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INTRODUCTION

Phase shift analyses of pion-nucleon scattering have led
to the discovery of a large number of excited baryonic states
having positive and negative parity, A fascinating challenge
is presented by the classification of these states, and the
search for the fundamental laws of Nature which determine their
spectrum,

Previous study of this problem has taken place along two
different lines. In one, the use of symmetry groups is made,
and the pion-nucleon resonances are allocated to differeﬁt re-—
presentations of these groups. The other has been the study of
the underlying forces involved, including dynamical models such
as bootstrap theory. Both these approaches have been adequately
discussed in the report of the Trieste Conference (1965), and
are not treated further in this work,

Recently, the importance of complex angular momentum and
Regge theory in this problem was demonstrated by Barger and

(20), who showed that the known pion-nucleon resonances

Cline
could be fitted on families of Regge trajectories.

An important theoretical concept in baryonic systems is
MacDowell symmetry(l), which is a relationship between parity
conserving partial wave amplitudes for one parity at positive
energy, to the wave having opposite parity and negative energy.
The application of MacDowell symmetry and Regge theory to the
pion nucleon system shows that two Regge trajectories a(iw)

may be defined. The physical Regge recurrences on af+w) have



one parity, and the trajectory o(-w) corresponds to a trajec-
tory in which the Regge recurrences have opposite parity.

The work of Barger and Cline is discussed in detail in
Chapter II, and from the experimental fits it is shown that
the two trajectories o(w), a(-w) are approximately the same,
so parity degeneracy occurs. There are some notable exceptions
to this result. Several states predicted by this parity degeneracy
are missing, such as the lowest menber of the highest ranking N

E

trajectory (the S the lowest member of the N5 (P13)s ana

:Ll)’

the lowest members of the ZSY (D33, 637). The usual spectro-

scopic notation L2I oF is used in the classification of the
: ]

baryons.

This thesis is concerned with a study of the pion-nucleon
resonances in the framework of Regge theory and lMachowell symmetry.
Attempts 'are made to explain the form of the Regge trajectories
for the system, and special attention is paid to the missing mass
states. The scope has been restricted to the nucleon NCL and N

B

trajectories, but the theory may be generalised to other trajec-
tories using SU( 3) symmetry(ul),

In Chepter I the concept of MacDowell symmetry is stated and
proved for the parity conserving partial wave amplitudes of Gell-
Mann, Goldberger, Low and Zachariasen(z). A discussion of
generalised MacDowell symmetry which depends on field theoretic
argumnents has been given by Hara(E), The approach to MacDowell
symmetry used in this thesis depends on crossing symmetry, and
to the author's knowledge this has not been done before,

Chapter II is an introduction to pion-nucleon scattering



and the application of MacDowell symmetry and Regge poles. The
original work in this thesis starts at section 2.5, in which a
discussion of Riemann sheets and their application to missing
mass states, is given,

In Chapter III a potential scattering model is described,
and its possible applications to the pion-nucleon system and
missing mass states is discussed.

Chapter IV is concerned with parametrisations of Regge tra-
jectories, and a critical_discussion is given of models which
produce distortions of the Regge trajectory near the missing mass
states,

Finglly, in Chapter V possible dynamical models for fermion
Regge trajectories are discussed, and a review is given of their

applications to the higher pion-nucleon resonances.



The proof of this takes pla

Definition of Parity Conserving Helicity Amplitudes

In this section, the notation of GGLZ (2) is Tollowed.

[ Jf

Consider scattering processes of the type a + D -%c

where a, b, ¢, d describe both the particle and its helieity

g

state. If a ket !JTQ cq:>> is defined for the final

the parity (P) operator has the effecti-

eSS
=

AL,

n

P [ JH, c§:> = omme (il ™ Beis 36—{Jm, e a::>

573
(see Jacob & Hick())), where MeMg 2are the intrinsic parities

of © and d, and B

S, S the

(4]
i
o]
=
8
o
°

T'rom this result, parity conserving helicity states are

defined by GGLZ as follows

'JM, cd [?Jla cd = 7 nd( -1) c /Jn Hc-q:>.
L - J=7 !
where P lJm, c§:>+ = =1~1) IJM, c§:>+

v = 1% for J half integral

v = @ fer J integral .

Partial wave helicity amplitudes are defined bye.-—

15 - . -
cd, ab (1 de)a cd,a ’

where Kk_ ab? kcd arc the c.m. momenta for ab, cd respectively,

and So-aa% is the 8 matrix element for the process.
cd,ab
Since F has no matrix elements between + and - states

if parity is conserved, parity conserving partial wave amplitudes
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I

are defined bye—

o [,
- 5 Yoe 1 b
"T'gi - 'i_'g T-_.— A — —: J(J - + - = A\ c d_
i(:Lm,od' J’ bw,a€>>i = <:EL’ B I aé>> - qcud(“lx
5 J
x & ~c-a| [ v

(omitting the Jil terms in the kets).

Jacob and Eiok(E) define helicity amplitudes by

1
(8) = gﬁﬁ-{ié(z.nl)(ca[ﬁlab al ()

fcd,ab

A= a-b, L = c-d, di”(gg) are the d functions of the

rotation matrix (see Edmonds(h), De 53)e

8, 1is the direct channel scattering angle. In the c.m. system

2 2 2 A 2 2 &
cos o. =[2St + 87 - s.‘?mi + (m, = m j(a " = my )-7/ (Saﬁoa.ac

’:‘2 = - 2 o 2 = a 2
B B ( s = (ma mb)q]{u - (ma + mb);] = Is K 1
.2 2 2
sl [‘* - (mg, - my) ][ﬁ - (m, + md)zj = hs k4

s, t, u are the usual Mandelstam variables for the reaction.
The £ 5 .p helicity amplitudes are related to the
b

differential cross-section bye—
do=
4

P 2
d-‘)— cd,ab ¥

= m - ) i—-—a]-?n - 5 -
If new amplitudes D A aB 8x ( T ) fcd,ab are defined,

1l

1

then



el lf"'

do= i “ecd,ab
a £2 ylils 9 S = W , and
Ly
io + = = P,
S - 0 - (2"E)l!' (Pc Pan Pa ik O) -
Sl i ‘ “cd,ab .

(282 2o on0 2p)

From field theoretic arguments, }Iara(5) has shown that
T . may be expresse S
Lod, ab nay expre d a
: . o}
i . = é B.(8it,u) x fPelynesiial in p., Y DI pp'S
cd,ab 3 J &

sin gs s QS 2 - 12 T
= 7 9 COS "-_2- s p or P

O K A
* ]l [Pl + mlJ (rL)
isfermion
where B = (pg, Ei) is the four momentum of the i-th particle.
2 2 2 e
p = kab’ P' = k
noo= OUIE gl Mg Mo SRRl
Mg BRI §IT 0t a0 R,ng & =%

The partial wave expansion of Tcd,ab is

T W -?_- (23+1) <ed | F:r,a'b> diu (e.)
’ﬂ [l h
where diu (95) [g:ﬁg Ej:i%] [.cos 98/2 * [E.j_n es/%] ~f

(l?\-—ul Il )

J—h{ﬂoc )

Edmonds(u), Pe 58).

D

(se
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From Hara's result (A), the function

m =\ : - =11 =
0?6 SR [J-Q- 00595/2]—{ +11‘ [1—2 311188/2] I 1' Tcd,ab (B)

has no singulsrities in cos 8, from the d function which

[

arises due to spin. Since + ~~cos 8 iR : has only

s? cd,ab
dynamical t singularities and satisfies a fixed s dispersion
relation in &.

Finally, the parity conserving helicity amplitudes of

GGLZ are defined by,

Cd ab [ﬁ cose /2] I}"'ﬂllp- c:]_nQ ] _lh—'l‘tl Tcd’ab
8 48—V — A+ K—iI
ol )M'}“m noNg (=1) c*"a [JE sines/.g} ( +IJ[]5 0?585/;_‘ | -

where A = max (’kl,lul).

_C'—'d ] a.-

The partial wave amplitudes are related to the T's by

+ o - +

m o g J
“cd,ab Bril < (2J+1)[- AL cd ah (z) 7 “ed,ab ]

+1 - -
o o T o
ﬂcd,ab = 1657 &z lp(z)lcd ab T Clp (z) “cd,ab kz) y

9 -jt uy - 1
J-1 :

The %+4' sign signifies parity (-1)° °, and the '-' sign parity

11 '
(_1)J~a’ and the 'e' and 'e' functions are as defined in

ref., 2 (see Appendix I).
+
From equation (B) above, T;d,ab has no kinematic singu-

larities in t, and as before, satisfies a fixed s dispersion

relation in bt



1S Analyticity of Tcd,ab in

o
2.

Let the direct (or s) channel denots

l'tf

The

a+b -—> c+d.,
D+ beepc+A ,

where D, A denote the antiparticles of
heliecities,
The © iand.

o

symmetry (Trueman &

ridﬂa_ =

et At

Wick

[

(6)y

;L!El ( ) 1 'b

are defined

where ?(, X! X’qd

e
.t
(see Appendix I), and TS, T denote &

amplitudes respechtively.

channel reaction will be .

() agg,

£

the reaction

d,a, and their

channel amplitudes are related by crossing

(X,) a, 2 (7&1)]

in the above reference

and t channel

The crossing relations for the T''s @efined in equation (B),

‘secs 1l.2) are .

¢S
cd,ab

=1 (f2isin 14 Qg) -I'A'h“‘lgé cos 1

J.
?a(“a)db?b(%m A

where ' -=-D=b, uh=0=4,

in Appendix I.

<
mYs
Ak

Tn section (1.2)

99~hﬂ1x

and sin es, sin Qt

=

A'btc'D?

nla e ”\:i ) (JE 5 111”*9t>h =i "(ﬁco Si':f“et)b\ " "

L] T'It
e*A'D'D

are given

was shown to have only dynamical
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Lo

singularities in %, se T'' has only dynamical singularities

o
:Ir'h

in s. Hence the kinematic singularities of in g are
entirely contained in the crossing matrix clements which are
known functions of s. Mixed s t singularities have been shown
to cancel (see L.L. ?ang(6))o

m

The negative helicity states in the above summation may be

eliminated by the parity symmetry relation (see Jacob & Tick(B)).
'F.‘ctﬁ_t’Dtbw = g !‘_C!_:.__I’_-DI_D‘I'
where -
a7~ 8 8 =5 =8 NG J o+ = =dy N¥=p
Tit = A D (-'l C i\ b D = 7AW ("’1) 1% £ D (_1)
p'h My

- - - E L)
Let the crossing matrix relating T and’ 7' be M.

Then
T'; b = Z Ttt
Cl,a Atble!D? ctA!,D'D! cfat,D'p!
= /W1‘;E; pr b
= C'A‘,D'b' “C‘ﬁ.‘,De-b'
where MC'&',D'-‘O' = mclAT,D‘Ib? L2 nt m—C‘—A','—'D'—b‘ ®

W

The parity conserving helicity amplitudes of GGLZ are

defined in 1.2 as &

i3 +

1) = i
“ed,ab

it -
“cd,ab T —c—=d,ab
8 +8 4=V
: d .
where for simplicity (—1)h+%m M3 (=1) % is assumed
+ +5 T
equal to +l. Let M  Dbe the crossing matrix betwsen T and: | T% a



» y all kinem ] o
+
£ e >12 lemen S tat . m e
chA 4T
1 0 i reat S
(1) el
: on & D i 1 to
is ecalcu ) ¢ iy ot
resu low diff g £70 5 .
1onds 'R "/ no io 1, followed, 7 e
¥ :(“ otatio iffer o 0 J ] i
result
I I L Eak
1I11C (5] x A - 9 co X A 9 LB 0 1l
ab ’al
hich explicitly demonstrates th ingulariti = G -l
+ 1A (A" Nrie
I KR € S
c'a' p'b

X Ac'c (’XC) a[v"/ (';yd)

d(c-rd)/,_ Ak 1A )L‘—-Lli
CJ(( ), o )
Ja= Va " =i [Azu]- A+ ]
/Pc /.;1)( ) d)( b/&)(w q’b)(”wa s) |- 1A %e
CY AN xb)'”% e (e (A= ety

——



0)(3;- "'a/a) (-m’A") apcib-ws/a)(_mqb)'(méLas)H:a/"la\ta[

(m:» ;‘-Wa)“’?z (4..,, ;‘- xb)"’b; ajj‘ (7- 2;) a(;i/ (T- J)] )

s 0yun: My Mg (_1)J°+Jd+c+d
ab e F
v Tip
Jd, +dJdy; + ¢ + a4
n_. 3 (_‘1) c a
cd
Vs = 1 1if i-th particle is a fermion

0 otherwise.

J= v/2 . ; 5
G)( / )(cos)() is a polynomial in cos X of order (J - v/2).
s
Similarly, a form of M which demonstrates the singularities at

Hear= O may be written down as.described by ._-’ang(6).

1. Analyticity in w and MacDowell Symmetry.

T

From equation (4), section (1.3), the singularity in M
at s = 0 and hence Ti may be investigated. For m, # my 3
m, # Mg sinee sin 98'1, s%, the entire e% singularity is
introduced by the terms sin @5, and sin & ,, occurring in (a).

For reactions of the type boson + fermion-ﬁboson + fermion,
the term | A = pf - I?L + ul is always odd. Hence the tern
(sin QS/Z)I?‘_“I Ry gives rise to a branch point at s = 0
which cannot be removed by multiplying by S’;{g max ([ A~y , ,}\-H_JJ.

This will remove the possible pole at s = 0, dDut not the

square root branch point.



=J

Although they are not analytic in s, ©the parity conserving
helicity amplitudes of GGLZ are analytic in W = ’5 -
The proof of MacDowell symmetry for the above amplitudes
is as follows.,
+ + -+ +

* ot
m 5 r m1
Tod,apb ) My at,prpt (W) “e¢'At,D'p! ?

are analytic in w, and pt% 35 analytic in s.

+ ol
< m e = = L ne C
XRy J‘cd,ab( W) = IC'é,;j D'b'( W) hé'!l.',D'b'(S) .
From equation (4), section 1.3 -
= Do
I':c'A',D'b'("W) = (~1) I&t tbt(W)
+
° m - A l"""p, +
e lcd,ab(_w) 3 (""1) Cd ab(w) (B)

The parity conserving partial wave amplitudes are related to the
+
U - e e

+
s 3
i'cd,ab(w) = 167&{[ ['M_L(Z) “cd, an(w z)

+ ciu(z) T:d’ab(w,z)]

Hence, from equation (B) aboves:
= J;:
_lJ_ = "\‘_M
P Fea,ap (W) (¢)

This is the general MacDowell symmetry relation for the

above parity conserving amplitudes.
The above relation (C) has been proved only for ma# My

o, # md .  iithen this relation does not hold, MacDowell symme try



S I

1s seen to break down.

Suppose m. = m = = -
Pr a 1h mc mc1 m
» 2 Jwt Gq . Y
s ? £ D
| s=lim 2 s=lum

cosx =—c:osxh =—-cosx =cosq'd=- St o)
(s=Lm® )t-4m")
In this case sin QS, sin 95/2 are analytic at s = 0, and
the singularities are contained only in the cos :Yi terms. These
may be factored out from the crossing matrix, and the amplitudes
nade analytic in s by multiplication with appropriate powers
17
of sm. The interchange w=> -w Wwill not affect the parity
of the state, so0 there is no relation between different parity
states in this case, However there is no known case in Nature
of a boson and a fermion having the same mass, so for all known
reactions, mg F M, m, # m;, and the MacDowell symmetry

relation (C) is assumed to hold.

