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THIS THESIS EXPLORES THE POSSIBILITIES OF DOING 

MATHEMATICAL PROBLEMS INVOLVING ALGEBRA ON A COMPUTER. A 

LANGUAGE IS DESIGNED WHICH ALLOWS NAMES TO OCCUR AS UNKNOWN 

QUANTITIES. THIS LANGUAGE HAS ALL THE FACILITIES OF A 

GENERAL PURPOSE LANGUAGE SUCH AS IMP, BUT IS DESIGNED TO BE 

USED INTER-ACTIVELY BY A USER AT A CONSOLE. THE LANGUAGE 

ALSO INCLUDES INSTRUCTIONS WHICH CAUSE THE USUAL ALGEBRAIC 

OPERATIONS TO BE APPLIED TO EXPRESSIONS. THESE OPERATORS 

INCLUDE SIMPLIFICATION, DIFFERENTIATION, BUT NOT 

INTEGRATION. 

A BRIEF SURVEY IS GIVEN OF OTHER LANGUAGES IN THE 

FIELD, WITH COMMENTS ON THEIR CAPABILITIES AND 

RESTRICTIONS. 

THE SECOND PART OF THE THESIS DESCRIBES HOW THE 

LANGUAGE IS IMPLEMENTED. AN INTERPRETER IS USED. STATEMENTS 

OF THE LANGUAGE ARE ANALYSED SYNTACTICALLY AND THEN OBEYED. 

ALGEBRAIC EXPRESSIONS ARE STORED IN BYTE ARRAYS, USING A 

TYPE OF PREFIX POLISH NOTATION. 

FINALLY THE LANGUAGE IS REVIEWED IN THE LIGHT OF 

RECENT WORK DONE IN THE FIELD, AND SUGGESTIONS ARE MADE FOR 

A FURTHER VERSION. 



I Introduction. 

Since the development of FORTRAN by I.B.M. in 1957, 

numerous programming languages have been designed. Many of 

these, however, have been discarded. The two now most 

commonly used are FORTRAN and ALGOL60. These are sometimes 

referred to as 'algebraic languages' because a name may be 

used to represent a location in store, and arithmetic 

operations may be performed on such names. An instruction in 

these languages looks like an algebraic formula. 

E.g. 

A = B + C 

However, in one important respect, this terminology is 

misleading. The instruction means: 'Find the number in 

location B, add it to the number in location C, and put the 

result in location A.' That is to say at the time the 

instruction is carried out, it is necessary for B and C to 

represent actual values: there is no provision for unknown 

quantities. 

As more and more people began to use these languages, 

it became apparent that there was a need for some means of 

doing truly algebraic work by computer. In many branches of 

science people require to manipulate large expressions 

containing unknown quantities. The work is tedious and error 

prone. 

It is not, though, entirely mechanical. Consider the 

expression 

a *x+b* (x+y) +a*y. 
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If a, b, x and y are given values, this expression has a 

unique value, obtained by performing the operations 

indicated. However if the four names are unknown quantities, 

then there is no unique way of representing it. Should the 

expression be considered as it is, or in the form 

a * x + b * x + b * y + a * y 

or in the form 

(a + b) * ( x + y)? 

There is no correct answer to such a problem. The best form 

for an algebraic expression to take depends entirely on the 

problem that is being solved. 

Despite this difficulty, many attempts have been made 

to write languages, programs and packages to enable users to 

manipulate algebraic expressions. Indeed there was a 

sufficient number for Jean Sammet of I.B.M. to produce in 

1966 a bibliography of the languages written up to that time 

((11 pages 555 - 569). 

In writing yet another language, one implies that those 

already written are not satisfactory. Therefore we must 

first examine the requirements of a user wishing to do 

algebraic manipulation by computer, and then examine the 

existing languages to decide whether any of these satisfy 

the requirements. 



II Facilities Required in Manipulating Algebraic 

Expressions 

We have indicated that there are problems in the field 

of algebra which are sufficiently long and tedious, and to a 

certain extent mechanical, to merit trying to solve them by 

computer. However in solving algebraic problems we also rely 

quite heavily on our ability to 'spot' certain equalities 

and relations where a general description of the connection 

between the two expressions would not be easy. The same 

intuitive thinking is used in deciding which form of an 

expression is most suitable for a particular problem. (As 

discussed in Chapter I.) Therefore, although a computer by 

itself could be used to alleviate some of the burden, the 

combination of the machines power and mans intuition and 

large store of knowledge would seem the best choice. 

Luckily, recent developments in the study of computer 

systems have shown a way to provide an ordinary user with 

the ability to communicate directly with the computer. Such 

systems are known as multi-access, or in some places, 

time-sharing systems. Each user is provided with a teletype 

or some other kind of terminal and can type instructions to 

the computer, and obtain its replies immediately on the same 

sheet on which he printed his instructions. This method of 

communicating with a computer is said to be on-line or 

interactive. 
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This requirement, that an on-line system be used, 

affects the other decisions taken about the facilities 

required. If a user can look at the result of one 

instruction before issuing the next, he does not have to 

program instructions which take care of cases which have not 

arisen (but which might have done). However if the 

processing of a particular job is standard, he will not wish 

to supervise it. Hence we require an interactive language 

which is capable of running on its own. 

Although a problem may require algebraic manipulation, 

this does not preclude the desirablity of normal numerical 

programming facilities. In fact all the power of a general 

purpose language should be available to the user, preferably 

without any need to convert the algebraic expressions into 

some other form before this power can be used. 

We have talked about manipulating algebraic formulae so 

far without specifying what this involves. We shall now 

consider some of the operations that will be required. 

1) Simplification. 

In the example given in Chapter I, none of the 

three forms mentioned can be regarded as simpler than 

the other. However there are cases where one form would 

generally be accepted as simpler than another. For 

instance, one would say that the expression 'a' is 

simpler than the expression 'a+O'. If we only allow 

very obvious rules such as this, too much work will 

have to be done manually for the language to be of much 
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practical value. Consequently we must devise a set of 

rules that define simplification in the language, and 

use these. They will not suit all cases, and so a way 

must be found to do more, or less, simplification by 

means other than the simplification instruction that is 

provided. 

The following rules could define the 

simplification instruction. 

(i) Assume the operations +' and 
'*' are 

commutative and associative. 

(ii) If a is an unknown variable, 

a+0 -> a 

a*O->0 

a*i -> a 

a**O -) 1 ('**' denotes exponentation.) 

a**1 -> a 

(iii) If m and n have numerical values, 

a*a -> a**2 

a**m*a**n -> a**N where N = m+n 

a+a -> 2 *a 

m*a+n*a -> N*a 

a**m**n -> a**M where M = m*n 

m*a/#h*a) -> P*a where P = m/n 

m*a-n*a -> Q*a where Q = m-n 

(iv) If a term is defined as a series of unknown 

variables that are multiplied together, then 

identical terms are simplified according to the 
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rules given in (iii) for a single unknown 

variable. 

Hence 

a*b+a*b -> 2*a*b 

m*a*b+n*a*b -> N*a*b 

(a*b)**m*(a*b)**n -> (a*b)**N 

etc. 

(v) Rule (iii) is applied to the variables of a term 

before it is considered as a whole. For example 

a*a*b -> a**2*b. 

(vi) From rule (v) we obtain an extension of the 

definition of a term, i.e. that it is a series 

of unknown variables, each possibly raised to a 

power, that are multiplied together. From (iv) 

and (v) we get 

a*a*b + a**2*b -> 2*a**2*b 

etc. 

(vii) The commutative law of multiplication will allow 

us to recognise 'a*b' as equal to 'b*a' and to 

apply the rules of (iv). Hence 

m*a*b + n*b*a -> N*a*b 

etc. 

(viii) The associative law will allow us to extend 

(vii) to terms consisting of the same variables, 

but listed in different orders. For instance 

m*a*b*c*d + n*b*a*d*c + p*b*c*d*a -> S*a*b*c*d 

where p has a numerical value, and 
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S = m+n+p 

(ix) We can define an expression as a series of terms 

added together. Then expressions which are 

identical and which occur as sub-expressions of 

a larger expression can be treated in the same 

way as a single unknown variable, and the rules 

of (iii) are applied to the large expression. 

E.g* 

m*(a+b) + n*(a+b) -> N*(a+b) 

(x) Sub-expressions whose terms are equal can also 

be simplified in accordance with the rules of 

(iii). 

E.g. 

(a*b+c)**m * (b*a+c)**n -) (a*b+c)**N 

(xi) The commutative and associative laws for 

addition will allow us to extend (x) to apply to 

any equal subexpression. 

E.g. 

m*(a*b+c) - n*(c+b*a) -> Q*(a*b+c) 

2) Substitution. 

The ability to substitute names or expressions 

in an expression will give the user control over the 

exact format of the expression. Hence, referring back 

to the discussion on simplification, if the rules 

provided do more than required in a particular case, 

one could cause those that were required to be carried 

out by substitution. For example; substitute 'a' for 
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J. a+O'. Also, the user may use this facility to replace 

one form of an expression with another, where there is 

no facility to do this automatically. The many 

trigonometric identities could be used in this way. 

3) The Distributive Law and Factorisation. 

One cannot say that the expression 'a*(b+c)' is 

simpler than 'a*b+a*c', or vice versa. Therefore it is 

suggested that the conversion of one of these forms is 

not done by the simplification process, but that other 

facilities are provided. The transformation from 

'a*(b+c)' to 'a*b+a*c' is quite mechanical, but its 

opposite presents more problems. There is a unique way 

of factorising 'a*b+a*c', but for other examples this 

is not the case. 

a*b+a*c+d*c 

could be factorised as 

a*(b+c)+d*c 

but also as 

a*b+(a+d)*c 

Therefore a facility more simple than factorisation 

should be supplied, and one that gives a unique result. 

Collecting terms which multiply a given expression 

should be sufficient for our needs. Factorisation would 

be obtained by repeated calls on the "collect terms" 

facility. 

For example, 

a*c + a*d + b*c +b*d 
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would be factorised by calling collect-terms for a, and 

then collect-terms for b. The first call would give the 

result 

b*c + b*d + a*(c+d), 

and the second, 

b*(c+d) + a*(c+d). 

Finally we call collect-terms for (c+d), to give 

(b+a)*(c+d). 

4) Differentiation and Integration. 

Differentiation is a mechanical process which 

readily lends itself to computerisation. Integration 

presents quite a different problem. Some standard 

integrals can be performed mechanically, but a large 

number of problems can only be solved by trial and 

error methods. Hence it seems that a limited 

integration facility could be supplied, with the 

capability of returning partial results for the user to 

examine. 

Having discussed some of the manipulations that could 

be applied to algebraic expressions, we must decide what 

form the request for a manipulation would take. Two methods 

suggest themselves. The name of the facility could be built 

into the language, or they could be used as routine or 

function calls. Both have disadvantages. The former requires 

an alteration to the program implementing the language, 

every time there is a need for a new or modified facility, 

while the latter is difficult to read. On the grounds that 
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the user should be given a clear and readable language, and 

should suffer as little as possible from the difficulties 

encountered in the implementation, I would choose the former 

method. No language, though, should be severely criticised 

for choosing the other method. 

Most general purpose languages offer the user integer 

or real arithmetic. However in working with algebraic 

expressions, one finds that the use of a rational number 

often shows up some quality more clearly than the equivalent 

real number would. Hence rational arithmetic should be 

available, and also a mechanism for handling complex 

numbers. The range of the nationals should be as large as 

possible. 

A form of algebraic expression which should be given 

special consideration is the polynomial. This is used so 

frequently in scientific problems that facilities must be 

available for manipulating it. In particular infinite 

polynomials must have a representation, There should be a 

facility for handling general infinite series too. 

The user of a language that manipulates algebraic 

expressions requires to supervise very closely the 

expressions he is considering. He may wish to examine and 

alter only part of an expression. Hence he must be able to 

specify, replace or delete this part. Also he may not be 

interested in the exact expression, but only its general 

form. For instance, if an expression is of the form 

something**2 - somethingelse**2', he may want to replace 
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this by the product of the sum and difference of the two 

terms, no matter what ,something and 'somethingelse' are. 

Hence there must be a way of matching a specific expression 

against a general form. 

Throughout this Chapter we have been discussing 

expressions. However we also wish to examine algebraic 

equations, moving terms from one side or another, or solving 

for a particular variable. Let us call the set of equations 

and expressions together formulae. 

We have also assumed that the formulae will belong to a 

field. Provision should be made also for non-commutative and 

non-associative algebra. The use of vectors and vector 

algebra could also be considered. 



III The Examination of Some Existing Languages. 

In Chapter 2 we discussed the desirable qualities of a 

language for manipulating algebraic formulae. We need an 

interactive language which has all the power and facilities 

of existing general purpose languages. In addition, we 

require a set of algebraic operators to be applied to 

algebraic formulae, rational arithmetic, a representation of 

infinite sums (and products), and some kind of pattern 

matching facility. Now we shall discuss briefly some of the 

existing languages for manipulating algebraic formulae. 

This chapter is divided into two parts; the first is a 

description of the languages that were available when work 

on AML was begun. The second part describes some of the 

languages available today. The conclusion of this chapter 

shows that there was a real need for an improved language at 

that time; a comparison of AML with some of the languages 

that have been written since is given in Chapter 14. 

3.1 Languages Available in 1967. 

3.1.1 Van de Reit's Package 

In 1966, Van de Reit described a package of ALGOL60 

routines which could be used for algebraic manipulations. 

(See [2], pages 64 - 70, and [31.) Since he was working 

within the limits of a general purpose language, he could 

not represent an algebraic expression in its natural form. 

Hence for example, he defined '+" and `*. as functions 
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having two arguments. The sum 'a+b' would be represented as 

S(a,b), and 'a*b' as P(a,b). 

Two systems have been developed - a simple one and a 

general one. Van de Reit describes the simple one in detail 

and then gives the additional features of the general 

system. Both are sets of ALGOL procedures. 

a) The Simple System. 

This permits two operators, + and *, and can 

differentiate and output expressions. These are 

represented by the procedures 

S (sum) for + 

P (product) for * 

DER for the derivative 

OUTPUT for outputting formulae. 

The formulae are stored internally in a 2-dimensional 

array F. If the formula is an algebraic variable, the 

first and last entries of F are zero, and the middle 

entry is 3, as shown in Fig. 1. 

F 1 0 1 3 1 0 1 111 1 

Fig. 1 

If the formula is the sum of two terms, the first entry 

points to the first operand, the middle entry has the 

value 1, and the last entry points to the second 

operand. The product of two terms is represented in a 

similar way, but the middle entry is 2. 
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The Simple System can be divided into two parts - 

the outer block contains all the standard routines, and 

also initialises several variables. The inner block 

contains the users program. 

One and zero are special algebraic variables which have 

properties that are recognised by the system. An 

example given for the simple system is 

1 x:=STORE(O,algebraic variable,O); 

2 y:=STORE(O,algebraic variable,Q); 

3 f:=S(x,y);OUTPUT(f); 

4 f:=P(x,y);OUTPUT(f); 

5 f:=P(S(x,y),S(x,y));OUTPtrr(f); 

6 f:=DER(f,x);OUTPUT(f); 

7 f:=DER(f,x);OUTPUT(f); 

This is the program that the user must write. The 

statements mean: 

1&2 x and y are algebraic variables. 

