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INTRODUCTION 

Phase shift analyses of pion -nucleon scattering have led 

to the discovery of a large number of excited baryonic states 

having positive and negative parity. A fascinating challenge 

is presented by the classification of these states, and the 

search for the fundamental laws of Nature which determine their 

spectrum. 

Previous study of this problem has taken place along two 

different lines. In one, the use of symmetry groups is made, 

and the pion -nucleon resonances are allocated to different re- 

presentations of these groups. The other has been the study of 

the underlying forces involved, including dynamical models such 

as bootstrap theory. Both these approaches have been adequately 

discussed in the report of the Trieste Conference (19651, and 

are not treated further in this work. 

Recently, the importance of complex angular momentum anó_ 

Regge theory in this problem was demonstrated by Barger and 

Cline( 20), who showed that the known pion- nucleon resonances 

could be fitted on families of Regge trajectories. 

An important theoretical concept in baryonic systems is 

MacDowell symmetry(1) which is a relationship between parity 

conserving partial wave amplitudes for one parity at positive 

energy, to the wave having opposite parity and negative energy. 

The application of MacDowell symmetry and Regge theory to the 

pion nucleon system shows that two Regge trajectories a(+-w) 

may be defined. The physical Regge recurrences on a( +w) have 



one parity, and the trajectory a( -w) corresponds to a trajec- 

tory in which the Regge recurrences have opposite parity. 

The work of Barger and Cline is discussed in detail in 

Chapter II, and from the experimental fits it is shown that 

the two trajectories a(w), a( -w) are approximately the same, 

so parity degeneracy occurs. There are some notable exceptions 

to this result. Several states predicted by this parity degeneracy 

are missing, such as the lowest member of the highest ranking Nß 

trajectory (the S 
11)' 

the lowest member of the Na (I' 
13 )9 

and 

the lowest members of the A.. (D73, G,7) . The usual spectro- 

scopic notation 
L2I,2J 

is used in the classification of the 

baryons. 

This thesis is concerned with a study of the pion- nucleon 

resonances in the framework of Regge theory and MacDowell symmetry. 

Attempts .are made to explain the form of the Regge trajectories 

for the system, and special attention is paid to the missing mass 

states. The scope has been restricted to the nucleon Na and Nß 

trajectories, but the theory may be generalised to other trajec- 

tories using SU(3) symmetry( 41) . 

In Chapter I the concept of MacDowell symmetry is stated and 

proved for the parity conserving partial wave amplitudes of Gell- 

Mann, Goldberger, Low and Zachariasen 
(2) 

. A discussion of 

generalised MacDowell symmetry which depends on field theoretic 

arguments has been given by Hara(5). The approach to MacDowell 

symmetry used in this thesis depends on crossing symmetry, and 

to the author's knowledge this has not been done before. 

Chapter II is an introduction to pion- nucleon scattering 



and the application of MacDowell symmetry and Regge poles. The 

original work in this thesis starts at section 2.5, in which a 

discussion of Riemann sheets and their application to missing 

mass states, is given. 

In Chapter III a potential scattering model is described, 

and its possible applications to the pion- nucleon system and 

missing mass states is discussed. 

Chapter IV is concerned with parametrisations of Regge tra- 

jectories, and a critical discussion is given of models which 

produce distortions of the Regge trajectory near the missing mass 

states. 

Finally, in Chapter V possible dynamical models for fernion 

Regge trajectories are discussed, and a review is given of their 

applications to the higher pion- nucleon resonances. 
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The proof of this takes place as follows. 

1.2 Definition of Pari t- Conservino' Helicity Lïimlitudcs 

In this section, the notation of GGLZ 2' is followed. 

Consider scattering processes of the type a + + d, 

where a, b, c, d describe both the particle and its helicity 

state. If a ket /JE, , cd> is defined for the final state, 

the parity (P) operator has the effect:- 

Sc I JI:I, cd> = rcrc.I (-1)J - - ;d 
JI:i, -c - d> 

(see Jacob & "e'ick(3) ), where are the intrinsic parities 

of e and d, and S 
c' 

3d the spins. 

From this result, parity conserving helicity states are 

defined by GGLZ as follows 

iL1J1, 
s +6 -v 

1 

JI,2, cd+ - cd 110d(-1 
c d 

/JE -c-d> 

where P Im, cc! = 
± 

(-1)J- 
a 

v = 14 for J half integral 

v = 0 for J integral 

Partial wave helicity amplitudes are defined by:- 

1 

Fcd ab _ EScd,a'b 4cd, ab /(2i) , 

(kab kcd ) 

where k3b kcd are the c.m. momenta for ab, cd respectively, 

and 'cd;áb is the S matrix element for the process. 

Since F has no matrix elements between + and - states 

if parity is conserved, parity conserving partial wave amplitudes 
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are defined by:- 

+JT:Z, cdI Fi JM,ab> = <cd, FJf ,:p} ± , 
Sc+Sd-v 

- - 1 (-- ì 

x C -c-d, FJ¡ ab> 

(omitting the JM terms in the kets). 

Jacob and Wick(3) define helicity amplitudes by 

fcd,ab() _ cd `; (2J <cd +1) I FJI ab> d (G_) 
ab T 

X = a -b, µ = c -d; d7j41(98) are the d functions of the 

rotation matrix (see Edmonds(4), p. 53). 

9r, is the direct channel scattering angle. In the c.m. system 

9 = r2st s .2 + (m 2 - m 2 
2 - r 2 cos ¡ 

5 (. 1 a b 
)(lac 

a 
(Sn) 

S2ab = Cs - (m - )2 L - (ma + l'2 24s kab a 

S 
ed 

t-s - (m 
c 

- m d)2JL s - (m + md)z j = LFs kcd 

s, t, u are the usual Mandelstam variables for the reaction. 

The fcd,ab 
helicity amplitudes are related to the 

differential cross -section by:- 

= d (fcd,abJ2 

s k 1? 

ab 
- 87c 

( kab) fcd ab 
are defined, If new amplitudes Tcd 

' cd ' 

then 



T 

dQ- y.cd cct, ab 

d-Q . I`'ab 81c; 

'cd, ab cd, ab = (244 
0 0 0 0 
a 

cd, ab . 

(2p 2pb 2pi 2pd) 

9 

_2 
= , and 

L ì.â(pc+pcl-pa-Pb) 

From field theoretic armaments, Hara(5) has shown that 

Tcd,ab 
may be expressed as: 

Tcd,ab = B(s,t,u) x ¡Polynomial in p°, p'2, p'2,pp', 

sin , cos 
sJ 

xr p2 or p'2 .] 

i 
0 

x [+rni] 
i : ferrion 

( A ) 

where pi = (p°, is is the four momentum of the i -th particle. 

2 2 2 = 
k2 

p = ab, p 
' 

cd 

= 0 if 1 a pb Tic vl d 
1 

p - 1 if 
11a 11b 11c 

rd = -1 

The partial wave expansion of `'-'cd,ab is 

T 
cd,ab = :5: ( 2J+1) <cd I P' ab> dj (6s ) 

J 
.i 

where d (9 _ +1J+. ) : J-A ) : ' cos Gs/ 2+ sin 8 /2 !-'-1 

si 
: ó J s L(J+)(J_L)j 

p( 
I A-! 4 9 1X+0 ) 

J-X ( c o s Gs) 

(see Edmonds (4), p. 58). 
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From Hara's result (A), the function 

cd, ab - tj- 
cose 

s/ 
- µ 'A+1 J 2 s in9s2 Tcd, ab (B) 

has no singularities in cos 9s from the d function which 

arises due to spin. Since t -cos 6s, T'cd ab 
has only 

dynamical t singularities and satisfies a fixed s dispersion 

relation in t. 

Finally, the parity conserving helicity amplitudes of 

GGLZ are defined by; 

mcd, ab = rJG cos9s/2 r sin8s/2 -A-; ca, ab 

+ N+ s 
c+s d-v % 

-(-1) m rcd (-1) C 2 sin9C/2 2 cos8s/2 
_ _ c-d,á 

where Xm = max ( /X), (;4 ). 

The partial wave amplitudes are related to the T's by 

1 cd tab 

F 
J± 
cd, ab 

- 

= 

9t. 

1 

J ( 

+1 

-1 

+C 

dz 
16,tV 

+ e (z )Fcd 
> ab + 

eJ ( z) l 
cd > ab 

0 J+( z )T± + CJ ( z) T+ ( z) . 

Aµ cd, ab Nka cd, ab 

The ' +' sign signifies parity (-1) 12, and the ' -' sign parity 

- ( -1)`T -, and the 'e' and 'c' functions are as defined in 

ref. 2 (see Appendix I). 

From equation (B) above, Tcd,ab has no kinematic singu- 

larities in t, and as before, satisfies a fixed s dispersion 

relation in t. 
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1.3 Analyticity of 
Tcd,ab 

in s. 

Let the direct (or s) channel denote the reaction 

a +b-s, c +d. The 't' channel reaction will be : 

D + c +A , 

where D, A denote the antiparticles of d,a, and their 

helicities. 

The s and t channel amplitudes are related by crossing 

symmetry (Trueman & Wick(6)) : 

J J J J 

l'cd,ab aJa (fia) dbbb (fib) c' (^c) dDad (mod) ] 
c'Ar,D'br 

T 
t 

c'A,D'b 

where 'X'a, d are defined in the above reference 

(see Appendix I), and Ts, Tt denote s and t channel 

amplitudes respectively. 

The crossing relations for the T ''s (defined in equation (B), 

'sec. 1.2) are : 

s s = ( J sin Ja) 
cd, ab 

r 
s 

- îL+E l 

1 A' b' c' D' 

dJá ( )dbi ()dt (x )dJd (%l' 
) 

CJG 
sin'> 

ra r-,!/ 2cos-' )1"kt+t 
Ata a b b c c c D d d t, t t 

. 

t 

c'A'D'b 

where W' = D - b, fia' = C - At and sin Ss, sin 91; are given 

in Appendix I. 

In section (1.2) T's was shown to have only dynamical 



singularities in t, so has only dynamical singularities 

in s. Hence the kinematic singularities of T's in s are 

entirely contained in the crossing matrix elements which are 

known functions of s. Mixed s t singularities have been shown 

to cancel (see L.L. (6)) 

The negative helicity states in the above summation may be 

eliminated by the parity symmetry relation (see Jacob J: *Trick(3) ). 

where 

nctAt - 
Tit 

1 = 2 
p p 7rn.¡1c (-1)Jc.1-J Jb 

ti 
D71b 71 Drib 

Let the crossing matrix relating T's and T't be M. 

Then 

T's = t 
Tcd,ab A'b'c'D' ctAt Dtbt T 

it 
D413e 

tt ctt D'b' 
Tit 

where Ai ctAf,Dtb' = '"" c'A',D'bQ + t ,'v c9-: ',-Dt-b' 

The parity conserving helicity amplitudes of GGLZ are 

defined in 1.2 as : 

_+ + 
Tcd,ab - T Tr cd,ab 

- 
-c-d,ab 

s +s -v 
where for simplicity (- 1)X 

+hm 
cd ( -1) 

c 
d is assumed 

+ +s 

equal to +1. Let M be the crossing matrix between T and T't. 
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-cd, ab 
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+ 1 - - ri P t - i,''!C Q t ; t b t !" 

, .. , 

where, as before, all kinematic singularities in 

M 1-1 i t contained in the crossing matrix element 

S are 

'Elementary Manipulation using the results for the d 
function given indrlonds(4) (see Appendix I) enables Ivi to 

be found. This calculation was first done by L.L. .Iang(6 ). 

The results below differ slightly from those of Wang, because 

dmonds'( ") notation has been followed, whereas ':clang has used 

Rose v s (7) notation. This difference does not affect the final 

result. 

Since cos Ala d , cos irb ti , a form of It_ 

ab ab 
which explicitly demonstrates the singularities as Sab 

= 0 is : 

C (- 1'b' CIA') 

X 
(( 
-, 

C 

e 16'-61 u p (e, %ia ) 
04,1 XQ ,o-..,, x 

rb-"i/)(cf,7ç). ( a S a) 

j t co, 1b 1 b b1 c 3p - pla) /- 
' . i Q 

b / 
It 

- 
bla)/- ñ /,o.,:,, _1_. ¡ 

l b) l a s 

( 
J c)d (d) 

- a<<fd - Q 
1 

ai ¡ - 
- .i a. 

b 
v,.., X 

b 
f 

-Q/)/,a(3-,ba c io lJ1j 
l a 

l 
b ` a S / 

(a)(t)b f 
b `- C a 6 -- 

+-+, 

/ 4-;., X! a? } ) 



'nab = 
'rib 71D 

Jc+Jd+c+d 
lcd = (-1) 

+ + d 

= 1 if i -th particle is a fermion 

= 0 otherwise. 

(J- v /2) 
co: polynomial in cos .;V ry %r) is a p y .;V of order (J - 7/2). 

irailarly, a form of M which demonstrates the singularities at 

°cd = 
0 may be written dorm. as ,described by -;,tang(6 ). 

1.4 Analyticity in w and MacDowell Symmetry. 

From equation (A), section (1.3), the singularity in M- 
+ 

at s = 0 and hence T may be investigated. For ma nib 
I i! 

me md, since sin s ti s'2, the entire si2 singularity is 

introduced by the terms sin and and sin 9s /2 occurring in (A). 

For reactions of the type boson + fermion--->boson + fermion, 

the term / X - - /X + µ1 is always odd. Hence the term 

(sin 49 s/2 )/x-4 ¡x +µ1 gives rise to a branch point at s = 0 

which cannot be removed by multiplying by $1k max /A -pJ 

This will remove the possible pole at s = 0, but not the 

square root branch point. 
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Although they are not analytic in s, the parity conserving 

helicity amplitudes of GGLZ are analytic in W = Ts7 . 

The proof of MacDowell symmetry for the above amplitudes 

is as follows. 

+ + L 

Tcd,ab(w) = 
11-c-tAt 

Dtbt (w) 
TçiAt'Dtbt 

+ + 
since 

are analytic in w, and T t t is analytic in s. 

+ + 
.'. T (-1) = hi (-w) T (s) cd,ab ctAt,Dtbt ctA°,Dtbt 

From equation (A), section 1.1.: 

+ 
IalctAt Dtbt(-ZrJ) = (-1)-µ Mc Dtbt(V) 

, 

_+ 

' ' Tcd t ab(-w) _ (-1) 
Tcd , ab(W) (B) 

The parity conserving partial wave amplitudes are related to the 

T is by : 

+1 + + 

Fcd ab(fr) - 1 dz c (z) 
Tcd ab(w,z) 

16 
7u7 -1 

+ cJµ(z) Tcd,ab(wz) 

Hence, from equation (B) above: 

+ + 

Fcd, ab (-w) 
= - (_1)X-P. 

Fcd, ab (w) 
(c) 

This is the general MacDowell symmetry relation for the 

. above parity conserving amplitudes. 

The above relation (C) has been proved only for rna, mb' 

me and When this relation does not hold, MacDowell 
symmetry 



is seen to break down. 

Suppose 

sin gs 

cos A = 

ma =1: =mc=Ind =m 

2Jwt 

s-1p.z2 

- cos b = 

In this cas 

the singularitie 

may be factored 

made analytic in 
-r 

of s The int 

s 
sin -. 

s-- l.t m 

- cos X = cos 1' 
st 

- ( s-t;.rn ) t-Lpm 

e sin Qs, sin s/2 are analytic at s = 0, and 

s are contained only in the cos xi terms. These 

out from the crossing matrix, and the amplitudes 

s by multiplication with appropriate powers 

erchange tier -j -w will not affect the parity 

of the state, so there is no relation between different parity 

states in this case, However there is no known case in Nature 

of a boson and a fermion having the same mass, so for all known 

reactions, ma , mb, me md, and the MacDowell symmetry 

relation (C) is assumed to hold.. 