Leb Application to Pion-nucleon Scattering

The following resulis may be obtained from any standard
work on pion-nucleon scattering (see Jacob & Chew(a), Chapter II).
Ty

The nucleon has spin %5, and helicity state h.  Invariance

under parity implies

&n| Pl B> il e
| ¥ %D < 2>

Denote positive nucleon helicity by +, and negative nucleon

]

helicity by = -
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The partial wave expansion of Jacob & Jick(B) in terms

of the fhp’ and ?i amplitudes ise-—

f = .,J 11
L. (8) ;%? (2341) 27, aiy (e)
P E J J
J,+_(G) = §J (2J+1) f+_ C'lJﬂrﬁf) (G)
. J
where f++, fi_ ¥ <:cdl FJl ab:> amplitudes of GGLZ .

Parity conserving helicity amplitudes are defined by

J . . -4
f£+ = fi_ having parity —(—1)5 = —(—1)J “l  Phik
is equivalent to the amplitude FJ .. used by GGLZ.
cd,ab
Mo J J T
Similarly, f(£+1 ~p=AE = £ has parity #{=2) 14,

7
and corresponds to F Sha
b i cd,ab

3

Comparison of the f , with the generalised parity conserving

P
amplitudes
T S S >
shows that A =a-b = %, p=c¢c-a = %, 80 X = g = 0.
The relation
Fgg’ab (-w) = = (DM )
reduces to f£+(w) == f(g+l)ﬁ (=w) for pionm-nucleon scattering.

This 1s identical to the result found by MacDowell(l).

The one important assumption made in proving the above
MacDowell symmetry relation, is that invariant amplitudes
analytiec in s, t, u may be defined for any scattering process.
This is a field theoretic result and 1is stated by Hara(b)

Other important results used in the proof, are analyticity of
+

T d.ap i W, and the crossing relations of Trueman & Wick.
2




CHAPTER IT

MACDOWELL SYMMETRY AND COMPLEX ANGULAR MOMENTUM IN THE

PION-NUCLEON SYSTEM

2ol Introduction

']l:( (‘U’B':) 7[( UJ' ,k' )
N(E, k) ~— N(E', =k')
o,

The problem of complex angular momentum in the pion-nucleon
system was first discussed by Singh(g), and his notation is used

throughout this chapter.

Invariance of the pion-nucleon scattering amplitude under

parity and time reversal leads to a T matrix of the form:

where A = A(s,t,u), B = B(s,t,u) are invariant amplitudes
1
which satisfy the Mandelstam Representation( O). Sy b, are

the Mandelstam variables, @ = z(K; + XK,), where K., K, are
the L. momenta of the incoming and outgoing pion respectively.

The convention used for the Y matrices is defined in

Appendix II.

Let k, B, w represent the magnitude of the pion three
momentum in the centre of mass frame, the nucleon energy, and

the total energy respectively. Let m = nucleon mass, u = pion

mass .



From any standard treatise of pion-nucleon scattering (see

. 8
Jacob & Chew( )) amplitudes £, fa are defined by
= E+m W -
£q = e ( A+ (w m)B]

£ 1 -m [ -A + (w+m)B
2 8w

These amplitudes are analytic in w as expected from the results

=

of Chapter I,

The partial wave expansion of the fi's ig

f. = & ¢ ” P! (z) = F P'(z) 3 2z = cos O,
& & g4l (e+1) 2

and the prime denotes differentiation

with respect to z.

£, = £ 2PN () = PYa)
PR R e | £° ¢
+1
where f5+(W) = Z F dz (%IP&(Z) + f2P6 1( )]
e ) (2)
w) = % d e e
f(e+1)'( ) T [.1 g1l P\ 2 ]

2L
are partial wave amplitudes having parity 4 (_1)6 = 4 (_1) T

Consider forward (9-41900} pion nucleon scattering, Accord-
ing to the Regge pole model, forward (s chammel) scattering is
dominated by the exchange of Regge poles in the crossed (t and u)
channels, +t channel Regge poles have the same guantum numbers

as the system TR ~=> ﬁN, ise. J = integer, I = isospin = 0,1.
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-

These correspond to boson Regge polzs, and are not discussed
further. The wu channel contributes to s channel processes
for which e -t 180° (backward scattering) and is also repre-
sented by the process 7N '5'ﬁN. The guantum numbers of a u
channel Regge pole are J = half integer, I = 3, 2/2, and these
correspond to fermion Regge poles, Regge poles having I = z
belong to the N trajectories, while those having I = 3/2 are
classified with the A:X trajectories.

The previous results of w plane analyticity and MacDowell

symmetry may be applied to Regge poles in the wu channel where

w= Nu, snd £ L £ _ are functions of w = W~u ,
Z (2+1)
Suppose partial wave F 3 is dominated by a Regge pole at
4
() 80w B, (w) B (w) = p(w) )
Then T w = gy e = Ta i) H W o+vVe
‘5+ £ 0,(W)‘ 1‘_’)—CL+ W CL+( w) = a'( W) 3

Continuing this relation to -w gives

-8 (w)
o_{w)

B(-w) _ -B=(w) B(-w)
¢-a(-w) = 2-a_(W)

£ (-w) =
-6+

-

mn

§w +ve
a( -w)

From MacDowell symmetry,

s B (w)
1.!{ — ]
f(a+1)' ¢-a_(w)

Hence if a Regge trajectory a+(W) contributes to the partiazl

wave f ., the Regge trajectory a (w) contribute to £ 3
¢ (£+1)

where 5
a+(w) = a(w) = o (=w) .

Physical bound states and resonances which occur on the trajectory



a+(w) have parity —(-1 , and similar states on
a_(w) have parity —(~1)J+ . Due to signature effects,
physical resonances on Regge trajectories are separated by a
multiple of 2 units of angular momentum J, so the parity
will remain constant along a trajectory.

MacDowell symmetry and w plane analyticity thus enable
a meaning to be given to a(-w). If olw) = a+(w) describes
resonances of positive parity, the function a(-w) = o (w) will
describe resonances of negative parity, and vice versa.

In this chapter, the properties of the above defined
funetions £ g (w), a_(w) for the pion-nucleon sys tem, are
discussed. girst, the+resu1ts of an introductory survey of
complex angular momentum in pion-nucleon scattering, are
applied to wu channel scattering. Next, the analyticity of
a(w) is discussed, and a dispersion relation for a(w) given.
This is followed by an examination of the continuation process
w = -w in the MacDowell symmetry relation., Special attention
is paid to the particular sheets on which the above functions
are defined, PFinally, a survey is given of the known backward

pion nucleon resonances, and the problems discussed in this

thesis are illustrated.
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2ie e Complex Angular Momentum in the Pion Nucleon System

go2:( 1) Concept of signature, or J parity

The invariant amplitudes A(s,t,u), B(s,t,u) defined in
§2.1} are assumed to satisfy a fixed s dispersion relation

(9)

of the form

1 1
1 [ : At(s,t Y qfee A (s,u') :
A0 i 0 B o 2 i ST
Ly (ra+p)

oo

=

1 [0 At(s,x)
7 ookl 5 + Dhoilia fo s wOES
L x+2k (1-cose) (m+p)  =(m"=p ")
S
ES
N )

2z
* x + 2k (l+cos ©)

+1
Define A, = d( cos G)A(s,t,u)Pé(cos &)
-1

3
2 2 3
e (e e s @ e D g ) W

All g uvantities in the above expression (A) are suitable for
continuation to complex < except the term (-1)6 = exp(ixe¢),
which diverges as £ =»iom . Put £ = A (complex).

To avold this difficulty, define two separate continuations

for values of £ which are even and odd respectively,

dx
4,0 2t X 44,0
n (S,K) = QqI' Ql(l + ék2) Atu (8,x%)

i
o

where Aiu(s,x) 5+ A , and is defined for ¢ = even systems

odd systems,

o) i : o 4
Atu(s,x) = A, - A, andis defined for &



S

2
tr 0 - L
s A interpolate between partial wave

The functions A
amplitudes for even and odd values of £ respectively. A
physical system having < even is said to have positive
"signature! 'y, or "J parity", while one having £ = odd has
negative signature., The continuations Ag, AO are physically
meaningful only for even and odd values of £ vrespectively,
and bear no relation to each other, The signature is a well
defined quantum number for a Regge trajectory, and its value
is (—1)6, where £ 1is the orbital angular momentum of
physical bound states on the trajectory.

The concept of signature is entirely due to the presence
of the third double spectral function Au, so it is an
essentially relativistic phenomenon. In potential scattering
and other é;%é relativistic problems, A, =0, and the concept

of signature does not arise,

252,023 The Sommerfeld Watson transform for the pion nucleon

system.
The partial wave expansion for amplitudes fl, f2 defined
in (2gl) i6
pe e SRuwEnieBl Yea)on-i-Bnasoms BEz)
= 6 L Lrl (¢+1)
(4)

= 7 - Pt

f2 % 15 P (Z) £ o+ nﬁ(Z)

(e+1) €+1 V7

Now continue equation (A) above into the complex < plane,

£ have two continuations £°?°, £%2° 4
;f +? = + 2
£ (€+1) 2 (e+1)

to whether £ 1s even or odd.

according



Let fe;o = fe’01 g £€s0 ot fe,o1 ;
¢ (5-%) (¢+1) (543)
[
SR LW
iE. NN
Rigs 25

The above partial wave expansion (A) may be written as a
contour integral around € shown in Figure 2., C 1is described
clockwise, and is assumed closed at infinity,

-4

it 1 :
= et P d |
fl I COS'EJ (J 1)'}- ( J+'.1§( Z) + PJ+1— (Z)-‘

oy
-

P' (—Z) -p'  (2)
i dJ 4 : -
=iy 7 s (% (=z) =P (z{]
LI-“(@ COSTJ {J‘-;-%) 71 Ft

- 3 P' (-z) + P! » ]
4 o som <J+2> [‘J-% ot 2)

(B)

The Sommerfeld Watson transform consists of opening out
the sbove contour as shown. The new contour consists of an

infinite semi-circle, bounded by a line at Re J = =% ,



(oo —20- E=

/A T=o(w)
& L P
m_%ﬁ”
=~/
£
N ~>c0
=i Fig,

The Sommerfeld-Watson Transform

The contribution of the Regge pole terms at J = o(w) are now

included in the expression (B) above for £,
Standard analysisbll) shows that for large z (i.e. large

t or u) the integral along the contour tends to vanish, leaving

only the Regge pole terms.

+
e -c
Suppose f(;i )t = - JEE- 1 eR . + regular terms
+72 €gge po.les a ’O(W) SOy
L EC0 €,0 €,0
where R PPl & ) =0

i 1%e 0 o e
T %(w)  (J+z
Considering only the most divergent Regge pole contributions

in the contour integral (B) gives

o pons :r_[_..._l____ R *%2%(u)
> .

f]
Regge poles cosmai(w) o
R ]
. (1.+-Z. exp 1xai ) Pai 1 (z) ’ (D)

where Zi is the signature of the i-th Regge pole. A similar

expression holds for fzo
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If 2z 1is expressed in terms of t and wu, the contri-

bution of the direct channel Regge pole exchange to the crossed

£ may be found.

(ty, u) channel amplitudes s £,

2.2,(3) Backward pion-nucleon scattering,

From the previous section, (2.2), it is readily seen that
the exchange of a Regge pole in the direct channel will affect
the high energy behaviour of the crossed channel forward
scattering amplitude., Conversely, the asymptotic behaviour
of the forward s channel amplitude is governed by Regge pole
exchange in the t channel, and the asymptotic behaviour of
backward (& ~ ) s chamnel scattering depends on Regge pole
exchange in the u channel, The guantum numbers of the u
channel have been shown in the Introduction (2.1) to corréspond
to fermions.

The kinematics of the u channel are exactly similar to

the s channel, except that wu replaces s are the square

of the centre of mass energy (see Singh(g)),
Wy e yu = total c.m., energy
5 5 5 e e 2 "
”ku = u-2m -2u + i = square of c.m, momentum,
w% + me - u2) T
= = nucleon energy.
Eu ( 2w = i
2 2 2
= — — - - - E 2k o
b (=, FoB e, (E m L QEu(wu ul}/ x
Backward scattering is described by & =%, ©. = 0.

u

This gives the condition

P e (4)



s o

Now congider the contribution of a Regge pole c..l(w )
) u
in the u channel to the forward scattering amplitude. The

MacDowell symmetric pole c.i( -—wu) will also contribute.

2l
Sinee P!, « 4 (2) L M a ZQ“(W)_2 , from
alw)+3 N ﬁ(a+%)

equation (D), the contribution of the Regge pole to f. 1is

)((J;“ a) = 2 £ Eitm ; “z(%)'%
el P a5 5

(1 2 A - iw (401 )])
+ E‘:;‘”‘l. ﬁ‘.(-wa) / ( )"‘( “) /a

28 cn A, (- )

149 "(’*'Z(_ [c‘lr(d[—- a] /Q)J)

By () = ¥ Lfaii) )

: n (a{"/a}) “)-yél /) s )
¥ (W“) >ouw [(d[w"-? _TXQ‘Q) e /a ]
= -——-”“"’ We . Faopyr ("“"')/(Q J@ e

E,+m

(B)

i

3" Ya
From the backward scattering condition, E +m = Nu + &s + 2m,

(12)

the result of Chiu and Stack for the contribution of the N
and & Regge poles to £ (Vs,u) may be proved in a similar

manner, except

yOu) = U [y Yah) D F o b )]

:r-é;a((W)

Comparison of result (B) above with the observed s channel
backward scattering amplitudes ensbles paramétrisations of af wu)
to be made.(12’13) The result of this work is discussed more

fully in Chapter IV.
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Analytic structure of

L")

examined.,
e real analytic, having

= 0.

the invariant amplitudes

in. (2.2)

woalain

i 1_

‘In this section the analyticity of ¢+(w) is
The functions ¢+(w) are shown to D
cuts from -oo § W =X —(m+u), and (mHi) = w
2.4.1) ZXKinematic singularity free amplitudes
A Mendelstam representation for
A, B of pien-nucleen scattering, yields, as
A (s,x)dx -
P e R - t o
r'x.(,-_-: 9 u,u) = ";'E -+ =
t, x+2k 2(1-cos0) :
2.2
Hl(s A ._l'__)_. )
. 4dx
X + o1 (1 + cos &)
where
o 1 ' (0.8) ? ]
L (8,%) P Cerlntizias o Coa(®0') g
L B ,X = S
bt 7 g '=8 /i i,
56 U u'-u

Similarly for A (s,x).

From the
of Als,t,u) is a
left-hand cut

= to/u.

