

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429729041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Learning About the Learning Process:

From Active Querying to Fine-tuning

Kunkun Pang
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Perception, Action and Behaviour

School of Informatics

University of Edinburgh

2019

Abstract
The majority of research on academic machine learning addresses the core model fit-

ting part of the machine learning workflow. However, prior to model fitting, data

collection and annotation is an important step; and subsequently to this, knowledge

transfer to different but related problems is also important. Recently, the core model

fitting step in this workflow has been upgraded using learning-to-learn methodologies,

where learning algorithms are applied to improve the fitting algorithm itself in terms

of computation or data efficiency. However, algorithms for data collection and knowl-

edge transfer are still commonly hand-engineered. In this doctoral thesis, we upgrade

the pre-and post-processing steps of the machine learning pipeline with the learning-

to-learn paradigm.

We first present novel learning-to-learn approaches that improve the algorithms for

this pre-processing step in terms of label efficiency. The inefficiency of data annotation

is a common issue in the field: To fit the desired model, a large amount of data is

usually collected and annotated, much of which is useless. Active learning aims to

address this by selecting the most suitable data for annotation. Since conventional

active learning algorithms are hand-engineered and heuristically designed for a specific

problem, they typically cannot be adapted across nor even within datasets. The data

efficiency of active learning can be improved either by online learning active learning

within a specific problem, or by transferring active learning knowledge between related

problems. We begin by investigating the framework of leaning active learning online,

which learns to select the best criteria for a particular dataset as queries are made. It

enables online adaptation, along with the state of the model and dataset changes, while

guaranteeing performance. Subsequently, we upgrade the previous framework to a

data-driven learning-based approach by learning a transferable active-learning policy

end-to-end. The framework is thus capable of directly optimising the accuracy of

the underlying classifier, and can adapt to the statistics of any given dataset. More

importantly, the learned active-learning policy is domain agnostic and generalises to

new learning problems.

We next turn to knowledge transfer from a well-learned problem to a novel target

problem. We develop a new learning-to-learn technique to improve the effectiveness

and efficiency of fine-tuning-based transfer learning. Conventional transfer learning

approaches are heuristic: Most commonly, small learning-rate stochastic gradient de-

scent starting from the source model as a condition, and keeping the architecture con-

stant. However, the typical transfer learning pipeline transfers learning from a general

iii

model or dataset to a more specific one. Thus, we propose a transfer learning algo-

rithm for neural networks, which simultaneously prune the size of the target networks

architecture and updates its weights. This enables the model complexity to be reduced,

as training iterations increase, and both efficiency and efficacy are improved compared

to conventional fine-tuning knowledge transfer.

iv

Lay Summary

Most research on machine learning focuses on designing algorithms for learning to

solve real-world applications. Nevertheless, the efficiency and efficacy of machine

learning techniques are not only determined by the effectiveness of learning algo-

rithm itself but also depend on the surrounding processes: (i) collecting and annotating

data before applying the learning algorithm or (ii) subsequently to implementing the

learning algorithm, reusing the knowledge to help solve different but related prob-

lems. However, annotating useless data or transferring unrelated knowledge reduces

efficiency. This motivates research to enhance the surrounding processes of collecting

and annotating the most related data or selecting the most relevant knowledge to trans-

fer to other problems. However, most those methods are hand-designed, which limits

their efficacy.

In this thesis, we aim to improve these surrounding processes by applying machine

learning to data annotation and knowledge transfer. We first train the machine to select

the best hand-designed algorithm for data annotation acquisition. We next enable the

machine to learn its own algorithm to predict which is the most useful data to acquire

annotation for. Finally, we train the machine to remove irrelevant data when transfer-

ring knowledge to a new problem.

v

Acknowledgements

I would like to thank my supervisor, Timothy Hospedales, for his help, support and

guidance throughout my PhD. I would also like to thank Yang Wu with the Nara Insti-

tute of Science and Technology for giving me the invaluable opportunity to visit and

work with him. I want to especially thank Mingzhi Dong for all of his support and

help throughout my studies. I also want to thank Yongxin Yang, Chenyang Zhao, and

Lucy Liu for providing suggestions for my works and this thesis. Finally, I would like

to thank my family for all the years of support and love.

vi

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Kunkun Pang)

vii

Table of Contents

1 Introduction 1

1.1 Machine Learning . 1

1.1.1 Data Collection . 2

1.1.2 Knowledge Transfer . 3

1.2 Learning to Learn . 4

1.2.1 Learning Core Learning Problem 5

1.2.2 Learning-to-learn for the Full Machine Learning Pipeline . . . 6

1.2.3 Learning Active Learning 6

1.2.4 Learning Transfer Learning 8

1.3 Thesis Outline . 8

1.4 Thesis Contributions . 9

2 Background and Problem Statement 11

2.1 Supervised Learning and Meta Learning 11

2.1.1 Supervised Learning . 11

2.1.2 Meta Learning . 12

2.1.3 The Property of General Meta Learning Framework 14

2.1.4 Learning Supervised Learning 15

2.2 Meta Learning About the Learning process 17

2.2.1 Learning the Active Learning Process 17

2.2.2 Learning About the Fine-tuning Process 20

3 Learning Active Learning Online 21

3.1 Introduction . 21

3.2 Related Work . 26

3.2.1 Stationary Bandit Learning for Active Learning 28

3.2.2 Non-stationary Property of Bandit learning and Active Learning 29

ix

3.3 Non-stationary Bandit Learning with Expert Advice 31

3.3.1 Regret Bound for REXP4 32

3.4 Dynamic Ensemble Active Learning 34

3.4.1 Discussion of Static and Dynamic Active Learning 38

3.5 Synthesis Experiment . 38

3.6 Active Learning Experiments . 40

3.6.1 Dynamic Ensemble Active Learning vs Conventional Criterion 43

3.6.2 Dynamic Ensemble Active Learning vs Ensemble Learner . . 44

3.6.3 Dynamic Ensemble Active Learning vs Random REXP4 . . . 45

3.7 Summary . 45

4 Learning a Transferable Active Learning Policy 47
4.1 Introduction . 47

4.2 Related Work . 48

4.2.1 Reinforcement Learning . 48

4.2.2 Related Methods . 51

4.3 Learning a Transferable Active Query Policy 52

4.3.1 Non-Myopic Active Learning Policy 52

4.3.2 Meta Learning the Transferability 53

4.3.3 Meta-learned Policy for General Active Learning 55

4.4 Experiments . 57

4.4.1 Datasets and Settings . 57

4.4.2 Results . 59

4.5 Summary . 62

5 Learning to Fine-tune 67
5.1 Introduction . 67

5.2 Related Work . 68

5.2.1 Network Architecture Search 69

5.2.2 Model Compression . 70

5.2.3 Meta Learning for Supervised Learning 71

5.2.4 Meta Learning for Transfer Learning 71

5.3 Learning a Neuron Deletion Policy 72

5.4 Learning Architecture Stopping Tuning Policy 75

5.5 Domain and Architecture Invariant Featurisation 75

5.6 Cross-Datasets Training . 76

x

5.7 Experiments . 79

5.7.1 Experiment Setting . 79

5.7.2 Results . 82

5.8 Summary . 85

6 Conclusion and Future Work 87
6.1 Summary . 87

6.2 Limitation and Future Work . 88

6.2.1 Learning Active Learning Online 88

6.2.2 Learning Transferable Active Learning Policy 89

6.2.3 Transferable and Online Active Learning 89

6.2.4 Learning to Fine-tune . 89

Bibliography 91

xi

List of Figures

2.1 The difference between conventional learner and the trained learning. 13

3.1 Examples of non-stationary AL in UCI datasets “fourclass”, “german”,

“ILPD” using five algorithms/criteria: US, RS, DE, RAND, and DEAL.

Proportion of times each criterion generates the largest increase in ac-

curacy. Rows: The five actor algorithms (US, RS, DE, Rand, DEAL)

used to collect the trajectories for the rollout. Bars: The effect of

querying each criteria at the given iteration, given the the rollout gen-

erated by the actor algorithm on the left. 24

3.2 Examples of non-stationary AL in UCI datasets “fourclass”, “german”,

“ILPD” using five algorithms/criteria: US, RS, DE, RAND, and DEAL.

In the relative part all increments are re-scaled by subtracting the min-

imum increment of accuracy over all criteria in each bin. Rows: The

five actor algorithms (US, RS, DE, Rand, DEAL) used to collect the

trajectories for the rollout. Bars: The effect of querying each crite-

ria at the given iteration, given the the rollout generated by the actor

algorithm on the left. 25

3.3 The illustration of bandit learning 26

3.4 Illustration of DEAL system. Light blue: Taking the unlabelled set

XXXUt as the input, each expert will output a score that is normalised be-

fore input to the DEAL active learner. ξN
K is the Nth criterion score of

Kth instance. Orange: the active learner to make a decision. Green:

updating the labelled set, unlabelled set, and the classifier. Light yel-

low: The restart detection scheme. Ensemble weights are then updated

differently between (light red) or at (dark red) restarts. 37

xiii

3.5 The result and reward distribution of the synthesised experiment. Left:

the actual regret of the REXP4 with various setting of the batch ∆T

(blue/red/yellow) and the regret bound according to the equation 3.7.

Right: The two arms reward distribution. 41

3.6 Comparison of DEAL-REXP4 versus individual ensemble members. . 43

3.7 Comparison of active learning with our DEAL-REXP versus alterna-

tive state of the art bandit algorithms. 44

3.8 Comparison of active learning with our DEAL-REXP versus alterna-

tive state of the art bandit algorithms. 46

4.1 The illustration of reinforcement learning 49

4.2 The illustration of embedding . 53

4.3 Policy and meta network architecture for deep reinforcement learning

of a task-agnostic active query policy. Policy net inputs data-point zzzi

and outputs a probability of querying it π(ai|s). The policy network

is paramaterised by weights WWW e that dynamically determined by the

meta network based on an embedding of the dataset and classifier st =

{Lt ,Ut , f}. 56

4.4 Convergence of active learning policy during training. Average over

all training datasets (linear SVM). 59

4.5 Further analysis . 60

4.6 The performance of MLP-GAL with/without using expert features . . 62

5.1 Illustration of learning transferable fine-tuning rule on an Omniglot

dataset. Note that this is a class-wise split, so the label space of each

subset is disjointed. Each class contains its own train/test splits. . . . 81

5.2 Accuracy and learning speed evaluation. The vertical lines indicate

the epoch of stopping deletion. Del: deletion policy. Del+Stop 0:

Deletion and stopping policy, and the stopping label is according to

Acct+∆−Acct−1 < 0.1,where ∆ = 0. Del+Stop 0: Deletion and stop-

ping policy, and the stopping label is according to Acct+∆−Acct−1 <

0.1,where ∆ = 5. random: random deletion without stopping 83

5.3 Evaluation of both Accuracy and Compression Rate 84

xiv

List of Tables

2.1 The summary of related symbols in meta learning 16

3.1 The summary of active learning algorithms 39

3.2 Characterising datasets as (S) stationary or (NS) non-stationary ac-

cording to the win proportion of the criteria. 42

3.3 Win/Tie/Loss counts of DEAL-REXP4 versus ensemble members in

terms of AUC at specified learning stage. 44

3.4 Win/Tie/Loss counts of DEAL-REXP4 and state of the art alternatives

at specified learning stages. 45

4.1 The summary of the featurisation of MLP-GAL 61

4.2 The comparison of MLP-GAL with various action featurisation and

the SingleRL. 62

4.3 Comparison of active learning algorithms, leave one dataset out set-

ting. Linear/RBF SVM base learner. AUC averages (%) over 100

trials (and 13 training occurrences for MLP-GAL (Tr)). Winning AL

algorithm is bolded in each row. 64

4.4 MLP-GAL training and testing performance as a function of number

of training datasets. AUC average and standard deviation. Linear SVM

base classifier. Each dataset is evaluated both as train and test during

cross validation. 65

4.5 MLP-GAL training and testing performance as a function of number

of training datasets. AUC average and standard deviation. RBF SVM

base classifier. Each dataset is evaluated both as train and test during

cross validation. 65

5.1 The summary of the featurisation φ(st ,oi,t). The term ’Dims’ means

the number of dimensions. 77

xv

List of Acronyms

AL Active Learning

ALBL Active Learning by Learning

BMDR Batch Mode Active Learning

BvSB Best versus Second Best Criterion

COMB Combination of Active Learning Online

CEM Classification Entropy Maximisation

DE DEnsity sampling

DEAL Dynamic Ensemble Active Learning

DG Domain Generalisation

DRL Deep Reinforcement Learning

DUAL Dual Strategy Active Learning

DFF Distance Furthest First

DNN Deep Neural Network

EA Evolutionary Algorithm

EXP3 Exponential-weight algorithm for Exploration and

Exploitation

EXP4 Exponential-weight algorithm for Exploration and

Exploitation with Expert advice

EXP4.P Exponential-weight algorithm for Exploration and

Exploitation with Expert advice and bounds on the weak

regret that hold with high Probability

GMM Gaussian Mixture Models

IWA Important Weighted Accuracy

LAL Learning Active Learning

LALO Learning Active Learning Online

xvii

LinUCB Linear Upper Confidence Bound

LTAL Learning Transferable Active Learning

LFT Learning to Fine-tune

LSA Linear Strategy Aggregation

LOO Leave One Out

MAB Multi-Arm Bandit

MAML Model-Agnostic Meta Learning

MAB Model Compression

MDP Markov Decision Process

MLP-GAL Meta Learned Policy for General Active Learning

NAS Network Architecture Search

QBB Query By Bagging

QUIRE Query Informative and Representative Examples

RAND Random Sampling

REXP3 Restarting Exponential-weight algorithm for Exploration

and Exploitation

REXP4 Restarting Exponential-weight algorithm for Exploration

and Exploitation with Expert advice

REINFORCE REward Increment Non-negative Factor times Offset

Reinforcement times Characteristic Eligibility algorithm

RL Reinforcement Learning

SGD Stochastic Gradient Descent

SVM Support Vector Machine

UCB Upper Confidence Bound

US Uncertainty Sampling

xviii

List of Symbols

ξξξ Probability vector encoding the preference over arms (instances)

xxx Data point/instance

∆T The time epoch for REXP4 to learn

` Loss function of supervised learning model and a data point

D Dataset for supervised learning

Dte Test dataset for evaluating the supervised learning model

Dtr Training dataset for training the supervised learning model

F Meta objective function

L Labelled set

R Regularisation term of the objective function

U Unlabelled set

D Meta dataset for meta learning

D f inal−test Meta final test dataset which is held-out set of the meta dataset D

D f inal−train Meta final training dataset which is held-out set of the meta dataset D

D f inal Meta final set which is held-out set of the meta dataset D to evaluate

the learned supervised learner’s performance

Dte Meta test dataset for the supervised learner’s parameter Θ

Dtr Meta training dataset for training the supervised learner’s parameter Θ

µ Expected reward of an arm

ω Model’s parameters

π The acting policy

a Action

b(·) Learner takes dataset as input and output a desired model or query

point

b(·;Θ) Trainable learner: add parameter Θ to train the learner

xix

bparams(·;Θ) Trainable learner to synthesise the parameter of a model

bAL(·) Active learner takes set and classifier as input and predict the most

useful instance

bLALO(·;Θ) Online trainable active learner

bLAL(·;Θ) Trainable active learner

bLFT (·) Trainable fine-tuning (SGD) learner

bLTAL(·;Θ) Transferable trainable learning active learner

bMAML(·;Θ) Trainable learner of model-agnostic meta-learning (MAML) approach

bSGD(·) Stochastic gradient descent update learner

c Supervised learning model’s output

d Data point’s dimension

f Supervised learning model

g(·) Meta learner aims to optimise the learner so that the learner could pro-

duce a better model

L Loss function of supervised learning model and datasets

M Number of data points

q The queried data point

s State

T Time horizon

t Time step

y Expected reward of an expert

Var(·) Variance

xx

List of My Publications

• Kunkun Pang, Mingzhi Dong, Yang Wu, and Timothy Hospedales. Dynamic

Ensemble Active Learning: A Non-Stationary Bandit with Expert Advice. In

International Conference on Pattern Recognition (ICPR) 2018. Best student

paper awarded.

• Kunkun Pang, Mingzhi Dong, Yang Wu, and Timothy Hospedales. Meta-learning

transferable active learning policies by deep reinforcement learning. In Interna-

tional Conference on Machine Learning, International Workshop on Automatic

Machine Learning (ICML AutoML) 2018. Best paper awarded.

• Mingzhi Dong, Kunkun Pang, Yang Wu, Jinghao Xue, Timothy Hospedales, and

Tsukasa Ogasawara. Transferring CNNs to Multi-Insance Multi-Label Classifi-

cation on Small Datasets. In International Conference on Image Processing

(ICIP) 2017.

xxi

Chapter 1

Introduction

1.1 Machine Learning

As a core sub-field of artificial intelligence, machine learning has emerged to answer

the question ’Can a machine learn?’. A machine is said to learn if its performance,

with respect to some tasks and the associated performance measures, improves with

data and experience [Mitchell, 1997]. Machine learning enables machines to learn

from data and experience without being explicitly programmed [Samuel, 1959]. The

science of machine learning draws on concepts from diverse disciplines, including

computer science, statistics, mathematics, etc. [Bishop, 2006; Barber, 2012; Mur-

phy, 2012]. Researchers have categorised conventional machine learning into three

paradigms.

Supervised Learning In this paradigm, data is provided with a pair of feature and

true labels. The aim of supervised learning is to distinguish between features

and learn a mapping from feature to true label.

Unsupervised Learning Unlike a supervised learning setting, in which a machine

learns the relation between features and labels, unsupervised learning aims to

learn from features alone (i.e. without labels) and discover latent representation

of data.

Reinforcement Learning In reinforcement learning, an agent can only acquire a re-

ward by interacting with its environment. The agent is expected to learn how

to act in the environment and collect as many rewards as possible [Sutton and

Barto, 1998].

1

2 Chapter 1. Introduction

In this thesis, we study the supervised learning setting. Although the majority of

previous research has focused on the core learning problem, the learning algorithm

does not exist in isolation. It is necessary to examine the surrounding processes that

are necessary for it to be effective, which are often exceptionally important in practice:

namely, data collection prior to learning and knowledge transfer after learning.

1.1.1 Data Collection

Data collection is a prerequisite of the general learning problem. According to the

previously noted definition of supervised learning, all of the data-driven learning ap-

proaches can only be undertaken once data is provided. Generally, in the data collec-

tion step, we establish a dataset by collecting examples (features) and then annotating

them with labels. In many applications, examples can be collected automatically and

relatively inexpensively (by e.g. downloading images from the internet). The labels,

however, require time and are expensive to provide. Thus, the dataset size in super-

vised learning is often governed by an annotation budget how many examples can be

afforded to obtain manual annotation. Once a dataset is established, the collected data

is provided to the core learning algorithm.

Learning from poor quality data leads to weak performance [Zhu and Wu, 2004;

Zhu et al., 2004]. A lack of quality data can be considered from two perspectives:

data featurisation and instance selection. Data featurisation refers to the choice of de-

scription for each data point. If featurisation is poor, some attributes may be noisy

or redundant. As a result, the learning algorithm must work harder to distinguish the

signal from the noise, which may lead to overfitting and diminished performance. To

address this, data cleansing and feature selection are proposed to correct the corrupted

features or select only the most important features [Zhu and Wu, 2004; Guyon and

Elisseeff, 2003]. With regard to instance selection, it refers to the choice of a subset of

the entire dataset. Selecting inferior data points may not be useful for training, since

different instances have the diverse utility of the learning algorithm. For example, an

image recogniser may already know how to recognise easy examples of a category,

and therefore observing more annotated examples of those is unhelpful. In addition,

useless examples risk biasing the training, which may further diminish performance.

However, observing unusual or ambiguous annotated examples can improve perfor-

mance. This motivates the research of active learning to estimate the usefulness of

data points for annotation before actually annotating them, thus reducing annotation

1.1. Machine Learning 3

costs by enabling annotation to be selectively applied to only the most useful data

points. One of the contributions of this thesis is to improve the estimation of data point

utility by developing better active learning methods.

Active learning aims to reduce total labelling costs by carefully selecting the in-

formative points to label. The active learning process queries the entire dataset and

returns the most useful data to annotate, thus improving performance without requir-

ing more effort. The research problem of active learning concerns how to determine

which data points are the most desirable. Given a limited budget, it is more effective to

annotate only the most informative data points. However, the most useful data points

to annotate depend on the state of the underlying learning model, which changes as

more data is annotated. Thus, the process of active learning needs to annotate only the

most informative data point and update the model iteratively. This learning process

improves data efficiency in terms of reducing the number of labels required for the

base learner to reach a given level of performance.

1.1.2 Knowledge Transfer

Knowledge transfer is the process of improving learning performance on a target prob-

lem using knowledge extracted from previously known source problems. Without

knowledge transfer, it would be necessary to train a model from scratch for a given

task. In many real-world applications, it is expensive to collect a large amount of train-

ing data for each new task. In addition, training a complex model from scratch might

cause overfitting when a new task is given with a small training sample size. The act

of dataset rebuilding, in addition to model retraining, limit the practical feasibility of

training complex non-convex models, such as neural networks, from scratch. Thus,

a common approach to alleviating these issues is to adapt and reuse previous share-

able knowledge to a new task. Transfer learning refers to the transfer of knowledge

from the source task to the target task [Pan and Yang, 2010]. Knowledge can be trans-

ferred across tasks (such as recognising different object categories) or domains (such

as different camera types or lighting conditions). The success of transfer learning gen-

erally depends on the relatedness of the tasks and the efficacy of the transfer learning

algorithm [Goodfellow et al., 2016].

There are numerous approaches to transfer learning, including feature-based [Ev-

geniou and Pontil, 2004], subspace-based [Kumar and Daumé, 2012], Bayesian-prior-

based [Fei-Fei et al., 2006], and regularisation-based [Yang et al., 2007]. However,

4 Chapter 1. Introduction

by far the most popular approach in recent deep learning era has been the fine-tuning-

based transfer learning. Fine-tuning is typically applied to transfer knowledge in situ-

ations where there is a target task with sparse data, and a related available source task

with plentiful data.

In fine-tuning, a deep network is pre-trained on a source problem, and then the

weights of this task are transferred and used as the initial condition for learning in the

target task. Given the local gradient-based optimisation used in a deep neural network

(DNN), this means that the target problem can be learned: (i) more quickly (since it

starts closer to a good optimum) and (ii) with fewer data (since it is less likely to

run into a terrible local minima when starting near a good solution). Since the small

learning rate of gradient-descent learning in a non-convex function, such as DNN, does

not move too far from the initial condition, fine-tuning can be seen as the most related

to the regularisation of or prior-based approaches to transfer learning. However, the

standard stochastic gradient (SGD) based learning only updates the weights for target

problems. We provide a learning-to-learn generalisation toward this approach that

undertakes learning to update both the architecture and weights of the DNN for target

problems.

1.2 Learning to Learn

In conventional machine learning approaches, a model improves with data and expe-

rience by following a particular learning algorithm. However, the learning algorithm

itself is a product of human engineering; it is a pre-programmed and fixed piece of

computer code. We aim to improve this by allowing the learning algorithm itself to

improve with experience, which is known as the learning-to-learn paradigm. To ex-

plain learning-to-learn, it is useful to define the concepts of ’model’ and ’learner’.

Both the model and the learner can be considered as two unknown functions that can

be improved with experience from different perspectives. From the perspective of the

model, its job is to solve the actual task (for example, dog recognition task). It inputs

a datum (e.g. an animal image) and produces the estimated label (e.g. the animal is

a dog) as its output. From a learner perspective, its job is to fit the model. Here, the

learner corresponds to the learning algorithm. It inputs a dataset and emits the model

that is capable of predicting labels from features in that dataset. It may also operate

iteratively by inputting the dataset and old model, and subsequently emitting an im-

proved model. Thus, the learner acts as a function to establish parameters of the model

1.2. Learning to Learn 5

so that the model’s outputs are more accurate.

The learning process is undertaken to improve the parameters of the model, so

that it can ultimately produce better labels. By analogy, the learning-to-learn (meta-

learning) process aims to improve the learning algorithm, so that it is better at fitting

the base model. More specifically, we define the concept of the ’meta-learner’ that

establishes the parameters of the learning algorithm, so that the learning algorithm can

produce better models. Depending on different learning problems, the term ’better’

could refer to various properties: higher accuracy, fewer label requirements, or less

computational time required for learning.

1.2.1 Learning Core Learning Problem

Recent meta-learning research has successfully improved core learning problems and

applications. More specifically, the meta-learner helps the learner to improve the mod-

els performance in a variety of ways, such as improving the gradient-descent update

rule and the gradient-descent updating initial condition, as well as learning to synthe-

sise a model. In regard to gradient-descent update, the learning performance of the

SGD is sensitive to the chosen hyper-parameters. A significant amount of time and

effort will be necessary to determine the optimal hyper-parameters. Previous meta-

learning research has addressed learning these hyper-parameters, including the step

size for gradient descent [Andrychowicz et al., 2016; Li and Malik, 2017]. In this

case , the gradient descent learning rule can be formalised as a recurrent neural net-

work, whose unknown parameters correspond to the step size in gradient descent. The

role of the meta-learner is thus to train those parameters, such that the learning rule

becomes more effective.

In gradient descent learning, the choice of initial condition can significantly im-

pact the efficiency of DNN learning and the efficacy of the resulting solution. Thus,

learning-to-learn has also been applied to find the initial condition that maximises the

performance of subsequent gradient-based learning [Finn et al., 2017; Grant et al.,

2018].

Another type of meta-learning, typically applied to few-shot learning, is to learn

to synthesise a model using a given set of labels and data as the input [Mishra et al.,

2018; Snell et al., 2017; Sung et al., 2018; Bertinetto et al., 2016]. Subsequently, the

meta-learners train the meta-network (i.e. the learner) to generate parameters for a

DNN that solves the target task as exemplified by provided input examples.

6 Chapter 1. Introduction

1.2.2 Learning-to-learn for the Full Machine Learning Pipeline

Meta-learning enhancements to the core learning process have been studied in-depth.

However, the majority of prior methods for active learning and subsequent trans-

fer learning are hand-engineered. In active learning, the conventional active learner

queries data points based on the various estimators of the usefulness of the data points,

such as uncertainty, representativeness, largest future error reduction, etc. The fine-

tuning approach to transfer learning employs the fixed heuristic of initialising optimi-

sation on the target problem, given weights copied from the source problem. Meta-

learning extensions of these processes have not been well studied by comparison. In

this thesis, we explore how to improve both active learning and transfer learning using

learning-to-learn methodologies.

1.2.3 Learning Active Learning

Typical active learning algorithms query data points based on different motivations.