1.5 An lication to Pion -nucleon Scattering 

The following results may be obtained from any standard 

work on pion- nucleon scattering (see Jacob & Chew(8), Chapter II). 

The nucleon has spin , and helicity state - 1/2. Invariance 

under parity implies 

FJ 
I = 1/2 

> <P1 = I FJ -12 < -' F 
JI 

,2 

Denote positive nucleon helicity by +, 

helicity by - 

> 

and negative nucleon 
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The partial wave expansion of Jacob & Wick(3) in terms 

of the f f amplitudes is:- 

( 2J+1) 
J 

_ Z>: ( 2J+1) 
J 

=J dJ, 
++ i (A) 

fJ dvv (A) +- 

where f++, f+- _ <cd I FJ 
i 

ab> amplitudes of GGLZ . 

Parity conserving helicity amplitudes are defined by 

f = fJ + fJ having parity -(-1) t = - (- 1)J_', This e+ ++ +- 

is equivalent to the amplitude 
FcT ci,ab 

used by GGLZ. 
it 

Similarly, f ( +1 }- - f ++ - f +- has parity +(- 1)J -', 
+- 

and corresponds to hJ 
cd,as 

Comparison of the f + with the generalised parity conserving 

v amplitudes 
X +Am sc +sd 

c -d 
i 

FJi ab> <cd 
j FJI a_b> 

± ( -1) a -1) 

shows that X = a - b = 

The relation 

1_t. = c - d = g so l- µ= O. 

+ 

Fcd ab (-ur) - - (-1)A-11 Fcd ab(r) 
, 

reduces to f 
E 
+(w) = (t+1)- (-w) 

for pion -nucleon scattering. 
This is identical to the result found by MacDowell(1). 

The one important assumption made in proving the above 

MacDowell symmetry relation, is that invariant amplitudes 

analytic in s, t, u may be defined for any scattering process. 

This is a field theoretic result and is stated by Hara(5). 

Other important results used in the proof, are analyticity of 

cd,ab 
in w, and the crossing relations of Trueman 
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CHAPTER II 

MACDO:;ELL SYMMETRY AND COMPLEX ANGULAR MOMENTUM IN THE 

PION NUCLEON SYSTEM 

2,1 Introduction 

The problem of complex angular momentum in the pion- nucleon 

system was first discussed by Singh(9), and his notation is used 

throughout this chapter.. 

Invariance of the pion -nucleon scattering amplitude under 

parity and time reversal leads to a T matrix of the form: 

T = -A+Y.QB 

where A = A(s, t,u) , B = B(s,t,u) are invariant amplitudes 

which satisfy the Mandelstam Representation(1o) s,t,u are 

the Mandelstam variables, Q = 2(K1 + K2), where K1, K2 are 

the 4 momenta of the incoming and outgoing pion respectively. 

The convention used for the Y matrices is defined in 

Appendix II 

Let k, E, w represent the magnitude of the pion three 

momentum in the centre of mass frame, the nucleon energy, and 

the total energy respectively. Let m = nucleon mass, µ = pion 

mass. 
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9 2 2 

Then E2 = k2 + m2 
3 

;;`-FM 1' 4k2 = w2 - 2(m2+11 2) 2w 
m 2 2 

) 
2 

+ . 
w 

From any standard treatise of pion -nucleon scattering (see 

Jacob & Chew(8)) amplitudes f1, f2 are defined by 

E+_m 
f 
1 

= CA + (w - m):37 

f2 E - m 

-.A 
+ ( w+m)B :1 

87cw 

These amplitudes are analytic in w as expected from the results 

of Chapter I. 

The partial wave expansion of the fits is 

f Pt ( z) - f Pt(z) ; z = cos 9, 
ti+ -6+1 (Z+l) 

and the prime denotes differentiation 

with respect to z. 

f 
2 

f Pt ( z) N. f Pt( z) 

2 (Z+1)- ti+1) - -6+1 

1 where f 1( ') _ dz pz( z) 
+ f 

2t- 
1( z)J 

L -1 

I+1 

f (w) = 2 dz tlyz,_1(z) + f2P( z) 
(L+1)- L+ l ) -1 

are partial wave amplitudes having parity 1) J = + (-W-2. . 
0 

Consider forward (9 <90 ) pion nucleon scattering. Accord- 

ing to the Regge pole model, forward (s channel) scattering is 

dominated by the exchange of Regge poles in the crossed (t and u) 

channels, t channel Regge poles have the same quantum numbers 

as the system wx NN, i.e. J = integer, I = isospin = 0,1. 
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These correspond to boson Regge poles, and are not discussed 

further. The u channel contributes to s channel processes 

for which ß ' 180° (backward scattering) and is also repre- 

sented by the process 7GN 7CN. The quantum numbers of a u 

channel Regge pole are J = half integer, I = 2, 3/2, and these 

correspond to fermion Regge poles. Regge poles having I = 

belong to the N trajectories, while those having I = are are 

classified with the trajectories. 

The previous results of w plane analyticity and MacDowell 

symmetry may be applied to Regge poles in the u channel where 

w = Ñu, and f , f are functions of w _ u . 
+ 

(Z +1) 

Suppose partial wave f is dominated by a Regge pole at 

= a(w). 

Then f 
ß( w) ß( w) = ß( w) ) 

( w ; w +ve 
a+( w) = C6( w) 

Continuing this relation to -w gives 

ß( -w) 
ß( -w) w) f+( _ -a( -w) T-a_ w) ' 
a( _w) = aw) w 

+ve 

From MacDowell symmetry, 

f _( w) = 
(Z+1) 

ß (w) 

Hence if a Regge trajectory a +(w) contributes to the partial 

wave f , the Regge trajectory a (w) contribute to f + (-6L1)- 
where 

a( w) = a(w) = a ( -w) o 

Physical bound states and resonances which occur on the trajectory 
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a +(w) have parity -( -1) _ (- 1)J +2, and similar states on 

a -(,a) have parity -( -1) 
J +2 

. Due to signature effects, 

physical resonances on Regge trajectories are separated by a 

multiple of 2 units of angular momentum J, so the parity 

will remain constant along a trajectory. 

MacDowell symmetry and w plane analyticity thus enable 

a meaning to be given to a( -w) . If a(w) = a (w) describes 

resonances of positive parity, the function a( -w) = a_(w) will 

describe resonances of negative parity, and vice versa. 

In this chapter, the properties of the above defined. 

functions f (w) , a _(w) for the pion -nucleon system, are 
& + 

discussed. First, the results of an introductory survey of 

complex angular momentum in pion -nucleon scattering, are 

applied to u channel scattering. Next, the analyticity of 

a(w) is discussed, and a dispersion relation for a(w) given. 

This is followed by an examination of the continuation process 

w -j w in the MacDowell symmetry relation. Special attention 

is paid to the particular sheets on which the above functions 

are defined. Finally, a survey is given of the known backward 

pion nucleon resonances, and the problems discussed in this 

thesis are illustrated. 
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2,2. Complex Angular Momentum in the Pion Nucleon System 

2.2.(1) Conceit of signature, or J parity 

The invariant amplitudes A(s, t,u) , B(s,t,u) defined in 

L2±11 are assumed to satisfy a fixed s dispersion relation 

of the form(9) 

0o A(s,t') oo A(s,u') 
( ) 1 r t 1 du' A s, ,u = d tr -t + 7C ,at -J 

)4µ 2 rn+A 2 

1 00 
= 7 

dx 
At( s,x) co 

+ 
x+2k2(1-cose,) (rn+µ)2-(m2-12)2 

s 

2 2j21 
Au( s' x+C s / 
x + 2k2 ( l+cos 8) 

+1 
Define Az = d( cos Q)A( s, t,u)P( cos e,) 

-1 

` 

_ lZ dx At(s,x) + (-1) (s,x +612-2./) 
s 

Q(1 (A) 
2k 

c7x 

All q uantities in the above expression (A) are suitable for 

continuation to complex .6 except the term ( -1) = exp(ii ), 

which diverges as . Put -6 = X (complex). 

To avoid this difficulty, define two separatß continuations 

for values of .6 which are even and odd respectively. 

Idx 

AQ'C(s,X) = 12 . 2k 
(1 + x2) AJ'C(s,x) tu 

where Atu(s,x) = At + Au, and is defined for -6 = even systems 

o At( us,x) = At - Au, and is defined for -Z = odd systems. 
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The functions AZ, A° interpolate between partial wave 

amplitudes for even and odd values of .6 respectively. A 

physical system having -6 even is said to have positive 

"signature "', or "J parity ", while one having & = odd has 

negative signature. The continuations A-6, A° are physically 

meaningful only for even and odd values of & respectively, 

and bear no relation to each other. The signature is a well 

defined quantum number for a Regge trajectory, and its value 

is ( -1), where .6 is the orbital angular momentum of 

physical bound states on the trajectory. 

The concept of signature is entirely due to the presence 

of the third double spectral function Au, so it is an 

essentially relativistic phenomenon. In potential scattering 

mmwu 
and other wem= relativistic problems, Au = 0, and the concept 

of signature does not arise, 

2.2.(2) The Sommerfeld Watson transform for the pion nucleon 

system. 

The partial wave expansion for amplitudes fl, f2 defined 

in ( 2.1) is 

fl = f P' (z) - f Pl(z) 
6 + +1 ( +1) z 

.6+1 

(A) 

.1E 
-/ 

P° (z) f Pt(z) f2 
-6+l) Z+l 

Now continue equation (A) above into the complex Q plane, 

f have two continuations fe + °, fet ° according 
(Z+1) (6+1)- 

to whether & is even or odd. 
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° fe,o Let -Pe/c) = zl' 
((J-) 

(Z+l) 

Fig. 2, 

ao 

The above partial wave expansion (A) may be written as a 

contour integral around C shown in Figure 2. C is described 

clockwise, and is assumed closed at infinity. 

P 
f 
1 4 CO f yJ, \+ (-Pt 

v 
( -z) + Pt ( z) 

C 
\ 2 J +2 c+2 

+ 1 

clJ 
f° P 

t 4 cosTJ 1+ ft ,_ 
(-z) - P (z} 

C (cT-2) J+2 J+2 

9 t dJ 
-z) 

4 cos TJ f/ 
1 

P 1( 1 J+2) J-z J-7 

- 
4 

dJ i° ( -z} + P t 
1 z) 

C cosTJ (j -15)- J-? J- ( 

(B) 

The Sommerfeld Watson transform consists of opening out 

the above contour as shown. The new contour consists of an 

infinite semi- circle, bounded by a line at Re J = -2 , 
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The Sommerfeld. - Watson Transform 

The contribution of the Regge pole terms at J = a(w) are now 

included in the expression (B) above for fl. 

Standard analysis(l1) shows that for large z (i.e. large 

t or u) the integral along the contour tends to vanish, leaving 

only the Regge pole terms. 

e 
Suppose f ' + _ 

(0-74) 

where 
+e, o 

Regge poles 

+ 
R-e,o 
e,o 

+ regular terms 
a O -J 

= t f 
e 

' 

o 
+ (av'o( - J). 

J o' of ¡) (J-7-12-) 

Considering only the most divergent Regge pole contributions 

in the contour integral (B) gives 

+/ 1 +e o 

1 2 Regge poles Lcosjw) 1 

. ( 1 +,4!. exp -ia ) Di +' ( z) I ( D) 

where 
Zi 

is the signature of the i -th Regge pole. A similar 

expression holds for f20 
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If z is expressed in terms of t and u, the contri- 

bution of the direct channel Regge pole exchange to the crossed 

(t, u) channel amplitudes f1, f2 may be found. 

2.2.(3) Backwa,rdpion- nucleon scattering. 

From the previous section, (2.2), it is readily seen that 

the exchange of a Regge pole in the direct channel will affect 

the high energy behaviour of the crossed channel forward 

scattering amplitude. Conversely, the asymptotic behaviour 

of the forward s channel amplitude is governed by Regge pole 

exchange in the t channel, and the asymptotic behaviour of 

backward (e "- 9t) s channel scattering depends on Regge pole 

exchange in the u channel. The quantum numbers of the u 

channel have been shown in the Introduction (2.1) to correspond 

to fermions. 

The kinematics of the u channel are exactly similar to 

the s channel, except that u replaces s are the square 

of the centre of mass energy (see Singh(9) ) 

= V u = total col. energy 

2 2 2 
(m2 2) 2 

lltu = u - 2m -2p + 
(m2 

'12)2 

wú + m2 - µ 2 
E _ ( ) = nucleón energy. 
u 2wu 

- square of corn. momentum. 

cos 6u = - 
C 

s - m2 - µ2 + 2Eu(ti°JU - Eu2ku . 

Backward scattering is described by 9 = &u = O. 

This gives the condition 

u - (m2 - 112)/s = 0 (A) 
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consider the contribution of a Regge pole a. (w ) 

u 

u channel to the forward scattering amplitude. The 

MacDowell symmetric pole 

Since 

equation 

Pa(w)+Z 
( z) 

ai(- u) will also 

1 / fY. 11 

contribute. 

a( w) 
2 , from 

(D), the contribution of the Regge pole to f1 is 

(J;, 1.4) 

where 

9U/ 

r (wt.) 

1)1. "-) 

From the 

Alt 

Mob 

g+bz ` °'') 5 

w . , - (1ó 
(14 2z 77- (4 'fa )j) 

+ , /3; 

tal Z 

-(- 
14'41) 14'41) 

- %a 

tc ir ' C 50 C1(4. 141/ ° 

x(It7c r wi]--41)1) 
p (o( -f 1) l ///t) 
n ,,,) °4i4'(4)-- ir r (0( 04-4,3 ) 

s > ,404-0 

/ (0 71' Oet/u f /2)* 04'0 / C a 49 Eµfvkl. 
backward 

the result of Chiu 

and L1 Regge poles 

manner, except 

(B) 

{ u) 
J° 

scattering condition, Eu +m = -Ïu + Ñs + 2m, 

and Stack(12) for the contribution of the 

:s,u) may be proved in a similar to fl ( 

C LA-.) (d( -SA a 4)" u)-a ,, , 
/ E .rt.. 

Comparison of result (B) above with the observed s 

N 

4I 11: 

channel 

backward scattering amplitudes enables parametrisations of a(w1z) 

to be made.(12,13) The result of this work is discussed. more 

fully in Chapter IV. 
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2.4 Analytic structure of c, +(tier) 

In this section the analyticity of +(w) is examined. 

The functions c, +(w) are shown to be real analytic, having 

cuts from -00 w - (m +p, ), and (m +1,L) ti °r zir co 

2.44-) Kinematic sinrularit - free am litudcs 

A Mandelstam representation for the invariant amplitudes 

B of pion- nucleon scattering, yields, as in (2.2) 

= 
Ó° At(s,x)dx 

aó 

ït 
t 
o 
x+2k2(1-cos8) 

w. 
uo-(ra2-a_.2)2 

2 22 
,.(s,x+ 

in 
}c ) 

dx 
x+2k (1 +cos 6) 

wher e 

(00 0o 
Ptu(x'uv 

) 
du 

` ,x) = 
7E S -= ?t S° u° 77-Ll 

Similarly for Au(s,x). 

From the above dispersion relation, the analytic structure 

of A(s,t,u) is a right -hand cut starting at s = so, and a 

left -hand cut given by x + 2k2(1 - cos Q) = 0, which starts 

at k2 = - to /4. 

The function At(s) is defined as in (2.2), and has the 

same analytic structure as A(s,t,u). For continuation to 

complex t = X, the functions Ae' ° (X, s ) 

00 
= 12 dI (1 + x, ) Aeúo 

'iC1 2k 
L° 

are defined. 



 . 
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0ince 
X 
(z) has cuts from z = -co to z = -1, and 

from z = -1 to z = +1, Ae'0(A,$) has an extra cut from 

k2 = 0 to k2 = -to /4. 

