophage

colony stimulating factor (GM-CSF), is deficient in Wlct mice following axotomy.

Furthermore, it is likely that distal axons produce an inhibitory factor to prevent

macrophage recruitment in axotomised Wlct (Perry et al., 1987; 1990c, Brown et al

1991; 1991a), this does not occur in the axotomised wild-type mice (Ludwin and

Bisby, 1992, Gillingwater and Ribchester, 2001).

1.9 Synapse Degeneration in Young Wlcf Mice

Motor nerve terminals in young Wlct mice appear undergo a different process

from the classic Wallerian degeneration. Wlct NMJs still retain the ability to release

neurotransmitter and recycle synaptic vesicle membrane for at least 3 days, and in

some cases for 2 weeks, following nerve axotomy (Ribchester et al., 1995).

At wild-type denervated NMJs, synaptic terminals degenerate synchronously.

However, the morphology of terminal degeneration in axotomised Wlct mice is

distinct. Using vital dye labeling immunocyto-chemistry and electrophysiology, a

piecemeal form or withdrawal of axotomised Wlct nerve terminals and retraction of

axons have been suggested by several studies indicated by the progressive,

asynchronous loss of synaptic contract at individual endplate (Mattison et al., 1996;

Parson et al., 1998; Ribchester et al., 1999). These studies suggest that axotomised
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nerve terminals are gradually removed from the endplates, until they retract back to

the distal end of the axon. The ends of the axons appear to the swollen "retraction

bulbs", which are detached from the endplates (Mattison, 1999). Physiological

experiments also demonstrated changes in the synaptic terminals, such as a reduced

quantal content and the occasional appearance of 'giant' miniature endplate

potentials (MEPPs). Likewise, in ultrastructure, the axotomised synaptic endplates in

Wltf neurons are different from wild type mice. None of the classical signs of

degeneration such as mitochondrial swelling and disruption can be found during

degeneration, but some large vesicles as large as 130nm appear in the pre-synaptic

membrane. This perhaps suggests that the synaptic vesicle retrieval mechanism has

been impaired during nerve terminal withdrawal in the Wlcf mice (Ribchester et al.,

1995, Gillingwater et al., 2001). These authors also draw attention to the remarkable

resemblance between motor nerve terminal "degeneration" as it appears in Wlcf

mice and the natural process of synapse elimination, which underlies the remodeling

of neuromuscular connections during normal postnatal development. Both

procedures appear to be qualitatively distinct from Wallerian degeneration of

synaptic terminals in wild-type mice.

1.10 Synapse degeneration in the Older (> 7months)

Wlcf mice

In 1992, Perry et al first elucidated that the rate of degeneration slowed by the
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Wlcf gene increased with the age of the animals. In the four weeks old Wlcf mouse

nerve stimulation produced compound action potentials (CAP) that could be evoked

in the distal nerve stump after section for up to 3 weeks. In 1-year-old mice however,

the authors didn't find any action potentials 5 days after nerve section, this was

similar to the wild type mice, where all axons were completely degenerated by 5

days after axotomy. In the young Wlcf mice, functional neuromuscular transmission

is presented in all muscle fibres up to 3 days after nerve section, while, in WW5 mice

more than 8 weeks old, the neuromuscular transmission is lost after around 2 days.

On the other hand, data published by Gillingwater et al (2002) suggest that,

rather than axonal degeneration, the degeneration of synaptic terminals in the Wlcf

mice is age dependent. When Wlcf mice are over 4 months old, the morphology of

nerve terminal degeneration reverts to that in wild type mice (Gillingwater et al.,

2002). In contrast to these studies, Crawford et al (1995) proposed that both axonal

loss and synapse loss were independent of age.

Ultrastructural analysis of the response to axotomy in motor nerve terminals of

4-month-old Wlcf mice showed swollen and distorted mitochondria, but intact

synaptic vesicles. In ultrastructural analysis of synaptic boutons originating from the

same motor nerve axon, some boutons contained abnormal mitochondria, but other

boutons did not. In 7 months old Wlcf mice, at 2 days post axotomy, more classical

degenerative characteristics were found, such as disrupted mitochondria, reduced
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synaptic vesicle densities, membrane disruption, and terminal Schwann cell

phagocytosis. From morphological analysis of preparations observed by

immunocytochemical staining very few partially-occupied endplates were seen,

which reflects that endplates degeneration is a rapid process in old Wlcf mice. Most

endplates were either fully occupied or vacant, In 4 months old Wlcf mice about 35%

endplates were occupied following 3 days axotomy, but in 7 months old mice, fewer

than 5% occupied endplates remained by 3 days. Thus, it was proposed that the

synapses were removed synchronously in the older Wlcf mice. Arguably, this could

simply mean that synaptic degeneration is more rapid in wild type mice, such that

few partially-occupied endplates are observed at any given time point. However, at

present this interpretation can not be distinguished from a qualitatively different

mechanism.

1.11 Compartmental Neurodegeneration

Under normal circumstances, death of the cell body is followed by rapid

degeneration of other neuronal compartments: dendrites, axons and synaptic

terminals. With the discovery of phenotype in Wlcf mutant mice, a dissociation

between normal cell body apoptosis and Wallerian degeneration was revealed (Lunn

et al., 1989; Mack et al., 2001). Wallerian degeneration is absent or delayed after

axotomy in these mice. Further studies of Wlcf mice suggested that soma, axons and

synapse represent independent neurodegeneration compartments (Gillingwater and
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Ribchester, 2001; 2002, and Figure 1.4).

All evidence obtained to date suggests that the Wlcf gene protects the axons and

synapses but not cell bodies (Gillingwater and Ribchester, 2001; 2003, Wang et al.,

2006). For instance, conversely Wlds expression does not protect cell bodies from

apoptosis (Adalbert et al., 2006), it has been found that when genes such as Bcl-2 are

overexpressed, apoptosis is inhibited, but Wallerian degeneration is not. Bcl-2 is

one of three main regulators of apoptosis in neurons (Gillingwater and Ribchester,

2001). However, Burne et al (1996) and Sagot et al (1995) showed that in retinal

ganglion cells and facial and phrenic motorneurons respectively overexpression of

the human Bcl-2 protein protected cell bodies, but there was no effect on the rate of

axonal degeneration. Thus, Bcl-2 selectively protects cell bodies while Wlcf

selectively protect axons.

Might nerve terminals be a distinct neurodegenerative compartment? Motor

nerve terminals are among the first junction to describe the degeneration after nerve

injury (Miledi and Slater, 1968; 1970). They are weakly protected in Wlcfmice that

is, they degenerate more slowly than in wild-type mice and more rapidly than axons

in Wlcf mice. However, as yet no genes have been identified that selectively protect

motor nerve terminals to the same extent as Wlcf protects axons. Cregan et al (1999),

Lebanc et al (1999), and Kuida (2000), suggested that Caspases 3, 6, and 9 regulate

apoptotic cell death in neuron. Mattson et al (1998) found no caspase activation in
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axons, and instead reported that caspases were activated in cortical synaptosome. But

it remains to be seen whether mutation in these signaling pathway leads to synaptic

protection. Thus the independence of synaptic terminal degeneration from axonal

degeneration remains to be firmly established.

It has been suggested that the withdrawal of nerve terminals in Wlct mice is

similar to the pattern of synapse elimination that occurs at NMJs during postnatal

development and reinnervation in mice (Sanes and Lichtman, 1999; Gillingwater et

al., 2001; 2002; 2003). Synaptic elimination occurs at a normal rate in neonatal Wlct

mice (Parson et al., 1997). Gillingwater et al (2002) also found that age is a

significant factor, influencing the rate and pattern of synaptic degeneration in Wlct

mice after axotomy (Figure 1.5). Another variable is the length of severed axons. An

open question also remains as to the role of neuromuscular activity in the

maintenance of axotomised nerve stumps. It is perhaps reasonable to expect this,

because activity influences other aspects of neuromuscular synaptic plasticity,

including synapse elimination, sprouting and nerve regeneration (see for example,

Richester & Taxt 1984, Ribchester, 1988, Barry & Ribchester, 1995, Costanzo et al.,

2000).

1.12 Neurodegenerative disease

Many recent studies have shown that synaptic degeneration is among the first

step in the development of several types of neurodegenerative diseases. For example,
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Alzheimer's disease is now thought to be primarily a disease of synapses (Mattson et

al., 1999; Selkoe, 2002). In Parkinson's disease, and some variants of Alzheimer's

disease dementia with Lewy bodies, a-synuclein is known to play an important role

in neurodegeneration (George, 2001; Lotharius and Brundin, 2002; Kotzbauer et al,

2001; Iwai, 2000). Transgenic overexpression of the human presynaptic protein

a-synuclein in mice resulted in a retraction of nerve terminals from dendritic spines

in the brain (Van der putten et al., 2000). Gillingwater et al (2006a) have shown that

in the young Wlct mice morphological degeneration of nerve terminals following

axotomy in the CNS is distinct from that in the PNS. Although they were still

delayed by the Wlcf gene following axotomy, the pattern of synaptic degeneration

reverted back to that in the PNS of wild type mice. The axons nonetheless remained

well-protected by the Wlct gene. These new findings in the CNS of Wlct mice could

provide new directions for investigating Parkinson's, and Alzheimer's diseases, in

which synaptic dysfunction and degeneration are also thought to precede neuronal

cell death (Selkoe, 2002, Isacson et al., 2003).

Motor neuron diseases (MND) are a kind of progressive neurological disorder.

Motor neurons, the cells that control speaking, walking, breathing and swallowing,

are destroyed. They are a group of chronic progressive diseases (Gros-Louis et al.,

2006), for which there is no effective treatment or cure. Amyotrophic lateral

sclerosis (ALS) is an adult-onset form of motor neuron disease, also called Lou

Gehrig's disease. It was first described by the French neurologist Jean-Martin
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Charcot in 1869. The main hallmark of ALS is the progressive degeneration of

neurons in the spinal cord and motor cortex, especially motor nerves that form

corticospinal tracts.

ALS is classified into two forms, such as 90% of cases are sporadic ALS

(SALS), and as they are not associated with a family history, and 10% are familial

ALS (FALS), which are inherited. Among familial cases, nearly 20% are caused by

dominantly inherited mutations in the protein Cu/Zn superoxide dismutase (SOD1)

(Bruijn et al., 2004). Sporadic and familial forms display a similar clinical pathology,

hence suggesting a common pathogenesis (Bruijin et al., 2004; Gonzalez de Aguilar

et al., 2007). However, the exact cause in most cases is still unknown.

Since the 20% of familial ALS cases are caused by an inherited mutation in the

protein Cu/Zn superoxide dismutase (SOD1) (Rosen et al 1993), animal models of

ALS, such as SOD1 mice, provide a unique opportunity to study the mechanism of

familial and sporadic ALS diseases, by virtue the conspicuous pathological and

clinical similarity between them. To date there have been many findings based on

experiments on SOD1 mice, from neuronal to nonneuronal cells, from pathology to

ultrastructure. Pramatarova et al (2001) and Boillee et al (2006) have shown that

changing SOD1 expression only in motor neurons does not trigger ALS disease or

alter the lifespan of animals. Ultrastructure, studies have shown, for example,

accumulation of manganese superoxide dismutase 2 in the mitochondrial matrix,
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which exacerbates disease in transgenic SOD1 mice. (Andreassen et al., 2000).

Accumulation and abnormal assembly of neurofilaments are found in familial ALS

(Hirane, 1984). Furthermore, life span is increased in the SODlG37 line by increasing

expression of NF-H in the neuron cell body. Dynein, a microtubule cytoplasmic

motor protein involved in processes of vesicular transport, cell division, and

retrograde transport in the axon (Levy and Holzbaur, 2006) has also been studied.

Overexpression of an ALS-linked mutant dynactin, which activates dynein is

sufficient to induce motor neuron degeneration (Gonzalez de Aguilar et al., 2007).

When microglia activation is blocked by minocycline, an antibiotic, ALS disease is

slowed in the ALS mice. (Yrjanheikki et al., 1999; Kriz et al., 2002; Zhu et al., 2002)

Moreover some growth factors and neurotrophic factors might play a role in ALS,

for example, vascular endothelial growth factor (VEGF) decreases the age at onset of

disease and life span, when its own levels were reduced in SOD 1093A transgenic

mice (Bruijin et al., 2004). Gene mutation, CNTF, a neurotrophic factor, have also

been found in ALS patients (Giess, 2002). From biochemical analysis, several

hypotheses have been proposed such as, aberrant chemistry of the active copper and

zinc sites of the misfolded enzyme causing ALS (Beckman et al., 1993).

Although there have been many discoveries made from studies of SOD1 mice,

none of these has yet been translated into effective treatment for ALS. Given that

ALS is thought to be a complicated and "systemic disease" (Gonzalez de Aguilar et

al., 2007), finding effective treatments for ALS remains a challenge in the future, but
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one in which the SOD1 mouse model is still likely to play a significant role.

Nevertheless, studying motor neuron degeneration at the NMJs of SOD1 mice

may yield some new insights that aid our understanding of ALS disease in SOD1

mice. Schaefer et al (2005) demonstrated in the SODlc,93A1 mouse model that

degenerative and regenerative changes both occur in different branches of the same

motor neuron pool. Hence, protecting compensatory growth could be a new target in

disease treatment. Moreover, Pun et al (2006) suggest that different types of motor

neurons show distinct responses in the disease. For instance, fast fatiguable axons

(FF) degenerate more rapidly than axons of fast-fatigue (FR) resistant and slow (S)

motor neuron. These findings indicate that a fuller understanding of the mechanism

of disease in SOD1 mice may well be accomplished in due course.

Discovery of Wlcf mice presents potential benefit for treatment of ALS mice,

since the Wlcf gene protects against both axonal and synaptic degeneration. Studies

have shown that when pmn mice are crossed with Wlcf mutant mice, the synapse loss

and neuronal death are reduced (Ferri et al., 2003). Thus it was anticipated that

crossing SOD1 mice with Wlcf might be have a similar result, since progressive

synaptic loss had been found in the early stages of ALS disease in the SOD1

transgenic mouse (Maselli et al., 1993; Frey et al., 2000; Gillingwater et al., 2003)

Unfortunately, this result was not obtained. Only modestly prolonged survival and

delayed denervation could be found at the neuromuscular junction in S0D1G93A>
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when crossed with Wlcf mice (Fischer, 2005). Evidently, the Wlcf gene can not delay

regression of axons and synapses in SOD1 mice.

In conclusion, although axotomy-induced retraction of motor nerve terminals in

the Wlcf mutant has provided new possibilities for using neuromuscular preparations

to investigate synaptic form and function in the early stages of neurodegeneration,

the utilization of the Wlcf phenotype to protect against disease has yet to reach

fruition. This is in part for the reason that our understanding of the causes and

limitations of the Wlcf phenotype is yet incomplete. .

1.13 Aims of the present study

This thesis is primarily concerned with those features that significantly alter the

strength, pattern and rate of degeneration of neuromuscular synapses in Wlcf mice. I

have used conventional fluorescence microscopy, confocal microscopy and

immunochemical staining techniques to find out more about the gene-dose and

age-dependent effects of the gene on the degeneration of axons and synapses in the

Wlcf mice, in an endeavour to discover the possible relationships between theses

features.

My aim in this thesis is to advance our knowledge of nerve degeneration

mechanisms and its inhibition by the Wlcf gene, focusing in particular on synapse

degeneration. I developed a new analytical method, representing synaptic
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degeneration under different conditions in the form of "Polyhedral Degeneration

Diagrams" (PDD). Analysis of synaptic degeneration using PDD facilitates the

interpretation of different patterns of degeneration of axons and nerve terminals,

extending our knowledge of the neural degeneration patterns and how it is regulated,

for example by the Wlcf gene dose. The specific objectives of this thesis are three

-fold:

1. To extend knowledge and understanding of the degeneration of axons and

synapses in normal and in homozygous and heterozygous Wlcf mice following

axotomy. Qualitative and quantitative immuncytochemical staining and confocal

microscopy and conventional fluorescent microscopy were carried out on nerve

terminal preparations of young C57/B16 mice, young (l-2month) homozygous Wlcf

mice, and young heterozygous Wlcf mice. The main purpose of these experiments

was to obtain evidence that would further evaluate the hypothesis that

neuromuscular synaptic protection is more sensitive than axon protection to the

Wlcf gene dose. PDD were used to analyse the patterns of synaptic degeneration

among these types of mice. Wld18 antibody was used to stain the Wlds protein in

cerebella granule cells, and fluorescence intensity from labelled secondary

antibodies was determined, as a measure of Wlds protein

2. To extend previous studies of nerve terminal degeneration and its

age-dependence in Wlcf mice. Data and PDD analysis from old (>7months)
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axotomised Wlcf NMJs at different time points were compared with those in young

homozygous and heterozygous Wlcf mice. Furthermore, I measured protein

expression in cerebullar granule cells in these mice to examine whether

age-dependent loss of synaptic protection is related to changes in levels of Wlcf

protein expression.

3. To test the hypothesis that synaptic degeneration in Wlcf mice can be altered by

factors such as nerve stump length and blocking neurotransmitter release. In the

first experiment, degeneration of nerve terminals at Wlcf mouse NMJs following

tibial nerve section was compared with that following sciatic nerve section. I

compared the effect of injection of botulinum toxin (BoTox) in young and old mice.

The results presented in the following chapters support a compartmental model

of neurodegeneration, in which Wlcf synapses are much more sensitive than axons

to the gene dose of Wlcf. The findings also suggest that loss of synaptic protection

in more mature Wlcf mice could be explained by an age dependent decrease in Wlds

protein expression. Neither nerve stump length nor activity appeared to mitigate the

rate of synaptic degeneration to any great extent.