3 f = x+y, print out f. 
4 f = x*y, print out f. 
5 f = (x+y)**2, print out f. 
6 f = df, print out f. 

dx 
7 f = df, print out f. 

dy 

The situation after the first two statements have 

been obeyed will be 
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F 

one ->- 1 0 1 3 1 0 1 

zero -> - 1 0 1 3 1 0 1 

x ->- 1 U 1 3 1 0 1 

y ->- 1 0 1 3 1 0 1 111 1 

Fig. 2 

S (line 3) finds the sum of its two parameters. If 
either of them equals zero, the result of S is a 

pointer to the other. Otherwise STORE is called to make 

a new entry in F, as shown in Fig. 3. 

F 

one ->- 1 0 1 3 1 0 1 1 

zero -> - 1 0 1 3 1 0 1 2 
x ->- 1 0 1 3 1 0 1 3 
y ->-1013 1 0 1 4 
f -- 1 3 1 1 1 4 1 5 111 -1 

Fig. 3 

The other routines proceed in a similar fashion. 

b) The General System. 

The internal representation described in the 

Simple System is also used in the General System. The 

facilities offered in the General System, in addition 

to those of the Simple System are 

1) D(x,y) = x-y 

2) Q(x,y) = x/y 

3) POWER(x,y) = x**y (i.e. x raised to the power of 

Y) 

4) INT POW(x,i) = x**i, where i is an integer 

expression. 
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5) Complex, real or integer numbers may be used in 

formulae. 

6) POL(i,d,f,c) which is a polynomial of degree d, of 

the form 

d 
c(i)f**i 

i=1 

7) Special functions: EXP, LN, SIN, COS, ARCTAN, 

SQRT. 

8) Sum(i,j,k,f) which is 

k 

T- 
f M 

i=j 
9) SIMPLIFY(f) - simplify the formula. 

10) CC - complex conjugate. 

11) SUBSTITUTE 

12) QUOTIENT(f,g,r) - Divide f by g, putting the 

remainder in r. 

13) COMMON DIVISOR(f,g) 

14) RN - evaluate a real number. 

15) IN - evaluate an integer. 

16) CN - evaluate a complex number 

An example is given in [21 which calculates eight 

Taylor coefficients of sin(x). 

c) Organisation of Space. 

In the Simple System, F is set to be 1000 long. 

In the general system, space is reserved by making F an 

own array in the procedure INT REPR which stores 
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formulae internally. F is made to grow whenever more 

space is needed, by declaring it as 

OWN INTEGER ARRAY F(1:kmax,1:3 ) 

Kmax is increased if more space is needed. Note that 

this method would not be possible in IMP, which allows 

only constant bounds to an own array. 

d) Notes 

1) A boolean variable expand is used. If it is 

TRUE, all formulae are expanded, i.e. have the 

distributive and other laws applied to them. If it 

is FALSE, the formulae are stored as presented. 

2) Deleting formulae. Three routines are available: 

FIX, ERASE, and LOWER INDEX. These have the 

following meanings. 

ERASE - remove all formulae down to the last 

FIX. 

FIX - protects formula used before it. 

LOWER INDEX - removes the effect of the last 

FIX. (ERASE also does this.) 

3) Polynomials are treated as truncated power series. 

A maximum degree for all polynomials is set when 

the program begins. Polynomials may be added, 

multiplied or divided. 

4) Simplification - f and g are equal if 
(i) f and g are numbers, and f=g. 

(ii) f and g are the same algebraic variable. 

(iii) f - g = 0 when simplified. 
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(iv) If f and g are equal, and nl, n2 are 

numbers, then nl*f+n2*g is simplified to 

(nl+n2)*f. 

5) COMMON DIVISOR and QUOTIENT have proofs of 

termination. 

e) Conclusion 

The author claims that this system has advantages 

over others like FORMAC and Formula Algol, since it 
does not require any facility other than an ALGOL 

compiler. Alterations to the system are easier since 

they do not involve machine code. He admits that it 
takes up time and space, but without giving any 

figures. 

Offset against the advantages of writing ALGOL 

procedures must be the unwieldiness of the actual 

program. In order to alter the procedures, the user 

must have a good knowledge of the system. Therefore 

this advantage only applies to specialists who are 

prepared to take the time and study it. 

3.1.2 Formula Algol. 

This is an extension of ALGOL which incorporates 

formula manipulation and list processing facilities. The 

latter will not be described here. It was developed by 

A.J.Perlis at Carnegie Mellon University [4J. 

A new type called FORM is introduced. If a variable is 

declared to be of this type, any expression assigned to it 
is stored as a binary tree. For example, 
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3*X**Z + 4/X 

is stored as 

3 ** 

The value of a FORM variable is built up of atomic formulae 

and numeric constants. When the variable F is declared to be 

of type FORM, its value is set to the atomic formula f (i.e. 

it has its name as its value). FORM arrays may be declared, 

but their values are not initialised. 

When an assignment is made, the value of the operands 

is substituted, even for a FORM variable. 

Example 

If I is an integer with the value 2, and F and G are 

FORM variables, G having the atomic formula g as its value, 

then 

F := I + G; 

gives F the value 2+g. 

F := F**2 

then gives F the value (2+g)**2. All operators are binary. 

Thus 

F := G + I +1; 

will give F the value g+2+1, but 

F:=G+(I +1); 

gives F the value g+3, since the subtree in the second case 
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can be evaluated. 

The assignment of the value of a FORM variable can be 

prevented by preceding the variable name by a dot. Thus 

H := F + 1; 

will give H the value F+1, and not g+1+3. 

Conditional formulae, procedure calls and array 

accesses can also be delayed. Examples are 

H IF I=1 THEN X ELSE Y; 

H := P.(Al,A2); 

H A.(1,4); 

where P is a procedure and A an array. 

The delay in evaluating caused by the dot operator can 

be removed by the operator EVAL, as in the following 

example. 

F G + 3; (where G is atomic) 

H F +1; 

F := F*3; (value is (g+3)*3) 

EVAL H ; 

which gives H the value (g+3)*3+1. EVAL may also be used to 

substitute new values in an expression. So 

EVAL (l,Z+l) F (X,Y); 

means substitute 1 for X and Z+l for Y in F. Hence if 
F := X+Y; 

the result of this EVAL will be 1+z+1. 

EVAL also carries out some trivial simplification, e.g. 

a*O is replaced by 0. 
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Another operator SUBS does only substitution, in the 

manner described for EVAL. REPLACE(F) finds the current 

values of any FORM variables in a formula F, and substitutes 

these. For example, let 

FX+Y *Z; 

Y 1 ; Z .= 2; 

then SUBS (3,4)F(Y,Z); 

gives F the value x+12, but 

REPLACE(F); 

gives F the value x+2. 

Patterns. 

The real power of Formula Algol lies in its 

pattern matching facilities. These are used to 

determine the structure of a formula. There are two 

Formula Patterns, each of which are regarded as 

Boolean expressions. 

1) FORMULA = PATTERN 
2) FORMULA > > PATTERN. 

The first gives a result TRUE if the FORMULA is an 

instance of the PATTERN. The second gives the result 

TRUE if the FORMULA contains an instance of the 

PATTERN. 

F == P can be defined recursively as follows. 

1) If P is an atomic formula, the expression is 

TRUE if and only if F is that same atomic formula. 

2) If P is the type name REAL, INTEGER, BOOLEAN, 

FORM, the expression is TRUE if and only if F is 
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3) 

real number, an integer, a logical value, or 

formula, respectively. 

If P is the reserved word ATOM, the expression 

a 

is 

4) 

TRUE if and only if F is an atomic formula. 

If P is the reserved word ANY, the expression is 

always TRUE. 

5) If P = QwR, where Q and R are patterns and w is an 

operator, then the expression is TRUE if and only 

if F =GvH, where G==Q, H==R and v=w. 

Operator Classes. This facility enables the user to 

define sets of operators, any of which will satisfy his 

needs. To do this, another type, SYMBOL must be used. 

If A is of type SYMBOL, then the statement to define an 

operator class is as follows. 

A <- /JOPERATOR: +,-][COMM: TRUE,FALSE][INDEX J1. 

Then if P = Q1AIR, F == P is true if F = GwH and one of 

the following is true. 

1) G Q, H == R and w='-' 

2) G == Q, H R and w='+', or 

3) G R, H == Q and w='+' 

Thus it is possible here to test for the operators 

+ and -, taking into account the commutativity of +. 

The index j is set to 1 if w-'+', and to 2 if w='-*. 

Once j has been set, the test 

F Q1<A>IR 

will look for the operator defined by j. 
F >> P is true if there is a sub-formula, S, of F such 
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that S == P. 

Extractors may be used to show how the formula was 

split up during the pattern match. Thus if F= x+y*z, 

F == Q:ANY+B:ANY 

QL 
(where ' and B are the extractors), will result in 1i 

having the value x, and B the value y*z. 

Also, the test A:F>>B:P may be used. This has the 

following result. If F >> P, B has as its value the 

part of F that P was an instance of. A has as its value 

F, with the part that B points to replaced by the 

previous value of B. 

For example, let 

B = 5 + x 

F = x + y + z 

then A:F >> B:ATOM 

will result in B having the value x, and A the value 

5 + x + y + z. 

Transformed Formulae. 

If F and G are formulae, and if P is a pattern, a 

PRODUCTION P -> G, may be said to be applied to F. In 

this case, the following takes place. The test F == P 

is made, and if it succeeds, F is changed, according to 

rules given by G. An example best illustrates this. 

Consider the production 

A:ANY*(B:ANY+C:ANY) -> .A*.B + .A*.C (i) 

If this is applied to the formula 

X**2 * (Y + SIN(Z)), 
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the test F = P succeeds, and the extractors have 

values as follows 

A has the expression X**2 

B has the expression Y 

C has the expression SIN(Z). 

Then replacing F by the structure defined in (i) gives 

F = X**2*Y + X**2*SIN(Z). 

A schema is a list of such productions. A schema is 

applied to F by the statement F I S (I is a downward 

pointing arrow in the original documentation.) S may 

have two forms 

S <- [P1, P2, ... Pn] (a) 

S <- [[P1, P2, ...Pn]] (b). 

where P1 ... Pn are productions. The method of 

application of these productions differ. 

a) One by one sequencing 

The Pi's are applied to F until a success is 

obtained. The transformation defined by that Pi is 

applied to F, and the process begins again at P1. 

If a Pi fails, it is applied to each sub 

expression of F before Pi+1 is tested. 

b) Parallel sequencing. 

The Pi's are examined as before, and the process 

returns to P1 if a successful transformation is 

found. However, the Pi's are applied only to the 

top level of F in the first instance. If all the 

Pi's fail at the top level, they are applied to 
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the subexpressions of F at the next level, in a 

recursive fashion. 

Apart from SUBS and EVAL, which do very elementary 

simplification, Formula Algol has no built in algebraic 

operators. The pattern matching facilities and the 

schema allow the user to build up his own rules. 

3.1.3 FORMAC 

FORMAC, ([51, pages 474 - 491, 6 , and [7] pages 37 - 

53) was developed by I.B.M. in 1964, under the direction of 

Jean Sammet. Two versions are available; the first was 

designed for use with FORTRAN IV, and the second to be used 

with PL/1. The Edinburgh Regional Computing Centre uses the 

second version with FORTRAN IV G. 

Both have the same basic philosophy: FORMAC statements 

may be interspersed with statements of the host language. A 

pre-processor is applied to a FORMAC program to translate it 
into a program in PL/1 or FORTRAN. The details of the two 

versions differ, and the second will be described here; 

because it is the later version, and also the one available 

at Edinburgh. 

FORMAC statements are distinguishable from FORTRAN 

statements as they are preceded by the word LET, and placed 

in parentheses. Thus 

X = 1 

is a FORTRAN statement. 

LET ( X=A+B) 

is a FORMAC statement. 
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Unless they have already been assigned a value, 

KURMAC variables are ATOMIC, i.e. they are treated as 

algebraic constants. Thus if the FORMAC variable (lhad been 

given the value, 3, but A had no value, X would contain the 

value A+3. FORTRAN and FORMAC variables are quite separate; 

if a FORTRAN variable is used inside a FORMAC statement, it 
is enclosed in ?'s, e.g. ?x?. 

Rational arithemetic is assumed in FORMAC statements, 

unless a real number occurs in the expression. 

Whenever an expression is assigned to a FORMAC 

variable, it is simplified automatically. This automatic 

simplification is a deliberate design feature. The reasons 

for choosing to do this appear to be twofold. 

1) The authors maintain that users will, in general, 

require simplification. 

2) Storing expressions in a simplified form saves 

space. They found that restrictions on FORMAC 

programs was generally caused by lack of space, 

and not time. 

Although simplification is automatic, there are three 

commands which are explicit. 

MULT Apply the multinomial law. 

DIST Apply the distributive law. 

EXPAND Apply both the multinomial and the 

distributive laws. 

In addition, there are two substitution commands 

EVAL(expr,al,b1,...an,bn) 
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Replace ai by bi in expr, in parallel, for each ai. 

REPIACE(expr,al,bl.... an,bn) 

Replace each ai by bi in expr, sequentially. 

The difference between these two is best illustrated by 

an example. 

EVAL(A+B+C,A,B,B,C,C,A) 

gives B + C + A. 

REPLACE(A+B+C,A,B,B,C,C,A) 

gives B+B+C, replacing A by B. 

C+C+C, replacing B by C for all Cps. 

A+A+A,( = 3*A), finally. 

FORTRAN functions, such as SIN, COS etc may take 

symbolic expressions in FORMAC statements. There are also 

additional functions. 

FAC factorial 

COMB(nl.... nk) = nl(nl-1)....(n1-n2...nk+1) ------------------------ -- 
n1l....nkl 

If these functions are used in FORMAC statements, options 

may be set to indicate whether they are to be evaluated. 

For example, 

LET(A = SIN(3/4)) 

If the option TRANS is on (set by the command 

OPSET(TRANS) ) 

then A gets the value 0.68163876. If it is off, (set by 

OPSET(NOTRANS)), the value of A is SIN(3/4). 

There is also a User defined function form 

FNC(f) = expr($(1), $(2), ... $(n)) 
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where the $(i) are formal parameters. For example, 

FNC(ROOT) = 

(-$(2) + SQRT($(2)*$(2) - 4*$(1)*$(3))/(2*$(1)) 

Then 

Y = ROOT(A,2,3) 

gives Y the value 

-2 + SQRT(4 - 12*A))/2*A. 

PDRMAC expressions are stored internally in Delimiter 

Polish Form. This is a form of prefix Polish notation which 

treats + and * as n-ary operators. The scope of these 

operators is defined by a delimiter '*]" after the last 

operand. Thus 

A + B + C + D 

is represented as 

+ABCD1 

and A + B*5 + C + D is 

+ A * B 51 CD]. 

In addition, these are put in a canonical order, determined 

by the alphabetical order of the variable. This is done 

prior to simplification. 

