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Abstract 
Onchocerciasis, caused by Onchocerca volvulus remains a major public health and 

socio-economic problem across the tropics, despite years of mass drug administration 

(MDA) with Ivermectin to reduce disease burden. Through modelling, it has been 

shown that elimination cannot be achieved with MDA alone and additional tools are 

needed, such as vaccination, which remains the most cost-effective tool for long-term 

disease control. The feasibility behind vaccination against O. volvulus can be 

demonstrated in the Litomosoides sigmodontis mouse model, which shows that 

vaccine induced protection can be achieved with immunisation using irradiated L3, the 

infective stage of L. sigmodontis and with microfilariae (Mf), the transmission stage 

of the parasite. There is further evidence of protective immunity in humans, with 

individuals living in endemic areas that show no signs of infection despite being 

exposed to the parasite (endemic normal).  

The protective efficacy of promising vaccine candidates were evaluated using an 

immunisation time course in the L. sigmodontis model, using either DNA plasmid or 

peptide vaccines. In immunisation experiments in L. sigmodontis, Mf numbers are 

used as a measure of protection and marks the end of an immunisation time course. 

However, when changes in gene expression were measured at the end of an 

immunisation time course, in attempts to identify gene signatures that could be used 

as markers of protection (correlates of protection) in the blood, no gene signatures were 

found to be associated with protection. This suggest that at the end of an immunisation 

time course, when protection is measured (change in Mf numbers), it is too late in 

infection to measure changes in immune pathways being triggered.  
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Changes in gene expression were therefore measured in blood samples collected 

throughout an immunisation time course in the L. sigmodontis model, in order to 

identify the time point in an immunisation experiment which are the most indicative 

of protection. Two independent immunisation time courses were used, either using 

irradiated L3 or Mf as vaccine against L. sigmodontis, as these elicit the greatest 

protection. This generated a large high dimensional dataset, that was too large and 

complex for a differential fold-change analysis. Therefore, an analysis pipeline was 

created using machine learning algorithms, to detect changes in gene expression 

throughout the time courses to detect markers of protection.  

The 6 hour time point following immunisation showed the greatest change in gene 

expression, with the analysis pipeline identifying known pathways associated with 

vaccine-induced immunity. The pipeline was applied to gene expression data from 

human samples obtained from individuals living in endemic areas who were either 

infected with O. volvulus or endemic normal (naturally protected), this was to identify 

pathways associated with protective immunity in humans. When comparing vaccine 

induced immunity seen in mice and natural protective immunity in humans there was 

some overlap in pathways being triggered, suggesting that similar pathways are needed 

for protection and that if a vaccine can trigger the right pathways in mice, it is likely 

to be effective in humans.  

Overall the machine learning analysis of the gene expression data, not only shows that 

it is feasible to measure change in gene expression in blood during filarial infections, 

but that during an immunisation time course it is the early time points following 

immunisation that are the most predictive of vaccine efficacy (protection outcome). 
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One of the vaccine candidates, cysteine protease inhibitor-2 (CPI), is a known 

immuno-modulator that inhibits MHC-II antigen presentation on antigen presenting 

cells such as dendritic cells (DC). This candidate has consistently been shown to 

induce protection if its immuno-modulatory active site was modified. In in vitro 

studies, it was shown that modification of the active site of CPI rescues antigen 

presentation in DC. This shows the importance of DC activation before the onset of 

infection, demonstrating the importance of triggering protective responses early in 

infection, and provides insight on how one of the vaccine candidates achieves 

protection. 
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Lay summary 
Onchocerciasis, also known as river blindness is a major public health and socio-

economic problem in Africa and in small areas in South America, and despite years of 

effort from control programmes this debilitating disease is still present. Therefore, an 

alternative control method is needed, such as a vaccine, if one day this disease it to be 

eliminated. In this study, potential vaccine candidates were tested in an animal model 

for onchocerciasis, and at the end of the vaccination time course presence or absence 

of parasites were measured. Although this measure is a good indicator of protective 

efficacy, it does not give an indication of what the immunology behind this protection 

is. Further studies were done to look at indicators in the blood of animals vaccinated 

with known protective vaccines. Since this produced a large dataset, computational 

tools were used to identify what the kind of protective immunity was being triggered 

throughout this time course. Samples taken at time points immediately after the 

vaccine was given, provided the most information, of the immune pathways being 

triggered. Overall this thesis has validated certain vaccine candidates against 

onchocerciasis and shown that markers of protection can be measured in the blood 

during a vaccination time course. This will be useful in the future to measure the 

efficacy of vaccine after vaccination instead of having to wait till the end of vaccination 

time course to know if a vaccine is protective.
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Chapter 1. General Introduction 

1.1 Overview of Onchocerciasis 
Onchocerciasis, also known as river blindness, is caused by the filarial nematode 

Onchocerca volvulus, which is transmitted from person to person by a blackfly 

(Simulium spp). Onchocerciasis is endemic in 30 African countries, as well as in 

Yemen and localised foci in six Latin American countries (Figure 1.1). It is suggested 

that 95% of O. volvulus infected individuals were living in Africa, and with the use of 

REMO (rapid epidemiological mapping of onchocerciasis) it is estimated that 37 

million people are infected, and 90 million are at risk in Africa (APOC, 2013; World 

Health Organization, 2016b). Onchocerciasis is a debilitating neglected tropical 

disease, imposing a global health burden of 0.5 million disability-adjusted life-years 

(DALYs) (Murray et al., 2012). Although onchocerciasis is mostly associated with a 

chronic infection, with varying degrees of mild pathology, a proportion of individuals 

do develop severe symptoms including visual impairment, which can lead to 

irreversible blindness; severe itching with secondary infections if scratched; and 

hyperactive dermatitis which is termed sowda (blackening of the skin). As a 

consequence of this debilitating pathology there is stigma and fear of this disease, 

historically causing people to abandon fertile lands creating an even bigger socio-

economic impact (Houweling et al., 2016). 

The prevalence of onchocerciasis infection and disease in a community is correlated 

to the proximity to rivers in which the blackflies breed, with microfilariae (Mf) 

densities, the transmission stage of O. volvulus, increasing with age until around 30 
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years old, after which infection profiles vary between geographical regions and age 

(Duerr et al., 2004; Filipe et al., 2005). Endemicity is split depending on prevalence of 

infection, with areas hyper-endemic for onchocerciasis having more than 60% of the 

population present with Mf in the skin, with high Mf density levels (<50 Mf/mg skin). 

A prevalence between 35-65% of onchocerciasis within a population is classified as 

meso-endemic, and hypo-endemic areas have less than 35% of the population with 

detectable Mf in the skin. 

  
Figure 1.1. Worldwide distribution of onchocerciasis, 2013 (WHO). Map showing different 

distribution of onchocerciasis around the world, dark green represents meso-or hyper-endemic 

areas, classified as a prevalence of greater then 20%; light green as hypo-endemic areas, 

classified as a prevalence less than 20%. Map obtained from World Health Organisation 

http://www.who.int/onchocerciasis/epidemiology/en/.  

  

The boundaries and names shown and the designations used on this map do not imply the expression 

of any opinion whatsoever on the part of the World Health Organization concerning the legal status 

of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers 

or boundaries. Dotted lines on maps represent approximate border lines for which there may not 

yet be full agreement. © WHO 2014. All rights reserved

Data Source: World Health Organization

Map Production: Control of Neglected 

Tropical Diseases (NTD)

World Health Organization

Distribution of onchocerciasis, worldwide, 2013

Not applicable

Non-endemic countries

Endemic countries (former OCP countries)

Hypo-endemic (prevalence < 20%)

Meso-or hyper-endemic (prevalence > 20%)
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1.2 Overview of related human filarial nematodes 
Other filarial species that have a human host include Wuchecheria bancrofti, Brugia 

malayi, Brugia timori which are the causative agents of lymphatic filariasis; Loa loa 

which causes Loiasis; and other less known but well distributed species are Mansonella 

streptocerca, Mansonella perstans and Mansonella ozzardi (Table 1.1).  

Lymphatic filariasis is another cause of chronic morbidity with a negative social 

impact, and as its name suggests it affects the lymphatics, with severe symptoms such 

as hydroceles, an accumulation of fluid in the scrotum; and elephantiasis, an 

obstruction of lymphatic vessels resulting in extreme swelling of skin and tissues, 

typically in the legs (Otabil, Tenkorang, 2015). 

Loiasis is characterised by migration of adult worms across the eye and “Calabar 

swelling”. Calabar swelling are subcutaneous oedemas that are often associated with 

localised and general itching, frequently found on the limbs, especially on the 

forearms. These oedemas can cause restricted movement of the nearest joint, and can 

disappear spontaneously and re-appear at irregular intervals. Compared to 

onchocerciasis and lymphatic filariasis, loiasis has been much less studied, despite 

having been known for a long time, most likely due to loiasis being less wide-spread, 

restricted to equatorial west and central Africa, and severe pathology is rare 

(Boussinesq, 2013). More recently, it has emerged as a disease of significant public 

health importance because of its potential negative impact on onchocerciasis control 

programmes. Individuals with high levels of L. loa Mf in their blood (<30,000 Mf/ml), 

that take the drug Ivermectin, the treatment used for onchocerciasis, have an increased 

risk of developing severe adverse neurological reactions (Chesnais et al., 2017). 
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Therefore, in areas with high intensity L. loa infections co-endemic for onchocerciasis 

(Figure 1.2), Ivermectin cannot be used for mass drug administration (MDA), hence 

hindering control campaigns.  

Mansonella species have received even less attention, despite being widespread in 

many parts of sub-Saharan Africa, notably M. perstans which is found in 33 countries 

within this region, often with a very high prevalence within the population. Mansonella 

perstans is responsible for serous cavity filariasis in humans; infections are often 

asymptomatic, but when symptoms are seen these include subcutaneous swelling, 

aches, pains, skin rashes, hormonal disturbances and hypereosinophilia. Despite it 

being considered as one of the most prevalent parasites in tropical Africa it has 

received very little attention, mainly because it causes few clinical symptoms, and no 

severe adverse reactions are detected with drugs used for lymphatic filariasis or 

onchocerciasis. However, M. perstans might be interfering with the host regulatory 

mechanisms, influencing the outcome of other infections such as malaria, tuberculosis, 

and HIV, but also potentially influencing vaccine mediated immunity, however this 

had yet to be proven (Simonsen et al., 2011). 
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Figure 1.2. Map of estimated prevalence of Loa loa in Africa. This map represents an 

estimate of the distribution of loiasis based on survey data (RAPLOA).  Darker areas represent 

areas of hyper endemicity, demonstrating that there are two zones of high endemicity (dark 

red). Areas with a prevalence of 40% were classified as high risk areas for Ivermectin 

treatment. Map taken from Zouré et al. (Zouré et al., 2011)
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Table 1.1. Filarial species with human host 

Disease & filarial 
nematode 

Burden Life cycle Pathology Treatment / 
Control 

References 

O
nc

ho
ce

rc
ia

si
s 

Onchocerca 
volvulus  
Africa, Latin 
America and Yemen 
95% of infected 
people live in 30 
African countries 

• Estimated 187 
million people at 
risk in 37 countries. 

• 37 million people 
infected. 

• 4 million suffer from 
severe itching or 
dermatitis 

• 265, 000 are blind 

Adult worms reside 
within subcutaneous 
nodules, and Mf 
migrate to the skin 
and eyes. 
Vector: Blackfly 
(Simulium spp) 

Onchocerciasis can cause 
severe skin itching 
(dermatitis) and 
onchocercomas (subcutaneous 
nodules), as well as ocular 
lesions that can progress to 
blindness. 
• Severely debilitating 

pathology 

• APOC in Africa 
• OEPA in the 

Americas 
Their main strategy 
is MDA with 
Ivermectin, were 
possible 

(World 
Health 
Organization, 
2016b) 
(Hotez, 
Kamath, 
2009) 
(Taylor et 
al., 2010) 

L
ym

ph
at

ic
 F

ila
ri

as
is

 

Wuchereria 
bancrofti  

Throughout the 
tropics & accounts 
for 90% of the LF 
cases in Africa 

• 1 billion at risk in 73 
countries 

• 67 million infected  
• 35 million suffering 

from severe 
pathology: 

• 25 million men with 
genital disease 

• 15 million 
elephantiasis of the 
leg 

Adult worms reside 
within the lymphatic 
vessels, and Mf 
migrate to the blood, 
in a periodical 
pattern to match 
vector feeding habit. 
Vector: Various 
mosquito species 

Lymphedema: an 
accumulation of lymphatic 
fluid generally in limbs.  
Hydrocele: fluid accumulation 
in the scrotal sac 

Annual MDA with 
combination of 
either albendazole 
and Ivermectin or 
DEC1 depending on 
co-endemicity 

(World 
Health 
Organization, 
2013) 
(World 
Health 
Organization, 
2016a) 
(Hotez, 
Kamath, 
2009) 
(Taylor et 
al., 2010) 

Brugia malayi  
Southeast Asia 

Brugia timori  
Southeast 
Indonesia 
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L
oi

as
is

 
• Loa Loa 
Present in 10 
counties in Africa: 
restricted to 
equatorial rain forest 
of Central and West 
Africa 

• 30 million people at 
risk 

• 13 million infected  

Adults live in 
subcutaneous tissues. 
Mf have diurnal 
periodicity (in the 
blood during the day, 
and non-circulating 
Mf reside in the 
lungs. 
 Vector: Deerfly 
(Chrysops spp) 

Adult worms pass through the 
sub-conjunctiva of the eye, 
migration of adult worm can 
cause oedema (Calabar 
swelling) and skin itching. 
 

DEC1 is given to 
patients with low 
Mf loads. In patients 
with high Mf 
densities DEC may 
produce severe 
adverse effect, 
therefore 
albendazole can be 
given. 

(Zouré et al., 
2011) 

M
an

so
ne

lla
 sp

ec
ie

s 

Mansonella ozzardi 
New world, humid, 
warm regions from 
Mexico till north 
Argentina 

• Not known L3 are transmitted 
during vector blood 
meal. Adults appear 
to live in the serous 
body cavities, 
females produce Mf, 
which migrate to the 
blood 
Vector: Biting 
midges (Culicoides 
spp) 

In rare cases can cause 
symptoms: headaches, fever, 
pulmonary symptoms, 
swelling of lymph nodes and 
liver, and skin itching. 

Single dose of 
Ivermectin, DEC1 
has no effect, 
doxycycline has no 
data on efficacy. 

(Basano et 
al., 2014) 

Mansonella perstans 
Humid warm 
regions in West and 
Central Africa, 
South and Central 
America 

• 580 million live in 
endemic areas* 

• 114 million possibly 
infected* 

In rare cases from tourist or 
expatriates in endemic areas, 
show signs of abdominal pain 
and some allergic reactions 
resembling L. loa ‘Calabar 
swellings’ 

If Wolbachia is 
present then treated 
with doxycycline, if 
no Wolbachia then 
treated with DEC1 

(Simonsen et 
al., 2011) 

Mansonella 
streptocerca 
Nigeria, Ghana, 
Cameroon, Congo  

• Not known Mostly asymptomatic, but can 
cause skin manifestations 
including itching, papular 
(nodules) and pigmentation 
changes 

A single round of 
Ivermectin can 
suppress Mf loads 

(Fischer et 
al., 1997) 

* These are most likely gross estimate since not many epidemiological studies have been carried out (Simonsen et al., 2011), similarly CDC treatment 

recommendations have very little published data to back them up; 1DEC, diethycabamazine  
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1.3 Human filarial nematode life cycles 

1.3.1 Onchocerciasis 

Onchocerciasis is transmitted by an infected bite of a blackfly vector (Simulium spp) 

(Blacklock, 2016), which can be found around fast-flowing and well-oxygenated 

streams and rivers. Blackflies transmit the infective third-stage larvae (L3) onto the 

skin of the human host when taking a blood meal. The L3 then enter the vertebrate host 

through the bite wound, and once inside the host the L3 reside within the subcutaneous 

tissue, where they mature into fourth-stage larvae (L4) and then into adults. Adult 

females reside in subcutaneous nodules called onchocercomas, whereas adult males 

migrate through the subcutaneous tissues between nodules fertilising different females. 

Within the nodules male and females mate, and subsequently female worms will 

release microfilariae (Mf). Mf migrate throughout the body via the subcutaneous 

tissues, and the lymphatic vessels of connective tissue  (Murdoch, Murdoch, 2016), 

with most the disease symptoms associated with onchocerciasis, induced by the death 

of Mf passing through the skin or eyes (Taylor et al., 2010). A blackfly will take a 

blood meal from an infected vertebrate host and ingest Mf from the dermis. 

Within the blackflies, the Mf penetrate the midgut and migrate through haemocoel 

(circulatory system in arthropods) to the thoracic muscles, were they moult first into 

the first-stage larvae (L1), then the second-stage larvae (L2) and finally into L3. The 

L3 migrate to the blackflies head and finally emerge in the proboscis, from where they 

may be transmitted to the vertebrate host during a blood meal (Figure 1.3).  
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Figure 1.3. Onchocerca volvulus life cycle. 1) During a blood meal, an infected blackly 

(Simulium spp) will introduce the infected third stage larvae (L3) to the skin of the human host, 

and these will enter the host via the bite wound, as blackflies take a blood meal by cutting into 

the skin and feeding on the blood pool that forms. 2) Once in the subcutaneous these L3, will 

molt fourth stage larvae (L4) and then again into adult worms. 3) The adults reside in nodules 

within the subcutaneous connective tissue, for up to 15 years. 4) In these nodules, the females 

and males mate, and females produce thousands of microfilariae (Mf), these are the 

transmission stages of the parasite. Mf can live up to 2 years, and migrate through the skin and 

lymphatics of connective tissues, and in some occasion travel to the eyes. 5) Blackflies will 

ingest Mf during a blood meal. 6) Within the blackflies, the Mf migrate to midgut, 7) where 

they will molt into the first larval stage (L1), following with the second larval stage (L2), 8) 

and then into L3 infective stage. 9) The L3 migrate to the blackflies mouth parts, 10) and 

during the subsequent blood meal will infect another human host. Diagram taken from CDC 

website: https://www.cdc.gov/dpdx/onchocerciasis/index.html   
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1.3.2 Lymphatic filariasis  

Transmission of lymphatic filariasis whether W. bancrofti, B. malayi or B. timori, 

begins with the inoculation of infective larvae (L3) into the skin of the human host 

during a mosquito bite. The L3 larvae enter through the puncture wound and migrate 

through the lymphatics towards the lymph nodes. The parasites reside within the 

lymphatics and lymph nodes, where they mature and molt first into the fourth larval 

stage (L4) and then adult worms. Adult worms mate, and females release live Mf. Mf 

periodicity in the blood, coincides with the time of feeding of their vector, as a wide 

range mosquito species act as vectors of lymphatic filariasis (e.g. Anopheles gambiae, 

Culex quinquefasciatus and Aedes polynesiensis). Once ingested by the respective 

vector, the Mf mature to form L2 and then L3, ready to infect another host (Figure 

1.4).  
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Figure 1.4. Wuchereria bancrofti life cycle. W. bancrofti, B. malayi and B. timori have very 

similar life cycles. They are all transmitted by mosquitoes, with different mosquito species 

depending of the geographical distribution. 1) During a blood meal, an infected mosquito 

transmits the infected third-stages larvae (L3) onto the skin of a human host, these will then 

penetrate the bite wound. 2) The L3 migrate through the subcutaneous tissue to the lymphatic 

vessels, were they develop into fourth-stage larvae (L4) and then into adults. 3) Adults mate, 

and females produce microfilariae. These Mf are sheathed and have a nocturnal periodicity, 

meaning that Mf migrate between the lymph and blood, and are found in the blood at night. 4) 

When Mf are in the blood, a mosquito will ingest them after a blood meal. 5) After ingestion, 

the Mf lose their sheaths and migrate to the thoracic muscles. 6) Mf then develop into first-

stage larvae, second-stage larvae, 7) and finally into L3. 8) The L3 migrate to the mosquitoes 

proboscis, 9) and infect another human host in the subsequent blood meal. Diagram taken from 

CDC website: https://www.cdc.gov/dpdx/lymphaticfilariasis/index.html.  
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1.3.3 Loiasis 

Loa loa is transmitted by a tabanid fly (Chrysops spp). During a blood meal, L3 escape 

from the proboscis of the fly and are deposited on the surface of the skin. The L3, then 

enter the skin via the bite wound, and within the subcutaneous tissue, the L3 moult to 

L4, and then to adults. The adult worms live between the layers of loose connective 

tissue under the skin, where they mate, and female worms release Mf. The Mf have a 

diurnal periodicity to coincide with their vectors feeding habit, during the day they are 

found in the peripheral blood and at night they are found in the lungs. During a 

subsequent blood meal, the tabanid flies will ingest the Mf. In the fly the Mf will 

mature into L3, ready to infect a new host following a subsequent blood meal (Figure 

1.5) (Boussinesq, 2013). 

Although, O. volvulus and L. loa are transmitted by different vectors, their modes of 

transmission and life cycles share similarities. In both cases, L3 are deposited onto the 

skin and migrate into the bite wound, once in the human host, they mature and develop 

into adults within the subcutaneous tissue. In both nematodes, adults mate, and females 

produce thousands of Mf. However, O. volvulus produce unsheathed Mf that can be 

found in the skin at any time of the day, as they do not exhibit any form of periodicity, 

whereas in L. loa, the Mf are sheathed and found in the peripheral blood during the 

day and in the lungs at night.  
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Figure 1.5. Loa loa life cycle. 1) Loa loa is transmitted by a tabanid fly (Chrysops spp), during 

a blood meal, third-stages larvae (L3) escape the proboscis of the flies and are deposited onto 

the skin of a human host, these will then penetrate the bite wound. 2) The L3 develop into 

fourth-stage larvae (L4), by day 9 post-infection and then into adults by day 19 post infection. 

The adults reside in the subcutaneous tissue for up to 17 years. 3) Adults mate, and females 

produce microfilariae. These Mf are sheathed and pass into the host lymphatic system before 

accumulating the lungs. From this reservoir, the Mf migrate to the peripheral blood during the 

day, to coincide with the tabanid fly feeding habit. In some cases, Mf can be found in urine, 

saliva and spinal fluid. 4) When Mf are in the blood, the tabanid fly will ingest them. 5) After 

ingestion, the Mf lose their sheaths and migrate to the thoracic muscles. 6) Mf then develop 

into first-stage larvae, second-stage larvae, 7) and finally into L3. 8) The L3 migrate to the 

fly’s proboscis, 9) and infect another human host in the subsequent blood meal. Diagram taken 

from CDC website: https://www.cdc.gov/parasites/loiasis/biology.html.   
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1.4 Wolbachia  
Wolbachia is an endosymbiotic bacterium living in many species of insects (52% of 

terrestrial arthropods) and some nematodes. It is restricted to living within the host 

cells and in nematodes it is transovarially transmitted (from females to progeny) 

(Makepeace, Gill, 2016). Wolbachia has gained attention in the recent years, because 

they cause reproductive alterations in insect, which can be manipulated for vector 

control purposes, and because they are present in nematodes, and can therefore be 

targeted for treatment (antibiotics). Wolbachia pipientis is the only formally 

recognised species within the genus, however W. pipientis has been divided into 

different strains, termed “supergroups” (Makepeace, Gill, 2016). 

Most filarial species that infect humans co-exist with Wolbachia within their tissue, 

such as B. malayi, B. timori, O. volvulus, O. ochengi and W. bancrofti, but not L. loa 

(Slatko et al., 2014). In O. volvulus, Wolbachia is found in the adult worms body wall, 

oocytes, all embryonic stages and in the Mf (Hoerauf et al., 2000). This bacterium is 

not only essential for growth and development of the nematodes, but also plays a key 

role in the fecundity of the adult female worms, and triggers inflammatory responses 

within the host. Depletion of Wolbachia by antibiotics can not only block 

embryogenesis but also kill adult worms, providing a new route for therapeutic 

strategies for filariasis control (Slatko et al., 2014). 
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1.5 Diagnostic tools 

For onchocerciasis 

Detection of onchocerciasis mostly still relies on identification of Mf in skin snips 

(small biopsies that are restricted to the upper dermis). Other diagnostic methods 

include the use of diethylcarbamazine (DEC) patch test, in which itchy patches appear 

where topical DEC kills Mf, these are however invasive methods with low sensitivity 

(Eberhard et al., 2017). 

An immunodiagnostic test based on the detection of human IgG4 antibodies to the O. 

volvulus specific antigen Ov-16 also exist, and is one of the recommended tools for 

determining whether transmission has been interrupted (WHO guidelines, (WHO, 

2016). However, the diagnostic accuracy of Ov-16 antibody test has mostly been 

assessed in populations with high onchocerciasis prevalence, and therefore might not 

be as sensitive in low-prevalence areas, such as at the end-stage of control programmes 

or in hypo-endemic areas (Lipner et al., 2006).  

More sensitive and less invasive alternative diagnostics are desperately needed, to 

determine when to stop control interventions, in particular in areas which have become 

hypo-endemic following MDA (Vlaminck et al., 2015; Golden et al., 2016; Eberhard 

et al., 2017).  

For lymphatic filariasis  

For lymphatic filariasis, traditional diagnostic methods involve the examination of 

blood slides for Mf, collected at night, due to the periodicity of lymphatic filariasis. 

Compared to onchocerciasis, in the recent years rapid diagnostics have been developed 
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for lymphatic filariasis, these include a W. bancrofti antigen-based test and a Brugia 

spp antibody tests, which have been tremendously useful for national mapping surveys 

of lymphatic filariasis (Cano et al., 2014). 

For loiasis 

L. loa is distinguished by the examination of blood, for the presence of Mf. 

Determining the number of circulating Mf is important for the successful 

implementations of control programmes for onchocerciasis. MDA programmes have 

been limited in areas with O. volvulus and L. loa co-endemicity, because of risk of 

developing severe adverse events (SEA) following treatment with Ivermectin (used for 

onchocerciasis control) in individuals harbouring high levels of L. loa Mf in the blood 

(<30, 000 Mf/ml) (Twum-Danso, 2003; Boussinesq et al., 2003; Boussinesq, 2013). A 

majority of the population infected with L. loa have Mf levels below the threshold 

(Pion et al., 2006). Therefore, a simple and fast diagnostic methods capable of 

identifying individuals at risk of SEA is needed, so that these individuals with high Mf 

counts can be excluded from Ivermectin treatment, as this would aid in increasing 

MDA coverage for onchocerciasis. 

Mf burdens in the blood of L. loa infected individuals, are detected by counting Mf 

numbers in blood smears under a microscope, however this is time consuming and not 

useful in large scale MDA programmes, where fast diagnostic tools are preferred. 

Alternative diagnostic methods are under development, including:  
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• The use of loop-mediated isothermal amplification (LAMP), which is a nucleic 

acid-based method that can detect individuals with high Mf loads, but requires 

training (Drame et al., 2014);  

• A cell counter chamber, which works by allowing blood to pass through but not 

Mf, making them easy to quantify (Bennuru et al., 2014);  

• A cell phone microscope, which uses a software that can determine Mf numbers 

(D'Ambrosio et al., 2015). 

These diagnostic tools under development all provide a rapid method of identifying 

individuals with high Mf loads, to exclude them from Ivermectin treatment, however 

these all require blood samples. A less invasive diagnostic tool is under development, 

with the possibilities to quantifying Mf loads, using an antigen detection assay in urine 

samples (Drame et al., 2016).   
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1.6 Treatments available 
Current treatments for filarial infections involve the use of diethylcarbamazine (DEC), 

Ivermectin, albendazole and doxycycline. For lymphatic filariasis, control 

programmes rely on the use of DEC, albendazole or Ivermectin depending on whether 

the treatment area is co-endemic for onchocerciasis, whereas onchocerciasis primarily 

relies of the use of Ivermectin, but doxycycline could be used in areas co-endemic with 

L. loa (Wanji et al., 2009). 

DEC is the mainstay drug for the global programme to eliminate lymphatic filariasis 

(GELF) in areas not co-endemic for onchocerciasis (i.e. all Asian and Pacific regions; 

and some African and South American countries). A single dose of DEC is effective 

in reducing acute and chronic microfilaremia, although a single does not clear all Mf 

nor kill all adults, a regimen for 12 consecutive days will lead to absence of Mf in the 

blood (Gyapong et al., 2005). Some adverse reaction can occur, due to the rapid killing 

of adult worms and Mf caused by the release of Wolbachia. 

Albendazole, is an anthelmintic effective against a broad spectrum of nematodes and 

flatworms (i.e. Cestodes). The combination of albendazole with DEC or Ivermectin in 

lymphatic filariasis infected individuals, reduced Mf loads in the peripheries for a 

longer period, compared to a single treatment, however the combination of Ivermectin 

and albendazole has no effect in onchocerciasis patients (Awadzi et al., 2013).  

DEC was recognised early on to induce severe adverse reaction in individuals infected 

with O. volvulus (Greene et al., 1985; Lariviere et al., 1985), with adverse events 

correlating with Mf densities in the skin and with the presence of Mf in the eye (Francis 
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et al., 1985). However, it continued to be the drug of choice for onchocerciasis, because 

better alternatives are not available.  

In the 1980, a single dose of Ivermectin was found to be more effective than DEC at 

clearing O. volvulus Mf, and therefore became the drug of choice for onchocerciasis 

(Albiez et al., 1988). Ivermectin can be given to both onchocerciasis and lymphatic 

filariasis infected individuals. Ivermectin is a microfilaricidal (kills Mf), it is effective 

at killing the Mf stage, but not the adults, although repeated treatment has been 

suggested to render adult females infertile. However, it cannot be given to children 

<15kg; to pregnant woman; nor in areas co-endemic with L. loa due to sever adverse 

reactions of Mf dying (Basáñez et al., 2008; Chesnais et al., 2017).  

Since lymphatic filariasis and onchocerciasis nematodes carry the Wolbachia 

bacterium, doxycycline and other antibiotics can be used as treatments (Gilbert et al., 

2005; Hoerauf, 2008; Wanji et al., 2009). In lymphatic filariasis, patients treated with 

doxycycline resulted in long-term sterility and eventual death of adult worm, and 

further decreased pathology. In onchocerciasis, treatment with doxycycline resulted in 

sterilisation of adult females and an absence of Mf in the skin (Abegunde et al., 2016). 

Doxycycline is the first drug to show macrofilaricidal (kills adult stages) activity in 

onchocerciasis, with no severe adverse events, but it is a long treatment (6 week), and 

cannot be given to children under 9 years old nor pregnant woman. Therefore, 

doxycycline is a good treatment strategy on an individual basis, but not practical for 

mass drug administration campaigns (Slatko et al., 2014), unless greater investment is 

made to train community workers to ensure compliance with treatment regime (Wanji 

et al., 2009). 
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1.7 Control programmes for onchocerciasis and 
lymphatic filariasis  

1.7.1 Lymphatic filariasis control 

Most control programmes for filarial diseases, rely on mass drug administration 

(MDA). For lymphatic filariasis, the global programme to eliminate lymphatic 

filariasis (GPELF) was launched in 2000, with the aim to eliminated lymphatic 

filariasis by 2020. GPELF strategy is to interrupt transmission of infection using MDA 

of DEC or Ivermectin combined with albendazole, as well as managing morbidity and 

preventing disability (Ottesen et al., 2008; Ramaiah, Ottesen, 2014). In 2014, 73 

countries were classified as being endemic for lymphatic filariasis, with an estimated 

71% MDA coverage by August 2015, and since the creation of GPELF, 18 of these 

countries have now entered post-MDA surveillance, due to infection having being 

reduced to below target threshold, following high coverage of five or more rounds of 

MDA (World Health Organization, 2015). Lymphatic filariasis is arguably easier to 

control and perhaps eliminate compared to onchocerciasis, principally because 59% of 

the lymphatic filariasis burden is found in 9 Asian countries, where MDA coverage is 

high (66%) (SEARO, 2010; World Health Organization, 2015). Moreover, in Asia 

there is no co-endemicity with onchocerciasis, meaning that MDA can rely on the use 

of DEC alone or in combination with albendazole, this treatment regime has proven 

the most effective and so far, has averted 175 million DALY’s, and possibly the key 

factor that makes lymphatic filariasis control more successful compared to 

onchocerciasis (Turner et al., 2016). Treatment coverage, sustainability, and 

compliance are key to the success to control programme, however these are 
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particularly challenging in poor resource settings of sub-Saharan Africa. Mathematical 

modelling suggest that lymphatic filariasis transmission could be interrupted using 

MDA alone, but over a longer period of time then the 4-6 years that were initially 

suggested, due to some lack of compliance in certain areas (Stolk et al., 2015a). 

1.7.2 Onchocerciasis control 

For onchocerciasis, the story is more complicated, with 95% of the global burden in 

Africa, where compliance and sustained MDA coverage is notoriously low due to: 

•  civil strife and conflict;  

• insufficient health infrastructure and resources;  

• low political commitment and insufficient funds to sustain national programmes 

for years;  

• growing public fear of using Ivermectin due to the risk of developing severe 

adverse reaction, in L. loa infected patients (Gardon et al., 1997; Boussinesq et 

al., 2003; Wanji et al., 2015b).  

These factors have prevented long-term and sustained programmes throughout much 

of Africa (Cheke, 2017).  

The first large scale control of onchocerciasis started in 1974, with the creation of 

Onchocerciasis Control Programme (OCP) in West Africa, which employed vector 

control through aerial spraying of organophosphate larvicide to target Simulium spp 

breeding sites. In 1986 Merck & Co donated Ivermectin, a veterinary anthelminthic 
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effective against O. volvulus microfilariae, which greatly contributed to the OCP’s 

activities (Cupp et al., 2011). This initial wave of control proved successful, with tens 

of millions of cases of onchocerciasis prevented, according to the WHO.  

With the end of OCP approaching (2002), a second major initiative emerged the 

African Programme for Onchocerciasis Control (APOC), which started in 1995 

focusing on community-directed mass drug administration (MDA) of Ivermectin in 19 

countries throughout Africa. Between 1995 and 2010, APOC prevented more than 8.2 

million disability-adjusted life years (DALYs) (Coffeng et al., 2013).  

In parallel, the Onchocerciasis Elimination Program for the Americas tackled 

onchocerciasis with Ivermectin treatment twice a year, with consistently high rates of 

coverage which has led to the interruption of transmission or elimination in 11 of 13 

foci (in Latin America). By 2015, 60% of the population needing Ivermectin received 

treatment, which was slightly lower than the minimum therapeutic target of 65% 

(World Health Organization, 2016b). 

Although onchocerciasis control has shown much less success in Africa compared to 

the Americas, due to the differences in size of endemic foci, vector competence, 

duration and consistency of treatment coverage (Cupp et al., 2011; Cheke, 2017). 

There has been some success in Africa, with interruption of seasonal transmission in 

three hyper-endemic foci in Mali and Senegal, where only a few infections remained 

in the human population, after 15 to 17 years of annual or bi-annual Ivermectin 

treatment (Diawara et al., 2009). In follow up studies (22 months after last treatment), 

skin snips revealed that if adult worms were present in individuals they were no longer 
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producing Mf. Furthermore, in two foci in Nigeria, which had meso-endemic pre-

control endemicity, elimination was also achieved following by 15-17 years of annual 

Ivermectin treatment (Tekle et al., 2012). Although this provides evidence of 

elimination could work in certain foci, it does not imply that elimination is feasible in 

the other onchocerciasis endemic areas in Africa.  

The pre-control endemicity level is an important factor that influences the likelihood 

of interruption transmission and eliminating of onchocerciasis (Basáñez et al., 2016). 

Although in Mali and Senegal pre-endemicity was classified as hyper-endemic (22-48 

mf/mg skin), there are many foci in Africa with significantly higher endemicity levels. 

Furthermore, in the foci in Mali and Senegal there was seasonal transmission, which 

allows for treatment strategies to be optimised, i.e. distributing Ivermectin before the 

rainy season. In the Nigerian foci, not only was the initial endemicity relatively low 

but there was also high Ivermectin treatment coverage (<75%), all contributing factors 

to elimination.  

The studies in Mali, Senegal and Nigeria provided some evidence that it could be 

possible stop transmission and ensure onchocerciasis elimination after 15-17 years of 

annual treatment, under certain conditions. However, studies in Ghana (Lamberton et 

al., 2015), Cameroon (Wanji et al., 2015a; Kamga et al., 2016), and north-western 

Uganda (Katabarwa et al., 2013), show that despite 15 years of MDA with Ivermectin 

and in some cases vector control, the burden of onchocerciasis might have been 

reduced but transmission is still ongoing.  
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Several mathematical models have been created to determine the minimum duration 

of Ivermectin mass treatment and the number of treatment rounds required to reach a 

defined threshold of Mf prevalence (<1.4%) below which treatment can be stopped 

(Coffeng et al., 2014; Turner et al., 2014a; Basáñez et al., 2016). Several simulations 

have been conducted under a variety of scenarios, such as using different:  

• Pre-control endemicity levels – With higher endemicity levels having longer 

programme durations (Coffeng et al., 2014; Turner et al., 2014a). 

• Treatment frequency – Switching to biannual treatment would reduce the 

duration of the programmes (30-40% reductions) but high compliance would 

need to be maintained (Coffeng et al., 2014), which is not always feasible twice 

a year especially in hard to reach communities (Turner et al., 2014b). 

• Treatment coverage – Typically 15% of the population are non-eligible for 

Ivermectin treatment, because of their age (under5 5 years old), weight (<5 Kg), 

pregnancy or illness (Basáñez et al., 2016). The effect of three coverage levels, 

40% (poor), 60% (moderate) and 80% (high), were investigated, and maintaining 

a high level of coverage is necessary to reach elimination within a reasonable 

time (15 years). 

There are however scenarios were elimination may not be feasible within 15-18 years, 

even under biannual Ivermectin MDA with high coverage (Coffeng et al., 2014; Stolk 

et al., 2015a), particularly in areas with intense transmission, most often due to high 

blackly biting rates. 
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Furthermore, there is now emergence of possible resistance to Ivermectin in foci in 

Cameroon (Pion et al., 2013) and Ghana (Osei-Atweneboana et al., 2011), with adult 

females from areas having received multiple Ivermectin treatments, recovering Mf 

production earlier, compared to female worms from areas having received only one 

dose of Ivermectin.  

Furthermore, MDA with Ivermectin also cannot be given in areas co-endemic with 

loiasis, due to the risk of sever adverse reaction associated with L. loa death (Chesnais 

et al., 2017). If Ivermectin treatment were to be implemented in loiasis co-endemic 

areas, each individual person would need to be tested for the prevalence of L. loa 

infection, as individuals with high Mf burdens would need to be excluded to avoid the 

risk of adverse reactions. Even by excluding individuals at risk, additional measures 

would need to be put in place in case individuals with low Mf burdens developed 

adverse reaction, and this would raise the cost of Ivermectin MDA campaigns (Turner 

et al., 2015). The alternative treatment doxycycline, cannot be given to children under 

9, and is also a long treatment, that needs more trained community workers, also 

increasing the cost of campaigns. Therefore, this leaves a reservoir of onchocerciasis 

infections which gives the opportunity for reintroduction of onchocerciasis in 

neighbouring areas with ongoing MDA treatment or in areas where MDA has been 

stopped due successful in elimination.  

Now that the London Declaration on Neglected Tropical Disease and the WHO have 

set goals for  onchocerciasis elimination by 2020 in selected African countries (World 

Health Organization, 2012; Uniting to Combat NTDs, 2012), a novel health 

intervention such as an alternative treatment (macrofilaricide) and/or a vaccine 
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administrable to children and individuals co-infected with L. loa, is needed. 

Mathematical modelling has suggested that a vaccine complimentary to MDA efforts, 

would not only reduce onchocerciasis burden in the populations that cannot receive 

Ivermectin, but also decrease the chance of re-emergence in areas where Ivermectin 

MDA has been successful and treatment has stopped (Turner et al., 2015).  

Table 1.2. Comparison of onchocerciasis and lymphatic filariasis control. 

 Onchocerciasis Lymphatic filariasis 

Treatments 
used in control 
programmes 

Annual or biannual treatment 
with: 
• Ivermectin (in areas not co-

endemic with L. loa) 
(Doxycycline can be used in 
areas co-endemic with loiasis, 
but it is a long treatment so not 
used in control programmes) 

Annual MDA: 
• DEC & albendazole 
• Ivermectin & albendazole (in 

areas co-endemic with 
onchocerciasis) 

• Albendazole alone (in areas co-
endemic with loiasis) 

Majority of 
disease burden 

95% in 30 African countries 58% in 9 Asian countries 

Success • 4 countries in Latin America 
were acknowledged by WHO 
as achieving onchocerciasis 
elimination: Colombia (2013), 
Ecuador (2014), Mexico (2015) 
and Guatemala (2016)  

• 10 countries in Latin America 
have interrupted transmission 

• 6 countries were acknowledged 
by WHO as achieving lymphatic 
filariasis elimination: Colombia 
(2013), Ecuador (2014), Mexico 
(2015) and Guatemala (2016)  

• 13 countries in Asia, Latin 
America and Caribbean do not 
require preventative 
chemotherapy anymore and are 
under surveillance to demonstrate 
elimination has been achieved 

Population left 
untreated in 
control 
programmes 

• Children under 5 years old  
• Pregnant women 
• Individuals with high density L. 

loa infections 

• Children under 2 years old  
• Pregnant women 

 

Recommended 
period of 
annual MDA 

15-17 years, although due to low 
coverages more than 30 years 
would be needed. 

In many case’s annual MDA for 5-6 
years is enough to interrupt 
transmission. 
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1.7.3 Using Onchocerca volvulus vaccines in Loa loa co-

endemic regions 

Severe side effects following Ivermectin treatment for onchocerciasis in areas co-

endemic with loiasis, has side tract the work of APOC. Although other onchocerciasis 

treatment exist that could be used in this region, they have limitations that make them 

impractical to use in MDA campaigns. Vaccine against onchocerciasis provides a good 

alternative or complementary control strategy, and with modelling it was shown that 

using a vaccine in onchocerciasis and loiasis co-endemic areas, would have a 

beneficial impact for onchocerciasis control, especially reducing Mf burden in under 

20 year olds (Turner et al., 2015).  

Although there is a lot of cross-reactivity between O. volvulus and L. loa, there is 52-

72% similarity in amino acid, between the potential vaccine candidates (Ov-Ral-2, Ov-

103) identified for O. volvulus in the L. loa counterparts, and was suggested that it was 

unlikely that there would be enough cross-efficacy to cause adverse effects in L. loa 

infected individuals (Turner et al., 2015). However, this issue has yet to be tested in 

animal models, more so because of the lack of suitable animal to study L. loa 

infections. Through the use to knockout mice it is now possible to look at effects of L. 

loa in murine models (Tendongfor et al., 2012), and therefore measure cross-efficacy 

of vaccine candidates. 
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1.8 Animal models used to study immune responses 
to filarial parasites 

A major constraint in vaccine development, is the need of an animal model, not only 

to understand the immune response to onchocerciasis, but there also needs to be a way 

to evaluate vaccine candidates. Since it is difficult and unethical to test in humans, 

research turns to animal models, however a major obstacle is that O. volvulus only 

infects humans and in some cases primates. Experimental infections have been 

attempted in several animals with only chimpanzees (Pan troglodytes) and mangabey 

monkeys (Cercocebus atys) developing a successful infection, both of which are 

impractical and unethical to screen vaccine candidates (Eberhard et al., 1991; Abraham 

et al., 2002).  

One approach to overcome this problem was the development of the diffusion chamber 

model, which allows immunity against early larval stages (L3) of O. volvulus or B. 

malayi in mice to be investigated  (Lange et al., 1993). In this model live L3 are 

implanted subcutaneously in diffusions chambers, which can be recovered after a 

period of time, to analyse the parasites survival and microenvironment (cytokines, cells 

recruited) (Abraham et al., 2004). The advantage of this system is that immune 

responses to human parasites can be investigated. However, the disadvantages are that 

only the early stages of infections (larval stages) can be investigated, and the insertion 

of the chamber (14mm in diameter) itself does cause inflammatory responses, biasing 

subsequent immune responses. 

Alternatively, other filarial species may be used, such as B. malayi which is permissive 

in jirds (a type of gerbil), cats, ferrets, different gerbil species and Mastomys coucha 
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(African mouse). The advantage of these systems is that vaccine efficacy against a 

human filarial nematode can be tested in a fully permissive host, but immunological 

readouts are difficult to measure due to the lack of reagents available for the animals 

(Morris et al., 2013).  

A close relative to O. volvulus is Onchocerca ochengi, which naturally infects cattle. 

These two Onchocerca spp share many similarities, such as transmitted by the same 

group of insect vector (Simulium damnosum complex); they both form collagenous 

nodules with similar histological structure, although O. ochengi forms intradermal 

nodules, whereas O. volvulus are subcutaneous nodules (Makepeace, Tanya, 2016); in 

both human and in cattle there are individuals that are naturally protected from 

infection (EN) (Tchakouté et al., 2006). O. volvulus and O. ochengi are sympatric 

species (evolved from a single ancestral species, in the same geographic region) 

(Morales-Hojas et al., 2006), with cross-reactive immunity between cattle and human 

species (Renz et al., 1994). Therefore, O. ochengi model is useful for investigating 

vaccines efficacy against onchocerciasis under conditions of natural exposure, 

however cattle are impractical and too expensive for screening large numbers of 

vaccine candidates. 

The most attractive alternative for screening vaccine candidates is the use of 

Litomosoides sigmodontis which is the only filarial species in which the full 

development cycle can take place in BALB/c mice (Petit et al., 1992), with extensive 

immunological cross-reactivity with Onchocerca spp (Manchang et al., 2014), 

allowing important immunological as well as parasitological readouts to be measured 

during any vaccination trial. The murine L. sigmodontis model of filarial infection, has 
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helped elucidate many of the immunological mechanisms that determine susceptibility 

or resistant to filarial parasites. 

Table 1.3. Filarial animal models used to evaluate vaccine candidates 

Animal model Advantages Disadvantages 

O. volvulus or B. 
malayi in diffusion 
chamber in mice 
(Used to look at 
early larval stages 
(L3/L4)) 

Effect of vaccine can be 
determined directly on human 
parasite, and since chambers 
are in mice reagents exist to 
measure immunological 
readouts. 

Not a permissive model, so 
vaccine effect can only be 
examined on larval stages of 
parasite. Further chamber itself 
may cause inflammatory 
responses, which may influence 
the development of specific 
filarial responses. 

B. malayi in gerbils 
(Permissive model) 

Effect of vaccine can be 
determined directly on human 
parasite, and on all stages of 
parasite life cycle 

Not many reagents exist for 
gerbils therefore it is difficult to 
measure immunological effects of 
vaccines 

L. sigmodontis in 
mice 
(Permissive model) 

Effect of vaccine can be 
determined on all stages of 
parasite life cycle, and since it 
is in mice reagents exist to 
measure immunological 
readouts. 

It is not a human filarial 
nematode 

O. ochengi in cattle 
(Permissive model) 

Can measure effect of vaccine 
efficacy with natural 
infections, closest relative to 
human onchocerciasis parasite 
and allows to study effect of 
vaccine on all life stages 

Can be logistically difficult to 
trial many vaccine candidates. 

1.8.1 L. sigmodontis model of infection 

In susceptible BALB/c mice, infective third-stage larvae (L3) are transmitted to the 

mouse during a blood meal by the mite, Ornitonyssus bacoti. Once in the subcutaneous 

tissue, L3 migrate to the lymphatics, reaching the pleural cavity around day 4 post 

infection. In the thoracic cavity, the L3 moult into fourth-stage larvae (L4) by day 10 

post infection, and subsequently develop into adults around day 26-28 post infection. 
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These adults mate, and females start producing Mf around day 55 post infection, which 

are detected in the peripheral blood, where they can be taken up by a mite during a 

blood meal. Within the mite, the Mf moult into L3 completing the life cycle (Figure 

1.6). Although BALB/c mice are classified as having susceptible infection, not all mice 

have detectable Mf found circulating in the blood stream (47% presenting patent 

microfilaremia) and the adults get cleared around day 90 post infection (Petit et al., 

1992). 

Whereas, in CBA/Ca and C57BL/6 mice L. sigmodontis worm mature, but patency is 

never reached. In CBA/Ca mice Mf are present in the uteri of female worms and 

sometimes in high densities but they are not found circulating in the blood (Table 1.4) 

(Petit et al., 1992). These differences in mouse strain susceptibility to L. sigmodontis 

infections, provides a great model to investigate the immunological and genetic 

determinants of susceptibility or resistant to infection. Furthermore, Hoffmann et al 

showed that independent to the mouse strain, survival of L. sigmodontis Mf is 

dependent on the presence of adult female worms (Hoffmann et al., 2001). 

The L. sigmodontis animal model remains arguable the best experimental system for 

developing anti-filarial vaccines, as it has similar patterns of infection including larval 

migration, with some immunological cross-reactivity with human filariasis (Brugia 

spp, W. bancrofti, L. loa and O. volvulus) (Allen et al., 2008). 
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Figure 1.6. Litomosoides sigmodontis life cycle. L. sigmodontis can complete a full life cycle 

in either BALB/c mice or gerbil host, using Ornitonyssus bacoti (mite) as the vector. (1) An 

infected mite takes a blood meal transferring third-stage larvae (L3) into the subcutaneous 

tissue of mice or gerbils (Day 0). (2) The L3 migrate to the lymphatics and arrive to the pleural 

cavity by day 4 post infection (Day 4 p.i.). (3) By day 7 these have moulted into fourth-stage 

larvae (L4), (4) and then develop into adults reaching sexual maturity by day 28 p.i. (5) 

Females release 1000 of microfilariae (Mf), which can be detected in peripheral blood by day 

55 p.i., ready to be (6) taken up by the vector during a blood meal. (7) In the vector the Mf 

develop into L1 and subsequently moult into L3 taking about 15 days. The L3 are then ready 

to infect a new host through a blood meal completing the life cycle. (Adapted from EPIAF 

website: http://www.filaria.eu/fil/bio/ls.html)  
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Table 1.4. Susceptibility to L. sigmodontis in different mice strain (Petit et al., 1992) 

Mouse 
Strain 

Susceptibility to L. sigmodontis infection 
Presence of Adults Patent infection 

BALB/c +              + (47%) 

B10.D2 - - 

CBA/J + - 

C3H/He + - 

C57BL/6    - * - 

DBA/1    - * - 

*(worms never reach full adult form) 

1.9 O. volvulus infections in humans  
Human studies show that type 2 immune responses are associated with protection, 

although in a small proportion of individuals it can also lead to severe pathology 

(Murdoch, Murdoch, 2016). However, filarial nematodes have developed mechanisms 

to avoid theses immune responses, by regulating the immune system. The exact 

mechanisms by which filarial nematodes are killed in vivo and how these parasites 

avoid these mechanisms are still being investigated. 

1.9.1 Pathology induced by O. volvulus 

Disease pathogenesis for onchocerciasis is linked to host inflammation invoked by the 

death of the parasite, especially the Mf stage. In onchocerciasis, much of the pathology 

is found in the skin due to inflammation induced by Mf dying, resulting in intense 

itching, starting with acute papular dermatitis (swelling, itching and inflammation), 

followed by chronic itching (pruritus), more papular dermatitis and scarring, which 

over time, affected skin may begin to loose elasticity and structure, with signs of 
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premature ageing, such as lichenification or hanging groin (Taylor et al., 2010). Patchy 

depigmentation of the legs can lead to a condition known as leopard skin and in 

extreme cases, there is severe papular dermatitis with hyperpigmentation (darkening 

of the skin), termed sowda (Taylor et al., 2010). In some cases, O. volvulus infections 

can cause ocular lesion, due to Mf migrating to the posterior and anterior regions of 

the eye and evoking an in inflammatory responses with their death, this leads to severe 

visual impairment, with sclerosing keratitis (inflammation of the cornea) and 

iridocyclitis (inflammation of the iris), and finally blindness (Hise et al., 2003; Brattig, 

2004; Taylor et al., 2010). In highly endemic regions, rates of skin disease increase 

with age until 20 years and then plateau, with the younger individuals exhibiting 

itching and chronic papular onchodermatitis, whereas the more severe form of 

depigmentation, visual impairment and blindness is more common in older individuals 

(<40 years) (Murdoch et al., 2002).  

1.9.2 Spectrum of immune responses to O. volvulus in 

humans  

The parasites complex life cycle leads to a complicated host immune response, which 

is thought to explain the spectrum of clinical manifestations of onchocerciasis. O. 

volvulus infected individuals who have not received treatment exhibit a spectrum of 

disease manifestations (Table 1.5), from generalized onchocerciasis (GEO) a 

hyporesponsive response to O. volvulus, to a hyperreactive response showing severe 

pathology (Figure 1.8). GEO individuals tend to have palpable nodules 

(onchocercomas, the subcutaneous nodules containing adult O. volvulus worms) under 

the skin but no strong pathology despite having high Mf density in the skin, whereas 
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hyperreactive individuals have severe pathology but lower Mf density in the skin 

(Hoerauf, Brattig, 2002). Around 1-5% percentage of the population are naturally 

protected, because despite living in endemic areas, they show no signs of infection, 

neither clinical pathology nor detectable parasites, these individuals are termed 

endemic normal (EN) (Hoerauf, Brattig, 2002; Brattig, 2004). 

1.9.2.1 Hyporesponsive response to O. volvulus - GEO 

GEO individuals make up most the infected population, they have chronic infection 

with little pathology and this is thought to be due to O. volvulus ability to modulate 

immune responses, a common strategy of filarial nematodes (Hoerauf et al., 2005). A 

study in rural Nigeria endemic for onchocerciasis, found that the population with low 

prevalence of visual impairments was associated with low CD4+ T cell counts (Nmorsi 

et al., 2007). A reduced antigen-specific T cells responses and T cell proliferation is 

common trait of onchocerciasis patients with heavy infections, as well as low 

production of interferon gamma (IFN-g), interleukin 13 (IL-13) and IL-5, which 

decreases with increasing Mf densities (Brattig et al., 2002), on the other hand these 

patients have elevated production IL-10 and TGF-β (Hoerauf et al., 2005; Korten et 

al., 2010). 

This immunosuppression in GEO individuals is associated with regulatory T cells, and 

several subsets have been identified in onchocerciasis infected patients (Figure 1.7). 

