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Abstract 

The basis of this project was to synthesise novel aromatic heterocyclic hosts, with 

two and three adjacent hydrogen bond acceptor (A) sites in AA and AAA 

arrangements. They have been used to study the binding affinity with donors (D) in 

AA-DDD and AAA-DDD heterocomplexes. In order to produce the targeted AA and 

AAA systems, new synthetic methods and techniques such as flash vacuum pyrolysis 

(FVP), Buchwald-Hartwig coupling and Suzuki coupling chemistry, etc. were 

employed. 

The FVP approach allowed the synthesis of naphthyridine ring systems in only two 

steps from substituted Meidrum's acid derivatives after cyclisation at high 

temperature. In the second approach palladium catalyzed coupling was used to 

provide heterocyclic diarylamines from readily available pyridine or naphthyridine 

precursors, with subsequent ring closure under acidic conditions. This approach led 

to the synthesis of new compounds: dipyri do[ l,2-a;2',3'-a]pyrimidin-5-one  106 

(AA) and 1 ,6a, 11,1 2—tetraaza-naphthacene-6-one 110 (an AAA hydrogen bonding 

unit) in high yields. The Suzuki coupling strategy afforded compounds: 

dibenzo[cfI [1,8] naphthyridine 117 (AA) and 1,13,1 4-triazadibenz[a,j]anthracene 

120 (AAA). Their extended aromatic framework is thought to help overcome 

stability problems during binding studies. 

For the binding studies, the selected DDD counterparts were dihydropyridines 1, 2,6-

bis(hydroxy-methyl)-p-cresol 124 and protonated 2,6-diaminopyridine (with a 

lipophylic tetraarylborate counter-ion) 125 developed as a cationic DDD unit. 

Ka  values for 1•117 (8.6 x 10 M d ), 1106 (6.2 x 10 M') and 124•120 (2.4 x 104 M-

1 ) were determined by 1 H NMR titration experiments in chloroform-d solution. The 

other AAA-DDD heterocomplexes 1.110, 1•120 and 125•120 display very high 

binding stabilities (Ka  > lO M1 ) and these Ka  values were determined using 

fluorescence spectroscopy. In this way accurate assignment of Ka  = 1.4 x 106 M- I  for 

the 1.110 heterocomplex, Ka  = 2.6 x 10 M' for the 1'120 heterocomplex and Ka= 

3.8 x 10 M' for the cationic 125120 heterocomplex were determined. The 

experimental binding constants were in qualitative agreement with molecular 

modelling calculations for 1110 and 1•120 heterocomplexes. The extremely high 
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binding stability of all these heterocomplexes is attributed to the combination of 

cooperative secondary interactions and strong electrostatic energy. All these factors, 

with additional cationic charge in the 125•120 heterocomplex, makes binding 

exceptionally strong in this case so that 125•120 is the most stable AAA-DDD 

heterocomplex reported so far. 

KEYWORDS: Hydrogen bonding, AAA-DDD heterocomplexes, supramolecules 
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Chapter 2 

Introduction 

In this introduction, the factors influencing the formation of hydrogen bonded 

complexes will be discussed, followed by a comprehensive review of triple and some 

quadruple hydrogen bonded systems in all arrangements. The importance the 

acceptor-acceptor-acceptor (AAA)/ donor-donor-donor (DDD) arrangements will 

become apparent and this is the subject of the experimental results in this thesis. 

An excellent review of hydrogen bonded complexes appeared in 2000.1  The purpose 

of this chapter is to summarize this account and to update it with advances in the 

field over the last 6 years. 

1.1 Self-assembly challenge 

Many examples of self-assembly can be found in biological systems and are 

used as inspiration for scientists from numerous disciplines in the hope of learning 

to design and control the behaviour of self assembling systems. "Self-assembly, an 

essential process for creating and maintaining the organisation of complex 

biological systems has provided a special challenge for biomimetic chemists" was 

thus described by Zimmerman and Corbin .2 

The most striking example is the DNA double helix formed from two 

complementary deoxyribonucleic acid strands under the right conditions. The 

thermodynamically stable double helix forms spontaneously and reversibly as the 

strands are mixed together and hydrogen bonds form between complementary base 

pairs (Figure 1.1). Self-assembly allows access to very complex architectures not 

accessible in traditional multi-step synthesis with many potential applications from 

information storage to drug delivery. 3  Nature's use of purines and pyrimidines as 

the storage units of genetic information was the inspiration for many chemists to 

use the heteroaromatic modules as recognition units for self assembly. 

16 



Chapter 2 
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Figure 1.1 Hydrogen-bonded complementary A-T and G-C base pairs in DNA (Image courtesy of the 

U.S. National Library of Medicine). 

A more complex example of self-assembly is found in living systems such as the 

tobacco mosaic virus (TMV)4  which consists of a single RNA strand and 2130 

protein subunits within the capsomers 5  (Figure 1.2). Virus's superstructure is formed 

when protein blocks self-assemble around the RNA strand (16.3 proteins per helix 

turn) driven by non-covalent interactions and hydrophobic forces. 

) 

r f  

it 

f, 

Figure 1.2 The capsomers (orange) grow into a spiral and self-assemble around RNA strands (red) to 

form the cylindrical shape of the tobacco mosaic virus (Image courtesy of the H. Wang and G. Stubbs 

from Vanderbilt University). 
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The DNA and RNA base-pairing systems have been used in numerous model studies 

providing a considerable body of quantitative binding data as do the many host-guest 

studies that have targeted the nucleobases with heteroaromatic hosts.4' 6-10 

Preference for heteroaromatic compounds in binding studies is due to their 

geometrically well defined, rigid structure often with a linear, array of hydrogen 

bond donor (D) and acceptor (A) groups present on the edges of the heterocyclic 

system. The main disadvantages for using them as building blocks in host-guest 

studies are solubility problems and difficulties in controlling the tautomenc forms. 

This introduction presents a short review of all relevant factors determining stability 

and strength of hydrogen bonded interactions in the directed heteroaromatic 

assemblies which have been employed to date, with the focus on heteroaromatics 

with a linear array of triple hydrogen bonded surface. 

IV 



Chapter 2 

1.2 Factors affecting complex stability 

The key factor in determining the correct self-assembled structure is the 

complementarity with which individual components assemble. The most important 

example of complementarity is base pairing in the DNA double helix; adenine 

complements thymine (A-T) and guanine complements cytosine (G-C) with 

formation of two and three hydrogen bonds, respectively (Figure 1.1). At the same 

time many other factors affect the direction and stability of complexation such as: 

strength and number of individual hydrogen bonds, arrangement of hydrogen 

bonding sites, geometry of the hydrogen bond surface, cooperativity effect, host 

preorganisation, tautomeric forms, solvent effect etc., and they will be discussed 

below. 

1.2.1 Hydrogen-bond interactions 

The stability of any hydrogen-bonded complex is determined by the 

strength of the individual hydrogen bonds. Hydrogen bonding arises from a 

combination of electrostatic, inductive, charge-transfer and dispersion energy 

effects. 11  Electrostatic interaction between the partially positive hydrogen atom of 

the donor site and the lone pair of the acceptor site plays the largest role (Figure 1.3). 

The strength of a single hydrogen bond in the gas phase is typically of the order of 

2-20 kcal moF', much less than the energy of a covalent bond (35-135 kcal moF'). 

1
-4 N—H 

donor 	acceptor 

Figure 1.3 Typical hydrogen bond. 

Jeffrey and Saenger' 2  have concluded that the energy of an individual hydrogen bond 

between uncharged groups is 1.0-1.4 kcal moi', whereas that involving a charged 

19 
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group is slightly higher (1.5-2.8 kcal moF'). When both donor and acceptor are 

charged, the energy of a hydrogen bond rises to 4 kcal moi'. Six years later 

Schemer' 3  reports that the energy of the H-bonds when either donor or acceptor is 

charged becomes much stronger then thought previously in the range of 10-45 kcal 

moi'. This allows us to create a model where increasing the positive charge upon the 

donor proton or increasing the negative charge upon the acceptor atom are both 

expected to increase the strength of the interaction. In that respect, Wilcox and co-

workers 14  investigated the effect of substituents on the strength of hydrogen-bonding 

interactions between thioureas and a zwitterionic sulfonate (Figure 1.4). 

NO 2  

C8 H, 
I 	I 

H  

S NN 

G 
NBu3  

Ka  = 6600 M 1  (CDCI3)  

S 	
-..NMe2 

C8H17...NAN) ) 

H1 

á ,oe 

"0 
NBu3  

Ka  = 10 M 1  (CDCI3) 

Figure 1.4 Urea-sulfonate dyad studied by Wilcox and co-workers. 14 

The association constant measured in CDC13 ranged from 6600 M' for a 

nitrobenzene-substituted receptor to 10 M' for a receptor featuring the 

dimethylanilino substituent. This corresponds to the difference in binding energy of 

3.8 kcal moF' and is due to an increase in hydrogen bond donating capability by the 

proximal N-H group. 

1.2.2 Number of hydrogen bonds 

The number of hydrogen bonds in general, plays an important role in 

determining the strength of complexation. In Figure 1.5 three heterocomplexes 

involving two 1•2, three 1•3 and six 4'5 hydrogen bonds are compared, as 

determined by Zimmerman and co-workers. 6' 15,16 

011 
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1 NO2 	 NO2  

00H O 

=t 	 OEt 	EtQ)flj(OEt 

H3C N N N 	 N N 

((2I 	
Ph N N N Ph 

2   3LJtL 
Ka  = 260 M 1  (CDCI3) 	Ka> 105 M 1  (CDCI3 ) 	Ka  = 5 X 105  M 1  (CDCI3 ) 

Figure 1.5 Heterocomplexes developed by Zimmerman and co-workers6' 15. 16 with two, three and six 

hydrogen bonds. 

The triple hydrogen bonded assembly 1•3 exhibits a significantly higher stability (Ka  

> 105  M") than the corresponding motif based on two H-bonds 1'2 (Ka  = 260 M'). 

However the heterocomplex based on six hydrogen bonds 4•5 has a very similar 

association constant (Ka  = 5 x 10 M') to that of the triple hydrogen bond motif 

although three additional hydrogen bonds have been introduced. This indicates that 

the number of hydrogen bonds is not the only important factor in determining the 

binding strength. 

1.2.3 Arrangement of hydrogen bonding sites 

Rich and co-workers 9  systematically compared the experimental binding 

data available for the 3-H bonded dimeric complexes 6•7, 8•9 and 3•10 (Figure 1.6) 

in chloroform-d and found very different binding stabilities ranging from 102  to l0-

i05  M'. These differences in stabilities have been largely attributed to attractive and 

repulsive secondary interactions as exemplified by the "Jorgensen model"7' 18  and 

"Schneider's rule". 19  Jorgensen proposed that secondary electrostatic interactions 

arising from the arrangement of the hydrogen-bond donor and acceptor groups is a 

critical factor in determining the complex stability. 

21 
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Sartonus and Schneider derived a simple empirical rule using the Jorgensen model to 

predict the binding strength of a given complex. They postulated that free energy for 

dimerisation consists only of two increments: a contribution of 1.88 kcal mor 1  for 

each H-bond and ± 0.7 kcal mor' for each attractive or repulsive secondary 

interaction. 19 

Stabilization arises from electrostatic interaction between positively and negatively 

polarized atoms in adjacent H-bonds, whereas destabilization is likewise the result of 

electrostatic repulsion between two positively or negatively polarized atoms (Figure 

1.6). 

H 7  
H3C 	0- -H—N' 	N 

>= 

CA 
I43C 	0-- 4-I—N 

H 

K1  = 102  NtI (COd3) 

H. 	S 

K. = 104  M 1  (COd3) 

Ph 

g\N---H-q4 
HO 10 

—OPrr

-H_N )(H  
Ar 

HN o0 

Ph 

K 1 > iO M 1  (CDC) 

D 

	

D 
	

A D 
. A 

A D 
	

A D 
	

A D 

irnary hY&Ofl  bond >< attractive and >( reptiswe secondary interactions 

Figure 1.6 The effect of attractive and repulsive secondary interactions on binding strength - 

demonstration of the "Jorgensen secondary interaction" model. 

Formation of the AAD-DDA system involves two attractive and two repulsive 

secondary interactions whereas in the weakest ADA-DAD complex all secondary 

interactions are repulsive. The Jorgensen model predicted the highest association 

constant for an AAA-DDD complex 3'10 with exclusively four attractive secondary 

interactions and that has been proven experimentally by Zimmerman and Murray. 20 
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1.2.4 Cooperativity 

Cooperativity21  plays an important role in maintaining the stability and 

selectivity of biological systems and is partly responsible for the ready formation of 

the DNA duplex. Hunter and co-workers22' 23  employed this approach in developing 

the "zipper" complex (Figure 1.7a) which is held together by a combination of 

multiple hydrogen bonding interactions between different amide units with additional 

edge to face ir-t interactions in the spacer. The dimer has an association constant of 

1.1 x 103  M'. The modified approach developed by Gong et a124  involves the 

covalent synthesis of modules of rigid linear arrays of multiple H-bonding sites 

(Figure 1.7b) and this dimer has an association constant of i0 9  M'. 

b) 

R 
H-N 

R: 

R 

C8H 17-d 	)=O ---  

=Po-R 

H- N 

C8 H 17 -Q 	>=O ---H-N 
H-N ~=O 

N-H 

R-Q0 

N. 

Ka 1.1 x1O3 M 1  (CDCI 3 ) 
	

Ka > 1.3 X 109  M 1  (ODd 3 ) 

Figure 1.7 Multidentate zipper complexes as reported by a) Hunter and co-workerS 22  ' 23  and b) Gong 

and co-workers. 24 
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These two different strategies use as the key factor, a positive cooperativity effect 

between individual H-bonding sites to increase the stability of H-bonded assemblies. 

Although both complexes have the same number and arrangement of hydrogen 

bonds, the difference in the binding stabilities of 10 kcal moE' is largely contributed 

to the rigid geometry of binding sites in the later example. 

1.2.5 Other factors 

There are a few other factors that will determine the strength with which 

heteroaromatic modules pair, such as host preorganisation (Part 1.3.2), tautomeric 

forms of heterocyclic units (Part 1.4), solvent effects and these will be discussed in 

later sections. Chloroform is the most common solvents used in complexation and 

self-assembly studies. Chloroform is preferred because it is not highly competitive 

for hydrogen bond donor and acceptor sites, yet it is a good solvent for dissolving the 

heteroaromatic compounds. in cases when the complex is not soluble in chloroform 

the usual way to solubilise it is to synthesise analogues with introduced lipophilic 

groups as seen in many examples (Figure 1.8, Figure 1. 12, Figure 1.20, etc.). 

1.3 Triple hydrogen bonded heteroaromatic motifs 

In this part all relevant examples of heteroaromatic modules with triple 

hydrogen bond motifs (ADA, DAD, AAD, DDA, DDD and AAA) will be covered. 

Their complementary dimenc modules (ADA-DAD, AAD-DDA and AAA-DDD) 

will be considered together with selected examples of their use in supramolecular 

formation. 

1.3.1 ADA and DAD Heteroaromatic motifs 

The ADA-DAD system is the most common binding motif used in 

complexation studies due to a number of available compounds that can used as 

hydrogen bonded ADA or DAD units. Although the weakest of all triple hydrogen 

bonded heterocomplexes (Part 1.2.3), it is the best studied and a number of series of 
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ADA-DAD complexes with their corresponding Ka values have been measured in 

chloroform-d. The first series was developed by Rich and co-workers 9  and is 

presented in Figure 1.8. 

r N6H h1 

HN N H 

N 

Et 

Ka  = 170 M 1  

Me 	N6Hh1 
12 

HN)(N H 

N \  

Et 

Ka  = 210 M 1  

Br. .N.C6H11  
1 

H N)(N H 

'—N 7 
Et 

Ka  = 500 M 1  

Figure 1.8 Hydrogen bond complexes containing the ADA-DAD arrangement developed by Rich and 

co-workers. 9  Association constant measured in chloroform-d. 

The Ka values range from 100 M- 1  (6.7 complex, Figure 1.6) to 500 M- I  for the 13.7 

complex although the DAD unit 7 was the same and only the ADA unit has been 

changed from 6 to 13. The difference in binding strength is attributed to the 

substituents incorporated into the aromatic ring of units 6, 12 and 13. Binding 

stability can be enhanced using substituent effects as discussed in Part 1.2.1 and 

illustrated in heterocomplex 13•7, the strongest in this series. 

Hamilton and Engen 25  used new a diamidopyridine based DAD unit (15) in an ADA-

DAD array (Figure 1.9a) which is developed as a part of a study of synthetic 

receptors for biologically active molecules. The binding constant of 14•15 

heterocomplex was only 90 M' but the effort was made to design the complement to 

the targeted receptors using the strategy of substrate induced organization of the 

binding site. 
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a) 
MeN.Bu 
14 

:_ 

Pryty
Pr  

15 

b) 

U.":  
16 

Ka  = 90 M 1  

Figure 1.9 Hydrogen bond complex 14.15 in ADA-DAD arrangement with macrocyclic DAD 

receptor 16 developed by Hamilton and Engen. 25  Association constant measured in chloroform-d. 

The approach was to assemble hydrogen bonding and hydrophobic groups within a 

macrocyclic structure such as compound 16 (Figure 1.9b) that can form a cavity 

complementary to the nucleotide base substrate. After substrate complexation, the 

naphthalene unit lay approximately parallel to the plane of the thymine unit, as seen 

in receptors for nucleotide base substrates. The structures of the macrocycle 16 and 

complex 14•16 have been confirmed by X-ray crystallography (Figure 1.10) and the 

ADA-DAD pairing was clearly seen in an X-ray analysis of the crystalline complex. 

J-H 
	 Guest 

/ J  

Figure 1.10 X-structures of 16 and 14.16 complex. Figure reprinted from Hamilton A.D and van 

Engen D.25  
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The binding constant of the complex 14•16 measured in chloroform was 290 M' (vs. 

90 M 1  for 14•15, Figure 1.9a), analyzed by Hamilton. 25  The added stability of 14'16 

system is in the combination of a hydrogen bonding array and 7t-stacking 

interactions, clearly seen in the solid-state structure. 

The most commonly used ADA unit within ADA-DAD arrays contains 

pyrimidine-2,4-dione nucleus such as 11, 12, 13 (Figure 1.8) and 17, 20 (Figure 

1.11). They are easily synthesised in one step by N-alkylation of thymine or uracil 

with an alkyl halide. Heterocomplexes 17.18 and 17•19 were developed by Rebek 

and co-workers, 26  and systems 20'21 and 20'22 were designed by Meijer and co-

workers. 27  The Ka values measured in CDC13 range from 436 to the 900 M' 

respectively. 
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18 OMe 

Ka  = 900 M 1  

17 
N CO2Me 

j 
ONO 

H 

H H 

NN 

19 	Ar 
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C5 H11yN N NyC5H 11  
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21 	OMe  

Me 	N - Pr 

20 

H y Ny H 

22 

N-N 

12 25 

Ka  = 436 M 
	

Ka  = 890 M 

Figure 1.11 Hydrogen bond complexes in ADA-DAD arrangement developed by different 

authors. 26,27  Association constants were measured in chloroform-d. 
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A number of compounds can serve as DAD units, and many of them are 

commercially available (e.g. diaminopyridine, diaminopyrimidine, melamine etc.) or 

readily available such as diamidopyridine derivatives 15 (Figure 1.9), 18 and 21 

(Figure 1.11) and diaminotriazines as 19 and 22 (Figure 1.11). 

Dimeric systems containing ADA modules are synthesised by alkylating appropriate 

thymine or uracil analogues with an alkyl dibromide as illustrated in Leonard's 

synthesis28  of bis-thymine 23 (Figure 1.12). 

- 

24 

OAc  

114 	
Z 

0 
H, 	Me 

ON 

(CH2) 

ON 

HMe 

0 

23 
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I I 
~~N

, C8 

R 

C8 H 17  
25 

26 

Figure 1.12 Dimenc ADA modules constructed by covalently linking two identical modules, R= 

Another example is Hamilton's  29  linking two l-octyl-5-hydroxythymine units by a 

diyne spacer to give compound 24. Sessler 3°  introduced anthracene and benzofuran 

spacers in syntheses of rigid units 25 and 26 to provide a series of "artificial 

dinucleotides" (See Figure 1.28) some of which form DNA-like complexes, and will 

be discussed later (Section 1.3.3). 

As appropriate counterparts for dimeric ADA modules a number of DAD dimeric 

systems were developed with some of them illustrated in Figure 1.13. 
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Figure 1.13 Dinieric DAD modules constructed by covalently linking two identical modules. 

Compound 28,29  was designed as a complementary unit with matching spacer 

distance of about 10 A to analogous 24 (See Figure 1.16 for self-assembly structure). 

Lehn3 ' developed the rigid, rod-like bis-diamidopyridine subunit 27 useful for 

creating polymeric assemblies using hydrogen bonding sites along the axis of the 

molecule. The dimer 29 was designed to form closed, discrete aggregates with 

appropriate complementary partners. 

The ADA units (Figure 1.14) containing only -N and —NH groups as 

hydrogen bond acceptor and donor sites are anthyridinone or anthyridan units 30 and 

32 respectively, developed by Murray and Zimmerman.  20  Binding constants 

determined for complexes 30•10, 32•10 and 30•31 are around 70 M'and are amongst 

the lowest for this ADA-DAD arrangement. Several reasons can be attributed to this 

fact, including low solubility of anthyridones in chloroform and tautomensm of 

counterpart 10, as will be addressed later in Chapter 3. 
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Figure 1.14 Hydrogen bond complexes in ADA-DAD arrangement developed by Zimmerman and co- 

workers.  20  Association constant measured in chloroform-d. 

Overall, Ka values of all ADA-DAD heterocomplexes presented so far 

range from 65 M' (32910) to 900 M' for the 17•18 complex. Although this is a 

narrow range for complexes that contain the same number and arrangement of 

hydrogen bonds, the free energy (AG') difference is only 1.5 kcal mo! 1 . Differences 

in binding stabilities are predominantly attributed to the structural differences of 

binding units (geometry, introduced substituents, hydrogen bond acceptor and donor 

groups etc.) and to the measurement methods. Although all binding constants have 

been measured in chloroform-d using 'H NMR titration experiments, they have been 

done in different labs using different NMR instruments. All this together with 

variability in the conditions for the binding studies (water content in the chloroform-

d, solubility and purity of binding components etc.) and experimental errors can 

explain differences in measured binding stabilities. 
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Figure 1.15 Intrinsic ditopic modules containing two ADA modules. 

Finally, some ditopic ADA units were found in the commercially available 

naphthalene diimide 33 and in the substituted barbituric acids 34 (Figure 1.15), 

extensively used as modules in self-assembly. 

1.3.2 Self-assembling ADA-DAD systems 

Many of the examples described above were designed to form closed or 

discrete aggregates such as 24'28; 35•34; 37•34; 38'39; 37'33 and 27.38. The 

linking of modules is an important factor for increasing the complex stability, for 

example the Ka for 24•28 (Figure 1.16) was 4500 M', 10-fold higher than an 

analogous single base-pair 20•21 (Figure 1.11). 

N—H -------- --_N8H17 

II 
01  

Me 

H 
N—H- Q 	C8H17H 

C3 H7  

24•28 

Figure 1.16 Self-assembled structure of dimeric modules 24.28. 
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Very often hydrogen bonding sites in the modules are in approximate parallel planes 

as seen in 24•28, but sometimes they are designed to converge as in the 35'34 

complex (Figure 1.17) with an association Constant of 106 M-1.32 This value is 2-4 

orders of magnitude higher than the analogous heterocomplex 29•34 (Figure 1.17). 

29 	 35 

o ••  •.tfl 
j1 	N 

I 	NH NH 	 I 	NH NH 
O,NH 	 NH 	 0 NH,- 1 i Q  - - 

34 	 34 

Ka  = i0 M 1  

Ka = 106  M 1  

Figure 1.17 Effect of host preorganisation in 29.34 and 35•34 complexes on hydrogen bonding 

stability. Association constants measured in chloroform-d. 

This difference of 100-fold smaller Ka for the 29'34 complex compared with the 

35.34 complex was explained by different degrees of host preorganisation between 

the two systems. In acyclic host 29 hydrogen bonding sites are free to adapt a 

number of conformations, making complexation with guests less effective. In 

macrocyclic host 35 binding sites are pre-organised in such a manner to enhance 

binding with ligand 34 involving all six hydrogen bonds and resulting in stronger 

binding. A crystal structure of the complex was obtained (Figure 1.18), providing 

further evidence for the binding mode. 
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Figure 1.18 Crystal structure of the receptor 35.34 complex, X-ray figure reprinted. 33  

Another strategy for creating closed cyclic assemblies or rosettes, is the use of 

intrinsic dimeric modules in which two complementary hydrogen-bonding sites are 

fixed at a 600  angle as in the hexamer 34•36. This insoluble complex (Ar = 4-tert-

butyiphenyl) is formed after mixing two complementary species, barbituric acid 

containing ADA triad of hydrogen bonds and melamine with DAD triad in solution 

(Figure 19). 144  

36 
Ar 	Ar 

NH 	N 	NH 

0 

HN 	N 

-- 	T 

H --H 'N 
- - -- - - -  

NH 

ONO 

I1 I1 

NN. 
-- 

NN 

Ar-- HNkNH NHAr  

Figure 1.19 Cyclic hexameric aggregate 36.34. 
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Lthn and co-workers 34  used the same binding mode with some variations for the 

synthesis of molecular ribbons (Figure 1.20). Barbituric acid 34 and melamine 37 

have been modified with alkyl groups blocking one side of molecule and preventing 

hydrogen bonding on that side of the heterocycles. 

H 	C8 H 17  H 
%

- 

HNiLNH 	HNH 	HNLNH - - 	
- 	oo- 

H 	G8H 17  H 

H' N 
	

H 

0' 

HNH. 	H . N NH 

- 	37 

Figure 1.20 Molecular ribbon based on 34.37 repeating unit. 

Larger superstructures can be formed by the subsequent aggregation of discrete 

assemblies as in the Kimizuke and Kunitake example 35  using a 1:1 mixture of 

melamine and diimide units. The tubular structure (Figure 1.21-inset) is generated by 

columnar stacking of a cyclic heterododecamer of 33 and 36. Evidence of three-

dimensional helically formed strands with 100 A diameter were found by electron 

microscopic observation, very architecturally similar to the structure of tobacco 

mosaic virus. 36 
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Figure 1.21 One possible structure for the self-assembled material formed from 1:1 mixture of 33 and 

36 (R= C 12H250C3 H6  or C4H9(C2H5)CHC3H6) with schematic representation. 

Finally the first supramolecular polymer was developed by Lehn and co-workers in 

1990 (Figure 1.22). The polymer was composed of an equimolar mixture of 

repeating units 38 and 39, which associated via triple hydrogen bonding in ADA-

DAD arrangement. 
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Figure 1.22 First supramolecular polymer. 
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Lehn's polymer adopted a well defined structure and displayed physical properties 

similar to conventional polymers and became an important example in the field of 

supramolecular polymer chemistry. More detailed insight into supramolecular 

polymers and their properties will be covered in Part 1.5. 

Subsequently, the diaminopyricline-uracil triple hydrogen—bonding motif 27.40 has 

been used in the synthesis of supramolecular rigid rods (Figure 1.23). 31 

tBU 'Bu 

1 0C12H25 ON, 	0--- - 
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0C 12H 	 0 -44N 	
0 	
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NH 0 	0 	oc 12 	0 	0 

'Bu But 

27 40 

Figure 1.23 Supramolecular rigid rods based on 27.40 unit. 