The function Ag(s) is defined

at k2 =

right-hand cut starting at s = 8§,

given by X + 2k2(1 - cos

above dispersion relstion, the analytic structure

and s

8) = 0, which starts

as in (2.2), and has the

same analytic structure as A(s,t,u). Por continuation to
) o
complex £ = A, the functions (My5)
= . 37 e 0 are defined.
i dx Qy (1 # ..._2) A
T






...2,'_1'_

Since Qh{z) has cuts from 2z = -0 to &= -1, and
(:"‘ D e o]
from z= =1 to z= 41, A7 (Ays) has an extra cut from
& ’ 2
= i To w K= b/l

(1 ld‘) th

However, it is a standard result hat the function

< 24N . .
AT (N 8)/ (25 )"  has analytic properties exactly similar to
az(s) for real £.
=1 o
Define G2 (hya ), =0 88200, s )/ (22 .

Then
2=\ [ @
i : <8O 1 >
—»7 disc [b r (A ) Bkl 'L{,_%— dx -l?t(l Foes )
e ; oK?
0
+
[6. o050 2 (’Sﬂ<s,xa
5 = | =olE)
it 1 €50 kK +ig ‘
55 dlSC[C t (}"S)]L.H. = -(—71—)- dx.@m(l +
7k :1(5)

, =N
.f’tu(&,x) [1 + e ]
o2
§ g2y s
- i—kg— ; dx.P}\(—l —-—g) f\:’ (s - igy t) (4)
o

P y L e S o elle
where disec [T ]R.H is the discontinuity of C~?° across the

)

2k +ig.

left-=hand eut. The regions of integration are shown on the
lMandelstam diagram for pion-nucleon scatt b“l’lnu(lo)
The discontinuity across the right-hand cut (s > 0) comes
from the double spectral functions eFL, eﬁ s  and the region
=0 S
of integration is the infinite line _AB. CD, EF  represent

the regions of integration for the left-hand cuts.

The region of integration for the left-hand discontinuity



25~

is finite, and since Pl’ Qh are analytic functions, the left-
hand discontinuity is an analytic function of A. Exceptions
occur at AN = -n, for QK has simple poles at these points.

In contrast the right-hand discontinuity is given by an
infinite integral, and is thus defined only for Rel) > N,
where N 1is the number of subtractions necessary to make the
Mandelstam representation converge.

From the above results, the functionsi-

£ + (w)

W _ l6xw I
h(J%)t (w) = —(—;1}15—(21( 7= (B)

m

are free of kinematic singularities in the w plane, and
2
contain only the right-hand unitarity cut for 3 (m+n),

and the left-hand cut starting at k2 = - to/u.

2.4.(2) Analyticity of the trajectory function a(w)

The analyticity of «(W) may be readily found from the

implicit function theorem. This is stated by J.R. Taylor as
fo11ows (15);

If F(A,w) is holémorphic in some domain égj and

(Ags W, )e 9 is such that F(A,, w ) = O,
OF # O, then there exists a neighbourhood N, x N,
=A s W=W 5 .

of (A, Wb) such that for each w e N there is a unique and
o

holomorphic solution A = a(w) e N, of the equation P(A,w) = O.
0

From the previous section h + (w) is a real analytic

(3¥E)”
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= 5
function. For simplicity, define h (A,w) = h + (w),
T
. (7%%)
where A\ = J = complex.

A Regge pole is given by the conditions

[hi(?\,w)l_l =R

. - - -1 o AN )
(The function [}1(h,w2] is holomorphic in the domain
et i A - a _|i —1
between the cuts of h (A,w), and in general <5 (h (A,w) # O
unless two trajectories intersect. The conditions of the
implicit function theorem are satisfied, so A = a(w) is holo-

=i
——)

morphic in the neighbourhood

.':I = 1‘;'_ w e
A w
o}

Consider first the effect of thg left-hand cut. From the
previous section (2.4(1)), provided A\ # -n, the discontinuity
across the left—hand cut is always Tfinite for all values of w.
Consequently, no poles can pass from the unphysical to the
physical sheet through the left hand cut, and the domain Ni X N* =

o o

w_) will exclude this cut.

(ho’ O

Next consider the right-hand cut. Unitarity gives
1 X * A +
EET{;.(K,W+18) - h (R,W—ie)} = r h™ (A, w+ie) h (n, w-ig)

A T
167w .

where E

X X L s
Thus h (A,w+ie) = h (A,w=ie)/(1-2i f h- A,w=ig )

+ o+
and poles are given by the condition e_ h (A,w) = ﬁ% (A.) &

Poles pass through this cut provided condition (A)/is satis-
fied, so the domain (no, wo) will include this cut.

For all w, A can exist everywhere except on the left-hand
cut. From the implicit function theoremy, A = a(w) inherits

only the unitarity cuts in w, and is an analytic function of w.
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Since h;(l,w) FLon i BeyEE1hE ey Tt unitarity cuts, a(w)
is also real between the cuts,

Consequently o(w) is a real snalytic function having cuts
from -0 &£ Ww & —(m+p), and (m+p) = w = 00.

Define @ (w) = alw); a(w) = a(-w). The properties of

m+(w) are as follows, °

1 a s o have the unitarity cut for ,Vd;llﬁﬂi, S0 a+(w}

a_(w) are complex-and unrelated for |w]Z m+u .

N
L]

For 0 < |w < m+y, a.+(w), a_(w) are both real and
unrelated.

3. Since a(w) is a real analytic function, a+(0) =6 (0) = w6,

An illustration of this result is given by Gribov 16).
¥ *
L. For w pure imaginary, w = i |w], a+(w) = a+(—ilw') =a (w),
In this case, the trajectories a+(w), a_(w) are complex

conjugate., This follows since a(wW) is a real analytic

function.

In Figure U4, a plot of Im o/Re @ is shown for a typical

trajectory function. (Assume a+(oo} = a finite constant.

(A

oy (¢ 191)

at_t (o)
A =

QL_(Jlui)

Figure U4
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2.,(3) Dispersion relations for a+(w}

_—

In the complex w plane the analytic structure of al w)
is a cut for W m+p, Dispersion relations satisfied by

a+(w) are obtained by integrating the function
: =

J{ alw') aw = alw)

roumnd the contour shown in Figure 5.

P [ v

R — P, | e g =

i = iy | Sl

=< | ~ (52 = }“"

o )~

Figure

For a+(w) the dispersion relation is

a (w) = 1 ) Lm “+(W!) dw' 1 B Im o(w') aw'
+ = w'—w T x w' —w 3
m+ 1L _ I+
; 16
This relation was first derived by Grlbov( ).

The once subtracted dispersion relations are



. wfoo Im a+(w') dw? W(oo Ima (w') aw'
G.+(\.r1) = Cu(O) + X -‘“"t"'v""*!j L W W--!-‘-"I
myy VT T )map :
~/
r\
o B w (% Ima(w') aw v ® Im &+(W') dw*
@ AW} = a0 "+ = = [ e R
Rhlm+u w'(w' -w) T i (w'+w (4)

The spplications and limitations of the above dispersion
relations (A) are discussed in Chapter IV on the parameterisation

of the Regge trajectory functions,

2.5 Riemann Sheets and Continuation from Positive to Negative w

A resonance of spin J occurring on a Regge trajectory

1
r= a+(W) has parity (-1)J+2, and occurring on the trajectory

B
A = a_(w), it has parity - (-1)?%2

. The function a+(w) = o _(w),
and vice versa.

A guestion arises as to whether or not the singularities
described Dby a+(W) occur on the same Riemann sheet as the
singularities described by a_(w).

Resonances are described by S matrix poles on the un-

physical sheet close to the real axis, while bound states are

described by poles in the physical sheet. Suppose a resonance

i
occurs having parity (wl)J+2

on a Regge trajectory J = a+(W)u
Continuation to a negative value of w results in the trajectory
J = a_(w). If these singularities appear on a different Riemann
sheet, the resonances having parity -(—1)J+% will not occur.

To investigate this problem it is necessary first of all to
examine the analyticity of the invariant amplitudes A, B in

terms of s. Then the analyticity in terms of w, and the
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possibility of continuation from +w to -w 1is examined.

2,5(1) Analyticity in's

The s plane analyticity of A& B is well known, and is

(17)

given in the review article by Hamilton also Hamilton and

(18)

Spearman .

The dispersion relations for A, B -are

(08] [ o]s] 1
A(Sst’u) == % At(s’t ) ndt' + ;E]; Au(s’u ) . dll‘
- 2 e et e S e
L £ -t (mep)® u'-u
2 (s t')
LG y
B(s,t,u) = + 5 + _l < t!
-m
. I ®
]
X l @ B, (syu { e
(m+u) o

where Gef4w 15,

It is necessary only to consider the s plane analyticity
of A(s,t,u), and the poles and cuts arising from the Born terms
in the B amplitudes may be ignored.

The kinematies of the problem are

[(m2 2 o T kQ)%JQ

8 =
2
£ - 2k°(1 - cos ©)
o il 2 0 (m® - p2)2
S

The complex s plane consists of a two sheeted Riemann
. 2 2 2 :
surface joined across the line -m =< %k~ &£ -u°, This enables
: S SOl ;
the sign of the square root & (m + k )(& + k) which appears

in s to be uniquely determined.,
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Let the two sheets be denoted by I and II, When s is

2 2
on sheet I, s [(m +l{) +k)J and for s on

2
sheet II, s [(m i K ) + k )J The expression

2 2 . aals s
N (m™ + X )(B™ + k) is defined to be positive in both cases,

; 2 2 2 "y
The line - m kW€ - corresponds to the circle cut

L)

,sl: i p,2 in the s plane. For S a I, §.1liea
outside the circle, and for k2 on sheet II, s lies inside the
¢ircles

From section (2.lt), further cuts arise from the double
spectral function representation of A{s,t,u)., These consist
of the unitarity cut for (m+u.)2£ s € ® , and the left-hand
cut for =-o00 &= ;2= -tO/LI-, where t, = ll.uz. In terms of s
the left hand cut, or "crossed" pion-nucleon cut, is given by
-~ s = (m-)

The s plane analyticity of A(s,t,u) is portrayed in

Figure 6, P (f

Figure 6
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for the above functions for Re w:> 0. A completely new set
of surfaces and sheets must be defined for Re w L 0. Hence
if a singularity occurs in ht(h,w) on 2 given Riemann sheet
for positive w, no statement can be made about the sheet on
which it occurs for w > -w,

BSince the w plane is effectively cut in two by the cut
from =i to +ico, the definition of functions on the left

of the cut is arbitrary. The restriction of the MacDowell

symmetry relation is used to define functions for this region

Re w < 0.
+ =
h~(A,=w) = h¥(r, w)
a i( =) = 0-&:_( w) .

Classification of the ¥ = 1 Baryonic Resonances

The Y =1 Dbaryonic resonances from the latest phase-shift
(19)
>

analysis of Donnachie, Kirsopp and Lovelace have been

classified on Regge trajectories as shown opposite by Barger

(20)

and Cline The Regge trajectories Na’ NB give physical

: _ +
resonances T = %, J = 5 + 2N(N=0,1,2..) and parity -1 res-
pectively. NY’ N@ are negative signature trajectories having

=T = % + 2N, and parity +1 respectively, Similarly for

e - PN o 2
the Aa.’ AB’ AY’ and dd trajectories which have T = 5 o
Several interesting points arise from this analysis,
2
1l. The trajectories are approximately linear functions of (mass) 2
2. Trajectories having the same T, 7“(signature), and opposite

parity are approximately degenerate (e.g. Na’ NB). In the current

literature this property is frequently referred to as the
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MacDowell symmetric property of the trajectories.

The consequence of this parity degeneracy is
a+(w) a_(w) = a+(—w), and the trajectories are approximately

symmetric functions of w.

3. Several states predicted hy the above mentioned parity
degeneracy are missing, e.g. the lowest member of the highest
ranking NB trajectory (the Sll), and also the lowest members
of the Ny (Pyz) and A | (Dzz, G3;). The possibility that
these resonances are not seen because the S-matrix poles lie

on the wrong Riemann sheet after continuation from positive to
negative w 1is made, is ruled out by the discussion in Section
2.5« Two possibilities remain. Either the Regge trajectory has
a sharp dip in the viecinity of the missing resonances, or else
the residue function B(w) vanishes when w is equal to the
mass of a missing state. These two possibilities are investi-
gated in this thesis.

L. Lower ranking trajectories are separated from each other by
spin values J = l. They correspond to the "daughter" trajectories

of Freedman and wang(ZI).
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CHAPTER ITII

MACDOWELL SYMMETRY IN POTENTIAL SCATTERING

gl Introduction

In this chapter, the radial Dirac eguation describing a
spin 5 particle in a central field is discussed, and the
existence of Regge trajectories and MacDowell symmetry is
demonstrated for this system, Finally, evidence is given for
the possible absence of the MacDowell symmetric partner of the

nucleon, and other states,

D Central FPield Equation and Parity States

The radial Dirac equation for a spin particle of mass m

1
2

_ " 1 . = 22)
in a central field of potential 4(r) is

da. o Egf mg+;ng_.,;é(r)Jf
ar e

(a)

|

KT me B
ar [;ra"é(—l}g

E 1is the total energy of the system.
K 1is a scalar which commutes with the Hamiltonian of the system,

(22)

and is called by Weyl the Auxiliary Quantum Number, When the

total spin J 1is half integral, K has two values

o -'-'-(J-l-‘;':')

The parity of the system is (—l)K when K 1is negative, and when
K Jaz
K 1is positive, the parity is - (-1)° = = (-1)""7% .

For the pion-nucleon interaction, the parity (—1)K = (-1)J+§
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is the parity of the amplitude f and the parity
K ik e '
- (-1) = (—1)J+2 is the parity of f( e wHence 1f ghe
€:+1)

Dirac equation is applied to the pion-nucleon interaction, the

+

guantum number K determines the parity of the system.

Define © +3 = X = = (J + 4). The value O =+ J
_ . . Tiee
describes a parity state (—1) +2, and the wvalue © = - J-1
1
describes a parity state - (—1)J+2 .

If the a bove units are redefined such that h = ¢ = 1, then

the Dirac equation (A) becomes

%ﬁ(v,x) = [& + %l C]w(v,x) (B)
where (v ,x) = glv ’xi] ; !j =P, I+

e

f(u !X) =1 0
1 -
(.‘.’_+E) -t
G *
1 o 4%
g =)
E+my . . : 4 9 i
i (E&)s 9x) = Mx) ;3 k=wN(E-n"); =x=kp
(See Favella and Reineri(23)) -

3,3 Solution for Large X

At large x, U(x) —> 0 and the Dirac equation (B)

tends to the unperturbed form

s e

(4)

&8
c
3

The general solution of the above free field equations is
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g £
f = (G H (1)(K) exp(id) + H (2)(x) exp(~-19)
% (H‘,S) (x) exp(io) + Hoﬁ“)(x) exp(=10))

1 2
where Ha’)(x), H&’)(x) are Hankel functions of the first and
second kind respectively. C and 0 are arbitrary constants,
The funetions ¥ = Hag)(x), H&?)(x) are solutions of

Bessel's equation

y-ll i

R IE

2
e 1=y = 0 .
x

From the results

H(l)(x) x—>w>fgexp[i(x”gfu .,.%3)_7
(O o500 3]

the solutions of the free field equations (3.3A) at large x

have the form

g ] 3
= exp | i(o -{o +‘12'32té' e *
i =i
T
1 "
T =
+ exp[ ~i( a-fo +7153 E] A

%/t

The constant o0 1is the phase shift of the regular solution.