Both FORMAC and Formula Algol are extensions of widely 

used programming languages designed to be run in batch mode, 

although there is a desk calculator version of FORMAC. It is 

worth quoting Jean Sammet's comment in her survey of formula 

manipulation languages (see [1], page 253.) 

Formula Algol provides a general basic 

manipulation framework from which a user can build 
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up just about anything he wants to do, as with an 

assembly program; this requires more work on the 

part of the user, but gives him much more 

flexibility. FORMAC, on the other hand, provides a 

fixed set of powerful capabilities, as with a 

compiler; this requires far less work on the part 

of the user but he is then constrained by the 

capaI3Iities that have been given to him and what 

he can build up from them.' 

I feel that a mean should be found between the two. It 
is irritating to define the distributive law, and to apply 

it possibly many times throughout a program. (Notice that 
tpY.1A. 1&-i Z) 

the example given,defines only one form of it. Similar 

transformations would have to be defined for right-handed 

distribution, for multiplying out the sum of three 

variables, and for any other instance the user required.) 

On the other hand, FORMAC does an automatic simplification 

which may not be wanted. The normal algebraic operations 

should be available, but should not be applied unless 

specifically requested. 

3.1.4 Alpak and Altran. 

Alpak [8] was a system designed at Bell Telephone 

Laboratories to do algebraic manipulations on polynomials. 

The language looked almost like an assembly language, and so 

was not easy to follow. For example, 

A, B, C, and D are rational functions whose format is given 

by FMT. These values are presented on cards. The program to 
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compute the function F=(A*B/C)+D is given below. The actual 

program is printed in block capitals; the lower case 

messages on the right hand side of the page are comments. 

RFNBEG 10000 

RFNRDF FIT 

RFNRDD A, FIT 

RFNRDD B,FMT 

RFNRDD C,FMT 

RFNRDD D,FMT 

RFNMPY F,A,B 

RFNDIV F,F,C 

RFNADD F,F,D 

RFNPRT F 

begin(reserve 10000 words of 

storage for data and working 

space) 

read polynomial format statement 

FMT from cards 

read polynomial A from cards 

read polynomial B from cards 

read polynomial C from cards 

read polynomial D from cards 

replace F by A*B 

replace F by F/C (C 

zero) 

replace F by F+D 

print F 

must not be 

TRA ENDJOB go to ENDJOB 

Polynomials are represented in a canonical form as 

ordered lists of terms. Rational functions are ordered pairs 

of polynomials. The functions available in ALPAK include 

1) A function to find the GCD of two polynomials. 

2) A function to differentiate a polynomial. 

3) A function to expand a polynomial. 

4) A function to get the factor of a given variable in a 

polynomial. 

111-19 



Altran [5], pages 502 - 506, [9], was an extension of 

this, combined with Fortran to give a readable language. 

Example 

POLYNOMIAL Al,A2,A3.. 

Al= (RO+Rl)**2 

A2 = (RO+R2)**2 

............. . 
**0 and '_' are used symbolically. Not all the power of 

Alpak is included in Altran. Amongst the facilities omitted 

were means of working with truncated power series, and with 

systems of linear equations. The input and output of Altran 

was somewhat limited. For instance, the polynomial 

xy**2 +2xyz +xz**2 + y**2 + z**2 

was input as 

1 1 2 0 

2 1 1 1 

1 1 0 2 

1 0 2 0 

1 0 0 2 

0 

and the output was of much the same form 

G = numerator x y z 

1 0 1 0 

-1 00 1 

denomimtor x y z 

1 0 1 0 

1 0 0 1 
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i.e. 

G = (x-z)(x+z) 

This notation is said to be easier for the user to both 

read and write if there are more than 100 terms. 

3.1.5 An extension to PL/1. 

This is a proposal for the addition of another 

attribute to a PL/1 variable (see [2), pages 116 - 132). 

The default case is NUMERIC, and FORMAL and ATOMIC are 

added. All variables in standard PL/1 are NUMERIC. An 

ATOMIC variable has its own name as its value, while a 

FORMAL variable is given an algebraic expression as its 

value. Substitution of known values takes place 

automatically. For example, 

if 
then 

gives 

A=B+1 

C=A+D 

C the value B+l+D 

where B and D are ATOMIC. 

Rational arithmetic is introduced, an example of the 

notation being 1+2/3R for the fraction 11. Algebraic 

functions for differentation, expansion, substitution, etc. 

are introduced. The substitute commands suggested are 

similar to those of FORMAC. Four factorising functions are 

suggested: 

1) COEFF which finds the coefficient of the expression 

x**i (i numeric) in a formula. 

2) HIGHPOW and LOWPOW which give the highest and lowest 

powers of a formula. 
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3) GCF which, if the formula is of the form al + a2 + 

an, gives the highest common factor of the ai's. 

The proposals describe facilities similar to those of 

FORMAC. However, since the new type is basic to the 

language, the interchange between formal and numeric 

variables is much freer, and therefore more desirable. 

These ideas seem to be those required in our initial 

discussion, with the exception of pattern matching. It is 

worth bearing in mind that since PL/1 is already a large 

language, it may not be possible (or desirable) to add these 

ideas without abandoning some other facilities. 

3.1.6 MATHLAB 

Two versions of MATHLAB ([71, pages 413-422) were 

developed simultaneously. One was at MITRE corporation on an 

IBM 7030, and and the other at M.I.T using the time sharing 

system of PROJECT MAC. It was an interactive system, and was 

somewhat 'chatty"; statements like 'Thanks for variable d' 

were printed out in response to users' commands. Equations 

and expressions could be assigned to names by statements 

such as 

D = 1/2*a*t**2 

E a = b*c+2 

D is said to be a variable, and E is an equation. The 

algebraic commands were 

please simplify(x,y) 

Simplify x and put the result in y. 

substitute((vl,v2,..,vn) x y) 
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Substitute the values of the variables vi, v2,... 

vn in x and put the result in y. 

To combine the values of variables, a rather cumbersome 

notation was used. 

add((pl,p2,...pn) name) 

add the variables pi, p2,... pn and put the result 

in name. 

Similar instructions were available for subtraction, 

multiplication, division and exponentation. There were no 

control statements available; the interpreter worked in desk 

calculator mode. However, some of the algebraic commands 

were quite powerful. 

E.g. 

learn derivative 

arctan, 

x, 

1/(l+x**2) 

This instructs the computer that the derivative of 

arctan(x) with respect to x is 1/(l+x**2) 

integrate(v x w) 

puts the indefinite integral 

into x. 

solve(e x) 

Solves the equation e for x. e must be linear or 

quadratic in x. The equation will be rearranged 
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first. For example, solve(e,x) where e is 

1/(x**2-1) = 1/(x-1) 

gives x=O, and does not find the spurious solution 

x=1, which satisfies this unsimplified form. 

3.2 Languages Available Today 

3.2.1 Altran 

Altran has been constantly revised by Bell Telephones, 

in the last few years. From a Polynomial Manipulator, it has 

developed into a Rational Function Manipulator. The 

input/output has been altered to read and write expressions 

in a more mathematical form. W.S.Brown has done significant 

theoretical work on Polynomial Manipulation. More will be 

said about this in Chapter 14. Altran also has routines, and 

permits recursion. However it is still run in batch mode, a 

pre-processor being used to translate an Altran program into 

Fortran. 

3.2.2 Mathlab 

This has also been developed in the last few years. 

MATHLAB 68 [10] is significantly different from the original 

MATHLAB. First, the output is given in two-dimensional form, 

an appreciable improvement for long expressions. For 

example, the derivative of 

arctan(x+a)/(1-x*b)) 

is printed as 
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2 
(1-x*b) (1-x*b) ---------------------- 

2 
(x+a) 

1 + ------ 
(1-x*b) 

As well as formally assigning values to names, 

equations and expressions are stored and can be retrieved. 

The latest expression to be read in is held in the workspace 

(ws). 

A single quote mark in front of a name or function 

means evaluate. Thus, if y has the value x+1, then 

z = y 

stores y in z, but 

Z = y 

stores x+1 in z. 

Similarly, Deriv(x**2,x) means 

dx 2 

dx 

But 'deriv(x**2,x) means 2*x. 

The representation of expressions is much more natural 

than in the original MATHLAB. For example, 

D: x*(y+z) 

Stores the expression x*(y+z) as D. If an expression is not 

given a name, it is stored in we. 

A description of the representation of the Rational 

Functions of MAATHLAB is given in [21, pages 86 - 97. The 

language is written in LISP, so the representation of an 
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expression is a list. A general expression is regarded as a 

polynomial of one variable, whose coefficients are also 

polynomials. For example, 

x**2 + a*x*y + 7 

is a polynomial in x. Its coefficients are polynomials in y. 

The coefficients of these are polynomials in a, whose 

coefficients are integers. Hence the representation of this 

expression is 

(((1)) ((1 0) NIL) ((7))) 

This representation is chosen in order to allow the 

polynomial factorisation algorithm to work efficiently. 

Functions are available which do the following: 

1) Finds the greatest common divisor of two 

polynomials. 

2) Find the sum, product, etc. of two rational 

functions. 

3) NEWTON. This function uses Newton's interpolation 

formula. Given k+1 polynomials with integral 

coefficients in n-i variables, and k+1 integers, 

this yields a unique polynomial in n variables, 

such that, if 

P (x ,x ,...x ) 
i 1 2 n-1 

is a member of the given set of polynomials, and 

Q is the result, then 

Q(x , ... x , n = P 
1 n-l i i 

4) FACTOR. This factorises a polynomial with integer 
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coefficients into a number of polynomials 

irreducible over the integers. 

5) BPROG. Given two relative prime polynomials, P and 

Q, this returns two polynomials A and B such that 

A.P + B.Q = 1 

6) APROG. This gives factors (with respect to the 

main variable) of a polynomial Q* such that 

2 n 
Q = Q .Q ...Q 

1 2 n 

where the factors Qi are pairwise relative prime, 

and have simple roots. 

7) CPROG. This performs a partial fraction expansion 

on the rational function P/Q. 

These functions can be used to do the following. 

1) Solve an expression for a variable, x. 

2) Perform linear transformations on a rational 

function. 

3) Integrate. The program will always find the 

rational part of the integral. 

4) Inverse Laplace Transforms. 

5) Fourier Transforms. 

6) Matrices and the solutions of simultaneous linear 

equations. 

7) The solution of linear differential equations with 

constant coefficients. 

The limitations of MATHLAB seem to be two fold; it has 

no subscripted variables, and it can run in desk calculator 
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mode only, with very few control statements available. 

3.2.3 REDUCE 

This was developed by A.C.Hearn, previously of 

Stanford University, and now at the University of Utah [12j. 

Reduce allows integer and real arithmetic, the latter 

being of arbitary precision. The arithmetic and logical and 

relational operators, together with the assignment 

character, <-, are regarded as INFIX operators. <- has the 

lowest precedence. New operators may be declared, and their 

precedence is assumed to be lower than everything except <-. 

However this may be changed by a PRECEDENCE statement. 

Prefix operators are functions such as COS, DF 

(differentiate), etc.. Certain properties of COS, SIN and 

LOG are known. For example, 

COS(0) = 1 

SIN(-X) _ -SIN(X) 

etc. 

New prefix operators may also be declared. 

Strings are allowed in Reduce, as are comments. 

Expressions. 

Three types of expressions are allowed 

1) Numeric 

2) Boolean 

3) Scalar (these contain algebraic variables, e.g. 

X**3 - 2*Y/(2*Z**2-DF(X,Z)). 

Equations are also allowed.) 
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Assignment. 

An expression may be assigned to a variable, and the 

expression is normally simplified when this is done. 

However flags may be set to change this. In a scalar 

expression, real numbers are usually converted to the form 

INTEGER/INTEGER. 

Control Statements. 

1) Conditional statements. 

These have the usual form of ALGOL conditional 

statements. 

2) FOR statements have the form 

FOR<variable> <- <arith expr>STEP<arith expr> 

<term><do cl> 

where 

<term> = UNTIL<arith,expr> or 

WHILE<boolean expr>. 

<docl> = TAO<statement> or 

SUM<algebraic expr> or 

PRODUCT<algebraic expr>. 

SUM and PRODUCT return values. For example, 

FOR I <- 2 STEP 2 UNTIL 50 SUM I**2 

The result is held in the work space, from where it can 

be retrieved. The clause may also be used in an 

assignment, for example, 

X <- FUR I<-1 STEP 1 UNTIL 10 PRODUCT I 

which gives X the value 101. 
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3) The GOTO statement 

This references a label as in ALGOL or IMP. 

4) Compound statements 

These are constructed in the same way as those of 

ALGOL. They are enclosed in the reserved words BEGIN and 

END. 

5) RETURN. 

This returns from a compound statement to the next 

higher level. 

6) Declarations. 

Integer, real and scalar declarations may be made. Any 

variable not declared is assumed to be scalar. 

7) Arrays. 

These are declared as in FORTRAN, i.e. they have 

subscripts numbered from 0 upwards. Example 

ARRAY A(10),B(2,3,4) 

8) Flag switches 

There are two statements: 

ON <list of flag names> 

OFF <list of flag names> 

9) Commands 

There are three for file handling: 

IN, OUT, SHUT. 

The rest are concerned with algebraic expressions. 

a) LET, e.g. 

LET X = Y**2 +1. 

Once this declaration has been made, the 
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expression Y**2+1 will replace X wherever it is 

used. 

An extension of this is 

b) FOR ALL ... LET, e.g. 

FOR ALL X LET K(X,Y) = X**Y 

Then whenever K(?,Y) is encountered, it is 

replaced by ?**Y, where ? stands for any variable. 

c) SUB, e.g. 

SUB(X = X+1, Y = 1, X**2+Y++2) 

This substitutes x+1 for x, and 1 for y in this 

expression only. 

d) CLEAR. 

Removes all assignment and substitution rules. 

10) Procedures 

All three types may be used as procedure names. 

The statement 

RETURN M 

will give M as the result of the procedure. 

Reduce is designed to be used both interactively and in 

batch mode. If a program is read off a file, it may contain 

the instruction PAUSE, which allows the user to put in 

instructions from the key board. The file is re-entered by 

typing CONT. 

Other Algebraic Commands. 

1) FACTOR x,y,z 

Whenever a statement is simplified, factors of x, y and 

z are collected. 
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2) REMFAC 

Removes this condition. 

3) ALLFAC 

Searches each expression for any common factor it can 

find. 

Reduce has additional facilities such as Matrix 

handling routines and calculations useful in High Energy 

Physics. Obviously these are very useful, but are additions 

to the basic system, and so are not described here. Reduce 

was written in Lisp 1.5. 

3.2.4 CAMAL 

Carnal [13] was developed at Cambridge University by 

D.Barton. Although available on the interactive system at 

Cambridge, the language itself is not interactive. 

Two types of data objects are allowed, index 

expressions (iexps) which hold integers, and variable 

expressions (vexps) which hold algebraic expressions. The 

letters I ... T are used as iexps, and the remaining 

letters, A ...H, U ... Z for vexps. Subscripted names may 

also be used. 

The atoms of the system are the lower case letters a, 

... k,l. Examples of assignments are 

A = a ** I +b 

C = 12/13 

Program control is very much like an Algol type program. 

