
Znt. J. Man-Machine Studies (1989) 31, l-26

The EC0 program construction system: ways of
increasing its representational power and their
effects on the user interface

DAVE ROBERTSON, ALAN BUNDY, MIKE USCHOLD AND ROBERT MUEIZELFELDT~

Department of Artificial Intelligence and t Department of Forestry and Natural
Resources, University of Edinburgh, Edinburgh, UK

(Received 15 April 1988 and in revised form 18 July 1988)

There is a growing interest in programs which help users with little experience of
computing to construct simulation models. Much recent development work on such
systems has utilized comparatively simple mathematical methods (such as System
Dynamics) to facilitate the development of a friendly user interface. The problem
with these simple modelling languages is that they assume that users have
preconceived ideas of the simulation models which they want to build. In the EC0
project, which involved the construction and testing of programs to help ecologists
build simulation models, it became clear that users could not always adapt their
ideas to fit into these mathematical frameworks. They required a more expressive
input language in which to describe their modelling problems, rather than being
forced directly to specify the programs which solved those problems. However, we
found that as the input language became more sophisticated the complexity of the
user interface became disproportionally larger. We attempt to clarify the reasons for
this phenomenon by comparing the various systems which we built to try to solve
this problem. This comparison is facilitated by the use of a sorted logic as a lingzur
franca for the various formalisms used in each system. Our analysis centres around a
small number of key characteristics which we use to highlight the strengths and
weaknesses of various dialogue techniques.

1. Introduction

Many ecologists would like to construct computer simulations of ecological systems,
but are discouraged by the complexity of current simulation languages. They must
learn how to program in an available language (a considerable effort); or describe
their model to a sympathetic modelling expert who will then implement their model
on their behalf. Our goal is to relieve ecologists of this handicap by providing a
computer system which is easy to use and which helps them transform their view of
a problem from ecological terms, ultimately to working computer programs. A key
part of our research has been the design and testing of various mechanisms for
conducting dialogues between humans and computers in order to obtain specifica-
tions for working programs. This paper contains an analysis of these dialogue
systems.

Our central thesis is that, although it is relatively easy to provide interface
methods for users familiar with the mathematical formalism upon which a program
construction system is based, it is much more difficult to scale up these techniques to

t &mespn&ne: Dave Robertson, Department of Artificial Intelligence, University of Edinburgh, 80
South Bridge, Edinburgh EHl lHN, UK.

1

0020-7373/89/01ooo1+ 00$03.00/0 @ 1989 Academic Press Limited

2 D. ROBERTSON ET AL.

cater for users with only a vague preconception of the type of program which they
require. To make this point, we highlight (in section 2) key characteristics
(“dimensions of analysis”) which apply to all our experimental systems. Using these
dimensions, we describe (in section 3) some interface techniques based on
manipulating a simple set of program (in section 3) some interface techniques based
on manipulating a simple set of program constructs in a System Dynamics formalism
(Forrester, 1961). We demonstrate how this formalism is limiting both as a means of
expressing the ecological concepts and as a base for providing effective guidance for
naive users. Section 4 describes our attempts to develop techniques which can
handle more powerful formalisms while still performing well on one or more of our
dimensions of analysis. Our main conclusions are summarized in section 5.

Before becoming involved in an analysis of individual systems, it is useful to
define a lingua franca which standardizes the important aspects of all our systems.
This helps avoid the common problem of allowing implementation details to obscure
the fundamental similarities and differences of each program. We introduce this
standard language in section 2.1.

2. Definition of formalism and dimensions of analysis

All the systems constructed during the EC0 project (Uschold, Harding, Muetzel-
feldt & Bundy, 1986; Muetzelfeldt, Uschold, Bundy, Harding & Robertson, 1985)
have the general architecture shown diagrammatically in Fig. 1. Users have some
ideas about their domain of application (in our case ecology) and want to explore
these using a simulation model. To do this, they must communicate with the
interface system by supplying a sequence of input events (e.g. text input, menu
selections). These events will be converted by the interface system into appropriate
input expressions to the system in some formal language. These expressions must be
stored somewhere in the system and we shall call this store a problem description.
Since ecologists cannot be assumed to be familiar with computers, the user interface
must help users to provide the correct set of input expressions for describing their
modelling problem. The simulation package upon which the final simulation must
be run requires a (possibly different) set of output expressions which are obtained
from input expressions by applying trunshtion procedures. The store of output
expressions is referred to as a solution description. Note that in some systems
the input expressions which users supply to the system contain sufficient quantitative
detail to be used, without any intervening translation, as output to the simulation
package. This is a degenerate case of our general plan, which we discuss more fully in
section 3.

user
Input

events
Interface
system

Translation output

mechanism erpessions

FIG. 1. Schematic plan of Echo

2.1. DESCRIFTION FORMALISM

This paper concentrates on the mechanisms of the user
form of the interface is determined to a large extent by the

interface. However, the
types of input expression

THE EC0 PROGRAM CONSTRUCIION SYSTJZM 3

which it must process and this is, in turn, influenced by the types of output
expression and the sophistication of the translation mechanism. Therefore, the first
step in our analysis is to detine a language in which we may represent input and
output expressions. We shall then be in a position to compare the mechanisms which
manipulate these formal expressions.

We have chosen a sorted logic for this purpose since it covers the full range of
expressions used in all our systems without introducing unnecessarily complicated
notation. A detailed discussion of this formalism appears in McSkimin & Minker
(1979). The expressions in the logic refer to types or objects in a universe of
discourse (a set of entities in which the logical constants take values and over which
the logical variables range). These entities represent objects and quantities in the
real world which users may wish to include in their models. In the ecology domain,
for example, there might be hierarchies of types of organism and types of measured
quantities. A sample universe of discourse appears in Fig. 2.

The expressions permitted as input or output are represented by functions and
predicates defined over certain types. We shall use the following notation:

Words beginning with upper case letters represent variables.
Words beginning with lower case letters represent constants.

AsfB A is defined to be B.
X Cross product.

F-V Mapping from F to V.
A” A cross multiplied by itself n times.

{&, * * * , CJ An unordered set of elements El to E,.

(&, *. . ? E”) An ordered set of elements El to E,,.
4 v,-c -+, H Logical connectives and, or, not, implies, equivalence.

v, 3 Universal and existential quantifiers.
AES A is a member of set S.
A=B A equals B.
+, -9 *,I Arithmetic operators.

For example, the definition:

state-variable dsf object x time I+ quantity
states that state_variuble is defined as a mapping from objects and time to
quantities.