Upon mixing equimolar quantities of repeating components 27 and 40, they self-

assemble in a rigid assembly that forms a lyotropic mesophase. 3 ' 

1.3.3 DAA and ADD Heteroaromatic motifs 

The best known DDA-AAD system with high affinity (Ka  z 104  M') is the 

DNA base-pair cytosine (C)-guanidine (G) 41'9 (Figure 1.23). Other examples listed 

were developed by Kelly and co-workers 38  using the AAD array found in 2-

amidonaphthyridines (42 and 43). They can be readily synthesised by Knorr 

cyclisation39  of 2,6-diaminopyridine with 1 ,3-diketones, that are commercially 

available. Subsequent reaction with acetic anhydride readily affords AAD products. 
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Figure 1.24 Hydrogen bond complexes containing the DDA-AAD motif. Association constant 

measured in chloroform-d. 

The DDA arrays used in 42.44 and 43'45 complexes are found in the 6-amino-

2(1H)-pyridone (44), and 7-deaza-guanine (45)20  systems. In general the number of 

DDA units is very limited and synthetically less accessible apart from commercially 

available DDA units such as guanine (9) and guanosine that must be derivatised to 

overcome their extremely poor solubility in organic solvents. 

Zimmerman and Murray4°  were targeting more soluble DDA units containing only 

—N and —NH donor and acceptor groups as in compound 46 with a 1,4-

dihydronaphthyridine core (Figure 1.25). Unfortunately 46 was extremely unstable 

undergoing spontaneous oxidation to form the corresponding 2-amino-1,8-

naphthyridine. A second attempt was successful and compound 47 proved to be 

stable and chloroform soluble but was never used in binding studies. 

H 	HI 

46 	 47 

Figure 1.25 More chloroform soluble ADD units. 
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Several dimeric AAD and DDA modules have been reported that use a porphyrin or 

porphyrin analogues as the scaffold. 30 ' 41 ' 42  

Sessler43 	has used a palladium-catalysed Stille-coupling to connect a porphyrin 

system to 8-bromoguanosine for use in a self-assembling photosynthetic model 

system (48.49 and 50•49 in Figure 1.26). 
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Figure 1.26 Photosynthetic model systems containing the DDA-AAD motif developed by Sessler and 

co-workers. 43, 44  Association constants were measured in chloroform-d. 

The Ka values for 48.49 and 50•49 heterocomplexes are in the 104  M 1  range as other 

AAD-DDA examples (Figure 1.24), which are two to three orders of magnitude 

higher than observed for the ADA-DAD systems. The true values reported seem to 

be even higher as the self-association of 9, 44, 45 was not taken into account and it 

is reported that 9 and 45 strongly dimerise in chloroform. 9  

Another interesting example of dimeric AAD and DDA developed by 

Sessler3°  (Figure 1.27), was cytosine-guanine "heterodimer" 51, synthesised and 

studied as part of their effort to create artificial duplexes. 
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H N  

51 

Figure 1.27 The cytosine-guanine "heterodimer" 51 is a dimeric DDA module. 

In this case the bases are rigidly held apart so that base-pairing is forced to occur 

intermolecularly. The authors reported that dimer 51•51 (Figure 1.28a) did not show 

appreciable dissociation upon dilution ('H NMR monitoring) in chloroform-d, 

whereas complex 41'9 (Figure 1.24) do fully dissociates under these conditions (5% 

DMSO-d6/CDCI3) 30 . The most impressive example is dimer 52•52 45  (Figure 1.28b) 

which does not dissociate even in the highly competitive solvent DMSO. 

a) 

\ / 
	H, IN-H- - -0 ;JN 

51.51 

b) 

§::R N... 

52•52 

Figure 1.28 Self-assembled structure of dimeric modules a) 51.51 and b) 52.52. Figure reprinted 

from Zimmerman and Corbin.' 
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Solubility problems have been noticed for most of the dimeric AAD modules, which 

in fact are significant for most guanine-based compounds as pointed out previously. 

One very interesting and highly rigid dimeric AAD system 53 was developed by 

Zimmerman and coworkers 46  (Figure 1.29). Synthesis was achieved by reaction of 

2,6-diaminopyridine-3-carboxaldehyde (DPC) with tetracyclo 

[6.3 .0.04,1 ' .05 '9]undecane-2,7-dione followed by acylation with i octanoic anhydride. N  t  "'N 

 

; l  

C 7H 15  
C7H15 

53 

Figure 1.29 Rigid dimeric DDA module 53. Figure reprinted from Zimmerman and Corbin.' 

1.3.4 Self-assembling DDA-AAD systems 

In addition to the dimenc AAD-DDA units, several intrinsic ditopic AAD-

DDA units (Figure 1.30) have been reported by Lehn 47  (56) and Zimmerman 47,48  (54 

and 55). Compounds 54 and 55 contain two cytosine nuclei (AAD array) fused to a 

central pyridine unit, respectively. Compound 55 is available in three steps from 

appropriate N-alkylureas. 49  

H ,H 
N 	HN...H 	 0 	0 
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Me 
CPh3  Ph3C 	 Me) 

H—N"r N N 

NH2 H XY 
54 
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Figure 1.30 Intrinsic dimeric modules containing DDA and AAD hydrogen bond array. 
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The ditopic guanine analogues 55 contain two 6-amino-2(1H)pyridone rings fused to 

a central pyrrole unit, respectively, and was designed as complements to 54. 

The groups of Lehn5°  and Mascal5 ' both reported self assembly behaviour of 

compound 57 into a cyclic hexameric structure (Figure 1.31). 
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'H.NH O" 	

NrN..R 

R'H 	 I J H' 	P 
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Figure 1.31 Cyclic hexameric aggregate 57.57, R=C8H 17 . 

These "Janus" type molecules possess a complementary AAD-DDA array at an angle 

of 1200.  The formation of the cyclic hexamer in the solution and in solid state was 

confirmed by 1 H NMR spectroscopy measurements 50  and X-ray crystallographic 

studies. 51 

1.3.5 DDD and AAA Heteroaromatic motifs 

The Jorgensen model of secondary interactions indicated that AAA-DDD 

systems are the strongest of all triple hydrogen bonded complexes. Heterocomplex 

1•3 (Figure 1.32) developed by Zimmerman and Murray 52  gave the first experimental 
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confirmation; the binding constant in chloroform-d was estimated to be Ka> 105  M 1 , 

which is 3 orders of magnitude stronger than ADA-DAD systems. More detailed 

insight into the binding studies of 1•3 and measuring methods will be discussed in 

Chapter 3. 

,,- 	NO 

EHt T1 OEt 

1 

H N N N' H 
H H H 

Ph N N N Ph 

Ka> 105 M1 

Figure 1.32 Heteroaromatic AAA-DDD modules developed by Zimmerman. 52 

This was the only reported neutral triple hydrogen bonded AAA-DDD system that 

could be found in literature. Part of reason for that is the very limited number of 

AAA units present in the literature findings, 52, 53 so it is not surprising that syntheses 

of new AAA units will become the first target in this thesis. 

The AAA unit 3 with the 1,9, 10-anthyndine nucleus was synthesised by Caluwe 53  in 

a single step by a double Friedlander reaction of 2,6-diamino-3,5-

pyridinedicarboxaldehyde and ketones. Compound 3 had some stability issues and 

they will be addressed in Chapter 3 together with a modified synthesis of 

anthyridines developed by Zimmennan. 52  

Choice for DDD units particularly with only —NH donors is very restricted. 

Dihydropyridines 1 and 10 can serve as DDD units and are readily available in a 

single step by a Hantzsch synthesis using methyl carbamimidoyl acetate and 2-

nitrobenzaldehyde. 52  The only limitation is the tautomerism of dihydropyridines, 

which can exist in 1 ,4-dihydro or 3,4-dihydro forms depending on the solvent. 

By 'H NMR experiments in chloroform, 1 exhibited a >20:1 preference for the 1,4-

dihydro form, while 10 (Figure 1.6) was a 2:1 mixture of 1,4-dihydro form and 3,4-

dihydro form. 52 
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Other examples of AAA-DDD systems 61•3 and 58•61 were developed by Anslyn 

and Be11 54  as cationic AAA-DDD systems (Figure 1.24). In this case the DDD unit 

was protonated ethyl 2,6-diaminonicotinate 61 with a lipophilic tetraarylborate 

counter-ion for increasing solubility in chloroform. The ester group in 61 was 

required to increase solubility and acidity of the 2- and 6-amino groups. The cationic 

AAA-DDD system 61•3 was estimated to have Ka > 5 x lO M', by UV-vis titration 

experiments. 
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N N+ N 
H H H 
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A ={B )} 

58 	 F3 4 

Figure 1.33 Cationic heteroaromatic AAA-DDD modules developed by AnsIyn 54 . 

In complex 58'61 the 'H NMR titration studies in chloroform-d indicated the 

presence of multiple equilibria in solution, two Ka  values were determined K1,, = 5.2 

x105  M - 1  and K1,2 = 1.8 x102  M', respectively. 

1.3.6 Self-assembling AAA-DDD systems 

The first example of AAA-DDD systems in self-assembled complexes was 

designed by Fuyuhiro and Kawata. 55  They generated a metal-containing 

supramolecular system by the self assembly of anions 60 containing two AAA sets 

from [M-(tdpd) 2(H20)2]2  (H2tdpd= 1 ,4,5,6-tetrahydro-5,6-dioxo-2,3-

pyrazinedicarbonitrile, M= Ni, Co, Cu) together with melaminium cations 59 

containing one DDD set (Figure 1.34). 
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Figure 1.34 Heteroaromatic AAA-DDD modules used in metal mediated supramolecular system, with 

schematic representation. M= Ni, Co, Cu. 

Self-assembling products based on complementary AAA-DDD arrays were formed 

in the solid state even when recrystallized from competitive solvents such as water. 

In both cases building mode has been further extended by additional hydrogen-

bonding interactions to finally produce 2D layers (Figure 1.35). 
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Figure 1.35 Construction of metal containing supramolecular system. 
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1.4 Selected Quadruple hydrogen bonded motifs 

The initial attempts to find stronger triple hydrogen bonded systems led to 

the accidental discovery of quadruple hydrogen bonded systems. The first to be 

discovered were dimers of 62a (Figure 1.36) with binding stability of Ka= 530 M' 

which is low considering the number of hydrogen bonds involved. 56  

A 	 A 

N N 	62a 	 N 'N HN 

HNNN'LO 	 HNNNO 

62b 

I1 
ONNNH 	 Ô N)JH 

NyN ,, NH N_ N 

1im =53OM 1 	 1im 2X1O4 M 1  

Figure 1.36 First quadruple hydrogen bonded DADA dimers (R= CH 3). Association constant 

measured in chloroform-d. 

A further increase in binding stability (Ka= 2 x 104  M') was observed in the 

reorganised ureidotriazine 62b. An intramolecular hydrogen bond afforded a planar 

conformation of the ADAD array, as has been seen in the X-ray crystal structure of 

62b dimer which stacks in columns with hexagonal order. 

The simple preparation and relatively strong dimerisation of ureidotriazines were 

reasons for using them as units in polymeric aggregates with high degrees of 

polymerisation. 57 

The strongest dimer in an ADAD arrangement was formed using pyrimidine 

analogues 63 with K,,= 2 x iø M' (Figure 1.37), though requiring some 

chromatographic purification and relatively expensive starting material. 58 
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Figure 1.37 The most stable DADA dimer. Association constant measured in chloroform-d. 

Meijer and co-workers were the first to describe a series of 2-ureido-4(1H)-

pyrimidone derivatives that can dirnerise through the DDAA array. 59 

Ureidopyrimidones are easily synthesised in a two step reaction of -keto esters with 

guanidine followed by acylation of resulting isocytosine with an isocyanate. 

The fact that certain types of the ureidopyrimidones exist in three different 

tautomeric forms significantly complicates the assembly process. The overall binding 

energy for dimerisation is therefore reduced by the energy which has to be paid for 

this conformational change. For example, the 2-ureidopyrimidone 64 exists in 

tautomeric equilibrium with pyrimidone monomer 64a (AADD) and the pyrimidin-4-

ol monomer 64b (DADA; Scheme 1.1). Both species 64a and 64b are self 

complementary with dimerisation constants of Kdjm > 106 and 4.5 x 105  M' in 

chloroform, respectively. 
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Scheme 1.1 Dimerisation of ureidopyrimidones 64a and 64b. Association constant measured in 

chloroform-d. 

The extremely efficient self-association of such AADD binding motifs in chloroform 

now allows direct control of the macroscopic physical properties of large 

supramolecular architectures. 60,61 

1.5 Linear supramolecular polymers 

In subsequent work, two 2-ureido-4(1H)-pyrimidones were covalently 

coupled through a m-xylylene spacer, which resulted in the self-complementary 

molecule 65 that dimerizes through the formation of eight H-bonds (Figure 1.38). 62 

The very high stability of these dimeric systems combined with their easy 

accessibility makes them ideal candidates for the noncovalent synthesis of 

supramolecular polymers. 
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Figure 1.38 a) X-ray crystal structure of 64,63  b) self-complementary "Janus molecule"65 and C) 

schematic representation. 

Compound 65 shows an association number of more than 500 in chloroform 64,65  as a 

highly viscous solution and displays all the properties of a classical polymer. 

However, supramolecular polymers have a strong concentration and temperature 

dependence on viscosity which is found in conventional polymers. This observation 

can be explained by the effect of temperature on the strength of the hydrogen bonds. 

They become first weakened by increased thermal motion and are finally broken, 

leaving the individual monomers in solution so the solution becomes less viscous 

(Figure 1.39). 
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Figure 1.39 Formation of a supramolecular polymer and depolymerisation of bifuncional "Janus 

molecule"65. 

The polymeric properties can be restored on decreasing the temperature. Similar 

effects are observed by addition of a polar solvent which also disrupts the hydrogen 

bonds. The addition of a small amount of trifluoroacetic acid also causes a dramatic 

decrease in the viscosity of the solution. This reversibility of the supramolecular 

polymerisation is a key difference that is not possible in conventional covalently 

linked polymers. 

Another way to impose the depolymerisation is by the addition of the 

monofunctional ureidopyrimidone stopper 63 through a competitive association to a 

highly viscous solution of the bifunctional molecule 65 (Figure 1.39). The viscosity 

of the solution decreases dramatically with increasing concentration of stopper 63. 
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1.6 Supramolecular copolymers 

In 2005, Meijer and co-workers reported supramolecular copolymers based 

on strong and selective complexation 68  of the ureidopyrimidone 64 with 2,7-

diamido-1,8-naphthyridines 66, via quadruple hydrogen bonds between ADDA and 

DAAD arrays (Scheme 1.2). The association constant 69  measured for 64'66 

heterocomplex was 5 x 106  M'. 

R 

NH 

ON A 

R NYN J O  

64-64 

, R' 	N N N 
I 	 I 

H 	66 	H 

A 

r'N H.N..R 

o o 

0 U,-, " IT Yo 
64 - 66 

Scheme 1.2 Selective complexation of the ureidopyrimidone 64 and diamidonaphyridine 66 via 

quadruple hydrogen bonds between AIDA and DAAD arrays. Schematic representation of 64 -red 

and 66 —blue in heterocomplexes presented below. 

One equivalent of 66 in CDC1 3  disrupts the 64•64 dimers and the high selectivity and 

strength of the 64•66 heterodimer was attractive for constructing complementary 

supramolecular copolymers. The study of supramolecular polymers based on the 

64•66 heterodimer required bifunctional derivatives: 67 with ureidopyridinone 

telechelic polytetrahydrofuran core (Figure 1.40a) and 68 which contains 2-

ethyihexamido substituents (Figure 1.40b) for increased solubility. The bifunctional 

derivative 68 was formed by a Buchwald amidation of 2-amido-7-chloro-1,8-

naphthyridine 66 with hexanedioic amide. 

50 



Chapter 2 

 
0 	 0 	H 	 HYC .~ I  M:~ :- 	N N N N 

68 

	

CH3 	

H H 0 	
o_v_oy NH , rN 0 

0 NNN 
I

0 H NS r  H H  

67 	 CH3 

Y=pTHF 

Figure 1.40 Units 67 and 68 of supramolecular copolymer. 

Upon titration of macromonomer 68 with 67 only a limited amount of cyclic 

heterodimer is formed. Instead, 68 is incorporated in the supramolecular polymer 

chain until a strictly alternating copolymer is obtained in a 1:1 ratio of monomers 

(Figure 1.41). 

maaomono mer 67 

Insertion of 	 (<1 ) 

67-0 copolymer 

End-capping with 

A\W 

 68 (>1eq) 

Figure 1.41 Formation of 67-68 supramolecular copolymer. 
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When 1:1 mixture is exceeded the additional molecules of 68 can no longer be 

incorporated into the polymer chain and act as end-cappers, and the length of the 

alternating copolymer is progressively reduced. This observed effect is very 

analogous to the effect of adding the monofunctional 64 or 66 to a solution of the 

bifunctional 64.64 in chloroform (Figure 1.39). 
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1.7 Conclusion and aims 

There is great interest in designing heterocyclic units with multiple linear 

arrays of hydrogen bonding sites as described throughout the introduction. A number 

of literature examples are known for triple and quadruple hydrogen bonding motifs 

but there is a particular lack of systems with AAA and AAAA arrangements. Despite 

their importance and predicted high stability in AAA-DDD and AAAA-DDDD 

heterocomplexes, only a limited number of AAA and none of the AAAA units are 

known. This project aims towards a simple synthesis of triple hydrogen bonded units 

in AAA arrangement and strong binding stability with DDD counterparts in AAA-

DDD systems. 

Only two relevant examples of AAA-DDD heterocomplexes have been developed 

over the last 14-15 years, for directed self-assembly studies. In both cases the binding 

energy was very high and not accurately determined, but only estimated to be Ka > 

105  M' for Zimmerman and Murray' S52  1•3 heterocomplex and Ka > 5 x105 M-  I 

Aslyn's54  protonated AAA-DDD heterocomplex 613. 

The basis of this research project was to synthesise novel aromatic heterocyclic 

hosts, with two and three adjacent hydrogen bond sites in AA and AAA 

arrangements. In order to produce the targeted systems I employed new synthetic 

methods and techniques involving flash vacuum pyrolysis and high boiling solution 

reactions (Chapter 2), Buchwald-Hartwig coupling (Chapter 3), as well as Suzuki 

coupling chemistry (Chapter 4). 

A further aim of this investigation was to study the binding affinity in AA-DDD and 

AAA-DDD heterocomplexes using 'H NMR and fluorescence titrations (Chapter 5) 

together with molecular modelling studies for some of selected AAA-DDD 

heterocomplexes carried out by Dr Francesco Zerbetto and Gilberto Teobaldi from 

the University of Bologna. All binding constants have been determined by the GasFit 

program, a specialized software program for determination of binding constants 

developed by Dr Dusan Djurdjevic from the University of Edinburgh. All relevant 

experimental and fitting data from titration experiments is presented in Appendix 2. 
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Chapter 2: 	Synthesis of multiple hydrogen bonded 

systems using Flash Vacuum Pyrolysis (FVP) 

V 	 •. 	 - ri 

Trap assembly of FVP apparatus 
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2.1 Introduction 

The synthetic objectives reported in this thesis are heterocycles with 

naphthyridine, anthyridine and naphthacene skeletons as represented in Scheme 2.1. 

These systems with two 69, three 70 and four 71 annulated pyridine rings have the 

hydrogen bonded array in the most favourable AA, AAA and AAAA arrangement 

and are a very popular choice in supramolecular binding studies. In this chapter 

naphthyridine model systems were targeted employing the flash vacuum pyrolysis 

(FVP) technique as a new synthetic strategy. 

I  MN__N 	
69 

A A A 

PN - r_ N~nN~ JN~ 
71 

A A A A 

Scheme 2.1 Targeted hydrogen bonded systems 

2.1.1 Flash vacuum pyrolysis technique 

Flash vacuum pyrolysis (FVP) is described in IUPAC terminology as the 

thermal reaction of a molecule by exposing it to a short thermal shock at high 

temperature, usually in the gas-phase.  70  The characteristics of subjecting the 
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molecule to high temperature (350 - 900 °C) in a vacuum system (. 10 Ton) for a 

short time (. 10-2S) make it possible to isolate kinetically controlled products and, in 

some cases, to avoid consecutive reactions . 7 ' Flash vacuum pyrolysis is therefore an 

interesting methodology for studying reaction mechanisms as well as for synthesis of 

new molecules. When the FVP technique is used in the synthesis of heterocyclic 

compounds we have a number of advantages over solution phase reactions. In 

general FVP is a clean technique which can give unusual disconnections, providing 

routes to complex molecules which are not available by solution chemistry (unless 

high boiling solvents are used). Short syntheses of targeted ring systems can be 

designed with as little as two steps, where many desired substituents can, in 

principle, be introduced in the precursors without fear of them affecting the 

cyclisation. Compared with high boiling solution reactions, the advantages of FVP 

are the absence of intermolecular reactions and no difficulties in removing high 

boiling solvents. On the other hand the major disadvantage of FVP can be substrate 

volatility problems; in such a case a clean reaction can not be guaranteed. 

The apparatus used in FVP experiments is illustrated at Figure 2.1 and is based on 

the design of W. D. Crow of the Australian National University. The products are 

collected at the exit of the furnace tube in a trap surrounded by liquid nitrogen. A "U-

shaped" trap is used for small scale pyrolysis (50 mg). The entire pyrolysate was 

washed through with a suitable deuteriated solvent for NMR analysis by 'H and 13C 

NMR spectroscopy. 

catalyst (packed 	 pressure 
between silica wool) 	nitrogen 	gauge 

product 	inlet 
inlet tube 	

pyrolysis \ furnace 0000TI 

with 	tube 	
ip 	

II 

Kugeirohr ,  I* 	
nn 

Kuelrohr 
temp control 

Figure 2.1 Flash vacuum pyrolysis apparatus. 

vacuum 
- pump 
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FVP has been used in the past for the very efficient two step synthesis of quinolin-4-  

one 72  75 represented in Scheme 2.2 and current work was initially inspired by this 

reaction. 

"VO 	
0 

11 
i) I) 	 O—K!  

NH 	 LNH 	 O 1) 74 

b b 
72 	 73 

rNH 

oI) 
H-shift0 
	 75 

Scheme 2.2 i) FVP 600 °C. 

Pyrolysis of Meidrum's acid derivative 72 in the gas phase takes place by loss of 

acetone and carbon dioxide to provide methyleneketene 73. A hydrogen-shift 

generates the iminoketene intermediate 74 which acts as the substrate for an 

electrocyclisation. The final product 75 is formed after another hydrogen shift. 73' 74  

Matrix isolation studies72' 73  have confirmed that both 73 and 74 (characterised by JR 

spectroscopy) are initially formed during pyrolysis, but at higher temperatures 

electrocyclisation and rearomatisation gives quinolin-4-one as a product. 

Using heterocyclic substrates in which the amino group is adjacent to the heteroatom 

- as for example 2-aminopyridine - the pyridopyrimidinones 77 can be obtained 

using pyrolysis in solution 75  or neat thermal decomposition 76  of 76 as represented in 

Scheme 2.3. 
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Scheme 2.3 i) Dowtherm 77  200-220 °C or ii) Heating at -200 °C 

In this case the presence of a heteroatom with a lone pair of electrons allows 

cyclisation of the iminoketene intermediate onto the nitrogen atom as the more 

favourable option as found in related literature examples. 75 ' 78  

In principle, FVP of the 2-aminopyridine derivative 76 can give two possible 

products after generation of the methyleneketene and rearrangement to the 

ketenimine (Scheme 2.4). First, cyclisation at the heteroatom would be expected to 

give the pyridopyrimidine 77 (as found in solution). Alternatively, cyclisation can 

take place on carbon to provide the naphthyridine 78 (after hydrogen shift) - as 

found in the related case shown in Scheme 2.2. 

0  
0'O 	 II 

i) 	II 
NH 

IN 

	 0
NH 

 
76 

I_ 	I) 
IIrJ-__-'l 	- 	0 	N 	77 
O) 	 1) 

oI 

NH 

OJN H- shift 	
78 

Scheme 2.4 1) FVP 600 °C, ii) FVP 950 °C. 
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If compound 78 could be formed using controlled conditions a naphthyridine 

targeted module in AD arrangement would be obtained subsequent rearomatisation 

O-alkylation step would result the desired double hydrogen bonded products in the 

AA arrangement (Scheme 2.5a). Employing diaminopyridine derivatives as pyrolysis 

precursors and following the previously described analogy would generate 

aminonaphthyridines as triple hydrogen bonded system in DAD or DAA 

arrangement (Scheme 2.5b). Finally for the quadruple hydrogen bonded 

naphthyridines would require bismethylsulfanylmethylene Meldrum's acid 80 as 

precursor and subsequent displacement of one methylthio group with ammonia and 

the second one with heteroarylamine we could afford in principle, naphthyridines in 

DADD or DAAD arrangement (Scheme 2.5c). 
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Scheme 2.5 Synthetic strategy of naphthyridine model system with a) double b) triple and c) 

quadruple hydrogen bonded modules; R-alkyl chain. 
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Synthetic strategies outlined at Scheme 2.5a and 2.5b have been successfully carried 

out but strategy 2.5c failed at the first step due to the low yield of pyrolysis 

precursors, difficulties in displacement of the second methylthio group etc. 

2.2 Results and Discussion 

2.2.1 Pyrolysis precursors 

For the most part in carrying out the syntheses in Scheme 2.5a and 2.5b, the 

heterocycles used to create the pyrolysis precursors were readily available from the 

usual companies. The precursors themselves (Scheme 2.6) were prepared by reaction 

of the aminopyridine or aminopyrimidine heterocycles with methoxymethylene 

Meldrum's acid 79, 80 (MMMA) following the literature methods.81' 82  Most  79 

reactions have been performed under standard conditions at room temperature using 

acetonitnie as solvent except compounds 89 and 91 which, because of the poor 

solubility of the precursor were made in refluxing acetonitrile. 

In general the pyridine based pyrolysis precursors were obtained in higher yields (67-

95%) than pyrimidine analogues (32-67%) due both to the lower reactivity of 

pyrimidine derivatives and solubility issues. 
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Scheme 2.6 1) Room temperature in acetonitrile; ii) Reflux in acetonitrile. 

All pyrolysis precursors 76, 81, 84, 86a, 89, 91, 93 and 95 synthesised showed 

correct molecular ions in their mass spectra and characteristic doublets (J=13.4 Hz) 

in the range of 0& 9.2-9.4 due to the H e  proton (highlighted red in Scheme 2.7). 

93 
(75%) 
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In one particular case, when MMMA was reacted with 2,4-diaminopynmidine under 

standard conditions, a mixture of two isomers 86a and 86b was produced 

regioselectively (Scheme 2.7). 

oo 	 0o

NH 

0~zo 

0_~'  to 	NHI) 	

+ °: 
79 	

NH 	 NINH2  

86a 	 86b 
(40%) 	 (4%) 

Scheme 2.7 i) 2,4-diaminopyriinidine, acetonitrile, reflux. 

The structures 86a and 86b were difficult to distinguish by the usual spectroscopic 

methods, and but the single-crystal X-ray structure of compound 86a (Figure 2.2a) 

established the structure of both compounds unequivocally. 

In the structure of 86a three hydrogen bonds were present with two of them being 

bifurcated (Figure 2.2b). One is an intermolecular hydrogen bond of amino N121-

H121 group with 061 (2.902 A) from the adjacent molecule. The second is the 

amino N121-H121 group that acts as a bifurcated hydrogen bond donor 

intermolecularly hydrogen bonded to 062 (2.985 A) and to 042 (3.054 A). The third 

one is the 042 atom that acts as hydrogen bond acceptor intramolecularly bonded to 

H82-N82 (2.7 19 A) and intermolecularly to H121-N121 (3.054 A). 
It is interesting that the hydrogen bond of the amino N121-H12l group with 061 was 

not bifurcated with 041 (See Scheme 2.2b) and this can be explained by the slightly 

longer distance of 3.077 A. 
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a) 
	

b) 

Figure 2.2 a) X-ray crystal structure of 86a and b) insight into hydrogen bonds in packing diagram. 