The instructions available are 

Jumps and labels 
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Conditional statements 

For i = p:q:r; .... repeat. 

A subroutine is declared by labelling the first of a set of 

statements. The call is 

-> label -> 

and it is left when the statement 'return' is encountered. 

Recursion is not allowed. 

Subroutines are available which handle polynomials, 

whose general form is 

p q t 
Cab ...1 

where C is either rational or real, a, b, ... 
atoms, and p, q, ... t are integers. 

Two division operators are available. 

/ will give a power series expansion. 

/: divides out any known factors. 

Expressions 

variable. 

are simplified before being 

Functions used for polynomials are 

LCM(vexpr) 

vexpr is a sum of terms, and 

multiple of the terms is given. 

HCF(vexpr) 

Here the highest common 

the 

1 are basic 

assigned to a 

least common 

factor of the 

individual terms is given. 

COEFF(vexpr) 

vexpr must be a single term, and the coefficient 
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is given. 

NEXT 

B = NEXT(A) removes the first term of A and puts 

it in B. For example, if 
A = a + b + c 

B = NEXT(A) 

results in A = b + c 

B a. 

EVAL(vexpr,subs) 

subs is a list of values that are to be given to 

the variables of vexpr. These are substituted and 

a numerical answer is given. For example, 

EVAL(a+b,a O.1,b=3.5) 

SUB(vexpr,atom,vexpr) 

substitutes the first vexpr for the atom in the 

second vexpr. E.g., 

SUB(b*c,a,a+b+c) 

gives 

b*c+b+c 
EXPAND(E,a,V[o1,L) 

This obtains the coefficients of the atom a in the 

polynomial E, putting the coefficients in the 

array V. L gives the number of coefficients 

required. Thus if E is 

m 

2: b(r)*a**r 

r=O 

III-34 



then 

for L<m, V(0), ... V(L) are filled with )...W1 

for L>=m, V(0), ... V(m) are filled with )... 

and V(m+l)... V(L) are filled with Ors. 

CAMEL is also described in [14], [15] and [16]. The 

polynomials are stored in a list structure, one cell being 

used for each term of a polynomial. Since the atoms are 

known, only the exponents and coefficients are needed. Each 

polynomial has a header cell which contains extra 

information. For example, the number of references to a 

particular polynomial is recorded. The following is the 

representation of the expression 

x**2 + 2*x*y. 

For simplicity, it is assumed that only three atoms x, y and 

z may be used. 

header cell 

1st term 

---! 1 1 21 O! _ul 

1 ! 
1 1 1-----------! 1 1 1 1 rational 
1 111 coefficient 1/1 
! 2nd term 

last term -->----!//! ! 11 11 01 

-----------1 2 1 1 1 coefficient 
1 1 ! 2/1 
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In addition to CAMAL, which is available for general 

use at Cambridge, there are two other structures based on 

polynomial handling. One is concerned with the manipulation 

of Fourier series, and the other with Rational Functions. 

3.2.5 ALAM 

ALAM, [18] and [191, (Atlas Lisp Algebraic 

Manipulator) was written in LISP, as its name implies, for 

use on the Atlas computer. It is in fact LISP with added 

algebraic facilities and subroutines. The operators allowed 

are + and * (n-ary), -(unary), and ** (exponentation, which 

is binary). These are used in prefix Polish lists, i.e. 

(+ abc) 
represents a + b + c. 

The user must program in this notation, using ordinary 

LISP conventions, but the output is arranged in infix form. 

For example, 

is input as 

and output as 

LOS(E) * R ** 2 

(* (COS E) (** R (2 1))) 

2 
LOS(E)R 

All arithmetic is rational, and numbers are stored as 

ordered pairs. Therefore 

(2 1) is 2/1 = 2. 

The exception is zero, which is written as the single atom 

0. 
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Three functions are available for simplifying 

expressions. They are 

ZERM which removes unwanted zeros. 

EXPD which applies the distributive law 

EDITMU which adds and subtracts like terms. The terms 

are arranged in canonical order before this is applied. 

There is also a function for differentiating expressions. 

The writer of ALAM is primarily interested in General 

Relativity, and there are several functions available that 

are useful in this field. However, the restriction imposed 

by having all programs written in LISP makes this language 

unlikely to appeal to the general user. 

3.2.6 Scratchpad/l 

This, [20], [30] pages 42-58, is a system implemented 

in LISP, combining facilities available in other LISP based 

languages, i.e. Reduce, Mathlab, Korsvold's system [1] and 

[21], and Martins Mathematical Laboratory [11]. It also 

includes the integration program SIN by Moses [22]. It is 

intended for the mathematician rather than the programmer, 

and is used in an interactive environment. 

Input is linear; and output is in two dimensional form. 

If used with an 1130/2250 display, Martin's Picture compiler 

is available. 

There are five primitives of the language 

INTEGERS e,g. 31, 123456789 

VARIABLES x, i 

111-37 



FORMS x(i), x[i] ( = x ) 

VECTORS L1, 2, 1, 2,} , {(1, 2), (1, 2)3 

SETS (it x(i)=i?, {iIx(i)=1 & i>23 

There are four OPERATOR FORMS: summation (Z), product 

("r, integration (`) and differentiation (ci). These have a 

standard linear input, for example 

1 

f(x) dx 

x= 

is input as int[x=0:1]f(x). 

An EXPRESSION is built up with primitives and operator 

forms, e.g. 

2 1/2 
x + y*(1 - u(t) ) 

Elipses(...) may be used, for example 

1+2+...n, 

2 3 n 
x +x +..,x 

11,2,...n I 
STATEMENTS have the syntax 

VARIABLE/FORM relator EXPRESSION 

where the relators are 

>, >_, _, <=, <, if (belongs to) 

Examples, 

f (x) = x ** i, x>O, i 6 11,2,... 1 

These are assertions, i.e. f[i](x) has the value x**i; x is 

greater than zero, and i is a positive integer. 
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A FORM is a function or a subscripted variable. These 

can also be used in assertions, as for example, 

i(x)=x, i(a)=a for all a. 

h(x,y)=(x>y) means 

h(a,b) = 1 if a>b 

0 if a<=b. 

Variables are assumed to range over all expressions, unless 

they are restricted. Hence the two statements 

x>0 

h(x)=x 

mean that h(a)=a for all positive a. 

VECTORS are ordered sets of expressions. Examples are 

{u/x, 1+x, -5, 12, p(x) 

is a sequence of five elements. 

,[1, 2...5 } 
is the first five integers. 

is the positive integers. 

I al, a2, ... } 
is the sequence ai, where i ranges from 1 to infinity. 

Z 
is 3:i=j 

is the unit matrix, the size of which may be unspecified. 

SETS are unordered collections of expressions, for example 

S = xlx>O & f(x)>O 

Then y 6 S asserts that 

y>0 & f(y)>O 

Operations on sets are not included in the current version, 
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but are planned for the future. 

EXPRESSIONS are built up from a hierarchY of 

constructs. 

PRIMARY 

FACTOR 

TERM 

ALGEBRAIC EXPRESSION 

CONDITIONAL EXPRESSION 

PRIMARY is a variable, form, or bracketed expression, 

f, fact(i), (1+u**2) 

A FACTOR contains the exponential operator, e.g. 

i 2 
h , u(t) 

e.g. 

A TERM contains multiplication and division signs, e.g. 

u*v/w, t *(l-u) 

An ALGEBRAIC expression contains addition and subtraction 

operators, e.g. 

2 
a+b-c *d 

A CONDITIONAL EXPRESSION has an ALGEBRAIC EXPRESSION and a 

condition, e.g. 

2 
x +1 if x>O 

An EXPRESSION is a CONDITIONAL EXPRESSION that has a 'where' 

clause, e.g. 

2 3 
x +f(x)-c if x>O where f(x)=sin(x)-3x 

On the left hand side of a statement, the most general 

form allowed is a TERM. If this is used, pattern matching 
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rules are applied, e.g. 

(z+phi(x)) = psi(z) 

Then every occurrence of ?1 +phi(?2) will be replaced by 

psi(?1), where ?1 and ?2 are any variables. This can be used 

recursively, as in the example 

cos(x+phi(y)) = mu(y) 

Then 

cos(phi(cos(r+phi(s)))+t) 

is replaced by mu(cou(s)). 

If only the exact term on the left hand side is to be 

replaced, it is enclosed in quotes, e.g. 
.... a*b" = d 

Then a*b+c becomes d+c, 

but b*a+c 

q*r+c are unaltered. 

If an expression is given as a COMMAND, it is stored in 

the work space, and also given a number. Hence old 

expressions can be referred to by using this number. 

Expressions are evaluated before being saved. This 

evaluation is controlled by setting flags, with meanings as 

follows. 

1 Simplification with no substitution. 

2 Simplification with substitution. 

3 Expansion under flag control. 

4 Expansion in full. 

5 Pattern matching from outside - in. 

6 Pattern matching from inside - out. 
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7 Rational simplification. 

8 Restructuring. 

The default is 2, 3, 5, 7, and 8. This can be altered by 

setting evalmode, e.g. 

evalmode = 1,4,8,1 

means 

Simplify. 

Expand. 

Restructure. 

Resimplify. 

Integration has two forms. In one the user builds 

integral tables, with assertions like 

-1 2 1/2 
j (xt)*sin(x) = t *(1-(1-t ) ) if t>O & t<1 
1 

------------- 
x 

-1 
else t if t>1. 

If the flag SIN is set, the SIN integrator is used. 

A command may be stored by preceding it by a label of 

the form n.m, where n and m are integers. Stored commands 

may be formed into routines by statements of the form 

alpha = procedure(s). 

Which means that all statements beginning with n. form the 

procedure called alpha. 

In order to add further facilities, LISP and LAP 

(LISP Assembly language) are available with two other 

facilities. 

111-42 



META/LISP allows users to interactively modify the 

existing input translators. 

META/PLUS allows the syntax to be altered less 

formally. For example, the function for the 

absolute value of a variable is absval(x). The 

user may change the form to !xi by the statement 

.... W " = "absval(x)" x expression. 

3.2.7 Macsyma 

This language [30], pages 59-75, was developed by 

W.A.Martin and R.J.Fateman. Like Scratchpad, it draws on 

systems already implemented at M.I.T., and is written in 

LISP. Martin's thesis [11] was concerned with readable 

two-dimensional mathematical output which can be obtained on 

a display or graph plotter. These facilities are 

incorporated in Macsyma. Mathlab has been used, and also 

Moses' integration program. 

An expression may be stored in one of two forms: 

1) as a general expression, in which case the internal 

representation mirrors the original expression. 

2) as a rational function. This is the quotient of two 

polynomials, each of which is stored in a concise form. 

For example, 3x**2+4 is represented as 

(x 2 3 0 4) 

The rational function operators of Mathlab can then be 

used. The user can state which representation he wants. 

Macsyma also has pattern matching facilities. These 

test for a semantic match (e.g. is the expression quadratic 
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in x?), rather than the syntactic match of Formula Algol. 

Predicates are declared, e.g. 

INRANGE(LOW,HI,VAR):=IF (LOW<VAR) AND (VAR<HI) THEN 

TRUE ELSE FALSE 

Then we can declare 

PECLARE(A,INRANGE(M,N)) 

which means that the algebraic variable A has a value 

between M and N. 

Another function DEFMATCH defines a predicate which is 

true only if a semantic pattern is matched. For example 

DEFMATCH(LINEAR,A*X+B,X) 

Then 

LINEAR(3*Y+4,Y) is true 

LINEAR(4+Y,Y) is true. 

Two functions can be used to increase the 

simplification power of the language. TELLSIMP inserts a new 

rule before the automatic built in simplification rules, 

e.g. 

TELLSIMP(COS(PI),-1) 

will replace all instances of COS(PI) by -1. 

TELLSIMPAFTER puts the new rule at the end of the built in 

simplification rules. 

3.3 Conclusions 

The languages available (or described) when the AML 

project was started were 

Van de Reit's Package 
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Formula Algol 

Forma c 

Mathlab 

Altran 

PL/1 Extension 

Of these, only Mathlab was available on-line. At that 

time it was a Polynomial Manipulator. The other languages 

were designed to be run in a batch processing environment. 

Formac and Formula Algol dealt with general expressions. 

Altran was another polynomial manipulator. It seemed that a 

general expression handler was preferable, as it gave the 

user a wider variety of problems that he could tackle. The 

patterns of Formula Algol were attractive because the user 

could extend the number of algebraic operators of the 

system, in a fairly straightforward manner. 

Hence the requirement was for an interactive language, 

which could also be run without user supervision. It should 

handle general expressions, have the full power of a general 

purpose language, and should have some method of extending 

the range of operations offered to the user. It should also 

be easily readable, and produce output in a legible form. 

Van de Reit's package is clumsy to use, and does not satisfy 

these requirements. Formula Algol does not offer sufficient 

operations; too much is left to the user. Formac does 

automatic simplification, which is undesirable. Altran 

seemed to be in a very primitive state; although the 

routines behind it (Alpak) were quite powerful. It only did 
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Polynomial Manipulation. Mathiab worked only in desk 

calculator mode, and had no subscripted variables. PL/1, 

although a batch processor seemed to incorporated the power 

needed, but did not have any means of extending the 

operations available. No implementation of this proposal has 

come to my notice. 

AML is an interactive language, which incorporates all 
the facilities of a general purpose language. In addition it 
is capable of running without supervision. Statements will 

not necessarily be lost immediately after their execution; 

some will be stored and executed at a later time. This 

method of storing statements enables facilities such as 

looping and routine calls, that are used in general purpose 

languages to be available in an interactive language as 

well. The ability to store statements and execute them at 

some later time will be known as DEFERRED EXECUTION. 

Pattern matching facilities are also available. 



IV Some Design Features of an Algebraic Manipulation 

Language 

In Chapter 3 we came to the conclusion that it was 

worthwhile exploring the possibilities of designing a 

language with three important features: 

1) It should be capable of running interactively, with 

deferred exectution available. 

2) It should incorporate a fair number of algebraic 

commands. 

3) It should have useful pattern matching facilities. 

General purpose languages with facilities like (1) have 

been written; the earliest was JOSS (23) designed at Rand 

Corporation in 1964. A later development is LCC [24 

designed at Carnegie-Mellon University by A. J. Perlis. 

The language described in this thesis is called AML, 

(Algebraic Manipulation Language). It has four main 

features, each based on existing languages. 

1) It is written to run in interactive mode, and has 

deferred execution. (JOSS and LCC) 

2) It incorporates most features of a general purpose 

language. (IMP) 

3) It contains facilities for storing algebraic 

formulae and commands for manipulating them. 

(FORMAC and FORMULA ALGOL) 

4) It also contains pattern matching facilities. 

(FORMULA ALGOL) 
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The IMP programming language is currently in use at 

Edinburgh University. It is based on Atlas Autocode which 

was developed at Manchester. Its concepts and appearance are 

very similar to ALGOL. 

4.1 Immediate and referred Execution. 

In order to allow parts of programs to run in different 

modes, two types of statement are allowed. They are called 

LABELLED and UNLABELLED statements. If a statement is 

unlabelled it is obeyed immediately, thus providing an 

interactive, desk calculator mode. If a statement is 

labelled, it is stored, and may be acessed at some later 

time by a reference to its label. The most common way of 

accessing a labelled statement is to give the command 

%do LABEL 

which causes the statement at LABEL to be executed. 