For example, uncertainty (or margin-based sampling) queries the most ambiguous

point, which is the one closest to the decision boundary [Lewis and Gale, 1994; Tong

and Koller, 2002]. Expected error reduction aims to query the points to reduce fu-

ture error Roy and McCallum [2001]; Hospedales et al. [2012]. Another approach is

to annotate the most representative samples to ensure that the major clusters within

the dataset are correctly estimated Cohn et al. [1995]; Chattopadhyay et al. [2012];

Yu et al. [2006]. In addition to these approaches, query-by-committee queries the data

points based on the disagreement among a committee of classifiers Seung et al. [1992];

Abe and Mamitsuka [1998]; Loy et al. [2012]. These algorithms have been shown to

improve passive learning. However, it is ambiguous which of the appealing intuitions

underlying each should be preferred in principle; moreover, in practice, there is no a

single algorithm that provides a clear winner in all circumstances. Thus, rather than

guess which query criterion will be most beneficial to learning performance, we di-

rectly train a criterion with a meta-learner, which optimises learning performance in

practice.

Instead of manually designing the active learner, the meta-learner aims to train an

improved active-learner query criterion. Based on the learning-active-learning frame-

work, the meta-learner establishes the active learning parameters (acquisition function)

to select the most useful data points for manual annotation. Within this paradigm, we

propose two new learning-active-learning frameworks that improve the online adapta-

1.2. Learning to Learn 7

tion and transferability of the active query policy.

Online Active Learning: No single active query criterion is best suited for every

dataset nor at every stage of learning (e.g. early initial modelling of the concept from

the first few instances versus later refinement of the concept after many instances are

acquired). Our first contribution is a dynamic, online active learner that learns to select

the best active query criterion for any given dataset, and adapt it over time as the

base learner improves. Specifically, in Chapter 3, we employ an adaptive ensemble

approach, and learn a preference over an ensemble of base criteria (adapted for a given

dataset and over time as learning proceeds). The key research challenge concerns

updating the preference over the ensemble in an efficient manner since, in a learning-

active-learning context, all the learning must be achieved within a few examples (active

queries) to be helpful. The second challenge concerns how to balance exploitation (of

good ensemble members) with exploration (to identify ensemble members that have

only become useful later). To this end, we propose a non-stationary bandit algorithm

to solve these challenges of online adaptive learning.

Transferable Active Learning: Though our adaptive online learning approach is

effective, it does have a cold-start issue. Thus, for each dataset, active learning is

conducted from scratch. Therefore, we next study a framework for learning-active-

learning (LAL), in which we learn an AL query criterion from a source dataset and

transfer it to a new target dataset. This has the benefit that you can directly optimise

the quantity of interest for AL (base classifier accuracy in a limited budget), rather

than relying on intuition about how diverse heuristics affect this quantity. However, it

is important to note that we cannot learn an AL criterion on the same dataset on which

we intend to test it, because either the available annotations are too few (as in the pre-

vious method) or, if we have a large query budget, then we do not need active learning.

Therefore, the key research challenge revolves around how to learn an AL criterion on

one annotation-rich problem that is general enough to apply directly to a new sparse-

annotation problem. To this end, we propose a framework that uses the multi-domain

training of a meta-network and inputs a dataset and classifier embedding to dynami-

cally synthesise the active learning query criteria. Note that this kind of approach is

analogous to the direct weight synthesis approaches in conventional learning-to-learn

methods (Section 1.2.1), but it is applied to the synthesis of an active query criterion

rather than a base model.

8 Chapter 1. Introduction

1.2.4 Learning Transfer Learning

Transfer learning based on fine-tuning is currently the defacto standard, now widely

used in the deep learning era. While effectively compared to tabula rasa learning, there

is still room for improving the efficiency of fine-tuning, and the accuracy of the result-

ing fine-tuned model, through learning-to-learn. In a learning-to-transfer paradigm,

we would solve many transfer learning problems, and then update the transfer learning

algorithm itself to be more efficient and effective based on this experience.

In regard to the conventional learning-to-learn paradigm, several approaches could

be taken to improve the fine-tuning process through learning; for example, a fine-

tuning specific update rule could be learned to replace the use of a generic hand-crafted

rule. However, the extant research on the meta-learned SGD update rule could poten-

tially be applied directly to this [Li and Malik, 2017; Andrychowicz et al., 2016]. In

this thesis, we focus on a different aspect of the transfer learning process that of fine-

tuning the structure of the target model, rather than solely the parameters.

This is motivated by the observation that the typical use-case for transfer learning

is to pre-train on a large and generic dataset (such as ImageNet), before fine-tuning on

a smaller and more specific target dataset of interest (such as birds, faces, or medical

images). In this case, while the source possesses useful and related information, it

also contains irrelevant and useless information, since it comes from a more general

purpose dataset. Therefore, a fine-tuning algorithm that also predicts which parts of

the source model to ignore by pruning parameters could be faster and, ultimately, im-

prove accuracy (since the parameter reduction results in fewer computations, and thus

reduces overfitting in the target problem). Therefore, we perform learning-to-learn to

obtain a fine-tuning algorithm that is both efficient and effective via refining both the

weights and the structure of the network to better suit the target problem.

1.3 Thesis Outline

The rest of this thesis is organised into five chapters:

Chapter 2: We summarise the background related to (i) learning-to-learn methods

and (ii) learning process problems. For the learning-to-learn methods, we summarise

the main techniques of meta-learning and how meta-learning potentially improves the

supervised learning. Regarding the learning process problem, we summarise how

meta-learning can help to improve active learning and transfer learning.

1.4. Thesis Contributions 9

Chapter 3: We start by studying learning-active-learning online. First, we identify

the existence of non-stationarity in active learning; in other words, the ideal active

learning criterion varies over time as the base learner improves. Subsequently, we

propose a new non-stationary bandit learning approach to learn the best active learn-

ing over different time periods. This work was published in ICPR 2018 [Pang et al.,

2018a].

Chapter 4: Rather than restricting our final AL criterion to being a weighted ensem-

ble of a pool of existing criteria, we investigate the learning of a DNN model for an

active query criterion. To avoid the cold start problem discussed in Chapter 3, we focus

on learning a transferable policy that can be trained on source dataset(s), and subse-

quently applied to any target dataset, even across heterogeneous feature spaces. Parts

of this work were published in ICML-AutoML workshop 2018 [Pang et al., 2018b].

Chapter 5: We propose a novel learning-transfer-learning framework, which in-

volves learning a transferable fine-tuning rule of network structure. For this, we train a

fine-tuning policy to determine which and how many source neurons to delete in order

to obtain the best fine-tuned target model. We also generalise the policies to different

datasets and different initial values in the network.

Chapter 6: We conclude the thesis and summarise the recommendations for future

research.

1.4 Thesis Contributions

In this thesis, we propose learning-to-learn techniques for the active learning and trans-

fer learning tasks, which is currently relatively less studied in the machine learning

pipeline. The main contributions are listed as follows:

• We formulate a general meta-learning framework for machine learning tasks

where active learning and transfer learning are the special cases of this frame-

work.

• We identify the existence of the non-stationary phenomenon in the active learn-

ing criterion selection. Our experimental results show that the most useful crite-

rion will be varied at a different active learning stage.

• We extend the previous stationary bandit learning algorithm with expert advice

to a non-stationary setting, which also has a theoretical guarantee about the

10 Chapter 1. Introduction

worst-case. Based on the proposed non-stationary bandits, we further develop

an active learning algorithm to select the most promising criterion at a different

stage so that we can choose the different useful criteria dynamically.

• We develop a learning transferable active learning algorithm which is trained

with deep reinforcement learning in an end-to-end learning way. More impor-

tantly, the proposed method is to learn the active learning policy directly from

the raw feature and also can transfer to different datasets regardless of the variant

dimensionality. Besides, this is also able to avoid the extra effort and resource

wastes which are introduced by the cold start learning active learning scheme.

• We present to learn a novel update rule for neural network architecture in transfer

learning with deep reinforcement learning. The proposed update rule can delete

the useless source neurons to the target problem so that we can dynamically tune

and shrink the size of network architecture during the fine-tuning process. Our

experiment result shows that it is capable of improving the network generalisa-

tion performance by reducing the model complexity.

Chapter 2

Background and Problem Statement

Since the efficacy and efficiency of supervised learning depend on data collection and

knowledge transfer processes, this thesis aims to improve these processes to enhance

overall performance. The general supervised learning problem is the basis for the

successive research problem. Then, we demonstrate the concept of meta learning and

provide a general meta learning for any learning processes. Thus, we aim to show how

this general configuration can help improve supervised learning.

Next, we discuss the setting of active learning and show how active learning in-

tuitively improves the data collection process. Instead of reviewing all of the con-

ventional work here, we present a general formalisation of active learning that en-

compasses several algorithms, and focus on building the connection between active

learning and meta-learning.

Finally, we introduce the stochastic gradient descent (SGD) based fine-tuning pro-

cess, and show how it can be formalised so that it can be improved using meta-learning.

We further demonstrate the difference between the core learning process and SGD

based fine-tuning process.

2.1 Supervised Learning and Meta Learning

2.1.1 Supervised Learning

It is first necessary to describe the formalisation of the supervised learning setting. Let

f represent a model with parameter ω, where the model f is used to map an instance

with d-dimension xxx ∈ Rd to an output c. The parameter term ω here could either

be a scalar or a vector; we use this symbol to depict all the parameters involved in

11

12 Chapter 2. Background and Problem Statement

supervised learning. The ground truth and estimated outcome are distinguished by

denoting the ground truth as c and the predicted variable as ĉ. According to the discrete

or continuous variable type of the output c, supervised learning can be divided into

either classification or regression tasks. Learning the mapping function f (xxx;ω)→ c

from an instance xxx to the desired output c is the task of supervised learning.

Before applying the model to predict the desired output, we need to collect the

dataset for learning the mapping function. Let D = {Dtr,Dte} denote the dataset for

supervised learning tasks, where the Dtr denotes the training set and Dte denotes the

test set. Generally, a pair of xxx and c will be collected and grouped into the training set

Dtr = {(xxxi,ci)}Mtr

i=1 and the test dataset Dte = {(xxxi,ci)}Mte

i=1 during the data collection

process. The training set Dtr is always visible for both the training and test times,

whereas the test set is only available for testing. To simplify the notation, we use M to

denote the number of data points in the training set. The loss function is:

L(f (·;ω),Dtr) =
1
M

M

∑
i=1

` [f (xxxi;ω),ci] (2.1)

where `(f (xxxi;ω),ci)→R is the loss on one data point xxxi with its corresponding ground

truth ci, and L(f (·;ω),D) is the loss on the entire dataset D .

We then use the collected data to train a model and evaluate the model’s perfor-

mance. During training, the training dataset Dtr is the input, and the output is a well-

trained model with optimal parameters ω∗, which is achieved by minimising the loss

function:

ω
∗ = argmin

ω

1
M

M

∑
i=1

` [f (xxxi;ω),ci]+R (w) (2.2)

with respect to the parameters ω. This loss function L could denote the misclassifi-

cation loss for the classification problem or the error function for the regression task.

Once the training is finished, we evaluate the well-trained models fω∗ performance

on the unseen test dataset Dte. To further distinguish between ’model’ and ’learner’,

the model uses the instance as the input and emits the corresponding output value

f (xxx;ω)→ ĉ, while the hand-crafted learner b inputs the dataset and outputs the well-

trained model b(Dtr)→ fω∗ .

2.1.2 Meta Learning

Meta learning aims to lead the learner towards a better learning performance from

a higher-level perspective. More specifically, meta-learning treats the experience of

2.1. Supervised Learning and Meta Learning 13

learning as a training example, and aims to set the learners parameters to improve

learning performance in the meta-learning phase. Note that meta-learning typically

uses learning as a subroutine. Each learning experience provides one training example

to the meta-learner, similar to how each data point provides one training example in

regular learning. As can be seen in Figure 2.1, the trained learner b(Dtr;Θ) plays an

analogous role to a hand-crafted learner b(Dtr), but adds trainable parameters Θ that

allow it to improve its performance. In this section, we provide a general formalisation

of meta learning.

We next introduce the concept of a meta learning task. Formally, a base learner

b(Dtr;Θ)→ f
ωΘ∗ aims to output a better model with meta-learned parameters Θ by

inputting the training set Dtr. Unlike the hand-engineered learner, which trains the

model in a pre-programmed manner, the meta-learner improves the base learners per-

formance via observing the learning experience from a meta training set Dtr. How-

ever, it is important to note that the meta training set and meta test set have various

definitions based on their different uses [Finn et al., 2017; Li et al., 2018]. Here, we

provide a unified definition in a general meta learning scenario. The meta dataset is

defined as D= {Dtr,Dte}, which includes both the meta training set Dtr and the meta

test set Dte. More specifically, the meta training set is grouped by multiple training

datasets Dtr = {Dtr
j }Jj=1 to provide learning experiences for the meta learner, whereas

the meta test set Dte = {Dte
j }Jj=1 is collected to provide the training target for the meta

learner. We further define final set D f inal = {D f inal−train,D f inal−test} to evaluate the

meta learner performance, where D f inal−train contains the training samples for learn-

ing the model’s parameters ωΘ∗ and D f inal−test includes the test samples to compute

the loss for the well-trained model. Table 2.1 summarises the related notations and

terminologies in the meta learning scenario.

Learner
b(Dtr)

Trainable Learner
b(Dtr; θ∗)

Learning

Learning

Improved Model
f(·;ω∗)

Improved Model
f(·;ωθ∗)

Learning-to-learn

Figure 2.1: The difference between conventional learner and the trained learning.

14 Chapter 2. Background and Problem Statement

By rolling out the meta learner g(·) on the meta training set, the meta-learner es-

tablishes a sound meta parameter Θ∗, so that the base learner can then establish the

model’s parameter b(·;Θ∗)→ ωΘ∗ to improve performance. Thus, we use the base

learner with Θ∗ to produce an improved model f
ωΘ∗ , and the performance of that model

on the meta test set Dte provides the meta-learning loss with respect to Θ. Here we

define the meta objective function in a supervised learning setting as:

F (bΘ,D
tr,Dte) =

J

∑
j=1

L(fb(Dtr
J ;Θ),Dte

j) (2.3)

=
J

∑
j=1

Mte
j

∑
i=1

`
[

f (xxxi,j;b(Dtr
j ;Θ)),ci,j

]
(2.4)

where the feedback of objective function F (bΘ,D
tr,Dte)→ R is computed from the

meta test set Dte. Note that we use bΘ to summarise b(·;Θ) to reduce clutter. To train

such a base learner, we optimise the meta-learning objective function F to obtain the

optimal meta parameter Θ∗.

Θ
∗ = argmin

Θ

F (bΘ,D
tr,Dte) = argmin

Θ

J

∑
j=1

Mte
j

∑
i=1

`
[

f (xxxi,j;b(Dtr
j ;Θ)),ci,j

]
(2.5)

Thus, differences between the conventional supervised learning and the upgraded

approach using meta learning can be observed. One difference is that the receiving

source of the feedback is different. Recalling the loss function in Equation 2.1, the base

learner generally obtains the loss from its corresponding training set, whereas the meta-

learner collects the loss from the meta-test set, as illustrated in Equation 2.3 and 2.4.

Another difference is the different optimised parameters. According to Equation 2.2,

the base learner directly minimises the loss function with respect to parameter ω. The

meta learner then optimises the meta-objective function and learns to establish suitable

parameters for the base learner ωΘ∗ , as illustrated in Equation 2.5.

2.1.3 The Property of General Meta Learning Framework

The general meta learning formalisation framework has potential to perform better

than the conventional learning algorithm. For example, the hand-crafted learner for

supervised learning can only minimise the loss function for the fitted model on the

training set, whereas the trained learner considers how to best set the parameters to

improve performance for both the training set and the test set. In addition, for the

hand-crafted learner, it is necessary to pre-programme the hyper-parameter for the

2.1. Supervised Learning and Meta Learning 15

learning problem, which might require large human efforts for finding the good one.

Meta-learning learns a Θ to establish ideal parameters for the learner without intensive

exploration. Therefore, it is intuitive that meta-learning can improve both the efficacy

and efficiency of conventional learning approaches.

This meta learning formalisation reveals the desired flexibility of the meta learn-

ing approach. One advantage of this flexibility is that the meta learning technique can

adapt to a variety of learning processes, such as supervised learning, active learning,

fine-tuning etc. Depending on the different aims of the learning process, the meta

learner aims to establish good parameters for the learner of a particular process, so that

the trained learner can achieve respectable performance. For example, if we want to

improve the annotation efficiency of active learning, we can meta-learn how to estab-

lish parameters for the active learner to acquire fewer annotations while improving the

model’s performance. This means that the meta learner can observe the experience of

the active learner and train the active learner to query a useful data point for annota-

tion. However, we may also want to learn to improve the process of fine-tuning-based

transfer learning by removing useless neurons. Subsequently, we can meta-learn how

to set the parameters for such a learner to improve the fine-tuning performance.

Another advantage of this flexibility is that it enables the meta-learning approach to

improve the learner using different settings, wherein the settings are determined by the

design of the meta dataset. The learning settings are not only determined by the meta

learning algorithm itself, but are also highly correlated to the evaluation dataset. Based

on the different sources of feedback acquisition, the meta learning tasks will also vary.

For example, if the meta learner only has the training set to evaluate the trained learner

performance, then the meta learning task involves enabling the learner to adapt quickly

to the training set. Conversely, if the meta evaluation dataset uses the test set, the meta

learning task focuses on enabling the learner to generalise well on the test set.

2.1.4 Learning Supervised Learning

The majority of recent studies on learning-to-learn types methodologies focus on learn-

ing the core learning process. Therefore, we introduce the relevant research on su-

pervised learning and formalise the learner as a supervised learning process prob-

lem. One well-studied meta-learning technique within a supervised learning context

involves learning the update rule of stochastic gradient descent based deep learning

approaches. Let bsgd and bsgdΘ
indicate fixed and trainable update rules, respectively.

16 Chapter 2. Background and Problem Statement

Symbol Terminology Details

b(·) hand-crafted learner input: Dtr output: ω∗

b(·;Θ) trained learner input: Dtr output: ωΘ∗

g(·) meta learner input: Dtr output: Θ∗

D general dataset a training and test set of a learning problem

Dtr training set a set used to train a model

Dte test set a set used to evaluate a well-trained model

D general meta dataset a parent set of meta training and meta test set

Dtr meta training set a set of multiple training dataset

Dte meta test set a set of multiple test set

D f inal final set a held out set to evaluate the meta learner

D f inal−train final train set a set of training the trained learner

D f inal−test final test set a set of evaluating the trained learner

Table 2.1: The summary of related symbols in meta learning

The fixed trainable update rule could be the stochastic gradient descent update rule

bsgd(D
tr,ω) := ω−α∇ωL(fω,D

tr), where α is the learning rate and ∇ωL(fω,D
tr) is

the gradient with respect to the parameter ω. The trained base learner bsgd(D
tr,ω;Θ)→

ωΘ∗ uses previously updated parameters ω as inputs to establish suitable post-update

parameter ωΘ∗ that improve the performance on the meta test set Dte. Then, model

f
ωΘ∗ uses the post-update parameters to predict the new test instance xxx for either the

classification or regression problem ĉ = f (xxx;bsgd(D
tr,ω;Θ∗)). The forms of learning

to update the parameters are defined as:

min
Θ

F (bΘ,D
tr,Dte) = min

Θ

J

∑
j=1

L(fbsgd(Dtr
j ;Θ),Dte

j) (2.6)

A very recent study on meta-learning provides another angle of updating the param-

eters with stochastic gradient descent [Finn et al., 2017]. The goal of this method is to

learn a better initialisation representation that can quickly adapt to a given test dataset.

We represent the trainable learner of the model-agonostic meta-learning (MAML) ap-

proach as:

bmaml(Dtr,ω,Θ) := ω−α∇ΘL(Dtr)

The difference between the general framework of meta learning and the MAML is that

the MAML regards each previously updated parameter ω as a meta parameter Θ that

2.2. Meta Learning About the Learning process 17

needs to be optimised. Then, the MAML optimises the meta-optimisation problem of

one-step or multiple-steps SGD updates towards better performance on the meta test

set. The form of training the meta parameter is given as follows:

min
Θ

F (bΘ,D
tr,Dte) = min

Θ

J

∑
j=1

L(fbsgd(Dtr,Θ),Dte
J) (2.7)

After that the meta-parameter Θ∗ is updated, the MAML learner update the original

parameter ω with the gradient of the meta parameter α∇ΘL(Dtr). Next, the model uses

the updated parameter ωΘ∗ to provide the output ĉ = f (xxx;ωΘ∗) for a given instance xxx.

Another meta-learning approach, bparams(xxx;Θ)→ω, learns to synthesise model pa-

rameters using data xxx from a new dataset D as the inputs [Andrychowicz et al., 2016;

Ha et al., 2017]. This meta predicted parameter can reduce the training computation

time or deal with large dimensionality [Romero et al., 2017; Ha et al., 2017]. Subse-

quently, the model uses the predicted parameter ωΘ∗ to produce a corresponding output

ĉ for the supervised learning task f (xxx;bparams(Dtr;Θ∗))→ ĉ.

min
Θ

F (bΘ,D
tr,Dte) = min

Θ

J

∑
j=1

L(fbparams(Dtr
j ;Θ),Dte

j) (2.8)

2.2 Meta Learning About the Learning process

2.2.1 Learning the Active Learning Process

Introduction of Active Learning: We introduce the pool-based active learning. We

denote the pool of data with M samples as D = {xxxi,ci, . . . ,xxxM,cM}, where the instances

are xxxi ∈ Rd , and the labels are c ∈ {1, . . . ,C}, most or all of which are unknown in

advance. In an active learning scenario, the data D is initially a labelled set L and an

unlabelled set U = D \L , where |L | � |U|. Training a classifier f on the samples

in the initial set L , the algorithm starts to query instances q from U during iterations

t = {1, . . . ,T}. After the supervision of instance q is obtained, q is removed from the

unlabelled set U and added to the labelled set L , from which classifier ft is retrained.

This means that a pool-based active learner bAL selects an instance/point from the

unlabelled pool/set U to query its label, which can be formulated as bAL(L ,U, f)→ q,

where q ∈U. Subsequently, the classifier f is retrained based on the updated labelled

set L . Based on these, we formalise the objective function of the active learning task

18 Chapter 2. Background and Problem Statement

on the test dataset Dte as:

q∗ =argmin
q∈U

1
Mte

Mte

∑
i=1

` [f (xxxi;ω(L ∪q)),ci] (2.9)

where:ω(L ∪q) =argmin
ω

1
|L ∪q|

|L∪q|
∑
j=1

`
[

f (xxx j;ω,L ∪q),c j
]

(2.10)

As illustrated by the objective function 2.9, active learning aims to achieve a re-

spectable performance with fewer annotated data points L on the test set Dte. The

queried instance q∗ is selected from the unlabelled set q∗ ∈U to minimise the test set

loss, which are then appended to the labelled set L = L ∪ q∗. However, optimising

such an objective function for every data point in a large unlabelled set is intractable,

since each data point is needed to retrain and test the classifiers performance to acquire

its usefulness. In addition, the test set is invincible to the supervised learner during

the learning phase. Thus, active learning algorithms are developed to estimate the

usefulness of data points without retraining the classifier.

Conventional Active Learning: Most conventional active learning algorithms are

heuristic, and the active learning criteria are pre-defined based on different motiva-

tions. These criteria observe the state of the labelled set, unlabelled set, and classifier,

and subsequently predict the most useful instance bAL(L ,U, f)→ q∗ [Lewis and Gale,

1994; Tong and Koller, 2002; Roy and McCallum, 2001; Cohn et al., 1995; Chattopad-

hyay et al., 2012; Yu et al., 2006; Seung et al., 1992; Abe and Mamitsuka, 1998; Loy

et al., 2012; Huang et al., 2010; Wang and Ye, 2015; Wang et al., 2017; Hospedales

et al., 2013, 2012]. However, all of these algorithms are heuristically designed with

various beliefs about what constitutes a ’good’ data point to annotate. For example,

the uncertainty sampling approach aims to locate the least confident data point to an-

notate. Although some of the proposed active learning algorithms assemble multiple

motivations, they still rely on the heuristic switch scheme to switch one criterion to an-

other [Donmez et al., 2007; Hospedales et al., 2013]. Other researchers have suggested

meta learning about the active learning criterio n. However, the related meta-learning

methodologies of active learning are relatively less studied than the learning supervised

learning problem. For this reason, we investigate meta-learning of active learning from

two perspectives: learning active learning process online and learning transferable ac-

tive learning policy.

Learning Active Learning (LAL): We also introduce meta learning the active learn-

ing process. In this instance, bLAL(L ,U, f ;Θ) denotes the learned active learner and

2.2. Meta Learning About the Learning process 19

inputs the labelled set, unlabelled set, and model. It learns to emit the data point to

query bLAL(L ,U, f ;Θ)→ q∗, and performs the pool-based active learning process by

removing the instance from the unlabelled set U = U\q∗ and append the point to the

labelled set L = L ∪ q∗. Then, we define the meta objective function for the active

learning task:

min
Θ

F (bΘ,D
tr,Dte) = min

Θ

T

∑
t=1

J

∑
j=1

L
[

fbLAL(D
tr
j ;Θ),D

te
j

]
(2.11)

To train this, the meta-learner optimises the meta objective function F (bΘ,D
tr,Dte),

where the function F depends on the adopted meta learning methods (the details of

the proposed methods will be described in Chapter 3 and Chapter 4). Here, we briefly

summarise the presented methods in a meta learning scenario. We further define two

special cases of this general framework: learning active learning online and learning

transferable active learning policy.

Learning Active Learning Online (LALO): Regarding learning active learning on-

line, we denote the meta training set as a single training dataset Dtr = Dtr, where the

meta test set is also the training set, but the feedback is computed on either the labelled

set or the unlabelled set Dte = Dtr = {L ∪U} [Baram et al., 2004; Hsu and Lin, 2015;

Chu and Lin, 2016]. For example, [Baram et al., 2004] measures the classification en-

tropy of the queried instance on the unlabelled set, whereas [Hsu and Lin, 2015] uses

the importance weighted estimator of the test accuracy on the labelled set. It is evident

that the updates for the labelled set L will successively affect the update of the meta

learner. Thus, learning active learning online needs to update both the labelled set and

the meta learner iteratively to improve data efficiency. The learning active learning

online is defined below:

min
Θ

F (bΘ,D
tr,Dte) = min

Θ

T

∑
t=1

L
[

fbLALO(Lt ,Ut , ft ;Θ),Dte] (2.12)

Learning Transferable Active Learning (LTAL): Different from the online learn-

ing active learning scheme, the objective function of the learning transferable active

learning policy observes the experience from multiple datasets Dtr = {Dtr
1 , . . . ,Dtr

J }
and evaluates Dte = {Dte

J , . . . ,Dte
T } [Konyushkova et al., 2017a]. Training on these

varied sets enables the learned policy to be dataset-agnostic, which helps learn a gen-

eral active learning criterion for all of the different datasets.