FIG. 2. Universe of discourse.

4 D. ROBERTSON ET AL.

2.2. DIMENSIONS OF ANALYSIS

A dimension of analysis is an index of the performance of a given system with
respect to some key characteristic. In Fig. 3, we introduce a diagrammatic
representation in which each dimension appears as a scale representing its
complexity (e.g. the guidance dimension ranges from no guidance to the com-
plexities of extensive guidance). We shall use this form of diagram at several points
in the subsequent discussion, as a means of summarizing our results. The
significance of each dimension is summarized below.

2.2.1. Range of possible input expressions
The capacity of a model construction system to represent a wide variety of
relationships in the real world will be determined by the range of different types of
expression which users may supply when describing their problems. Since this places
an upper limit on the richness of possible descriptions, it is desirable that the range
of permitted input expressions should be as wide as possible. This dimension
therefore varies from a narrow range (with poor expressive capability) to a wide
range (with a greater variety of available input expressions).

2.2.2. Range of possible output expressions
In the same way that a wide range of input expressions makes the description of a
problem easier, to a wide range of output expressions permits greater flexibility
when describing the solution (in our case a simulation model). In reality, the
simulation package-upon which the final simulation must be run-is often able to
accept only a narrow range of output expressions, perhaps because it has been
developed separately or for reasons of efficiency. In such cases the mechanism for
translating between input and output must be capable of “compiling” complex input
expressions into combinations of simpler output expressions suitable for the
simulation package (see section 22.6).

Input Output Correspondence Display Guidance Translation
range range

wide wide extensive structured extensive complex

narrow narrow limited direct none none

FIG. 3. Dimensions of analysis.

THE EC0 PROGRAM CONSTRUCIION SYSTEM 5

2.2.3. Correspondence between input expressions and users ’ concepts
Sections 2.2.1 and 2.2.2 are concerned with the potential of a system to describe
users’ models. This potential may not be realized in practice if users are unable to
relate the concepts which they have in their minds to the expressions which the
system requires as input. Therefore, it is of great advantage for input expressions to
correspond closely to the statements which users find “natural”. It is difficult to
define precisely what constitutes “naturalness”, since this may vary between
individual users. However, it is possible to weed out systems in which a limited
correspondence between users’ concepts and input expressions will restrict the
number of users to whom they appeal. Thus, our extremes on this dimension are
“limited correspondence” (where only a small group of users would find the
available input expressions natural to use) and “extensive correspondence” (where
the expressions are familiar to a larger user group).

2.2.4. Display of expressions
Users must be able to see the structure of their problem description in order to
remind them of what has been said and what remains to be done. They may also
require a means of displaying the knowledge base in order to access useful
fragments of description. The display provided must be easily interpreted by users.
This, in turn, requires that the physical display of expressions should be understand-
able and (since the number of expressions is potentially large) some means of
selectively focusing on parts of the display must be provided. The requirement for
an effective display mechanism increases as the range of input expressions is
widened, since it becomes impossible to assume that users will remember the
meaning of obscure displays if many combinations of symbols are presented. This
gives us a dimension of analysis which ranges from direct display, for simple
formalisms, to highly structured displays, in cases where the complexity of the
formalism makes it necessary to reduce the amount of information which the user
sees at a given time.

2.2.5. Guidance methods
Guidance is provided by a system as a means of helping users decide which
expressions to include in their problem descriptions. In our experiments, we have
concentrated on two forms of guidance. The first of these constrains the range of
input expressions by recognizing those which will lead to ill-formed models
(completeness checking) or by detecting expressions which contradict established
conventions about “normal” problem descriptions (consistency checking). Complete-
ness checks are crucial in systems where input expressions are mapped directly to
output (see section 2.2.6) because the translation mechanism will not correct any
fatal errors of input. Consistency checks need not be strictly enforced since,
although the system may consider them to be justified, a user may have different
attitudes. The sophistication of consistency checking is limited by the range of
expressions in the knowledge base, since these are what constitute the system’s
“expertise” in a given domain.

The second form of guidance constrains the sequence in which expressions are
introduced. Three sources of information may be used by this mechanism.
Expressions in the problem description may be used to link the sequence of input to

6 D. ROBERTSON ET AL.

the developing problem description. Expressions in the knowledge base may be
employed as a means of making information about the domain influence the
sequence. Special purpose structures may be added to provide more control over the
sequence of input. A given system may access information from more than one of
these sources.

Our dimension of analysis amalgamates all these criteria into a single index. At
one extreme, no guidance may be provided by the system. At the other extreme,
extensive guidance of various kinds may be provided.

2.2.6. Degree of translation between input and output expressions
This dimension reflects the amount of work which must be done by the system in
order to produce appropriate output expressions from a set of input expressions.
This may vary from no translation (where the input expressions are identical to the
output expressions required by the simulation package) to a complex translation (if
the relationship between input and output expressions is not straightforward).

In section 2.2.2 we noted that some degree of translation between input and
output expressions may be necessary if the simulation package which must run users’
models can cope with only a subset of the entire range of permissible input
expressions. We hinted, in section 2.2.5, that it may also be desirable to provide a
sophisticated translation mechanism, in order to buffer users from the mathematical
complexities of the simulation program.

3. The initial system dynamics based systems

In this section we consider those systems in which users construct models by
describing them in a System Dynamics formalism. We begin (in section 3.1) by
providing a formal description of the input expressions available to users of these
systems. We demonstrate how this formalism limits the way in which users may
describe their simulation problem to the system. Given this limitation on one
dimension, we consider the effect of various experimental systems on each of the
other dimensions of analysis. We shall demonstrate that each of these interface
mechanisms relies, for its successful operation, upon the simplicity of the input
expressions which it handles. This explains why, when describing interfaces which
use a wider range of input expressions (section 4), we have to abandon or adapt
these simpler techniques.