Analysis of onchocercomas obtained from GEO patients, confirmed the presence of 

Foxp3+ regulatory T cells (Treg) (Korten et al., 2008) and TGF-β+ T cells (Th3),  

(Korten et al., 2009). Furthermore, a third type of regulatory T cells were generated in 
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vitro from onchocercomas of GEO patients, these had typical characteristics of type 1 

regulatory T cells (Tr1), such as elevated IL-10 production, variable amounts of IL-5 

and IFN-g, but zero to low production of IL-4 and IL-2 (Doetze et al., 2000; Satoguina 

et al., 2002). These Tr1 cells have an upregulated expression of CTLA-4 following 

stimulation, which were able to suppress proliferation of other T-cell clones in co-

cultures (Satoguina et al., 2002). CTLA-4 is a known marker of down-regulation and 

these CTLA-4+CD4+IL-10 producing Tr1 cells have often been found in higher 

number in GEO individuals (Steel, Nutman, 2003; Katawa et al., 2015). The Tr1 and 

Th3 cells have been associated with isotype switching to IgG4 production by B cells, 

involving IL-10 and TGF-β (Satoguina et al., 2008). 

Elevated levels of IgG4 is a hallmark of GEO patients. IgG4 is an antibody subclass 

that does not fix complement but binds rather weakly to effector cell Fc receptors, and 

is therefore able to clear antigen without strong stimulation of effector cells. In 

onchocerciasis, it is a marker of patency as IgG4 levels correlate with peripheral Mf 

loads (Hoerauf et al., 2005). IgG4 may help Mf survival by binding to the Mf and 

preventing antibody-dependent cell-mediated cytotoxicity (ADCC).  
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Figure 1.7. Regulatory T cells identified in filarial infections. There are different regulatory 

T cell subsets found in filarial infections, these were found in both human infections and the 

L. sigmodontis mouse model. Two CD4+CD25+Foxp3+ Tregs subsets were identified, the 

Tregs derived from the thymus and are sometimes termed naturally Tregs and those induced 

in the periphery from naïve T cells are induced Tregs. In addition to the Foxp3 expressing 

Tregs, two other subsets of regulatory T exist which do not express Foxp3. These can be 

classified based on the regulatory cytokines they produce. Type 1 regulatory T cells (Tr1) 

express mainly IL-10, and Th3 regulatory T cells express TGF-b (Metenou, Nutman, 2013).  

1.9.2.2 Hyperreactive responses to O. volvulus - Sowda 

Hyperreactive form of onchocerciasis is characteristic of low parasite burden, but 

protective responses tend to lead to severe pathology sometimes referred to as the 

sowda form of onchocerciasis. These individuals exhibit a dominant Th17/Th2 

phenotype with: high levels of IgE; elevated levels of eosinophils and mast cells in 

nodules; increased activated CD4+ T helper; dense infiltrates with T cells and B cells 

and extensive fibrous nodules termed onchocercomas; but low parasite burden (Korten 

et al., 1998; Brattig, 2004). Comparing cytokine profiles of activated PBMCs 
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(peripheral blood mononuclear cell) from infected individuals showed that 

hyperreactive individuals had elevated levels of IL-13, IL-5 and IFN-g, but low IL10 

and/or TGF-β, and had cutaneous pathology associated with pronounce systemic Th2 

type responses to O. volvulus (Brattig et al., 2002; Hoerauf et al., 2005; Korten et al., 

2010). As well as elevated Th2 responses hyperreactive individuals have a pronounced 

Th17 phenotype, with greater number of CD4+IL-17A secreting T cells compared to 

GEO individuals but decreased regulatory T cells (CD4+ CD25hi Foxp3+) (Katawa et 

al., 2015). Environments which trigger IL-17/IL-17R signalling favour alloreactivity 

and autoreactive T cells by inhibiting regulatory T cells. This agrees with the reduced 

local expression of TGF-b, MHC-II and IgG4 detected around pathology and the 

reduced numbers of regulatory T cells (both Foxp3+ T cells and Tr1 cells) in patients 

exhibiting strong pathology (Korten et al., 2010; Katawa et al., 2015).  
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Figure 1.8. Model of balance between effector and suppressor mechanism, seen in GEO 

and hyperreactive individuals. Generalised onchocerciasis (GEO), has a dominant 

regulatory T cells immune responses, with increased numbers of regulatory T cells (Foxp3+, 

Th3 and Tr1 cells); increased levels of IL-10 and TGF-β cytokines; and higher levels of IgG4. 

Counterbalancing this, there is lower levels of IL-13, IL-5 and IL4. Whereas in hyperreactive 

there are strong Th2/Th17 responses, with increased eosinophil and mast cell numbers; 

increased IL-13, IL-5, IL-4 and IL-17 cytokines levels; and elevated levels of IgE, but with 

lower suppression mechanism seen with lower levels of IL-10 and TGF-β. (Diagram adapted 

from (Hoerauf, Brattig, 2002) and (Katawa et al., 2015)) 

Dermatitis and ocular keratitis immunopathology seen in onchocerciasis patients is 

associated with dying Mf in skin and eyes, respectively. Neutrophils are the major 

components of the early inflammatory infiltrate around damaged Mf in the cornea and 

skin, their recruitment and activation is dependent on the release of Wolbachia derived 

antigen from Mf present at those sites (Turner et al., 2009). A lipoprotein on the surface 

of Wolbachia has been identified as being the main trigger of neutrophil inflammatory 

responses via the activation of Toll-like receptor (TLR) -2/6, during ocular keratitis 

(Turner et al., 2009; Tamarozzi et al., 2014). Neutrophils are also present in nodules 
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surrounding adult worms, these are found attached to worms containing Wolbachia. 

Nodules derived from doxycycline treated patients where Wolbachia would have been 

depleted, neutrophils can still be found but in lower numbers (Tamarozzi et al., 2016). 

Neutrophils in nodules do not appear to be detrimental to living adults, and recently 

the formation of neutrophil extracellular traps (NETs) have been identified 

surrounding the worms. NETs exact role is still undetermined, it has been hypothesised 

to be the host protective mechanisms to any Wolbachia release from the worm’s uteri 

or in excretory / secretory products; from Wolbachia released from Mf; or as method 

of trapping Mf and consequently limiting the Mf being released each day. 

1.9.2.3 Protective immunity to O. volvulus – Endemic normal 

Evidence of protective immunity in onchocerciasis is derived principally from the 

existence of non-infected individuals living in endemic areas, known as endemic 

normal. When comparing GEO patients to EN individuals, the latter display stronger 

antigen-specific proliferation and a mixed Th1/Th2 response. Immune protected 

individuals living in Ecuador presented with increased IFN-g to O. volvulus antigen 

compared to Mf+ individuals, but lower levels of IL-5 and IL-10 (Elson et al., 2008). 

Similar results were found in individuals living in onchocerciasis hyperendemic areas 

in Cameroon. When comparing specific anti-larval and anti-adult cytokine levels, 

endemic normal had higher levels of GM-CSF (granulocyte-macrophage colony-

stimulating factor) and IL-5 compared to infected individuals, and high levels of IFN-

g which were not detected in infected individuals (Turaga et al., 2000). Overall EN 

individuals had stronger Th1 phenotype, with IFN-g producing T cells expressing T-

bet, with some IL-4 secreting CD4+ T cells but in lower frequencies compared to 
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infected individuals (Katawa et al., 2015). Suggesting that naturally resistant 

individuals are protected from O. volvulus by their ability to produce a mixed Th1/Th2 

type response, although little is known about how an individual is predisposed to be 

protected. 

1.9.2.4 Genetic determinants of susceptibility in humans 

Onchocerca volvulus like many nematode parasites, are capable of influencing the host 

immune response, through secretion of potent immunomodulators (proteins). The 

extent of any immunomodulation largely depends on the intensity of infection, but the 

host genetics may also play a role. Genetic studies have linked HLA-DQ expression 

with the level of immune response (cutaneous reactions) the host mounts to parasite 

antigens (Murdoch et al., 1997). Further, the promoter haplotype of IL-10 was found 

to influence in vitro PBMC proliferative response to O. volvulus antigen (Timmann et 

al., 2004). Hyperreactive patients were association with a polymorphism in the IL-13 

gene, which could lead to enhanced induction of the Th2 pathway. Studies, showed 

that the Th2 dominant sowda form of onchocerciasis was associated with the same 

mutation in the IL-13 gene (Arg110Gln) that is linked to allergic hyper-sensitivity 

(atopy, asthma). The presence of Arg110Gln variant of IL-13 is a significant risk factor 

for the development of sowda, although these individuals had higher IgE levels, these 

were found to be two independent factors. This IL-13 variant is thought lead to higher 

signalling via the IL-4Ra receptor (receptor for both IL-4 and IL-13) (Hoerauf et al., 

2002). 
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1.9.2.5 Immune responses in Ivermectin treated individuals 

Since the introduction of MDA with Ivermectin, another group of patience can be 

categorized, these are patients that have been treated with Ivermectin, and thus have 

adult worms and nodules present but no detectable dermal Mf (Mf -ve). These 

individuals have been referred to as amicrofilaremic or as having an occult infection 

(Lechner et al., 2012; Arndts et al., 2014). Ivermectin treatment triggers an immediate 

immune response, with elevated chemokine (eotaxin and MCP-4) profiles responsible 

for promoting the migration of effector cells such as eosinophils and macrophages into 

patient’s skin, prompting a purported cellular mediated Mf death. During the year 

following treatment there is a gradual rise in chemokines associated in neutrophil 

recruitment, suggesting that these are recruited to the adult worms, possibly due to the 

release of Wolbachia derived molecules, resulting in a reduction in numbers of  Mf 

released into the dermal tissue (Lechner et al., 2012). Following repeated Ivermectin 

treatment, there is a decrease in circulating and tissue eosinophils linked to a decrease 

in eotaxin; with a decrease in Th2 promoting cytokines (IL-5), and regulatory makers 

such as IL-10, since there is an expiring O. volvulus infection (Lechner et al., 2012; 

Arndts et al., 2014).   
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Table 1.5. Summary of spectrum of disease manifestation in individuals living in 

onchocerciasis endemic areas. 

Group Adult 
worms 

Mf 
densities Pathology Immune response 

Hyporesponsive: 
Generalised 
onchocerciasis  

Present High Low / no 
pathology 

Modulated immune 
response. 
High levels: IL-10, TGF-β, 
Tregs, AAMs and IgG4 
Low levels: IgE, IFN-g 

Hyperreactive: 
Sowda  

Present Low Severe 
pathology 

Strong Th2 and Th17 
response   
High levels: IgE and 
eosinophilia 

Naturally 
protected: 
Endemic normal  

None  
detected 

None  
detected 

No 
pathology 

Stronger Ag-specific 
response, and a mixed 
Th1/Th2 response. 
Balanced: IFN-g /IL-4 
Low levels: IL-10 & IgE, 

Ivermectin treated: 
Amicrofilaridermic  Present None No 

pathology 

High levels: neutrophils  
Low levels: eosinophilia, 
low IL-10 and IL-5. 
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1.10 Immune responses to filarial infections in animal 
models 

Animal models such as L. sigmodontis infection in mice are used to elucidate some of 

the complex interactions between the filarial nematode and its host.  

1.10.1 Protective immune responses to filarial infection in 

animal models 

It is accepted that the host immune response to filarial parasites in both animal models 

and humans is of the T helper 2 (Th2) type, which promotes parasite killing of the 

different life stages (Allen et al., 2008).  

Innate immune responses to L3 

Innate responses to infection have been associated with the rapid destruction of L3 

larvae within two days’ post-infection, with neutrophils recruited to the invading L3 

in the skin (Pionnier et al., 2016). Neutrophil recruitment following a primary infection 

was shown to be in response to Wolbachia, an endosymbiotic bacterium living within 

L. sigmodontis worms. Mice deficient for NOD2, an intracellular pattern recognition 

receptor (PRR) to gram-negative and -positive bacteria, had increased worm burden at 

the early stage of infection caused by impaired neutrophil recruitment (Ajendra et al., 

2016). Furthermore, using CXCR4 gain in function mutant, on C57BL/6 mice 

background who are naturally more resistant to L. sigmodontis infections, it was 

demonstrated that resistance to infection is associated with an elevated number of 

dermal neutrophils, and where L3 were able to promote an oxidative bursts response 

and there was the release of neutrophil extracellular traps (NET) (Pionnier et al., 2016). 
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This NET formation was also found in human filarial infection with O. volvulus around 

nodules containing adults worms (Tamarozzi et al., 2016).  

Although, in in vitro studies, eosinophils were found to adhere to the L3 and Mf of O. 

volvulus (Brattig et al., 1991), in in vivo studies eosinophils were not present in innate 

immune responses to invading L3. As mice lacking eosinophils due to a deficiency in 

IL-5 had no change in worm burdens compared to wild types (Volkmann et al., 2003). 

The chemokine, CCL17, has been shown to be involved in early immune responses, 

limiting parasite invasion in the host. Deficiencies in CCL17, induced a recruitment 

and degranulation of mast cells, which led to increased vascular permeability, 

facilitating L. sigmodontis larval migration through the lymphatics to the pleural 

cavity. This mechanism was dependent on the presence of Wolbachia in L3 and 

promoted by TLR2 signalling (Specht et al., 2011a). 

Immune responses in the pleural cavity (to L3, L4 and adults) 

To evade the innate immune responses, L3 migrate to lymphatics within hours of 

infection, through the heart and lung before reaching the pleural cavity (Babayan et 

al., 2003; Karadjian et al., 2017). In the pleural cavity of BALB/c mice, L3 can be 

detected as early as 2 hours post-infection, with 20% of the L3 reaching the pleural 

cavity between day 4-8 post-infection (Karadjian et al., 2017). Following arrival of L3 

within the pleural cavity, there is a recruitment of neutrophils to the pleural cavity via 

the CXCL1 chemokine, as well as eosinophils and macrophages (Karadjian et al., 

2017).  
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The L3 will moult into L4 around day 9-10 post-infection. Then depending on the 

mouse genetic backgrounds, L4 will develop into adults and then mature or will stay 

as immature adults. The differences in susceptibility to L. sigmodontis infections, can 

be detected by day 30 post infection between susceptible BALB/c mice and resistant 

C57BL/6 mice (Table 1.6), with less that 15% of the parasites at the L4 stage in 

BALB/c, compared 30% of the parasites in C56BL/6 (Petit et al., 1992; Babayan et 

al., 2003). This difference leads to BALB/c mice producing patent infections around 

day 55-60, while in C57BL/6 mice, worms are progressively encysted in granulomas 

and destroyed from day 40 post-infection. The lack in parasite maturation seen in 

C57BL/6 mice has been associated with a mixed Th1/Th2 immune response early on 

infection (day 10) compared to BALB/c mice who already have predominant Th2 

response. The exact mechanisms dictating C56BL/6 resistant are not completely 

understood, but increased cellular recruitment and elevated CXCL12 concentration in 

the pleural cavity have been implicated. Blockage of the CXCL12/CXCR4 axis caused 

a decrease in cellular recruitment to the pleural cavity and an increase in worm burden, 

suggesting that indeed CXCL12 is important in resistance (Bouchery et al., 2012a) 

Granuloma formation within the pleural cavity 

Different cell types are recruited to the pleural cavity in L. sigmodontis infection, and 

although the exact trigger or sequence of events that causes granuloma formation 

around the worms that leads to them eventually being cleared, are not fully known. 

What is known is that granuloma formation is an important part of the immune 

response to adult worms.  
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In L. sigmodontis time course studies, in both resistant and susceptible mice showed 

that granulomas were not present around larval stages, but were formed around the 

shed cuticle from these larval stages and consist mostly of eosinophils (Attout et al., 

2008).  

In BALB/c mice, granulomas are found around ageing adult worms consisted mostly 

of neutrophils, as neutralizing IL-5 or G-CSF (chemokine for neutrophils) led to failure 

of neutrophil recruitment to the pleural cavity and hence the survival of adult worms 

for a longer period of time (Al-Qaoud et al., 2000; Volkmann et al., 2003). Similar 

results can be seen in IFNg deficient mice, which showed that neutrophils were 

essential for granuloma formation (Saeftel et al., 2001). Corroborating what is seen in 

O. volvulus infections where neutrophils form the inner layer around live adult worms 

(Tamarozzi et al., 2016), and high levels of IL-5 are found in hyperreactive form of 

onchocerciasis (Brattig et al., 2002; Korten et al., 2010).  

In resistant CBA/Ca and C57BL/6 mice, granulomas formed around the young adults 

and consisted mostly of eosinophils, that would degranulate in the presence of the host 

antibodies (Martin et al., 2000b; Attout et al., 2008).  

Granulomas formed in different mouse strains contain different proportion of 

neutrophils, the percentage of neutrophils was greater in granulomas around worms in 

susceptible BALB/c mice compared to resistant C57BL/6, 47% and 17.8% 

respectively. The difference in percentage of neutrophils could be due to Mf release, 

as adult worms in BALB/c mice will release Mf which is another source Wolbachia 

and therefore contributing to extended recruitment of neutrophils. Since adult worms 
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in C57BL/6 do not reach patency there is no release of Mf, and therefore no recruitment 

of neutrophils. The link between Wolbachia and neutrophils can be further 

demonstrated using the O. ochengi cattle models, in which nodules formed around 

adult worms have an inner layer of neutrophils, and with the depletion of Wolbachia 

by antibiotic treatment, there is switch from neutrophils to degranulating eosinophils, 

found adjacent to the worms surface (Nfon et al., 2006; Hansen et al., 2011). 

Eosinophils made up 70% of the cell population in the granulomas surrounding young 

adults in C57BL/6. The origin of the different granulomas and how cells attach to the 

worms is not well known, so far it is hypothesised that neutrophils are recruited by a 

LPS-like dependent mechanism, whereas for eosinophils a glycan dependent process 

could be implicated, but it has been suggested that for cellular recruitment and 

granulomas to formation alteration/damage of the filarial worm is needed. (Attout et 

al., 2008). 

Altogether there seems to be a balance between eosinophils and neutrophils, as they 

are both associated with filarial infections, with eosinophils involved in parasite killing 

whereas neutrophils appearing to be involved in the nodule formation around the 

adults, attracted to the Wolbachia derived molecules secreted by the worms. Following 

antibiotic chemotherapy, neutrophils are replaced with eosinophils that degranulate on 

the worm cuticle (Hansen et al., 2011). 

Immune responses to microfilariae 

Around day 55 post infection with L. sigmodontis in BALB/c mice, adult females will 

start releasing Mf, which can be detected in peripheral blood. Protective immunity to 

Mf, has been linked to Th1 and Th2 responses.  
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Infections in IFN-g deficient mice caused an increase in Mf in the peripheral blood 

compared to wild type controls (Saeftel et al., 2001), and in BALB/c mice an increase 

in IFN-g RNA levels in splenocytes can be seen following onset of patency (Taubert, 

Zahner, 2001). Furthermore, following Mf immunisation, IFN-g was found associated 

with vaccine mediated protection (Ziewer et al., 2012), and in the related filarial 

species B. malayi, Mf injections in BALB/c mice induced IFN-g production as well 

IgG2a production which was not seen when adult worms were implanted (Lawrence 

et al., 2000). Th2 cytokines such as IL-4 and IL-5 have also been associated with 

control of Mf, however the action of both of these cytokines are more associated with 

a decreased in adult female fertility or adult worm containment than Mf killing 

(Volkmann et al., 2001).  

Organs associated with clearance of Mf in L. sigmodontis infections are the lungs, 

spleen and liver (Pfaff et al., 2000), with more resistant mice strains being able to clear 

Mf faster than in BALB/c mice due to a rapid accumulation of Mf in spleen, liver and 

lungs (Bouchery et al., 2012b). Although the exact mechanism of Mf clearance is 

relatively unknown, the receptor for IL-33 (ST2) was found to be important in splenic 

clearance of Mf (Ajendra et al., 2016). In the non-permissive B. malayi mouse model, 

where Mf were either inoculated in the blood stream or female adults producing Mf 

were implanted into the pleural cavity, clearance of Mf  was associated with antibodies 

(Gray, Lawrence, 2002) and eosinophils (Simons et al., 2005). However, L. 

sigmodontis infection in the ST2 deficient mice which saw a impaired splenic 

clearance, levels of IgM, IgG1, IgG2a and IgG2b as well as Th2 cytokine levels, did 

not differ between ST2 KO and wild types. Suggesting that increased Mf in ST2-KO 
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mice is not antibody mediated nor did it correlate with impaired Th2 cytokine 

responses, but was due to impaired splenic clearance of Mf (Ajendra et al., 2016). 

Antibody responses in L. sigmodontis infections 

B-cells have an important role in L. sigmodontis immunity, with mice lacking of B1 

cells showing increased susceptibility to filarial infections seen as a higher Mf and 

adult worm burdens (Carter et al., 2007). B1 cells are implicated in resistance in both 

L. sigmodontis (Al-Qaoud et al., 1998) and human filariasis (B. malayi) (Mishra et al., 

2014). Although IgE is an important antibody in human helminth infections, and has 

been linked to parasite death and pathology, mice eosinophils however do not express 

the surface receptor that bind IgE, and further overexpression of IgE in L. sigmodontis 

infections had no effect on L. sigmodontis infections (Martin et al., 2000b). When 

measuring levels of IgE, IgG1 (Th2 antibody) and IgG2 (Th1 antibody) in plasma of 

L. sigmodontis infected BALB/c mice, total IgE levels were increased compared to 

non-infected mice as early as day 5 and levels increased throughout the course of 

infection. Levels IgG1 (Th2 marker in mice) increased around day 14 of infection and 

remained elevated up to patency, whereas IgG2 (Th1 marker in mice) were low and no 

difference were seen between non-infected mice (Boyd et al., 2015). In the same 

infection time course, levels of IL-5 were detected in plasma at day 42 and remained 

high at day 60. Therefore, the high levels of IL-5 and IgG1 detected in plasma illustrate 

that L. sigmodontis infection induce a systemic Th2 responses which peaks prior to the 

onset of patency.  
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Role of Th1 / Th2 in L. sigmodontis infections 

Th2 responses are absolutely necessary for resistance to infection, as full parasite 

development and patency was achieved in IL-4 deficient C57BL/6 mice, which would 

otherwise be resistant (Le Goff et al., 2002). Furthermore, in susceptible BALB/c 

mice, deficiencies in IL-4, IL-5 or IL-4Ra (receptor for IL-4 or IL-13) led to an 

increase in Mf numbers following L. sigmodontis infection compared to wild type 

controls (Volkmann et al., 2003), and upon administration of anti-CD4 antibodies in 

BABL/c there was increase in worm burden and circulating Mf associated with 

reduced Th2 responses (Al-Qaoud et al., 1997). This fits with human onchocerciasis, 

where Th2 induction in sowda patients leads to string reduction of both Mf and adult 

worm nodules (Hoerauf, Brattig, 2002).  

This is not to say that Th2 responses are the only effector mechanism against filarial 

parasites. Pro-inflammatory Th1 responses have been associated with adult worm 

death and Mf clearance (Babu et al., 2000). BALB/c mice deficient in IL-4Ra, had 

accelerated death of the adult stages compared to wild type controls, due to a change 

to a Th1 phenotype at the site infection (pleural cavity) (Volkmann et al., 2001) and 

IFNg was found to be essential for encapsulation of adult worms (Saeftel et al., 2001). 

Furthermore, IFNg and IL-5 appear to act synergistically to destroy the adult parasites 

and this effect is mediated by neutrophils (Saeftel et al., 2003). Therefore, both Th1 

and Th2 responses can act synergistically to control parasite loads. 
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Initiation of Th2 responses 

The exact sequence of events that initiate a Th2 responses in filarial infections is still 

largely unknown, it has been hypothesized that dendritic cells, basophils and type 2 

innate lymphoid cells (ILC2) have a role in inducing Th2 immunity. Basophils in L. 

sigmodontis infections seem to be more involved in the amplification of type 2 

responses such as increased eosinophil levels and IgE production (Torrero et al., 2010; 

2013). 

Recently, the role of ILC2 in initiating Th2 responses has been suggested, with 

evidence of local ILC2 expansions in the pleural cavity of infected mice from as early 

as day 5 post infection, with  increasing numbers during the course of infection peaking 

in the pre-patent stage (day 36 and 44 post-infection) (Boyd et al., 2015). ILC2 act 

primarily by initiating and maintaining Th2 responses at site of infection (pleural 

cavity) in L. sigmodontis infections, with the majority of ILC2 producing IL-5, 

possibly driving eosinophil recruitment to the pleural cavity seen in L. sigmodontis 

infections (Boyd et al., 2015). IL-33 is known to promote Th2 responses, and has been 

suggested to do this through the activation ILC2. However, mice lacking the IL-33 

receptor do not have an impaired Th2 response following a L. sigmodontis infection, 

suggesting that IL-33 is not responsible for driving the localized Th2 response seen in 

L. sigmodontis infections (Ajendra et al., 2016).  

The absence of IL-33 signalling had no effect on adult worm burden, but led to a higher 

Mf burden. This increase in circulating Mf did not correlate with any change in Th2 

response, but was shown to be due to impaired splenic clearance of Mf. When 

macrophages in pleural cavity of IL-33R deficient were analysed following a L. 
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sigmodontis infection, there was no change in macrophage proliferation, but 

alternatively activated macrophages failed to be induced (Jackson-Jones et al., 2016). 

Both IL-4Ra and IL-33 are needed to alternative activation of macrophages. Therefore, 

IL-33 does have a role in parasite clearance but not in Th2 induction and further studies 

are need to determine the mechanisms responsible for the induction of ILC2s in L. 

sigmodontis infections and subsequently Th2 responses. 

1.10.2 Regulatory immune responses induced by filarial 

infections 

Helminth infections including Onchocerca spp, are master regulators of the host 

immune response, this allows them to maintain chronic infection within its host, and 

in the case of O. volvulus this can be up to 15 years. Immunosuppressive responses 

induced by filarial parasite are considered responsible for these chronic infections, and 

the lack of pathology seen in some individuals. This immune suppression has been 

demonstrated in both mice and cattle models of infection (Maizels et al., 2001b; 

Hoerauf et al., 2005). 

Litomosoides sigmodontis infections in mice are known to induce inflammatory 

responses, with protection mediated by the Th2 arm of immunity. Litomosoides 

sigmodontis also induce regulatory immune responses which allows them to establish 

patent infections in mice, these immune regulatory responses happen early on 

infection. While invading L3 induce innate immune responses, they also cause a rapid 

recruitment and increased proliferation of a natural population of CD4+ CD25+Foxp3+ 

regulatory T cells (Tregs), and within 7 days of infection these can be found in the 
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pleural cavity where the larval stages migrate to (Taylor et al., 2009). These Foxp3+ 

Treg cells continue to be present in the pleural cavities during the adult stage of L. 

sigmodontis infections in BALB/c mice.  

Alongside the Foxp3+ Treg responses in the pleural cavity there is also loss of antigen-

responsiveness by CD4+CD25- effector T (Teff) cells, these hypo-responsive Teff cells 

exhibit increased expression of the co-inhibitory receptor CTLA-4 and GITR (Taylor 

et al., 2005). Both the Foxp3+ Tregs and hypo-responsive Teff cells contribute to 

parasites survival, as depletion/neutralisation of these cells types alone in the pleural 

cavity of infected mice had little effect on worm survival, but the combined depletion 

of Foxp3+ Tregs and neutralization of CTLA-4 on the hypo-responsive Teff cells 

enhanced parasite killing (Taylor et al., 2007).  

Although the depletion of Foxp3+ Treg in the pleural cavity during infection had no 

effect on parasites survival, their depletion prior to infection caused a reduction in adult 

parasite burdens, as well as causing an anti-fecundity effects on the surviving female 

adults, but no effect on larval stages. This increase in protection was associated with 

an early increase in expression of GITR on CD4+ Teff cells, followed with an increase 

in L. sigmodontis specific Th2 responses seen around day 60 post infection (Taylor et 

al., 2009). Suggesting that early priming of T cells is important in determining the 

outcome of infection.  

The difference in CD4+ Teff cell priming can also explain why difference in protection 

is seen between different mice strain (Table 1.6). Although both the resistant 

(C57BL/6) and susceptible (BALB/c) mice have similar initial Foxp3+ Treg responses, 
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CD4+CD25- Teff cells from the resistant mice have greater expression of GITR within 

the first 12 days of infection which was associated with greater in vivo proliferation of 

CD4+ T cells, compared to susceptible mice. Implying that C57BL/6 mice are either 

better at priming CD4+ T cells or better at overcoming the initial suppressive effect of 

the filarial L3 parasites (Taylor et al., 2009).  

In susceptible mice strain hypo-responsive Teff cells loss of function was mediated by 

programmed cell death protein-1 (PD-1, a cell surface receptor, which suppresses T 

cells) co-inhibition by PD-L2, and induced a progressive loss of IL-4, IL-5 and IL-2 

cytokine production, which could be recovered in vivo by blocking of PD-1/PD-L2 

pathway (van der Werf et al., 2013). The mechanisms that induce these intrinsic 

changes in Th2 effector cells are thought to be mediated by immune cells, it has been 

suggested that B cells might be inducing these changes as opposed to alternatively 

activated macrophages (AAM), however this still has not been proven (Taylor et al., 

2006). Another possibility is through dendritic cells (DC), as demonstrated during 

Schistosoma japonicum, which induces TLR-2 signalling in DC that leads to PD-L2 

expression and through PD-1/PD-L2 interaction inhibits T cell response to S. 

japonicum (Gao et al., 2013). 

When a single immature female L. sigmodontis worm was implanted in susceptible 

BALB/c mice it promotes the survival of co-injected Mf, however in IL-10 deficient 

mice Mf survival was drastically reduced, suggesting that adult females aid survival of 

Mf in a IL-10 dependent manner (Hoffmann et al., 2001). The role of IL-10 can be 

further demonstrated in resistant C57BL/6 mice, which are rendered susceptible by 

knocking out IL-4, but an addition knockout of IL-10 reverts them to being resistant, 
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however the addition of IFNg in these double IL-4/-10 deficient mice had no effect and 

these mice remained resistant (Specht et al., 2004). The cytokines, TGF-b and IL-10 

play an important role in the suppression, as in L. sigmodontis infections the absence 

of functional TGF-β and IL-10 receptor signalling rescued T cell proliferation 

(Hartmann et al., 2015). 

In L. sigmodontis infections, T cell derived IL-10 is particularly associated with 

suppression of CD4+ T cell proliferation, whereas B cell derived IL-10 is not (Haben 

et al., 2013). These IL-10 producing T cells, are termed T regulatory type 1 (Tr1) cells, 

and although they are regulatory T cells they do not express Foxp3 or CD25. Tr1 cells 

are derived from naïve T cells in the periphery following antigen challenge, one of 

their characteristics is that they produce high levels of IL-10, compared to naturally 

occurring CD4+CD25+Foxp3+ Tregs that emerge from the thymus (Roncarolo et al., 

2006). These Tr1 can be found in onchocercomas of O. volvulus infected humans, and 

ex vivo studies show that they are able to induce B cells to secrete the “regulatory” 

isotype IgG4 (Satoguina et al., 2005), in a GITR/GITR-L dependent mechanism with 

both IL-10 and TGF-β required (Satoguina et al., 2008).  

T cell are not the only source of IL-10, transgenic overexpression of IL-10 by 

macrophages in resistant L. sigmodontis infected mice leads to an increase 

susceptibility with higher number of adult worms and converted resistant FVB mice 

towards a patent phenotype, supporting the suppressive role of IL-10 (Specht et al., 

2011b). These macrophages overexpressing IL-10 in the pleural cavity of infected 

mice had characteristics of alternatively activation. Alternatively activated 

macrophages (AAM) are gaining attention in their role in Th2 responses, and are 
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defined as a macrophage population that rely on IL-4 and IL-4Ra signalling to initiate 

proliferation and express arginase-1, Ym1 and Fizz1(Rückerl, Allen, 2014). In L. 

sigmodontis infection proliferation of AAM is restricted to the sites of parasites 

migration and the pleural cavity before the onset of patency, however following release 

of Mf, AAM are also found in the draining lymph node (Taylor et al., 2006). The 

specific contribution of AAM in killing and expulsion of helminths is still unknown. 

It has been suggested that L. sigmodontis infections induce suppressive AAM, that can 

block T cell proliferation (Taylor et al., 2006), however these are not the cause of the 

PD-1 associated Teff cell hypo-responsiveness in the pleural cavity (van der Werf et 

al., 2013). Therefore, AAM are not thought to be the drivers of T cell hypo-

responsiveness. An alternative theory is that B cells or dendritic cells are conditioning 

Th2 T cells to a hypo-responsiveness phenotype. 

Altogether immunosuppression during L. sigmodontis infection consists of several 

independent overlapping mechanisms, from the different CD4+ T cell regulation 

(Foxp3+ Tregs and Tr1 Tregs), the intrinsically hyporesponsive effector T (Teff) cells, 

and alternatively activated macrophages.  
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Table 1.6. Immune responses differences between susceptible, resistant and vaccinated 

mice. 

Mouse 
phenotype 

Innate 
response 

D10-12 response  
(pleural cavity) 

Response 
to adults 

Response 
to Mf 

Granulomas 

BALB/c 
(patent 
infection) 

Neutrophils Th2 response IL-4 and 
IL-5 

IL-4, IL-
5, IFN-g, 
IgG2a 

Mostly 
neutrophils, 
surrounding 
senescing 
adults.  
(< day 70 p.i.) 

C57BL/6 
(non-
patent 
infection) 

Neutrophils Mixed Th1/Th2, 
CXCL12 and 
increased cellular 
recruitment, strong 
CD4+ T effector cell 
priming 

Only 
young 
adults are 
found 

N/A Mostly 
eosinophils 
surrounding 
young adults.  
(~ day 40 p.i.) 

Irradiated 
L3 
induced 
protection 

Eosinophils The L3 that have escaped immune responses (~10%), will 
have the same immune responses as non-immunised mice. 
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1.10.3 Role of dendritic cells in filarial infections 

Dendritic cells (DC) are professional antigen-presenting cells which are often the first 

cells to encounter foreign antigens, and therefore play a crucial role in presenting 

antigen to T cells to initiate immune responses. Their exact role in initiating Th2 

protective responses or regulatory responses have been relatively overlooked in L. 

sigmodontis infection. 

In helminth infections, depletion of DC severely impaired Th2 immunity to 

Heligmosomoides polygyrus a gastrointestinal nematode and Schistosoma mansoni a 

trematode (Smith et al., 2011; Méndez-Samperio, 2016), suggesting that DC have a 

potential role in induction of Th2 immunity. Parallel to this, helminths and their 

excretory and secretory (E/S) products have been linked to functional impairment of 

DC, which has been suggested as a potential mechanism for nematode induced 

suppression. In non-helminth models, DC were able to expand Foxp3+ Tregs 

(Yamazaki et al., 2006; Na et al., 2016), and certain parasite antigen were able to 

modulate DC function (Silva et al., 2006; Segura et al., 2007; Sun et al., 2013). In 

human, B. malayi L3 were able to induce cell death in human dendritic cells, inhibit 

their ability to produce IL-10 and IL-12, as well as inhibiting their ability to activate 

CD4+ T cells (Semnani et al., 2003). Similar results were seen in live infections in 

mice, where B. malayi L3 induced different patterns of maturation and activation in 

DC subsets, correlating with impaired antigen uptake and presentation, and to some 

degree the attenuation of T cell proliferation (Sharma et al., 2016). Despite the small 

number of studies investigating the role of DC in filarial infections, it is being 

suggested that filarial parasites are able modulate the early immune responses to 
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infection, by impairing DC antigen presentation and therefore rendering DC 

ineffective in initiating strong adaptive immune response (Segura et al., 2007; Sun et 

al., 2013; Sharma et al., 2016).  

 
Figure 1.9. Summary of the main immune responses triggered during L. sigmodontis 

infections in BALB/c mice.
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1.11 Vaccine induced immunity 
Vaccine induced protection in naïve animals can be induced using immunisation with 

irradiated L3, as demonstrated in several animal models, including L. sigmodontis in 

mice, O. ochengi in cattle and O. volvulus in the mice diffusion model (Table 1.7). 

With irradiated L. sigmodontis L3 immunisation, protection is associated with a rapid 

reduction of invading L3 within the first 2 days, leading to a 70% reduction in worm 

burden (Le Goff et al., 2000). This rapid L3 death has been linked to eosinophils and 

antibody mediated degranulation of eosinophils. Following immunisation with 

irradiated L. sigmodontis L3, there is an increase in IL-5 levels and subcutaneous 

eosinophils compared to non-immunised controls (Martin et al., 2000a). However, in 

mice with impaired B-cell maturation and antibody production (µMT strain) there is a 

lack of protection, associated with impaired eosinophils degranulation although these 

are recruited to the site of infection (Martin et al., 2001). This also helps explain the 

difference between primary infection and immunisation with respect to eosinophils, as 

during the primary infection there is a delay in inducing IL-5 dependent mechanisms 

and production of specific antibodies, and by the time eosinophils arrive at the site of 

infection and have the ability to degranulate, the L3 have already migrated to the 

lymphatic vessels to escape the inflammatory responses (Marechal et al., 1996). 

Furthermore, basophils have been linked to the establishment of the vaccine protective 

immunity, because when basophils were depleted prior to immunisation this 

diminished protective efficacy, suggesting early amplification of Th2 before 

immunisation is also necessary for protection (Torrero et al., 2013). 
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Repeated vaccination with irradiated L3 followed by repeated exposure to challenge 

L3 infections was carried out, to investigated if repeated exposure would induce 

immunological tolerance and reduce Th2 vaccine induced immune responses. 

However, IgE levels; antigen driven basophils release of IL-4; and Th2 skewing of the 

cellular immune responses remained the same throughout the repeated exposure to the 

parasite and protective efficacy of the irradiated vaccine was maintained. Suggesting 

that vaccines which induce a strong Th2 immune response could maintain efficacy 

through repeated parasite exposure (Hübner et al., 2010). 

Subcutaneous immunisation of BALB/c mice with L. sigmodontis Mf, inhibits 

embryogenesis in females worms causing a reduction in Mf found in the peripheral 

blood, without any effect on adult worm burden (Ziewer et al., 2012). Protection 

induced Mf immunisation was associated with a shift towards a Th1 environment, 

mediated through IFN-g promoted IgG2a. The role of IFN-g has been linked to immune 

responses to Mf several times (Lawrence et al., 2000; Saeftel et al., 2001; Taubert, 

Zahner, 2001). 

O. volvulus is not permissive to mice, therefore implantation of O. volvulus larval 

stages into chambers within mice, are used to measure immunological changes linked 

to parasite death or survival. By immunising mice with irradiated O. volvulus L3, 

protective immunity was developed to subsequent L3 implanted in subcutaneous 

diffusion chambers. The initial observations found large numbers of eosinophils 

present in the chambers, and that immunity was dependent on IL-5 and IL-4, thus a 

Th2 responses (Lange et al., 1994; Johnson et al., 1998). When similar studies were 

repeated using mice knockouts, mice deficient in eosinophils, mature B cells or IgE 
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had impaired protective immunity, whereas no difference was seen in protective 

immunity when eosinophil peroxidase or B1 cells were absent. Therefore adaptive 

protective immunity to larval O. volvulus in diffusion chambers was due to eosinophil 

recruitment and IgE, corroborating L. sigmodontis irradiated L3 mouse studies 

(Abraham et al., 2004). 

The protective efficacy of irradiated L3 immunisation, was successfully translated into 

field trials using the O. ochengi cattle model (Tchakouté et al., 2006). Further cross-

protection between O. volvulus and O. ochengi filarial species can be demonstrated in 

cattle using immunisation with O. volvulus L3, which can induce partial protection of 

cattle to challenge infections with O. ochengi L3 (Achukwi et al., 2007), suggesting 

that there is antigenic homology between the two species. 

Table 1.7. Immunisation with irradiated L3 in different filarial models 

Parasite Model Protection following L3 irradiated 
vaccination 

B. malayi  

Jirds (permissive host) 56-91% reduction in worm burden following 
challenge infection. (Yates, Higashi, 1985) 

BALB/c mice (non-
permissive host) – 
Diffusion chamber 

95-100% reduction in L3 challenge survival. 
(Hayashi et al., 1984; Abraham et al., 1989) 

L. sigmodontis  BALB/c mice 
(permissive host) 

70% reduction in worm burden following 
challenge infection. (Le Goff et al., 1997; 
2000) 

O. ochengi   Cattle (permissive host) 
84% protection against natural infections 
compared to non-vaccinated controls. 
(Tchakouté et al., 2006) 

O. volvulus  
BALB/c mice (non-
permissive host) – 
Diffusion chamber 

64% reduction in L3 challenge survival. 
(Lange et al., 1993) 
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1.12 Vaccine development 
Vaccines have undeniably played an important role in improving public health by 

reducing morbidity and mortality to infectious disease. However, most of the 

commercially available vaccines for humans are against single cell organisms such as 

bacteria (Tuberculosis, BCG vaccine) and virus (measles, mumps and rubella, MMR 

vaccine), with more often or not the use live attenuated or inactivated (killed) vaccines 

(Table 1.8). For filarial disease, protective immunity can also be induced using live 

attenuated vaccines in animal models, using irradiated L3 (Table 1.7). Although there 

is an irradiated L3 vaccine commercially available against the nematode Dictyocaulus 

viviparus (lungworm) in cattle (Bain, 1999), the use on an irradiated L3 vaccine would 

not be feasible for the use against onchocerciasis in humans. This is because there 

would be technical and production constraints, ethical consideration when 

administering to humans, and further protection associated with irradiated L3 vaccine 

is limited to the infective larval stage (Babayan et al., 2006), which does not stop adults 

producing Mf and allowing transmission to continue.   
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Table 1.8. Examples of commercially available vaccines 

Vaccine 
(Pathogen) 

Type  Protective immunity / Correlates of protection 

Vaccine commercially available for humans 

BCG –
Mycobacterium 
tuberculosis 
(TB)  

Live attenuated 
vaccine 

Specific IFN-g production  by CD4+ T cell 
necessary for protection but not a good correlate of 
protection. (Mittrücker et al., 2007) 

DTaP –
Diphtheria, 
Tetanus and 
Pertussis 

Inactivated toxin 
(toxoid) vaccine 

Possible antibody mediated, but not good correlate 
of protection 

Hepatitis A 
Inactivated virus Antibody levels are used as correlates of protection 

(Plotkin, 2010) 

Hepatitis B 
Recombinant 
protein of 
hepatitis B 
surface Ag 

Antibody levels are used as correlates of protection 
(Plotkin, 2010) 

HPV –Human 
papillomavirus 

Recombinant 
protein antigen 
vaccine 

Neutralising antibodies prevent mucosal and skin 
invasion, but not good correlate of protection 
(Romanowski, 2014) 

IPV –Polio  Live inactivated 
vaccine 

Antibody mediated preventing viremia, correlates 
of protection not known  

MMR –
Measles, 
mumps and 
rubella  

Live attenuated 
vaccine 

cellular immunity preventing viremia, correlates of 
protection not known 

RV –Rotavirus  Live attenuated 
vaccine 

Prevents viral replication, correlates of protection 
not known 

Ty21a - 
Typhoid 

Live attenuated 
vaccine 

Baseline Salmonella typhi specific CD8+ responses 
associated with protection and delayed disease 
onset, however upregulation regulatory T cells have 
also been linked, and the correlates of protection are 
still not clear (Fresnay et al., 2016). 

Vi capsular 
polysaccharide - 
Typhoid 

Inactivated 
subunit vaccine 

Vi-specific IgG antibody levels are used for the 
assessment of protection, but no correlates of 
protection have been identified for the Vi-based 
vaccine (Ochiai et al., 2014). 

Yellow fever  Live attenuated 
vaccine 

Type I interferon pathways during the first two 
weeks post vaccination, as well complement 
pathways, inflammasomes and some regulatory 
genes (Gaucher et al., 2008) 
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Vaccine commercially available for veterinary use 

Dictyocaulus 
viviparus - 
Cattle 

Irradiated L3 
larvae 

 

Taenia ovis – 
Sheep 
Taenia saginata 
– Cattle  
Taenia solium - 
Pig 

Recombinant 
antigen 

Lysis of early developmental stages by antibody 
and complement (Lightowlers et al., 2016) 

Boophilus 
microplus – 
against tick for 
Cattle 

Recombinant 
tick gut antigen 
(Bm86) 

Antibody mediated binding and lysis of intestinal 
cells interfering with blood feeding activity (Dalton, 
Mulcahy, 2001) 

 

These live/attenuated vaccines can be referred to as first generation vaccines, although 

they have been tremendously useful for the control of disease such as smallpox and 

polio, they cannot be used for onchocerciasis. Therefore, second generation vaccines 

such as subunit vaccines, referring to recombinant proteins and peptides could be a 

possible alternative strategy. In immunisation experiment against filarial nematode, 

the use of recombinant proteins have shown some promise (Table 1.10) (Hewitson, 

Maizels, 2014). However, they can be difficult to produce and can include unnecessary 

epitopes, not all epitopes found in a protein may contribute to protective responses, as 

protective immunity is usually dependent on a few antigenic epitopes. If anything, 

these extra antigenic epitopes complicated the situation by inducing increased 

immunogenicity to antigens that could cause hypersensitivity and adverse reactions 

(Linhart et al., 2014; Skwarczynski, Toth, 2016).  

Alternatively, peptides based on protective antigen epitope of a vaccine candidates 

could be used. These short peptide fragments can be used to induce highly targeted 
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immune responses, incidentally are also cheaper and easier to produce (Li et al., 2014). 

In a peptide vaccine, amino acid sequences are synthesised to form an immunogenic 

peptide molecule representing the specific epitope of an antigen. Since these are the 

antigenic determinants within larger proteins, they should be considered sufficient for 

activation of the appropriate cellular and humoral responses. In reality, because they 

contain one antigenic epitope, immunisation with a single peptide may not be capable 

of producing an appropriate response against the filarial parasites, that have complex 

life cycles and are masters at immunomodulation, therefore the use of multivalent 

vaccines are necessary to achieve protection.  

Epitope-based vaccines containing well-characterised immunogenic regions has 

shown success against human papilloma virus (HPV), with two multivalent peptide 

based vaccines commercially available against HPV (Romanowski, 2014). Although 

no peptide vaccines are commercially available for filarial parasites, some are being 

investigated as potential vaccines candidates (Madhumathi et al., 2010). 

Third generation vaccines, such as DNA plasmids could potentially be another 

approach, they have certain advantages over live attenuated or recombinant proteins. 

DNA vaccines allow protein expression in mammalian cells after introduction of 

plasmid (Shedlock, Weiner, 2000), which are then able generate cellular and humoral 

responses (Li et al., 2004). These are simple to produce and purify in large quantities, 

with low production cost, and easily transported since they do not require a cold chain, 

these features make DNA vaccines desirable for large scale use in areas endemic to 

onchocerciasis. Although no human vaccine is commercially available, two DNA 

vaccines have been licensed for use in animals, one against the fish rhabdoviruses 
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Infectious Haematopoietic Necrosis Virus (IHNV) in Atlantic salmon in Canada, and 

the other against West Nile virus in horses, in the United States (Kurath, 2008). In 

onchocerciasis research, several immunisation experiments in mice with DNA 

vaccines, have showed potential with signs of protective immunity (Harrison et al., 

2000; Babayan et al., 2012; Joseph et al., 2012; Steisslinger et al., 2015). 

1.12.1 Strategies for vaccine candidate discovery 

Mathematical modelling has shown that a vaccine would greatly complement ongoing 

efforts to control and eliminate onchocerciasis (Turner et al., 2015), and would benefit 

in different control settings: 

• A prophylactic vaccine, that targets the incoming infective L3, would prevent 

the establishment of parasites. Preferably a vaccine targeted to children under 

the age of 5, as to not only protect a vulnerable set of the population but also 

eliminate a possible reservoir source. 

• Immunoprophylaxis vaccine, similar to a prophylactic vaccine, but given to 

communities who have successfully achieved elimination and therefore 

protecting them from re-infection (from neighbouring infected communities). 

• Therapeutic vaccine targeting the Mf stage, given to infected individuals to 

prevent severe pathology as well as reducing transmission, and could be an 

important tool in areas of co-endemicity with loiasis. 

Ideally a vaccine would target different life stages of the parasite such as the infective 

L3 stage and Mf the transmission stage. 
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Historically vaccine antigens would have been identified by immunoscreening cDNA 

libraries using serum of naturally protected individuals. For onchocerciasis, 26 

recombinant antigens were identified by immunoscreening, including Ov-CPI-2, Ov-

Ral-2 and Ov-103, these were then validated with immunisation experiment in several 

animal models (Table 1.10) (Lustigman et al., 2002; Manchang et al., 2014).  

Due to whole genome sequencing, stage-specific transcriptional profiling, and 

proteomic analysis (Table 1.9), there is now an abundance of proteomic and genomic 

data on filarial nematodes. This not only provides valuable biological insight into these 

parasite, but also allows for the identification of potential vaccine candidates (Seib et 

al., 2012). Knowing that helminth produce excretory-secretory product (ES) that are 

critical for parasite establishment within the host, as these have been shown to 

modulate the immune system (Harnett, 2014), in particular adult female ES (Hoffmann 

et al., 2001), and therefore these can be investigated as potential vaccine targets.  

Targeting immunomodulatory molecules as vaccine candidates has shown some 

success against Teladorsagia circumcinta in sheep and L. sigmodontis in mice, and by 

removing the parasite modulatory function it allows for enhanced immune response to 

the parasite (Babayan et al., 2012; Nisbet et al., 2013; Arumugam et al., 2014b). Some 

immunomodulatory targets have already been extensively investigated such as a 

cysteine protease inhibitor (CPI). Whereas other products have been hypothesised as 

being important due to being highly abundant in female ES, such as Ls-ShK, or being 

homologues of human immunomodulatory molecules, such as the TGF-β homologue, 

TGH-2 (Table 1.10) (Gomez-Escobar et al., 1998; McSorley et al., 2009; Armstrong 

et al., 2014). 
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Targeting the nematodes immunomodulation is one way of removing its defensive 

mechanism against the host, but helminths do have other defence mechanism, such as 

antioxidants and detoxification enzymes (Maizels et al., 2001a). These enzymes were 

initially studied for their use as chemotherapeutics, however their immunogenicity in 

animal models suggested they might be potential vaccine candidates, such as 

thioredoxin peroxidase (TPX) which showed some promise in immunisation 

experiments (Anand et al., 2008; 2012).   
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Table 1.9. Genomic, transcriptomic and proteomic data available of different filarial 

species (Adapted from (Grote et al., 2017)) 

Species Genome 
Sequencing 

Transcriptomic 
analysis of: 

Whole body 
proteomic analysis 
of: 

Proteomic analysis 
of ES products of: 

B. malayi  � 

 L3, L4, AF, AM, 
Immature Mf 
Wolbachia (in all 
stages) (Bennuru et 
al., 2011) 

L3, L3 to L4 
moulting, AF, AM, 
Mf  
(Hewitson et al., 
2008; Moreno, 
Geary, 2008; 
Bennuru et al., 
2009) 

L. 
sigmodontis  � 

L3 (Allen et al., 
2000) 
 

L3, AM, pre-gravid 
AF, gravid AF, 
immature Mf 
Wolbachia (in all 
stages) 
(Armstrong et al., 
2014) 

L3, AM, pre-gravid 
AF, gravid AF, 
immature Mf 
Wolbachia (in all 
stages) 
(Armstrong et al., 
2014) 

O. volvulus � 

L3, L4, AF, 
AM, Mf, vector 
derived stages 
Wolbachia (in 
all stages) 
(Bennuru et al., 
2016) 

L3, L4, AF, AM, 
Embryonic stages, 
Mf 
Wolbachia (in all 
stages) 
(Bennuru et al., 
2016) 

 

O. ochengi   � 

 L3, AF, AM, 
immature Mf 
Wolbachia (in all 
stages) (Armstrong 
et al., 2016) 

L3, AF, AM, 
immature Mf, 
intradermal nodules 
Wolbachia (in all 
stages) (Armstrong 
et al., 2016) 

L3, third-stage larvae; AF, Adult Female; AM, Adult Male; ES, Excretory-secretory 
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Table 1.10. Potential vaccine candidates for onchocerciasis. 

Vaccine 
candidate 

Function / 
potential role 

Localisation in L. sigmodontis and 
related species* 

Immunogenicity & Vaccination experiments 

Ls–CPI-2 Cysteine protease 
inhibitor, an 
immunomodulator 
which impairs 
function of antigen 
presenting cells. 

Bm, Ov, Oo, Ls-CPI-2 secreted by adult 
female worm (ES) and present in all life 
stages of the parasite.  

Ov-CPI-2 – Protective antibody responses increases with age (Cho-
Ngwa et al., 2010)  
Ls-CPI-2 (mutated) – DNA vaccine, reduced Mf numbers 
(Babayan et al., 2012) 
Bm-CPI-2 (mutated) – Recombinant protein vaccine, reduced 
worm burden (~48%) and worm fecundity. (Arumugam et al., 
2014b) 
Ov-CPI-2 – Recombinant protein vaccine, reduced L3 survival in 
diffusion chamber (~49% reduction) (Hess et al., 2014) 

Ls–TPX-2 
 

Thioredoxin 
peroxidase is an 
antioxidant and 
detoxification 
enzymes, which 
protects the 
nematodes from 
host immune 
effector 
mechanisms 

Bm, Ov and Ls-TPX-2 Expressed by L3 
stages (Allen et al., 2000) 
Bm-TPX-2 also found expressed by Mf 
and in ES products (Anand et al., 2012) 

Bm-TPX-2 – Protection against larval stages in B. malayi chamber 
model using DNA vaccine, and enhanced efficacy in a multivalent 
vaccines (Anand et al., 2008)  
Vaccination with recombinant Bm-TPX-2 induces a Th-2 biased 
response, with IgG3 and IgG1 being elevated in vaccinated mice 
(Anand et al., 2012) 
EN individuals carry IgG1, IgG2 and IgG3 Bm-TPX-2 antibodies, 
with higher levels compared to infected individuals (Anand et al., 
2012) 

Ls–Ral-2 Unknown function Bm-Ral-2 and Ov-Ral-2 localised in 
hypodermis and cuticle of adult female 
worms, and the surface of L3 and Mf 
(Lustigman et al., 1992b; 1992a) 
Ls-RAL-2 and Oo-RAL-2 found in ES of 
adults. (Armstrong et al., 2014) 

Ov-Ral-2 – Recombinant protein vaccine, reduced L3 survival in 
diffusion chamber (Hess et al., 2014) 
Bm-Ral-2 – Recombinant protein vaccine in B. malayi gerbil 
showed a reduction in adult worm and Mf numbers seen as a 
reduction in embryonic development stages in female worms 
(Arumugam et al., 2016)  
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Vaccine 
candidate 

Function / potential 
role 

Localisation in L. sigmodontis and 
related species* Immunogenicity & Vaccination experiments 

Ls–103 

Microfilariae surface 
associated protein but 
function is unknown. 