20 Chapter 2. Background and Problem Statement

min
Θ

F (bΘ,D
tr,Dte) = min

Θ

T

∑
t=1

J

∑
J=1

L
[

fbLTAL(LJ,t ,UJ,t , fJ,t ;Θ),Dte
J

]
(2.13)

2.2.2 Learning About the Fine-tuning Process

Fine-tuning: We now introduce the stochastic gradient descent (SGD) based fine-

tuning in deep learning scenario. This gradient-descent iterative approximation method

can update the model’s weight by back-propagating the gradients that are computed

from a differentiable objective function using randomly selected instances ω∗ = ω−
α∇ωL(f (·;ω),Dtr) [Robbins and Monro, 1951]. Moreover, the SGD-based algorithms

input both the updated parameters and the dataset to produce new parameters for the

deep networks bsgd(fωt−1,Dtr)→ fωt .

Learning to fine-tune (LFT): Unlike the previous meta-learning method for the up-

date rule, which only updates the model’s parameters, we propose learning an update

rule that applies to tune the architecture of the deep network (we discuss the meta-

learning method in Chapter 5). We could consider tuning the network architecture

as updating the parameter for a specific optimiser. The meta learner is defined as:

bLFT (fωt−1,Dtr;Θ)→ f
ωΘ∗

t
. Thus, the proposed meta-learner generates new parame-

ters for the SGD optimisation algorithm. We define the objective function for learning

the meta-learned update rule as follows:

min
Θ

FLTAL(bΘ,D
tr,Dte) = min

Θ

T

∑
t=1

J

∑
j=1

L
[

fbLFT(fωt−1 ,D
tr
j ;Θ),Dte

j

]
(2.14)

In this thesis, we aim to train a dataset and model agnostic architecture update

rules. Similar to the transferable scheme of learning active learning, transferability is

achieved by training on multiple meta training sets Dtr = {Dtr
1 , . . . ,Dtr

J } and test sets

Dte = {Dte
1 , . . . ,Dte

J }.

Chapter 3

Learning Active Learning Online

Most conventional active learning algorithms are hand-engineered based on various

philosophies concerning what constitutes a good criterion. Different criteria perform

well on different datasets, and there is no single criterion that performs best for all

datasets. This single fact has motivated research into ensembles of active learners to

learn what constitutes a good criterion in a given scenario by re-weighting the ensemble

members.

In this chapter, we present a learning approach to select the best active learning

criterion online. Moreover, we demonstrate that the best criterion is not only different

for each dataset but also varies as more points are queried. Given this observation,

the proposed approach re-selects the winning criterion periodically. Unlike previous

techniques that only aim to select one criterion per dataset, the goal of our algorithm is

to estimate a potentially changing winner as the annotation process proceeds. The pri-

mary contribution in this chapter is that our proposed approach addresses the problem

of selecting a dynamically changing best criterion, and also comes with a performance

guarantee. In addition, experiment results demonstrate the effectiveness of our pro-

posed approach in terms of performance vs annotation effort, particularly for datasets

for which the best criterion evolves as the annotation proceeds.

3.1 Introduction

The key barrier to scaling or applying supervised learning in practice is often the cost of

obtaining sufficient annotation. Active Learning (AL) aims to address this by design-

ing query algorithms that effectively predict which points are useful to annotate, thus

enabling the efficient allocation of human annotation effort. There are many differ-

21

22 Chapter 3. Learning Active Learning Online

ent AL algorithms, each with appealing yet completely entirely different motivations

for what constitutes a good question to ask underpinning their design. For example,

uncertainty or margin-based sampling [Lewis and Gale, 1994; Tong and Koller, 2002]

suggests querying the most uncertain or ambiguous point, that is the closest point to the

decision boundary. Expected error reduction [Roy and McCallum, 2001; Hospedales

et al., 2012] queries points that the current model predicts will reduce its future error.

Another typical approach is to label the most representative samples [Cohn et al., 1995;

Chattopadhyay et al., 2012; Yu et al., 2006] to ensure the major clusters within the

dataset are correctly estimated. Besides these approaches, query-by-committee active

learning queries points based on the disagreement between a committee of classifiers

[Seung et al., 1992; Abe and Mamitsuka, 1998; Loy et al., 2012]. More recent studies

have investigated hybrid criteria that balance multiple motivations [Huang et al., 2010;

Wang and Ye, 2015; Wang et al., 2017].

Although these are all good ideas, there are situations where each is ineffective. For

example, if the classes are heavily overlapped in an area of feature-space, uncertainty

sampling will tie up querying points in an impossible to solve region. Moreover, if the

current model is poor, expected error reduction cannot accurately estimate its own fu-

ture error. If the main data clusters are already well classified, representative sampling

approaches may not fine-tune them. These thought experiments are reflected empiri-

cally. The best algorithm for pool-based AL, in practice, varies both across datasets

and also with the progress of learning within a given dataset [Baram et al., 2004; Hsu

and Lin, 2015]. This observation has motivated research into both learning dataset

and time-specific weightings for an AL algorithm ensemble. [Donmez et al., 2007;

Hospedales et al., 2013] has developed a heuristic approach for switching AL algo-

rithms that are typically good at early- vs late-stage learning. The time-specific weight-

ing means that the preference of the assembled active learning criteria will vary as the

number of annotations increases. However, these time-specific weighting schemes are

still heuristically designed, which will not be always the most appropriate schemes

for the application in the real world. In contrast, some other researchers have devel-

oped methods for the rapid online meta learning of a dataset-specific weighting for

algorithms within an AL-ensemble [Baram et al., 2004; Hsu and Lin, 2015].

The key insights of the Combination of Active Learning Online (COMB) [Baram

et al., 2004] and Active Learning by Learning (ALBL) [Hsu and Lin, 2015] algo-

rithms is to formalise the query criteria selection task as a multi-armed bandit (MAB)

problem. MAB problems have been well studied and many powerful algorithms with

3.1. Introduction 23

optimality guarantees exist. For example, if each query criterion in the ensemble is

considered to be a bandit arm, and the learning improvement achieved after execut-

ing a criterion is considered to be the arms reward, then MAB algorithms, such as

EXP3 (Exponential-weight algorithm for Exploration and Exploitation) [Auer et al.,

2002b], can be applied to quickly learn the efficacy of the arms (AL criteria), as this is

guaranteed to achieve a near optimal overall reward (learning improvement). A vari-

ant of this is to consider data-points as arms, and AL criteria as experts that suggest

which arms are promising. Subsequently, MAB with expert advice algorithms, such as

EXP4.P (Exponential-weight algorithm for Exploration and Exploitation using Expert

advice with high probability regret bound) [Beygelzimer et al., 2011], optimise the

exploration and exploitation of experts, and achieve provably near optimal reward.

The fundamental limitation of existing MAB-based approaches to AL is that their

underlying MAB algorithms do not take into account the temporal dynamics of ac-

tive learning: different criteria are effective at different learning stages [Donmez et al.,

2007; Hospedales et al., 2013]. We identify this issue on various AL algorithms such

as uncertainty sampling (US), representative sampling (RS), density sampling (DE),

random sampling (RAND) and the proposed dynamic ensemble active learning algo-

rithm (DEAL). Following the queried decision made by a particular AL algorithm, we

pre-compute the accuracy increment of all mentioned heuristic algorithms at each time

step. Then, we quantify the winning proportion and relative accuracy increments for

a fixed time interval with window size ∆T = 10. The time step corresponds to the

number of annotated instance.

In Figure 3.1, the first issue is illustrated that the most effective criterion varies

across the entire time horizon. On fourclass, following a different AL algorithm’s

queried decision, the effectiveness of the AL algorithm could be varied. For example,

following the queried decision of US (1st row) suggest that DE will be useful at first

and RS could be slightly better at a later point. While the queried decision is made by

DE (3rd row), querying some of the US could bring the most beneficial to the AL task.

On ILPD or german, representative (RS) and density (DE) sampling are better at the

crucial early stages, before uncertainty becomes better.

A second issue is that the scale of an accuracy-based reward decreases dramatically

over time (Figure 3.2). Because of this stationary bandit learners are unduly biased by

the high reward gained from an initial observation and fail to adapt later. For example,

in ILDP, a stationary learner may fail to switch from DE to US, because later rewards

in favour of US are small in scale compared to the initial reward in favour of DE.

24 Chapter 3. Learning Active Learning Online

U
S

5 10 15 20

Time Interval in AL Task

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n
 o

f
W

in
s

US

RS

DE

RAND

5 10 15 20

Time Interval in AL Task

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n
 o

f
W

in
s

US

RS

DE

RAND

5 10 15 20

Time Interval in AL Task

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n
 o

f
W

in
s

US

RS

DE

RAND

R
S

5 10 15 20

Time Interval in AL Task

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n
 o

f
W

in
s

US

RS

DE

RAND

5 10 15 20

Time Interval in AL Task

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n
 o

f
W

in
s

US

RS

DE

RAND

5 10 15 20

Time Interval in AL Task

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n
 o

f
W

in
s

US

RS

DE

RAND

D
E

5 10 15 20

Time Interval in AL Task

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n
 o

f
W

in
s

US

RS

DE

RAND

5 10 15 20

Time Interval in AL Task

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n
 o

f
W

in
s

US

RS

DE

RAND

5 10 15 20

Time Interval in AL Task

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n
 o

f
W

in
s

US

RS

DE

RAND

R
A

N
D

5 10 15 20

Time Interval in AL Task

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n
 o

f
W

in
s

US

RS

DE

RAND

5 10 15 20

Time Interval in AL Task

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n
 o

f
W

in
s

US

RS

DE

RAND

5 10 15 20

Time Interval in AL Task

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n
 o

f
W

in
s

US

RS

DE

RAND

D
E

A
L

5 10 15 20

Time Interval in AL Task

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n
 o

f
W

in
s

US

RS

DE

RAND

(a) fourclass

5 10 15 20

Time Interval in AL Task

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n
 o

f
W

in
s

US

RS

DE

RAND

(b) german

5 10 15 20

Time Interval in AL Task

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n
 o

f
W

in
s

US

RS

DE

RAND

(c) ILPD

Figure 3.1: Examples of non-stationary AL in UCI datasets “fourclass”, “german”,

“ILPD” using five algorithms/criteria: US, RS, DE, RAND, and DEAL. Proportion of

times each criterion generates the largest increase in accuracy. Rows: The five ac-

tor algorithms (US, RS, DE, Rand, DEAL) used to collect the trajectories for the rollout.

Bars: The effect of querying each criteria at the given iteration, given the the rollout

generated by the actor algorithm on the left.

3.1. Introduction 25

U
S

5 10 15 20

Time Interval in AL Task

0

0.2

0.4

0.6

0.8

R
e
la

ti
v
e
 A

c
c
u
ra

c
y
 I
n
c
re

m
e
n
t

US

RS

DE

RAND

5 10 15 20

Time Interval in AL Task

0

0.5

1

1.5

2

R
e
la

ti
v
e
 A

c
c
u
ra

c
y
 I
n
c
re

m
e
n
t

US

RS

DE

RAND

5 10 15 20

Time Interval in AL Task

0

0.5

1

R
e
la

ti
v
e
 A

c
c
u
ra

c
y
 I
n
c
re

m
e
n
t

US

RS

DE

RAND

R
S

5 10 15 20

Time Interval in AL Task

0

0.5

1

R
e
la

ti
v
e
 A

c
c
u
ra

c
y
 I
n
c
re

m
e
n
t

US

RS

DE

RAND

5 10 15 20

Time Interval in AL Task

0

0.5

1

1.5

R
e
la

ti
v
e
 A

c
c
u
ra

c
y
 I
n
c
re

m
e
n
t

US

RS

DE

RAND

5 10 15 20

Time Interval in AL Task

0

0.5

1

1.5

R
e
la

ti
v
e
 A

c
c
u
ra

c
y
 I
n
c
re

m
e
n
t

US

RS

DE

RAND

D
E

5 10 15 20

Time Interval in AL Task

0

0.2

0.4

0.6

R
e
la

ti
v
e
 A

c
c
u
ra

c
y
 I
n
c
re

m
e
n
t

US

RS

DE

RAND

5 10 15 20

Time Interval in AL Task

0

0.2

0.4

0.6

0.8

R
e
la

ti
v
e
 A

c
c
u
ra

c
y
 I
n
c
re

m
e
n
t

US

RS

DE

RAND

5 10 15 20

Time Interval in AL Task

0

0.5

1

R
e
la

ti
v
e
 A

c
c
u
ra

c
y
 I
n
c
re

m
e
n
t

US

RS

DE

RAND

R
A

N
D

5 10 15 20

Time Interval in AL Task

0

0.2

0.4

0.6

0.8

1

R
e
la

ti
v
e
 A

c
c
u
ra

c
y
 I
n
c
re

m
e
n
t

US

RS

DE

RAND

5 10 15 20

Time Interval in AL Task

0

0.5

1

1.5

2

R
e
la

ti
v
e
 A

c
c
u
ra

c
y
 I
n
c
re

m
e
n
t

US

RS

DE

RAND

5 10 15 20

Time Interval in AL Task

0

0.5

1

1.5

R
e
la

ti
v
e
 A

c
c
u
ra

c
y
 I
n
c
re

m
e
n
t

US

RS

DE

RAND

D
E

A
L

5 10 15 20

Time Interval in AL Task

0

0.2

0.4

0.6

0.8

R
e
la

ti
v
e
 A

c
c
u
ra

c
y
 I
n
c
re

m
e
n
t

US

RS

DE

RAND

(a) fourclass

5 10 15 20

Time Interval in AL Task

0

0.5

1

R
e
la

ti
v
e
 A

c
c
u
ra

c
y
 I
n
c
re

m
e
n
t

US

RS

DE

RAND

(b) german

5 10 15 20

Time Interval in AL Task

0

0.5

1

R
e
la

ti
v
e
 A

c
c
u
ra

c
y
 I
n
c
re

m
e
n
t

US

RS

DE

RAND

(c) ILPD

Figure 3.2: Examples of non-stationary AL in UCI datasets “fourclass”, “german”,

“ILPD” using five algorithms/criteria: US, RS, DE, RAND, and DEAL. In the relative

part all increments are re-scaled by subtracting the minimum increment of accuracy

over all criteria in each bin. Rows: The five actor algorithms (US, RS, DE, Rand, DEAL)

used to collect the trajectories for the rollout. Bars: The effect of querying each criteria

at the given iteration, given the the rollout generated by the actor algorithm on the left.

26 Chapter 3. Learning Active Learning Online

Environment Bandit Learner
Action

Reward

Figure 3.3: The illustration of bandit learning

Therefore, there are non-stationary aspects both in reward scale and in reward dis-

tribution per-arm (MAB perspective) or per-expert (MAB with expert advice perspec-

tive). Thus, the MAB problem is formally non-stationary, violating a fundamental as-

sumption required that is necessary to guarantee existing MAB algorithms’ optimality

bounds .

Here, we develop a performance-guaranteed stochastic MAB with expert advice1

algorithm in a non-stationary environment. Applying this to AL means that, like [Hsu

and Lin, 2015], if there is a single best (but a priori unknown) AL algorithm for a

dataset, we are able to quickly discover it, and thus approach the performance of an

oracle that knows the best algorithm for each dataset. More importantly, however,

when different algorithms’ efficacies vary over time within a given dataset, we can

adapt and approach the performance of an oracle that knows the best AL algorithm at

each iteration.

3.2 Related Work

Multi-Armed Bandit: In multi-armed bandit (MAB) problems, a player pulls a lever

from a set K = {1, . . . ,K} of slot machines in a sequence of time steps T = {1, . . . ,T}
to maximise her payoff. During the game, she only observes the reward rk(t)∈ [0,1] of

the specific arm pulled k at time step t, where the reward is unknown distribution. The

aim of the player is to maximise their return, which is the sum of the rewards over the

sequence of pulls. This requires a trade-off between exploration (collect information

to estimate the arm with the highest return) and exploitation (focus on the arm with the

highest estimated return). As illustrated in the Figure 3.3, the bandit learner interacts

with the environment by emitting the actions and receiving a random reward, where

environment is the MAB problem. Training a bandit learner to solve a MAB problem

is then formalised as minimising the regret between the actions chosen by the player’s

1We use terminology from [Auer et al., 2002b]. It also has other names, including ‘contextual bandit’
[Beygelzimer et al., 2011; Langford and Zhang, 2008], ‘partial-label problem’ [Kakade et al., 2008], and
‘associative bandit problem’ [Strehl et al., 2006].

3.2. Related Work 27

strategy ak ∼ π, and the best arm where policy π is the probability for taking action ak.

This regret is to measure the learning speed of bandit learner.

For stochastic MAB, the reward of each arm is sampled from an unknown distri-

bution. Let µt denote the expectation of the reward distribution of arm k. The goal is

then to minimise the regret which is defined as:

T max
k

µk−E(
T

∑
t=1

rπ
t). (3.1)

Algorithms such as upper confidence bound (UCB)1 [Auer et al., 2002a] can be shown

to have near minimal possible regret. However, the stochastic MAB action is com-

pletely determined by a fixed distribution of rewards. This may be an invalid assump-

tion in real world situations where the reward distribution can evolve over time.

A later more general variant is the Adversarial (Non-stochastic) MAB, in which

the rewards can be set by an adversary. This adversarial MAB relaxes the stationary

reward distribution assumption. The exponential-weight algorithm for exploration and

exploitation (EXP3) algorithm [Auer et al., 2002b] minimises, for any finite time hori-

zon T , the “static regret” between the player’s reward and the best arm in retrospect:

max
k

T

∑
t=1

rk
t −E(

T

∑
t=1

rπ
t). (3.2)

where the term ’static’ means there is only one best arm maxk ∑
T
t=1 rk

t in the entire time

horizon.

Contextual Multi-armed Bandit: In many practical problems, some contextual in-

formation is available that provides a cue about the likely reward of an arm at a given

time. This can be addressed with the contextual multi-armed bandit formalisation

where at each time step t, a context is observed to help to describe arms. The goal

of contextual bandits is to build a relationship between available context information

hhht ∈Rd and the reward function ra∗t (t)→R over all arms. For example, linear Upper

Confidence Bound (LinUCB) [Chu et al., 2011] makes the linear realizability assump-

tion that there exists an unknown weight vector θθθ
∗ ∈ Rd with ||θ∗|| ≤ 1 so that regret

is minimised, where ra∗t (t) = θθθ
∗>hhht and rat (t) = θθθ

>hhht .

T

∑
t=1

ra∗t (t)−
T

∑
t=1

rat (t) (3.3)

Applying such context information can improve the efficiency of solving the trade-

off between exploration and exploitation. Another kind of contextual information is

28 Chapter 3. Learning Active Learning Online

expert information about the likely efficacy of each arm. Expert information about

the likely efficacy of each arm is often available [Auer et al., 2002b] thus introduced

an exponential-weight algorithm for exploration and exploitation with expert advice

algorithm (EXP4) that exploits N experts giving advice vectors (probabilities ξξξ
n
(t) ∈

[0,1]K over levers) to the learner at each time. In contrast to MAB without expert

advice, the goal is now to identify the best expert rather than the best arm. In this

setting the regret to minimise is the difference between the return of the best expert in

retrospect and the player:

max
n

T

∑
t=1

yn
t −E(

T

∑
t=1

yπ
t) (3.4)

where yn
t =∑

K
k=1 ξn

k(t)×rk(t) is the expected reward of an expert and yπ
t is the expected

reward of our policy.

3.2.1 Stationary Bandit Learning for Active Learning

MAB algorithms such as those described in the previous section provide a convenient

formalisation for estimating the relative efficacy of different active learning criteria on

a given dataset. For active learning using a MAB with expert advice algorithm, the

N experts correspond to our ensemble of active learning criteria and the K arms are

available points in the pool. Each expert (criterion) n provides a probability vector

encoding preference ξξξ
n
(t) over arms (instances). Active learners based on MAB with

expert advice aim to learn the best criterion for a specific dataset. In COMB [Baram

et al., 2004], the authors propose to use MAB with expert advice in active learning and

heuristically designed the classification entropy maximization (CEM) score as the re-

ward of the EXP4 bandit algorithm [Auer et al., 2002b]. A more recent paper [Hsu and

Lin, 2015] (ALBL) proposed to replace the CEM reward with an unbiased estimation

of test accuracy Important Weighted Accuracy (IWA) and used an upgraded bandit al-

gorithm EXP4.P [Beygelzimer et al., 2011], which improves the earlier EXP4 method.

Similarly, another recent paper [Chu and Lin, 2016] applied linear upper confidence

bound contextual bandit algorithm (LinUCB) to train an ensemble and transferred the

knowledge to other datasets. All of these algorithms enable the selection of a suitable

active learning criteria for a given dataset. Our contribution is also to perform AL in

a dataset-specific way by optimally tuning the exploration and exploitation of an en-

semble of AL algorithms; but more importantly to do so dynamically, thus allowing

3.2. Related Work 29

the optimal tuning to vary as learning progresses. Unlike [Baram et al., 2004; Hsu and

Lin, 2015; Chu and Lin, 2016] we are able to deal with the non-stationary nature of this

process. And unlike the heuristics in [Donmez et al., 2007; Hospedales et al., 2013],

we have a theoretical guarantees, and can work with more than two criteria.

3.2.2 Non-stationary Property of Bandit learning and Active Learn-

ing

Demonstration of Non-stationarity: Stationary bandits learners assume that the

true best arm holds for the entire time horizon. However, in practice the actual sit-

uation is that the arm that provides the best reward at the beginning can provide a

sub-optimal reward later on (and vice-versa). Under this non-stationary reward dis-

tribution, estimating a single best-action is sub-optimal. In contrast, in the stochastic

MAB problem, the non-stationary assumption is that the expected reward of arm µk

would change over time.

We next describe a preliminary experiment to demonstrate empirically the exis-

tence of non-stationary reward distributions for a MAB formalisation of AL. Following

the learning trajectory of our method, we use an oracle to score all the available query

points at each iteration (i.e., hypothetically label each point, update the classifier, and

check the test accuracy). Using the actual test accuracy as the reward, we can obtain

the true expected reward of the nth expert yn
t = ξξξ

n
(t)rrr(t) at each time step t. Figure 3.2

summarises the resulting average reward obtained in every 10 iterations of AL. Based

on this, we can further compute the proportion of times that each criterion would ob-

tain the highest reward. It can be seen that the MAB problem is non-stationary as the

rewards vary systematically, and there is not a single criterion (expert) which obtains

the highest proportion of wins throughout learning. Additionally, the ideal combina-

tion of criteria varies across datasets. For example, as illustrated in Figure 3.1, density

and uncertainty sampling show better complementary in ILPD, while representative

and uncertainty sampling are more complementary in german dataset.

Existing MAB ensembles are not robust to non-stationarity: The non-stationary

property in the MAB formalisation of AL also highlights the key weakness of COMB

and ALBL: they use EXP4/EXP4.P [Auer et al., 2002b; Beygelzimer et al., 2011]

expert advice bandit algorithms which provide guarantees against an inappropriate

(static) regret that is only relevant in a stationary problem. In a non-stationary prob-

lem, it is clear that even an algorithm that perfectly estimates the best single expert

30 Chapter 3. Learning Active Learning Online

(optimal w.r.t static oracle Equation 3.4) can be arbitrarily worse than one which can

choose the best expert at each step (optimal w.r.t dynamic oracle). Here, we develop

an non-stationary stochastic MAB algorithm REXP4 (Restarting Exponential-weight

algorithm for Exploration and Exploitation using Expert advice) with bounds against

a stricter dynamic oracle notion of optimality more suited for (non-stationary) AL.

Prior attempts at non-stationary active learners: A few previous active learn-

ing studies also observed that different algorithms are effective at different stages of

learning and proposed heuristics for switching two base query criteria (e.g., density

sampling at an early stage, and uncertainty sampling later on) [Donmez et al., 2007;

Hospedales et al., 2013]. But these only adapt 2 criteria (density and uncertainty) un-

like MAB ensembles which learn to combine many criteria, and their heuristics do not

provide a principled and optimal way to learn when to switch.

Prior attempts at non-stationary MABs: Some previous studies have extended

MAB without expert advice learning to the non-stationary setting [Garivier and Moulines,

2008; Besbes et al., 2014] and provided regret bounds to guarantee the algorithms’ per-

formance. However bandits with expert advice are preferable because they can achieve

tighter learning bounds [Auer et al., 2002b; Hsu and Lin, 2015] and they do not treat

each criterion as a black box, so that one observation can be informative about many

arms. Consider an AL situation where two criteria prefer the same instance. In the

MAB interpretation (criteria=arms), after observing a reward, you only learn about

the criterion/arm chosen at that iteration. In the MAB with expert advice interpreta-

tion (criteria=experts), the observed reward generates updates about the efficacy of all

criteria that expressed opinions about the point.

Those few MABs extended to the non-stationary setting have other stronger as-

sumptions. For example, the discounted/sliding-window UCB algorithm [Garivier and

Moulines, 2008] assumes the nature of the non-stationarity is that the reward distribu-

tion is piece-wise and the number of changes is known. Similarly [Yu and Mannor,

2009] makes the easier piecewise assumption, and also that the retrospective rewards

for un-pulled arms are available – but they are not in active learning. In [Wei et al.,

2016], the authors proposed to measure the total statistical variance of the consecu-

tive distributions at each time interval. Their result provides a big picture of the regret

landscape for full information and bandit settings. Their proposed method addresses

non-stationary environments but only for the regular MAB problem. Despite the use

of the term expert in the title, it does not address the Expert-advice variant of the MAB

3.3. Non-stationary Bandit Learning with Expert Advice 31

problem relevant to us. It addresses arms rather than experts over arms.

We propose a non-stationary MAB with expert advice algorithm that has perfor-

mance guarantees, and validate its practical application to active learning.

3.3 Non-stationary Bandit Learning with Expert Advice

We first introduce our new non-stationary MAB algorithm to exploit expert informa-

tion for tracking the best bandit arm when the unknown reward distribution per arm

evolves over time. To formalise the problem, we assume the expected reward yn
t of

each expert n can change at any time step t. The total variation of the expected reward

over all T steps is

T−1

∑
t=1

sup
n
|yn

t − yn
t+1| (3.5)

Following [Besbes et al., 2015, 2014], we assume this total variation in expected re-

ward is bounded by a variation budget VT . The variation budget captures our assumed

constraints on the non-stationary environment. It allows a wide variety of reward

changes – from continuous drift to discrete jumps – yet provides sufficient constraint

to permit a bandit algorithm to learn in a non-stationary environment. Temporal un-

certainty set V is defined as the set of reward vector sequences that are subject to the

variation budget VT over all T steps.

V =

{
y ∈ [0,1]N×K :

T−1

∑
t=1

sup
n
|yn

t − yn
t+1| ≤VT

}

To bound the performance of a bandit learner in a non-stationary environment, we

work with the regret between the learner and a dynamic oracle. The regret is defined

as the worst-case difference between the expected policy return and the return of using

the best expert at each time t.