In the X-ray crystal structure of the analogous compound 91, only one bifurcated 

hydrogen bond is observed (Figure 2.3). The amino N8-118 group acts as a bifurcated 

hydrogen-bond donor, intramolecularly to 011 (2.709 A) and intermolecularly to 

051(2.959 A) from an adjacent centrosymmetrically related molecule. 

a) 
	

b) 

Figure 2.3 2.3 a) X-ray crystal structure of 91 and b) insight into hydrogen bonds in packing diagram. 
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The recently reported X-ray crystal structure of anilinomethylene Meidrum's acid 

analogues 83  (Figure 2.4) confirmed that amino group NI-HI acts as a bifurcated 

hydrogen bond donor intramolecularly to 09 (2.760 A) and intermolecularly to 09 

(3.259 A) from an adjacent centrosymmetrically related molecule as found in 

structures 86a and 91. 

a) 

012 
C i 4 	 r 	- 	I 

cis 
\çr 	

- 

.'.-. 

010 

Loll 

Figure 2.4 a) The X-ray crystal structure of anilinomethylene Meidrum's acid and b) insight into 

hydrogen bonds in packing diagram. 

For 2,4-diaminopyrimidine, literature findings 84  confirmed that the reactivity of a 2-

amino group is much greater than the 4- amino isomer and this therefore explains the 

higher yield of 86a against 86b. 

The reaction of 1 equivalent of MMMA with 2,6-diaminopyridine or 2,4- 

diaminopyrimidine gave low yields (<5%) of side products 93 and 95 respectively. 

These products could be obtained in much higher yield by reaction of MMMA with 
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two equivalents of diamine giving compounds 93 and 95 in 75% and 50% yield 

respectively. 

2.2.1.1 Pyrolysis precursors - pyridine based 

In principle, FVP of the 2-aminopyridine derivative 76 can give two 

possible products after generation of the methyleneketene and rearrangement to the 

ketenimine (Scheme 2.4). First, cyclisation at the heteroatom would be expected to 

give the pyri dopyri mi done 77 (as found in solution). Alternatively, cyclisation can 

take place on carbon to provide the naphthyridine 78 (after hydrogen shift) - as 

found in the related case shown in Scheme 2.3. 

In practice, gas-phase pyrolysis of 76 under FVP conditions at 600-650 °C gave the 

pyridopyrimidine 77 (98%) as the only product, as found in solution-phase. 85 

However, at higher pyrolysis temperatures the new product 78 was found in 

increasing amounts and was the sole product when the FVP was carried out at 900-

950 °C. Clearly C=N ring closure to give 77 takes places under kinetic control while 

high temperature induced C=C ring closure takes place under thermodynamic control 

affording compound 78. It is therefore likely that formation of 77 is reversible and 

that cyclisation to give 77, though of higher energy barrier (perhaps because of the 

unfavourable 1,3-hydrogen shift in the final step), produces a thermodynamically 

more stable product. Few related thermal rearrangements seem to be known in the 

literature; however, the pyrazolo[l,2-b][l,2,3}triazin-5-ium-4-olate 97 is known to 

rearrange quantitatively to the pyrazolopyridazinone 98 at high furnace temperatures 

(Scheme 2.8).78 
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0- 	 N 0 

97 
	

98 

Scheme 2.8 Thermal rearrangement of 97 to 98, i) 400-750 °C, 50-55%. 
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Starting from the Meidrum's acid derivative 76, the synthetic strategy to provide the 

1 H- [ 1,8 ]naphthyridin -4-one 78 has been completed in only one step but in practice 

the isolated yield proved to be very low (25%). 

\/ 	 0 
0 

 NH 	 L NH 

IN 	 6N 

76 

II 
i) 

25% ii) 

N 

lI1 - r.J 
o) 

78 
H-shift -  

Scheme 2.9 i) FVP 600-650 °C, ii) FVP 900-950 °C. 

The low yield of product 78 can be explained by decomposition of the acetone 

coproduct to give a ketene which may react with the product. Gas-phase pyrolysis of 

acetone is a well known route to ketene. 86  Increased pressure during pyrolysis of 76 

at high temperatures supports this explanation. To overcome this problem repyrolysis 

of 77 at high temperature was employed and product 78 was afforded in higher yield 

(50%) using the rearrangement route highlighted red in Scheme 2.9. This 

rearrangement at high temperatures proved to be more efficient in general, 

presumably because of the absence of co-products which were formed from the 

Meidrum's acid precursor. 

It was of interest to perform an experiment following the transformation of 

compound 77 to 78 as a function of temperature. The amounts of 77 and 78 were 

measured in the product mixture after pyrolysis at various temperatures (Figure 2.4); 

at 880 °C the ratio was 50:50 and at 1000 °C was 1:100. In this way, the optimum 
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temperature for preparative pyrolyses to give 77 and 78 could be determined. The 

low temperature regime to provide 6 and its analogues involved temperatures ranging 

from 600-650 °C and the high temperature regime to provide thermodynamic 

products (e.g. 78) usually used temperatures from 900-950 °C. 
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Figure 2.5 Product mixture of 77-78 at various temperatures 

This work has successfully resulted in the synthesis of a DA hydrogen-bonding 

system. In order to extend the strategy to a DAD moiety, following the same strategy 

precursor 81 was pyrolysed under a low temperature regime, obtaining the product 

82 in similar manner to that of 77 (99% yield). Repyrolysis of 82 gave the DAD 

product 83 in 40% yields as represented in the Scheme 2.10. 
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Scheme 2.10 i) FVP 600-650 °C, ii) FVP 900-950 °C. 

All compounds described so far (77, 78, 81, and 83) obtained from pyrolysis 

experiments showed correct molecular ions in their mass spectra. The products 

synthesised under low temperature pyrolysis conditions (77 and 82) showed 

characteristic sets of doublets at 6.5 ppm and 8.2 ppm with J=6.5 Hz due to the 

coupling of the 2- and 3- protons (See Scheme 2.10). For compounds 78 and 83 (high 

temperature regime) the coupling constant for the corresponding protons was 7.6 Hz 

and a characteristic broad singlet in the range of 41  12.2-11.3 was observed due to 

the deshielded -NH proton. 

In terms of molecular recognition studies this rearrangement route from the 

pyridopyrimidin-4-ones (77 and 82) to 1H-naphthyridin-4-one (78 and 83) is a one 

step transformation from only an A hydrogen bonding unit to the double and triple 

hydrogen bonding unit in DA (78) and DAD (83) arrangement (Scheme 2.11). 

However, there are some limitations in the strategy (high temperature regimes and 

moderate preparative yields-50 mg) as outlined in Scheme 2.5b. 
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Scheme 2.11 

In order to implement the strategy of Scheme 2.5a and Scheme 2.5b, it was necessary 

to functionalise the products 78 and 83 since they were only DMSO soluble due to 

the presence of the oxypyridine moiety and therefore not useful in binding studies. In 

theory, this could be achievable in many ways for example: chlorination by reaction 

with phosphoryl chloride, 87' 88  Mitsunobu reaction targeting the hydroxy-tautomer of 

the pyridine moiety,89' 90  0-alkylation91' 92  or O-acylation etc. In the latter cases, 

competitive reaction at 0- and N-centres is possible as shown by literature precedent 
93 (Table 2.1) but great importance is given to the HSAB rule for interpreting the 

results .94  To promote 0-alkylated product "hard" base and "hard" solvent are 

required to favour attack on the "harder" oxygen centre rather than the "softer" 

nitrogen centre. 
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N-alkylated 0-al kylated 
Heterocycle Conditions 

product product 

o KOH,DMSO 

(

ii) 

a  0% 23% 

N   
H 

o NaH,THF 

CN
it) 

()—OCH2CI 
35% 12% 

H 

o NaH,THF 

O~N O—

OCH2CI 
66% 15% 

H 
Table 2.1 0 versus N-alkylation7 

In cases of 2-pyridones other literature resources  95  report that mixtures occur 

frequently although N-alkylation is much easier to achieve. The design of reaction 

conditions to maximise the amount of 0-centred reaction required that the poor 

solubility of the substrates must be taken into account. Thus the use of the silver salt 

of the substrate in a non-polar solvent which is reported to give predominantly 0-

alkylation9598  in related cases was not considered. 

The present preliminary experiments (Scheme 2.12) showed no indications that 

reaction takes place at all, although different conditions were used. Only unreacted 

starting material was isolated. This could be due to the long alkyl chain (octyl and 

nonyl) of the alkylating agent employed for attempted solubility improvement and 

possible further functionalisation. 
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o 

(U) 
N N CNH  	ON~  

78 	 No reaction 

o 	 o4- 

n iv) 	 - 

N N NH2 	 NH 2  H 
83 	 No reaction 

Scheme 2.12 i) 8-Bromo-1-octene, CH 3CN, K2CO3 ; ii) 8-Bromo- I -octene, DMSO, KOH; iii) 8- 

Bromo-1-octene, DMF, K2CO3;  iv) 9-Bromo-1-nonane, DMSO, KOH. 

In general two key problems have been identified with the pyridine strategy. First, 

the yields and very high temperatures of the pyrolyses do not give sufficient amount 

of product for investigating further reactions. Second, preliminary attempts to 

solublize these products by functionalization have been unsuccessful. The strategy 

was therefore modified by using pyrimidine templates, which we hoped would give 

soluble final products without further function alization. 

2.2.1.2 Pyrolysis precursors - pyrimidine based 

Using the pyrimidine based precursors 84 and 89, which pyrolysed under 

low temperature FVP conditions, the products 85 and 90 respectively were obtained 

in high yield (94-95%) by cyclisation onto one of the equivalent nitrogen atoms, in 

agreement with previous studies of 76 in solution (Scheme 2.1 )•75  These products 

provide, in 2 steps, a defined AA binding surface and were chloroform soluble. In the 

case of compound 90 attempted displacements of the chlorine atoms using ammonia 

in ethanol to achieve an AAD (D-amino group) binding surface resulted in complex 

mixtures of products and were not pursued. 
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0 

84 
i)
_ 
	

85 
95% 	

N IN)' 

A A 

0 NH2  

86a 
i) 

10% 	LN._LN._.i 87 

A A 

0 CI 

89 	 II 	I 	90 
94% 	UL 

	

N 	CI 

Scheme 2.13 i) FVP 600-650 °C. 

Unlike 84 and 89, FVP of 86a could in principle provide two isomeric products by 

cyclisation onto the ring heteroatom adjacent to the amino group (Pathway B, 

providing 87), or onto the other heteroatom (Pathway A, to give 88) ( Scheme 2.14). 

In practice pyrolysis of 86a indeed produced a mixture of two products, but one 

proved to be 2,4-diaminopynmidine. It is known that aromatic amines may be 

recovered from aminomethylene Meldrum's acid pyrolyses 82  and it is thought that 

this may be due to competitive free-radical cleavage of the CH-NH bond, perhaps in 

the inlet prior to evaporation. Compound 87, pathway B, was the only cyclised 

isomer isolated from the FVP of 86a. The structure of product 87 was 

unambiguously assigned due to the two separate NH signals one at oH 6.27 ppm and 

the other shifted to high frequency (41  10.05 ppm) due to intramolecular hydrogen 

bonding. 
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oo 
OO 	I) 

NH 

NN 

NH2  

86a 

0 
ii 	

A-pathway 

II 

NH 1jNN 

N N 	
oL}. 

NH2  

NH2  

I) 

Nf NH2 
I) 	 - 

NNI I N 

NH2 	 N N 

B-pathway 	87 

CLT NH  
88 

Scheme 2.14 i) FVP 600-650 °C, ii) Dowtherm A, 200-220 °C. 

Because of the low yield of cyclised products, and because of decomposition of the 

substrate in the inlet tube, pyrolysis of 86a was also carried out in Dowtherm 

solution  at 220 °C according to the method reported by Cassis et al.85  Practical 

problems that we found with this reaction were: high temperatures that required 

heating of the reaction mixture with a Bunsen burner to achieve the desired 

temperature, difficulty in removing the solvent after completion and finally product 

purification. Under these conditions, the only product obtained was 88 in 9.3% 

(pathway A). This product has a linear array of the AAD hydrogen bonding motif. 

The structure of compound 88 was unambiguously assigned due to the presence of 

only one broad NH 2  signal at 6H  8.03-8.11 ppm. 

It is possible that, under FVP conditions, the kinetic product 87 is formed (ca. 10 ms 

contact time) due to hydrogen bonding between the ketene and the amino substituent 

in the transition state. Under the thermodynamic control of the solution conditions 

(ca. 20 min contact time), the less sterically hindered product 88 is formed. This 

result shows that different effects, hydrogen bonding in gas phase and sterics in 

solution are determining the cyclisation pattern. 
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8.713 opt-r - 1 

o 
6" 

3 86a 	
7 

 
10% 	

21N N NH2  

88 

9.13 Ppir 
o 

6' 
I) 	3 	N7 

91 'L 10% 2N N OH3  

92 

Scheme 2.15 i) FVP 600-650 °C, ii) Dowtherm A, 200-220 °C. 

In order to test this hypothesis, pyrolysis of the methyl-substituted analogue 92 was 

carried out in the gas-phase and in solution (Scheme 2.15). Unfortunately FVP was 

unsuccessful, giving only 2-amino-4-methylpyrimidine by radical decomposition of 

91 in the inlet tube while pyrolysis in solution gave a single isomeric product the 

structure of which was assigned as 92 from the following spectroscopic observations. 

By analogy with compound 88, compound 92 shows a particularly characteristic 

doublet (& 9.2 ppm, J= 7.7-7.5 Hz) in the range 4j 8.7-9.2 ppm expected of the 

highly deshielded H6 proton pen to the carbonyl group (See Experimental section). 

Support of the fact that protons pen to the carbonyl group are highly deshielded is 

found in literature examples' °°  and is a key feature which enabled such isomeric 

structures to be distinguished. 

For precursors 93 and 95, FVP was unsuccessful due to precursor involatility so the 

thermal cyclisation was carried out using the high boiling solvent reaction. The 

products obtained (Scheme 2.16) were formed by cycisation onto C=N, giving 

aromatic tn- and tetra-azatricycles in modest yield. 

0 

"" 93 	 eN nN" N 	 95 	 N NN 
H 

94,(41%) 	 96,(7%) 

Scheme 2.16 ii) Dowtherm A, 200-220 °C 
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Compounds 94 and 96 showed the correct molecular ions in their mass spectra and 

have been characterised by comparison with previously assigned compounds. In the 

recent literature  the reaction 93 -+ 94 was reported with an X-ray crystal structure 

of pentachioro analogues of 94 but without clear characterisation data for compound 

94. 

2.3 The quadruple hydrogen bond motif of naphthyridine 

systems 

In view of the relatively low yields obtained by these methods, only 

preliminary studies on the 4-H-bonding strategy were carried out. 

Synthesis of the ketene dithioacetal 80 from the reaction of MA with CS2 followed 

by methylation has been reported previously. 101  Interest in this compound was based 

on the presence of two reactive methylthio groups ready for displacement by a 

variety of nucleophiles. The syntheses of three pyrolysis precursors 99, 101 and 102 

are presented at Scheme 2.17. All reactions were performed at reflux conditions in 

acetonitrile as a solvent. 

oo  N 
)±°  H 2N 	N 

MeS NH 

N 	

i) 

N  

IZOI  

NH 2  

oo 

H2N oo 	
L 

M 	NH 
i) 

MeS SMe 

80 

99(6%) 	 i)1  c-k: NH4 

	

101(10%) 

oo 

102(55%) 

Scheme 2.17 i) acetonitrile at reflux. 
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Reactions to provide 99 and 101 were low yielding (6% and 10%) and with a number 

of side products, though formation of 102 (55%) was more efficient where the better 

nucleophile (ammonium benzoate) as a source of ammonia was used. In all cases 

attempts to displace the second methylthio group were unsuccessful and they will not 

be discussed in detail. 

All products 99, 101 and 102 showed correct molecular ions in their mass spectra 

and a characteristic broad singlet in the range 44 13.0-11.0 due to the deshielded 

hydrogen bonded -NH proton. In the compound 102 the two -NH signals appear at 

different chemical shifts (44 6.31 and 11.04 ppm), due to differential hydrogen 

bonding with carbonyl oxygen of the Meidrum's ring. This has been proved by the 

X-ray crystal structure of 102 (See Experimental section). The only precursor that 

was pyrolysed was compound 99 at a low temperature regime and product 100 was 

obtained in 80% yield (Scheme 2.18). 

oo 

	

oo 	j) 
	 0 

MeS NH 

	

NLN 	 MeS N N 

100(80%) 
99 

Scheme 2.18 i) FYP 600-650 °C. 

This chemistry overall was not promising due to low yield of pyrolysis precursors 

(<10%) and problems that occurred in the displacement of second methylthio group, 

so it was abandoned as a strategy. 

2.4 Conclusions 

In conclusion, in this chapter we have demonstrated different ways for the 

synthesis of small aromatic heterocyclic units using pyrolysis in the gas phase and in 
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solution of pyridine and pyrimidine based precursors. In this way we produced a 

small library of two hydrogen bonding units: AD 78, AA-pattern (85, 87, 90 and 92) 

and three three hydrogen bonding units: DAD-pattern 83 and AAD-pattern 88 

(Scheme 2.19). 

o 	 0 	 0 	 0 

'nN
(N 	

78 	 85 	 83 	 76

N)- 	 N 	NH2 	N N NH2  
H 	 1-1 

D A 	 A A 	 D A 0 	 A A D 

o NH2  

87 

A A 

o ci 

90 

A A 

92 

Scheme 2.19 Summary of synthesised compounds. 

Unfortunately this strategic method was not applicable for the formation of three and 

four annelated heterocyclic units due to problems with involatility of pyrolysis 

precursors. 
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2.5 Experimental section 

FVP General method: The FVP system is evacuated to a pressure of 10 -2_ 10 -3 Ton 

by means of high capacity oil pump. Precursors (30-50 mg) are sublimed under 

reduced pressure through an empty silica tube (35 x 2.5 cm) heated by an electrical 

furnace. The products are collected in a U-tube cooled by liquid nitrogen (Figure 2.1) 

situated at the exit point of the furnace. Upon completion of the pyrolysis the trap is 

allowed to warm to room temperature under an atmosphere of dry nitrogen. The 

entire pyrolysate is then dissolved in solvent to enable removal from the trap. 

2,2-Dimethyt-5-(pyridin-2-ylaminomethylene) -[1 ,3]dioxane-4,6-dione  (76) 

a 

00 

 

00 

o L.CLo 
~dc'o 

 
NH 	 NHf 

6N 3  
4 J 6  

5 

To a stirred solution of methoxymethylene Meidrum's acid 79 (0.47 g, 5 mmol) in 

anhydrous acetonitrile (15 cm) was added 2-aminopyridine (0.47 g, 5 mmol). The 

mixture was stirred at room temperature for 2 h (TLC, 1% MeOH in CHC13). The 

white precipitate was filtered, recrystallised from acetonitrile and dried in an oven to 

give 76 (1.18 g, 95%) as a white solid, mp 181-184 °C (decomp) [lit.,' 02  175-176 

°C]. 'H NMR (400 MHz, CDC13) 15 PPM 11.28 (br d, J1 = 13.4 Hz, 1H, H1-), 9.39 

(d, Jej = 13.4 Hz, 1H, 11e), 8.40 (dd, J65 = 4.6 Hz, ,16,4 = 1.5 Hz, IH, H6-), 7.75 (ddd, 

J4 3 = 8.1 Hz, J45 = 7.5 Hz, J46  = 1.5 Hz, 1H, H4-), 7.17 (dd, J54 = 7.5 Hz, J5,6 = 4.6 

Hz, IH, b-), 7.02 (d, J34 = 8.1 Hz, 1H, j-) and 1.76 (s, 6H, -); ' 3C NMR (100 

MHz, CDC13) Sppm 165.6 (-Ce '-), 163.2 (c-) 151.7 LC,- ), 149.2 (C2-), 149.1 (co-). 
139.0 (-). 121.5  (-), 112.7  (-), 105.2 (cb-).  88.7 (cd-)  and 27.1 (c-);  FAB- 
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MS m/z 249 (M+1, 26%), 191 (M+1-Acetone, 100%). Found C, 57.55; H, 4.8; N, 

11.15). C 12H 12N204 requires: C, 58.05; H, 4.85; N, 11.3%. 

Pyrido[1 ,2-a]pyrimidin-4-one  (77) 

0 	 0 
3 (11 N7  

N- 9 

FVP of (76) (0.050 g. T1 = 650 °C, Ti  = 180 °C, P = 1.5 x 	Ton, t = 10 mm) 

produced 77 in a quantitative yield. Compound 77 was recrystallised from diisopropyl 

ether (0.029 g, 98%) and was a white solid, mp 136-138 °C [lit.,' 02  130-131 °CI.  'H 

NMR (400 MHz, CDC1 3 ) 8 ppm 9.09 (d, J6,7 = 7.3 Hz, IH, H6-), 8.31 (d, J2,3 = 6.4 

Hz, IH, fl-), 7.76 (dd, J89 = 8.6 Hz, J87 = 6.7 Hz, IH, 118-),  7.67 (d, J98 = 8.6 Hz, IH, 

1-101 7.17 (dd, J76 = 7.3 Hz, J78 = 6.7 Hz, 1H, 117-) and 6.46 (d, J32 = 6.4 Hz, IH, 1-1 3-

); ' 3C NMR (100 MHz, CDC1 3) 5157.6 (-), 154.8 (c2-),  151.8 (c9a-), 136.2  (ç), 

127.4 (c6-),  126.5 (ç-), 115.6 (ç-) and 104.8 (Cs-); FAB-MS: mlz 147 (M+1, 74%). 

Found C 65.7, H4.0, N, 19.15. C8H6N20 requires: C, 65.75; H, 4.1; N, 19.2%. 

1H-[1 ,8]Naphthyridin-4-one (78) 

n4 6 

NnN 	 2 N 8a  N 7 

FVP of (77) (0.050 g, Tf = 950 °C, T1  = 200°C, P = 1.5 x 10 Ton, t = 10 mm) using 

a furnace tube packed in the centre with silica tubes produced (78) in 50% yield, mp 

163-170 °C (decomp) [lit., 103  239 °C].  'H NMR (400 MHz, CDC1 3 ) 8  ppm 12.20 ( br, 

IH, H,-), 8.78 (dd, J75 = 4.5 Hz, J75 = 2.0 Hz, IH, 1-1 7-), 8.48 (dd, J5,6 = 8.1 Hz, .15,7 

= 2.0 Hz, IH, f-), 7.98 (dd, J2,3 = 7.6 Hz, J, = 6.1 Hz, 1H, jj), 7.44 (dd, J6,5 = 8.1 

Hz, J6,7 = 4.5 Hz, IH, 116-),  6.14 (d, J32 = 7.6 Hz, IH, th-); ' 3C NMR (100 MHz, 
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[D6]DMSO) 8 ppm 177.5 (-), 153.0 (C7-),150.5 (c4a-),  140.4 (-), 134.6 

120.2 (C8,,-), 119.7 (c6-)  and 109.6 (Cs-); FAB-MS: ?n/z 147 (M+1, 76%); Found C, 

65.5; H 4.2; N, 18.9. C 8H6N20 requires: C, 65.75; H, 4.1; N 19.2%. 

5- [(6-Aminopyridin-2-yiamino) -methylene] -2,2-dimethyl- [1  ,3]dioxane-4,6-dione 

(81) 

O'_ 
0 

NH 

NH2  

oc,  

e NH 

3 N 

(Lj"~ NH2  

To a stirred solution of methoxymethylene Meidrum's acid 79. (0.93 g, 5.00 mmol) 

in anhydrous acetonitrile (15 cm  3)  was added 2,6-diaminopyridine (2.76 g, 25.0 

mmol). The reaction was allowed to stir for 5 h at room temperature. The solvent was 

removed under reduced pressure and the residual oil purified by chromatography on 

silica gel using a solvent gradient of CHC13 to CHCI3/methanol (10%) as eluent to 

obtain 93 (<5%) as a first product from the column. Compound 81 eluted next from 

the column as the main product, (3.33 g, 67%), mp 192-193 °C 'H NMR (400 MHz, 

CDC1 3 ) öppm 11.12 (br d, Jf,e = 13.6 Hz, lH, Hi ), 9.32 (d, Je,f  13.6 Hz, IH, He), 

7.45 (t, J = 7.7 Hz, IH, I-Li-), 6.29-6.36 (m, 2H, 113- and -), 4.69 (br s, 2H, Hg-), 

and 1.75 (s, 6H, Ha)  13C NMR (100 MHz, CDC1 3) 15 PPM 163.6 (c'), 163.0 (ce). 

159.1 (c6),  150.2 (ce),  147.7 (Q), 139.7  (), 106.0  (), 104.1 (cb),  100.4 (), 

86.8 (cd)  and 26.4 (ca);  FAB-MS ,n/z 264 (M+1, 100%). Found: C, 54.85; H, 4.0; N, 

16.0. C, 2H 13N304  requires: C, 54.75; H, 4.1; N, 15.95%. 

E:Ii 
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6-Aminopyrido[1,2-a]pyrimidin-4-one (82) 

0 0 NH2 	
NH2 

 

rN'7 

2 N 8  
9 

FVP of (81) (0.050 g, Tf  = 650 °C, T, = 200 °C, P = 1.5 x 10-3 Torr, t = 10 mm) 

produced in essentially quantitative yield 82 (0.032 g, 99%), mp 192-193 °C. 'H 

NMR (400 MHz, CDCI3) 8 ppm 8.00 (d, J2,3 = 6.1 Hz, 111, fl-), 7.46 (br s, 2H, - 

NH?), 7.40 (dd, J8 7  = 7.9 Hz, J8,9 = 8.4 Hz, IH, -1-1), 6.82 (d, .198 = 8.4 Hz, IH, 1-19-), 

6.03 (d, J32 = 6.1 Hz, IH, fl-) and 5.96 (d, J7 8= 7.9 Hz, IH, 1-17-); ' 3C NMR (100 

MHz, CDCI3) 8 164.6 (C4), 157.6 (Cg,,-), 153.6 (c-),  151.9 (c6-)  138.1 (c8).  112.1 

102.9 (Cs), 98.7 (ç); El-MS mlz 161 (Mt, 100%), 106 (77), 93 (65), 80 (54) 

66 (62) and 39 (75). Found: C, 59.7; H, 4.35; N, 26.15. C8H7N30 requires: C, 59.6; 

H, 4.4; N, 26.05%. 

7-Amino-1H-[ 1 ,8]naphthyridin -4-one (83) 

el ) aNNH2 
 

:àc 6  

FVP of (82) (0.050 g, Tf  = 900 °C, Ti  = 200 °C, P = 1.0 x 10-3 Ton, t = 10 min ) 

produced (83) in 40% yield (0.012 g). mp 200-204 °C, 'H NMR (400 MHz, 

[D6]DMSO) Sppm 11.35 (br, IH, H1-), 8.01 (d, J5 ,6 = 8.6 Hz, 1H, fl-), 7.56-7.63 

(br m, 1H, 112-),  6.86 (br s, 2H, -NH), 6.49 (d, J6,5  = 8.6 Hz, IH, H6-) and 5.92 (d, 

J3,2 = 7.6 Hz, IH, j-);  ' 3C NMR (100 MHz, [D6]DMSO)  8 ppm 177.9 (C4-),162.2 

EL 
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(cv-), 152.3 (c4a-), 138.9 (-), 136.0 (-), 112.8 (c8a-),  110.4 (Cs-) and 108.7 (c6-

); El-MS m/z = 161 (Mt, 25%), 43 (100), 105 (68), 57 (41). I-IMRS [M] = 16 1.0589, 

C8H7N30 requires: 16 1.0563. FVP of (81) (0.050 g, Tf = 900 °C, T1  = 200 °C, P = 

1.0 x 10 3  Ton, t = 10 mm) under diffusion pump conditions produced (83) in 20% 

(0.006 g) yield. 