Bm-103 and Ov-103 localised in 
hypodermis and cuticle of adult female 
worms, L3 and Mf (Lustigman et al., 
1992b; 1992a) 

Ov-103 – Recombinant protein vaccine, reduced L3 survival in 
diffusion chamber (Hess et al., 2014) 
Bm-103 – Recombinant protein vaccine in B. malayi gerbil 
showed a reduction in adult worm but no change in Mf numbers 
(Arumugam et al., 2016) 
Ls-103 – DNA vaccination in L. sigmodontis showed no change 
in worm numbers but reduction in number of Mf circulating in 
the blood of mice (Unplublished, J Peace MRes Thesis, 2012) 

Ls–Tgh-2 

Transforming growth 
protein 2-like protein, 
potentially an 
immunomodulatory by 
binding to TGF-β 
receptors 

Oo-Tgh-2 found secreted by adult 
worms (found in nodule fluid) 
(Armstrong et al., 2016) 
Bm-Tgh-2 found expressed throughout 
the B. malayi life cycle, and also found 
secreted by adult worms (Gomez-
Escobar et al., 2000) 

 

Ls–ShK 

Binds to Kv1.3 gate 
channels on memory T 
cells 

Oo-ShK (found in nodule fluid) 
(Armstrong et al., 2016) 
Ls-ShK found in ES of gAF 
(Armstrong et al., 2014) 

Ls-ShK immunisation in L. sigmodontis model showed a 
reduction in Mf numbers found in blood after vaccination 
experiment using DNA plasmid vaccines (Duprez. J, MRes 
Thesis, 2013, University of Edinburgh). 

*Localisation of vaccine candidates and its orthologues.  
Endemic normals (EN), B. malayi (Bm), O. ochengi (Oo), O. volvulus (Ov) and L. sigmodontis (Ls) 



 

 

 
74 

1.13 Systems biology and its role in vaccine 
development 

The goal of vaccination is to confer long-term protection in a population at risk of 

infection and disease, despite their tremendous success, most commercially available 

vaccines were designed without knowing the mechanisms by which they mediate 

protection (Table 1.8), and are only now being investigated. Understanding the 

immunological mechanism following vaccination, could be used to predict vaccine 

efficacy, or used to improve the immunogenicity of vaccine, allowing for a more 

rational vaccine development.  

Recent studies, have used a systems biology or sometimes referred to as systems 

vaccinology approach to decipher the immune responses to vaccination in humans 

(Pulendran et al., 2010). The advantage of using a system biology approach is that it 

combines “omics” technology such as transcriptomic, proteomics, metabolomics and 

genomics, with advanced computation tools, to investigate the complex interactions 

between all parts of a biological systems. Whereas traditional molecular biology 

techniques only investigate parts of the systems (a gene, a protein, or a cell type), 

missing out on interactions seen within a system.  

A systems approach has the ability to identify early correlates or biological markers 

(biomarkers) of protection predictive of vaccine responses (Hagan et al., 2015). Since 

the effectiveness of a vaccine can only be determined once individuals have been 

infected, being able identifying biomarkers of protection following vaccination, could 

be used to predict, optimise and evaluate the immunogenicity of vaccines before 
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infection or before the end of a vaccine trial (Li et al., 2013a; Marino et al., 2016). 

Using high-throughput techniques, such as microarrays, it is now possible to measure 

the expression of tens of thousands of genes simultaneously, allowing for a deeper 

understanding of the molecular signatures induced by infection or vaccination. 

Microarrays produce high-dimensional data (tens of thousands of genes but usually 

few samples), requiring more advanced computational methods, such as machine 

learning (Nakaya et al., 2011a).  

Machine learning is subfield of artificial intelligence, and is concerned with 

developing computer algorithms (models) that learn from the data and can make 

predictions on new data (Libbrecht, Noble, 2015). It has been used to decipher the 

complex interaction within the immune system and predict which responses are 

associated with protection. For example, when machine learning methods were used 

analyse high dimensional gene expression data following immunisation with yellow 

fever vaccine (YF-17D), a deeper understanding on how the YF-17D vaccine induced 

protection was gained, and was able to predict high and low responders within the 

population studied (Gaucher et al., 2008; Querec et al., 2008). Similar machine 

learning methods were used to predict systemic adverse events in smallpox vaccine 

(Reif et al., 2008), and immunogenicity in seasonal influenza vaccine (Nakaya et al., 

2011b) 

A further use of gene expression data and machine learning tools, is to predict how 

translatable a vaccine developed in mice model are to humans. Although mouse 

models have been tremendously useful in deciphering the cellular and molecular 
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immune responses to vaccines, these are not always predictive of human vaccine 

responses (Gerdts et al., 2007). 



 

 
77 

Chapter 2. Validation of vaccine candidates 
using either DNA or peptide vaccines in L. 
sigmodontis model 

2.1 Background 
Mathematical modelling of the impact of vaccination against Onchocerca volvulus 

suggested that a vaccine in addition to current controls effort would lead to reduced 

disease burden and aid in the elimination of onchocerciasis (Turner et al., 2015). In 

particular, a vaccine would protect vulnerable populations such as children under five 

and pregnant mothers who are omitted from mass drug administration (MDA) 

campaigns. Moreover, a vaccine would provide an answer to control of onchocerciasis 

in populations where Ivermectin cannot be used because of the risk of adverse 

reactions. By vaccinating individuals currently not receiving treatment but living in 

endemic areas, would decrease the chance of re-emergence of the parasite to 

neighbouring areas where MDA has been stopped (Turner et al., 2015). 

Since human filarial parasites cannot undergo a full life cycle in mice, several animal 

models have been used to test the efficacy of vaccine candidates, with Litomosoides 

sigmodontis being the most attractive model, as it is the only filarial species in which 

the full development cycle can take place in BALB/c mice (Petit et al., 1992), with 

high immunological cross-reactivity with Onchocerca spp (Manchang et al., 2014), 

allowing immunological and parasitological readouts to be measured during a 

vaccination trial. The infective larval stages are inoculated subcutaneously, and 

migrate to the pleural cavity (4-6 days), where they mature into adults and produce 
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microfilariae (Mf), which enter the bloodstream around day 60 post infection (Petit et 

al., 1992). Mf and adult worm burdens are used as a measure of protection. 

Vaccine mediated protection was generated with live attenuated vaccines using Brugia 

malayi in gerbils, L. sigmodontis in BALB/c mice and Onchocerca ochengi in cattle 

models. The irradiated third-larval (L3) vaccine, mediates protection against the 

incoming infective L3 and subsequently reduces the adult worm burden, although it 

may reduce the prevalence of disease if not 100% efficacious some of the parasites 

may develop to maturity and produce Mf, which may not prevent pathology associated 

with the microfilariae (Mf) stage nor stop transmission. However, a vaccine that targets 

the Mf stage, while not preventing infection nor pathology may be more successful in 

reducing morbidity and transmission. Therefore, an ideal vaccine would be one that 

targets different life stages of the parasite, protecting individuals not only against 

infection but also pathology caused by the adult stages and Mf of the parasites and 

hence stop transmission. Despite these live attenuated vaccines inducing 70-91% 

reduction in adult worm burden, and providing proof-of-principle that a vaccine could 

induce protection, they cannot be used beyond laboratory setting due to the logistical 

difficulties of their production, attenuation, packaging, delivery and ethical 

considerations. Therefore, new strategies such as recombinant proteins, peptides or 

DNA vaccines are required.  

Recombinant proteins are an alternative to live attenuated vaccines, however these tend 

to present challenges in terms of safety and mass production (Li et al., 2014). Peptides 

based on the protective antigen epitope of vaccine candidates are an attractive 

alternative, as a single protein can contain several antigenic epitopes. Peptide vaccines 
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not only induce a highly specific immune responses, but are also cheaper and easier to 

produce (Li et al., 2014). A peptide consists of amino acid sequences representing a 

specific epitope of an antigen, since these represent the antigenic epitope within larger 

proteins, it should be sufficient for activation of the appropriate cellular and humoral 

responses. However, in reality a single antigenic epitope (peptide) vaccination may not 

be strong enough, as filarial parasites have a complex life cycles with the ability to 

modulate the immune system. Therefore, the use of multivalent vaccines may be 

necessary to achieve protection. Two commercially available peptide vaccines are 

currently licensed against human papilloma virus the causal agent of cervical cancer, 

these are multivalent vaccine, a bivalent HPV-16/18 and the other a quadrivalent HPV-

6/11/16/18 (Romanowski, 2014).  

DNA vaccines allow protein expression in mammalian cells after introduction of  a 

plasmid, and subsequent induction of the immune system (Shedlock, Weiner, 2000). 

Advantages of DNA vaccines are that they are relatively simple and inexpensive to 

produce, although no DNA vaccines are currently licensed for human use, DNA 

vaccines have been used in vaccination trials for filariasis in animal models (Joseph et 

al., 2012; Babayan et al., 2012; Steisslinger et al., 2015).  

Different approaches have been used to discover vaccine targets, historically these 

would have been identified by immunoscreening cDNA libraries using serum of 

naturally protected individuals (Lustigman et al., 2002; Manchang et al., 2014). Using 

this approach two promising vaccine antigens Ls-103 and Ls-Ral-2, were discovered. 

These two candidates have homologues characterised in O. volvulus and B. malayi, 

and have been recently evaluated as vaccine candidates either on their own or in 
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combination (Hess et al., 2014; Arumugam et al., 2016). Both these proteins can be 

found on the surface and oesophagus of L3 of O. volvulus and B. malayi, as well as the 

hypodermis and cuticle of adult worms and the surface of Mf, although their functional 

properties are currently unknown. In O. volvulus using the mouse diffusion chamber 

model, immunisation with either recombinant proteins Ov-Ral-2 and Ov-103 in 

combination with alum as an adjuvant induced protection, seen as a 39% and 30% 

reduction in worm survival respectively, and 21% reduction was seen when proteins 

were administered as a fusion protein (Hess et al., 2014). However, in the absence of 

alum, protection was absent (Hess et al., 2016). Similar results were obtained using B. 

malayi recombinant proteins Bm-Ral-2 and Bm-103 in gerbils, with a 22-46% 

reduction in worm burden when proteins were administered alone, and 49-51% 

reduction when proteins were administered concurrently and 56-61% reductions when 

administered as a fusion protein (Arumugam et al., 2016). Although both Bm-Ral-2 

and Bm-103 affect adult worm survival, only Bm-Ral-2 had an effect on worm 

fecundity (Arumugam et al., 2016). Using the O. ochengi cattle model, recombinant 

Oo-Ral-2 when in combination with 8 other antigens (including Oo-CPI) induced 

protection, seen as a 42% decrease in dermal Mf following natural infections compared 

to non-vaccinated controls (Makepeace et al., 2009). In endemic areas for 

onchocerciasis 77% of the population had Ov-Ral-2 antibodies, and individuals with 

these antibodies were significantly less likely to develop ocular pathology (Gallin et 

al., 1989). In a separate study, higher quantities of antibodies raised against Ov-103 

were found in endemic normal (naturally protected individuals) compared to infected 

individuals (Johnson et al., 1995). So far, the evidence shows that both Ral-2 and 103 

could be potential vaccine candidates for both onchocerciasis and lymphatic filariasis. 
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Another strategy to vaccine candidate discovery, is to use our understanding of filarial 

parasites, to have a targeted approach in the search of vaccine targets. In filarial 

infections, type 2 immune responses are necessary for controlling infection within the 

host, however filarial parasites are able to modulate the host immune system, which 

allows them to survive and evade the host protective immune responses. Therefore, a 

strategy that targets immunomodulators, would offer an attractive approach. 

Identification of potential immunomodulators is achievable through extrapolation of 

known regulators in other organisms (i.e. related species) or because it is known that a 

potential source of immunomodulators are the excretory-secretory proteins (E/S) of 

female worms, these can be investigated. Adult females have been shown to contribute 

to the parasite’s ability to maintain chronic infections, and their ES has been 

hypothesised to contain immunomodulators (Hoffmann et al., 2001). 

One of the most promising vaccine candidates is cysteine protease inhibitor-2 (CPI-2), 

CPI-2 has been characterised in O. volvulus (Lustigman et al., 1992b), B. malayi 

(Manoury et al., 2001), L. sigmodontis (Allen et al., 2000). CPI-2 belongs to the 

cystatin superfamily, which have been described extensively in parasitic nematodes 

(Vray et al., 2002; Gregory, Maizels, 2008), and functions as an immunomodulator 

(Pfaff et al., 2002) by blocking mammalian protease activity in antigen processing 

cells (Manoury et al., 2001). In B. malayi, vaccination with recombinant Bm-CPI-2 

showed no protection in gerbils following subsequent L3 infection, however it did 

induce a significant antibody response and altered worm distribution, resulting in a 

decrease of adult worms in lymphatic tissue (31% of the worms) and increased worm 

migration to the heart and lungs (69% of the worms) (Arumugam et al., 2014a). A 
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mutation in CPI at amino acid position 66 (Asn66 to Lys66), in two independent 

vaccination experiments using either recombinant protein in the B. malayi gerbil model 

(Arumugam et al., 2014b) or using plasmid DNA in L. sigmodontis BALB/c model 

(Babayan et al., 2012), affected female worm fertility and resulted in reduced Mf 

numbers circulating in the blood, proving that targeting immunomodulators and 

allowing the host to mount protection immune response is a feasible strategy for 

vaccination. 

Thioredoxin peroxidase (TPX-2) is a thiol-specific antioxidant detoxification enzyme, 

a critical component in the parasite’s defence against injury caused by oxygen radicals 

and characterised in B. malayi and O. volvulus (Chandrashekar et al., 1998). TPX-2 

shows low protection on its own, however it does induce a strong Th2 immune 

response in mice (Anand et al., 2008); furthermore naturally protected individuals in 

B. malayi endemic areas show strong antibody responses against Bm-TPX-2 (Anand 

et al., 2012). When used in combination with other antigens in multivalent DNA 

vaccines, TPX-2 does induce protection against  B. malayi L3, in a chamber model 

(Anand et al., 2008) and a reduction in circulating Mf in L. sigmodontis model 

(Honglin, 2011), demonstrating that TPX-2 is strongly immunogenic and is a potential 

filarial vaccine but needs to be used in combination with other antigens to confer 

protection. 

A novel antigen Ls-ShK (nLs_04059) was identified in the E/S of L. sigmodontis 

gravid adult female (Armstrong et al., 2014), containing six metridin-like ShK toxin 

domains. These ShK domains have a wide phylogenetic distribution, but the pattern 

found in L. sigmodontis is conserved in the filarial nematodes B. malayi, D. immitis, 
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O. ochengi, O. volvulus, Acanthocheilonema vitae, Wuchereria bancrofti and Loa loa 

(and Ascaris suum an ascaridid nematode) (Armstrong et al., 2014). Although the exact 

function of Ls-ShK is currently unknown it has been hypothesised to be an 

immunomodulator, as ShK domains can be found in type 1 toxins which are known to 

block voltage-gated potassium channels (Kv1.3 channels). Since ShK proteins inhibit 

Kv1.3 channels, a ShK domain peptide from B. malayi is currently under development 

as therapy for autoimmune diseases, specifically targeting Kv1.3 channels expressed 

by effector memory T-lymphocytes (Chhabra et al., 2014), suggesting that Ls-ShK 

could be modulating acquired immunity by inhibiting memory T cells. In the L. 

sigmodontis model, DNA immunisation with Ls-ShK showed initial promise by 

inducing protection, with no Mf found circulating in the blood compared to controls 

(Duprez. J, MRes Thesis, 2013, University of Edinburgh).  

In human and L. sigmodontis filarial infections, TGF-b has been associated with the 

parasite’s ability to modulate the immune system. Members of the transforming growth 

factor β (TGF-β) family were identified in B. malayi, of particular interest was Tgh-2 

which shows close similarity to human TGF-β. Tgh-2 has been postulated to be a 

immunomodulator, whereby Tgh-2 can ligate to host TGF-β receptors and therefore 

reduce immune responses (Gomez-Escobar et al., 2000). Homologues of Tgh-2 in B. 

malayi, L. sigmodontis and O. volvulus all contain the same conserved C-terminal 

domain, and 9 cysteine residues. Although no vaccination experiments with Tgh-2 

have been done so far, in chronic O. volvulus infections where immune down-

regulation plays a key role in survival of parasites, production of TGF-β family of 
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cytokines have a direct role in immunosuppression (Korten et al., 2010), therefore 

Tgh-2 shows potential as a vaccine target against immunomodulatory protein.  

Whether it is as recombinant protein, peptide or DNA vaccines, a problem with many 

vaccine candidates is that they have low immunogenicity, therefore to overcome this, 

adjuvants can be used to enhance their response. DNA vaccine induced immunity can 

be enhanced by the co-delivery of plasmids encoding cytokines, chemokines or any 

co-stimulatory molecule by increasing the magnitude or type of immune responses 

necessary for protection. Co-delivery of interleukin-4 (IL-4) and the macrophage 

inflammatory protein 1 alpha (MIP1a) also known as the chemokine CCL3, were 

demonstrated to enhance DNA vaccine-induced immunity (Honglin, 2011; Babayan et 

al., 2012). Alum is commonly used as an adjuvant in human vaccines, usually in 

combination with peptides or recombinant proteins, and elicits a strong Th2 and 

humoral immune response, primarily mediated by IgG1 in mice (Rubin et al., 1986; 

Beck, Spiegelberg, 1989).  

Another strategy to increase protection and overcome the poor immunogenicity of 

individual peptides is to increase their membrane trafficking, by attaching to the 

peptide a palmitoyl group (derived from pamitic acid) to enhance their hydrophobicity 

(Beekman et al., 1997). However, even with these modifications and as multivalent 

vaccine, there might not be strong enough immune stimulation to trigger an innate 

immune response, which leads to a strong adaptive immune response. Therefore, 

peptide-based vaccines also require adjuvants, such as a peptide containing chimeric 

MHC class II peptide (TpD) epitopes from tetanus and diphtheria toxoid; this peptide 
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is able to bind to broad range of MHC II alleles, and has been shown to increase CD4 

memory T cell recall responses and robust antibody production (Fraser et al., 2014).  

Aims of chapter 

• Does Ls-ShK induce protection following immunisation? 

• Can peptides derived from the promising vaccine candidates Ls-102, Ls-Ral-2, 

Ls-CPIm, Ls-ShK and Ls-Tgh-2, induce protection? 

The protective efficacy of vaccine candidates were evaluated in independent 

immunisation time courses, using the permissive L. sigmodontis BALB/c model. In 

these immunisation experiments mice received a challenge infection following 

immunisation. The first experiment involved validating ShK as a vaccine antigen using 

DNA vaccines. Since peptides are an alternative strategy, relying on highly targeted 

immune responses with the potential to avoid allergic responses, peptides derived from 

ShK and the other vaccine candidates were trialled and their protective efficacy 

evaluated. By targeting non-immunomodulatory regions of the antigen or with a 

mutated form of an immunomodulatory peptide, it is hoped that the 

immunomodulation by L. sigmodontis can be overcome, allowing a protective immune 

response to be triggered and protection to be achieved.   
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2.2 Methods 

2.2.1 Ethics statement  

All procedures involving animals were approved by the University of Edinburgh and 

the University of Glasgow ethical review committees, and performed under license 

from the UK Home Office in accordance with the Animals (Scientific Procedures) Act 

1986. Animal experiments were conducted following the ARRIVE (Animal Research: 

Reporting of In Vivo Experiments) guidelines developed by NC3Rs (National Centre 

for the Replacement Refinement & Reduction of Animals in Research) 

(https://www.nc3rs.org.uk/arrive-guidelines), which are intended to maximise 

information published while minimising unnecessary studies  (Kilkenny et al).  

2.2.2 Mice and parasites 

All mice used in the vaccination experiment were female BALB/c mice that were 

obtained from either the Anne Walker Animal unit of the University of Edinburgh or 

purchased from Charles River (UK). Mice were housed in individually ventilated cages 

(IVC) at either the University of Edinburgh or the University of Glasgow and in each 

vaccination experiment the treatment groups were randomly allocated to avoid any 

cage effect. All mice were between 6-8 weeks of age before the start of any procedure. 

The L. sigmodontis life cycle was maintained in gerbils using the mite vector 

Ornithonyssus bacoti by Alison Fulton at the University of Edinburgh. To obtain 

infective third stage larvae (L3) for challenge infections, mites were infected by 

allowing them to blood feed on L. sigmodontis infected gerbils carrying Mf in their 
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bloodstream. The infected mites were picked from the gerbils and left to incubate for 

12 days at 37°C and 70% humidity, allowing Mf to mature to L3. Infective L3 were 

extracted from those mites (see challenge 2.2.12). 

2.2.3 Preparation of L. sigmodontis cDNA 

Adult female L. sigmodontis worms were harvested from the pleural cavity of infected 

gerbils and washed in sterile phosphate buffered saline (PBS: 137mM NaCl, 2.7nM 

KCL, 10mM Na2HPO4, 1.8mM KH2PO4, pH 7.4).  

RNA was extracted using the RNeasy kit (QIAGEN), by first homogenising 30mg of 

adult worms, in 600µl of RTL buffer, for 30s at 30Hz (using Tissue Lyser II and sterile 

steel balls, QIAGEN). The homogenised worm suspension was centrifuged for 3mins 

at 300 x g at room temperature, then up to 700µl of the supernatant fluid was 

transferred to an RNase free 1.5ml tube (Eppendorf) and 1 volume of 70% ethanol was 

added to it and mixed using a pipette.  

The sample (including the precipitate) was transferred to a RNeasy spin column placed 

in a 2ml collection tube, centrifuged for 15s at ≥8,000 x g and the flow through 

discarded. The column membrane was washed 3 times, first with 700µl Buffer RW1 

(and centrifuged for 15s, at 8,000 x g and flow though discarded), then twice with 

500µl Buffer RPE (centrifuged for 15s the 1st time and 2mins the 2nd time, at 8,000 x 

g and the flow though discarded each time), the 3rd wash step is to ensure no ethanol 

is carried over during RNA elution. To elute the RNA from the column, 30-50µl 

RNase-free water was added directly to the spin column membrane and centrifuged 
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for 1 min at ≥8,000 x g to elute the RNA into a clean collection tube (store RNA at -

80°C).  

Genomic DNA contamination was removed from the RNA sample using Ambion 

DNA-free DNA removal kit (Invitrogen), by adding 0.1 volume of 10x DNase I buffer 

and 1.5µl rDNaseI was added to the RNA and mixed gently, before incubating for 30 

mins at 37 °C. Then 0.1 volume of DNase Inactivation Reagent (making sure it has 

been re-suspended) was added, mixed and incubated for 2mins at room temperature, 

occasionally mixing, before centrifuging at 8,000 x g for 1.5mins. The supernatant 

fluid was transferred to a clean RNase free 1.5ml tube, and the concentration of RNA 

determined using a Nanodrop 2000 spectrophotometer (Thermo Scientific). 

To convert RNA into complementary DNA (cDNA), reverse transcriptase polymerase 

chain reaction (RT-PCR) was used. To do this 1µg of RNA was diluted into of RNase 

free water to get a final concentration of 74.1ng/µl, to which 1µl of oligo(dT) primer 

(Bioscript, Bioline) was added to prime the reverse transcriptase reaction, the mix was 

incubated at 70°C for 5mins. Then 6.5µl of RT-PCR master mix containing: 4µl of 5x 

Reaction Buffer (Bioscript, Bioline); 2µl of 1µM dNTPs (Promega); 0.5µl of Ribosafe 

RNase Inhibitor (Bioscript, Bioline); and 0.25µl of reverse transcriptase enzyme 

(Bioscript, Bioline), was added to the RNA. The RNA mix was placed in a PCR 

machine and incubated at 37°C for 1hr and then 70°C for 10 minutes, and cDNA is 

produced (stored at -20°C). 
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2.2.4 Preparation of whole L. sigmodontis antigen 

Whole L. sigmodontis antigen was made by homogenising adult worms in 1xPBS 

using a ground-glass homogeniser. The homogenised L. sigmodontis was left on ice 

for 1hr and then centrifuged at 6,000 x g for 10mins. The supernatant fluid was 

collected and filtered using a 0.22µm syringe filter (Millipore). The protein 

concentration was determined using a Bradford assay and stored at -80ºC. 

2.2.5 Amplifying ShK from L. sigmodontis cDNA 

Polymerase chain reaction (PCR) was used to amplify ShK from L. sigmodontis 

cDNA, for either cloning into pcDNA3.1 (Invitrogen) or pET29c (Novagen) plasmid, 

using specific primers (Table 2.1). Each PCR reaction contained: 1x Pfu buffer (from 

10x Pfu buffer: 200mM Tris-HCl pH8.8 at 25°C, 100mM KCl, 100mM NH4SO4, 

20nM MgSO4, 1mg/ml nuclease free BSA and 1% Triton X-100); 2mM of dNTP mix 

(Promega, containing 10mM of dATP, dCTP, dGTP and dTTP in water); 1µM of 

forward primer; 1µM of reverse primer; 1.25u/50µl of Pfu polymerase; 0.1µg of 

cDNA; and nuclease free water to make up the volume needed.  

The PCR programme consisted of an initial denaturation step at 95°C for 2 minutes; 

followed by 35 cycles of: denaturation step at 95°C for 1min, annealing step at a 

temperature according to the Tm of the primers for 30s (Table 2.1), and an extension 

step 72°C for 2mins; with a final extension at 72°C for 5 minutes; if left on hold at 

4°C. 
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2.2.5.1 Agarose Gel separation and gel extraction 

The PCR products were separated by gel electrophoresis at 100V on a 2% agarose gel 

(Fisher scientific) in 1xTBE buffer (Thermo Fisher scientific) containing 0.5x SYBR 

safe DNA gel stain (Invitrogen), by loading the PCR products with 1x Blue Juice Gel 

Loading Buffer and run alongside a 100bp ladder (Invitrogen). 

The QIAquick gel extraction kit (QIAGEN) was used to extract DNA bands of interest 

(Ls-ShK 808bp). The section of the gel that contained the correct sized band was cut 

out, and placed in 3 volumes of buffer QC for 1 volume of gel, then 1 volume of 

isopropanol was added and mixed. The dissolved gel is samples was then added to a 

QIAquick spin column and centrifuged for 1min at 17,900 x g to bind the DNA to the 

membrane within the column. The flow through was discarded and the DNA washed 

by a 5mins incubation with 750µl of Buffer PE, followed by centrifuging 1min at 

17,900 x g. The flow through was then discarded before re-centrifuging for another 

minute to remove any residual wash buffer. The columns were then placed in clean 

microfuge tubes and DNA eluted by adding 50µl buffer EB to the centre of the 

membrane in each column and left to stand for 1 min before centrifuging for 1min at 

17,900 x g. A spectrophotometer (NanoDrop, Thermo Scientific) was used to quantify 

the concentration of the DNA, at an optical density of 260 nm. 

2.2.5.2 Sanger sequencing 

To verify that the amplified PCR product had the correct sequence, Sanger sequencing 

was used, by following the BigDye Terminator v3.1 Cycle sequencing reaction kit 

(Invitrogen). Each sample was sequenced with their respective forward primer and in 
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another reaction their reverse primer (Table 2.1), each sequencing reaction consisted 

of 2µl of 5x sequencing buffer, 0.32µl of 10µM primer, 3.68µl of nuclease free water, 

2µl of BigDye and 2µl of the sample (200-500ng of DNA). The sequencing samples 

then underwent a PCR program of 25 cycles of 95ºC for 30s, 50ºC for 20s and 60ºC 

for 5mins 15s, when the cycles were over the samples were given to Genepool 

(Edinburgh Genomics) for sequencing.  
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Table 2.1. ShK primers for cloning in either pcDNA3.1 or pET29c 

Primers for ShK to clone in: Annealing 
Temp 

pc
D

N
A

3.
1 Forward:  

5’-CACCATGTCACCGAGTGTTGAGATTGG-3’ 
47 ºC 

Reverse:   
5’-TTAACAATAATTACAAGTTTTTTCACAATATTTTTGGG-3’ 

pE
T2

9c
 

Forward:  
5’-TATATGGATCCTAGCCGCCACCATGTCACCGAGTGTTGAGATT-
3’ 

55ºC Reverse:  
5’-
ATTGGCGCGCGGTCCGCGTGCGCAAGCTTTTAACAATAATTACAA 
GT-3’ 

*CACC = sequence needed for cloning into pcDNA3.1; GGATCC = BamHI restriction site; 

AAGCTT = HindIII restriction site 

2.2.6 Cloning of ShK pcDNA3.1 plasmid for DNA vaccine 

Ls-ShK was cloned into a pcDNA3.1 plasmid to be used as DNA vaccines, in the 

vaccination time course experiements. The purified Ls-ShK PCR product was cloned 

into the pcDNA3.1 plasmid using the pcDNA3.1 Directional TOPO Expression Kit 

(Invitrogen). The kit recommended blunt PCR products, hence the use of Pfu 

polymerase, and a 5’CACC sequence for which the primers were designed accordingly 

(Table 2.1). The PCR product were added at 0.52ng/µl to 2.5-3.3ng/µl of Topo vector 

(different ratios of PCR product to vector were tried till an optimal ratio was found), 

in a 1/6 dilution of salt solution (1.2M NaCl, 0.06M MgCl2) provided, the remaining 

volume was made up to 50µl with nuclease free water. The mixture was incubated at 

room temperature for 5mins, and immediately put on ice.  

The plasmids containing the inserts were then transformed into competent Escherichia 

coli One Shot TOP10 chemically competent E. coli cells (Invitrogen), by adding 2µl 



 

 
93 

of plasmid to one vial of competent cells, and heat-shocked for 30 seconds at 42ºC. To 

grow up the cells, 250µl of S.O.C media (provided by Invitrogen) was added to the 

cells and left to grow in a shaking incubator for an hour at 37ºC and 2.5 x g. After the 

hour, the cells were plated on Luria Broth (LB) (Fisher Scientific UK Ltd) agar plates 

(LB with 1.5% agar) containing 100µg/ml of ampicillin (Sigma Aldrich), these were 

left overnight in a non-shaking incubator at 37ºC.  

Colonies were picked and grown overnight in 5ml of LB containing ampicillin 

(100µg/ml) at 37ºC in a shaking incubator at 2.5 x g. The next day the cells were 

harvested by spinning 2ml of the overnight cultire at 8,000 x g for 3mins and the 

supernatant fluids removed. Only cells containing the plasmid will have grown. The 

plasmids were extracted and purified from the cells using the QIAprep spin miniprep 

kit (QIAGEN).  

2.2.6.1 TAQ PCR for plasmid validation 

The presence and orientation of the insert in the purified plasmids were checked using 

TAQ PCR (Bioline), using either T7 primer as the forward primers and the inserts 

reverse primer (Table 2.1 & Table 2.2); or the forward primer of the insert (Table 2.1) 

and BGH primer as the reverse primer (Table 2.2). For each 20µl TAQ PCR reaction 

the following master mix was used: 2µl of 10x NH4 Buffer, 0.6µl of 50mM MgCl2, 

0.2µl of 100mM dNTPs, 0.4µl of the 10µM forward primer, 0.4µl of the 10µM reverse 

primer, 0.2µl of BIOTAQ DNA polymerase, 15.2µl of Nuclease-free water (to make 

the volume up to 19µl) and 1µl of template DNA(0.1µg).  
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The PCR program used was: 95°C for 1min as the initial denaturation step; then 35 

cycles of 94°C for 45 seconds for denaturation, 30s at 47°C for annealing, and 72°C 

for 1min for extension, and after the cycles a final extension of 72°C for 10 minutes, 

and stored at 4°C. The PCR products were then run on a 2% agarose gel (Thermo 

Fisher scientific) in 1xTBE buffer (Thermo Fisher scientific) for 45 minutes at 100v. 

The positive colonies that had the insert in the correct direction, were then sequenced 

using sanger sequencing (section 2.2.5.2). If the sequence was correct, the cells that 

contained the correct plasmid were stored in glycerol at -80°C. 

Table 2.2. Primers used to extract and verify insert in pcDNA3.1 plasmids 

Primer Sequence 

T7 5 ́-TAATACGACTCACTATAGGG-3 ́ 

BGH 5 ́-TAGAAGGCACAGTCGAGG-3 ́ 

 

2.2.6.2 Plasmid amplification and purification for vaccination 

experiments 

Every DNA vaccination required 80µg of plasmid DNA, therefore plasmid quantities 

were amplified by growing the cells containing the plasmid of interest overnight. A 

volume of 10µl of the cells (stored at -80°C) were added to 500ml of LB containing 

ampicillin (100µg/ml) and cultured for 12-16hrs in a shaking incubator at 35°C and 

2.5 x g. The bacterial cells where then harvested by centrifuging the culture media for 

20mins at 9,300 x g and 4°C, the supernatant fluid was discarded so that only a 

bacterial pellet was left.  
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The HiSpeed Plasmid Maxi Kit (QIAGEN) was used to purify the plasmids from the 

cells. To use the smallest possible volume of DNA vaccine during immunisation, the 

plasmid concentration must be high, therefore in the final step of the kit 500µl of 

elution buffer was used instead of the recommended 1ml. To check the concentration 

of the plasmid DNA samples a NanoDrop was used.  

2.2.7 Cloning and expression of recombinant Ls-ShK for 
ELISA 

The pET system (Novagen) was used for the cloning and expression of recombinant 

Ls-ShK in E. coli. Ls-ShK was cloned into pET29c plasmids, using BamHI and HindIII 

restriction sites. Ls-ShK insert was amplified from adult L. sigmodontis with primers 

spanning the full CDS minus the stop codon and with flanking restriction sites, BamHI 

at the 5’ end and HindIII at the 3’end, following the pfu PCR protocol in section 2.2.5). 

The Ls-ShK insert and the pET29c vector were digested separately in a 20µl reaction 

(all from Promega, Uk): 2µl 10x restriction enzyme buffer E; 0.2µl BSA(10µg/µl); 

0.5µl BamHI (10u/µl); 0.5µl HindIII (10u/µl); 1µg of Ls-ShK insert or pET2c vector; 

and made up to a final volume of 20µl using nuclease free water. The reaction was 

incubated for 1hr at 37°C, followed by 15mins at 65°C to inactivate the enzymes. 

Digested inserts and plasmids were separated on agarose gel and extracted using the 

same method as section 2.2.5.1. The digested insert and plasmid were ligased together 

using T4 DNA ligase (Promega), using a ratio 1:3 of vector to insert, using the 

following equation: 
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The T4 DNA ligase reaction (Promega): 100ng of digested vector; 50ng of digested 

insert, 1µl of 10X Ligase Buffer; 0.1-1U T4 DNA ligase; and made up to a final volume 

of 10µl using nuclease free water. The reaction was incubated for 3hrs at room 

temperature (~22°C), followed by 10mins at 70°C to heat inactivate the T4 DNA 

ligase.  

The newly ligated plasmids were transformed into JM109 competent cells (Promega), 

by adding 2µl of ligated plasmids to 30µl of thawed JM109 cells, and incubated for 

20mins on ice. The cells were then heat shocked for 30s at 42°C and transferred on ice 

for 2mins. The transformed cells were then cultured in 100µl of S.O.C media 

(Invitrogen) in a shaking incubator for 1hr at 37°C and 2.5 x g. 30µl of the cultures 

were plated onto a Kanamycin (30µg/ml) agar plates and left to incubate overnight at 

37°C in a non-shaking incubator.  

The following day colonies were picked from the plates, these cells will contain 

plasmid as cells with no plasmid will not have grown. These colonies were further 

grown overnight in 5ml of LB with Kanamycin (30µg/ml), in a shaking incubator at 

2.5 x g at 37ºC. The plasmids were extracted and purified from the cells using the 

QIAprep spin miniprep kit (QIAGEN). The presence and orientation of the insert in 

the purified plasmids were checked using TAQ PCR (Bioline), using either T7 primer 
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as the forward primers and the inserts reverse primer (Table 2.2) following the same 

protocol as section 2.2.6.1. 

Plasmids which contained the plasmid with the correct insert, where then transformed 

into BL21 DE3 competent E. coli (Novagen) for recombinant protein expression. 

These were grown overnight at 37°C on Kanamycin (30µg/ml) agar plates. The 

following day colonies were picked from the plates, further grown overnight in 10ml 

of LB with Kanamycin (30µg/ml), in a shaking incubator at 2.5 x g at 37ºC. 

5ml of the overnight culture was added to 500ml of LB with Kanamycin (30µg/ml) 

and cultured at 37°C in a shaking incubator (2.5 x g), when the cell culture reached an 

OD 600 of 0.6, protein expression was induced by adding 1mM of IPTG (Sigma 

Aldrich). 3hrs following induction, cells from the culture were harvested by 

centrifuging the cultures for 20mins at 9,3000 x g, and cell pellets frozen at -20°C (this 

is to facilitate cell shearing).  

First the soluble protein was released from the cells, by thawing the cell pellet and re-

suspending in 30ml of 1x Binding buffer (5mM Imidazole; 0.5M NaCl, 20mM Tris, 

pH7.9), the re-suspended cells were frozen and thawed a second time and sonicated to 

release the protein with 3 times: 30s On, followed by 30s Off. The cells were 

centrifuged for 20mins at 9,300 x g, supernatant fluids containing the soluble protein 

were stored at 4°C. 

To collect the insoluble protein, the cells were the re-suspended in 30ml 1x Binding 

buffer containing 6M of Urea. Similar as for the soluble proteins, the re-suspended 

cells were frozen and thawed and sonicated to release the protein with 3 times: 30s On, 
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followed by 30s Off. The cells were then centrifuged for 20mins at 9,300 x g, and 

supernatant fluids stored as insoluble protein stored at 4°C. 

The expression of proteins, was verified using sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) in samples of the un-induced cell 

culture; 1hr, 2hr and 3hr post-induction cell culture; soluble protein; and insoluble 

protein (Figure 2.1). The samples were prepared by adding 75µl of the samples to 25 

µl of 4x loading dye (200mM Tris-Cl pH6.8, 400mM b-mercaptoethanol, 8% sodium 

dodecyl sulphate, 0.4% bromophenol blue, and 40% glycerol), these were boiled at 

100°C for 5minutes, and loaded on the gel (NuPAGE, Novex 4-12% Bis tris gel 

(NP0335BOX)) with a protein ladder (Biolabs, P77115), for 35mins at 200v. To 

develop the gel, add the gel to Coomassie blue (5g Coomassie brilliant blue R-250 

(Sigma B-0630) in 2.5L of 25% methanol and 7.5% acetic acid) for 1hr to stain, and 

then 1min in de-stain buffer (25% methanol and 7.5% acetic acid).  
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Figure 2.1.SDS-PAGE of Ls-ShK at the different stages of expression. 75µl of the samples 

were added to 25µl of 4x loading dye, and loaded into each well. Samples were from insoluble 

proteins released from cells; soluble protein released from cells; sample from cell culture 3hrs 

after induction, 2hrs after induction, and 1hr after induction; and from the un-induced cell 

culture. Most of the Ls-ShK protein was insoluble, with faint bands of soluble protein, that was 

purified and used to measure Ls-ShK specific IgG1 using indirect ELISA. 

Unfortunately, most of the protein was insoluble, therefore the insoluble and soluble 

proteins were isolated separately using His-binding resin columns 1ml Nickel column 

HiTrap chelating (17-0408-01, GE healthcare) using automated AKTAprime 

(Amersham Pharmacia) and purified by dialysis using 3500 MeCo membrane 

(Spectra/Por) in 5L of 1xPBS for soluble proteins or 5L of 1xPBS with 6mM of urea 

for insoluble proteins. Protein was quantified using a nanodrop, to find protein 

concentration (mg/ml): 
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The soluble protein was used for indirect ELISA to measure Ls-ShK specific 

antibodies. 

2.2.8 Vaccination timeline 

Two 102-day long vaccination time courses were used to investigate vaccine efficacy. 

For DNA vaccination experiments, two immunisations were given two weeks apart, 

followed by a challenge infection four weeks after the second immunisation (Figure 

2.2).  

For the peptide vaccination experiment, mice received three immunisations, a week 

apart from each other, and a challenge infection four weeks following the 3rd 

immunisation (Figure 2.2).  

The challenge infection for both experiments consisted of a subcutaneous injection 

with 23gauge (G) needle of 40 infective L3. For both vaccination experiments the end 

point was 60-days post challenge infection (D60 p.i) as this coincides with the onset 

of the patent phase (Mf present in the bloodstream). 
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Figure 2.2. Vaccine experiment timeline for DNA and Peptide vaccine candidates. All 

mice used were female BALB/c, between 6-8 weeks old at the start of the experiment, mice 

were weighed during the time course before each procedure. For the DNA vaccination 

experiments immunised mice received two DNA immunisation two weeks apart from each 

other, and for the peptide vaccination experiment immunised mice received three peptide 

immunisations a week apart from each other. This was followed by a challenge infection of 40 

infective L3 four weeks after last immunisations, so either after 2nd DNA or 3rd peptide 

immunisation. The experiment was stopped 60-days post challenge infection. During the time 

course, tail bleeds were performed on all mice (for subsequent antibody analysis) the day 

before the challenge (D -1), approximately 20 days (D20) and 40 days (D40) post challenge 

infection. The peptide experiment had extra tail bleeds the day before the peptide immunisation 

were given (D-43, D-34 and D-29).  
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2.2.9 DNA vaccine preparation and administration  

DNA vaccines used were a cocktail of pcDNA3.1 plasmid with either candidate 

antigen insert, chemokine or cytokine mouse inserts as adjuvants or empty plasmids as 

controls (Table 2.3). The pCPIm, pTPX, pIL-4 and pMIP1α DNA vaccines were 

previously created by members of the Babayan group (Babayan et al., 2012).  

Table 2.3. DNA plasmids used in vaccination experiments 

Plasmid 
Name 

Plasmid 
vector 
backbone 

Insert Role 

pCPIm pcDNA3.1 Mutated form of L. sigmodontis CPI-2. 
(Accession; AF229173.1) 
Point mutation of asparagine at position 
66 to lysine  

Vaccine antigen 

pTPX pcDNA3.1 L. sigmodontis TPX  
(WormBase: nLs.2.1.2.g10049) 

Vaccine antigen 

pShK pcDNA3.1 L. sigmodontis secreted ShK-domain 
protein 
(WormBase: nLs.2.1.2.g04059) 

Vaccine antigen 

pIL-4 pcDNA3.1 Mus musculus IL-4  
(NCBI Gene ID: 16189) 

Adjuvant 

pMIP1α pcDNA3.1 Mus musculus MIP1α  
(Accession: M73061.1]) 

Adjuvant 

pEmpty pcDNA3.1 - Non-coding plasmid 
control 

 

In these experiments 40 BALB/c mice were split into four groups (n=10). The sample 

size of the treatment groups was calculated based on the vaccine effect on Mf counts 

of the most promising vaccine candidate Ls-CPI (Duprez. J, MRes Thesis, 2013, 

University of Edinburgh). Using the Biomath website (http://www.biomath.info) the 

sample size was calculated using a two-sample t-test, with the Mf means from the 
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pEmpty control group as 55.5 Mf and Ls-CPIm vaccination treatment group as 12.8 

Mf; an average standard deviation of 73.6, a power 0.8 and a significant level (alpha) 

of 0.05. This effect size revealed that a sample size of 26 mice per experimental group 

was needed. However, 26 mice per experiment group would have been too large to 

process, therefore this was decreased to 10 mice per experimental group, and the 

immunisation experiment was repeated twice. 

For the immunisation experiments, three groups received DNA vaccines or pEmpty 

control, followed by a challenge infection, whereas the fourth group received neither 

DNA vaccine nor challenge infection (Table 2.3). Since DNA vaccines (purified 

plasmids) were stored at -20°C, the day before vaccination the plasmids were placed 

in a 4°C fridge to allow them to thaw out slowly to avoid any precipitation of DNA. 

On the day of immunisation, the concentration of the plasmids were quantified using 

a NanoDrop, and vaccine cocktails made up to total of 80µg of DNA, with equal 

quantities of each plasmid, this meant that the quantity of each individual plasmid 

decreased as the number of different plasmid were added to a vaccine cocktail (Table 

2.4). The plasmids were delivered in 50µl doses and elution buffer (QIAGEN: 10mM 

Tris-Cl, pH 8.5) was used to make up the volume.  

DNA vaccine cocktails were administered to the tibialis anterior muscle of the left leg 

with a 27G needle, immediately followed by electroporation with an ECM 830 

generator and Tweezertrodes (BTX Harvard Apparatus) using a setting of 8 pulses, 

200 V/cm, 40ms duration with 460ms intervals. During the vaccination process mice 

were under anaesthesia using gas inhalation of isoflurane and placed on heat pads. To 

wake mice, the gas inhalation was removed and mice recovered naturally on heat pads. 
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The treatments were randomised per cage so that each cage had at least one of each of 

the treatment groups. 

Table 2.4. Amount of plasmid added to the different vaccine cocktails in a DNA vaccine 

experiment. 

Plasmids Vaccine A 
(CPIm+TPX+Adj) 

Vaccine B 
(ShK+Adj) 

Vaccine Control 
(pEmpty+Adj) 

Naïve Control 
(No vaccine) 

pCPIm 20µg - - - 

pTPX 20µg - - - 

pShK - 40µg - - 

pIL-4 20µg 20µg 20µg - 

pMIP1α 20µg 20µg 20µg - 

pEmpty - - 40µg - 

Total DNA 80µg 80µg 80µg - 

2.2.10 Peptide vaccine preparation and administration 

All peptides in the peptide vaccination experiment were designed by Dr. Ben 

Makepeace (University of Liverpool) (Table 2.5) and produced JPT Peptide 

Technologies GmbH (Berlin, Germany). These peptides were predicted as being 

immunogenic using a publicly available website 

(http://imed.med.ucm.es/Tools/antigenic.pl), using the Kolaskar and Tongaonkar 

immunogenic scale. This prediction is based on a semi-empirical method, using 

physicochemical properties of amino acid residues and their frequency of occurrence 

in experimentally known segmental epitopes, and can efficiently predict immunogenic 

peptides with about 75% accuracy (Kolaskar, Tongaonkar, 1990). To improve their 

immunogenicity a palmitoyl group (derived from palmitic acid, a fatty acid) is attached 

and aids their membrane trafficking.   
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Table 2.5. Peptides used in vaccination experiment and their amino acid sequence. 

Vaccine 
candidate 

Immunogenic 
peptides Peptide sequence used in vaccination 

Ls-Ral-2 

RAL-2_1.1 Palmitoyl-PPFLVGAPPRVVGEFQQLLS-NH2 

RAL-2_1.2 Palmitoyl-QQQQQQQQQQQQQAIPPFLV-NH2 

RAL-2_1.3 Palmitoyl-FVIASLLISCAIAQQQQQQQ-NH2 

RAL-2_2 Palmitoyl-IQRSFQQFKQQAISALQQ-NH2 

RAL-2_3 Palmitoyl-AEHQVAVAKLSP-NH2 

RAL-2_4 Palmitoyl-MQLSAIAKSATLTPVQKQ-NH2 

Ls-103 

103_1 Palmitoyl-RVMDLLTSIQDKLEPLK-NH2 

103_2 Palmitoyl-KIGSIIS-NH2 

103_3 Palmitoyl-WESLVKKIFVGEGLNAVIPLLKM-NH2 

103_4 Palmitoyl-NGAPAIPITYLLTCVLPLLT-NH2 

Ls-ShKm ShK_1 Palmitoyl-TDANQLCEKADCYAAPNFSQKYCEK-
NH2 

Ls-CPIm 

CPIm_1 Palmitoyl-AGMKYKMEIQVARSD-NH2 

CPIm_2 Palmitoyl-KMEIQVARSDCKKSSC-NH2 

CPIm_3 Palmitoyl-VARSDCKKSSNEKID-NH2 

CPIm_4 Palmitoyl-CKKSSNEKIDLKTC-NH2 

CPIm_5 Palmitoyl-TLEVWEKAWEDFLQV-NH2 

CPIm_6 Palmitoyl-PDQIITLEVWEKAWE-NH2 

Ls-Tgh2 
Tgh2_1 Palmitoyl-SYQEVCT-NH2 

Tgh2_2 Palmitoyl-KIREVPG-NH2 

Adjuvant TpD H-ILMQYIKANSKFIGIPMGLPQSIALSSLMVAQ-
OH 
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The sample size for the peptide vaccination was calculated based on the vaccine effect 

of the same antigens but from DNA vaccines, as this was a pilot study for using peptide 

vaccines in a L. sigmodontis model. Therefore, the same power calculation was used 

as for DNA vaccine experiments. Using the Biomath website 

(http://www.biomath.info) the sample size was calculated using a two-sample t-test, 

with the Mf means from the pEmpty control group as 55.5 Mf and Ls-CPIm 

vaccination treatment group as 12.8 Mf (Duprez. J, MRes Thesis, 2013, University of 

Edinburgh); an average standard deviation of 73.6, a power 0.8 and a significant level 

(alpha) of 0.05. This effect size revealed that a sample size of 26 mice per experimental 

group was needed. However, 26 mice per experiment group would have been too large 

to process, since the maximum number of mice that can be processed per experiment 

is around 40 mice, the number of mice was decreased to 7 mice per experimental group. 

Therefore, for the peptides vaccination experiment 42 mice were used, which were 

split into six groups (n = 7). Four groups of mice received peptide vaccines of either: 

the immunogenic peptides (Vaccine A, Table 2.6); immunomodulatory peptides 

(Vaccine B, Table 2.6); all peptides (Vaccine C, Table 2.6); or just the TpD adjuvant 

as control, which is chimera of universal epitopes from tetanus and diphtheria toxoids 

and is used as an adjuvant (Table 2.6). Two other groups were also present in the 

experiment and consisted of a challenge infection control (Primary infected) and a 

naïve control (no vaccine or challenge infection). 

Peptide cocktails, including the adjuvant control had a total of 100µg of peptide per 

dose, with equimolar quantities of each peptide per cocktail, similar to the DNA 

vaccines the more peptides incorporated into a cocktail, the smaller the quantity of 
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each peptide. Each peptide cocktail was prepared on the day of vaccination, by mixing 

with 9% aluminium potassium sulfate dodecahydrate (alum) (Sigma-Aldrich), at a 1:1 

ratio, since the final volume per dose per mice was 50µl and there were 7 mice per 

group, therefore 200µl of peptides were mixed with 200µl of alum. Sterile and filtered 

PBS was used to make the peptide cocktails to a final volume of 200µl and the 9% 

alum solution was made in sterile water. Once the peptides and alum solution were 

added together, 35µl of phenol red (Sigma Aldrich) was added to the mix, this was 

used as pH indicator, the solution was initially yellow and sodium hydroxide (1M) was 

added dropwise to the mix (vortexing after each drop) until the solution turned pink. 

The final pink solutions were then turned on the rotator (Stuart SB2) for 30mins at 

room temperature before being centrifuged for 10mins at 6000 x g. The supernatant 

fluid was then discarded and the pellet resuspended in 15ml of sterile PBS. The 

centrifugation step and resuspension step were repeated 3 times, except that on the 3rd 

time the pellets of peptides and alum were resuspended to the final vaccine volume 

with sterile PBS (i.e. 400µl for each peptide cocktail).  

Each vaccinated mouse received a 50µl dose of peptide cocktail, the treatments were 

randomised per cage so that each cage had at least one of each of the treatment groups. 

The doses were injected intramuscularly into the tibialis anterior muscle of the left leg 

using a 27G needle, since no electroporation was needed for this procedure mice were 

not anaesthetised.  
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Table 2.6. Table Peptide vaccine cocktails.  

Vaccine A 
(Immunogenic peptides) 

Vaccine B 
(Immunomodulatory peptides) 

Vaccine C 
(All peptides) 

Adjuvant 
control 

Ls-Ral-2 peptides  Ls-Ral-2 peptides  

Ls-103 peptides  Ls-103 peptides  

 Ls-CPIm peptides Ls-CPIm peptides  

 Ls-ShK peptides Ls-ShK peptides  

 Ls-Tgh peptides Ls-Tgh peptides  

TpD TpD TpD TpD 

2.2.11 Tail bleeds 

Tail bleeds were carried out by first placing mice in a heat box at 37°C for 20mins, 

followed by a vein puncture of the tail vein using 27G needle and the blood was 

collected in a BD Microtainer SSTTM Tube containing a gel matrix. These were then 

centrifuged at 6,000 x g for 5mins and stored at -20°C.  

2.2.12  Challenge 

In each vaccination experiment (DNA or peptide), all mice except those in the naïve 

group received a challenge with 40 infective L3, four weeks after the last vaccination. 

On the day of challenge, infected mites were crushed using tweezers in RPMI 1640 

media (Gibco, UK), under a dissection microscope. A glass pipette (with a heat 

elongated tip) was used to collect 40 motile L3, which were then transferred to a glass 

well, where a 1ml syringe with a 23G needle was used to suck up each dose of L3 and 

some extra RPMI 1640 media to make a total dose of 0.2ml. To prevent the L3 

gathering in the needle, some air was sucked up to the first graduation (0.0 ml). These 
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infective L3 doses were then given as a subcutaneous challenge infection over the 

shoulders into the loose skin on the back of their necks. 

2.2.13 Samples collected at the end of experiment 

At the end point of the experiment (D60), mice were sacrificed by exsanguination 

under overdose by receiving 20µg of medetomidine hydrochloride (Domitor, Pfizer) 

and 4mg of ketamine (Vetalar, Boehringer Ingelheim), followed by CO2. Blood was 

collected from the subclavial artery under the axila of the mice for different purposes: 

30µl of it was added to 270µl of FAC’s lysis buffer (BD bioscience) diluted in 1 in 10 

in distilled water and later used for microfilariae count; 300µl of blood was added to 

1.2ml of RNA later (Ambion) for future RNA extractions; and the rest of the blood 

was collected in SSTTM blood tubes (BD) and processed in the same manner as for 

the tail bleeds. 

Before mice could be dissected they were placed in a CO2 chamber to make sure they 

were dead. Firstly, the pleural cavity washes were performed by initially washing the 

pleural cavities of the mice with 2ml of 1x PBS, and then with 8ml of 1xPBS. To 

collect any worms if any present for worm counts and cells and cytokines for future 

analysis. The pleural cavities were checked for any worms that might be left. Then the 

mediastinal and parathymic lymph nodes were harvested (lymph nodes draining the 

pleural cavity) and kept in 5ml RPMI 1640 media (containing HEPES) and 

supplemented with 100 U/ml penicillin-streptomycin (Gibco), 2mM L-glutamine 

(Gibco), 10% Foetal Bovine Serum (FBS) (Invitrogen), from now on referred to as 

complete RPMI (cRPMI). 
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2.2.14 Immunological read-outs 

2.2.14.1 Processing of lymph nodes 

The lymph nodes harvested at the end of the vaccination experiment were processed 

on the same day. The lymph nodes were dissociated to obtain a single cell suspension 

by grinding them through a 70µm nylon mesh (Fisher Scientific) using forceps in a 

petri-dish. The single cell suspension was centrifuged at 400 x g for 5mins at 4ºC, the 

supernatant fluid poured off and the remaining cells were re-suspended in 2ml of 

cRPMI. The cell concentration of each sample was determined using a 

haemocytometer, and the cells were made up to a concentration of 106 cells/ml using 

cRPMI, which were then used in re-stimulation assays. 