X11 14) However, it is a standard result `" ' that the function 

°(X,$) /(2k2)7 has analytic properties exactly similar to 

A 
t 
(s) for real L. 

Define C`"'°(%1.,s ) _ A°'°(X9s)/(21z2)X . 

Then 

disc' CC'°(í1,s 

disc c-'°(ñ.,s ) L.H. 

2X 

k 

_4k2 

(k2 

.L + 1 

- co 
dx -7 (1 + --='7 ) 

t 
2k 

0 

. Lr(s,x) Lt 

- il x2 ( s ) 
dx. 1' 

X(1 
+ z ) 

xi(s) 2k +is 

(, ,x) El + e__/L 
° tu 

dx.Px(-1 - -a7) 
t 
0 

2k 
(s - ie, t) (A-) 

where disc C ] $.H. is the discontinuity of Ce° across the 

left -hand cut. The regions of integration are shown on the 

Mandelstam diagram for pion -nucleon scattering(10). 

The discontinuity across the right -hand cut (s >0) comes 

from the double spectral functions Pst' esu' and the region 

of integration is the infinite line AB. CD, F represent 

the regions of integration for the left -hand cuts. 

The region of integration for the left -hand discontinuity 
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is finite, and since Px, Qx are analytic functions, the left - 

hand discontinuity is an analytic function of A. Exceptions 

occur at X = -n, for Q,x has simple poles at these points. 

In contrast the right -hand discontinuity is given by an 

infinite integral, and is thus defined only for ReX > N, 
where N is the number of subtractions necessary to make the 

Mandelstam representation converge. 

From the above results, the functions: - 

f _+ (w) 

h ± (w) = 16 
(J 

(B) 

(J2) E - m (2k 2 2 ) 
- 12 

are free of kinematic singularities in the w plane, and 

contain only the right -hand unitarity cut for w2 > (m +µ), 

and the left -hand cut starting at k2 = - to/)4. 

2.Lj.(2) Analyticity of the trajectory function a(w) 

The analyticity of a(W) may be readily found from the 

implicit function theorem. This is stated by J.R. Tay'or as 

follows ( 5 ). 

If F(X,w) is holómorphic in some domain 

(Ao, wo)e 
o71 

is such that F(Ao, wo) = 0, 

dF 
o, then there exists a neighbourhood Nx x Nw 

= Xo,w =wo 0 0 

of (X0, wo) such that for each w e Nw there is a unique and 
0 

holomorphic solution X = a(w) e N1 of the equation F(A,w) = 0. 
o 

From the previous section h + (w) is a real analytic 
(JW 
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+ 
function. For simplicity, define h (A,w) = h + (w), 

(J +') 
where X = J = complex. 

A Regge pole is given by the condition: 

h 0 

I. 

(The function (h(X,vr) 1 
is holomorphic in the domain 

between the cuts of h (X,w), and in general 77 CÇh(X,w)]_l o 

unless two trajectories intersect. The conditions of the 

implicit function theorem are satisfied, so X = a(w) is holo- 

morphic in the neighbourhood ?NT = F x Nw . 

o o 
Consider first the effect of the left -hand cut. From the 

previous section (2.4(1) ), provided X -n, the discontinuity 

across the left -hand cut is always finite for all values of w. 

Consequently, no poles can pass from the unphysical to the 

physical sheet through the left hand cut, and the domain NX x Nw = 
o o 

(X0, wo) will exclude this cut. 

1Text consider the right -hand cut. Unitarity gives 

} 1 1±(Xw+ic)- h±(A,w-ic ) = h± (X, w+i) h(A, w-is ) 
e 

where p± - k(Fra ) ( 2k2 ) 
l 161ati°r 

+ + + + 

Thus h- (X,w +ic) = h (X,w- i ) /(l -2i 
1- 

h X,w -ie ) 

+ + 

and poles are given by the condition 
e 

h (X,w) = 2i (A) 

Poles pass through this cut provided condition (A) is satis- 

fied, so the domain (Xo, wo) will include this cut. 

For all w, X can exist everywhere except on the left -hand 

cut. From the implicit function theorem, X = a(w) inherits 

only the unitarity cuts in w, and is an analytic function of w. 



-27- 

Since h (X,w) -1 is real between the unitarity cuts, a(w) 

is also real between the cuts. 
Consequently a(w) is a real analytic function having cuts 

from -oo w -(m +µ) , and (m +;a) ` w 00 

Define a. +( w) = a(w) ; a (w) = a( -w) . The properties of 

a, (w) are as follows. 

1. a +, a have the unitarity cut for I wj m +µ, so a +(w) 

a (w) are complex: and unrelated for Iwi y m +µ . 

2. For 0 gel wI t m +11, a +(w) , a -(w) are both real and 

unrelated. 

3. Since a(w) is a real analytic function, a +(0) = a -(û) = 0,(0). 

An illustration of this result is given by Gribov(16) 

2-1-. .For w pure imaginary, w = i I wl , a+( w) = a -i lwI ) = a, ( 

In this case, the trajectories a +(w) , a-(w) are complex 

conjugate. This follows since a( w) is a real analytic 
function. 

In Figure 4, a plot of Im a /Re a is shown for a typical 
trajectory function. (Assume a finite constant. 

Figure 4 

L (w) 
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2.4(3) Dispersion relations for a+ 

In the complex w plane the analytic structure of a(w) 

is a cut for W m +µ. Dispersion relations satisfied by 

a +(w) are obtained by integrating the function 

1 a( w' ) 

7 wt -w 

ramd the contour shown in Figure 5. 

= a( 1:v) 

Figure 5 

For a 6v) the dispersion relation is 

óo Im a ( :v' ) d,r' 0° Im a_( ,;r' ) dw' 
a ( ,v) 

= 
+ T w+_;t + wt_,., 

This relation was first derived by Gribov( 
15) 

The once subtracted dispersion relations are 
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w OD Im a+( w' ) dw' 
a+( ,q) = a( G) + 7C ' w W 

in+J, ( ' - ) 

a (w) = a(0) + 

m+µ 

Im a ( w' ) dw' 

( w' -w ) 

Tro Im a( w' ) 

+µ 
w t ( w' +'N) 

5 
va 00 Im e4+( w' ) dw' 

rn+µ 
w' ( tra' +w ) (A) 

The applications and limitations of the above dispersion 

relations (A) are discussed in Chapter IV on the parameterisation 

of the Regge trajectory functions. 

2.5 Riemann Sheets and Continuation from Positive to Negative w 

A resonance of spin J occurring on a Regge trajectory 

A = a (w) has parity (- 1)J +2, and occurring on the trajectory 

X = a, (w), it has parity - 1)J +2. The function a (w) = a 

and vice versa. 

A question arises as to whether or not the singularities 

described by a +(w) occur on the same Riemann sheet as the 

singularities described by a -(w). 

Resonances are described by S matrix poles on the un- 

physical sheet close to the real axis, while bound states are 

described by poles in the physical sheet. Suppose a resonance 

occurs having parity ( -1)J +2 on a Regge trajectory J = a +(w). 

Continuation to a negative value of w results in the trajectory 

J = a (w) . If these singularities appear on a different Riemann 

sheet, the resonances having parity -( -1) will not occur. 

To investigate this problem it is necessary first of all to 

examine the analyticity of the invariant amplitudes A, B in 

terms of s. Then the analyticity in terms of w, and the 
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possibility of continuation from +w to 

2.5(1) Analyticity in s 

is examined. 

The s plane analyticity of A & B is well known, and is 

given in the review article by Hamilton( 
17) 

, also Hamilton and 

Spearman( 18) 

The dispersion relations for A, B are 

> A ( s t > u ) 
1 At( s, t° ) 

o dt' 1 
I°° 

A u( s,u' ). 
du' + T 

(m+) u -u 

,) 
-1,, 4,tiG2 B(s,t,u) = 

oo B s t 
. dt' .- 

s-m u-m 2 t' -t 

°° B( s,u' ) 
u . du 

2 u' -u 
(m+µ) 

where G2 5. 

It is necessary only to consider the s plane analyticity 

of A(s, t,u) , and the poles and cuts arising from the Born terres 

in the B amplitudes may be ignored. 

The kinematics of the problem are 

1 1 

s = COO .4_ k2)2 + (1, + k2)2 
2 

t = - 2k2( 1 - cos 9) 

k2 = 1 [ - 2(m2 + 112) (m2 - 112)2 )2 
Z 

The complex s plane consists of a two sheeted Riemann 

surface joined across the line -m 
2 
15 k 

2 
4E7. 

2 
. This enables 

2 2 2 2 
the sign of the square root ti (m + k (µ + k ) which appears 

in s to be uniquely determined. 
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Let the two sheets be denoted by I and IIe 
1 

on sheet I, s = r(m2 + k )2 + (1 2 + k2)z12 and for s on 

sheet II, s = [Lm 
2 

+ 
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for the above functions for Re w> O. A completely new set 

of surfaces and sheets must be defined for Re w CO. Hence 

if a singularity occurs in h (X,w) on a given Riemann sheet 

for positive w, no statement can be made about the sheet on 

which it occurs for w --j -w. 

Since the w plane is effectively cut in two by the cut 

from -ieo to +ioo , the definition of functions on the left 

of the cut is arbitrary. The restriction of the MacDowell 

symmetry relation is used to define functions for this region 

Re w C O. 

h±( X, w) 

a+( -w) = a ( w) 

- + 
o 

2.6 Classification of the Y = 1 Baryonic Resonances 

The Y = 1 baryonic resonances from the latest phase-shift 

analysis of Donnachie, Kirsopp and Lovelace(19) have been 

classified on Regge trajectories as shown opposite by Barger 

and Cline(20) . The Regge trajectories Na, NO give physical 

resonances T = 2, J = 2 + 2N(N= 0,1,2..) and parity ±1 res- 

pectively. N1, Na are negative signature trajectories having 

T = 2, J = + 2N, and parity +1 respectively. Similarly for 

the 4 a, 4 4 and L trajectories which have T = 2 

Several interesting points arise from this analysis. 

1. The trajectories are approximately linear functions of (mass 
)2 

. 

2. Trajectories having the same T, '(signature), and opposite 

parity are approximately degenerate (e.g. Na, Nß) . In the current 

literature this property is frequently referred to as the 
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MacDowell symmetric property of the trajectories. 

The consequence of this parity degeneracy is 

a +(w) a (w) = a ( -w), and the trajectories are approximately 

symmetric functions of w. 

3. Several states predicted by the above mentioned parity 

degeneracy are missing, e.g. the lowest member of the highest 

ranking Nß trajectory (the S11), and also the lowest members 

of the Na (P 3) and , (D33, G37). The possibility that 

these resonances are not seen because the S- matrix poles lie 

on the wrong Riemann sheet after continuation from positive to 

negative w is made, is ruled out by the discussion in Section 

2.5. Two possibilities remain. Either the Regge trajectory has 

a sharp dip in the vicinity of the missing resonances, or else 

the residue function ß(w) vanishes when w is equal to the 

mass of a missing state. These two possibilities are investi- 

gated in this thesis. 

4. Lower ranking trajectories are separated from each other by 

spin. values J = 1. They correspond to the "daughter" trajectories 

of Freedman and Wang (21) 
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CHAPTER III 

iMACDC JELL SYMMETRY IN POTENTIAL SCATTERING 

3.1 Introduction 

In this chapter, the radial Dirac equation describing a 

spin 2 particle in a central field is discussed, and the 

existence of Regge trajectories and MacDowell symmetry is 

demonstrated for this system. Finally, evidence is given for 

the possible absence of the MacDowell symmetric partner of the 

nucleon, and other states. 

3.2 Central Field Equation and Parity States 

The radial Dirac equation for a spin ? particle of mass m 

in a central field of potential ,ó(r) is( 
22) 

+ mc + f E - (r) 
dr r C h dc hc 

(A) 
df Kf mc E 

dr - r h he + 
r 

hc 

E is the total energy of the system, 

K is a scalar which commutes with the Hamiltonian of the system, 

and is called by `dey1 (22) the Auxiliary Quantum Number. When the 

total spin J is half integral, K has two values 

K = (J +2) 

The parity of the system is ( -1)K when K is negative, and when 

K is positive, the parity is - ( )K = 
-1)J +2 

,J+,5 
For the pion -nucleon interaction, the parity ( -1)K - ( -1) 
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is the parity of the amplitude f and the parity 
1 e 

- ( -1)K = - ( -1)J +2 
is the parity of f 

(e1-1) 
Dirac equation is applied to the pion -nucleon interaction, the 

. Hence if the 

quantum number K determines the parity of the system. 

Define O +2 = K = i- (J + 1). The value O = + J 

describes a parity state (- 1)J +2, and the value V = - J -1 

describes a parity state - ( -1)J +2 
. 

If the a boue units are redefined such that h = c = 1, then 

the Dirac equation (A) becomes 

r(,x) = A + o ) / V( v 

where 11( v ,x) = g( v'x) r= 0 1 

f( V , x) -1 0 
, 

A 
-t 

X 

(B) 

Em) 
; ( x) = ( x) ; k = 

v-( E2-m2, 
x = kr 

(See Favella and Reinen 23) ) . 

303 Solution for Large x 

At large x, U(x) --P O and the Dirac equation (B) 

tends to the unperturbed form 

df 
dx 

= 

( V 

X 

1) 
_ ft 

x 

(v +2) + gt 
x 

(A) 

The general solution of the above free field equations is 
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g ; 
= Cx` Jii (1)(x) exp(id) + H (2)(x) exp(-id) 

f 

t ( ú+l) (x) exp(id) + Ho+a)(x) exp(-id)) 

where H( 1) (x) , H() (x) are Hankel functions of the first and 

second kind respectively. C and d are arbitrary constants. 

The functions y = H(o 1) (x) , H( 2) (x) are solutions of 

Bessel's equation 

yn 
2 

+ 
x 

yt + (1 - 9-2)y = 0 0 

x 

From the results 

x ---j 
(3o ) x exp Ei( x -4 . 4_3) 

.... x co 17 
exp -i(x - 2f u 43).1 

the solutions of the free field equations (3.3A) at large x 

have the form 

f:] = exp i( d - +23 
2 

1 eix 

1 
+ exp 

_ 
-i( d- 

C 
u+z3 2 e-ix [ 

1/ t 

(B) 

The constant d is the phase shift of the regular solution. 

Since the central field Dirac equation (3.2B) tends to the 

free field form at large x, the above solutions (3.3B) also 

describe the solutions of (3.2B) as x --joo . 
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3.4 Conditions for Poles in the S- matrix 

In the following, the potential U(x) is a ssumed real, 

so the scattering is purely elastic. A complex potential implies 

some degree of inelasticity, and consideration of U(x) complex 

is deferred to Section 3.7 on missing mass states. 

From equation (3.2B) the Dirac equation for a real potential 

U(x) is 

,x) = A + 
1.11(x) / ,( u ,x) o 

Direct substitution yields 

[4,-E- in 4 _ -2i 
Im 

x 
+2 

. 

*+ 
a- Iv (A) 

dx 

where r is defined as before and crl, cr o- are the Pauli 

matrices. From the results of Section 3.3, the value oft r* 
at large x is 

[Iv+ r 
x-Yoo 

= 1t1 Binh 2 Im(a - f u + 23 2) (B) 

Integrate equation (3.4A) above between x = O and x = . 

At x = oo the value of the integrand is (3.4B) . At x = 0, 

Favella & Reineri(23) have shown that , * -4'0, so the value 

of the integrand is zero. The result is 

tsinh 
C2 

Im( d- +23 2) = 2 Imu 
X 

o 

(:)z) = 2ImV k ¡g 
o 1 !2r 

( ) + 
Ru+l] 

) (C) 
x CE+m-uJ x CE+m-u, 
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The integrand of the above equation 

positive when 

60/ dx 2R e s1 
2 

) x(E+m-J) 
0 

3.4C) is certainly 

(D) 

The conditions on dU /dx, Rev, and (E +m -u) are discussed 

in Section 3.6. 