(B)

Since the central field Dirac equation (3.2B) tends to the
free field form at large x, the above solutions (3.3B) also

describe the solutions of (3.2B) as x —>»o .
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3.1 Conditions for Poles in the S-matrix

In the following, the potential U(x) is a ssumed real,
so the scattering is purely elastic., A complex potential implies
some degree of inelasticity, and consideration of U(x) complex
is deferred to Section 3.7 on missing mass states.

From equation (3.2B) the Dirac equation for a real potential

U(x) is

Lol
dx

5l =[g A TS
Direct substitution yields

dx[ ] o app (e et .,z|1+01¢f (a)

X

where is defined as bhefore and o o= are the Pauli

17 e
matrices, From the results of Section 3.3, the value of &* qu

at large x is

[w-:-r,ﬁx-)m: ﬁsnh[21m(d-—{u+—2—g ] (B)

Integrate equation (3.4A) above between x = 0 and X

I
8

At x = oo the value of the integrand is (3.4B). At x = O,

(23)

Favella & Reineri have shown that ¢+, ¢y —» 0, so the value

of the integrand is zero. The result is

: +
TR > xy] ® ¥ o¥.dx
& smh(z Im( o - §e +2; 2)].. 2 Ime y +
= 2Imv o Igl2 __% (__1_-_j + R—EE?—"LIJ-) ax (c)
Y x “x [E+m-u x [E+m—gJ
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The integrand of the above equation (3.4C) is certainly

positive when

dl/ dx 2 2Re v o
(E+m-U) 8 x( B+m-U) > Rl

The conditions on dJj/dx, Rev, and (E+m-u) are discussed
in Section 3.6,

Suppose the above inequality (3.4D) is satisfied. Then
! ] Z "
sinh 2Im( o —(u+—2— 5) &= =is ImV o E; where t, I S0 .
If Tmv< 0, R.H.S. >0, and a solution is possible only for
7
Imd > /2 Imp (E)
If ImoV >0, RH.5.< 0, and a solution is possible only for
s
Imo << /2 Imv (F)

From the inequalities (3.4E) and (3.4F) it is seen that
the 8 matrix S = exp (2i9) can have poles only when Imu > O,

The above results are reversed when the ineguality (3.4D) is
not satisfied, and for this case, the S matrix S = exp(2id) has

poles only for Imv<Z O.

Syl Resonance and Regge Trajectories

Poles in the S-matrix U 8216 occur for Imd = =i,
Since these phase shifts 0 are, in general, functions of the
total energy E, the position of these poles are functions of
energy, and thus are Regge poles.

Further, the interchange E =» -E 1is equivalent to t > l/t,

and since this transformation does not alter the form of eguation



=l =
(3.23), Regge poles are expected for positive and negative values
of Gh

A Regge trajectory is described by a(t E), and a resonance

of spin J which lies on the trajectory is given by J = Re a(EJ)

M fa o [€)

S~

-n

e e e e o e e e S S s e

Figure 1

A typical Regge trajectory is shown in Figure 1. Experience

(24)

with the Schrddinger equation has shown that in general the

trajectories turn over and tend towards a negative integer as
E~> oo . However, if the Dirac equation has any relevance at
all to the pion-nucleon system, the trajectories must rise througl
some of the pion-nucleon resonances. Since the energy of &
resonance increases with spin, the gradient of the trajectory at

a resonance will, in general, be positive (E > 0). When

E < O, do(-E")

( ) { will similarly be positive.
d. -E‘ 1 T
E _EJ

There are two values of Y (E) for a given Regge trajectory

(1) v(E) = a(E); for this value of v(E), a resonance of spin J
y T2
has parity (-1) .

(2) v(E) = -a(E)-1; for this valug of Y(E), a resonance of

spin J has parity —(wl)J+§.
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3.5(1) Resonances for positive B

Let the partial wave amplitude for some value of J be AJ(E)-
Near a2 Regge pole at J = Re a(EJ), the amplitude has the form

AJ(E) 2 _B(E)

a(E) - J

and when a(E) is close to J, Re o(E) may be expanded about

B = EJ to give

af(e) = M2 (4)
B-E +1/7(E)/2
The above expression for AJ(E) has a Breit-Wigner form, and
provided Y(®), [T(E) > 0, a resonance is described of half

width

FEy/ais = Im o B) (B)
d(Rea(E )/ &
E=E

The conditions ¥(E), & (E) > 0 are necessary, otherwise the

Breit-Wigner equation describes the unphysical case of a resonance

whose amplitude increases with time,

S0

d(Re o(EB))
aE > 0,

the condition /7 (E) > 0 implies Im a(E) > 0, E positive. Thi

From the discussion following Figure 1,

relation is necessary if physical resonances are described by the

Regge trajectory.

3,5(2) Resonances for negative E

Suppose a resonance, spin J, occurs for E < 0, say E = -E

If the above results for E positive are reworked for E = -E', th
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Y(~E)
—W'+E' + i(-E")

f"'g-E') [ Im o -E')

d(E)Recu(— %)

AJO-E‘) =

.

21 _mt
by

Physicel resonances are described for Y(E'), [7(-

and hence Im o(=-E') 0,

3.6 Parity and MacDowell Symmetry

Suppose a resonance occurs having spin J. Let this corres-

pond to an S-matrix pole at energies B, -E' respectively. For
each value of Re a(E) = Re a(-E') = J, define ¢ (E), U (-E")

such that Re\)(E) = Re V(-E') = J describes a state having

.
+2 and Re9 (E) = Rev(-R') = =J-1 describes a

1
state with parity -(-l)J+2. Further, the restrictions

parity (-1)

Im o(E) >0, and Im a(-E') << 0 are necessary for physical
resonances to be described.

Favella and R elnerl( 23) have shown that solutions of the
Dirac equation exist in the region Re®> 0, x > 0. The
following theory depends on the assumption that restrictions on
the potential U(x) are such that the known solutions of the

Dirac equation can be analytically continued into the region

Rev < 0,

%.6(1) The parity of positive energy resonances

Consider the resonances in AJ(E) which occur for

Imv (E) > oO.
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(1) Rev(E) =3 ; ©0(E) = a(E), so Ima(B) > 0; parity
(_l)J+%°

Resonance state poles can occur in the S-matrizx, provided
(3.LD)

du/ dx i 2Rew (1) > o

(Bem-0)° x( B+m-U)

A typical potential U(x) which gives rise to a resonance
is shown in Figure 2 below., This consists of an attractive well
with an outer repulsive region. This is neces-sary to hold in the

resonance, AN U

Lo IR e S — a, o —— S o oEn = e e e e e ———

4

Figure 2

The resonance occurs in the region below the line CD.
From the form of the potential, it is readily seen that in the
resonance region ~d/dx > 0 (x> 0). Further, the expression
B+ m~-U(x) => E+m = positive as x > ®». Since
E+m-U # 0, otherwise the Dirac equation would have
singularities between x =0 and X = oo , the expression

E +m~-0U remains positive,
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. In this case, dU/dx > 0, E+m-0 > O, and Re v(E) =J > O,
so the inequality is well satisfied, and a resonance occurs.

(ii1) Re v(E) =J - 1; v(E) = -a(E) -1, so Im a(E) < O}
parity =(=1)7%%

Since Im a(E)<< O, no resonance can exist for this parity.

3.6(2) The parity of negative energy states

Next, consider the resonances in AJ(-E') for Im v(-E')> O.

(i) Re v(-E') =J ; v(-BE') = a(-E'), so Im a(-E') >0
J+ l/a

parity (-1)

Since Im a(-E')‘:> O, no resonances can exist for this case.

(ii) Re v(-E') = =3 = 1; v(~-E') = —a(-E') - 1, so

In o(<E') < 0; ‘parity = (-1)7%%,

Resonances occur provided

du/dx . o 2Re v(-E') > o
(=E'+m~U) x(~E'+m=U)

The above inequality is certainly satisfied provided
(~E'+m~-U) fp<0. If, however, E'<< m, at X = oo the expressions
(-E'+m) #2>0, and the expression -E'+m - U(x) remains positive.
Thus the above inequality cannot be expected to hold for values

of E' « m (nucleon mass ). This result is discussed more fully

in section 3.7 on missing mass states.

If the inequality (3.4D) is satisfied, the above results may

be summarised in Table 1.
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Re v(E) Im v(E) Parity
1
AJ(E) J 0 (--1)J+/é Resonance
-J =1 0 -(-l)‘”/él No Resonance
J 0 (—I)J"J’é No Resonance
A5 (-E')
g 0 (~1)7*E Resonance
Table 1

If the inequality (3.4D) is not satisfied, from Section 3.4

the results of Table 1 above are reversed, as shown in Table 2.

Re v(E) Im v(E) Parity
AL (E) J 0 (—l)J"J}é No Resonance
1
= A | 0 -(—-1)J+é Resonance
AJ(_E') J 0 ( 1)J+% Resonance
=5 ] 0 - (--IL)J'*]2é No Resonance
Table 2

Provided inequality (3.4D) holds, a resonance of spin J in

' - +
AJ(E), E > 0, occurs with parity (—-1)J é

spin J in AJ(-E') occurs with parity

. (_1 )J""?é.

and a resonance of
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This is a statement of MacDowell symmetry for the central

field Dirac equation.

Bt Missing Mass States

Evidence is given in this section for the possible non-
occurrence of MacDowell symmetric states having negative E.
If the above model has any relevance to the pion-nucleon system,
this may explain why the MacDowell symmetric partner for the

nucleon (the 811) is missing on the N trajectory. Finally,

B
the theory is generalised to include a complex potential, and
the relevance to higher mass missing MacDowell symmetric states
on the Ny and A , trajectories is discussed.

Suppose E'< m so the inequality (3.4D) is not satisfied.
If a resonance of spin J occurs in AJ(E) having parity (-1)J+%,
from the results of Table 2, the MacDowell symmetric resonance in

..1)‘7""1>é

AJ(—E') having parity - ( will be absent. The resonance of
parity (—1)'1"'1’é in AJ(-E') will correspond physically to the
resonance in AJ(E).

The sbove results can hold only for E'<«< m. As E' increases,
(-E' +m - U) < O and the inequality (3.4D) is re-established.
Consequently, MacDowell symmetric states will start appearing for
higher values of E', but the lowest order state will be missing.
If potential scattering theory has any relevance to the pion-
nucleon system, this may explain why the MacDowell symmetric

partner for the nucleon (the Sll) on the NB trajectory is not

seen. The mass of the §,;; has been estimated at 850 Mev.,

which is less than m (938 Mev.).
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The above theory applies when the scattering is elastic and
the potential U(x) is real, If the Dirac eguation is used to
describe the higher pion-nucleon resonances, some degree of in-
elasticity must be allowed and the potential U(x) becomes
complex. The eguations of section (3.4) may be reworked as

Tollows.

-3 sinh[Q tm(o - (o +% -75)}
Re[év 1]
[[mUJ Jﬁk’gi ((dx xfE”fm'UJ i (E+m;) m
D g2 (of] (3

Comparison of the above eguation (3.7B) with equation (3.4C) shows

that the presence of a complex potential makes the theory very com-
plicated, The simple conditions (see (3.4B), (3.4E), and (3.4F))
which give rise to poles in the S matrix, are now lost.

If potential has relevance to the pion-nucleon system, an
analysis similar to the above 1is necessary if the higher mass
missing MacDowell symmetric states on the N and &4\ y tra-

jectories are investigated.

2.8 Conclusion

MacDowell symmetry has been demonstrated in this chapter for
the central field Dirac equation, and the possibility of missing

mass states has been hinted, No calculations have been done for
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specific potentials, The calculation of Regge trajectories for
real and complex potentials, and the demonstration of missing mass
states is an interesting problem, but beyond the scope of this work.
It was also hoped that a possible form for Im a(E) might be
obtained suitable for use in a dispersion relation for a(E).
The expression, however,
o ¢f+c'11|1
o %

_% sinh [2 Im(o ~-» +'1§] %)] = 2 Imvu(E) ax

is complicated, and quite unsuitable for any parametrisations of

im a(®).
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CHAPTER TV

PARAMETRISATION OF ofw) AND CONFORMAIL MAPPING TECHNIQUES

L.l Introduction

In this chapter, parametrisations of the trajectory function
a(w) are investigated. First, a conformal mapping technigue is
described which simplifies the calculations., Then simple forms
of Im a(w) are considered, and evenness or oddness of the
resulting Regge trajectories is demonstrated. Next a para-
metrisation of Im a(w) using the threshold condition is in-
vestigated, and a critical discussion of this method is given.
The threshold form for Im a(w) was used by Lyth(25) and Jones(26)
who demonstrated the existence of threshold cuspsin Regge trajec-
tories. They considered models in which a threshold cuspcaused a
displacement of the N& trajectory near the missing 311 state.

Finally, a discussion is given of the difficulties of the above

model,

.2 The Dispersion Relation for a(w)

Previous work (see section 2.2) has shown that the Regge
trajectory function a(w) is analytic in w except for a
cut for -0 = w = ~(m+p), and (m+u) = w = . The once

subtracted dispersion relation satisfied by a(w) is

Im a._l_( w' ) qw' Sleo.  Tma(wet) le

Al=
1
Al=

o AW 5 al0)+

mep  w'(w' - w) ma w'(u.'+ w)



..50....

where a (w) = a(w)
o (W) = a(-w)
@, (0) = o (0) = a(0)
i
Lo St < o
= (mz%) (m22)

Fig, 1.

a(w) is a real analytic function of w, so for W real and
(m+p )

Im o.+(w) = -é!'j-_-[o.(w-i-ie) - a.(w-ie)]
i y
= zr o.+(w+1e) - a.+(w-ie:)]

For w real and > m+u, (w+ie) defines the top part of the cut

n+p £ W Soo. Similarly, Im a_(w) = Ima(-w)
= %[a.(-w—ie) - a.(—w-t-is)]
= -§]-'-j-_- a_(wtie) - c._(w—ie)] ‘
Further, (-w-ie) defines the lower part of the cut
-0 €§w & -(m+p). PFrom the results of section 3.5, if an S
matrix pole corresponds to a physical resonance.-—

Im a(w) >0 along the top of the cut (m+p)= w< ®

In a(-w)<O along the lower part of the cut =-co<w < —=(m+u).

The above results imply Im,,_a.+(w)>0, and Ima (w) << O both

along the top part of the cut m+p < W < @
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L.3 Analyticity end Conformal Mapping

4.3(1) The conformal transformation

w=qﬂ+£é

CHad

Lw

e S e

n—(mﬁé) m i

/ e W= —o0—(¢
i

Figure 2.

Consider the w plane cut from -co=<w < —(m+p) and

(m+p) € w € co. Then the transformation

W=I=p.
7 = 1+ i\/(w+m+u
(4)

T el J(w+m+u)

transforms the cut w plane on to the interior of the unit circle

Z = 1. The cuts map on to the boundary of the unit circle as
shown in Figure 2. Critical points occur at % = = i, for the

mapping is no longer single valued at these points.