For the proliferation assay, 100µl of the cell suspension were added in triplicate for 

each treatment to a sterile 96 well round bottom plate. In vitro re-stimulation was 

carried out by adding 100µl of either anti-CD3, L. sigmodontis whole antigen or 

cRPMI as a control to the cell suspensions.  

Anti-CD3 monoclonal antibody (BioLegend) was used to stimulate T lymphocytes, it 

was diluted to 2µg/ml in cRPMI, so that when 100µl was added to the cells the final 

concentration was 1µg/ml. The anti-CD3 cross-links with T-Cell Receptor present on 

all T cells and therefore induces all types of T cell proliferation, which is an indication 

of a healthy cell population. Litomosoides sigmodontis whole antigen was made from 

homogenized worms and made to a concentration of 20µg/ml in cRPMI so that when 

100µl was added to the cells their final concentration was 10µg/ml in the wells. 
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The cells were incubated at 37ºC, 5% CO2 for 24 hours. To measure proliferation, 20µl 

(10% of volume in wells) of alamar blue (AbD Serotec) was added 24hours after 

plating the cells out and then placed back in the incubator. Alamar blue is an indicator 

dye, that quantitatively measures the proliferation of cells, it is an oxidation-reduction 

(REDOX) indicator. Approximately 16hrs after adding alamar blue, proliferation was 

measured by measuring absorbance at 540nm, this was repeated every 2-3 hours until 

saturation (no change in colour). 72hrs after adding the treatment to the cells, the plates 

were centrifuged at 400 x g for 5mins and 150µl of the supernatant fluids were 

removed and stored at 20ºC for cytokine analysis.  

2.2.14.2 Processing of pleural cavity lavages  

From the pleural lavages, 1ml of the initial 2ml lavage was added to clean Falcon tubes 

making sure no worms were transferred over, these were centrifuged at 400 x g for 

5mins and the supernatant fluid aspirated and stored at -80ºC for future cytokine 

analysis. The remaining cells and worms were separated, by aspirating the worms from 

the pleural lavages into a clean falcon tubes and fixing them in 70% ethanol, to be used 

for adult worm counts. 

The remaining cells from pleural lavages were pooled together per sample, and given 

a red blood cells lysis treatment by pelleting the cells at 400 x g for 5mins at 4°C, 

treating them with 2ml of RBC lysis buffer (Sigma Aldrich) for 4mins and stopping 

the treatment with 10ml of cRPMI. The treated cells were centrifuged at 400 x g, 4°C 

for 5 mins, and the supernatant fluids discarded. The concentration of each sample was 
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then determined using haemocytometer and then made up to 107 cells/ml using cRPMI 

ready for cell analysis using flow cytometry. 

2.2.14.3 Flow cytometry on pleural lavage cells 

Flow cytometry was used to detect cell populations using cell surface markers. Pleural 

lavage cells were stained with a cocktail of markers for T cells, B cells, eosinophils, 

dendritic cells and macrophages using antibodies in Table 2.7. 

Table 2.7. Panel of flow cytometry antibodies used in FACS analysis of pleural lavage 

cells. 

Staining antibodies 
against: 

Fluorochrome conjugated to antibodies Company 

CD11b Peridinin chlorophyll II protein complex (PerCP) BioLegend 

CD11c allophycocyanin (APC) BD Pharmingen 

CD19 phycoerythrin (PE) BD Pharmingen 

CD3 PE/Cy7 BD Pharmingen 

CD4 fluorescein isothiocyanate (FITC) BD Pharmingen 

F4/80 Alexa Fluor 700 (AF700) BioLegend 

MHC II (I-A/I-E) Violet 500 (V500) BD Horizon 

SiglecF Brilliant Violet 421 BD Horizon 

 

To 106 cells in FACS tubes, non-specific binding was blocked using rat anti-mouse 

CD16/32 (BD Pharmingen) at 5µg/ml in 1/20 mouse serum for 30mins in the dark at 

4°C. These cells were then washed in FACS buffer (PBS with 2% FBS), centrifuged 

at 400 x g for 5mins at 4°C, supernatant fluid discarded and re-suspended before 

adding the staining antibodies for the surface markers, all diluted 1/400. These were 

left for 30mins in the dark at 4°C cells, this was followed by a wash in FACS buffer, 

centrifuged at 400 x g for 5mins at 4°C, the supernatant fluid discarded and the 
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remaining cells re-suspended in 170µl FACS buffer. Cells were analysed using an LSR 

II (BD Biosciences), running FACSDiva software (BD Biosciences). Some cells were 

left unstained as negative controls and compensation beads (Affymetrix, eBioscience) 

were stained with each individual staining antibody in a 1/400 dilution as the 

compensation control. Analysis of the flow cytometry was performed using Flowjo 

(Tree star).  

2.2.14.4 IgG1 and IgG2a ELISA (Indirect ELISA) 

To measure parasite specific Ig levels in sera collected from the tail bleeds or the D60 

bleeds, indirect enzyme linked immunosorbent assay (ELISA) were used. ELISA flat 

bottom NUNC plates (Thermo Scientific) were coated with 5µg/ml L. sigmodontis 

antigen in bicarbonate buffer (0.45M NaHCO3, 0.18M Na2CO3 (Sigma-Aldrich), 

pH9.6) and left overnight at 4°C.  

Plates were blocked with 200µl of 4% bovine serum albumin (BSA) in PBS and 

incubated for 1hr at 37°C in the dark. Plates were washed 5 times in TBS (50mM Tris-

Cl, 150mM NaCl, pH7.5) containing 0.05% Tween-20 (Sigma-Aldrich). The mouse 

serum was serially diluted (1 in 2 dilution) in PBS with 1% BSA. For detection of 

IgG1, the samples were initially diluted at 1/400 and for IgG2a at 1/200. The serially 

diluted samples were added to the washed ELISA plates (50µl/well), except the last 

column of the plate to which PBS with 1% BSA was added (Blank control). Plates 

were incubated overnight at 4°C in the dark.  

The next day the plates were washed 5 times in TBS and 0.5% Tween-20 and incubated 

with detection antibody isotypes. 50µl per well of HRP-conjugated goat anti-mouse 
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IgG1 (1/400 dilution) or IgG2a (1/200 dilution) (Southern Biotechnology Associates) 

in PBS with 1% BSA was added to the washed plates and incubated at 37°C in the 

dark for an hour. Plates were again washed 5 times with TBS and 0.05% Tween-20, 

before adding 50µl/well of TMB-H2O2 (Merk Chemicals) and left to develop in the 

dark at room temperature for 5-10mins until a gradient of blue is seen, the reaction is 

stopped by adding 100µl of H2SO4 (1M). Absorbance was measured at 405nm and 

antibody endpoint titres were determined at the highest O.D. values which exceeded 

three standard deviations above either blank wells or wells belonging to naïve samples 

from the same plate. 

2.2.14.5 Cytokine ELISA (capture ELISA) 

Levels of interleukin 4 (IL-4), IL-5, IL-6, IL-10, IL-12p40, IFNɣ and IL-13 were 

measured by capture ELISA. Flat bottom NUNC plates (Thermo Scientific) were 

coated with 50µl/well of coating antibody, each cytokine had a specific concentration 

and buffer (Table 2.8), and left to incubate overnight in the dark at 4°C.  

The next day plates were washed 4 times with PBS and 0.05% Tween-20 buffer, and 

then blocked with 200µl of 4% BSA in PBS by incubating for 1hr at 37°C in the dark. 

These were then washed four times with PBS and 0.05% Tween-20, and then 50µl/well 

of samples were added to the plate in triplicate and the standards for each cytokines. 

The standards were serially diluted (1 in 2) in their appropriate buffer, starting at the 

appropriate concentration (Table 2.8) and added to the plate (50µl/well), these will be 

used to determine the concentration of the samples. The plates were then incubated 

overnight at 4°C in the dark. 
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The next day the plates were washed four times in PBS and 0.05% Tween-20, and 

biotinylated detection antibodies were added to each well (50µl) at the recommended 

concentration and buffer (Table 2.8). These were incubated at 37°C for 1hr in the dark, 

and then washed four times in PBS and 0.05% Tween-20. Then AMDEX streptavidin-

peroxidase (Sigma) was added to each well (50µl) in a 1/6000 dilution made in same 

buffer as for the detection antibodies, the plates were incubated in the dark for 30 

minutes at 37ºC. Once the final incubation was done the plates were washed five times 

in PBS with 0.05% Tween-20. To develop the plates 50µl/well of TMB-H2O2 (Merk 

Chemicals) was added and left to develop in the dark at room temperature for 5-10mins 

until a gradient of blue is seen, the reaction was then stopped by adding 100µl of H2SO4 

(1M). Absorbance was measured at 405nm and the concentration of cytokine levels in 

samples were determined using the standard curve made using the O.D. values of the 

standards against their known concentrations (Figure 2.3).   
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Table 2.8. Concentrations (Conc) and buffers used for the antibodies in the capture 

ELISA.  

Cytokine 

Coating Antibody Standards Detection Antibody 

Conc Buffer Initial 
Conc Buffer Conc Buffer 

IL-4 1.2µg/ml (1) 1xPBS 8ng/ml (4) 

10% NCS 
in PBS 

0.25µg/ml (3) 

10% NCS 
in PBS 

 

IL-5 1.6µg/ml (1) 1xPBS 10ng/ml (4) 0.17µg/ml (3) 

IL-6 1.0µg/ml (1) 0.1M Na2HPO4 pH12 25ng/ml (4) 0.5µg/ml (1) 

IL-10 4.0µg/ml (2) 0.2M NaHPO4 pH6.5 20ng/ml (4) 0.25µg/ml (2) 

IL-12p40 2µg/ml (1) 0.2M Na2HPO4 pH6.5 50ng/ml (4) 0.5 µg/ml 

IFN-ɣ 1.6µg/ml (3) 0.1M NaHCO3 pH9.6 50ng/ml (4) 1.0 µg/ml (3) 

IL-13 4.0µg/ml (2) 1xPBS 20ng/ml (4) 1% BSA in 
PBS 1.0 µg/ml 1% BSA in 

PBS 

For the detection of IL-4, IL-5, IL-6, IL-10, IL-12p40, IFN-ɣ and IL-13 cytokines (1BD 
Pharmingen, 2eBioscience, 3BioLegend, 4Peprotech). 

 
Figure 2.3. Cytokine ELISA Standard curve. An example of a standard curve used to 

calculate cytokine concentration in samples, this was the standard curve for IL-4, and was used 

to determine the IL-4 levels in the wells. 
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2.2.15 Parasitological read-outs 

Parasite survival was measured by counting female and male worms that were removed 

from the pleural cavity during the pleural lavages. The fixed worms were poured into 

a petri-dish, counted and sexed under a dissecting microscope. Worm survival was 

calculated as the percentage worms grown to adult stage from the 40 infective L3 

challenge, and protection was calculated where possible using the equation below: 

 

E)$*(-*&$! =
@(4!	0A)F(!	&!	G)&24)H	&!%(-*(F	4!&243' − @(4!	0A)F(!	&!	,4--&!4*(F	4!&243'

@(4!	0A)F(!	&!	G)&24)H	&!%(-*(F	4!&243'
×100 

 

For microfilariae counts, the 30µl (in RBC lysis buffer) blood samples collected at 

D60, were centrifuged at 400 x g for 5mins and 150µl of the supernatant fluid 

discarded. The pellet was re-suspended in the remaining 150µl of supernatant fluid left 

and then spread on a microscope slide. To count microfilariae an optical microscope 

using phase contrast and x40 magnification was used. 

Adult female fertility was assessed by mounting females onto microscope slides with 

40% glycerol and analysed under bright field microscopy. To measure fertility, one 

would start at vulva and follow the uteri back identifying the different embryonic 

stages (Stages 1-3) (Figure 2.4). If within the female uteri there were the elongated Mf 

present then that female was classified as having stage 3 Mf (Figure 2.4). If no 

elongated Mf were seen then pretzel shaped Mf were looked for (Figure 2.4), if present 

then that female was classified as having stage 2 Mf. If neither the elongated nor pretzel 
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shape Mf were present, then the presence of fertilized or non-fertilized eggs were 

looked for, as it was hard to distinguish between the two, they were both classified as 

stage 1 Mf (eggs). 

When the elongated Mf (stage 3) were present, then the density at which they were 

found was recorded, density scores ranged from 1<4. A density of 4 was given if 

elongated Mf were tightly packed and lined up next to each other, as in Figure 2.4, 

whereas a density of 1 would be given if only a few elongated Mf were found, with 

lots of pretzel shaped Mf or eggs present with them at the end of the uteri. 
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Figure 2.4. Representation of the different embryonic stages found in the female uteri 

under light microscope at x40 magnification. Within the female embryonic stages were 

enumerated. In the pictures above the big pictures represents what can be seen under the 

microscope in the female uteri, when many Mf are close together, whereas the pink pictures 

were taken from Ziewer et al (2012) and represent the different life stages on their own, once 

removed from the females. Stage 1 represents fertilised eggs, although sometime hard to 

distinguish between fertilized and non-fertilised so both were classified at stage 1. Stage 2 

represented the developing Mf, sometimes referred to as a pretzel shaped Mf. Stage 3 

represented the developed Mf (/elongated Mf), these are sometimes hard to identify as the line 

up next to each other in the uteri as seen in the picture, the pink picture represents on its own. 

(Ziewer et al., 2012).  

2.2.16 RNA isolation and RT2 profiler PCR array 

Blood collected at ~Day 60 post vaccination was stored in RNA later. Total RNA was 

extracted from blood using the RiboPureTm Blood Kit (Ambion) following their 
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recommendations. Briefly cells were collected by centrifuging the blood in RNA later 

for 3mins at 8000 x g and the supernatant fluid discarded. The pelleted cells were re-

suspended in 2ml of lysis buffer (provided by Ambion, with 1% b mercaptoethanol), 

once re-suspended 200µl of sodium acetate (3M, Ambion) was added and mixed, this 

was then made up to 3.8ml by adding more lysis solution. Once cells are lysed and all 

clots dissolved, RNA was extracted by adding 1.5mL of acid-phenol:chloroform 

(Sigma) and shaking vigorously for 30s. The mix was left for 5 mins and centrifuged 

for 10mins at 16,000 x g and the aqueous phase was recovered. To recover total RNA 

from the aqueous phase, 0.5 volume of 100% ethanol (Sigma) was added and vortexed 

for 10s, which can then be purified using Ambion filter cartridges. To elute the purified 

RNA from the cartridges, 50µl nuclease free water was used.  

RNA quality and quantity was determined using a Tape Station (Agilent Technologies) 

and a NanoDrop, samples with a RIN values between 7-10 and a A260/280 ratio 

between 1.8-2.1 were determined as having passed quality control. Therefore 0.5-1µg 

of QC passed RNA samples were send to Tepnel Pharma Services (Manchester, UK), 

for processing and quantitative RT-PCR. Briefly Tepnel reverse-transcribed each 

sample using the RT2 First Strand kit (Qiagen) mixed with RT2 qPCR Master Mix 

containing SYBR Green (Qiagen), to then be added to a customised Mouse Innate & 

Adaptive Immune Responses RT² Profiler™ PCR Array CAPM13455 (QIAGEN). 

Each array measured the expression of 84 genes (Appendix A: Table S1); five 

housekeeping genes (β-actin (Actb); β-2-microglobulin (B2m); glyceraldehyde-3-

phosphate dehydrogenase (Gapdh); glucuronidase beta (Gusb); and heat shock protein 

90 alpha class B member 1 (Hsp90ab1)); and controls to monitor DNA contamination, 
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first strand synthesis (RTC) and real-time PCR efficiency (PPC). Quantitative RT-PCR 

was performed using the ABI 7900HT Fast System (Life Technologies), the data was 

obtained as threshold cycles (Ct), these values denote the cycle number at which the 

increasing fluorescence signal of target DNA crosses the threshold set in the 

logarithmic phase of amplification, therefore lower Ct values indicate greater 

concentration of target DNA. Genes with low expression (Ct <35) were removed and 

relative gene expression to Actb were calculated to use to compare changes in 

expression between vaccinated treatment groups. Actb was used, as this was the only 

housekeeping gene not to have a statistically significant relationship between treatment 

and expression (Ct values). 

Relative genei expression = Actb Ct – genei Ct  

2.2.17 Statistics 

Generalised linear models were used to assess the differences between the vaccination 

groups and the parasitological and immunological readouts. Worm counts were 

modelled with a Poisson distribution, and Mf counts were log transformed and then 

modelled with a negative binomial distribution. Differences in gene expression 

between vaccination groups measured by qPCR arrays was assessed using GLM. Since 

84 genes were measured, multiple testing was accounted for using Bonferroni 

correction. Residuals were tested for normality using Shapiro test and results with a P-

value lower than 0.05 were considered statistically significant. All statistical analysis 

and graphs were done on Rstudio v0.97.318 statistical software, and graphs were 

drawn using ggplot2. 
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2.3 Results 

2.3.1 Validating Ls-ShK antigen in DNA plasmid vaccination 
experiments 

Initial vaccination with Ls-ShK p.c.DNA3.1 plasmid showed protection, with a 

decrease in worm burdens in the pleural cavity and numbers of microfilariae found 

circulating in the blood (Figure 2.5 ShK Vacc Exp 1, from Duprez. J, MRes Thesis, 

2013, University of Edinburgh). This initial vaccination experiment showed that Ls-

ShK was significantly protective, by decreasing Mf numbers when used on its own, 

but when combined to CPIm which is a promising vaccine candidate, the protective 

effect was abolished. Therefore, vaccination experiments using ShK were repeated and 

compared to different vaccine combinations. In these experiments 40 BALB/c mice 

were split into four groups (n=10), with three groups receiving two intra-muscular 

injections with plasmid DNA containing the antigen inserts of interest two weeks apart 

from each other, this was then followed by a challenge infection of 40 infective L3 

four weeks after the last immunisation. The three immunised groups were: 

• CPIm_TPX (Adj) – These mice received a cocktail of pcDNA3.1 plasmids 

containing the CPIm and TPX antigens, with IL-4 and MIP1a as adjuvant 

plasmids. This was used as a control for a protective vaccination, as it has been 

previously shown to be a promising vaccination cocktail (Honglin, 2011). 

• ShK (Adj) – These mice received a cocktail of ShK pcDNA3.1 plasmid, with 

IL-4 and MIP1a as adjuvant plasmids. 
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• pEmpty (Adj) – These mice receive pcDNA3.1 plasmid with no antigen insert, 

as well as the IL-4 and MIP1a as adjuvant plasmids. This was to control for the 

effect of the plasmid backbone and adjuvants. 

The fourth group were mice that received no vaccination nor challenge infection and 

termed naïves. 

To assess the protective effect and immunogenicity of the ShK plasmid vaccine, blood 

was collected at day 60 post challenge for microfilariae counts and antibody levels in 

the serum; and the pleural cavity of mice were washed to collect adult worms to 

determine worm survival. However, the repeated ShK vaccination experiments (ShK 

Vacc Exp 2 and ShK Vacc Exp 3), showed no sign of protection with similar 

percentages of worm survival between the ShK and the pEmpty control (Figure 2.5. 

A), similarly no decrease in Mf numbers was seen in vaccinated groups in the repeat 

ShK experiments (Figure 2.5. B), contrary to what seen in the first ShK experiment.  

Antibodies raised to L. sigmodontis antigen were found in challenged mice, with 

significantly increased levels of IgG1 (Figure 2.6. A) in infected mice compared to 

naïve controls, although no differences were seen between the immunised groups. 

IgG2a which is normally found in low levels in L. sigmodontis infections, were raised 

in infected groups in the third ShK experiment compared to Naïve controls, suggesting 

a Th1 response was raised (Figure 2.6. B, ShK Vacc Exp 3). 

To determine if the ShK plasmid used in the repeat DNA vaccinations experiments 

still had the correct antigen insert, the plasmids were amplified using PCR, and the 

products showed that indeed an insert of the correct size (808bp) was present, 
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suggesting that the change in protection is not due to the absence of the vaccine antigen 

in the immunisation (Figure 2.7).  
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Figure 2.5 Percentage worm survival and microfilariae counts from three independent 

ShK vaccination experiments. Mice were vaccinated using different combinations of DNA 

plasmids, using pEmpty as the vaccination control. 4 weeks after the last vaccination mice 

were challenged using 40 L3, and then at day 60 post-challenge infection (p.i.) mice were 

sacrificed and 30µl of blood was collected for B) Mf counts, these were counted under a phase 

contrast microscope. Pleural lavages were performed to collect the worms from the pleural 

cavity, these were counted under a dissection microscope, and A) worm survival was 

calculated as the percentage of worms present at day 60 p.i. from the 40 L3 used in challenge 

infection. ShK Vacc Exp 1 data was collected in a previous study (Duprez. J, MRes Thesis, 

2013, University of Edinburgh) and differs in terms of vaccination groups compared to the 

ShK Vacc Exp 2 and ShK Vacc Exp 3. After the ShK Vacc Exp 1 vaccination experiment, the 

CPIm_ShK with adjuvant and CPIm with adjuvant groups were replaced with CPIm_TPX 

with adjuvant, and was intended to be used as a positive control for vaccination. Dots represent 

individual mice (N=5 per treatment group for 1st experiment, N=9-10 for the 2nd and 3rd 

experiment), and bars represent the mean per treatment group with error bars as the standard 

error of the mean. GLM’s were used to analyse the statistical difference between the pEmpty 

group and the vaccinated groups, since the Naïve group was not infected it omitted from 

analysis (** P-value <0.01). 
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Figure 2.6. Levels of IgG1 and IgG2a specific to L. sigmodontis whole antigen, 

represented as titres in blood serum at day 60 p.i. in three independent ShK vaccination 

experiments. Serum from blood collected at day 60 p.i. were analysed for L. sigmodontis 

antigen (Ls-Ag) specific to A) IgG1 and B) IgG2a in three independent ShK vaccination 

experiments. Antibody levels were measured using an indirect ELISA and are represented as 

titres. Each dot represents individual mice, split into their vaccination groups (N=3-5 per group 

for ShK Vacc Exp 1, N=9-10 for the ShK Vacc Exp 2 and ShK Vacc Exp 3), and bars represent 

the mean per treatment group with error bars as the standard error of the mean. GLM’s were 

used to analyse the statistical difference between the näive group and the other vaccinated 

groups, as no difference was seen between infected groups (* P-value <0.05, ** P-value <0.01, 

*** P-value <0.005).  
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Figure 2.7. Gel of PCR products of ShK plasmid. To determine if the ShK pcDNA3.1 

plasmid used in the vaccination experiments still contained the antigen insert, a PCR using a 

ShK primer and a T7/BGH primer (Table 2.2) was done on four different ShK plasmids batch 

that were used to make up the vaccine cocktails. The PCR product show a band of the correct 

size representing the ShK antigen (808bp), each band on the gel marker corresponds to 100bp. 

 

2.3.1.1 Measuring changes in gene expression at day 60 post 

infection 

Blood samples were collected for RNA extraction at the end of the DNA vaccination 

experiments (day 60 post challenge infection), to identify changes in gene expression 

that might correlate with protection, with hope to use these as markers of protection. 

RNA was extracted from the blood and the quality of the samples were analysed before 

being send to Tepnel Pharma Services (Manchester, UK) for qPCR array analysis, to 

measure the expression of 84 genes involved in immune pathways. Not all samples 

passed the quality control and of those that did, only 6 mice were classified as protected 

showing no signs of Mf in the blood following immunisation. Of the 6 protected mice 

two mice were from antigen immunised groups (ShK or CPIm_TPX immunisations) 

and four from the control immunised group (Figure 2.8). Thus, it was impossible to 



 

 
128 

investigate changes in gene expression associated with protection induced by different 

vaccine candidates.  

Changes in gene expression were therefore compared to Mf numbers in the blood 

(regardless of immunisation), and genes involved in interferon (IFN) signalling (Irf7, 

Stat1, Jak2, Tyk2) or downstream effects of IFN (Ccl5) were found to be significantly 

positively correlated with Mf numbers (Figure 2.9), as well as H2-T23 and Myd88 

(Figure 2.10). H2-T23 is a MHC class I presentation gene and Myd88 is an adaptor 

protein involved in most toll like receptor signalling (except TLR3). 

It was not possible to determine whether changes in gene expression was associated 

with vaccine-induced protection (only 2 samples from immunised mice had 0 Mf). 

However, Ccr4 and Cd80 were found to have higher expression in vaccinated mice 

compared to primary infections, but there was no correlation with Mf or worm numbers 

(Figure 2.11).  Ccr4 (C-C chemokine receptor type 4) encodes a protein which is a 

receptor for various CC chemokines known to regulate cell trafficking of various types 

of leukocytes and aid the interaction of antigen primed T cells and DC (Wu et al., 

2001). Furthermore, Cd80 encodes a protein for a co-stimulatory molecule found on 

dendritic cells and activated B cells, and is necessary for T cell activation, this possibly 

indicates that in vaccinated mice there was an increase in DC and T cell interaction 

compared to primary infected mice.  
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Figure 2.8. Percentage worm survival and microfilariae counts from three independent 

DNA vaccination experiments, used in the qPCR array. Worm survival and log 

transformed Mf numbers found circulating in the blood at day 60, in three independent DNA 

vaccination experiments from which RNA was extracted from blood at day 60 for qPCR 

analysis. The vaccination groups were: Ls-CPIm and Ls-TPX with adjuvants (n=8); Ls-CPIm 

with adjuvants (n=5); Ls-Shk with adjuvants (n=7); empty pcDNA3.1 control (n=12), these all 

received a challenge infection. The primary infected group received no vaccine and were only 

challenged infected (n=5), and the naïve group received neither vaccine nor challenge infection 

(n=11). Many RNA samples, failed quality control, hence the unbalanced groups. 
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Figure 2.9. IFN signalling genes were found to have a significant association with 

microfilariae numbers in the blood. RNA was extracted from blood at day 60 post challenge 

infection. and qPCR arrays were used to measure changes gene expression between 

vaccination groups. Relative expression of genes to Actb were calculated and expression of 

genes involved in IFN signalling (Irf7, Stat1, Jak2 and Ccl5) were found to have a positive 

correlation with Mf numbers in the blood (represented as log transformed Mf data). These 

associations all had P-values <0.05 (GLM). 
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Figure 2.10. H2-T23 and Myd88 gene expressions were significantly associated with 

microfilariae numbers in the blood. RNA was extracted from blood at day 60 p.i. and qPCR 

arrays were used to measure changes gene expression between vaccination groups. Relative 

expressions of genes to Actb were calculated and expression of H2-T23 and Myd88 were 

found to have a positive correlation with Mf numbers in the blood (represented as log 

transformed Mf data). H2.T23 is a component of MHC-class II molecules and Myd88 is an 

adaptor connecting proteins that receive signals from outside the cell to the proteins that relay 

signals inside the cell. These associations all had P-values <0.05 (GLM). 
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Figure 2.11. Relative expression of Ccr4 and Cd80 across treatment groups. RNA was 

extracted from blood at day 60 p.i. and qPCR arrays were used to measure changes gene 

expression between vaccination groups. Relative expression genes to Actb were calculated, 

Ccr4 and Cd80 were the only genes in which there was a difference in expression between 

vaccinated groups and primary infections. Ccr4 is a receptor for the CC chemokines MIP-1, 

RANTES, TARC and MCP-1. Cd80 is a receptor found on dendritic cells, activated B cells 

and monocytes, and induces T cell proliferation and cytokine production. Each dot represents 

individual mice split into their vaccination groups (n=5-12 per treatment) and error bars 

represent standard error of the mean. GLM’s were used to assess the statistical difference 

between the vaccinated groups and the primary infection. *** P-value <0.001, ** P-value 

<0.01 and * P-value <0.05  
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2.3.2 Vaccination with peptide antigens 

Peptides derived from the vaccine candidates Ls-Ral2, Ls-103, Ls-CPIm, Ls-ShK and 

Ls-Tgh2, were predicted to be immunogenic using the Kolaskar and Tongaonkar 

antigenicity scale (Kolaskar, Tongaonkar, 1990). This prediction algorithm makes use 

of physicochemical properties of amino acid residues and their frequencies of 

occurrence in experimentally known epitopes, to predict potential antigenic epitopes 

in protein sequences. Application of this method to a large number of proteins was 

shown to predict antigenic determinants with 75% accuracy which is higher than most 

known methods (Kolaskar, Tongaonkar, 1990).  

The vaccine candidates can be split into two groups based on their known function (or 

hypothesised function), peptides derived from proteins such as CPI, ShK and Tgh2 

which are known to have immunomodulatory properties were grouped together, 

whereas Ral2 and 103 functions remain unknown but show to be immunogenic and 

induce protection in various vaccination experiments formed the second group (Table 

2.5).  

For the immunomodulatory proteins, six peptides were derived from Ls-CPI, whereas 

Ls-ShK (nLs_04059) had 19 immunogenic peptides predicted, however only the 

peptide that corresponded to the putative active C-terminal domain was used, and this 

amino acid sequence was mutated to remove the active site, by replacing both Lys-528 

and Tyr-529 with Ala. The rationale behind the mutation is similar to the mutation of 

CPI by Babayan et al (2012), in which mutating the active site of the molecules would 

neutralise the immunoregulatory function molecule. This mutation would not only 
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avoid immunising with a potential functional molecule, but also the antibodies raised 

against the molecule following immunisation would have the ability to neutralise the 

native molecule in the following infection and hence prevent potential future immune 

regulation, allowing the immune response to mount a protective response.  

As for Ls-Tgh2 (nLs.2.1.2.g04798), which is highly conserved with mammalian TGF-

b especially in the region of the active domain in the C-terminal portion, two peptides 

were predicted within that region and synthesised.  

For the second group of peptides, Ls-RAL2 (nLs_01747) had four peptides predicted, 

however one of them was too long to synthesise (50 amino acid long) and was therefore 

broken down into three, whereas Ls-103 (nLs_03356) had five antigenic peptides 

predicted and were all synthesised.  

All peptides had a palmitoyl group added to the N-terminal of the peptide, to increase 

their immunogenicity by increasing their membrane trafficking. To increase the 

immune responses to the peptides, a chimera of universal epitopes from tetanus and 

diphtheria toxoids (TpD) was co-administered.  

Since there were 20 peptides predicted from the antigens of interest, assessing the 

immunogenicity and protection of individual peptide would not only be pointless as 

one peptide on its own is not likely to be immunogenic enough, but also logistically it 

would require too many mice. Therefore, peptides were grouped by their functional 

role and vaccination experiments immunising BALB/c mice against groups of peptides 

was carried out. Forty-two mice were split into six groups (n=7), four of these groups 
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were given three intra muscular injections a week apart from each other with either a 

cocktail of:  

• Ral2_103_TpD: A combination of highly immunogenic Ls-Ral-2 and Ls-103 

peptides with the TpD adjuvant in alum (total of 11 peptides). 

• CPI_ShK_Tgh2_TpD:  A combination of immunomodulatory Ls-CPI, Ls-ShK 

and Ls-Tgh2 peptides with the TpD adjuvant in alum (total of 10 peptides). 

• All_peptides: A combination of all the 19 peptides including TpD adjuvant in 

alum (a total of 20 peptides). 

• TpD: The chimera of universal epitopes from tetanus and diphtheria toxoids 

(TpD) was give on its own in alum, to measure its effect as a control. 

Four weeks after the last immunisation, the immunised groups and a fifth group which 

had not received an immunisation (Primary infection), received a challenge infection 

with 40 infective L3. The sixth remaining group did not receive any immunisation nor 

a challenge infection, and was termed naïve control.  

2.3.2.1 No change in adult worm survival but a trend towards 

decreased Mf in peptide immunised mice 

To assess protection efficacy of the peptide vaccines, worm survival was calculated as 

the percentage of adult worm’s present in the pleural cavity out of the 40 infective L3 

used in the challenge. Overall around 20% of the worms survived and matured into 

adults, for all the challenged (/infected) groups showing no difference between the 

different immunisations groups (Figure 2.12. A).  
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Numbers of microfilariae were counted from 30µl of blood collected at the end of the 

vaccination experiment. Groups vaccinated with Ral2_103_TpD and 

CPI_ShK_Tgh2_TpD showed a slight decrease in Mf numbers compared to primary 

infection (Figure 2.12. B), but this small effect is abolished when all peptides are 

combined. 

 
Figure 2.12. Worm survival and microfilariae count at day 60 post-challenge infection. 

At day 60 post-challenge infection (p.i.) mice were sacrificed and 30µl of blood was collected 

for B) Mf counts, these were counted under a phase contrast microscope. Pleural lavages were 

performed to collect the worms from the pleural cavity, these were counted under a dissection 

microscope, and A) worm survival was calculated as the percentage of worm’s present at day 

60 post infection from the 40 L3 used in challenge infection. Dots represent individual mice 

(N=7 per treatment group), and bars represent the mean per treatment group with error bars as 

the standard error of the mean. GLM’s were used to analyse the statistical difference between 

the challenged groups (Naïve group was omitted from the analysis since it was not challenged), 

but no significance was found. 

To further investigate the impact of the peptide vaccinations on the fertility of female 

worms, the female uteri of each worms were looked at under a microscope and a score 

was given depending on the Mf development stage present in its uteri: oocyte or 

divided egg (stage 1), pretzel Mf (stage 2) and elongated/mature Mf (stage 3) (Figure 
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2.4). Empty females or females that were too degraded to measure were excluded from 

the analysis, leaving 76% of females to be analysed.  

When comparing the effect of the different immunisations, on the development of Mf 

found within worms, mice immunised with CPIm_ShK_TpD had a greater percentage 

of female worms with only eggs (stage 1) present within their uteri (i.e. missing the 

fully developed Mf). All other groups had a greater percentage of female worms with 

mature Mf.  

When mature Mf were present in the uteri of female worms, the density at which they 

were found was also recorded, as in some worms where mature Mf were present, these 

were found in low numbers with lots of dead eggs or dead “pretzel” Mf stages. The 

density of mature Mf was given as a score (1-4), where 1 is given when few mature 

Mf are present with lots of dead eggs or pretzel shaped Mf, and 4 when the majority 

of the Mf present were mature Mf.  

Immunisation with Ral2_103_TpD had no effect on the development of Mf (Figure 

2.13A), however this peptide vaccine did reduce the density at which the Mf were 

produced (P-value<0.05), with more dead eggs and debris found in these female 

worms, compared to primary infections (Figure 2.13.B).  

In conclusion, CPIm_ShK_TpD immunisation is affecting the development of Mf 

within the uteri. Ral2_103_TpD immunisation does not impair the ability of females 

worms to produce mature Mf, but the density at which they are produced is reduced, 

compared to those found in the worms recovered from mice that had not been 

vaccinated (primary infection). When no Mf were detected in the blood of mice, 
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analysis of adult female uteri revealed that only stages 1-2 were present (no fully 

mature Mf). Therefore, immunisation with either immunogenic or immunomodulatory 

peptides is affecting the fecundity of female worms, hence why there was a slight 

decrease in circulating Mf in those vaccinated mice. 

 
Figure 2.13. Embryonic stages in female uteri between treatment groups. The uteri of 

adult females from the vaccination experiments were analysed under an inverted microscope 

and the worms were scored from 1 to 3 depending on the developmental stage of Mf present. 

Stage 1, Fertilised egg; Stage 2, Pretzel shaped Mf; and Stage 3, Elongated Mf (mature Mf). 

A) represents the percentage of females harbouring the different life stages, between the 

different treatment groups. B) When the fully mature Mf were found in the female uteri, the 

density (1<4) at which they were found was also recorded, the low density of 1 is when lots of 

dead fertilised eggs or pretzel shaped Mf were present with the elongated Mf, and the higher 

density (4) is when Mf were tightly packed together. Therefore, the graph above represent the 

average density per immunisation group. Density of elongated Mf were compared between the 

vaccinated groups and primary infection using GLM (* P-values <0.05). 
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2.3.2.2 Ral2 and 103 peptide combination raises a Th2-type 

response 

To assess the immunogenicity of the peptides, blood was collected from mice at days 

14, 42 and 60 post challenge infection to measure antibody levels. The kinetics of IgG1 

was assessed by measuring IgG1 levels throughout the infection, showing that IgG1 

levels specific to L. sigmodontis antigen (Ls-Ag) significantly increased over time, 

with a 5-fold increase in antibody titre at each time point in infected mice (Figure 

2.14A). By day 60 post infection levels of IgG1 titers were higher in immunised groups 

compared to primary infection with only Ral2_103_TpD vaccination being 

significantly increased (P-value < 0.01, Figure 2.14B), whereas IgG2a responses were 

low, with only a few mice in the CPI_Shk_Tgh2_TpD and TpD groups having 

increased levels of IgG2a (Figure 2.14C). 

IgG1 antibodies specific to CPI were only slightly raised in mice vaccinated with the 

CPIm, suggesting some cross-reactivity with other peptides (Figure 2.15A). ShK 

specific IgG1 was significantly increased in the CPI_Shk_Tgh2_TpD vaccinated 

(Figure 2.15B), however since ShK specific antibodies were only measured in the 

primary infection, CPI_Shk_Tgh2_TpD and naïve group it is impossible to tell if there 

is cross-reactivity with the other peptides used. 
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Figure 2.14. IgG1 specific to L. sigmodontis whole antigen in blood serum at day 14 and 

day 42 post infection. A) Kinetics of IgG1 specific to L. sigmodontis antigen levels in blood 

serum at days 14, 42 and 60 post challenge infection, these responses were measured using 

indirect ELISA and are shown as the O.D. values (450nm) for the 1/800 dilution. B) Ls-Ag 

specific IgG1 titers at day 60 p.i. for which all challenged groups had significantly higher IgG1 

compared to naïve controls (P-value <0.05), and vaccination with RAL-2_103_TpD peptides 

induced significantly IgG1 compared to the non-vaccinated primary infection control (** P-

value <0.01, *** P-value <0.005). C) Ls-Ag specific to IgG2a titres, only the 

CPI_ShK_Tgh2_TpD and TpD control vaccination had increased IgG2a compare to naïve 

controls (P-value <0.05), but none of the vaccinated groups had any statistical difference with 

primary infection. Each dot represents individual mice, split into their vaccination groups 

(N=3-7 mice per group, some mice did not have enough blood for the ELISA), and error bars 

represent standard error of the mean. GLM’s were used to assess the statistical difference 

between the vaccinated groups and the primary infection. 
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Figure 2.15. IgG1 titres specific to Ls-CPI and Ls-ShK in blood serum at day 60 p.i. Serum 

from blood collected at day 60 p.i. were analysed for IgG1 antibodies specific A) Ls-CPI and 

B) Ls-ShK by indirect ELISA and are represented as titres, however only the 

CPI_ShK_Tgh2_TpD, primary infection and naïve control groups were measured for Ls-ShK 

specific IgG1, and showed that the CPI_ShK_Tgh2_TpD mice had increased IgG1 compared 

to the primary infection (** P-value <0.005) and naïve control (P-value <0.05). Each dot 

represents individual mice, split into their vaccination groups (N= 7 mice per group), and error 

bars represent standard error of the mean. GLM’s were used to assess the statistical difference 

between the treatment groups. 

2.3.2.3 Lower numbers of macrophages, eosinophils and DC 

recruited to pleural cavity after peptide vaccination 

compared to infected controls 

To determine what cells were being recruited to the pleural cavity. Cells were collected 

at the end of the vaccination experiment (day 60 p.i.) by pleural lavages with PBS. 

Overall infected mice had greater number of cells present in the pleural cavity 

compared to naïve controls (Figure 2.16A), analysis of the cell population with flow 

cytometry showed that eosinophils are the predominant cell population found in 

infected mice although the numbers of macrophages, eosinophils and activated DC 
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(CD11c+ MHC+ cells) were found in lower numbers in peptide vaccinated mice 

compared to primary infected, especially when vaccinated with all peptides and the 

TpD control (Figure 2.16. B, C and D). For the number of lymphocytes, B cells showed 

little difference between the groups even compared to non-infected naïve mice, 

suggesting that B cells have little role in infection in the pleural cavity (Figure 2.16E), 

whereas CD4+ T cells numbers were increased in infected mice with higher numbers 

in mice vaccinated with Ral2_103_TpD (Figure 2.16F). 
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Figure 2.16. Cell recruitment to pleural cavity at day 60 p.i. At day 60 p.i. mice were 

sacrificed and their pleural cavity washed to recover cells, A) represent the total number of 

pleural cells harvested from the pleural cavity, showing that challenged mice irrespective of 

vaccination or not had a significant increase in cells present in the pleural cavity compared to 

naïve controls (*** P-value <0.001 compared to primary infection, but all challenged groups 

have significantly higher number of cells compared to naïve, P-value <0.05). Flow cytometry 

was used to differentiate between cell populations found in the pleural lavages, B) 

macrophages (Mf) classified as CD11b+F4/80+ (SiglecF-CD19-) cells, C) eosinophils as 
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SiglecF+CD11c-, D) activated dendritic cells (DC) as CD11c+MHCII+, E) B cells as CD3-

CD19+ and F) CD4+ T as CD3+CD4+ cells. Asterisks denotes significant difference between 

primary infection and the other groups (*** P-value <0.001, ** P-value <0.01, * P-value 

<0.05). Each dot represents individual mice, split into their vaccination groups (N= 7 mice per 

group), and error bars represent standard error of the mean. GLM’s were used to assess the 

statistical difference between the treatment groups. 

2.3.2.4 No change in cytokine responses in the pleural cavity with 

peptide vaccinations 

No change in cytokine levels were measured in the pleural cavity of mice at day 60 

between the different peptide vaccination groups and the primary infected. Using 

capture ELISA, Th2 cytokines IL-4, IL-5, IL10 (Figure 2.17. A, B and C) and Th1 

cytokines IFNg (Figure 2.17.D) were measured. Only changes in IL-4 and IFNg levels 

were detected compared to naïve controls, but overall low levels of cytokines were 

detected in the pleural cavity.  
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Figure 2.17. Cytokine concentrations found in the pleural cavity at day 60 p.i. At day 60 

p.i. mice were sacrificed and their pleural cavity washed to analyse cytokine concentrations of 

A) IL-4, B) IL-5, C) IL-10 and D) IFNg concentrations in the pleural cavity. These were 

measured using capture ELISA, and each dot represents the mean of triplicated samples per 

individual mice, and each treatment group (N=7) is represented as the mean with error bars 

representing the standard error of the mean. Asterisks denotes significant difference between 

primary infection and the other treatment groups (* P-value <0.05). GLM’s were used to assess 

the statistical difference between the treatment groups. 

2.3.2.5 No difference in lymph node cell proliferation between 

vaccinated mice 

To investigate the immune responses within the draining lymph nodes of the pleural 

cavity, the mediastinal and parathymic lymph nodes were harvested at day 60 post 

infection and used in re-stimulations assays. Lymph node cells from infected mice had 

increased proliferation compared to the naïve controls in response to re-stimulation 
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with either Ls-Antigen, anti-CD3 (to stimulate T cells) or left unstimulated with media 

control (Figure 2.18. A, B and C). There was no striking difference in proliferation 

between the immunised groups and with the primary infection control. 

 
Figure 2.18. Proliferation of re-stimulated lymph node cells. The mediastinal and 

parathymic lymph nodes were harvested at day 60 post challenge infection, and their cells were 

re-stimulated with either A) L. sigmodontis whole antigen to stimulate proliferation of Ls-Ag 

specific cells, with B) anti-CD3 to stimulate T cell proliferation and with C) RPMI 1640 as the 

media control. Proliferation is represented as O.D. values as 540nm, the higher the value the 

more cells have proliferated. Each dot represents individual mice, split into their vaccination 

groups (N= 7 mice per group), and error bars represent standard error of the mean. GLM’s 

were used to assess the statistical difference between the treatment groups, where asterisks 

denote significant difference between primary infection and the other treatment groups (*** 

P-value <0.001). 
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2.3.2.6 Decreased IL-4 production by re-stimulated lymph nodes 

after vaccination with CPIm, ShK, Tgh2 peptides 

Levels of cytokines produced by re-stimulated lymph nodes were assessed using a 

capture ELISA. Overall, lymph nodes re-stimulated with either Ls-Ag or anti-CD3 

lymph nodes had an increased production of IL-4 (Figure 2.19. A and C) and IL-5 

(Figure 2.19. B and D) in infected mice compared to naïve controls. However, 

induction of IL-4 production was significantly lower in mice vaccinated with the 

CPI_ShK_Tgh2 peptides, which are known to be immunomodulatory. No change in 

IL-10 nor IFNg production was detected between the different treatment groups 

(Figure 2.20). 
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Figure 2.19. IL-4 and IL-5 production by re-stimulated lymph node cells. Cells from 

lymph nodes harvested at day 60 p.i. were stimulated with either L. sigmodontis whole antigen, 

anti-CD3 or RPMI 1640 as a media control for 72 hours and supernatant fluids were collected 

to measure cytokine productions by re-stimulated cells using capture ELISA. The graphs show 

concentrations of IL-4 (ng/ml) after re-stimulation with either A) Ls-Antigen, C) anti-CD3 or 

E) media; and show concentrations of IL-5 (ng/ml) after re-stimulation with either B) Ls-

Antigen, D) anti-CD3 or F) media. Asterisks denote significant difference between primary 

infection and the other treatment groups (*** P-value <0.001, ** P-value <0.01, * P-value 

<0.05). Each dot represents individual mice, split into their vaccination groups (N= 7 mice per 

group), and error bars represent standard error of the mean. GLM’s were used to assess the 

statistical difference between the treatment groups.  
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Figure 2.20. IL-10 and IFNg production by re-stimulated lymph node cells. Cells from 

lymph nodes harvested at day 60 p.i. were stimulated with either L. sigmodontis whole antigen, 

anti-CD3 or RPMI 1640 as a media control for 72 hours and supernatant fluids were collected 

to measure cytokine productions by re-stimulated cells using capture ELISA. The graphs show 

concentrations of IL-10 (ng/ml) after re-stimulation with either A) Ls-Antigen, C) anti-CD3 

or E) media; and show concentrations of IFNg (ng/ml) after re-stimulation with either B) Ls-

Antigen, D) anti-CD3 or F) media. Each dot represents individual mice, split into their 

vaccination groups (N= 7 mice per group), and error bars represent standard error of the mean. 

GLM’s were used to assess the statistical difference between the treatment groups, but no 

difference between the treatment groups were detected. 
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2.4 Discussion 
Vaccine induced immunity against filarial parasites was shown to be possible using 

live attenuated vaccines, such as immunisation with irradiated L3 or Mf (Le Goff et 

al., 2000; Ziewer et al., 2012), these induce antigen-specific responses that protect the 

host against subsequent infection. Although they provide proof that vaccination is 

possible for filarial diseases, due to constraints with production and ethical issues, it is 

unfeasible to use them in humans, therefore the use of DNA plasmids or peptides of 

filarial antigens as vaccines is proposed. 

Several potential vaccine candidates have already been identified and can demonstrate 

protection and/or immunogenicity in various filarial animal models, and novel ones 

are continuously being identified. A relatively novel vaccine candidate in filarial 

research is Ls-ShK. It was identified in the E/S (secretome) of L. sigmodontis gravid 

females (Armstrong et al., 2014), and although it was moderately abundant in the 

female E/S, it was present in the E/S of all mammalian derived stages. Homologues to 

Ls-ShK, such as ones found in B. malayi have been hypothesised to be 

immunomodulators, by modulating memory T cells (Chhabra et al., 2014), therefore 

Ls-ShK stood out as being a potential immunomodulator vaccine candidate.  

In initial DNA vaccination experiment, Ls-ShK showed promise (Duprez. J, MRes 

Thesis, 2013, University of Edinburgh) inducing protection seen as reduction in Mf 

numbers, however in repeat experiments this failed to show any protective response. 

Since Ls-ShK is hypothesised to be an immunomodulator, the lack of protective 

immunity could be similar to what was seen with the vaccine candidate CPI-2, where 
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its immunomodulatory properties reduced its efficacy as vaccine candidate 

(Arumugam et al., 2014a). With CPI-2, when modified to remove its 

immunomodulatory sequence protective immunity was achieved (Babayan et al., 

2012; Arumugam et al., 2014b), therefore in a subsequent vaccination experiments 

ShK was modified to removed its putative immunomodulatory side, in hopes that this 

would allow the vaccinated mice immune system to mount a protective response 

following challenge infection. Overall DNA vaccines (Ls-CPIm_TPX and Ls-ShK) 

showed low immunogenicity and protection even with the control immunisation (Ls-

CPIm_TPX), therefore another approach to vaccination was used. 

Peptide vaccines have several advantages over live attenuated, DNA or recombinant 

protein vaccines. Peptides are relatively inexpensive, due to the ease of production and 

simple composition, these can also be safer by avoiding the inclusion of unnecessary 

components possessing high reactogenicity to the host. Therefore, the efficacy of 

peptides derived from Ls-ShK, Ls-CPI, Ls-103, Ls-Ral2 and Ls-Tgh2, were 

investigated using the L. sigmodontis model. These peptides were split into two 

groups; peptides derived from Ls-Ral2 and Ls-103 were termed highly immunogenic 

peptides, as these antigens in recombinant form have induced protection against B. 

malayi in gerbils (Arumugam et al., 2016), O. volvulus using the chamber model (Hess 

et al., 2014) and O. ochengi in cattle model with natural infections (Makepeace et al., 

2009). The second group of peptides were derived from known immunomodulatory 

proteins: Ls-CPI, which has been shown to induce protection, especially when 

modified (Babayan et al., 2012; Arumugam et al., 2014b; Hess et al., 2014); and two 

novel candidates Ls-ShK and a TGF-β homologue Ls-Tgh-2. 
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Immunisation with different combinations of peptides induced a reduction in Mf 

number but did not inhibit L3 development, as worm burdens did not differ. This is 

not so surprising, as immunisation with the antigens CPIm, Ral2, 103 have previously 

been shown to affect Mf numbers but not worm burdens (Babayan et al., 2012; Hess 

et al., 2014; Arumugam et al., 2016). Although not significant, there was a reduction 

in Mf observed in the blood in mice that were immunised with either a combination of 

Ls-Ral3 and Ls-103 peptides (highly immunogenic); or Ls-CPI, Ls-ShK and Ls-Tgh2 

peptides (immunomodulatory), but not when all peptides were used together. This 

decrease in Mf was linked to an intrauterine inhibition of embryogenesis, as female 

worms derived from the mice vaccinated with either the immunogenic or 

immunomodulatory peptides, either had no viable Mf found in the uteri of the female 

worms (these correlated with no Mf found in blood) or had low viable Mf density with 

lots of fertilised eggs or pretzels shaped Mf found in the uteri alongside with the 

elongated Mf. This vaccine induced reduction in fecundity has been demonstrated 

several times in the L. sigmodontis models (Babayan et al., 2012; Ziewer et al., 2012), 

B. malayi in gerbils (Arumugam et al., 2014b) and with an ES vaccine in Brugia 

pahangi gerbil model (Zipperer et al., 2013).  

Immunisations with immunogenic or immunomodulatory groups of peptides showed 

some signs of protection, however when all peptides were combined, all protective 

effect was abolished. There are two possible reasons why immunisations with a 

combination of all peptides may not to have worked; either the combinations of 

peptides interacted with each other, or because the quantity to peptide used in each 
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immunisation dose was controlled for, the group with all peptides had less of each 

individual peptide and not enough to induce an effective response. 

Filarial parasites are complex infections triggering different cellular and humoral 

responses, as well as inducing a suppressive mechanism, with different life stages 

varying in both antigenic make-up and tissue location, therefore pinpointing effector 

mechanisms of protection has been difficult and the exact mechanisms remain 

unknown. Early research using passive transfer experiments of serum from B. pahangi 

infected cats, suggested that serum antibodies could mediate Mf killing (Medeiros et 

al., 1996). The role of antibodies in in vivo killing of Mf, was later confirmed using 

mice deficient in B cells, where Mf-specific antibodies were indeed necessary to clear 

B. malayi Mf in mice (Gray, Lawrence, 2002). However, in the permissive L. 

sigmodontis model of infection, there are contrasting results depending on the B cell 

deficiency. Mice with a µMT mutation, which lack mature B cells were 

amicrofilariamic (Mf-ve) (Martin et al., 2001), whereas mice lacking B1 cells in 

BALB/c Xid mice had a higher microfilaremia compared to wild types (Al-Qaoud et 

al., 1998), but great care needs to be taken in interpretation of knockout mice as often 

mutations can induce important modification. Antibodies have been implicated in 

antibody-dependent de-granulation of eosinophils in irradiated L3 immunisation in the 

L. sigmodontis model, responsible for the death of incoming L3 following challenge 

infection (Martin et al., 2001), but since murine eosinophils do not express receptors 

that bind IgE, the antibody responsible is most likely IgG as murine eosinophils do 

express IgG receptor and this is sufficient to activate degranulation (de Andres et al., 

1997).  
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In a study by Ziewer et al, where mice were immunised with L. sigmodontis Mf, Mf-

specific IgG1 and IgG2a antibodies were present throughout the infection (Ziewer et 

al., 2012), in this study it was suggested that protection was mediated by Mf-specific 

IgG entering the female worm uterus or interfering with developing stages of Mf, 

hence why adult female where intact despite low Mf numbers found circulating in the 

blood (Ziewer et al., 2012). Although it is impossible to say that this is what is 

happening with the peptides immunisation, since no significant protection was 

achieved with any of the vaccines combinations, there are some similarities.  

Using flow cytometry the number of B cells were found to be similar between the 

immunised groups and the primary infection. Further, when measuring adult L. 

sigmodontis specific antibodies, IgG1 was found elevated in the mice vaccinated with 

the Ls-Ral2 and Ls-103 peptides (these mice had low densities of elongated Mf). This 

difference in IgG1 was only detected at day 60 (patency) and no differences between 

the infected mice whether immunised or not were seen at day 14 and day 42 post-

challenge suggesting a cumulative increase. However, in the future it would be 

necessary to measure Mf-specific antibodies, as well as using immunohistochemistry, 

to establish if antibodies are binding to the embryonic stages. 