Suppose the above inequality (3.4D) is satisfied. Then 

sink 2Im(d -(u +2J 
1211 

_ - 2 Im J . I, where t, I > 0 . 

If Im u < 0, R.H.S. >0, and a solution is possible only for 

Imd > 7/2 Imp) (E) 

If Im > 0, R,H.S, < 0, and a solution is possible only for 

Imd 7c/2 Im (F) 

From the inequalities (3.4E) and (3.1 ,-F) it is seen that 

the S matrix S = exp (2id) can have poles only when Im u j 0. 
The above results are reversed when the inequality (3.4D) is 

not satisfied, and for this case, the S matrix S = exp(2id) has 

poles only for Imo < O. 

3.5 Resonance and Regge Trajectories 

2iò 
occur for Imd = -ioo . Poles in the S- matrix S = e 

Since these phase shifts d are, in general, functions of the 

total energy E, the position of these poles are functions of 

energy, and thus are Regge poles. 

Further, the interchange E -> -E is equivalent to t 

and since this transformation does not alter the form of equation 



(3.2B), Regge poles are expected for positive and negative values 

of E. 

A Regge trajectory is described by a,(t E), and a resonance 

of spin J which lies on the trajectory is given by J = Re a(EJ) 

RAalc) 

REM/ maw, Flamm. 

Figure 1 

A typical Regge trajectory is shown in Figure 1. Experience 

with the Schrödinger equation(24) has shown that in general the 

trajectories turn over and tend towards a negative integer as 

E -> OD , However, if the Dirac equation has any relevance at 

all to the pion- nucleon system, the trajectories must rise througY 

some of the pion -nucleon resonances. Since the energy of a 

resonance increases with spin, the gradient of the trajectory at 

a resonance will, in general, be positive (E > 0). When 

E 
da(-E' will similarly be positive. 
d( -E' ) _E o 

J 

There are two values of (E) for a given Regge trajectory t 

(1) v(E) = a(E); for thisivalue of '' (E) , a resonance of spin J 

has parity (- 1)J +2. 

(2) y (E) = -a(E) -1; for this valu of y(E), a resonance of 
J +z 

spin J has parity -(-1)i-'. 



3.5(1) Resonances for positive E 

Let the partial wave amplitude for some value of J be AJ(E) 

Near a Regge pole at J = Re a(EJ.) , the amplitude has the form 

r ( E ) A(E)Z - 
a(E) -J 

and when a(E) is close to J, Re a(E) may be expanded about 

E = EJ to give 

AJ(E) = 
E-E +i %'( E)/2 

(A) 

The above expression for AJ(E) has a Breit-Wigner form, and 

provided Y(E), r (E) > 0, a resonance is described of half 

width 

ro(E)/2 Im a(E) 

[d(Rea(E))/dE 
E =EJ 

The conditions Y(E), r(E) > 0 are necessary, otherwise the 

Breit Wigner equation describes the unphysical case of a resonance 

whose amplitude increases with time. 

From the discussion following Figure 1, d(Re a(i)) 0, so 
dE 

the condition Ì' (E) > 0 implies Im a(E) > 0, E positive. Thi 

relation is necessary if physical resonances are described by the 

Regge trajectory. 

(B) 

3,5(2) Resonances for negative E 

Suppose a resonance, spin J, occurs for E 4C 0, say E = -E 

If the above results for E positive are reworked for E = -E', th 
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AO-E+ ) 
Y( -E') 

-Et +E' + i r ( -E' ) / 2 

1-1(--Et ) Im a( -E') 
2 d 

d( _Et 
) 
Re a( ) 

L 
J 

Physical resonances are described for Y(E'), 
P(-E'), 

and hence Im a( -E') < 0. 

3.6 Parity and MacDowell Symmetry 

Suppose a resonance occurs having spin J. Let this corres- 

pond to an S- matrix pole at energies E, -E' respectively. For 

each value of Re a(E) = Re a( -E') = J, define O (E), U ( -E' ) 

such that Rev (E) = Re 0(-Et ) = J describes a state having 

ari t 
J +z 

p y ( -1) and Re (r) = Rev ( -F') = -J -1 describes a 

state with parity -(- 1)J +2. Further, the restrictions 

Im a(E)>0, and Im a( -E') C 0 are necessary for physical 

resonances to be described. 

Favella and Reineri(23) have shown that solutions of the 

Dirac equation exist in the region Rev > 0, x 0. The 

following theory depends on the assumption that restrictions on 

the potential U(x) are such that the known solutions of the 

Dirac equation can be analytically continued into the region 

Rest 0, 

3.6(1) The parity of positive energy resonances 

Consider the resonances in AJ(E) which occur for 

Im u (E) > 0. 



(1) Bet, (F) = J ; t (E) = a(E), so Im a(E) > 0; parity 
1)J +z. 

Resonance state poles can occur in the S- matrix, provided 

(3.4D) 

dU/ d.x 

( E+m U ) 2 
+ 

2Reu (E) 

x( E+m-! ? ) 

> 0 

A typical potential U(x) which gives rise to a resonance 

is shown in Figure 2 below. This consists of an attractive well 

with an outer repulsive region. This is necessary to hold in the 

resonance. U(-x) 

mM1111 =O. OWN. ee r. ti .._ s _ s ' .o r w a mow .-- 

Figure 2 

The resonance occurs in the region below the line CD. 

From the form of the Potential, it is readily seen that in the 

resonance region d13/cox 0 (x > 0). Further, the expression 

+ m - U(x) -=> E + m = positive as x -÷ co . Since 

E + m - U / 0, otherwise the Dirac equation would have 

singularities between x = 0 and x = oo , the expression 

E + m - U remains positive. 
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In this case, dU /dx > 0, E +m -U 0, and Re v(E) = J 

so the inequality is well satisfied, and a resonance occurs. 

(ii) Re v(E) = J - 1; v(E) = -a(E) - 1, so Im a(E) - 0; 
parity - (- 

1)J +M. 

Since Im a(E),---:: 0, no resonance can exist for this parity. 

3.6(2) The parity of negative energy states 

Next, consider the resonances in AJ( -E') for Im v( -E') > O. 

(i) Re v( -E') = J ; v( -E') = a( -E'), so Im a( -E') 0; 
1 

parity ( -1)J+ / 

Since Im a( -E') `:; 0, no resonances can exist for this case. 

(ii) Re v( -E') = -J - l; v( -E') = -a( -E') - 1, so 

Im a( -E') < 0; parity - (- 1)J +4. 

Resonances occur provided 

dU/dx 

(-E'+m-U)2 

2Re v(-Et) 

x(-E'+m-U) 
0 

The above inequality is certainly satisfied provided 

(- E' +m -U) <0. If, however, Et < m, at x = oo the expressions 

( -E' +m) 4T,O, and the expression -E' +m - U(x) remains positive. 

Thus the above inequality cannot be expected to hold for values 

of E' < m (nucleon mass). This result is discussed more fully 

in section 3.7 on missing mass states. 

If the inequality (3.4D) is satisfied, the above results may 

be summarised in Table 1. 
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Re v(E) Im v(E) Parity 

AJ(E ) J 0 (-1)J+1/z 

-J - 1 0 -(-1)J+% 

Resonance 

No Resonance 

J 
A(-Et) 

0 

-J - 1 0 

No Resonance 

Resonance 

Table 

If the inequality (3.4D) is not satisfied, from Section 3.4 

the results of Table 1 above are reversed, as shown in Table 2. 

Re v(E) Im v(E) Parity 

AJ(E) J 0 (- 1)J A No Resonance 

1 

-J - 1 0 -( -1)J+ Resonance 

A(-Et) J 

-J- 1 

0 

0 

( -1)J 
+i 

Resonance 

- ( -1)J+ 
1 

No Resonance 

Table 2 

Provided inequality (3.4D) holds, a resonance of spin J in 

AJ(E), E 0, occurs with parity ( -1)J and a resonance of 
1 

spin J in AJ( -Et) occurs with parity - (_1)J 
+/. 
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This is a statement of MacDowell symmetry for the central 

field Dirac equation. 

3.7 Missinz_ Mass States 

Evidence is given in this section for the possible non- 

occurrence of MacDowell symmetric states having negative E. 

If the above model has any relevance to the pion- nucleon system, 

this may explain why the MacDowell symmetric partner for the 

nucleon (the S11) is missing on the Nß trajectory. Finally, 

the theory is generalised to include a complex potential, and 

the relevance to higher mass missing MacDowell symmetric states 

on the Na and -4 trajectories is discussed. 

Suppose E' < m so the inequality (3.4D) is not satisfied. 
i 

If a resonance of spin J occurs in AJ(E) having parity (- 1)J + 
from the results of Table 2, the MacDowell symmetric resonance in 

A( -E') having parity - (- 1)J +1 /2 will be absent. The resonance of 

parity ( -1)J +2 in A( -E') will correspond physically to the 

resonance in AJ(E). 

The above results can hold only for E' < m. As E' increases, 

( -E' + m - U) < 0 and the inequality (3.4D) is re- established. 

Consequently, MacDowell symmetric states will start appearing for 

higher values of E', but the lowest order state will be missing. 

If potential scattering theory has any relevance to the pion - 

nucleon system, this may explain why the MacDowell symmetric 

partner for the nucleon (the S11) on the Nß trajectory is not 

seen. The mass of the S11 has been estimated at 850 Mev., 

which is less than m (938 iev.). 
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The above theory applies when the scattering is elastic and 

the potential U(x) is real. If the Dirac equation is used to 

describe the higher pion -nucleon resonances, some degree of in- 

elasticity must be allowed and the potential U(x) becomes 

complex. The equations of section (3.LI.) may be reworked as 

follows. 

rid = - 2i im(;)-4) V+ * Im 13 
. +4 (A) 1 k 

- sinh /2 Im( d- CD ++.11.) = 

0o A 1 
2 I m X k i g xCB+mU 

o 

Im U(x)84 2 
+ 

ig123.1 
k 

ReC20 +lj 
4/116 + 

x2( E+m U ) 

(B) 

Comparison of the above equation (3.7B) with equation (3.4C) shows 

that the presence of a complex potential makes the theory very com- 

plicated. The simple conditions (see (3.4B) , (3.4E) , and (3.4F) ) 

which give rise to poles in the S matrix, are now lost. 

If potential has relevance to the pion- nucleon system, an 

analysis similar to the above is necessary if the higher mass 

missing MacDowell symmetric states on the N and a tra- 

jectories are investigated. 

3.8 Conclusion 

MacDowell symmetry has been demonstrated in this chapter for 

the central field Dirac equation, and the possibility of missing 

mass states has been hinted. No calculations have been done for 
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specific potentials. The calculation of Regge trajectories for 

real and complex potentials, and the demonstration of missing mass 

states is an interesting problem, but beyond the scope of this work. 

It was also hoped that a possible form for Im a(E) might be 

obtained suitable for use in a dispersion relation for a(E). 

The expression, however, 

0o + 

- t sinh 
C2 

Im( â- Co +2 ] 2)1 = 2 Im () xl dx 
L J o 

is complicated, and quite unsuitable for any parametrisations of 

Im a(E). 
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CHAPTER IV 

PARAMETRISATION OF a AND CONFORMAL MAPPING TECHNI UES 

4.1 Introduction 

In this chapter, parametrisations of the trajectory function 

a(w) are investigated. First, a conformal mapping technique is 

described which simplifies the calculations. Then simple forms 

of Im a(w) are considered, and evenness or oddness of the 

resulting Regge trajectories is demonstrated. Next a para- 

metrisation of Im a(w) using the threshold condition is in- 

vestigated, and a critical discussion of this method is given. 

The threshold form for Im a(w) was used by Lyth( 25) and Jones(26) 

who demonstrated the existence of threshold cusps in Regge trajec- 

tories. They considered models in which a threshold euspcaused a 

displacement of the Na trajectory near the missing S11 state. 

Finally, a discussion is given of the difficulties of the above 

model. 

4.2 The Dispersion Relation for a(w) 

Previous work (see section 2.2) has shown that the Regge 

trajectory function a(w) is analytic, in w except for a 

cut for -oo zIE w -(m+0, and (m +µ) w gtF co. The once 

subtracted dispersion 

w 
w = a 0 + - a+( ) ( ) 

relation 

o 
m+ 

satisfied by 

Im a( w' ) dw' 

a(w) 

111%)( 

co 

is 

Ima( ̀'' ) . 
w 

lut - w) w ( w 4 w/ 
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where a(w) = a(w) 

á (w) = a(-w) 

a(0) = a20) = a(0) 

Fig. 1. 

a(w) is a real analytic function of w, so for w real and 

(m +µ) 

Im a(w) = 
2i C( w+ie) - a(w-ie)J 

21 
[a(w+ie) -a(w-ie)] 

For w real and > m +µ, (w +ie) defines the top part of the cut 

m+1115 w goo. Similarly, Im a_(w) = Ima( -w) 

= 2% C,a(-w-ie) - a(-w+ie), 

= 2i 
(a(w+±e) - a_(w-ie)1 . 

Further, ( -w -ie) defines the lower part of the cut 

-oo : w (-(m+11). From the results of section 3.5, if an S 

matrix pole corresponds to a physical resonance: - 

Im a(w) ,> 0 along the top of the cut (m +11)1E w c co 
Im a( -w)< 0 along the lower part of the cut -co ".5.w " - (m +µ). 

The above results imply Im a +(w)' 0, and Im a jw) < 0 both 

along the top part of the cut m +µ < w 
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4.3 Analyticity and Conformal Mapping 

4.3(1) The conformal transformation 

Figure 2. 

Consider the w plane cut from -co -.5w < -(m +µ) and 

(m+0 E w < oo . Then the transformation 

1 + 
(w m--) 
w+m+µ 

(5...7.111=U) 

(A) 

transforms the cut w plane on to the interior of the unit circle 

Z = 1. The cuts map on to the boundary of the unit circle as 

shown in Figure 2. Critical points occur at Z = ± i, for the 

mapping is no longer single valued at these points. 

Atkinson( 7) and Islam(28) have shown that provided 

E lG) e d8 (B) 
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converges absolutely, then in a region free from branch points 

of a(w), the relation:- 

a(w) = Z ) 

converges to a(w) on the cut, given by Z = 
ei8 

Consider Z on the cut, so Z = eiG = cos 6 + i sin G. 

Equating the real and imaginary parts of (A) 

cos 6 = w sin 9 = J (w2 - 0m +t)2) /w (C) 

The condition ! E(8)ds finite limits the number of sub - 
j o 

tractions in the dispersion relation for a(w) to one. When the 

number of subtractions is more than one, linear, quadratic, and 

higher terms in w appear in the expression for Re a(w). 

w = (m +µ) /cos 9 is divergent at Q = A/2, and the above 

integral (B) is no longer convergent in the range 0 

Recently, Mandelstam( 9) has used dispersion relations with 

two subtractions to generate infinitely rising Regge trajectories. 

The conformal mapping techniques described in this section cannot 

be applied to these dispersion relations. 

The justification for the above conformal transformation is 

that a(w) = ($ ) can be expanded as a power series in inside 

the unit circle, with great mathematical simplifications. 

a(w) = (a) = 

On the cut, e = elQ so 

n 
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Re a(w) = Re E(ei) = 
,77,7 

an cos n9 

(D) 
Im a_(w) = Im C(e'Q) = an sin n® 

The transformation w -w is equivalent to a rotation of 

A, i.e. 8 n 4 S. 