Atkinson(27) and Islam(za) have shown that provided

i z(e®)ae (B)
(o]



—50~

converges absolutely, then in a region free from branch points

of a(w), the relation:-

a(w) = &(2)
converges to a(w) on the cut, given by 2Z = e o
Consider Z on the cut, so 2 = elQ = cos & + 1 sin @.
Equating the real and imaginary parts of (A)
m+ : 2 2
cos 6 = _E'E sy 8ine = J(w - (m+p.) )/w (c)

v
The condition ‘( £(©)ae® finite limits the number of sub-

o
tractions in the dispersion relation for a(w) to one. When the
number of subtractions is more than one, linear, quadratic, and

higher terms in Ww appear in the expression for Re a(w).

w = (m+p)/cos & is divergent at €O = m/2, and the above
integral (B) is no longer convergent in the range 0 < 8 < =x.

Recently, Mandelstam(zg) has used dispersion relations with
two subtractions to generate infinitely rising Regge trajectories.
The conformal mapping techniques described in this section cannot
be applied to these dispersion relations.

The justification for the above conformal transformation is
that a(w) = £(8 ) can be expanded as a power series in & inside

the unit circle, with great mathematical simplifications.
a(w) = E@) = =2 angn
n

On the cut, & = ej‘e s0
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i9)

Re a(w) = Re E(e = = a, cos nd
n

) (D)
Ino_(w) = Img(e’®) = S a  sinne
n

The transformation w-> -w is equivalent to a rotation of
7’;, i.eo 9'95"" G.
Thus Re a (W) = Re g+(e19) = = a, cos n 8
n

Re a_(w) = Re ﬁ_(eie) = = (1) a, cos né
n

Im o_(w) = Im g_(eig)

< (-1)" a, sinne .
n

4.3(2) A possible self-consistency calculation

The above equations (D) suggest that a self-consistency
calculation might be carried out in the following manner.
(1) Assume a form for Im a+(w) and calculate the expansion

coefficients a, from (D).

(ii) Substitute this form for Im a+(w) into the dispersion
relation for Re a+(w). Once again calculate the coef-
ficients a, from the relations (D) for Re a+(w).

(iii) Compare the two solutions for G and equate them.

The resulting equation does not involve oy and may be

solved for the unknown constants in Im a+(w) assumed

initially.

The fallacy in this method is that the two values for the
coefficient of a, obtained in (i) and (ii) are exactly the
same, and (iii) reduces to the trivial relation O = O. This

is demonstrated below for the simple case Im a(w) = (m+p)/w.
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Further, the calculations (i), (ii), and (iii) contain no
dynamics other than unitarity and analyticity in the derivation
of the dispersion relation for a+(w). Thus no extra eguations,
and no new points on the trajectory can arise.

As an example, take Im a+(w) = (m¢)/w = cos B,

A Fourier sine series expansion of cos & 1in the range
0

= © € ©* gives for the coefficient a,

2n 24 )P

s - e (.__1

n2—1 n2—1

o
£

y o ep & A = ¢

A
Q
i

il

0 (n even).

substitution of this value for Im a+(w) into the dispersion

relation gives

2
Re o (w) = a(0) =+ % = Eﬁ& én éLm+“)
i W = M+

and a Fourier cosine expansion of this gives

5 3 = 2ptl = Qdd
n -1 n -1

= 0 (n even).

These two results for a, are exactly the same as expected.



L. Parametrigsation of the Trajectory Function

Simple parametrisations of Im a+(w) which give rise to even
and odd trajectories are discussed fi;st in this section. ILater,; a
form for Im ai(w) which satisfies the threshold conditions is
lerived, and the resulting trajectory constrained to fit the nucleon

trajectory. Two cases are considered:

1l

) Re a (w ) (Exact symmetry)

(1) RE CL+(wthreshold - "threshold

(i1) Re a+(w J =l Revatw ) = a

threshold. I threshold TR

and QII is adjusted until the Regge parameters fit the
N (1688) widath.

Simple parametrisations of Re a+(w) may be obtained by
using equation (2.3B), giving fl(Js, u) for backward pion-nucleon
scattering. Comparison with experiment enables the unknown para-
meters in Re ai(w) to be found, and details of this work are

given in references 12 and 13, The latest results for the nucleon

trajectory are(Bl)
Re a{vu) = =0.38 + 0.88u 3 Wu in Mev,
in the range u 1.5 Gev, Evidence is given for levelling off

in the high wu region.
These techniques do not give detailed information about the
form of a, (Vvu), and to date only linear and parabolic forms for

a+(4ﬁ) have been tried, Further study along these lines is not

continued in this work.
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I (1) Even and odd trajectories

The power series expansion of Re O”t(w) given in section

(4.2) is
Re 0,+(w) = I{e£+(9) ol al cos € + a, cos 28 + 4400
Re a (W) = Re 2_(9) = Re z+('x + 8) = a, - a, cose + a, cos 28 .

In the presence of a subtraction at w = 0, the results are modified

to

I

Re a.+(w) - a(0) = Re £+(@) - a(0)

ao + al cose + a2 cos 26 +,.

Two cases are considered:

(i) symmetrical trajectories, Re ca+( w) = Re a_(w)
The results of condition (i) give. a; = 8, S8 =B - O
so Im g,+(w) = &m E+(9) = a, sin 26 + a), sin L6 ....

which is even under the interchange w = -—-w, Thus the condition

Re a (W) = Re a (w) (even trajectories)
+ —
requires the constraint (a)
Ima(w) = Ima(w) .

(ii) Asymmetrical trajectories, Re o.+(w) - a(0) = - Re a.+(-w) - a(0)

The trajectories are completely asymmetric about the point w = 0,

Re G.+('-.‘J) = a(0).

The above condition (ii) requires the constrajint (B)

Im o,+(w) = -Ima (w) .
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The above results (A) and (B) wWere tested for simple forms of

Im CL+( V\r) .

1 w = ¥ =
Giy - T cu+( ) 1o (w) iy
The dispersion relation (L.1A) gives for Re c,+(W)

2
"o in (-(%&)—2) 5w > (m+p)

Re G-+(w) = a(0)+ —
W= mep)
which is symmetrical in w as reguired. The form of the coefficient

of c, is shown in Pig. 5.

peftt

.- M em s W s s un

I
0
¥
pe. - ——__.3*-—---—-
b
\
{

W = 00

o = :
Re a-.t( W) =——> - o logarithmically depending on whether

s ; 0, so0 the once subtracted dispersion relation used in this

work is capable of generating an infinitely rising Regge trajectory.

Thisg result is interesting in view of the recent speculztion on

: 2
infinitely rising trajectomes( 95 30).
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2 T i a+(W) = ~Imag (w) = CI/W'
c 2
w) = 1 = 114 :
Re cr.+( w) = s O in (—2£—EL-)——2) W D> mip
w —(m+)

which is an odd trajectory as required. The form of the coefficient

of ¢ is shown in Figure 6

: 2t

! |
| |
| i
| :
|

|
[ ;
1 '
; !
L '

Rig, 6

The value of this function —>» 0 a8 w—>w .

Ima (w) = CQ/WQ 2

a(0) + ;tg Hl_g .._.2_.___

w —(m+p) 7( m+u)

(3) Ime(w)

1l

Then Re o._‘_(W)

which is even in w as required,

Similar results follow for higher powers of e

The divergence of these functions at thresholc makes them
unsul table for parametrisation of c.+( w) 1in the lower energy region

( w~ 1.5 Gev)., Other forms of Im a(w) are now investigated

notably the form obtained from the known threshold behaviour .
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L.hu(2) The threshold approximation for Im ai(w)

(32)

The calculationg described below follow Barut and Zwanziger ’

) - 1L
also b‘CJ,UlI'eS( ) (Chapters 2 and 3) for spinless particles,

(9)

The kinematic singularity free amplitudes of Singh for

pion-nucleon scattering are (equation 2,4(1)B)

+ -
l’l_._1 (W) = 16%w £ +/( 2k2)J 2
2%B Tl (33%)7

where J 1s a generalised complex angular momen tum,

The unitarity relation for these amplitudes is

=1 2, j-%
[ b VH-IS:I (w - ie) = -2i[k(Eim)(2k_lJ ] (
3+z J+2 167w

so the function [,ha— wi) has a cut for Iw’ ;;.m+u such that

=
LU

the discontinuity is given by egquation (A) above,

However, use of the identities

o (=® - 4e) an(ke) e i

6n(k2) + im shows that

1

2
en( =k +ig)

the function

1 [ ( Etm) . exp [ en( _k2) (B)
C

167w cosn( j-z)

+
: - -1
has the same discontinuity as [h.- (w)] for (m+p) < w EW,. o0

and is regular for w < (m+p).

+ -1
Thus [.-»1 (w] may be written
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i e + j-z '
[hf(vﬂ] ;9 162»1_70:1[ (Bom) ] ¢ (Y(w,j) + exp(J 6n[—k2_])] (c)

SEIN cos( j~z)

where Y(w,j) 1is a function which has no elastic cut and is analytic
at W o= M4l .

+ =il
On a Regge trajectory Jj = cu_'_(w), and h—(w)] =i 0y .80
= 97
) C"i( w)
Y(w, a._{_(w)) = S k) exp [-—i':to._;_(w)] , (D)

2 2
gsince =k = =k - ieg,

Consider the "+" trajectory for waw,, where Wy = (m+p)

J
is the threshold value for the energy. Let a, = a.I as w WT'
Expand Y(w, q,+( w)) in a double Taylor series about w = W s

¥(w, o, (W) = ¥wy, ap) + ¥ [ (w) - “ﬂ ¢ ] [w- WT] B

- oY + oY
where Yl = [—d-;’- (w, a+(w).)] = [-'5“5 (W:C‘-_'_(W)i] o
W=w ‘H=WT

1

a =Q,

+ 1 g

I

‘ +
Since Y(w,j) is real and analytic at threshold, Yl’ Y; are

2
real constants. Further, since k = 0 at threshold, from eguation

(D) above

Y( Weps CLI) =0 (F)

provided o 0.
>

The expansion (E) above gives for cc.+(W)
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L.l 3) Parametrisation of the nucleon trajectory assuming

exact symmetry

Exact symmetry between the trajectories o,+( w), a (w)

gives that 0,+( WT) = aﬁ(wT) = q and the threshold form for

I,
Im 0,+(W) from equation (L.3(2)K) above is

a,
Im a.+(‘f'f) 1 [1 = (%_!&)2 .

il
—
w
-
=

or Im a_l_(W) = Imf_l_(e)

The parametrisation

1l
[0}
‘_l-
=
P

Im a+(w) I E+(9)

4 )ai[cl + ¢, cos 9] (L)

cl’ 02 constant, sstisfies the threshold condition and allows for

asymmetry between ‘0.+(w) and. cx,_(w). A similar parametrisation

(28)

was used by Islam for the p meson trajectory, and is investi-
gated below for the nucleon trajectory.

The form (L) for Im c,+(w) is substituted into the
dispersion relation 4.1 A, and a value of Re a.t( w) is obtained

subject to the constraints

Re a.+( 938) oo -
Re a.+( 1688) = /2 (M)
Re a (1670) = 5/2

: 2
If a linear trajectory in s = w passes through the nucleon

(938) end the N T(1688), the value of ap is

o 2 0.7865 ()

The expressions () for Im a.+( w) = Im f+ (e) represent
00

truncations of the series Im i +(e) = & a, sin ne . Hence the
n=1
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value of o used in the parasmeterisation of Im a+(w) will not
in general agree with the value aI = Re a(wT) ogtained from
the dispersion relation,

Substitution of the forms (L) above into the dispersion
relation for a+(w) gives

w

a+(w) = a0} + X(w) Z-Cl e, (@iﬁl]

(00}

2 oy
where X(w) = - aw'(1 - ZHE )QI 2
s W 1 '2 2
M+ w'(w' " =w)
by R e
. XHw)k o= 7 glw) where
w2
Z = ———-—2-——"-2 s ancd
(m+p) “=w
20, +1
/2 : T
7(w) 5 ﬁ{ o (sin &) cose
o e
1 -% sin &

[P (o +1)
O O F(1, ort+l, a +2, Z)

2f7a1+2)

(see reference 33, Section 2.12, p. 115, eguation 7), where E
is the hypergeometric function,

The above integral defined by J(w) is uniformly convergent
in any closed domain of the Z plane cut along the real axis from
1 to @. This implies cuts in w for -o €w = —(m+u), and
(m+p) €« w s o0, so the analyticity structure of X(w), hence

a+(w) is explicitly demonstrated.
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The integral defined by X(w) becomes a principal value

integral when Re m+(w) is calculated.

Behaviour of the trajectory as w =» o

The most divergent term in X(w) is

00
PR 1 Rt
w'! -w w'+w w'

M+

< %[—611 (wg_(mfé“)g)]
(m+p.)

so if e, > 0 the trajectory diverges logarithmically to -co

X(w) ~

and if c1<: 0, it diverges logarithmically to +oco. Hence the
condition cl<(f3 is necessary for an infinitely rising Regge

trajectory.

Discussion of the resul ts

The equations (M) may be fitted to the above parametrisation,

giving the results

ay = 0.7865

¢y = -208,9671

5 = -8.601883%32
al0) = 3lh.920204L

The principal value integrals were evaluated using a method
described in Appendix III, All calculations were done on the
English Electric KDF 9 computer at the Regional Centre in
Bdinburgh.

The trajectory for this parametrisation is shown opposite,

and the following points of interest may be noted.
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(i) The trajectory becomes large and negative, and has cusps

+ . e ) :
at w = - (m+u) respectively. This is readily seen Ffrom the

threshold form of Re a+(w) (equation L.3(2)aG),

- it Q.
Re a+(W) = a(0) (‘W Wi] = = (k= cos a =
Y o
2 2
a. = 0.7865 < 1 for the nucleon trajectory, so the above

I

equation has a cusp at threshold. For a.< 0, the above value

I
of Re a+(m0 - - 0 as w -» threshold. Similar results hold

for the trajectory Re a_(w).

(ii) Since ey < 0, the trajectory is infinitely rising, and

diverges logarithmically to + o,

(ziz) The trajectory predicts a MacDowell symmetric partner for

the nucleon at w -~ 970 Mev,
(iv) The width of the N (1688) is predicted to be

da,
2Im a+(1688)/ [’&th (w) L - 1000 Mev.
w=1688

The value guoted by Donnachie, Kirsopp and_Lovelace(lg) is
= 177 Mev, so the predicted value has the wrong sign and is

six times too large.

(v) The value of da+/dw, da_/dw is of the order ten times
too large to give satisfactory predictions of possible higher

spin resonances for W ;:-1700 Mev,

(vi) The value of Im a (W) < 0 for all values of w >0,

However, from the work of Chapter 3, Im 0.+(w) > 0, w >O,

for the system to describe physical resonances.
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(vii) The value of a(0) is ten times larger than the latest

(31)

value given by Barger and Cline , and also suggested from the
Chew Frautschi plot.