Definition 1. Dynamic Regret for Multi-Armed Bandit with Expert Advice

Rπ(V ,T) = sup
y∈V
{

T

∑
t=1

y∗t −Eπ[
T

∑
t=1

yπ
t]} (3.6)

where y∗t = maxn yn
t is the best possible expected reward among all experts at time

t. Our regret is against this dynamic oracle, in contrast to prior MABs’ static oracle

(Equation 3.4).

32 Chapter 3. Learning Active Learning Online

Our non-stationary MAB with expert advice algorithm REXP4 minimises the dy-

namic regret in Equation 3.6. As shown in Algorithm 2, it trades off between the need

to remember and forget by breaking the task into batches and applying EXP4 [Auer

et al., 2002b] on each batch. As the reward distribution changes, it adapts to the change

as by re-estimating each expert’s reward distribution at each batch. We show the worst

case bound on the regret between this REXP4 procedure and the dynamic oracle.

3.3.1 Regret Bound for REXP4

The regret bound for REXP4 is illustrated in the following theorem. The theorem is

proved by following the proof structure of [Besbes et al., 2014] and replacing the term

µ in [Besbes et al., 2014] with the expected reward term y in our paper.

Theorem 1. Let π be the REXP4 policy with a batch size ∆T = d(A logN)1/3(T/VT)
2/3e

and γ = min{1,
√

A logN
(e−1)∆T

}. Then, there is some constant C such that for every T ≥
1,K ≥ 2,N ≥ 2, and VT ∈ [A−1,A−1T]

Rπ(V ,T)≤C(A logN ·VT)
1/3T 2/3 (3.7)

where A = min{N,K} indicates the smaller number of experts or arms.

Proof. We follow the proof structure of [Besbes et al., 2014] as follows. First, we

break the total trials T into a sequence of epochs of size ∆T each. We then decompose

the regret bounds into two parts: (a) The performance gap between the dynamic oracle

and the static oracle, (b) The performance gap between the static oracle and EXP4,

which is the regret bound of EXP4. Then, we analyse the bounded properties of (a)(b)

for each epoch respectively. Finally, we sum over epochs to establish the regret of

REXP4 relative to the dynamic oracle.

Step 1 (Decomposition)

We break T into a sequence of batches T1, . . . ,TJ of size ∆T each (except possibly

TJ). Let j ∈ {1, . . . ,J} be the index of epochs, n ∈ {1, . . . ,N} be the index of experts.

We decompose the regret in batch j as follows

∑
t∈Tj

y∗t −Eπ[yπ
t]

=

{
∑

t∈Tj

y∗t −max
n ∑

t∈Tj

yn
t

}
︸ ︷︷ ︸

Term 1

+

{
max

n ∑
t∈Tj

yn
t −Eπ[yπ

t]

}
︸ ︷︷ ︸

Term 2

3.3. Non-stationary Bandit Learning with Expert Advice 33

Step 2: (Bound Term 1 and Term 2 respectively)

(1) Based on EXP4 [Auer et al., 2002b], Term 2 can be bounded as follows{
max

n ∑
t∈Tj

yn
t −Eπ[yπ

t]

}
≤ 2
√
(e−1)Gmax(∆T)A logN

≤ 2
√

(e−1)∆T A logN

(3.8)

where Gmax(∆T) indicates the maximum value of ∑t∈Tj yi
t and could be bounded by ∆T

because 0≤ yi
t ≤ 1.

(2) Term 1 can be bounded as follows

∑
t∈Tj

y∗t −max
n ∑

t∈Tj

yn
t = ∑

t∈Tj

(y∗t − yn0
t)

≤ ∆T max
t
{y∗t − yn0

t }
(a)
≤ ∆T 2Vj

(3.9)

where n0 = argmaxn ∑t∈Tj yn
t and inequality (a) holds because otherwise there exits a

time to ∈ Tj and

y∗t0− yn0
t0 > 2Vj

which indicates

y∗t0−Vj > yn0
t0 +Vj (3.10)

Let n1 = argmaxn yn
t0 . In such case, for all t ∈ Tj, we have

yn1
t

(a)
≥ yn1

t0 −Vj
(b)
> yn0

t0 +Vj ≥ yn0
t

where inequality (a) is based on the definition of Vj and inequality (b) is based on

(3.10). Sum the above inequality with respect to t, ∑t∈Tj yn1
t > ∑t∈Tj yn0

t contradicts the

optimality of n0.

Step 3: (Sum over epochs)

Rπ(V,T) =
T

∑
t=1

y∗t −Eπ[
T

∑
t=1

yπ
t]

(a)
≤

J

∑
j=1

(2
√

e−1
√

∆T A logN +2Vj∆T)

(b)
≤
(

T
∆T

+1
)

2
√

e−1
√

∆T A logN +2∆TVT

where inequality (a) is due to the boundness of Term 1 and Term 2; inequality (b) is due

to the definition of VT . Setting ∆T = d(A logN)1/3(T/VT)
2/3e, we obtain the bound

Rπ(V,T)
(a)
≤
(
(2+2

√
2)
√

e−1+4
)
(A logN ·VT)

1
3 (T)

2
3 (3.11)

34 Chapter 3. Learning Active Learning Online

Algorithm 1 Pseudocode of algorithm EXP4

Inputs: γ ∈ (0,1] and wwwn = 111
1. get advice vectors ξξξ

n
t

2. Set Wt = ∑
N
n=1 wn(t) and for k = 1, . . . ,K set

pk(t) = (1− γ)
N

∑
i=n

wn(t)ξn
k(t)

Wt
+

γ

K

3. Draw arm kt randomly according to the probability p1(t), . . . , pK(t)

4. Receive reward x jt (t) ∈ [0,1]

5. For k = 1, . . . ,K set

x̂k(t) =

{
xk(t)/pk(t) if k = kt

0 otherwise

6. For n = 1, . . . ,N set

ŷt(t) = ξξξ
n
(t)T x̂xx(t)

wn(t +1) = wn(t)exp(γŷi(t)/K)

where (a) follows from T ≥ K ≥ 2,T ≥ N ≥ 2, and VT ∈ [A−1,A−1T]. This concludes

the proof.

The result is an upper bound on the regret between our REXP4 policy and the

dynamic oracle. As A = min{N,K}, it is favourable if either the number of experts

N or arms K is small. This also means it is relatively robust to many arms (as in

AL, where arms=data points). If VT is sub-linear in T (total variation in reward grows

slower than timesteps), then performance converges to that of the oracle.

3.4 Dynamic Ensemble Active Learning

Based on our REXP4 algorithm for MAB with expert advice, we present DEAL-

REXP4 (Dynamic Ensemble Active Learning) for active learning based on REXP4.

Our dynamic ensemble learner will update both base learner ft and active criteria

weights www(t) iteratively. More specifically, each ensemble criterion will predict scores

sssn
t for all unlabelled instances. We use exponential ranking normalisation−exp(−α rank)

to avoid the issue of different criterion scales, and apply the Gibbs measure exp(−βsssn
t)

∑k exp(−βsn
t,k)

where the parameters α,β control the sharpness of the distribution. The rank denotes

3.4. Dynamic Ensemble Active Learning 35

Algorithm 2 Pseudocode of algorithm REXP4

Inputs: γ ∈ (0,1] and an epoch size ∆T

1. Set Epoch index j = 1

2. Repeat while j ≤ dT/∆T e
• Set τ = (j−1)∆T

• Initialisation: for any expert n set weight wn(t) = 1

• Repeat for t = τ+ 1, . . . ,min{T,τ+∆T}, Call EXP4 Algorithm[Auer

et al., 2002b]

• Set j = j+1 and return to the beginning of step 2

the ranking position of the instance’s score where the ranking order is determined

by the criterion strategy’s ordering. For example, the entropy criterion prefers points

with maximum entropy, so the maximum entropy point has rank 1. Similarly, the

minimum margin criterion prefers points with low distance to margin, so the min-

imum distance point has rank 1. Based on the current suggestions from the crite-

ria members, the active learning ensemble will select an instance for label querying

pk(t) ∼ bLALO(L ,U, f ;www(t)). Then, the base learner ft+1 will be updated with the

new labelled data and the ensemble parameter www(t + 1) will be updated successively

based on the performance improvement of the updated base learner. To learn the non-

stationary reward distribution, we use our proposed REXP4 algorithm to learn the

weights of active learning criteria in an online adaptive way by introducing the restart

scheme. Giving the current within-batch index τ∈ {1, · · · ,∆T}, the restart scheme will

be activated when τ > ∆T , otherwise updates follow the EXP4 rule. The details are

described in Algorithm 3 with an illustration in Figure 3.4.

In DEAL-REXP4 we set the reward as the resulting accuracy after a classifier up-

date. Thus in the context of active learning, the bound given in Equation. 3.7 means

that we know that the total area under the reward curve obtained by DEAL-REXP4 is

within a bound of the best case scenario that would occur only if we had known the

best criterion to use at each iteration. Moreover, if the variation budget VT grows sub-

linearly with T , DEAL-REXP4 converges towards this best-expert-per-iteration upper

bound scenario.

36 Chapter 3. Learning Active Learning Online

Algorithm 3 DEAL: Dynamic Ensemble Active Learning via REXP4

Inputs: γ∈ (0,1], initial weight www(1) = 1, ∆T = 10, τ= 1,labelled set L0, unlabelled

set U0, initial classifier f0

for t = 1→ T do
1. Get scores of instance sssn

t from criteria

2. Normalised the score vector sssn
t =−exp(−α rrraaannnkkk)

3. Obtain the advise vector with ξξξ
n
(t) = exp(−βsssn

t)
∑k exp(−βsn

t,k)

4. Set Wt = ∑
N
n=1 wn(t) and for k = 1, . . . ,K set

pk(t) = (1− γ)
N

∑
i=n

wn(t)ξn
k(t)

Wt
+

γ

K

5. Query the label of instance xxxkt randomly from Ut according to probability

p1(t), . . . , pK(t)

6. Move the instance xxxkt from Ut to Lt

7. Retrain the classifier ft and receive reward rk
t ∈ [0,1]

8. For k = 1, . . . ,K set

r̂k(t) =

{
rk(t)/pk(t) if k = kt

0 otherwise

9. For n = 1, . . . ,N set

ŷn
t = ξξξ

n
(t)T r̂rr(t)

wn(t +1) = wn(t)exp(γŷn
t /K)

10. τ = τ+1

if τ > ∆T then
Reset τ = 1 and www(t +1) = 111

end if
end for

3.4. Dynamic Ensemble Active Learning 37

XUt

N Experts(Criteria)

E1 · · · EN

Normalisation

K
Arms

(Points)

ξ11

...

ξ1K

· · ·

. . .

· · ·

ξN1

...

ξNK

Active Learner

Update
Lt+1,Ut+1, ft+1

Pull a arm
(Query a point)

Get the
reward

τ > ∆T

Y

N

Update w(t+ 1)
τ = τ + 1

Reset w(t+ 1) = 1
τ = 1

Figure 3.4: Illustration of DEAL system. Light blue: Taking the unlabelled set XXXUt

as the input, each expert will output a score that is normalised before input to the

DEAL active learner. ξN
K is the Nth criterion score of Kth instance. Orange: the active

learner to make a decision. Green: updating the labelled set, unlabelled set, and the

classifier. Light yellow: The restart detection scheme. Ensemble weights are then

updated differently between (light red) or at (dark red) restarts.

38 Chapter 3. Learning Active Learning Online

3.4.1 Discussion of Static and Dynamic Active Learning

We divide active learning algorithms into static/dynamic based on the stationary/non-

stationary assumption on the importance of each criteria over different time periods.

Static Active Learning: Single criterion algorithms are all static, since they solve

active learning with only one criterion. Regarding active learning algorithms with

multiple motivations: if they are formalised as a single fixed mixture of criteria, they

are also static. Since the coefficients of different motivations are fixed over all time

steps, they assume that a single weighted combination is suitable at any learning stage.

For example, Query Informative and Representative Examples (QUIRE) [Huang et al.,

2010], Learning Active Learning (LAL) [Konyushkova et al., 2017b], and Discrimina-

tive and Representative Queries for Batch Mode Active Learning (BMDR) [Wang and

Ye, 2015] are static active algorithms with multiple motivations.

Previously proposed ensemble algorithms ALBL [Hsu and Lin, 2015], COMB

[Baram et al., 2004], and Linear Strategy Aggregation (LSA) [Chu and Lin, 2016] are

also static in the sense that, although the weight proportion of their ensemble mem-

bers changes as data is gathered, their underlying bandit learner is a stationary one,

assuming there is only one best expert or best linear combination over all time.

Dynamic Active Learning: In our dynamic active learning research question, we

avoid a stationarity assumption on criteria importance over time. A non-stationary

algorithm should adapt its weighting proportions over time in response to learning

progress. Prior attempts proposed heuristics for classifier switching or reweighting

[Donmez et al., 2007; Hospedales et al., 2013] between density and uncertainty sam-

pling. Our DEAL-REXP4 improves on these in that it can use an arbitrary number

of criteria of any type beyond 2 specified criteria; and in contrast to prior heuristics,

it contains a principled underlying learner with theoretical guarantees. We provide a

summary of related prior active learning algorithms in Table 3.1, where the generality

and strong notion of regret in DEAL-REXP4 is clear.

3.5 Synthesis Experiment

Firstly, we investigate the effectiveness of REXP4 on the synthetic bandit learning

problem. We synthesise a two armed bandit problem with two deterministic experts.

Each expert consistently suggests to pick a particular arm over the total time horizon

T = 10000. This is equivalent to the setting of two armed bandit learning problem

3.5. Synthesis Experiment 39

Ta
bl

e
3.

1:
Th

e
su

m
m

ar
y

of
ac

tiv
e

le
ar

ni
ng

al
go

rit
hm

s

Si
ng

le
C

ri
te

ri
on

A
lg

or
ith

m
M

ot
iv

at
io

n
St

at
io

na
ri

ty
Im

po
rt

an
ce

of
C

ri
te

ri
on

E
ns

em
bl

e
M

em
be

rs
Pr

op
er

ty

U
S

[L
ew

is
an

d
G

al
e,

19
94

]

[S
et

tle
s,

20
09

;J
os

hi
et

al
.,

20
09

]
Q

ue
ry

in
g

th
e

le
as

tc
on

fid
en

ce
St

at
io

na
ry

Fi
xe

d
U

S
St

at
ic

R
S

[X
u

et
al

.,
20

03
]

Q
ue

ry
a

cl
us

te
rw

ith
in

M
ar

gi
n

St
at

io
na

ry
Fi

xe
d

R
S

St
at

ic

D
E

[D
on

m
ez

et
al

.,
20

07
]

Q
ue

ry
th

e
m

aj
or

cl
us

te
r

St
at

io
na

ry
Fi

xe
d

D
E

St
at

ic

M
ul

tip
le

C
ri

te
ri

a
A

lg
or

ith
m

s
M

ot
iv

at
io

ns
St

at
io

na
ri

ty
Im

po
rt

an
ce

of
C

ri
te

ri
on

E
ns

em
bl

e
M

em
be

rs
Pr

op
er

ty

Q
U

IR
E

[H
ua

ng
et

al
.,

20
10

]
C

om
bi

ni
ng

in
fo

rm
at

iv
en

es
s

an
d

re
pr

es
en

ta
tiv

en
es

s
St

at
io

na
ry

E
qu

al
ef

fe
ct

Q
U

IR
E

St
at

ic

B
M

D
R

[W
an

g
an

d
Y

e,
20

15
]

C
om

bi
ni

ng
di

sc
ri

m
in

at
iv

e
an

d
re

pr
es

en
ta

tiv
en

es
s

St
at

io
na

ry
E

qu
al

ef
fe

ct
B

M
D

R
St

at
ic

L
A

L
[K

on
yu

sh
ko

va
et

al
.,

20
17

b]
C

om
bi

ni
ng

M
ul

tip
le

m
ot

iv
at

io
ns

St
at

io
na

ry
E

qu
al

ef
fe

ct
A

ny
C

ri
te

ri
a

St
at

ic

D
U

A
L

[D
on

m
ez

et
al

.,
20

07
]

Sw
itc

hi
ng

fr
om

D
E

to
U

S
on

ce
N

on
-s

ta
tio

na
ry

V
ar

yi
ng

U
S,

D
E

D
yn

am
ic

A
L

G
D

[H
os

pe
da

le
s

et
al

.,
20

13
]

Sw
itc

hi
ng

be
tw

ee
n

D
E

to
U

S
N

on
-s

ta
tio

na
ry

V
ar

yi
ng

U
S,

D
E

D
yn

am
ic

B
an

di
tE

ns
em

bl
e

A
lg

or
ith

m
s

A
lg

or
ith

m
B

an
di

t
R

eg
re

t
St

at
io

na
ri

ty
Im

po
rt

an
ce

of
C

ri
te

ri
on

E
ns

em
bl

e
M

em
be

rs
Pr

op
er

ty

C
O

M
B

[B
ar

am
et

al
.,

20
04

]
E

X
P4

[A
ue

re
ta

l.,
20

02
b]

m
ax

n
∑

T t=
1

yn t
−
E
(∑

T t=
1

yπ t
)

St
at

io
na

ry
Si

ng
le

be
st

A
ny

C
ri

te
ri

a
St

at
ic

A
L

B
L

[H
su

an
d

L
in

,2
01

5]
E

X
P4

.P
[B

ey
ge

lz
im

er
et

al
.,

20
11

]
m

ax
n

∑
T t=

1
yn t
−
E
(∑

T t=
1

yπ t
)

St
at

io
na

ry
Si

ng
le

be
st

A
ny

C
ri

te
ri

a
St

at
ic

L
SA

[C
hu

an
d

L
in

,2
01

6]
L

in
U

C
B

[C
hu

et
al

.,
20

11
]

∑
T t=

1
r a
∗ t
(t
)
−

∑
T t=

1
r a

t(
t)

St
at

io
na

ry
Si

ng
le

be
st

co
m

bi
na

tio
n

A
ny

C
ri

te
ri

a
St

at
ic

D
E

A
L

R
E

X
P4

∑
T t=

1
m

ax
n

yn t
−
E
(∑

T t=
1

yπ t
)

N
on

-S
ta

tio
na

ry
D

yn
am

ic
be

st
A

ny
C

ri
te

ri
a

D
yn

am
ic

40 Chapter 3. Learning Active Learning Online

without expert advice. As illustrated in the Figure 3.5, the reward of both arms are

under the sine function with a fixed variation budget. This means that the arm with

maximum reward will periodically switch with a fixed batch size ∆T = 100.

In this experiment, we compare the actual regret of multiple batch size settings

of REXP4 with the proposed theoretical regret bound. We collect the actual regret

for the proposed bandit algorithm with 3 batch size settings: the ground truth batch

size ∆T = 100 and the corresponding batch sizes based on various variation budget

VT = A−1 and VT = A−1T . Here, the batch size based on variation budget is defined

as ∆T = d(A logN)1/3(T/VT)
2/3e. This means that the batch size with VT = A−1 is

an infrequent restart REXP4 and VT = A−1T is the random REXP4 due to the high-

frequency rate of restarting the algorithm. The theoretical regret bound is based on

the Equation 3.7 where the term VT ∈ [A−1,A−1T] could monotonically increase the

numerical value of the bound. Therefore, we refer the bound with VT = A−1 as the

tightest bound and the bound with VT = A−1T as the loosest bound.

According to the Figure 3.5, if the ground truth of batch size ∆T = 100 is pro-

vided, REXP4 is able to learn a strategy to achieve less regret than the tightest and

loosest bound. Besides, the figure shows that actual regret with the batch size based

on VT = A−1 and VT = A−1T are similar but both of them are worse than the tightest

regret. This suggests that the choice of the batch size ∆T has a significant impact on

REXP4 performance. Since the ideal variation budget setting of REXP4 is still the

open question of the non-stationary bandit learning problem, we will empirically set

the fixed batch size for the active learning experiment.

3.6 Active Learning Experiments

To evaluate our algorithm, we use 13 datasets from UCI2 and LibSVM3 [Chang and

Lin, 2011] repositories. These datasets are selected following previous relevant papers

[Chu and Lin, 2016; Hsu and Lin, 2015; Huang et al., 2010; Chattopadhyay et al.,

2012]. We use linear SVM [Fan et al., 2008] as the base learner. If the datasets do not

include a pre-defined training/testing split, we randomly split 60% for training and the

rest for testing. In each trial, we start with 1 randomly labelled point per class. Each

experiment is repeated 200 times and the average testing accuracy is reported.

2https://archive.ics.uci.edu/ml/datasets.html
3https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html

3.6. Active Learning Experiments 41

0 100 200 300

Time step

0

0.2

0.4

0.6

0.8

1

R
e

w
a

rd

arm1

arm2

0 2 4 6 8 10

Time step 10
4

0

1

2

3

4

5

R
e

g
re

t

10
4

T
=100

V
T

=A
-1

V
T

=A
-1

T

Tightest Bound

Loosest Bound

Figure 3.5: The result and reward distribution of the synthesised experiment. Left: the

actual regret of the REXP4 with various setting of the batch ∆T (blue/red/yellow) and the

regret bound according to the equation 3.7. Right: The two arms reward distribution.

Dataset Property A dataset with stationary reward distribution would tend to have a

consistent winner, and vice-versa. Although (non)stationarity is a continuum, we will

describe a dataset as stationary if at least two criteria have a fraction of wins above

threshold 10%.

Criteria Ensemble: The ensemble of base learners includes: US: picking the in-

stances with max-entropy (min margin) instance in binary class datasets [Lewis and

Gale, 1994; Settles, 2009] or minimum Best-versus-Second-Best (BvSB) [Joshi et al.,

2009] in multiclass datasets. RS: clustering the points near the margin [Xu et al., 2003]

then scoring unlabelled points by their distances to the largest centroid. Distance-

Furthest-First (DFF): Focuses on exploration by selecting the furthest unlabeled in-

stance to the nearest labeled instance [Hochbaum and Shmoys, 1985]. We use DFF

[Hochbaum and Shmoys, 1985] to replace the RS in multiclass datasets as originally

RS is designed for binary class datasets. Both are motivated by exploring the datasets,

but DFF does not depend on binary classifiers. Density Estimation (DE): Picking the

instance with maximum density in a GMM with 20 diagonal covariance components

[Donmez et al., 2007]. RAND: Randomly selecting points can be hard to beat on

datasets unsuited to a given criterion. Moreover, including a random expert (for explo-

ration) is necessary to guarantee the performance of the EXP4 subroutine [Auer et al.,

2002b; Beygelzimer et al., 2011].

Competitors: We compare our method to ALBL [Hsu and Lin, 2015], COMB [Baram

et al., 2004] and DUAL [Donmez et al., 2007]. For COMB, we follow their recom-

42 Chapter 3. Learning Active Learning Online

mended settings with CEM reward and β = 100. For the ALBL, we use their settings

and importance-weighted accuracy reward.

For direct comparison, ALBL, COMB and REXP4 use the same ensemble of crite-

ria described above. DUAL is engineered for a specific pair of criteria, so we apply its

original version using Uncertainty Sampling and Density-Weighted Uncertainty Sam-

pling. It is also only defined for binary classification problems unlike the others.

DEAL-REXP4 Settings: For reward, we follow [Hsu and Lin, 2015; Chu and Lin,

2016] in using the IWA for unbiased estimation of test accuracy. To produce prob-

abilistic preferences for points from all AL criteria, we use exponential ranking nor-

malisation and a Gibbs measure with α = 0.1,β = 100. We use batch size ∆T = 10

throughout. The choice ∆T = 10 is based on observing the typical coarse duration of

performance gaps among different criteria. For example, RS wins first 20 iterations in

Figure 3.6(b). The reason for parameterizing in terms of ∆T rather than VT is that it

has intuitive meaning in AL context (batch-size), yet implies a corresponding variation

budget for any given T (Theorem 1).

Characterising Dataset Stationarity: We first investigate each dataset to charac-

terise its (non)stationarity. We use our DEAL trajectory, and use an oracle to measure

the % wins of each criterion at each batch ∆T in terms of performance increase. A

dataset with stationary reward distribution would tend to have a consistent winner, and

vice-versa. Although (non)stationarity is a continuum, we will describe a dataset as

stationary if at least two criteria have a fraction of wins above threshold θ = 10%.

Table 3.2: Characterising datasets as (S) stationary or (NS) non-stationary according

to the win proportion of the criteria.

Dataset Num of Instances Num of Classes Classes Proportion US RS/DFF Density RAND NS/S

austra 690 2 0.55/0.45 0.46 0.13 0.29 0.12 NS

breast 683 2 0.65/0.35 0.88 0.08 0.04 0.00 S

diabetes 768 2 0.65/0.35 0.74 0.11 0.11 0.04 NS

fourclass 862 2 0.65/0.35 0.86 0.00 0.10 0.04 NS

german 1000 2 0.70/0.30 0.52 0.24 0.14 0.10 NS

haberman 306 2 0.74/0.26 0.30 0.20 0.30 0.20 NS

heart 270 2 0.56/0.44 0.45 0.33 0.22 0.00 NS

ILPD 583 2 0.71/0.29 0.35 0.45 0.05 0.15 NS

liver 345 2 0.42/0.57 0.75 0.08 0.00 0.17 NS

monk1 556 2 0.5/0.5 1.00 0.00 0.00 0.00 S

wdbc 569 2 0.63/0.37 0.90 0.10 0.00 0.00 S

wine 178 3 0.33/0.40/0.27 1 0.00 0.00 0.00 S

letter 15500 26 Almost uniform 0.75 0.25 0.00 0.00 NS

3.6. Active Learning Experiments 43

100 200 300

Number of Added Instance

0.5

0.6

0.7

A
c
c
u

ra
c
y

DEAL

US

RS

RAND

(a) fourclass

50 100 150 200

Number of Added Instance

0.55

0.6

0.65

0.7

A
c
c
u

ra
c
y

DEAL

US

RS

RAND

(b) ILPD

100 200 300

Number of Added Instance

0.6

0.65

0.7

0.75

A
c
c
u

ra
c
y

DEAL

US

RS

RAND

(c) german

50 100 150 200

Number of Added Instance

0.9

0.92

0.94

0.96

A
c
c
u
ra

c
y

DEAL

US

RS

RAND

(d) breast

20 40 60

Number of Added Instance

0.8

0.85

0.9

0.95

A
c
c
u
ra

c
y

DEAL

US

RS

RAND

(e) wine

100 200 300

Number of Added Instance

0.3

0.4

0.5

0.6

A
c
c
u

ra
c
y

DEAL

US

RS

RAND

(f) letter

Figure 3.6: Comparison of DEAL-REXP4 versus individual ensemble members.

Tab. 3.2 summarises the datasets, and we can see that there is a mix of stationary

and non-stationary datasets.