Thus Re a+(w) = Re +(ei) = an cos n 9 

Re a(w) = Re t; (e1Q) = (-1)11 an cos n9 

Im a_(w) = Im _(ele) = -(-1)11 an sin n9 

4.3(2) A possible self- consistency calculation 

The above equations (D) suggest that a self -consistency 

calculation might be carried out in the following manner. 

(I) Assume a form for Im a +(w) and calculate the expansion 

coefficients an from (D). 

(ii) Substitute this form for Im a +(w) into the dispersion 

relation for Re a +(w). Once again calculate the coef- 

ficients an from the relations (D) for Re a +(w). 

(iii) Compare the two solutions for an and equate them. 

The resulting equation does not involve an and may be 

solved for the unknown constants in Im a +(w) assumed 

initially. 

The fallacy in this method is that the two values for the 

coefficient of an obtained in (i) and (ii) are exactly the 

same, and (iii) reduces to the trivial relation 0 = O. This 

is demonstrated below for the simple case Im a(w) = (m +µ) /w. 
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Further, the calculations (i), (ii), and (iii) contain no 

dynamics other than unitarity and analyticity in the derivation 

of the dispersion relation for a +(w) . Thus no extra equations, 

and no new points on the trajectory can arise. 

As an example, take Im a +(w) = (m +µ) /w = cos G . 

A Fourier sine series expansion of cos 9 in the range 

0 C ß 'K gives for the coefficient an 

2 an = 2n 2 ( -1) 
p 

; for n = 2p + 1 = odd 
n -1 n -1 

0 (n even). 

Substitution of this value for Im a (w) into the dispersion 

relation gives 

Re a+( w) = a,(0) 
1 m+µ 

Zn. g 
m+ ) 2 

+ w 2 2 
w -m+µ 

and a Fourier cosine expansion of this gives 

2 
an 

2n 2 
(-1)P 

n2-1 n?-1 

0 (n even). 

n = 2134-1 = Odd 

These two results for an are exactly the same as expected. 



-55- 

4.4 Parametrisation of the Trajectory Function 

Simple parametrisations of Im a (w) which give rise to even 

and odd trajectories are discussed first in this section. Later, a 

form for Im at (w) which satisfies the threshold conditions is 

derived, and the resulting trajectory constrained to fit the nucleon 

trajectory. Two cases are considered: 

(i) Re a 
+(wthreshold) = Re a ( wthreshold) ( 

Exact symmetry) 

(ii) Re a+( w 
threshold) 

= aI ; Re a-( wthreshold) 
aII ' 

and aII is adjusted until the Regge parameters fit the 

N (1688) width. 

Simple parametrisations of Re a (w) may be obtained by 

using equation (2.3B), giving fl(Ñs, u) for backward pion -nucleon 

scattering. Comparison with experiment enables the unknown para- 

meters in Re at(w) to be found, and details of this work are 

given in references 12 and 13. The latest results for the nucleon 

trajectory are( 31) 

Re a(V.u) = - 0.38 + 0.88u ; Nru in Mev. 

in the range u 1.5 Gev. Evidence is given for levelling off 

in the high u region. 

These techniques do not give detailed information about the 

form of a+ (fu), and to date only linear and parabolic forms for 

a +(Vu) have been tried. Further study along these lines is not 

continued in this work. 
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Even and odd trajectories 

The power series expansion of ?e at(w) given in section 

(4.2) is 

Re a +(w) = (e) = ao + al cos e + a2 cos 2e + .. ,. 

Re a( w) = Re t (E3) = Re ( ;c + 9) _ ao - al cose + a2 cos 2e. 

In the presence of a subtraction at w = 0, the results are modified 

to 

Re a+(w) - a(0) = Re y (9) - a(0) = ao + al cose + a2 cos 29 +, 

Two cases are considered: 

(i) Symmetrical trajectories, Re a (w) = Re a(w) 

The results of condition (i) give al = a3 = a5 = a 2n +1 0 

so Im a +(w) = Im +(e) = a2 sin 24 + a sin L& 

which is even under the interchange w -w. Thus the condition 

Re a (w) = Re a (w) (even trajectories) 
+ - 

requires the constraint (A) 

Im a 
+ 
(w) = Im a (w) 

( ii) Asymmetrical trajectories, Re a(w) - a(0) = - Re a(-w) - a(0) 

The trajectories are completely asymmetric about the point w = 0, 

Re a (w) = a,(0). 

The above condition (ii) requires the constraint (3) 

Im a+( w) = - Im a ( w) . 
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The above results (A) and (B) were tested for simple forms of 

Im a +(ver). 

(1) Im a (w) = Im a (w) = C 
o 

. 
+ - o 

The dispersion relation (4.1A) gives for Re a1(w) 

c 2 
Re a(w) = a(0) + 

o ,n ((2-+-P.) 2) 

w 
2 - m-µ) 

; w > (m+µ) 

which is symmetrical in w as required. The form of the coefficient 

of co is shown in Fig. 5. 

Fig. 5. 

w-->o0 
Re (w) o--± co logarithmically depending on whether 

co oc= O so the once subtracted dispersion relation used in this 

work is capable of generating an infinitely rising Regge trajectory. 

This result is interesting in view of the recent speculation on 

infinitely rising trajectories( 29' 
30) 
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(2) Iin a+( w) = - Im a ( w) = cl/w. 

a + ç1 1 2(m+µ) 22) w 
m- FP' w ' 

w -(m+µ) 
Re a+ (w) 

which is an odd trajectory as required. The form of the coefficient 

of c1 is shown in Figure 6. 

6 

The value of this function w . 

(3) Im a(w) = Ina , ( ) = c 2/ w 2 

Then Re a( w) = a(0) + -= -7 tn ( 3i1+u ) 

-.;; -( m+1.' ) 

which is even in w as required. 

c 

(r11+1.1) 

2 

Similar results follow for higher powers of 
w 

The divergence of these functions at threshold makes them 

unsuitable for parametrisation of a (w) in the lower energy region 

( w ^. 1.5 Gev). Other forms of Im a(w) are now investigated 

notably the form obtained from the known threshold behaviour . 
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4.J (2) The threshold approximation for Im a (w) 

The calculations described below follow Barut and Zwanziger 

also Squires( 11) ( Chapters 2 and 3) for spinless particles. 

The kinematic singularity free amplitudes of Singh(9) for 

pion- nucleon scattering are (equation 2.4(1)B) 

h w) = 167cw + 1( 2k2 ) 
e7+2 + 1 - I E - m ( j+z ) 

where j is a generalised complex angular momentum. 

The unitarity relation for these amplitudes is 

-1 + -1 
0 

( 2k2 ) j--2 [h_ ( ,i+iE ) - h-_i ( w - is) 
=..2i 

167Cw 
j+z j+2 

(32) 

( Ñ ) 

so the function 7-1 (w) 
-1 h has a cut for 'wJ > m +µ such that 

j +2 

the discontinuity is given by equation (A) above, 

However, use of the identities 

Zn ( -k2 - is) = .&n(k2) - 

&n(- k2 +is) = &n(k2) + 

the function 

shows that 

1 

+ 
1 (E m) exp tj ;,n(-k2) (B) 

167cw cos91:j 2 -1 ) ( 

has the same discontinuity as h.-1 
2 

(w) -1 for (m +p) ç w c-Vinel 

and is regular for w C(m +µ) . 

-1 

Thus ¿;i: -1 (w) may be written 
+2 
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1 + j-z 

- 167.:J ( E-m) , 2 Y( vr, j ) + exp( j bn 
` -k2] ) (C) 0 ) 

COs7C( ) 

where Y(w,j) is a function which has no elastic cut and is analytic 

at W = m+µ . 

+ -1 
On a Regge trajectory j = a+(vr), and Ch ( w) = 0, so l 

Y(w, a+(w) ) = - (k2)at( 
r) 

exp -ina+(w) ] 
since -k2 = -k2 - is. 

(D) 

Consider the " +" trajectory for w .-t, WT, where WT = (m +µ) 

is the threshold value for the energy. Let a+ aI as w WT. 

Expand Y(w, a +(w)) in a double Taylor series about w = 
T 

a+=alo 

y( w ' a 
+ 

w) ) = Y(''T, aI) + Y ra+ w ) - a + Yi J - 
T 

+ ... 

where Y+ = 
àY 

( w, a ( w) ) ; Y+ = aY 
( wp a, ( v'J ) ) 1 òw + 2 aj 

W=WT V`J=wT 

a+=al j =aI 

Since Y(w,:j,) is real and analytic at threshold, Y1, Y2 are 

o 

real constants. Further, since k2 = 0 at threshold, from equation 

(D) above 

Y(wT9 aI) = 0 (F) 

provided a1 > O. 

The expansion (E) above gives for a 
+ 

(w) 
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¿40L1.(3) Parametrisation of the nucleon trajectory assuming 

exact symmetry 

Exact syrr ïietry between the trajectories a (W) , a (w) 

gives that a +(WT) = a -(wT) = aI , and the threshold form for 

Im a (w) from equation (L..3(2)K) above is 

z 2 al Im a+('wr) 1 - ( ) 

or Im a( va) = 1111;f ( E) = ( s in29) 
aI 

The parametrisation 

a 

Im a( w) = Im ( C ) _ ( sin2a) I J + c2 cos 4 (L) 

cl, c2 constant, satisfies the threshold condition and allows for 

asymmetry between 'a 
(jail) 

and a (w). A similar parametrisation 

was used by Islam( 28) for the p meson trajectory, and is investi- 

gated below for the nucleon trajectory. 

The form (L) for Im a +(w) is substituted into the 

dispersion relation 4.l A, and a value of Re a (w) is obtained 

subject to the constraints 

Re a (938) = 2 

Re a +(1688) = 5/2 

Re a (1670) = 5/2 

If a linear trajectory in s = w2 passes through the nucleon 

(938) and the N +(1688) , the value of al is 

aI = 0.7865 

The expressions (L) for Im a +(w) = 
+ 

(a) represent 
co 

truncations of the series Im g 
+ 
(4) = ,15z. an sin na . Hence the 

n =1 
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value of aI used in the parameterisation of Im a +(w) will not 

in general agree with the value al = Re a(wT) obtained from 

the dispersion relation. 

Substitution of the forms (L) above into the dispersion 

relation for a +(w) gives 

a+(w) = a(0) + X(w) rcl + c (11lWL) 

2 
o0 

2 a 
1 where X( w) = vc dw' ( 1- m 

) I 2 2 
m+µ w'(w' -w ) 

Put 
M+1.1 

w' _ 
cos a , 

X( w) = Z J( w) where 

2 

Z = ' 
2 

and 
( m +k) -1r 

2a +1 

J( w) = dA 
( sin Q) I cose 

1 - Z sin2 6 

((a +1) 
I F(1, a +1, a +2, z) 

2/70,1+2) 
I I 

( see reference 33, Section 2.12, p. 115, equation 7) , where P 

is the hypergeometric function. 

The above integral defined by 3(w) is uniformly convergent 

in any closed domain of thb Z plane cut along the real axis from 

1 to co. This implies cuts in w for -OD ç w (m +µ), and 

(m +µ) ç w coo, so the analyticity structure of X(w), hence 

a ( v) is explicitly demonstrated. 
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The integral defined by X(w) becomes a principal value 

integral when Re is is calculated. 

Behaviour of the trajectory as w -e> co 

The most divergent terni in X(w) is 

00 1 1 X( w - dw - w' -w + vT+rr 
MA-P, 

- 1 [-- f:n (w2 - (m 
7` 

(m+µ) 

w 

so if c1 > 0 the trajectory diverges logarithmically to -cò 

and if c 
1 
< 0, it diverges logarithmically to +oo. Hence the 

condition c1 <0 is necessary for an infinitely rising Regge 

trajectory. 

Discussion of the results 

The equations (M) may be fitted to the above parametrisation, 

giving the results 

mI 0.7865 

c 
1 

= -208.9671 

- -8.60188332 

a(0) = 34.9202044 D 

The principal value integrals were evaluated using a method 

described in Appendix III. All calculations were done on the 

English Electric KDF 9 computer at the Regional Centre in 

Edinburgh. 

The trajectory for this parametrisation is shown opposite, 

and the following points of interest may be noted. 
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(i) The trajectory becomes large and negative, and has cusps 

at w = t (m +µ) respectively. This is readily seen from the 

threshold form of Re a (w) (equation 4.3(2)G). 

(w) = a(0) - Lw_wT Y+ - (k2)a ïI cos aI e a 
Y2 Y2 

aI 
= 0.7865 < 1 for the nucleon trajectory, so the above 

equation has a cusp at threshold. For aI < 0, the above value 

of Re a +(w) - oo 

for the trajectory Rea (w). 

as w threshold. Similar results hold 

(ii) Since c1 C 0, the trajectory is infinitely rising, and 

diverges logarithmically to + CO. 

(iii) The trajectory predicts a MacDowell symmetric partner for 

the nucleon at w ti 970 Mev. 

( iv) The width of the N ( 1688) is predicted to be 

da 
2Im a )/ 

Il d v+ 
(v v) - 

<< 

w=1688 

- 1000 Mev. 

The value quoted by Donnachie, Kirsopp and Lovelace(19) is 

= 177 Mev, so the predicted value has the wrong sign and is 

six times too large. 

(v) The value of da /dw, da /dm is of the order ten times 

too large to give satisfactory predictions of possible higher 

spin resonances for w "--1700 Mev. 

( vi) The value of Im a (w) < 0 for all values of w 

However, from the work of Chapter 3, Im a (w) > 0, w >0, 

for the system to describe physical resonances. 
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(vii) The value of a(0) is ten times larger than the latest 

value given by Barger and Cline(51), and also suggested from the 

Chew Frautschi plot. 

The only satisfactory prediction for this parametrisation 

is (ii), but in view of the other unsatisfactory features, such 

a parametrisation appears to have little relevance to physics. 

4.3(4) Parametrisation of the nucleon trajectory which fits 

the N't width 

The previous section has shown that the assumption of exact 

symmetry for the trajectories appears to have little physical 

importance. Another possible parametrisation tried was the 

MacDowell symmetric form of Im a +(w) which has different threshold 

values Im a +(WT) = al' and Im a -( w T) 
= aII. 

Im a (w) =L1 + ( ) 1± ( w c ) I I 
± 

c 
+ w 1 2 w 

(p) 

The value of aII is varied until the correct value for the 

N *(1688) width is obtained (r = 177 Mev) . aI is assumed fixed 

at aI = .7865. 

The substitution of equation (P) for Im a (w) into the 

dispersion relation for Re a +(w) gives 

Re a( W) = a(0) + c 
1 

D1( w) + c2 D2( vr) 

OD 
dvr' 

aI aII 1 aII aI 
Dl( w) 

m+µ 
A B - A B w +w 

D2 (W) = 
w( m+µ ) oo d%rAI 

w w' -w 
+ AaII B 

I 

(Q) 

w 
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A = ( 1 -r) ; B = (1 + 
vv 

The four unknowns cl, 
029 

a(0) , aII occurring in equation 

(Q) are obtained from the four constraints. 

2 = go) + c1 D1( 938) + c2 D2( 938) 

2 
a( 0) + cl D1( 1688) + c2 D2( 1688) 

7 = c,(0) + cl D1( -1670) + c2 D2(-1670) 
L 

5 

177 = 2Im a (1688)/ 
da 

+ 
(w) 

+ dw 
w=1688 

(n) 

The equations (Q) for Re a +(w) are fitted to the con- 

straints (R), and the following values obtained for the parameters, 

a(C) = 0.885488571 

cl = 6.41091143 

c2 = -9.70803843 

all = 2.11748 

The integrals DIM, D2( w) are 

(i) divergent if either al or aII C 1 

(ii) divergent at w = (m +p,) if -1 G al < 0 
(iii) have threshold cusps at w = (m +µ) if 0 45 al < 1 . 