2,2-Dimethyl-5-(pyrimidin-2-ylaminomethylene)-[ 1 ,3]dioxane-4,6-dione  (84) 

oo 

0-' 

o 

NH 

NN 

oc ,  

NH f 

) 
NN 
hLJ 

To a stirred solution of methoxymethylene Meidrum's acid 79 (0.47 g, 5 nimol) in 

anhydrous acetonitrile (15 cm 3)  was added 2-aminopyrimidine (0.47 g, 5 mmol). The 

mixture was stirred at room temperature for 2 h (TLC, 1% MeOH in CHCI 3). The 

white precipitate was filtered, recrystallised from acetonitrile and dried in oven to 

give (1.65 g, 67%) as a white solid (84), mp 214-215 °C [lit.,' 04  206-208 °C].  'H 

NMR (400 MHz, CDC13) öppm 11.23 (br d, Jf,e = 13.3 Hz, 1H, fjç - ), 9.40 (d, Je,f = 

13.3 Hz, 1H, 11e),  8.61 (d, J4 , 5  = 4.8 Hz, 2H, H4-), 7.16 (t, J54  = 4.8 Hz, IH, Hi-), 

1.74 (s, 6H, Ha-);  13C NMR (100 MHz, CDC13) öppm 164.7 (c'-) 162.9 (c-) 
158.7 156.1 (g),  152.0 LC,-), 118.2 (-), 105.3 (cb-)  90.4 (cd-)  and 27.2 

(ca-); FAB-MS mlz 250 (M+l, 14%). Found: C, 52.90, II, 4.31, N, 16.92. 

C, 1 H,,N304  required: C, 53.0; H, 4.45; N, 16.85. 

Pyrimido[1 ,2-a]pyrimidin-4-one  (85) 

0 	 0 

x 	

116 

2L N L N 8 )  
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FVP of (84) (0.050 g, Tf  = 600 °C, Ti  = 180 °C, P = 1.5 x 10 Torr, t = 10 mm) 
produced 85 in a quantitative yield. Compound 85 was recrystallised from 

acetonitrile (0.029 g, white solid), mp 185-186 °C [lit., 104  170-173 °C]. 'H NMR 

(400 MHz, CDCI3) 8 ppm 9.36 (d, J6,7  = 7.1 Hz, 1H, H6-), 9.07 (d, J8,7  = 3.9 Hz, IH, 

118 -), 8.44 (dd, J2,3 = 6.7 Hz IH, !J-)' 7.19 (dd, J7,6 = 7.1 Hz, .17 ,8  = 3.9 Hz IH, 1-17-) 

and 6.52 (d, J32 = 6.7 Hz, JH, 
-); ' 3C NMR (100 MHz, CDC13) 8 ppm 162.0 (c8-

), 158.0 (ç-), 157.1 (C 2-), 152.4 (C,0-), 136.4 (C6-), 111.9 (C7-), 106.0 (C3-); FAB-

MS mlz 147 (M+l, 55%). Found: C, 56.4; H, 3.55; N, 28.9%. C7H5N30 required: C 

57.1; H 3.4; N 28.55%. 

5-[(4-Aminopyrimidin-2-y1amino)-methy1ene]-2,2dinicthy1[1 ,3]dioxane-4,6- 

dione (86a) 

oo 

0-"'-  1  0 

 

NH 

NN 

NH2  

c 

OIILO  
NH f 

6 	LNH 

and S-[(2-Aminopyrimidin-4-ylamino)-methylene]-2,2-dimethyl-[1,3]djoxane4,6 

dione (86b) 

oo 
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NH 
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To a stirred solution of methoxymethylene Meldrum's acid 79 (1.86 g, 10.00 mmol) in 

anhydrous acetonitrile (15 cm 3)  was added 2,4-diaminopyridine (1.10 g, 10.00 mmol). 

The reaction was allowed to stir for 5 h at room temperature. The solvent was removed 

under reduced pressure and the residual oil chromatographed on silica gel using a 

solvent gradient of DCM to DCMITHF (30%) as eluent to obtain as a (86a) white 

solid (1.05 g, 40%). The regiochemistry was established by X-ray crystallography (See 

supporting information), mp 204-206 °C 'H NMR (400 MHz, CDC13) 8 ppm 10.94 

(br d, Jf,e = 13.9 Hz, IH, I) 9.30 (d, Je,f = 13.9 Hz, 1H, HeW), 8.10 (d, J6 ,5  = 5.8 Hz, 

1H, H6-), 6.26 (d, J56 = 5.8 Hz, 1H, 115-).  5.16 (br s, 2H, -Nrn), and 1.74 (s, 6H, 11-); 
' 3C NMR (100 MHz, CDCI3) 8 ppm 164.7 (c•-),  163.7 (c-),  163.3 (C,-), 157.2 (c6-

), 155.8 (.), 152.4 (ce),  105.2 (cb),  102.4 (Cs-), 89.4 (cd-)  and 27.2 (c-);  FAB-

MS mlz 265 (M+ 1, 20%). Found: C, 50.3; H 4.65; N, 21.05%. C 11 H,2N404 required: 

C, 50.00; H 4.58; N. 21.2%. Compound 86b was obtained as the second fraction from 

the column (0.105 g, 4%) and was identified by it is 'H NMR spectrum. 'H NMR (400 

MHz, CDC13) 8 ppm 10.94 (br d, Jf,e = 13.9 Hz, 1H, Hf-), 9.37 (d, J,f = 13.9 Hz, IH, 

lIe), 8.28 (d, J6,5 = 5.7 Hz, 1H, llo-),  6.33 (d, J5 ,6 = 5.7 Hz, IH, 115-),  5.13 (br s, 2H, - 

NH?), and 1.57 (s, 6H, -). 

6-Aminopyrimido[ 1 ,2-a]pyrimidin-4-one (87) 

o NH2 	 0 NH 2  

(N 	

:

:7 

N N 	 C NIN' 

FYP of (86a) (0.127 g, Tf  = 600 °C, Ti  = 180 °C, P = 3.0 x 10-3 Torr, t = 10 min ) 

produced 87 (0.013 g, 10%) as a white solid identified by 'H NMR spectrum. 'H 

NMR (400 MHz, CDC1 3 ) 6 ppm 10.05 (br s, 1H, NH'-), 7.92 (d, J23 = 6.3 Hz, IH, - 

) 7.65 (d, J8,7 = 6.1 Hz, IH, 118-),  6.51 (d, J7 ,8 = 6.1 Hz, IH, 117-), 6.27 (br s, IH, - 

NH"-) and 6.16 (d, .132 = 6.3 Hz, lH, 15-) 
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8-Aminopyrimido[1 ,2-a]pyrimidin-4-one  (88) 

0 

~!N)-  'NH2 

 

:(tx)NH2 

To a boiling solution of Dowtherm (Ph 20 and Ph2) (70 cm3) was added (86a) (0.5 g, 

2 mmol). The resulting mixture was heated under reflux at 220 °C for 20 minutes and 

then filtered; the product (88) was precipitated from the solution with petroleum 

ether (3 x 50 cm 3). The white precipitate was collected and dried in oven to give 88 

(0.03 g, 9.3%), mp 220-235 °C 'H NMR (400 MHz, [D6]DMSO) 5 ppm 8.76 (d, 

J6,7 = 7.7 Hz, I H, 1-1 6-), 8.11-8.03 (br s, I H, -Nm-), 8.04 (d, J23  = 6.3 Hz, I H, -112). 

6.57 (d, J7,6 = 7.7 Hz, 1H, H7-) and 5.96 (d, .13,2 = 6.3 Hz, IH, th-); ' 3C NMR (100 

MHz, [D6]DMSO)  (5 ppm 162.3 (C8), 158.1 (ç), 157.6 (f2),153.2 (ç°), 134.4 (c6). 

103.7 (ç-,), 99.9 (ç); El-MS in/z 162 (Mt, 100%), 134 (53), 94 (51), 82 (28). Found: 

C, 51.9; H, 3.7; N, 34.1%. C 7H6N40 required: C, 51.85; H, 3.7; N, 34.55%. 

5-[(4,6-Dichloropyrimidin-2-ylamino)-methylene]-2,2-dimethyl-[ 1 ,3]dioxane- 

4,6-dione (89) 

c <o 

NH 

N 'LN  

C
. 

I~Ieo. NO 

NN 

To a stirred solution of methoxymethylene Meldrum's acid 79, (0.74 g, 4 nimol) in 

anhydrous acetonitnle (15 cm 3) was added 2-amino-4,6-dichloropyrimidine (0.65 g, 

4 mmol). The mixture was stirred at reflux for 3 days (TLC, 1% MeOH in CHCI 3). 

The white precipitate was filtered and dried in oven to obtain (89) as a white solid 
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(0.403 g, 32%), mp 183-184 °C; 'H NMR (400 MHz, CHCI 3 ) 5 ppm 11.21 (d, Jf.e = 

12.8 Hz, 1H, f), 9.23 (d, Jef = 12.8 Hz, IH, H e-), 7.21 (s, 1H, Hi-) and 1.74 (s, IH, 

-); ' 3C NMR (100 MHz, CHC13) 5 ppm 164.3 (C, , -),163.3 (c-), 162.2 (c-) 
155.9 (g), 151.0 LC,-), 117.5 (ci-). 105.7 (cb-).  92.6 (cd-)  and 27.6 (-); El-MS 

m/z 318 (M, 48%), 259 (59), 215 (75), 187 (100), 147 (76) and 43 (86). Found C, 

41.6; H, 2.75; N, 13.35. C 11 H9C12N304 requires: C, 41.5; H, 2.85; N, 13.21%. 

6,8-Dichloropyrimido[1 ,2-ajpyrimidin-4-one (90) 

o ci 	o ci 

x ci  
FVP of (89) (0.037 g, Tf  650 °C, T1  200 °C, P 5.5 x 10 3  Ton, t 15 mm) produced 90 

in quantitative yield. Compound 90 was recrystallised from acetonitrile (0.025 g) as a 

yellow solid, mp 143-146 °C. 'H NMR (400 MHz, CDC13) S ppm 8.17 (d, J2,3 = 6.6 

Hz, IH, H2-), 6.98 (s, IH, 1-17-) and 6.38 (d, J3 ,2 = 6.6 Hz IH, 1j3-). ' 3C NMR (100 

MHz, CDC13) 5 ppm 159.7 (c8-)  157.8 (ç-), 153.8 (-), 149.8  (cio-),  141.9  (co-), 
115.3 (C7-),108.9 (Ci-); El-MS m/z 217 (M, 4.5%), 197 (100), 169 (71), 128 (84), 

95 (89) and 44 (75). Found C, 38.4; H, 1.55; N, 19.3. C7H3Cl2N30 required: C 38.9; 

H 1.4;N 19.45%. 

2,2DimethyI-5-[(4-methy1pyrimidin -2-yIamiflO)-fl1ethYIeflC] - [l ,3]dioxane-4 ,6- 

dione (91) 

oo 
oo 

NH 

NN 

CH3  

0 0 1  
C c 0 1 o 

NHf 

NN 

iCH 

1-sJ 
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To a stirred solution of methoxymethylene Meidrum's acid 79, (0.58 g, 5.3 mmol) in 

anhydrous acetonitrile (10 cm  3)  was added 2-amino-4-methylpyrimidine (1.0 g, 5.3 

mmol). The mixture was stirred at reflux for 24 h (TLC, 1% MeOH in CHCI 3). The 

precipitate was filtered and dried in an oven to obtain (91) as a yellow solid (0.803 g, 

57%), mp 144-145 °C; 'H NMR (400 MHz, CHC1 3 ) 8 ppm 11.17 (d, Jf,e = 13.4 Hz, 

IH, jjj-), 9.40 (d, Je,f = 13.4 Hz, 1H, 11e),  8.42 (d, J,,= 5.1 Hz 1H, Hi-), 6.97 (d, J1  

= 5.1 Hz 111, j-), 2.50 (s, 6H, -) and 1.73 (s, 3H, H i,-); ' 3C NMR (100 MHz, 

CH0 3 ) 8 ppm 169.7 (c'-), 164.7 (ce-).  158.1 (ç-), 155.8 (cg-).  155.8 (Cj), 152.2 

(ce) 117.9 (ci-), 105.2 (cb-)  90.1 (cd)  27.2 ()and 24.1 (vie- ); El-MS rn/z 263 

(M, 62%), Found C, 54.8; H, 4.92; N, 15.90. C, 2H, 3N304  requires: C, 54.7; H, 4.98; 

N, 15.96%. 

8-Methylpyrimido[ 1 ,2-a]pyrimidin-4-one (92) 

0 

CH3 
 2 (1 N I  N~'CH3  

To a boiling solution of Dowtherm99  (Ph20 and Ph2) (70 cm  3)  was added 91 (0.5 g, 2 

mmol). The resulting mixture was heated under the reflux at 220 °C for 20 mm. and 

then filtered; the product 92 was precipitated from the solution with petroleum ether 

(3 x 50 CM)  . The white precipitate was collected and dried in an oven to give 92 

(0.05 g, 10%) which was identified by its 'H NMR spectrum. 'H NMR (400 MHz, 

CDC1 3) 8 9.18 (d, J6 7  = 7.3 Hz, IH, 116-), 8.42 (d, J2,3 = 6.3 Hz, IH, -j), 7.04 (d, 

= 7.3 Hz, 1H, 117-), 6.44 (d, J3,2 = 6.3 Hz, IH, H3-) and 2.74 (s, 3H, 
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N,N'-Bis(5-methylene-4,6-diketo 2,2-dimethyl-[ 1,3]dioxane)-pyridine-2,6 

diamine (93) 

5 	0 

—Y!O r---O H 
	H 

0 0-  

e I1-11 

0 C  r' N N 	N' 	0 
aHf 	H 
ro o 	o a 

To a stirred solution of methoxymethylene Meldrum's acid 79, (1.86 g, 10 mmol) in 

anhydrous acetonitrile (15 cm) was added 2,6-diaminopyridine (0.55 g, 5 mmol). 

The mixture was stirred at room temperature for 5 h (TLC, 1% MeOH in CHCI3). 

The white precipitate was filtered and dried in oven to give 93 (2.04 g, 98%) as a 

white solid, mp 244-254 °C. h11  NMR (400 MHz, CDCI3) 8 ppm 11.38 (d, Ji,e = 13.4 

Hz, 2H, Hf-), 9.25 (d, J,f=  13.4 Hz, 1H, He-), 7.82 (t, i4 ,3 = 7.8 Hz, 1H, H4-) 6.90 (d, 

J3,4= 7.8 Hz, 2H, 1-13-) and 1.77 (s, 12H, jj-); ' 3C NMR (100 MHz, CDC13) 8 ppm 

165.6 (') 165.5 (c)  162.0 (), 151.2 LC,),149.3 (), 142.0 (c),  109.5 (Ci), 

105.5 (cb)  90.1 (cd).  27.2 (c);  FAB-MS m/z 418 (M+1, 1%). Found C, 54.35; H, 

4.6; N, 9.75. C 1 9H 19N308 requires: C, 54.65; H, 4.6; N, 10.05%. 

5H-1 ,4a,5-Triazaphenanthrene-4,8-dione (94) 

NcX 

0 

10 	 7 

H 

To a boiling solution of Dowtherm 99  (Ph20 and Ph ,)) (70 cm 3)  was added 93 (0.5 g, 2 

mmol). The resulting mixture was boiled at 220 °C for 20 minutes and then filtered; 

M. 
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the product (94) was precipitated from the solution with petroleum ether (3 x 50 

cm3). The white precipitate was filtered and dried in an oven to give 94 (0.17 g, 

41%), mp 210-218 °C. 'H NMR (400 MHz, CDC1 3 ) 5 ppm 14.36 (b, IH, H5-),8.26 

(d, J23  = 6.3 Hz, IH, fl-), 8.27 (d, J9,io= 9.3 Hz, IH, H9-), 7.95 (d, J67 = 8.2 Hz, IH, 

116-), 7.31 (d, .1109  = 9.3 Hz, 1H, H,0-), 6.53 (d, J32 = 6.3 Hz, 1H, th-) and 6.35 (d, 

J7,6= 8.2 Hz, IH, 1-17-); ' 3C NMR (100 MHz, CDC1 3 ) 5 ppm 175.4 	165.7 (c8) 

158.1 (cioa),  154.8 (), 152.0 (c4a)'  134.6 (C6), 133.8 (), 120.8 (-CO,114.7 

109.6 (C7),108.6 (Ci); FAB-MS mlz 214 (M+1, 17%). Found C, 62.1; H, 3.6; N, 

19.95.C 1  ,H7N302  required: C, 62.0; H, 3.3; N, 19.7%. 

N,N'-Bis(5-methylene-4,6-diketo 2,2-dimethyl-[1,3]dioxane) -pyrimidine-2,6- 

diamine (95) 

0 	 0 

ONNN)LO 
H 	H I 

7oo 	0o 

6 
0 	 0 

ONLNc e d' 
N' TO 

Hf 	Hf1- a' 

To a stirred solution of methoxymethylene Meidrum's acid 79, (1.86 g, 10 mmol) in 

anhydrous acetonitrile (15 cm 3)  was added 2,4-diaminopyrimidine (0.55 g, 5 mmol). 

The mixture was stirred at room temperature for 5 h (TLC, I% MeOH in CHCI 3 ). 

The white precipitate was filtered and dried in oven to give 95 (1.32 g, 63% as a 

white solid), mp 194-196 °C. 'H NMR (400 MHz, CDC1 3) Sppm 11.29 (d, J,e' = 

12.9 Hz, 2H, ç), 11.20 (d, Jf,e  13.3 Hz, IH, b-), 9.33 (d, Je',r = 12.9 Hz, 2H, He' 

), 9.27 (d, Je  13.3 Hz, 11-1, 11e), 8.57 (d, J65 = 5.4 Hz, IH, H6-), 6.82 (d, J56= 5.4 

Hz, 1H, j-) and 1.77 (s, 12H, fj-); ' 3C NMR (100 MHz, CDC13) S ppm 165.1 

(cc) 164.5 162.6 ('),162.0 (),160.6 (c6), 158.0 (a),  157.4 (c70  151.6 



Chapter 2 

(ce'), 150.0 LC,),105.9 (cb'), 105 .7  (), 105.5 (cb),  92.5 (cd').  91.5 (cd).  27.3 (CO 

and 27.3 (c).  El-MS mlz 418 (M, 2%), 214 (31), 186 (38) and 43 (100). Found C, 

51.1; H, 4.3; N, 13.35. C 18H 1 8N408 requires: C, 51.68; H, 4.34; N, 13.39%. 

1 ,4a,5,8a-Tetraazaphenanthrene-4,8-dione (96) 

N N !!N)  

0 
9 	il 

1ON' 	7 
16 

2 
3 

To a boiling solution of Dowtherm 99  (Ph20 and Ph2) (70 cm) was added (95) (0.5 g, 

2.3 mmol). The resulting mixture was boiled under reflux at 220 °C for 20 minutes 

and then filtered; the product (96) was precipitated from the solution with petroleum 

ether. The crude product was washed 3-5 times with ether (50 cm  total). The white 

precipitate was filtered and dried in an oven to give 96 (0.03 g, 7%). 'H NMR (400 

MHz, CDCI3) 8 ppm 8.94 (d, J23 = 8.1 Hz, IH, -), 8.05 (d, J6,7 = 6.7 Hz, IH, H6-), 

7.84 (d, J9,io = 6.8 Hz, 1H, 11 9-), 6.7 (d, 43,2 = 8.1 Hz, 1H, jj-), 6.45 (d, J1 0,9= 6.8 Hz, 

1H, H,o-) and 6.42 (d, J7,6= 6.7 Hz, IH, 1-17-); ' 3C NMR (100 MHz, CDC13) 8 ppm 

186.9 (), 175.5 (c8).  158.0 (cioa)  152.4 (), 151.1 (co), 150.4 (c40  128.6 (), 

120.8 (C 10), 114.7 (), 112.1  () and 111.1 (); El-MS mlz 214 (Mt, 19%), 213 

(100), 185 (5 1) and 145 (59). 

Ell 
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2,2-Dimethyl-5-(methyisutfanyl)-5-[ (pyrimidin-2-ylamino)-methylene]- 

[1 ,3]dioxane-4,6-dione  (99) 

oo 

M X 
NN 	 NN 

4 )6 

To a stirred solution of 5-(bis-methylsulfanylmethylene)-2,2-dimethyl- [1,3 ]dioxane-

4,6-dione 80,' ° ' (0.40 g, 1.78 mmol) in anhydrous acetonitrile (15 cm 3)  with 1 drop 

of DMF, was added 2-aminopyrimidine (0.16 g, 1.78 mmol). The reaction was 

allowed to stir for 24 h at reflux; the solvent was removed under reduced pressure 

and the residual oil was purify by chromatography on silica gel using a solvent 

gradient of CHCI 3  to CHC13/methanol (10%) as eluent to obtain (99) as a yellow 

solid in a yield of 6%, mp 213-214 °C. 'H NMR (400 MHz, CDCI 3 ) 8 ppm 13.02 

(br. s, 1 H, I-If-),  8.70 (d, J4,5 = 4.8 Hz, 2H, II4  and H6-), 7.13 (d, J5,4 = 4.8 Hz, I H, H5- 

), 2.45 (s, 3H, llSMe)  and 1.78 (s, 1H, flu-); ' 3C NMR (100 MHz, CDCI3) 8 ppm 

178.8 (cc-), 164.7 (C, , -), 164.2 (C ,--), 158.2 (ca-), 156.8 (cg-),  117.4 (CO,  103.4 

(cb-), 90.2 (cd-)  20.2 (ce-)  and 16.6 (c5M-).  El-MS rrvz 295 [(M-C2H50), 45%)], 

212 (91), 159 (25), 79 (56), 41(100). (Found C, 49.3; H, 4.15; N, 14.8; C 12H 1 3N304S 

requires: C, 48.8; H, 4.4; N, 14.2%). 

2-Methylsulfanylpyrimido[ I ,2-a]pyrimidin-4-one  (100) 

0 	 0 

xMeS N
r 

N 	MeS N N 8  

,Jl 
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FVP of (99) (0.050 g, Tf = 600 °C, Ti  = 180 °C, P = 1.5 x 10-3 Ton, t = 10 mm) 

produced 100 in 80% yield. Compound 99 was recrystallised from acetonitrile (0.026 

g), white solid after recrystallisation and characterized by its 'H NMR spectrum. 'H 

NMR (400 MHz, CDC1 3) S ppm 9.26 (d, J6,7  = 7.1 Hz, IH, H6-), 9.01 (d, J8,7 = 3.8 

Hz, IH, Hr), 8.58 (d, J3,a = 4.8 Hz 1H, -), 7.13 (d, J76 = 7.1 Hz, J7,8 = 3.8 liz 1H, 

H7-) and 2.21 (s, 3H, 

54(6Aminopyridin2yIamino)-5-[methy 1SUffaflY 1-methY 1efle] .2,2 dimethYt - 

[1,3]dioxane-4,6-dione (101) 

oo 

o sXLo 
M 	NH 

NH2  

0-

'c 

- x o  
MeS NHf 

3N 

To a stirred solution of 80 (0.5 g, 2.01 mmol) in anhydrous acetonitrile (15 cm 3) was 

added 2,6-diaminopyrimidine (0.22 g, 2.01 mmol). The reaction was allowed to stir 

for 2 h at reflux; the solvent was removed under reduced pressure and the residual oil 

was purify by chromatography on silica gel using a solvent gradient of CHCI 3  to 

CHC1 3/methanol (10%) as eluent to obtain 101 (0.063 g, 10%) as a yellow solid, mp 

166-168 °C. 'H NMR (400 MHz, CDC1 3) S ppm 12.99 (br. s, 1H, -), 7.51 (t, L4,5 = 

7.6 Hz, J4 3= 8.1 Hz, lH, 1!4-), 6.60 (d, J54  = 7.6 Hz, 1H, j-),  6.39 (d, J3,4 = 8.1 Hz, 

IH, j-), 4.56 (br. s, 2H, NH 2.35 (s, 3H, IISMe) and 1.76 (s, 31-I, ifs-); ' 3C NMR 

(100 MHz, CDC1 3) S ppm 178.0 (ce)  163.9 (c),  157.8 (c)  157.8 (c6).  149.0 (c), 
139.9 (C4),107.1 (), 106.3 (C i), 103.1 (cb),  87.4 (cd).  26.5 (c),  19.7 (g).  FAB 

MS mlz 310 (M+1, 17%). (Found C, 50.7; H, 4.85; N, 13.0; C 13H, 5N304S requires: 

C, 50.5; H, 4.9; N, 13.6%). 

92 
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5-(Amino-5-methylsulfanylmethylene)-2,2-dimethyl-[1,3]dioxane- 4,6-dione (102) 

o x o  

o 5ào  
MeS NH2  

c  

MeS NH2  

To a stirred solution of 80 (0.30 g, 1.4 mmol) in anhydrous ethanol (15 cm 3)  was 

added ammonium benzoate (0.17 g, 1.4 mmol). The reaction was allowed to stir for 4 

h at reflux. The precipitate was filtered and recrystallised to give 102 (0.17 g, 55%) 

as a yellow solid, mp 216 °C. 'H NMR (400 MHz, CDCI3) 8 ppm 11.04 (br. s, IH, 

NH-), 6.31 (br s, IH, NH'-), 2.42 (s, 3H, ll5Me)  and 1.71 (s, 3H, -). ' 3C NMR (100 

MHz, CDCI3) 8 ppm 177.7(ce), 165.6 163.1 (cc), 103.4 (Cj), 84.3 (cci),  26.5 

() 

 

and 13.4 (cSMe).  El-MS mlz 217 (M, 67%), 160 (62), 115 (82), 87 (75) and 68 

(100). Found C, 45.2; H, 5.15; N, 6.4; C8H,,N04S requires: C, 44.2; H, 5.1; N, 

6.45%. 

93 
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Details of X-ray Crystal Structure Determination 

X-ray crystallographic data for compound 86a: 

C 11 H 12N404, Mr=264.24, colourless rod of dimensions 0.91x0.22x0.18 mm, 

monoclinic, p21, a= 7.081(l), b= 14.500(2), c= 11.9556(18) A; =103.689(3) 0 , V= 

1192.7(3) A3 , Pca1cd147'  Mg/rn 3 , Z=4; X=0.71073 A, T=150(2) K, 7518 reflection 

measurements, 2917 unique. The structure was solved and refined using Direct 

(Sir92) program to yield final residuals R= 0.04086 and Rw= 0.1005. All hydrogen 

atoms on carbon atoms were placed in rigid fixed geometries. 

X-ray crystallographic data for compound 91: 

C 1 2H13N304 Mr=263.25, colourless chip of dimensions 0.97x0.55x0.39 mm, 

monoclinic, p21; a= 5.2532(7), b= 11.7017(16), c= 10.2904(14) A; 13=102.686(9) 0 , 

V= 617.12(15) A3 , Pcalcd.417  Mg/m3, Z=2; X=0.71073 A, T=150(2) K, 7231 

reflection measurements, 1576 unique. The structure was solved and refined using 

SHELXL-86 program to yield final residuals R= 0.0486 and Rw= 0.1350. All 

hydrogen atoms on carbon atoms were placed in rigid fixed geometries. 