3.1. RANGE OF POSSIBLE INPUT EXPRESSIONS

System Dynamics models represent objects in the real world using a collection of
“tanks”, the contents of which are measured by state variables. The value of each
state variable may be changed by the input or output of “flows” of material,
represented by processes attached to state variables. Regulation of the rate of flow
of each process is achieved by attaching equations which calculate the rate of that
process. Complex networks of equations may be built, introducing intermediate
variables between linked equations. Variables unconnected to objects in the model
may be introduced (external variables). All of these model structures may assume
different values as time changes during the simulation. Static constants are invariant

THE EC0 PROGRAM CONSTRUCIION SYSTEM 7

over time, as are parameters of objects. These structures may be represented by the
following types of function in the logic, where object, quantity and rime refer to sets
of entities in the universe of discourse. We emphasize that these logic definitions are
a rational reconstruction of the System Dynamics formalism in a standard language
which facilitates comparison with other systems.

state-variable ef object x time I+ quantity

process sf object” x time H quantity

parameter *gf object H quantity

intermediate-variable *gf quantity” x object” I+ quantity

external_variable ‘Sf time H quantity

constant *sf quantity

The computational structure of the model is provided by sets of equation which
calculate the appropriate model variables and update the value of each state variable
at each time step. Fig. 4 shows an example diagram of a very simple model in
standard System Dynamics notation. In the logic, this model is represented as
follows:

Objects

shp E animal
grs E plant

State variables

biomass E organism x time w quantity

grazing E animal X plant X time k+ quantity

collstant!3

coefficient E quantity

Formulae

decreuses(biomuss(grs, T), gruring(shp, grs, T))
increuses(biomuss(shp, T), gruzing(shp, grs, T))
grazing(shp, grs, T) = coefficient * biomas(shp, T) * biomass(grs, T)
biomuss(grs, 0) = 10
biomuw(shp, 0) = 100
coeficient = O-2

Where: decreuses(X, Y) denotes that the value of X at time T will be decremented
by the value of Y.
increuses(X, Y) denotes that the value of X at time T will be incremented
by the value of Y.
T ranges over the integers between initial time 0 to a final time point in the
simulation.

We have given an example of how a model can be described using System

D. ROBERTSON ET AL.

ppqiJ&~

coefficient

0.2

FIG. 4. Simple System Dynamics model.

Dynamics. We now provide some examples of important expressions which it cannot
represent, continuing our use of sorted logic to provide rational reconstructions of
System Dynamics constructs.

Quantification of expressions is limited to obligatory universal quantification over
time and existential quantification over unassigned function values. All other
arguments in expressions must refer to single instances of objects (i.e. they cannot
be quantified over a class of objects). This may make some expressions tedious or
(worse) impossible for users to supply.

As an example of tedium, consider a user who wants to say that all the sheep in
his/her model have an initial biomass of 10. It would be convenient and more
natural to input the expression VS E sheep (biomms(S, 0) = 10) but, in pure
System Dynamics, this is only possible by adding a separate expression for each
object of type sheep (i.e. biomass(shp1, 0) = 10, biomaw(shp2,O) = 10, etc).

But what if a user wants to say that all objects of type sheep graze some object
of type grass at some time (VS E sheep 3G e grass 3T E time gruzing(S, G, T))?
This could not be expressed in System Dynamics because the existential
quantification over grass and time is impermissible.

Connectives such as conjunction, disjunction and implication are not permitted.
Therefore the expression VS E sheep VT E time (age@, T) = 5+ bimu.w(S, T) =
lo), indicating that all sheep of age 5 have a biomass of 10, could not be used
because it contains an implication.

Predicates are not permitted, only functions which return quantities. For example,
a user might want to say that all swallows are migratory: VS ~swalluw
migratory@). There is no facility for handling such statements in System
Dynamics.

Why are these particular classes of expression excluded from System Dynamics?
The reason is that System Dynamics is a language designed for representing a
quantitative solution to a modelling problem, based on a particular idealized view of
the world (namely that systems can be viewed as collections of tanks connected by
flows). This means that users of System Dynamics must mentally convert their view
of the real world into the solution formalism in order to describe their model.
However, we know from observations that qualitative statements (such as those
used in the examples above) are commonly provided by ecologists when describing
their modelling problem to human modelhng experts. Such statements deserve the
title of problem description, since they are intended to describe an ecological

THE EC0 PROGRAM CONSTRUCTION SYSTEM 9

system, rather than specify a program which will simulate it. It is clearly desirable to
represent a wider range of input expressions but this extension has important effects
on other dimensions of analysis, as we demonstrate in section 4. Meanwhile, we
consider how the use of a System Dynamics formalism influences each of our other
dimensions of analysis.

3.2. RANGE OF POSSIBLE OUTPUT EXPRESSIONS

Using a System Dynamics formalism, the description of a problem must be made
using the same expressions which will be used to form the solution to that problem.
In section 3.1 we have shown that the range of input expressions is narrow. It
follows that the range of output expressions is identically restricted. However, this
restriction is less serious for output expressions because these are used simply to run
the final program and, as such, can afford to be structured in ways which would
seem unnatural and complicated to human eyes. This contrasts with our requirement
that input expressions must be capable of being understood by users.

3.3. CORRESPONDENCE BETWEEN INPUT EXPRESSIONS AND USERS CONCEPTS

Since (from section 3.1) we know that the range of input expressions is narrow and
we also know that the range of expressions used by our target user group is quite
wide, there is no hope of matching all users’ expressions directly to expressions in
the problem description. However, we have experimented with two methods of
circumventing this problem:

3.3.1. Command language interface
Instead of permitting users directly to insert expressions into the problem descrip-
tion, we can provide a set of command-resembling ecological statements-which
may be expanded, behind the scenes, into a collection of new expressions in the
problem description. This principle is used in the Command Language system, in
which input strings supplied by the user are used to infer appropriate input
expressions. Some annotated examples of these command mappings are supplied
below:

If a user types the text string “A,grazes,B”, then this causes a grazing process to
be created between the biomass attributes of A and B:

VT E time 3N E number
increuses(biomuss(A, T), gruzing(A, B, T))
& decreuses(biomass(B, T), gruzing(A, B, T))
& grazing(A, B, T) = N

If a user types the text string “P,uses,equationl”, this defines the value of the
process P to be calculated from the quantities associated with equation1 (equation1
relates a process to biomass values):

QT E time 3A, B E object 3C E constant
P(A, B, T) = C * biomuss(A, T) * biomuss(B, T)

If a user types the text string “set,C,N”, the value of constant C is N:

C=N

10 D. ROBERTSON ET AL

If a user types the text string “set,A,O,N”, the value of attribute A is set to be N
at the initial time point (0) in the simulation:

A(O, 0) = N

We use these mappings to form part of the System Dynamics model shown in Fig.
4 by instantiating them in the following way:

Text input “sheep,grazes,grass” gives:

VT E time 3N E number
increases(biomass(sheep, T), gruzing(sheep, grass, T))
& decreases(biomuss(, T), gruzing(sheep, grass, T))
& grazing(sheep, grass, T) = N

Text input “grazing,uses,equationl” gives:

VT E time
grazing(sheep, grass, T) = coefficient1 * biomuss(sheep, T)

* biomass(grass, T)

Text input “set,coefficientl,O-2” gives:

coefficient 1 = O-2

Text input “set,biomass,sheep,lO” gives:

biomuss(sheep, 0) = 10

While this method works for simple examples, it does not easily scale up to
accommodate complex ecological problems. In particular:

l Domain knowledge is required in order to perform a correct mapping between
user input and problem description but this knowledge is supplied in only a
primitive form. The first general mapping rule (above) is a good example of this,
since biomass and grazing are names taken from ecology. There is a wide variety
of such names-all of which would require an explicit mapping statement.

l The ordered set of input text supplied by the user as a command is very different
from the input expression which it implies. This makes it difficult for users to
relate their commands to the structural details of the problem description.