Similar results hold at w = - (m +µ) for aII' 

As before, the trajectory is plotted out as shown and the 

following results are noted, 

(i) A threshold cusp occurs at w = + (m +µ), and not at 

w = - (m +µ). 

(ii) Since cl > 0, the trajectories will turn over and 

diverge logarithmically to -co, The highest spin value 
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reached by the trajectory is j = 3.3 for w = 1700 Mev 

(w >0) and j = 2.6 for w = -1500 Mev (w moo,. Hence the 

Regge trajectory cannot reach any higher spin resonance. 

( iii) There is nay. nucleon MacDowell symmetric partner. Rather, 

there is a particle predicted of spin 5/2 around w = 950 Mev. 

(iv) The value of Im a 
(w) 

>0 in the range (m +µ) < w < 1.5385 
(m +µ). Otherwise it is O. Similarly Im a (w) < 0 
for all w > (m +µ), Thus physical resonances on a +(w) 

can be described in the range 2 Gev, and resonances on 

a (w) occur for all w ) (m +µ). 
v) a(0) = 0.885488571 which is the same order of magnitude 

as the value obtained from Barger and Cline(31), but has the 

( 

wrong sign. 

The above results show that the above parametrisation gives 

reasonable physical predictions in the range w < 2 Gev, but 

fails hopelessly in the higher energy region. The trajectory turns 

over and does not reach any of the higher resonances. 

ho3( 5) Discussion of the above parametrisation 

The above results are in general unsatisfactory, and cast 

grave doubts on the possibility of using the threshold condition 

to obtain physically meaningful Regge trajectories. 

The threshold approximation has been discussed in potential 

scattering by Warburton(34), who investigated the case of a 

repulsive Yukawa potential having a short range attractive core. 

For spinless particle scattering 

Re a(k2) = a(0) + A k2 - B (k2) 
a(k2) +2 

cos It( a[k] +2 ) 

at threshold. 
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He found that the above term which gives the leading order 

behaviour at threshold, is small compared with other terms in the 

trajectory when the phase shifts are still of order only l0 -4. 

Potential scattering shows that the expected threshold 

behaviour of Regge trajectories has no practical significance at 

points even slightly away from threshold. If potential scatter- 

ing has any relevance to relativistic S matrix theory, the use 

of parametrisations 4.3(3)L and 4.3(4)R at points even slightly 

away from threshold must be viewed with extreme caution. The 

work in sections (4.3(3) and 4.3(10 shows that the threshold 

parametrisation has little relevance to the nucleon trajectory. 

Other forms of Im 
+ 
(w) may be considered as a means of 

parametrising Regge trajectories. Ahmadzadeh and Sakmar( 35) 

considered the form 

Im a( x) = 
cx 

X 

cl+( IL-c2 2 

which was obtained from the Schrodinger equation so describes 

meson trajectories. c, cl, c2, X are parameters which are 

obtained from experimental information about the trajectories. 

An open question is whether or not a similar form for Im a 

for fermion trajectories can be obtained from the Dirac equation. 

4.4 Status of the missing MacDowell symmetric partner S11 

of the nucleon 

Recently, attempts have been made to parametrise the nucleon 

trajectory close to threshold using the threshold behaviour of 

Im a (w) as described above. (See Lyth( 36) Jones(37) ) 



Fig. 1 - Possible Nucleon Trajectory 

J6-12-2 

W 

4",Nig 
e'ß 



F
ig

.1
 

N
 

e 
e 

e 

S
11

(1
53

0)
 

' 
' 
\ 

2 
(W

o)
2 

( 
C

 
V

t4
"4

1.
 

N
 , 

/1
//9

 
4-

4-
".

 
L

 
T

A
 , 

- 
- 

- 
- 
, 

tl 
- c

,/ 
- - 

- 
. 

``
 "" = 

o_
 

¡7
4 

L
-G

ú,
,1

 

d 
R

eo
c(

W
) 

-9
/2

 

5/
2 

1 

F1
5 

(1
69

0)
 

P
11

(9
38

) 
P

ii 
( 
14

 5
0)

 

I 
I 

I 
1 

g,
...

. 

(W
o)

2 
2 

3 
4 

W
2 

(G
e 

V
/c

 )2
 

(W
>

0)
 F1

5 
(2

16
0)

 



-70 - 

In Lyth's preprint 0,1,4'0 so that Re a (mill) > -OD. In 

Jones' preprint a cusp is assumed in a (w) at w = (m+0. This 

effect produces a distortion of the highest ranking Na trajectory, 

so the highest S11 state (1591 Mev) is assigned to the leading 

trajectory, rather than the first daughter, as in the fits of 

Barger and Ciine(20) . Their results are shown opposite. 

4.4(1) Difficulties of the theory (38) 

The main difficulty of a theory of threshold cusps lies in 

explaining the relatively large width of the S11. Donnachie, 

Kirsopp, and Lovelace(19) give a value ri( S11) = 268 Mev. This 

is nearly twice the width of the F15 (r' = 177 Mev) and the 

D15 (fl = 173 Mev) . 

However 

r/2 = 
Im a( w)/ 

aa( w) 

dw 
w=wR 

so if (da(w) /dw)w__w is large, then the width will tend to be 
R 

small. In Lyth's preprint the Regge trajectory is diverging to 

-oo through the. S11 (1591), and the value of da(w) /dwtw 
-w 
R 

is very large. In Jones' preprint, the S11 passes through a 

point on the trajectory above the highest point of the cusp, and 

the values of 

da( w)/dw 
¡S 

, da( w)/dwl 
F15 

, da( w)/dwi 
11 D15 

are approximately the same. 

The above parametrisations have difficulty in explaining the 

large width of the 511, 
unless Im a- (1591) is abnormally large. 



-71- 

An argument against this possibility may be seen from the 

work of Chiu and Stack(12) who considered the form of backward 

Tc +p scattering at fixed large s and variable u. Two Regge 

trajectories cóntribute to this, the N and the At . The con- 

tribution of the 41 is small and may be ignored, leaving N 

as the dominant trajectory. 

The equation for the amplitude f (Vs, u) has been given 

previously by equation 2.3B. The combination Y(w) P(a +i) is 

a smooth function without poles. Consider the combination 

(1 + exp( -i EG-4.1) x 1 

cos'ica r( a+2 ) 
(s) 

This contributes either a pole or a finite quantity for a 

a positive half integer according to whether the trajectory has 

"right" When a is negative half 

equation (S) contributes either a finite quantity or zero, 

depending on the signature's being right or wrong respectively. 

Zeros in the amplitude resulting from negative half integer 

values of a occurring at wrong signature points, are called 

"wrong signature nonsense points ". 

The point a(w) = -2 is a wrong signature point for the 

nucleon trajectory. If there exists a value of w such that 

o. (w) and aN( -w) are both near j = -2, the contribution 

of the nucleon trajectory to the scattering will vanish, and a 

large dip occurs in the cross -section at this point. 

Since a large dip in 7t +p backward scattering occurs at 

u ^, -O.2 (Gev) 2, then 
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Re aN (T -0.2 ) = Pe aIT(V- 0.2 ) 

Im aN(^f -0.2 ) = Im aN(N- 0.2 ) ti 0 

As w increases from Nr(0.2) to 1591, 1670, 1688 Mev the 

value of Im aN(w) is also expected to increase from zero, since 

the width of F15(1688) is slightly larger than the width of the 

D15(1670) . The width of the J11(1591) would be expected smaller 

than the width of the D15, Just the opposite is observed, since 

/1(311) = 268 Mev, ii(D5) = 173 Mev, and %i(F15) = 177 Mév, 

4.5 Conclusion 

The possibility of parametrisations of a +(w) has been 

investigated in this chapter, and special attention has been paid 

to the threshold parametrisation. The results show that extreme 

caution must be observed if any conclusion is drawn from this at 

points away from threshold. Further, the method of threshold 

cusps to explain the missing 311 
on the leading N 

ß 
trajectory 

has been discussed critically. The explanation of the large width 

of the S11 (1591) presents grave difficulties to this theory. 

Another possible explanation of the missing S11 is the 

vanishing of the Regge residue function at exactly this point on 

the leading trajectory. This effect is considered in the next 

chapter on dynamical models. 
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CHAP'T'ER V 

DYNAMICAL MODELS FOR REGGE TRAJECTORIES 

5.1 Introduction 

Field theoretic models for fermion Regge trajectories are 

discussed in this chapter. The basis of the theory is a series 

of papers by Gell -Mann et al.(`), where it is shown that under 

certain conditions, Regge behaviour can be obtained by the 

iteration of Feynman diagrams. First of all, a brief survey is 

given of the above theory, and the concepts of "Reggeisation ", 

"sense ", and "nonsense" are discussed. Later, dynamical models 

describing the pion- nucleon interaction are considered, and the 

residue functions and the trajectories calculated. The resulting 

trajectories are examined for dips and cusps around the S11(1591) 

resonance, and the Regge residue functions are examined for zeros 

at this point, 

5.2 The Theory of Reggeisation 

Work done by Gell -Mann et al.(2) has shown that, under 

certain conditions, a Born approximation pole in a Feynman graph 

corresponding to elementary particle exchange, may lie on a Regge 

trajectory. The conditions required are that the system con- 

tains a "nonsense" channel, and the Born approximation residue 

factorises. The method used is to show that non continuable terms 

in the complex j plane are cancelled by similar terms from higher 

order Feynman graphs, and the resulting amplitude is shown to 

exhibit simple Regge behaviour. 
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The above process in which a fixed pole corresponding to 

the exchange of an elementary particle is made to lie on a Regge 

trajectory, is called "Reggeisation ", and the conditions for 

Reggeisation are given in the previous paragraph. 

5.2(1) Sense and Nonsense Amplitudes 

The notation is that of GGLZ(2), and has been given in 

Chapter le 

Consider the reaction a + b -->c + d, where a, b, c, d 

denote the helicities of particles a, b, c, d. Let h = a -b, 

µ = c -d, and J be the total (real) angular momentum for the 

system, h, p, represent the helicity of the composite system, and 

for physical ( "sense ") amplitudes, h, µ 1 J. Amplitudes for 

which X, µ > J cannot exist physically and are known as 

"nonsense" amplitudes. Thus "sense" states have X, p C J 
and can occur physically, while "nonsense" states have h, µ > J 
and cannot occur in physical processes. 

Gell -Mann et al.(2) considered the scattering of a neutral 

vector meson (a, c) from a nucleon (b, d) and defined 

Sa = Sc = 1, ¿ = J - 2, b = d = 2, Faze? = Fac, and 

f 1 , = f 
ac 

o 

a2 c2 

At .6 = 0 the channels having a, c = 0, 1 are sense, 

and those having a, c = -1 are nonsense. Greek letters ko, 

describe the sense states, so a sense -sense transition is described 

by fAaKU, and a nonsense -nonsense transition is f 
-1 -1. 

Similarly, the parity conserving partial wave amplitudes corres- 

ponding to these transitions are k F 
, 

F 
-1V 

, and F 

respectively. 
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Let a Regge pole occur at a value = a(w) . Previous work 

by Gell Mann( 39) has shown that the sense and nonsense amplitudes 

become decoupled at .6 = 0, so a Regge pole occurs entirely in 

the sense amplitude or in the nonsense amplitude. 

The trajectory is said to choose sense if the Regge pole 

occurs in the sense amplitude, and Gell-Mann et al.(2) have shown 

that near a Regge pole 

FK ',- 
11(121E -a(w)J 

1 

F 
-1 

/ CZ( Z +2) 2 ti 7vtl - a(w)] (A) 

F -1 -1 ti ()2 a(w) (a(w) + 23 / r& - a(w) 
J 

The residues i 
K 

corresponding to the sense amplitudes 

approach finite constants as a(w) 0, while the nonsense 

residues g Ca(w) (a(w) + 2)] 
2- 

0 as (a(w)J 2 as a(w) O. 

Similarly, if the trajectory chooses nonsense at .6 = 0 

F - (Z_)2 a( w) 
C 
a( w) + / - a( w) 2 J 

F-10/ CZ( 
6+2112 

1 

2 
/1 2 , -1 G a / (.6 - 

a( w)] 

n 
k 
7/a(w)] , F-1-1 ti L 

(B) 

When the Regge trajectory chooses sense, near a(w) = 0 

the above amplitudes become 

FK. -( K to a-1) aoZ 

F-10/E(.6+2)12 16. j_1 20 .6-1 

F-1-1 2( g a)-e-1 c 

( c ) 
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5.2(2) Regge behaviour and Feynman graphs 

Gell -Mann et al.(2) illustrated the above concepts of 

Reggeisation, sense, and nonsense by considering the Born graph 

Fig. 1 

It may be shown that the partial wave amplitudes for the above 

graph at large Z = cos G. are given by formulae similar to 

equation 5.2(1)0. Thus the Born approximation at large Z 

corresponds exactly to the contribution of a sense choosing 

Regge pole with a^-> 0. Further study shows that this Regge 

pole chooses sense at & = 0, w = mo (nucleon mass) and thus 

corresponds to the physical nucleon. 

.f. 6iosoul re-pwo 

Fig, 2 

1- 
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If the Regge behaviour persists for all orders of Feynman 

graphs shown in Figure 2, the matrix element for the scattering is 

Mµ, = 12 i rl 
iZ 3' i flo 

Y.p -mo 

where Y is the pNN coupling constant, f7 is a gauge, and µ,v 

[(-z)a + Cz)a t(-z)-a - (z)-a 

2 2 

2 

= 1+an(-z) +-a2-(nz)2+ ..... (D) 

The presence of terms having positive and negative z in equation 

(D) is due to the fact that the variables t and u are 

alternately the leading asymptotic variables in the graphs shown 

in Figure 2. 

Gell -Mann et al.( 2) verified directly that the first term in 

the series corresponds to the most divergent term in the Born 

approximation, the second term to the box graph, and the third 

term to the 6th order graph. The summation of the most divergent 

terms in each graph thus verifies Regge behaviour to 6th order. 

5.2(3) Unitarity and dispersion relations 

From equation 5.2(1)C above it is seen that the nonsense 

amplitudes have a pole at L. = O. The use of unitarity, dispersion 

relations, and the N/D method(40) provides a means of iterating 

the pole at 6 = 0 so a Regge trajectory is obtained. 
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1 .- 1 á u- 

2 

v 
4. 7 1 O O O 1 

-&-a 

If a Regge trajectory is generated by this method, the effect 

of higher order iterations on the non- continuable term dZo in 

the sense amplitude is 

a 

An example of this techn_iGue is as follows. Suppose the 

nonsense amplitude for the Born graph is 

B-1-1 (w) _ T h( w) ; w = 4/-s 

and the unitarity relation for the Regge pole exchange amplitude 

is 

Im F_1_1 (w) = k (F1J2 ; k is the c.m. momentum. 
X 

The amplitude F 
-1 -1 

(w) may be written as 

F 
N( 

-1-1( ) D( j ) 

where, to first order 

N( w) = B-1-1( w) 

D(r) = 1 - dw' 

unitarity 
cuts 

Multiplying (.) by .6 gives 

k( w B-1-1( 

-W 

N(w) = h(w) 

= .6 - dv,t 
, k( tir' ) h( w' ) 

unitarity w -0 

. cuts 
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The above method of iterating the Born approximation pole 

to obtain a Regge trajectory has been discussed in detail by 

GGLZ( 2) . Provided the conditions 

(i) There exists a nonsense channel. 

(ii) The Born approximation residue factorises into residues 

corresponding to the different sense and nonsense channels 

respectively, the effect of unitarity and dispersion relations 

is to transform the fixed Born approximation pole into a Regge 

pole, Furthermore the Regge trajectory obtained by this method 

is exactly similar to the trajectory obtained by summing the most 

divergent terms of the Feynman graphs described in the previous 

section. 