Preliminary reports of my research were presented at international meetings of

the Federation of European Neuroscience Societies (Fens, 2004) and the Society for

Neuroscience (SFN, 2005). See Appendix II for Abstracts.
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Figure 1.1

Schematic diagram of compartmental model of neurodegeneration showing distinct

degeneration in cell body, axons and synapses of neurons (blue=cell body; purple =

axon; yellow = synaptic terminals). From Gillingwater et al 2003
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Apoptosis (BCI-2/Bax) Wallerian degeneration (Ufd2/Nmnat)
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Figure 1.3

85-kb Wlcf triplication repeat unit with exons (Nmnat, Rbp7, Ube4b) In WlcF,

three adjacent repeat units are shown to explain (a) how Ube4b and Nmnat are

brought together to form a chimeric gene, (b) how Rbp7 is present at three points in

the Wlcf gene. From Conforti et al (2000)
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Figure 1.4

Axon protection by the Wlct gene is gene-dose dependent. Axon preservation is

associated with the expression level of Wlds protein. Black circles, white circles and

crosses represent 3, 5 and 14 days post axotomy respectively. From Mack et al 2001
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Transgenic Wld protein expression (%Wlds)

From Mack et al. 2001 Nat Neurosci.1199-206.
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Figure 1.5

Schematic diagram showing different models of synaptic degeneration from

developmental synapse elimination (left) to Wallerian degeneration (right). In the

middle two are the responses to axotomy in young Wlcf mice (middle left) and

mature Wlcf mice (middle right). Synapse degeneration in young Wlcf mice

resembles wild type mice. In mature mice the synapse degeneration resembles wild

type mice, although axons are protected well by the Wlcf gene.
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+/+ neonate Axotomised Wld MND

kk
Based on Gillingwater & Ribchester 2003 J Neurocytol. 32:863-81
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2. Methods
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2.1 General

The protocols discussed in this section are common to all chapters. Methods

specific to individual chapters are briefly described in the relevant chapters.

2.1.1 Animals and Animal Care

Male and female young and old YFP16IWlct mice (5-10 weeks old defined as

'young', 7 months old defined as 'old' ), young heterozygous YFP16IWldt mice

(Wlcf crossbred with Balb/c mice), young YFP16/B16 mice (2 months old) and

young CFP/Wlcf mice were used for experiments. Animals were housed in cages of

5 or less with free access to food and water. Environmental conditions were those of

a standard animal house.

YFP/CFP transgenic mice: Two kinds of YFP mice were used: YFP16

transgenic mice which express the yellow-green fluorescent protein (YFP) in all

axons, and YFP-H transgenic mice which are expressed in very few axons (< 10%).

CFP: CFP transgenic mice which express cyan fluorescent proteins in their axons,

nerve terminals, and dendrites (Feng et al., 2000). There is no expression of

fluorescent protein in either myelinating or terminal Schwann cells in these mouse

lines. These lines were initially obtained from Jackson labs and crossed with Wlcf

mice in Edinburgh.

2.1.2 Aseptic Procedures
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All surgical procedures were undertaken under aseptic conditions and were

fully licensed by the Home Office (PIL: 60/9199; PPP 60/3277). Sterile instruments,

and cloths were used during surgical procedures.

2.1.3 Surgical Procedures

All surgical procedures were carried out under licence in accordance with the

Animal (Scientific Procedures) Act of 1986.

Anaesthesia

The animal was placed in a sealed Perspex chamber into which Halothane

(Rhone-Poulenc Rorer, Ltd. France) at 1-5% in N20/02(l:l) was delivered, using a

Fluovac System (International Market Supply, UK). Once the animal was

unconscious, a toe-pinch reflex test was used to assess depth of anesthesia. It was

then transferred to the operation table where anaesthesia was continued via a face

mask. The level of halothane was reduced at this point to 1-3% in N20/02(l:l). The

flow rate was adjusted during the whole procedure to maintain deep anaesthesia.

2.1.4 Nerve Cut

The operative areas of the animal were shaved before incisions were made.

Either the sciatic or the tibial nerve was exposed by using sharp scissors, and a 1-2

mm section of nerve was removed. The wounds were closed and sutured using 6/0
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silk suture (Ethicon). Lumbrical muscles were examined 6 hours - 9 hours later. The

distance between the lesion sites in the sciatic and tibial nerve was almost 2cm

(Figure 2.1). These lesion sites are the same as those used to test for nerve - stump

length effects in a previous study (Ribchester et al, 1995).

2 cm 2 cm DL muscle

Figure 2.1 Diagram of transaction sites between tibial nerve and sciatic nerve

2.1.5 Animal Sacrifice

All animals were killed by cervical dislocation, in accordance with schedule 1

of the licensing regulations provided by the Home Office.

2.2 Isolation of Muscles

After sacrificing the mice, hind limbs were removed and the four deep

lumbrical muscles in both hind feet were dissected, in mammalian physiological
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saline concentrations in millimolar: NaCl 120; KC1 5; CaCl2 2; NaH2P04 0.4

NaHCC>3 23.8; D-glucose 5.6). Dissected muscles were pinned out in Sylgard-coated

Petri dishes, using 0.2mm diameter minutien pins.

2.3 Neuromuscular Junction (NMJ) Staining

(Immunocytochemistry)

Lumbrical muscles pinned out in Sylgard coated Petri dishes were fixed in 4 %

paraformaldehyde (Sigma) for 30-45 mins before labeling acetycholine receptors

with TRITC-a-BTX (Molecular Probes) in 0.2M PBS. The preparation was placed

on a rocking platform to agitate the buffering solution for 30 mins in the dark. After

discarding the a-BTX solution, the muscles were washed in PBS (0.01 M phosphate

and 0.9% NaCl, PH7.5). Muscles were then incubated in primary monoclonal

antibodies against 165 kDa neurofilament proteins (2H3), and the synaptic vesicle

protein (SV2), both primary antibodies obtained from (Development Studies

Hybridoms Bank, Iowa).

The primary antibodies were then labeled with FITC-conjugated rabbit (Dako

A/S company, Denmark) anti-mouse secondary antibody. Finally the muscles were

mounted on glass slides for imaging.
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2.4 Visualisation of NMJs Staining Using Confocal

Microscopy

Since the main technique used in the present thesis work was fluorescence

confocal microscopy, a brief review is provided here to describe this method.

2.4.1 What is fluorescence?

Absorb high
energy photon

Excited state

A Jf _

AAA/\
Emit lower

energy photon

Ground state

Figure 2.2

The phenomenon that molecules absorb light of energy (475nm blue, for

example) and emit light of lower energy (515nm green, for example), is commonly

called fluorescence. The emitted light typically has a larger wavelength (Stake's

shift), since emitted photons have less energy than that used to propel them into the

excited state. The fluorescence process is sketched in Fig.2.2 Incident blue-light

photons excite an electron from a ground state to one of the available excited energy
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levels of the molecule. The excited electron may partially lose its energy by heat

(infrared light), and then makes a transition back to the ground state, emitting green

light. Fluorescein acts this way and is a commonly used fluorophore for staining a

sample for fluorescence microscopy.

YFP has an excitation maximum of 520nm and an emission maximum of

532nm; CFP has an excitation maximum of 430nm and an emission maximum Of

476nm, and TRITC has excitation/emission maximum of 550nm and 573nm

respectively.

2.4.2 Fluorescence Microscopy

Eyepiece

Excitation ' *

filter Emission filter

Source
Dichroic mirror

(Hg
vapor

lamp)
Objective

A

] Sample

Figure 2.3
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In a typical flurorescence microscope, as shown in Fig 2.3, Light from a

mercury vapor lamp (blue, for example) is filtered to yield an appropriate

wavelength. This light enters the microscope and hits a dichroic mirror. This

reflects light at the excitation wavelength onto the specimen. The excitation (blue,

for example) excites fluorescence (green) within molecules in the specimen. The

emitted green light is collected by the objective lens and passes through the dichroic

mirror, and an emission filter which blocks stray excitation wavelengths forming an

image through the eyepiece. For YFP fluorescence, a conventional FITC filter cube

is adequate and was used in this study. A standard TRITC filter cube was used to

view labeled Ach receptors (via TRITC-a-BTX binding). For CFP fluorescence a

customized filter block, comparing a 435nm excitation filter, 475nm dichroic mirror

and 515nm emission filter was used.

In conventional fluorescence microscopy, the entire view of the sample is

completely illuminated, making the whole region fluoresce at the same time. The

objective collects fluorescence light from whole region, and then forms an image

through the eyepiece. Out-of-focus regions above and below the focal plane

contribute to a background haze in the resulting image.

2.4.3 Confocal Microscopy

In order to create less haze and better contrast images from the sample, confocal

fluorescence microscopy was developed as an enhancement to conventional
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fluorescence microscopy.

The first confocal microscope was invented by Marvin Minsky in the mid-1950s

(Minsky, 1988). However, his invention remained unnoticed for a long time, mainly

due to the lack of good imaging technology at that time. With the invention of the

laser and digital image processing ,confocal microscopes became practical during the

late 1970s and the 1980s (Amos and White., 2003). A nice summary about the

history and principle of confocal fluorescence microscopy was given by J. W.

Lichtman in 1994 (Lichtman, 1994).

The main improvement in a confocal microscope is obtained by placing a

pinhole aperture in front of a detector. The pinhole is placed at the exact position of

the image of focal point of the objective lens on the sample. Thus, the pinhole is

conjugate to the focal point of the lens; hence the name "confocal pinhole".

Fluorescent light from the focal point on the sample will pass through the pinhole

and thereby reaches the detector. In contrast, most of the light from location above

and below in the focal point are deflected outside the pinhole and are blocked by the

screen. So the detected light is mainly from the focal point region, resulting in a

sharp image of that region.

In a confocal microscope, only one point of the sample is observed at any given

instant. Complete data from a specimen are obtained by laterally scanning a focused

laser beam across the specimen. This point of illumination is brought to focus in the
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specimen by the objective lens, and scanned using some form of scanning device

under computer control. The sequences of points of light from the specimen are

detected by a photomultiplier tube (PMT) though the pinhole, and the output from

the PMT is built into a complete master-screen image displayed on a computer

monitor (Figure 2.4).

Image point of
focal point

Source pinhole
aperture

Laser source
Excitation

filter

Focal point

Detector (PMT)

Screen pinhole
aperture

Emission filter

Dichroic mirror

X-Y Scanner

Objective lens

Sample

Figure 2.4

The confocal microscopy offers several advantages over conventional optical

microscopy, including shallow depth of field, elimination of out-of-focus glare, and

the ability to collect serial optical sections from thick specimens. In the biomedical
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sciences, a major application of confocal microscopy involves imaging either fixed

or living cells and tissues that have usually been labeled with one or more

fluorescent probes. These advantages were used to good effect in my studies.

2.5 Confocal Images of NMJs

My samples were viewed in a Bio-Rad-Radiance 2000 confocal laser scanning

unit, configured on an upright Nikon Eclipse E600FN microscope. Multi-line Argon

(457nm, 477, 488 and 514nm), Green HeNe (543nm) and Red Diode lasers (637nm)

were used as laser light sources. The external detector unit with built-in

photomultiplier was connected to the microscope via a fiber optic-cable. The

microscope was connected to a Dell PC with systems Control Boards and Lasersharp

Application Software, including Image Acquisition, Scan Settings, Rea-time image

calculation, Hardware Control, Image Display, Image Processing, Image Analysis,

and 3D Visualization. Images were enhanced and analyzed using Adobe Photoshop

before being printed on an Epson Stylus Colour 900 printer.

2.6 Quantification of Immunocytochemically Labeled

Neuromuscular Junctions

All NMJs on every slide were counted and analysed. Each NMJ was analysed

by the proportion of postsynaptic terminals contacted by presynaptic terminals, and

divided into one of the following categories: 0% vacant, l%-25% occupied,
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26%-50% occupied, 51%-75% occupied, 76%-99% occupied, 100% fully occupied.

All data were inserted into a Microsoft Excel spreadsheet for further analysis, and

graphs were produced in Excel and GraphPad Prism.

2.6.1 Method of Quantification of Synaptic Degeneration

Scion Image programme (based on NIH image and downloaded from

www.scioncorp.com) was used to measure the occupancy of the nerve terminals.

First, two different channels (green/red) of synaptic terminals were taken under

confocal microscopy (Figure 2.5 A). Second, the number of pixels in each of

different channel images over the defined endplate area was measured by using

Scion image programme (Figure B&C). Third, the occupancy of each endplate was

calculated: Occupancy% = Green Pixel/ Red Pixel* 100. In practice, the semi-quan¬

titative assessment of endplate occupancy formed a sufficient basis for most of the

analysis.
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Figure 2.5 Scion Image Quantification of Nerve Terminals

(A) Confocal images of a NMJ in the green and red channels, alongside a

merged image.

(B) An image of a single nerve terminal from the green channel exposed into

Scion Image.

(C) An image of a single nerve terminal from the red channel exposed into

Scion Image.
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2.6.2 Polyhedral Degeneration Diagram (PDD)

Further analysis of the possible relationships between states of innervations was

attempted using a model geometric method. I first classified the state of innervation

and occupancy of neuromuscular junctions in different types of animals following

axotomy, I then constructed diagram to represent these states. In my PDD method,

circles were placed at the apices of polyhedra, each representing a different state of

synaptic degeneration. Using Microscope PowerPoint, the diameter of the circles

was defined by the percentage (scaled to 1/32 i.e. l%=l/32) of neuromuscular

junctions in each category.1 Arrows pointed out the possible links between the

different states. The relative proportion of terminal in the given states at different

time points allowed me to infer the most likely 'trajectories' of degeneration from

the fully occupied to the vacant states. See Chapter 6 for more details.

2.7 Immunofluorescent Staining for Wlds Protein on

Cerebellum Slices

Following killing the animals, the skull was cut open with scissors and the

brains were removed and rapidly transfer into cold oxygenated ACSF (See Appendix

I for composition). To form a flat edge, one side of the brain was removed, and the

flat edge was stuck with superglue at the bottom of a slicing chamber. Sagital slices

1 The PowerPoint version used for that measurement employ inches as a unit of
length rather than centimeter, but since the calculation gave a dimensionless result
this did not matter.
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100pm thick were cut, and immediately placed in 4% paraformaldehyde solution to

fix for 20 mins. Section were then twice washed in 0.1M PBS, the brain slices were

incubated in freshly-made blocking solution overnight in cold-room (4°C), and the

solution was placed on a rocking platform to agitate the solution. After discarding

the blocking solution, the brain slices were incubated overnight in rabbit-primary

antibody Wld18 (generous gift from Dr. M P Coleman). This antibody recognizes the

Wlds protein uniquely and with high affinity. The epitope corresponds to an 18

amino acid polypeptide linking the N70 Ube4b and Nmnat region, corresponding to

an mRNA which is not normally translated in wild-type mice. The primary antibody

was then labeled with TRITC or FITC labeled anti-rabbit secondary antibody

overnight. After a quick wash in 0.1 M PBS three times, Topro-3 was applied into

the solution for 10 mins to label nuclear DNA. After a quick wash in 0.1M PBS, the

brain slices were mounted in mowiol (Calbiochem) for confocal imaging. See the

end of chapter for detailed protocol.

2.8 Statistical Analysis

Unless otherwise stated, the statistical tests were unpaired t-tests for continous

parametric data and unpaired Mann-Whitney test for discrete or categorical (i.e.

non-parametric) data. The analysis was performed using Prism (Graphpad Software)

running on windows XP on a Dell computer. Detailed protocols for immunostaining

and image analysis are listed in Appendix I.
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3. Analysis of Neuromuscular Synaptic
Degeneration in Homozygous and

Heterozygous young Wlcf mice
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3.1 Introduction

Wallerian degeneration refers to the distal axonal fragmentation and

degeneration that occur after an axon is separated from its cell soma (Vial, 1958;

Nicholls et al., 1992). In the mammalian neuromuscular junction, the degeneration of

nerve terminals occurs earlier than the degeneration of axons induced by axotomy

(Birks et al., 1960; Miledi and Slater, 1970). In the spontaneous mutant Wlcf mouse,

degeneration of axons and synaptic terminals is significantly delayed after axotomy

(Lunn et al., 1989; Ribchester et al., 1995). Using vital dye labeling,

immunocytochemistry, and electrophysiology, it has been shown that axotomised

Wlcf motor nerve terminals, as well as axons, undergo a process described as

piecemeal withdrawal, which appears to be distinct from classical Wallerian

degeneration (Mattison et al., 1996; Parson et al., 1998; Ribchester et al., 1999).

In 1998, Coleman et al first showed that the Wlcf mutation comprises an 85 kb

tandem triplication of genes, containing exons of three different genes, Ube4b (the

mammalian homologue of ubiquitin fusion degradation protein 2(Ufd2)), Nmnat

(nicotinamide mononucleotide adenylyl transferase), and a novel member of the

cellular retinoid-binding protein family (Rbp7). One end of Ube4b (the code for the

N-terminal 70 amino acids) and the complete sequence of Nmnat form a chimeric

gene with an open reading frame coding for a 43 kDa fusion protein. Subsequently

Mack et al (2001) showed, using transgenic lines with different levels of Wlcf
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expression, that the extent of axon preservation is strongly dependent on the

expression level of the chimeric Wlcf protein. However, heterozgyous Wlcf mice,

which have half the 'gene-dose', and express about half as much Wlcf protein as

homozygotes, show little difference in protection of their axons compared to the

young homozygous Wlcf mice. On the other hand, motor nerve terminals appear to

degenerate rapidly in Wlcf heterozygotes (Gillingwater et al 2002). In this chapter, I

set out to measure and analyse the sensitivity of synaptic degeneration in greater

detail.