Cytokine profiles during infections can give an indication of the type of immune 

responses being triggered. Th-2 cytokines, IL-4 and IL-5 in L. sigmodontis infections 

are necessary for parasite containment (Al-Qaoud et al., 2000; Volkmann et al., 2001; 

Le Goff et al., 2002; Volkmann et al., 2003), as well as the Th-1 cytokine IFN-g 

(Lawrence et al., 2000; Saeftel et al., 2003). Whereas IL-10, which was initially 

described as a Th-2 associated cytokine, was found to be produced by regulatory T 
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cells and is now mostly associated with immunomodulation and parasite survival 

(Specht et al., 2004; Haben et al., 2013; Hartmann et al., 2015). Therefore, levels of 

IL-4, IL-5, IFN-g and IL-10 were measured in the lavages of the pleural cavity, but no 

changes were detected between the different immunisation groups.  

Cytokines produced by lymph node cells re-stimulated with either L. sigmodontis 

antigen, anti-CD3 to stimulate T cells or culture media were also measured, with only 

cells from mice immunised with immunomodulatory peptides showing a change in IL-

4 production, producing lower levels of IL-4 compared to other immunised groups and 

the primary infection group. Although cytokines and cells present in the pleural cavity 

and lymphoid system were collected at the time of necropsy, earlier time points would 

be more informative, during the migration of larval parasites which are the likely major 

targets of the protective immune response and that by day 60 immune responses have 

returned to baseline levels. 

The evidence so far shows that the peptide vaccines are targeting female fertility and 

not the circulating Mf, and in onchocerciasis, dermal and ocular pathology is 

associated with innate immune responses to Wolbachia released from dying Mf in the 

skin and eyes (Hise et al., 2003; Tamarozzi et al., 2011). Therefore, a vaccine against 

the Mf stage would be beneficial to the affected population, not only to decrease 

transmission but also to ameliorate pathology. However, because immunity to filarial 

parasites is mostly associated with Th2-type responses, there may be a risk that a 

vaccine might induce strong eosinophil and IgE mediated responses which could lead 

to induction of pathology (Babu, Nutman, 2012). Therefore, vaccine candidates tested 

in mice would need to be carefully monitored during and future clinical trials (Diemert 
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et al., 2012; Hotez et al., 2013), especially since in the L. sigmodontis model mice do 

not exhibit pathology. 

Hypersensitivity (allergic reactions) following vaccination are a cause for concern. 

Phase I trials of the hookworm (Necator americanus) vaccine, against the 

ancylostoma-secreted protein 2 (Na-ASP-2), resulted in generalised urticarial 

(allergic) reactions in volunteers and the suspension of the trial. This reaction was 

associated with pre-existing Na-ASP-2 specific IgE, most likely from previous 

hookworm infections, as negligible levels of Na-ASP-2 IgE were found in hookworm 

naïve-adults living in non-endemic areas (Diemert et al., 2012). Surveys in hookworm 

endemic foci in Brazil showed that a significant percentage of the population had 

increased levels of IgE to Na-ASP-2. This has caused serious concern and has 

implications for the development of vaccines against helminths (Diemert et al., 

2012).Therefore, one way to prevent this from happening in onchocerciasis vaccine 

trials, is firstly to test the potential vaccine antigens against serum from individuals 

living in endemic foci, to make sure the antigens are not recognised by IgE antibodies. 

Since one of the strategies to identify vaccine candidate has been to target 

immunomodulators, this decreases the risk of having IgE specific antibodies prior to 

vaccination. 

The use of a peptide vaccine is an attractive vaccine strategy against filarial disease, 

firstly because of the ease of production and secondly because specific antigen 

epitopes can be chosen and easily modified, so that they do not elicit to IgE. However, 

because they usually only contain one antigenic epitope, these would need to be 

combined and different combinations would need to be investigated, such as 
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combining an immunogenic peptide with an immunomodulatory peptide (Babayan et 

al., 2012). The duration of protection elicited by any vaccine would also need to 

investigated, as this was modelled to have a long-term impact in vaccination 

campaigns (Turner et al., 2015). 

Protection in vaccination experiments are measured around day 60 post challenge 

infection, as this is the point at which adult worms are known to be present and Mf are 

being produced. Although immunological readouts can be informative of what type of 

immune responses are being triggered, at day 60 immunological readouts may not be 

always indicative of protection. Quantitative RT-PCR arrays were used to measure 

changes in gene expression in vaccinated mice, to determine if gene signatures at the 

end of vaccination experiments could be more informative than antibody, cytokine and 

cellular measures. However, most gene signatures identified were associated with a 

response to parasites burden and not predictive of protection.  

Review of the data obtained and published results of other studies suggest that 

investigative associations at day 60 may be too late to measure changes associated with 

vaccination, and events at the onset of infection may determine infection outcome 

(Taylor et al., 2009). Identifying gene signatures or biomarkers predictive of vaccine 

efficacy or immunogenicity would greatly aid vaccine trials, by reducing costs if a 

vaccine shows signs of not being protective early on (Mastelic et al., 2013; Hagan et 

al., 2015). Therefore, one would need to look at changes in gene signature throughout 

a vaccination time course to pinpoint which time point is the most predictive of its 

efficacy.  
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Summary 

• Immunisation with Ls-ShK using DNA vaccines in the L. sigmodontis model 

does not confer protection. 

• Immunisation with peptides derived from immunogenic antigens (Ls-Ral2 and 

Ls-103) and from immunomodulatory antigens (Ls-CPI, Ls-ShK and Ls-Tgh2), 

affects adult female fecundity. 

• Immunisations with a combination of peptides derived from all vaccine antigens 

shows no protection. 

• Peptides have potential as vaccines but correct formulation needs to be 

determined. 

• Measuring gene signatures potentially associated with protection at the end of a 

vaccination time course is too late in the infection time course. 



 

 
159 

Chapter 3. Using machine learning techniques 
to dissect gene expression patterns in filarial 
infection from whole blood data 

3.1 Background 
The possibility of vaccination against filarial infections such as onchocerciasis is based 

on the evidence that protective immunity is observed both in humans and animals 

naturally exposed to filarial infections, and the ability to induce partial protection in 

multiple laboratory models of filarial infection. In humans, protective immunity is seen 

in a small proportion of the population living in hyper-endemic areas which show no 

clinical or parasitological signs of infection even though they have had a life-long 

exposure (Hoerauf, Brattig, 2002).  

In the Litomosoides sigmodontis mouse model, such apparent natural 

immunity/resistance is host strain-dependent, e.g. BALB/c mice are susceptible to the 

full development of adults and production of blood-circulating microfilariae (Mf), 

while C75BL/6 mice, termed resistant, eliminate the parasite within 40 days of 

infection, i.e. before the onset of patency (Petit et al., 1992; Marechal et al., 1996; 

Babayan et al., 2003). Furthermore, in BALB/c mice, protective immunity can be 

induced by vaccination with the infectious stage (L3) larvae or the transmissible filarial 

offspring (microfilariae, Mf) (Le Goff et al., 2000; Ziewer et al., 2012). Protection 

induced by vaccination in the L. sigmodontis models is determined as a decrease in 

parasite burden, either in adult worm number seen in the pleural cavity, or in the 

number of circulating microfilariae (Mf), the transmission stage of the parasite, in the 

blood.  
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Identifying markers of early immune responses to immunisation that are predictive of 

vaccine efficacy, would provide a surrogate endpoint to vaccine trials, but could also 

ultimately help predict the efficacy of a vaccine in humans. Because mice differ from 

humans, with respect to the development and activation of innate and adaptive immune 

response (Mestas, Hughes, 2004; Seok et al., 2013), successful translation of any 

vaccine from murine models to clinical application is not always straightforward, and 

vaccines that showed promise in murine models, have had a lack of efficacy in humans 

(Gray et al., 2011; Tameris et al., 2013; Kaufmann et al., 2014) or sometimes raise 

safety concerns during early human clinical trials (Diemert et al., 2012). However, the 

use of an animal model cannot be bypassed for evaluating vaccines, and based on 

common ancestry and relatively high conservation of genes and their expression 

profiles (Mestas, Hughes, 2004), immune mechanisms that take place in vivo following 

vaccination with L3 or Mf in mice could help identify the “immune signatures” that 

are necessary to trigger protection, and see if there is overlap with human makers of 

natural protection. 

Until recently studying these immune responses to infection would have been 

performed in a highly focused manner, by either investigating antibody responses, 

abundance of certain cells types, or cytokines. These methods have provided 

tremendous insight as to how and what type of the immune responses are being 

triggered, however the immune system is complex with considerable in-built 

redundancy, and consequently a focused approach can be limited when it comes to 

analysing interacting features of a complex system (Furman, Davis, 2015).  
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The introduction of high-throughput technology such as microarrays, has opened a 

broader approach to the analysis of immune responses, in which expression levels of 

tens of thousands of genes can be measured simultaneously (Weiner et al., 2015). One 

of the aims of the work described in this chapter was to investigate whether markers 

(predictors) of immunity can be detected in the blood, and whether commonalities 

could be identified between mouse and human expression profiles during filarial 

infection. Whole blood was chosen as the sample tissue, as not only is it the least 

invasive sampling method (compared to tissue biopsies) and often the only practical 

option, but also filarial infections elicit a systemic response, which is best captured by 

analysing the blood during an infection. 

The use of microarray technology for studying helminth infection is relatively 

uncommon compared to other parasites and pathogens (Kwarteng, Ahuno, 2016), with 

most studies investigating the host responses to helminths such as schistosomiases and 

Nippostrongylus brasiliensis (a helminth closely related to human hookworms) (Zhou 

et al., 2016), with even fewer studies on filarial nematodes (Kwarteng, Ahuno, 2016). 

In most of the helminth studies, changes in gene expression were measured in tissue 

samples (i.e. not readily applicable as a non-invasive approach) or isolated responses 

in filtered cell populations, instead of whole blood. However, in other pathogen 

infections such as bacteria (Schoolnik, 2002), viruses (Gaucher et al., 2008; 

Slobedman, Cheung, 2008; Querec et al., 2008) and malaria (Vahey et al., 2010), 

microarray analysis of whole blood samples has proved useful in identifying disease 

or vaccine associated biomarkers and underlying immune responses. Therefore, whole 

blood is a feasible sample to look at for changes in gene expression in filarial 



 

 

 
162 

infections. There are some drawbacks to using blood, as RNA isolated from whole 

blood has been associated with increased noise and reduced gene expression levels, 

but it does prevent problematic artefacts caused by cell separation which activates 

cells, and therefore biases the results (Feezor et al., 2004).  

Another issue is that microarrays leads to very high dimensional datasets (i.e. many 

variables are measured), often compounded by a relatively low number of samples, 

which are sometimes allocated to multiple treatment groups (i.e. non-immunised, 

control immunisation vs antigen immunised), a problem termed the "curse of 

dimensionality". Thus, to overcome the low signal to noise ratio and the curse of 

dimensionality, sophisticated analytical approaches are needed. 

Classical statistical methods, typically compare fold changes in gene expression levels 

between genes in treated/infected samples compared to control samples, and a 

threshold level based on the test statistic (P-value) is used to identify genes with a 

significant fold change (differentially expressed genes). This approach is simple, fast, 

and easy to interpret, but faces several constraints when it comes to analysing high 

dimensional data (Table 3.1) (Butte, 2002). 

In high dimensional datasets, the expression of thousands of genes are measured 

simultaneously, this therefore becomes a multiple testing/hypothesis problem, because 

of this, simply selecting a significance of P < 0.05, can result in many false positive 

discoveries. Several solutions have been proposed, but by controlling for the false 

discovery rate, it can cause many false negatives, and many genes that might be 

important can be overlooked. Therefore, the issue with this approach is that it can only 
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identify genes that provide a significant amount information in isolation to other genes. 

In reality, the regulation and activation of most functional pathways and networks is 

achieved through small incremental changes. The lack of sensitivity of the “fold 

change” approach combined with considerable variation found in blood derived 

samples reduces the possibility of identifying significant pathways and discriminating 

gene expression profiles (Huynh-Thu et al., 2012).  

An alternative approach such as Weighted Gene Correlation Network Analysis 

(WGCNA) (Langfelder, Horvath, 2008), recognises that gene expression data is more 

complex than a list of differentially expressed genes, and instead considers the 

correlation of genes expression levels across samples. This method uses gene 

correlation networks, which finds highly correlated genes (genes with similar 

expression levels) and groups them into large clusters (co-expression clusters). The 

gene expression patterns can be summarised within a cluster to a “module eigengene” 

(ME), this is a weighed summary of gene expression within a cluster (similar to a 

principal component). If a cluster ME has a particular behaviour, then it is likely most 

of the genes in that particular cluster also have a similar behaviour. This ME is then 

used to measure associations between the clustered genes and the sample traits.  

Although this method has been used extensively and provided insight into 

pathogenesis of autoimmune diseases (Sundarrajan, Arumugam, 2016), neurological 

disorders (Mina, 2016) and cancer (Yepes et al., 2016), it cannot be used to investigate 

the relationship of gene expression in multi-categorical data (such as multiple 

experimental groups) or handle large datasets, with most published studies restricted 
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to the analysis of the top 1000-5000 most varying genes or differentially expressed 

genes.  

To obtain maximal information from the high dimensional (greater number of genes 

measured compared to samples), multi-categorical (multiple experimental groups) 

microarray data, which contains complex interaction between genes, biomedical 

research is now increasingly turning to machine learning to identify “informative” 

genes (genes important in infection/vaccination) (Molla et al., 2004). In this study a 

series of publicly available machine learning methods were put together in a “pipeline” 

to identify genes associated with protection either in vaccinated mice or humans living 

in endemic areas. There is no gold-standard methodology for comparative studies in 

machine learning. However, WGCNA, is a popular approach in biomedical sciences 

(Langfelder, Horvath, 2008). Therefore, WGCNA was conducted on a subset of the 

data and results were used to validate results produced by the pipeline. 

Table 3.1. Microarray analysis methods. 

Methods Advantages Disadvantages 

Differential 
fold change 

Simple, fast, and their output is 
easy to interpret. 

Accounting for multiple-testing reduces 
the sensitivity of the test when many 
genes are measured simultaneously 
(such as in high dimensional data) and 
struggles with multi-categorical data, 
therefore, this potentially misses out 
informative genes that have a small 
change in expression. 

Gene 
correlation 
networks 

More robust with complex data 
set and at finding important 
genes within noisy data. 

Cannot deal with high dimensional data 
sets and struggles with multi-categorical 
data. 

Machine 
learning 

Good at analysing high 
dimensional, multi-labelled 
microarray data, which 
contains complex interaction 
between genes. 

Can sometimes be complicated to 
implement and hard to interpret. 
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Chapter aims: 

• To determine if changes in gene expression can be detected in whole blood, 

collected from mice vaccinated with infective L3 or Mf from L. sigmodontis 

using a machine learning pipeline. 

• To determine if changes in gene expression associated with protection in humans 

exposed to O. volvulus can be measured in whole blood using a machine learning 

pipeline. 

• To determine if mechanisms that are important for protection in mice and 

humans are the same. 
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3.2 Introduction to machine learning concepts 
Machine learning is a branch of computer science that utilises algorithms that “learn” 

from data to build models capable of predicting properties of unknown or new data. 

These can be split into two broad categories, supervised and unsupervised methods 

(Libbrecht, Noble, 2015) (Figure 3.1).  

• Supervised methods are trained on labelled data, with labels equivalent to 

response variables (i.e. experimental group the samples belong to), and then used 

to make predictions on unlabelled data (i.e. new or unknown data). For example, 

when using genomic data, a supervised learning algorithm may build a model on 

a subset of the gene expression data for which sample information is known (i.e. 

experimental group to which it belongs, or whether a patient is or is not infected); 

this is known as the “training” dataset. Then the “trained” model is subsequently 

used to predict the characteristics of the remaining data. 

• Unsupervised methods find internal structure or relationships within the data 

without any prior knowledge of the sample labels. These methods do not try to 

predict the sample label.  

Another categorisation of machine leaning methods which mostly applies to the 

supervised method is based on the type of output data. When the sample labels are 

categorical (i.e. different experimental groups, immunised/non immunised) this 

becomes a classification problem, however when sample labels are continuous (i.e. 

parasite counts) this is then regression. Some approaches are amenable to both 

classification and regression, while other algorithms can only perform one of the two. 
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To find the genes that best differentiate between the samples, depending on their 

experimental group (immunised/non-immunised control) or susceptibility to infection 

in humans (infected/endemic normal), several supervised algorithms exist, each with 

its strengths and weakness (Table 3.2)(Pirooznia et al., 2008; Bolón-Canedo et al., 

2014). 

 

 

Figure 3.1. Overview of machine learning categorisation. Machine learning can be broadly 

split into two categories supervised and unsupervised algorithms. Supervised algorithms build 

models on samples were the response variable is known, and are often used to predict the 

response of new data. Whereas, unsupervised algorithms find internal structure or relationships 

within the data without any prior knowledge on the sample labels. Supervised algorithms can 

be further classified into classification or regression algorithms, although some supervised 

algorithms can do both regression and classification. Classification is done, when the responses 

variable in categorical, and regression is used when the response variable is continuous. 
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Table 3.2. Common classification machine learning methods, used to identify 

differentially expressed genes in microarray data. 

Methods Advantages  Disadvantages 

Naïve Bayes 
(a type of 
Bayesian 
classifier) 

Fast and easy to implement, allows for 
missing values; only requires a small 
training dataset to estimate the 
parameters. 

It assumes variables are independent of 
each other; and highly dimensional data 
increases the computational cost. 
 

Decision 
Trees 

Can handle heterogeneous data; works 
well with complex interactions among 
variables (genes), easily interpretable 
results, that are ranked in order of 
importance, can handle missing data. 

Algorithms are unstable, with high bias and 
therefore prone to overfitting. 

Random 
Forest 

Can handle heterogeneous data, works 
well with complex interactions among 
variables (genes), easily interpretable 
results, that are ranked in order of 
importance, performs well with high 
dimensional data, resistant to 
overfitting. 

Does not allow missing data, loses stability 
when correlated variables are present. 

Support 
Vector 
Machines 

Robust to noise, performs well with 
small sample size, fast to compute. 

Input variables need to be numerical and 
scaled, works better when there are no 
interactions between variables, sensitive to 
parameter choice, output of model is not 
easily interpretable. 

K – nearest 
neighbours 

Simple model to build, you do not 
need to have any prior knowledge of 
the data. 

Severely affected by noisy or irrelevant 
variables, sensitive to parameter choice, 
there are large variations in prediction 
performance every time the model is run, it 
is computationally costly to run. 

Artificial 
Neural 
Network 

Can be used to model complex 
relationships between inputs and 
outputs and find patterns in data, can 
handle noisy data. 

Input variables need to be numerical and 
scaled; output of model is not easily 
interpretable and can be very slow to train. 
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3.2.1 Generalisation error 

Machine learning works by building a model on a subset of the data available, this is 

called the “training” dataset, and the remaining data is used to evaluate the model, and 

this is termed the “testing” dataset. One of the main considerations when building the 

“learning” algorithm is how generalisable the model is, in other words how good is the 

learned model at predicting unknown data (Haury et al., 2011). 

• Generalisation error – is a measure of how accurately a model can predict the 

labels (response variable) of new data or previously unseen data, such as which 

treatment group the samples belong to. 

For example, if gene expression is to be used to predict the vaccine efficacy in patients, 

a model would be built on a training dataset, in which the vaccine efficacy in patients 

is known (i.e. whether the vaccine successfully induced protection). The model is then 

used to predict vaccine efficacy in new patients (the testing set), and the difference 

between what the model predicts and reality, is the generalisation error. Therefore, a 

model with low generalisation error would be good at predicting vaccine efficacy in 

new patients.  

Having a low generalisation error in classification means that the model is good at 

classifying new samples into their correct experimental group, it is simply a measure 

of how good the model is, and this can be used to compare different machine learning 

methods with one another. 
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3.2.2 Variance and bias trade-off 

The generalisation error contains two sources of error, bias and variance. There is an 

inherent trade-off between bias and variance, and they prevent supervised learning 

methods to be used beyond their original training dataset.  

• Bias - The error between what the model predicts and what the outcome is, 

therefore high bias, suggests that the model is too simplistic and is missing the 

relevant relationships between variables (genes) and sample outcomes (vaccine 

efficacy).  

• Variance – Applies to the stability of the model in the face of “noise”. If the 

model is built again on a different subset of the data, would the model produce 

the same outcome? If the model has high variance, then the model is fitting 

(being built) on the noise in the data and not finding the underlying relationship 

between the variables (genes), this is termed overfitting.  

Since there is a trade-off between variance and bias, it is not always easy to minimise 

both simultaneously, however there are certain concepts / techniques that are utilised 

by machine learning methods, to minimise these errors. 

3.2.3 Techniques used to improve bias and variance errors 

There are some techniques that can be used to improve bias and variance, such as: 

• Dimensionality reduction – This reduces the number of variables (genes) the 

model is built on, increasing the stability of the model by simplifying it (Nguyen 
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et al., 2015). If the number of variables (which in machine learning terminology 

are called features, and in context of this study are genes), are much larger than 

the number of samples this gives a highly dimensional dataset, and some models 

are better at handling this than others. If the dataset is too highly dimensional, a 

step can be added to identify variables of importance and discard the unwanted 

variables, which creates a lower dimensional space on which to run the 

supervised learning algorithm. Alternatively, variables can be grouped together 

and transformed or summarised into a new feature, therefore reducing the total 

number of variables (genes).  

• Ensemble of learning algorithms – This consists of using the same learning 

algorithm multiple times on the same dataset or subset thereof, the principle is 

to combine a group of “weak learners” to form a “strong learner” (Dietterich, 

2000). There are different ways of doing this, with the most common methods 

being: 

I. Bagging (portmanteau of “bootstrap aggregating”), this is when a 

machine learning model is built on a random subset of the data, drawn 

with replacement from the original dataset. This is repeated multiple 

times, with each time a new subset of data drawn. This produces a series 

of weak models that are combined to boost performance. Bagging 

increases the stability (variance) of the model, and is used by Random 

Forest. 
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II.  Boosting, in the current context, uses a series of a “weak” learners, or 

model, which are weighted according to their performance and 

combined into a strong learner to boost their performance. The 

difference with bagging is that the subset selection is not random and 

depends on the performance of the previous models. Boosting tends to 

improve the accuracy (bias) of the model, but it is prone to overfitting1. 

• Inbuilt parameters – Learning algorithms also have tuneable parameters that 

control bias and variance  

3.2.4 Characteristics of the data to consider 

Different machine learning methods exist, and some are better suited to certain 

datasets, therefore there are several considerations to make before choosing an 

algorithm, such as: 

• Does the data contain lots of noise (irrelevant genes)? – In the case of this study, 

whole blood was used to measure changes in gene expression data, and may 

contain a lot of noise, therefore choosing an algorithm with high accuracy and 

low stability is preferred.  

• Does the data contain variables of the same type (count / continuous / discrete 

data)? – Some algorithms will work better if only one data type is present, 

                                                

1 A model which describes random error or noise, instead of the underlying 
relationship. 
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whereas some have no issue using different types. In this study, only gene 

expression data will be investigated so this problem does not arise, although it 

could become an issue if non-continuous variables/factors are added to the 

analysis. 

• Are there interactions between the variables or are they independent? – Genes 

are known to interact and regulate each other, and therefore have complex 

interactions, therefore algorithms such as decision trees, random forest and 

neural networks would be the preferred analysis. 
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3.3 Methods in Machine Learning commonly used for 
microarray data analysis 

For microarray data, machine learning techniques such as Bayesian classifiers, 

Decision Trees, Random Forest (RF), Support Vector Machines (SVM) and Artificial 

Neural Network (ANN) have extensively been compared to one another (Pirooznia et 

al., 2008; Swan et al., 2013; Hemphill et al., 2014; Karimpour-Fard et al., 2015). When 

considering which algorithm to use the issues mentioned above need to be considered, 

as microarrays are notoriously highly dimensional (large number of genes), small 

numbers of samples, contain uninformative genes with regards to the processes of 

interest, and genes not only interact with each other but their expression is often 

correlated. 

A few different machine learning algorithms have been applied to microarray data, 

with the most popular being SVM and RF, which have been used or modified for a 

wide variety of tasks from identifying cancer subtypes (Anaissi et al., 2013) to 

predicting patients responses to treatments (Gim et al., 2016). 

3.3.1 Support Vector Machine 

Support Vector Machines (SVM) is a machine learning method used for both 

classification and regression tasks, and was first conceived by Cortes and Vapnik 

(Cortes, Vapnik, 1995). The simplest type of SVM, tries to draw a straight line 

(hyperplane) that best separates the data, so that data points belonging to one 

group/category are on one side of the line, and the data points in another category are 

on the other side (Figure 3.2). SVM assigns a weight to the variables depending on 
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how close they are to the line drawn, and these weights can be used to compute a 

variable ranking score.  

 
Figure 3.2. Schematic representation of Support Vector Machine in two dimensions. 

SVM is a supervised learning methods that draws a line (line in 2D, plane in 3D and hyperplane 

in higher dimensions) that separate two classes (red / blue data points). In theory, infinite 

numbers of lines could be drawn to separate the data, but SVM calculates the straight line that 

best separates the two classes of points with largest distance to the nearest data points 

(maximum margin). In other words, SVM draws an optimal line perfectly in the middle of two 

classes, so that points in the red class are on one side of the line and the points in the blue class 

are on the other side of the line. When the two classes of the data are not linearly separable, 

the points are projected into a higher dimensional space where linear separation may be 

possible. Support vectors are the data points that lie closest to the line (filled red and blue 

circles). Because these are the most difficult points to classify, these are important for 

classification, and each point is assigned a weight depending on its distance with the 

hyperplane. 
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3.3.1.1 SVM with Recursive Feature Elimination 

Guyon et al modified SVM, by using it in a backward elimination procedure for gene 

selection (Guyon et al., 2002). For this, a SVM is initially fitted on all the genes in the 

dataset, this assigns a weight to the variables (genes) which is used to compute a gene 

coefficient, that can be ranked so that genes with the smallest coefficients are 

eliminated. Then a new SVM is built on the remaining genes, and a new gene 

coefficient is calculated and again the genes with smallest coefficients are removed, 

this is repeated until a final number of genes are met. The number of genes to remove 

at each iteration, and the final number of gene to retain, are the set of parameters that 

can be optimised to get an accurate final classifier. 

Removing variables (genes) each time a SVM model is built is termed recursive 

feature elimination (RFE). Support vector machine with recursive feature elimination 

(SVM-RFE) was initially created for cancer classification using gene expression data 

(Guyon et al., 2002), and is continuously being improved, such as using an ensemble 

approach (multiple SVM-RFE built), which uses subsamples of the original data to 

create multiple SVM-RFE (Duan et al., 2005).  

A limitation of SVM-RFE is that it can only handle binary classification. Therefore, to 

extend the application of SVM-RFE to multi-class (i.e. multiple treatment groups) 

problems Zhang et al (2015) proposed that a multi-class dataset could be split into 

multiple binary problems (one versus all method). These models were applied to 

different DNA microarray datasets and achieved higher classification accuracy 
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compared to other SVM-RFE methods (Zhang, Xiaojuan Huang, 2015). However, like 

most of these algorithms they are not easily incorporated into statistical software. 

3.3.2 Random Forest 

Random forest (RF) is a robust classification algorithms (Breiman, 2001), and has 

many characteristics that makes it well suited for gene expression data (Chen, 

Ishwaran, 2012): 

• it is well adapted to handle high dimensional data that can often be noisy, 

•  it can accommodate categorical (classification) and continuous (regression) 

data, 

• it handles imbalanced multiclass data, 

• it is less prone to overfitting compared to other machine learning techniques,  

• it has a fewer parameters to fine-tune making it easier to optimise, 

• it provides measures of feature (gene) importance.  

For classification problems, RF has been extensively compared to other machine 

learning algorithms on microarray datasets, and has been found to be the most efficient 

method on the datasets that were tested (Lee et al., 2005; Díaz-Uriarte, Alvarez de 

Andrés, 2006; McKinney et al., 2006; Heidema et al., 2006; Jeong, Soni, 2015).  

RF is an ensemble of classification trees (decision trees), which uses different subsets 

of a dataset to generate many decision trees and then combines the results. Using the 
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bagging2 technique, each tree is independently built using a bootstrap sample of the 

data (subsample of the dataset which is replaced after being used to fit a tree), each 

tree is recorded and combined at the end. 

The goal of a decision tree, is to create a model that can predict the value of unknown 

variables (classify new samples), based on the input variables. For example, can the 

experimental group of samples be predicted based on their gene expression? 

Decision trees start with a parent node, these are then split into two daughter nodes in 

a recursive way (i.e. the daughter node in turn becomes parent node, and is 

subsequently split into two daughter nodes) (Figure 3.3). At the parent node, the 

decision tree algorithm chooses the variables at that level, that best separates the data 

into “pure” classes, i.e. the gene that best separates the samples into either immunised 

or non-immunised mice. For example, if gene A is found by the algorithm to be the 

most discriminative gene, this means that if gene A has an expression over defined 

level (x), those samples are associated with immunised mice, whereas an expression 

level below x, that sample will be more likely to be from non-immunised mice. 

At each parent node, the algorithm searches for a variable (present at that node) that 

best separates the data, this process is applied to each parent node, and as the tree grows 

less and less variables (gene) are present, till either a homogenous tree (where samples 

                                                

2 Bagging – Bootstrap aggregating, when classifiers are built on different subsets of 
the dataset, each subset is replaced after classifier is built, by sampling with 
replacement variables will be repeated in several subsets. 
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cannot be split anymore as they all belong to one treatment group) or non-homogenous 

terminal (the end of the tree is reached and no more genes are left to split) (Figure 3.3). 

 
Figure 3.3. Decision Tree. The diagram represents an example of a decision tree using gene 

expression data. Decision trees work by finding genes that best discriminate between the 

experimental groups, in the example above, immunised or non-immunised. At each node of 

the tree (rectangles), the algorithms finds the gene which is the best at splitting samples into 

experimental treatment groups. The node at which the split is happening is termed the parent 

node, at the this point the data separated into two sister nodes depending on the expression 

level. For example, “gene A” is chosen by the algorithm to be best gene at splitting the data 

into experimental groups, and splits the samples into two daughter nodes depending on 

expression level of “gene A”, i.e. samples, in which “gene A” has an expression level above 

splitting criteria (x) will go to one sister node, and the samples with expression levels of “gene 

A” below the splitting criteria will go to the other sister node. These sister nodes then in turn 

become parent nodes, and the algorithm then finds another gene that best splits the data, this 

happens recursively until the tree is fully grown, either till perfect classification is reach, so 

when all the samples in that node belong to one treatment group (full circles) or till there is no 

more gene to split the data (semi-circles and represent the percentage of predicted treatment). 

Figure adapted from (Ainali, 2013) 
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3.3.2.1 Optimising random forest parameters 

Random forest has two main parameters to optimise:  

• The number of trees to construct – RF uses bootstrap aggregation (sampling 

with replacement) to sub-sample the dataset and trees are grown from those sub-

samples. This allows RF to construct multiple trees on different samples of the 

dataset, therefore the optimal number of trees to grow (subsamples to take from 

the dataset) needs to be optimised, as this can affect the model accuracy.  

• The number of variables to consider when splitting a node – RF selects the 

variable that best splits the node, from a random subset of variables, compared 

to other decision trees that look at all variables when considering the split. 

Therefore, the number of random variables to consider when looking for the best 

split is the second parameter that needs to be optimised. This allows random 

forest to build many trees with low correlation (unlikely to comprise identical 

trees). For example, if one or a few genes are strong predictors of the response 

variable, these gene will be selected in many trees, causing many of the trees in 

a random forest to look alike (correlated), and this will affect the accuracy and 

stability of the model. 

To achieve a RF model with the lowest generalisation error, the two parameters 

mentioned above need to be optimised. To do this, RF has an internal estimation of 

model accuracy, which is called the out-of-bag (OOB) error score (Mitchell, 2011).  
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• The OOB score – is calculated for each tree grown, by setting aside one third of 

the samples before building the tree, this becomes the OOB data. The OOB data 

is then used to measure the accuracy of the tree built. The OOB score is 

calculated for each tree constructed, and then averaged to become the OOB error 

score for the random forest.  

To optimise the RF model, a procedure called k-fold cross-validation is used. This 

builds a random forest on a percentage of the data using different combinations of 

parameters, and for each combination the model is evaluating itself using the samples 

that were left out when building the model, this avoids the risk of overfitting. The best 

practice is to use k=10 (10-fold cross-validation), this means that 10 RF models are 

built on each combination of parameters, the OOB error score for the 10 RF models 

are calculated and then averaged out. This is repeated for each combination of 

parameters, and the combination of parameters that gives the lowest OOB score are 

then used to train a final RF classifier. 

3.3.2.2 RF ability to rank variables in order of importance 

Advantages of RF over other supervised methods is that it provides a measure of 

variable importance (gene importance in our case). For classification problems, RF 

computes a measure of variable importance, by calculating a mean decrease in Gini 

for each variable, which can then be ranked, to find which variables (genes) are the 

strongest predictors of the response variable. 
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• Mean decrease in Gini – A measure of how each variable (gene) contributes to 

the homogeneity of the nodes (if nodes contain the majority of the samples of 

one experimental group).  

For example, if a variable is important, it will split the data, which has samples 

belonging to different experimental groups, into pure samples groups (all coming from 

the same experimental group). Therefore, each time a variable (gene) is used to split a 

node, the Gini coefficient for the child node is calculated (based on how pure the node 

is) and compared to that of the parent node, giving a decrease in Gini value for that 

variable.  

Since random forest builds many trees and variables can be used in more than one tree, 

the decrease in Gini coefficient for each variable is calculated across all trees and 

averaged out, giving the mean decrease in Gini for that variable. The greater the mean 

decrease in Gini is, the more important the variable (Breiman, 2001). 

3.3.2.3 RF issues with stability 

Because of the intrinsic randomness of random forest, there can be instability in the 

variable importance ranking (Somorjai et al., 2003; Michiels et al., 2005; Kursa, 2014; 

Wang et al., 2016). That is, in repeated runs of RF on the same data using the same 

parameters, there can be a different order of variable importance ranking. The issue of 

stability in importance rankings is increasingly receiving attention. Strobl et al (2008) 

showed that instability in variable ranking in RF was due to highly correlated variables, 

proving that these are being used interchangeably in a decision trees of the RF. 
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3.3.2.4 Dealing with correlated variables 

Due to the nature of gene expression data, it is very likely that there are many correlated 

genes. There are a several ways to deal with correlated variables, such as: increasing 

the number of trees grown (Haury et al., 2011); grouping correlated genes together 

(clustering) (Tolosi, Lengauer, 2011); or backward elimination strategies such as 

recursive feature elimination (removing the least important variables every time a 

model is build) based on the rankings of the variables in the previous RF models.  

Adding a recursive feature elimination (RFE) to random forest works by first fitting 

an RF model to the whole training dataset; this model ranks variables in order of 

importance. A defined percentage of variables with the lowest rankings are removed. 

A new RF model is built on the remaining variables and the ranking of the new set of 

variables are re-calculated, and again a percentage of variables with the lowest ranking 

are removed. This is repeated till the set of variables that gives the smallest OOB error 

rate are left (Díaz-Uriarte, Alvarez de Andrés, 2006; Genuer et al., 2010).  

This method of recursive feature elimination combined with random forest when tested 

on correlated datasets was found to reduce the effect of correlation on the variable 

importance measure and produces stable models (same rankings were obtained if 

initial training set was slightly changed) (Gregorutti et al., 2013).  
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3.3.3 Performance metrics 

To measure the stability of the variable selection and to evaluate the accuracy3 of the 

classification models built, several metrics can be used.  

3.3.3.1 Accuracy measures 

A common approach of evaluating the performance of classification models, 

sometimes referred to as model accuracy, is to use cross-validation (Kohavi, 1995). In 

cross validation, a percentage of the samples are held out and the classifier is built on 

the remaining data. The classifier is then used to predict the labels (experimental 

group/response variable) of the held-out data. If the predicted labels match the true set 

of labels then the accuracy is 1. This is repeated multiple times and the average 

accuracy score is given.  

A simple way of representing this is using a confusion matrix. Figure 3.5 shows an 

example of a confusion matrix for a multiclass problem (more than two experimental 

groups). It shows the number of samples that the model accurately predicted per label. 

Since there is more than one label involved, the overall accuracy is the fraction of 

correctly classified samples over the total numbers of predictions.  

If the datasets are unbalanced (not equal numbers of samples in each experimental 

group), it can lead to misleading results, therefore other metrics such as precision and 

                                                

3 Accuracy – How well the classification model is at predicting unknown data. 
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recall are used. For multiclass problems precision and recall are computed for each of 

the class labels and averaged out. 

• Precision – Measures how accurate the classification model is at predicting each 

class (experimental groups), in a new dataset (Figure 3.4). 

E)(-&'&$!	 = 	
L)A(	G$'&*&,('	
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• Recall – Measures how good the classifier is at finding all the correct labels per 

class (experimental group). This is the same as sensitivity (Figure 3.4). 

O(-433 = 	
L)A(	G$'&*&,('
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For example, if a model produced both high precision and recall, this would mean that 

the model has accurate predictions (precision) and is also good at finding all the 

samples that belong to that class (recall). A model with high precision and low recall, 

means the model predicts few results per class but most of them are accurate 

predictions. Low precision and high recall is the opposite; the model produces lots of 

predictions per class but a lot of them are incorrect. Ideally both high precision and 

recall are wanted. 
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Figure 3.4. Precision and recall. Precision is the fraction of predicted points that are correct 

among all the predicted outcomes. Whereas recall (also called sensitivity), is the fraction of 

correct points that were predicted over the total number of correct points. Precision is true 

positives over true positives and false positives. Recall is true positives over true positives and 

false negatives. 
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Figure 3.5 Confusion Matrix. This confusion matrix was constructed from a RF model built 

on a dataset from this study. An RF model was built on a subset of the data (training data), and 

then used to predict the samples labels from remaining data (test data - not used to build the 

model). In this case, there were 6 samples in the test dataset belong to the experimental groups 

(Labels): Immunised, Naïve or Mock. These were then compared with the labels the RF model 

predicted. In this example, the model was able to accurately identify two out of three samples 

as belonging to immunised mice (the third was misclassified as mock). The model also 

correctly identified a naïve mice, second sample was misclassified as immunised. The model 

was unable to predict any of the mock samples. Precision and recall is also calculated to 

evaluate Machine Learning models, and when models are built on multi-class problems 

(multiple experimental groups), precision and recall is calculated for each experiment group 

and a mean is calculated. In the confusion matrix above, for the immunised group precision 

was defined by the ratio of predicted samples to known immunised samples. In example above, 

2 samples were correctly predicted out of 4 predictions. Recall was defined as the fraction of 

immunised samples it can retrieve and in this example, 2 immunised samples were identified 

out of a possible 3.  
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3.3.3.2 Stability measures 

The stability of the model is measured as the robustness of variable rankings, that is 

produced by the classification model over repeated runs (can also be called variance). 

Measuring stability requires a similarity measure, for this the Jaccard index was used 

(Wang, 2015; Wang et al., 2016) to evaluate stability of the top ranked variables over 

repeated run, the closer the index is to 1 the more similar the gene rankings are between 

each other. 

3.4  Machine Learning Pipeline for Gene Selection 
Despite some of the drawbacks RF faces when dealing with microarray data, it remains 

one of the most robust classification algorithms available. Therefore, a gene selection 

“pipeline” was put together using publicly available machine learning algorithms 

including RF, to identify genes that explain the differences seen in protection in 

vaccinated mice and humans living in endemic areas, from microarray data obtained 

from blood samples. Before the Machine Learning (ML) pipeline can be applied, the 

raw gene expression data from the Illumina microarrays were pre-processed to account 

for the variability that arises from microarray processing, such as RNA hybridisation 

to plates, scanning and image analysis (details in section 3.5.5). This pipeline combines 

a clustering algorithm with multiple RF classifications to identify genes of interest, 

and consists of 4 steps (Figure 3.6):  

• Step 1: Dimensionality reduction - The first step uses a clustering method, to group 

genes based on the expression pattern across the samples, and then the gene 
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expressions within those gene clusters are summarised (mean expression). This was 

done for two purposes:  

I. To remove noisy genes. This is on the assumption that genes which 

are functionally relevant and work together are more likely to have 

similar expression levels and therefore cluster together (Heyer et al., 

1999). The advantage of the clustering method used in this pipeline, 

over others is that it does not force all data points into a cluster and 

some genes remain unclustered. For this study, the unclustered genes 

are deemed as noise; these genes might be part of an activated 

pathway but the clustering algorithm is unable to detect it.  

II. Clustering is used for dimensionality reduction. This is when the 

original data is summarised into a smaller dimension (smaller 

numbers of genes), by reducing all the genes within a cluster to a 

single variable, this results in a smaller set of uncorrelated variables 

(genes). This dimensionality reduction is a necessary step since 

microarray data is highly dimensional (more genes compared to 

samples), and therefore reducing the dimensionality of the data helps 

improve the stability and accuracy of the subsequent classifier.  

• Step 2: Random forest for feature selection (RF-FS) – This next step of the 

pipeline, which is known as feature selection, involves the use of random forest 

(RF), as a classifier to rank the summarised gene clusters in order of importance, 

according to which gene cluster best classified the data into experimental groups 

(i.e. immunised or non-immunised mice). Random forest is repeated over 10 
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iterations and the gene clusters that are consistently top-ranked over the 10 

iterations are deemed the most informative gene clusters. 

• Step 3: Random forest for quality control of gene selection (RF-QC) – The 

top ranked gene clusters are then used to build a second set of RF models, this is 

to see if these gene clusters can accurately predict the experimental groups the 

samples came from (i.e. if they came from immunised or non-immunised mice / 

whether they were from naturally protected or infected humans). 

• Step 4: Functional analysis – The genes that belong to the top gene clusters, 

are then subsequently used in a pathway enrichment analysis to identify what 

pathways the gene belongs to and how they are associated with immunity and 

infection.  
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Figure 3.6 Machine Learning (ML) Pipeline for Gene Selection. The input data for the 

pipeline was pre-processed Illumina microarray data, the pre-processing involved background 

correction, between-array quantile normalisation and log2 transformation (see pre-processing 

section for more details). The first step in the pipeline involves dimensionality reduction, using 
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a density-based algorithm called HDBSCAN, it finds genes that have similar gene expression 

levels and groups them together, but does not force all points into a cluster, and therefore some 

genes remain unclustered. The gene clusters are summarised by calculating the average (the 

mean) expression of the genes within that cluster, this forms a new variable that is piped to the 

next step. Step 2, is termed the feature selection step, as informative features (variables and in 

this case gene clusters) are detected. This step uses Random Forest to rank the gene cluster, on 

how good they are at classifying the samples into the different experimental groups 

(immunised group / infection status). There are four parts to selecting the gene clusters: 1) 

when building a RF model two parameters need to be optimised, this was done by building 

models with different combinations of parameters, and the pair of parameters that gave the 

highest accuracy score was chosen. 2) Then a RF classifier was built with the gene clusters 

using the best set of parameters. 3) The optimised RF ranks the gene clusters in order of 

importance, and the ranking is saved. Step 1-3 are then repeated 10 times (this is because RF 

can be unstable in ranking variables). 4) The gene clusters that were consistently ranked in the 

top 20% over the 10 iteration, were chosen as the most informative gene clusters. Step 3 in the 

pipeline, involved doing a quality check on the gene clusters chosen in step 2 as being 

informative, for this a second set of RF classifier are built using only the informative gene 

clusters. The accuracy of the models are measured, to see if indeed they are good at classifying 

the samples into their experimental group. Step 4, once the gene clusters have passed the 

quality check, the genes within the clusters are extracted, and functional analysis performed 

on them to find their function or what pathways they belonged to. 

3.4.1 Step 1: Dimensionality reduction 

For dimensionality reduction, a density based clustering algorithm called Hierarchical 

Density-Based Spatial Clustering Applications with Noise (HDBSCAN) was used. 

HDBSCAN was developed by Campello, Moulavi, Zimek and Sander (2013) by 

improving the density based clustering algorithm DBSCAN, to allow the identification 

of clusters with different densities / size (Campello et al., 2013).  
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HDBSCAN works by finding density-connected regions (densely connected genes) in 

the data, which are then defined as clusters, whereas points that do not belong to any 

density-connected regions are labelled as noise (Figure 3.8). 

Advantages of HDBSCAN are that: 

• It does not force all data points (genes) into a cluster, unlike other clustering 

algorithms, such as K-means, which does. 

•  It can find clusters of varying densities, unlike the original density based 

clustering (DBSCAN) algorithm. 

• It is more robust to parameter selection, since it only requires one input 

parameter to be fine-tuned, minimum cluster size which is the minimum number 

of samples in that group to be considered a cluster, any groups smaller then this 

will be considered noise. 

• It is stable, producing the same clusters when the algorithm is used again. 

•  HDBSCAN was implemented into a python package by Leland McInnes, 

making it simple to apply to the data (McInnes, 2015). 

Before clustering could be applied, the data was standardised by removing the mean 

and scaling to unit variance. In practice this means that each gene measured, had a 

mean of 0 and a variance of 1.  

HDBSCAN has one parameter that needs to be selected, this is the minimum cluster 

size, which is the minimum number of samples that are needed to consider a group as 
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a cluster. Normally, when the minimum cluster size increases, the number of clusters 

identified by HDSCAN decreases (Figure 3.7.A). However, this was not the case in 

some of the datasets used in this study and no uniform decrease in cluster numbers 

were observed when the minimum cluster size is increased, possibly due to small 

sample size. However, when several datasets were merged (increasing the sample 

size), HDBSCAN produced a constant decrease in cluster numbers as the minimum 

cluster size increased. Therefore, for the purpose of this study the minimum cluster 

size, was chosen as the smallest number, which produced the largest number of 

clusters, for example in Figure 3.7.B, minimum cluster size was chosen as 4, as this 

produced the greatest number of clusters (65 clusters). 
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Figure 3.7 Selecting minimum cluster size for HDBSCAN clustering. Minimum cluster size 

is the parameter that needs to be chosen, for HDBSCAN clustering. Minimum cluster size is 

the minimum number of samples that are needed to consider a group of samples as a cluster. 

A) HDBSCAN clustering over a range of minimum cluster size (min_clust_size: 3-20), on a 

dataset with 66 samples (this is from merging samples from different time points in an 

immunisation time course), this produced a constant decrease in number of clusters produced. 

B) Whereas when HDBSCAN was applied to a single time point in the immunisation time 

course, with 21 samples (all time points in the mice immunisation time course had samples 

ranging from 20-24 samples), there was not a constant decrease in numbers of clusters 

produced. Therefore, for the purpose of this study, the minimum cluster size was chosen as the 

smallest number that produced the greatest number of clusters. For example in B), a minimum 

cluster size of 4 was chosen, as this produced the greatest number of clusters (65).  
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HDBSCAN assigns a number to each gene according to which cluster it belongs to, 

and assigns a -1 to genes that are unclustered (noise) (Figure 3.8). Once genes have 

been clustered, the expression of genes within a cluster can be summarised (one new 

data point is created for that cluster, instead of multiple genes), so that the 

dimensionality (number of genes) can be reduced. Therefore, for each cluster (genes 

labelled ≥ 0), the mean expression of the genes within that cluster was calculated, this 

groups correlated genes together to form a smaller set of gene clusters. Genes that were 

not clustered, were removed from the analysis.  

 

 
Figure 3.8. HDBSCAN clustering. A representation of HDBSCAN clustering. For simplicity 

only two dimensions (2 samples) are shown, but in reality there are multiple dimensions (equal 

to the number of samples). Each point represents a scaled gene, the colours represent different 

clusters and the grey points are the unclustered genes (noise) that are filtered out using 

HDBSCAN. As this is a multi-dimensional dataset, it is difficult to differentiate between the 

clusters in the centre, but looking towards to the edge clusters are apparent.
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3.4.2 Step 2: Random forest for feature selection (RF-FS) 

Random forest was used for feature selection, this means that random forest was used 

to find the gene clusters (produced by HDBSCAN), that best describes the difference 

between the experimental groups. For this, the summarised gene clusters were used to 

build a RF model, which then ranks them in order of importance, on how good they 

were at differentiating between the different labels (experimental groups). Because 

random forest struggles with stability in variable ranking, 10 random forest models 

were built, and the genes constantly ranked in the top 20% across the 10 iterations were 

chosen as being informative. The process of feature selection (gene selection) using 

random forest consist of five steps. 

1) Optimisation of the random forest classifier parameters – Random forest has 

two parameters that needs to be optimised, the number of trees grown from a subset 

(bootstrapped sample) of the data (n_estimators parameter in Scikit-learn, Python, 

(Pedregosa et al., 2011)) and the number of variables to consider when looking for 

the best split of a node (max_features parameter in Scikit-learn), RF does not look 

at all samples at a node to split the data like with decision trees. A range of values 

were chosen for each parameter and different combinations were tested out using a 

method called cross-validation, which trains a RF model on 80% of the samples and 

the remaining 20% are used to validate the model. In python there is a function called 

Stratified_Shuffle_Split (Scikit-learn, Python), which facilitates cross-validation and 

ensuring that there is at least one sample from each experimental group in the 

validation (test) dataset. To ensure that each sample is present in the validation set 

at least once, this was repeated 10 times for each combination of parameters. The 
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combination of parameters that gave the highest OOB_score scores (i.e. gives the 

most generalisable model), were chosen and used to train the RF classifier. 

• n_estimators parameter – The number of trees grown were chosen 

from a range of 1000-2000, even though Figure 3.9 shows that the 

number trees grown after 500 has no effect on the accuracy of the 

model (OOB score), but the greater the number of trees the better the 

stability of feature ranking (Genuer et al., 2010; Haury et al., 2011).  

• max_features parameter – The number of variables to consider when 

looking for the best split was either the square root of all the features 

(variables/ genes), 10%, or 40% of all the features.  

2) Fitting random forest model to the data using the optimised parameters – A 

random forest model was built on the data using the parameters optimised in step 1. 

Similar to the optimisation step, the accuracy of the RF model (built with the 

optimised parameter), was measured using 10-fold cross-validation. For this 20% of 

the data was held out when building the RF model, and then used to measure how 

accurate the model was at predicting the held-out data. 

3) Ranking variables (genes clusters) – The RF model ranks the gene clusters in 

order of importance using the Gini index. Although other metrics can be used, the 

Gini index was chosen because it is less affected by correlated data than other 

importance measures (Strobl et al., 2008). The Gini index is prone to give higher 

ranking to variables with categorical data (Strobl et al., 2007). In this case, it is not 
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a concern, as the data in this study are all gene expression data and are therefore 

continuous data. 

4) Selecting the top ranked gene clusters – Random forest can suffer from instability 

when ranking variables in order of importance, especially if these variables are 

correlated. Therefore, step 1 to 3 were repeated 10 times, and the gene clusters that 

were consistently ranked in the top 20% of the 10 iterations, were considered as the 

informative gene clusters. Twenty percent was used as the cut-off value, for two 

reasons: 

• The top 20% ranked gene clusters over the ten iterations gave a high 

stability index across the datasets.  

• The number of genes that belonged to those gene clusters were enough 

to perform pathway analysis.  

5) Measuring accuracy and stability of the random forest models built for feature 

selection – The accuracy, precision and recall of the RF models built on gene 

clusters, were measured for each of the 10 RF models and the averages out, the closer 

the values were to 1, the more accurate the models were. Stability was measured 

using the Jaccard index, which quantifies how similar the ranking of the gene 

clusters were in the top 20% rankings. The closer the Jaccard index was to 1, the 

more similar the rankings were, therefore a stable model. 
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Figure 3.9 OOB_score cross-validation. In RF models, there are two parameters that are 

important to optimise. The OOB_score is used to choose the best set of parameters, and the 

closer the value is to 1, the more accurate the model build using that set of parameter. Above 

is an example of how the OOB_score changes for varying values of: n_estimators, which the 

number of trees to grown from each bootstrap subsamples of the data; and max_features, which 

is the number of variables to consider when looking for the best split of a node. Random Forest 

models were built using range of n_estimators (2-2000) with either the square root, 10%, or 

40% of the variables as the max_features value. In the machine learning pipeline n_estimators 

was chosen from a range of 1000-2000, although this range is higher than required according 

to the graph above, a higher value for n_estimators provides a more stable feature ranking. 

3.4.3 Step 3: Random forest for quality control of gene 
selection (RF-QC) 

This section of the pipeline was used to evaluate the accuracy (quality) of the gene 

clusters selected by the random forest above. This was done by measuring the gene 

clusters ability to differentiate the samples by experimental group (in mice models) or 

parasitological presentation (in human data), by building a second round of random 

forest models, only using the informative gene clusters (top 20% gene clusters). This 

second round of RF models must also be optimised to find the best parameters before 
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the model can be built. The accuracy, precision and recall was measured for this second 

random forest used for quality control (RF-QC). This was done to verify that the gene 

clusters were indeed good at predicting the experimental groups from which they were 

derived. It is also another way of confirming that the selected genes are important in 

relation to immunisation (mouse studies) or infection (in human datasets).  

3.4.4 Step 4: Functional and pathway analysis  

Once the gene clusters were identified as “important”, using the second round of RF 

models, the genes within these clusters were analysed. To do this functional pathway 

analysis was conducted, using in clusterProfiler (Yu et al., 2012) in R. This finds the 

biological functions and pathways that are over-represented in a list of genes.  

Two databases were used to identify the over-represented pathways or biological 

functions: 

•  The Gene Ontology (GO) project – To categorise genes based on their 

Biological Processes (BP) (Ashburner et al., 2000). 

• The Reactome database – To find pathways and larger processes the genes 

belong to (Croft et al., 2011).  

The degree of over-representation was calculated using cumulative hypergeometric 

distributions, which is the probability of finding genes belonging to a functional GO 

category or Reactome pathway within the gene list. A P-value was calculated for each 

of the pathway or processes using the Benjamini-Hochberg method to correct for 

multiple testing (Benjamini, Hochberg, 1995), and the significance threshold was 
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chosen as an adjusted P-value ³0.05. Furthermore, at least five genes from the input 

list were needed for a term or pathway to be classified as over-represented, and the 

reference background was all the genes present on the microarray. The comparison 

between dataset is done by measuring the overlap of pathways over-represented.  
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3.5 Datasets 
To investigate and compare human and murine protective immune responses to filarial 

infections, the machine learning pipeline was applied to four microarray datasets 

collected by E PIAF4 partners.  