X-ray crystallographic data for compound 102: 

C8H 1 1N04S M=2 17.25, yellow block of dimensions 0.59x0.52x0.40 mm, triclinic, 

p- 1; a= 5.8088(6), b= 7.1597(8), c= 11.1690(12) A; 13=90.703(2)°, V= 463.06(9) A3 , 

Pca1cd1558 Mg/m 3, Z2 ?0.337 A, T= 150 K, 4289 reflection measurements, 2221 

unique. The structure was solved and refined using CRYSTALS program to yield 

final residuals R= 0.0311 and Rw= 0.0849. 

94 
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Chapter 3: 	Synthesis of multiple hydrogen bonded 

systems using Buchwald-Hartwig coupling chemistry 

1 N2 N3 

Molecular model of compound 110 
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3.1 Introduction 

In chapter 2 the synthesis of naphthyndine model systems using the flash 

vacuum pyrolysis (FVP) technique as a new synthetic strategy was described. This 

technique was applied for the synthesis of heterocycles with anthyridine and 

naphthacene skeletons but due to problems of involatility of the pyrolysis precursors 

a different approach was required. The systems represented in Scheme 2.1 remain as 

targeted compounds but particular attention has been directed towards heterocycles 

with three 70 and four 71 annelated pyridine rings: anthyndines and naphthacenes. In 

this chapter we aimed primarily at anthyridine systems employing Buchwald-

Hartwig coupling chemistry. 

70 

A A A 

a
N N N N 71 

A A A A 

Scheme 3.1 Targeted hydrogen bonded systems. 

3.1.1 Anthyridines in literature 

Interestingly very few compounds containing the anthyridine heterocyclic 

system of 70 (Scheme 3.1) have been reported40 53, 105 and there are no examples of 

tetraazanaphthacenes (71) in the recent literature. The first example of the 1,9,10-

anthyridine parent compound was reported by Carboni and Settimo in 1970 using the 
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Ullmann reaction between 2,6-diam i nopyri dine and 2-bromonicotinic acid.' °5  A new 

synthetic strategy to approach the anthyridine skeleton using the Friedlander 

condensation of 2,6-diaminopyridine-3 ,5 -dicarboxaldehyde and ketones was 

introduced 7 years later by Caluwe and Majewicz 53  as outlined in Scheme 3.2. 

OHC CHO 	L..J 7- 7, "!! ~ 0 XN~ 'N~ N~ 
L  H2NN 	NH2 	I) 

Scheme 3.2 Synthesis of 3 using Caluwe and Majewicz 53  strategy; i) EtOH, KOH, 85%. 

The 2,8-diphenyl-1,9,10-anthyridine 3 was the most widely used in binding studies 

experiments  15  although a few other 1,9,10-anthyridine based compounds were 

synthesised by the same principle.  53  Therefore some of the chemical properties of 3 

will be addressed taking into account some of the findings discovered during binding 

studies. 

3.1.2 Chemical properties of 2,8-diphenyl-1,9,10-anthyridine (3) 

The chemical properties of compound 3 were outlined by the authors 105 

highlighting the instability of the central ring in all 1,9, 1 0-anthyri dine based 

compounds. They found that compound 3 can be easily reduced to , LU-

dihydroanthyridines 37 by hydride transfer from the solvent and spontaneously 

oxidised to 1,9, 1 0-anthyri done  35 at room temperature and atmospheric conditions' 06  

as shown in Scheme 3.3. 

37 

R 	A 

A A A 

3 
Scheme 3.3 Stability issues of 3. 

0 

R '  N N R 
H 

AD A 

35 

97 
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Obviously these transformations were very problematic, especially in binding studies 

where the binding surface is changed from the most favourable AAA to the least 

favourable ADA arrangement. 

This problem has been recognised by Murray and Zimmerman. 40  During binding 

studies of 2,8-diphenyl-1,9, lO-anthyridine 3 with 1,4-dihydro-2,6-diaminopyridines 

1 the complex formed was unstable in the presence of acid undergoing clean hydride 

transfer from C4 of 3 to C 1 of! (Scheme 3.4). 

4

NO2 

I"

NO2 

OEt OEt 4OEt lEt

:NNH

-O

O( 

Ph N N N Ph Ph P 1  

	

A D 	A D 
>< 	 >( 

	

hi it D 	 D 	A. 

	

A D 	 A D 

	

primary hydrogen bond 	)< attractive and >( repulsive secondary interactions 

Scheme 3.4 i) chloroform-d, ii) 1 ,8-bis(dimethylamino)naphthalene. 

In order to complete complexation studies they used 1,8-bis(dimethylamino)-

naphthalene (proton sponge) to neutralise acid from solution and prevent the hydride 

shift happening. The binding constants have been determined in its presence. 

Later publications by Murray and Zimmerman 40 tackle this issue and the synthesis of 

5-arylanthyridines was undertaken in order to inhibit reduction of the central ring. 

Two approaches were developed, the first of which was analogous to the Caluwe 
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approach. This route required 2,6-diamino-4-phenylpyridine-3,5-dicarboxaldehyde 

1O3 °  in the double Friendlander condensation (Scheme 3.5) using a wide range of 

ketones to form anthyndines 3a-3g directly. 

0 
oHCLXCHo  
H2N N NH2  

103 

Compound 

3a 

3b 

3c 

3d 

3e 

3f 

3g 

R2 R2 

R2  Yield 

H 85% 

H 88% 

H 66% 

H 70% 

H 41% 

H 72% 

Et 54% 

R2 

0 

R 1  

Ph 

2-pyridyl 

6-Br-2-pyridyl 

2-thienyl 

4-Br-2-thienyl 

Me 

Pr 

Scheme 3.5 Synthesis of 5-arylanthyridines 3a-3g using the first approach. 40  i) EtOH, KOH. 

The second approach to synthesise 5-arylanthyridines involved the addition of an 

aryl Grignard reagent to a 5-unsubstituted anthyridine. 4°  4-Trimethylsilylphenyl 

magnesium bromide reacted with 3 to form anthyridan 104 (Scheme 3.6) and its 

oxidation with DDQ produced anthyridine 3h in high yield. 

Scheme 3.6 Synthesis of 5-arylanthyridine 3h using the second approach .

40i) THF, 66%; ii) dioxane, 

90%. 
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Taking into account both approaches, the total synthesis of 5-arylated anthyridines 

required five steps and interestingly none of these compounds has been used in 

binding model studies although they were reported to be much more stable in AAA-

DDD heterocomplexes. 

The target of the present work was to prepare stable anthyridine derivatives with less 

synthetic steps involved. Herein we describe an attempt to implement this synthetic 

strategy (Scheme 3.7) using palladium catalyzed B uchwald- Hartwig coupling 

reactions followed by rearrangement and rearomatisation. 

a1 N NN 

A A A 

0 	 0 

3 
107 ItI1J 	-' 106 rI 

N N*L. 
H 

A U A 	 A A 

CN 
cCN 

+ 	

1 105 [XXJ 
N Cl 	H2N N 	 N N N 

H 

b) 	OR 4 	
~nN-  

3 

eN

yr' 
	 110 

 M-NN~ "N N N'  N N N 
H 

A A A A 	 A AD A 	 A A A 

CN 

+ 
-11 - ME 	n'. 

CN 
- 

109 	I cX NN  
H 

Scheme 3.7 Synthetic strategy of a) anthyridine in AAA and b) naphthacene model system in AAAA 

arrangement. 
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The first step (I) in both synthetic strategies involves a palladium catalyzed coupling 

of the heterocyclic diarylamine 105 or 109.107  Step 2 uses the ring closure of 

heterocyclic diarylamines under acidic conditions as seen in similar literature 

examples' 08  to obtain 106 (AA) or 110 (AAA) hydrogen bonded modules. If this part 

of synthetic strategy was to be successful the AA hydrogen bonding unit could be 

prepared in only two steps and AAA unit in four synthetic steps. 

Further possibilities are to employ FVP technique as in step 3, using the thermal 

electrocyclisation to form products 107 (ADA) and 111 (AADA). The analogous 

transformation was elaborated in Chapter 2 together with the final rearomatisation 

(step 4). 

3.2 Results and discussion 

The synthesis of heterocyclic diarylaniine 105 and 109 involved palladium 

catalyzed coupling of, commercially available, 2-aminopyridine with 2-chloro-3-

cyanopyridine or 2-chloro-3-cyano- 1 ,8-naphthyridine' °7  precursors (Scheme 3.8). 

	

CN 	
i) 	

NC 

	

N ci 	70% 	N N N 
H 

105 

ccxCN 	 CN ccxx' 

	

N N Cl 40% 	N N N N 
H 

109 

Scheme 3.8 Conditions and reagents: i) 2-aminopyridine, Pd(OAc) 2, BINAP, K2CO3, toluene under 

reflux. 

When the 2-chloro-3-cyanopyridine or 2-chloro-3-cyano-1,8-naphthyridine
107  

precursors were refluxed in DMF for 3-5 days with 2-aminopyridine, no products 

were formed. The reason is the poor nucleophilicity of the amine precursors and 
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therefore the palladium catalyzed carbon-nitrogen coupling reaction was employed to 

make the reaction work. 

Buchwald and Hartwig 109  reported a C-N biaryl coupling reactions by use of 

bidentate phosphine ligands (BINAP and etc.)"°' " and catalyst (Pd(OA02 or 

Pd2(dba)3) loadings of typically 0.5-1.0 mol% to accelerate the reactions. The 

reaction conditions using Pd(OAc)2IBINAP coupling agents have been successfully 

applied for the synthesis of compounds 105 and 109. Products have been obtained in 

70% for 105 and 40% for 109. 

Compounds 105 and 109 showed correct molecular ions in their mass spectra and 

characteristic NH signals in the range of 41 8.5-9.4 ppm depending on the solvent 

present indicating coupling product. (See experimental section). 

Since 1998, major improvement in scope and yields in this area have been described 

by a number of research groups and the method has been widely used in synthesis of 

biaryl heterocyclic systems.' 12-114  In our case when different reaction conditions were 

used as for example Pd2(dba)3 /Xantphos" 5  no significant difference in product 

yields were found. 

The cyclisation step to obtain 106 and 110 (Scheme 3.9) involved heating of 105 and 

109 in polyphosphoric acid (PPA) for 5 h and the products were obtained without 

requiring further purification and in high yields (>85%). 

(Xo 95% (N)'Tc 
105 
	

106 

Z" 

	

85%cXNC 

109 
	

110 

Scheme 3.9 Conditions and reagents: i) polyphosphoric acid. 

The constitution of compounds 106 and 110 has been confirmed by the presence of 

the correct molecular ions in their mass spectra and, in the ' 3C NMR spectra, a 
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characteristic carbonyl signal at & 159.2-159.7 ppm. Additional conformation that 

cyclisation takes place was obtained from their fluorescence in the excited state with 

at 430 nm for compound 106 and 518 nm for compound 110 (see Appendix). 

Use of PPA or paraffin oil in thermal reactions was described in 1984 by Kalinowski 

and coworkers  116  involving the temperatures ranging from 160-330 °C. Heating 

compounds in PPA was used to form different heterocyclic products that easily 

separated from the reaction mixture. In 1987 the synthesis of partially saturated 

dipyridopyrimidinones, analogous to 106, have been reported by Fulop and 

coworkers. 108 

The mechanism of the acid catalyzed cyclisation step to afford products 106 and 110 

involves hydrolysis of the nitrile group in the first stage, cyclisation onto the nitrogen 

followed by dehydration. A controlled temperature of 150 °C and a reaction time of 

only a few hours in both cases gave the best yields. Prolonged reaction time 

(overnight) and higher temperatures induced ring opening of 106 and 110 and 

formation of heterocyclic diarylamine carboxylic acids. 

Compound 110 is a novel example of an AAA system, obtained in 85% overall yield 

in four steps from commercially available precursors. Binding studies with 

counterpart DDD will be discussed in Chapter 5. 

As mentioned in Chapter 2 a novel rearrangement route from pyridopyrimidin-4-

ones 77 to IH-naphthyridin-4-one 78 in the gas phase was discovered, therefore we 

investigated this option on our present systems 106 and 110 (Scheme 3.10). 

CN' N-~O'-  48% 

106 

r1 -e  I  -- N-' NnNr 

107 

0 0 
i) 	

no reaction 
-ø(--.- 

MNN'-  N NN' 	N I N
- 

 
H 

110 	 111 

Scheme 3.10 FVP conditions i) Tf = 980 °C (with silica wool), T 1 = 300 °C, p = 2 x 10-3 Torr, 20 mm. 
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The first attempt to pyrolyse 106 at 980 °C gave a low conversion (20%) to the 

product 107. In order to improve conversion to 107 two options were available, 

increasing the furnace temperature or increasing the contact time. An increase in 

furnace temperature was not very practical due to decomposition of vacuum grease 

and loss of pressure. 117  Increase of contact time can be achieved by inserting silica 

tubes (which did not have a great effect) or placing a loose plug of silica wool at the 

exit point of the furnace tube. "7  That gave satisfactory conversion of 48% but 

another product 108 was formed due to decarbonylation. 

It was of interest to perform an experiment following the transformation of 

compound 106 to 107 as a function of temperature, observing the formation of the 

108 side product. The amounts of 106 and 107 were measured in the product mixture 

after pyrolysis at various temperatures (Figure 3.1); at 980 °C the ratio was 40:40:20 

(106 - 107 - 108) with further increase of 108 with temperature rise. 

900 	 950 	 1000 

Temperature ( °C) 
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0 	 0 c-, \ 	/ cfn
N N N 	 N N N 
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106 
	

107 
	

108 

Figure 3.1 Temperature profile for the 106 - 107 - 108 transformation 

The general mechanism of the cyclisation process for the 106 -* 107 - 108 systems 

has been outlined in Scheme 3.11. The amide bond of 106 has been broken under 

FVP conditions by a reverse electrocyclisation forming an iminoketene intermediate 

which undergoes electrocycisation and H-shift to form product 107. The high 

temperature employed (900-980 °C) allows ring closure onto the C=C bond under 

thermodynamic control. Thermal decarbonylation affords 108 as seen in some 

similar literature examples.' 18  

0 

r 
 '~- I  N eN~ 

106 

H -shift 

(N 
	 -Co 

CN N nN' 

108 	 107 

Scheme 3.11 Mechanism of 106 - 107 - 108 cyclisation. 

Unfortunately, in the pyrolysis of 110 it was not clear whether or not compound 111 

was produced. The crude NMR spectra after pyrolysis indicated new signals but it 

was not clear if this was due to product formation or to decomposition. The yield was 

very poor and solubility issues did not allow any further investigations. 
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It is interesting to compare the temperature trends for the transformation between the 

present system and the one described in Chapter 2 (Figure 3.2). 
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Figure 3.2 Temperature profiles for the a) 77-p 78 (Chapter 1) b) 106 - 107 - 108 (this Chapter) 

and c) 110—+111 transformation. 

Exactly 100 °C more was required to get to the 50:50 ratio by adding one more 

aromatic ring into the system 106— 107 with 108 as decarbonylation product. 

Following the same analogy for 50:50 ratio of the 110—* 111 system the temperature 

of 1080 °C or higher could be required with possibility of more decarbonylation. 
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3.3 Conclusion 

Overall, the Buchwald-Hartwig coupling approach was successful in 

obtaining the AA and AAA units 106 and 110. The FVP technique was employed for 

rearranging compound into ADA unit 107 (Scheme 3.11). 

0 	 0 

N 	106 	rN-'iii 107 

N 	 N N 
H 

A A 
AD A 

(N N-  N~ D'-  
110 

A A A 

Scheme 3.11 Summary of synthesized compounds. 

Limitations in temperature range did not allow successful transformation of 

compound 110 -* 111 and in that respect an initial attempt to generate a tetraaza-

naphthacene unit in AAAA arrangement failed. The low yield of 107 and the 

presence of a side product in crude mixture, made the next rearomatisation step 

towards AAA unit not practical. 
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3.4 Experimental section 

2-(Pyridin-2-ylamino) nicotinonitrile (105) 

ffNN

-N  

A round bottomed flask was flushed with nitrogen and charged with palladium (II)-

acetate (13.5 mg, 0.06 mmol, 2%), (±)-BINAP (37.5 mg, 0.06 mmol, 2%) and 

toluene (10 cm 3). The mixture was stirred under nitrogen for 10 mm. In another 

round bottomed flask, 2-chloro-3-cyanopyridine (0.41 g, 3 mmol), 2-aminopyridine 

(0.34 g, 3.6 mmol) and potassium carbonate (8.28 g, 60 mmol) were weighed. Then, 

the palladium (H)-acetatefBlNAP solution was added, and the flask rinsed with an 

additional portion of toluene (17 cm 3). The resulting mixture was subsequently 

heated under reflux in an oil bath under nitrogen with vigorous stirring until the 

starting material had disappeared. After cooling down, the solid material was filtered 

off and washed with dichioromethane (100 cm 3). The solvent was evaporated and the 

resulting crude product was purified by recrystallisation using isopropyl alcohol to 

yield 2-(pyridin-2-ylamino) nicotinonitrile (105) (0.42 g, 70%), mp 138-140 °C; 'H 

NMR (400 MHz, CDCI3) 8 ppm 9.06 (d, J3',4 = 7.6 Hz, I H, H-), 8.88 (d, J4,5= 4.5 

Hz, 1H, H4-), 8.50 (br s, IH, NH-), 8.21 (d, .16 , 5= 8.3 Hz, 1H, 116-),  7.50 (dd, J4.3'= 

7.6 Hz, J4'5'= 6.3 Hz I H, FL-), 7.43 (d, J6'5'= 8.8, 1 H, 116'-),  7.26 (dd, J56=  8.3 Hz, 

J5 4= 4.5 Hz, fl-) and 6.78 (t, J5,6'= 8.8 Hz, J5',4 = 6.3 Hz, 1H, H S ,-). ' 3C NMR (100 

MHz, CDCI3) 8ppm 157.8 (C-), 151.9 (-), 138.0 135.8 ('-), 133. 4 (c6 -  

), 127.9 (Ci'-), 126.5 (c6'-)  119.6 (-), 115.1  (ccN-),  112.1 (y-) and 95.0 (Ci-); 

El-MS m/z 196 (M, 64%), 195 (100), 170 (81), 78 (65), 51 (59) 103 (41) and 272 

(28). HRMS [Mi:  196.0747, C 11 H8N4 requires: 196.0749. 
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Dipyrido[1 ,2-a ;2',3'-a] pyrimidin-5-one (106) 

(C : 

N: )-, : 

A mixture of 2-(pyridin-2-ylamino)nicotinonitrile (1.28 g, 6.5 mmol) and 

polyphosphoric acid (10 cm 3)  was heated to 150 °C for 5 h. The reaction mixture was 

cooled, diluted with water and neutralized with 10% NH3. The water layer was 

extracted three times with DCM to give 106 (1.0 g, 84%), mp 205-207 °C; 'H NMR 

(400 MHz, CDC13) 8 ppm 9.11 (d, J4,3 =6.5, IH, 114-), 8.88 (d, J7,8= 7.7 Hz, IH, - 

), 8.76 (d, .123  = 7.9 Hz, 1H, -), 7.71-7.69 (m, 2H, ç-  and ho-),  7.41 (d, J3,2 = 7.9 

Hz, IH, -) and 6.98 (t, J87= 7.7 Hz, J8,9= 6.1 Hz, 1H, 8-);  ' 3C NMR (100 MHz, 

CDCI 3 ) 8 ppm 159.7 (crO), 157.8 157.4 (c40, 149.8  (cioa-),  137.0  (-), 

135.7 (c-), 127.0 (ç--), 126.7 (ç,-), 120.6 (Cs-), 113.5 (c8-)  and 111.3 (c2a-).  E1 

MS m/z 197 (M, 95%), 78 (100), 169 (93), 142 (52), 168 (47) and 143 (44). Found: 

C, 67.0; H, 3.58 N, 20.5. C, 1 H7N30 requires: C, 67.00; H, 3.58; N, 20.3 1%. 

9H-1,8,9-Triaza-anthracen-10-one (107) 

0 

cJ&n
::1::410 5  

 6 

2 N N g  N 
7 

FVP of (106) (0.043 g, Tf  = 850 °C, T1  = 300 °C, P = 2.0 x 	Ton, t = 20 mm) 

produced in a good yield of compound 107 (0.034 g, 70%), mp 305-307 °C [lit., 104 

320 'Cl.; 'H NMR (400 MHz, CDCI 3) 8 ppm 10.17 (s br, 1H, -NH-) 8.48 (d, J4 ,3= 

4.8 Hz, 1H, 114-), 8.28 (d, J2,3 = 7.8 Hz, 1H, -) and 7.21 (d, J32 = 7.8 Hz, J3 ,4 = 4.8 

Hz, lH, j-).  ' 3C NMR (100 MHz, CDCI3) 8 ppm 157.9 (-), 151.3 (4a-),  147.2 

(Cr), 129.3 (-), 116.4 (Ci-), 114.5 (-). El-MS nilz 197 (Mt, 40%), 169 (100), 
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142 (66), 115 (52), 85 (48) and 39 (45). HRMS [M]:  197.0587, C 1 ,H7N30 requires: 

197.0589. 

3-Cyano-1,8-naphthyridin-2-one 

C  NI r~: , 
	I 

A mixture of 2-aminonicotinaldehyde" 9  (2.44 g, 0.02 mol), ethyl 2-cyanoacetate 

(4.25 g, 0.04 mmol), absolute ethanol (50 ml) and piperidine (0.5 cm  3)  was stirred 

and heated at reflux. After I h, the solution was cooled and the precipitate filtered to 

yield 3-cyano-1,8 naphthyridin-2-one in 73% yield (2.5 g), mp >300°C [lit.,' °4300 

°C1; 'H NMR (400 MHz, [D6]DMSO) 8 ppm 12.88 (br s, NH-), 8.88 (s, 1H H 4-), 

8.67 (d, J7 6= 4.6 Hz IH, H7-), 8.23 (d, 156=  4.6 Hz, IH, j-) and 7.37 (dd, J65= 7.6 

Hz, J6 7= 4.6 Hz 1H, 116-). ' 3C NMR (100 MHz, [D6]DMSO) 5ppm 159.5 (-), 

153.9 (ç -), 150.3 (c4a-),  148.9 138.2 (), 119.4 (c6),  125.5 (cia) 113.0 

(c-) and 107.3 (cN-).  El-MS m/z 171 (M, 23%), 108 (100), 137 (94), 109 (69) and 

91(53). (Found: C, 63.10; H, 3.01; N, 24.76. C 9H5N30requires: C, 63.16; H, 2.95; N, 

24.55%). 

2-Chioro-3-cyano- 1,8-naphthyridine 

7 1  N--  ffN--  C, 

A mixture of PCI 5  (12.2 g, 0.06 minol), POCI 3  (44 cm3), and 3-cyano-1,8-

naphthyridin-2-one (2.3 g, 0.013 mmol) was stirred and heated at reflux. After 1 h 

excess POd3 was distilled off using Kugelrohr apparatus. The residue was treated 

with ice, neutralized with solid Na 2CO3 , and extracted with CHC1 3 . The organic 
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extracts were dried, filtered and concentrated to dryness. The residue was sublimed at 

low pressure (ca 0.01 Torr) to yield 2-chloro-3-cyano-1,8-naphthyridine (1.2 g, 

81 %),  mp 300°C [lit.,' 04300 °C1;  'H NMR (400 MHz, [D6]DMSO)  6 ppm 9.36 (s, 

H4-), 9.26 (dd, J7 6= 4.3 Hz, J7,5= 2.0 Hz, 1H, H7-), 8.61 (dd, J5,6 = 8.1 Hz J5,7= 2.0 

Hz, IH, j-) and 7.84 ( dd, J6,5= 8.1 Hz, J67= 4.3 Hz, IH, 116-).  ' 3C NMR (100 MHz, 

[D6]DMSO) äppm 157.6 (-), 154.6  (c -), 150.4 (c40,  148.9 138.5 (ç-), 

124.4 (C6-),120.7 (cia-), 115.1 (Cs-) and 108.0 (ccN-).  El-MS m/z 189 (Mt, 100%), 

154 (83), 127 (32), 122 (49), 94 (64) and 93 (59). Found: C, 57.10; H, 2.15; N, 19.06. 

C91-14C1N 3  requires: C, 57.01; H, 2.13; N, 18.70%. 

2-(Pyridin-2-ylamino)-[ 1 ,8]naphthyridine-3-carbonitrile (109) 

4,  

7 r'N N NCN' 
6 

A round bottomed flask was flushed with nitrogen and charged with palladium (II)-

acetate (13.5 mg, 0.06 mmol, 2%), (±)-BINAP (37.5 mg, 0.06 mmol, 2%) and toluene 

(10 CM)  . The mixture was stirred under nitrogen for 10 mm. In another round 

bottomed flask 2-chloro-3-cyano- 1,8-naphthyridine (0.41 g, 3 mmol), 2-

aminopyndine (0.34 g, 3.6 mmol) and potassium carbonate (8.28 g, 60 mmol) were 

weighed. Then, the palladium (H)-acetatelBlNAP solution was added, and the flask 

was rinsed with an additional amount of toluene (17 cm 3). The resulting mixture was 

subsequently heated under reflux in an oil bath under nitrogen with vigorous stirring 

until the starting material had disappeared. After cooling the solid material was 

filtered off and washed with dichloromethane (100cm 3). The solvent was evaporated 

and resulting crude product was purified by column chromatography (A1 203-neutral, 

70:30 DCM-MeOH) to yield 2-(pyridin-2-ylamino)-[ 1 ,8]naphthyridine-3-carbonitrile 

(109) (0.164 g, 40%), mp 189-190 °C; 'H NMR (400 MHz, [D6]DMSO)  8 ppm 9.41 

(br s, NH-), 9.06-9.02 (s, 2H, 114  and j-),  8.37 (d, J6,5= 6.3 Hz IH, 116'-),  8.33 (d, 
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J7,6= 4.1 Hz, 1H, ll-), 8.21 (d, J3 ' 4 = 7.6 Hz 1H, Hy-). 7.86 (t, J4',3'= 7.6, J4',5' 8.1 

Hz, IH, H-), 7.54 (dd, J67= 4.1 Hz, J65= 6.3 Hz 1H, 116-), 7.11 (dd, J5,6= 6.3 Hz, 

J5',4'= 8.1 Hz, IH, !fr-). ' 3C NMR (100 MHz, 1D6]DMSO)  Sppm 156.3 (C0,155.2 

(ç-), 153.3 (c4a7), 152.4  (cpso). 147.8 147.0 (ç-,-), 138.1 (c6-).  137.8 (Cs'-), 

121.0 (C5,-), 118.9 (c.-),  117.1 (cia-), 115.7  (-) and 113.6 (c6'-);  El-MS mlz 247 

(M, 25%), 185 (100), 189 (21) and 186 (16). Found: C, 64.10; H, 3.18; N, 25.76. 

C14H9N5 x H20 requires: C, 63.4; H, 4.15; N, 26.4%. 