. The system requires specific keywords in order to distinguish between commands.
These appear as logical constants in the mapping rules given above. Users must be
aware of which keywords to use and how to string them together to form valid
commands.

3.3.2 Graphical manipulation
If (as we explained in section 3.3.1) it is impractical to distance users from the
structure of input expressions, it may be better simply to allow direct manipulation
of the problem descriptio-aided by a graphics interface. Such interfaces are found
in commercially available modelling systems, of which the STELLA system is one
example (Lewis, 1986). Input expressions are each represented by a separate symbol
on a bit-map display. These symbols resemble those used in standard System

THE EC0 PROGRAM CONSTRUCTION SYSTEM 11

Dynamics diagrams (Fig. 4) and so are familiar to people who are acquainted with
this formalism. Some formal examples of this type of symbol manipulation (taken
from one of our prototype systems) are:

If a user picks a “create compartment” symbol and supplies the text string “0,A”
then a new attribute is created, representing this attribute A of object 0.

VT E time 3N E numberA(0, T) = N

If a user picks a process symbol; two existing compartments (labelled by
attribute-object pairs (Al, 01) and (A2, 02)); and supplies the text string “P”, a
process is created between the two compartments.

VT E time 3N E number
increases(Al(O1, T), P(O1, 02, T))
& decreuses(A2(02, T), P(O1, 02, T))
& P(O1,02, T) = N

As in the previous example, we can use these mappings to construct part of the
example model in Fig. 4:

Event sequence: pick “create compartment” symbol; input text “sheep,biomass”
gives:

VT E time 3N E number biomass(sheep, T) = N

Event sequence: pick “process”, pick compartment symbol labelled
(biomass, sheep), pick compartment symbol (biomass, grass) ; input text “grazing”
gives:

QT E time 3N E number
increuses(biomuss(sheep, T), grazing(sheep, grass, T))
& decreases(biomuss(grass, T), gruzing(sheep, grass, T))
& grazing(sheep, grass, T) = N

This form of interface works well as a means of constructing System Dynamics
models but its success obscures several limitations:

. It is essential that users of this system understand System Dynamics modelling,
since there is no provision of domain information to help them. This information
could, perhaps, be added to the basic system but this would introduce the domain
knowledge problem described in section 3.3.1.

l Since each component of model structure is represented as a separate graphics
symbol it is necessary that the number of types of structure should be small,
otherwise users will be unable to remember what structure each symbol
represents.

l Like the command language system, the user must still think in terms of a solution
to a modelling problem, described in terms of tanks and flows.

3.4. DISPLAY OF EXPRJZSSIONS

The graphical manipulation system described in section 3.3.2 provides a simple,
built-in display facility, since all objects in the problem description are displayed
directly. Users are shown the developing problem description at all times and may

12 D. ROBERTSON ET AL

view it as a “real” physical object. There is a close mapping between input
expressions and graphics symbol, as can be confirmed by comparing the example
problem description in section 3.3.1 with the System Dynamics diagram in Fig. 4.

Even when using this restrictive formalism, a means of selectively focusing on
parts of the display is required. This becomes necessary if the problem description
becomes large (for complex models) or if users are to be provided with a large
number of instances of particular types of expression (e.g. if there is a large data
base of equations from which users may select). One flexible method for reducing
the display volume is to use a browsing system.

The browsers which we have built use the same general principle, described in
Robertson, Muetzelfeldt, Plummet-, Uschold & Bundy (1985). They utilize subtype
relations in the universe of discourse as a framework for displaying to users the
keywords found in expressions stored by the system. Users may move through the
nodes in this type hierarchy, seeking out keywords which they consider to be of
interest. Since the number of types is likely to be large it is necessary for the
interface mechanism to show some small portion of the type hierarchy at any given
time. We decided to show a user only the ancestors and subtypes of the node at
which he/she is currently positioned.

Having located a type which is of interest, a mechanism must be provided for
selecting expressions which refer to that keyword. Consider the following set of
expressions, which might be stored in the system’s database or (in the sorted logic
system of section 4.3.2) form part of the problem description:

Sentence 1: All organisms have some biomass,

VA E organ&m VT E time 3 B E mass
biomass(A, T) = B

Sentence 2: All plants have some rate of photosynthesis.

VP E plant VT E time 3R E number
rate-of -photosynthesis(P, T) = R

Sentence 3: All grasses have a rate of photosynthesis of 10.

VG E grass VT E time
rate-of -photosynthesis(G, T) = 10

Several strategies could be used to isolate some subset of expressions which refer to
a given keyword. Three possibilities are:

(1) Select the set of sentences directly containing the keyword.
(e.g. Only sentence 2 refers directly to plant.)

(2) Select the set of sentences containing the keyword or its ancestors.
(e.g. Sentences 1 and 2 refer to plant and its super-type organism.)

(3) Select the set of sentences containing the keyword or its descendants.
(e.g. Sentences 2 and 3 refer to plant and its subtype grass.)

We have favoured the third option from the list above because it tends to return a
smaller set of applicable expressions for keywords near the leaves of the type
hierarchy. In tests of this system, users easily accepted the notion of reducing the set

THE EC0 PROGRAM CONSTRUCTION SYSTEM 13

of expressions by selecting more specific types. Note that to help users in this way
we have had to incorporate information from the domain of application, in the form
of a hierarchy of types.

3.5. GUIDANCE METHODS

If the expressions available to the system are restricted to those of System
Dynamics, then the amount of guidance which may be provided for the user is
limited. However, the clearly defined structural constraints associated with this
formalism make it easy to provide guidance relating to the mathematical complete-
ness of the problem description.