3.2 Results

3.2.1 Morphology of the Neuromuscular Junctions in Wld5

Mice

Time course of synaptic degeneration in young homozygous Wl<f mice

Sixty-four lumbrical muscles were taken at 5, 7, 9 and 11 days post bilateral

tibial axotomy in CFP/Wlcf mice (N=9 mice). The postsynaptic ACh receptors were

labeled with TRITC-a-BTX (Figure 3.1). In order to obtain a clear image and more

accurate data, every NMJ in each muscle that presented en face was individually

assessed as to the level of occupancy, confocal microscopy and Scion Image

software were used (see chapter 2). Confocal projection images facilitate this process

by compressing all the endplates into a single digital focal plane; avoid the need to
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image each endplate, most of which were in different optical sections. At each

successive time point following axotomy, the number of vacant endplates was

increased (Figure 3.2). For example, at 7days axotomy 34.61% mean ± 8.25 S.E.M

of endplates were vacant; and by 9 days 55.08% ± 8.58 were vacant (Figure 3.3).

The data confirms previous findings reported by Gillingwater et al (2002).

Therefore, all subsequent analyses were carried out using mice expressing

fluorescence protein in motor neurons.

3.2.2 Morphology of Neuromuscular Junctions in Different

Types of Mice

Axons and NMJs show different sensitivities to Wldf gene dose

Tibial nerve labeled by YFP expression was taken from each of wild-type, Wlcf

heterozygous, and Wlcf homozygous mice at 4 days following axotomy, and

compared with unoperated mice. Images are shown in the Figure 3.4. Axons

degenerated rapidly in wild-type mice (Figure3.4 B), but were well protected from

degeneration in both heterozygous and homozygous Wlcf mice 4 days after axotomy

(Figure 3.4 C, D). In contrast to axon preservation, NMJ preservation was different.

NMJs are from one young heterozygous Wlcf and one wild-type at 1 day after

axotomy, and one young Wlcf mouse at 5 days after axotomy are shown in Figure

3.5. Endplates in unoperated muscles were fully occupied by their motor nerve
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terminals (Figure A). Motor nerve terminals degenerate rapidly and synchronously in

Wlcf heterozygotes and wild-type mice (Figure 3.5 B, C), but progressively vacated

motor endplates following axotomy in Wlcf homozygotes (Figure 3.5 D).

Interestingly, these images also suggest that intramuscular axonal branches are more

vulnerable to degeneration than their parent axons in the tibial nerve (see below

Figure 3.10).

3.2.3 Quantification of Endpiate Occupancy in Wild-type,

Heterozygous and Homozygous Wlcf mice

Wild-type mice

NMJs from 9 unilateral sciatic axotomised wild-type mice were studied at 6

hours, 12 hours, and 14.5 hours and 17 hours respectively. In total thirty-three deep

lumbrical muscles were dissected from these mice. Nerve terminal morphology was

assessed from the endogenous YFP fluorescence and endplates were counterstained

with TRITC-a-BTX. Nerve terminals and axons degenerated quickly in these mice.

After 14.5 hours fewer than 10% of endplates were occupied, At 17 hours, all nerve

terminals had degenerated completely. The complete motor innervation in wild type

mice was reconstructed by The Adobe Photoshop at 6 hours post unilateral sciatic

nerve section. Some nerve terminals started to degenerate, but axons remained intact

(Fig 3.7).
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Heterozygous Wlcf mice

Fifth-six muscles were taken from sixteen YFP16 BalbcIWlcf mice (5-8 weeks

old). The left sciatic nerve in these mice was cut unilaterally at different time points:

6 hours, 12 hours, 17hours, 20 hours and 24 hours before sacrificing the mice. All

muscles were labeled with TRITC a- BTX. From 6 hours to 24 hours, a few

endplates started to degenerate at 6 hours axotomy, after then the nerve terminals

degenerated dramatically, fully occupied and vacant endplates could be found, but

very few endplates were partially occupied and all endplates became vacant 3 days

after axotomy (Figure 3.5-3.9). Some axons branching on the NMJs had become

fragmented. The biggest change in the number of occupied endplates occurred

between 12 and 20 hours after axotomy. Remarkably, the sensory axons were better

protected by Wlcf gene than the motor axons in heterozygous YFP16/MJ7Balbe

mice (Fig 3.10). Montage pictures showed that in the whole NMJ of

YFP16/WZ</7Balbc mice, axons were still intact even after 4 days axotomy, while

both synapses and the branches connected with synapses had already completely

degenerated.

Confocal montage pictures allowed comparison of the patterns of degeneration

in young heterozygous Wlcf mice and wild-type mice at different time points. It

appeared that synaptic degeneration in heterozygous Wlcf mice was only slightly

delayed by the Wlcf protein in comparison to wild type mice (Figure3.7-3.10).
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Quantification of synaptic degeneration in the three different types of mice is shown

in the Figure 3.11. There were only slight differences in the degeneration of nerve

terminals in the heterozygous Wlct mice and wild-type mice, and synaptic

degeneration in homozygous Wlct mice was much slower. In heterozygotes, it

appeared that in addition to motor nerve terminals, intramuscular axon branches also

degenerated within 24 hours in most cases, in contrast to the preservation of axons in

the tibial nerve in heterozygous Wlct mice. This difference is evident also in Fig 3.10,

and merits further investigation in future studies.

Homozygous Wlcf mice

In young YFP16/Wlct mice, twenty-nine lumbrical muscles were taken after 3,

5, 7, and 9 days post unilateral sciatic nerve section. The nerve terminals

degenerated gradually. Most endplates were fully occupied or partially occupied

after axotomy. Data in Figure 3.8 show the time course of synaptic degeneration in

Wlct homozygous mice. In 3 days axotomised lumbrical muscle preparations,

10.77% ± 4.04 of endplates were vacant by 5 days vacancy had increased to 28.22%

± 5.77 of endplates, then 59.32% ±3.84 at 7days, and to 75.53% ± 2.3% at 9 days.

The results of time course of synaptic degeneration in these three different

axotomised mice lines showed that Wlds protein does have a protective effect on

synaptic degeneration, even when the dose is reduced. For example, the amount of

synaptic degeneration at 17 hours was slightly lower in heterozygous Wlct mice
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compared with wild type mice (Fig 3.11). Perhaps more compelling, occasionally

there were terminals that were well-preserved at 36hrs axotomy in Wlct

heterozygotes when this occurred, the preservation seems to affect all the terminals

in the protected motor unit. Perhaps this indicates that there is some variability in the

level of Wlct gene expression between motor neurons.

However, there was a large difference in synaptic protection comparing either

heterozygous or wild-type mice with Wlct homozgyotes. Degeneration of synapses

was almost 10 times slower in the homozygous Wlct mice. Whereas in wild-type or

heterozygous mice, the nerve terminals degenerated completely after 17 hours in

wild-type mice. However, I did occasionally observe protection, as a few nerve

terminals were occupied 24 hours after axotomy in heterozygous Wlct mice.

Therefore, in comparison to the axons, NMJs are clearly very sensitive to the gene

dose.

3.2.4 Analysis Using Polyhedral Degeneration Diagram (PDD)

The above analysis gave a good indication of differences in the rate of synaptic

degeneration in the different groups of mice that were studied. Polyhedral

Degeneration Diagrams (PDD) was used to examine for difference in the pattern of

synaptic degeneration. Confocal micrographs show the definitions of the five states

of axonal and synaptic degeneration (Fig 3.12). Innervation states of axons and

synapses during neuronal degeneration were defined as follows: O represents an
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intact axon connected with a fully occupied endplate ; CP represent partial

occupancy with the synaptic terminal still connected to the axon; CF represents

synapses becoming fragmented after nerve section, but with at least one fragmented

still connected with an intact axon; DF represents both axons and synapses becoming

fragmented following axotomy; V represents both axons and synapses degenerating

completely after nerve section. Using PDD analysis, the diameters of circles

positioned at the apices of polyhedra representing their states, were set by the

proportions of neuromuscular junctions in each category. Blue circles represent the

fully occupied (O) state, red circles represent the disconnected fragemented (DF)

state, pink circles represent connected partial (CP) state, green circle represents the

connected fragmented (CF) state, and yellow circles represent vacant (V) state. I

used these diagrams to infer the most likely trajectories between states. Altogether, I

identified five degeneration states (O, DF, CP, CF, V) during synaptic degeneration,

with 7 possible trajectories from fully occupied endplates to vacant endplates,

namely, 1) O^DF^V; 2) O^CP-^V; 3) 0-*CF->V; 4) 0->CP-»DF^V; 5)

O—>CP—>CF—»V; 6) O—>CF—>DF—>V; 7) 0->CP~>CF->DF->V (See CD Rom for

animation). There is no possible endplate degeneration pathway from O state to V

state directly in any type of axotomised Wlcf mice. In each type of mouse, synaptic

terminals theoretically could follow any of these trajectories to degenerate. However,

the PDD analysis suggests that, in heterozygous Wlcf mice (Fig 3.13), most synaptic

terminals became DF and very few were CP at different time points, and therefore it
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can be concluded that the majority of endplates follow the process (O—>DF—>V),

while a few endplates go through other processes (O-CP-DF—>V or O—>CP—>V). In

wild-type mice (Fig 3.14), the main process of synaptic degeneration was similar to

heterozygous Wlcf (O—»DF—>V) and few endplates go through the CP or CF states

before degenerating completely.

However, in the homozygous Wlcf mice (Fig 3.15), the degeneration patterns

are evidently different, most endplates go through CP state before degenerating

(O—>CP—>V), while very few endplates degenerate from O state to DF state

(O—>CF—>V or O—>CP—>CF—>-V). This suggests that synaptic terminals

progressively retract following axotomy in homozygous Wlcf mice but undergo

fragmentation and synchronous degeneration in wild-type mice. A single copy of the

Wlcf' gene (i.e. Wlcf heterozygous) is not sufficient to mitigate or convert the mode

of degeneration, from that of the wild type to that of homozygous type. Thus, the

pattern of synaptic degeneration in heterozygous Wlcf mice is more similar to

wild-type than to the slow retraction of motor nerve terminal degeneration observed

in homozygous Wlcf mice. However, from the PDD analysis, the rate of synaptic

degeneration in heterozygotes is slower than in wild-type mice. For example, at 17

hours, some endplates in heterozygous were still occupied in heterozygotes, while all

endplates in wild-type degenerated completely. Therefore PDD analysis provides the

main evidence that NMJs degeneration in heterozygous Wlcf mice is delayed

compared with wild-type mice.
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Although the PDD analysis suggests there were significant qualitative

differences in the pattern of synaptic degeneration in Wlct homozygotes compared

with heterozygotes or wild-type, alternative interpretation can not be ruled out at

present. For instance, the CP (and /or CF) states could be quite common but rapidly

transient in wild-type and heterozygotes. Such issues may only be unequivocally

resolved using techniques such as repeated visualization in vitro (e.g. Walsh &

Lichtman, 2003).
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Figure 3.1 Morphological Evidence for Different Degeneration Patterns

of Neuromuscular Junctions.

All NMJs are from lumbrical muscles of axotomised young CFP/WZd5 mice (2

month old) and stained for TRITC-a-bungarotoxin. Figures (A, B, C, D) show the

different percentage occupancy of endplates after axotomy using confocal

microscopy. (A) Confocal image showing vacant endplates (0%); (B, D, E) Confocal

images showing the partially occupied endplates, for example, 25% partially

occupied endplates (B); 50% partially occupied endplates (D); and 75% partially

occupied endplates (E); (C) Confogal image showing fully occupied endplates. This

analysis method of synaptic degeneration is also used in CFP and YFP16 Wl<f mice

in the following experiments. Scale bar=30pm.
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Figure 3.2 Synapses Retract in Axotomised Wlcf Homozygotes

Standard confocal microscopy images of NMJs from young CFPIWltf mice (2

month old) deep lumbrical muscles (labelled with TRITC a-BTX). (A, B, C & D)

Scale bar = 30pm.

(A) Confocal images of NMJs from a CFP/Wlcf mouse at 3 days following

nerve section.

(B) Confocal images of NMJs from a CFP/Wlcf mouse at 5 days following

nerve section.

(C) Confocal images of NMJs from a CFP/Wlcf mouse at 7days following nerve

section.

(D) Confocal images of NMJs from a CFP/Wlcf mouse at 9 days following

nerve section.
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(A) 3dx

(B) 5dx
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(C) 7dx

(D)9dx
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Figure 3.3

Graphs showing the time course of synaptic degeneration in the deep lumbrical

muscles of CFPIWldt mice after 5, 7, and 9 days axotomy. (Graph A, B, C) Error

bars represent ±SEM

(A) Each column represents the percentage of total number of endplates in each

occupancy group in young Wlcf mice 5 days after axotomy.

(B) Each column represents the percentage of total number of endplates in each

occupancy group in young Wlcf mice 7 days after axotomy.

(C) Each column represents the percentage of total number of endplates in each

occupancy group in young Wlcf mice 9 days axotomy.
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7 days axotomy
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9 days axotomy
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Figure 3.4 Morphological Evidence for Preservation of Axons

(A, B, C & D) Confocal micrograph of tibial nerves from three different types

of YFP16 transgenic mice (Heterozygous Wlct, Wild-type, Homozygous Wlct) at 4

days after unilateral sciatic nerve section. Note that some axons show some evidence

of vacuolation inclusions. The reasons for this are unknown but could be related to

the way YFP in distributed in the cytoplasm. Scale bar= 30pm
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(A) Control

(B) C57BI6 4dx
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(C) Wlds 4dx



Figure 3.5 Morphological Evidence for Preservation of Neuromuscular

Junctions

Confocal micrograph from 2 month YFP16 Wlcf/WlcF mice NMJs, 1 day or 3

days post axotomy. (labelled with TRITC a-BTX)

(A) Unoperated lumbrical muscles, showing fully occupied endplates and intact

axon.

(B) Heterozygous lumbrical muscles after 3 days, showing vacant endplates

(C) Wild-type lumbrical muscles after lday, showing vacant endplates

(D) Homozygous lumbrical muscles after 3 days, showing almost all endplates

remain fully occupied. Scale bar=30pm
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(A) Control

(B) BalbcIWIcf 3dx
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(D) WlcflWIds- 3dx
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Figure 3.6 Synaptic Degeneration in Young YFP16 Homozygous Wl<f

Mice after Axotomy

Quantitative analysis of synaptic degeneration in the axotomised NMJs from

YFP16 Wl(f/Wl(f mice. Bar charts show the percentage of vacant endplates at 3, 5, 7,

and 9 days post axotomy. Means and standard errors are shown.
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3dx 5dx 7dx 9dx

Figure 3.6
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Figure 3.7 Complete Reconstruction of the Neuromuscular Innervation

in young YFP16/C57BI6 (wild-type) Lumbrical Muscles at 6 Hours after

nerve section

(A) Montage of confocal micrographs of YFP16 C57/B16 mice 6 hours after

axotomy, many nerve terminals (AChRs labeled red) are occupied by intact

YFP16-labeled axons (green). Scale bar=200pm

(B) Confocal image showing some neuromuscular junctions at higher

magnification. Scale bar=40pm
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Figure 3.8 Reconstruction of Neuromuscular innervation in Lumbrical

Muscles of Young Heterozygous Wlcf Mice (2 months old) at 12 hours

after nerve section

Montage showing 40 times objective confocal micrograph of YFP16

Balbc/WZ^ mouse lumbrical muscles 12 hours after axotomy, Most endplates

(AChRs labeled red) remain occupied, and YFP16-labeled axons (green) and nerve

terminals (yellow) are intact. Scale bar= 200pm
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Figure 3.8
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Figure 3.9 Reconstruction of the Neuromuscular Innervation in

Lumbrical Muscles of Young Heterozygous Wlcf Mice (2 months old) at

20 Hours after nerve section

(A) Montage of confocal micrographs of YFP16 Balbc/WW's mice 20 hours

after axotomy, neuromuscular junctions (AChRs labeled red) and YFP16-labeled

axons (green) degenerate. Scale bar=200pm (Fig B&C). Confocal image showing

different degeneration patterns of nerve terminals and axons at higher magnification.

(B) Confocal image showing fully occupied endplate (white arrow) and vacant

endplate (blue arrow). (C) Showing some fragmented and intact YFP-16 labeled

axons. Scale bar=40pm
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Figure 3.10 Reconstruction of the Neuromuscular innervation in the

Lumbrical Muscles of Young Heterozygous Wlcf mice 4 days after

axotomy

Montage showing 40 times objective confocal micrograph of cross-bred Balb/c

mice with YFP16 Wlcf mice 4 days after axotomy. Scale bar=200pm. Almost all the

motor nerve terminals have degenerated but sensory axons supplying to muscle

spindles remain preserved (arrows).
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Figure 3.11 Time Course of Nerve Terminal Degeneration in Different

Types of Mice after Axotomy

Graph of the various time courses of nerve terminal degeneration in 2 months

old heterozgyous, homozygous Wlcf mice and C57/B16 mice following unilateral

sciatic nerve section. The data show the percentage of vacant endplates in different

mice (see Fig 3.5) Black triangles represent data from 2 months old C57/B16 mice,

and black inverted triangle represents data from 2 months old homozygous Wlct mice.

White circle represents data from 2 months old heterozygous Wlct mice. A statistical

analysis of these data was considered unnecessary.
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Figure 3.12 Confocal Micrographs Illustrate the Five States of Axonal

and Synaptic Degeneration

O represents fully occupied endplates, at which the terminal is connected to

intact axons; CP represents partially occupied endplates which are connected with

intact axon; CF represents fragmented endplates at which at least one fragement is

connected with an intact axon; DF represents endplates with synaptic boutons

disconnected from axons, both axons and terminals are fragmented, that is, where

there was no discernable continuity between the axon and the motor nerve terminal.