3.6.1 Dynamic Ensemble Active Learning vs Conventional Crite-

rion

Examples comparing the performance of DEAL and individual criteria in the ensemble

are shown in Figure 3.6. There is no single criterion that works best for all datasets,

moreover different criteria are effective at different stages of learning. While DEAL

is not best across all datasets and all time-steps (this would require the actual dynamic

oracle upper bound), it performs well overall. This is summarised quantitatively across

all 13 datasets in Table 3.3. Each method’s performance is evaluated by the area under

the learning curve at different proportions of added instances. The results show the

number of wins/ties/losses of DEAL versus the alternative ensemble member of spec-

ified highest rank according to two-sided t-test. This shows for example that DEAL

often ties with the top-ranked ensemble member (30 draws vs 1st rank), is usually at

least as good as the second ranked member (50 wins and 45 ties vs only 35 losses) and

is never the worst (0 losses vs 4th rank).

44 Chapter 3. Learning Active Learning Online

100 200 300

Number of Added Instance

0.6

0.65

0.7

0.75
A

c
c
u

ra
c
y

DEAL

COMB

ALBL

DUAL

(a) fourclass

100 200 300

Number of Added Instance

0.5

0.55

0.6

0.65

0.7

0.75

A
c
c
u

ra
c
y

DEAL

COMB

ALBL

DUAL

(b) german

50 100 150 200

Number of Added Instance

0.92

0.94

0.96

A
c
c
u
ra

c
y

DEAL

COMB

ALBL

DUAL

(c) breast

50 100 150 200

Number of Added Instance

0.55

0.6

0.65

0.7

A
c
c
u

ra
c
y

DEAL

COMB

ALBL

DUAL

(d) ILPD

20 40 60

Number of Added Instance

0.8

0.85

0.9

0.95

A
c
c
u
ra

c
y

DEAL

COMB

ALBL

(e) wine

100 200 300

Number of Added Instance

0.3

0.35

0.4

0.45

0.5

A
c
c
u

ra
c
y

DEAL

COMB

ALBL

(f) letter

Figure 3.7: Comparison of active learning with our DEAL-REXP versus alternative state

of the art bandit algorithms.

Table 3.3: Win/Tie/Loss counts of DEAL-REXP4 versus ensemble members in terms of

AUC at specified learning stage.

Rank 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% Total

1st 0/4/9 0/3/10 0/3/10 0/2/11 0/2/11 0/4/9 0/4/10 0/3/10 0/3/10 0/3/10 0/30/100

2nd 2/6/5 4/5/4 4/6/3 5/4/4 6/3/4 6/3/4 6/3/3 6/4/3 6/4/3 5/6/2 50/45/35

3rd 7/5/1 7/4/2 7/5/1 7/5/1 7/4/2 7/4/2 7/6/0 7/6/0 8/5/0 8/5/0 72/49/9

4th 11/2/0 12/1/0 13/0/0 13/0/0 13/0/0 13/0/0 13/0/0 13/0/0 13/0/0 13/0/0 127/3/0

Total 20/17/15 23/13/16 24/14/14 25/11/16 26/9/17 26/11/15 26/13/13 26/13/13 27/12/13 26/14/12 249/127/144

3.6.2 Dynamic Ensemble Active Learning vs Ensemble Learner

We compare our DEAL-REXP4 with state-of-the-art alternatives to tuning an AL-

ensemble. Sometimes DUAL performs well, but it is highly variable depending on

whether the criterion switch heuristic makes a good choice or not, as seen in Fig-

ure 3.7. Note that DUAL applies to binary classification problems only so it is not

evaluated in Figure 3.7(e,f). Similar to the Table 3.3, we also apply the two-sided t test

to compare the ensemble AL algorithms. Table 3.4 summarises the results across all

datasets in terms of AUC wins/draws/losses of each approach against the alternatives.

DUAL has a lower row-total as it is defined for binary problems only, so not evaluated

on wine and letter datasets. The main observation is that DEAL outperforms the al-

ternatives particularly on non-stationary datasets. On stationary datasets we are only

3.7. Summary 45

Table 3.4: Win/Tie/Loss counts of DEAL-REXP4 and state of the art alternatives at

specified learning stages.

Algorithm 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% Total

Non-Stationary Datasets

ALBL 8/15/3 9/13/4 9/12/5 9/11/6 7/13/6 6/14/6 6/15/5 4/16/6 4/16/6 4/16/6 66/141/53

COMB 4/13/9 2/14/10 2/13/11 2/12/12 1/12/13 2/12/12 2/13/11 1/15/10 0/16/10 0/16/10 16/136/108

DUAL 7/9/8 7/7/10 7/7/10 8/6/10 9/8/7 8/8/8 6/11/7 7/12/5 7/14/3 7/15/2 73/97/70

DEAL 6/15/5 9/14/3 11/12/3 12/11/3 12/11/3 12/12/2 11/13/2 12/11/3 11/12/3 10/13/3 111000666///111222444///333000

Stationary Datasets

ALBL 4/6/1 6/3/2 7/3/1 6/3/2 7/2/3 6/3/2 6/3/2 5/5/1 5/5/1 4/6/1 555666///333999///111555

COMB 2/4/5 2/2/7 1/4/6 1/2/8 1/2/8 1/2/8 1/3/7 1/4/6 1/4/6 1/4/6 12/31/67

DUAL 0/2/7 3/1/5 3/3/3 5/2/2 5/2/2 5/2/2 4/4/1 4/4/1 4/4/1 4/4/1 37/28/25

DEAL 7/4/0 6/2/3 3/4/4 4/3/4 4/2/5 4/3/4 3/4/4 2/5/4 2/5/4 2/6/3 37/38/35

slightly worse than ALBL. This is expected as REXP4 performs forgetting in order to

adapt to changes in expert efficacy, meaning that we cannot exploit the best criterion

as aggressively as ALBL’s EXP4.P MAB learner. Nevertheless, overall DEAL is fairly

robust to stationary datasets (small margin behind ALBL), while ALBL is not robust

to non-stationary datasets (larger margin behind DEAL).

3.6.3 Dynamic Ensemble Active Learning vs Random REXP4

We further explore the performance of DEAL-REXP4 with various batch size ∆T =

{4,10,20,30} and show performance gap between the DEAL-REXP4 and the dy-

namic oracle. Dynamic oracle argmaxy∗t is to randomly select a data point based on

the expert with maximum expected test accuracy increment. As seen in Figure 3.8,

DEAL-REXP4 with ∆T = {10,20,30} has similar performance on all datasets. But

the smaller batch size ∆T = 10 DEAL-REXP4 is slightly better than the proposed al-

gorithm with batch size ∆T = {20,30} in Figure 3.8 (a,f). Though DEAL-REXP4 with

∆T = 10 has high-frequency rate to restart, it is more robust than the batch size ∆T = 4

in Figure 3.8(a,c,e). This indicates that DEAL-REXP4 can learn the non-stationary

AL information within the short time interval rather than relying on completely ran-

dom selection.

3.7 Summary

We proposed a non-stationary multi-armed bandit with expert advice algorithm REXP4,

and demonstrated its application to online learning of a criterion ensemble in active

learning. The theoretical results provide bounds on REXP4’s optimality. The empir-

46 Chapter 3. Learning Active Learning Online

100 200 300

Number of Added Instance

0.6

0.65

0.7

0.75
A

c
c
u

ra
c
y

T
=10

T
=4

T
=20

T
=30

Oracle

(a) fourclass

100 200 300

Number of Added Instance

0.6

0.65

0.7

0.75

A
c
c
u

ra
c
y

T
=10

T
=4

T
=20

T
=30

Oracle

(b) german

50 100 150 200

Number of Added Instance

0.94

0.95

0.96

0.97

A
c
c
u
ra

c
y

T
=10

T
=4

T
=20

T
=30

Oracle

(c) breast

50 100 150 200

Number of Added Instance

0.55

0.6

0.65

0.7

A
c
c
u

ra
c
y

T
=10

T
=4

T
=20

T
=30

Oracle

(d) ILPD

20 40 60

Number of Added Instance

0.8

0.85

0.9

0.95

A
c
c
u
ra

c
y

T
=10

T
=4

T
=20

T
=30

Oracle

(e) wine

100 200 300

Number of Added Instance

0.3

0.35

0.4

0.45

0.5

0.55

A
c
c
u

ra
c
y

T
=10

T
=4

T
=20

T
=30

Oracle

(f) letter

Figure 3.8: Comparison of active learning with our DEAL-REXP versus alternative state

of the art bandit algorithms.

ical results show that active learning with DEAL-REXP4 tends to perform near the

best criterion in the ensemble. It performs comparable to state of the art alternative

ensembles on stationary datasets, and outperforms them on non-stationary datasets.

Chapter 4

Learning a Transferable Active

Learning Policy

In Chapter 3, we propose an online learning technique to learn to dynamically select

the best active learning criterion. Although the proposed technique is able to improve

the data annotation process in terms of efficiency, the scheme relies entirely on online

learning, and must inefficiently perform exploration for the best criterion repeatedly on

each dataset. There is no storage and re-use of experience. This re-exploration requires

extra effort to find the next best criterion. In addition, this technique will be sensitive

to the chosen ensemble criteria. It depends on the assumption that there is at least one

criterion that is ideally suited for a given dataset over a given time period.

In this chapter, we present an end-to-end meta learning approach to learn a gen-

eral active learning criterion from previous experiences that can be generalised across

datasets. This relieves the reliance on the carefully designing and assembling the crite-

ria for the previous approach. The main contribution of this chapter is to learn an active

learning criterion end-to-end by effectively extracting the information from raw data,

and moreover to do so in a way that produces a cross-dataset transferable criterion.

4.1 Introduction

In many applications, supervision is costly relative to the data volume. In this setting,

active query selection methods can be invaluable to predict which instances a base

classifier would find it informative to label. By carefully choosing the training data,

a classifier can perform well even with relatively sparse supervision. This vision has

motivated a large body of work in active learning that has collectively proposed dozens

47

48 Chapter 4. Learning a Transferable Active Learning Policy

of query criteria based on different theoretical or intuitive motivations , such as margin

[Tong and Koller, 2002] and uncertainty-based [Kapoor et al., 2007] sampling, ex-

pected error reduction [Roy and McCallum, 2001], representative and diversity-based

[Chattopadhyay et al., 2012] sampling, or combinations thereof [Hsu and Lin, 2015].

As illustrated in Chapter 3, it is difficult to choose a clear winner from these, because

each is based on a reasonable and appealing but completely different – motivation;

and there is no one that consistently outperforms the others on all datasets.

Rather than hand-designing an intuitive criterion and hoping that it performs well,

we propose taking a data-driven learning-based approach. We treat active learning al-

gorithm development as a meta-learning problem and train an active learning policy

represented by a neural network using deep reinforcement learning (DRL). It is natu-

ral to represent AL as a sequential decision making problem since each action (queried

point) affects the context (available query points, state of the base learner) successively

for the next decision. In this way the active query policy trained by RL can potentially

learn a powerful and non-myopic policy. By treating the increasing accuracy of the

base learner as the reward, we optimise for the final goal: the accuracy of the classi-

fier. As the class of deep neural network (DNN) models we use includes many classic

criteria as special cases, we can expect this approach should be at least as good as ex-

isting methods and likely better due to exploiting more information and non-myopic

optimisation of the actual evaluation metric. This idea of learning the best criterion

within a general function class is appealing. A recent study [Bachman et al., 2017],

although similarly inspired, was not able to provide a general solution to AL since the

learned criterion is not generalisable across diverse datasets/learning problems [Bach-

man et al., 2017]. With DRL we can likely learn an excellent query policy for any

given dataset, on the condition that all labels are provided.

4.2 Related Work

4.2.1 Reinforcement Learning

Reinforcement Learning (RL): Reinforcement learning leverages the formal frame-

work of Markov decision processes (MDP) to define the interaction between an agent

and its environment in terms of states, actions, and rewards [Sutton and Barto, 1998].

More specifically, an agent interacts with an environment E over a number of discrete

time steps t. At each time step, the agent receives the state st ∈ S from the environment

4.2. Related Work 49

Environment

Agent
Receive

States and Reward Emit Action

at ,st rt

Figure 4.1: The illustration of reinforcement learning

and selects an action at ∈ A based on its policy π(at |st) which is a mapping from state

to action. The agent then receives a new state st+1 and immediate reward rt from E .

The aim of RL is to maximise the return R = ∑
∞
t=1 γt−1rt which is the accumulated

immediate rewards with discount factor γ ∈ (0,1].

Connection between MAB and RL: Recall from Chapter 3 that MAB is a special

case of RL. Different from MAB, the agent in RL receives both an updated state st+1

and reward rt by interacting with the environment E . The updated state follows the

state-action transition probability st+1 ∼ P (st+1|st ,at), wherein the transition proba-

bility characterises the dynamics of a finite MDP. Since MAB only receives rewards

after pulling an arm, and without changing the state of the environment, MAB could

be viewed as a one-step MDP which is simpler than the full RL problem. In addition,

the updated state information st+1 provides a powerful information to help the agent to

make a wiser decision by considering the current state. Though the related methods of

contextual bandits or the bandits with expert advice are proposed to improve MAB via

giving additional information, this contextual information only describes the arms and

provides a weak representation of a complex environment. Lastly, the aim of RL is to

learn the future accumulated rewards whereas the MAB only learns which is the best

action, as there is no evolving state. This means that the MAB aims to maximise the

one-step best reward myopically and the RL learns to maximise long term non-myopic

decision for complex problems. Therefore, RL solves a more general problem than the

MAB models.

Policy Optimisation of Reinforcement Learning: There are multiple approaches

to learn the policy π, and most recent approaches exploit RL with function approxima-

tion to achieve excellent performance in various applications [Kober and Peters, 2009;

Mnih et al., 2015]. In this thesis, we use direct policy search based RL, which learns

π by gradient ascent on the objective function Jπ(θ) = ∑s∈S d(s)∑a∈A πθ(a|s)R(s,a),
where d(s) is stationary distribution of Markov chain for πθ and the expected future

50 Chapter 4. Learning a Transferable Active Learning Policy

reward R(s,a) = E{rt+1|st = s,at = a} [Williams, 1992]. This policy-gradient based

approach is practical in variety of fields since it only assumes the availability of the

gradient ∇Jπ(θ) = ∇θ logπθ(a|s)R(s,a), and a finite-step problem.

Baseline function for Policy-Gradient: However, one problem with policy gradient

is the high variance that exists as a result of the large numerical scale of return. This

large-scale problem is caused by the Monte Carlo sampled long-term trajectory. One

common approach for reducing the variance is to standardise return by subtracting

the average return without biasing the gradient estimator ∇θ logπθ(a|s)(R(s,a)− b)

[Williams, 1992], where b denotes the baseline function. Subsequently, the baseline

function could be viewed as a control variate problem, for which a control variate

method is a variance reduction technique used in Monte Carlo methods [Greensmith

et al., 2004; Peters and Schaal, 2008; Zhao et al., 2011]. The optimal baseline can

be obtained by minimising the variance in the gradient estimates with respect to the

baseline.

b∗PG := argmin
b

Var[∇θJπ(θ)] =
E
[
R(st ,at)||∑T

t=1 ∇θ logπθ(at |st)||2
]

E
[
||∑T

t=1 ∇θ logπθ(at |st)||2
] (4.1)

Another variance reduction scheme is to use a function approximator to model the

baseline function to reduce the variance [Mnih et al., 2016]. However, this baseline is

a models estimate; therefore, although it may be low variance, it introduces instability

during training. This instability makes some RL tasks even more complicated. In this

thesis, we use a simple return standardisation method to reduce variance.

b̄PG :=
E [R(s,a)]

E [(R(s,a)−E [R(s,a)])2]
(4.2)

Connection between RL and AL: We propose to model an active learning algo-

rithm as a neural network, and formalise discovery of the ideal criterion as a deep

reinforcement learning problem. Let the state of the world st consist of a featurisation

of the dataset and the state of the base classifier st = {Lt ,Ut , f}. Let an active learning

criterion be a policy π(ai|s) where the action index i ∈ {1, . . . , |U|} selects a point in

the unlabelled set to query. Upon querying a point the world state is updated to st+1

as that point is moved from U to L and f is updated as the base classifier is retrained.

Assume the policy is a neural network paramaterised by weights θ that selects actions

as π(ai|st)∝ expΦθ(ai,st), where i∈ {1, . . . , |U|} is the index of the unlabelled instances.

Finally we define the return J(θ) of an episode, which is the quantity we wish to max-

imise. For example, if the budget is N queries and we only care about the accuracy

4.2. Related Work 51

after the Nth query, then we let J(θ) = AccN where AccN is the accuracy after the Nth

query. Alternatively, if we care about the performance during all the N queries, we can

use J(θ) = ∑
N
t=1 γt−1Acct . (This illustrates an important advantage of the learning to

do active learning approach: we can tune the learned criterion to suit the requirements

of the AL application.) In interpreting AL criterion learning as a DRL problem, there

is the consideration that unlike general RL problems, each action can only be cho-

sen once in an episode. We will achieve this by defining a fully convolutional policy

network architecture where the dimensionality of the output softmax π(ai|st) can vary

with t. In this chapter, our proposed method is focus on binary classification problems,

i.e., C = 2.

4.2.2 Related Methods

Active Learning by Learning: A few works have very recently also treated find-

ing an AL criterion as a learning problem. [Konyushkova et al., 2017b] proposes to

learn a criterion based on a vector of expert features (e.g., classifier confidence, la-

bel imbalance). However by using expert features, this misses the chance to learn the

representation from raw features as in our approach; and by using supervised rather

than RL to train the policy, it is not optimally non-myopic. [Bachman et al., 2017]

and [Woodward and Finn, 2017] use RL to train a single model that provides both

the base classifier and the active learner. This tight integration has a drawback of be-

ing constrained to a specific base learner, so losing the ability to use an arbitrary base

learner as per our framework. More importantly, while these methods learn effective

non-myopic policies, they are trained and tested on different classes within the same

dataset, so the generalisation challenge and evaluation is minimal. There is no mech-

anism to ensure effective transfer across datasets of different statistics or to allow any

transfer at all across datasets of different dimensionalities. Finally, unlike [Woodward

and Finn, 2017; Bachman et al., 2017] our framework is agnostic to the base classi-

fier. Treating the underlying learner as part of the environment to be optimised means

our framework can be applied to improve the label efficiency of any existing learning

architecture or algorithm.

Active Learning Ensembles: Different AL algorithms perform well on different

datasets, or at different learning stages. For this reason studies have proposed heuristics

to switch criteria from early to late stage learning [Donmez et al., 2007; Baram et al.,

2004], or use multi-armed bandit (MAB) approaches to estimate the best criterion for a

52 Chapter 4. Learning a Transferable Active Learning Policy

given dataset within an ensemble [Hsu and Lin, 2015], or both [Pang et al., 2018a]. But

aside from being myopic, MAB learners do not learn transferrable knowledge. They

perform all their learning within a single rollout, and their need to explore/learn online

is fundamentally at odds with active learning. [Chu and Lin, 2016] ameliorates this

somewhat with regularisation, but still needs dataset-specific learning. Our approach

can address these issues. Besides non-myopic policy learning with RL, a DNN has ca-

pacity to encode multiple criteria and apply different ones at different learning stages.

By learning a meta-policy that paramaterises a dataset-specific policy, it customises

the overall active learning strategy to the target dataset; thus it can transfer knowledge

for immediate efficacy on a new dataset without dataset specific learning.

Domain Generalisation and Adaptation: Our task-agnostic AL’s goal is related to

Domain Generalisaton (DG) [Muandet et al., 2013; Li et al., 2018] and Domain Ad-

patation (DA) [Ganin and Lempitsky, 2015] in supervised learning in that we would

like to train on one dataset and perform well when testing on another dataset. Our

framework has aspects of DG (multi-task training to increase generality) and DA

(adapting to target data, via dataset embedding meta network) methods. But we are

not aware of any dataset embedding approaches to achieving DA within supervised

learning.

Parameter Prediction: Models predicting the parameters of other models are in-

creasingly applied [Ha et al., 2017]. In robot control, such ‘contextual’ or ‘parama-

terised’ policies are used to solve tasks like target-conditional reaching [Kupcsik et al.,

2013]. [Romero et al., 2017] used auxiliary networks for parameter reduction but

training and testing on the same dataset. To our knowledge this strategy has not been

applied for domain adaptation.

4.3 Learning a Transferable Active Query Policy

4.3.1 Non-Myopic Active Learning Policy

Recall that our aim is to obtain the parameters θ of an effective dataset-agnostic active

query policy πθ(a|s). The key challenge is how to learn such a policy given that: (i) the

test dataset statistics may be different from training dataset statistics, and moreover (ii)

different datasets have different feature dimensionality d. This challenge is addressed

by defining the overall policy πθ(a|s) in terms of two sub-networks – a policy network

and a meta network – described as follows.

4.3. Learning a Transferable Active Query Policy 53

0 0.1 0.2 0.3 0.4

0.1

0.3

0.2

0.4

Rescaled Value

F
re

q
u

e
n

cy

(a) Representative

0 0.40.30.2

0.2

0.3

0.4

0.1

0.1

Rescaled Value

P
o

s
te

r
io

r

(b) Discriminative

Figure 4.2: The illustration of embedding

Overall the policy network π inputs all N unlabelled instances ZZZu ∈ RN×d and

its output is an N-way softmax distribution for selecting which instance to query. We

assume the policy models actions via the softmax π(ai|s)∝ expΦθq(WWW
T
e zzzi), where zzzi ∈Rd

is the ith unlabelled instance in ZZZu and WWW e ∈ Rd×k encodes the pool of instances.

Although dimensionality d varies by dataset, the encoding uuui = WWW T
e zzzi ∈ Rk does not,

so the rest of the policy network π(ai|s) ∝ expΦθq(uuui) is independent of d. The key is

then how to obtain encoder WWW e which will be provided by the meta network. Following

previous work [Bachman et al., 2017; Konyushkova et al., 2017b] we also allow the

instances to be augmented by instance-level expert features so ZZZ = [XXX ,ξξξ(XXX)] where XXX

are the raw instances and ξξξ(XXX) are the expert features of each raw instance.

4.3.2 Meta Learning the Transferability

The encoding parameters WWW e ∈Rd×k of the policy network are obtained from the meta

network: Ψθe
m

: {(L ,U, f)→WWW e;θe
m}. Following [Romero et al., 2017] we also use

the WWW d ∈Rk×d dimensional decoder Ψθd
m

: {(L ,U, f)→WWW d;θd
m}to regularise this pro-

cess by reconstructing the input features. The meta network synthesises these weight

matricies based on dataset-embeddings of ZZZT described in the following section.

The meta network not only learns to generate parameters appropriate to the statis-

tics of a given dataset, but also deals with the heterogeneous dimensionality problem

by generating parameters appropriate to the dimensionality of the data in the target

problem. The idea of meta networks to predict weights for a target network was re-

cently used in [Romero et al., 2017]. There the meta network inputs an embedding

54 Chapter 4. Learning a Transferable Active Learning Policy

of XXXT and predicts the weights for a main network that inputs XXX , with the purpose of

reducing the total number of parameters if XXX is high dimensional. In [Romero et al.,

2017] all the training and testing are performed on the same dataset. Here we are

inspired by this idea in proposing a meta-network strategy for achieving end-to-end

learning of multiple-domains. By multi-task training on multiple datasets, the meta-

network learns to generate dataset-specific weights for the policy network to ensure its

generalisation ability.

Dimension-wise Embedding Strategy: The auxiliary meta-network first builds a

dataset size independent dimension-wise embedding of the input (L ,U, f), as shown

in its light blue part of Figure 4.3. Then it predicts WWW e ∈Rd×k, with

(WWW e) j = Ψ

(
[eee1

j(ZZZ
T
u),eee

1
j(ZZZ

T
l),eee

2
j([ZZZ

T
u ,ZZZ

T
l], f)]

)
. (4.3)

Here e is a non-linear feature embedding, j indexes features, selecting the jth em-

bedded feature and the jth row of WWW e, and Ψ is the non-linear mapping of the meta-

network, which outputs a vector of dimension k. Similarly, the meta-network also

predicts the weight matrix WWW d used for auto-encoding reconstruction (Figure 4.3). Al-

though d is dataset dependent, the meta network generates weights for a policy network

of appropriate dimensionality (d× k) to the target problem. The specific embeddings

used are explained next.

Choice of Embeddings: We use two ‘representative’ and ‘discriminative’ histogram

style embeddings. For the representative embedding (eee1
j(ZZZ

T
u) and eee1

j(ZZZ
T
l)), we encode

each feature dimension as a histogram over the instances in that dimension, as illus-

trated in Figure 4.2(a). Specifically, we rescale the ith dimension features into [0,1]

and divide the dimension into 10 bins. Then we count the proportion of labelled and

unlabelled data for each bin. This gives a 1×20 histogram embedding for each dimen-

sion that encodes its moments. For the discriminative embedding (eee2
j([ZZZ

T
u ,ZZZ

T
l], f)),

we create a 2-D histogram of 10 bins per dimension. In this histogram we count the

frequency of instances with feature values within each bin (as per the previous em-

bedding) jointly with the frequency of instances with posterior values within each bin

(i.e., binning on the [0,1] posterior of the binary base classifier.) Finally, the procedure

counts in a 10×10 grid (Figure 4.2(b)), which we vectorise to 1×100. Concatenating

these two embeddings we have a E = 120 dimensional representation of each feature

dimension for processing by the meta network.

4.3. Learning a Transferable Active Query Policy 55

Algorithm 4 Reinforcement Learning of a Transferable Query Policy
1: Input: Initialised policy network and meta network

2: for each iteration do
3: for each episode do
4: Pick source dataset randomly

5: Initialise label and unlabelled pool

6: for each timestep do
7: Sample action π(ai|s) ∝ expΦθq(WWW

T
e zzzi)

8: Update the ZZZu,ZZZl and base learner f

9: Record the triplet < ZZZu,a,r >

10: end for
11: Standardise episode-collected return

12: end for
13: Update Policy with standardised return

14: end for
15: return Trained Active Query Policy

4.3.3 Meta-learned Policy for General Active Learning

Training for Cross Dataset Generalisation: We train policy networks and meta

networks by using the policy gradient method REINFORCE [Williams, 1992] to en-

sure that the generated policies maximise the return (active learning accuracy) with

the desired reward discounting. To ensure that our pair of networks achieve the de-

sired dataset (active learning problem) invariance, we perform multi-task training on

multiple source datasets: (i) In every mini batch we sample a random subset of source

datasets, and set the return to the average return over all the sampled datasets. Thus

achieving a high return means the meta network has learned to synthesise suitable

per-dataset weights for the policy network based on the dataset embedding, and that

together they generalise across multiple tasks/datasets. (ii) To further promote cross-

dataset generalisation, we apply the baseline method to standardise the return from

each episode which compensates diverse return scales across different datasets. This

relative return alleviates the risk of domination by a single dataset with large return due

to differing scale of accuracy increments among datasets of varying difficulties. The

overall training algorithm is summarised in Algorithm 4.