The only satisfactory prediction for this parametrisation
is (ii), but in view of the other unsatisfactory features, such

a parametrisation appears to have little relevance to physics,

bo3(h) Parametrisation of the nucleon trajectory which fits

the N" width

The previous section has shown that the assumption of exact
symmetry for the trajectories appears to have little physical
importance. Another possible parametrisation tried was the
MacDowell symmetric form of Im cu+(w) which has different threshold

values Im u.+(wT) = a_., and Im a_(wT) = G

16
a MLy | G
PRl - MUy [T o = + ML
Im a.t(w) —[1 Fol=e )] [1 W ¢y = ©5 ( = ) (P)
The value of g,II is varied until the correct value for the
w*(1688) width is obtained (T = 177 Mev). o  is assumed fixed
at CLI = 078650

The substitution of equation (P) for Im a+( w) into the

dispersion relation for Re ca+(w) gives

Re o (W) = a(0) + c; D(w) + c, D(w) (Q)
o0 T (o @ a (o
JOH s aw I g1 _1 - 15 1 ]
Dl(w) E ﬂj. w' [A = w'-w & B w' 4w
M+

S w( m+. ) joo dw' [AG'I BG'II 1 i AG'II BO‘I 1 ]
me w' -w

2 V8 Yo w! w'ew
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I+
W ) .

ho o=kl W

= ST

The four unknowns e¢;, C,» a(0), a . occurring in equation

(Q) are obtained from the four constraints.,

53 = 0(0) + c; D(938) + ¢, D(938)
S
s = a(0) + ¢y D1(1688) + c, D2(1688)
y (R)
£ T a(0) + ey Dl(~l670) + ¢, Dy(-1670)
AR, I 0us Um
177 = 2Tm a+(1 )/ =

w=1688

The equations (Q) for Re a+(w) are fitted to the con-

straints (R), and the following values obtained for the parameters.,

al0): == 0.885488571
¢y == 6.41091143
¢, = -9.,70803%843%
Grq = 2.,117u8

The integrals Dl(W), DQ(W) are

(1) divergent if either a, Or . <sf 1
(ii) divergent at w = (m+p) if -1<& o <O

(iii) have threshold cusps at w = (m+p) if 0 < op <1 .

Similar results hold at w = - (m+u) for Grye
As before, the trajectory is plotted out as shown and the

following results are noted,

(i) A threshold cusp occurs at w = + (m+u), and not at
w o= = (m+u).
(ii) since cq :, 0, the trajectories will turn over and

diverge logarithmically to -oo. The highest spin value
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reached by the trajectory is Jj = 3.3 for w = 1700 Mev
(w :>O) and Jj = 2,6 for w = -1500 Mev (w <fql Hence the
Regge trajectory cannot reach any higher spin resonance.
(iii) There i nao nucleon MacDowell symmetric partner. Rather,
there is a particle predicted of spin ?/2 around w = 950 Mev.
(iv) The value of Im a+(W) > 0 in the range (m+p) < w<1.5385
(m+p). Otherwise it is < 0. Similarly Im a_(w) << O
for all w :> (m+ir) . Thus physical resonances on a+(w)
can be described in the range == 2 Gev, and resonances on
a_(w) occur for all w > (m+u).
(v) a(0) = 0.885488571 which is the same order of magnitude
as the value obtained from Barger and Cline(jl), but has the

wrong sign.

The above results show that the above parametrisation gives
reasonable physical predictions in the range w'gf 2 Gev, but
fails hopelessly in the higher energy region. The trajectory turns

over and does not reach any of the higher resonances,

li.3(5) Discussion of the above parametrisation

The above results are in general unsatisfactory, and cast
grave doubts on the possibility of using the threshold condition
to obtain physically meaningful Regge trajectories.

The threshold approximation has been discussed in potential

(34)

scattering by Warburton y Who investigated the case of a

repulsive Yukawa potential having a short range attractive core,

For spinless particle scattering
24 1
2 2.0l k o
) S e e R (k%)4% %(a[k2]+-12—)

at threshold,
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He found that the above term which gives the leading order
behaviour at threshold, is small compared with other terms in the
trajectory when the phase shifts are still of order only 10'”.

Potential scattering shows that the expected threshold
behaviour of Regge trajectories has no practical significance at
points even slightly away from threshold. If potential scatter-
ing has any relevance to relativistic 8 matrix theory, the use
of parametrisations L.3(3)L and L4.3(4)R at points even slightly
away from threshold must be viewed with extreme caution. The
work in sections (L.3(3) and L4.3(4) shows that the threshold
parametrisation has 1ittle relevance to the nucleon trajectory.

Other forms of Im a+(w) may be considered as a means of
% (35)

parametrising Regge trajectories, Ahmadzadeh and Sakmar

considered the form

A
cX

2
cl+(X 62)

Ima(x) =

which was obtained from the Schrodinger eguation so deseribes
meson trajectories. c, Cys Cpo A are parameters which are
obtained from experimental information about the trajectories,
An open question is whether or not a similar form for Im a

for fermion trajectories can be obtained fram the Dirac equation,

L.L Status of the missing MacDowell symmetric partner Sll

of the nucleon

Recently, attempts have been made to parametrise the nucleon
trajectory close to threshold using the threshold behaviour of

Im o (w) as described above. (See Lyth(56), Jones(37))
+
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In Lyth's preprint a,I‘f() so that Re a (m+p) = -co. In

iE
Jones' preprint a cusp is assumed in o (w) at w = (m+p). This
effect produces a distortion of the highest ranking Na trajectory,

so the highest 8 state (1591 Mev) is assigned to the leading

11
trajectory, rather than the first daughter, as in the fits of
Barger and Cline(go)o Their results are shown opposite.

b.h(1l) Difficulties of the theory(BB)

The main difficulty of a theory of threshold cusps lies in

explaining the relatively large width of the 8
(19)

11° Donnachie,

Kirsopp, and Lovelace give a value ,*1(811) = 268 Mev., This

is nearly twice the width of the F15 (™ = 177 Mev) and the

Dy 5 (7 = 173 Mev).
However
f1/2 = Im o{w)/ [@g%%l

W=W.
R

so if (da(w)/aw)

S is large, then the width will tend to be
LR

small. In Lyth's preprint the Regge trajectory is diverging to
-0 through the 8., (1591), and the value of da(w)/dw’w_w

R

is very large. In Jones' preprint, the § | basses through a

il
point on the trajectory above the highest point of the cusp, and

the wvalues of

da(w)/dw[sll . da(w)/dw!Fl5 ’ da(w)/dw/ D15

are approximately the same.
The above parametrisations have difficulty in explaining the

large width of the 8,4, unless Im & (1591) is abnormally large.
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An argument against this possibility may bs seen from the
work of Chiu and Stack(lg) who considered the form of backward
ﬁ+p scattering at fixed large s and variable wu. Two Regge
trajectories contribute to this, the N and the 41 o 'The con=
tribution of the & is small and may be ignored, leaving N
as the dominant trajectory.

The equation for the amplitude £ (s, u) has been given
previously by equation 2,3B. The combination Y(w)r1(u+1) i85

a smooth function without poles, Consider the combination

1

cosna P(a+%)

(1 5 z.exp(—iﬁ [&—%]) x

This contributes either a pole or a finite guantity for o
a positive half integer according to whether the trajectory has
"right" or "wrong" signature. When o is a negative half integer
equation (8) contributes either a finite quantity or zero,
depending on the signature's being right or wrong respectively.
Zeros in the amplitude resulting from negative half integer
values of @ occurring at wrong signature points, are called
"wrong signature nonsense points".

The point o(w) = -+ is a wrong signature point for the
nucleon trajectory, If there exists a value of w such that
aN(w) and QN(—W) are both near j = =5, the contribution
of the nucleon trajectory to the scattering will vanish, and a
large dip occurs in the cross-section at this point.

Since a large dip in x+p backward scattering occurs at

u A 0.2 (Gev)z, then
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Rean 02 ) = Re o (¥ 0.2 ) > %

Imq,Nw-o,z) = ImanO.z)/v 0 %

As w increases from J(O.Q) to 1591, 1670, 1688 Mev the
value of Im.aN(w) is also expected to increase from zero, since
the width of Fl5(1688) is slightly larger than the width of the
D15(16?O). The width of the 411(1591) would be expected smaller

than the width of the Just the opposite 1s observed, since

D °
15
ﬂ(sll) = 268 Mev, ’_’(Dl5) = s MGV, and. r'(Fl5) = 177 Mev.

L,5 Conclusion

The possibility of parametrisations of a+(w) has been
investigated in this chapter, and special atte;tion has been paid
to the threshold parametrisation, The results show that extreme
caution must be observed if any conclusion is drawn from this at
points away from threshold. Further, the method of threshold
cusps to explain the missing Sll on the leading NB trajectory
has been discussed critically. The explanation of the large width
of the 8., (1591) presents grave difficulties to this theory.

Another possible explanation of the missing Sll is the
vanishing of the Regge residue function at exactly this point on

the leading trajectory. This effect is considered in the next

chapter on dynamical models,
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CHAPTER V

DYNAMICAT MODELS FOR REGGE TRAJECTORIES

Bl Introduction

Field theoretic models for fermion Regge trajectories are
discussed in this chapter. The basis of the theory is a series
of papers by Gell-Mann et al.(zj, where it is shown that under
certain conditions, Regge behaviour can be obtained by the
iteration of Feynman diagrams. First of all, a brief survey is
given of the above theory, and the concepts of "Reggeisation',
"sense'", and "nonsense' are discussed. Later, dynamical models
describing the pion-nucleon interaction are considered, and the
residue functions and the trajectories calculated. The resulting
trajectories are examined for dips and cusps around the Sll( 1591)

resonance, and the Regge residue functions are examined for zeros

at this point.

B The Theory of Reggeisation

(2)

Work done by Gell-Mann et al. has shown that, under

certain conditions, a Born approximation pole in a Feynman graph
corresponding to elementary particle exchange, may lie on a Regge
trajectory. The conditions required are that the system con-
tains a '"nonsense!'" channel, and the Born approximation residue
factorises, The method used is to show that non continuable terms
in the complex Jj plane are cancelled by similar terms from higher

order Feynman graphs, and the resulting amplitude is shown to

exhibit simple Regge behaviour.
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The above process in which a fixed pole corresponding to
the exchange of an elementary particle is made to lie on a Regge
trajectory, is called "Reggeisation'", and the conditions for

Reggeisation are given in the previous paragraph.

5.2(1) Sense and lNonsense Amplitudes

(2)

The notation is that of GGLZ , and has been given in

Chapter 1,

Consider the reaction a + b —>»c¢ + d, where a, b, c, d
denote~the helicities of particles a, b, e, d. Liet N\ = a=Db,
LW =c-d, and J Dbe the total (real) angular momentum for the
system. A, iU represent the helicity of the composite system, and
for physical ('sense") amplitudes, A, u < J. Amplitudes for
which A, u > J cannot exist physically and are known as
"nonsense" amplitudes. Thus "sense'" states have A, p =< J
and can occur physically, while "nonsense' states have A, W :> J
and cannot occur in physical processes,

(2)

Gell-lann et al, considered the scattering of a neutral

vector meson (a, ¢) from a nucleon (b, d) and defined

ar o il .
Sazsczl, &.—J-g, b'—-d'—-z, Fajé'c_;:_FaG, and
= f o
Toted T- tac
At € = 0 the channels having a8, ¢ = 0, 1 are sense,
and those having a, ¢ = =1 are nonsense. Greek letters Kp,

describe the sense states, so a sense-sense transition is described

by f and a nonsense-nonsense transition is £

AGKo? -1-1°
Similarly, the parity conserving partial wave amplitudes corres-—

ponding to these transiti ons are ﬂko s Fnlo sy and F—l-l

respectively.
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Let a Regge pole occur at a value £ = o(w). Previous work
by Gell—Mann( 59) has shown that the sense and nonsense amplitudes
become decoupled at £ = 0, so a Regge pole occurs entirely in
the sense amplitude or in the nonsense amplitude.

The trajectory is said to choose sense if the Regge pole
occurs in the sense amplitude, and Gell-pMann et al.(z) have shown

that near a Regge pole

FKu A )zk'zl_/a = o.(w)J
o [«5(%2)]% A j_l ’Zn i a(W)] (A)

B ™ (f-l)g o w) [a(w) =+ 2}/ [.6 - a.(w)}

The residues ?K corresponding to the sense amplitudes

approach finite constants as a(w) == 0, while the nonsense

residues i-—l (a,(w)(o.(w) + 2)} %—>O as [a.(w)]% as afw)—> 0.

Similsrly, if the trajectory chooses nonsense at £ =0

Fko ~ (f.-]_)z a(w) [alw) + 2] /[«‘5 - a(w)]

(B)
Al
2 —
F_iy/ [z(mz)] o dAu. ke a(w) |
Y SRR i
K
When the Regge trajectory chooses sense, near a(w) = O
the above amplitudes become
.,.1> 5
Beo & = zK 79 g of
N -1 (c)
2
F_l‘,/Ee(mz)J i 1 o

2 -1
F—l-l 1 2({_1 a)é a5
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5.2(2) Regge behaviour and Feynman graphs

Gell-Mann et al.(z) illustrated the above concepts of

Reggeisation, sense, and nonsense by considering the Born graph

Fig. 1

It may be shown that the partisl wave amplitudes for the above
graph at large % = cos & are given by formulae similar to
equation 5.2(1)C. Thus the Born approximation at large %
corresponds exactly to the contribution of a sense choosing
Regge pole with o=—> 0., Further study shows that this Regge
pole chooses sense at ¢ =0, w =mj (nucleon mass) and thus

corresponds to the physical nucleon,
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If the Regge behaviour persists for all orders of Feynman

graphs shown in Figure 2, the matrix element for the scattering is

o 1!1{12 31/:

we

Y.p—mo
where ¥ 1is the pNN coupling constant, f1 is a gauge, and
28]
7 (-z)% . Lz)a - Reg)t™ g
2 2
a2 2
= 1+CL‘61’1(“Z) +-2T(6n z) + emieie o (D)

The presence of terms having positive and negative 2z in equation
(D) 1is due to the fact that the varisbles t and u are
alternately the leading asymptotic variables in the graphs shown
in Figure 2,

(2)

Gell~-Mann et al, verified directly that the first term in
the series corresponds to the most divergent term in the Born
approximation, the second term to the box graph, and the third
term to the 6th order graph., The summation of the most divergent

terms in each graph thus verifies Regge behaviour to 6th order,

5.2(3) Unitarity and dispersion relations

From equation 5.2(1)C above it is seen that the nonsense

amplitudes have a pole at € = 0. The use of unitarity, dispersion

(Lo)

relations, and the N/D method provides a means of iterating

the pole at ¢ = 0 so a Regge trajectory is obtained.
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If a Regge trajectory is generated by this method, the effect

of higher order iterations on the non-~continuable term 060 in

the sense amplitude is

0, =P - =

4o £ =,

An example of this technique is as follows. Suppose the

nonsense amplitude for the Born graph is

1
B_l_l(w) =0 7 h(w) ; w= W8

and the unitarity relation for the Regge pole exchange amplitude
is

Im F

2
_1_1(‘") = ké[F-llI ; k is the c.m., momentum,

A

The amplitude F_; l(w) may be written as

Foo (w) = M)

D(w)

where, to first order

N(w) = B_;_,(w)
k(w!) B (w')
D(w) = 1= dw' sl (E)
1
unitarity L
cuts
Multiplying (E) by ¢ gives
N(w) = h(w)
: k(w')h(w' (F)
Dw) = ¢ - dw' (w')h(w')
uni tarity w' -w

cuts
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The sgbove method of iterating the Born approximation pole
to obtein a Regge trsjectory has been discussed in detail by
GGLZ(Z)e Provided the conditions
(i) There exists a nonsense channel.