3.51. Gap filling
This prototypical system was developed to investigate the possibility of guiding
dialogue by referring to the current set of expressions in the problem description.
The system comprises three parts:

(1) A mechanism which, for any expression added to the problem description,
decides what additional structures need to be added to the agenda of required
elements. For example, if the expression VT E time 3M E mass biomass
(shp, T) = M is introduced then, in System Dynamics, it is essential to know
the initial value for biomass of shp. Therefore, a value for the variable M in
the expression biomass(shp, 0) = M would be sought.

(2) A mechanism which can select a set of options for display to the user from the
current set of unspecified structures. The simple algorithm used in this system
is to collect all instances of unspecified structures and scan this set for all
required structures which perform the same role as the most recently added
element. For instance, if the most recently added element was a value for a
process and the agenda contained other processes which required values, then
those other processes would be displayed to the user. Clearly, this algorithm
could be made more sophisticated but serves for demonstration purposes.

(3) A user interface which presents modelling options to the user and prompts for
a response. This is text based.

Going beyond completeness checks to include tests for ecological consistency is a
difficult problem if only System Dynamics expressions are permissible. For example,
if a flow of grazing has been connected to a grass compartment it is likely, though
not computationally essential, that a user will want to create a herbivore component
to receive the grazing flow. Detecting this sort of ecological requirement is difficult
because there are many combinations of System Dynamics structures which might
be used to represent any one ecological relationship, depending on the purpose for
which the model is to be used. For instance, grazing may be represented as a flow of
energy from a plant to a herbivore (in a general grazing model) or as flows of
protein and carbohydrate from leaves and stem of a plant to a herbivore’s stomach
(in a detailed physiological model). Since this system provides no means for users to
describe these aspects of their problem, it is unable to provide appropriate
ecological suggestions.

14 D. ROBERTSON ET AL.

3.5.2. Dialogue graph
Guidance concerning the sequence of input events can be provided by defining
ordering relations between model manipulation actions. To achieve this, we
constructed a dialogue graph, consisting of a set of nodes and arcs. Each node
represents some model construction action, while a directed arc from node A to
node B indicates that the action at B may be taken after the action at A. Several
separate dialogue graphs may be constructed as frameworks for dialogue in different
parts of the system. For example, there are dialogue graphs representing model
construction actions, model display actions: and a help system. Figure 5 shows a
simplified diagram of this system.

start

I
model construction

process function assign value

FIG. 5. Dialogue graph system.

When a user visits a node any model construction actions associated with that
node will be executed. For example, the procedures necessary to attach a value to a
variable are attached to a “set value” node. A small number of keywords are
reserved.for commands which may be required at any time during the session (e.g. a
command to stop the session). Some of these keywords can move a user to a new
node in a separate dialogue graph (e.g. the command “help” moves a user to the
top node in the help system). This is a convenience measure to avoid cluttering the
menu of options displayed to users with items which will always be available to
them.

This form of guidance is only practicable if the number of possible actions is
small, otherwise the dialogue graph becomes confusing to user and system designer
alike. Also, it must be the case that certain actions naturally follow others,
otherwise this technique is unhelpful. These requirements can be satisfied using a
System Dynamics formalism but would be less likely to apply if the range of input
expressions was widened (see section 4).

3.6. DEGREE OF TRANSLATION BETWEEN INPUT AND OUTPUT EXPRESSIONS

Since the System Dynamics notation represents strictly quantitative models,
complete with all the detail necessary for them to be run, the expressions supplied as
input by the user are identical to those required as output to the simulation package.
Therefore, our definition of input expressions also applies to output expressions and
there is no need for procedures to translate between input and output expressions.

THE EC0 PROGRAM CONSTRUCI-ION SYSTEM 15

Input
range

wide

narrow

Output Correspondence Display
range

wide extensive structured

narrow limited direct

Guidance Translation

extensive
b

complex

FIG. 6. Performance of system dynamics system on dimensions of analysis.

none none

3.7. ANALYSIS OF DIMENSIONS USING A NARROW RANGE OF INPUT EXPRESSIONS

The experimental systems in this section all occupy the same point on one critical
dimension-the range of input expressions which they can handle is limited, This
clearly influences the complexity obtained on each of the other dimensions but, less
obviously, influences the complexity which is necessary to provide a usable interface.
We illustrate this point in Fig. 6, which closely resembles Fig. 3 with the addition of
three new symbols. First, consider the dimension for range of input expressions,
which appears on the left side of the diagram. We have obtained only a narrow
input range and indicate this by a X symbol placed near the bottom of the diagram.
The fact that we want to obtain a wide input range is indicated by placing a •I

symbol near the top. Turning now to the other dimensions: a 0 symbol shows the
level of complexity necessary for each to support our attained range of input
expressions, while a X symbol shows the performance actually achieved.

The systems were of low complexity on all dimensions. However, on three
dimensions (range of output expressions, display of expressions and degree of
translation) the degree of complexity required for successful operation, given a low
range of input expressions, was correspondingly low. Problems occur on two other
dimensions. Correspondence between input expressions and user’s concepts should
be extensive but were, in actuality, limited by the System Dynamics formalism.
Extensive guidance is also necessary but was under-supplied in our experimental
systems. In section 4, we describe our attempts to counter these problems.

4. Widening the range of input expressions

In section 3.1 we demonstrated that the System Dynamics formalism, upon which all
the systems of secton 3 are based, was inadequate for our purposes. It permits only
a description of a solution to users’ modelling problems. We require a formalism in
which users can describe the problem which their model must address, without
having initially to commit themselves to particular simulation algorithms nor to

16 D. ROBERTSON ET AL.

decisions about how objects and relationships in the problem description will be
represented in the final program. The task of the system is then to use this
information about the problem to help users construct a solution in the form of a
simulation model. In terms of our dimensions of analysis, we can say that the range
of input expressions must be widened in order to support more sophisticated
guidance methods.

Unfortunately, the interface mechanisms which we described in section 3 all
required a narrow range of expressions in order to operate successfully. We are
therefore faced with new problems on each dimension:

Correspondence between input expressions and users’ concepts will be more difficult
to ensure because a wider range of more abstract concepts will be represented.
System Dynamics provides a neat analogy between input expressions and a
physical structure composed of tanks and flows. This analogy will not hold over
a wide range of input expressions (see section 3.1 for examples). Some other
means is needed to form a correspondence between input expressions and the
real world.

Display of expressions cannot be performed by simply showing a chart of the model
structure, since some of the input expressions do not correspond to any single
physical structure.

GuMance methods, which could be largely neglected in System Dynamics systems
because of the simplicity of the formalism, will be crucially important in systems
where the range of input expressions, and therefore the scope for error, is
increased. The need for guidance is doubly increased since, by separating
problem and solution descriptions, we introduce the need for a complex
translation process between problem and solution. Guidance is essential during
this phase of model development.