The ideal active learner should query the instance that maximally improves the

base learner’s performance. The reward that reflects the quantity we care about is

56 Chapter 4. Learning a Transferable Active Learning Policy

(a) Policy Network (b) Meta Network

zi

1× d

×

×

FC

1× h1 Standardization

FC+ReLU

1× h2

ẑi

1× d

FC+ReLU

1× h3

1× h4

π(ai|s)
1× 1

Z⊤
l

Z⊤
u

f

E
m
b
ed

d
×
H

1

F
C
+
R
eL

U

d
×

H
2

F
C
+
R
eL

U

d
×
H

3

We

d
×
h
1

d
×
M

E
m
b
ed

d
×
H

1

F
C
+
R
eL

U

d
×

H
2

F
C
+
R
eL

U

d
×
H

3

W⊤
d

h
2
×
d

Figure 4.3: Policy and meta network architecture for deep reinforcement learning of a

task-agnostic active query policy. Policy net inputs data-point zzzi and outputs a prob-

ability of querying it π(ai|s). The policy network is paramaterised by weights WWW e that

dynamically determined by the meta network based on an embedding of the dataset

and classifier st = {Lt ,Ut , f}.

therefore the increase of test split accuracy rt = Acct − Acct−1. To optimise this

quantity non-myopically, we define the return of an active learning session as J(θ) =

E[∑∞
t=1 γt−1rt(s,πθ(·,s))]. We then use policy gradient to train the policy and meta-

networks to optimise the objective J(θ).

Auxiliary Regularisation Losses: Besides optimising the obtained reward, we also

optimise for two auxiliary regularisation losses. Reconstruction: the policy network

should reconstruct the unlabelled input data using WWW d predicted by the meta-network

[Romero et al., 2017]. We optimise A(ZZZu) = |ZZZu− ẐZZu|F , the mean square reconstruc-

tion error of the autoencoder. Entropy: following [Mnih et al., 2016], we also prefer a

policy that maintains a high-entropy posterior over actions so as to continue to explore

and avoid pre-emptive convergence to an over-confident solution.

With these two auxiliary supervised tasks, we train both networks end-to-end. We

minimise the whole objective function F by reversing the sign of policy gradient ob-

4.4. Experiments 57

jective function:

F =−Jθ(Φ)+λ1Aθd
m
(ZZZu)−λ2H (πθ(aaa|ZZZu)) (4.4)

where θ = {θq,θ
e
m}. The network (Figure 4.3) trained by Equation 4.4 using Algo-

rithm 4 learns to synthesise policies that are effective active query criteria (high return

J) on any domain/dataset (synthesising domain specific network parameters via auxil-

iary network), adapting to the statistics of the dataset and independent of the dimen-

sionality of the dataset.

4.4 Experiments

4.4.1 Datasets and Settings

Datasets: We experiment with a diverse set of 14 datasets from UCI machine learn-

ing repository. These include austra, heart, german, ILPD, ionospheres, pima, wdbc,

breast, diabetes, fertility, fourclass, habermann, livers, planning. For our main exper-

iment, we use the leave-one-out (LOO) setting: training on 13 datasets, and evaluating

on the held out dataset.

Architecture: The auxiliary network for encoder has fully connected layers with

of size 120,100,100 (E = 120,k = 100) and that for the decoder has an analogous

structure. The policy network has layers of size N×d (N×d input matrix ZZZu), N×100,

N× 50, N× 10, N× 1 (N-way output). All penultimate layers use ReLU activation.

The transition of the input to first hidden layer of policy network is provided by the

auxiliary network. Thereafter for efficient implementation with few parameters and

to deal with the variable sized input and output, the policy network is implemented

convolutionally. We convolve a h1× h2 sized fillter across the N dimension of each

N×h1 shaped layer to obtain the next N×h2 layer.

Experiment Settings: We train using Adam optimiser with initial learning rate 0.001

and hyperparameters λ1 = 0.03, α = λ2 = 0.005 and discount factor γ = 0.99. Dur-

ing RL training, we use two tricks to stabilise the policy gradient. 1) We use a rel-

atively large batch size of 32 episodes. 2) We smooth the gradient by accumulation

Gt = (1−α)Gt−1 +αgt where gt is the gradient of the at in time step t and the Gt

is the accumulated gradient. Intuitively, the accumulated gradient Gt relies on earlier

time step actions. We train the policy and meta network simultaneously for a fixed

50,000 iterations and perform active learning over a time horizon (budget) of 20. As

58 Chapter 4. Learning a Transferable Active Learning Policy

base learner we explore linear SVM and RBF SVM (kernel bandwidth 0.5) with class

balancing. All results shown are averages over 100 trials of training and testing dataset

splits.

Expert Features: To enhance the low-level feature of each instance in XXX we de-

fine expert features ξ(XXX) to include distance furthest first (DFF) and uncertainty (US)

as the augmented feature. In the SingleRL, we follow the similar setting of LAL

Konyushkova et al. [2017a] which used expert features to summarise the relevant ac-

tive learning information for each data point. The state of the learning process at time t

are consist as follows: a) the proportion of negative class in labelled set p(c =−1|Lt);

b) the proportion of positive class in labelled set p(c = 1|Lt); c) the proportion of neg-

ative class in labelled set p(c =−1|Ut); d) the proportion of positive class in labelled

set p(c = 1|Ut); e) the budget ratio t
T .

Alternatives: We compare our learning approach to AL with three classic approaches

uncertainty/margin-based sampling (US) [Tong and Koller, 2002; Kapoor et al., 2007],

furthest-first sampling (DFF) [Baram et al., 2004] and query-by-bagging (QBB) [Abe

and Mamitsuka, 1998], as well as to random sampling (RAND) as a lower bound. Un-

certainty sampling is a simple deterministic approach that queries the instance with

minimum certainty (maximum entropy). While simple, and not the most state-of-the-

art criterion, it is consistently very competitive to more sophisticated criteria and more

robust in the sense of hardly ever being a very poor criterion. We also compare with

QUIRE [Huang et al., 2010] — a representative more sophisticated approach, and

ALBL [Hsu and Lin, 2015] — a recent (within-dataset) learning based approach. We

denote our method meta-learned policy for general active learning (MLP-GAL). As

a related alternative we propose SingleRL. This is our RL approach, but without the

meta-network, so a single model is learned over all datasets. This SingleRL is the

incremental improved method with training the policy with non-myopic return rather

than the myopic one-step classification loss. Without the meta-network it can only use

expert features ξ(XXX) so that dimensionality is fixed over datasets. To give SingleRL an

advantage we concatenate some extra global features to the input space1. This method

can also be seen as a version of one of the few state-of-the-art learning-based alterna-

tives [Konyushkova et al., 2017b], with an important upgrade from the more myopic

supervised learning used there to the reinforcement learning.

1Variance of classifier weights, proportion of labelled and (predicted) unlabelled positive or negative
instances, proportion of budget used [Konyushkova et al., 2017b].

4.4. Experiments 59

0 10000 20000 30000 40000 50000 60000

Iteration

0.68

0.69

0.7

0.71

0.72

0.73

A
U

C

(a) AUC vs RL iterations

0 10000 20000 30000 40000 50000 60000

Iteration

0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

R
e

tu
rn

(b) Return vs RL iterations

Figure 4.4: Convergence of active learning policy during training. Average over all

training datasets (linear SVM).

4.4.2 Results

Multi-Task Training Evaluation: We first verify that it is indeed possible to learn

a single policy that generalises across multiple training datasets. In our leave-one-out

setting, this means generalising across 13 datasets in a given training split. Figure 4.4

shows the convergence of multi-task RL training. The result is quantified in Table 4.3,

where the MLP-GAL (Tr) column shows average classifier AUC across all the 13 com-

binations of LOO training. We can see that MLP-GAL learns an effective criterion that

outperforms its competitors. There is potential for overfitting as the policy has seen

each dataset during training (datasets randomly selected in minibatches). However it

is interesting to see that it is possible to learn a single query policy that performs well

on such a diverse set of datasets.

Cross-Task Generalisation: Next we evaluate whether the multi-task trained query

policy can generalize to novel datasets. In the leave-one-out setting, each row in Ta-

ble 4.3 (right section) represents a testing set, and the MLP-GAL (Te) result is the

performance on this test set after training on all 13 other datasets. Our MLP-GAL

outperforms alternatives in both average performance and number of wins. SingleRL

is generally also effective compared to prior methods, showing the efficacy of train-

ing a policy with RL. However it does not benefit from a meta network, so is not

as effective as our MLP-GAL. From the table it is also interesting to see that while

sophisticated methods such as QUIRE sometimes perform very well, they also often

perform very badly – even worse than random. Meanwhile the simple and classic

uncertainty-sampling and QBB methods perform consistently well. Their robustness

60 Chapter 4. Learning a Transferable Active Learning Policy

5 10 15 20

of Added Instances

0.5

0.55

0.6

0.65

0.7

A
U

C

MLP-GAL

SingleRL

ALBL

DFF

US

QBB

QUIRE

RAND

TLSA

(a) Illustrative active learning curves from

evaluating our learned policy on held out UCI

dataset diabetes.

1 4 7 13

of Training Datasets

0.66

0.68

0.7

0.72

0.74

0.76

0.78

A
U

C

Linear(Tr)

Linear(Te)

RBF(Tr)

RBF(Te)

(b) Cross-dataset generalisation. Average

performance (AUC) of MLP-GAL over all train-

ing and testing sets as a function of the num-

ber of training domains.

Figure 4.5: Further analysis

is the reason for their continued use in practice despite their age and simplicity. This

dichotomy illustrates the challenge in building sophisticated AL algorithms that gen-

eralise to datasets that they were not engineered on. In contrast, although our approach

MLP-GAL (Te) has not seen these datasets during training, it performs consistently

well due to adapting to each dataset via the meta-network. Figure 4.5(a) shows the

resulting active learning curve for an example dataset.

Linear vs RBF SVM learner: An advantage of our approach compared to related

methods such as [Bachman et al., 2017; Woodward and Finn, 2017] is that it treats the

base learner as part of its environment to be optimised against rather than tying to a

particular learner. With RBF SVM as the base learner, we can see that the results in

Table 4.3 (top vs bottom) are similar to linear SVM (expected given the difficulty of

learning a non-linear model in a budget of 20 points). Our approach is again superior

overall — it is able to learn a policy customised to this new base learner.

Dependence on Number of Training Domains: We next investigate how perfor-

mance depends on the number of training domains. We train MLP-GAL with an

increasing number of source datasets – 1, 4, 7 (multiple splits each), and 13 (LOO

split setting). Then we compute the average performance over all training and all test-

ing domains, in all of their multiple occurrences across the splits. From the results

in Figure 4.5(b) we see that the training performance becomes worse when doing a

higher-way multi-task training. More specifically, according to Tables 4.4 and 4.5 (left

4.4. Experiments 61

Item Featurisation Dims

State
st

Representative dataset Embedding (1D histogram bin size:10) 10

Discriminative dataset Embedding (2D histogram, bin size:10) 100

Action
zt

Raw features: xxx d

Expert feature: US 1

Expert feature: DFF 1

Table 4.1: The summary of the featurisation of MLP-GAL

sections), only a few datasets show better training performance when jointly trained

together with an increasing number of other training datasets – most show worse train-

ing performance. This is intuitive: it becomes harder to overfit a single model to

more datasets simultaneously. The result is that in terms of testing performance (Ta-

bles 4.4 and 4.5, right sections), MLP-GAL trained on multiple datasets has better

mean and lower variance for both linear SVM and RBF SVM. This is because when

training on multiple datasets, the meta-network learns to tune the policy network in a

dataset-specific way. It then successfully generalizes this dynamic policy synthesis to

held out test datasets.

Ablation Study: We next investigate whether MLP-GAL learns extracting meaning-

ful information for the active learning task from raw data without the reliance of the

expert features. To do so, we apply ablation study on the MLP-GAL by empirically

comparing the average accuracy over all time horizon of a variety of input featurisation

in both linear and RBF settings on 13 UCI datasets. As illustrated on the Table 4.1,

we compare the MLP-GAL with 3 different types of action featurisation: using raw

and expert features (RAW & Expert), using only raw features (RAW), and only using

expert features (Expert). The comparison also includes the SingleRL, where SingleRL

act as the baseline for general learning active learning methods.

According to the Table 4.2 and Figure 4.2, the result shows that the MLP-GAL with

or without using the expert features have almost equal performance and outperform the

rest of competitors in both linear and RBF SVM settings. Comparing between these

two types of featurisation, MLP-GAL without expert features are relatively worse than

adding the additional information. Moreover, the result demonstrates that MLP-GAL

with only using the expert feature has the worst performance. These demonstrations

indicates that the expert features has fewer contribution than the raw features and the

learned active learning policy are heavily relied on the raw features rather than the

62 Chapter 4. Learning a Transferable Active Learning Policy

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
of Added Instances

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74
Ac

cu
ra
cy

MLP_GAL: Raw+Expert
MLP_GAL: Raw
MLP_GAL: Expert
SingleRL

(a) Linear SVM

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
of Added Instances

0.62

0.64

0.66

0.68

0.70

0.72

Ac
cu
ra
cy

MLP_GAL: Raw+Expert
MLP_GAL: Raw
MLP_GAL: Expert
SingleRL

(b) RBF SVM

Figure 4.6: The performance of MLP-GAL with/without using expert features

expert features. Since both of uncertainty and representatives of expert features are

relatively useless to the learned policy, MLP-GAL learned a different motivation for

the active learning task.

MLP-GAL: Raw & Expert MLP-GAL:Raw MLP-GAL:Expert SingleRL

linear SVM 70.94 70.93 69.16 70.19

RBF SVM 69.34 69.32 68.62 67.64

Table 4.2: The comparison of MLP-GAL with various action featurisation and the Sin-

gleRL.

4.5 Summary

We have proposed a learning-based perspective on the problem of active query cri-

teria design. Such learning-based algorithm design elegantly obtains AL models by

optimising the ultimate goal of classification performance with few labels. However

aside from the widely-shared questions of good network architecture and RL train-

ing algorithms, the key challenge is whether general enough policies can be learned

for being widely useful and applicable, rather than requiring dataset-specific training

which contradicts the motivation of AL. Our key contribution is to provide the first

solution to this issue through multi-task training of a meta-network that synthesises

dataset-specific active query policies.

Our study thus far has the main limitation that we have only evaluated our method

on a binary base classifier (an assumption shared by [Konyushkova et al., 2017b]).

4.5. Summary 63

In the future we would like to evaluate our method on deep multi-class classifiers by

designing embeddings which can represent the state of such learners, as well as explore

application to the stream-based AL setting.

64 Chapter 4. Learning a Transferable Active Learning Policy

Table 4.3: Comparison of active learning algorithms, leave one dataset out setting.

Linear/RBF SVM base learner. AUC averages (%) over 100 trials (and 13 training

occurrences for MLP-GAL (Tr)). Winning AL algorithm is bolded in each row.

Linear SVM MLP-GAL (Tr) MLP-GAL (Te) SingleRL (Te) Entropy DFF RAND ALBL T-LSA QUIRE QBB DEAL

austra 80.14 78.09 75.72 78.24 75.63 75.87 75.31 72.98 64.46 78.58 76.21

breast 96.67 95.95 94.78 95.41 95.76 94.71 95.67 96.21 95.60 95.73 94.86

diabetes 67.53 65.99 64.78 64.18 57.31 64.05 61.35 57.34 53.75 64.46 64.26

fertility 78.26 75.09 77.86 75.79 70.44 71.28 66.92 71.18 54.93 73.87 68.25

fourclass 74.79 74.11 71.83 69.55 71.26 69.08 68.69 69.98 64.48 70.81 69.56

haberman 67.31 65.61 64.91 60.16 60.26 57.40 52.49 59.67 45.89 60.58 58.31

heart 76.68 72.77 72.84 73.38 73.99 73.06 71.78 71.52 67.07 73.36 72.53

german 68.01 64.68 63.35 63.34 61.78 62.77 61.74 58.75 51.82 64.16 61.86

ILPD 62.48 59.30 61.08 57.60 50.97 57.62 52.91 53.15 48.57 56.77 57.69

ionospheres 74.96 71.46 69.78 70.47 59.64 69.81 68.44 58.95 57.84 70.40 69.73

liver 55.66 55.51 55.62 53.45 52.87 52.87 51.25 51.36 48.11 52.13 53.39

pima 67.64 67.01 64.67 64.18 57.31 63.69 61.27 57.03 53.75 64.24 62.93

planning 60.74 58.63 56.75 55.09 52.77 54.17 49.46 52.04 39.90 55.43 52.95

wdbc 90.90 90.09 88.72 90.93 87.55 88.52 88.41 85.15 82.17 90.68 88.59

Avg 72.98 70.94 70.19 69.41 66.25 68.21 66.12 65.38 59.17 69.37 67.94

Num Wins - 7 3 1 1 0 0 1 0 1 0

Win Ratio - 50.00 21.42 7.14 7.14 0.00 0.00 7.14 0.00 7.14 0.00

RBF SVM MLP-GAL (Tr) MLP-GAL (Te) SingleRL (Te) Ent DFF RAND ALBL T-LSA QUIRE QBB DEAL

austra 80.84 79.07 76.35 79.36 77.15 78.47 76.57 72.32 68.98 78.83 78.23

breast 96.25 95.96 95.46 95.40 95.78 95.14 95.92 93.28 95.21 95.43 95.27

diabetes 66.55 64.89 62.52 62.59 59.81 62.70 59.09 59.38 58.48 61.98 62.07

fertility 80.83 78.97 75.75 79.49 75.81 75.21 73.55 72.58 64.67 76.83 72.99

fourclass 71.66 67.21 66.41 66.88 68.62 66.29 66.43 61.80 64.85 63.35 65.32

haberman 58.01 58.36 53.88 56.60 58.67 53.58 64.44 62.66 61.83 64.97 52.80

heart 77.47 74.79 71.87 73.63 74.05 72.27 72.57 69.70 68.98 72.95 72.25

german 67.94 66.99 64.18 65.01 65.60 63.26 57.70 51.49 55.57 53.96 63.84

ILPD 54.50 50.30 51.04 50.99 47.29 52.3 47.62 47.92 46.54 51.15 52.77
ionospheres 80.94 76.39 72.87 77.76 61.49 75.17 75.00 64.23 61.72 77.18 75.07

liver 51.91 50.91 50.76 50.31 51.04 50.21 47.60 48.25 46.75 50.27 50.45

pima 66.60 65.58 63.15 62.59 59.81 63.01 58.13 58.99 58.48 61.74 61.92

planning 53.05 51.46 52.61 49.95 50.07 50.99 47.10 49.86 41.68 50.49 50.68

wdbc 91.97 89.84 90.04 91.54 89.37 90.24 89.52 87.76 88.14 90.34 90.64

Avg 71.32 69.34 67.64 68.72 66.75 67.77 66.52 64.30 62.99 67.82 67.54

Num Wins - 6 1 4 1 0 0 0 0 1 1

Win Ratio - 42.86 7.14 28.57 7.14 0.00 0.00 0.00 0.00 7.14 7.14

4.5. Summary 65

Table 4.4: MLP-GAL training and testing performance as a function of number of training

datasets. AUC average and standard deviation. Linear SVM base classifier. Each

dataset is evaluated both as train and test during cross validation.

Train Performance Test Performance

Num Train Sets: 1 4 7 13 1 4 7 13

austra 81.49 80.81 ± 0.57 80.56 ± 0.60 80.14 ± 0.65 72.78 ± 2.99 72.90 ± 1.97 74.07 ± 3.11 78.09
breast 96.94 96.85 ± 0.12 96.76 ± 0.16 96.67 ± 0.13 94.55 ± 1.00 95.36 ± 0.66 95.31 ± 0.36 95.95

diabetes 69.23 67.25 ± 0.29 67.22 ± 0.48 67.53 ± 0.45 63.05 ± 2.63 65.03 ± 1.91 65.56 ± 1.16 65.99
fertility 79.90 79.20 ± 0.30 78.38 ± 0.36 78.26 ± 0.61 72.90 ± 1.91 73.86 ± 1.44 74.91 ± 2.37 75.09

fourclass 76.03 75.36 ± 0.48 75.08 ± 0.37 74.79 ± 0.47 69.15 ± 2.15 71.24 ± 2.69 73.02 ± 0.78 74.11
haberman 71.33 68.06 ± 0.74 66.91 ± 0.84 67.31 ± 0.62 59.28 ± 3.57 62.00 ± 2.52 64.97 ± 0.54 65.61

heart 80.30 78.46 ± 1.19 77.48 ± 0.56 76.68 ± 0.74 70.38 ± 2.84 72.50 ± 1.79 72.35 ± 0.92 72.77
german 68.55 68.60 ± 0.36 68.10 ± 0.16 68.01 ± 0.33 64.05 ± 2.04 64.44 ± 0.99 65.00 ± 1.67 64.68

ILPD 65.26 64.01 ± 1.04 62.97 ± 0.82 62.48 ± 1.07 56.17 ± 2.73 58.37 ± 1.50 58.11 ± 1.56 59.30
ionospheres 75.29 75.80 ± 1.68 75.21 ± 1.06 74.96 ± 0.78 68.04 ± 3.85 70.27 ± 1.95 70.12 ± 1.57 71.46

liver 54.88 56.59 ± 0.41 56.04 ± 0.35 55.66 ± 0.34 54.37 ± 1.07 54.82 ± 0.46 54.86 ± 0.27 55.51
pima 69.77 67.83 ± 0.31 66.78 ± 0.65 67.64 ± 0.60 63.00 ± 2.59 65.15 ± 1.76 66.20 ± 1.28 67.01

planning 62.61 61.37 ± 0.51 60.71 ± 0.79 60.74 ± 0.98 54.90 ± 3.14 57.28 ± 3.07 57.23 ± 1.31 58.63
wdbc 91.40 91.25 ± 0.19 90.78 ± 0.58 90.90 ± 0.25 86.60 ± 2.49 88.76 ± 0.92 89.16 ± 0.91 90.09

Average 74.50 73.67 ± 0.59 73.07 ± 0.55 72.98 ± 0.57 67.80 ± 2.50 69.43 ± 1.69 70.06 ± 1.27 70.94
Num Wins 11 3 0 0 0 0 1 13

Table 4.5: MLP-GAL training and testing performance as a function of number of training

datasets. AUC average and standard deviation. RBF SVM base classifier. Each dataset

is evaluated both as train and test during cross validation.

Train Performance Test Performance

Num Train Sets: 1 4 7 13 1 4 7 13

austra 81.84 81.73 ± 0.54 80.99 ± 0.31 80.84 ± 0.34 76.47 ± 2.01 76.01 ± 0.82 76.50 ± 2.71 79.07
breast 95.94 96.08 ± 0.17 96.27 ± 0.19 96.25 ± 0.24 94.74 ± 0.89 95.52 ± 0.32 95.68 ± 0.27 95.96

diabetes 70.37 66.96 ± 1.26 66.86 ± 0.96 66.55 ± 1.05 63.57 ± 2.98 63.80 ± 3.13 64.67 ± 2.20 64.89
fertility 81.70 81.71 ± 0.66 81.44 ± 0.89 80.83 ± 0.58 75.91 ± 2.80 76.74 ± 1.88 77.92 ± 0.61 78.97

fourclass 73.90 71.49 ± 0.65 70.73 ± 0.66 71.66 ± 0.66 66.28 ± 1.61 67.11 ± 1.68 67.81 ± 1.32 67.21

haberman 65.95 61.95 ± 1.79 60.41 ± 1.77 58.01 ± 1.56 54.97 ± 2.24 56.37 ± 2.26 54.87 ± 1.33 58.36
heart 79.70 79.09 ± 0.93 77.90 ± 0.82 77.47 ± 0.68 72.26 ± 2.09 73.76 ± 1.85 73.58 ± 1.56 74.79

german 70.23 68.73 ± 0.66 68.10 ± 1.34 67.94 ± 0.36 64.63 ± 3.91 64.14 ± 2.29 65.27 ± 1.35 66.99
ILPD 62.10 57.89 ± 2.87 55.10 ± 0.89 54.50 ± 0.55 52.45 ± 2.82 50.94 ± 2.20 50.54 ± 1.81 50.30

ionospheres 80.81 81.50 ± 0.36 81.67 ± 0.46 80.94 ± 0.55 73.54 ± 3.49 74.97 ± 2.40 76.87 ± 3.04 76.39

liver 56.01 51.81 ± 1.18 52.26 ± 0.72 51.91 ± 0.85 50.79 ± 0.79 50.96 ± 1.06 50.96 ± 0.57 50.91

pima 71.56 67.73 ± 0.83 66.57 ± 1.70 66.60 ± 1.24 63.36 ± 2.82 63.59 ± 2.32 65.31 ± 1.63 65.58
planning 57.87 54.20 ± 2.15 53.38 ± 0.58 53.05 ± 0.89 51.48 ± 1.26 52.02 ± 1.07 52.13 ± 0.63 51.46

wdbc 92.92 92.20 ± 0.30 92.31 ± 0.70 91.97 ± 0.28 88.87 ± 1.17 88.86 ± 0.97 90.31 ± 0.53 89.84

Average 74.35 72.36 ± 1.03 71.71 ± 0.86 71.32 ± 0.70 67.81 ± 2.21 68.20 ± 1.73 68.74 ± 1.40 69.34
Num Wins 11 2 0 1 1 1 5 8

Chapter 5

Learning to Fine-tune

5.1 Introduction

Transfer learning is the process of extracting knowledge from a well-learned source

task to accelerate or improve the learning of a target task, typically one that has less

data than the source, and would therefore be difficult to learn from scratch. This is

particularly important in deep-learning context. Since the basic data requirements for

deep learning methods are tremendous, many problems do not possess an adequate

amount of data to be learned from scratch; since the learning process is slow, any effi-

ciency benefits are welcome. By far the most common approach to transfer learning in

deep learning is the pre-train/fine-tune pipeline where a model is trained from scratch

for a data-rich source task, and the weights are copied and used as the initial condition

for the gradient-descent-based learning of a data-sparse target task.

Although fine-tuning-based transfer learning improves significantly over tabula

rasa learning, it is limited because it only fine-tunes the weights of the target prob-

lem, keeping the structure intact. This property is particularly salient in a fine-tuning

context, because the source problem is often a very general problem compared to a

more specific target problem; for example, in the common case of fine-tuning an Ima-

geNet pre-trained model for more specific tasks, such as person re-identification [Fan

et al., 2018], face recognition [Chowdhury et al., 2016], or bird recognition [Cui et al.,

2018]. In this case, only a subset of the knowledge encoded in the source model is

likely to be relevant to the target. This means that the process is slower than necessary

(due to the intensive computation from the large capacity model) and also produces

relatively inaccurate final models (due to overfitting from these additional parameters),

compared to an alternative ideal case in which we know which of the source-task pa-

67

68 Chapter 5. Learning to Fine-tune

rameters are relevant to the target task. In this ideal case, we could learn faster and

generalise better due to working with fewer parameters.