Two of these datasets were created from the mouse model of human filarial infection, 

Litomosoides sigmodontis in BALB/c mice. Protective immunity in this model can be 

achieved through vaccination by inoculating mice with either irradiated infective 

larvae (L3) (Le Goff et al., 2000) or microfilariae (Ziewer et al., 2012).  

The other two datasets are from human samples, these were collected in Ghana, in foci 

where either onchocerciasis (O. volvulus) or lymphatic filariasis (Wuchereria 

bancrofti) is endemic. Within these populations, a small percentage of individuals are 

naturally protected showing no signs of infection (no pathology, parasites nor 

circulating filarial antigen) even though they are constantly exposed, these individuals 

are termed endemic normal (EN). To make a fair comparison between mice and human 

responses whole blood was chosen instead of measuring responses in specific tissues. 

3.5.1 L3 Vaccination dataset 

To investigate the changes induced by immunisation with L. sigmodontis infective L3, 

mice were split into four groups of 6. Three of these groups were immunised with 

                                                

4 E PIAF – Enhanced Protective Immunity Against Filariasis, HEALTH-2009-4.3.1-
1 Contract 242131 
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either: infective L. sigmodontis L3 (Unirradiated); irradiated L. sigmodontis L3 

(Irradiated); or a mock dose of RPMI 1640 (Gibco) (Mock). The immunisations 

occurred 28, 21 and 14 days before the challenge inoculation with infective L3 (non-

irradiated). The last group was left as the naïve control (no immunisation nor 

challenge). For each mouse whole blood samples were collected: 6 hours after the 1st
t 

immunisation, 6 hours after the challenge and 10 days after the challenge (Figure 3.10). 

Day 10 was chosen as the end point of this experiment because most of the parasite 

killing happens within two days of challenge. This vaccination targets the incoming 

L3 mostly at the site of inoculation, and protection is achieved because less L3 are 

reach the pleural cavity, therefore less maturing to adults compared to non-vaccinated 

controls. Therefore, to minimise cost the experiment was stopped at day 10 which is 

enough time to see any changes in gene expression. 

The blood samples and RNA extractions were done by E PIAF partners, Dr Sabine 

Specht (University Hospital Bonn, Germany and Institute of Laboratory Animal 

Science, Vetsuisse Faculty, University of Zurich, Switzerland) and Dr Coralie Martin 

(Museum National d’Histoire Naturelle, France). All experimental procedures: 

labelling, array hybridization to Illumina MouseWG-6 BeadChip arrays 

(MouseWG6_V2_0_R3_11278593_A, Illumina) and array scanning was performed 

by Fios Genomics, Edinburgh. Fios Genomics also conducted the quality control of 

the arrays, for which 4 samples failed QC control. In addition, a 5th sample was found 

to incompletely hybridise to the array, and a 6th sample was missing altogether. As a 

consequence, 6 samples were removed from the analyses.  
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Initial analysis of the data, showed that the RF pipeline could not distinguish between 

irradiated and unirradiated groups, a closer look at the parasite survival at day 10 post 

challenge shows very little differences in parasite burden between these two groups 

(Figure 3.11A). Therefore, the two L3 immunised groups were merged as one and 

named “Immunised”. The new immunised group had a lower parasite burden 

compared to the control immunisation (Figure 3.11), demonstrating that immunisation 

with L3 induces protection in these datasets. Table 3.3 summarises the characteristics 

of the L3 immunisation dataset taken forward for analysis. 

 
Figure 3.10 L3 immunisation time course. 24 BALB/c mice were split into four groups, 

three of these groups received subcutaneous immunisation of either: 40 infective L. 

sigmodontis L3 (Unirradiated); 40 irradiated L. sigmodontis L3 (Irradiated); or a mock dose of 

RPMI 1640 (Gibco) (Mock). The immunisations occurred at 28, 21 and 14 days before a 

challenge inoculation of 40 L3. The remaining group was the naïve control, which received no 

immunisation nor challenge.  For every mouse in the immunisation time course whole blood 

was collected: 6 hours after the 1st immunisation (Day -28), 6 hours after the challenge (Day 

0) and at 10 days after the challenge (Day 10). 
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Figure 3.11 L4 Worm Counts. A) Shows L. sigmodontis L4 number in the pleural cavity at 

day 10 post challenge of mice either immunised with Irradiated L3, Unirradiated L3 or a Mock 

immunisation with RPMI. Naïve mice were never challenged or immunised, therefore have no 

parasite burden. B) Shows the L. sigmodontis L4 number when the Irradiated and Unirradiated 

treatment group are merged together.  

Table 3.3. Characteristic of L3 vaccination dataset. Showing the number of samples, 

number of different treatment groups (classes), number of genes measured for each 

sample. 

Time point No of Samples No. Classes No. Probes 

Day -28 20 3 45281 

Day 0 22 3 45281 

Day 10 24 3 45281 
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3.5.2  Mf Vaccination dataset 

To investigate the changes induced by microfilariae immunisation, mice were split into 

four groups, three of which received immunisation of either: Microfilariae and Alum 

(MfA); Microfilariae (Mf); or an Alum control (Alum). The immunisation occurred 

28, 21 and 14 days before the challenge, where the three immunised groups and the 

fourth control group (Control) were subcutaneously challenged with 40 infective L3. 

Whole blood samples were collected for each mouse: 6 hours after each of the three 

immunisations; 6 hours after the challenge; at day 49 (adults worms are present) post 

challenge; and day 67 post challenge (blood circulating Mf are seen) (Figure 3.12).  

The whole blood samples were collected and RNA was extracted by E PIAF partners, 

Dr Sabine Specht (University Hospital Bonn, Germany and Institute of Laboratory 

Animal Science, Vetsuisse Faculty, University of Zurich, Switzerland) and Dr Coralie 

Martin (Museum National d’Histoire Naturelle, France). RNA hybridisation to 

Illumina MouseWG-6 BeadChip arrays (Mouse WG6_V2_0_R3_11278593_A, 

Illumina) was done by Fios Genomics, Edinburgh, who also conducted the quality 

control. In this time course 15 samples were missing and 7 arrays failed the quality 

control, therefore 22 samples were removed from the subsequent analyses, 

unfortunately this meant that at the day -28 (6 hours after 1st immunisation) time point, 

the Control group was missing and therefore day -28 was removed from analysis 

(Table 3.4). Parasitological readouts of worm numbers in the pleural cavity (Figure 

3.13A) and microfilariae circulating in 30µl of blood (Figure 3.13B) were collected on 

Day 67. Table 3.4 summarises the characteristics of the Mf immunisation dataset taken 

forward for analysis. 
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Figure 3.12 Mf vaccination time course. 24 BALB/c mice were split into four groups, three 

of which were immunised three times with either: 105 Microfilariae and Alum (MfA); 105 

Microfilariae alone (Mf); or Alum on its own as a control (Alum). The immunisations occurred 

28, 21 and 14 before the challenge with 40 infective L3, the fourth group only received a 

challenge (Control). For each mice whole blood was collected 6 hours after each immunisation 

(Day -28, Day -21 and Day -14), 6 hours after the challenge (Day 0), 49 days post challenge 

(Day 49) adults from the challenge should have developed, and 67 days post challenge (Day 

67) when circulating microfilariae would be present. 

 

 
Figure 3.13. Parasite Counts. A) shows the number of adult worm found in the pleural cavity 

and B) Shows the number of microfilariae found in the 30µl of blood at day 67 post challenge 

in the microfilariae vaccination time course.  
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Table 3.4. Characteristic of Mf vaccination dataset. Showing the number of samples, 

number of different treatment groups (classes), number of genes measured for each 

sample. 

Time point No. of Samples No. of Classes No. of probes 

Day -21 20 4 45281 

Day -14 23 4 45281 

Day 0 22 4 45281 

Day 49 21 4 45281 

Day 67 22 4 45281 

 

3.5.3 Wuchereria bancrofti endemic area dataset 

Whole blood samples were collected from patients living in a Wuchereria bancrofti 

endemic area in the western regions of Ghana (Ahanta West and Nzema East districts) 

by E PIAF partners, Dr Sabine Specht (University Hospital Bonn, Germany and 

Institute of Laboratory Animal Science, Vetsuisse Faculty, University of Zurich, 

Switzerland), Prof Achim Hoerauf (University Hospital Bonn, Germany), Dr Alex 

Debrah (Kwame Nkrumah University, Ghana), Dr Laura Layland (University Hospital 

Bonn, Germany), Gnatoulma Katataw (University Hospital Bonn, Germany, and 

University of Lome, Togo) and Alexander Kwarteng (Kwame Nkrumah University, 

Ghana). 

A total of 184 whole blood human samples were collected and RNA extracted by the 

E PIAF collaborators from the Kwame Nkrumah University of Science and 

Technology (Kumasi, Ghana). The RNA samples were hybridised to Illumina 

HumanHT12 BeadChip arrays (HumanHT12_V4_0_R2_15002873_B) by FIOS 
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Genomics, Edinburgh who also conducted quality control on the samples, of which 12 

arrays (samples) failed the quality control and were therefore removed from the 

dataset. A summary of the characteristics of the data are found in Table 3.5. All the 

samples also had clinical information associated with them, such as: 

• Phenotype of patients: Circulating filarial antigen (CFA) and Mf positive for W. 

bancrofti was measured, with 118 patients being CFA positive with of which 48 

were Mf positive.  For the purpose of this analysis patients with who were CFA 

positive with or without Mf were classified as infected, and patients with CFA 

negative and no Mf were classified as endemic normals (EN). 

• Coinfection with other filarial nematodes, although no coinfections with O. 

volvulus or L. loa were present 

• Whether the patients had other helminth infections: 9 patients were infected with 

Ascaris, 9 with hookworm infections, 1 patient had both Ascaris and 

hookworms, 1 sample with schistosomiasis and 2 had trichuriasis. 

• Whether they had protozoan infections: 4 patients had Plasmodium falciparum 

and 1 with P. vivax; 4 patients also had Giardia. 

• How many rounds of Ivermectin treatment the patients received; although not all 

patients received Ivermectin, 66 patients received 1 round and 12 received 2 

rounds. 

• Information on the patients age, gender (43 Females, 129 males) and district they 

live in. 
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3.5.4 Onchocerca volvulus endemic area dataset 

Whole blood samples were collected from patients living in Ghana in an 

onchocerciasis endemic area, by the E PIAF partners, Dr Sabine Specht (University 

Hospital Bonn, Germany and Institute of Laboratory Animal Science, Vetsuisse 

Faculty, University of Zurich, Switzerland), Prof Achim Hoerauf (University Hospital 

Bonn, Germany), Dr Alex Debrah (Kwame Nkrumah University, Ghana), Dr Laura 

Layland (University Hospital Bonn, Germany), Gnatoulma Katataw (University 

Hospital Bonn, Germany, and University of Lome, Togo) and Alexander Kwarteng 

(Kwame Nkrumah University, Ghana). 

A total of 167 whole blood human samples were collected and RNA extracted by the 

E PIAF collaborators from the Kwame Nkrumah University of Science and 

Technology (Kumasi, Ghana). The RNA samples were hybridised to Illumina 

HumanHT12 BeadChip arrays (HumanHT12_V4_0_R2_15002873_B) by FIOS 

Genomics, Edinburgh who also conducted quality control on the samples, of which 5 

samples failed the quality control and were therefore removed from the dataset. A 

summary of the characteristics of the dataset is found in Table 3.5. All the samples 

also had clinical information associated with them, such as: 

• Whether patients were O. volvulus microfilariae positive; these were classified 

as infected. If no microfilariae were found in skin snips, then patients were 

classified as endemic normals (EN), in total 109 patients were classified as 

infected (87 presenting nodules) and 53 as endemic normal. 
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• Whether patients received treatment; 63 patients received one round of 

Ivermectin, 1 patient received 6 round of Ivermectin and no patients received 

doxycycline. 

• Infection with other parasites; 23 patients also had P. falciparum infections. 

• Also present is information on patients, age, weight, sex (73 Females, 89 Males) 

and what village they live in. 

The human datasets are highly variable (in contrast to data from animal experiments) 

as a consequence of many confounding factors, such as whether patients have co-

infections and/or received Ivermectin treatment. Therefore, as an initial analysis 

samples from patients that had other infections, either other helminths (i.e. hookworms 

or Ascaris), or protozoan infections (malaria or Giardia); and patients who had 

received Ivermectin treatment were removed from the analysis. Removing the 

confounding factors helped with the interpretability of the results, and therefore for the 

purpose of this study only cleaner samples were looked at. 

Table 3.5 Characteristic of human dataset. Showing the number of samples, number of 

different treatment groups (classes), number of genes measured for each sample. 

Dataset No. of 
Samples No. of Classes No. of probes 

Wuchereria 
bancrofti 

All samples 172 2 (Infected / EN) 46698 

Pure samples 71 2 (Infected / EN) 46698 

Onchocerca 
volvulus 

All samples 162 2 (Infected / EN) 46698 

Pure samples 84 2 (Infected / EN) 46698 
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3.5.5 Pre-processing of Illumina microarray data 

The raw microarray data was imported into R programming language (R Development 

Core Team,, n.d.), using the lumi Bioconductor package (Du et al., 2008). The raw 

data was pre-processed using, the neqc function in the limma Bioconductor package 

(Ritchie et al., 2015) to:   

1) background correction, using Normal-exponential convolution, which uses 

negative controls (Ding et al., 2008; Xie et al., 2009), 

2) between-array quantile normalisation, 

3) log2 transformation. 

This package was found to be the best pre-processing strategy, giving the highest 

precision for a given bias (Shi et al., 2010).  

To find the genes associated with the probes on the Illumina microarrays, the Illumina 

probe identifiers were matched to nuID annotation (a unique identifier) using the lumi 

package (Du et al., 2008), and then corresponding Entrez Id were extracted, as these 

are needed for functional analysis using the ClusterProfiler package. All the machine 

learning methods used were carried out in python programming language 

(http://www.python.org/).  
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3.6  Evaluation of pipeline performance 
As this area of research is getting significant attention, more alternative algorithms are 

emerging, however there is still a lack of gold-standard methods or datasets to compare 

it to. Therefore, to evaluate the pipeline’s performance, its accuracy at predicting 

withheld data for each dataset was measured and compared to the accuracy of other 

machine learning methods (SVM-RFE, RF-RFE) often used on gene expression data. 

The machine learning results were further compared to a non-machine learning method 

of analysing gene expression which has been popular in biomedical sciences, WGCNA 

(Langfelder, Horvath, 2008). 

3.6.1  Pipeline performance on the murine and human 
datasets. 

The pipeline works by initially clustering genes, and summarising the expression of 

the genes within each cluster. These gene clusters are then ranked in order of 

importance using random forest (RF). This step uses random forest (RF) to select 

informative genes and is therefore named random forest for feature selection (RF-FS) 

for the purpose of this study. During the RF-FS step, RF models were built using the 

summarised gene clusters and ranks the gene clusters in order of importance. These 

RF models were built 10 times on the same dataset, to see how repeatable the gene 

rankings were (how stable it is). The gene clusters that were consistently ranked in the 

top 20% over the ten iterations of RF were classified as the most informative gene 

clusters (Table 3.6). These are termed informative as these gene clusters best describe 

the difference between the experimental groups. 



 

 

 
215 

The informative gene clusters are then used to build a second RF model, used as a 

quality control step, termed random forest for quality control (RF-QC). RF-QC was 

done to make sure that the gene clusters selected by the first RF were truly important. 

Different metrics were used to evaluate the model throughout the pipeline. The 

stability of the feature selection RF (RF-FS) model was evaluated using a Jaccard 

index, and then the accuracy of the two sets of random forest models (RF-FS and RF-

QC) were assessed (Table 3.6). 

3.6.1.1 Stability measures 

In an ideal scenario, RF ranks the gene clusters in the same order of importance every 

time a RF model is built on the same dataset, using the same parameters. However, 

this is not always the case, therefore a similarity index (Jaccard index) is used to 

measure how similar the rankings are between the 10 RF iterations. The closer the 

Jaccard index is to 1, the more similar the rankings are. Across the datasets (both 

murine and human datasets), the pipeline’s ability to rank variables in order of 

importance was relatively stable, with high index measures all above 0.8, except for 

the W. bancrofti dataset which gave an index of 0.77 (Table 3.6).  

3.6.1.2 Accuracy measures 

Another important measure is how accurate the pipeline is at classifying data, RF 

works by choosing variables (genes) which best classify the samples into their 

respective experimental groups, so that when to new data is used the RF model is able 

to predict the experimental group of the samples. Therefore, how well RF predicts the 

new data is used as measure of accuracy. In this pipeline, the accuracy of RF models 
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was measured in the form of precision5, recall6 and 10 fold cross-validation accuracy 

(Table 3.6). These were calculated for both: 

• The random forest used for feature selection (RF-FS) – Accuracy of the 

random forest models used for feature selection (selecting the informative gene 

clusters) was measured. Since 10 RF models were built on the same data, the 

average accuracy, precision and recall were calculated. 

•  The random forest used for quality control (RF-QC) – The accuracy of the 

random forest models used for quality control, was also measured. This was to 

make sure that the gene clusters identified by the random forest feature selection 

step were indeed good at classifying the data into their respective experimental 

groups.  

In all datasets the accuracy of the RF models improves when they are built on the gene 

clusters previously identified as being important by the first set of RF models (RF-FS). 

This signifies that the genes selected by the random forest models (in the feature 

selection step) are indeed good at classifying the data into the experimental groups. 

In the L3 vaccination dataset, the ML pipeline was able to identify gene clusters that 

were informative for each time point, as the accuracy of the random forest for quality 

control at day -28, day 0 and day 10, was 0.95, 0.86 and 0.88 respectively. Figure 3.14 

represents a confusion matrix for the Day -28 time point in the L3 vaccination dataset, 

which shows the difference between the RF ability to predict unknown data when 

trained on all gene clusters (Figure 3.14, RF-FS), or on gene clusters identified as 

important (Figure 3.14, RF-QC). 
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In the Mf vaccination experiment, the pipeline identified gene clusters at day -21, day 

-14 and day 0, that gave a high accuracy score of 0.70, 0.82 and 0.88 respectively, 

suggesting that those genes are good at identifying the different immunisation groups. 

However, by days 49 and 67 post challenge, the accuracy was lower, with an accuracy 

of 0.42 and 0.53, respectively.  
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Table 3.6. Performance of pipeline. The Jaccard index represents how similar the top 20% 

ranking of the gene cluster, over 10 iterations of RF. The accuracy, precision5 and recall6 are 

measured by 10-fold cross-validation (data is split into a testing and validation set 10 times, 

and the results are represented as averages and with standard errors in parantheses, the closer 

the measure is to 1 the more accurate the classifier is). Random Forest for Feature Selection 

(RF-FS) is the RF models used to selected informative gene clusters. Random Forest for 

Quality Control (RF-QC is RF models used to validate the gene clusters selected by the RF-

FS.  

Datasets Jaccard 
index 

Accuracy Precision Recall 

RF-FS RF-QC RF-FS RF-QC RF-FS RF-QC 

L3
 v

ac
ci

na
tio

n Day -28 0.82 
(± 0.01) 

0.50 
(± 0.39) 

0.95 
(± 0.40) 

0.34 
(± 0.36) 

0.81 
(± 0.42) 

0.47 
(± 0.27) 

0.90 
(± 0.24) 

Day 0  0.87 
(± 0.01) 

0.62 
(± 0.22) 

0.86 
(± 0.18) 

0.47 
(± 0.30) 

0.80 
(± 0.44) 

0.64 
(± 0.16) 

0.92 
(± 0.20) 

Day 10 0.81 
(± 0.01) 

0.60 
(± 0.24) 

0.88 
(± 0.25) 

0.40 
(± 0.31) 

0.70 
(± 0.64) 

0.62 
(± 0.25) 

0.78 
(± 0.42) 

M
f v

ac
ci

na
tio

n 

Day -21 0.80 
(± 0.03) 

0.57 
(± 0.32) 

0.70 
(± 0.20) 

0.34 
(± 0.39) 

0.52 
(± 0.32) 

0.55 
(± 0.20) 

0.68 
(± 0.23) 

Day -14 0.90 
(± 0.01) 

0.57 
(± 0.45) 

0.82 
(± 0.45) 

0.35 
(± 0.39) 

0.70 
(± 0.44) 

0.53 
(± 0.35) 

0.69 
(± 0.20) 

Day 0 0.95 
(± 0.01) 

0.65 
(± 0.40) 

0.88 
(± 0.25) 

0.42 
(± 0.28) 

0.64 
(± 0.31) 

0.65 
(± 0.24) 

0.72 
(± 0.27) 

Day 49 0.93 
(± 0.02) 

0.12 
(± 0.25) 

0.42 
(± 0.39) 

0.03 
(± 0.09) 

0.35 
(± 0.39 

0.15 
(± 0.33) 

0.44 
(± 0.37) 

Day 67 
1.000 0.23 

(± 0.27) 
0.53 

(± 0.35) 
0.14 

(± 0.19) 
0.33 

(± 0.36) 
0.28 

(± 0.35) 
0.53 

(± 0.27) 

W. bancrofti 
immunity 

0.77 
(± 0.01) 

0.68 
(± 0.05) 

0.79 
(± 0.13) 

0.44 
(± 0.00) 

0.85 
(± 0.68) 

0.68 
(± 0.80) 

0.80 
(± 0.15) 

O. volvulus 
immunity 

0.89 
(± 0.01) 

0.71 
(± 0.12) 

0.85 
(± 0.11) 

0.66 
(± 0.27) 

0.78 
(± 0.18) 

0.69 
(± 0.09) 

0.84 
(± 0.12) 

                                                

5 Precision – The fraction of true positives identified out of all the predictions. (P = 
Tp/(Tp +Fp)) 

6 Recall – The fraction of true positives predicted, which would have been identified 
(R= Tp/(Tp+Fn)) 



 

 

 
219 

 

 
Figure 3.14. Confusion Matrix. Confusion matrix illustrating the classification accuracy 

between A) the random forest built on all gene clusters, i.e. random forest for feature selection 

(RF-FS), and B) the random forest built on gene clusters selected as being important by RF-

FS, this is the random forest used for the quality control of the gene clusters selected (RF-QC). 

The confusion matrix above are based on random forest models built on the data from the Day 

-28 time point in the L3 immunity dataset, this corresponds to 6 hours following the first 

immunisation. Labels are the experimental groups the samples belong to: Immunised group 

signifies mice received a dose of either irradiated or non-irradiated L3; mice in the mock group 

received a dose of RPMI media as a mock immunisation; and naïve mice received no 

immunisation. The confusion matrix in B) shows that the RF built on informative gene, was 

able to predict the experimental group the samples belong to, whereas in A), the RF model 

built on all the gene, shows that there are some samples that are misclassified. Suggesting that 

genes selected are indeed good at differentiating between experimental group the samples 

belong, and are therefore informative on what is happening in vivo in blood following 

immunisation. 

3.6.1.3 Stability and accuracy of unclustered genes 

The importance of the clustering step (dimensionality reduction) in the machine 

learning pipeline was evaluated by building RF models of un-clustered genes and 

measuring their stability and accuracy. For this RF models were built on the L3 
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vaccination dataset using the pre-processed gene expression data (without the 

clustering step). 10 RF models were built at each time point (Day -28, day 0 and day 

10), and the stability and accuracy of the RF models were measured (Table 3.7). The 

clustering step (dimensionality reduction) was necessary to increase the accuracy of 

RF, which is much lower without clustering (Table 3.7). 

Clustering also increases the stability of the RF models. Thus, when RF models are 

built on all the genes (no clustering), a Jaccard index of 0.14-0.26 was recorded, but 

when clustered, Jaccard index of between 0.95 and 0.86 was obtained (Table 3.7). 

Using gene clusters, the RF model is able to consistently rank the clusters in a similar 

order of importance. 

Table 3.7. Performance of pipeline without the clustering step on L3 vaccination dataset. 

The machine learning pipeline was applied to the L3 vaccination without the clustering step 

and compared to the pipeline with clustering step in terms of model accuracy and stability. The 

Jaccard index represents how similar the gene rankings were in the top 20% ranked (closer to 

1 the more similar the ranking, so more stable the pipeline), the accuracy was measured by 10-

fold cross-validation. 

Time points 

Jaccard Index (Stability) Accuracy 
Without 

clustering 
With 

clustering 
Without 

clustering 
With 

clustering 

Day -28 
0.26 

(± 0.01) 
0.82 

(± 0.01) 
0.61 

(± 0.24) 
0.95 

(± 0.40) 

Day 0 
0.13 

(± 0.01) 
0.87 

(± 0.01) 
0.20 

(± 0.20) 
0.86 

(± 0.18) 

Day 10 
0.14 

(± 0.01) 
0.81 

(± 0.01) 
0.30 

(± 0.30) 
0.88 

(± 0.25) 
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3.6.2 Comparison with alternative machine learning methods 

The pipelines accuracy was compared to two other machine learning algorithms, 

Support Vector Machine with Recursive Feature Elimination (SVM-RFE, (Zhang, 

Xiaojuan Huang, 2015) and Random Forest with Recursive Feature Elimination (RF-

RFE, (Díaz-Uriarte, Alvarez de Andrés, 2006). These alternative machine learning 

methods were applied to the L3 vaccination dataset. Using a 10 fold cross-validation, 

these alternative machine learning methods were optimised to output the number of 

variables (genes) that gave the highest accuracy. 

The machine learning (ML) pipeline used in this study gave a higher classification 

accuracy scores compared to SVM-RFE and RF-RFE (Table 3.8). However, only a 

few genes were found to overlap between the gene list produced by SVM-RFE and 

RF-RFE and the ML pipeline (Table 3.8). Furthermore, the running time of the ML 

pipeline is much faster than both SVM-RFE and RF-RFE, and ML pipeline in this 

study is easier to optimise and allows for more flexibility in choosing the number of 

features (genes/clusters) to take forward for further analysis. SVM-RFE and RF-RFE, 

identifies the genes that are important, but the number of genes that one is left with at 

the end of the analysis, that are classified as important cannot be chosen. Whereas, 

with the ML pipeline, the percentage of the top ranked genes can be changed depending 

the subsequent analysis.  
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Table 3.8.Accuracy of SVM-RFE and RF-RFE, on the L3 vaccination dataset, measured by 

10-fold cross-validation (splits the data into a testing and validation set 10 times, the results 

are averages and standard error of each classification), the genes classified as important by the 

SVM-RFE and RF-RFE methods were compared to the genes extracted from the clustered 

classified as important the pipeline in this study, by measuring the overlap in gene (% overlap). 

Time 
points 

ML Pipeline SVM-RFE RF-RFE 
Accuracy No. 

genes 
Accuracy No. 

genes 
Overlap Accuracy No. 

genes 
Overlap 

Day     
-28 

0.95 
(± 0.20) 

421 0.80 
(± 0.37) 

9 0 % 0.60 
(± 0.24) 

31 30% 

Day 0 0.82 
(± 0.22) 

218 0.34 
(± 0.18) 

205 6.8 % 0.68 
(± 0.20) 

31 3.2% 

Day 
10 

0.80 
(± 0.44) 

268 0.30 
(± 0.20) 

66 0.37 % 0.50 
(± 0.00) 

31 0% 
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3.6.3  Comparison with a non-machine learning method used 
in the microarray literature 

A popular non-machine learning method for the analysis of gene expression data is 

Weighted Gene Correlation Network Analysis (WGCNA), which works by finding 

highly correlated groups of co-expressed genes (these have similar gene expressions 

across the samples). In this study, WGCNA was used to identify groups of genes that 

were associated with immunisation. The genes identified by WGCNA were then 

compared to the genes identified by the ML pipeline.  

However, WGCNA cannot analyse multiclass data and struggles with large 

dimensional data (i.e would not be able to analyse the 46,000 genes measured by 

microarrays). For this reason, comparison was restricted to data from the Mf 

vaccinated mice and genes involved in immune responses identified using the 

Reactome database (R-MMU-168256.1) and Gene Ontology database (GO:0002376), 

a total of 2,568 genes. The Mf immunisation dataset has a measure of Mf counts at 

Day 67 and this provides the simplest way to split mice into a binary outcome of 

presence or absence of Mf. 

WGCNA essentially clusters genes based on their expression, and a principal 

component is calculated for each cluster. The first component of the clusters are then 

correlated with presence or absence of Mf, to see if there is an association between the 

gene clusters and presence or absence of the parasite. WGCNA was conducted in R 

using the parameters recommended the WGCNA guidelines (Langfelder, Horvath, 

2008): deepSplit =2, cut height = 0.99 and minimum module size = 10.  
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At each time points a different number of clusters were produced, with varying 

numbers of genes in each (Table 3.9). The cluster first principal component was 

calculated (a way of summarising the cluster) and correlated with a binary outcome of 

presence or absence of Mf seen at Day 67. The clusters found to be significantly 

associated with the presence or absence of Mf were further investigated using pathway 

analysis to determine any association with parasite numbers. Pathway analysis was the 

same as that used by the machine learning pipeline, except genes associated with 

immune responses where used as the reference background. 

Table 3.9. WGCNA per time point: The number of clusters (groups of genes) identified at 

each time point; the average number genes per cluster; and number of clusters significantly 

associated with protection. 

Time point Number of 
clusters 

Average size of 
clusters (genes) 

Number of clusters 
associated with protection* 

Day -21 127 20 6 (263 genes) 

Day -14 66 39 1 (158 genes) 

Day 0 24 108 4 (232 genes) 

Day 49 90 29 5 (125 genes) 

Day 67 105 25 3 (122 genes) 

*Clusters significantly correlated with presence/absence of Mf at day 67, with a P-value <0.05 (T-test) 
 

The pathways identified by WGCNA were compared to the pathways identified by the 

machine learning pipeline. For the post immunisation time points (Day -21 and Day -

14) both methods identified similar pathways being triggered by the Mf immunisation 

(Table 3.10) such as: negative regulation of T cell receptor signalling (TCR and PD-1 

signalling); interferon signalling (IFN-g and IFN-b); antigen processing and cross-

presentation. However, WGCNA also identified genes associated with regulation of 
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MAP Kinases involved in the activation Toll Like Receptor (TLR) cascades (Table 

3.10).  

Pathways identified by WGCNA following the challenge infection (Day 0) or 49 days 

later (Day 49) are not particularly informative (Table 3.10). At Day 0 genes involved 

in nucleus organisation were identified. At Day 49 genes associated with response to 

external stimulus (GO:0009605) were identified: this is a broad category of processes 

that involves any change of activity of a cell, in terms of movement, secretion, enzyme 

production, gene expression due to an external stimulus.  

Interestingly at Day 67 WGCNA successfully identified pathways associated with 

interferon signalling (IFN-g and IFN-β), antigen presentation and regulation of 

immune responses (Table 3.10), the same as after immunisation. The genes involved 

with these processes are more highly expressed in mice with microfilariae circulating 

in their blood, suggesting that WGCNA can detect the immune responses to Mf being 

produced by the adult worms and which is not possible using ML pipeline. However, 

this observation may also be explained by the fact, that for the WGCNA the data was 

split into presence and absence of Mf, which was not done in the ML pipeline as the 

focus was on the effect of immunisations. 

Although there may not be complete overlap of results from the new ML pipeline and 

the popular WGCNA method, the ML pipeline successfully identifies the same 

biologically relevant pathways as WGCNA. Moreover, since it is not restricted to 

candidate genes (immune genes) and two groups, it is able to identify greater number 

of genes and processes that are being triggered following immunisation. 
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Table 3.10. Summary of processes/pathways found as being important by WGCNA and 

the ML pipeline, using the GO database and Reactome database for each time point. (Full list 

Supplementary Table S2 and Table S3) 

Time  
Point 

Summarised processes / pathways 
 identified by WGCNA 

Overlap with pathways 
identified by the ML 
pipeline 

Day -21 

TCR signalling � 

PD-1 signalling � 

Antigen processing and presentation � 

Antigen cross-presentation � 

Interferon signalling (IFN-g and IFN-b)  � 

Regulation of immune responses � 

Regulation of ERK (a MAPK) involved in TLR cascades  

Day -14 Interferon signalling (IFN-g and IFN-b) � 

Day 0 Nucleus organization  

Day 49 Response to external stimulus  

Day 67 

Defence response to other organisms  

Interferon signalling (IFN-g and IFN-b)  

Regulation of immune responses  

Antigen processing and presentation (MHC-I)  
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3.7  Biological relevance of results from machine 
learning pipeline 

3.7.1  Changes in gene expression after vaccination in murine 
models 

Functional analysis was performed on the genes selected by the machine learning 

pipeline to investigate the biological significance of the genes; overlap between time 

points within a dataset; and to uncover any overlap in protective immunity between 

the L. sigmodontis mouse models and human filarial infections (O. volvulus and W. 

bancrofti).  

It was determined that concentrating on pathways or processes with which specific 

genes are associated to may give more insight into the overall responses being 

triggered during the vaccination time course, and determine if there is any overlap with 

human immune responses. As little overlap between the different time points was 

observed when comparing the genes selected by the ML Pipeline throughout a 

vaccination time course (Figure 3.15A). However, when comparing the functional 

pathways those genes belonged to between the time points, these showed greater 

overlap (Figure 3.15B). This implies that similar pathways are being triggered 

throughout the vaccination time course, but the genes are not always the same.  
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Figure 3.15 Venn diagrams of genes and their corresponding pathways selected by the 

pipeline for the L3 vaccination dataset. Venn diagrams showing overlap between time points 

in L3 vaccination dataset of A) genes from the clusters selected by the pipeline and B) 

“immune system process” (GO:0045087) those genes are involved in. 

Over-represented pathways were identified in each of the gene lists produced by the 

ML pipeline. The degree of over-representation was calculated using cumulative 

hypergeometric distributions, which is the probability of finding genes belonging to a 

functional Gene Ontology (GO) category or Reactome pathway within the gene list. A 

P-value was calculated for each of the pathway or processes using the Benjamini-

Hochberg method to correct for multiple testing (Benjamini, Hochberg, 1995).  

Different numbers of GO terms associated with Biological Process (BP) were found at 

each time point, and different pathways were identified using the Reactome database 

(Table 3.11). Because there are some discrepancies between the pathways found 

between the two databases, both databases were used in order to obtain the best 

overview of what is biologically happening at each time point.  

Overall the list of genes identified by the ML pipeline at the time points after 

immunisation had the greatest number of over-represented GO terms and pathways. 



 

 

 
229 

This analysis suggests, that the early events in infection are important in determining 

the outcome to infection and this fits with what is known from the L. sigmodontis 

literature (Babayan et al., 2003), especially in terms of initial CD4+ T cells responses, 

which are crucial in determining immunity to later stages of infection (Taylor et al., 

2009).  

The conclusion is that a vaccine would need to skew the immune system to a protective 

phenotype from the onset of infection, as once the infection is established it is hard to 

reverse the immune-regulatory pathways triggered, and hence why in these vaccination 

experiments more pathways were found over-represented at the earlier time points and 

not once infection has established itself. 

Table 3.11. Over-represented terms and pathways across the murine datasets. The 

number of genes selected by the pipeline for each time point; the number of genes annotated; 

number of over-represented pathways using the Gene Ontology (GO) database looking at 

Biological Processes (BP) and Reactome database 

Datasets & Time 
points 

No of Genes 
selected by 
the pipeline 

No of genes 
annotated  

Terms/Pathways using: 

GO BP Terms Reactome 

L3 
Vaccination 

Day -28 421 309 3 0 

Day 0 218 177 0 0 

Day 10 268 191 0 2 

Mf 
Vaccination 

Day -21 216 146 59 41 

Day -14 128 92 35 14 

Day 0 218 158 0 0 

Day 49 144 113 2 0 

Day 67 145 125 0 0 
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3.7.1.1 Informative genes and pathways in L3 immunised mice 

Among the genes identified from the L3 vaccination dataset by the pipeline, biological 

processes were significantly over-represented at day -28 and were involved with 

neutrophil movement (Chemotaxis: GO:0030593; Migration: GO:1990266) (Figure 

3.16A). The genes involved in these processes have increased expression in the 

immunised group after the 1st immunisation (day -28), followed by increased 

expression in the mock group after challenge (day 0), and by day 10 expression across 

the groups is relatively similar (Figure 3.17). This suggests that the machine learning 

pipeline is detecting the innate response to incoming L3 and that such responses have 

been demonstrated to have a major role in controlling the early stages of filarial 

infection in the skin (Pionnier et al., 2016). 

Interestingly, over-represented pathways associated with regulation of interferon (IFN) 

α signalling (Reactome: 5992081) were found at Day 10 (Figure 3.16). Both IFN-α 

and IFN-b are type I interferons, which exert multiple functions in the immune system 

and have various stimulatory and suppressive effects on dendritic cells (DC), 

macrophages, natural killer (NK) cells, T and B lymphocytes. While mostly associated 

with viral infections, they have recently been shown to be induced by bacteria or 

bacterial products, protozoa such as Leishmania spp and Plasmodium spp, and in 

helminths by Schistosoma mansoni eggs (Bogdan et al., 2004). Both IFN-α and IFN-

b  have been shown to have immunomodulatory properties and are therefore used as a 

potential therapeutic for human hepatic alveolar echinococcosis (Godot et al., 2003).  
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Four genes from the IFN-α regulation pathway were selected by the ML pipeline; two 

genes encoding IFN-α, Ifna5 and Ifna9; and two genes involved in the regulation of 

cytokine signalling Socs1 (negative feedback loops) and Ptpn11 (Sh2). However, the 

precise role of IFN-α and its regulation in L. sigmodontis infection remains unclear 

(Figure 3.18).  

 
Figure 3.16 Over-represented terms found in the genes identified by the ML pipeline, in 

mice immunised with L3. A) Biological processes using the Gene Ontology database were 

found over-represented at Day -28 (6 hours post 1st immunisation) in the L3 vaccination time 

course, these were associated with neutrophil movement (Chemotaxis: GO:0030593; 

Migration: GO:1990266). B) Using the Reactome database, pathways involved in IFN-α 

signalling were found over-represented at Day 10. Each process or pathway is represented as 

an over-representation score, the –log10 of the adjusted P-value (which accounts for multiple 

testing using the Benjamini-Hochberg method) and denotes the significance of the terms over-

represented, the higher the value the more significant the GO term was. An adjusted P-value 

< 0.05 and Q-value < 0.2 was used as the significance cut-off. 
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Figure 3.17 Gene expression of genes involved in neutrophil pathways across the 

different time points. Log2 of expression intensity of Cxcr2 and Csf3r on day -28 (6hr after 

1st immunisation), day 0 (6hrs after challenged) and day 10 time points (L. sigmodontis worms 

from challenge, that have survived would have matured to L4 stage and some will have reached 

the immature adult stage). Cxcr2 is a receptor for IL-8 and mediates neutrophil migration. 

Csf3r is a receptor for Csf3 which is a cytokine that controls the production, differentiation 

and function of granulocytes. Both of these genes are involved in pathways associated with 

neutrophil migration (GO:1990266), neutrophil chemotaxis (GO:0030593). 
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Figure 3.18. Gene expression of genes involved in IFN-α pathway across the different 

time points. Log2 expression intensity of IFN-α encoding genes (A) Ifna5, (B) Ifna9; genes 
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involved in the regulation of cytokine signalling (C) Ptpn11 and (D) Socs1, on Day -28 (6hr 

after 1st immunisation), Day 0 (6hrs after challenged) and Day 10 time points. Ifna5 is a gene 

that encodes IFN-a5, and Ifna9 is a gene that encodes IFN-a9. Ptpn1 is a member of the 

protein tyrosine phosphate family, these catalyze the hydrolysis of the phosphate monoesters 

specifically on tyrosine residues, and are known to be signalling molecules that regulate a 

variety of cellular processes. Socs1 is a member of the STAT-induces STAT inhibitor and are 

known to suppress cytokine signalling. Altogether these genes are associated with pathways 

involved in the regulation of IFN-α signalling and were selected by the ML pipeline at day 10 

as being informative. 

3.7.1.2 Informative genes and pathways in Mf immunised mice 

Similar to that seen following L3 vaccination, time points 6 hours after Mf vaccination 

were the most informative with over-represented biological processes found at day-21 

and day -14 (Table 3.11).  

Since large numbers of GO terms were found over-represented at day -21 and day -14, 

only the top 20 significant BP GO terms are represented in Figure 3.19, with some 

overlap seen between the time points (Figure 3.20). At day 0 (6 hours post L3 

challenge) the ML pipeline did not identify any biological process as being 

differentially expressed between the treatment groups. This could be that there is little 

difference in response to incoming L3 between Mf immunised and the controls, and 

that the changes in gene expression that determine the outcome of infection happen 

early on after immunisation, and again once the worms have matured, since it’s known 

that the Mf vaccine affects adult worms fertility and not the incoming L3 (Ziewer et 

al., 2012). The full list of significantly over-represented GO categories for Biological 

Process are summarised in Appendix B Table S4. 
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The main biological processes found by the pipeline for day -21 were processes 

involved in the response to IFN with an emphasis in IFN-b and IFN-P; antigen 

processing and presentation with processes triggering lymphocyte activation and 

adaptive immune responses; homotypic cell to cell adhesion of immune cells such as 

T cells including their activation and aggregation; and defence responses to single cell 

organisms such as bacteria and protozoa.  

At day -14 processes such as response to IFN-b and IFN-P; antigen processing and 

presentation, and defence responses to protozoan and bacteria were found over-

represented. The difference between the two immunisation time points is that day -14 

also had over-representation of processes involved in regulation of gene expression 

(epigenetics).  

In addition, Day 49 had GO terms over-represented in processes involved in regulation 

of gene expression through epigenetic changes and chromatin silencing. Day 49 

corresponds to a time when adults are found in the pleural cavity but no Mf are yet 

present. 
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Figure 3.19. Gene Ontology Terms of biological processes in the Mf immunity dataset. 

Time point Day -21, Day -14 and Day 49 in the Mf immunity dataset had significantly over-

represented GO terms. The over-representation score is the –log10 of the adjusted P-value 

(which accounts for multiple testing using the Benjamini-Hochberg method) and denotes the 

significance of the GO terms, the higher the value the more significant the GO term is. The 

significance cut-off is an adjusted P-value < 0.05 and a Q-value < 0.2.  
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Figure 3.20. Overlap of over-represented Gene Ontology Terms for biological processes 

in the Mf immunity dataset. There is overlap between terms at Day -28 and Day -14; and 

then between Day -14 and Day 49. The data is presented as enrichment scores, which is the –

log10 of the adjusted P-value (accounting for multiple testing using the Benjamini-Hochberg 

method) and denotes the significance of the GO terms within a gene list, the higher the value 

the more significant the GO term is. A GO term was classified as significantly over-

represented, if the term had an adjusted P-value < 0.05 and a Q-value < 0.2. 

Pathway analysis based on the Reactome database also revealed significantly over 

represented pathways at time points directly after immunisation, the majority of which 

were related to the immune system. The over-represented pathways following 

immunisation were mostly associated with genes involved in the initiation of adaptive 

immune response, in terms of antigen processing and antigen presentation (MHC I 

mediated); and interferon signalling, with an emphasis on IFN-P. Furthermore, at day 

-21, pathways involved in T cell signalling such as T cell receptor (TCR) signalling; T 
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cell co-stimulation signalling through receptors of the CD28 family (including PD-1 

which is a negative regulator of TCR signalling and leads to the dephosphorylation of 

CD3 zeta chains) were over-represented (Figure 3.21).  

 

 
Figure 3.21. Pathway over-represented using Reactome database. Using the Reactome 

database over-represented pathways were found in the gene lists extracted for day -21 and day 

-14 of the Mf immune dataset. The data is presented as enrichment scores, which is the –log10 

of the adjusted P-value (accounting for multiple testing using the Benjamini-Hochberg 

method) and denotes the significance of the GO terms within a gene list, the higher the value 

the more significant the GO term is. The analysis accounted for multiple testing using the 

Benjamini-Hochberg method, and each process was over-represented with a P-adjusted-value 

< 0.05 and a q-value < 0.2. 

All together the GO and Reactome pathways found over-represented highlight the fact 

that time points after immunisations are most informative of immunisation and 
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consequently to the outcome of infection. Therefore, measuring changes in gene 

expression at the end of a vaccination time course would not be as informative as was 

seen in chapter 2. Despite there being some discrepancies between the pathways 

identified between the two databases (GO and Reactome), there are common themes.  

Responses to IFN seemingly play an important role at the earlier time points, as genes 

involved in these processes have a similar expression across the time point, showing a 

response to Mf, with higher expression after immunisation with Mf and again at Day 

67 in groups that have higher Mf burdens (Figure 3.23). This has been demonstrated 

in vivo, where single stage infection with Mf in mice induces the production of IFN-ɣ 

(Lawrence et al., 2000). Genes involved in IFN-β pathways were also detected; 

although commonly associated with antiviral immunity IFN-β has been shown to have 

immunomodulatory properties in bacterial infections, whereby DC produce IFN-b 

upon activation by LPS, leading to induction of T cell tolerance by enhancing PD-1 

binding and therefore facilitating Treg generation (Wang et al., 2014), or where 

Schistosoma mansoni eggs induce myeloid DC to produce IFN-b as a potential 

immune evasion strategy (Trottein et al., 2004), but there is no documented role of 

IFN-b in filarial infections. Another possible explanation is that there is a lot of overlap 

between the genes involved in interferon signalling pathways (IFN-b, IFN-g and IFN-

a), and because the genes selected by the pipeline are involved in both and are not 

specific to either pathways, they are shown as over-represented. Comparing the gene 

assigned to each pathway shows that indeed they are very similar genes and are shared 

by both IFN-g and IFN-b pathways. What can be concluded is that Mf trigger IFN 
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responses, with a possible novel role of IFN-b but further in vivo experiments would 

need to be done to confirm this. 

Pathways involved in initiation of the adaptive immune responses were also 

upregulated after immunisation. These include antigen processing and presentation, 

and T cell recruitment and activation. Although most of the genes are associated with 

antigen presentation are genes that form the MHC class I molecules (H2 class I genes, 

orthologue for HLA-A genes in humans), all had greater expression when Mf were 

present (Figure 3.24), suggesting that Mf antigens are being cross-presented to CD8+ 

T cells, and that these might play a larger role in innate (initial immune) response to 

Mf, which has been suggest to be the case for modulation of infection in chronically 

infected Loa loa (Steel et al., 2012). 

 
Figure 3.22. Timeline of Mf immunisation time course. Day -28, -21 and -14 before the 

challenge infection, mice received immunisation, with either Mf on their own, Mf in alum, 

alum alone as a control, or media as a second control. At day 0, mice received a challenge 

infection with L3. By day 49 adult worms should be present in the pleural cavity of the mice 

and at day 67, Mf should be found circulating the blood, this also corresponds to the end of 

vaccination experiments. 
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Figure 3.23. Expression of Ifitm3 and Irf1 genes throughout the Mf vaccination time 

course. Interferon regulatory factor 1 (Irf1) is a gene that encodes a transcription factor and 

interferon-induces transmembrane protein 3 (Ifitm3) encodes a gene that is an interferon 

induced membrane protein that is most known to be involved in immunity to virus. Both genes 

are involved in pathways responsible for responses to IFN-g and IFN-b (IFN-g: Gene Ontology 

GO:0034341, Reactome: R-MMU-913531.1; and IFN-b GO:0035456). Other genes were 

selected by ML pipeline that were involved in these pathways (B2m, Cdc37, Gbp2b, Gbp2, 

Gbp3, H2-D1, H2-Q8, H2-T23, Ifitm3, Irf1, Irf7, Sp100) and all follow a similar pattern of 

expression, with higher expression when Mf are present such as after immunisation and again 

at day 67 in groups with higher Mf burdens.  
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Figure 3.24. Expression of B2m and H2-D1 genes throughout the Mf vaccination time 

course. Beta-2 microglobulin (B2m) is a gene encoding a component of MHC class I 

molecules and histocompatibility 2, D region locus 1 (H2-D1) is a gene encoding is a 

component of MHC class I molecules. Both genes are involved in pathways associated with 

antigen processing and presentation, and T cell activation, this is because these genes form 

part of the MHC class I structure, other genes were also selected by the pipeline that form this 

complex (B2m, H2-K1, H2-Q6, H2-Q8, H3-T23), and all follow a similar pattern of 

expression, with higher expression when Mf are present such as after immunisation and again 

at day 67 in groups with higher Mf burdens.  
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3.7.2  Human Filariasis 

To find pathways associated with protection in human onchocerciasis and lymphatic 

filariasis, the ML pipeline was used initially on all 162 and 172 samples from the O. 

volvulus and W. bancrofti datasets respectively, however no significantly over-

represented pathways where found in W. bancrofti dataset, and only pathways 

associated with cell cycle were identified in O. volvulus. 

Clinical data from human samples is inherently noisier than data collected from 

controlled experiments (e.g. mice vaccination experiments). Samples from patient with 

co-infections, either from other helminths (i.e. hookworms or Ascaris), or protozoa 

infections (malaria or Giardia); and patients who had received Ivermectin treatment 

were removed from the analysis. This left 85 and 71 samples for the O. volvulus and 

W. bancrofti dataset respectively (Table 3.12). When the pipeline was applied to these 

“cleaner” samples, a higher classification accuracy and stability was achieved. Over-

represented pathways were found in the genes identified as being associated with 

protection by the ML Pipeline for both O. volvulus and W. bancrofti individuals (Table 

3.12). 
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Table 3.12. Number of genes identified as important in distinguishing infected and 

protected individuals in O. volvulus and W. bancrofti endemic areas. The number of genes 

selected by the pipeline for each human datasets; number of annotated genes; number of over-

represented pathways/process in the gene list produced by the ML pipeline, using Gene 

Ontology Biological Process and Reactome database.  

Human 
Datasets 

No Genes selected 
by ML pipeline 

No genes 
annotated 

Over-represented Terms/Pathways 
using: 

BP GO Terms Reactome 

O. volvulus   275 198 53 12 

W. bancrofti 195 128 0 4 

 
Onchocerca volvulus endemic area dataset 

Overall 53 GO terms were found over-represented in the gene list produced by the 

pipeline from O. volvulus dataset, and 12 using the reactome database (Figure 3.25). 

These terms were summarised based on their function to get an overview of processes 

important in onchocerciasis infections: 

• Killing of cells of other organisms (GO:0031640):  

_ Defence responses to fungus (GO: 0050832) and Gram-positive 

bacterium (GO:0050830)  

_ Modification of morphology or physiology of other organism 

(GO:0035821), these are process that are involved in killing a 

variety of organisms 

_ Innate immune responses in mucosa (GO: 0002227)  

_ Acute inflammatory responses (GO:0002526) 
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_ Negative regulation of growth of symbiont involved in interaction 

with host (GO:0044146) 

• Humoral immune response (GO:0006959): 

_ Organ or tissue specific immune response (GO:0002251) – an 

immune response happening in an organ or tissue, such as liver, 

brain, mucosa or nervous system 

_ Leukocyte mediated immunity (GO:0002443) -including DC 

• DNA-dependent DNA replication (GO:0006261): 

_ Anaphase-promoting complex-dependent proteasomal ubiquitin-

dependent protein catabolic process (GO: 0031145) - chemical 

reactions and pathways resulting in the breakdown of a protein or 

peptide by hydrolysis of its peptide bond. 

• DNA conformational change (GO:0071103) 

• Chromosome segregation (GO:0007059) 

• G1/S transition of mitotic cell cycle (GO:0000082) 

• Cell killing (GO:0001906) 

• Negative regulation of protein binding 
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Wuchereria bancrofti endemic area dataset 

In the lymphatic filariasis dataset, no GO terms and 4 pathways using Reactome 

database were found significantly over-represented, all associated with T cell receptor 

signalling (Figure 3.25). The genes involved in these processes (HLA-DP and HLA-

DR) had higher expression in infected individuals compared to endemic normal 

(Figure 3.26). These genes are part of the MHC class II cell surface receptors, which 

is the ligand for CD4 T cell receptors and therefore associated with T cell receptor 

signalling, which can either trigger T cell activation or suppression. 
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Figure 3.25. Over-represented pathways were detected in both Onchocerciasis and 

Lymphatic Filariasis datasets. Using the reactome database over-represented pathways were 

detected in the gene list produced by the ML pipeline for both the onchocerciasis and lymphatic 

filariasis datasets, (these were gene expression for individuals living in O. volvulus or W. 

bancrofti endemic areas respectively). The data is presented as over-representation scores, the 

–log10 of the adjusted P-value (accounting for multiple testing using the Benjamini-Hochberg 

method) and denotes the significance of the GO terms within a gene list, the higher the value 

the more significant the GO term is. The analysis accounted for multiple testing using the 

Benjamini-Hochberg method, and significance defined as a P-adjusted-value < 0.05 and a q-

value < 0.2. 
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Figure 3.26. Gene expression of HLA-DPA1 and HLA-DRA in individuals living in W. 

bancrofti endemic area of Ghana. Both of these genes are associated with T cell receptor 

signalling and are in fact part of the MHC class II molecule. Both HLA-DPA1 and HLA-DRA 

have increased expression in individuals infected with W. bancrofti compared to endemic 

normal. GLM’s were used to fins statistical differences between the groups, but no statistical 

difference was found. 

3.7.3  Overlap between mice and human protective immunity 

As one of the aims of this study was to investigate if there was any overlap in protection 

in humans living in endemic areas and immunised mice, pathways associated with 

protection were compared between both systems. Pathways associated with Mf 

immunity, such as defence against bacteria were found to be associated with protection 

in individuals living in O. volvulus endemic areas, these pathways could be being 

triggered by Wolbachia found in L. sigmodontis Mf and O. volvulus. By contrast T cell 

receptor signalling pathways were found to be important for protection in both 

individuals living in W. bancrofti endemic areas and in L. sigmodontis Mf 

immunisations (Figure 3.27).  
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Figure 3.27. Representation of overlap in pathways between human datasets (W. 

bancrofti and O. volvulus endemic areas) and Mf vaccination dataset. Overlap in GO terms 

and reactome pathways that are identical matches between human datasets and mice datasets, 

only the Mf vaccination out of both murine models had an identical match. Genes involved in 

cell killing mostly associated with bacteria killing were over-represented in both O. volvulus 

and the immunization time points of the Mf vaccination dataset, and genes involved in T cell 

receptor signalling were found over-represented in both W. bancrofti and the immunization 

time points of the Mf vaccination dataset. 
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3.8 Conclusions and future uses 
Microarray array technology has become an important tool to dissect the complex 

mechanisms involved in diseases, in this study microarrays were used to identify the 

underlying pathways associated with protection, induced in vaccination experiments 

in L. sigmodontis a murine model of filariasis, and in humans living in either an 

onchocerciasis or lymphatic filariasis endemic area. Gene expression was measured in 

whole blood as this is the most convenient sampling method for both humans and 

murine studies. The disadvantage of starting with whole blood is that the “background 

noise” is relatively high. Lower backgrounds can be obtained if isolated cell 

populations are used (Bondar et al., 2014) however, this is not a realistic proposition 

in the context of either the murine or human studies described here, and systemic 

responses would be overlooked. 