(ii) The Born approximation residue factorises into residues
corresponding to the different sense and nonsense channels
respectively, the effect of unitarity and dispersion relations

is to transform the fixed Born approximstion pole into a Regge
pole, Furthermore the Regge trajectory obtained by this method
is exactly similar to the trajectory obtained by summing the most
divergent terms of the Feynman graphs described in the previous
section,

The N/D method described above is a practical means of

(L41)

calculation, and has been used by Freedman to construct

models for the nucleon and baryon Regge trajectories,

5.2(4) Nonsense states and the Sll resonance(MQ)

(2)

In paragraphs 5.2(1) - (3) a model of Gell-Mann et al.
has been deseribed in which the physical nucleon lies on a Regge
trajectory. The Regge pole occurs in the sense amplitude at
¢ = 0, so the nucleon is physical. Suppose the Regge pole chooses
nonsense at £ = 0, so 1t occurs in the nonsense amplitude.

= 0(39) and the

Since sense-nonsense decoupling occurs at <
nonsense state is never reached physically, no bound state or
resonance will be seen at this point. Shoulc the Nﬁ trajectory

choose nonsense at € = 0, no §,; resonance will exist, and there

will be no nucleon MacDowell symmetric partner,
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The gquestion as to whether or not the N trajectory choases

g
nonsense at € = 0 depends entirely on the dynamics of the system.,
If the Regge residue function ——» zero as (w - m') at € = 0,
where m' is the Sll mass, the trajectory will indeed choose

nonsense., Otherwise, the trajectory chooses sense,

5.2(5) Constraints on the residue function

The w plane is defined as before, so -the Nc. trajectory
(positive parity trajectory) corresponds to w > 0O, and the
Ng trajectory (negative parity) corresponds to w < 0.

If the resicue function @A(w) 1is to describe physical
resonances, then B(w) > 0 for w > W ( threshold), and
B(w) < 0 for w < ~-w,. Thus the residue function changes

T

sign in the region =W, s v s WT (See Desai(uj)).
Suppose a Regge pole occurs in a partial wave amplitude

: i e Near = W
FJ(W) at w Wwo. Near w R

B (w) A ...__B(L)._.
e a(w)=J

and expansion of a(w) about w = W leads to a Breit-Wigner

form for FJ( W) ’

B(w) o by iIm alw)

d e d ’
[--— Re a.(w)] (—-— Re alw)
aw aw
W=WR W‘IVVR

For w0, the work in Chapter IIL shows that

FJ.( w) ~
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Im o(w) >0, [5 Re a(w) > 0, ol 8(w) > 0 if

dw e
physical resonances are to be described.

Continuation of this eguation to w = -w' shows that if
physical resonances are described in this region, B(-w') < 0.

For physical resonances

Blw) > 0
Bl-w') < ©

(G)

The Regge residue function is required to change sign in the
range =W, < v < Vs and conseguently has a zero (or
infinity) in this range.

Dynamical models of Regge trajectories are constructed in the
next section., The Regge residue functions are checked first for
smooth positive behaviour in the range W
smooth negative behaviour in the range -0 € w <€ ~We
residue function is examined for zeros in the range —WT.S wSs WT’

€ wg ®, and for

Next, the

especially for zeros near the mass of the missing Sll on the

highest ranking N, trajectory.

8

Bald Dynamical Models

In this section, dynamical models Tor the nucleon trajectory
are considered, The first model was used by Freedman(ul) to
evaluate the slope of the Na trajectory at the nucleon. This
work has been extended, and the residue and trajectory functions
calculated for this model., Other models consist of Born diagrams
with o meson (S wave 7% state) and p meson exchange, and

residues and trajectories are calculated as before,
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From Barger and Cline's classification of the baryon
reson&nces(zo), it is readily seen that the odd signature tra-
jectory passing through P11(938) and F15(1688), lies very
close to the even signature trajectory which passes through
315(1518), and. Gl?(2190). This suggests that the exchange
(u channel) forces responsible for even and odd signsture
effects are unimportant in this case, Only models which do not
give rise to u channel cuts are considered in ths work.
Iteration of the Feynman graph used in the model of GGLZ(Q),
produces alternate +t channel and u channel cuts, and gives
rise to s+wey cxchange forces., Such a model is expected to be

not so successful in describing the physical nucleon trajectory,

and is not considered further.,

5.3(1) Freedman's model

Tq—-——_-- --_---'--'-T

— T G G e
— e o T T

Pig,

This model consists of iteration of the Feynman graph shown
in Figure 3 by unitarity and dispersion relations. This graph 1is
seen to give rise only to +t channel cuts, and there are no exchange
forces as required, The effect of the vector meson acting transversely
is to displace the fixed pole which occurs in the spinless particle

partial wave amplitude at <4 = -1, by one unit, Thus the above
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Feynman graph (ﬂl sure )) has a fixed pole at £ =0, J = %,
and iteration of this pole gives rise to the nucleon trajectory.

A weakness of the above model is that there is no nonsense
channel for the Reggeisation theory of GGL ( ), but this was
ignored in the calculations of the Regge parsmeters,

After correction of an error has been made in Freedman's

paper, the partial wave amplitude near 4 =1, J = L=5 = %,
parity -(-1) = +1 is (see Appendix IV)
L
Be w L
2 (w=m )2_ u2 2
L A 02 G‘ R h“( 1.'-]) _!'-..—-
Bj£2 (w) w 1 8m e
£

The conventions used in the calculation are given in Appendix II.
G is the pion-nucleon coupling constant, and G2 -1 15,

P is the p#rx coupling constant, and F2 A 2

ms m, and u are the masses of the nucleon, vector meson, and
pion respectively.

W is the total centre of mass energy.

+
The functions h (w) are

W+ 2m
2 il Te

h(w) = =l4n (—“ +) I(w)

i '(w —-En+m} )(\n Fn—ma] )I

where (i) w2 (m2 2)
0o - + m
0

{(W2—(&&m0]2>(Wz—éhﬂnglz)!%

2
for (mo - m)2<w2< (m0+m)

e AL
(ii) I(w) = e=n e o) Sl (+m0] )(""2“5‘1'“10]?)[ ]

I(w) = =+ tan
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Application of the N/D method as described in Freedman's

paper gives the trajectory function

1 W
z 2.2
a®(w) = 1 + tho G°F
2400 1 el
oo ey (! -m )" = (w'+m )
% aw" g%;_gl h (w') - 2 B (w')
m i (' - )(w ) (o) (ot 4)
The expression for the partial wave amplitude is
20 2
ik (w-m ) 2.2
e = = , where B(w) = - G F h™(w)
& &=a(w) W 27

The Regge residue functions g(w) and the trajectory a(w)

were evaluated and the results shown on the graphs opposite,

Conclusions and Discussion

For w 20 the residue function B(w) is negative except
in the region 800 w § 1065 Mev. Zeros occur in B(w) at
= 800 Mev and w = 1065 Mev, but tlese appear to have no physical
significence., Since B(w) is positive only in the region
oS w= 1065, physical resonances can be described only in this
region. Further, B(w) => 0 as W —> ® ., A cusp occurs at
the p meson threshold, w = 1703 Mev., B(w) diverges at w = 0,
fhen w< 0, pB(w) diverges at w=0 and w = —(m+mo)=_ 1703
Mev, and is negative in between, For lw’ » 1703 Mev, the residue
is positive, and decreases to zero as w->» -oo. f(w) has no zeros
except at w = it 00 .
The residue function changes sign for w both positive anad

negative, and in general has a very unsatisfactory behaviour. This






———i
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may not be due entirely to weaknesses in Freedman's model, since
the first order N/D method used is a crude approximation, and

mutilates the correct form of the partial wave amplitude F

[ B

obtained from the iteration.

For w >0, the trajectory function a(w) decreases slowly
in the range 0L w < 2000 Mev, and has a small cusp at the p
meson threshold m +m. The trajectory varies little from alw) = 1,
and has little physical interest in this range,

For w< 0, a(w) is positive, increasing, and divergent at
the p meson threshold., The divergence is too rapid for any
physical significance in this region. For -U800= w £-1703 the
trajectory a(w) is negative,

When |w, > 5000 Mev, trajectories for both positive and
negative w start diverging., This is confirmed by a simple
calculation which shows that both trajectories diverge as (&nw)2
as wW=> . Thus Freedman's model gives rise to infinitely rising
Regge trajectories,

In Freedman's model, there is no MacDowell symnetric partner
to the nucleon, since a state of spin ~—~ 10 is predicted at
w = -850 Mev. However, the Regge trajectory is unrealistic in
this range. The residue function pB(w) shows no evidence of a
zero at w = -850 Mev, so the non appearance of the Sl1 is not a
nonsense effect according to this model,

In general the forms of both the trajectory and the residue

function have little relevance to the higher pion-nucleon

resonances,
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B3 29 g~exchange model
T L

T e
o
()
i/ pr et
v v
Tig, M,

Single particle exchange models are considered in this and
the Tfollowing section. First the exchange I =0, J =0 is
considered. This corresponds to an S~wave dipion state or sigma

meson.,

-

If coupling takes place between this state and the two pions
in Pigure L4, the pions are in an S state (£=0).
: : . 2
The parity of the pions is (-1) (--1)6 = 41

: 5 2
The G parity of the pions is (-1) = 431

Henee the guantum numbers of the exchanged sigma meson are O++.
The question as to whether or not the sigma meson exists is un-
important, since the important effect is the exchange of an S
wave dipion state having guantum numbers 0++.

There are two weaknesses in the above model, The first is
that there is no nonsense channel, and the second is that there
is no vector meson to displace the fixed pole occurring at the
unphysical value € = =1, to the physical value ¢ = 0, In
spite of this, however, calculations were done to seec if the
residue and trajectory function have any physical significance,

The Feynman amplitude is



M = 2p 6 T (§ ) 1 U(a-)
i ® ©O 0 £ 2 i .

m 1is the o= meson mass.

A, 1 - P ) - 2 - 2
Bc__ is the o®n coupling constant. Fcr' ~ 8,36 .
Go‘ is the oNN coupling constant. GU:? e DT
2 2
e 0

= (qi g 2w )

b o 2_ Ilg
g = g 2 )

f ] 2W °

Projection of the negative partial wave (near £ = -1 this

gives a trajectory of positive parity) takes place as before, and

near the fixed pole at £ = =1 the partial wave amplitude is
(w) Fch- m2 1
B,- (w = —— L o e ——
° w( E+m:) 2g"(w) +1
where q(w) is the centre of mass momentum and E the nucleon
5 ;
energy., Put Y(w) = 1+ + ’
2q (w)
FU'G{J" Y(w)
o o iBeslwiE , and the first order N/D method
% W(E+m0) £+1
gives
N(w)
< kW) =
F,f, (w) D(w)
N(w) = B _(w)
<
9( t) 'emo"'#l) '
D(w) = 1-3 aWE B fw ) Sl aw'B (w) —=
e £ W -w o0 £ W =W

0]

Considering only the most divergent term of B (w) gives






.l E+mo) 1 J}
m—mo w! ( w! +.,__I,_',) -

This gives Regge behaviour

P o(w) = —Bw) where

7 ¢ - alw)
PG
Blw) & —Z & = Toro
w(E + mo) (w+m - w)(w - m o+ w)
FGG i E-m 1
a(w) = =1 + —,Kq-( aw' ( (= 9)
m -+ S+t (w! =w)

o w'(w'-w)

Discussion

The residue function is positive for both w > m, o+ W
and - (mo + p.) and is never zero., Divergence occurs at
e =k (mo - u). There is no evidence of a zero near the Sll
mass, W “>~ 850 Mev., Such a residue function can give rise to
resonances in the region w > (mo + L), but not in the region
wel" - (mo + L)

The trajectory function is shown opposite. For w N0 the
trajectory fails to rise to any physical value of J, and approaches

Re a(w) = -1 as w=>oo. For w< 0, a MacDowell symmetric

partner for the nucleon is predicted at w = 615 Mev, and the



o I

trajectory diverges to +00 at threshold m, + Lo For w S —(mO+H)
the trajectory is negative and slowly tends to Re ao(w) = -1 as
W = =00,

guch a model has no application at all to the higher pion-

nucleon resonances,

B30 5) p meson exchange
N A P e i
v I
Fig. 5.

If vector meson exchange takes place in Figure 5, the guantum
PG -
numbers of the exchanged state are J g (p meson).
A similar calculation to that in section 5.3(2) shows that

iteration of the above graph produces Regge behaviour

na|-
)

e - a(w)

The superscript refers to the isospin state.

l ~
B(w) = h G e
wq (w)
1 7idy '
z > « [0 =E(w') 1
o (w) 1l + 3 X D m_H w'a(w') W,Q_WQ

The factor ’% results after projection of the state I = 3.
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Gp is the NpN coupling constant, and Fp is the p=Ax

coupling constent (see Appendix II).

Discussion

Once again the residue function remains positive for
W <:-(n5 + ML), so physical resonances cannot be described in
this region. Zeros oceur at w = = u’(mo2 - u2), i,e. w = = 928
Mev. The negative value is near the assumed mass of the S11
(850 Mev), so this model gives a possible explanation of the miss-
ing Sll in terms of the vanishing of the residue function,

The trajectory function is shown opposite, Divergence to
- o0 occurs at the two thresholds w = Z (mo + W) respectively,
and as W —=> L o, Re a(iw) —> -], This was confirmed by
computer studies for w up to 1012 Mev, and is also evident from
a simple calculation.

Since positive divergence occurs at w = (mD + )y a
gsubtraction was made at w = W, in the dispersion relation for

1
the D function so that a®(w) passed through the nucleon (¢ = 1),

The expression for the trajectory is now

®
1 8m ; -
2 = = [0} 2_2 1 W—EgW!.
a (w) = -1 + 5o Gpr(w wo) dw g
m
1
2 2 2 2
(w'™ = w )(w' _Wo)
4
where w, = 899,1408 Mev and az(mo) = s

The trajectory again shows divergence to +oo at the thresholds
w0 (m0 + u). Above threshold the trajectory diverges logarithmically

to =00 and does not reach any of the higher pion-nucleon resonances,



e
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The unsubtracted form of the trajectory for p meson
exchange has some satisfoctory explanations for the missing Sl1
state, notably vanishing of the residue function in the vicinity

of its mass. Furthermore, the trajectory function has a large

dip (at - [m, + p.]) in its vicinity.

5ol Conclusion

Both the residue functions and the trajectory functions for
the three models discussed have very unsatisfactory behaviour and
little relevance to the higher pion-nucleon resonances. This may
be partly due to the models (in all three models there is no
nonsense channel and also no transverse vector meson in the
single particle exchange models), and also to the approximations
made in the calculation (the first order N/D method).

The single particle exchange trajectories tend to =1 as
W= b @ . There is an analogy with potential scattering,
because Regge trajectories obtained from the Schrbdinger equation(gu)
end on negative integers as w—> .

The effects of the absence of a vector meson acting trans-—
versely in the single particle exchange models have been discussed
by Abers and Zachariasen(uu).