A number of statements may be grouped together by 

giving them a common label. In this case the command 

%do LABEL 

will cause the group of statements which have this label in 

common to be executed. It will easily be seen that a whole 

program can be obeyed at one time by giving all its 

statements a common label. 

The programmer therefore has three choices. He can 

1) Use only unlabelled statements, thus working in 

desk calculator mode. 

2) Submit a program of statements all referenced by 

the same label, and cause them to be executed by 
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the command 

%do LABEL. 

In this case the program may be run in batch mode. 

3) Write a small number of labelled statements, cause 

them to be obeyed, then write a few more, and 

proceed in this manner. This method of using the 

language seems the most 

development of a program. 

4.2 Labelling AML STATEMENTS. 

useful during the 

A statement of AML must have a unique label so that it 
can be accessed individually, and also a common label so 

that it can be accessed with a group of statements. If it is 

accessed in a group, there must be some way of ordering the 

statements within the group. It is not a good idea to use 

the order in which statements are presented to determine the 

order of execution. It is very likely that the user will 

accidently omit some instructions, and he must not be 

expected to resubmit correct instructions. Therefore it 
seems reasonable to require him to number all his statements 

to indicate the order in which they are to be obeyed. 

These considerations lead to the suggestion that a 

label should consist of two integers, and a colon is chosen 

to divide them. In other words a label is of the form 

INTEGER : INTEGER 

Let us take as an example the label 2:1. Then the command 

%do 2:1 

will cause the statement at 2:1 to be executed. The command 
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%do 2 

will cause all labels of the form 2:n to be executed, where 

n is an integer. The values of the n's will decide the 

ordering within the group. 

There may be cases where a single integer is sufficient 

to label a statement, and so it was decided to allow the 

statements to take one of two forms 

INTEGER 

INTEGER : INTEGER 

In order to avoid an inconsistency, a statement labelled 

with a single integer is considered to be part of the group 

having that integer as its common label, and will be the 

first of that group to be executed. 

From this discussion we extend the idea of a label to 

consist of no more than fifteen integers, separated from 

each other by colons. 

Examples of labels are 

2:1, 3:7:1, 1, 3:1:1:1:8, 10:2:20 

The integers of a label may lie in the range 1 to 255, and 

so they can be stored in byte integer locations. 

The reason for extending a label from two to fifteen 

integers is to enable the user to make additions to a 

program without altering existing statements. 

For example, suppose he wishes to insert a statement 

between those labelled 1:3 and 1:4. Then he could label the 

insertion 1:3:5. So the original program 
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1:3 i=a+l 

1:4 k=j+2 

becomes 

1:3 i=a+l 

1:3:5 j=3*i 

1:4 k=j+2 

and '%do 1' causes the statements to be executed in that 

order. 

Now he may wish to add a number of statements between 

1:3:5 and 1:4, and labels them 1:3:6, 1:3:7, ...1:3:15. An 

omission in this set of statements will cause him to 

increase again the number of integers in the label. For 

example, 1:3:6:1 inserts a statement between 1:3:6 and 

1:3:7. 

This kind of alteration is very likely to be needed 

when a program is being developed on-line. Allowing fifteen 

integers as the maximum should not impose any restriction, 

since beyond this number, writing the label would become 

unnecessarily tedious. 

The program has now grown to be 

1:3 i=a+1 

1:3:5 j=3*i 

1:3:6 ..... 

1:3:6:1 ..... 

1:3:7 

1:3:8 

..... ..... 
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00..0 

1:3:15 

1:4 k=j+2 

All these statements will be executed by the instruction 

%do 1 

However it will be noticed that all the statements except 

the last begin with 1:3. Thus the instruction 

%do 1:3 

would also cause all these statements except the last to be 

executed. 

This facility can be very useful. If the user wished to 

test the new statements before allowing the whole program to 

be run, he can achieve this very simply. Instead of being 

labelled 

1:3:6, 1:3:6:1(*), 1:3:7, 1:3:8, ...1:3:15, 

the insertion could be 

1:3:6:1, 1:3:6:1:1(*), 1:3:6:2, 1:3:6:3, ...1:3:6:10, 

where the label marked (*) indicates the statement that was 

missing from the initial insertion. Then to test this group 

of statements, the command is 

%do 1:3:6. 

4.3 The Structure of AML. 

The method of labelling described above imposes on 

AML a structure quite unlike that of IMP. Let us examine 

this difference in structure. IMP programs are divided into 

BLACKS, which may be nested. The main program is regarded as 

the outermost block, and routines may be regarded as a 
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special kind of block. There are two points to be made about 

the structure of an IMP program. 

1) Within a block all statements are regarded as being 

at the same level. Statements are executed 

sequentially, but a jump may be made from one 

statement to another, and execution continues 

sequentially from there. 

2) A block (or routine) may only be entered from the 

block immediately containing it, or from a block 

contained in it. 
AML differs from IMP principly in the fact that (2) 

does not hold. We can consider the unlabelled statements as 

defining the outermost block, and therefore analogous to the 

main program. However it is plain that this block does not 

have the properties of a main program. Moreover its 

behaviour is different from that of the labelled statements. 

These can be divided into blocks such that all those 

statements having a common label belong to the block whose 

label is that common label. Thus 1, 1:3, 1:3:2 all belong to 

block 1. The last two also belong to block 1:3. This means 

that by means of a '%do' instruction any statement or block 

can be called from any level, be executed, and control be 

returned to the level of the call. In other words we have a 

primitive kind of subroutine jump in the language. 

By contrast, there is no direct 'goto' statement. 

There is no obvious way of deciding what is to be done after 

a statement accessed by a "goto. statement has been 
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executed. Nor is it clear that such a statement is 

necessary. Only further experience with the system will tell 

whether the ommission is justified. 

It seems that the use of a language structured in this 

way requires some adjustment in thinking on the part of the 

user. Programmers of IMP and FORTRAN and other such 

languages have been conditioned to a certain way of 

thinking, and this must be changed in order to use all the 

facilities of AML. 

4.4 Features of IMP Incorporated in AML. 

The features of the language which are not directly 

concerned with algebraic manipulation are based on 

statements of IMP. However because the system is designed to 

be used interactively several alterations have been made, so 

that the end result does not resemble IMP closely. In fact 

the method described above of labelling statements and 

groups of statements makes the overall structure entirely 

different. Similar changes were made to ALGOL in the LCC 

language. 

The following features of IMP were thought to be 

necessary in AML. 

1) real arithmetic 

2) the cycle statement 

3) conditional statements 

4) routines and functions 

5) recursion 

1) Real arithmetic is available, although rational 
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arithmetic is used wherever possible, unless 

otherwise requested. Thus an expression containing 

a real quantity must result in a real expression. 

If an expression contains a rational, however, it 
may be evaluated to a real or rational expression. 

Rational was chosen as the default because it was 

felt that this mode of evaluation would be more 

useful in algebraic manipulations. 

2) The cycle statement is changed entirely because of 

the structure of the language. The equivalent of 

the IMP cycle 

%cycle i=1,1,10 

A(i)m 

B(i)=0 

%repeat 

is 

2:1 A(i)=0 

2:2 B(i)=O 

%do 2 for i=1,1,10 

In addition there are two other statements that 

cause a set of instructions to be repeated. 

%do 2 %while CONDITION 

%do 2 %until CONDITION. 

In the first, the statements at 2 are executed 

repeatedly while the CONDITION is satisfied, and in 

the second, 2 is executed repeatedly until 

CONDITION is true.. These statements are discussed 
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in more detail in Chapter 5. 

3) The conditional statements look very like the 

corresponding IMP statements, and have four forms 

%if CONDITION %then STATEMENT 

%unless CONDITION %then STATEMENT 

STATEMENT %if CONDITION 

STATEMENT %unless CONDITION. 

There is no need for %start - %finish clauses; the 

equivalent statement in AML has a '%do" command as 

the statement. For example, 

%do 2 %unless y=O 

4) Routines in AML must be fitted into the structure 

discussed earlier. The declaration of a routine is 

of the form 

%routine NAME FPP %at LABEL 

and the statements whose common label is LABEL 

define the body of the routine. The parameter list, 
FPP, is discussed in Chapter 5. There is no reason 

why a statement of LABEL should not also be used 

outside the routine. However a statement containing 

%return' or '%result' would be faulted if it were 

not accessed through a routine call. 

5) Recursion. Routines and functions may be used 

recursively. 

4.5 Variables and Types. 

The most important difference between AML and IMP is 

the lack of declarations in the former. It was found that 
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the 'type' of a variable could be determined from its 

context, and so declarations became redundant. In some 

languages the first assignment to a variable determines its 
type. This is not true of AML variables; a variable may 

contain an integer at one time, then be assigned a real, 

rational or algebraic expression. It is the type of the 

contents that is of interest and this can be determined at 

the time the expression is evaluated. Variables that have 

nothing assigned to them are assumed to be atomic, i.e. they 

have their name as their value. Array declarations must be 

made, but only to define their bounds. There is no 

restriction on the type of the value of an array element. 

The first element could contain an integer, the second a 

real, and so forth. An example of an array declaration is 

%array a(1:10) 

Routine parameters include the five types %value, 

%name, %array, %routine and %fn. %Value corresponds to %real 

and %integer parameters in IMP, %name to %integername and 

%realname, and %array to %integerarrayname and 

%realarrayname. Similarly functions need not return a 

specific type. A typical function declaration might be 

%function alpha(%value vl,%name ni) %at 5 

All variables take values throughout the whole program, 

i.e. they are global. However in a routine they may be 

redeclared by a declaration of the form 

%local L1, L2, 

As with '%return' and '%result', this statement is only 
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recognised if it is accessed through a routine call. When a 

variable is declared to be O%local', its old value is saved, 

and it is free to be treated as an algebraic constant, or to 

have a new value assigned to it. When control leaves the 

routine in which it was made '%localo, its current status is 

lost, and the value it had before the '%local' declaration 

was obeyed is restored. An example is given in Chapter 5. 

4.6 Algebraic Expressions. 

In describing the modifications made to IMP we have 

introduced some of the ideas concerned with the third main 

category of features - those concerned with the handling of 

algebraic expressions. 

If the expression 

a = b + c 

is presented to the machine, then b and c, having no values 

assigned to them, are regarded as atomic. So a is given the 

expression b + c as a value. 

Algebraic expressions are simplified automatically to a 

very limited degree. This is mainly a matter of expediency. 

When the system receives an expression, it has no way of 

knowing whether it has an algebraic expression (i.e. one 

that contains some atomic variables) or whether it is purely 

numeric. In order that one procedure may be applied to both 

types of expression, the following rule is observed: If two 

numbers occur one after the other in such a way that the 

precedence of the operators on either side and between them 

would allow them to combine, then the operator between them 
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is carried out. Hence if all the operands of an expression 

are numeric, a single number will be obtained. Otherwise a 

modified algebraic expression is the value of the variable. 

Examples 

6*2+3 evaluates to 15 

6*2+a evaluates to 12+a 

6*a+3 is unaltered 

a*2+3 is unaltered. 

It is also permissible to label an algebraic formula thus 

making it a labelled statement. For example, 

3 a+b*c. 

This expression will not be evaluated until some reference 

is made to label 3. If the wrong kind of reference is made, 

e.g. '%do 3', the statement is faulted since 3 does not 

label a statement that can be executed. This method of 

labelling formulae is useful for handling equations that are 

not to be considered as assignment statements. 

Example, 

4 a+y = b+x**2-3 

The two kinds of algebraic formulae are handled in different 

ways, thus providing the user with alternative methods of 

storing expressions. The algebraic commands of the language 

include: 

%simplify 

%distrib 

%diff 

%expand 
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In addition to these, there are several routines and 

functions. A full list of the commands is given in Chapter 

5. Routines and functions are given in Appendix D. The 

argument of a command may be either a variable which has an 

algebraic expression as its value, or a label which labels 

an algebraic formula. In the first, after the command has 

been obeyed, the result replaces the original expression as 

the value of the variable. In the latter case the result is 

printed out at the keyboard, and the original statement is 

unaltered. It is possible to save the result by adding the 

phrase "into LABEL' after the argument. This saves the 

result in the new label. 

Example, 

5 a+3 *a 

%simplify 5 %into 6 

then the result is 

6 4 *a 

4.7 Active and Inactive Statements. 

In allowing an algebraic formula to be stored as a 

labelled statement, AML breaks away from the usual meaning 

of a statement. In IMP, ALGOL and FORTRAN every statement of 

the language is an instruction and therefore can be obeyed. 

But in AML there are two kinds of statements - an 

instruction, which will be called an ACTIVE STATEMENT, and 

an algebraic formula. The algebraic formula will be said to 

be an INACTIVE STATEMENT. 
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Given one kind of inactive statement, there is no 

reason why other INACTIVE STATEMENTS should not be allowed. 

In fact any string of characters may be stored, and its 
validity is not questioned until it is accessed. 

So far we have considered one way in which an inactive 

statement can be accessed: it can be used as the argument of 

an algebraic command. The next step is to explore other 

useful ways of accessing inactive statements. 

When an algebraic expression has been stored as a 

labelled statement, it is quite possible that this 

expression will be required in the evaluation of another 

expression. As well as evaluating the statements 

i = a+3 

j = b+i*c 

It should be possible to evaluate statements such as 

1:3 a+3 

j = b+1:3*c 

Provided that the label contains a : , this is 

unambiguous, and so will be allowed. However 

3 a+i 

j = b+3 *2 

will result in j being assigned the value b+6, since the 3 

is taken to be an ordinary constant. 

So far two ways of accessing inactive statements have 

been discussed. In one case the inactive statement must be 

an algebraic formula, and in the other an algebraic 

expression. Other inactive statements and ways of accessing 
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them will be introduced when they are found to. be useful. 

4.8 Label Expressions. 

Suppose that a user wishes to execute the blocks 1:1, 

2:1, and 3:1. He may of course type the three instructions 

%do 1:1 

%do 2:1 

%do 3:1. 

However the idea of causing the same block to be executed 

several times has already been introduced. It uses a 

statement such as 

%do 1:1 %for i=1,1,3 

Now the idea is extended to allow different blocks to be 

executed by writing 

%do i:l %for i=1,1,3. 

Here one of the integers of a label is replaced by a 

variable. The more general rule would allow it to be 

replaced by an expression. Of course that expression must 

evaluate to an integer at the time of execution. 

A label which may have integers replaced by expressions 

is called a LABEL EXPRESSION. Since %do is allowed to take a 

label expression as its argument, it is reasonable to allow 

the algebraic commands to do the same. It is also reasonable 

to add the cyclic %for-clause to the end of an algebraic 

command. Thus one may write 

%do i:l %for i=1,1,3 

and 

%simplify i:l %into i:2 %for i=1,1,3. 
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Let us consider labels that are used in expressions, 

for example 

a = b+3:1*i 

This may be extended to allow 

a = b+j:l*i 

or 

a =b+j:k*i 

where j and k have integer values. Now let us look at the 

expression 

a = b+j+l:1*i 

This could mean 

a = (b+j)+l:l*i 

or 

a = b + (j+1):l*i 

To avoid the ambiguity, the convention is made that any 

expression of more than one operand that occurs in a label 

expression must be enclosed in brackets. 