To analyse the microarray data, machine learning techniques were used to create a 

pipeline to identify informative gene expression in murine and human datasets that 

may differentiate between protected or infected individuals. The advantages of a 

machine learning pipeline over traditional and popular methods such as differential 

fold changes or gene co-expression networks, is that the pipeline can incorporate 

samples with multiple experimental groups and is not restricted to comparing two 

groups or disease states. In addition, this approach can handle large multi-dimensional 

data sets and is robust at detecting small changes in gene expression. 

The ML Pipeline uses publicly available algorithms including a density based 

clustering algorithm to overcome the problem of dimensionality that afflicts 

microarray data. This algorithm successfully cluster genes by their expression pattern, 
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and identifies genes that do not cluster. The genes within a cluster were “summarised” 

so that a new variable can represent the expression of many genes within a cluster. The 

summarised gene clusters were then used to build a random forest model that ranks the 

gene clusters in order of importance, i.e. by how well they discriminate between the 

experimental groups in mice (immunised, mock or naïve) or infection status in humans 

(infected or EN). Random forest was repeated over several iterations and the gene 

clusters that routinely fell into the top 20% at each iteration were selected as being 

“informative” gene clusters. The function of the individual genes within the 

informative clusters were determined using pathway analysis. Compared to other 

machine learning, the ML Pipeline provides greater accuracy and is more flexible than 

recursive methods such as RF-RFE and SVM-RFE.  

Biologically relevant genes were successfully identified from whole blood gene 

expression data from mice vaccinated with either live attenuated infective L3 larval 

stage or microfilariae. Furthermore, it was shown that these different vaccination 

protocols elicited protection through different mechanisms. Thus, in the case of L3 

vaccination, protection was associated with neutrophil recruitment and migration. 

Such a response has also been demonstrated by Pionnier et al (2016) who showed that 

subcutaneous delivery of L3 resulted in an increase in neutrophils in the skin and which 

is essential for the early control of infection (Pionnier et al., 2016). In contrast, 

protection associated with Mf immunisation involved IFN signalling and IFN 

responses which corresponds to what is seen in vivo where mice immunised with Mf 

had stronger IFN-g responses compared to controls (Ziewer et al., 2012) and IFN-g 
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RNA levels in re-stimulated splenocytes were increased after the onset of patency in 

L. sigmodontis infected BALB/c (Taubert, Zahner, 2001).  

The results presented in this study clearly show that genes identified by the ML 

pipeline are biologically relevant to filarial infections and the use of whole blood 

provides a convenient and workable starting point for additional studies. 

The ML pipeline also demonstrated that adaptive immune responses are being 

triggered 6-hours post immunisation. Following the final (3rd) immunisation (Day -

14), antibody production by B cells is triggered (GO:0002822, somatic recombination 

of receptors). The results also may suggest that Th1 responses such as IFN-a/β and 

MHC I antigen cross-presentation might play a greater role in filarial immunity than 

has been reported in the literature, at least during the initial stages of exposure and 

infection.  

A comparison of human and murine datasets showed that protective responses evoked 

in mice by immunisation with microfilariae most closely resembled protective 

pathways induced in human through infection with either O. volvulus or W. bancrofti 

infections. This is not to say that protective responses evoked by L3 vaccination in 

mice may not be mirrored in humans. To investigate this possibility would however be 

difficult because it would require collecting blood shortly after an initial exposure and 

in practice, this would mean taking samples from very young children. This is a critical 

gap in our knowledge of human immune responses to filarial infections and one crucial 

for the successful development of a vaccine. It is a gap that may be closed by analysis 
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of blood samples taken from cattle infected with O ochengi under conditions of known 

exposure (Makepeace, Tanya, 2016). 

The ML pipeline does have certain limitations, one of them being sample size. The 

dataset used have relatively large sample sizes compared to other microarray studies 

using traditional statistical methods, which usually contain 2 or 3 samples per 

treatment group (Zhou et al., 2016), but our data sets are smaller than many studies 

using machine learning techniques where data analyses rarely contains less than 100 

samples. Increasing sample size will increase accuracy and stability (Kim, 2009) but 

while sample sizes of 500-800 are suggested, such numbers would be prohibitively 

expensive and unfeasible in the case of experimental mouse studies. 

To mitigate against the relatively small numbers, murine studies could be better 

designed to maximise difference between control and test groups. For example, in the 

case of filarial infections, this would mean comparing mice presenting with specific 

and divergent parasite (Mf) loads. Furthermore, now that it is known that time points 

after immunisation are the most informative, gene expression could ideally be 

measured after each after immunisation time point and then after challenge. 

One of the major issues that concerns vaccine development is adverse reaction to the 

vaccination, since filarial infections can present with severe Th2 driven pathology 

(Brattig, 2004; Babu, Nutman, 2012). Therefore, detecting genes or pathways that 

determine the outcome of pathology will be important in developing a safe vaccine 

that would lead to protection without any pathology. 
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The work presented in this chapter demonstrates that machine learning techniques can 

be applied to highly dimensional microarray data from whole blood to understand the 

molecular events that happen in vivo to filarial infections. Such methods could be used 

to identify biomarkers of protection to vaccination, which would benefit vaccine trials 

(Nakaya et al., 2011a) particularly if such markers could predict outcome of 

vaccination within a relatively short period (e.g. within 3-4 weeks of final 

immunisation). Such characteristics would be particularly helpful in the case of 

onchocerciasis infections because of the long incubation period (18 months). The 

ability to accurately predict the immunogenicity of a vaccine within the first few days 

or weeks of a clinical trial would help determine the endpoint any clinical trial and 

ultimately save money and time. However, any biomarkers of protection would have 

to be well defined, as correlates of efficacy in healthy young adults may not be 

necessarily the same as biomarkers of protection in the elderly, or children under 5, 

which are the primary targets for most vaccination campaigns.
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Chapter 4. Structural modification of the CPI 
immunomodulator rescues DC function.  

4.1 Introduction 
Traditional vaccine development has largely been based on the use of inactivated or 

attenuated vaccines without knowing the vaccine’s exact mechanisms of protection. 

Despite attenuated vaccines (irradiated L3) for filarial parasites showing protection in 

animal models, it would not only be unethical but also unfeasible for use in humans. 

Thus, vaccine development has turned to the use of subunit vaccines, based on parasite 

antigens, however filarial nematodes are complex parasites, and the chances of finding 

effective antigens which confer protective immunity are low. Fortunately, knowledge 

of the immune responses induced by the filarial parasites can be used for a more 

rational approach to vaccine design. It is recognised that protection against filarial 

parasites is dominated by Th2 immune responses with some Th1 responses induced by 

Wolbachia (present within the nematodes); however filarial parasites induce a state of 

hypo-responsiveness that predisposes towards a chronic infection. Therefore, a vaccine 

strategy for filarial parasites has been to target the parasite’s immunomodulators that 

induce this state of hypo-responsiveness, as well as evoking a Th2 response.  

Vaccine candidates were selected based on their role in immunomodulation and their 

potential to induce protective immunity in several animal models of filariasis. With 

this strategy, a cysteine protease inhibitor (CPI) was identified (Table 4.1). In the L. 

sigmodontis model, Ls-CPI vaccine had no effect on protection nor was it able to 

generate strong specific immune response (Babayan et al., 2012). However, when 

structurally modified through a single point mutation (Murray et al., 2005), CPIm has 
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consistently proven to be more protective than the native form of CPI. CPIm induces 

protection and increased immune stimulation (Table 4.1), in immunisation 

experiments with: a DNA vaccine in BALB/c mice against L. sigmodontis (Babayan 

et al., 2012); a recombinant protein vaccine in gerbils against B. malayi (Arumugam 

et al., 2014b); or in chamber model in BALB/c mice against O. volvulus (Hess et al., 

2014). 

Table 4.1. Immunisation experiments with CPI and mutated CPI (CPIm). 

Parasite Model Protection following CPI 
vaccination 

Protection following 
CPIm vaccination 

B. malayi  
Jirds 
(permissive host) 

No protection but did alter adult 
worm migration and final niche 
location 
(Arumugam et al., 2014a) 

~48 reduction in worm 
burden, as well as reduced 
female fecundity (Arumugam 
et al., 2014b) 

L. 
sigmodontis  

BALB/c mice 
(permissive host) 

No change in circulating Mf and 
failed to generate strong 
specific immune responses. 
(Babayan et al., 2012)  

Some reduction in circulating 
Mf on its own and 90% 
decrease in Mf when 
combined with other antigen. 
(Babayan et al., 2012) 

O. ochengi   
Cattle  
(permissive host) 

In combination with other 
antigens, 42% decrease in Mf 
numbers in dermis. (Makepeace 
et al., 2009) 

 

O. volvulus  
BALB/c mice – 
Diffusion 
chamber 

~49% reduction in L3 survival 
(Hess et al., 2014) 

 

 

Elucidating the mechanism that underlies vaccine induced protection can not only 

provide insight into the effectiveness of the vaccine candidate, but will also have 

implications for formulation of other and more efficacious vaccines. CPI is known to 

interfere with antigen processing in the histocompatibility complex class II (MHC-II) 

antigen pathway in vitro (Manoury et al., 2001). In different nematodes such as 

Heligmosomoides polygyrus and Nippostrongylus brasiliensis, CPI is able to modulate 
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the differentiation and activation of bone-marrow-derived dendritic cells (BMDC); 

interferes with antigen and MHC-II molecule processing; and interferes with Toll-like 

receptor (TLR) signalling pathways, resulting in functionally deficient dendritic cells 

(DC) (Sun et al., 2013). This may render DC ineffective at initiating strong adaptive 

immune responses, similar to effect of B. malayi L3 on DC in vivo (Sharma et al., 

2016). Therefore, it was proposed that CPIm induces greater protection in 

immunisation experiment, by rescuing DC activity, which leads to increased protective 

immune responses, seen as a decrease in parasite burden at the end of a vaccine trial. 

This would fit with what was previously observed, that mechanisms induced 6 hours 

after immunisation are the most predictive of the outcome of infection (Chapter 3). 

These observations also agree with earlier work with L. sigmodontis, which identified 

early changes in immune responses to be determinants of the outcome of infection, 

with either the induction of protective or regulatory phenotypes (Taylor et al., 2009; 

Babayan et al., 2010). Since DC are professional antigen presenting cells and are key 

for the development of an adaptive immune response, it was suggested that DC are 

involved in the induction of either adaptive Th2 responses (Balic et al., 2004; Smith et 

al., 2012; Guigas, 2014; Cook et al., 2015) or modulatory Treg responses (Carvalho et 

al., 2009; Everts et al., 2010). Therefore, an intervention, such as a vaccine, that can 

boost DC responses at the early stages of infection, could provide protection and 

reduce pathology. 

The present study was designed to examine how Ls-CPIm vaccine, previously shown 

to be protective, affects the early stages of the adaptive immune response, and therefore 

compare the effects of Ls-CPI and Ls-CPIm on antigen presenting cell function both 
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in vivo and in vitro. Consistent with the hypothesis that mutation of CPI provides an 

early advantage in activation of DC, in vitro increased expression of cell surface MHC-

II and CD86 were detected, as well as an increase in IL-6 and IL-12p40 production 

when DC were loaded with Ls-CPIm as compared to Ls-CPI.  
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4.2 Methods & Materials 

4.2.1 Ethics statement  

All procedures involving animals were approved by the University of Edinburgh and 

the University of Glasgow ethical review committee, and performed under license 

from the UK Home Office in accordance with the Animals (Scientific Procedures) Act 

1986.  

4.2.2 Mice  

All mice used to prepare bone marrow-derived dendritic cells (BMDC), harvest naïve 

T cells and in the vaccination experiment were female BALB/c mice that were 

obtained from either the Anne Walker Animal unit of the University of Edinburgh or 

purchased from Charles River (UK). Mice were housed in individually ventilated cages 

(IVC) at either the University of Edinburgh or the University of Glasgow. In each 

vaccination experiment the treatment groups were randomly allocated to avoid any 

cage effects. All mice were between 6-8 weeks of age before the start of any procedure. 

4.2.3 Generation of bone marrow-derived DC 

Bone marrow-derived dendritic cells (BMDC) were collected by flushing out the bone 

marrow of the femurs and tibias of BALB/c mice with PBS using a 1ml syringe fitted 

with 23G needle. Bone marrow was then suspended in 5ml of complete-RPMI 

(cRPMI): RPMI-1640 (Sigma-Aldrich); 10% heat-inactivated foetal bovine serum 

(FBS) (Sigma-Aldrich); 100 U/ml of penicillin-streptomycin (Gibco); and 1% of 1 x 
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L-glutamine (Gibco). Red blood cells in the suspended bone-marrow were lysed by 

adding 2ml RBC lysis buffer (Sigma-Aldrich) for 5 minutes and lysis stopped using 

10ml of cRPMI, and cells were then collected by centrifuging at 400 x g for 5mins at 

4°C. Cells were re-suspended in 5ml cRPMI which was further supplemented with 20 

ng/ml of granulocyte-macrophage colony-stimulating factor (GM-CSF, PeproTech), 

and the cell concentration was determined using a haemocytometer (VWR).  

The cells were suspended to a concentration of 2x105 cells/ml in cRPMI with GM-

CSF, and cultured in batches of 10ml for 10 days at 37°C with 5% CO2 by: feeding 

the cells with 10ml of fresh cRPMI and GM-CSF on day 3; and then changing the 

media on days 6 and 8, by removing 9ml of media (carefully not to aspirate any cells) 

and adding 10ml of fresh cRPMI and GM-CSF. On day 10, non-adherent cells were 

harvested by aspirating all the media without removing any cells stuck to the plates, 

adherent cells were washed by centrifuging at 400 x g for 5mins at 4°C, and re-

suspended in cPRMI containing 5ng/ml of GM-CSF; these cells were used as immature 

DC. 

4.2.4 In vitro BMDC stimulation assays 

The immature DC harvested on day 10 were re-suspended in a 96-well U-bottom plate 

(ThermoFisher) at 1.1x105 cells/well and stimulated for 24hrs (day 11) with either: a) 

50 µg/ml of recombinant proteins CPI or CPIm treated with 10µg/ml polymyxin B 

(PmB, Sigma-Aldrich) to ensure no residual contamination with liposaccharides 

(LPS); b) 50 µg/ml of ovalbumin (OVA) also treated with PmB as a Th2 responses 

control; c) 0.1µg/ml of LPS (Sigma-Aldrich) on its own as Th1 response control; or d) 
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left unstimulated by adding cRPMI. After 24 hours of DC stimulation, cells were 

centrifuged at 400 x g for 5mins at 4°C and half of the supernatant fluid was collected 

for cytokine quantification, and the remaining supernatant was used to re-suspend the 

cells for T-cell co-cultures. 

All recombinant proteins used were produced by Creative Biomart (Shirley, NY, USA) 

by cloning CPI and CPIm into pET24a and pET28a respectively. These plasmids were 

used to transform E. coli BL21 (DE3) cells, and expression of encoded proteins was 

induced by incubation in the presence of IPTG for 12 hours at 16°C. Expressed 

proteins were detected by SDS-PAGE and purified from bacterial lysates by affinity 

over a polyhistidine column. 

4.2.5 T cell isolation and co-culture with BMDC 

Spleens were harvested from BALB/c mice and placed in 5ml cRPMI. Naïve T cells 

were isolated from the spleens by first homogenising spleen cells between two pieces 

of 70µm nylon mesh (Fisher Scientific) using forceps to obtain a single cell 

suspension. Red blood cells were then removed from the single cell suspension by 

adding 2ml of RBC lysis buffer for 5mins; the reaction was stopped by adding 10ml 

of cRPMI and centrifuged at 400 x g for 5mins at 4ºC. The supernatant was poured off 

and cells re-suspended in 2ml of cRPMI to determine their concentration using a 

haemocytometer.  

The Pan T cell isolation kit II (MACS) was used to isolate T cells from the spleen cell 

suspension by depleting non-target cells. The first step was to label non-target cells 

with a cocktail of biotin-conjugated monoclonal antibodies against CD11b, CD11c, 
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CD19, CD45R, CD49b, CD105, MHC class II and Ter-119. Once the cells were 

labelled with biotin-conjugated antibodies, anti-biotin monoclonal antibodies 

conjugated to MicroBeads were added. The cells were then washed through a magnetic 

MACSÒ Column in the magnetic field of a MACS Separator. The labelled cells are 

retained within the column and the wash through was collected as unlabelled T cells. 

The concentration of T cells was determined using a haemocytometer and re-

suspended to a concentration of 1x104cell/µl in T cell buffer. T cell buffer: sterile 

1xPBS (GibcoTM) containing 0.5% bovine serum albumin (BSA, Sigma-Aldrich), 

2mM EDTA (UltraPureTM, ThermoFisher), pH 7.2, and degassed using a sterile bottle 

top filter with a 0.45µm pore size (NalgeneTM, ThermoFisher).  

For DC and T cell co-cultures, naïve T cells were added to the stimulated BMDC 

(1x106 cells/well) in 96 well plates, at a ratio of 1:10 of DC to T cells (1x107 cells/well). 

The T cells and DC were left in co-cultures for either 24 hours, 48 hours or 96 hours, 

and after each time point the cells were centrifuged at 400 x g for 5mins at 4°C, and 

the supernatant fluid was collected for cytokine quantification by ELISA and cells 

harvested for FACS analysis. 

4.2.6 Immunisation protocol 

All DNA plasmids for immunisation were cloned following the recommendations of 

the pcDNA 3.1 Directional TOPO Expression Kit (Invitrogen). CPI (AF229173.1) was 

amplified from L. sigmodontis cDNA, and the mutation in CPIm was obtained by site 

directed mutagenesis, as previously describe (Babayan et al., 2012). The pIL-4 and 

pMIP1α DNA vaccines used as adjuvants were also created by Babayan et al. 
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Table 4.2. Plasmids used in vaccination 

Plasmid 
Name 

Plasmid 
vector 
backbone 

Insert Role 

pCPI pcDNA3.1 Accession: AF229173.1 Vaccine antigen 

pCPIm pcDNA3.1 

Mutated form of L. sigmodontis CPI-2. 
(Accession: AF229173.1) 
Point mutation of asparagine at position 
66 to lysine  

Vaccine antigen 

pIL-4 pcDNA3.1 
Mus musculus IL-4  
(NCBI Gene ID: 16189) 

Adjuvant 

pMIP1α pcDNA3.1 
Mus musculus MIP1α  
(Accession: M73061.1]) 

Adjuvant 

pEmpty pcDNA3.1 - Non-coding plasmid 
control 

 

In immunisation experiments, 24 BALB/c mice were split into four groups (n=6), with 

three groups receiving DNA vaccines or pEmpty control, whereas the fourth group 

received no DNA vaccine (Naïve). Since DNA vaccines (purified plasmids) were 

stored at -20°C, the day before vaccination the plasmids were placed in a 4°C fridge 

to allow them to thaw out slowly. The day of immunisation the concentration of the 

plasmids were quantified and vaccine cocktails were made up to total of 80µg of DNA, 

with equal quantities of each plasmid, this meant that the quantity of each individual 

plasmid decreased as the number of different plasmids were added to a vaccine cocktail 

(Table.4.3). The plasmids were delivered in 50µl doses and elution buffer (QIAGEN: 

10mM Tris-Cl, pH 8.5) was used to make up the volume.  

DNA vaccine cocktails were administered to the tibialis anterior muscle of the left leg 

with a 27G needle, immediately followed by electroporation with an ECM 830 

generator and Tweezertrodes (BTX Harvard Apparatus) using a setting of 8 pulses, 
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200 V/cm, 40ms duration with 460ms intervals. During the vaccination process mice 

were under anaesthesia using gas inhalation of isoflurane and placed on heat pads. To 

wake mice, the gas inhalation was removed and mice recovered naturally on heat pads. 

The treatments were randomised per cage so that each cage had at least one of each of 

the treatment groups. The mediastinal and parathymic lymph nodes and spleens were 

harvested 24 hours following vaccination and placed in 5ml of cRPMI. 

 Table 4.3. Amount of plasmid added to the different vaccine cocktails in a DNA vaccine 

experiment. 

 DNA plasmid 
Vaccines pCPI pCPIm pIL-4 pMIP1α pEmpty Total DNA 

Ls-CPI (Adj) 40µg - 20µg 20µg - 80µg 

Ls-CPIm (Adj) - 40µg 20µg 20µg - 80µg 

pEmpty (Adj) - - 20µg 20µg 40µg 80µg 

Naive - - - - - - 

4.2.7 Processing of spleens and lymph nodes 

Lymph nodes and spleens collected following immunisation were dissociated to obtain 

a single cell suspension by grinding them through a 70µm nylon mesh (Fisher 

Scientific) using forceps in a petri-dish. The single cell suspensions were given a red 

blood lysis treatment, by centrifuging the cells at 400 x g for 5mins at 4ºC, removing 

the supernatants and suspending the cells in the remaining cRPMI and treating these 

with 2ml of RBC lysis buffer (Sigma-Aldrich) for 4 mins. The RBC lysis buffer was 

stopped by adding 10ml of cRPMI and cells centrifuged at 400 x g for 5mins at 4ºC, 

the supernatant poured off and cells re-suspended in 2ml of cRPMI. The cell 

concentration of each sample was determined using a hemocytometer, and the cells 



 

 

 
265 

were made up to a concentration of 106 cells/ml using cRPMI, which were then used 

for FACS analysis. 

4.2.8 Cytokine quantification by ELISA 

Concentrations of IL-12p40, IL-6, IL-10, IL-4 and IFNg were measured by sandwich 

ELISA, in the supernatant fluids of DC cell cultures 24 hours after DC stimulation, 

and in DC and T cell co-cultures either after 24 hours, 48 hours, or 96 hours after the 

addition of T cells. Flat bottom NUNC plates (Thermo Scientific) were coated with 

50µl/well of coating antibody in their respective buffer (Table 4.4), and left in the dark 

at 4°C overnight. The following day plates were washed four times in wash buffer: 

1xPBS containing 0.05% Tween-20 (Sigma-Aldrich). Coating antibodies were 

blocked by incubating the plates for 1hr at 37°C in the dark with 200µl/well of 4% 

BSA in 1xPBS. The plates were then washed four times with the wash buffer before 

adding 50µl/well of either the samples (DC supernatants) in triplicate and the standards 

for each cytokines which were serially diluted (1 in 2) in their appropriate buffer (Table 

4.4) these were used to determine the concentration of the samples. The plates were 

then left overnight at 4°C in the dark. 

The next day the plates were washed four times in wash buffer, and 50µl/well of 

biotinylated detection antibodies were added to the plates at the recommended 

concentration and buffer (Table 4.4). These were then incubated at 37°C for 1hr in the 

dark, and washed four times using wash buffer. Then AMDEX streptavidin-peroxidase 

(Sigma-Aldrich) was added to each well (50µl) in a 1/6000 dilution in the same buffer 

as for the detection antibodies, then plates were incubated in the dark for 30 minutes 
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at 37ºC. Once the final incubation was done the plates were washed five times in wash 

buffer, and 50µl/well of TMB-H2O2 (Merck Chemicals) was added to the plate and left 

to develop in the dark at room temperature for 5-10mins until a gradient of blue is seen, 

the reaction was then stopped by adding 100µl of H2SO4 (1M). Absorbance was 

measured at 405nm and the concentration of cytokine levels in the samples were 

determined using the standard curve made using the O.D. values of the standards 

against their known concentrations (Figure 4.1). 

Table 4.4. Concentrations (conc) and buffers used for the antibodies in the sandwich 

ELISA for IL-12p40, IL-6, IL-10, IL-4 and IFNg quantification.  

Cytokine Concentration 
(µg/ml) Buffer Clone/ Isotype 

IL-12p40 

Coating 2 0.2M Na2HPO4, pH6.5 C15.6/Rat IgG1 1 

Standard start conc: 0.005  10% NCS* in PBS N/A 2 

Detection 0.5 10% NCS* in PBS C17.8/Rat IgG2ak 3 

IL-6 

Coating  1 0.1M Na2HPO4, pH12 MP5-20F3/Rat IgG1 1 

Standard start conc: 0.025 10% NCS* in PBS N/A 2 

Detection  0.5 10% NCS* in PBS MP5-32C11/Rat IgG2a 1 

IL-10 

Coating  4 0.2M NaHPO4, pH6.5 JES5-16E3/Rat IgG2bk 4 

Standard start conc: 0.05 10% NCS* in PBS N/A 2 

Detection 0.25 10% NCS* in PBS JES5-2A5/Rat IgG2bk4 

IL-4 

Coating  1.2 1xPBS 11B11/Rat IgG 5 

Standard start conc: 0.008 10% NCS* in PBS N/A 2 

Detection 0.25 10% NCS* in PBS BVD6-24G2/Rat IgG13 

IFNg 

Coating  1.5 0.1M NaHCO3, pH9.6 AN-18/Rat IgG13 

Standard start conc: 0.05 10% NCS* in PBS N/A 2 

Detection 1 10% NCS* in PBS R4-6A2/Rat IgG13 
*NCS, newborn calf serum (ThermoFisher); 1BD Bioscience, 2Peprotech, 3BioLegend, 
4eBioscience, 5BD Pharmingen 
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Figure 4.1. Cytokine ELISA standard curve. An example of a standard curve used to 

calculate cytokine concentration in samples, this was the standard curve for IL-12p40, and was 

used to determine the IL-12p40 levels in the wells. 

4.2.9 Flow cytometry analysis 

Flow cytometry was used to analyse cell surface markers on DC and T cell from co-

cultures, and DC from spleens and lymph nodes following immunisation. From the 

single cell suspension, 106 cells of cells were added to FACS tubes and non-specific 

binding was blocked using anti-CD16/32 (BD Pharmingen) at 5µg/ml in 1/20 mouse 

serum for 30mins in the dark at 4°C. These cells were then washed in FACS buffer 

(PBS with 2% FBS), centrifuged at 400 x g for 5mins at 4°C, supernatant discarded 

and re-suspended before adding the staining antibodies for the surface markers, all 

diluted 1/400 (Table 4.5. ). Stained cells were left for 30mins in the dark at 4°C 

followed by a wash in FACS buffer, centrifuged at 400 x g for 5mins at 4°C, 

supernatant discarded and cells were resuspended in 170µl FACS buffer. Cells were 

analysed using an LSR II (BD Biosciences), running FACSDiva software (BD 

Biosciences). Some cells were left unstained as negative controls and compensation 
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beads (Affymetrix, eBioscience) were stained with each individual staining antibody 

in a 1/400 dilution as the compensation control. Analysis of the flow cytometry was 

performed using Flowjo (Tree star).  

Table 4.5. Multicolour panel for flow cytometry of DC and T cell from co-cultures and 

lymph nodes (LN) and spleens harvested from mice 24hrs following immunisation.  

For in vitro DC and T cell co-cultures  For LN and spleen cell suspensions 
DC stain T cell stain DC stain 

CD11c – APC 4 CD3–PeCy7 3 CD3–APC/Cy71 

CD40 – PE1  CD4–FITC 3 CD11c–BrilliantViolet4211 

CD80 – PeCy71 CD19- PE4 CD11b–BrilliantViolet7111 

CD86–BrilliantViolet605 4 CD8 – AF700 1 CD19 –AlexaFluor7004 

F4/80 – AF700 1  CD40 – FITC1 

MHCII–Violet500 1  CD80 –APC1 

  CD86–PE 4 

  F4/80–PE/Cy7 1 

  Gr1–BrilliantViolet605 1 

  MHCII–PerCP 1 
1BioLegend; 2BD Horizon; 3BD Pharmingen; 4eBiosciences 

4.2.10 Microarray datasets 

Human microarray datasets are the same as in Chapter 3. These reveal gene expression 

patterns of individuals living in two different foci in Ghana: one endemic for O. 

volvulus; and the other W. bancrofti. Whole blood human samples were collected and 

RNA extracted by the E PIAF collaborators Dr Sabine Specht (University Hospital 

Bonn, Germany), Prof Achim Hoerauf (University Hospital Bonn, Germany), Dr Alex 

Debrah (Kwame Nkrumah University, Ghana), Dr Laura Layland (University Hospital 

Bonn, Germany) and Gnatoulma Katataw (University Hospital Bonn, Germany, and 

University of Lome, Togo), and processed at the Kwame Nkrumah University of 
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Science and Technology (Kumasi, Ghana). The RNA samples were hybridised to 

Illumina HumanHT12 BeadChip arrays (HumanHT12_V4_0_R2_15002873_B) by 

FIOS Genomics, Edinburgh who also conducted quality control on the samples. All 

samples that failed the quality control (QC) were removed from the dataset (Table 4.6).  

Individuals were split into infected and endemic normal (EN) groups; EN are 

individuals that show no clinical or parasitological signs of infection. Therefore in O. 

volvulus foci individuals with no detectable Mf in skin snips or nodules were classified 

as EN, and in W. bancrofti foci individuals with no detectable Mf in their blood and 

no circulating filarial antigen (CFA) to W. bancrofti were classified as EN. 

The raw microarray files were processed in R programming language (R Development 

Core Team,, n.d.) using the lumi Bioconductor package (Du et al., 2008), in the same 

manner as chapter 3. Briefly, the neqc function in the limma Bioconductor package 

(Ritchie et al., 2015) was used for background correction using negative controls 

(normexp) (Ding et al., 2008; Xie et al., 2009), followed by between-array quantile 

normalisation and log2 transformation, as this was found to be the best pre-processing 

strategy giving the best precision for a given bias (Shi et al., 2010).  

To find the genes associated with the probes on the Illumina microarrays, the probe 

identifiers were converted to nuID annotation using the lumi package (Du et al., 2008). 

Genes associated with the MHC class II (R-HSA-2132295.3), CD28 co-stimulatory 

(R-HSA-388841.2) and TCR signalling (R-HSA-388841.2) pathways were extracted 

from the Reactome database (www.reactome.org), and used to subset the datasets, so 

only those genes are analysed. 
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Table 4.6.Information on samples used in human microarray. 

 O. volvulus endemic foci W. bancrofti endemic foci 

Number of samples which passed 
QC 

166 162 

Number of samples 
classified as:  

• Infected 118 109 

• EN 48 53 

Other parameters recorded: • Age 
• Co-infection with 

helminths (none were co-
infected with other filarial 
nematodes) 
• Co-infection with 

protozoa 
• Rounds of Ivermectin 

• Age 
• Co-infection with protozoa 
• Rounds of Ivermectin (none 

received doxycycline) 
• Presence of nodules 

 

4.2.11 Statistical analysis 

All statistical analyses were performed in R (Ihaka, Gentleman, 1996). Generalised 

linear models (GLM) followed by the Shapiro-Wilk normality test to assess the 

normality of the residuals, were used to compare the effects of the different vaccines 

on DC in vivo, and the different treatments on DC stimulation in vitro. For in the in 

vitro data, means± SE are shown. For microarray analysis, GLMs were also used to 

detected differences between infected and endemic normal individuals, since there 

were 137 genes for MHC-II signalling, 89 genes for CD28 co-stimulation signalling 

and 138 genes for TCR signalling, GLMs were looped through and multiple testing 

was accounted for using the qvalue package in Bioconductor (Storey, 2015). All 

graphs were produced with the package ggplot2 (Wickham, n.d.).
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4.3 Results 

4.3.1 Modifying CPI rescues pro-inflammatory cytokine 
production by DC in vitro  

To assess whether modifying the immunomodulator CPI effects DC activation, 

immature BMDC were stimulated with either recombinant Ls-CPI or its modified 

counterpart which has a mutation, asn66 to lys66 (Ls-CPIm). The immature BMDC 

were stimulated for 24 hours with either Ls-CPI, Ls-CPIm, OVA a Th2 control, LPS 

as Th1 control, or left unstimulated (Media). Overall immature BMDC stimulated with 

the different antigens showed an increased in activation over unstimulated cells, seen 

as an increase in cytokine production. Treatment with Ls-CPIm increased (non-

significant) the production of the pro-inflammatory cytokines IL-12p40 (0.23 ± 0.19) 

and IL-6 (0.52 ± 0.42) compared to its native form Ls-CPI (Figure 4.2), whereas 

treatment with Ls-CPI showed increased levels of IL-10 cytokine production compared 

to Ls-CPIm and OVA (Figure 4.2). 
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Figure 4.2. Cytokine production by BMDC in response to stimulation with either Ls-CPI 

or Ls-CPIm. Bone marrow cells were cultured for 10 days with GM-CSF, to obtain immature 

DC. Immature DC were harvested and cultured for 24 hours with either: Ls-CPI (50 µg/ml) 

with polymixin B (PmB) to deplete lipopolysaccharides (LPS); Ls-CPIm (50 µg/ml) with 

PmB; Ovalbumin (OVA) (50 µg/ml) with PmB as a Th2 control; LPS as Th1 control; or media 

(complete RPMI) as an unstimulated control. Supernatants were harvested and cytokines IL-

12p40, IL-6 and IL10 concentration were measured using sandwich ELISA. Data represented 

as means (± SE) of 5 independent experiments for IL-12p40 and IL-6, whereas IL-10 could 

only be measured in 3 independent experiments. GLM were used to compare statistical 

significant differences taking into account the independent experiments, however no 

significant difference was found. The first DC culture experiment was done by Marjorie 

Besençon.  
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4.3.2 Increased DC antigen presentation with Ls-CPIm 
stimulation 

For the adaptive immune responses to be triggered, DC must deliver a series of defined 

signals to naive T cells, including the process of antigen presentation via MHC class 

II to naive T cells with the appropriate co-stimulation signals (CD86, CD80 and 

CD40). CPI’s immunomodulatory property is its ability to inhibit antigen presentation 

by MHC class II molecules, therefore to assess if mutating CPI restores DC ability to 

present antigens to naive T cells, immature BMDC were stimulated with either Ls-CPI, 

Ls-CPIm, OVA, LPS or left unstimulated (media control) for 24hrs to obtain mature 

DC, which were then cultured with naive T cells for either 24, 48 and 96 hours. The 

BMDC and T cells co-cultures were harvested, and stained for flow cytometry 

analysis. CD11c was used to select for DC populations of cells, and the expression of 

MHC-II and co-stimulatory molecules were analysed.  

The number of CD11c+ dendritic cells in cultures increased over time following 

addition of T cells (Figure 4.3.A). Since there was only one experiment for each time 

point, and similar trends in expression of MHC-II and CD86 were seen across the time 

points, expression was calculated as a fold change over unstimulated (media) controls 

per time point, as to combine experiments and analyse the difference between 

treatment groups. Treatment with Ls-CPIm significantly increased the expression of 

MHC-II on CD11c+ cells, with a 0.5 fold increase in expression (Figure 4.3.B) and a 

0.4 fold increase in CD86 expression compared to BMDC treated with Ls-CPI (Figure 

4.3.B), signifying an increase in antigen presentation and co-stimulation.  
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The expression of CD40 and CD80 was only measured at the 24-hour time point, but 

only CD40 showed a change in expression between unstimulated and stimulated cells, 

with BMDC stimulated with Ls-CPIm having increased expression over Ls-CPI 

stimulated cells (Figure 4.3. C), since CD40 expression was only measured once it is 

not possible to conclude that it is increased. 

Changes in naive T cell differentiation were also assessed, by measuring the fold 

change in CD4+ T cells between the treatment groups, although there was an increase 

in CD4+ T cell differentiation between stimulated and unstimulated (media) cells, no 

difference between Ls-CPI and Ls-CPIm treated cells was detected (Figure 4.4). 
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Figure 4.3. Effects of recombinant Ls-CPI and Ls-CPIm on expression of MHC-II and 

co-stimulatory molecules on BMDC following co-culture with naïve T cells. Immature 

BMDC obtained from 10-day old bone marrow cell cultures, were stimulated for 24 hours with 

either: Ls-CPI (50 µg/ml) with polymixin B (PmB) to deplete lipopolysaccharides (LPS); Ls-

CPIm (50 µg/ml) with PmB; Ovalbumin (OVA) (50 µg/ml) with PmB as a Th2 control; LPS 

as Th1 control; or media (complete RPMI) as an unstimulated control. Following stimulation, 

BMDC were harvested and co-cultured with naïve T cells (1:10 of DC to T cells) for 24 hours, 
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48 hours or 96 hours. Co-cultured cells were harvested and stained for DC using CD11c, MHC-

II and co-stimulatory molecule CD86, and analysed by flow cytometry. A) Number of DC 

(CD11c+ cells) harvested at 24, 48, and 96 hours of co-culture. B) Fold change of mean 

fluorescence intensity (MFI) of CD86 and MHC-II expression by CD11c+, between stimulated 

and media control (unstimulated) BMDC. Data shown are means (± SE) of the three BMDC 

and T cell co-cultures ending at 24, 48 or 96 hours of co-culture. C) FACS histograms of 

expression of CD40 on CD11+c cells from BMDC and T cell co-cultures, at the 24-hour time 

point, expression shown as MFI between unstimulated (shaded grey) and either Ls-CPI 

(+PmB), Ls-CPIm (+PmB), OVA and LPS (black line). Statistical significant differences were 

measured using GLM with experiment end points as a random effect, * P-value < 0.05. The 

48 and 96 hour time points experiments were done by Marjorie Besençon. 
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Figure 4.4. Expansion of CD4+ T-cells, induced by BMDC stimulated with either Ls-CPI 

or Ls-CPIm. Immature bone-marrow derived DC (BMDC) were stimulated with either: Ls-

CPI (50 µg/ml) with polymixin B (PmB) to deplete lipopolysaccharides (LPS); Ls-CPIm (50 

µg/ml) with PmB; ovalbumin (OVA) (50 µg/ml) with PmB as a Th2 control; LPS as Th1 

control; or media (complete RPMI) as an unstimulated control, for 24 hours. The stimulated 

BMDC were then co-cultured with naïve T cells for 24-hours, 48-hours or 96-hours. A) Gating 

strategy for the detection of CD4+ T cells. B) Differences in CD4+ T cells (CD3+CD4+ cells) 

harvested from co-cultures with BMDC, were measured as fold changes over unstimulated 

cells (Media) at each time point to compare all three experiments together. Data is presented 

as mean (± SE) fold change of the three independent experiments (time points). The 48 and 96 

hour time points experiments were done by Marjorie Besençon. 
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4.3.3 Change in cytokine profiles in DC and T cell co-cultures  

Changes in cytokine production after the addition of naïve T cells, were measured as 

fold changes over unstimulated cells, as there was variation between the independent 

experiments. Although numbers of CD11c+ DC in cultures increased over time (Figure 

4.5. A), production of IL-12p40 and IL-6 peaked at 48 hours after the addition of T 

cells, furthermore IL-10 could only be detected at 48 hours. A slight increase in IL-

12p40 production by Ls-CPIm treated cells was detected, similar to what was seen 

before the addition of naive T cells (Figure 4.5.B), however no difference in IL-6 

production nor IL-10 production after the addition of T cells was detected (Figure 

4.5.B,C). Furthermore, levels of IL-4 and IFN-P were undetectable, therefore it is hard 

to say whether there was a change in CD4+ T cell activation. 
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Figure 4.5.Effects of recombinant Ls-CPI and Ls-CPIm on cytokine production by 

BMDC following co-culture with naïve T cells. Immature BMDC obtained from 10-day old 

bone marrow cell cultures, were stimulated for 24 hours with either: Ls-CPI (50 µg/ml) with 

polymixin B (PmB) to deplete lipopolysaccharides (LPS); Ls-CPIm (50 µg/ml) with PmB; 

Ovalbumin (OVA) (50 µg/ml) with PmB as a Th2 control; LPS as Th1 control; or media 

(complete RPMI) as an unstimulated control. Following stimulation, BMDC were harvested 

and co-cultured with naïve T cells (1:10 of DC to T cells) for 24-hours, 48-hours or 96-hours. 

A) Dynamics of cytokines IL-12p40 and IL-6 production, at the different end points. Cytokine 
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levels are represented as fold change over media cultured BMDC (unstimulated BMDC) to 

compare cytokine production between the different co-culture end points. Since, 48 hours of 

BMDC and T cell co-cultures produced the greatest levels of cytokines, this time point was 

repeated. B) Production of IL-12p40 (µg/ml) and IL-6 (µg/ml) at 48 hour of BMDC and T cell 

co-cultures, presented as means (± SE) of four independent experiments; and C) production of 

IL-10 (µg/ml) at 48 hour of BMDC and T cell co-cultures, presented as means (± SE) of three 

independent experiments. The first 48 and 96 hour time points experiments were done by 

Marjorie Besençon. 

4.3.4 Undetectable changes in DC activation following 
immunisation in vivo 

The effects of the native and modified CPI on DC maturation were investigated in vivo 

by immunising BALB/c mice with a DNA vaccine containing ether the Ls-CPI or Ls-

CPIm antigen in combination with adjuvant plasmids for IL-4 and MIP1a. Spleens 

and lymph nodes were harvested 24 hour following immunisation, flow cytometry was 

used to measure the expression of MHC class II and the co-stimulatory molecules 

CD86, CD80 and CD40 on CD11c+ DC present in the spleen and lymph nodes. 

However, no change in expression of MHC-II nor the co-stimulatory molecules could 

be detected between the immunisation groups, on CD11c+ cells from the spleen (Figure 

4.6) or lymph nodes (data not shown). This could be due the complex nature and poorly 

controlled factors inherent to in vivo settings (e.g. baseline variation, timing of 

stimulation from DNA incorporation in exogenous protein expression).  
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Figure 4.6.In vivo expression of MHC-II and co-stimulatory molecules on CD11c+ DC 

following immunisation with either Ls-CPI or Ls-CPIm. Female BALB/c mice were 

immunised with DNA vaccines intramuscularly, and spleens were harvested for flow 

cytometry to measure expression of MHC-II, CD86, CD80 and CD40 on DC, classified as 

CD11c+ cells. Mice received a DNA plasmids containing antigen inserts for Ls-CPI with 
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adjuvant, Ls-CPIm with adjuvant or an empty pcDNA3.1 plasmid (pEmpty) with adjuvant, or 

were left non-immunised termed as Naïve. Adjuvant plasmids contained inserts for IL-4 and 

MIP1a. A) Represents the gating strategy used to isolate DC population and measure the 

fluorescence intensity of MHC-II, CD86, CD80 and CD40. B) Expression was measured as 

geometric mean fluorescence intensity (MFI). Data presented are medians (horizontal line), 

interquartile (bars), extreme values (vertical lines), and individual values/mice (points), with 

an n=5-6 per group.  

4.3.5 Changes in gene expression associated with DC and T 
cell activation in humans 

Since in vivo immunisation experiments in mice failed to detect differences in DC 

activation, more likely due to difficulties in isolating the correct DC population. It was 

then suggested that examination of human gene expression data, might reveal 

differences in DC activation, considering that using the machine learning pipeline 

(Chapter 3), pathways involved in T cell activation were found to be important at 

differentiating between infected and endemic normal individuals living in areas 

endemic for onchocerciasis and lymphatic filariasis. 

The microarray gene expressions data available was obtained from whole blood, 

therefore it is impossible to select for specific cells and measure expression of genes 

within them. Instead expression of genes involved in MHC-II signalling (R-HSA-

2132295.3) and CD28 co-stimulation (R-HSA-388841.2) according to the reactome 

database (Croft et al., 2011) were investigated, by comparing expression in naturally 

protected (EN) and infected individuals using generalised linear models (GLMs). To 

verify that GLMs could detect differences in expression, genes involved in TCR 

signalling (R-HSA-202403.4) were also investigated to confirm what the machine 
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learning pipeline detected. Two datasets were available, one from individuals living in 

onchocerciasis (O. volvulus) endemic areas in Ghana with Mf numbers measured per 

mg of skin, the other dataset was from individuals living in lymphatic filariasis (W. 

bancrofti) endemic areas in Ghana with Mf numbers and detection of circulating W. 

bancrofti antigens measured in the blood. Neither dataset had co-infections with filarial 

nematodes. 

In individuals living in onchocerciasis endemic areas, no differences in expression of 

genes specific for MHC-II and CD28 co-stimulation signalling, such as HLA-DRA 

and CD86, were detected (Figure 4.7). There were differences in expression of genes 

associated with T cell receptor signalling, such as increased expression of ICOS and 

CD3E in EN, although not significant when accounting for multiple testing (Figure 

4.7). ICOS is an inducible T-cell co-stimulator found expressed on activated T cells 

and CD3E, is a gene encoding the CD3e which forms part of the CD3 T cell co-

receptor. 

In individuals living in lymphatic filariasis endemic areas, expression of HLA-DRA, 

ICOS and CD74 were significantly increased in infected compared to naturally 

protected EN (Figure 4.8). Although ICOS expression was higher in infected 

individuals, it was negatively associated with Mf burden (Figure 4.9), HLA-DRA and 

CD74 also have a negative correlation but not as strong. HLA-DRA gene encodes for 

the DR alpha chain of MHC class II and CD74 encodes the invariant chain involved 

in the formation and transport of MHC class II protein. 
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Figure 4.7. Expression of HLA-DRA, CD86, ICOS and CD3e in whole blood from 

individuals living in O. volvulus endemic areas. Gene expression were measured using 

Illumina microarray plates, and differences in expression between infected (Mf) and naturally 

protected endemic normal (EN) were analysed using GLMs. HLA-DRA is a component of the 

MHC-class II receptor; CD86 is a receptor found on dendritic cells which induces the 

proliferation and activation of T cells; ICOS is an inducible T-cell co-stimulator; and CD3e is 

a component of the T cell receptor. Individuals were classified as EN if no Mf were present in 

skin snip. * P-value <0.05, not accounting for multiple testing. 
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Figure 4.8.Expression of HLA-DRA, CD86, ICOS and CD3e in individuals living in W. 

bancrofti endemic area of Ghana. Gene expressions were measured using Illumina 

microarray plates, and differences in expression between infected and naturally protected 

endemic normal were analysed using GLMs. HLA-DRA is a component of the MHC-class II 

receptor; CD86 is a receptor found on dendritic cells which induces the proliferation and 

activation of T cells; ICOS is an inducible T-cell co-stimulator; and CD74 encodes the 

invariant chain protein which is associated with the formation and transport MHC-II. 

Individuals were classified as EN if no Mf were present in their blood and no circulating 

antigens were detected. * P-value <0.05, not accounting for multiple testing. 

  



 

 

 
286 

  
Figure 4.9. Expression of ICOS compared to microfilariae counts found in blood of 

individuals living in lymphatic filariasis endemic areas. Gene expression were measured 

using Illumina microarray plates, and GLM were used to measure the association between 

ICOS and Mf numbers present in the blood (samples without Mf present were removed). ICOS 

is an inducible T-cell co-stimulator and is negatively associated with Mf numbers found in the 

blood of individuals living in foci endemic to W. bancrofti. P-value <0.021.  
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4.4 Discussion 
Vaccination experiments with the immunomodulator L. sigmodontis cysteine protease 

inhibitor (Ls-CPI), which has been shown to inhibit antigen presentation in MHC class 

II molecules (Manoury et al., 2001), induced little protection against challenge 

infection. However, when genetically modified to remove its immunomodulatory site, 

CPIm showed a greater efficacy, with a reduction in circulating microfilariae compared 

to CPI and non-vaccinated controls (Babayan et al., 2012). As it has been demonstrated 

that the early immune responses in infection or following immunisation determine the 

outcome of infection (Chapter 3) (Taylor et al., 2009; Babayan et al., 2010), and that 

CPI affects antigen presentation on cells such as dendritic cells (DC), changes in DC 

activation following stimulation/immunisation with CPI or CPIm were investigated in 

vitro and in vivo. This demonstrates how antigen (CPI) modification can affect the 

activation of dendritic cells and priming of T cells.  

In vitro experiments with bone-marrow derived DC (BMDC), showed an increase in 

DC activation following stimulation with CPIm, with increased levels of IL-6 and IL-

12p40 production. Both cytokines are frequently associated with Th1 immunity but 

since helminths generally fail to induce DC production of pro-inflammatory cytokines, 

often with minimal changes in DC messenger RNA expression, in this section IL-

12p40 and IL-6 are simply used to measure the change in DC activation (Cook et al., 

2015).  

Due to the lack of cytokine production by DC, it was proposed that Th2 responses in 

helminths  infections (and allergens) were induced as the default pathway when Th1 

DC responses failed to be activated (MacDonald, Maizels, 2008). However, a range of 
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molecules have been associated with DC ability to induce Th2 immunity (Cook et al., 

2015), such as CD40 (MacDonald et al., 2002), CD80/86 (Whelan et al., 2000), 

OX40L (Jenkins et al., 2007), CCL17 (Medoff et al., 2008), RELMa (Cook et al., 

2012) and NF-kB (Artis et al., 2005). This demonstrates that DC can prime a Th2 

response to helminth and allergens, however the specific mechanisms are unknown. 

In filarial infections IL-10 has been linked to parasite-driven immunomodulation 

(Satoguina et al., 2002; Simons et al., 2010; Specht et al., 2011b), and in the 

experiments described above an increase in IL-10 production by DC stimulated with 

CPI was also detected. In other nematode infections IL-10 has been directly linked to 

DC, such as in  Ascaris suum infections where their ES products have the ability to 

modulate the antigen presenting ability of DC via an IL-10 mediated mechanism (Silva 

et al., 2006) and in H. polygyrus with ES-treated BMDC generate regulatory T cells 

that produced high levels of IL-10 (Segura et al., 2007). This demonstrates that CPI 

could be pushing DC to a more regulatory phenotype whereas CPIm causes an increase 

in DC maturation. 

DC are critical for the development of an effective adaptive immune responses, as they 

are one of the main antigen-presenting cells, delivering a series of defined signals to 

naive T cells (Liu, 2001b). In DC and T cell co-cultures, there were significant 

increases in MHC class II antigen presentation and an increase in CD86 expression 

when DC were stimulated with CPIm. Furthermore, a small increase in CD40 

expression was detected on BMDC treated with CPIm, and together with MHC II and 

CD86, these molecules have been shown to be required for DC mediated Th2 induction 

(MacDonald et al., 2002; Straw et al., 2003) 
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In attempts to identify similar changes in DC activation following immunisation in 

vivo, mice were immunised with either L. sigmodontis CPI (Ls-CPI) or the Ls-CPIm. 

However, no differences between the immunised groups could be detected. DC are a 

complex population of cells, contrary to in vitro bone-marrow derived DC which are 

homogenous. In vivo, mice have several subpopulations of migratory and lymphoid-

resident DC, each with different phenotypes and functional properties (Segura, 

Villadangos, 2009). Therefore, the fact that no change in expression were detected in 

vivo, in this instance could be because specific DC subsets were not being isolated 

before the expression of activation markers were measured. In studies with B. malayi 

L3 infection, it was observed that lymphoid DC and CD8+ plasmacytoid DC peaked at 

day 7 post infection in spleens and mesenteric lymph nodes of infected mice (Sharma 

et al., 2016), therefore it could also be possible that looking at 24hrs post immunization 

is too short to detect any changes in DC activation or looking at mesenteric is too far 

away for DC to travel on such a small immune response induced by plasmid vaccine. 

The role of CPI in immunomodulation has previously been demonstrated, in in vitro 

experiments, spleens cells exposed to CPI (cystatin) from L. sigmodontis, showed 

decreased antigen specific responsiveness (Pfaff et al., 2002), and in experiments using 

human PBMC, stimulation with CPI (onchocystatin) from O. volvulus, suppressed 

antigen driven proliferation, with increased production of IL-10, decrease in IL-12p40, 

reduced expression of HLA-DR and costimulatory molecule CD86, corroborating the 

in vitro experiments with Ls-CPI and BMDC (Schönemeyer et al., 2001).  

Although CPI shows similar effect on human cells as with mice cells, early modulation 

of the immune responses by filarial parasites in humans cannot be investigated, since 



 

 

 
290 

it is impossible to identify individuals that have just been infected, as infected 

individuals are detected by the presence of Mf or adult parasites. Humans however do 

exhibit naturally induced protection (Hoerauf, Brattig, 2002; Brattig, 2004), and in 

chapter 3 pathways involved in T cell activation were found to be important at 

differentiating between infected and EN individuals living in areas endemic for 

onchocerciasis and lymphatic filariasis. Therefore, taking a candidate gene approach, 

genes involved in MHC-II, CD28-costimulatory and TCR signalling were 

investigated, however only genes involved in TCR signalling were detected as being 

important, supporting the results from machine learning approach taken in chapter 3. 

Using a system biology approach, the adaptive T-cell immune response induced by 

vaccination was successfully predicted using transcriptomic data obtained from DC 

(sorted spleen DC), 6 hours following vaccination (Dérian et al., 2016). Therefore, it 

is possible to use early changes in DC gene expression to predict adaptive immune 

responses and protection, but using a more focused approach such as investigating 

individual cell population. 

The work presented in this chapter shows that by modifying the immunomodulatory 

CPI antigen, DC responses are rescued, seen as an increase in DC maturation and 

activation, leading to increased protection seen at later stage of infection. This may 

suggest that DC can indeed prime the immune system towards Th2 pathways at the 

very early stages on infection, and that by boosting the immune response to DC 

following immunisation, would provide protection, such circumstances have 

implications for the formulation of any future vaccines.  
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Summary 

• Structural modifications to CPI induces an increase in DC activation in vitro. 

• Early changes in DC activation could explain increased protection seen late on 

infection, following immunisation with CPIm.
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Chapter 5. General discussion 

Current control of onchocerciasis relies on annual mass drug administration (MDA) 

with Ivermectin, (Mectizan donation project, (Thylefors, 2008)), whose widespread 

distribution in mass treatment campaigns has reduced the incidence of skin and eye 

disease in some foci in Latin America (World Health Organization, 2016b) and West 

Africa (Mali, Senegal (Diawara et al., 2009) and Nigeria (Tekle et al., 2012)). Such 

success led to the speculation that Ivermectin treatment alone could eliminate (and 

possibly eradicate) onchocerciasis. However, after more than 25 years of distribution 

of Ivermectin, onchocerciasis remains endemic across 27 countries in Africa, including 

in areas where Ivermectin treatment has been given continuously for over 15 years 

(Katabarwa et al., 2013; Lamberton et al., 2015; Wanji, 2015; Kamga et al., 2016). 