V represents endplates where terminals and axons were both degenerated completely.

Two other possible states are a fully occupied endplate with the terminal

disconnected from its axon ("DO"); and a partially occupied endplate with the

terminal disconnected from its axon ("DP"). Neither state was ever seen in my

experiments.
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0=occupied

CP=Connected/partial occupancy

CF = Connected/fragmented

DF= disconnected/fragmented

V= vacant

CF

DF

Figure 3.12

106



Figure 3.13 PDD Analysis on Young Heterozygous Wl<f Mice

The PDD shows the states of axonal and synaptic degeneration in the young

heterozygous Wlct mice. All five states (O, DF, CP, CF, V) of synaptic degeneration

were found. Blue circles represent fully occupied endplates (O). Purple circles

represent partially occupied endplates connected with intact axons (CP). Green

circles represent fragmented endplates connected with intact axons (CF). Red circles

represent fragmented endplates disconnected from the axon (DF). Yellow circles

represent vacant endplates without axonal connection (V). Arrows represent the

possible trajectories of axonal and synaptic degeneration at different time points in

the young axotomised heterozygous Wlct mice.

The chart shows the percentages of different states of axons and synapses during

the degeneration process in axotomised heterozygous Wlct mice at 6-hours, 12-hours,

17-hours, 20-hours and 24-hours time points, and standard error estimates with every

percentage of endplates. Endplates degenerated dramatically between 12 hours and

17 hours post-axotomy.

The variable signs of the CF and CP states probably reflect individual variation

in the rate and /or pattern of degeneration in the individual muscle samples at the

different time points.
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PDD for Wt(f/+

4 ^
6hrs 12 hrs 17hrs

20hrs 24Hrs

Figure 3.13

^\Time

States^\^
(%endplates)\^

6 hours 12 hours 17 hours 20 hours 24 hours

O 85.2142.34 81.0242.60 15.4142.44 6.2841.39 11.6644.19

CP 1.64 1.7640.19

CF 7.4841.62 1.6640.35

DF 12.4441.79 12.85±2.89 57.2442.51 36.8646.38 32.1345.40

V 8.6242.63 13.0743.26 23.1943.78 63.7449.15 58.0145.25
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Figure 3.14 PDD Analysis on Young Wild-Type Mice

The PDD shows the states of axonal and synaptic degeneration in young wild-

type mice. All five states (O, DF, CP, CF, V) of synaptic degeneration were found.

Blue circles represent fully occupied endplates (O), Purple circles represent partially

occupied endplates connected with intact axons (CP). Green circles represent

fragmented endplates connected with intact axons (CF). Red circles represent

fragmented endplates disconnected from the axon (DF). Yellow circles represent

vacant endplates without axons connected (V). All arrows represent the possible

trajectories of axonal and synaptic degeneration at different time points in the

axotomised young wild-type mice.

The chart shows the percentages of different states of axons and synapses during

the degeneration process in axotomised wild-type mice at 6-hours, 12-hours,

14.5-hours, and 17-hours time points, and standard error estimates with every

percentage.
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PDD for Wild type (+/+)

Figure 3.14

Time

States

(%endplates)x\

6 hours 12 hours 14.5 hours 17 hours

0 72.91±2.22 64.90±6.21 10.74±3.61 0

CP 0.49 0

CF 2.8±1.68 9.01±3.88 0.49 0

DF 25.69±2.43 32±7.09 85.34±4.25 0

V 3.25±0.94 2.29±0.26 12.151±6.55 0
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Figure 3.15 PDD Analysis on Young Homozygous Wl<f Mice

The PDD shows the states of axonal and synaptic degeneration in homozygous

Wlcf mice. Four states (O, DF, CP, V) of synaptic degeneration were found. Blue

circles represent fully occupied endplates (O), Purple circles represent partially

occupied endplates connected with intact axons (CP). Red circles represent

fragmented endplates disconnected with axon (DF). Yellow circles represent vacant

endplates without axons connection (V). All arrows represent the possible trajectories

of axonal and synaptic degeneration at different time points in the axotomised

homozygous Wlcf mice.

The chart shows the percentages of different states of axons and synapses during

the degeneration process in homozygous Wlcf mice following at 3 days, 5 days, 7

days and 9 days following axotomy, and standard error estimate with every

percentage of endplates.

In this sample, almost 10% of endplates were vacant only 3 days after axotomy,

whereas previous data suggest that all endplates were occupied up to almost 4 days

after axotomy. The difference could be explained perhaps either by sample variation,

or perhaps the more detailed analysis performed here gives a more accurate

indication of the true rate/pattern of degeneration in homozygotes.
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Figure 3.15

Time

States^\^
(%endplate)\^

3 days 5 days 7 days 9 days

O 61.28±4.95 29.07±4.47 9.17±1.84 4.62±0.85

CP 19.00±2.57 40.87±1.98 28.81±2.96 15.36±2.04

CF 1.82±0.33 0.90±0.15

DF 5.49±2.28 2.30±0.38 3.85±0.78 5.02±0.76

V 10.78±4.04 28.32±5.78 59.32±3.85 75.53±2.38
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Summary

Previous studies have shown that the degeneration of axons and synaptic

terminals is much delayed by the Wlcf gene in the mutant Wlcf mice, in contrast to

wild type mice. Moreover, Mack et al (2001) have shown that axon degeneration is

gene dose-dependent in Wlcf transgenic mice. Therefore, the main effort in this

chapter was focused on measuring the Wlcf gene effect on synaptic terminal

degeneration within wild type, heterozygous, and homozygous Wlcf mice. (The Wlct

gene dose is only half in heterozygous Wlcf mice,). There are three main findings in

this chapter.

First, synapses are more sensitive than axons to the Wlcf gene than axons. In

heterozygous Wlcf mice (Figure 3.2 & 3.4), I showed that axons remained intact in

heterozygous Wlcf mice as well as in young homozygous Wlcf mice following nerve

section. Flowever, the data demonstrated that synapse degeneration in heterozyougs

Wlcf mice was although slightly slower than wild type mice, was faster than in

young homozygous Wlcf mice.

Second, the morphology of synaptic degeneration in these different types of

mice, as measured by both immunocytochemical staining and fluorescent protein

expression, showed that the synaptic degeneration pattern in heterozygous Wlcf mice

was distinct from that in young homozygous Wlcf mice, and more similar to that in

wild type mice. That is, the majority of synaptic degeneration in the axotomised

heterozygous Wlcf mice was more like the Wallerian degeneration process in wild

type mice. However, axons still remain intact.
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Third, PDD analysis revealed distinct difference in the patterns of synapse

degeneration in wild-type mice, young heterozygous, and young homozygous Wlcf

mice. The analysis implied the possible trajectories in wild-type mice, young

homozygous and heterozygous Wlcf mice. In homozygous Wlcf mice, the main

process appear to be O—»CP—>V, and a few endplates go through O—>CF—>V or

O—>CP—>CF—>V. In heterozygous WW mice, the main process is O—>DF—>V, and a

few endplates go through O—>CP—»DF—>V or O—»CP—>V trajectories. Finally, in

wild-type mice, additional to processes similar to those in heterozygous Wlcf mice,

other processes that a few endplates go through are O—>CP—>CF—>V; O—>CF—>V;

O—►CP—►DF—>V; O—>CP—>CF—»DF—»V. It is unlikely that the difference could be

explained by difference in the time intervals between samples. If that were the case,

the slow rate of degeneration in homozygous Wlcf mice should also have enabled

visualization of those other states as well.
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4. Analysis of Synaptic Degeneration in
Old Wlcf Mice and W!<f Protein Expression

in Cerebellar Granule Cells
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4.1 Introduction

The previous chapter showed that nerve terminals are progressively withdrawn

from axotomised endplates in young Wlf mice. In more mature mice (age >7

months old), this synaptic degeneration pattern is absent, although axons are still

protected from axotomy (Gillingwater et al., 2002). That is, in older mice, motor

nerve terminals appear to degenerate almost as rapidly as in wild-type mice.

Classical degenerative signs appear in most synaptic terminals after axotomy, such

as swollen and disrupted mitochondria, reduced synaptic vesicle densities,

intra-terminal membrane whorls, fragmented terminal membranes and terminal

Schwann cell phagocytosis.

In chapter 3,1 showed that synaptic protection is weak when the Wlf gene dose

is halved. Thus a plausible hypothesis to account for the loss of synaptic protection

with age in Wlf mice, is that expression of the protective Wlds protein declines with

age. However, in previous work, levels of expression of the chimeric protein as

indicated by western blotting of homozygous Wlf mouse brain tissue, suggested that

Wlds protein expression did not diminish significantly with age (Gillingwater et al.,

2002).

In this chapter, I examined the time course of axotomy-induced synaptic

degeneration in old Wlf mice. I utilised the same PDD analysis to depict the pattern

of degeneration in old homozygous Wlf mice as that which was used in wild-type
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and young heterozygous and homozygous Wlcf mice (see Chapter 3). In order to

evaluate whether the morphology of synaptic degeneration could be due to a change

in Wlds protein expression level in young homozygous and heterozygous and old

homozygous Wlcf mice, I used quantitative immunocytochemistry to measure Wlds

protein expression in cerebellar granule cells, stained with Wld18 antibody. It is

debatable whether immunocytochemistry is a better or more reliable method for

quanlifying protein expression. However, inmmuocytochemistry certainly provides

better optical resolution (at a cellular level) compared with, say, western blot

analysis.

4.2 Methods

The methods used in the majority of experiments within this chapter were

described in Chapter 2. The following section describes methods which are specific

to this chapter. Wlcf protein was labeled with TRITC-Secondary antibodies and

imaged with the HeNe laser and nuclei were counterstained using Topro 3 and

visualize using the red diode laser on the BioRad radiance 2000 confocal

microscope.

4.2.1 Wlds Protein Expression Analysis

Cerebellar slice images were obtained using confocal microscopy, images of

slice preparations were taken at two different channels at each laser power (HeNe

laser power 20%, 30%, 40%, 50%, 60% of maximum), because the nuclei were
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labeled by Topro-3 (red diode laser used to visualize Topro staining of nuclei) and

Wlcf genes were labeled by Wld18 ab, and then the two images were merged using

the integrated BioRad software to form an image of Wlds protein expression on

cerebellum granule cells. Pixel intensities were measured using the Image J

programme. First, images in the red channel were loaded in order of laser power

from the lowest to the highest laser power in the stack (20, 30, 40, 50, 60 etc).

Several Wlds protein spots were selected and the pixel intensity of each spot was

measured using the Image J programme, next, the same method was used to measure

background regions in each slice (i.e. regions between Topro-stained nuclei), the

corrected brightness of spots was obtained by subtracting background intensities

from each of them. Thirdly, the means and standard deviations of spot brightness at

each laser power were calculated. Lastly, a graph of laser power vs. corrected

brightness of spots was produced.

Similar techniques were attempted in the spinal cord. However technical

difficulties yielded unsuitable material for analysis. Thus I used cerebellum to test

the hypothesis instead.

4.3 Results

4.3.1 The Morphology of Neuromuscular Junctions in Old

Wlcf Mice

Confocal images of neuromuscular Junctions were taken from YFP16 Wlcf
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mice aged 7-12 months old, 3 days after unilateral sciatic nerve section. All muscles

were labeled with TRITC a- BTX, and fixed in 4% paraformadehyde. Unlike young

Wlcf mice, the pattern of endplate degeneration suggests that synapses were removed

more quickly in these old Wlcf mice. Figure 4.1 A shows three different patterns of

endplate innervation during degeneration (Blue arrow= fully occupied endplate,

Purple arrow= vacant endplates, White arrow= fragmented endplates compared with

Fig 3.5 D). However, as in young Wlct mice, the axons of old Wlcf mice degenerated

slowly following axotomy (Fig 4.1 B), they appeared completely intact 3 days after

unilateral sciatic nerve section.

4.3.2 PDD analysis of axotomised NMJ in old Wlcf mice

I classified the states of innervation and occupancy of neuromuscular junctions

sampled in old Wlct mice (N= 6) to assess the patterns of synaptic degeneration. In

the previous chapter, I identified five different states of axonal and synaptic

degeneration in wild type, young heterozygous, and homozygous Wlcf mice during

axotomy, they are: O state which represents fully occupied endplates connected with

intact axons, CP state which represents partially occupied endplates connected with

intact axons. CF state which represents fragmented endplates connected with intact

axons. DF state which represents fragmented endplates with disconnected axons, and

V states which represents vacant endplates. There are 7 possible trajectories of

axonal and synaptic degeneration, namely 1) O—»DF—>V; 2) O—>CP—>V; 3)
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O—»CF—>V; 4) O—»CP—»DF—»V; 5) 0->CP-+CF^V; 6) O^CF^DF->V; and 7)

O—>CP—>CF—>DF—>V. Using this same classification, I found only four main

distinct states of axonal and synaptic degeneration in old axotomised Wlct mice.

They were: fully occupied (O), disconnected fragmented (DF), vacant (V), and very

few connected partial (CP) at 17 hours, 24 hours, and 48 hours post axotomy. More

specifically at 17 hours after axotomy, 78.72%±3.7 NMJs were fully occupied

endplates with intact axons. 16.60%±2.25 NMJs appeared fragmented both in axons

and synapses, and only 7.02%±0.88 NMJs had degenerated completely (Figure 4.2).

Therefore, taking all data together, I conclude that the main trajectory of synaptic

degeneration is O—>DF—>V, and few synapses also go through O—>CP—>DF—>V or

O—>CP—>V trajectories. This pattern is remarkably similar to that observed in young

heterozygous Wlct mice and completely different from that observed in young

homozygotes. However the synaptic degeneration in axotomised old Wlct mice is

slower than heterozygous Wlcf mice.

4.3.3 Protein Expression in the Cerebellum of Wlcf Mice

Cerebellar slices were taken from three young (1-2 months) YFP16 Wlct mice,

three young YFP16 heterozygous Wlct mice, and three old (>8 month) YFP16 Wlct

mice. Wlds proteins in these slices were labeled immunocytochemically with the

Wld18 antibody. Figures 4.3 & 4.4 show the Wlds protein expression in cerebellar

granule cells (CGC) of young and old homozygous and young heterozygous Wlct
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mice. It appears from these images that in heterozygous Wlcf mice, fewer CGC

appeared to express Wlds protein (TRITC immunostaining, red) in their nuclei (blue;

Topro stain), compared to the young homozygous (2 month-old) Wlcf mice and old

(7 month-old) homozygous Wlcf mice. However, using progressively increasing

excitation laser power (HeNe laser power 20%, 30%, 40%, 50%, 60% of maximum)

number of cells with spots in their nuclei gradually increased (Figure 4.5 & 4.6).

These two groups of images were from a homozygous Wlcf mouse and a

heterozygous Wlcf mouse. In the heterozygotes, the amount of Wlds protein detected

was significantly greater with a laser power setting of 60% (Fig 4.5; 4.7D P<0.05,

ANOVA). This finding suggests that varying the excitation laser power is a useful

way to detect differences in Wlcf protein expression.

In this experiment, at the same laser power setting, Wlds protein expression

differed in young homozygous, heterozygous and old homozygous Wlcf mice. Wlds

protein seemed to be expressed in most cerebellar granule cells in Wlcf mice,

whereas the amount of Wlds protein was obviously reduced in the young

heterozygous Wlcf mice. However, in the old Wlcf mice, the Wlds proteins

expression was not consistent, the amount expressed in some of cerebellum granule

cells were more in some areas than in other areas (Fig 4.4), Indeed, at low laser

power, it did not seem that Wlds proteins were expressed in most of the cerebellum

granule cells as in young heterozygotes. In order to analyse the differences in Wlds

protein expression in young homozygous and old homozygous Wlcf mice, and young
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heterozygous Wlct mice, the mean intensity of proteins expressed in the CGC were

tested in the each type of mouse at varying laser powers (20%, 30%, 40%, 50%,

60%). Fig4.7, A, B, C shows that in each type of mice, the mean intensity of

immunofluorescence gradually increased with following the increasing laser powers.

Moreover, Wlds proteins showed stronger expression in young homozygous Wlct

mice than in young heterozygous and old homozygous Wlct mice. The increases in

mean intensity of Wlds proteins fluorescence in both heterozygous and old

homozygous Wlct mice were not as obvious as in young homozygous Wlct mice,

even though the mean intensity of Wlds protein in old Wlct mice was relatively

higher than in heterozygous Wlct mice. The difference was most apparent at 60%

laser power, figure 4.7, D shows the distinct mean intensity of each type of mouse at

60% laser power. A (young Wlct) = 9.907 ± 0.657, B (heterozygotes) = 5.1385 ±

0.6165, C (old Wlct) = 6.5957 ± 0.4517 (P<0.001; A vs B, P<0.01; A vs C, one-way

ANOVA, Dunnett's post hoc test). This analysis therefore suggests that mouse age

could be another intrinsic factor affecting Wlds protein expression. The level of

protein expression in old heterozygous Wlct mice was not examined in the present

study. Wlct mice have a normal life span, thus the reason for the apparent selective

decline of Wlds protein examination in some neurons is also unknown but potentially

of great interest for future research.
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Figure 4.1 Morphology of NMJs of Old WIcfMice after Axotomy

(A) Confocal image of NMJs from an Old YFP16 Wlct mouse 3 days after

axotomy. Postsynaptic terminals stained by a-BTX.

Three different colour arrows showing the various states of nerve terminals,

fully occupied endplates (blue arrow) fragmented endplates (white arrow) and vacant

endplates (pink arrow). Scale bar = 30pm.