1, 6a,11,12 -Tetraazanaphthacene-6-one (110) 

0 

co:c 
0 

10ççxo3 

A mixture of 2-(pyndin-2-ylamino)-[ 1, 8] naphthyridine-3 -carbonitrile  (109) (0.16 g, 

0.66 mmol) and polyphosphoric acid (5 cm 3)  were heated into the liquid at 150 °C 

for 5 h. The reaction mixture was cooled, diluted with water and neutralized with 

10% NH3. The water layer was extracted three times with DCM to give 110 (0.14 g, 

85%), mp 300 °C (dec); 1 H NMR (400 MHz, CDC13) 8 ppm 9.46 (s, IH, H7-), 9.36 

(dd, J8,9= 4.0 Hz, J8 , I  O= 2.0 Hz IH, 118-),  8.81 (d, J5,4 = 7.3 Hz, IH, Hi-), 8.42 (dd, 

J109= 8.1Hz, J10 8= 2.0 Hz IH, 11io-),  7.68-7.65 (m, 2H, - and ff-) 7.52 (dd, J910= 

8.1Hz, J98= 4.0 Hz IH, 119-) and 6.93 (t, J4,3= 7.8 Hz, J45= 7.3 Hz, Ill, 114-); 13C 

NMR (100 MHz, CDC13) Sppm 160.3 (c60,  159.2 (ccro), 158.6  (c), 157.1 (CI.-), 

156.2 (cIia),  151.5 (ca),  142.3 (_CO,  138.3 (cio).  136.6 (y), 127.2 (ci-),  126.7 

(c2-), 121.4 (co-),  112.9  (ca-)  and 112.7 (c8a).  EIMS ?fl/Z 248 (M, 6%), 69 (100), 

81(53), 180 (43), 149 (34), 246 (23). Found: C, 67.24; H, 3.19 N, 21.67. C 14H8N40 

x 0.1H20 requires: C, 67.25; H, 3.28; N, 22.41%. 
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3.5 Appendix 

Absorption (blue) and fluorescence (red) spectra of compounds 106 and 110 are 

represented in Figure Al and A2. 
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Figure Al. Absorption and fluorescence spectra of 106. 
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Figure A2. Absorption and fluorescence spectra of 110. 

Compound 106 showed multiple absorption bands with A.ax at 341 nm and for 110 

was at 445 nm; for fluorescence 106 has X at 445 nm and 110 at 518 nm. 
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Chapter 4: 	Synthesis of multiple hydrogen bonded 

systems with extended aromatic framework using Suzuki- 

coupling chemistry 

Or 
 

106  

X-ray "Pringles" packing of 117 compound 
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4.1 Introduction 

In the previous chapter we described the synthesis of anthyridine systems 

using Buchwald-Hartwig palladium catalyzed coupling chemistry. Using that 

methodology AA and AAA units were successfully produced in two step syntheses. 

The only limitations with these systems are the presence of carbonyl groups that can 

potentially act as the second acceptor and intervene in binding studies. 

In this chapter the targets are differently designed systems with two (112), three 

(113) and four (114) annulated pyridine rings extended by annelation in positions 3 

and 4 (Scheme 4.1) which might help in adding stability during binding studies. 

112 

A A 

LNJ..NLN) 	
113 

A A A 

114 

A A A A 

Scheme 4.1 New targeted systems. 

The goal was to produce stable targeted systems (Scheme 4.1) soluble in chloroform 

involving as few synthetic steps as possible. Herein we describe the synthetic 

strategy (Scheme 4.2) using Suzuki coupling reactions for 120 AAA and 123 AAAA 

systems (Scheme 4.2b and 4.2c) and a slightly modified approach for the synthesis of 

the AA 117 unit (Scheme 4.2a) involving an FVP cyclisation step. 
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Suzuki coupling reaction has been known since 1979120  and has been widely used in 

the synthesis of substituted biphenyls.' 21  An advantage of using this strategy is to 

allow the condensation of the aldehyde groups from commercially available 2-

form yi phenyl boron ic acid with amino groups (step 5) after Suzuki coupling to create 

"left hand" and "right hand" heterocyclic rings such as 120 and 123 (Scheme 2.4b 

and 2.4c). 

3 
> 	 s 	

Br 

LNNIl7 	
116 	 115 

A A 

1 
I 	 4 

19 
 

	

N N( 	 H2N N NH2 	 H2NNNH2  
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DAD 
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N N 	
-> 	 121 	> 

HA N N NH2 	H2N N N NH2  

	

A A A A 
	

D A AD 

Scheme 4.2 New synthetic strategies for targeted systems with an extended aromatic framework in 

AA, AAA and AAAA arrangement. 

In case of AA unit 117 a modified strategy was required involving Suzuki coupling 

of the 4-bromoisoquinoline with 2- form ylphen ylboronic acid to form 115, followed 

by oxime formation 116 and flash vacuum pyrolysis (FVP) in step 3. This strategy 

was develop,-.d by Fiona McMillan from University of Edinburgh. 

Although this strategy had limitations and restriction for the complete synthesis of 

AAAA model, two heterocyclic analogues AA (117) in three steps and AAA (120) 

system in two steps were produced in high yields. In that sense this has been the most 
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successful approach that we developed so far and the systems proved to be extremely 

stable in binding studies (Chapter 5). 

4.2 Results and discussion 

4.2.1 Synthesis of 1,13,1 4-Triazadibenz[a,j]a nth racene (120) 

The synthesis of 120 was achieved in only two steps (Scheme 4.3) 

Diiodination of 2,6-diaminopyridine under standard conditions 17 gave 119 followed 

by Suzuki coupling with commercially available 2-formylphenylboronic acid, 

provided the fully aromatized compound 120 in 80% yield. 

IIZZZ 

H2NNH2 	 H2NNNH2 	
80% 	

I 
I 	86% 	

ii) 

119 	 120 

Scheme 4.3 Reaction conditions: i) N-Iodosuccinimide, DMF; ii) 2-formyiphenyl boronic 

acid, Pd(PPh 3 )4, Cs2CO3, dioxane/water. 

Compounds 119 and 120 showed correct molecular ions in their mass spectra. 

Compound 120 had characteristic aromatic proton signals in the range of 4, 7.8-

10.15 including the signal of the H 7  proton at a very high chemical shift of 4, 10.15 

ppm (Scheme 4.3). Additional confirmation that cyclisation took place in the final 

step was the fluorescence of 120 in excited state with ? at 430 nm (See Appendix). 

4.2.2 Synthesis of Dibenzo[c,tl[1,8]naphthyridine (117) 

A modified approach (Scheme 4.4) was required for the synthesis of 117 and 

involved gas-phase generation and cyclization of an iminyl radical under flash 

vacuum pyrolysis (FVP) conditions,' 22  in the final step. 
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Br 

I) 

80% 
- 

'0/ 
) 10 

115 	 116 

N Y'  N  9_'_' + I %N 

117(75%) 	118(25%) 

Scheme 4.4 Reaction conditions: i) Pd(PPh 3 )4, K2CO3, dioxane/water (1:1), 80%; ii) methoxyamine 
hydrochloride, EtOH, 96%; iii) FVP (Tf = 700 °C, T1 = 182 °C, p= 4.8 x 102  Torr, 10 mm, 75%. 

The oxime ether precursor 116 was made by Suzuki coupling of 4-

bromoisoquinoline with 2-formyiphenylboronic acid followed by reaction with 0-

methyihydroxylamine. FVP of the oxime ether 116 at 700 °C gave 117 as the main 

product (75%) 123  though a substantial by-product, identified as dibenzo[c,h]  1,5-

naphthyridine 118, was also obtained in 25% yield. The crude ratio of the two 

products 117 and 118 was 3:1 as reported by Fiona McMillan. 122 

The formation of the two isomeric tetracycles is best rationalized by ipso-attack of 

the iminyl to give a spirodienyl intermediate (Scheme 4.5), followed by competitive 

C-N migration to give 117, or C-C migration to give 118. 

[:N.] 
(?~' 	%N P14-+  

118 
	

117 

Scheme 4.5 Mechanism for formation of 117 and 118. 
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Although the involvement of spirodienyl radicals is common in gas-phase iminyl 

chemistry, ' 24  previously, in such cases, C-N migration has been observed 

exclusively.' 7  The C-C migration route may be able to compete in this example 

because of the increased steric congestion in the bay region of the transition state 

leading to 117. 

The structure of 115, 116, 117 and 118 has been confirmed by the correct molecular 

ions in their mass spectra and ' 3C NMR signals have been used to distinguish 

compounds 117 and 118 (Scheme 4.6), by making use of the different symmetries of 

the two isomers. 

Q9 
118 	 117 

Scheme 4.6 Highlighted ( ) quaternary carbons. 

Compound 117 has four quaternary carbon atoms at & 126.5, 133.1, 153.2 and 

157.7 ppm while compound 118 has only three quaternary carbon atoms at &C  128.4, 

134.0 and 135.0 ppm. These findings are confirmed by X-ray crystallography 

(Section 4.2.3). 

It was interesting that binding studies with counterpart 1 can distinguish the two 

isomers also. Using 1 H NMR titration experiments (10 -3  M, 273 K, CDCI3) a very 

high association constant value for the 1117 heterocomplex was determined 

(Chapter 5) but no binding occurred (Ka =0 M') for heterocomplex 1118. 

4.2.3 X-ray crystal structures of 1,1 3,14-Triazadibenz[aj] 

anthracene (120) and Dibenzo[c,fJ[1 ,8] naphthyridine (117) 

Crystals appropriate for single crystal X-ray structural determination (see 

experimental section) of 120 and 117 (Figure 4.1) were obtained in both cases by 

slow evaporation of a dichioromethane/methanol solution of the substrate. Dr Simon 
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Parsons from the University of Edinburgh solved and analyzed the X-ray crystal 

structure data for both compounds. The atom labels are colour-coded as follows: red 

for C, blue for N, white for H and yellow for C atoms. 

 

 

Ni 	N13 N14 

 

Ni 	N12 

Figure 4.1 X-ray crystal structure of compounds a) 120 and b) solvate 117 C 16H9N 2  x 2H20 (C red, N 

blue, H white) from front and side view. 

Selected N-N distances in the binding surface are for 120 N13-N14 2.294 A and Ni-

N14 2.290 A and for compound 117 NI-N12 2.300 A. The crystal structure of 

compound 120 has slight deviation from planar geometry (Figure 4.1 a) with different 

C-N bonds lengths: C12-N13 1.302 A, C14-N13 1.340 A and N13-C13 1.388 A 
respectively. 

Solvate 117 crystallized with a helical twist at the central C-C bond establishing 

a link from one water molecule to one nitrogen atom (Figure 4.1b). The other 

nitrogen makes a link a with different water molecule. 

b 
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a) 
	

91 

Figure 4.2 Packing diagrams for compounds a) 120 and b) 117 along the a-axis. 

Well defined and strong t- it interactions are seen in both packing diagrams for 120 

(Figure 4a) and 117 (Figure 4b). 
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4.2.4 Attempted synthesis of 1,14,15,1 6-Tetraazad i benz[a,j] 

anthracene (123) 

The strategy for synthesizing compound 123 was analogous to the synthesis of 

120, using 2,7-diaminonaphthyridine available in several steps  125  to make 3,6-diiodo-

2,7-diaminonaphthyridine 121 using standard methods.'  26  When this step was 

carried out, the product formed that could potentially be 121 was very insoluble even 

in polar solvents such as DMSO or DMF and therefore the final cyclisation step 

failed, only starting material was recovered, from the crude mixture. 

To overcome this problem we used dibromo-2,7-diaminonaphthyridine 122, instead 

of 121 as the latter was more soluble in DMSO solvent (Scheme 4.7). 

H2N - cNH 2  

I) 	
Br _Br 

60% 	
H2N N N NH 2  

122 

Y~N 
123 

no reaction 

Scheme 4.7 i) N-bromosuccinimide, DMF; ii) 2-formyiphenylboronic acid, Pd(PPh 3 )4 , 

Cs2CO3, dioxane/water. 

When the final Suzuki coupling step was performed, ambiguous results were 

obtained and it was not clear if compound 123 was formed. Although 'H NMR 

spectra were obtained which were consistent with the structure of 123 [ 41  ppm 10.22 

(s, 2H), 9.71 (s, 2H), 8.98 (d, 2H), 8.30 (d, 2H), 8.09 (t, 2H) and 7.90 (t, 2H)] it was 

not unexpectedly much less soluble then its AAA analogue 120. The results were 

difficult to reproduce results and the structure of 123 could not be confirmed by other 

analytical methods, e.g. ' 3C NMR or MS. 

4.3 Conclusion 

Overall, the Suzuki-coupling approach was the most successful approach so 

far and gave access to the most stable AA and AAA units 117 and 120 in only few 

steps and in high yields and their structures were confirmed by X-ray 

crystallography. 
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117 
	

120 
N N N 

A A A 

Scheme 4.8 Summary of synthesized compounds 

The synthesis of an AAAA unit was not completed but the suggested approach 

appears viable once the solubility problems of the precursors can be overcome. 

4.4 Experimental section 

General method: The FVP system was evacuated to a pressure of 10-2_ 10-3 Torr by 

means of a high capacity oil pump. Precursors (50-150 mg) were sublimed under 

reduced pressure through an empty silica tube (35 cm x 2.5 cm) heated by an 

electrical furnace. The products were collected in a U-tube cooled by liquid nitrogen 

situated at the exit point of the furnace. Upon completion of the pyrolysis the trap 

was allowed to warm to room temperature under an atmosphere of dry nitrogen. The 

entire pyrolysate was then dissolved in solvent to enable removal from the trap. 

T1 - Temperature of furnace 

Tr Temperature of inlet tube 

P- Pressure of FYP system 

t- Time needed to complete pyrolysis 

1,13,14-Triazadibenz[aj]anthracene (120) 

4(6 

A mixture of 2-formylphenylboronic acid (1.5 g, 0.01 mol), 3,5-diiodo-2,6- 

pyridinediamine (1.8 g, 0.005 mol), potassium carbonate (8.28 g, 0.06 mol) and 
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tetrakis(triphenylphosphine) palladium (0.11 g, 0.01 mmol) was heated under reflux 

in a solution of dioxane (75 cm3) and water (25 cm 3)  for 3 h under a nitrogen 

atmosphere. After the solution was cooled to room temperature the precipitate was 

filtrated and subjected to silica gel chromatography using a solvent mixture of 

chloroform and MeOH (1:5) as eluent to obtain (120) (2.0 g, 70%), mp >340°C; 'H 

NMR (400 MHz,CDC13) 5 ppm 7.89 (t, 2H, J54 = 8.3 Hz, J56 = 7.8 Hz, H5), 8.04 

(dd, 2H, J4 3 = 8.3 Hz, J45 = 7.0 Hz, 114), 8.19 (d, 2H, J34 = 7.8 Hz, H3), 8.90 (d, 1H, 

J6,5 = 8.34 Hz, H6), 9.67 (s, 2H, H 2) and 10.15 (s, IH, H7); 13C NMR (100 MHz, 

CDCI 3) Sppm 118.4 (C60, 122.3 (C6), 126.3 (C 2a), 127.2 (C4), 128.8 (C7), 129.6 

(CO, 132.0 (C3 ), 132.4 (C6a), 157.6 (C ia) and 159.6 (C2). El-MS mlz 281 [M].  Anal. 

calcd. for C 19H 11 N3 : C, 81.12; H, 3.94; N, 14.94. Found: C, 80.9; H, 3.85; N, 15.0. 

2-(Isoquinolin-4-yl) benzaldehyde (115) 

2-Formyiphenylboronic acid (0.510 g, 3.40 mmol), 4-bromoisoquinoline (0.700 g, 

3.36 mmol), potassium carbonate (2.778 g, 0.020 mol) and 

tetrakis(triphenylphosphine) palladium (0.077 g, 0.067 mmol) were mixed in a 

solution of dioxane (24 cm 3) and water (8 cm 3) and the mixture heated under reflux 

under a nitrogen atmosphere for 4 h. After cooling to room temperature, the solution 

was diluted with ether and filtered through a silica plug. The solvent was removed 

leaving a yellow oil which was purified by dry flash chromatography eluted with 

20% ethyl acetate in hexane to produce 115 (0.631 g, 80%), mp 80-81 °C; 'H NMR 

(400 MHz,CDCI3 ) 8= 7.76 (m, 6H), 8.145 -8.19 (s, lH), 8.23 (ddd, lH, J =0.5, 1.6, 

7.7 Hz), 8.57 (s, IH), 9.43 (s, lH) and 9.75 (s, 1H); ' 3C NMR (100 MHz, CDCI 3) 5= 

124.8 (CH), 128.0 (CH), 128.2 (CH), 128.4 (2CH-overlap), 129.2 (quat), 129.5 (CH), 

131.7 (CH), 132.3 (quat), 134.4 (CH), 135.3 (quat), 135.6 (quat), 140.4 (quat), 143.8 
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(CH), 153.4 (CH) and 191.5 (CH). El-MS m/z 233 [M]. HRMS [M] 4 : 233.0841, 

C1H11NO requires: 233.0852. 

2-(1-Phenylisoquinolin-4-yI)-O-methyl oxime (116) 

L ((1  
N 

2-(Isoquinolin-4-yI)benzaldehyde (0.173 g, 0.741 mmol) and methoxylamine 

hydrochloride (0.110 g, 1.32 mmol) were added to ethanol (10 cm 3) and the solution 

heated to reflux for 2 h. The solution was then concentrated under vacuum and 

dissolved with ether (3 x 20 cm 3) and washed with NaOH (0.25 M, 10 cm') and 

water (10 cm 3) and dried over MgSO4. The solvent was removed to produce 116 as a 

white solid (0.187 g, 96%), mp 108-110 °C (from ethanol). H NMR (400 

MHz,CDCI3) 5 ppm 3.75 (s, 3H), 7.23 (ddd, I H, J =0.5, 3.4, 6.0 Hz), 7.40 (dd, 3H, J 

=3.7, 5.7 Hz), 7.49-7.57 (m, 3H), 7.94 (ddd, IH, J=1.8, 4.8, 6.5 Hz), 8.00 (dd, IH, 

J =3.7, 5.5 Hz), 8.32 (s, lH) and 9.21 (s, 1H); ' 3C NMR (100 MHz, CDC13) S ppm 

60.9 (Cl3), 123.8 (CH), 124.7 (CI), 126.4 (CH), 126.8 (CH), 127.6 (CH), 128.6 

(CH), 130.0 (CI), 130.3 (2CH-overlap), 130.3 (quat), 133.9 (quat), 135.4 (quat), 

142.3 (quat), 142.3 (CH), 145.8 (CH), 151.5 (quat); El-MS m/z 262 [M]. HRMS 

[M] 4 : 262.1106, C 17H 14N20 requires: 262.1110. 

Dibenzo[c,fJ[1 ,8]naphthyridine (117) 

3(1 

125 



Chapter 4 

Flash vacuum pyrolysis (FVP) of 2-isoquinolin-4-ylbenzaldehyde-0-methyl oxime 

(0.15 g, Tf  = 700 °C, Ti = 166 °C, P = 4.8 x 10 Ton, t = 10 mm) produced a 

mixture of two components. They were purified by column chromatography on silica 

gel using a solvent gradient of hexane to hexane/EtOAc (1:1) as eluent to obtain 118 

(0.04 g, 25%) and 117(0.11 g, 75%). mp 169— 170°C 'H NMR (400 MHz, CDCI3) 

S ppm 7.83 (t, 2H, J2 1 = 7.9 Hz, J23= 7.2, H2), 7.99 (t, 2H, J3,4 = 8.5 Hz, J3,2= 7.2, 

H3), 8.27 (d, 2H, J3,4= 7.9 Hz, H3), 9.16 (d, 2H, J1 2 = 8.5 Hz, H 1 ) and 9.55 (s, 2H, 

H5). ' 3C NMR (100 MHz, CDCI3) 8 ppm 126.5 (C40, 127.6 (Cy), 127.9 (C40, 

129.3 (C2-), 131.6 (C4 ), 133.1 (C 1 2a ), 153.2 (C120, 154.5 (CO,  157.7 (C6a ), El 

MS m/.z 230 [M]. HRMS [M]:  230.0844, C 16H, 0N2  requires: 230.0834. 

Dibenzo[c,h][1,5]naphthyridine (118) 

N( 
12 	1 

10 	
3 

N(2 

8  
7 	6 

mp 166-167 °C [lit. 122,  166 - 167 °C1 'H NMR (400 MHz, CDC1 3) 8 =7.82 (t, 2H, 

Jz,,= 8.0 Hz, J2,3= 7.1 Hz, H2), 8.00 (t, 2H, J3,4 = 8.1 Hz, J,2= 7.2 Hz, H3), 8.20 (d, 

2H, J1 2= 8.0 Hz, H,), 9.27 (d, 2H, J4 3 = 8.4 Hz, 1-14, 9.53 (s, 2H, H 6). 13C NMR (100 

MHz, CDCI 3) 8=123.5 (CH), 127.8 (CH), 128.2 (CH), 128.4 (quat), 131.3 (CH), 

134.0 (quat), 135.0 (quat), 152.6 (CH). El-MS m/z 230 [M]. HRMS [M]+: 230.0849, 

C 16H 10N2  requires: 230.0834. 

3,6-Dibromo-1,8-naphthyridine-2,7-diamine (122) 

Br 

H2N 	NH 2  
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To 2,6-diaminonaphthyridine 125  (0.7 g, 4.3 mmol) dissolved in DMF (10 cm 3)  was 

added dropwise NBS (1.55 g, 8.75 mmol) dissolved in DMF (10 cm 3) at -30 °C over 

1 h and the mixture was then left to stir at room temperature for a further 2 h. The 

solution was concentrated under vacuum and DCM (10 cm 3)  was added to form a 

brown precipitate which was washed with hexane (10 cm 3) and acetone (10 cm) to 

obtain yellow crystals of 122 (0.8 g, 60%), mp > 300 °C (dec). 'H NMR (400 MHz, 

[D6]DMSO) 8 ppm 8.37 (s, 2H) and 8.08 (hr s, 4H); ' 3C NMR (100 MHz, 

[D6]DMSO) S ppm 100.9 (2 quat), 110.1 (2 quat), 141.7 (2 CH), 146.3 (2 quat) and 

155.8 (2 quat); El-MS m/z 318 [M+H]: HRMS [M[':  317.8940, C8H6Br2N4  

requires: 317.8980. 

1,14,15,1 6-Tetraazadibenz[aj]anthracene  (123) 

2 N N N N 

A mixture of 2-formyiphenylboronic acid (1.5 g, 0.01 mol), 3,6-dibromo-1,8-

naphthyndine-2,7-diamine (1.8 g, 0.005 mol), potassium carbonate (8.28 g, 0.06 

mol) and tetrakis(triphenylphosphine) palladium (0.11 g, 0.01 mmol) was heated 

under reflux in a solution of dioxane (75 cm 3) and water (25 cm) for 5 h under a 

nitrogen atmosphere. After the solution was cooled to room temperature, the 

precipitate indicating compound 123 was filtered and characterized using 'H NMR 

spectra, only. 'H NMR (400 MHz, CDC1 3) 8 ppm 10.22 (s, 2H), 9.71 (s, 2H), 8.98 

(d, 2H), 8.30 (d, 2H), 8.09 (t, 2H) and 7.90 (t, 2H). 
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X-ray crystallographic data for compound 120: 

Crystal data for 120: C 19H 11 N3 , M = 281.3 1, colorless needle 0.90 mm x 0.17 mm x 

0.13 mm, monoclinic, space group P211c; a = 13.7096(9), b = 7.1732(5), c = 

14.1350(9) A; /3 = 1 l0.494(4)°, V = 1302.08(15) A3 , Pcalcd=1.435 Mg/rn 3 , Z = 4; 2 = 

0.71073A, T = 150(2) K, 10583 reflection measurements, 2309 unique. The 

structures were solved and refined using SHELXL-97 to yield final residuals R = 

0.0431 and R 0.1087. All hydrogen atoms were placed in rigid fixed geometries. 

X-ray crystallographic data for compound 117-solvate: 

Crystal data for 117-solvate: C 16H 14N202.2H20, M = 266.29, colorless block 1.05 

mm x 0.34 mm x 0.14 mm, orthorhombic, space group Pbca; a = 13.3373(9), b = 

7.1636(5), c = 26.4564(18) A; /3 = 90°, V = 2527.7(3) A3, Pcalcd'.399  Mg/rn 3 , Z = 8; 

2 = 0.71073 A, T = 150(2) K, 22710 reflection measurements, 2226 unique. The 

structures were solved and refined using SHELXL-97 to yield final residuals R = 

0.0437 and R =0.1041. All hydrogen atoms were placed in rigid fixed geometries. 
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Appendix 
Absorption (yellow) and fluorescence (red) spectra of compound 120 are represented 

in Figure Al. 

a) 

02 
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2 11 .4 
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	am 
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Figure Al. Absorption and fluorescence spectra of 120. 

Compound 120 showed multiple absorption bands with ?, a,, at 390 nm whereas the 

fluorescence spectrum exhibited a ?ax  at 430 nm. 
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5.1 Introduction 

The previous three chapters covered different synthetic strategies for 

obtaining new AA and AAA units. The compounds that have been synthesised can 

be found in the Glossary of compounds. Only selected examples (Figure 5.1) have 

been used in binding studies with appropriate DDD counterparts (Figure 5.2) and 

will be discussed in this chapter. 

( 

 1  ~ 
	

xN' 
106 

aN -  Nl'- N~'-  

110 

117 

120 

Figure 5.1 Selected AA and AAA i.rnits for the binding studies. 

Counterparts 115  and 124 were readily available and the cationic DDD counterpart 

125 was synthesized by analogy with Aslyn' s 61 (Figure 1.28). 

/ 

 OCF
CF3 

OEHt 	
OEt

Me
B-

)oo 3 

H 	
N 	

H -  
° H °  H° 	

HN N NH 
H H H 	H  H 

1 	 124 	 125 

Figure 5.2 Selected DDD units for the binding studies. 
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Chapter 5 

Different techniques' 27  have been used for the determination of association constants 

of AA-DDD heterocomplexes 1'106, 1•117 and 124'120 and AAA-DDD 

heterocomplexes 1.110, 1.120 and 125'120. Most of the Ka values were determined 

by 'H NMR titration experiments in chloroform-d solution. For the other AAA-DDD 

heterocomplexes that display very high binding stabilities fluorescence spectroscopy 

in dichioromethane solution was employed. To determine the stoichiometry of host-

guest in all heterocomplexes, method of continues variations (Job's plot experiments) 

were used. 128 

NO2  

N N N 
I 	 I 

F 	I 	H 

110 

1•110  

NO2  

HN)NAN.H 
1 

1•120  

Me 

H °  H° 
124 

N 	r:j  

120 

124•120 

Scheme 5.1 Heterocomplexes used in the binding studies. 
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Experimental data obtained from titration experiments of all heterocomplexes were 

modelled with a specially designed software program GasFit developed by Dr Dusan 

Djurdjevic' 29  to obtain binding constants using standard equations for the binding 

methods (Scheme 5.l).' 130 

Calculated Ka  values determined by fluorescence spectroscopy were in good 

agreement with a molecular model study for the heterocomplex 1120. 

5.2 Results and discussion 

5.2.1 DDD-Counterparts 

Counterparts 1, 124 and 125 (Scheme 5.2) were used in binding study 

experiments. The DDD receptor 124 was commercially available and the cationic 

counterpart 125 was prepared in the same way as 61 and outlined in Scheme 5.2. The 

protonation of 2,6-diaminopyridine with gaseous HC1 followed by anion exchange 

with commercially available sodium tetrakis 113 ,5-bis(trifluoromethyl)phenyl ]borate, 

afforded 125 in 75% yield. 

CF3  - 

	

CI 	 B 

H2N NH2 	
98°k H

2N 	NH2 	 H2N 	NH2  

125 

Scheme 5.2 Synthesis of 125 DDD-counterpart: i) HCI(g), DCM, 98%; ii) NaW[C 6H3(CF3)21 4 , 

acetonitrile, 75%. 

Compound 1 has been already used by Zimmerman and Murray and can be prepared 

by known methods.' 5  The authors reported 40  that use of 1 in binding studies has been 

complicated by tautomerism, and it is known that 1 exists as a mixture of 1,4-dihydro 

(DDD-unit) and 3,4-dihydro (DAD) tautomeric forms (Figure 5.3) in slow exchange 

in chloroform-d. 
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'•' 	 67:33 

1,4-dihydro form 1 	 3,4-dihydro form 1 

Scheme 5.3 Tautomeric mixture of 1 in chloroform-d. 

These DDD units were selected because of their availability and their previous use in 

a comparable study with known literature examples 1'2, 1•3 and cationic 613 

(Figure 1.28). At the same time we can make comparison of —OH (124) and —NH (1) 

donor sites in binding ability within 1•120 and 124•120 heterocomplexes. 