Estimating the relevance of our source knowledge to focus on transferring rele-

vant information is non-trivial if we bar the prohibitively costly approach of trying all

options of what to transfer and retraining the target model for every option. If we con-

sider selecting the knowledge to transfer at the neuron-level, the number of options for

what to transfer is exponential, due to the number of source neurons combination. We

address this issue by proposing a fine-tuning algorithm that transforms this subset se-

lection problem into a sequential decision-making problem. Our algorithm iteratively

prunes several neurons while fine-tuning the DNN on target problem.

There are two key challenges to realise our vision. The first challenge concerns

how to train such a learner, and the second involves ensuring that it generalises to a

novel problem. (1) We trained our meta learner (i.e. the structure pruning and weight

fine-tuning algorithm) with reinforcement learning, because we framed the problem of

selecting knowledge for transfer as a sequential issue, and also because the objective

function (performance of the target model after its structure is updated and the weights

refined by an updated step of the learner) is not straightforwardly differentiable with

respect to the weights of the learner. (2) Although we can train a structure and weight

fine-tuning algorithm with RL, this requires a prohibitive amount of computational

costs for any given problem. Therefore, similarly to the case in Chapter 4, we need to

be able to train it on a set of source problems and apply it to a novel target problem,

so that the policy-training cost can be amortised. To this end, we performed multi-task

training on a batch of source problems to learn a task-agnostic fine-tuning policy.

Overall, we contribute a process for learning a fine-tuning algorithm that both re-

fines the weights and prunes the structure during transfer learning, thus improving both

the efficiency and the accuracy of transferring learning to a target problem. Moreover,

it produces a more compact target model. We show that this approach improves vanilla

transfer learning, as well as related alternatives such as dropout and random pruning

strategies.

5.2 Related Work

In this section, we review the studies on network architecture search (NAS) of the

optimal structure. Then, we discuss model compression, which may be regarded as a

special case of NAS that searches a compact structure from a good initial condition.

5.2. Related Work 69

Finally, we discuss the works on meta learning of supervised learning and transfer

learning.

5.2.1 Network Architecture Search

The majority of deep learning techniques require human effort on manually architec-

ture exploration to achieve the desired performance [Lecun et al., 1998; Krizhevsky

et al., 2012; Simonyan and Zisserman, 2014; Szegedy et al., 2015; He et al., 2016;

Huang et al., 2017]. Motivated by this, the research field of NAS learns and explores

the architecture for given datasets. The difficulties with NAS include the large search

space for finding the optimal architecture and the intensive computational effort re-

quired. Here, we discuss the research on NAS with meta-learning, with regard to the

improvement of effectiveness and efficiency.

However, NAS could be improved by applying either evolutionary algorithms (EA)

or reinforcement learning [Zoph and Le, 2017; Real et al., 2017; Baker et al., 2017].

The EA treats NAS as a black-box function optimisation without any assumptions,

whereby the search space is the space of architectures, and the function value is the

validation accuracy of a model trained using a given architecture. The EA approaches

perform an approximated global search by maintaining a population of diverse ar-

chitectures and selecting for fitness validation accuracy. Moreover, RL-based NAS

provides improved search efficiency and assumes that defining the architecture is a se-

quential decision. However, the training approach of RL still requires intensive com-

putation for exploring the ideal architecture. The efficiency of NAS could be upgraded

by approximating the solution with either supervised learning or learning a transfer-

able architecture. A recent NAS approach involves learning architecture iteratively by

back-propagating the gradient [Liu et al., 2018]. It relaxes the search space of the layer

operation to be continuous with softmax in training time and uses the max function to

select the best function in test time. This enables the training to be efficient, since the

architecture can be searched through the back-propagation without needing to conduct

an expensive exploration during the supervised learning process. Another efficient

NAS approach is to learn a transferable architecture with RL, where the transferability

relies on a predefined search space [Zoph et al., 2017]. Then, RL learns to combine

basic operations in a specific search space, reduces the required computation time,

and learns a transferable architecture. Since transferability depends on the particular

architecture, this property may fail to apply to a newly defined architecture.

70 Chapter 5. Learning to Fine-tune

Summary: All of these NAS studies reveal the effectiveness of searching for the

optimal architecture for a given problem. Although several studies have attempted to

reduce training time, the training of NAS is still generally expensive. In addition, other

NAS studies have attempted to improve the transfer learning process. These gaps in

the literature motivate our learning to fine-tune the research, which enables the network

architecture to be pruned for a specific transfer learning task.

5.2.2 Model Compression

We next review model compression (MC), which is related to NAS. However, there

are two main differences. Typically, NAS begins by searching a random architec-

ture with the aim of finding the best-performing architecture. However, MC starts

searching from a pre-defined, well-performing architecture, and tries to find a smaller

architecture that maintains a similar level of performance to that of the input model

architecture. We briefly review the typical model compression research and discuss

how model compression could be improved through meta learning.

Conventional model compression has been proposed to reduce the size of the deep

network based on various motivations, such as parameter pruning, low-rank approxi-

mation, and knowledge distillation. Parameter pruning techniques remove redundant

and non-informative weights in a pre-trained convolutional model using either magni-

tude of weight or the Hessian of the loss function [Cun et al., 1990; Hassibi and Stork,

1993]. Later, parameter pruning methods were upgraded by combining the technique

of binning network parameters with a Hash function [Han et al., 2015]. Another angle

of model compression is to apply low-rank approximation to factorise the weights of

deep networks [Jaderberg et al., 2014; Tai et al., 2015; Yu et al., 2017]. This method

approximates the original weight tensors and matrices by minimising their reconstruc-

tion error with respect to a low-rank approximation with fewer parameters. Generally,

both parameter pruning and low-rank approximation will narrow down the size of the

network, while the depth might remain the same or even become deeper.

To address this, distillation techniques train a new model with a smaller architec-

ture that achieves a similar performance to the original model [Ba and Caruana, 2014;

Korattikara Balan et al., 2015; Luo et al., 2016]. The designed model not only has a

compact representation for the original problem, but also has a similar performance

of the pre-trained model. As a result, the model compression problem will become

flexible on the choice of the architecture. Although the design of the smaller target ar-

5.2. Related Work 71

chitecture is an important factor, it is still typically left to human experts. Recent model

compression research has proposed using RL to find the best new compressed architec-

ture given a pre-trained large architecture [Ashok et al., 2017; He et al., 2018]. Here,

knowledge distillation is formalised as a sequential decision-making process, wherein

policies iterate with multiple knowledge distillation processes to control layer sparsity

and removal. It enables finding the best compressed architecture without conducting

an exhaustive architecture search or manually designing the target architecture.

Summary: All of these methods focus on a single task. They assume that the base

network has already achieved decent performance on this task. However, it is not clear

how to combine them with task-transfer in the form of fine-tuning, as there is an issue

of compressing before or after fine-tuning process.

5.2.3 Meta Learning for Supervised Learning

We now introduce the SGD-based meta learning, which has been widely studied for su-

pervised learning. Unlike the conventional SGD-based learning algorithms that rely on

human effort to tune the hyper-parameters and design, meta learning methods improve

these by learning the best optimisation strategy [Li and Malik, 2017; Andrychowicz

et al., 2016; Ravi and Larochelle, 2017] or learning the best initial condition to opti-

mise model-agnostic meta-learning (MAML) [Finn et al., 2017]. One of the most pop-

ular learning approaches is MAML, due to its simplicity. For this reason, it has been

extended in various ways, including probabilistic generalisations wherein the MAML

is the special case of the probabilistic approach with point estimation [Finn et al., 2017;

Grant et al., 2018]. Another extension of MAML is learning a subspace and mask that

describe which weights to update [Lee and Choi, 2018].

5.2.4 Meta Learning for Transfer Learning

Several studies have applied meta-learning to improve transfer learning for cross-task

transfer and cross-domain transfer [Li et al., 2018; WEI et al., 2018]. In [WEI et al.,

2018], multiple cross-task transfer learning experiences are gathered and used as train-

ing data, and the meta-learning procedure involves learning to estimate the perfor-

mance improvement ratio when given triplets (source domain, target domain, transfer

parameters). This knowledge is then exploited for a new transfer learning task at test

time, at which point the estimated performance improvement ratio is maximised with

respect to new target parameters. However, this approach is limited in the sense that it

72 Chapter 5. Learning to Fine-tune

is for shallow models, and thus does not benefit deep-network transfer learning. In [Li

et al., 2018; Balaji et al., 2018] multiple cross-domain transfer learning experiences are

generated, and the meta-learning procedure tries to update the source domain model so

that it is more robust to cross-domain transfer. However, none of these methods refine

the models architecture to benefit the target problem. Conversely, we aim to meta-learn

a transferrable non-myopic architecture tuning rule for transfer learning. This will al-

low both parameters and weights of the target problems network to be fine-tuned.

Summary: None of the previously proposed studies have considered the effect of the

pruning network’s architecture during the fine-tuning-based transfer learning phase.

Here, our presented method meta-learns a transferable non-myopic architecture tuning

rule for fine-tuning with reinforcement learning. As a result, this rule not only to tunes

the parameters of a network but also the network architecture.

5.3 Learning a Neuron Deletion Policy

In this work, we present a novel learning transfer learning framework that enables a

transfer learning process to learn the architecture and weights for the target problems.

Since the practical use scenario for TL is to transfer from a general model (such as

image-net trained) to a specific model (such as birds), our architecture fine-tuning ap-

proach focuses on neuron deletion.

For the purpose of learning architecture dynamically from a general model, we

propose to remove useless neurons for the specific target problem during fine-tuning

by evaluating the usefulness of the neurons. This requires the parameter refinement

process to interact with the neuron deletion process, so as to suggest neurons to delete

before updating the model’s parameters. It is natural to represent the interactive learn-

ing process as a sequential decision-making problem, since each deleted neuron affects

both the next available neurons and the state of the neural network successively for the

next decision. In this way, the neuron deletion policy, trained by reinforcement learn-

ing, is able to learn a powerful and non-myopic policy.

Definition of Deletion Policy: We propose to model the neuron deletion policy as a

neural network and formalise the process of training this policy as a deep reinforcement

learning problem. We use st as the state of the base learner ft to summarise the base

learner information in training. And we further denote the deletion policy as π(ai,t |st),

where action ai,t permanently deletes the corresponding neuron i ∈ Ot , and Ot is the

5.3. Learning a Neuron Deletion Policy 73

candidate set of all available deleted neurons in the deep network at the tuning step t.

Here, we regard each entire feature map in the convolution layer as a low-resolution

neuron to simplify the process. Based on the deleted neuron, the state st+1 is updated

successively to fine-tune both the architecture and the weight of the base learner ft+1.

We optimise the deletion policy to reduce the required training time and improve

the overall performance by using the accuracy of the base learner ft+1 as a reward. Let

J(θ) = ∑
T
t=1 γt−1Acct denote the objective function to optimise where the Acct is the

base learner accuracy at time step t and T is the total time horizon. Maximising the

accumulated accuracy is equivalent to optimising the area under the accuracy curve,

which optimises the learning speed of the architecture fine-tuning process. Addition-

ally, since the final accuracy AccT has a larger numerical scale and repeated occurrence

than the early time step accuracy Acc1 in the objective function, the policy also learns

how to perform better in the end.

Single Neuron Deletion Policy: Similar to the transferable active learning policy,

the deletion policy is coordinate-wise on the neurons of the base learner. This allows

the deletion policy to overcome the variable size of the neurons over various time steps

and architectures. We assume the policy models the actions via the Softmax function

πθd(ai,t |st) ∝ expΦθd

(
φ(st ,oi,t)

)
, where the featurisation φ(st ,oi,t) summarises informa-

tion regarding the observed forward and backward values of a neuron oi,t and the cur-

rent base learner state. The policy samples a neuron to delete at each reinforcement

learning time step from the Softmax distribution of all available neurons. Here, each

action ai,t corresponds to a particular neuron oi,t at time step t.

Batch Neurons Deletion Policy: However, deleting a single neuron at a time is not

an ideal choice for architecture tuning. Indeed, it is impractical for a large capacity

network to delete a neuron at each update iteration when the target problem has an

extremely small number of samples. Since the pace of architecture tuning is much

slower than the speed of converging to the local minima, the model can completely

memorise the target dataset. In addition, the optimal deleting action might consist of a

combination of useless neurons rather than only one neuron. Thus, the question shifts

from ”which is the most useless neuron” to ”what is the most useless combination of

neurons”, which we denote as a batch action policy. This combination of useless neu-

rons is an N-choose-K combination problem, where the optimal number of K depends

on various factors in the process, including: target sample size, update iterations, and

network capacity. In this work, we simply chose a constant K for all different domains

74 Chapter 5. Learning to Fine-tune

Algorithm 5 Per Time Step Batch Deletion Policy
1: Input: Given a deletion network Φθd , the model ft , initialised index set I, candi-

date set Ok
t , and the featurisation for all neurons φ(st ,ooot)

2: for k ≤ K do
3: Sample action π(aIk,t |s) ∝ expΦθd

(
φ(st ,oi,t)

)
4: Append the deleted action aIk,t into ãt

5: Append the deleted neuron index into the index set Ik

6: Remove the deleted neuron from candidate set Ok

7: end for
8: return A batch neurons ãt = {aI1,t ,aI2,t , . . . ,aIK ,t} to be deleted

and architectures.

For this batch action policy, the action space is changed from |A |= N to |A |=CN
K ,

for which finding the optimal combination from this finite set is known as a combi-

natorial optimisation problem. Next, we explore and exploit a solution to the com-

binatorial optimisation problem using reinforcement learning. The policy models the

batch-action decision as an iterative sampling process that samples K times from a

softmaxed distribution without replacement. This could be regarded as meta-learning

an iterative sampler for approximating a solution to the combinational optimisation

problem as a non-myopic sequence of decisions. The batch action now represents a set

of neurons to delete as ãt = {aI1,t ,aI2,t , . . . ,aIK ,t} where I is a set of deleted neurons

index. More specifically, we iterate the previous deletion procedure to update both the

candidate set Ok
t and the deleted index set Ik K times. Subsequently, we will have the

probability for the batch action as follows:

πθd(ãt |st) ∝

K

∏
k=1

expΦθd

(
φ(st ,ok

i,t)
)

∑
|Ok

t |
j\Ik

expΦθd

(
φ(st ,ok

j,t)
) (5.1)

While the method explained here can learn to delete redundant neurons for the

fine-tuned target problem, it is impractical to have a neuron deletion policy. A non-

terminating deletion policy will continually prune the network until all neurons are

deleted. This leads to an extremely low capacity network with weak representation and

generalisation performance. Thus, in the next section, we introduce a complementary

policy to determine when to stop deleting neurons.

5.4. Learning Architecture Stopping Tuning Policy 75

5.4 Learning Architecture Stopping Tuning Policy

In this section, we describe the necessity of introducing a stopping policy to learn the

fine-tune task. Next, we illustrate how to formalise the task and train the stopping

policy in a more data-efficient manner. The stopping policy attempts to estimate the

optimal stopping point for the deletion policy; this allows for a trade-off between the

benefits of simplifying the target model and the drawbacks of the eventual lack of

representation power. We present an approach to meta-learning a stopping policy that

determines whether to stop or continue to tune (prune) the architecture at each time

step.

We propose to meta-learn a high-level stopping network to estimate a termination

condition for the neuron deletion policy. The stopping policy is denoted as πθs(ast |st),

where action ast is a binary value for stopping or continuing. At each tuning step, the

stopping policy decides whether to apply the deletion policy or fine-tune the network

directly. The training of this process can be formalised from two different angles: su-

pervised learning and reinforcement learning. Generally, it is more elegant to optimise

the stopping policy with reinforcement learning. However, this is the more expensive

option. In this thesis, we simplify the training of a stopping network as a supervised

learning problem for computational efficiency. For supervised learning, the collected

samples (network features at different time-steps) need to be annotated in regard to

whether a stop or a continuation is the optimal action. To obtain this annotation, we

define a greedy heuristic oracle that determines a stop/continue label based on the

recent validation accuracy change, as per conventional early-stopping. The stopping

policy can thus be viewed as a one-step heuristic optimiser for the neuron deletion

policy.

5.5 Domain and Architecture Invariant Featurisation

Based on the learning of transferable active learning policy proposed in Chapter 3,

to amortise the cost of training our fine-tuning policy, we need it to be transferrable

across problems and architectures. Thus, we need a state featurisation that is domain

and architecture invariant and summarises both neuron and learner information.

Learner Featurisation: We first depict the featurisationfor the learner information.

The state s summarises the learner information, which contains: (i) the current com-

pression rate of the neurons Current Nums of Neurons
Initial Nums of Neurons ; (ii) the current compression rate of

76 Chapter 5. Learning to Fine-tune

the weight Current Nums of Params
Initial Nums of Params ; (iii) the current training accuracy Acct ; (iv) the accu-

racy increments from the last update Acct −Acct−1; (v) the current used budget of the

fine-tuning iterations t
T .

Neuron Featurisation: We next describe the featurisation for the neuron informa-

tion. This featurisation is supposed to depict either inter-neurons the or intra-neuron

perspective. The intra-neuron information is summarised as: (i) mean, variance, and

histogram of forward and backward value for each individual neuron, where the his-

togram divides the corresponding features into 10 bins. Note that the forward and

backward values are the intermediate result of each neuron feeding batch data to the

DNNs. Here, the backward value is the gradient. (ii) Rescaled bias value and its gra-

dient. The inter-neurons information is summarised as: (i) histogram of the cosine

similarity between the forward and backward values, (ii) histogram of cosine similar-

ity between the weight values, (iii) histogram of cosine similarity between the weight

gradients.

5.6 Cross-Datasets Training

We now combine these two networks together and formalise the training of archi-

tecture tuning. The deletion policy is trained with vanilla REINFORCE to learn a non-

myopic way to maximise the return (accumulated accuracy). The stopping policy is

trained by minimising the cross-entropy loss function to estimate the test performance

increase from the given learner state.

Baseline Method for Deletion Policy: Similar to the work of learning transferable

active learning, we also expect the universal deletion and stopping policy to be do-

main agnostic and transferable for different domains. We perform multi-task training

on multiple source datasets: (i) In every reinforcement learning training iteration, we

sample multiple batches of trajectories, where each batch uses the same source dataset.

Next, we set the return as the discounted accumulated reward. Achieving a high re-

turn means that the deletion policy learns to delete the most useless neurons for the

fine-tuning problem. (ii) We apply an intra-batch baseline method to rescale each time

step return to [−1,1] by 2×
(

x−xxxmin
xxxmax−xxxmin

)
−1. This intra-batch baseline encourages the

policy to learn from the long-term ”good” or ”bad” action, which enables the policy

to discover a good approximation for the combinational optimisation problem. In ad-

dition, the relative return again avoids the risk of domination by a single dataset with

5.6. Cross-Datasets Training 77

Item Featurisation Dims

State
st

Dims: 5

Neuron Compression Rate 1

Weight Compression Rate 1

Training Accuracy for Last Training Batch 1

Training Accuracy Increment from Last Update 1

Budget of Fine-tuning Iteration 1

Neuron
oi,t

Dims: 86

Mean of forward value 1

Variance of forward value 1

Histogram of forward value 10

Bias value 1

Mean of backward value 1

Variance of backward value 1

Histogram of backward value 10

Bias gradient 1

Histogram of cosine similarity for the histogram of

forward value
10

Histogram of cosine similarity for the histogram of

backward value
10

Histogram of cosine similarity for the histogram of the weight

of linking the neuron oi from last layer’s neurons
10

Histogram of cosine similarity for the histogram of the weight

of linking the neuron oi to next layer’s neurons
10

Histogram of cosine similarity for the histogram of the weight’s

gradient of linking the neuron oi to next layer’s neurons
10

Histogram of cosine similarity for the histogram of the weight’s

gradient of linking the neuron oi to next layer’s neurons
10

Table 5.1: The summary of the featurisation φ(st ,oi,t). The term ’Dims’ means the

number of dimensions.

78 Chapter 5. Learning to Fine-tune

Algorithm 6 Training Time: Transferable Deletion and Stopping Policies
1: Input: Initialised deletion network and stopping network

2: for each RL iteration do
3: for each batch do
4: Pick source dataset randomly

5: for each episode do
6: Initialise base network architecture

7: for each time step t do
8: Predict label πθs(ast |st) = argmaxexpΨθs(φ(st))

9: Sample deletion action πθd(ãt |st) ∝ ∏
K
k=1

exp
Φθd

(
φ(st ,ok

i,t)
)

∑
|Ok

t |
j\Ik

exp
Φθd

(
φ(st ,ok

j,t)
)

10: Update the candidate set O and base learner ft
11: Record the triplet < ooot , ãt ,rt >

12: Record the doublet < ssst ,ast >, and collect the annotation a∗st

13: end for
14: Rescale the collected return for each batch

15: end for
16: end for
17: Update deletion policy θd with the rescaled return

18: Update stopping policy θs with the collected annotations

19: end for
20: return Trained Deletion and Stopping Policy

a large return, due to the variant scale of accuracy among the datasets. The overall

training algorithm is summarised in Algorithm 6.

Training for Deletion and Stopping Policy: To train the deletion policy, the reward

rt = Acct is the relevant performance metrics for normal neural network training. To

optimise this quantity non-myopically, we define the return of a deletion session as

Jdel(θd) = E[∑∞
t=1 γt−1rt(s,πθd(·,s))]. We then use a policy gradient to train the policy

to optimise the objective Jdel(θd).

In addition, we also optimise the stopping network by solving the classification

task. During the policy gradient sampling process, we create a heuristic oracle to

annotate the stop label with Acct+∆−Acct−1 < 0.1 and continue otherwise where ∆

are the number of the future time step. Thus, the stopping network should output

the label of the stop or continue by observing the state st . We optimise Jstop(θs) =

5.7. Experiments 79

Algorithm 7 Test time: Transferable Deletion and Stopping Policies
1: Input: Given a deletion network and stopping network

2: for each time step t do
3: Predict label πs(ast |st) = argmaxexpΨθs(φ(st))

4: if Continue architecture tuning then

5: Sample batch deletion action πθd(ãt |st) ∝ ∏
K
k=1

exp
Φθd

(
φ(st ,ok

i,t)
)

∑
|Ok

t |
j\Ik

exp
Φθd

(
φ(st ,ok

j,t)
)

6: Update the candidate set O and base learner ft
7: end if
8: Update base learner ft
9: end for

10: return Fine-tuned base learner ft

−
(
(a∗st

) log(πθs(ast |st))+(1−a∗st
) log(1−πθs(ast |st))

)
is the cross-entropy loss for bi-

nary classification. The combined objective function is then given as:

F = Jdel(θd)+ Jstop(θs) (5.2)

Test Processes: After these two policies are trained, they can be applied to a new

target problem. When the new problem and base learner are given, the higher-level

stopping policy will make a decision about whether it needs to continue to tune the

architecture or not. The deletion policy will then decide which K neurons to delete

when it is necessary to tune the structure of the network. If not, the learning framework

will directly update the weight with the current architecture. The algorithm in test-time

is summarised in Algorithm 7.

5.7 Experiments

We then validate the proposed learning to fine-tune the framework in a transfer learning

problem. We further evaluate the performance of both deletion and stopping networks

in terms of the cross-domain but related context, and different trained parameters but

same base-network architecture.

5.7.1 Experiment Setting

Implementation: We implement the learning to fine-tune framework with Pytorch

[Paszke et al., 2017]. The Pytorch deep-learning tool supports the dynamic compu-

80 Chapter 5. Learning to Fine-tune

tation graph, and runs it according to any defined order of operation. It enables the

network to train with arbitrary order and size of the parameter. Based on this, we can

use the strength of the dynamic computation graph by reinitialising a new network ar-

chitecture without exhaustively masking both the forward value and backward gradient

for each neuron. Similar to the method in Chapter 4.1, our coordinate-wise deletion

policy is able to feed all the candidate sets O at once and then compute their softmaxed

probability. This enables the deletion policy to train and test with any size of network

architecture.

Dataset: We evaluate our proposed method on a hand-written image dataset with

multiple language recognition problems. The Omniglot dataset contains 50 alphabets

and 1,623 characters in total. Each language has roughly 14-55 characters, and each

character contains exactly 20 black and white images. The default split in the dataset

is divided into two groups: the background set and the evaluation set. The background

set includes 30 alphabets, while the evaluation set contains the rest of the alphabets.

Generally, this dataset is used for transfer- or meta-learning by giving the background

set alphabets for learning background language-agnostic knowledge, and then study-

ing the efficiency and efficacy of learning to recognise characters in the evaluation set

alphabets. We evaluate the learning to fine-tune framework on this dataset. We divide

the background set randomly into two equally sized subsets to learn a pre-trained base

learner and to meta-learn the fine-tuning task. We use one subset to train the base

learner and another to train how to fine-tune with both the deletion and stopping poli-

cies. Once the policies are well-trained, we evaluate them based on their performance

by fine-tuning the base learner on the evaluation set.

Architecture: We use a modified LeNet as the base neural network architecture with

4 convolutional layers and 2 fully connected layers. Both of the convolutional and fully

connected linear operations are followed by a ReLU non-linear operation. The first

convolutional layer has 16 filters, with a window size of 10× 10, which is followed

by 2× 2 max pooling. The second convolutional layer has 32 filters, with a window

size of 5× 5, and followed by 2× 2 max pooling. The third convolutional layer has

32 filters, with a window size of 4× 4, which is followed by 2× 2 max pooling. The

fourth convolutional layer has 64 filters, with a window size of 4×4. We then flatten

the features map and follow witha fully connected layer with 512 neurons and number

of classes as output size.

The deletion and stopping networks are fully connected feedforward networks.

5.7. Experiments 81

Base Learner
Pretrain
Subset

Learning
Source

Knowledge

Learning to
Finetune
Subset

Meta-learn
Transferable
Knowledge

Background Set

Unseen
Fine-tuning
Evaluation

Subset

Transfer
Meta-learned
Knowledge

Evaluation Set

Figure 5.1: Illustration of learning transferable fine-tuning rule on an Omniglot dataset.

Note that this is a class-wise split, so the label space of each subset is disjointed. Each

class contains its own train/test splits.

The deletion policy is composed of 2 hidden layers with entering the neural features

with 91 dimensional after inputting the 91-dimensional neural input features, and 1-

dimensional output corresponding to the deletion scores for the corresponding neu-

ron.The first hidden layer has 50 neurons, while the second hidden layer has 20 hid-

den units. The stopping policy contains 2 layers, and each layer has 10 hidden units.

Moreover, the stopping policy has 2 output units, which correspond to the stopping

and continuing actions.

Settings: For the base network, we used the Adam optimiser with the Pytorch default

setting, and then set the initial learning rate η = 0.0001 to both train from scratch and

fine-tune the target problem. Learning the general character recognition knowledge

from scratch, the network is trained by a stochastic gradient descent with 50 epochs

and a batch size of 256. After the network is well-trained, we apply the deletion and

stopping policies to fine-tune the model on the target set with 60 epochs, where the

epochs correspond to the total RL time steps. Here, we simplify the fine-tuning process

by replacing the SGD with a batch gradient descent.