(B) Confocal image of axons from an old YFP16 Wlct mouse 2 days after

unilateral sciatic nerve section. Scale bar = 30pm.
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Figure 4.2 Polyhedral Degeneration Diagram (PDD) Analysis of Synaptic

Degeneration in Old Wl<f Mice

The PDDs show the process of axonal and synaptic degeneration in the

axotomised old (>8 months) Wlcf mice. Letters are used to represent the states of

axons and synapses during neuronal degeneration after axotomy. That is, O

represents fully occupied endplate; connected with intact axons, CP represents

partially occupied endplate which is connected to an intact axon; CF represents

fragmented endplate that is connected to intact axons; DF represents terminal

disconnected from axons, where both of them are fragmented, V represents that

endplates and axons are both degenerated completely. Blue circles represent the fully

occupied (O) state, red circles represent the disconnected fragmented (DF) state,

pink circles represent connected partial (CP) state, and yellow circles represent

vacant (V) state.

The chart shows the percentages of different states of axons and synapses

during the degeneration process in axotomised old (> 8 months) Wld5 mice at

17-hours, 24-hours and 48-hours time points, and standard error estimates with every

percentage of endplates.
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FDD diagram of old Wlcf mice

Time

Pattern -

(%endplates)
17 hours 24 hours 48 hours

0 78.72±3.70 54.432±8.25 16.43±3.62

CP 4.65±2.22 4.95±1.95 2.324±0.36

CF

DF 16.60±2.25 32.84±3.93 44.82±4.23

V 7.02±0.88 12.41±3.60 37.34±5.14
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Figure 4.3 Protein Expression in the Cerebellar Granule Cells (CGC) of

Wlcf mice

(A-B) Confocal images of cerebellar granule cells from the Wlcf mice at zoom

2.5. Wlds protein immunostained with Wld18 (red), and nuclei stained with Topro-3.

Scale bar = 5pm

(A) Cerebellar granule cells from a 2 months old homozygous Wlcf mouse

(B) Cerebellar granule cells from a 2 months old heterozygous Wlcf mouse
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(A) Young Wlcf

(B) Heterozygous Wlcf
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Figure 4.4 Protein Expression in the Cerebellar Granule Cells (CGC) of

Old Wlcf Mice

(A-B) Confocal images of cerebellar granule cells from old Wlcf mice at zoom

5.0. Wlds protein immunostained with Wld18 (red), and the nuclei stained with

Topro-3 (blue). Different regions of the cerebellum appear to show different levels of

Wlcf protein expression. Scale bar = 5pm
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Figure 4.5 Wl<f Protein Expression in Different Laser Powers in

Heterozygous and Young Homozygous Wl<f mice

(A-B) Confocal images of cerebellar granule cells from young heterozygous &

homozygous Wlct mice (8 weeks old) with increasing laser power (HeNe laserpower

20%, 30%, 40%, 50%, 60% of maximum). The nuclei of cerebellar granule cells

immunostained with Topro-3 (blue) and Wlct proteins immunostained with Wld18

antibody. Scale bar = 5pm
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Figure 4.6 Wlcf Protein fluorescence at Different Laser Powers in Old

Wlcf Mice

(A) Confocal images of cerebellar granule cells from Old Wlcf mice (>7 months

old) with increasing laser power (HeNe laserpower 20%, 30%, 40%, 50%, 60% of

maximum). The nuclei of cerebellar granule cells immunostained with Topro-3 (blue)

and Wlcf proteins immunostained with Wld18 antibody. Scale bar = 5pm
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Figure 4.7 Intensity of Wlds Protein Expression in Heterozygous Wlcf

and Homozygous Wlcf Mice

(A) Graph of laser power versus mean spot intensity in 2 month-old Wlcf mice

as calculated from counts of immunocytochemically stained (Topro-3, Wld18

antibody) cerebellar granule cells. Black squares represent data from three 2 months

old homozygous Wlcf mice.

(B) Graph of laser power versus mean spot intensity in 2 months old

heterozygous Wlcf mice as calculated by counts of immunocytochemically stained

1 8

(Topro-3, Wld antibody) cerebellar granule cells. Squares represent data from three

2 month-old Wlcf heterozygous mice.

(C) Graph of laser power versus mean spots intensity in 7 months old Wlcf mice

1 8
as calculated by counts of immunocytochemically stained (Topro-3, Wld antibody)

cerebellar granule cells. Black squares represent data from three 7 month-old Wlcf

mice.

(D) Mean intensity of Wlds protein in young homozygous and heterozygous

Wlcf mice, and old homozygous Wlcf mice respectively at 60% laser power, column

A represents young Wlcf mice; column B represents young heterozygous Wlcf mice;

column C represents old homozygous Wcf mice (ANOVA test: P<0.0001; A vs B,

P<0.01; A vs C, P<0.01; Dunnett's post hoc test).
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Intensity of expression of old
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Summary

In the previous chapter, I showed that the Wlcf gene plays an important role in

delaying the degeneration in axons and synaptic terminals. Moreover, gene dose, a

genetic intrinsic factor, influences the degeneration pattern of axons and synapses in

the axotomised Wlcf mice.

Age is another intrinsic factor affecting nerve terminal degeneration, and has

been presented by Gillingwater et al (2002). They showed that when mice were over

4 months old, synaptic degeneration reverted back to a Wallerian-like process, but

with axons still intact. The PDD analysis method I applied to old Wlcf mice extends

their findings (Figure 4.2). Wlds protein expression in the cerebellar granule cells in

young heterozygous Wlcf mice and old homozygous Wlcf mice suggested that Wlcf

protein expression is decreased in many neurons of the axotomy-induced old Wlcf

mice, in contrast to the young axotomised homozygous Wlcf mice.

Therefore, reduced protein expression in old Wlcf mice may explain the distinct

axon and synaptic protection as old Wlcf mice age, at least in some neurons.
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5. Effect of Botulinum Toxin and Nerve

Stump Length on Synaptic Degeneration
in Wld* Mice
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5.1 Introduction

Botulinum toxin is a neurotoxic protein produced by the bacterium Clostridium

botulinum. It is one of the most poisonous naturally occuring substances known. Its

highly toxic property has been used in minute doses to treat many nervous system

diseases: muscle spasms, uncontrolled blinking, headache disorders and

musculoskeletal pain (Bhidayasiri et al., 2005). It even improves sialorrhoea in

Amyotrophic Lateral Sclerosis (ALS) (Giess et al., 2002), however, recently the

most popular use of botulinum toxin (BoTox) in many parts of the world has become

in the field of cosmetic treatment. For instance, de-wrinkling properties are due to its

action as muscle relaxant. BoTox also promote nerve sprouting as well as inhibitory

Ca2+influx into motor nerve terminals during activities. It was therefore of interest to

ask whether it might delay synaptic degeneration as well.

Botulinum toxin is a two-chain polypeptide which contains a 100-kDa chain

and a 50-kDa light chain joined by a disulphide bond. The light chain is a protease

whose action prevents vesicles from anchoring to the nerve terminal membrane to

release acetylcholine, This action is mediated by one of the fusion proteins targeted

by BoTox (see below) at a neuromuscular junction. The toxin must enter the nerve

terminals in order to cause paralysis. This requirement is mediated by the heavy

chain of the toxin which targets the toxin to specific types of axonal terminals.

After attachment of the toxin heavy chain onto proteins on the surface of nerve
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terminals, the entire molecule is taken up into neurons by endocytosis. The light

chain which has the protease activity, leaves endocytotic vesicles and enters the

cytoplasm. Botulinum neurotoxin type A (BoTox/A) blocks the exocytosis of

acetylcholine (Ach) by its intracelluar proteolytic cleavage of

synaptosomal-associated protein, with a molecular mass of 25 kDa (SNAP-25), a

vesicular type of SNARE protein (Schiavo et al., 1993; Blasi, 1993). Interestingly,

botulinum neurotoxin type A also stimulates sprouting of nerve endings at the

neuromuscular junction after blocking neurotransmission (de Paiva et al; 1999). The

process takes a few days and appears to be a consequence of muscle paralysis

(Brown et al., 1977; 1980; 1982; Caroni et al., 1994).

Neither the mechanism of synaptic degeneration nor regulation has been fully

clarified, finding compounds that slow down synaptic degeneration is another

objective of neurodegenerative disease research. Botulinum toxin A was used to test

whether blocking transmitter release could protect synaptic terminals from

degeneration after axotomy.

Nerve Stump Length

Miledi & Slater (1970) used rats to test the effect of nerve stump length on

synaptic degeneration by cutting a short stump and a long stump of phrenic nerve.

They examined synaptic transmission using electrophysiology and ultrastructural

techniques up to 48 hours later. They showed that the rate of synaptic degeneration
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varied with the different lengths of nerve stump. This finding confirmed previous

studies by Luco & Eyzaguirre (1955) on the tenuissimus of a cat. Moreover, in 1995,

Ribchester et al used Wlct mice to study the effect of nerve stump length on synaptic

degeneration. The results suggested that an increase of 1cm in the length of the distal

stump delayed degeneration by about 1-2 days. However, this conclusion was drawn

from physiological analysis, I therefore repeated these experiments using

morphological analysis to examine the outcome.

5.2 Method

Chronologically, the experiments described in this chapter were carried out

before colonies of Thyl.2 YFP mice became established. Hence, immunostaining of

axons and endplates was used to visualize the neuronal processes. Six young female

Wlcf mice (2 months old) were used in the experiments. 5pl botulinum toxin type A

(from Sigma) was injected into one hind foot of each of 3 mice before cutting the

sciatic nerve in the mid-thigh region. Each injection contained 1.0-1.5 ng BoTox. As

a control, the hind feet on the contralateral side of three other Wl<£ mice were

injected with 3-5 pi of the non-sprouting buffer only1 (for composition see

Appendix I) Similar injections were made in three WlcF mice in which the tibial

nerve was cut instead of the sciatic nerve (Distance between sciatic and tibial nerve

lesion sites was almost 2 cm). Five days after axotomy, the animals were killed, the

1 Conventional physiology saline buffer is reported to produce a small amount of
sprouting (W. Thompson, personal communication to R.R Ribchester).
"

Non-sprouting" buffer has composition that avoids this.
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tibial nerve was stimulated with 10V, 1ms pulses. Absence of contraction confirmed

neuromuscular paralysis on the injected side. The lumbrical muscles were isolated

and stained with the TRITC a- Bungatrotoxin, and immunostained with NF and SV2.

The images were viewed and analysed by conventional fluorescence microscopy.

In addition, three old Wlcf mice (7 months old) with unilateral section of the

sciatic nerve were studied. Each operated foot of the three mice was injected with

3pl BoTox (c=0.05 ng/pl), (since I found that the old mice did not survive when

injected with the same volume of BoTox as in young mice) and the contralateral leg

injected with 3pl non-sprouting buffer as the sham control. Lumbrical muscles were

isolated from two of the mice 3 days after axotomy. Lumbrical muscles were isolated

from the third mouse 7 days after axotomy. Immunostained preparations were

viewed and analysed by fluorescence microscopy.

5.3 Results

5.3.1 Morphologic Evidence for Preservation of Synaptic

Terminals in Wlcf Mice after BoTox Injection in young Wlcf

mice

Lumbrical muscles 1, 2, 3, 4 (n=16) from 5 days axotomised 2 months old Wlcf

mice (n=6) were immunocytomchemically labeled (NF, SV2 and a- BTX).

Quantitative analysis suggests that BoTox had a small additive effect on the

protection from synaptic degeneration (Figure 5.1). The occupancy of NMJs gave
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the simplest measure of any effect. In BoTox injected muscles occupancy was

92.76%±1.4, while the occupancy of NMJs without BoTox injection was

80.038%±7.826 (P< 0.05, Mann-Whitney test). It was significantly different from

muscles injection with non-sprouting buffer solution

5.3.2 Botox has no Effect on Synaptic Degeneration in Old

Wcf Mice

Lumbrical muscles 1, 2, 3, 4 (n=12) from 3 days (N=2) and 7 days (N=l)

axotomised 7 months old Wlct mice (n=6) were immunocytomchemically labeled

(NF, SV2 and a- BTX) and the NMJs individually assessed as to their level of

occupancy. Qualitative analysis of lumbrical muscles preparations showed that

BoTox had little effect on the protection of synaptic degeneration (Figure 5.2).

Almost all endplates were vacant by 3 days, the percentage of vacant endplates after

BoTox injection was 88.48%±4.356 at this time, and increased to 98.87%±0.603 by

7 days after axotomy. This was not significantly different from control muscles,

injected with non-sprouting buffer solution. (Percentage vacancy data was plotted

here rather than percentage occupancy simply to facilitate visual comparison of the

data.

5.3.3 Morphologic Evidence for Preservation of Synaptic

Terminals in the Wld5 Mice after Axotomy: Effect of Nerve

Stump Length
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Lumbrical muscles 1, 2, 3, 4 (n=16) from 5 days axotomised 2 months old Wlcf

mice (n=6) were immunocytomchemically labeled (NF, SV2 and a- BTX) and the

NMJs individually assessed as to their level of occupancy.

Qualitative analysis of lumbrical muscle preparations suggests that nerve

terminals degenerated slightly slower in the sciatic nerve-cut compared to the tibial

nerve-cut groups. (Figure 5.3) However, quantitative analysis indicated that the

difference was not statistically different. The occupancy of endplates after axotomy

was 84.196% ±15.77, while the occupancy after tibial axotomy was 80.038% ±

17.50 (P>0.05; Mann-Whitney test).
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Fig 5.1 BoTox Effects on Synaptic Degeneration

(A) Conventional fluorescence microscopy images of NMJs from young Wlcf

mice (8 weeks old) with BoTox injection (immunostained with NF and SV2

antibodies and ACh receptors labelled with TRITC a-BTX). Scale bar = 30pm.

(B) Bar chart showing the percentage occupancy of endplates stained by a-BTX

in the lumbrical muscles 5 days after axotomy, from 2 months old Wlcf mice which

were injected with BoTox after sciatic or tibial nerve axotomy.

There was a small statistically significant additional delay in nerve terminal

degeneration following the Botox injection (P< 0.05; Mann-Whitney).
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Fig 5.2 BoTox Effect on the Old Wltf Mice after Axotomy

(A) Conventional fluorescence microscopy image of NMJs from old Wlcf mice

(>7 months old) with BoTox injection (immunostained with NF and SV2 antibodies

and labelled with TRITC a-BTX). Scale bar = 30pm.

(B) Bar chart showing the percentage of nerve terminals stained by a-BTX in

the lumbrical muscles 3 and 7 days after axotomy, from 7 months old Wlcf mice

which were injected with Botox after sciatic and tibial nerve axotomy. A few

endplates remained occupied 3 days after injection, but almost all nerve terminals

had degenerated completely 7 days after injection.
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Fig 5.3 Nerve stump length experiment

(A) Bar chart showing the percentage of occupied endplates in the lumbrical

muscles 5 days after axotomy, from 2 months old Wlcf mice, injected with

non-sprouting buffer solution after sciatic and tibial nerve axotomy. The AChRs in

the postsynaptic membranes were stained by TRITC-a-BTX. The protection of

synaptic terminals in the sciatic nerve axotomy was not statistically significant (P >

0.05; Mann-Whitney).
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Summary

Wlct gene dose and age of mice influence the patterns and rate of axons and

synaptic degeneration after axotomy in Wlct mice. It was interesting to ask whether

extrinsic factors could also influence these processes, adding to the protective Wlct

phenotype. Here, I examined two potential influences that have been shown

previously to influence synaptic form and function in wild-type mice, namely muscle

paralysis and nerve stump length.

Although, previous studies suggested that blocking vesicle release may delay

degeneration of synapses (Mattison, 1999, PhD Thesis University of Edinburgh) in

my studies the degeneration of synaptic terminals was only slightly delayed

following BoTox injection in young Wlct mice 5 days after axotomy. Moreover, this

protective effect on synaptic terminals was lost in old Wlct mice 3 days after

axotomy, in these mice all terminals had degenerated either in the presence or

absence of BoTox. The different nerve stump lengths between sciatic nerve section

and tibial nerve section did not yield a significant difference in synaptic

degeneration.

These largely negative findings underscore the potency of the protective effect

of the Wlct gene, and the powerful effect of age in abolishing it, at least at the

synaptic level.
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6. Discussion

159



The main findings of the present study are threefold: Firstly, synaptic protection

by Wlcf gene is more sensitive to reduced gene dose and mice age than axons or

synapses in axotomised young homozygous Wlcf mice. This finding is supported by

PDD analysis, which provides a new way of systematically and comprehensively

representing their pattern and "trajectory" of axonal and synaptic degeneration in

axotomy-induced wild type, young homozygous, young heterozygous and old

homozygous Wlcf mice. Using PDD analysis, we can see how similar patterns of

synaptic terminal degeneration occur in both young axotomised heterozygous and

old homozygous Wlcf mice, and this was distinctly different from the way synapses

degenerate in young homozygous Wlcf mice.

Next, I presented evidence that variation of synaptic degeneration in

heterozygous Wlcf mice may be due to its reduced expression of Wlds protein with

age in some neurons, suggesting that synaptic degeneration in old axotomised Wlcf

mice may also be modulated by a gene-dose effect. I measured Wlds protein

expression in cerebellar granule cells of young homozygous and heterozygous and

old homozygous Wlcf mice. I found a reduction of Wlds protein expression in all

neurons of young heterozygous mice and in at least some neurons in old homozygous

Wlcf mice. This decrease may therefore explain the distinct pattern of synaptic

degeneration in old Wlcf mice.