4.9 Conditions. 

The conditions of AML are those of IMP with one or two 

additions. Some of these concern pattern matching, which 

will be discussed below. However one addition is the test 

0i//j' which is true if i divides j, and false otherwise. I 

and j may be replaced by any integer valued expression. 

Let us consider the instructions 

%do 1:1 %if x=1 %and y=2 

%do 2:1 %i f y=1 %or z=1 

%do 3:1 %i t p=q %and x<O 
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.............. . 

%do 4:1 %if x=1 %and y*2 

%do 4:2 %if y=1 %or z=1 

%do 4:3 %if p=q %and x<0 

If conditions are allowed to be accessed as inactive 

statements which are accessed by replacing the condition by 

a label or label expression, then these statements can be 

written more concisely. 

5:1 x=1 %and y=2 

5:2 y=1 %or z=1 

5:3 p=q %and x<O 

1:2 %do i:1 %if 5:i 

%do 1:2 %for i=1,1,3 

........... ... . 

1:3 %do 4:i %i f 5:i 

%do 1:3 %for i=1,1,3 

4.10 Patterns. 

In the initial discussion on facilities required in an 

algebraic manipulation language, it was decided that methods 

for looking at the structure of an algebraic formula should 

be available. The pattern matching facilities of Formula 

Algol appear to be suitable for this kind of activity. 

In the example given in Chapter 2 it was suggested that 

a user might want to test whether an expression is of the 

form 

something **2 - something-else **20. 

Clearly these facilities ( described in Chapter 3) could be 
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used in this case. The pattern that would be used in the 

test would be 

ANY ** 2 - ANY ** 2. 

Some modification to these ideas must be made to 

incorporate them in AML. The symbols 0== and ">>' are 

already used in IMP, and so it was decided to replace them 

by two key words %matches and %contains. Also there is no 

Boolean type in IMP or AML. Hence two extra conditions are 

defined: 

(EXPR) %matches (PATTERN) 

(EXPR) %contains (PATTERN). 

Examples of reserved words that may be used in patterns are 

%integer, %numeric, %algebraic, and %any. 

These are defined as follows 

1) F %,matches %integer is true if F evaluates to an 

integer. 

2) F %matches %numeric is true if F evaluates to an 

integer, real or rational number, or to +infinity 

(INF). 

3) F %matches %algebraic is true if F is an algebraic 

constant (i.e. is atomic). 

4) F %matches %any is always true. 

In addition, constants and algebraic expressions are 

allowed as patterns. These expressions may be mixed with key 

words and used in pattern expressions. So the AML test for 

something**2 - something-else**2# 

is 
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F %matches %any**2 - %any**2 ? 

In the example in Chapter 2, the user wished to 

discover whether a formula was of the form something**2 - 

something-else**2', and if it was, to replace it by the 

product of the sum and difference of 'something' and 

'something-else. The pattern matching facilities as 

described so far allow him to do the test, but not to 

discover what 'something' and 'something-else' are. In order 

to allow him to do this, EXTRACTORS are used. Any pattern, 

or operand in a pattern, may be preceded by an extractor 

which is of the form 

(NAME) _ 

The condition 

F %matches b -P 

is defined as follows. If F is an instance of P, the 

condition is true and b is set pointing to F. If F is not an 

instance of P, the condition is false and b is unaltered. 

If the extractor precedes part of a pattern rather than 

the whole, then b points to the part of F which matches the 

part of P that the extractor preceded. For example, let 

F = i+1. 

Then 

F %atches %any+b %integer 

is true, and b points to 1 in F. Notice that b does not have 

the value 1; it is a pointer to the expression in F. 

However the part that it points to is treated as its value 

if it is used in an expression. So the assignment 

IV-20 



a = b + 5 

gives a the value 6. 

The next example does the problem that has been 

discussed throughout this section. 

1:1 F =(a+b)*(a-b) 

%do 1:1 %if F %matches a %Qany**2 - b_%any**2 

Let F=(x+l)*2-y**2. Then a points to x+l and b points to y. 

In the assignment statement at 1:1, the values that a and b 

point to are found, substituted, and the value is stored in 

F which therefore has the value 

(x+l+y)*(x+l-y) 

Since the original expression in F has been overwritten, a 

and b are now undefined. 

This facility can be extended further. It is quite 

possible that an expression may have the difference of two 

squares occurring in it as a sub expression, and it may be 

necessary to replace this without altering the rest of the 

expression. Two more concepts must be introduced before this 

can be done. 

If b is an extractor pointing to part of the expression 

F, then that part of the expression may be replaced by 

another expression E by the statement 

b <- E. 

Suppose F = x+y+l, and b was set pointing to F by the 

condition 

F %matches b %any+l. 

Then b points to x+y. Now if E = y*z+2, then b <- E gives F 
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the value 

y*z+2+1, 

and b is still pointing to y*z+2. 

%Contains is defined in the same way as ,» , in 

Formula Algol. The formula F is said to contain the pattern 

P if there is a subexpression of F that matches P. 

Extractors can be used with %contains in the same way that 

they are used with %matches. 

Example 

F = a+5+sin(y) 

1:1 p <- x-1 

%do 1:1 %if F gocontains pointeger+sin(%any) 

When this has been executed, F has the value 

a + x - 1 + sin(y). 

The test for the difference of two squares, mentioned 

earlier, could be written 

1:1 c <- (a+b)*(a-b) 

%do 1:1 %if F %contains c (a%any**2-b %any**2) 

This can be generalised even further to find cases when the 

two numbers are not together. 

If 

1:1:1 c <- (a+b)*(a-b) 

1:1:2 d <- 0 

%do 1:1 %if F %contains: 

c_(a %any**2)+%any-d_(b %any**2) 

F = p + x**2 + q*r - y**2 + 1, 

then the result obtained is 

F = p+(x+y)*(x-y) + q*r - 0 + 1. 
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A and b are no longer defined, but c and d are. 

Patterns may also be stored as inactive statements, 

since some may be quite long. 

Example 

1:1 puny+sin(q_%integer)+r %real+%algebraic 

%do 1:2 %if x+y-z+sin(2) - 0.5 + a %matches 1:1 



V A Full Description of AML 

This Chapter describes the facilities available to the 

user of AML. Some of the features mentioned here have 

already been discussed in Chapter 4. However it was felt 
necessary to repeat them here in order to present a complete 

picture. This Chapter is also intended to be used in its own 

right as a Users' Guide. 

5.1 The Structure Of A Program 

The labels which prefix stored statements each consist 

of one or more integers in the range 1 to 255, inclusive, 

which are separated from each other by colons, and from the 

statement they label by a space. 

Examples 

1:3 x = 1 

2:7:53 y = 9 

5 z=26 

In some cases it will be necessary to access only one 

statement. More generally, however, a group of statements 

will be required together. Statements which may be accessed 

together are said to form a BLOCK which is defined as 

follows. If a number of statements have the most significant 

part of their labels (i.e. the left-most part) in common, 

then they belong to the block whose label is given by the 

common part of those statements' labels. 
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Thus, for example, statements 1:3, 1:3:2, 1:3:7:5 all 

belong to block 1:3. They also belong to block 1, together 

with statements 1:2, 1:1:5 etc. Hence there may be up to 255 

primary blocks, each of which may have any number of 

subsidiary blocks nested in it. 
This organisation provides a facility for executing 

small groups of statements when a tight control is 

necessary, and large parts of a program when a sucessful run 

is expected. It is possible to cause the single statement at 

the head of a block to be executed, and to suppress the 

execution of any other statements in that block by app- 

ending ,:0' to the label in the execution instruction. 

The CURRENT BLOCK is defined as the block whose label 

is given by removing the last colon and integer from the 

last label presented to the machine. For example, if the 

last statement was labelled 1:3:5, then the current block is 

1:3. 

If the next statement to be typed in is to be labelled, 

and in the current block, then an ABBREVIATED LABEL may be 

used. This has the same form as a full label, but is 

prefixed by a colon. 

E.g. :3:2, :5. 

The exact position of a statement with an abbreviated label 

is given by prefixing its label by the label of the current 

block. 

V-2 



Example 

1:3:2 y = 1 

:5 z = 12 

After the first statement has been entered, the current 

block is labelled 1:3. Hence the full label of the second 

statement is 1:3:5. 

After an unlabelled statement the current block is 

undefined, and so a full label must be used. Abbreviated 

labels should be used whenever possible, as the process for 

inserting the statement deals only with the current block. 

If a full label is used, the whole storage tree must be 

examined. 

5.2 The Program 

A program consists of any number of labelled and 

unlabelled statements which may be entered in any order. 

Execution will occur after an unlabelled statement is typed 

in, and when that instruction has been obeyed, the statement 

is lost and control returns to the user. 

If an instruction causes a block of labelled statements 

to be executed, the execution of the block takes place in 

the following manner. Let us suppose that the block label is 

L. If there is a statement labelled L, it is executed. Then 

each of the blocks L:N which exist in the store are executed 

in the same manner, for N increasing from 1 to 255. This 

completes the execution of the block L. 
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Example 

1:3:1 a = 1 

:2:5 b = 6 

:8 c=10 

1:3:5 d = 20 

Let L = 1:3, i.e. we are executing the block 1:3. There is 

no statement 1:3, and so we must examine the blocks L:N. 

For N = 1, the block 1:3:1 consists only of the statement of 

the same label, so it is executed. Now we execute the block 

1:3:2. This consists of the statements 1:3:2:5, and 1:3:2:8 

which are executed in that order. Finally we execute the 

block 1:3:5, which again consists of one statement. 

If a fault occurs as the result of executing a 

statement, the execution ceases, a diagnostic message is 

printed out, and control returns directly to the user. If a 

block of statements is being executed, the user can assume 

that all statements which should be executed before the 

faulty statement have been obeyed. 

5.3 The Command '%do' And Condition Loops 

The commands of the language will be discussed later. 

However it was felt necessary to introduce one command, 

10 

%,do', at this point. We have discussed how a block of 

statements is executed without explaining how the user 

effects such an execution. This is done by a statement of 

the form 

%do LABEL EXPRESSION LIST 
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A LABEL EXPRESSION LIST consists of a number of LABEL 

EXPRESSIONs, each of which may take one of the forms 

EXPR1 : EXPR2 : .,. EXPRn 

or EXPR. 

Thus a label expression has the same form as a label, except 

that the integers may be replaced by expressions. On 

execution of the statement, these expressions must evaluate 

to integers in the range 0 to 255, thus giving the name of a 

label. All the labels required are determined first and then 

the execution of the blocks defined by them begins. For each 

label, the interpreter discovers whether there is a block 

with that label (the program is faulted if there is not), 

and then executes it. 

Abbreviated labels were described in 5.1. Abbreviated 

label expressions of the form 

: EXPR1 : ... EXPRn 

are defined similarly. 

The first label of a LABEL EXPRESSION LIST must define 

a full label. Subsequent members may be abbreviated. In this 

context the CURRENT BLOCK is defined as the smallest block 

that contains the block being considered. An abbreviated 

label expression is prefixed by the label of the current 

block to give its exact position in the storage tree. 

Consider for example 

%do 1:3,:2:1,:5 

While we are executing 1:3 the current block is labelled 1. 

Hence the next block we require is 1:2:1. The current block 
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then becomes 1:2, and so the third block to be executed is 

1:2:5. As with abbreviated labels, abbreviated label 

expressions save time in searching the storage tree. 

The statement described above may have a condition loop 

attached to it. This may have one of three forms, and so the 

statements can be of the form 

%do IABEL EXPR LIST %until CONDITION (A) 

%do LABEL EXPR LIST %while CONDITION (B) 

%do LABEL EXPR LIST %for NAME=EXPR1, EXPR2, EXPR3 (C) 

For (A) after the blocks of the LABEL EXPRESSION LIST have 

been executed, CONDITION is tested. (A full description of 

the CONDITIONS in AML will be found in 5.9). If the 

CONDITION is satisfied, then the whole statement has been 

executed. Otherwise the blocks of the LABEL EXPRESSION 

LIST are re-executed, the condition is re-tested, and this 

process continues until the condition is satisfied. For 

(B), the condition is tested first. No action is taken if it 
is not satisfied. Otherwise the blocks are executed. This 

process is repeated until the condition is not satisfied. 

The use of (C) is similar, but this form enables us to 

use a counting mechanism in one statement. Before the blocks 

are executed, the three expressions are evaluated. They must 

have integer values which we shall call p, q, and r. NAME is 

given the value p, and the blocks are executed. If q is 

positive and the value in NAME is greater than or equal to 

r, then the execution is finished. Similarly, if q is 

negative and NAME is less than or equal to r, the execution 
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stops. Otherwise the value of q is added to NAME and the 

blocks are re-executed. 

5.4 Assigning Values To Variables 

There are no variable declarations, such as those of 

IMP, in AML. A name may appear in an expression, and will 

stand for itself as an algebraic constant, unless an 

assignment has already been made to it. An assignment 

statement is of the form 

NAME = EXPR. 

The value of the expression is worked out, space is reserved 

for NAME, and the value of the expression is stored there. 

Thus whenever an expression is being evaluated a check is 

made for each name occurring in the expression to see if it 
has a value. If it has, that value is substituted for the 

name in the evaluation. 

The value being assigned to a variable may reduce to an 

integer, rational or real constant, or it may be an 

algebraic expression. Rational arithmetic is used wherever 

possible, unless a real value is requested by prefixing the 

assignment statement by the key-word *%real'. During the 

evaluation if two numerical values are found next to each 

other, they are evaluated, provided the precedence of 

operators allows this. This is done because only one process 

is used for evaluating all expressions, and there is no way 

of determining whether or not an expression contains an 

algebraic constant prior to evaluation. No other 
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simplification of algebraic expressions is done by the 

evaluation routine. If it were, the simplified result might 

not show the steps of simplification in enough detail, 

especially if the result obtained was found to be incorrect. 

A seperate command is available if simplification is 

required. 

Examples 

6*3*a evaluates to 18*a 

but 6*a*3 is not altered 

and 6+3*a is not altered. 

Let us consider some examples of assigning algebraic 

expressions to variables. 

1) x = a +b 

assigns the value 'a + b' to x. 

2) y = x + c 

takes the value of x, substitutes it in the 

expression, and so assigns the value ,a + b + c, to 

Y. 

However 

3) a = d/2 

4) p=x+z 
still takes the expression 'a + b' as the value of 

x. This is because the value of a variable is 

copied straight into the expression being 

evaluated, without checking to see if any of its 
names now have values assigned to them. If this 

were not so, attempting to evaluate certain 
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expressions could result in an infinite loop. 

Consider 

5) a=a +z 

6) y=a +b 

In (5), since the expression is evaluated before 

the assignment is made, a is an algebraic constant. 

However in (6), if a further access were made to 

the names occurring in the value of "ate, an 

infinite loop would result. As it is, y takes the 

value 'a + z + V. 

Returning to examples (3) and (4), the name 'a' in p 

could be changed by a substitution command (see 5.12) or by 

pattern matching (see 5.14). 