Regarding the deletion and stopping networks, both use the Adam optimiser by

setting the initial learning rate η = 0.001. They are trained with 10000 reinforcement

learning iterations. For the reinforcement learned deletion policy, the discount factor is

set to γ = 0.99 and K = 10 neurons are deleted in every RL time step. Moreover, they

are trained by observing the transfer learning experience of any-way (5-15 characters

cross languages in the training subsets) and any-shot (0.05%-95% of training samples,

and the rest are grouped as a test set) from the given training subset. Here, any-way

82 Chapter 5. Learning to Fine-tune

and any-shot mean that at each sample of a task in the multi-task training, the number

of ways of performing multi-class recognition, and number of samples for fine-tuning

are chosen randomly to promote invariance in these factors. It enables these policies

to learn a general knowledge for both few-shot and middle-shot tuning tasks.

In each RL iteration, we randomly sample 4 conditions of ways and shots from the

training subset. For each condition, we sample 8 different trajectories. In total, the RL

collected training samples from these 32 rollouts to train both deletion and stopping

networks. For the deletion policy, we average the logarithm for numerical stability

logp(ãi) =
1
K ∑

K
k log(π(aIk,t)).

Baseline: We compare the proposed framework with 3 baseline methods; we first

compare it with the random deletion policy, which is a simple baseline that allows

us to verify whether our model has learned a smart neuron deletion policy, or if any

random network shrinking strategy is adequate. Subsequently, we compare it with

the normal fine-tuning process, and then compare the normal fine-tuning process with

dropout. Both of these two baseline methods are the SGD updates without the tuning

network architecture. The difference is that the dropout baseline introduces noise and

redundancy to improve the generalisation performance.

Evaluation Metrics: To evaluate effectiveness and efficiency, we first use the ac-

curacy learning curve as an evaluation metric to measure and evaluate both learning

speed and the asymptotic performance on the unseen evaluation subset. Meanwhile,

RL should optimise testing accuracy on the learning-to-fine-tune subset. We next adopt

an evaluation metric to measure both accuracy and compression rate during the fine-

tuning process. Ideally, the base learner can achieve a better performance at a higher

compression rate. This metric evaluates the performance of our architecture tuning

task.

5.7.2 Results

We now evaluate the presented method in terms of effectiveness and efficiency. Ac-

cording to the Figure 5.2, the results indicate that our method achieves faster conver-

gence speed and better performance on a fine-tuning task. It is important to note that

this evaluation is for fine-tuning a novel held-out task that is completely different from

any task observed during training. In addition, we evaluate the proposed scheme on

an unseen initial condition of the base learner. Thus, a good performance here verifies

that our method is able to generalise to unseen language domains within Omniglot.

5.7. Experiments 83

0 10 20 30 40 50 60
Epoch

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Ac
cu
ra
cy

Del
Del+Stop0
random
finetune
dropout
Del+Stop5

(a) 1-Shot

0 10 20 30 40 50 60
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu
ra
cy

Del
Del+Stop0
random
finetune
dropout
Del+Stop5

(b) 3-Shot

0 10 20 30 40 50 60
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu
ra
cy

Del
Del+Stop0
random
finetune
dropout
Del+Stop5

(c) 5-Shot

0 10 20 30 40 50 60
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu
ra
cy

Del
Del+Stop0
random
finetune
dropout
Del+Stop5

(d) 65% Training Samples

Figure 5.2: Accuracy and learning speed evaluation. The vertical lines indicate the

epoch of stopping deletion. Del: deletion policy. Del+Stop 0: Deletion and stopping

policy, and the stopping label is according to Acct+∆ − Acct−1 < 0.1,where ∆ = 0.

Del+Stop 0: Deletion and stopping policy, and the stopping label is according to

Acct+∆−Acct−1 < 0.1,where ∆ = 5. random: random deletion without stopping

Accuracy vs Learning Speed: We first analyse the result of the proposed deletion

and stopping scheme in a few shot-learning settings. According to the Figure 5.2

(a,b,c), the proposed scheme performs consistently better than other competitors over

the entire RL time horizon. This indicates that deleting the useless neurons improves

both generalisation and learning speed in few-shot fine-tuning. Although the dropout

can alleviate this overfitting by regularising the network during the fine-tuning process,

it still learns slower and worse than the proposed structure tuning scheme. Thus, it is

necessary to prune the size of a complex network to improve the fine-tuning process.

We next investigate the presented method’s performance in a middle-shot learning

setting (65% of samples of a given dataset are used to fine-tune, while the rest are

treated as test samples). As illustrated in the Figure 5.2 (d), the presented method

trains the model faster and, as a result, it performs slightly better than the dropout on

84 Chapter 5. Learning to Fine-tune

0.0 0.2 0.4 0.6 0.8 1.0
Compression Ratio

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
Ac

cu
ra
cy

Del
Del+Stop0
random
finetune
dropout
Del+Stop5

(a) 1-Shot

0.0 0.2 0.4 0.6 0.8 1.0
Compression Ratio

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu
ra
cy

Del
Del+Stop0
random
finetune
dropout
Del+Stop5

(b) 3-Shot

0.0 0.2 0.4 0.6 0.8 1.0
Compression Ratio

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu
ra
cy

Del
Del+Stop0
random
finetune
dropout
Del+Stop5

(c) 5-Shot

0.0 0.2 0.4 0.6 0.8 1.0
Compression Ratio

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu
ra
cy

Del
Del+Stop0
random
finetune
dropout
Del+Stop5

(d) 65% Training Samples

Figure 5.3: Evaluation of both Accuracy and Compression Rate

the target problem. This demonstrates that removing the neurons also provides lesser

benefits to the fine-tuning process when a larger dataset is available. Nevertheless,

this is not the only benefit of our approach. While the fine-tuning competitor keeps

the same network size, our architecture tuning method has the additional benefit of

compressing the architecture.

In addition, the Figure 5.2 further illustrated that stopping policy learns a conser-

vative strategy that prefers to stop the deletion earlier. We can see that the labelling

oracle with long-term consideration ∆ = 5 is able to train a stopping policy to be less

conservative. As shown in the Figure 5.2 (d), the long-term consideration oracle could

improve slightly better performance on the middle shot learning when the fine-tuning

process is finished.

Accuracy vs Compression Rate: We now analyse the presented method on the eval-

uation metric of the accuracy vs compression rate for considering the network capacity.

According to the Figure 5.3, both learned and random deletion policies reduce the size

of the network by removing most of the neurons. However, these two approaches will

continue deleting all neurons, resulting in an unstable performance without realising

5.8. Summary 85

the performance is decreased. As a result of these deletion policies, the model will

perform poorly since the network is over-pruned. Conversely, the proposed deletion

and stopping scheme perform the classification well and are able to predict the spe-

cific compression rate at which to stop without over-pruning the size of the network.

It is straightforward that the long-term consideration stopping policy would encour-

age to delete more neurons on the network. This leads to a higher compression rate

than the stopping policy with short-term consideration. Meanwhile, the fine-tuning

and dropout policies achieve reasonable accuracy, but do not provide any compression

benefit. Thus, we show that learning when to stop the deletion is helpful to stabilise

the model’s performance.

5.8 Summary

In this chapter, we propose a meta-learning approach to learn how to fine-tune the

neural network for transfer learning tasks. We propose to learn how to delete the

neurons to prune the size of the network, as well as learn when to stop the pruning to

stabilise the architecture tuning process. This enables the architecture and weight to

be updated simultaneously. In the experiment, we verified that the presented method

could generalise well on different domains and different well-trained conditions with

the same architecture. In addition, we empirically show that this structure pruning

scheme could improve the fine-tuning process in terms of efficiency and effectiveness.

Chapter 6

Conclusion and Future Work

6.1 Summary

This thesis could be summarised into two major goals. The first goal was to present

meta-learning about the active learning process for improving the efficiency of machine

data annotation for machine learning. In pursuit of the first goal, we first identified the

existence of a non-stationary phenomenon in active learning criterion selection when

learning active learning online. We subsequently developed a non-stationary bandit

learning algorithm with expert advice, which adds a periodic restart scheme to re-

explore and re-exploit the best expert for the given bandit tasks. This method is robust

on non-stationarity, and we also proved a worst-case bound to guarantee the perfor-

mance. In our experiment, the developed dynamic ensemble active learning approach

is more data efficient for non-stationary datasets than both alternative approaches to

static ensemble online active learning and dynamic ensemble heuristics.

Next, we developed a new learning transferable active learning framework which

is able to learn a non-myopic and transferable active learning policy that can apply to

any unseen dataset without constraint on the number of dimensions. To achieve this,

we presented a framework built on a reinforcement learned policy and a meta-network

to dynamically synthesise the policy given a target dataset. The reinforcement learned

policy provides a non-myopic solution to an active learning task. The meta-network

adapts the policy to a given dataset of any dimensionality by inputting a dataset em-

bedding, and mapping this into the policy of the appropriate dimension for a target

dataset.

We show that the framework created by combining these two networks achieves

better performance than conventional active learning algorithms. Thus, learned non-

87

88 Chapter 6. Conclusion and Future Work

myopic and transferable knowledge can help improve the data efficiency of the active

learning task. Another significant result in the ablation study is that the expert features

used in the framework contribute little to the final task. This means that the framework

is able to learn effective non-myopic AL criteria almost entirely driven by raw data.

The second goal of this thesis is to present learning transfer learning to improve

both efficiency and efficacy in transfer learning problems. The presented algorithm

meta-learns the fine-tuning process, which is the special case of transfer learning. This

allows meta-level knowledge to be transferable to the new unseen transfer learning

tasks. Unlike the previous other hyperparameter optimisation techniques, our pre-

sented meta-learning approach provides a non-myopic update rule for the architecture

of the network by deleting useless neurons. Deleting useless neurons can improve the

networks generalisation by reducing the models complexity. This technique is useful

when fine-tuning a large capacity pre-trained base network for a new target problem.

The results indicate that fine-tuning with the deletion policy elicits a reasonable perfor-

mance from either few-shot or middle-shot learning, in terms of higher accuracy and

less training iterations.

6.2 Limitation and Future Work

Together, these meta-learning techniques contribute to the efficiency and efficacy of

the full machine learning pipeline, which covers both data annotation and knowledge

transfer. This is in contrast to prior work that focuses on meta-learning the core su-

pervised learning problem. However, there are still several limitations. Below, we

discuss both of the open questions and their future direction to improve and extend the

presented methods.

6.2.1 Learning Active Learning Online

As presented in Chapter 3, conventional active learning is improved by meta-learning

the best criterion for each dataset at each timestep. The adopted meta-learning ap-

proach is a cold-start online bandit learning algorithm that explores different winning

criterion during the active learning process. This cold-start scheme does not exploit any

previous knowledge of criteria success that may be available, and instead learns each

dataset from scratch. In addition, the proposed bandit algorithm with restart scheme

will periodically reset the belief of the best criterion and re-explore, thus potentially

6.2. Limitation and Future Work 89

wasting time on unnecessary exploration when the best arm is not changing. More-

over, the re-start schedule needs to be set empirically. Both the cold-start and restart

schemes leave the question about how to further improve the efficiency without fre-

quent re-exploration either cross or within the dataset.

One possible direction to reduce the frequency of re-exploration within a dataset is

to upgrade the non-stationary-based algorithm using a change point detection scheme.

Unlike the restart scheme, which periodically resets the parameters, the parameters

should only be reset when necessary. This could cover both stationary and non-

stationary environments efficiently by attempting to detect when environmental changes.

6.2.2 Learning Transferable Active Learning Policy

Although we achieved good efficiency for the tabular-style UCI datasets, our presented

framework is weak on image datasets. The presented framework is still weak on image

datasets. This may be due to the fact that the current dataset embedding is more suitable

for tabular rather than image-style data. A potential route to address this could be

to learn a raw dataset-embedding, for example with deep set-embedding, rather than

using a hand-crafted dataset embedding.

6.2.3 Transferable and Online Active Learning

With regard to the active learning component in general, our contributions to dynamic

online ensemble learning and transferable policy learning address different challenges

of the AL problem. An ideal solution would provide both of the favourable properties

of these algorithms simultaneously. This could be achieved, for example, by learning

to fine-tune the MLP-GAL policy for a target dataset on the fly. In other words, the

MLP-GAL policy should be treated as a warm-start and extended with the ability to

update online, as in the DEAL-REXP4 algorithm.

6.2.4 Learning to Fine-tune

Our final goal with learning to fine-tune is to update both architecture and weight si-

multaneously to achieve a better performance and good structure during the fine-tuning

phase. We have thus far only implemented neuron deletion, with the motivation of re-

moving unrelated neurons from a more general source. However, it may be beneficial

to support neuron addition to represent specialist information about a more specific

90 Chapter 6. Conclusion and Future Work

target. Additionally, we currently only learn how to update the architecture. There-

fore, the next step could be to unify this algorithm with existing (parameter-level)

learning-to-learn approaches, and thus improve both the parameter and architecture

update strategies.

Finally, this work provides a basic of architecture tuning, which could also be

developed for more general automatic online learning of network architecture when

learning from scratch.

Bibliography

Abe, N. and Mamitsuka, H. (1998). Query learning strategies using boosting and

bagging. In ICML.

Andrychowicz, M., Denil, M., Gómez, S., Hoffman, M. W., Pfau, D., Schaul, T.,

Shillingford, B., and de Freitas, N. (2016). Learning to learn by gradient descent by

gradient descent. In NIPS.

Ashok, A., Rhinehart, N., Beainy, F., and Kitani, K. M. (2017). N2n learning: Network

to network compression via policy gradient reinforcement learning. In ICLR.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002a). Finite-time analysis of the multi-

armed bandit problem. Machine Learning, 47(2-3):235–256.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. (2002b). The nonstochastic

multiarmed bandit problem. SIAM Journal on Computing, 32(1):48–77.

Ba, L. J. and Caruana, R. (2014). Do deep nets really need to be deep? In NIPS.

Bachman, P., Sordoni, A., and Trischler, A. (2017). Learning algorithms for active

learning. In ICML.

Baker, B., O. Gupta, N. N., and Raskar, R. (2017). Designing neural network architec-

tures using reinforcement learning. In ICLR.

Balaji, Y., Sankaranarayanan, S., and Chellappa, R. (2018). Metareg: Towards domain

generalization using meta-regularization. In NIPS.

Baram, Y., El-Yaniv, R., and Luz, K. (2004). Online choice of active learning algo-

rithms. Journal of Machine Learning Research, 5:255–291.

Barber, D. (2012). Bayesian Reasoning and Machine Learning. Cambridge University

Press, New York, NY, USA.

91

92 Bibliography

Bertinetto, L., Henriques, J. a. F., Valmadre, J., Torr, P., and Vedaldi, A. (2016). Learn-

ing feed-forward one-shot learners. In NIPS.

Besbes, O., Gur, Y., and Zeevi, A. (2014). Stochastic multi-armed-bandit problem with

non-stationary rewards. In NIPS.

Besbes, O., Gur, Y., and Zeevi, A. J. (2015). Non-stationary stochastic optimization.

Operations Research, 63:1227–1244.

Beygelzimer, A., Langford, J., Li, L., Reyzin, L., and Schapire, R. E. (2011). Contex-

tual bandit algorithms with supervised learning guarantees. In AISTATS.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Sci-

ence and Statistics). Springer-Verlag, Berlin, Heidelberg.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines.

ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27. Software

available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

Chattopadhyay, R., Wang, Z., Fan, W., Davidson, I., Panchanathan, S., and Ye, J.

(2012). Batch mode active sampling based on marginal probability distribution

matching. ACM Transactions on Knowledge Discovery from Data, 7(13).

Chowdhury, A. R., Lin, T., Maji, S., and Learned-Miller, E. (2016). One-to-many face

recognition with bilinear cnns. In WACV.

Chu, H. and Lin, H. (2016). Can active learning experience be transferred? In ICDM.

Chu, W., Li, L., Reyzin, L., and Schapire, R. E. (2011). Contextual bandits with linear

payoff functions. In AISTATS.

Cohn, D. A., Ghahramani, Z., and Jordan, M. I. (1995). Active learning with statistical

models. In NIPS.

Cui, Y., Song, Y., Sun, C., Howard, A., and Belongie, S. (2018). Large scale fine-

grained categorization and domain-specific transfer learning. In CVPR.

Cun, Y. L., Denker, J. S., and Solla, S. A. (1990). Optimal brain damage. In NIPS.

Donmez, P., Carbonell, J. G., and Bennett, P. N. (2007). Dual strategy active learning.

In ECML.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Bibliography 93

Evgeniou, T. and Pontil, M. (2004). Regularized multi–task learning. In SIGKDD.

Fan, H., Zheng, L., Yan, C., and Yang, Y. (2018). Unsupervised person re-

identification: Clustering and fine-tuning. ACM Transactions on Multimedia Com-

puting, Communications, and Applications, 14(4):83:1–83:18.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). Liblinear:

A library for large linear classification. J. Mach. Learn. Res., 9:1871–1874.

Fei-Fei, L., Fergus, R., and Perona, P. (2006). One-shot learning of object categories.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4):594–611.

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast

adaptation of deep networks. In ICML.

Ganin, Y. and Lempitsky, V. (2015). Unsupervised domain adaptation by backpropa-

gation. In ICML.

Garivier, A. and Moulines, E. (2008). On upper-confidence bound policies for non-

stationary bandit problems. In ALT.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. The MIT Press.

Grant, E., Finn, C., Levine, S., Darrell, T., and Griffiths, T. L. (2018). Recasting

gradient-based meta-learning as hierarchical bayes. In ICLR.

Greensmith, E., Bartlett, P. L., and Baxter, J. (2004). Variance reduction techniques

for gradient estimates in reinforcement learning. Journal of Machine Learning Re-

search, 5:1471–1530.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection.

Journal of Machine Learning Research, 3:1157–1182.

Ha, D., Dai, A. M., and Le, Q. V. (2017). Hypernetworks. In ICLR.

Han, S., Mao, H., and Dally, W. J. (2015). Deep compression: Compressing deep

neural network with pruning, trained quantization and huffman coding. In ICLR.

Hassibi, B. and Stork, D. G. (1993). Second order derivatives for network pruning:

Optimal brain surgeon. In NIPS.

94 Bibliography

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image

recognition. In CVPR.

He, Y., Lin, J., Liu, Z., Wang, H., Li, L., and Han, S. (2018). AMC: automl for model

compression and acceleration on mobile devices. In ECCV.

Hochbaum, D. S. and Shmoys, D. B. (1985). A best possible heuristic for the k-center

problem. Mathematics of Operations Research, 10(2):180–184.

Hospedales, T. M., Gong, S., and Xiang, T. (2012). A unifying theory of active dis-

covery and learning. In ECCV.

Hospedales, T. M., Gong, S., and Xiang, T. (2013). Finding rare classes: Active learn-

ing with generative and discriminative models. IEEE Transactions on Knowledge

and Data Engineering, 25(2):374–386.

Hsu, W.-N. and Lin, H.-T. (2015). Active learning by learning. In AAAI.

Huang, G., Liu, Z., v. d. Maaten, L., and Weinberger, K. Q. (2017). Densely connected

convolutional networks. In CVPR.

Huang, S.-J., Jin, R., and Zhou, Z.-H. (2010). Active learning by querying informative

and representative examples. In NIPS.

Jaderberg, M., Vedaldi, A., and Zisserman, A. (2014). Speeding up convolutional

neural networks with low rank expansions. In BMVC.

Joshi, A. J., Porikli, F., and Papanikolopoulos, N. (2009). Multi-class active learning

for image classification. In CVPR.

Kakade, S. M., Shalev-shwartz, S., and Tewari, A. (2008). Efficient bandit algorithms

for online multiclass prediction. In ICML.

Kapoor, A., Grauman, K., Urtasun, R., and Darrell, T. (2007). Active learning with

gaussian processes for object categorization. In ICCV.

Kober, J. and Peters, J. R. (2009). Policy search for motor primitives in robotics. In

NIPS.

Konyushkova, K., Sznitman, R., and Fua, P. (2017a). Learning active learning from

data. In NIPS.

Bibliography 95

Konyushkova, K., Sznitman, R., and Fua, P. (2017b). Learning active learning from

data. In NIPS.

Korattikara Balan, A., Rathod, V., Murphy, K. P., and Welling, M. (2015). Bayesian

dark knowledge. In NIPS.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with

deep convolutional neural networks. In NIPS.

Kumar, A. and Daumé, III, H. (2012). Learning task grouping and overlap in multi-task

learning. In ICML.

Kupcsik, A. G., Deisenroth, M. P., Peters, J., and Neumann, G. (2013). Data-efficient

generalization of robot skills with contextual policy search. In AAAI.

Langford, J. and Zhang, T. (2008). The epoch-greedy algorithm for multi-armed ban-

dits with side information. In NIPS.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lee, Y. and Choi, S. (2018). Gradient-based meta-learning with learned layerwise

metric and subspace. In ICML.

Lewis, D. D. and Gale, W. A. (1994). A sequential algorithm for training text classi-

fiers. In SIGIR.

Li, D., Yang, Y., Song, Y., and Hospedales, T. M. (2018). Learning to generalize:

Meta-learning for domain generalization. In AAAI.

Li, K. and Malik, J. (2017). Learning to optimise. In ICLR.

Liu, H., Simonyan, K., and Yang, Y. (2018). Darts: Differentiable architecture search.

In ICLR.

Loy, C. C., Hospedales, T. M., Xiang, T., and Gong, S. (2012). Stream-based joint

exploration-exploitation active learning. In CVPR.

Luo, P., Zhu, Z., Liu, Z., Wang, X., and Tang, X. (2016). Face model compression by

distilling knowledge from neurons. In AAAI.

96 Bibliography

Mishra, N., Rohaninejad, M., Chen, X., and Abbeel, P. (2018). A simple neural atten-

tive meta-learner. In ICLR.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, Inc., New York, NY, USA.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and

Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning.

In ICML.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,

C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and

Hassabis, D. (2015). Human-level control through deep reinforcement learning.

Nature, 518:529–533.

Muandet, K., Balduzzi, D., and Scholkopf, B. (2013). Domain generalization via

invariant feature representation. In ICML.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.

Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on

Knowledge and Data Engineering, 22(10):1345–1359.

Pang, K., Dong, M., Wu, Y., and Hospedales, T. M. (2018a). Dynamic Ensemble

Active Learning: A Non-Stationary Bandit with Expert Advice. In ICPR.

Pang, K., Dong, M., Wu, Y., and Hospedales, T. M. (2018b). Meta-learning trans-

ferable active learning policies by deep reinforcement learning. In ICML AutoML

2018.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Des-

maison, A., Antiga, L., and Lerer, A. (2017). Automatic differentiation in pytorch.

ICLR.

Peters, J. and Schaal, S. (2008). Reinforcement learning of motor skills with policy

gradients. Neural Networks, 21(4):682–697.

Ravi, S. and Larochelle, H. (2017). Optimization as a model for few-shot learning. In

ICLR.

Bibliography 97

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Tan, J., Le, Q. V., and

Kurakin, A. (2017). Large-scale evolution of image classifiers. In ICML.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. Annals of

Mathematical Statistics, 22(3):400–407.

Romero, A., Carrier, P. L., Erraqabi, A., Sylvain, T., Auvolat, A., Dejoie, E., Legault,

M., Dube, M., Hussin, J. G., and Bengio, Y. (2017). Diet networks: Thin parameters

for fat genomics. In ICLR.

Roy, N. and McCallum, A. (2001). Toward optimal active learning through sampling

estimation of error reduction. In ICML.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers.

IBM Journal of Research and Development, 3(3):210–229.

Settles, B. (2009). Active learning literature survey. Computer Sciences Technical

Report 1648, University of Wisconsin–Madison.

Seung, H. S., Opper, M., and Sompolinsky, H. (1992). Query by committee. In COLT.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-

scale image recognition. CoRR, abs/1409.1556.

Snell, J., Swersky, K., and Zemel, R. (2017). Prototypical networks for few-shot learn-

ing. In NIPS.

Strehl, A. L., Mesterharm, C., Littman, M. L., and Hirsh, H. (2006). Experience-

efficient learning in associative bandit problems. In ICML.

Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H., and Hospedales, T. M. (2018).

Learning to compare: Relation network for few-shot learning. In CVPR.

Sutton, R. S. and Barto, A. G. (1998). Introduction to Reinforcement Learning. MIT

Press, Cambridge, MA, USA, 1st edition.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-

houcke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In CVPR.

Tai, C., Xiao, T., Wang, X., and E, W. (2015). Convolutional neural networks with

low-rank regularization. In ICLR.

98 Bibliography

Tong, S. and Koller, D. (2002). Support vector machine active learning with applica-

tions to text classification. In ICML.

Wang, Z., Du, B., Zhang, L., Zhang, L., and Jia, X. (2017). A novel semisupervised

active-learning algorithm for hyperspectral image classification. IEEE Transactions

on Geoscience and Remote Sensing, 55(6):3071–3083.

Wang, Z. and Ye, J. (2015). Querying discriminative and representative samples for

batch mode active learning. ACM Transactions on Knowledge Discovery from Data,

9(3):17:1–17:23.

Wei, C.-Y., Hong, Y.-T., and Lu, C.-J. (2016). Tracking the best expert in non-

stationary stochastic environments. In Lee, D. D., Sugiyama, M., Luxburg, U. V.,

Guyon, I., and Garnett, R., editors, NIPS.

WEI, Y., Zhang, Y., Huang, J., and Yang, Q. (2018). Transfer learning via learning to

transfer. In ICML.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine Learning, 8(3-4):229–256.

Woodward, M. and Finn, C. (2017). Active one-shot learning. CoRR, abs/1702.06559.

Xu, Z., Yu, K., Tresp, V., Xu, X., and Wang, J. (2003). Representative sampling for

text classification using support vector machines. In ECIR.

Yang, J., Yan, R., and Hauptmann, A. G. (2007). Cross-domain video concept detec-

tion using adaptive svms. In ACMMM.

Yu, J. Y. and Mannor, S. (2009). Piecewise-stationary bandit problems with side ob-

servations. In ICML.

Yu, K., Bi, J., and Tresp, V. (2006). Active learning via transductive experimental

design. In ICML.

Yu, X., Liu, T., Wang, X., and Tao, D. (2017). On compressing deep models by low

rank and sparse decomposition. In CVPR.

Zhao, T., Hachiya, H., Niu, G., and Sugiyama, M. (2011). Analysis and improvement

of policy gradient estimation. In NIPS.

Bibliography 99

Zhu, X. and Wu, X. (2004). Class noise vs. attribute noise: A quantitative study.

Artificial Intelligence Review, 22(3):177–210.

Zhu, X., Wu, X., and Yang, Y. (2004). Error detection and impact-sensitive instance

ranking in noisy datasets. In AAAI.

Zoph, B. and Le, Q. V. (2017). Neural architecture search with reinforcement learning.

In ICLR.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2017). Learning transferable archi-

tectures for scalable image recognition. CoRR, abs/1707.07012.

	cover sheet