Mathematical modelling has demonstrated that relying on MDA alone for the 

elimination of onchocerciasis in Africa will not be sufficient (Turner et al., 2013; 

2014b). Several factors contribute to the persistence of onchocerciasis:  

• Ivermectin only kills the Mf and any interruption of their production is 

temporary (Basáñez et al., 2008), 

• In areas with high prevalence, such as forest areas, Ivermectin cannot 

completely interrupt transmission (Cupp et al., 2011; Cheke, 2017), 

• There is growing evidence for the emergence of Ivermectin resistance (Osei-

Atweneboana et al., 2011; Pion et al., 2013), 

• Ivermectin cannot be used in areas with O. volvulus and L. loa co-endemicity. 

Individuals infected with both parasites are at risk of severe and possible fatal 

adverse reaction if treated with Ivermectin and this situation prevents 
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implementation of control programmes using MDA with this drug (Chesnais 

et al., 2017), 

• The drug cannot be given to children under 5 or pregnant women, therefore 

this leaves a reservoir of the infection, even in areas where MDA has been 

implemented (Stolk et al., 2015b). 

If onchocerciasis is to be eliminated, and perhaps eradicated, new interventions are 

required, such as a novel drug that kills adult worms or a vaccine. Mathematical 

modelling has shown that a vaccine against onchocerciasis would complement MDA 

efforts and decrease the chances of re-emergence of O. volvulus infections, especially 

in foci where onchocerciasis has been successfully controlled (Turner et al., 2015). It 

would also protect the considerable financial investment in onchocerciasis control that 

has been made over the decades. 

Filarial nematodes are multi-cellular organisms that induce an immunomodulatory 

milieu, allowing them to establish chronic infections that may last up to 20 years 

(Doetze et al., 2000; Hoerauf et al., 2005). However, it is also apparent that a small 

proportion of individuals develop protective immunity that keeps them free of parasites 

and disease despite a life-time of exposure (Hoerauf, Brattig, 2002; Brattig, 2004). 

This protective immunity is associated with a Th2 response, which is also responsible 

for the protective immunity induced by vaccination in murine models of filarial 

infections (Allen et al., 2008; Katawa et al., 2015; Kwarteng, Ahuno, 2017). 

A strategy has been proposed to target parasite-driven immunomodulators and allow 

the host to mount a protective Th2 responses (Babayan et al., 2012; Nisbet et al., 2013). 

However, simply reducing the parasites immunomodulation may not be sufficient to 
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induce full protection, thus it has been suggested that the inclusion of a second antigen 

could induce greater protection.  

Over the years of O. volvulus research, several potential vaccines candidates have been 

identified and tested in animal models (Morris et al., 2013). The most promising of 

these are: Ov-RAL-2 (Lustigman et al., 1992b; Bradley et al., 1993; Hess et al., 2014), 

Ov-103 (Lustigman et al., 1992b; Hess et al., 2014) and mutated Ov-CPI-2 (CPIm 

(Babayan et al., 2012; Arumugam et al., 2014b)). Each have consistently conferred 

high levels of protection (Babayan et al., 2012; Arumugam et al., 2014b; Hess et al., 

2014; Arumugam et al., 2016).  

CPIm, is derived from CPI-2, a known immunomodulator (Manoury et al., 2001; Vray 

et al., 2002; Gregory, Maizels, 2008), which has been modified to remove its 

modulatory residues (Murray et al., 2005). In immunisation experiments in the L. 

sigmodontis model, using Ls-CPIm DNA vaccines reduced the numbers of circulating 

Mf (Babayan et al., 2012), and in B. malayi model using Bm-CPIm recombinant 

protein vaccine, induced a 48% reduction in worm burden (Arumugam et al., 2014b), 

providing evidence that targeting the immunomodulatory molecules of the parasites is 

a feasible vaccine strategy. 

With this result in mind, the excretory and secretory (E/S) molecules of adult female 

worms were investigated to identify other potential immunomodulators (Armstrong et 

al., 2014), as adult females have been shown to be responsible for the survival of Mf 

(Hoffmann et al., 2001). From these analyses, a protein containing six ShK domains 

was particularly distinctive, as it was found in the ES of all mammalian life stages of 
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L. sigmodontis (Armstrong et al., 2014) and homologues of Ls-ShK have been 

hypothesised to be able to modulate memory T cells (Beeton et al., 2011; Chhabra et 

al., 2014). 

Initial DNA vaccine experiments with Ls-ShK in the L. sigmodontis model, showed 

promise by inducing protection in an initial experiment, as no Mf were detected the 

blood of Ls-ShK immunised mice (Duprez. J, MRes Thesis, 2013, University of 

Edinburgh). However, in repeat immunisation experiments, Ls-ShK failed to induce 

any protection, perhaps because of its immunomodulator properties (Armstrong et al., 

2014; Chhabra et al., 2014). It was demonstrated that removing suppressive functions 

of immunomodulator vaccine candidates (e.g. CPI) could induce significant protection 

(Babayan et al., 2012; Arumugam et al., 2014b). Therefore, in subsequent vaccination 

experiments Ls-ShK was modified, in the hope that this would increase specific 

immune response and therefore induce protection. 

DNA vaccines were chosen to screen vaccine candidates, in part because they are 

relatively easy and cheap to produce. However, it must be noted that DNA vaccines 

do not always induce strong protective immunity despite being able to generate 

specific immune responses (Donnelly et al., 2005). Therefore, peptide vaccines were 

used to further investigate the candidate antigens. Peptides are an attractive alternative, 

as they encode specific epitopes of an antigen, and as consequence they are able to 

induce a highly targeted immune responses while eliminating possible allergic or 

hyper-reactive responses (Li et al., 2014).  
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Peptides derived from Ls-RAL and Ls-103 were grouped together as these are highly 

immunogenic candidates, and peptides from known or hypothesised 

immunomodulators, Ls-CPI-2, Ls-ShK and Ls-Tgh2 were grouped together. This was 

done because individual peptides would take too long to test and immunising with a 

single antigenic epitope might not be enough to elicit an appropriate immune response.  

Immunisation with the immunogenic or immunomodulatory peptide vaccine resulted 

in decreased numbers of circulating Mf in the blood. In contrast, the numbers of adult 

worms appeared unaffected by any vaccination protocol. This suggests that the 

peptides vaccines are affecting the Mf life stages only. Investigation of adult female 

fecundity revealed that the immunomodulatory and immunogenic groups of peptides 

are affecting either the development of Mf in uteri or the number (density) of Mf 

produced. This reduced adult female fecundity can also be seen in other immunisation 

experiments, such as in L. sigmodontis model with either DNA vaccination with Ls-

CPIm (Babayan et al., 2012) or the Mf life stage (Ziewer et al., 2012); in B. malayi 

model with Bm-CPIm protein recombinants (Arumugam et al., 2014b); as well as with 

immunisation with B. malayi ES in gerbils (Zipperer et al., 2013). Suggesting that the 

vaccine candidates, are inducing protection by reducing female fecundity, instead of 

affecting adult worm survival. 

These early results show promise and prompted questions about the use of a 

combination of antigens in a single inoculum. The groups which received all peptides 

in an immunisation dose showed no protection, but we know that combination of Ov-

Ral-2 and Ov-103 does increase protective efficacy over individual antigens (Hess et 

al., 2014; 2016). Therefore, selecting the most effective combination of antigens is 
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essential, and different combinations of immunogenic and immunomodulatory 

antigens will have to be investigated in the future. 

The vaccine candidates were selected based on their protective efficacy in several 

animal models (measured as a decrease in parasite burden), however the mechanisms 

by which they induce protection and correlates of vaccine-induced immunity remain 

unknown. Identifying correlates of vaccine-induced protective immunity that are 

predictive of vaccine efficacy would aid in the screening of vaccine candidates, 

because currently vaccine efficacy is determined as decrease in parasite burden, 

measured late in a vaccination time course. Therefore, if vaccine efficacy could be 

predicted in the early stages of infection or even before infection, time and money 

could be saved (Mastelic et al., 2013). 

Several studies have taken a “systems biology/vaccinology” approach to identify 

correlates of vaccine induced immunity. Systems vaccinology consists of using high-

throughput technologies including DNA microarrays, protein arrays and deep 

sequencing to enable systems-wide measurements, combined with predictive 

modelling. The advantage of a systems-wide approach versus conventional 

immunological methods which only analyse a single or small numbers of components 

of the immune system at a given time, is that by measuring changes across a whole 

system the full complexity and dynamics of the human immune system can be 

analysed. 

To identify correlates of protection following immunisation in the L. sigmodontis 

model, a systems wide approach was taken. Blood samples were collected throughout 
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an immunisation experiment, with either irradiated L3 or microfilariae immunisations 

(Le Goff et al., 2000; Ziewer et al., 2012), and RNA from these samples were 

hybridised to Illumina microarrays, allowing the expression of tens of thousands of 

genes to be measured.  

Machine learning methods were used to analyse the gene expression datasets over 

more commonly used methods such differential fold change or weighted gene 

correlation networks (WGCNA) (Langfelder, Horvath, 2008), because the microarray 

datasets produced were highly dimensional (many gene measured compared to sample 

numbers), with complex interaction between genes working within 

networks/pathways, for which the other methods were not well suited or powerful 

enough to detect changes (Butte, 2002; Huynh-Thu et al., 2012; Sundarrajan, 

Arumugam, 2016). Machine learning has been used for a variety of tasks in biomedical 

sciences, such as classifying cancer subtypes (Anaissi et al., 2013), to predicting 

outcomes of treatment (Gim et al., 2016), with a newer role in vaccinology, such as 

predicting antibody responses to potential HIV vaccines (Choi et al., 2015).  

Using machine learning (ML), biologically relevant gene signatures were successfully 

detected following immunisation with either irradiated L3 and Mf. Gene signatures 

identified after immunisation with irradiated L3 were associated with neutrophil 

migration and chemotaxis. In in vivo studies, neutrophils recruitment to site of L3 

infection have also been associated with protection (Pionnier et al., 2016).  

Immunisation with Mf elicited changes in gene expression, associated with antigen 

presentation by MHC class I, interferon signalling and T cell receptor signalling. 
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Immune responses to Mf are known to be linked to IFN-g (Lawrence et al., 2000; 

Saeftel et al., 2003; Ziewer et al., 2012), and has also been successfully identified by 

the ML pipeline. The ML pipeline also further identified IFN-a and IFN-b as being 

involved with Mf immunity, to date, activity of these cytokines has not been linked to 

filarial infection. However, in schistosomiasis IFN-b was produced by DC in response 

to Schistosoma mansoni eggs and is thought to be an immune evasion strategy 

(Trottein et al., 2004), and IFN-b produced by DC stimulated with LPS was suggested 

to generate regulatory T cells (Wang et al., 2014).  

This study has shown that it is feasible to use a system wide approach to detect 

correlates of protection and information on the mechanism triggered by the vaccines 

in blood sampled during filarial infections. Furthermore, it demonstrates that it is the 

time points after immunisation that are the most predictive of vaccine efficacy. This 

approach has also been applied to commercially available vaccines such as: live 

attenuated vaccine YF-17D against yellow fever (Gaucher et al., 2008; Querec et al., 

2008); the trivalent inactivated influenza vaccine (TIV) (Bucasas et al., 2011; Nakaya 

et al., 2011b); and a two vaccines against meningitis (MPSV4 and MCV4) (Li et al., 

2013b), and similar to this study, they found that the early gene signatures were 

predictive of vaccine immunogenicity, although mechanism of action did differ. 

The results presented revealed that the best time point to identify immune correlates of 

protection was immediately after immunisation, and not when infection has been 

established. This can also be demonstrated when measuring antibody levels, which are 

often cumulative as infection progresses and can be positively associated with parasite 
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numbers. Similarly changes in gene expression measured late in infection, using either 

qPCR arrays (Chapter 2) or high-throughput techniques such as microarrays (Chapter 

3), is too late to detect any changes associated with protection, and detectable changes 

in expression of immune genes were positively association with parasite burden. 

Most investigations of immune responses against murine and human filarial infection 

have been carried out during chronic infections (once infection has been established), 

as often this is the only point infection can be detected. However, this could mean that 

interpretation of results and identification of protective responses may be difficult, 

since we have demonstrated that it is the early time point in infection that are the most 

informative. This is consistent with Taylor et al who showed that early priming of the 

immune system was important in determining the outcome of infection (Taylor et al., 

2009). 

A wide range of pathways were found associated with protection using the ML pipeline 

on human gene expression data. Gene activity involved in the defence against other 

pathogens, humoral immune responses, DNA dependent replication and cell cycle 

pathways were detected in blood taken from onchocerciasis patients. In W. bancrofti 

infections, gene activity associated with protection appeared to be primarily involved 

with T cell receptor signalling. One of the reasons for which gene signatures associated 

with protection in humans is more varied, is because humans can be re-infected, have 

co-infections with other diseases, vary in age, unlike mice experiments, which are 

more controlled.  
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Despite the human dataset being noisier, the ML analysis detected common 

activity/pathways between the murine and human filarial infections. These results 

further increases confidence in the use of the L. sigmodontis mouse model for vaccine 

studies. Being able to bridge the gap between mice and humans will be tremendously 

helpful for vaccine development and indeed in the interpretation of any processes 

where model systems must be used. Mouse models have been useful and are necessary 

at identifying immune responses to filarial infections and evaluating potential vaccine 

candidates. Murine models exhibit much less variation in gene responses to infection 

than found in human subjects and hence results of murine studies provide a convenient 

starting point for analysis of human data. 

However, there are significant differences in both the innate and adaptive arm of the 

immune system between humans and mice (Mestas, Hughes, 2004) and these should 

be carefully considered when interpretation gene expression data. Translating vaccine 

research from animal models to human trials is not always as straightforward. Some 

vaccines that have showed promise in mouse models, lacked efficacy in human trials 

(Gray et al., 2011; Tameris et al., 2013; Kaufmann et al., 2014) or raised safety 

concerns during clinical trials (Diemert et al., 2012).  

Now that it has been shown that whole blood is a feasible sample to measure correlates 

of protection, these methods could be applied during vaccine trials. As filarial parasites 

have long life cycles, the ability to predict the immunogenicity of a vaccine within the 

first few days or weeks of a clinical trial, would help predict protection levels at the 

endpoint and ultimately save money and time if the vaccine candidate is deemed 

unlikely to be efficacious. However, these biomarkers of protection would have to be 
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well defined, as correlates of efficacy in healthy young adults may not be necessarily 

the same as biomarkers of protection in the elderly or children under 5 which are the 

targeted population (Nakaya et al., 2011a).  

Identifying biomarkers or signatures of safety will also be critical for successful 

vaccine development and to avoid adverse reactions in clinical trials. The human data 

set used in the studies describe here lacked information on pathology and therefore 

identification of potential signatures of adverse reactions was limited. 

Since the microarray analysis identified the early time points following immunisation 

as being the most predictive of vaccine efficacy, the effect of Ls-CPIm (one of the 

vaccine candidates) on dendritic cells (DC) was investigated. Dendritic cells are a 

population of professional antigen presenting cells that have the ability to sense foreign 

pathogens and initiate a type 1, type 2 or regulatory immune response (Motran et al., 

2016). Pathogens have evolved strategies to modulate DC, such as the 

excretory/secretory products produced by filarial nematodes, which have shown to 

impair DC function, and suppress both Th1 and Th2 adaptive immune response as well 

as inducing regulatory T cells (Segura et al., 2007; Carvalho et al., 2009; Terrazas et 

al., 2013). Ls-CPIm is derived from CPI-2, which is known to affect antigen 

presentation by MHC II molecules on antigen presenting cells such as DC (Manoury 

et al., 2001). Immunisation with the native CPI shows little protection in L. 

sigmodontis models (Babayan et al., 2012), and in B. malayi model, immunisation with 

CPI changes the migratory patterns of adult worms and but confers no protection 

(Arumugam et al., 2014a). However, when mutated (Murray et al., 2005), there is an 
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increase in protection seen following immunisation (Babayan et al., 2012; Arumugam 

et al., 2014b).  

In vitro bone marrow derived DC cultures were used to show that the mutation of CPI 

rescues DC activation and maturation. Since DC are a key link between innate and 

adaptive immunity (Liu, 2001a), it was suggested that CPIm works by increasing the 

activation of DC and hence increasing adaptive immunity, which eventually leads to 

protective immunity. Although this could not be demonstrated in vivo, this was most 

likely due to lack of sensitivity associated with a presumed small population of DC 

that have taken up the CPI or CPIm. Measuring changes in gene expression in whole 

blood is ideal to detect systemic changes, however if one wants to measure a more 

specific cellular response to immunisation, such as ones by DC, then cells must first 

be isolated. Therefore, to determine if CPIm vaccine is indeed rescuing DC activation 

in vivo, then changes in gene expression would need to be investigated within isolated 

DC population.  
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Figure 5.1. Overview of thesis. 1) Vaccine candidates were tested in the L. sigmodontis mouse 

model, either using DNA or peptide vaccines. Vaccine efficacy or protection is measured as a 

change in adult worm and microfilariae numbers, at the end of a vaccination time course, in L. 

sigmodontis model this is around 65-days post challenge infection. Immunological readouts 

such as percentage of cell types, cytokine levels and antibody levels were also measured at the 

end of the time course, although these are not always predictive of vaccine efficacy. 2) 

Determine correlates of vaccine induced protection can be beneficial for vaccine trials, such 

as identifying early predictors of vaccine efficacy could help speed up clinical trials. The 

simplest method to identify correlates of protection would be to identify gene signatures in 

blood using high-throughput techniques (microarrays), but whether these could be measured 

in blood during filarial infection remained unknown, and if possible at what point during 

infection, since at the end it is too late to detect any changes. Therefore, blood was collected 

at several time points in a vaccination time course, RNA was extracted and hybridised to 

Illumina microarrays to measure the expression of tens of thousands of genes. Since the 

microarrays generated complex datasets, a machine learning pipeline was created to detect 

changes in gene signatures between immunised and non-immunised mice. This pipeline 

successfully detected changes in gene expression that were known to be induced by these 

vaccines, showing that blood is indeed a good tissue to use and that machine learning 
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techniques can detect biologically significant changes in gene expression. Furthermore, time 

points following immunisation showed to be the most informative, therefore in the future these 

can be used to predict vaccine efficacy. Parallel to mice studies, blood samples were collected 

from naturally protected and infected individuals living in foci endemic for O. volvulus and W. 

bancrofti, using microarrays and the machine learning pipeline, correlates of protection in 

human were investigated and some overlap was found between vaccine induced immunity in 

mice and natural protection in humans. 3) Most vaccine candidates were chosen without 

knowing their mechanism of action, since one of the vaccine candidates, Ls-CPIm, was derived 

from CPI-2, an immunomodulatory known to affect antigen presentation on cells such as DC. 

Therefore, the effect of Ls-CPI and mutated Ls-CPI (CPIm) on bone-marrow derived DC 

(BMDC) were compared, finding that Ls-CPIm rescues DC activation. Showing that increased 

protection induced by Ls-CPIm is due to increased DC activity, although this was not shown 

in vivo. With the microarrays analysis that shows that is the early time points following 

immunisation that determines the outcome of vaccination, it could be suggested that it is the 

early activation of cellular response, such as DC that are necessary to induce immune response 

that lead to protection. 
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5.1 Conclusion 
The work presented in this thesis shows that targeting immunomodulatory molecules 

is a feasible strategy for vaccination against onchocerciasis. Experience suggest that it 

might be necessary to modify the native molecule to remove their immunomodulatory 

properties as part of the formulation of any vaccine. This was done to one of the most 

promising vaccine candidate, CPI. A mutated form of CPI that lacks 

immunomodulatory activity evoked greater protection which was associated with 

increased DC activation. The correct formulation of any vaccine will be a critical 

component for successful development of a vaccine. 

The use of a systems approach and machine learning has demonstrated that changes in 

gene expression can be detected in whole blood following exposure to and 

immunisation against filarial infections. This opens many possibilities for vaccine 

development, by more rapidly understanding the mechanisms associated with 

successful immunisation and formulation to optimise the immunogenicity and efficacy 

of vaccines, to achieve stronger and longer protection. The potential to recognise and 

predict possible adverse reactions to specific molecules will improve safety of any 

vaccine. This approach also brings the possibility of identifying early predictors of 

vaccine efficacy and this knowledge could greatly speed up vaccine trials. 

It has been demonstrated that early changes in the immune system immediately 

following exposure to infection or immunisation are critical in determining the 

outcome of infection. These observation questions the value of many earlier 

investigations of immune response to filariae that have used material collected from 

patients presenting with chronic infections. The results also suggest that to determine 
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if an immunisation is successful, a detailed investigation of responses immediately 

after exposure to infection is needed. This can be done in murine models but for 

humans studies the focus must now turn to the examination of very young children 

living in endemic areas. 

These studies have, by necessity, focussed on the capacity of experimental vaccines to 

reduce worm burden. A vaccine that reduces the number of microfilariae in the skin 

will reduce morbidity. However, if onchocerciasis is to be eliminated from any region, 

or even eradicated. The reduction in microfilariae loads must be such as to block 

transmission. The aim is to vaccinate individuals currently omitted from MDA, such 

as pre-school children, and by including this cohort in an integrated control programme 

with Ivermectin distribution could be a major step towards elimination of 

onchocerciasis.   
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Appendix A. Supplementary Tables from 
Chapter 2. 

Table S1. Supplementary list of genes used in qPCR array 

Gene Symbol Gene RefSeq Gene Symbol Gene RefSeq 

Apcs NM_011318 Ifng NM_008337 

C3 NM_009778 Ifngr1 NM_010511 

C5ar1 NM_007577 Il10 NM_010548 

Casp1 NM_009807 Il13 NM_008355 

Ccl12 NM_011331 Il17a NM_010552 

Ccl5 NM_013653 Il18 NM_008360 

Ccr4 NM_009916 Il1a NM_010554 

Ccr5 NM_009917 Il1b NM_008361 

Ccr6 NM_009835 Il1r1 NM_008362 

Ccr8 NM_007720 Il2 NM_008366 

Cd14 NM_009841 Il23a NM_031252 

Cd4 NM_013488 Il4 NM_021283 

Cd40 NM_011611 Il5 NM_010558 

Cd40lg NM_011616 Il6 NM_031168 

Cd80 NM_009855 Irak1 NM_008363 

Cd86 NM_019388 Il-33 NM_033439.3 

Cd8a NM_001081110 Irf7 NM_016850 

Crp NM_007768 Itgam NM_008401 

Csf2 NM_009969 Jak2 NM_008413 

Cxcl10 NM_021274 Ly96 NM_016923 

Cxcr3 NM_009910 Lyz2 NM_017372 

Il-3 NM_000588.3 Mapk1 NM_011949 

Fasl NM_010177 Mapk8 NM_016700 

Foxp3 NM_054039 Mbl2 NM_010776 

Gata3 NM_008091 Mpo NM_010824 

H2-Q10 NM_010391 Eotaxin NM_011330.3 

H2-T23 NM_010398 Myd88 NM_010851 

Icam1 NM_010493 Nfkb1 NM_008689 

Cxcl1 NM_001511 Nfkbia NM_010907 

Ifnar1 NM_010508 Lta NM_001159740.2 

Cxcl3 NM_002090 Nod1 NM_172729 
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Gene Symbol Gene RefSeq Gene Symbol Gene RefSeq 

Nod2 NM_145857 Tlr2 NM_011905 

Rag1 NM_009019 Tlr3 NM_126166 

Rorc NM_011281 Tlr4 NM_021297 

Ltb NM_002341.1 Tlr5 NM_016928 

Stat1 NM_009283 Tlr6 NM_011604 

Stat3 NM_011486 Tlr7 NM_133211 

Stat4 NM_011487 Tlr8 NM_133212 

Stat6 NM_009284 Tlr9 NM_031178 

Tbx21 NM_019507 Tnf NM_013693 

Ticam1 NM_174989 Traf6 NM_009424 

Tlr1 NM_030682 Tyk2 NM_018793 
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Appendix B. Supplementary results from 
chapter 3 (functional pathway analysis of 
machine learning pipeline and WGCNA results)   

Table S2. Full list of over-represented Reactome pathways from the WGCNA analysis of 

Mf immunity. Time points Day -21, Day -14 and Day 67 in the Mf immunity dataset had 

significantly over-represented pathways. Multiple testing was adjusted for using the 

Benjamini-Hochberg method to give an adjust P-value, an adjusted P-value < 0.05 and a Q-

value < 0.2 was used as the significance cut-off point for significant.  

Description of Reactome Pathway Found by ML pipeline 

Day -21 (6 hours after 2nd Immunisation) 

Adaptive Immune System � 

Antigen Presentation: Folding, assembly and peptide loading of class 
I MHC � 

Antigen processing-Cross presentation � 

Class I MHC mediated antigen processing & presentation � 

Endosomal/Vacuolar pathway � 

ER-Phagosome pathway � 

Immune System � 

Immunoregulatory interactions between a Lymphoid and a non-
Lymphoid cell � 

Interferon gamma signaling � 

Interferon Signaling � 

Generation of second messenger molecules � 

PD-1 signaling � 

Phosphorylation of CD3 and TCR zeta chains � 

Translocation of ZAP-70 to Immunological synapse � 

Activated TLR4 signalling  
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ERK/MAPK targets  

ERKs are inactivated  

MAP kinase activation in TLR cascade  

MAPK targets/ Nuclear events mediated by MAP kinases  

MyD88 cascade initiated on plasma membrane  

MyD88 dependent cascade initiated on endosome  

MyD88-independent TLR3/TLR4 cascade  

MyD88:Mal cascade initiated on plasma membrane  

Nuclear Events (kinase and transcription factor activation)  

RHO GTPases Activate Formins  

Toll Like Receptor 10 (TLR10) Cascade  

Toll Like Receptor 2 (TLR2) Cascade  

Toll Like Receptor 3 (TLR3) Cascade  

Toll Like Receptor 4 (TLR4) Cascade  

Toll Like Receptor 5 (TLR5) Cascade  

Toll Like Receptor 7/8 (TLR7/8) Cascade  

Toll Like Receptor 9 (TLR9) Cascade  

Toll Like Receptor TLR1:TLR2 Cascade  

Toll Like Receptor TLR6:TLR2 Cascade  

TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 
or 9 activation  

TRAF6 Mediated Induction of proinflammatory cytokines  

TRIF-mediated TLR3/TLR4 signaling  

Day -14 (6 hours after 3rd Immunisation) 

Interferon gamma signaling � 

Interferon Signaling � 

Day 67�
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Endosomal/Vacuolar pathway  

Immunoregulatory interactions between a Lymphoid and a non-
Lymphoid cell  

Interferon gamma signaling  

Interferon Signaling  
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Table S3. Full list of over-represented Gene Ontology Terms of biological processes from 

the WGCNA analysis of Mf immunity. Time point day -21, day 0, day 49 and day 67 in the 

Mf immunity dataset had significantly over-represented GO terms. Multiple testing was 

adjusted for using the Benjamini-Hochberg method to give an adjust P-value, an adjusted P-

value < 0.05 and a Q-value < 0.2 was used as the significance cut-off. 

GO Description Identified in ML pipeline 

Day -21 (6 hours after 2nd Immunisation) 

response to interferon-beta � 

Day 0 (6 hours post challenge)�

nuclear body organization  

PML body organization  

nucleus organization  

Day 49 (post challenge) 

response to external stimulus  

Day 67 (post challenge) 

antigen processing and presentation  

response to interferon-beta  

cellular response to interferon-beta  

defense response to other organism  

response to external biotic stimulus  
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Table S4. Full list of over-represented Gene Ontology Terms of biological processes in 

the Mf immunity dataset found by the ML Pipeline. Time point day -21, day -14 and day 

49 in the Mf immunity dataset had significantly over-represented GO terms. Multiple testing 

was adjusted for using the Benjamini-Hochberg method to give an adjust P-value, an adjusted 

P-value < 0.05 and a Q-value < 0.2 was used as the significance cut-off. 

BP GO 
Term ID BP GO Term Genes 

(n) 
Adjusted 
P-value 

Genes selected by 
pipeline 

Day -21 (6 hours after 2nd immunisation) 

GO:0035456 response to interferon-beta 7 9.39E-06 Gbp2b, Gbp2, Gbp3, 
Ifit3, Ifitm3, Igtp, Irf1 

GO:0035458 cellular response to interferon-
beta 

6 4.87E-05 Gbp2b, Gbp2, Gbp3, 
Ifit3, Igtp, Irf1 

GO:0048002 antigen processing and 
presentation of peptide antigen 

6 4.32E-03 B2m, Cd74, H2-D1, 
H2-Q6, H2-Q8, H2-
T23 

GO:0071345 cellular response to cytokine 
stimulus 

13 6.38E-03 Cd74, Cdc37, 
Coro1a, Gbp2b, 
Gbp2, Gbp3, Ifit3, 
Ifitm3, Igtp, Irf1, 
Irf7, Robo1, Tpr 

GO:0002474 antigen processing and 
presentation of peptide antigen 
via MHC class I 

5 6.46E-03 B2m, H2-D1, H2-Q6, 
H2-Q8, H2-T23 

GO:0034341 response to interferon-gamma 6 6.86E-03 Cdc37, Gbp2b, Gbp2, 
Gbp3, Ifitm3, Irf1 

GO:0002250 adaptive immune response 11 6.86E-03 B2m, Cd74, Cd79b, 
Cd8b1, Csk, H2-D1, 
H2-T23, Irf1, Irf7, 
Serpina3g, Unc13d 

GO:0034112 positive regulation of homotypic 
cell-cell adhesion 

8 6.86E-03 Ank3, Cd74, Coro1a, 
H2-T23, Irf1, Lck, 
Tgfbr2, Thy1 

GO:0098542 defense response to other 
organism 

13 8.95E-03 B2m, Gbp2b, Gbp2, 
Gbp3, H2-T23, Ifit3, 
Ifitm3, Irf1, Nlrp1a, 
Oasl2, Plac8, 
Samhd1, Unc13d 
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GO:0071346 cellular response to interferon-
gamma 

5 8.95E-03 Cdc37, Gbp2b, Gbp2, 
Gbp3, Irf1 

GO:0042110 T cell activation 12 8.95E-03 B2m, Cd2, Cd3d, 
Cd74, Coro1a, Csk, 
Fcgr4, H2-T23, Irf1, 
Lck, Tgfbr2, Thy1 

GO:0070489 T cell aggregation 12 8.95E-03 B2m, Cd2, Cd3d, 
Cd74, Coro1a, Csk, 
Fcgr4, H2-T23, Irf1, 
Lck, Tgfbr2, Thy1 

GO:0071593 lymphocyte aggregation 12 8.95E-03 B2m, Cd2, Cd3d, 
Cd74, Coro1a, Csk, 
Fcgr4, H2-T23, Irf1, 
Lck, Tgfbr2, Thy1 

GO:0034109 homotypic cell-cell adhesion 13 8.95E-03 Ank3, B2m, Cd2, 
Cd3d, Cd74, Coro1a, 
Csk, Fcgr4, H2-T23, 
Irf1, Lck, Tgfbr2, 
Thy1 

GO:0070486 leukocyte aggregation 12 9.76E-03 B2m, Cd2, Cd3d, 
Cd74, Coro1a, Csk, 
Fcgr4, H2-T23, Irf1, 
Lck, Tgfbr2, Thy1 

GO:0045088 regulation of innate immune 
response 

8 1.19E-02 Arf6, Cd74, Cdc37, 
H2-T23, Irf1, Irf7, 
Samhd1, Trafd1 

GO:0022409 positive regulation of cell-cell 
adhesion 

8 1.20E-02 Ank3, Cd74, Coro1a, 
H2-T23, Irf1, Lck, 
Tgfbr2, Thy1 

GO:0007159 leukocyte cell-cell adhesion 12 1.46E-02 B2m, Cd2, Cd3d, 
Cd74, Coro1a, Csk, 
Fcgr4, H2-T23, Irf1, 
Lck, Tgfbr2, Thy1 

GO:0002483 antigen processing and 
presentation of endogenous 
peptide antigen 

3 1.46E-02 B2m, H2-D1, H2-
T23 

GO:0019882 antigen processing and 
presentation 

6 1.46E-02 B2m, Cd74, H2-D1, 
H2-Q6, H2-Q8, H2-
T23 
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GO:0006414 translational elongation 4 1.47E-02 Secisbp2, Eef1a1, 
Eef1b2, Yrdc 

GO:0050870 positive regulation of T cell 
activation 

7 1.47E-02 Cd74, Coro1a, H2-
T23, Irf1, Lck, 
Tgfbr2, Thy1 

GO:0034110 regulation of homotypic cell-cell 
adhesion 

9 1.47E-02 Ank3, Cd74, Coro1a, 
Csk, H2-T23, Irf1, 
Lck, Tgfbr2, Thy1 

GO:0044406 adhesion of symbiont to host 3 1.47E-02 Gbp2b, Gbp2, Gbp3 

GO:0050830 defense response to Gram-
positive bacterium 

5 1.58E-02 B2m, Gbp2b, Gbp2, 
Gbp3, H2-T23 

GO:0050778 positive regulation of immune 
response 

11 1.58E-02 Arf6, B2m, Cd74, 
Cd79b, Csk, H2-D1, 
H2-T23, Irf1, Irf7, 
Lck, Thy1 

GO:0019883 antigen processing and 
presentation of endogenous 
antigen 

3 1.58E-02 B2m, H2-D1, H2-
T23 

GO:1903039 positive regulation of leukocyte 
cell-cell adhesion 

7 1.58E-02 Cd74, Coro1a, H2-
T23, Irf1, Lck, 
Tgfbr2, Thy1 

GO:0035455 response to interferon-alpha 3 2.15E-02 Ifit3, Ifitm3, Tpr 

GO:0032845 negative regulation of 
homeostatic process 

7 2.41E-02 Cd74, Coro1a, Csk, 
Lck, Mcoln1, Rtel1, 
Thy1 

GO:0032844 regulation of homeostatic 
process 

11 2.41E-02 Ank3, B2m, Cd74, 
Coro1a, Csk, Ets1, 
Hcar2, Lck, Mcoln1, 
Rtel1, Thy1 

GO:0002819 regulation of adaptive immune 
response 

6 2.41E-02 B2m, Cd74, H2-D1, 
H2-T23, Irf1, Irf7 

GO:0001916 positive regulation of T cell 
mediated cytotoxicity 

3 2.47E-02 B2m, H2-D1, H2-
T23 

GO:0051497 negative regulation of stress 
fiber assembly 

3 2.47E-02 Clasp2, Dlc1, Pfn1 
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GO:0060337 type I interferon signaling 
pathway 

3 2.47E-02 Cdc37, Ifitm3, Irf7 

GO:0002821 positive regulation of adaptive 
immune response 

5 2.53E-02 B2m, Cd74, H2-D1, 
H2-T23, Irf1 

GO:0071357 cellular response to type I 
interferon 

3 2.66E-02 Cdc37, Ifitm3, Irf7 

GO:0001909 leukocyte mediated cytotoxicity 5 2.66E-02 B2m, Coro1a, H2-
D1, H2-T23, Unc13d 

GO:0050863 regulation of T cell activation 8 2.67E-02 Cd74, Coro1a, Csk, 
H2-T23, Irf1, Lck, 
Tgfbr2, Thy1 

GO:0051235 maintenance of location 8 2.90E-02 Ank3, Coro1a, Lck, 
Mcoln1, Pfn1, Sorl1, 
Thy1, Sun2 

GO:1903037 regulation of leukocyte cell-cell 
adhesion 

8 3.38E-02 Cd74, Coro1a, Csk, 
H2-T23, Irf1, Lck, 
Tgfbr2, Thy1 

GO:0032232 negative regulation of actin 
filament bundle assembly 

3 3.57E-02 Clasp2, Dlc1, Pfn1 

GO:0071426 ribonucleoprotein complex 
export from nucleus 

4 3.77E-02 Ddx39b, Rps15, 
Thoc6, Tpr 

GO:0001914 regulation of T cell mediated 
cytotoxicity 

3 3.77E-02 B2m, H2-D1, H2-
T23 

GO:0035740 CD8-positive, alpha-beta T cell 
proliferation 

2 3.77E-02 H2-T23, Irf1 

GO:0002449 lymphocyte mediated immunity 7 3.79E-02 B2m, Cd74, Coro1a, 
H2-D1, H2-T23, Irf7, 
Unc13d 

GO:0071166 ribonucleoprotein complex 
localization 

4 3.86E-02 Ddx39b, Rps15, 
Thoc6, Tpr 

GO:0045785 positive regulation of cell 
adhesion 

9 3.86E-02 Ank3, Cd74, Coro1a, 
H2-T23, Irf1, Lck, 
Tgfbr2, Thy1, 
Unc13d 

GO:0034340 response to type I interferon 3 3.89E-02 Cdc37, Ifitm3, Irf7 
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GO:0001906 cell killing 5 4.14E-02 B2m, Coro1a, H2-
D1, H2-T23, Unc13d 

GO:0022407 regulation of cell-cell adhesion 9 4.15E-02 Ank3, Cd74, Coro1a, 
Csk, H2-T23, Irf1, 
Lck, Tgfbr2, Thy1 

GO:0002460 adaptive immune response based 
on somatic recombination of 
immune receptors built from 
immunoglobulin superfamily 
domains 

7 4.15E-02 B2m, Cd74, H2-D1, 
H2-T23, Irf1, Irf7, 
Unc13d 

GO:0002757 immune response-activating 
signal transduction 

7 4.15E-02 Arf6, Cd79b, Csk, 
Irf1, Irf7, Lck, Thy1 

GO:0042742 defense response to bacterium 7 4.15E-02 B2m, Gbp2b, Gbp2, 
Gbp3, H2-T23, 
Nlrp1a, Plac8 

GO:0006488 dolichol-linked oligosaccharide 
biosynthetic process 

2 4.15E-02 Alg12, Dpagt1 

GO:0043320 natural killer cell degranulation 2 4.15E-02 Coro1a, Unc13d 

GO:0046784 viral mRNA export from host 
cell nucleus 

2 4.15E-02 Ddx39b, Thoc6 

GO:0051251 positive regulation of 
lymphocyte activation 

7 4.29E-02 Cd74, Coro1a, H2-
T23, Irf1, Lck, 
Tgfbr2, Thy1 

GO:0042832 defense response to protozoan 3 4.47E-02 Gbp2b, Gbp2, Gbp3 

Day -14 (6 hours after 3rd immunisation) 

GO:0040029 regulation of gene expression, 
epigenetic 

9 3.42E-05 Arid4a, Hist1h2ad, 
Hist1h2af, Hist1h2ah, 
Hist1h2ai, Hist1h2an, 
Hist2h2ac, Spi1, Xist 

GO:0045814 negative regulation of gene 
expression, epigenetic 

7 3.42E-05 Hist1h2ad, Hist1h2af, 
Hist1h2ah, Hist1h2ai, 
Hist1h2an, 
Hist2h2ac, Spi1 

GO:0035458 cellular response to interferon-
beta 

5 6.53E-05 Gbp2b, Gbp2, Gbp3, 
Ube2k, Irf1 
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GO:0042832 defense response to protozoan 5 6.53E-05 Gbp2b, Gbp2, Gbp3, 
Irgm2, Slc11a1 

GO:0001562 response to protozoan 5 8.76E-05 Gbp2b, Gbp2, Gbp3, 
Irgm2, Slc11a1 

GO:0035456 response to interferon-beta 5 1.00E-04 Gbp2b, Gbp2, Gbp3, 
Ube2k, Irf1 

GO:0006342 chromatin silencing 6 1.67E-04 Hist1h2ad, Hist1h2af, 
Hist1h2ah, Hist1h2ai, 
Hist1h2an, Hist2h2ac 

GO:0034341 response to interferon-gamma 6 2.19E-04 Gbp2b, Gbp2, Gbp3, 
Irgm2, Irf1, Slc11a1 

GO:0098542 defense response to other 
organism 

12 2.52E-04 B2m, Gbp2b, Gbp2, 
Gbp3, H2-K1, Irgm2, 
Irf1, Oasl2, Plac8, 
Prf1, Slc11a1, 
Slc25a19 

GO:0042742 defense response to bacterium 8 9.22E-04 B2m, Gbp2b, Gbp2, 
Gbp3, H2-K1, Irgm2, 
Plac8, Slc11a1 

GO:0048002 antigen processing and 
presentation of peptide antigen 

5 1.15E-03 B2m, H2-D1, H2-K1, 
H2-Q6, Slc11a1 

GO:0019885 antigen processing and 
presentation of endogenous 
peptide antigen via MHC class I 

3 2.20E-03 B2m, H2-D1, H2-K1 

GO:0009617 response to bacterium 10 2.32E-03 B2m, Casp1, 
Cd209b, Gbp2b, 
Gbp2, Gbp3, H2-K1, 
Irgm2, Plac8, 
Slc11a1 

GO:0002483 antigen processing and 
presentation of endogenous 
peptide antigen 

3 2.93E-03 B2m, H2-D1, H2-K1 

GO:0002824 positive regulation of adaptive 
immune response based on 
somatic recombination of 
immune receptors built from 
immunoglobulin superfamily 
domains 

5 2.93E-03 B2m, H2-D1, H2-K1, 
Irf1, Slc11a1 
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GO:0044406 adhesion of symbiont to host 3 3.37E-03 Gbp2b, Gbp2, Gbp3 

GO:0002474 antigen processing and 
presentation of peptide antigen 
via MHC class I 

4 3.47E-03 B2m, H2-D1, H2-K1, 
H2-Q6 

GO:0002821 positive regulation of adaptive 
immune response 

5 3.47E-03 B2m, H2-D1, H2-K1, 
Irf1, Slc11a1 

GO:0019883 antigen processing and 
presentation of endogenous 
antigen 

3 3.48E-03 B2m, H2-D1, H2-K1 

GO:0016458 gene silencing 6 4.38E-03 Hist1h2ad, Hist1h2af, 
Hist1h2ah, Hist1h2ai, 
Hist1h2an, Hist2h2ac 

GO:0001916 positive regulation of T cell 
mediated cytotoxicity 

3 6.33E-03 B2m, H2-D1, H2-K1 

GO:0071346 cellular response to interferon-
gamma 

4 7.62E-03 Gbp2b, Gbp2, Gbp3, 
Irf1 

GO:0019882 antigen processing and 
presentation 

5 7.68E-03 B2m, H2-D1, H2-K1, 
H2-Q6, Slc11a1 

GO:0001914 regulation of T cell mediated 
cytotoxicity 

3 1.07E-02 B2m, H2-D1, H2-K1 

GO:0002822 regulation of adaptive immune 
response based on somatic 
recombination of immune 
receptors built from 
immunoglobulin superfamily 
domains 

5 1.07E-02 B2m, H2-D1, H2-K1, 
Irf1, Slc11a1 

GO:0002819 regulation of adaptive immune 
response 

5 1.57E-02 B2m, H2-D1, H2-K1, 
Irf1, Slc11a1 

GO:0050830 defense response to Gram-
positive bacterium 

4 1.64E-02 B2m, Gbp2b, Gbp2, 
Gbp3 

GO:0002456 T cell mediated immunity 4 2.26E-02 B2m, H2-D1, H2-K1, 
Slc11a1 

GO:0002711 positive regulation of T cell 
mediated immunity 

3 2.44E-02 B2m, H2-D1, H2-K1 

GO:0002484 antigen processing and 
presentation of endogenous 

2 2.44E-02 H2-D1, H2-K1 
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peptide antigen via MHC class I 
via ER pathway 

GO:0002485 antigen processing and 
presentation of endogenous 
peptide antigen via MHC class I 
via ER pathway, TAP-dependent 

2 2.44E-02 H2-D1, H2-K1 

GO:0001913 T cell mediated cytotoxicity 3 2.47E-02 B2m, H2-D1, H2-K1 

GO:0002250 adaptive immune response 7 2.70E-02 B2m, H2-D1, H2-K1, 
Irf1, Nedd4, 
Serpina3g, Slc11a1 

GO:0001912 positive regulation of leukocyte 
mediated cytotoxicity 

3 4.20E-02 B2m, H2-D1, H2-K1 

GO:0001771 immunological synapse 
formation 

2 4.21E-02 Lgals3, Prf1 

Day 49 (49 days after challenge) 

GO:0006342 chromatin silencing 5 4.99E-02 Hist1h2ad, Hist1h2af, 
Hist1h2ai, Hist1h2an, 
Hist2h2ac 

GO:0045814 negative regulation of gene 
expression, epigenetic 

5 4.99E-02 Hist1h2ad, Hist1h2af, 
Hist1h2ai, Hist1h2an, 
Hist2h2ac 
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Table S5. Full list of over-represented Gene Ontology Terms of biological processes in 

the O. volvulus endemic area dataset, identified by the ML Pipeline. 58 BP GO terms were 

found over-represented in the O. volvulus dataset. Multiple testing was accounted for using the 

Benjamini-Hochberg method to give an adjust P-value, an adjusted P-value < 0.05 and a Q-

value < 0.2 was used as the significance cut-off. 

BP GO 
Term ID BP GO Term Genes 

(n) 
Adjusted 
P-value 

Genes selected by 
pipeline 

GO:0001906 cell killing 8 1.14E-03 
CAMP, CTSG, DEFA1, 
DEFA1B, DEFA3, 
DEFA4, ELANE, GNLY 

GO:0006261 DNA-dependent DNA replication 10 3.18E-04 

CCNE2, CDC45, CDT1, 
DACH1, GINS2, LONP1, 
MCM2, MCM4, SLBP, 
TOP2A 

GO:0032508 ↳ DNA duplex unwinding 5 3.81E-02 CDC45, GINS2, MCM2, 
MCM4, TOP2A 

GO:0006270 ↳ DNA replication initiation 6 5.38E-04 CCNE2, CDC45, CDT1, 
GINS2, MCM2, MCM4 

GO:0006268 ↳ DNA unwinding involved in 
DNA replication 3 8.23E-03 MCM2, MCM4, TOP2A 

GO:0033260 ↳ nuclear DNA replication 5 6.28E-04 CDC45, CDT1, DACH1, 
GINS2, SLBP 

GO:0044786 ↳ cell cycle DNA replication 5 2.05E-03 CDC45, CDT1, DACH1, 
GINS2, SLBP 

GO:0006260 ↳ DNA replication 12 2.61E-03 

CCNE2, CDC45, CDT1, 
DACH1, GINS2, 
KIAA0101, LONP1, 
MCM2, MCM4, RBBP4, 
SLBP, TOP2A 

GO:0006959 humoral immune response 8 1.70E-02 
C4BPA, CAMP, CD46, 
DEFA1, DEFA1B, 
DEFA3, DEFA4, PHB 

GO:0031640 killing of cells of other organism 8 3.56E-07 
CAMP, CTSG, DEFA1, 
DEFA1B, DEFA3, 
DEFA4, ELANE, GNLY 

GO:0051873 ↳ killing by host of symbiont 
cells 3 5.28E-03 CAMP, CTSG, ELANE 
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GO:0051883 ↳ 
killing of cells in other 
organism involved in 
symbiotic interaction 

3 1.28E-02 CAMP, CTSG, ELANE 

GO:0051852 ↳ disruption by host of 
symbiont cells 3 5.28E-03 CAMP, CTSG, ELANE 

GO:0051818 ↳ 
disruption of cells of other 
organism involved in 
symbiotic interaction 

3 1.28E-02 CAMP, CTSG, ELANE 

GO:0044364 ↳ disruption of cells of other 
organism 8 3.56E-07 

CAMP, CTSG, DEFA1, 
DEFA1B, DEFA3, 
DEFA4, ELANE, GNLY 

GO:0000082 G1/S transition of mitotic cell cycle 12 5.38E-04 

AURKA, BRD7, CCNE2, 
CDC45, CDCA5, CDKN3, 
CDT1, FBXO31, ID2, 
MCM2, MCM4, TYMS 

GO:0098813 ↳ nuclear chromosome 
segregation 12 1.63E-03 

AURKB, CDC20, CDCA5, 
CENPI, DLGAP5, KIFC1, 
NCAPG, NUSAP1, PRC1, 
PTTG3P, TOP2A, UBE2C 

GO:0045840 ↳ positive regulation of mitotic 
nuclear division 5 5.29E-03 

AURKA, CDCA5, 
DLGAP5, NUSAP1, 
UBE2C 

GO:0044772 ↳ mitotic cell cycle phase 
transition 16 1.14E-03 

AURKA, BRD7, CCNB2, 
CCNE2, CDC45, CDCA5, 
CDKN3, CDT1, DLGAP5, 
FBXO31, HMMR, ID2, 
MCM2, MCM4, TYMS, 
UBE2C 

GO:0044770 ↳ cell cycle phase transition 16 2.04E-03 

AURKA, BRD7, CCNB2, 
CCNE2, CDC45, CDCA5, 
CDKN3, CDT1, DLGAP5, 
FBXO31, HMMR, ID2, 
MCM2, MCM4, TYMS, 
UBE2C 

GO:0000070 ↳ mitotic sister chromatid 
segregation 8 5.14E-03 

AURKB, CDCA5, 
DLGAP5, KIFC1, 
NCAPG, NUSAP1, PRC1, 
UBE2C 

GO:0000083 ↳ 
regulation of transcription 
involved in G1/S transition of 
mitotic cell cycle 

4 8.23E-03 CDC45, CDT1, ID2, 
TYMS 
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GO:0045931 ↳ positive regulation of mitotic 
cell cycle 6 4.42E-02 

AURKA, CDC45, CDCA5, 
DLGAP5, NUSAP1, 
UBE2C 

GO:0007067 ↳ mitotic nuclear division 14 5.92E-03 

AURKA, AURKB, 
CCNB2, CDC20, CDCA2, 
CDCA5, DLGAP5, KIFC1, 
NCAPG, NUSAP1, OIP5, 
PRC1, UBE2C, ZC3HC1 

GO:0007076 ↳ mitotic chromosome 
condensation 3 1.82E-02 CDCA5, NCAPG, 

NUSAP1 

GO:0044843 ↳ cell cycle G1/S phase 
transition 12 6.28E-04 

AURKA, BRD7, CCNE2, 
CDC45, CDCA5, CDKN3, 
CDT1, FBXO31, ID2, 
MCM2, MCM4, TYMS 

GO:0000819 ↳ sister chromatid segregation 11 1.14E-03 

AURKB, CDC20, CDCA5, 
CENPI, DLGAP5, KIFC1, 
NCAPG, NUSAP1, PRC1, 
TOP2A, UBE2C 

GO:0051785 ↳ positive regulation of nuclear 
division 5 1.06E-02 

AURKA, CDCA5, 
DLGAP5, NUSAP1, 
UBE2C 

GO:0071103 DNA conformation change 11 5.85E-03 

CDC45, CDCA5, CENPI, 
GINS2, MCM2, MCM4, 
NCAPG, NUSAP1, OIP5, 
RBBP4, TOP2A 

GO:0032392 ↳ DNA geometric change 5 4.71E-02 CDC45, GINS2, MCM2, 
MCM4, TOP2A 

GO:0006323 ↳ DNA packaging 8 2.73E-02 
CDCA5, CENPI, MCM2, 
NCAPG, NUSAP1, OIP5, 
RBBP4, TOP2A 

GO:0030261 ↳ chromosome condensation 4 1.84E-02 CDCA5, NCAPG, 
NUSAP1, TOP2A 

GO:0032091 negative regulation of protein 
binding 5 4.54E-02 ACE, AURKA, AURKB, 

CAMK1, CCL23 

GO:0007059 chromosome segregation 14 5.38E-04 

AURKB, CDC20, CDCA2, 
CDCA5, CENPI, 
DLGAP5, KIFC1, 
NCAPG, NUSAP1, OIP5, 
PRC1, PTTG3P, TOP2A, 
UBE2C 

GO:0002251 organ or tissue specific immune 
response 4 1.75E-02 CAMP, DEFA1, DEFA1B, 

DEFA3 
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GO:0031145 

anaphase-promoting complex-
dependent proteasomal ubiquitin-
dependent protein catabolic 
process 

5 4.42E-02 AURKA, AURKB, 
CDC20, FBXO31, UBE2C 

GO:0002443 leukocyte mediated immunity 10 1.92E-02 
ACE, C4BPA, CD46, CLC, 
CTSG, ELANE, FES, 
GAPT, KDM5D, UNG 

GO:0050832 defense response to fungus 7 1.82E-05 
CTSG, DEFA1, DEFA1B, 
DEFA3, DEFA4, ELANE, 
GNLY 

GO:0009620 ↳ response to fungus 7 1.54E-04 
CTSG, DEFA1, DEFA1B, 
DEFA3, DEFA4, ELANE, 
GNLY 

GO:0009617 ↳ response to bacterium 13 4.85E-02 

ARG1, CAMP, CD24, 
CEBPE, CSF3, CTSG, 
DEFA1, DEFA1B, 
DEFA3, DEFA4, ELANE, 
GNLY, IDO1 

GO:0042742 ↳ defense response to bacterium 9 2.27E-02 

CAMP, CEBPE, CTSG, 
DEFA1, DEFA1B, 
DEFA3, DEFA4, ELANE, 
GNLY 

GO:0050830 ↳ defense response to Gram-
positive bacterium 6 8.23E-03 CAMP, CTSG, DEFA1, 

DEFA1B, DEFA3, DEFA4 

GO:0019730 ↳ antimicrobial humoral 
response 5 8.23E-03 CAMP, DEFA1, DEFA1B, 

DEFA3, DEFA4 

GO:0019731 ↳ antibacterial humoral 
response 5 5.85E-03 CAMP, DEFA1, DEFA1B, 

DEFA3, DEFA4 

GO:0035821 modification of morphology or 
physiology of other organism 9 3.56E-04 

CAMP, CTSG, DEFA1, 
DEFA1B, DEFA3, 
DEFA4, ELANE, GNLY, 
TYMS 

GO:0044146 
negative regulation of growth of 
symbiont involved in interaction 
with host 

3 2.09E-02 CAMP, CTSG, ELANE 

GO:0044116 ↳ growth of symbiont involved 
in interaction with host 3 3.78E-02 CAMP, CTSG, ELANE 

GO:0044110 ↳ growth involved in symbiotic 
interaction 3 3.78E-02 CAMP, CTSG, ELANE 
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GO:0044144 ↳ 
modulation of growth of 
symbiont involved in 
interaction with host 

3 2.44E-02 CAMP, CTSG, ELANE 

GO:0002227 innate immune response in mucosa 4 5.39E-03 CAMP, DEFA1, DEFA1B, 
DEFA3 

GO:0002385 ↳ mucosal immune response 4 1.47E-02 CAMP, DEFA1, DEFA1B, 
DEFA3 

GO:0002526 acute inflammatory response 7 1.75E-02 
ADAM8, C4BPA, CD46, 
ELANE, MRGPRX1, PHB, 
PTGER3 

GO:0002673 ↳ regulation of acute 
inflammatory response 5 2.77E-02 ADAM8, C4BPA, CD46, 

PHB, PTGER3 
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