The N/D method described above is a practical means of 

calculation, and has been used by Freedman(41) to construct 

models for the nucleon and baryon Regge trajectories, 

5.2(4) Nonsense states and the S11 resonance 
(49) 

In paragraphs 5.2(1) - (3) a model of Ge1l41ann et al.( 2) 

has been described in which the physical nucleon lies on a Regge 

trajectory. The Regge pole occurs in the sense amplitude at 

= 0, so the nucleon is physical. Suppose the Regge pole chooses 

nonsense at -6 = 0, so it occurs in the nonsense amplitude. 

Since sense- nonsense decoupling occurs at = 0(39) and the 

nonsense state is never reached physically, no bound state or 

resonance will be seen at this point. Should the NR trajectory 

choose nonsense at .6 = 0, no Sli resonance will exist, and there 

will be no nucleon MacDowell symmetric partner. 
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The question as to whether or not the Nß trajectory chooses 

nonsense at .6 = 0 depends entirely on the dynamics of the system. 

If the Regge residue function zero as (w - m') at .6 = 0, 

where m' is the S11 mass, the trajectory will indeed choose 

nonsense. Otherwise, the trajectory chooses sense. 

5.2( 5) Constraints on the residue function 

The w plane is defined as before, so the Na trajectory 

(positive parity trajectory) corresponds to w ) 0, and the 

Nß trajectory (negative parity) corresponds to w < 0. 
If the residue function ß(w) is to describe physical 

resonances, then ß(w) > 0 for w 1 wT (threshold), and 

P(w) < 0 for w < -wT. Thus the residue function changes 

sign in the region -wT E w 4 wT (See Desai(3)). 

Suppose a Regge pole occurs in a partial wave amplitude 

FJ('w) at w = wR. Near w = R 

FJ(w) ti ((t) 

a(v,.)-J 

and expansion of a(w) about w = wR leads to a Breit Wigner 

form for F J(W) 

iIrn a( w) F( 
w) 

ß( w) ;f-yR + 
¡' 

C--1dw 

Re as( vr) J dr Re a( w) 
w=w 1, '.N=1J 

R 

For w > 0, the work in Chapter III shows that 
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Im a( w) > 0, i--1-; Re a( w) > 0, so ß( w) > 0 if 
w=wR 

physical resonances are to be described. 

Continuation of this equation to w = -w° shows that if 

physical resonances are described in this region, ß( -w') < O. 
For physical resonances 

ß( w) > 0 

ß(-w' )<0 
(G) 

The Regge residue function is required to change sign in the 

range -wT < w C WT and consequently has a zero (or 

infinity) in this range. 

Dynamical models of Regge trajectories are constructed in the 

next section. The Regge residue functions are checked first for 

smooth positive behaviour in the range wT 1 w co , and for 

smooth negative behaviour in the range -ODE w E -WT. IText, the 

residue function is examined for zeros in the range -WTI w E WT, 

especially for zeros near the mass of the missing S11 on the 

highest ranking N trajectory. 

5.3 Dynamical Models 

In this section, dynamical models for the nucleon trajectory 

The first model was used by Freedman(41) to are considered. 

evaluate the slope of the Na trajectory at the nucleon. This 

work has been extended, and the residue and trajectory functions 

calculated for this model. Other models consist of Born diagrams 

with o- meson (S wave icic state) and p meson exchange, and 

residues and trajectories are calculated as before. 
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From Barger and Cline's classification of the baryon 

resonances( 2O), it is readily seen that the odd signature tra- 

jectory passing through P11(938) and F15(1888) , lies very 

close to the even signature trajectory which passes through 

D13(1518), and G17(2190). This suggests that the exchange 

(u channel) forces responsible for even and odd signature 

effects are unimportant in this case. Only models which do not 

give rise to u channel cuts are considered in this work. 

Iteration of the Feynman graph used in the model of GGLZ(2), 

produces alternate t channel and u channel cuts, and gives 

rise to r exchange forces. Such a model is expected to be 

not so successful in describing the physical nucleon trajectory, 

and is not considered further, 

5,3(1) Freedman's model 

.w_ - IN. 

I 

Fig. 3 

This model consists of iteration of the Feynman graph shown 

in Figure 3 by unitarity and dispersion relations. This graph is 

seen to give rise only to t channel cuts, and there are no exchange 

forces as required. The effect of the vector meson acting transversely 

is to displace the fixed pole which occurs in the spinless particle 

partial wave amplitude at 4 = -1, by one unit. Thus the above 
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Feynman graph (Figure 3) has a fixed pole at & = 0, J = 1 -z, 

and iteration of this pole gives rise to the nucleon trajectory. 
A weakness of the above model is that there is no nonsense 

channel for the Reggeisation theory of GGLZ(2), but this was 

ignored in the calculations of the Regge parameters. 

After correction of an error has been made in Freedman's 

paper, the partial wave amplitude near = 1, J = ,64 = z, 

parity - ( -1) _ +1 is (see Appendix Iv) 

( C_ µ2 
4 r22 

1 
2 

h (i'') z-1 1 87: 

The conventions used in the calculation are given in Appendix II, 

G is the pion- nucleon coupling constant, and G2 ti 15. 

F is the p'Juc coupling constant, and F2 - 2 

m 
0 

, m, and p, are the masses of the nucleon, vector meson, and 

pion respectively. 
W is the total centre of mass energy. 

The functions h (w) are 

, 
+ 2 2 

h+(`') = (m 
v - 

2) I(v'i) 
o I( w - m+mo ) ( r - En-mo1 )' 

r:here ( i) 

+ 
-1 

2 2 - ( m 
2 

+ m0 ) 

tan 

1 

( mo - in fol- ) 2 r". w2 m o+ ( m) 
2 

2. 2 2 , 2_ <, , i 
2irun 

° a. > m%jf ) 1A/ C. t MO 
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Application of the N/D method as described in Freedman's 

paper gives the trajectory function 

a2(w) = 1 + w27o 
G 
2 
F 
2 

) 22 co ' 

dw r ci(wt) 
( w' +mo) 212 

x 
w t 2 

( ' ' 
h ( i' ) 11-F.( w' ) 

w -m ) ( w' - ) 
( w'+mo)(w +w) m 

o 
+µ o 

The expression for the partial wave amplitude is 

F2_ 
-6 -6-a( w) 

where ß(w) = 
(w -rílo) 2-µ2 C2F2 

- 
2 ` h (w) 

w 2 7. 

The Regge residue functions 3(w) and the trajectory a(w) 

were evaluated and the results shown on the graphs opposite. 

Conclusions and Discussion 

For w >0 the residue function ß(w) is negative except 

in the region 80015 w 1065 Mev. Zeros occur in ß(w) at 

w = 800 Mev and w = 1065 Mev, but these appear to have no physical 

significance. Since ß(w) is positive only in the region 

800 w 1065, physical resonances can be described only in this 

region. Further, ß(w) - 0 as w oo . A cusp occurs at 

the p meson threshold, w = 1703 Mev. 3(w) diverges at w = O. 

When w < 0, ß(w) diverges at w = 0 and w = -(m +mo)= 1703 

Mev, and is negative in between. For 'wj' 1703 Mev, the residue 

is positive, and decreases to zero as w--> -oo. (3(w) has no zeros 

except at w = t oo. 

The residue function changes sign for w both positive and 

negative, and in general has a very unsatisfactory behaviour. This 
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may not be due entirely to weaknesses in Freedman's model, since 

the first order N/D method used is a crude approximation, and 

mutilates the correct form of the partial wave amplitude F2_ 

obtained from the iteration. 

For w >0, the trajectory function a(w) decreases slowly 

in the range 0 ` w < 2000 Mev, and has a small cusp at the p 

meson threshold mo +m, The trajectory varies little from a(w) = 1, 

and has little physical interest in this range. 

For w < O, a(w) is positive, increasing, and divergent at 

the p meson threshold. The divergence is too rapid for any 

physical significance in this region. For -4800 w . -1705 the 

trajectory a(w) is negative. 

When I wi > 5000 Mev, trajectories for both positive and 

negative w start diverging. This is confirmed by a simple 

calculation which shows that both trajectories diverge as ( &nw)2 

as w oo . Thus Freedman's model gives rise to infinitely rising 

Regge trajectories. 

In Freedman's model, there is no MacDowell symmetric partner 

to the nucleon, since a state of spin -'. 10 is predicted at 

w = -850 Mev. However, the Regge trajectory is unrealistic in 

this range. The residue function ß(w) shows no evidence of a 

zero at w = -850 Mev, so the non appearance of the S11 is not a 

nonsense effect according to this model. 

In general the forms of both the trajectory and the residue 

function have little relevance to the higher pion -nucleon 

resonances. 
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5.3(2) a- exchange model 

1r lr 

p4 72 w 

N 
Fig. 4. 

t W a 

Single particle exchange models are considered in this and 

the following section. First the exchange I = 0, J = 0 is 

considered. This corresponds to an S -wave dipion state or sigma 

meson. 

If coupling takes place between this state and the two pions 

in Figure 4, the pions are in an S state (Z =0). 

The parity of the pions is (-1)2(-1) = +1 
n 

The G parity of the pions is ( -1)2 = +1 

Hence the quantum numbers of the exchanged sigma meson are 0 + +. 

The question as to whether or not the sigma meson exists is un- 

important, since the important effect is the exchange of an S 

wave dipion state having quantum numbers 0 
+ +. 

There are two weaknesses in the above model. The first is 

that there is no nonsense channel, and the second is that there 

is no vector meson to displace the fixed pole occurring at the 

unphysical value .6 = -1, to the physical value -6 = O. In 

spite of this, however, calculations were done to see if the 

residue and trajectory function have any physical significance. 

The Feynman amplitude is 
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A A 

Mfi 
= 

7c o 
G u ( q-,) 12 

( 
G-13) 

m is the o- meson mass. 

F F. is the o= coupling constant. F2 /16 8.3611 2. 

G is the oNN coupling constant. G ti 2.7 

P 

q 

= 
A 

(ci 

m 2- 11 

0 

2 

) 
, 2w 

2 2 
A m 

02w 
- µ 

= (qf, 
) 

Projection of the negative partial wave (near .& = -1 this 

gives a trajectory of positive parity) takes place as before, and 

near the fixed pole at . = -1 the partial wave amplitude is 

BZ- (w) = F Qa m 2 
7. 

1 

vi(E +mo) 2q (w) ¿ +1 

where q(w) is the centre of mass momentum and E the nucleon 
2 

energy. Put Y(w) = 1 + 2 , 
2q(w) 

-, 

.. -( w) _ 

%a 
Y(w) 

w( E+mo) Z+1 

gives 

ELL 
Fz - ( w) = D( w) 

N( w) 

and the first order N/D method 

) µ) 
D( w = 1- 1 

00 
dw' B w' ) q tiv' ( w) 9( wt ) 

m +µ 
yr -tiv 

- 
w -w 

o 

Considering only the most divergent term of B _(w) gives 
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F Qs -rn 

D( w) = 1- ' ( y °) 1 
c( ti+1) E+mo w1( 

w' m -w) 
0 
+µ 

E+m 
0 1 

+ 
(,J 

mo) w'(w'+w) 33 . 

This gives Regge behaviour 

F _( w) = ß( w) 
9 

-6 - a( w) 

F G 
Cr 

vv(E + mo) 

where 

F G 
er U" 

(w+rno -µ)(w-mo+µ) 

F G r "' E-rn 

a( vr) _ -1 + ( d',n l ( ( , o ) 1 
rno t µ +mo ,.,+ ( v;t _w) 

E+m 

+ (E-no) 
i 

) ) o 
1 

o :V' w' -w) 

Discussion 

The residue function is positive for both w mo + µ 

and w (mo + µ) and is never zero. Divergence occurs at 

vv = ± (mo - 4). There is no evidence of a zero near the O11 

mass, w 850 Mev. Such a residue function can give rise to 

resonances in the region w ' (mo + µ), but not in the region 

The trajectory function is shown opposite. For w >0 the 

trajectory fails to rise to any physical value of J, and approaches 

Re a( w) = -1 as w 00 . For w < 0, a MacDowell symmetric 

partner for the nucleon is predicted at w = 615 Mev, and the 
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trajectory diverges to +oo at threshold mo + µ. For w -(mo +µ) 

the trajectory is negative and slowly tends to Re a(w) = -1 as 

w -OD . 

Such a model has no application at all to the higher pion - 

nucleon resonances. 

5.3(3) p meson exchange 

N 

Fig. 5. 

N 

If vector meson exchange takes place in Figure 5, the quantum 

numbers of the exchanged state are 
JPG 

= 1 + (p meson). 

A similar calculation to that in section 5.3(2) shows that 

iteration of the above graph produces Regge behaviour 

2l } 
- a2( w) 

e 

The superscript refers to the isospin state. 

ß2( w) =1; 4 G Fp mo -2E(w)1 
p ( w) 

Sm 
a2( w) _ -1 + 

3 
° Gp Fp w 

00 

dwt rt t -E(' ) 
), 1 

mo+µ 9.( w vt 2-w2 

2 
The factor results after projection of the state I = 1 . 
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Gp is the NpN coupling constant, and Fp is the pww 

coupling constant (see Appendix II). 

Discussion 

Once again the residue function remains positive for 

w - (mo + µ), so physical resonances cannot be described in 

this region. Zeros occur at w = 
± Nr(mo2 ), 

i.e. w = ± 928 

Mev. The negative value is near the assumed mass of the Si, 

(850 Mev), so this model gives a possible explanation of the miss- 

ing S11 in terms of the vanishing of the residue function. 

The trajectory function is shown opposite. Divergence to 

± oo occurs at the two thresholds w = 
± 

(mo + p) respectively, 

and as w t oo , Re a( ±w) -1. This was confirmed by 

computer studies for w up to 1012 Mev, and is also evident from 

a simple calculation. 

Since positive divergence occurs at w = (mo + p.), a 

subtraction was made at w = wo in the dispersion relation for 

the D function so that a,2(w) passed through the nucleon (-Z = 1). 

The expression for the trajectory is now 

1 

a 
2 
01.0 = - 1 + 

8m 00 
o 

G F ( r 2- w2 ) cita' 
w' -E ( w' ). 

p p o w' g( w' ) 
mo+µ 

1 

t.N' 2- w )( w' 2-wó ) 

1 

where w° = 899.1408 Mev and a2(m ) = 1. 

The trajectory again shows divergence to +oo at the thresholds 

+ 
- (mo + p.). Above threshold the trajectory diverges logarithmically 

to -co and does not reach any of the higher pion- nucleon resonances. 
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The unsubtracted form of the trajectory for p meson 

exchange has some satisfactory explanations for the missing 
S11 

state, notably vanishing of the residue function in the vicinity 

of its mass. Furthermore, the trajectory function has a large 

dip (at - Cmo + µ) in its vicinity. 

5.4 Conclusion 

Both the residue functions and the trajectory functions for 

the three models discussed have very unsatisfactory behaviour and 

little relevance to the higher pion- nucleon resonances. This may 

be partly due to the models (in all three models there is no 

nonsense channel and also no transverse vector meson in the 

single particle exchange models), and also to the approximations 

made in the calculation (the first order N/D method) 

The single particle exchange trajectories tend to -1 as 

w "i> 
± 

OD . There is an analogy with potential scattering, 

because Regge trajectories obtained from the Schrödinger equation(24) 

end on negative integers as w --j co 

The effects of the absence of a vector meson acting trans- 

versely in the single particle exchange models have been discussed 

by Abers and Zachariasen 
(44) 

o 

Due to the -1 term in the expressions for the trajectory, 

dynamical effects are necessary to bring the trajectory into the 

physical .6 region. Since first order perturbation theory has 

been used for strong coupling, calculations involving these models 

are expected to be very unreliable. 