Degree of traruhtion between input aud output expressions may be high. In the
System Dynamics based systems, the output expressions required by the
simulation package are identical to the input expressions. If the same simulation
package is used for a system in which a wider range of input expressions is
permitted, then a need for translation between input and output expressions will
arise.

We now describe some systems which were constructed as experiments in tackling
these problems on each dimension.

4.1. RANGE OF POSSIBLE INPUT EXPRESSIONS

The System Dynamics systems of section 3 made no distinction between problem
and solution descriptions. We are now considering the consequences of introducing
a distinct description of users problems. Clearly, a wide variety of forms of
expression could be included in such a description, some of which might require the
use of more complicated formalisms than the sorted logic used in this paper.
Nevertheless, we chose to use this logic because of its success as a genera1

THE? EC0 PROGRAM CONSTRUaON SYSTEM 17

specification language (e.g. Balzer & Goldman, 1979; Burstall & Goguen, 1981) and
because we have been able to use it to represent formal statements of ecological
theory from Niven (1982) and Smith (1974) as well as application models (e.g.
Hilbom & Sinclair, 1984). The practical value of this method is that it permits users
to input what, to them, look like familiar ecological statements but which the
computer can process using the syntax of the underlying logic. The implications of
this approach are discussed more fully in section 4.3.

4.2. RANGE OF POSSIBLE OUTPUT EXPRESSIONS

The required range of output expressions will depend on the complexity of the final
solution to users’ problems and will also be restricted by the capacity of the
simulation package to interpret output expressions. It is advantageous to keep the
range of output expressions close to that of input expressions, in order to minimize
the amount of translation between potentially complex problems and runnable
solutions (see section 4.6).

We have experimented with prototype interpreters capable of handling complex
solution descriptions but these are computationally expensive to run on today’s
computers. For non-trivial applications, it will be necessary to minimize the
complexity of the solution description, extracting a narrow range of essential
computational details from a wide range of input expressions.

4.3. CORRESPONDENCE BETWEEN INPUT EXPRESSIONS AND USERS CONCEPTS

In the System Dynamics systems of section 3, there was a simple analogy between
input expressions and a restricted class of physical objects (namely, tanks and
flows). This analogy has been discarded as being too restrictive and we must now
introduce some new method for establishing a rapport between user and problem
description. We have experimented with two different approaches:

4.3.1. Submodels
One approach is to replace the System Dynamics analogy with another simple
convention. However, we know that the input expressions are logically quite
complex so we must somehow hide the complex details of expressions inside a
“sugar coating”. Many users find it natural to represent their models as collections
of separate submodels, each of which requires some input data and produces specific
output data. This approach to model construction is most appropriate when each
submodel represents some identifiable part of an ecosystem (e.g. a submodel
representing a typical herbivore). Since ecosystems can be thought of as hierarchies
of interacting subsystems, it is useful to enable users to arrange their submodels
hierarchically (e.g. a model may consists of a herbivore population submodel and a
grass population submodel, with the herbivore population model being divided into
several individual herbivore submodels).

This principle has been used in constructing the Submodels system (Muetzelfeldt,
Robertson, Uschold & Bundy, 1987), which permits users to build up an executable
program by constructing a tree of submodels. The models at the leaves of this tree
(called “base models”) contain executable code. These base models contain a
predefined “chunk” of program for representing some ecological entity and are

18 D. ROBERTSON ETAL.

rs biomass +I
FIG. 7. Simple submodels model.

stored in a database, which may be browsed by the user (see section 3.4). Each new
base model introduced into the model is provided with a set of input and output
ports. Before running the model all inputs must either be allocated a constant value
or obtain a data input from the output of some model. The model tree and data
links are created by manipulating symbols in a graphics display (see Fig. 7).

In the logic, all models are simply functions from a specified set of inputs to a
given set of outputs. Constructing a tree of models using library functions is
achieved by substitution from constituent submodels into the parent built model.
Our function definitions are:

model dgf input” I+ output”
input dgf model-name x input-name x time H quantity
output dgf modeLname x output-name x time H quantity

The model described in section 3.3.1 using the System Dynamics formalism can be
defined using Submodels expressions as shown below. A diagram of this model is
shown in Fig. 7.

Models

animal_model(input(shp, shp_biomass, T), input(shp, grs_biomass, T),
input(shp, cpe#icient, T)) = output(shp, shp-biomass, next(T))

plant_model(input(grs, grs_biomass, T), input(grs, shp_biomass, T),
input(grs, coefficient, T)) = output(grs, grs_biomass, next(T))

Equations

output(shp, shp_biomass, next(T)) =
input(shp, shp_biomass, T) + input(shp, grs-biomass, T) *
input(shp, coefficient, T)

output(grs, grs_biomass, next(T)) =
input@, grs_biomass, T) - input(grs, shp_biomass, T) *
input&s, coefficient, T)

input(shp, grs_biomass, T) = output(grs, grs-biomass, T)
input(grs, shp_biomass, T) = output(shp, shp-biomass, T)
input(shp, shp_biomass, 0) = 10
input&s, grs_biomass, 0) = 100
input(shp, coefficient, 0) = 0.2
input&s, coefficient, 0) = 0.2

Where: T ranges over the integers between initial time 0 to a final time point in the
simulation.

THJ? EC0 PROGRAM CONSTRUCTION SYSTEM 19

In this system, correspondence between input expressions and users’ concepts is
close, provided that users are capable of viewing their systems as hierarchies of
interacting systems. It is possible to maintain this analogy for complex models only
because the details of complex expressions within base models are hidden from
users. Thus, this expressive flexibility is available only to the designers of the base
models, not to the users of the system-whose only means of controlling model
structure is by creating data flows between models.

4.3.2. Sorted logic sentence editor
If hiding the details of complex input expressions is not a viable option, then a
contrasting alternative approach is to ensure that the forms of permitted input
expressions closely correspond to commonly used ecological statements and provide
a mechanism by which users may manipulate these statements. This approach was
the basis for a sorted logic sentence editor, in which a large collection of logic
sentences representing possible ecological statements are stored in the system
knowledge base. The types referred to in these sentences are at their most general
(e.g. “AI1 animals are predators” is the most general predator statement which a
user could make in a particular model). Thus, the statements in the knowledge base
may be thought of as constituting a pool of template logic sentences from which the
users must select those applicable to their models and restrict them to the
appropriate types of object. Using a high level specification poses three problems:

l Since the high level statements represent information about an ill defined
ecological domain, there is no way of ensuring that all possible ecological
statements are capable of being handled by the system. To avoid confusion
between what users expect the system to be capable of representing and what it
actually can represent, users must be able to examine the knowledge base to see if
the system is able to represent their ideas.

l The logic sentences represent ecological statements but the logical notation would
be unfamiliar to most ecologists. Therefore, a mechanism for displaying sentences
in an acceptable format is required.

l Users must be able to restrict the types of object referred to by selected sentences
and, in some cases, to construct new complex sentences from simpler templates.
The mechanism for doing this job must be simple to use.