Thirdly, besides gene-dose and age, I examined the effect of two other potential

160



influences: nerve stump length and neuromuscular transmission. However, I did not

find any compelling evidence that these significantly affect the rate of synaptic

degeneration. The results of leaving a long nerve stump did not confer any additional

protection, and blocking neuromuscular transmission with Botox only slightly

enhanced synaptic protection in young Wlcf mice, whilst there was no effective

protection in old (7 months old) Wlcf mice

6.1 The Wlcf Gene Strongly Protects Axons

In wild-type mice, Wallerian degeneration is normally complete within 24 to 48

hours of axotomy, the primary event in Wallerian degeneration is axonal

fragmentation and degeneration, which is accompanied by a failure of the nerve to

conduct in mice, at 1 to 2 days axotomy, the sciatic nerve becomes incapable of

conducting compound action potentials. (Vial, 1958; McDoald, 1972; Allt, 1976;

Nicholls et al., 1992)

In contrast, in the mutant Wlcf mice, the lesioned axon is preserved for several

weeks before eventually degenerating (Lunn et al., 1989; Tsao et al., 1994). In other

words, the Wlcf mutant has about a 10-fold delay in axonal degeneration after nerve

injury (Gillingwater et al., 2003). Furthermore, Mack et al 2001 suggested that axons

were still protected well in heterozygous Wlcf mice after axotomy, in despite of the

reduced gene dose. They used different lines of transgenic mice after the same

axotomy to demonstrate that axonal protection is gene dose -dependent. Their result
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showed that axonal preservation in the transgenic line 4836Tg/+ (81.7 ± 2.2; n=3) is

similar to the Wlcf/+ (86.2±1.2; n=3) and Wlcf/Wlcf (90.0±4.7; n=3) at the same time

after axotomy, by observing that the transgene expression level in line 4836 is similar

to that in Wlcf/Wlcf mice. Subsequently, Gillingwater et al (2002) demonstrated that

axons were also preserved by the Wlcf gene in mature Wlcf mice (> 4 months old).

The findings of the present study on axon degeneration in these four different

types of mice have confirmed these previous studies. Confocal micrographs of tibial

nerves following sciatic nerve lesions have shown that in unilateral sciatic nerve

section, there was no obvious difference in axonal degeneration among young

heterozygous Wlcf, homozygous Wlcf, and old homozygous Wlcf mice, but in wild

type mice, the axons totally degenerated within the same period post axotomy.

(Figure 3.4 B, C, D & Figure 4.1 B). However, in further time course studies on

NMJs among young heterozygous, homozygous and old homozygous Wlcf mice, this

intramuscular axonal protection by the Wlcf gene following nerve section appeared

somewhat different. Further analysis of this will be discussed in the following PDD

analysis section.

6.2 NMJs are Very Sensitive to Gene Dose

In Mack et al's work, most studies focused on whether a change in Wlcf gene

dose affects axonal degeneration. As I pointed out in the Introduction comparing

homozygous and heterozygous Wlcf mice, provides a simple way to testing the effect
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of gene dose. Regarding the Wlds protein effect on synaptic degeneration, Mack et al

(2001) only mentioned that in transgenic heterozygous Wlct mice after 3 days, some

synaptic terminals were still occupied (Mack et al., 2001). Through morphological

and ultrastructural studies, Gillingwater et al (2002) suggested that age is another

factor which influences the synaptic degeneration. Consequently, the present study

was mainly focused on the synaptic degeneration as affected by both Wlct gene dose

and age in different types of mice following axotomy.

There are two copies of the chimeric Wlct gene in heterozygous Wlct mice and 4

copies in homozygotes. Young wild type mice, heterozygous and homozygous Wlct

mice were used to form a sample group with varying Wlct gene dose in the study.

Moreover, in order to investigate further the relationships of synaptic degeneration

among these types, the time courses of synaptic degeneration were studied in young

YFP16 homozygous andYFP16 heterozygous Wlct mice, and in YFP16 wild type

(C57/B16) mice, following the unilateral sciatic nerve section.

6.2.1 Wild-Type Mice

It has been shown that, in wild type mice, nerve terminals normally degenerate

within 24-26 hours, which is earlier than their motor axons (Birks et al. 1960; Miledi

& Slater 1970; Gillingwater et al., 2001). The process of synaptic degeneration is

synchronous in axotomised wild-type mice, both axons and synaptic terminals

degenerate rapidly following axotomy (Miledi and Slater, 1968; 1970; Winlow and
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Usherwood, 1975). In my present experiments, in YFP16 wild type mice, nerve

terminals began to degenerate rapidly and apparently simultaneously (i.e. more

synchronously than in homozygous Wlct mice) from 6 hours post axotomy and no

synaptic terminals were occupied at exactly 17 hours post axotomy. This is much less

than the 24-26 hours in previous work, and in total six YFP16 Wlct mice (8 weeks)

were used. My data and other evidence from studying rats and mice suggest that

degeneration of synaptic terminal precedes axon degeneration (Miledi and Slater,

1970; Beirowski et al., 2003). That is, axon fragmentation does not normally begin

until about 36 hours in peripheral nerves, whereas nerve terminals degeneration was

complete in my study by 17 hours.

6.2.2 Young Homozygous Wlcf Mice

In mutant Wlct mice, Ribchester et al (1995) showed that Wlct NMJs are

preserved and able to release neurotransmitter and recycle synaptic vesicle

membrane for at least 3 days, and in some cases as long as 2 weeks, following nerve

section. Moreover, vital dye labeling, immunocytochemistry and electrophysiology

suggest that while nerve terminals degenerate synchronously in axotomised

wild-type mice, progressive piecemeal synapse withdrawal is induced by axotomy in

Wlcf mice. It was suggested that nerve terminals retract from the endplate, bouton by

bouton, to form a swelling bulb at the distal end of the axon, which is detached from

the endplate (Mattison, 1999; Gillingwater and Ribchester et al., 2001). This pattern
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of terminal withdrawal occurs in a similar fashion during synapse elimination, which

takes place in neonatal mammals to form the neuromuscular innervation pattern in

postnatal development (Sanes and Lichtman, 1999; Keller-Peck et al., 2001;

Gillingwater et al., 2002; 2003).

In young homozygous Wld6 mice, the present findings showed that synaptic

degeneration have an appearance similar to that in previous studies which used

FM1-43 to label nerve terminals (Parson et al., 1998; Ribchester et al, 1999). In

Fig3.3 (A, B, C) with increasing days post axotomy, fully occupied endplates became

partially occupied endplates and eventually became vacant, the different percentage

patterns of partially occupied endplates at different times have suggested that the

axotomy-induced synaptic elimination in Wltf mice is a gradual withdrawal process

in Wltf mice. These data strongly support previous finding of a progressive

withdrawal pattern of synaptic degeneration in axotomised homozygous Wltf mice.

Thus the hallmark of homozygous Wltf mice is piecemeal, asynchronously and slow

synaptic retraction; whereas in heterozygotes or wild-type mice it is rapid, uniform

and much more synchronous. These differences suggest that the mechanisms are

different.

During the time course of studying synaptic terminal degeneration in young

homozygous Wltf mice, two different staining methods were used, one used CFP

transgenic mice and another Thyl-Y¥P\6 transgenic mice, since the Cyan and
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Yellow Fluorescence Protein in these lines express fluorochrome in all motor

neurons (Feng et al, 2000). The latter method is widely used in many recent NMJ

experiments, due to its accurate and good quality staining, so it was also used in the

majority of my studies. However, compared with CFP and YFP16 mice synaptic

degeneration data (Fig3.6) suggest there are differences in % vacant endplates in the

young Wlcf mice after the equivalent number of days post axotomy. The reason for

this difference is two-fold. Firstly, the first group of mice underwent tibial nerve

section, while the second group of mice had sciatic nerve section. With regards to the

nerve stump dependence hypothesis, in the sciatic nerve section experiment, synaptic

degeneration was slightly slower than that in the tibial nerve section experiment.

However, in my morphological experiment, there is no significant difference

between the sciatic and tibial nerve section. Secondly, the different transgenic mice

lines used in these two groups could be another reason for this difference. However,

recent studies show no effect of fluorescence protein examined on the rate of

synaptic degeneration in Wlcf mice (Bridge et al., 2007 Figure 6.1)
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Figure 6.1 YFP does not interfere with Wlcf

From Bridge et al (2007) showing that the rate and amount of synaptic

degeneration measured electrophysiologically from end-plate potential recording

(upper traces) is not significantly different comparing Wlcf mice expressing the YFP

transgene with those that do not express this transgene (graph).
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6.2.3 Young Heterozygous Wlcf Mice

Mack et al (2001) demonstrated that the number of occupied endplates

decreased in the 4836 hemizygous transgenic mice, compared with those in the 4836

homozygous transgenic mice. The 4836 transgenic line expresses similar level of

Wlds protein to natural mutant Wlcf mice. The study of nerve terminal degeneration

in young heterozygous Wlcf mice therefore supports this previous finding, and also

suggested that the Wlcf gene does have a protection effect on synaptic degeneration

in the axotomised heterozygous Wlcf mice, compared to wild type mice, although the

effect is much less than that in young homozygous Wlcf mice.

The present study of heterozygous Wlcf mice provided evidence that the

protection of motor nerve terminals by the Wlcf gene was weaker and also more

sensitive to gene dose than axons. Few studies to date have studied nerve terminals

on naturally heterozygous Wlcf mice. Mack et al (2001) provided data to show that

synaptic degeneration in transgenic heterozygous Wlcf mice is faster than that in the

transgenic homozygous Wlcf mice. The heterozygous Wlcf mice were produced by

crossed-breeding C5HWlds mice cross-breeding with Balbc/B16 mice. At one day

following unilateral sciatic nerve section, most endplates were vacant, while very

few were fully occupied. (Figure 3.13.B) Moreover, in comparison with the

homozygous Wlcf mice, the pattern of synaptic degeneration appeared to be distinct.

Neither piecemeal withdrawal of nerve terminals nor retraction boutons
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(Gillingwater et al., 2002) could be found during the degeneration process, and the

rate of degeneration of NMJs was faster than in the homozygous Wlct mice. Taking

these studies, it can be concluded that in heterozygous Wlct mice, the reduced dose

of the Wlct gene in a weak protection of synaptic degeneration.

6.2.4 Old Homozygous Wlcf Mice

The present experiment shows that only a few synaptic terminals could be found

after axotomy in old Wlct mice, most endplates were vacant, a few were fully

occupied, and very few were partially occupied. This finding confirms the previous

findings of Gillingwater et al (2002) who used the electrophysiology, vital staining

with FM1-43, immunocyto-chemistry and electron microscopy to demonstrate that

unlike axonal degeneration, the degeneration of synaptic terminals in Wlct mice is

age dependent. When mice are over 4 months old, the morphology of nerve terminal

degeneration reverts to that in wild-type mice. According to their morphological

analysis in old mice, very few partially occupied endplates were seen, and most

endplates were either fully occupied or vacant. In 4 months old Wlct mice about 35%

of endplates were occupied 3 days axotomy. In 7 months old Wlct mice, however,

fewer than 5% occupied endplates remained by 3 days. Electrophysiological analysis

suggested that in 4 month old mice, only approximately 20% of fibres showed EPPs

3 days following axotomy. In 7 months old mice less than 5% showed evoked EPPs.

The present results of morphological analysis in axons and synaptic degeneration
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also supported the group's findings, for example, in Wlct mice over 7 months old, <

20 % synaptic terminals were occupied at 2 days after axotomy (Figure 4.2), and due

to both intramuscular axons and synaptic terminals fragmenting, no EPPs could be

evoked when nerve fibres were stimulated.

6.3 Polyhedral Degeneration Diagram (PDD)

6.3.1 Pattern of Synaptic Degeneration

My studies suggest that there are at least two patterns of axons and nerve

terminals degeneration after axotomy in the wild-type mice and young Wlct mice.

That is to say, both axons and nerve terminals undergo classical Wallerian

degeneration in wild-type mice. In young Wlct mice, the synapses degenerate in a

retraction pattern similar to neonatal elimination (Gillingwater and Ribchester, 2003)

and axons are protected well by the Wlct gene in young Wlct mice.

However, when the time courses of synaptic degeneration in wild-type,

heterozygous and young and old homozygous Wlct mice were studied and the

degeneration of synaptic terminals further quantified different results were showed

by the present studies. The patterns of axonal and synaptic degeneration were more

complicated than the two mentioned above.

All states of innervation and occupancy of neuromuscular junctions were

classified into five patterns in young and old Wlct homozygous, heterozygous and
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wild-type mice to assess the patterns of axonal and synaptic degeneration. These

were occupied (O), connected/partial occupancy (CP), Connected/fragmented (CF),

Disconnected/fragmented (DF), Vacant (V) (See chapter 3 & chapter 4 for the

explanation for each state). We used these to infer the most likely trajectories

between states, including 7 possible degeneration trajectories of axonal and synaptic

degeneration, in wild type, heterozygous, and young and old homozygous Wlcf

following axotomy, such as, 1) O—>DF—>V; 2) O—>CP—>V; 3) O—»CF—>V;

4)0—>CP—»DF—>V; 5) O^CP^CF^V; 6) O^CF^DF^V; and 7)

O—>CP—>CF—>DF—>V; in wild-type, heterozygous, and young and old homozygous

Wlcf following axotomy. In all these trajectories, axons as well as synaptic

terminals take different tracks to degenerate from fully occupied endplates to various

states before degenerating completely. Apart from trajectory 2 (O—>CP—>V), which

has already been confirmed in young Wlcf mice, all trajectories remain merely

speculative. My hypothesis is that all of these are possible in the degeneration

process in axotomised mice; in reality, however, there may only be one, two or more

trajectories that exist. Based on time course data in young homozygous Wlcf mice,

CP state is the only state found during the degeneration process, therefore,

O—>CP—»V is the only one possible degeneration trajectory in axotomised

homozygous Wlcf mice.

Of course, the limitation of the PDD method is that it does not take into account

any variability in the denervation of each state which could also be a variable that
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explains the difference in the PDD trajectories. Nevertheless quantitative kinetic

analysis (e.g. Ribchester, 1988) may be necessary to resolve this issue.

My conclusion are consistent with the previous finding that synaptic

degeneration is a progressive withdrawal process in young axotomised homozygous

Wlcf mice, with presynaptic terminals gradually retracting from postsynaptic

terminals while the axons still entirely connect with them. However, in the young

axotomised heterozygous and wild-type mice, there were five states of axonal and

synaptic degeneration were found in the degeneration process, they are O (occupied),

V (vacant), CP(connected partial), CF(connected fragmented),and DF(disconnected

fragmented) respectively. Thus, it may be speculated that there were 7 possible

trajectories during the degeneration process, which are: 1) O—>DF—>V; 2)

O—>CP—>V; 3)0—>CF—>V; 4)O^CP-+DF^V; 5)0->CP-^CF^V;

6)0—*CF—»DF—>V; and 7)0—*CP—>CF—»DF—>V respectively. If fully occupied

endplates (O) started to degenerate following axotomy, they could go through any

one of CP, CF and DF states at the early degeneration stage. Then if fully occupied

endplates (O) went through the connected partial (CP) state first, there would be

three possible tracks for degeneration, firstly, CP—>CF—»V, where partially occupied

endplates become fragmented, with axons still entirely connected to fragmented

synaptic terminals, then the synaptic terminals disappear followed by the axons

breaking into small segments. A second pathway is CP—>DF—>V: the partially

occupied endplates degenerate into fragmented endplates and axons break into small
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segments before degenerating completely. The third is CP—>CF—>DF—>V: partially

occupied endplates become fragmented with axons still entirely connected to

synaptic terminals, axons then become fragmented followed by both synaptic

terminals and axons disappearing in the later degeneration stage.

If fully occupied endplates (O) went through CF at the early degeneration stage,

two possible following subsequent trajectories exist: One is CF—>V, where fully

occupied endplates become fragmented endplates following axotomy, with axons

still completely connected to endplates, then axons break in to small segments before

endplates degenerate completely, another trajectory is CF—dDF—>V; where partially

occupied endplates become fragmented followed by intact axons disconnecting, from

these fragmented endplates, and finally these axons break into small segments before

disappearing entirely.

Lastly, if fully occupied endplates (O) went through DF state at the early

degeneration stage, only one trajectory would happen, namely O—»DF—>V, in this

fully occupied endplates first become fragmented endplates, followed by axons

breaking into small segments in the early stage, and afterward both of them

degenerating completely in the later degeneration stage.

Analysis of PDD was used in the axonal and synaptic degeneration of the old

axotomised Wlct mice. There were four possible states at each time point, which are

fully occupied (O), disconnected fragmented (DF), connected partial (CP), and
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vacant (V). With increasing hours after axotomy, such as, at 17 hours and 24hours,

the majority of synaptic states were either fully occupied endplates connected to

axons (O) or fragmented endplates disconnected to axons, very few degeneration

pattern were partially occupied endplates connected to intact axons (CP).Therefore it

is speculated that there are three possible axonal and synaptic degeneration states in

old Wlct mice, most nerve terminals degenerate from fully occupied endplates to

disconnected fragmented endplates (O—>DF—>V), and very few endplates were

partially occupied before all nerve terminals degenerated completely

(O—>CP—»DF—>V or O—»CP—*V). PDD analysis of wild-type, young heterozygous,

homozygous and old homozygous Wlct mice provides a useful way to comprehend

the mechanism of NMJ degeneration following nerve section. From PDD, we

ascertained that the degeneration patterns of synaptic terminals were affected by

varying gene dose and mouse age. For instance, most synapses become fragmented

at each axotomised hours in young axotomised heterozygous Wlct mice, this

phenomena resembles Wallerian degeneration in wild type mice, and is different

from progressive asynchronous and piecemeal synaptic withdrawal in homozygous

Wlct mice.