5.2.2 1 H NMR Titration experiments 

Initial complexation studies for all heterocomplexes (Scheme 5.1) were 

preformed by the 'H NMR technique in chloroform-d at 293 K under conditions 

where self-association of 1, 106, 110, 117, 120, 124 and 125 was negligible (see 

experimental section). The association constants were determined using standard 

methods 97  by titrating 1 and 125 with 106, 110, 117 or 120 and monitoring the high 

frequency shift of the amino hydrogen. For the complex 124•120 the chemical shift 

of the hydroxy proton has been monitored upon addition of 120 to the 124. 

In each binding experiment, the [DDD]/[AA  or AAA] ratio was incrementally 

increased by adding 106, 110, 117 or 120 to 1, 124 or 125. 

System AA-DDD AAA-DDD 

Complex 1•106 1•117 1.110 1'120 124'120 125•120 

Ka (M-') 6.2x103  8.6x104  >101  >101  2.4x104  >101  

Proton monitored -NH2  -NH2  -NH2  -NH2 -OH -NH2  

Table 5.1 The Ka  values determined by the H NMI( titration experiments tor all neterocompiexes. 

Repetition of the binding experiments for each of heterocomplexes gave Ka  within 10% of the values 

shown (the error in data fitting for each run was <1%). 
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Plots of chemical shifts of amino/hydroxyl protons versus guest to host ratio 

confirmed the typical 1:1 binding isotherm for all heterocomplexes except for 1120 

where the ratio of 1:2 was formed at the concentration (10 -3  M) used in 'H NMR 

titration experiments. This has been confirmed by the Job plot experiment with max 

mole ratio at 0.76 (see experimental section). 

The explanation for this could be very strong it- it stacking at high concentration with 

the possibility of three stacks in complex, potentially -forming three bifurcated H-

bonds in stacked complex. When the 1•120 complex is diluted from ca. 103  M to 

10 9  M, 1:1 stoichiometry is formed. The low concentration of 10 -9 M for 120 is not 

practical for determining Ka  by the 1 H NMR technique, but it can be used in 

fluorescence titration experiments (See 5.2.3 Section). 

Experimental data for all heterocomplexes were modeled with a computer 

program 129  and the Ka  values were determined for the 124•120 heterocomplex' 4  Ka= 

2.4 x iø M'; for the 1•117 heterocomplex Ka= 8.6 x 104  M'; and for the 1•106 

heterocomplex Ka  6.2 x 10 M 1  (Figure 5.4). 
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Figure 5.4 Binding isotherms in chloroform-d using the change in chemical shift (ö) of the amino 

NH2  protons of! (10-3M)  upon addition of 117 or 106 and the hydroxyl protons of 124 (10-3M)  upon 

addition of 120. The lines indicate best-fitting Ka  for 1.117 (blue), 1.106 (red) and 124.120 (green) 

heterocomplexes. 

The lack of curvature for heterocomplexes 1.110, 1.120 and particularly 

125•120 indicated exceptionally strong association constants (>lO M') which 

cannot be determined by the NMR technique (Figure 5.5). These last results were in 

agreement with Zimmerman' S40  analogues 1.3 and the cationic analogues 4•3 

developed by Aslyn. 54  Comparison of Ka values for 1.106 and 1'117 with 

Zimmerman's 1'2 AA-DDD heterocomplex indicated good agreement although our 

systems appeared to be 1.8 to 2.0 kcal moF 1  more stable. 
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Figure 5.5 Binding isotherms in chloroform-d using the change in chemical shift (ö) of the amino 

NH2protons oft (10 -'M) or 125 (10-i  M) upon addition of 110 or 120. The experimental data 

indicated Ka> 105 M' for 1.120 (green), 1.110 (blue) and 125.120 (red) heterocomplexes. 

In heterocomplexes 1•106, 1.110, 1.117 and 1•120 the use of receptor 1 in 

the binding experiments is complicated by its tautomerism (see Figure 5.3). Murray 

and Zimmerman reported  40  that 10 eq. of 3 at mM concentration was required to 

convert 1 fully into the 1,4-dihydro form involved in DDD H-bonding. In contrast, in 

our 'H NMR titration experiments less than 3 eq of AAA (10-3 M) receptor was 

needed to convert the initial 67:33 ratio of the 1 ,4-dihydro:3,4-dihydro forms of 1 to 

>98: 2. In decreasing order, this was achieved at 3 eq of 106 in the 1•106 

heterocomplex (Figure 5.6); 2 eq of 110 in the 1'110 heterocomplex (Figure 5.7); 1 

eq of 117 in the 1117 heterocomplex (Figure 5.8) and only 0.5 eq of 120 in the 

1•120 heterocomplex (Figure 5.9). 

137 



Chapter 5 

a) 

	

OEt 	

-CH, 
OEt 

0 	 .0 

	

N 	

•_ 0 	 . 0 
I 	I 	 I 

H. 	
N H 
	 H 	- 

N  

1iLJL

N H 

-NH, 

I 	 I 
NO- 

I 	 I" 
I 	 I 	oet 	OEt 	 oEj4 	OEt 

I 	I 	 .0 

I 	 H_N N N H 	 N N 
I 	 78:22 

10 

	

I 	:r : 

H. H,H, J/
3 H.

t__L.iJ L i 
/ 	 I 

C) 	 / 	
O & 	OE 	 OEI 

/ 	 I 	I 	°- ° 	
o-( yO 

/ 	 I 	, 	
H.NNANH 

	

/ 	 HH H 	87 : 3I 	H 

	

' 	 - 

_k1L A1LtE  
0E 	OEI 	 o 	O€t 

I 	I 	 0 

I 	H_N N  

I 	H 	 I 	8911 H 

- LJ 

	

9.0 	8.0 	7.0 	6.0 	5.0 	4.0 	3.0 	2.0 

(PPM) 

Figure 5.6 'H NMR (400 MHz, CDCI 3, 298 K) spectra of 1 (10 M') in the (a) absence of!, (b) 

presence of 0.35 eq, (c) 0.7 eq and (d) 1.5 eq of 106. 
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Figure 5.7 'H NMR (400 MHz, CDC1 3, 298 K) spectra of 1 (10 -3 M') in the (a) absence of 117, (b) 

presence of 0.8 eq. (c) 0.9 eq and (d) 1 eq of 117. 
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Figure 5.9 'H NMR (400 MHz, CDC13, 298 K) spectra of! (10 M') in the (a) absence of 120, (b) 

presence of 0.13 eq, (c) 0.25 eq and (d) 0.5 eq of 120. 

A further indication of the powerful hydrogen bonding accepting ability of the new 

heterocycles 106-120 is seen by direct comparison of the AA-DDD complexes in 

CDC13 at RT; 1'117 is >2 and 1•120 is >27 times stronger than 1•3 (Figure 1.32). 
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Figure 5.10 'H NMR (400 MHz, CDCI 3, 298 K) spectra of 124 (10 -3  M') in the (a) absence of 120, 

(b) presence of 0.3 eq, (c) 0.45 eq and (d) 0.6 eq of 120. 

The two last 'H NMR stack plots present the heterocomplexes 124.120 (Figure 5.10) 

and the cationic 125•120 (Figure 5.11). It was interesting that complex 124•120 has a 

high binding constant although hydroxyl groups have been used as H-bond donors. 

Hydroxyl groups are much poorer H-bond donors than amides, anilines, or pyrrole 
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like NH's,' 3 ' and the hydroxyl protons of 124 are also involved in intramolecular 11- 

bonding. It is therefore remarkable that the Ka for 124.120 is 2.4 x 10 4  M- 1.132 
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Figure 5.11 'H NMR (400 MHz, CDCI,, 298 K) spectra of 125 (10 M') in the (a) absence of 120, 

(b) presence of 0.4 eq. (c) 0.5 eq and (d) 0.6 eq of 120. 

The last stack plot (Figure 5.11) is for the cationic AAA-DDD system 125•120, 

following the —NH2 proton to high frequency upon addition of 120 (10 -3  M, 273 K, 

CDC13). 
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5.2.3 Fluorescence titration experiments 

In order to determine more accurate Ka values for the 1'120, 1'110 and 

120.125 heterocomplexes, fluorescence spectroscopy was employed. Compounds 

110, 120 and 125 are fluorescent with fluorescent quantum yields of 0.94 for 120 and 

0.25 for 110 in CH202  determined by standard methods,  18  while 1 is non-fluorescent. 

Fluorescence titrations were performed in C11 2C12  at 293 K by adding a solution of 1 

(10-7  M for 1•110 and 10.8  M) to 120 (initial concentrations 1 x 10 M) or 110 (10 .8  

M) and monitoring the increase in fluorescence intensity at 410 nm (for 10120) and 

517 nm (for 1.110). 
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6N N N 
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Figure 5.12 Fluorescence intensities of a) 120 (Ca. 10 M) at 410 nm and b) 110 (Ca. iø M) at 517 

nm in CH202  at 293 K upon addition of 1 (0-2 equiv.) using 1:1 complexation model. Insets: Job's 

plot under the same conditions as titration experiments. 
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A curve-fitting program" gave Ka values for 1•120 of 2 x 107  M' as 

previously reported 13  (Figure 5. 12a) and 7 x 106  M' for the 1'110 complex (Figure 

5.12b). Job's plot experiments confirmed the 1:1 stoichiometry for both complexes 

(See insets in Figure 5.12). 

Although Job plot experiment confirmed 1:1 binding mode for 1.120 

isosbestic points could not be seen during the fluorescence titration, so the titration 

experiment was repeated using UV-vis spectroscopy. Upon addition of 1 to 120 (ca. 

10 5  M, CH202, 293 K) the absorption intensity at 395 nm increased with a clear 

isosbestic point at 390 nm, suggesting a 1:1 binding mode in this concentration range 

(Figure 5.13). 
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Figure 5.13 UVIvis spectra in CH 202  at 293 K upon the addition of 1 (0-1.2 equiv) to 120 

(1 x 10 5  M). The arrow indicates the change in absorption at 390 nm with increasing 120. 

It has been mentioned that complex 1.120 shows 1:2 binding mode at 10 M 

concentrations ('H NMR titration exp.) but as seen when diluted 100 times (UV-vis 

titration exp.) or more (fluorescence titration exp. ca  10-9 M ) the ratio is 1:1. 

For heterocomplex 125•120 upon addition of 120 (ca. 10 M) to 125 (ca. 10 8  

M) in CH202  at 293 K the fluorescence intensity at 360 nm decreased with one clear 

isosbestic point at 380 nm, suggesting a 1:1 binding mode in this concentration range 

(Figure 5.14). The same results have been confirmed by UV-vis experiments (Ca. 10 

M, CH202, 293 K) with an isosbestic point at 394.2 nm (Figure 5.15). 
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Figure 5.14 UV/vis spectra in CH202  at 293 K upon the addition of 125 (0-1.2 equiv) to 

120 (1 x 10 M). Clear isosbestic point at 394.2 nm. 

350 	 400 	 450 	 500 	 550 

Wavelength (nm) 

Figure 5.15 Fluorescence spectra of 125 (Ca. 10-9 M) upon addition of 120 (0—+ 2.5 equiv.) in CH 202  

at 293K with isosbestic point at 380 run. 
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Plots of fluorescence intensity change as a function of the guest concentration 120 

produced association constants 3.8 x 10 9  M' for the 125.120 heterocomplex (Figure 

5.16) using the computer fitting program. 9  The Job plot experiments 74  were done 

under the same conditions as the titration experiments, confirming the 1:1 binding 

(max at mole ratio = 0.48). 
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Figure 5.16 Fluorescence intensities of 125 (Ca. i -  M) at 380 nm in CH 202  at 293 K upon addition 

of 120 (0—+2.5 equiv.) using 1:1 complexation model. Insets: Job's plot under the same conditions as 

titration expenments. 

The very high binding constants of 3.8 x i09  M- 1  (13.4 kcaL/mol) is one of the highest 

reported for the triple hydrogen bonded complexes, when compared with the only 

cationic example 61•3 the Ka value for our system is 4 times higher than Aslyn's one. 

It should be noted that we measure binding strength using different methods, we 

employed fluorescence and Aslyn used UV-vis spectroscopy due to some indication 

that during fluorescence experiments excited state proton transfer has been seen as in 

some similar examples. 133 

The spectral changes during the UV-experiment were due to complex formation 

rather than solely proton transfer as reported by Aslyn. The PKa  values of 12.2 for 3 

and 12.6 for 61 measured in non-aqueous solvents indicate that the complex should 

best be viewed as a cationic AAA-DDD system. The charged character of the 
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hydrogen bonds in this system is hypothesized to be perturbing the electronic 

structure of the chromophore 3 in a manner analogous to this complex. 

Our results during fluorescence titrations for the 125•120 complex indicated that 

binding takes place with increasing fluorescence intensity, showing clear isosbestic 

points at 380 nm and 394.2 nm (by UV-vis) upon addition of 120 to 125. 

5.3 Structural studies 

To assess the high binding constant for heterocomplex 1•120, molecular 

modelling studies were done by Dr Francesco Zerbetto and Gilberto Teobaldi from 

University of Bologna. The heterocomplex has been modelled in vacuum and in 

CH202 solution to make comparison with experimental results obtained from 

fluorescence titration. 

Geometry optimization and vibrational frequency calculations were carried out 

at B3LYP1631G*  level with Gaussian03 program 134  for 1•120 both in the vacuum 

and in CH202  solution. The solvent was modelled by the self-consistent reaction 

field method (SCRF),' 35  with the dielectric permittivity set to the experimental value 

of 8.93. The radii of the cavities were 6.81, 5.62, 5.16 A for 1•120, 1, and 120 and 

were determined from the electron density contours with a threshold set to 0.001 e 

bohr 3. This step was performed with the "Volume=tight" options switched on. The 

optimized 1•120 (in CH2C1 2) is pictorially represented in Figure 5.17. As reported for 

similar systems, 80, 136-139 the complex is not perfectly planar (see Table 5.2 and 

Figure 5.17b) with a larger deviation for the complex optimized in the absence of 

solvent. The calculated binding free energies, see Table 5.2, are in qualitative 

agreement with the experiments that give 9.8 kcal mol'. In particular, in the vacuum 

the calculated 9.0 kcal mol' underestimates the binding by nearly 10%, while in the 

solvent the binding free energy is overestimated by —25%. Variation of the cavity 

radii by 5% allows one to provide an improved assessment of the free energy, which 

comes to 11.4 ±2.3 kcalmol* 

The purely electrostatic binding energy is remarkably large. Upon going from the 

individual molecules to the complex, three rotational and translational degrees of 

freedom are changed into vibrational ones and become less thermally populated. This 
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affects the AG that is found to agree with the experimental one within the limitation 

of a implicit solvent description. The loss of external degrees of freedom can have 

profound effects, for instance, in protein association' 40  and is also present here. 

Figure 5.17. Calculated structure of 1•120 in CH 202: a) front view and b) side view. 

N,""H, N2 H2  N3""H3  H,-NINrH3 Ebd AHbd L1GbI,.4 

2.08 2.21 2.07 
Vacuum -20.5 0  -22.9 -20.9 -9.0 

(172.2°) (178.0°) (176.8°) 

1.98 2.26 1.98 
CH2Cl2  -4.6 0  -25.6±2.3 -23.3±2.3 -11.4±2.3 

(172.00) (167.2°) (172.5°) 

latMe 5.z Selected quantum chemical results tor 19120 in vacuum and CH2Cl2: N 1  .... H1  distances, A, 

in brackets the hydrogen bond angles; Tilt dihedral angle (tilt angles, see pictures with the molecular 

orientation, are positive when the atoms are encountered clockwise); Electrostatic binding energy, 

Eb1, enthalpy, AJ-fbId and free energy, AGbind,  kcal moF'. Error bars of the calculation have been 

estimated changing (±5%) the cavity radius a0 . 
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5.4 Conclusion and discussion 

In conclusion, very high binding constants were observed for all systems but 

particularly high binding stabilities in 120•1 and 110•1 heterocomplexes were found 

for neutral AAA-DDD heterocomplexes were found. The calculated K a  value 

determined by fluorescence spectroscopy gave good agreement with molecular 

modelling studies for the 120•1 heterocomplex. The cationic AAA-DDD system 

120•125 was the tightest complex with Ka  = 3.8 x 109  M 1  determined by 

fluorescence spectroscopy. This is the first time that an accurate Ka  value for a 

cationic AAA-DDD system has been determined. These findings and accurate 

determinations of binding constants showed that previous results 54, 15 underestimated 

Ka  values of heterocomplexes (particularly cationic) in AAA-DDD arrangements. 

5.5 Experimental section 

2,6-Diaminopyridinium tetrakis[ 3,5-bis(trifluoromethyi)phenyl]borate (125) 

	

/ 	CF3  

nB
) 

	

H2N N+ NH2 \ 
	CF3 

To a suspenstion of 2,6-diaminopyridine hydrochloride (2.5 mg, 0.017 mmol) in 

acetonitrile (5 cm 3) was added a solution of sodium tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate (20 mg, 0.0226 mmol) in acetonitrile (5 cm 3). The 

solution was warmed to 40 °C and stirred for lh. The acetonitrile solution was 

filtered through celite to remove the NaCl precipitate. Addition of aiquots of CH 202  

(5 x 1 cm3) followed by "pumping off' the CH 202  was required to facilitate the 

removal of acetonitrile from the product. Salt 125 (11 mg, 75%) was collected as a 

gray/tan solid, mp 165-166 °C 'H NMR (400 MHz, CDC1 3 ) 8 ppm 7.70 (s, 8H, aryl 
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anion-), 7.53 (s, 4H, aryl anion-), 7.51 (t, J= 8.3 Hz, aryl cation-), 5.93 (d, J= 8.3 Hz, 

aryl cation) and 5.00 (s, hr 4H, NH,-). ' 3C NMR (100 MI-li, CDCI 3) 8 ppm 157.9, 

147.1, 98.2 (cation), 134.8, 121.2, 117.8, 111.9, 103.5 (anion). FAB-MS m/z 110 

(MH, cation component). 

1H NMR Binding studies 

'H NMR binding studies were performed with a Bruker AV 400 NMR spectrometer 

at constant temperature (293 K), using CDCI 3  that had been dried over molecular 

sieves and stored under a dry N 2  atmosphere. A 'H NMR binding study Consists of 

incremental additions of small volume (3-100 mm 3)  of a concentrated guest solution 

(mM) to a 600 mm 3  volume of a host solution (mM). No more than 10% volume 

change has been allowed. After each addition of titrant (the guest solution), the 'H 

NMR spectrum of the system was recorded. Changes in the spectrum of the host 

were plotted against the concentration of the added guest. The guest concentration 

was known from the amount of guest solution added at the resulting volume change 

and/or from integration of each recorded 'H NMR spectrum. The resulting 

isothermic curve was used to determine the association constant by fitting the curve 

with the specially developed GasFit program 129  based on an evolutionary algorithm 

(see Appendix 2) by solving the Equations (1)-(3). 

(I) [HG]= I + 
K[H] [G] - .Jj(I + [H] [G]0 )2 - 4K[H] [G] I 

2K 

[H]=fH] — [HG] 

[i-iG] + [H] 

- ['-'] 	[H]0 

[H]0  - the total concentration of host; 
[G]0 - the total concentration of guest; 
[H] - concentration of unbound free host; 
[HG] - the concentration of host-guest complex; 
K - the association constant for formation of host-guest complex; 

- the free chemical shift of the host; 
- the limiting bound chemical shift of the host-guest complex. 
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Fluorescence Binding Studies 

The fluorescence experiments were performed using a Hitachi F-4500 

spectrofluorimeter. The experiments were carried out in analytical grade 

dichioromethane at a constant temperature (293 K). A quartz cuvette capable of 

holding 4 cm  of sample and possessing a ground glass stopper was employed in all 

of the binding studies. A binding study consisted of incremental additions of small 

volume (3-100 cm 3 ) of a highly diluted guest solution (iM) to a 2 cm  volume of a 

host solution (tM). No more than 10% volume change has been allowed. After each 

addition of the guest, the fluorescence spectrum of the system was recorded along 

with the changes in fluorescence intensity. The guest concentration in the cuvette at 

each addition was calculated based on the guest's stock solution concentration. 

Changes in the fluorescence intensity were plotted against the guest concentration to 

obtain the binding isotherm. The fitting of the curve used to determine the 

association constant was calculated using the GasFit program' 29  by solving Equation 

(4). 

(4) 	F = i + (k,, / k )K,, [L] 

FO 	l+K 1 [L] 

F - Fluorescence intensity of complex 
F0  —Fluorescence intensity of the substrate 
k 1  - proportionality constant 
K, ,- the association constant for formation of 1:1 substrate-ligand complex 
L- ligand 

Job's plot experiments 

The method of continuous variations (Job's plot method) was used to determine the 

stoichiometry of the complex (1:1, 1:2, etc.) using 'H NMR or fluorescence 

spectroscopy. A series of solutions with constant total concentration of guest and 

host (mM or p.M), together with guest concentration fractions, [G]/([G]+[H]), 

varying from about 0.1 to 0.9. Changes of chemical shifts or fluorescence intensities 

have been recorded for each solution and plotted against the molar fractions of [0]. 

The maximum of the plotted curve corresponds to the stoichiometry of the complex. 
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Job plot experiments 

a) 

6.X11' XIII X11 201  

 

krhc%ll) 

 

Mciebacm dill 

 

,—  d[12D 

Figure 5.18 Job plot experiments performed at the same conditions as titration experiments using 'H 
NMR technique and confirmed 2:1 binding mode for a) 120'1 and 1:1 binding mode for b) 117.1 and 
c) 124.120 heterocomplex. 
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Chapter 6: 	Conclusions 

Nature has provided a number of examples of hydrogen bonding interactions, 

particularly with the heteroaromatic hosts seen in RNA and DNA base pairings. This 

offers a special challenge for supramolecular chemists to synthesise heteroaromatic 

modules that can mimic properties and stabilities of naturally occurring molecules. 

In the introduction of my thesis I discussed a number of heterocyclic units 

with triple linear arrays of hydrogen bonding sites in all possible arrangements. Some 

selected quadruple hydrogen bonding motifs were also mentioned as supramolecular 

polymer units, with some insight into properties and behaviour of supramolecular 

polymers. 

The theoretical studies of Jorgensen showed that the hydrogen bonding 

pattern, acceptor, acceptor, acceptor - donor, donor, donor (AAA-DDD) provides the 

most stable binding array for three contiguous hydrogen bonding centres. However, 

the only experimental investigation of such a system to date comes from Zimmerman 

who determined via 'H NMR spectroscopy that the AAA host 2,8-diphenyl-1,9,10-

anthyridine (3) binds to a DDD guest (1) with an association constant greater than 

10,5 M'. Since these studies, little progress in developing AAA-DDD hydrogen 

bonding motifs has been described. The limited number of AAA units in the 

literature and the stability problems during binding studies (as seen in the 1•3 

heterocomplex) were taken into account before the synthesis of targets with AA and 

AAA modules began. 

Three synthetic methodologies to obtain AA and AAA heteroaromatic units 

were used: Flash Vacuum Pyrolysis (Chapter 2), B uchwald- Hartwig coupling 

chemistry (Chapter 3) and Suzuki coupling chemistry (Chapter 4). The Flash 

Vacuum Pyrolysis (FVP) approach allowed the synthesis of naphthyridine ring 

systems in only two steps from substituted Meidrum's acid derivatives after 

cyclisation at high temperature. Different heteroaromatic compounds - 

predominantly double (DA and AA) and a few triple (DAD and AAD) hydrogen 

bonding units - were produced, but this technique was not applicable for formation 

of three annelated heterocyclic units in the AAA arrangement, due to volatility 

problems. 
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In the second approach, palladium catalyzed coupling was used to provide 

heterocyclic diarylamines from readily available pyridine or naphthyridine 

precursors, with subsequent ring closure under acidic conditions. This approach led 

to the synthesis of new compounds: dipyrido[1,2-a;2',3'-a]pyrimidin-5-one 106 

(AA) and I ,6a, 11,1 2—tetraaza-naphthacene-6-one 110 (an AAA hydrogen bonding 

unit) in high yields. 

Suzuki coupling chemistry was used as the last synthetic route, obtaining 

dibenzo[c1fl [I ,8]naphthyridine 117 (AA) and I , 13,1 4-triazadibenzla,jlanthracene 

120 (AAA) which have extended aromatic frameworks to overcome stability 

problems during binding studies. 

Binding studies of all AA and AAA units with the selected DDD 

counterparts: dihydropyridine 1, 2,6-bi s(hydrox y-methyl)-p-cresol 124 and 

protonated 2,6-diarninopyridine (with a lipophilic tetraarylborate counter-ion) 125 

were described in chapter 5. Association constants for 1•117 (8.6 x 10 M'), 1106 

(6.2 x lO M') and 124•120 (2.4 x lO M') were determined by 'H NMR titration 

experiments in chloroform-d solution. The Ka values for the AAA-DDD 

heterocomplexes 1.110, 1.120 and 125•120 display very high binding stabilities (Ka  

> lO M') and they were determined using fluorescence spectroscopy. In this way, 

accurate assignment of Ka  = 1.4 x 106  M' for the 1.110 heterocomplex, Ka = 2.6 X 

io M' for the 1'120 heterocomplex and Ka= 3.8 x M 1  for the cationic 125•120 

heterocomplex were determined. Our experimental binding constants were in 

qualitative agreement with molecular modelling calculations for 1•110 and 1•120 

heterocomplexes. 

The extremely high binding stability found in the 125•120 heterocomplex 

was due to the combination of cooperative secondary interactions and strong 

electrostatic energy and the additional cationic charge. The most stable cationic 

AAA-DDD heterocomplex 125•120 reported in this thesis may be used as a 

supramolecular unit in the formation of pH controllable supramolecular 

polymers/copolymers. 
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Appendix 1: Glossary of synthesized compounds 

This appendix will cover all synthesized AA and AAA hydrogen bonded systems 

and the chapters where these can be found. Highlighted in red are all those used in 

the binding studies. 

We present all DDD counterparts used in binding studies and the AA-DDD and 

AAA-DDD heterocomplexes studied in this thesis. 
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DDD Hydrogen bonded systems 
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AAA-DDD Hydrogen bonded heterocomplexes 
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Appendix 2: 

Custom-written program GasFit was designed by Dr Dusan Djurdjevic and it is 

suitable for determination of large association constants (Ka) using an evolutionary 

algorithms to solve the standard equations (1)-(4) (see Chapter 5.5) for titration 

methods. 

Evolutionary algorithms (EAs) are a class of optimization methods based on the 

principles of evolution 141-143  and are widely used as a global optimization technique 

ranging from stock market predictions and portfolio planning to biochemistry, signal 

processing to artificial intelligence. Main advantages of EAs over other popular 

optimization methods include: 

• The parameter space needs not to be continuous at any level. 

• Derivatives of the 'object function' are not required. 

• Population of solutions is created. 

• It is capable of avoiding local minima going towards the global optimum. 

• Can be used on extremely non-linear problems where other methods fail. 

Considering EAs stochastic nature, usually EAs are coupled with local optimization 

methods (Marquardt-Levenberg, BFGS, Newton-Raphson, Simplex ...) where EAs 

are used to obtain first guesses and local optimizer is applied afterwards to distil the 

end result. 