We next describe the methods which we have used to solve these problems.
Users can gain access to sentence templates by moving between items in the type

hierarchy using a browsing mechanism similar to that described in section 3.4 and
selecting types which they want to consider. They are then given access to all
sentences which refer to those types. From a display of candidate sentences, users
can select those sentences which apply to their model and restrict their types, using a
menu of editing commands. When satisfied that the currently selected templates
match their required description of the model, they may insert them into the
problem description. Figure 8 contains an example of this method in action.
Consider only the larger of the two windows (the smaller one is referred to in
section 4.5.2). Here, a user has, using a browsing system, selected a sentence
(number 218) from the system’s knowledge base. This sentence is represented

20 D. ROBERTSON ET AL

RESTRICT TYPE : animal:2 TO : sheep

A00 TYPE : REMOVE TYPE :

ADD OBJECT : REMOVE OBJECT : I

7Fbr all animal:l, For all animal:2 : I

QUERY : predation

Edited sentence :
For all wolf, For all sheep :

FIG. 8. Sorted logic sentence editor-ample display.

internally as:

VA E animal VB E animal eats(A, B)

but has been rendered into stylized English to make the logic more understandable
to ecologists. The user has edited this sentence by restricting the type of A to worf
and B to sheep, forming the expression:

VA E wolf VB E sheep eufs(A, B)

which has then been added to the problem description.

4.4. DISPLAY OF EXPRESSIONS

The display mechanisms must describe some collection of expressions to users in a
form which they can easily recognize and understand. This was easy when the
number of different types of expressions was small (see section 3.4) but is now
difficult because there is no small set of graphics symbols which can easily capture
the richness of all possible input expressions while at the same time being easily
interpreted by users. One way of attacking this problem, as we demonstrated in
section 4.3.2, is to render each input expression into English text-our justification
for this being that we can convey in “natural” language ideas which it would be
difficult to represent using graphics symbols. The problem with this approach is that
it gives no explicit information about the relationships between individual expres-

THE EC0 PROGRAM CONSTRUCTION SYSTEM 21

sions because each expression is represented as a separate English sentence. This
may be tolerable when describing user’s problems but becomes intolerable when
describing solution expressions, since at this stage it is crucial that the expressions
mesh together to form a runnable model. This observation suggests that it may be
best to represent problem and solution in different ways. The problem must allow a
wide range of input expressions, for which the only viable display method may be
English text.

4.5. GUIDANCE METHODS

The System Dynamics based systems (section 3) had to provide a high level of
completeness checking because the correctness of output expressions depended
directly on the correctness of input expressions. These systems, however, did not
have the ability to perform sophisticated consistency checks because of the narrow
range of expressions which they dealt with. A wider range of input expressions
allows sophisticated consistency checking but this extra capability must be harnessed
for maximum benefit to users. We compare two mechanisms which we have used to

provide this form of help.

4.5.1. Rule based ordering of dialogue
The rule based system was our first attempt to utilize a wide variety of input
expressions, representing common ecological statements, as a means of describing
the ecological system which is to be simulated. Consider the following “rules of
ecological modelling” , supplied along with informal text descriptions:

“If there is a grazing system and a predation system
this constitutes a grazing-predation system.”
VA, B E animal VP E plant
grazingsystem(A, P) & predation_system(B, A)+

grazing_predation_system(B, A, P)

“If any animal eats any plant then this is a grazing system”
VA E animal VP E plant
eats(A, P)+grazing_system(A, P)

“If any animal eats any other animal then this is a predation system”
VA, B E animal
eats(A, B)+predation_system(A, B)

These rules form a description framework, connecting general statements, such as
grazing-predation-system, to definitions of specific interactions, such as eats.
Further rules could be added to provide more details of the computational structure
(linking to equations determining the eats relationship, for example). Some of the
terms referred to in the rules represent questions which might be asked of the user
(if not already established in the knowledge base). These “askable” terms are
rendered into a more natural text form before being shown to users. The sequence
in which questions are presented is determined by the search strategy used to
traverse the rules. Figure 9 shows the sequence in which the system attempts to find
instances which satisfy the conditions of the example rule set, using a simple
depth-first search strategy, asking low level questions first. A sample of dialogue

22 D. ROBERTSON ET AL.

3A, B E animal 3P E plant

grazing_predation_system(A, B, P)

Y’

/a

3B E animal 3P E plant 3 A, B E animal

grating_syatem(B, P)

3A !an A
eats(A, P)

.:‘r J:& animal

\
A E ani\m_al P E #ah, I

7 --d . -__-c/ -__A * ‘___,fi

Dialogue Introduced expressions

Something eats something else ? shp grs eats(ahp,grs)

Is shp an animal ? y shp E animal

Is grs a plant ? y g’s E plant

What eats shp ? wolf eats(shp, wolf)

Is wolf an animal ? y woff E animal

FIG. 9. Simple rule-based dialogue.

produced by the system is included in the diagram and annotated to indicate which
parts of the rules were responsible for each question given to the user.

The chief problem with this system is that guidance relies upon a simple search
strategy for which the ordering of rules and the structuring of rule antecedents
affects the sequence of questions presented to the user. This makes construction of
the knowledge base difficult because each rule must be chosen not only to be
ecologically consistent but to behave correctly when used procedurally to drive the
dialogue.

Also, input of expressions is achieved entirely by accepting or rejecting statements
supplied by the system. This may suit naive users but quickly becomes tiresome for
those who want to decide for themselves which expressions to input. Skilled users
require some method of escaping the incessant prompting supplied by the system.

4.5.2. Guidance by reference to the problem description
Our discussion in section 4.5.1 suggests that it is undesirable to rigidly link the
sequence of dialogue to the structure of the system’s knowiedge base. If this is true,
the guidance problem now becomes one of constructing an interpreter which can
examine the problem description (containing no dialogue control information) and,
in conjunction with any subsidiary information possessed by the system, provide

THE EC0 PROGRAM CONSTRUCTION SYSTEM 23

strategic guidance at a given stage in a modelling session. Our current experiments
using this approach are based upon the sorted logic editor described in section 4.3.2,
which originally left the onus on each user to decide which input expressions to
include in his/her problem description. However, a simple additional mechanism
has been added to allow inference of possible new model structures from the set of
statements comprising the high level specification. To explain how this mechanism
works, consider the following example, which follows from the example of sorted
logic sentence editing in section 4.3.2 and completes our description of the display in
Fig. 8.