From PDD analysis of these contrasting groups, it is possible to conclude that

reduced gene dose influences both degeneration pattern and degeneration rate of

synaptic terminals after axotomy. The Wallerian-like degeneration widely found in

axotomised heterozygous Wlct mice demonstrated that the pattern of synaptic
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degeneration reverted back to the wild type fashion. Electrophysiologically,

fragmented synapses can not evoke EPPs if axons are disconnected from these

synapses. Moreover, the rate of synaptic degeneration increases dramatically with

reduced gene dose, in contrast to young homozygous Wlcf mice.

In old homozygous Wlcf mice, two different states exist during degeneration,

the majority of synapses become fragmented (DF) after axotomy, and a few synapses

were in retracted fashion (CP), resembling synaptic degeneration in young

heterozygous Wlcf mice. Therefore, it could also be hypothesized that mouse age

plays a role in influencing Wlds protein expression, given the similarity of

morphological situations were found in the wild type, heterozygous and old

homozygous Wlcf mice.

6.3.2 Rate of Synaptic Degeneration

The rate, as well as pattern, of degeneration of nerve terminals is influenced by

gene dose and mouse age. For instance, the rate of synapse degeneration in both

axotomised young heterozygous and old homozygous Wldt mice was faster than in

young axotomised homozygous Wlcf mice. Moreover, some occupied endplates were

still found in young heterozygous Wlcf mice 1 day after axotomy and in old

homozygous Wlcf mice 2 days after axotomy, while in wild-type mice, synaptic

terminals degenerated completely at 17 hours post axotomy, in contrast, synaptic

degeneration can last nearly two weeks in young axotomised homozygous Wlcf
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mice.

6.3.3 Pattern and Rate of Axonal Degeneration

PDD analysis shows that the degeneration pattern and rate of proximal axons, as

well as synaptic terminals, are also influenced by gene dose and mouse age. The rate

of proximal axons degeneration was fast in axotomised heterozygous and old

homozygous Wlct mice, in comparison to homozygous Wlct mice. In wild-type mice,

since the majority of NMJs were in DF state following axtomy, it can be speculated

that the degeneration mechanism of axons which are connected to these synaptic

terminals is a Wallerian-like degeneration. This mechanism was also found in

axotomised heterozygous Wlct mice, where most intramuscular axons broke into

small segments either before or following synaptic terminals fragmentation (e.g. see

Fig 3.10). In contrast, no intramuscular axonal segments were found in homozygous

Wlct mice up to 3 days after axotomy, the pattern observed is similar to progressive

withdrawal following synapses retraction. However, in old homozygous Wlct mice,

these two different mechanisms may exist simultaneously during the proximal axon

degeneration process, given the DF state majority and a few CP states found

throughout this process. To date, as axonal mechanism still remains unclear in the

recent studies, thus, it is difficult to know whether the Wallerian-like degeneration of

intramuscular axons in both young heterozygous and old homozygous Wlct mice is

indeed similar to the mechanism in wild-type mice. This merits further investigation
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in future studies.

Beirowski et al (2005) suggested that different degeneration mechanisms of

distal axons occured in wild-type and Wlcf mice, thus, my present findings in

proximal axons may facilitate elucidation of the genuine mechanism of axonal

degeneration after nerve injury in the future.

In summary, PDD analysis suggests that the degeneration patterns of both axons

and synaptic terminals are influenced by both of Wlcf gene-dose level and mice of

age.

6.3.4 PDD Analysis in Neonates

Usage of PDD analysis is not restricted to the above type of mice, but may also

be extended to other types to study the time course of synaptic degeneration. For

instance, as an example, I applied PDD analysis to a study of neonatal elimination

(See PDD schematic picture below, the data from Keller-Peck et al 2001 Figure 6.2).

During synapse elimination in neonates, only the CP state is found, thus the pathway

O—>CP—>V alone may be speculated. Nerve terminals retract by a progressive

withdrawal process during synapse elimination, and axons are retracted after that

(Korneliussen and Jansen, 1976; Walsh and Lichtman, 2003). This result strongly

supports the previous findings that synapse elimination is a progressive withdrawal

process during innervation (Gillingwater & Ribchester, 2001; Gillingwater et al.,

2002).
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Furthermore this PDD could perhaps be applied to animal models or biopsy

material from patients with motor neuron diseases, such as Amyotrophic lateral

sclerosis (ALS) and used to measure the progression of diseases. By comparing with

Wlcf mice, it may be possible to uncover similar degeneration trajectories in NMJ, or

discover new patterns of axonal and synaptic degeneration in this disease model.

Greater knowledge of the mechanism of motor neuron degeneration may lead to

more effective treatments of motor neuron diseases. PDD is thus a potentially useful

analysis model in furthering our understanding of NMJ degeneration and advancing

motor neuron disease research in the future.
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Figure 6.2 Polyhedral Degeneration Diagram (PDD) Analysis the

Mechanism of Synaptic Degeneration Mechanism in neonates

The PDD shows the process of axonal and synaptic degeneration in the young

(8 days after birth) mice. Letters are used to represent the states of axons and

synapses during neuronal degeneration after axotomy. That is, O represents fully

occupied endplate; connected with intact axons, CP represents partially occupied

endplate which is connected to an intact axon; V represents that endplates and axons

are both degenerated completely.

The chart shows the percentages of different states of axons and synapses during

the degeneration process in young (8 days after birth) mice.
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6.4 Wlds Protein Expression in Cerebellar Granule Cells

As discussed in chapter 3 & 4, the Wallerian-like mechanism of synaptic

degeneration in heterozygous Wlf mice can be attributed to a decreased gene dose,

and similar degeneration pattern was also found in axotomised old Wlf mice.

The question remains whether the observed synaptic protection in old

homozygous Wlf mice and the similar mechanism of synaptic protection in young

heterozygous Wlcf mice may be accounted for by one single explanation. Could it be

all down to the age-dependence of Wlcf protein expression? Wlds protein is localized

to cell nuclei and is absent from neuronal cytoplasm, therefore Wlds protein localized

in the neuronal nuclei is sufficient to protect against PNS axonal degeneration, and

CNS synaptic degeneration from injury, and disease-induced neuro-degenerative

stimuli (Lunn et al., 1989; Gillingwater and Ribchester, 2001; Wang et al., 2001;

2002). Wlds protein expression was measured in cerebellar granule cells in order to

test this hypothesis, since cerebellar granule cells in the Wlf mouse have a consistent

and high level of expression of Wlds protein with about 90% of the population

containing at least one large nuclear spot bearing Wlds protein (T. Wishart PhD thesis,

University of Edinburgh). Overexpression of Wlds protein either in the cerebellum or

in transfected cell lines in vitro leads to downregulation and upregulation of several

other genes. However we do not yet know any of these always required for

expression of the protective Wlf phenotype (Gillingwater et al 2006b).
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Antibody Wld-18 targets a unique 18 amino-acid peptide in the Wlds protein in

this experiment. This peptide is coded by DNA normally contained within the 5'

untranslated region of Nmnatl, expressed between the Ube4b and Nmnat portion of

the Wlcf chimeric gene. This Wld-18 antibody is both specific and versatile, hence

immunocytochemistry can be used to visualize the Wlds protein expression level.

Protein expression varied within cell types, some neurons showed intense particulate

Wld18 protein staining, while others showed very fine speckling staining (Fig 4.1). In

my study, Wlds protein expression in cerebellar granule cells showed strong punctate

expression of the mutant protein using an immunocytochemical method. All cells

were visualized by immunofluorescence using a W/^-specific primary antibody,

TRITC-conjugated secondary antibody, and topro-3 for the nuclei.

The mean intensity of rhodamine fluorescence was measured by confocal

microscopy. In homozygous Wlcf mice, Fang et al (2005) also showed that Wlds

protein is expressed in the nuclei of both neuronal and non-neuronal cells in the brain

and the spinal cord, the intensity of protein expression varied from cell to cell and the

size and shape of Wlds proteins were different, Another factor might be that more

protein expression can be observed with increasing of the laser power, for instance,

with varying laser power, the intensity and size of Wlcf dots became brighter and

larger in the young heterozygous, homozygous and old homozygous Wlcf cerebellum

preparation as visualized by confocal microscopy. In order to analyse variation in

Wlds protein expression in different types of Wlcf mice, the intensity of protein
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expression was measured at varying laser powers, namely 20%, 30%, 40%, 50%, and

60% of the maximum. The immunocytochemical data (Graph 4.7 B, C, D)

demonstrate that firstly, the intensity levels of Wlct protein expression were evidently

reduced in both young heterozygous and old homozygous Wlct mice following

increasing laser power, compared with the intensity expression in young

homozygous Wlct mice.

Regarding the influence of mouse age, this finding does not prove but is

consistent with the cause of Wallerian-like degeneration in old axotomised Wlct mice

being a reduction in protein expression level. By analysis, my immunocytochemical

suggests protein expression level was relatively higher in old Wlct mice, in

comparison to young heterozygous Wlct mice, due to a few partially occupied

endplates remaining during the degeneration process in old Wlct mice. It can hence

be postulated that this protein expression level in old Wlct mice should still prevent

some neurons from degenerating. Fang et al (2005) have shown that the intensity of

protein expression varies in different cells in the brain and spinal cord of Wlct mice.

Therefore, we can speculate that the intensity of Wlds protein expression in some

neurons is higher than in other neurons, and that these would have stronger

protection from axonal and synaptic degeneration than others. Nevertheless, these

various responses are not evident in young homozygous Wlct mice, perhaps for the

reason that the Wlct protein level is more than sufficient in these mice to prevent

axons and synapses from degeneration, whereas, following decreasing gene dose and
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increasing mice age, these various responses become apparent, This hypothesis could

help us to explain the different degeneration states in young heterozygous and old

homozygous Wlct mice after axotomy.

However, this finding is incompatible with earlier western blotting analysis of

Wlds protein expression in brain, which suggested that expression level of the mutant

protein does not change with age (Gillingwater et al, 2002). On the other hand, the

immunostaining method is has a better spatial resolution compared to western

blotting. For instance, when performing western blotting, the whole population of

cells from the tissue sample is homogenized, proteins are extracted, run on a

denaturing gel, transferred to a blot and detected by specific antibodies. The intensity

of the detected band on a western blot therefore reflects the average expression level

of the protein in that population of cells. In immunohistochemistry, tissues are

sectioned, cells are fixed, (permeabilized) and stained in situ. The intensity of

staining (i.e. dots) indicates the expression level of that protein in particular cells.

The Wlc? gene has been sited in the region of the distal mouse chromosome 4

(Lyon, 1993), and subsequently identified to be an 85-kb tandem triplication

(Coleman, 1998). This finding led to the discovery of a chimeric gene which contains

the 5' end of Ube4b and the Nmnat (Conforti, 2000; Emanuelli et al., 2001), a key

enzyme which plays an important role in the synthetic pathway of NAD+. The third

gene, Rbp7, is a novel member of the cellular retinoid-binding protein family that is
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highly expressed in white adipose tissue and mammary glands. The protection

mechanism of the Wlct gene has not yet been delineated, although some studies have

suggested that Nmnat could play a critical role in the neuro-protective effect in

neuron in the Wlct mice.

This immunostaining finding may therefore help to explain that morphological

phenomenon of axotomised synaptic degeneration in the young heterozygous and old

homozygous Wlct mice found in the previous work, namely, the weaker synaptic

protection by Wlds protein compared to axonal protection in both young

heterozygous and old homozygous Wlcf mice following nerve section, and the

similar appearance of synaptic degeneration patterns in axotomised young

heterozygous and old homozygous Wlct mice.

Furthermore, it confirmed that Wlds protein has a strong influence in axonal

degeneration in Wlct mice. Naturally, the results of the CNS Wlds protein expression

may not provide enough evidence to explain the morphological results in the PNS,

thus, both western blotting and immonstaining on Wlds protein of spinal cord of

heterozygous and old homozygous Wlct mice would be logical next step to further

test this hypothesis in the future.
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6.5 Effect of Extrinsic Factors on Synaptic

Degeneration

6.5.1 The Effect of Length of Nerve Stump

The sciatic nerve is the largest single nerve in the mammal; it runs from each

side of the lower spine down through the posterior thigh, and all the way down to the

foot, connecting the spinal cord with the leg and foot muscles. The tibial nerve is one

of two major divisions of the sciatic nerve, supplying the hamstring muscles, the

muscles of the back of the leg, the muscles of the plantar aspect of the foot, and the

skin on the back of the leg and on the sole of the foot. The distance from the injury

sites in the sciatic and tibial nerves was almost 2cm, roughly the same distance from

the tibal nerve lesion site to the lumbrical muscles. Since the distance from the tibial

nerve to the foot is shorter than that from the sciatic nerve, synaptic degeneration

following tibial nerve section was expected to be more rapid than that following

sciatic nerve section. However, in the equivalent period following tibial nerve

axotomy, synaptic terminals degenerated slightly slower than that followed sciatic

nerve surgery. The data didn't show the significant difference between sciatic nerve

surgery and tibial nerve surgery. Previous studies suggested that increasing the

length of the distal axonal stump alters the rate of degeneration in wild-type mice

(Luco and Eyzaguime, 1955; Birks et al., 1960; Miledi and Slater, 1970). Moreover,
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Ribchester et al (1995) suggested that an increase of 1 cm in the length of the distal

stump delayed degeneration by about 1~2 days in Wlct mice.

The present data are at variance with these findings. Of note, previous studies

based their conduction on physiological measurement, whereas my study used

anatomical measurement. It is possible that the physiological integrity of axons and

synapses is more sensitive to nerve stump length than in their structural presence.

Differences in the rate of degeneration measured physiologically and anatomically

have also been reported (Ribchester et al., 1995; Gillingwater et al., 2002; 2003).

6.5.2 Dose and Injection Site

Botulinum toxin was used to test the possible role of synaptic activity in

degeneration, since this toxin blocks all neurotransmitter release (Bhidayasiri et al.,

2005; Rossetto et al., 2001). The dose and injection site of the botulinum A are

critical factors which directly affect the experiment result outcome. Since botulinum

toxin A is highly toxic, too high a dose of toxin would cause the animal to die, while

too small a dose would be ineffective in blocking synaptic transmission and hence,

preclude any effective result. Moreover, Borodic et al (1994) suggested that, the

higher the dose and volumes of BoTox Injection, the greater the penetration of the

toxin through muscle fascia, yet the lesser the spread which is reduced by

approximately 20-25% (Shaari et al., 1991). The dose used in my experiment was a

3-5pl injection containing 1-1.5 ng Botulinum Toxin Type A in mice. This range was
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sufficient to block neuromuscular transmission (see methods P146) in the injected

groups of mice (Variation in the volume and amount of BoTox injection were

required to avoid toxicity).

Likewise, to obtain a maximal effect of BoTox, the injection site is another

major determinant. In the present experiments I compared the effects of BoTox

injection into young mice and mature mice. Since the purpose of this experiment was

to test the effect of BoTox on synaptic degeneration in the NMJs of the foot, the

center of the sole seemed an ideal injection site. Stimulation of the tibial was done

before isolating the lumbrical preparation, and an absence of contractile response

was taken to indicate that the dose and route of administration were appropriate for

the present experiments.

6.5.3 BoTox Effects on Synaptic Degeneration

Following local injection into muscles, the BoTox enters the nerve terminal via

endocytosis, interacts with intracellular proteins SNAP-25 and inhibits the

neuromuscular junction. Inhibiting Ach release produces paralysis of the affected

muscles (Bhidayasiri et al., 2005; Rossetto et al., 2001).The characteristic of Wlcf

mice is slow Wallerian degeneration following the nerve injury, five days after

tibial nerve injury in Wlcf mice many endplates were still occupied, indicating

protection by the Wlcf gene was not reduced by BoTox injection. Given the

inhibiting effect of BoTox, the inactivity of synapses may well provide additional
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protective stimulus. Thesleff et al (1990) suggested that BoTox blockade delays and

prevents the retraction of synaptic terminals and motor neuron death during

development. It has also been shown that the pattern of synaptic degeneration in Wlct

mice is similar to that in neonates (Mattison et al., 1996; Parson et al., 1998;

Ribchester et al., 1999).

The results show in Fig 5.10, therefore suggest that BoTox could possibly

provide some protection against synaptic degeneration, in addition to the protective

effects of the Wlds gene, but the effect is rather slight. Since BoTox also blocks

synaptic transmission, its utility as a neuroprotective agent is likely to be minimal.

6.5.4 BoTox Effect on the Mature Wlcf Mice

In the previous chapters, I showed that synaptic terminals are slowly withdrawn

from axotomised endplates in young Wlct mice, yet this synaptic protection

phenotype is absent following axotomy in mature mice, despite the axons being still

protected from degeneration by the Wlct gene (Gilllingwater et al., 2002). In my

experiments on 7 months old Wlcf muscles, at 2 days post axotomy, most terminals

had showed fragmented and degenerative signs. In the present study, 3pl BoTox was

injected in the mice's hind feet, however, the data as presented in Figure 5.3 that this

was not sufficient to prevent rapid degeneration of synaptic terminals in mature Wlct

mice. It is hence difficult to conclude that synapses are protected strongly from

degeneration by BoTox at 3 days post axotomy, although a few endplates remain
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partial or fully occupied at this time point, Nonetheless. However, it is clear that

BoTox did not affect synaptic degeneration at 7 days post axotomy, since by this time

100% endplates had degenerated completely.