5.5 Constants 

As mentioned in 5.3, there are three types of numerical 

values available in AML. These are integer, rational and 

real. 

Integers must be in the range -2**32 to (2**32)-1. 

Rationals are input in the form 

INTEGER/INTEGER, 

but are given a different representation inside the machine. 

The numerator is in the range -2**32 to (2**32)-1, and the 

denominator in the range 2 to (2**32) - 1. All rationals are 

reduced to their lowest terms before being stored. Reals can 

be of fixed or floating point form. The floating point form 

is 
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REAL @ INTEGER 

where REAL is a fixed point real number, and the value of 

this is given by 

REAL * 10 ** INTEGER. 

5.6 Arrays 

Arrays in AML may have any number of dimensions. 

Before an array can be used, it must be declared by a 

statement of the form 

%array NAME (EXPR1 : EXPR2) 

This declares an array, whose name is given by NAME, which 

is single dimensioned, and whose subscripts range from 

EXPR1 to EXPR2. NAME may be replaced by a list of names, if 
several arrays have the same bounds. A two dimensional array 

is declared by a statement of the form 

%array NAME (EXPR1 : EXPR2, EXPR3 : EXPR4) 

and similarly, for arrays of more than two dimensions, other 

pairs of expressions are added to the list. 

The declaration may be generalised further by listing 

several descriptions of the form described above, in one 

statement. 

Example 

%array A(1:10),B,C(1:20,4:8,-4:0) 

A rigorous definition of all statements of the language is 

given by the Syntax in Appendix A. 

Each member of the subscript list, i.e. each 

'EXPR : EXPR 
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is known as a BOUND PAIR. When the declaration is executed, 

the two expressions of each BOUND PAIR are evaluated. Both 

must give integer values, and the first value must not be 

greater than the second. 

A particular member of the array A is accessed by a 

phrase of the form 

A(E1, E2, ...En). 

When this phrase is executed, all the Ei's must evaluate to 

integer values, n must be the number of dimensions of the 

array, and each Ei must fall in the range specified by the 

corresponding BOUND PAIR. Array elements may be used 

wherever a variable name may be used. Thus values may be 

assigned to them, or be retrieved from them during the 

evaluation of an expression. They may also be used as 

algebraic constants. 

5.6 Routines And Functions 

A routine or function is declared by a statement of the 

form 

R/F NAME %at LB 

where R/F = '%routine' or '%function' 

and LB is a label expression. 

Hence the declaration specifies that NAME shall be the name 

of a routine or function and that the description of it will 

be found at the block given by LB. All statements of the 

block LB therefore belong to the description of NAME. 
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A routine consists of a set of instructions which will 

be obeyed whenever the routine is called. All the statements 

of the block will be executed in order, unless the statement 

%return 

is encountered. In this case control returns immediately to 

the place from which the call was made, and the statement 

after the call is executed next. ('%return' may be used 

conditionally, as described in 5.8). At the end of the 

block, if no '%return' has been encountered, control 

likewise passes to the statement after the call. 

The routine is called by a statement consisting of just 

its name, and this statement may also be used conditionally. 

A function also consists of a block of instructions, 

but on its return to the place from which it was called, it 
must give a value. This value is given by a statement of the 

form 

%result = EXPR. 

All function descriptions must contain at least one 

statement of this form, and this too may be used 

conditionally. 

The name of a function may be used in any expression, 

as with the name of a variable. However, instead of 

retrieving a value immediately, the statements of the block 

holding the description are executed until a 'result' 

statement is reached. Then the value of the expression given 

there replaces the function name in the evaluation of the 

original expression. Obviously no name will be recognised as 
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a routine or function name until the declaration has been 

executed. Also the program will be faulted if a call is made 

and the description has not been stored in the block 

specified. 

5.6.1 Parameters 

Routines and functions are used when the same piece of 

code is required several times in the course of executing a 

program. However this facility can be made much more 

powerful by the use of PARAMETERS. A statement of the form 

%routine NAME (%value NAMES) %at LB 

declares a routine whose name is given by NAME, and which 

has a number of VALUE TYPE PARAMETERS listed by NAMES. The 

call of the routine would be of the form 

NAME (EXPR LIST) 

where the number of expressions in EXPR LIST is the same as 

the number of names in NAMES. NAMES is said to be a list of 

FORMAL PARAMETERS while the expressions listed in the call 

of the routine are ACTUAL PARAMETERS. 

The description of the routine will contain statements 

referring to the names given in the formal parameter list. 
When the routine is called, the expressions of the actual 

parameter list are assigned to the names of the formal 

parameter list, in order, and these are the values that are 

used in executing the routine. On exit from the routine 

these values are lost, and the names used in the formal 

parameter list have the status that they had before the 

routine call was made. 
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Example 1 

%routine add(%value i,j,k) %at 1:1 

1:1 n=0 
1:1:1 %do 1:1:4 %for m = i,1,j 

:4 n=n+A(m) 

:2 A(k) = n 

:3 %return 

This is a routine which adds the values of A(i) to A(j) 

inclusive, and puts the total in A(k). A is assumed to have 

been declared as an array. Thus 

add(1,3,5) 

will put the value of A(1) + A(2) + A(3) into A(5). 

i = 4 

add(i,i+5,20) 

will put the value of A(4) + ... A(9) into A(20). 

Example 2 

Functions as well as routines may use parameters. Thus we 

could modify example 1 to be a function. 

%function add(%value i,j) %at 1:2 

1:2 n=0 
1:2:1 %do 1:2:3 %for m 

:3 n = n + A(m) 

:2 %result = n 

e i,l,j 

This time the total A(i) + ... A(j) is returned as the 

result of a function. The call of the function would be in 

an expression, as for example 

z = add(1,3) + 2 

V-14 



which puts the value A(1) + A(2) + A(3) + 2 in z. 

There is another type of parameter, known as a NAME 

TYPE PARAMETER, which acts rather differently. A typical 

routine declaration involving name type parameters is 

%routine NAME (%,name NAMES) 

where NAMES is a list of names. The call of this routine 

would be 

NAME(NAMELIST). 

NAMELIST is also a list of names, which must be the same 

length as NAMES. This time a link is set up between each 

name of the formal parameter list and its corresponding 

member of the actual parameter list. If any member of the 

actual parameter list has not been assigned a value, space 

is set aside for it, as if an assignment were about to be 

made. 

In the execution of the routine description, whenever 

the name of a formal parameter is used, the name of the 

actual parameter is accessed via the link, and a value is 

either read from or written to this variable. Both name and 

value type parameters may be listed in a routine 

description. 

Example 3 

We could modify Example 1 in another way, so that 

instead of insisting on the total being stored in a member 

of A, we can specify the variable to which it will be 

assigned. 
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%routine add(%value i,j,%name k) %at 1:3 

1:3 n = 0 

:3:1 %do 1:3:4 %for m = i,1,j 
:4 n = n + A(m) 

:2 k = n 

:3 %return 

The statement 

add(1,3,x) 

puts the total A(1) + A(2) + A(3) in the variable x. 

Obviously any alteration to the formal parameter inside the 

description will alter the actual parameter and this effect 

is not lost when we return from the routine. 

Arrays, functions, routines, and labels may also be 

used as parameters. The first three are similar to %name 

type parameters, and the last is more like %value type 

parameters. The declarations for the first three are 

%routine NAME(%array NAMELIST) %at LABEL EXPR 

%routine NAME(%fn NAMELIST) %at LABEL EXPR 

%routine NAME(%routine NAMELIST) %at LABEL EXPR. 

Of course these types of parameters may also be used in 

functions. The call of the routine in all these cases would 

be 

NAME(NAMELIST1) 

where NAMELIST1 is also a list of names, of the same length 

as NAMELIST. Furthermore these names must be the names of 

declared arrays, functions, or routines, according to the 

routine declaration. In all cases, whenever a formal 
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parameter appears in the block specified by LABEL EXPR, the 

name is replaced by the actual parameter given in the call. 

The subscript list following the name must correspond to the 

subscript list expected for the actual parameter. Hence in 

the case of arrays, the number of subscripts must be the 

number of dimensions of the actual parameter. Similarly for 

routines and functions the subscript list must correspond to 

the parameter list expected for the actual parameter, in 

length and in type of parameter. 

Example 4 

Example 1 restrains us to adding members of the array 

A. This can be extended to do addition for any array of one 

dimension. 

%routine add(%array A,%value i,j,k) %at 1:4 

1:4 n=0 
:4:1 %do 1:4:4 %for m = i, 1, j 
:2 A(k) = n 

:3 %return 

:4 n=n+A(m) 

Then add(B, 1, 5, 50) 

will put the value B(1) + ... + B(5) into B(50). 

Example 5 

The example for a function parameter will have to be 

different from the basic example that has served our purpose 

so far. Let us suppose that we wish to fill some array with 

the results of some function. The routine to do this could 

be 
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%oroutine fill(%array B, %fn f, %value i,j) %at 1:5 

1:5 %do 1:5:2 %for m = is 1, j 
:5:1 %return 

:2 B(m) = f(m) 

Then fill(A, fact, 1, 10) 

could be used to fill A(1) to A(10) with the values 11 to 

101. 

fill(C, log, 20, 35) ' 

would fill C(20) to C(35) with the values log(20) to 

log(35). 

Example 6 

To adopt the above example to illustrate the use of a 

routine parameter is slightly artificial. However let us 

suppose that instead of functions we have a number of 

routines that take one value type parameter, and return a 

value via a name type parameter. One of these routines could 

be declared as 

%routine f(%value is %name k) %at 2:1 

Then Example 5 could be altered in the following way. 

%routine fill(%array B,%routine g,%value i,j): 
%at 1:6 

1:6 %do 1:6:2 %for m = is 1, j 
:6:1 %return 

:2 g(m,k) 

:2:1 B(m) = k 

and this would be called by 

fill(A, f, 1, 10). 

V-18 



The declaration of a routine with %label parameters is 

of the form 

%routine NAME(%label NAMESLIST) %at LABEL EXPR 

and the call for this is 

NAME (LABEL EXPR LIST). 

Again the lists must be of the same length, and as before 

any occurrence of the formal parameter in the block 

describing the routine is replaced by the actual parameter. 

This facility is useful to reference statements that are 

accessed by their labels. 

Example 7 

Instead of having a number of routines as in Example 6, 

we could have a number of blocks to be executed, and wish to 

put the value of a particular variable into an array. One 

such block could be 

3:1:1 n =lk 

:1:2 %do 3:2 %for m = i, 1, k 

3:2 n=n *A(m) 

Now we could declare the routine 

%routine fill(%array B,%label L,%value 

%name k) %at 1:7 

1:7 %do 1:7:2 %for k = i, 1, 

:7 1 %return 

:2 %do L 

:2:1 B(k) = n 

The call would be 

fill(C, 3:1, 1, 10, n) 

J 
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This puts the values 

A(1) into C(1) 

A(1)*A(2) into C(2) 

A(1)*A(2)*A(3) into C(3) 

etc. 

5.6.2 Local T'eclarations 

In the first three examples, besides the parameters, we 

have used two other variables, m and n, whose final value is 

of no significance outside the routine. We can use two 

different names every time we describe a routine, but to 

save the number of names required it is preferable to 

restrict the range of validity of the two names themselves. 

This done by the statement 

%local m,n 

or, in its general form 

%local NAMELIST. 

This statement should appear as the first of the routine 

description. Then any values that the names of NAMELIST may 

have are stored away, and the names are ready to be used in 

any way desired. Then on exit from the routine, the values 

that the names have are lost, and the previous values are 

restored. The names that are declared '%local' need not 

necessarily be used as variables outside the routine. They 

could be the names of arrays, routines and functions as 

well. Similarly it is possible to set up arrays which will 

only be used inside the routine by prefixing the array 

declaration by '%local". 
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E.g. %local %array A(EXPR1 : EXPR2) 

Functions and routines may be used similarly. 

%local function A %at 2:1. 

Note that the description of the local function need not be 

inside the block describing the routine in which it is 

defined. For example 

%function alpha %at 1:1 

1:1 %local %function beta %at 2:1 

:1:1 %result = beta + 5 

Here the local function 'beta' is found at block 2:1, 

which is outside the block describing 'alpha'. Outside 

'alpha the routine beta is not defined, and so the block 

2:1 can be accessed by a "%do' command or may describe 

another routine, if that is required. It can, of couse be 

ignored and not accessed at all outside 'alpha'. 

5.7 The Dynamic State of The Program 

Generally, in a language that uses a compiler, the 

structure of the program is determined statically before the 

program is run. The type and scope of a variable, the 

descriptions of routines and functions are all determined at 

compile time, and are fixed from then on. With an 

interpreter the situation is completely different. Such 

things are determined dynamically. Thus a routine is 

recognised as such immediately its declaration has been 

executed. The description of a routine or function may be 

altered between one call and the next provided it satisfies 
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the required restraints. Statements may be overwritten; 

submitting a statement with the same label as a statement 

already stored causes the old statement to be overwritten. 

The type of a name may be changed. Thus the declaration 

%array A(1:10) 

will erase any value that was assigned to A and set up the 

array. Similarly if we wish to reset a name to its original 

un-assigned state we may use a statement of the form 

%empty NAMELIST. 

Then all the names of the list, whether they named 

variables, arrays or functions, are reset to algebraic 

constants. 

No statement takes effect until it has been executed. 

Unlabelled statements are executed immediately, and so cause 

no problem. However labelled statements must be executed 

explicitly by means of the command '%do'. For example 

1:3 %array a(l:10) 

a(5) = 7 

will be faulted, since a is not recognised as an array. The 

correct version is 

1:3 %array a(1:10) 

%do 1:3 

a(5) = 7. 

5.8 Conditional Statements 

A conditional statement can be written in the form 

%if CONDITION %then INSTRUCTION. 
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If the CONDITION is satisfied, the INSTRUCTION is obeyed. 

Otherwise no action is taken, and control passes to the next 

statement. INSTRUCTION may be replaced by any of the 

statements described as an UNCONDST (unconditional 

statement) in the Syntax in Appendix A. The conditions will 

be discussed in 5.9. 

Another form of conditional statement is 

%unless CONDITION %then INSTRUCTION. 

This time the INSTRUCTION will be obeyed only if the 

CONDITION is not satisfied. These two statements may be 

extended by the addition of an ELSE CLAUSE. E.g. 

%if CONDITION %then INSTR1 %else INSTR2. 

If CONDITION is satisfied INSTR1 is obeyed; if it is not, 

INSTR2 is obeyed. Similarly for 

%unless CONDITION %then INSTR1 %else INSTR2 

INSTR2 is obeyed if the condition is satisfied, and 

otherwise INSTR1. 

The first two conditional statements may be shortened 

by turning them round into the forms 

INSTR %if CONDITION 

INSTR %unless CONDITION. 

However if an else clause is required, the first form only 

may be used. 



5.9 Conditions 

In the above section we have discussed the use of 

conditional statements without defining what CONDITION 

stands for. Obviously we require some range of tests in 

order to direct the flow of control in the program. The 

simplest conditions are 

EXPR1 = EXPR2 (1) 

EXPR1 # EXPR2 (2) 

In both these cases the two expressions are evaluated. if 
the results are both numeric, case(1) is satisfied if the 

values are the same, and case(2) if they are not. If one 

expression is numeric and the other is not, case(2) is 

satisfied. If both are algebraic, case(1) is satisfied only 

if the evaluated expressions are identically equal. 