Suppose that a user has added to the problem description the sentence:

‘VA E wolf VB E sheep eats(A, B)

and that the system possesses the rule:

VA E animal VB E animal
eats (A, B) + predation-system (A, B)

The system’s suggestion generator can now apply modus ponens , with appropriate
substitution of types to suggest the sentence:

VA E wolf VB E sheep
predation -system (A, B)

This sentence is rendered into stylized English text and displayed to the user in a
“suggestion box” window-the small window in Fig. 8. By referring to the
appropriate identification number, the user may get the system to implement this
advice. This architecture allows smooth and flexible changes of initiative during the
session. It also avoids the perennial problem of ordering the sequence suggestions
because the user is allowed to choose which to accept at any time.

We hope in future to elaborate upon the simple inference methods used in our
prototype system-for example, by distinguishing general modelling strategies which
relate to users’ goals for their completed models. For a discussion of these
extensions, see Uschold (1986).

4.6. DEGREE OF TRANSLATION BETWEEN INPUT AND OUTPUT EXPRESSIONS

Assuming that some input expressions have been provided by the user, how can
these be used to derive a low level computational structure for the model?
Previously, we drew attention to the fact that many ecological statements had
specific meanings in terms of model structure. For example, if the user provided an
input expression corresponding to “All animals have a coordinate location” then
there should be some output expressions representing the X and Y coordinates of
each organism of type animal. Certain parameters of this structural schema might
need to be further specified by the user (e.g. the maximum and minimum values of
the X and Y coordinates). Therefore, the problem description may be thought of as
constituting information which allows the computer to isolate appropriate low level
model structures, which may be quite complex, using formal ecological statements,
which are comparatively simple. A more detailed discussion of this process appears
in Robertson, Bundy, Uschold & Muetzelfeldt (1987).

24 D. ROBERTSON ET AL.

r

Input Output Correspondence Display Guidance Translation
range range

wide wide extensive structured extensive complex

narrow narrow limited direct none none

FIG. 10. Dimensions of analysis using a wide range of input expressions.

4.7. ANALYSIS OF DIMENSIONS USING A WIDE RANGE OF INPUT EXPRESSIONS

_)

To summarize our results from this section we provide another diagram of
dimensions (shown in Fig. 10) and compare this to a similar diagram constructed for
the System Dynamics systems (Fig. 6). We find that the necessary levels of
complexity for each dimension (as indicated by the 0 symbol) are all high when
using a wide range of input expressions. This contrasts markedly with our diagram
for the limited range of System Dynamics expressions, where it was sufficient to
have low complexity on three dimensions (input of expressions, display of
expressions and degree of translation). We have tackled this problem by devising
several techniques for enhancing the dimensions, thus moving the x symbols closer
to the top of each dimension. However, we are still far short of optimum
performance on all dimensions.

5. Conclusion

In previous sections we have given an analysis of the prototype systems which we
constructed as part of the EC0 project, using logic as a lingua franca in which to
describe the important aspects of each system. These analyses were used to
construct dimensions of analysis for key aspects of all systems and the response of
these dimensions to changes in the range of input expressions has been shown. To
conclude, we summarize our results in a single diagram, shown in Fig. 11. The upper
row of dimensions are for systems in which the range of input expressions is narrow.
Here, the attained complexity on all dimensions is low but adequate for most
dimensions. Unfortunately, two dimensions (correspondence between input expres-
sions and users’ concepts, and guidance methods) require extension. Extending the
range of input expressions provides a basis for improving these dimensions but
requires the complexity of other dimensions to be correspondingly increased (as can
be be seen from the bottom row of dimensions in the diagram). The moral of this
story is that by substantially increasing the range of input expressions in our

THE EC0 PROGRAM CONSTRUCTION SYSTEM 25

Input
range

wide

Output Correspondence Display
range

wide extensive structured

Guidance Translation

extensive complex

narrow narrow limited direct none none

Input
range

wide

1
narrow

u INCREASE RANGE OF INPUT EXPRESSIONS u

Output Correspondence Display Guidance Translation
range

wide extensive structured extensive CO ?lex

narrow limited direct none none

FIG. 11. Effect of increase in range of input expressions.

program construction systems we create a disproportionately large set of new
problems in the user interface. Our current efforts to correct this imbalance involve
the use of a sorted logic to represent complex input expressions; the provision of an
interface to make these expressions easy for users to manipulate; and the provision
of sophisticated guidance mechanisms to ensure that a user’s ecological problem is
adequately represented in the final simulation model.

The research described in this paper has been funded by SERC/Alvey grants GR/C/O6226,
GR/D/44294 and GR/E/O0730. We are grateful to members of the Maths Reasoning Group
in the Department of Artificial Intelligence at Edinburgh University for advice and support.

NIVJZN, B. S. (1982). Formalkation of the basic concepts of animal ecology. Erktennis, 17,
307-320.

ROBERTSON, D., MUETZELFELDT, R., PLIJMMER, D., USCHOLD, M. & BUNDY, A. (1985).
The EC0 browser. In Expert Systems 85, pp. 143-156. Proceedings of the British

26 D. ROBERTSON ETAL

Computer Society Specialist Group on Expert Systems. Cambridge: Cambridge Univers-
ity Press.

ROBERTSON, D., BUNDY, A., USCHOLD, M., & MUETZELFELDT, R. (1987). Synthesis of
Simulation Models from High Level Specifications. Research Paper RP-313, Department
of Artificial Intelligence, University of Edinburgh.

S~rrrr, J. M. (1974). Models in Ecology. Cambridge: Cambridge University Press.
USCHOLD, M. (1986). Computer-Aided Design of Program Specifications in the Domain of

Ecological Modelling. Technical Report DP-35, Department of Artificial Intelligence,
University of Edinburgh.

USCHOLD, M., HARDING, N., MUETZELGELDT, R. & BUNDY, A. (1986). An intelligent front
end for ecological modelling. In T. O’Shea, Ed. Advances in Artificial Zntelligence.
Amsterdam: Elsevier. Also in Proceedings of ECAI-84, and available from Edinburgh
University as Research Paper 223.