6.6 Compartmental neurodegeneration

Previous studies of the reaction of cell bodies, axons and synaptic terminals in

axotomised Wlcf mice suggests, that mechanisms of degeneration are

compartmentalised in neurons (Gillingwater and Ribchester, 2001). My current

findings, in the morphological study rather than the molecular mechanism study have

given some evidence to confirm this. For example, the time course analysis of NMJs

in these mice has shown that the rate and pattern of synaptic degeneration after

axotomy are apparently influenced by gene dose and mouse age in Wlcf mice, while

the axons are only affected slightly. Moreover, in axotomised heterozygous and old

homozygous Wlcf mice, DF and CP states were found to exist simultaneously during

the synaptic degeneration process, that is, synaptic terminals could take more than

one pathway to degenerate in young heterozygous and old homozygous Wlcf mice

after axotomy. One is similar to wallerian degeneration, and the other is a withdrawal

process similar to developmental synapse elimination in neonates. Therefore, from

the morphological study, it may be suggested that, in motor neurons, synapses have

an independent mechanism to degeneration, compared with axons and their cell

bodies.
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6.7 Neurodegenerative diseases

Synaptic degeneration is the early stage of neuron degeneration in many

neurodegenerative diseases. For example, Alzheimer's disease is considered to be

mainly a kind of disease of synapses (Selkoe, 2002; Gillingwater and Ribchester,

2003). In Huntington's disease, synapse abnormalities are related with the

deterioration of motor and cognitive abilities in the central nervous system (Wishart

et al., 2006). In motor neuron disease, synapse loss is known to occur during the

early stages of Amyotrophic lateral sclerosis in the SOD1 transgenic mice model, and

the degeneration pattern of synapses is via piecemeal retraction, which is similar to

the pattern in young axotomised Wlct mice and mice neonate (Maselli et al., 1993;

Frey et al., 2000; Schaefer et al., 2002; Gillingwater and Ribchester, 2003). However,

it should perhaps be always borne in mind that synapses may be extremely

vulnerable to any malfunction, wherever it may occur in a neuron. For example, it is

otherwise healthy synapses that degenerate first after axotomy, as this thesis and

previous studies have shown. This does not mean, of course that protecting synapses

should not be the goal of treatment for neurodegenerative diseases.

Further studies of axotomy-induced synaptic degeneration in the PNS could also

provide more insight to help us understand and examine axotomy-induced synaptic

withdrawal in the CNS and the mechanisms of remodeling in central connections,

such as that in the developmental organization of the visual system and the
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cerebellum. Gillingwater et al (2006a) who studied synaptic degeneration of the CNS

in young Wlcf mice showed that the synaptic degeneration pattern is distinct from the

PNS. In the CNS, the onset of synaptic degeneration is delayed by the Wlcf gene, but

once it occurs, the form of degeneration appears similar to wild type.

A recent study showed that the Wlcf gene has a stronger protection on synaptic

degeneration in axotomy-induced transgenic rat than in Wlcf mice. Moreover, the rat

model has advantages over the mouse model for studying neurodegenerative disease

(Adalbert et al., 2005). Some of the limitations studying mouse model disease will

also be overcome in other mammalian species models (Gillingwater et al., 2006a).

The PDD analysis method is of benefit not only in Wlcf mice studies, but also for

Wlcf transgenic rats and other Wlcf transgenic mammalian species studies.

Although the mechanism by which Wlcf delays degeneration in synaptic

terminals remains unclear, the present study extends the limits of our knowledge

regarding synaptic degeneration in mutant Wlcf mice. It is known that there are

morphological and physiological similarities among naturally-occurring synapse

elimination in neonates, asynchronous withdrawal in young Wlct mice, and the

retraction pattern occurring in many forms of neuromuscular disease (Gillingwater

and Ribchester, 2003). Given the diversity of synaptic degeneration patterns in

axotomy- induced Wlcf mice under the influence of gene dose and mice age, Wlcf

mice would be a suitable target for studying the mechanism of synaptic degeneration
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in different neurodegenerative diseases. Therefore, the present findings may facilitate

us to extend the current knowledge of synaptic degeneration. Some of these provide

effective methods to study the mechanism of synaptic degeneration in Witf mice,

such as PDD analysis of NMJs and Wlds protein expression in cerebellar granule

cells. Others provide a way to delay the synaptic degeneration, such as, blocking

transmission by botulinum toxin. Thus, all data could possibly lead to useful

advances in the treatment of Alzheimeri's disease and other CNS diseases, such as

Parkinson's and Huntington's diseases, as well as PNS diseases like Amyotrophic

lateral sclerosis in the future.
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7. Conclusion
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In this thesis, Thyl-YFP16 Wlct mice were cross-bred with Balbc/bl6 mice to

produce heterozygous Wlcf mice with fluorescently-labeled motor neurons. Synaptic

degeneration after axotomy in these mice was compared with that in Wlct

homozygous and wild-type mice. These experiments constituted a test of the

hypothesis that protection of synapses in Wlct mice depends on the "dose" of the

chimeric gene. First, analysis using PDD diagrams provided insights into the pattern

of synaptic degeneration at the axotomised NMJs of wild-type and Wlct mice. The

main states of axonal and synaptic degeneration defined for PDD analysis, namely :

DF (Disconnected/fragmented) CP (Connected partial occupancy) O (Occupied), CF

(Disconnected/fragmented), and V (Vacant), were all identified during the

degeneration process in the different types of axotomised mice. Not all patterns

occurred in all types of axotomy-induced mice. Those I observed indicated the

different trajectories taken during synaptic degeneration following axotomy in these

sets of mice. By following these trajectories we may conclude that axonal and

synaptic degeneration occur by different mechanisms in homozygous and

heterozygous Wlds mice. Protection from synaptic degeneration by the Wlds gene is

therefore much more sensitive than axon degeneration to the Wlds gene dose.

Surprisingly, my studies of Wlct gene expression in the cerebellum provided

evidence that synaptic Wlct gene expression is reduced as Wlct mice age and that

this may explain why old Wlct mice lose their synaptic protection, even in

homozygotes. This outcome may explain the findings in my morphological studies
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that axonal and synaptic degeneration patterns are similar in heterozygous Wlcf mice,

old homozygous Wlcf mice and wild-type mice.

Thirdly, since the mechanism of the Wlcf gene protecting axons and synapses

from degeneration still are not clear so far, I looked for other factors which might

also have a protective effect on nerve terminal degeneration following axotomy.

However, I was only able to confirm some of the findings of previous studies. For

example, length of the distal nerve stump did not effect synaptic degeneration in

axotomised Wlcf mice: thus, nerve terminal degeneration following tibial nerve

section was no faster than that following sciatic nerve section. In addition, although

BoTox was found to delay synaptic degeneration in young axotomised Wlcf mice,

there was no effect in old axotomised Wlcf mice. Thus, of those aspects examined,

by far the most potent effects on synaptic degeneration were Wlcf gene-dose and

age.

More experiments should be done to extend these findings. First, PDD

analysis could be applied to neonates and to some transgenic mouse models of

neurodegenerative diseases, such as the SOD1 mouse model of ALS. Such analysis

may offer a stringent test of Gillingwater & Ribchester's 'compartmental

neurodegeneration' hypothesis. Second, single cell RT-PCR western blotting and

quantitative immunostaining should be used to examine Wlds protein expression in

motor neurons of young homozygous, heterozygous and old homozygous Wlcf
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mouse spinal cord. Third, chronic stimulation of axotomised distal nerve stumps

should be tested in Wlcf mice, to find out whether the apparent lack of effect of

blocking synaptic transmission with BoTox has its counterpart when transmitter

release is instead increased after axotomy. For instances, although BoTox has only a

slight effect on synaptic protection by Wlc?, whether increasing activity has minor or

dramatic effect remain completely unknown. Together, such studies could provide to

the insights we need to find better ways of protecting synapses in devastating

diseases such as ALS, and perhaps other neurodegenerative diseases as well.
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Appendix I

Neurofilament Synaptic Vesicle and AchR

Immunocytochemistry Protocol

1. Fix in 4% Paraformaldehyde 30-45 mins

4g Paraformaldehyde

100ml 1 x Phosphate Buffered Saline

Heat to 60-70°C Whilst stirring continuously

Add 4-5 drops of 0.1 M NaOH

Wait until solution clears

Chill to 4°C in fridge

2. Wash 3 times for 10 mins in fresh lx PBS

All steps now undertaken on a platform rotator at room temperature and in a
sealed dark box to keep light out.

3. Incubate in a 0.1 M glycine solution for 1 hour

4. Incubate in a fresh 5pg/ml TRITC-a-BTX solution for 30 mins

5. Wash 3 times for 10 mins (or 6 x 5mins) in blocking soln;

In lx PBS

4% BSA

0.5% Triton X-100

0.1M Lysine

6. Incubation in 1 antibody solution overnight:

4 ml Blocking solution
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20pl NF antibody

20pl SV2 antibody

7. Incubate for 1 hour in fresh primary solution

8. Wash 3 times for 10 mins in blocker

9. Incubate in 2 antibody solution for 4 hours

4 ml lx PBS

20pl FITC sheep-anti-mouse antibody

10. Wash 3 times for 30 mins in lx PBS

11. Mount preparation in Vectashied (Vector Laboratories Inc.) on a slide and
coverslip.

12. Store in dark box at 4 C

Fluorescence Staining for Wld3 protein

To make high Mg2+ACSF

(ACSF composition)

To 500ml distilled water add: 3.65g NaCl

1.05g NaHC03

2.25g Glucose

0.09g KC1

0.10g NaH2P04

0.5ml 1M solution CaCl2

2.0ml 1 M solution MgCl2
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1) Fix in 4% paraformaldehyde for 20 mins

2) Wash in PBS x 2 (lOmins)

3) Incubate in blocking solution overnight in cold room on rocker.

Blocker: 4g bovine serum albumin+0.5pl Triton-X+ 100ml PBS, dissolved on

hotplace

4) Remove blocking solution and apply Primary antibodies (Wld18 ab) overnight
at 4 C:

5) Wash in PBS x 3 (10 mins) at room temperature

6) Apply secondary antibodies overnight at 4 C.

TRITC or FITC: 50pl TRITC or FITC anti-rabbit ab + 950pl PBS

7) Wash in PBS x 3 (lOmins) at room temperature

8) Apply Topro-3 (lpl topro-3 stock + 1ml PBS) for 10 mins

9) Quick wash in PBS and mount in Mowiol.

Procedure for Wlds Protein Expression Analysis

1. Load Image in order of laser power (20, 30, 40, 50, 60 etc)

2. If necessary extract red channel

3. Make Large ROI (Save as Big Selection.roi)

4. Duplicate

5. Discard original image

6. Load next Image

7. Repeat 2-6 until all images loaded

8. Make Stack

9. Make 30 x 30 pixel ROI (Save as Selection3030.roi)

10. From lowest to highest laser power in stack:

11. Select spot

12. Measure

13. Next slice

14. From Results:
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15. Copy all

16. Paste into Excel

17. Select integrated density Column

18. Paste special: Values and Transpose

19. Paste to new line

20. Back to images

21. Clear Results

22. Load Selection3030.roi (if necessary)

23. Measure Background region in each slice

24. Copy Results to Excel

25. Select Integrated density

26. Paste Special Value Transpose

27. Subtract Background from Spot at each laser power

28. Plot graph of laser power vs. corrected brightness of spot (i.e. background
subtracted spot) for each spot

29. Calculate mean (average) and Standard deviation of spot brightness for all spots
at each laser power

30. Plot graph of laser power versus mean (average) and standard deviation of spot
brightness

31. Also keep mean value from each image

32. Calculate mean spot brightness from several images and standard deviation (=
standard error of the mean).

Non-sprouting Buffer

20mM sodium Acetate

lOOmM Arginine

1% Mannitol

lOOmM Sodium Sulphate

0.1% BSA (Albumin, Bovine)

pH 6.9
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For lOOmls

Component MW Wt Cone"

Na Ac 82.03 164.3mg 20mM

Arg. 210.7 421.4mg lOOmM

Mann. - l.Og 1%

Na S04 142.0 284.Omg lOOmM

BSA - lOO.Omg 0.1%

Dissolve above componets in distilled water.

Once dissolved adjust pH to 6.9 then pass through a 0.22|Jm millipore filter to
sterilize solution.

Split into aliquots and store in freezer.

Botulinum Toxin A- BoTox

Botulinum Toxin A from Clostridium botulinum

Supplier- Sigma Cat# B8776

LD5o for subcutaneous in mice is 4ng/kg

i.e. 0.12ng/30g mouse

50pl containing 15ng

lOpl 3ng

Dilute to 200pl*** 3ng

20pl 0.3ng

lOpl 0.15ng

5pl 0.075ng

***Dilute using non-sprouting buffer solution

Pipette into 30pl aliquots.
Store @ -20°C in freezer,

i.e. 6 expts @ 0.075ng/animal.
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Appendix II

Abstracts of the Neuroscience Conferences

FENS Forum 2004

For lectures, symposia and workshops, time indicates the beginning of the session.
For posters, authors are expected to be present at their posters at the time indicated.

Close window

First author: Fan, Li (poster)

Poster 42 - Mon 12/07, 16:00 - Hall I
Session 109 - Synaptogenesis II
Abstract A109.6, published in FENS Forum Abstracts, vol. 2, 2004.
Ref.: FENS Abstr., vol.2, A109.6, 2004

Author(s) Fan L., Gillingwater T. H., Thomson D., Thomson A. & Ribchester
R. R.

Addresse(s) Divison of Neuroscience, University of Edinburgh, Edinburgh, EFI8 9JZ, UK

Title Neuroprotective phenotype at neuromuscular junctions in homozygous and
heterozygous WldS mutant mice.

Text In WldS mutant mice axonal (Wallerian) degeneration is delayed 10-fold
after axotomy in homozygotes, resulting from expression of the chimeric
gene Wld (1). Synapses are less well protected and retract from endplates
after axotomy. With age, protection of neuromuscular synapses by the Wld
gene is lost completely. Here we examined the extent of synaptic protection
in heterozygous WldS mice. To generate heterozygotes, we cross-bred
BalbC mice with homozygous ThylYFP/Wlds mice, that also express
fluorescent protein in motoneurones. We compared synaptic and axonal
preservation 3-4 days after axotomy with homozygous Wlds and wild-type
thylYFP mice. Sciatic nerve lesions were performed under N20/halothane
anaesthesia. 1-4 days later, mice were killed and both tibial nerves
removed. Lumbrical muscles were also removed and postsynaptic
acetylcholine receptors were labelled with TRITC-a-BTX. In wild-type mice,
most axons had degenerated within 1-2 days. In heterozygous Wlds mice,
axonal preservation in the lesioned tibial nerve was similar to that observed
in homozygotes. However, virtually all (>95%) axotomised intramuscular
axon branches and motor nerve terminals at neuromuscular junctions in
heterozygous WldS mice had degenerated, as in wild-type mice. This was
distinct from both young (1-2 month old) homozygous WldS muscles, where
90-100% of nerve terminals persisted at 3 days post axotomy, and older
WldS mice (>7 months) where synapses were lost but preterminal axons
remained. The data support a compartmental model of
neurodegeneration(2) and suggest that moderate levels of Wld protein
expression are not sufficient to protect synapses from the effects of
axotomy. Regulation of other factors will be required to fully protect
synapses from degeneration or elimination.
1. Mack, T. G. A. et al. (2001). Nat Neurosci 4:1199-1206
2. Gillingwater et al (2002) J. Physiol. 543.3.

Theme Development
Synaptogenesis and activity-dependent development / Synapse formation:
PNS
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Program Number: 670.16 Day / Time: Tuesday, Nov. 15, 11:00 AM - 12:00 PM

Rapid degeneration of motor nerve terminals in heterozygous WldS
mice

L.Fan; T.H.Cillingwater; J.E.Haley; D.Thomson; A.Thomson; R.R.Ribchester SPON: British
Neurosci. Assoc.

Centre for Neuroscience Research, Univ. of Edinburgh, Edinburgh, United Kingdom

WldS mutant mice express a chimeric gene that delays Wallerian degeneration by about a
factor of ten. Synapses are less well protected and with age, protection of neuromuscular
junctions is lost completely (Gillingwater et al., 2002, J Physiol. 543, 739-755). Here we
focused on neuromuscular synaptic protection in heterozygous WldS mice. We mated
ThylYFP16/WldS homozygous mice with BalbC mice. Sciatic nerve lesions were performed in
F1 heterozygotes under N20/halothane anaesthesia. Mice were killed and lumbrical
muscles with attached nerves were removed 6-240h later. ACh receptors were labelled with

TRITC-0f-BTX. Axonal preservation in these WldS/+ mice(ca. 100%) was indistinguishable
from WldS homozygotes for at least 72 hours. But virtually all motor nerve terminals became
fragmented and disconnected from their parent axons in WldS/+ mice within 24 hours, as in

wild-type mice. At 17 hrs, 80.68—3.66% (S.E.M., n=3 mice) of terminals in WldS/+ mice had

degenerated in this fashion, compared with 88.11—4.72% (n = 3) at 14.5 hours in +/+ mice.
The rapid synaptic degeneration in heterozygotes contrasted with more gradual and

asynchronous synaptic retraction in young adult WldS/WldS mice. At 5 days, 80.76—2.12%
(n=4 muscles) of motor nerve terminals in WldS/WldS mice were still connected to their

parent axon terminals although 58.82 — 3.67% of these only partially occupied motor
endplates. Older WldS/WldS mice (> 7 months of age) showed rapid synaptic degeneration,
as in young WldS/+ mice. Immunostaining showed similar numbers of neurones strongly
expressing WldS protein, but the intensity of staining in WldS/WldS was about twice that in
WldS/+ mice. The expression levels did not decline with age. The data confirm that synaptic
protection is sensitive to WldS gene dose but high levels of WldS protein expression are
insufficient to preserve neuromuscular synapses in mature mice. Attempts to transfer
WldS-induced neuroprotection to neurological mutants should take account of these factors.
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