For the box graph used by Freedman, due to the translation 
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of the fixed pôle by the vector meson, the fixed pole occurs at 

J = 2. The trajectory obtained by iteration of this graph starts 

at a physical value of angular momentum J = 2, and no dynamical 

effects are necessary to produce a bound state lying on this 

trajectory. For models of this type, the nucleon can lie on a 

Regge trajectory even if the approximation of weak coupling and 

first order perturbation theory are used. 

The above considerations show that the box graph considered 

by Freedman is more likely to produce a physically meaningful 

Regge trajectory than single particle exchange models. A possible 

future research project is to consider the effect of a Feynman 

graph with both a vector meson acting transversely and a nonsense 

channel, e.g. 

Fig. 6. 

I 

i 

N 

The dotted line in Figure 6 can represent any meson having 

positive G parity except the p meson, since a 3p vertex 

is forbidden by Furry's theorem. 
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CONCLUSION 

In this thesis, attempts have been made, on the basis of 

the Regge model, to explain the missing nucleon MacDowell symmetric 

partner, (S11) and these attempts have been highly unsuccessful. 

In the potential scattering model of Chapter III, the possi- 

bility of missing mass states has been demonstrated for negative w, 

but no calculations have been done. 

Parametrisations of the trajectory function are discussed in 

Chapter IV, especially those giving rise to dips and cusps near 

the missing s11. A model of Lyth( 25) and Jones( 26) is considered, 

in which the leading NP trajectory is distorted to include the 

511(1591), which is assigned to a lower ranking trajectory in 

Barger and Cline's classification(20) . This model has grave 

difficulties in explaining the large width of the S11(1591). 

In Chapter V dynamical models have been used to generate 

Regge trajectories, and with the possible exception of the single 

p exchange diagram, these trajectories and residue functions are 

totally at variance with the observed Regge trajectories for the 

pion- nucleon resonances. It is not clear whether or not the poor 

results are due to defects in the models used, such as the absence 

of a nonsense channel, or are due to the approximations made in the 

calculation. This would be partly answered by consideration of the 

graph in Figure 6, Chapter V, which has a fixed pole at j = 

and a nonsense channel. This is a possible future research project. 

Recently, models other than the Regge model have been considered, 

notably the quark model. Squires(45) has obtained a form for a . 
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meson Regge trajectory by considering the exchange of a heavy 

quark in the t channel. Another possible future research 

project is the extension of this work to baryon Regge trajectories. 

A model for the higher pion -nucleon resonances which does not 

involve complex angular momentum is the orbital excitation model 

of Dalitz(6) also Faiman and Hendry 
47Ì 

. The higher baryon 

states are given by excitations of the internal orbital motions 

of the quarks composing the state. In this model, the approxi- 

mate degeneracy between positive and negative parity states is 

accidental, so there is no trouble with missing MacDowell sym- 

metric partners. However, this model has more difficulty than 

the Regge model in placing some of the higher mass resonances. 

The present experimental status of the degeneracy between 

states of positive and negative parity is still rather shaky. 

The success or failure of the Regge model and MacDowell symmetry 

in pion- nucleon scattering will come when accurate data on the 

resonances above 2000. Mev becomes available. 

In 1905 the study of the energy distribution in the spectrum 

of black body radiation led to a revolution in physical thought. 

As progressively higher energies are investigated, perhaps the 

study of the pion -nucleon resonances may lead to a similar 

revolution. 
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APPM\TDIX I 

Definition of angles and projection operators occurring in the 

reaction a + b --b c + d 

(1) Angles( 6) 

Consider the reaction a + b + d where ma mb me 

md. Define the Mandelstam variables s, t, u as before. 

Let As, At be the centre of mass scattering angles occurring 

in s channel and t channel scattering, respectively. 
Define 

Sab= [s_(ma- mb)2 s -(ma +mb)2 = 4sPab 

S cd = Cs_(mc_md)231s_(m c + md) 2 = 4s P cd 

Tac = %-t - (ma - mc) 2Jr t - ( ma + mc) 21 
= 4t pac l C 

= 
- (mb -md)r t - (mb m) = t Pbd Et 1. 

56(s,t) = st(Zmi2 - s - t) - s(mb2 - md2)(rna2 - mc2) 

-tm2 2 m2-m2 m2m2-m2m2 ( )( c d ) ('a d c b ) 

2 2 2 2 
. ( ma + and - mc - mb ) 

Then 

cos As = C2st + s2 - s(¿ mit) + (mat - mb2)(mc2 - 
md2) I 

/S ab Scd 

sin As = 2rs,6(s,tj 2/ Sab Sed 
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cos = 2st + t2 - t( mit) + (ma2 - b 
2) 

(mc2 md2) /Tac Tbd. 

sin &t = 
1 

2 td( s, t) 2/Tac Tbd 

The angles a' b' c d 
(103A) are 

cos 

occurring in the crossing formula 

a = -( s+ma2 - mb2)( t + ma2 - mc2) - 2ma2(mb - m2a + mb - má) 

cos 

cos 

cos 

sin 

sir_ 

sin 

sin 

/ S ab Tac 

( s+mb2 - ma2)( t + mb2 - md2) - 2mb2(m - má + 
mb2 - m) 

/ Sab Tbd 

c = ( s+mc2 - md2) ( t + 
mc2 - ma2) - 2mc2( m2 - m2a + mb - ma) 

d 

/ Scd Tac 

_ -( s+md2 - mc2) ( t + md2 - mb2) - 2md2( mb - mb + mb - ma) 

1 

2ma Á 
2 

( S, t) 2/s ab Tac 

b 

c 

d 

= 2mb /ó( s , t ) 2 Sab T b d 
1 

2mc ,ó(s' t) 2 Sed Tac 

1 

= 2md ,ó(s,t) 2 scd Tbd 

/ Sed Tbd 



+ - + - 
(ii) Define functions eJ , eµ, e , C C , C 
such that 

e = 

J cµ = 

J+ 
The e 

+ e 
µ 

J+ a 
and 

+ 

+ 

J+ 
c 

e _ (r2 

cµ = (4[2 

functions 

µ µ 

+µ I i 
cos A/2) 2 sìn C/2 J w 

X-1-14 
c o s a/ 2) ( ti2 s in 9/ 2 ) dxµ ( 9) 

occur in formula (1.2C) . The 

dßµ(3) functions a re the d functions of the rotation matrix (4) 

Values of eJ and e`' are tabulated in Reference (2) for X, µ 3/2, 
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APPENDIX II 

Conventions and Notation used in this thesis 

The notation of Bjorken and Drell(48), p. 285 is used in 

this work. 

(i) A four vector k = (k0, k); k2 = 
k02 - k2 

(2) The Dirac matrices are 

0-7 are the Pauli matrices. 

(3) The Dirac spinors are defined by 

ur(P) = 2m 
) 

r 

where %lr is a two component spinor describing the spin state. 

The spinors are normalised by úr ur = I, where ur 
= ur} yo 

(4) A factor --x)24 
(2n YP 

i 

mo 

(5) A factor -2- i--2 
(2n) k - 

(6) A factor - 
1 i 

(7) A factor - 
k 

1 

(2x) 

for each internal nucleon line of 

4 momentum p. 

for each internal meson line of 

4 momentum k, and mass µ . 

for each internal photon line. 

for each vector meson line of mass n 

(8) A factor eX(k) 
3,, 
= i for each external photon. 

(2 ) 

0 



(9) A factor 
(2)3 2 () 
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line (entering the vertex. (leaving 

for each external nucleon 

(10) A factor (2n)4" a(11,- p' 
± 

k) for each vertex, corresponding 

to 4 momentum conservation. 

(11) A ps interaction occurs between pions and nucleons. The 

interaction Lagrangian is 

int = i(470' G 

G is the conventional 7cN coupling constant, where G2 

The above Lagrangian gives a factor - i (L i )' G y 
5 

at 

each pion -nucleon vertex, where I'a is the isospin matrix. 

The relative coupling strength is ±ÿ2 for charged pions, 

and 
± 

1 for neutral pions. 

(12) The oNN interaction. Since the o meson is a vector and 

also an isovector, the interaction Lagrangian is 

rp 

lrit 
= (47C 1/2 F óx (. X a?, ) 

where F2 m 20. 

The ?NN vertex contributes a factor -i(Lin)1' F(p +pi ) 

where p , p' are the four momenta of the ingoing and 

outgoing pions. 

(13) The 5't7í interaction. 6- is a scalar meson, and thus 

- = 
(4n)1' 

1 
Fo $51$ 0 int 

Fo2 = 8.3611 2 (11 is pion mass). 
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(14) The oNN interaction. As before 

1nt = (4C)1/2 Go 7 * o 

where Gó 3(49). 

(15) The oNN interaction. Assuming vector and tensor interactions 

are possible, the interaction Lagrangian is 

1nt = i(4101/2 GV 7 Yx * . ox 

+ (44/2 GT 7 04, l . ah oµ 

77 
o 

1 
where oxµ = 2i Yµjv Yv yµ, , 

mo is the nucleon mass. 

This gives the vertex factor(50) 

iG 
-(4ík)1/2 i (GV + GT)y + 

mT 
p where p is the 4 

0 

momentum of the incoming baryon. 

In practical calculations the second term is ignored, and 

the vertex factor taken as 

-(410 1/2 i Go y where Go = GV + GT. 

Values of GV, GT obtained by different methods have been 

summarised by Signell and Durso(51). The value of Go 3. 

(16) Since angular momentum is conserved, qi, of (the unit 

directions of the incoming and outgoing momentum respectively) 

are coplanar vectors, 

If q1 = (x, 0, z), of = (x', 0, z'), 

qi x of = (0, sine, 0) where 8 = (q1, of) 

(17) Partial wave projection operators may be defined for 

pion -nucleon scattering. (See Cuilli and Fischer(52)). 

The operators 



y+ 2e+1 
t 

LFx f ( t+l 
), 

e+1)P 
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gi,qf) - içs.gi qfPt(qi,9.f) 

= 21+1 
e P 

" " + i6. / xA P ) 
e at-; t (qi' gf ) qi gf ( 1, 

project out partial waves having J = e +1/2, parity (- 1)J +1/2, and 
1 

J = t-3, parity -( -1)J 
+2 

respectively. 

The above angular operators are normalised to 

ay. n Tr y (gf,gi) Y+ (gf,gi) dqi dqf = (2t+1) aut 
et e 

The projection of a partial wave Ft from an amplitude 

f(qi, qf) is 

spin 
Tr dqi dq f (Yt )+ f (qi, qf) = Ft 

angles 

(18) In a pion -nucleon elastic scattering process 

xN wN 

the Feynman matrix element is Mfi = u 
( qf) L- -A + 12 y (qi +qf) u(Ti) 

This is related to the amplitude 

f fi = f+ Lfl + f2(g.'1-f)(a'gi)] 91 by 

m 
o 

ffi = n- ' fi' where mo is the nucleon mass, and w is the 

total centre of mass energy. 
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(19) The elastic partial wave amplitudes Bt, B having 

definite parity have the form 

± 
BG 

is + 
= e G' sin a + 

k 

where a + is the phase shift, and k is the centre of mass 
G' 

momentum. 

They obey the unitarity relation 

Im Bt = k ¡ Bt 

+ 
(20) The partial waves B are projected out from the Feynman 

matrix element by the relations 

B- = w ap 
n Tr ( G M dgf dgi 
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APPKNDIX III 

' The Evaluation of a Principal Value Integral 

In this appendix the numerical method used to evaluate the 

principal value integral 

oo 

I = P 
f(x) 
(x) dx 

K X - x0 

which occurs in Chapters IV and V is considered. This method has 

been described by Carruthers & Nieto(52), Appendix (A). 

Consider the transformation 

Y = x + K V - K ° 0 
x+V-2K 

Set f(x) = g(y) 1-Y 
o) 

g(y).dy 

1 1-y 

o 
Then I = P 

Y Y 0 

Adding and subtracting one gives 

1-y 
(l-yo ) g(Y), - g(Y0) 

l yo 
_ 

+ v- a 

Y Yo 
.dy + g(Yo)en 

(V 

x0 2K) 

The integral above is no longer a principal value one, but it 

reduces to the meaningless form 0/0 when y = y0 . 

This difficulty may be avoided if V is irrational, so 

is irrational. The limits of y are 0 to 1, and as the 

interval (0, 1) is divided up for numerical integration, 

y y0 for any finite number of iterations. 

This method is superior to the normal method of evaluating 

Y o 
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a principal value integral, in which the computer approaches the 

pole from both sides and subtracts the differencesuntil these 

become small compared with the total integral, since temporary 

cancellations may occur. The method described in this appendix 

avoids this difficulty by converting the principal value inte- 

grations into an ordinary integration. 
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APPENDIX IV 

The Solution of the Square Graph in Freedman's Model 

_,+w -- =Ns am --- - --,r-- 

rv t rl_ ,. 
Application of the results of Appendix II gives for the matrix 

element 

M 
f i = u ( gf ) 

d Y +lw 
+ mo 

k+1/w, 2 - mo2+ie 

x 1 
gµv 

u(2.1) 

k-p 2 - µ2+ie -k+1kw 2 

Next consider the expression 

1 

- 
0,2+ie 

(gf) CY.K + mo] u(ai) k + Yaw (A) 

Use the projection operators 

Y.K + m(k) 
2 

/1 (K) 

2m k) 
1 ur(K) ur(K) 

( 

2 - (K) _ m(k) - Y'K = vr(K) vr(K) 
2m(k ) r=1 

(B) 

where ur, yr are the Dirac spinors corresponding to the particles 

and antiparticles respectively of mass m(k). 
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Solving for T.K from equation (B) above gives 

2 

(y.K + mo) = (m(k)+mo)ur(K)úr(K) + (m(k)-mo)vr(K)vr(K) . 

r=1 

The mistake occurs in Freedman's paper (see(41), Appendix II) 

at this point. 

Elementary manipulation of this result gives 

2 _ 
uf(gf) (m(k)+mo)ur(K)uz,(K) + (m(k)-mo)vr(K)vr(K) 

rail 

+ (q)+m ñ --2 -° CE(k)+mo -=((f)() + Q.k)(.9.i) 
o o 

E ( q )+m0 
+ ------- 

2m L 

E(k) - mo 
E9, l çr.qf .gi ry 

CE(q) + mo 2 
7 

where !Yf, Ai are two component spinors. 

This result was verified by direct calculation of ü(gf)(y.K +mo). 

u(qi) using the form for the Dirac spinors given in Appendix II. 

The projection of the positive parity partial wave amplitude 

follows from Appendix II. 

B (w) = 2L +I G2F2 E(q)+1110 dk dk qw- -o0 0 0 

Al + A2 + A3 

00 00 

((k+1/w)2 
- mo2 + ieJ(( -k+í/2w)2 - m2 + le] 

where Al, A2, A3 are given by Freedman. 

The most divergent term is A3, and near t = 1 



A3 = 
t-1 

Near t = 1, 

Bt- (w) = 

-108- 

mo - E(k) 

(E(9.) + mo)2 

G2F2 

- 1 

E(q) - mo 

w 

mo - 1/2w - ko 

TO° 
o dk 

((k + 1/2w)2 - mo2 iep-k + 1/2w)2 - m2 + ie 

The integral may be evaluated by Feynman techniqueP3) to yield 

-(w) (w - - 
112 G 2 F 2 h(w) 

t w t -1 

. 
where h+(w) = (wx+ mo) 

o w2x2 - x(w2+mo2-m¿) + 
mo2 

+ le 

The isotopic factors are 

B _14 (w) -1 
t 

[Bt_3/2(w) 
..b 

as in Freedman. 

2 / 3 (W m0)2 - 11. 2 h (w) 
. 

G2F2 

1/6 w t-1 

(w mo)2 - 
11.2 

4 

w2 1 

G2F2 h w ) 
-777- t 

Hence the Regge trajectory is given in error by equation (8) 

of Freedman. The correct expression is 
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