All other programs used to calculate binding constants employ one (or more) of the 

local optimization methods, and for high values of binding constants it was not 

possible to obtain a good result. Of course, results obtained from GasFit were later 

verified using other programs (ie. Origin, SigmaPlot). 
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Gradient Nerhod Results: 

	

Co,) - 	2.2161-005 

	

Wo, • 	 600 

	

shitt,h - 	 6.3112 

	

CO,;; - 	0.0078927 

	

K • 	 6244.6 

	

shift,cplx - 	 6.9 

Chi_Sqr 	1.1131-OOZ 
ggggggggggslIgtgt##ltfl#et,t##ItS,I1 

11- 
'I 
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U GAsFit Generated File: author: Dusan P Djurdjevic 
# Project Name: AAb-DDD 
# Fit Name: 	AAb-DDD nmr 

# Model Used: 	Ligand Binding->NMR 1:1 
# Model Info: 	Determination of Ligand Binding (1:1) using NMR 	 # 
# 

PARAMETERS: --------- 
# 	Co,h = 2.216E-005 
* 	Vo,h = 600 

shift,h = 6.3112 * 
Co,g = 0.0078927 
K=6244.6 

# 	shift,cplx = 6.9 
* ------------------------------- 
#########################*############"######iI####################*#####*###### 

Volume added 	 Y(exp) Y(fit) 

0 	 6.3112 6.3112 

3 	 6.4242 6.4175 

8 	 6.5264 6.5314 

13 	 6.6035 6.6024 

23 	 6.678 6.6847 

43 	 6.7468 6.7597 

73 	 6.8194 6.8057 

123 	 6.8428 6.8366 

323 	 6.8655 6.8676 

523 	 6.8958 6.8753 

723 	 6.8996 6.8789 
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I GMF1t 2.3b - Project: lox len AA - DDI) [Fit: prave vrcdnostij ij  

Files Tools Help 

,n Fu FiUin ExpenteMaI DMo u6A 	 -. -: 	1 
x 	y 	 IAdsorption 	 Fboescence 1:1 	 Deteimitahon of Litiend Binding (1:11 uáiq NUR 

~E 6 

	EOnerid 	 Fboresc&ce 1:1 enet 
 Fkiorescence 1:1 vi 
 Poonual 	 Fkjotescencel:1 v2 	 = 

1E-5 	6.27006 	
e11 	 1+K11[L] 

6.3687 	 NMR1:2 

- 	-5 	6.41304 	 - 
- 

4-5 	6.51068 	 11=ô,1,-5 
• 	 Pmetei: 

SE-5 	6.S5063 	
Var 	Fix Min 	•Max 	BOSUN 

7E-5 	6.59161 	
i~ 

6.639 	 Cc h 0 . 00047 100 	000)47 	 US 	 , _ 	- -   

- 0.00011 	6,65429 	 Vo.ii 	"• 0.001 	R005 	0.0G1 	 6.6 	 ••-/'.- 	 S  

- 	0.00013 	6.65337 	 shifth 	6.07242 10 	6.0724  

0,00018 	6.65582 	 Co.g 	 000435 	OL009 	0.009 	
645 	 - - 

- ----- - - - - - - -. - - - ------------ 
i0,0 23 	6.66162 	 10000 	 85992 	 - 

000 	666162 	 . 
shiftcplx 	1 	7 	6.72 	 6.35 	• / - - - - - - --. - -. . - .....i-.- -- .- -- - - - 

...-------: -- ... 
6.25 	 ---'-' ' ---i--  - --" '- --------- ---- ------ 

62 

8.15 

6.1 . 

* Import D ata 	
Lrea Object FLmction 	j 	/ 	 0 	0 	0 	0 	0 0.000 0.000 0.000 0.000 000 0.000 OflOO 0.0D0 0.0000000 

Al 

Gradient Method .xu.Ltx: 

Coh - 0.00047 
Vo

,
h • 0.001 

shitt1 - 6.0724 
Co,g - 0.009 

K • 85992 
shiftcp1x - 6.6672 

Chi_Sq 	3.$161-002 

- . 

— I 
c1 

— 
'a 

- 

- 

- 

7 E 
—, 

'l 



#! GAsFit Generated File: author: Dusan P Djurdjevic 
# Project Name: lox less AA-DDD 
# Fit Name: 	prave vrednosti 

# Model Used: 	Ligand Binding->NMR 1:1 
# Model Info: 	Determination of Ligand Binding (1:1) 	using NMR 
4) 
# ---------PARAMETERS: --------- 
4) 	 Co,h 	= 0.00047 4) 

Vo,h = 0.001 4) 
4) 	 shift,h = 6.0724 4) 
4) 	Co,g = 0.009 4) 
4) 	K85992 
# 	shift,cplx = 6.6672 4) 
4) 4) 

Volume added 	 Y(exp) Y(fit) 

0 	 6.0724 6.0724 

5. 	 6.0947 6.1278 

10 	 6.2709 6.1829 

20 	 6.3687 6.2915 

30 	 6.413 6.396 

40 	 6.5109 6.4915 

50 	 6.5506 6.5663 

70 	 6.5916 6.6305 

90 	 6.639 6.6468 

110 	 6.6543 6.6531 

130 	 6.6534 6.6564 

180 	 6.6558 6.6602 

230 	 6.6616 6.6619 

280 	 6.6616 6.6629 
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383 8,0611 

483 8.105 

566 8.1304 

666 8.1463 

766 8.1478 

866 8.1563 

+ Import Data 

Vat Fix Min Max Result  

Co.h ' 	 002 G021 002 

Voh v 	6(1) 601 60) 

shit.h 7.8 7.9 78339 

Co,g 0.021 00211 0.0211 

1 10000000 24421 

ihJtcp(x 7.8 9 8.1601 

Linear 	 ctFigicbon 
'- 	 /Eicecue 	I 0 	100 	200 	300 	400 	500 	600 	700 	800 

- 

815 

8.1 

8.05 

8 

7.85 

79 

7.85 

51, 

'a 

'a 

Cl) 

Pet 

Oeek  

	

Ii, 	 QJj 
Fees Tools He  

New 	Qpen 	eve 	 . 

	

Data 	 Fittng Model 	 Mod&Iro: 

x 	 y 	 Adsoption 	 Fkiorecercel:1 	 Determination ofLigandBindin(1:1J using NMR 
- Eçonec8 	 Flescence 1:1 genecil 

1' 	7.8111 	 __________ 	 ijorescencei:l vi 	 A 

50 	7.8534 	 PojsionM 	 Fbjoeecencei:1v2 	 __ 

100 	7.8913 	 nce 1:1 	
1+K  1[LJ  

150 	7.9298 	 NMR1:2 	 / 

200 	7.967 

283 	8.013  
Pn&er: 	 - 	 - - 	- -- 

Add Fit 	Row" Fit  

rN4 	

Gradient sthodResults:  

	

Ceh • 	 0.02 
Vo 	 600 

	

shift ,h - 	 7.8339 

	

Co.6 • 	 0.0211 

	

IC • 	 24421 

	

ahift,cpJ.x • 	 8.1601 

• 1.1771-002 1- 
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#! 	GAsFit Generated File: author: Dusan P Djurdjevic 
# Project Name: Sd NMR ring 3oh 
# Fit Name: 	fiti 

# Model Used: 	Ligand Binding->NMR 1:1 
# Model Info: 	Determination of Ligand Binding (1:1) 	using NMR 

PARAMETERS: 4 
4 	Co,h = 0.02 

Vo,h = 600 4 
4 	shift,h = 7.8339 4 
4 	Co,g = 0.0211 4 

K = 24421 4 
4 	shift,cplx = 8.1601 4 
4 4 

Volume added 	 Y(exp) Y(fit) 

0 	 7.8111 7.8339 

50 	 7.8534 7.8626 

100 	 7.8913 7.8911 

150 	 7.9298 7.9197 

200 	 7.967 7.9482 

283 	 8.013 7.9953 

383 	 8.0611 8.0514 

483 	 8.105 8.105 

566 	 8.1304 8.1394 

666 	 8.1463 8.153 

766 	 8.1478 8.1559 

866 	 8.1563 8.1571 
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I IDU1 
Fee 	Tools Help 

(l Qpen segs eve New 

Dale: F11n10 Model Model Info 

x y Ado.p&, Delarminalion of Liand Binding (1:1) using fluoescence (Ligand not Iksoiezcent) 
Eponeriel Fkoteecence 1:1 98116181 

4322 I Fkorucence 1:1 vi 

Hj7,5 
2.5 44211 Polynoielel Fkjomscencei:1 v2 

Fb.Jolescencei:1v3 ,1+(k11Ik)K[L] 43401 

_J17.5 45454 
NMR 1:1 
NMR1:2 F1+ K[L] ' 	"N 1275 45966 

0   

132.5 44262 
PnMerS 

52.5 44e92 
182.5 46135 
1112.5 46736 

__ 162.5 47456 
212.5 49910 

262.5 49235 
312.5 49451 
362.5 51168 
412.5 51662 

diant Method Results: 

Coh - 0.0063378 
Vo,h • 0.003 
Po Sh • 4322). 
Co,g = 11-000 

ku/ks • 2.7269 
K - 2.64471007 

_Sqx • 7.1111+002 
s,,Issgt#sIsIggs,flsusugu0sss10I6llIglSttl66S 

512.5 

6125 
612.5 

+ )iro.tData 
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U GAsFit Generated File: author: Dusan P Djurdjevic 
# Project Name: Project-1 
# Fit Name: 	sdring ddd fluo 

# Model Used: 	Ligand Binding->Fluorescence 1:1 
# Model Info: 	Determination of Ligand Binding (1:1) 	(Ligand not fluorescent) 	* 

* * 
* ---------PARAMETERS: * 
* 	Co,h = 0.0063378 * 
* 	Vo,h = 0.003 * 
* 	Fo,h = 43221 
# 	Co,g = 1E-008 
* 	ku/ks = 2.7269 
* 	K = 26447000 * 
* * 
##########4(######*########################*########################*####*##### 

Volume added Y(exp) Y(fit) 

0 43221 43221 

2.5 44211 43319 

7.5 43401 43511 

17.5 45454 43885 

27.5 45966 44244 

32.5 44262 44418 

52.5 44892 45083 

82.5 46135 45988 

112.5 46736 46797 

162.5 47456 47964 

212.5 49910 48944 

262.5 49235 49775 

312.5 49451 50486 

362.5 51168 51101 

412.5 51662 51635 

512.5 52354 52517 

612.5 53523 53213 

612.5 53523 53213 

172 



1.4 1i1U 

_j2.4 124758 

4.4 124862 

'7 124827 

7,4 125422 

10.4 124896 

12.4 
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. ....................... ........ 

C .................. ---------- I----------I  ........... .- 
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fD 

eD 
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Graph: 
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120,000 
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119,000 
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118,0(X) 

117,500 
117,000 
116500 
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A 

+IrqoflData 
	 Le0ZctFIictior 	 Erecute 

	
0 

Ill A.Lgortth Details; 

lgorit)ie Type: geSt.sdyState 
I. Incoding Type: .tBina.zy 
rosovr Type: ctu.Ltipoint 
s.xteue Generations: 1000000 
otal Variables: 6 

101 

11 
-4 

IGAsF1t2.31b - Project: SDAAA-dlluted [Fit: fit dobar] 	- 	- 	 J3•1 
I 	 tüi rtIT ExperimenatD 

Data 	 Fitting HoM 	 Model Into 

o 116567 

L0.1 117079 

[I]0.2 121860 

0.4 121632 

0.6 123146 

0.9 
F, 

124135 

Determination of Ligand Binding (1:1) using Fluorescence (Ligand not fluorescent) 

F 1+(kti Ik:)K[L] 
1+K[L] 
	

RI 

Va, Fix Min Max Resu 

Coji ' 	2.13E-00 100 2 13E08 

Vob m 100 3000 

Foh W' 	1.1657E05 100 1.1657E05 

Co.g 2'07 100 0.0016674 

ku/ks 05 5 1.0755 

K 1 1E08 7.5044E06 
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# Fit Name: fit dobar 

# Model Used: Ligand Binding->Fluorescence 1:1 * 
# Model Info: Determination of Ligand Binding (1:1) 	(Ligand not fluorescent) 	# 
* 
* ---------PARAMETERS: * 
* 	Co,h = 2.13E-008 * 

Vo,h = 3000 
Fo,h = 116570 * 
Co,g = 0.0016674 * 

* 	ku/ks = 1.0755 
K = 7504400 * 

------------------- 

X Yexp Yf it 

0 1.17E+05 1.17E+05 

0.1 1.17E+05 1.19E+05 

0.2 1.22E+05 1.20E+05 

0.4 1.22E+05 1.22E+05 

0.6 1.23E+05 1.23E+05 

0.9 1.24E+05 1.23E+05 

1.4 1.23E+05 1.24E+05 

2.4 1.25E+05 1.25E+05 

4.4 1.25E+05 1.25E+05 

7 1.25E+05 1.25E+05 

7.4 1.25E+05 1.25E+05 

10.4 1.25E+05 1.25E+05 

12.4 1.25E+05 1.25E-i-05 
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I 	 2.3b - Project: Cationic Fluo  

Files Toots Help 

New 	' Qpen W save 	Segs 	 I  
Data 	 F i tt ing MieI 	 ModelInfo 

IL at1 1 i 	I Determination of Ligand Binding (1:11 taxing Fluorescence (general equafion) 

i 3818832 . 2  
1-5 3808989,2 

r 2L-5 3801727.7 

36-5 3786575.14 

3759645.9 

- 	76-5 3751127.2 

- 	0.1 3737472.7 

0.00011 3712600 

0.12 3701708.2 

- 0.00013 3690802.02 

0.00015 3671637 

0.0002 3685986 

0.00025 3654147.4 

0.0003 3620390.8 

0.00035 3628702.8 

0.0004 3620566.7 

0,00045 3620794,6 

- 	0.0005 3626068.8 

0.00085 3638256.2 
fl(WWC 'XtOAVfl 

110,  Import Data 

Var Fix Mm Max Reu 

Coh 7.7E -9 BE '9 77E-9 

Voh 10 	0.082 1(1) 0.082 

Fo,b 3818832 100 3818900  

Cog ZSE8 8E .8 7.8097E8 

kil/ke 05 5 0.94824 

kI/ka 0.5 1I)00000) 0.5 

K 1 1615 3814708000 

0bect Ftmction :i I 	/ eecte 

HuoreCence 1 1 

Fkaotescence 1:1v2 
Fbotescencel:1v3 	

F1+(klI/ks)K[LJk[L] NMR 1:1 
NMR1:2 	 F 	I+K[LJ 	k 

Lot 

dodafe tacice 
Ceedi.nt A.thod k.xultx: 

Coh - 7.71-009 
Vo,b • 0.002 
Io.h - 3.81881006 
Co,g • 7.80978-008 

ku/ks • 0.94824 
ki/ka • 0.5 

K - 3.6147*009 

thi_Sqi = 1.0568+004 
isiuitsuuusssussssssisutiiisinht*ss*uiilU 

-I 

'-.1 
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#1 GAsFit Generated File: author: Dusan P Djurdjevic 	 if 
if Project Name: Cationic Fluo * 
if Fit Name: 	dodate tacke 2 if 
if if 
if Model Used: 	Ligand Binding->Fluorescence 1:1 general 	 if 

if Model Info: 	Determination of Ligand Binding (1:1) 	using Fluorescence 	if 

if if 

if ---------PARAMETERS: if 
if 	Co,h 	= 	7.7E-009 
* 	Vo,h = 0.002 if 
if 	 Fo,h = 3818800 # 
if 	Co,g = 7.8097E-008 if 
if 	ku/ks = 0.94824 * 
if 	kl/ks 	= 0.5 if 
* 	K = 3814700000 
if ------------------------------- 

Volume added Y(exp) Y(fit) 

0 3.82E-i-06 3.82E+06 

10 3.81E+06 3.81E+06 

20 3.80E+06 3.80E+06 

30 3.79E+06 3.79E+06 

50 3.76E+06 3.77E+06 

70 3.75E+06 3.75E+06 

100 3.74E+06 3.73E+06 

110 3.71E+06 3.72E+06 

120 3.70E+06 3.71E+06 

130 3.69E-1-06 3.70E+06 

150 3.67E+06 3.68E+06 

200 3.69E+06 3.65E+06 

250 3.65E+06 3.64Et06 

300 3.62E+06 3.63E+06 

350 3.63E+06 3.63E+06 

400 3.62E+06 3.63E+06 

450 3.62E+06 3.63E+06 

500 3.63E+06 3.63E+06 

550 3.64E+06 3.63E+06 

600 3.62E+06 3.63E+06 

650 3.63E+06 3.63E+06 

700 3.61E+06 3.62E+06 

800 3.62E+06 3.62E+06 
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Appendix 3: Published Paper 

JcIs 
COMMUNICATIONS 

.SO4 oo Oar 

Extremely Strong and Readily Accessible AAA—DOD Triple Hydrogen Bond 
Complexes 

Snlja D,revic, David A. Lei 	Hanish McNab, Sinon Parsons, Gilberto Teobald, and 
Francesco Zerbelto 

3tmoJ of C3iemiy. Lturersity of &*ntW -g"L The Km,': silthi, West Maw,, Road. ithntwyh EH93-t. U.L. 
and Ctpamnient, a, trn,ca "a. aassc,an ttrnrflid ,* Bologna, ,o F. &imi 2. 4012i5 Bologna, laly 

1ecoved Ooirt,er lb. 20. E.m& dead Jear Uk, U ,ronofeder ut froncesco zeib tosd,o C 

'flee devdoçmmi of miltipilnt hydrogen boniing md,fz that 

barn craiqferea with 11e stability and selectivity is inoq1al be 
for the in inatwolep of Ndor aid in the dea5s of new maCseals.' 
There is aperticiàr lark of bilking No&, that can be used to 

barn acceptor, acce3or, aloe- donor, donor. donor (AAA -
DOD) hybogeii bng patterna, believed to be the dirceigod  
culigucas b4e li*ogssi bond .Tatgnfleal as result of miltilie 
favorstde secondary electrostatic Interactions.'  Meanly and Zim-
iuetmin pnwiithd the lest experimental exweple of serb a syltina 
when they repo,ted that the K for complex 1-2 it '10' M' in 
CDC13, as evidenced by 'H NMR spectroscopy (Figixe I).' They 
Win fcuid, however, that 12 is chemically unatslde. and the 
paewnorof1$4i&iaianoieplolatow (peeion epm) was 
reqitired to xevonl bythitr Itifi from C4 of 210 C-tO of 1 during 
their bindog experimentILM No attempt to qiestlify the K. beyond 
the unit measurable by NMR methode was reported aidinre these 
incindeg and seninal atwies relatively bide progress' has been 
merle in developing less reactive AAA-DDD systeme Here we 
report exitundy high association constants for chemically atatee 
AAA-DDl) and AA-Dt)t) cianglexce that feature the novel and 
realty accessible niult1de I')'ifrngen bond acceptors 3 and 4 (t'lgrre 
1). 

We wondered whether the dianiril stability of the Zinanornem 
AAA lint nigH be improved by extemicing the alltydtIne .rninic 

kanewoit. Acccaolngly. a peetacene analogue. 3, was prepared 
in tail) two stops by the elloethabon of 24-d.innepyntIne 
Mowed by a battle Suzuki, coupling with 2-fonnytphe*iyl boranc 
sad and spontaneous cyclization and eroindizetion (Scheme 1). 
A modified apçxu.th yielded the eipsiv.letd AA nytlmn, 4, the key 
step being bash vanaim pyrolysis (FVP) of an moms (Scheme 1, 
atop v). Singe coyatata suitable for X-ray analysis were obtained 
for each of 3 and 4 front inturaled CHC1,/Me0H solations. The 
nild state structures (Figure 2) ctaithmed the noleadee geometries 
and provided data reganing the acceptor heteronkan teparattime 
few weepier mobaing of contiguous H-bond arrays with verona 
prospective H-bond chains. 

Experimentally, we deal exanined the ability of 3 to foes 
complexes with DOD partners 34  and 5 in a)C1 3  by 'H NMP 
spectroscopy, using a atuebad tib.tion method?  under conditions 
where the self awoaallrat of each criupteesnt wee neiltle (F. 

20 W'). To mew the effect of the extended aromatic system 
on bindng other than chemical reactivity, we also detee,ninsd the 
K, of 4.2 to compare with 6-2' (K, = 3 - 10 M' in a)a,). 
Plots of the chemical shifts of the uuinoitytIux)4 groups of 2 or 
5 versus the I000I'IAA or AAA] ratio for 42 and 3-5 showed 
typical 1:1 binchng isotherms (Figure 3; confirmed by Job plots. 
we teapicatog Information), and the data were comnputationally ,  
matched to the beat-doting association ccnatall: 42. K, = B 

1O M': 3-5 K. = 2.4 x 101  U".' However, the Job plot for 3-2 

*.102ii4ss ccc, ms.a o 	easome ClvIIsevt sadev 

[I'] 
lç,,.i06 M' 	N-2. Was' 	, 

CIS 

4 	 - 	I 	-- 

,r.e,1O'u' 	lg.3aio'u' 	lc.24,lO'Is' 
(,I 'H ment 	(COD,. H I6ai' 	(cOd5 IN ISet) 

Ftul. AAA-DDD (2-2, 3-2. and 3-5) and AA-17DD 4'2 and 6-23) 
hetwms.erplcres and thee! I lsh,lity 4s (K.'o es CD'L, us CH,-
chat torso ts,watee Reystitnons of the binding eRonimedo for each 
of 3-2,3-5, and 42 ga-re K.r within 112'. of the rabies misen ,fl,e 'era 

5,n4tirenthnaiww '1%) lend. tnthethsoweciaiadd,Uonnl 
H-bonding patan. 2 exists in o 2:1 ratio of 1,4-d,tryttnf3,4-dihydto 

at rrsfl,nwlar yoicerdiit,am em COd, at room tsrgoeeslure' 

Sctwnw 1. Sttintin of MA and At Systems 3 nat 4 

l4I4 N in45 	li#t,k1rIll4i 	
-"- 

- 

Resgeslo aid eca,dt,oe,s C,) N-tsdoes,ansensts, t'MF, lath. (a) 
24bemytphaiyl bonwer scsi. PP24t,f.. CwCCb, stase/wster(1 15 90W 
(in) 2.krmystsw,y1 bacour add. PdffJbsj,. 1(3CO3, thomowwaler (1, 11 
bob. tiv) Me)NH.-HCl, 510H Ub?'v v)FVP 0misoe Iençerattwe = 700 
C,taLd  LVT,,2WM 102'C,p = 400 lO"T,ar. 10 mm), 731/6 

showed a 2:1 complex at tnillimd.er concentrations (see Supqiorling 
Information), and curve-titling suggested at lead one association 
constant beyond the range that could be reliably determined by 
out NMR espesinoento. cmdent with the IC, 10 14" presimuty 
reported' for 1 - 2. 

Scene of the results and observations from the IH NMR binding 
experiments deserve Esther caninont Fled, byfroxyt groups are 
much poorer H-bond dunas than atidea, alIjoes. or pyvrole4ike 
NH's,' and the hy&ixci protons of 5 are also involved in 

PAGE tii:4r CHM SOC. )000( X',\ -A 
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COMMUNICATIONS 

81 
HI N14 HIS 	 Nil Ni 

-61% )5~ 
Raw2 X.rayal40ueresof)3sb)4(C red. H blue. H 

with)i Nib ogon-odisgee dsMgicee (a) 1(13-1814 Z294 A, 1(1-1(14 
2290 A ind (b) 1(1-1(122 300 A (see frçportag Inforenlus) 

of 

is 

1q69 

R.r. 3. Binding isethemns song the idsoge in thandcal tuft (Ad) of 
(a) the amino NH2 ginçs of 2 (10- 10 icon addition of 4 and b) the 

hydrinyl gmps of 5 (10"° tO ion sdd*zax of 3 The red lease indicate 

bsetrgbng K.'x' 

07 	 o0' 
Dine 

11.2 

300 	 so 	an 	0.0 

Re,. 4 (a) UVMs spathi in CH2C6 at 593 K upon the addition of 2 
(0-1.2 e9wm) to 3(1 x 10 84) The arow indictin the disege ii 
absorption at 390 am with tameling 2 (t) Thcrseceioe intensity it 410 

an to CHDC)D at 293 X spin the addataonof2(0-3eqii.)1o3(1 x 

14) (C) Mi plot tela disinter osndthcnz to (b) 

hthsencd.mdir Hbesaing. Bin therefore somewhat remasekahis that 

the K (CDCI,, roam temperature) for 39 is sub-milhlmoler'° 

Secind, the use of 2 in the binding experiments is complicated by 

its tat*unaistn (see Figure 1 inset). Murray and Zinanerman 

reported' that 10 ocpav oft was required to fully cesivesl 2 into 

the I 4 dilbyrbo form involved in DDD H-bonding. In contrast, in 

can 04MB libation experiments only 03 ecpnv of 3 proved aifficiesit 

to convert the initial 2:1 redo of the 1,4.dlr&oI3,4.dihy&o foams 

012 to >98:2 (see Supporting Information). A further indication 

01 the powerful hydrogen bond sampling ability of these new 

heterocycles is seen in the direct comparison of the AA-DDI) 

complexes in CDO, at noun temperature; 42 in 01 long 20 limos 

more strongly boriid than 6-2 (Figure 1). 
We next investigated the binding is complex 32 by UV/Ms and 

fluorescence spe ctroscopy. Upon addition 012 to 3 (ca. 10" M, 

2C2, 293 K), the absorption intensity .0393 fin increased with 

s deer iaoabetuc point at 390 non, suggesting a 1:1 binding mode 

in the catcoritraticas range (Figure 4o). Fluorescence tilrstbats (3 

has a fluorescence cgianlum yield of 094 in CH202, while 2 is 

ncatfluorescint) were performed in CR2C12 at 293 K by adding a 
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ideation 012 (10" M) to 3 ØnIthl concentration 1 x 10  -9  M) and 

mesailsuing the increaselia flam'eaoanc, lotisly 88410 am (Ftne 

4b) Qoav,-flthig gave a K. for 32012 x 10' M'. A Job Piet  

cuied the 1:1 dodabiamehy (Figure 4c). 

OeesuDy optimization and fr.qaeoty nuicidationa were coned 

con on 3'2, bolh In vamaso and as CH2C12 odedlon, 01 the RILYPY 

6-310° level ieditg Ba. 04ua403 program" (lee Ssççathog 

lofcomsbon). In lbo isolated molovales approximation the bWuIaIg 

free energy was teedwsrshended by -10 wills in ,ehlmm it was 

overestimated by -23% Belt types 01 calculations laousd an 

essoly bso electrostatic ceithitethee to complex theson The 

Maidgiam alas 5*_gent Not the AAA -DDD cseapt.x is new  

plater, pulicidinty in ooh*icsr stilt uagle 01 -5' between the 

plates 01 2 and 3 in CH2C12 (-21' in vscamao) pronto the 

o8800en H-buesiuog and the woqpd AAA-DDD 

interaction. 
In cosiditaiui, heterocycles 3 and 4 ins novel, readily accessible,  

and disasicuily gable AA and AAA hydrogen boniolaig units that 
foam extremely thong matinlecider complexes with DDD 

pertness. The Impoalalce at secondary electrostatic interactions in 

ces01lguma midlapolal hydrogen bonding sera Is well-illustrated 
by coosputhon 01 the relative binding sogtien of AAA-DDD 

complex 3'2 (K. = 2 x tO' M 1  in CH5Ch at roam tanpeaatture) 

and the toovioudy repau1ef ADA-DAD couples between 

1-but11Unine and 2,6-datyuldquyfldino (K. zz 90 M" in 

CDCI3 88 roam temperature). 

Spoe4lbg I01mdai AsaSuMu Expininsuied proesdines sad 

"ft l a for 3 sod 4.id aooeleze. 32, 3-5, aid 4-2, dotulls of 

X'tay soulysts 013 and 4, iaaelu&utg of Ms., sod .diosid apini-

uoadal deilhs on ountMids'.al aid eoeskinthsn uhaku. This nonuisi 

is available free of dais via the beano 01 teoIIpodasuease. 
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