Due to the -1 term in the expressions for the trajectory,
dynamical effects are necessary to bring the trajectory into the
physical ¢ region. $Since first order perturbation theory has
been used for strong coupling, calculations involving these models

are expected to be very unreliable,

For the box graph used by Freedman, due to the translation
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of the fixed pole by the vector meson, the fixed pole occurs at

J = 5. The trajectory obtained by iteration of this graph starts
at a physical wvalue of angular momentum J = %, and no dynamical
effects are necessary to produce a bound state lying on this
trajectory. For models of this type, the nucleon can lie on a
Regge trajectory even if the approximation of wesk coupling and
first order perturbation theory are used.

The above considerations show that the box graph considered
by Freedman is more likely to produce a physically meaningful
Regge trajectory than single particle exchange models, A possible
future research project is to consider the effect of a Feynman
graph with both a vector meson acting transversely and & nonsense

channel, e.g.

o e e e o

The dotted line in Figure 6 can represent any meson having
positive G parity except the p meson, since a 3p vertex

is forbidden by Furry's theorem,
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CONCLUSION

In this thesis, attempts have been made, on the basis of
the Regge model, to explain the missing nucleon MacDowell symmetric
partner, (Sll) and these attempts have been highly unsuccessful,

In the potential scattering model of Chapter III, the possi-
bility of missing mass states has been demonstrated for negative w,
but no calculations have been done.,

Parametrisations of the trajectory function are discussed in
Chapter IV, especially those giving rise to dips and cusps near

6)

the missing 54 A model of Lyth(25) and Jonas(2 is considered,

in which the leading N trajectory is distorted to include the

g
311(1591), which is assigned to a lower ranking trajectory in
Barger and Cline's classification(2o). This model has grave

difficulties in explaining the large width of the 511(1591).
In Chapter V dynamical models have been used to generate
Regge trajectories, and with the possible exception of the single
p exchange diagram, these trajectories and residue functions are
totally at variance with the observed Regge trajectories for the
pion-nucleon resonasnces. It is not clear whether or not the poor
results are due to defects in the models used, such as the azbsence
of a nonsense channel, or are due to the approximations made in the
caleculation. This would be partly answered by consideration of the
graph in Figure 6, Chapter V, which has a fixed pole at j = %
and a nonsense channel, This is a possible future research project,
Recently, models other than the Regge model have been considered,

(45)

notably the guark model, Sguires has obtained a form for a
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meson Regge trajectory by considering the exchange of a heavy
quark in the + channel. Another possible future research
project is the extension of this work to baryon Regge trajectories.

A model for the higher pion-nucleon resonances which does not
involve complex sngular momentum is the orbital excitation model
of Dalitz(u6), also Faiman and Hendry(u7)o The higher baryon
states are given by exeitations of the internal orbital motions
of the guarks composing the state., In this model, the approxi-
mate degeneracy between positiveand negative parity states is
accidental, so there is no trouble with missing MacDowell sym-
metric partners, However, this model has more difficulty than
the Regge model in placing some of the higher mass resonances,

The present experimental status of the degeneracy between
states of positive and negative parity is still rather shaky,

The success or failure of the Regge model and MacDowell symmetry
in pion-nucleon scattering will come when accurate data on the
resongnces above 2000 Mev becomes available,

In 1905 the study of the energy distribution in the spectrum
of black body radiation led to a revolution in physical thought.
As progressively higher energies are investigated, perhaps the
study of the pion-nucleon resonances may lead to a similar

revolution,
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APPENDIX T

Definition of angles snd projection operators occurring in the

reaction a +'b-—%> TR

(1) &_ngmw)

Consider the reaction a + b~—%c + d where m Am £ m,
7~ m e Define the Mandelstam variables s, t, u as before.
Let gs’ et be the centre of mass saattering angles occurring
in s channel and t channel scattering, respectively.

Define
2 i 2 21 2
S LS - (ma - mb) ][ 2 (ma + mb) = Ls Pa_b
o C i 2]( -8 2
Seq = LE= (m, = 'mg s — (m, + my) = G
2. - m)2] ¥ [ 2
Tae = [t - (ma mc) [.t = (m, + mc) S e o

1l

o w¥n 5 2 >
Tpa = [t e ][t iy 6 1) J 4t Ppg

@isit) = st(Zm° e J0) Lis(m, - ) (w,® - m.5)
- tm 2 - mB(m?® - m ) - (nmy - m )
.(ma2 + de - mc2 - mb2) -

Then
2 2 2 2 2 2
cos ©_ = @st + 87 - s(Smi ) # (" - m " )(m =~ - my )} /8ap Sca
1
: Al 2
sin &, = 2[5;5(8,’6)] / S Sea



cos et =

sin et

The angles

(1.3A) are
cos =
a
cos L =
cos =
c
cos =
d
sin =
a
sin =
b
sin =
c
sin =

a!‘

~(s
(+ma

(S+11'Jb2 - maz)(t + my
(s+m¢2 - mdg)(t +m,
~( s+m S 2)(1; + m

fals

2 2

i A(s, t) /Sab Tac
1
2

am - Als,t) ® 5, T,
1
o
%

2 WP TIET R e T

/ Scd Tac

/ Scd de

2
+ Iy

2
-+

2



o ; = J

(ii) Define functions elu’ ehu’ elu’ Clu’ Clu’ .

such that
+ = + —Hy

Y ety i R P+ : v

x = ehu H ey 3 (kv2 cos ©/2) 2}2 sin 9/?} dlu(e)
+ - [ Nl I

J 3 J J - - J

S o gt (V2 cos ©/2) (V2 sin &/2) dm(e)

o g
Thie e and c functions occur in formula (1.2C). The
dip(e) functions a re the d functions of the rotation matrix(u),

Values of & and J are tabulated in Reference (2) for A, uff:?/z.
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APPENDIX II

Conventions and Notation used in this thesis

The notation of Bjorken and Drell(ha), P. 285 is used in

this work.
(1) 4 four veetor k = (k,, k); k° =k - e
(2) The Dirac matrices are
i o= e e SR o I R -
s 0« =T

GE' are the Pauli matrices.

(3) The Dirac spinors are defined by

) = [ER [ ;
g2 X
E+m s

where :Xr is a two component spinor describing the spin state.

- - +
The spinors are normalised by u, w, = I, where e = B Yo

5

T for each internal nucleon line of
(2x) Yp - mg

(4) A factor

L momentum p.

1 1
(5) Asfaebory.—s=p si=pr=—sp for each internal meson line of
(2x) k° - pu

L4y momentum k, and mass pu .

(6) A factor - ?-lsn 'EE 31“, for each internal photon line.
2% k

for each vector meson line of mass n

(7) A factor - = )

S

(2x)* k

1 1
()75 2 &

(8) A factor sﬁ(g) 1, for each external photon.



(9)

(10)

(11)

- (12)

(13)
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A factor W j (%)E ”r(P); for each external nucleon
b, (p)

entering
line éleaving g the vertex.

A factor (2x)u o(p - p! ¥ x) for each vertex, corresponding

to 4 momentum conservation.

A ps interaction occurs between pions and nucleons. The

interaction Lagrangian is

"'jint = i(lm)%G'l!? IY5¢-¢ .

G is the conventional =N coupling constant, where Gz'ﬂ-15.

1
The above Lagrangisn gives a factor - i(lm)é G Y5’?& at
each pion-nucleon vertex, where ’r& is the isospin matrix.
The relative coupling strength is Zl2 for charged pions,

and £ 1 for neutral pions,

The PNN interaction. Since the e meson is a vector and

also an isovector, the interaction Lagrangian is
1 n N
o G (L B+ (8 x 0, #)
2
where F ~ 320,

The fNN vertex contributes a factor —i(hx)% F(p+p'24‘

where Dy s p' are the four momenta of the ingoing and

outgoing pions.

The ORX interéction. 6  1is a scalar meson, and thus
cd i = WR)? E, o(des)

Fg = 8.36p2 (v is pion mass).



(1)

(15)

(16)

(17)
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The oNN interaction. As before

1, N
SERTEE TR R

3(49)

2
where Go

The oNN interaction. Assuming vector and tensor interactions

are possible, the interaction Lagrangian is

=N et 1 (um)* Gy Vap — ¥« 0

14 a
+ (Um)* @, ¥ 03 it V. 0 oy
Zm
% X L is th 1
where r.>.ML =T YMYV = Y ot s Wy s the nucleon mass.
This gives the vertex factor(5o)
1. G, .

-(4x)? i (&v + GT)YILL + _E; B Wt where p is the L4

momentum of the incoming baryon.
In practical calculations the second term is ignored, and

the vertex factor taken as

3
-(Um)*® 1 G T where G, = Gy + Gpe

Values of GV’ GT obtained by different methods have been

summarised by Signell and Durso(51). The value of Go 3.

Since angular momentum is conserved, dj» Qe (the unit
directions of the incoming and outgoing momentum respectively)
are coplanar vectors, |

35 i QG = (xr 0, Z)r dp = (x': 0O, Z'),

a3 x Qp (0, sin6, 0) where 6 = (a4, Qp)-

Partial wave projection operators may be defined for
pion-nucleon scattering. (See Cuilli and Fischer(52)).

The operators
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+ 24+1 ( 7~ A N NN
y, = =———=—{ (£+1)P,(q,,9,) = 1i0.a,xq.P}(qa,,q )]
¢ b |(£+1) ACERLES TR ACEE L
- 2L+1 A En o™ N ~ N
¥, ® === 1§ P.(0,,d,)6t id.q,xq. P'(d,sq,)
L el ? AR EE el 9
1
project out partial waves having J = L#%, parity (-1)J+é, and
1
J = ¢4, parity --(-1)':“"é respectively.
The above angular operators are normalised to
- + ,‘ Va + ” Ve
spin - - Lot i
sl (apra;) 3 (apsq;) da; da, = (22+41) 9,,, .

+
The projection of a partial wave F,

P from an amplitude
"N o)
£(ag, qp) is

+

+ +
spin -~ ke
iy, Ip dgy dae (Y,) f(ayy ap) = F,

angles

(18) In a pion-nucleon elastic scattering process
KN ——> xN
: : - N iB n
the Feynman matrix element is M.; =1U (qf)[ -A + =5 Y(qi-&qu]u(qi)

This is related to the amplitude

£, = :Xf"' Lfl + fz(g.qf)(g'.qi)J Q{i by
m

= 2] :
ffi = nmn o Mo where m, 1is the nucleon mass, and w 1s the

total centre of mass energy.



=103=

(19) The elastic partial wave amplitudes B', B, having
L L

definite parity have the form

+ 16£+
B, = e T “sino %
L
k
where 0O + is the phase shift, and k 1is the centre of mass
L
momentum,

They obey the unitarity relation
2

3 =5
Im B = k{‘Bz

+
(20) The partial waves B  are projected out from the Feynman

matrix element by the relations

+ m : + N N
- R spin -
BL i w ave e Yt Mfi dqf dqi 2
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APPENDIX _III

" The Evaluation of a Principal Value Integral

In this appendix the numerical method used to evaluate the

principal value integral

LX) e
X = X

which occurs in Chapters IV and V is considered. This method has

been described by Carruthers & Nieto(sz), Appendix (A).

Consider the transformation

- X + K . o .WK]
4 X + V- 2K ; s :>’ g EZ; ;:

Sset f£(x) = g(y) 1-y
s (1 2) g(y).ay
= : -
Then I = Pj’ o L e a, + K
© & xt V- 2K
Adding and subtracting one gives
1-y
(1 == ) elah -~ 2(5,) e
T ~ Ay + gly,)in (—=)
. y -7, do~

The integral above is no longer a principal value one, but it
reduces to the meaningless form O0/0 when ¥y = Tt

This difficulty may be avoided if V 1is irrational, so Yo
is irrational.. The limits of y are 0O to 1, and as the
interval (0, 1) is divided up for numerical integration,
vy #E ¥y, for any finite number of iterations.

This method is superior to the normal method of evaluating
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a principal value integral, in which the computer approaches the
pole from both sides and subtracts the differencesuntil these
become small compared with the total integral, since temporary
cancellations may occur. The method described in this appendix
avoids this difficulty by converting the principal value inte-

grations into an ordinary integration.
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APPENDIX IV

The Solution of the Square Graph in Freedman's Model

-5 h*lo™
v ’Q.f %w v

Application of the results of Appendix II gives for the matrix

o o e - —
I, o — g— a—

element

i e T@H’;éw:] + my 1
v et el | (| e

g
x 1 LLY. u(_gi) .

[k-p]z - 1.!.2-!-18 ~lc+w & 5 m2+ie

-

Next consider the expression

) (g_f) (Y.K - mo] u(gi) : K = k +%w (a)
Use the projection operators
_ opEank) . £ |
=it = w ) up(E)
2 (B)

/l_(x) = Bll-1K S v, (x) v,(K)

2m(k) r=1

where U,y V,, are the Dirac spinors corresponding to the particles

and antiparticles respectively of mass m(k).
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Solving for y.K from equation (B) above gives

2
(YeK + mo) = = (m(k)-l-mo)ur(K)'ﬁr(K) + (m(k)-mo)vr(K)?r(K) .

r=1

The mistake occurs in Freedman's paper (see(ul), Appendix II)
at this point.

Elementary manipulation of this result glves

2
Te(a) 2 (me)m Juy (NG (6) + (mie)omg Yo (7, ()

r=]

Y )+m
- A [P J[ 5 )] - = [(208p) (@) + k) (@-qy))]

E(q)+m e Seq3 \ )
E(k) -
: [ 2m, J[ "o (E(a) + mojz 1

where Wf, ;Ti are two component spinors.

This result was verified by direct calculation of 'ﬁ'(qf)(Y.K+mo).

u(qi) using the form for the Dirac spinors given in Appendix II.
The projection of the positive parity partial wave amplitude

follows from Appendix II.

s = 5(q)+, f J

+ A2 + A
[(k-ﬁ%w)z - + ieJ[(-k-&%w) A :La]

A
‘S

where Aqy Apy A3 are given by Freedman.

The most divergent term is A3, and near ( =1
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= Sﬁt_ [ m, - E(k) - :
1 [ (50 + n)

Near (=1,

L) E(g) - m e G
B _(w) < S5, = dk dk
L = L - 1 w 5 5

m - %w - k

O

[kk + %m)z - mo2 + ig}[k—k + %m)z - mt ie]

The integral may be evaluated by Feynman techniqua£53) to yield

2 2.2
B _(w) = (w - mng e S u(w)
L ﬁ% wz- =1
11
3 3 Ax (wxF m)
where h'(w) = D = 20 ™ > as in Freedman.
o wx - x(w +m “-m") + m~ + ie
The isotopic factors are
%
B w 2 2 2 o
P (w) Y /3| (w=m )" = p ™ (w) 52e2
-_ x 2 2 [ ] zﬂl [ ]
2 2 -
5 (whmo) B b G2F2 h (w
s 2 73 = .

w 1

Hence the Regge trajectory is given in error by equation (8)
of Freedman. The correct expression is
1& 22 1
a’?(w (w=-m_) L : alw
[ il 7% o G°F° dw E'Lz')'w.
+
L 0‘3/2(“',) 8® 3 mo L
2 2
1
(wlem ) = u

X hiifw®) =
(w'-mg, ) (w'-w) (w'+m_ ) (w'+w)

2
(w'+mg) - p,2
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