Otherwise case(2) is satisfied. Thus for example 'a + b' 

would not be regarded as equal to 'b + a' in this context. 

For numerically valued expressions we have the range of 

inequalities. 

EXPR1 > EXPR2 (3) 

EXPR1 >= EXPR2 (4) 

EXPR1 < EXPR2 (5) 

EXPR1 <= EXPR2 (6) 

We may also have the double sided inequalities 

EXPR1 > EXPR2 > EXPR3 (7) 

EXPR1 < EXPR2 < EXPR3 (8) 

and these may further be extended by replacing either or 

both '<' signs by '<=', and similarly for '>'. 
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For integer valued expressions there is a further case 

EXPR1 // EXPR2 (9) 

This case is satisfied if EXPR1 exactly divides EXPR2, i.e. 

if it is a factor of EXPR2. 

Two other conditions, the pattern conditions, will be 

discussed in 5.14. 

These nine cases, together with the pattern conditions 

are said to be SIMPLE CONDITIONS. Simple conditions may be 

joined together to form a CONDITION by means of the 

key-words '%and' and '%oro. Thus 

SC1 %and SC2 (i) 

is satisfied if both SC1 and SC2 are satisfied. 

SC1 %or SC2 (ii) 

is satisfied if one or both of the two simple conditions is 

satisfied. As many simple conditions as required may be 

strung together using '%and' and '%or', but the two key 

words may not be mixed, as this would give an ambiguous 

condition. 

E.g. x > 0 %and y > 1 %or z < 5. 

To define the meaning clearly it would be necessary to 

indicate which pair of conditions should be considered 

first. 

Thus the result of 

(x>0%andy> 1)%orz<5 

is not necessarily the same as that of 

x > 0 %and (y > 1 %or z < 5). 

To incorporate these more complex conditions we add a 
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further case to the simple conditions. 

( COND ) (10) 

where COND is any condition, and this can be used with other 

simple conditions in expressions of the forms (i) and (ii). 
Examples 

%if x> 0 %and y = 1 %then %odo 1 

x = 0 %unless y < U %and (z = 2 %or z = 0) 

%if z=2 %or y=1 %or x=O %then a=3 %else a=5 

are all examples of conditional statements. 

5.10 Active And Inactive Statements 

When a statement is to be executed, the syntax analyser 

is called to determine whether or not the statement is an 

ACTIVEST, as given by the syntax in Appendix A. If the 

statement is recognised as an ACTIVEST, it is executed. 

Otherwise, the diagnostic message ,SYNTAX is printed out 

beneath it and control returns to the user. The faulty 

statement is printed, if it is labelled. 

Hence we have two uses for labelled statements. They 

may be instructions which will at some time be executed 

(activated by the command "%do') or they may contain data 

that will be used by active statements. Certain active 

statements of the language may refer to a labelled statement 

by its label. These statements fall into two types. Those 

statements which perform the algebraic operations such as 

simplification, binomial expansion etc., may have a label or 

label expression as their operand. The statement given by 
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the operand is expected to be an algebraic expression or 

equation, and the operation is performed on this, the result 

being stored elsewhere so that the original statement is not 

overwritten. 

In the second case an active statement which uses a 

labelled statement incorporates the contents of that 

statement into itself before being executed. In certain 

places where part of an active statement is liable to be 

long or to be changed, that part of the statement may be 

replaced by a label expression. Then on execution of the 

statement the labelled statement replaces the label, and 

provided the part is syntactically correct, the active 

statement is executed. A CONDITION is one such part that may 

be replaced by a label. 

Example 

1:4 x > y %and ((z - 1) * 3 > 2 * a %or a * z < 5 * y) 

%do 1:3 %if 1:4. 

An operand in an expression may also be replaced by a 

label. This is necessary since the algebraic operators work 

on labelled statements. 

Example 

1:3 (a + b) ** 4 

%expand 1:3 %into 1:4 

(The binomial expansion of '(a + b) ** 4' is to be placed in 

1:4) 

d = 1:4 * 2. 
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5.11 Other Unconditional Statements 

a) %oprint (TEXT) 

(TEXT) is defined as any string of characters enclosed 

in quotes. %print causes the text (without the quotes) 

to be printed. The occurrence of two adjacent single 

quotes in the text string results in a single quote 

being printed. 

Examples 

%print 'an example' 

prints 

AN EXAMPLE 

%print 'fred''s example' 

prints 

FRED'S EXAMPLE 

%oprint "'stop" he said' 

prints 

ISTOP" HE SAID 

%print 

prints 

b) %stop 

Stops executing the current block, and returns to the 

main level to obtain the next statement from the user. 

c) %.exit 

Returns from the current block to the block that called 

it, continuing immediately after the statement that 

called it. 
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Example 

1:1 %do 2 

:2 write(i) 

2:1 %exit %if i=O 

:2 i=j/i 

j=5; %do 1 

Then for i = 0, 0 is printed, otherwise 5/i is printed. 

d) %finish 

Exits from AML. 

5.12 Commands 

It was found necessary to discuss the command %do` at 

quite an early stage. The rest of the commands will be 

described here. They can be divided into two groups - 

general commands and algebraic commands. 

5.12.1 General COMMANDS 

1) %write LABEL EXPRESSION LIST 

This command causes the blocks given by the label 

expressions of LABEL EXPRESSION LIST to be printed out 

at the terminal. Each block is printed as it is held in 

the storage tree, i.e. in the order in which it would 

be executed. Hence if the statements of a block have 

been presented to the machine at different times, and 

in no set order, it is often useful to use this command 

before executing a block, to ensure that the statements 

in the block are correct. 

2) %erase LABEL EXPRESSION LIST 
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This command deletes all the statements of the 

blocks listed. The labels themselves are not removed, 

and so the fault 'STATEMENT MISSING' not 'LABEL NOT 

SET' will appear if one tries to use a statement that 

has been removed by '%erase'. This command is useful, 

not only for deleting faulty statements, but also to 

ensure that no stray statements have been left in a 

block that is about to be re-written. To erase a single 

statement, one should append ':J' to the label 

expression defining it. This will ensure that no other 

statement of the block is erased. 

3) %label LABEL EXPRESSION LIST %Qas LABEL EXPRESSION LIST 

Let LB1 name the first LABEL EXPRESSION LIST, and 

LB2 the second. Then this command copies the blocks 

given by LB1 into LB2 in a manner that preserves the 

structure of each block. The original block is 

unaltered in each case. Thus if the block labelled L is 

to be labelled as the block M, let L:N be the label of 

a particular statement. L, M and N all have the form of 

a label. Then the new label of the statement is M:N. 

An example will make the process more clear. 

Example 

1:3 a = 1 

:3:1 b = 2 

:5 c = 3 

:2:1 d = 4 

1:3:1:5 e = 5 
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%label 1:3,:3:1 %as 2:7, 1:6 

2:7 a = 1 

2:7:1 b = 2 

2:7:1:5 e = 5 

2:7:2:1 d = 4 

2:7:5 c = 3 

1:6 b = 2 

1:6:5 e = 5 

The first block to be labelled is 1:3, and so all the 

statements of the block have their first two integers 

replaced by 2:7. Notice that although they were not 

entered in order, the print-out at the terminal is 

ordered. Next the block 1:3:1 is labelled 1:6, and so 

we have the last two statements. Note that the two 

LABEL EXPRESSION LISTs must be the same length. 

4) '%read NAMELIST* %from %file EXPR 

This command enables the user to read in sets of 

data from sources other than the terminal at which he 

is working. EXPR should be integer-valued, thus giving 

the stream number of the file. The connection between 

physical files and stream numbers is made outside 

AML. (For details, the user is referred to the HELP 

information of EMAS). 

NAMELIST is defined as NAME LIST?, and hence 

identifies a list of variables and array elements. 

Whenever the command is executed, if the length of 

NAMELIST* is n, then the first n expressions in the 
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file are read into the locations defined. These values 

are then lost from the file, and the next time a 

%reado command is executed for the same file, the 

(n+l)-th expression is taken as the first available. 

The expressions on the file may be any acceptable 

AML expressions, and are separated from each other by 

at least one space, or by a newline symbol. An 

expression is evaluated before being assigned to the 

appropriate location. 

Example 

1:1 %read a,b,c(i) %from %file 3 

.......... 

.......... 

%do 1:1 %for i = 1,1,2 

Let the contents of file 3 be 

257p+qb+3d 

The first time 1:1 is executed, a, b, c(l) are 

given the values 2, 5, 7, respectively. The second 

time, a is given the algebraic expression 'p+q'; b+3 is 

evaluated to 8 before being assigned to b, and c(2) 

takes the algebraic constant d. 

5) %eval (NAME LIST)* 

It has been noted above that while all known variables 

are substituted in an expression during the execution of an 

assignment statement, no attempt is made to alter the value 

of an expression, if variables which were algebraic 

constants are later given values. For example, 
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a=b+c 

d=a+g 

results in d having the value 'b+c+g'. However, the 

assignment 

g=5+x 

does not alter d. The reasons for choosing this approach are 

given in the discussion on the assignment statement. 

However it is possible that the substitution of its 

value is required for a particular variable. The command 

%subs g %in d 

would do this. %Eval gives a further facility, in that 

EVERY name occurring in its argument is replaced by its 

value (if it has one). The exception to this rule is the 

argument itself (for obvious reasons). Thus consider 

g=y+ x*x+g 

y=1/2 

z a+b 

x=5-x 

%eva l g 

This would result in g having the value 

1/2 + (a+b)*(5-x) + g. 

A further example deals with arrays and functions whose 

values may also be substituted. 

g = y(x) + h(i) 

i = 2 

%array h(1:10) 

h(2) = b + c 
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%function y(%value a) %at 1:1 

1:1 %result = a**2/3 

%eval g 

Gives g the value 

x**2/3 + b + c 

Example 4 of Appendix E shows a useful application of %eval. 

5.13 The Algebraic Commands 

5.13.1 The Into Clause 

We have indicated above that algebraic commands may use 

labelled statements as operands. The result of applying a 

command to such a statement does not alter the original 

statement, but is stored elsewhere. If an INTO CLAUSE is 

used, this specifies where the result is to be placed. Thus 

we have a statement of the form 

COMMAND LABEL EXPR LIST %into LABEL EXPR LIST. 

The lists must be of the same length. All the 

statements of each block of the first LABEL EXPR LIST 

(LB1) have the command applied to them, and the results are 

stored in the corresponding block of the second LABEL 

EXPR LIST, so that the structure of the original block is 

preserved. (As for '%label'.) 

The statement form given above can be extended to 

COMMAND FLBLIST %into LABEL EXPR LIST (2) 

where FLBLIST is a list which may contain both label 

expressions and formulae. If a member of the list is a label 

expression, the block given by the label is used as an 
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operand, as described above. If a member is a formula, then 

it is used as the operand, and the result is stored in the 

label given by the corresponding member of the LABEL 

EXPRESSION LIST. 

One may also apply algebraic commands to variables 

or array elements that contain algebraic expressions. The 

form of the statement is 

COMMAND NAMELIST 

where NAMELIST defines a list of variables and array 

elements. This time the result of applying the command is 

assigned to each variable, thus overwriting the original 

value. If an INTOCL is appended to a command with a 

NAMELIST, the result is put in the labels specified, and the 

contents of the variables are left unaltered. 

Examples 

i) a= 3* x+ 2* x 

b 5+ y+ 3+ 2 

%simplify a,b 

then 

y 

a now has the value 5 * x 

and b has the value 8 + 3 * y. 

ii) %simplify c Unto 1:1 

leaves c unaltered, and the result is in 1:1 

(See below for a description of '%simplify'). 

5.13.2 

Now we shall discuss the individual commands. 

1) %simplify INTOCL 
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The INTOCL may be one of the two forms described 

above, i.e. 

FLBLIST %into LBLIST 

or NAMELIST. 

This command simplifies its operand according to the 

following general rules. 

i) All numerical calculations are carried out. 

ii) Like terms with numerical coefficients are 

collected together. 

Let S be an algebraic expression to which %simplify is 

to be applied. We shall discuss the results of applying 

the command to various examples of S, giving a general 

form of the result and also specific examples. In the 

general form a(i), b(i), c(i) will be used for 

algebraic variables, and p(i), q(i), r(i) for numerical 

variables, unless otherwise stated. If an expression 

involving p, q, r has these letters in upper case, it 
indicates that the whole expression is numeric, and so 

is evaluated. 

a) S = a ** b(l) ** b(2) ** ... b(n) 

result = a ** (b(l) * b(2) * ... b(n)) 

If an algebraic variable is raised to a power by a 

sequence such as is given above, these terms are 

multiplied together to give the form given by 

result 

E.g. S = a ** b ** c 

result = a ** (b * c) 
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The term inside the bracket is also simplified 

according to rules (c) and (d) given below. 

E.g. S = a ** b ** 3 ** b 

b) 

result = a ** (3 * b ** 2) 

S = a **b ** (c *d /b) 
result = a ** (c * d) 

S = P ** b(1) ** ... q(1) ** ...b(m) ** ... q(n) 

result = (P ** (Q(1) * ... Q(n)) ** (b(1) * .... 

... b(m)) 

If a numeric variable is raised to the power of the 

series as in (a), any numerical variables of the 

series are removed, and p is raised to the power 

obtained by multiplying them together. The 

remaining values are multiplied together as in (a). 

E.g. S = 3 **a **2 ** b 

result = 9 ** (a * b) 

c) S = a(1) * p(1) * ... a(m) * p(n) 

result = (P(1) * ... P(n)) * a(1) * ... a(m) 

Numerical coefficients are taken to the front of 

the term. 

E.g. S = a b 3 * c * 4 

result =12*a*b*c 
S = a ** b 3 c 2 

result =6*a**b*c 
Here the ass may be algebraic variables, 

expressions to which rules (a) and (b) have been 

applied or bracketed subexpressions. 
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d) S = a(l) * a(2) * ... a(n) 

If for some i, a(i) = b ** p(i) and if there exists 

a(j) = b ** p(j) then 

result = a(l) * ... b ** (P(i) * P(j)) * a(n) 

E.g. S=b**3*c*b**2 
result = b ** 5 * c 

S=b*c*b**3 
result = b ** 4 * c 

S = b* c/ b* d 

result = c * d 

e) S = P(1) + a(l) + ... p(m) + ... a(n) 

result = (P(l) + ... P(m)) + a(l) + ..# a(n) 

Numerical values are added together and put at the 

beginning of the expression. 

E.g. S = a + 3 + c + 5 

result = 8 + a + c 

S = a **2+4+c*d+5 
result 9+a**2+c*d 
The ass are algebraic constants, expressions 

evaluated by rules (a) to (d) or bracketed 

subexpressions. 

f) S = a(l) + a(2) + ... a(n) 

If for some i, a(i) = p(i) * a and if there exists 

a(j) = p(j) * a then 

result = a(l) + ... (P(i) + P(j)) * a + ... a(n). 

In applying this rule, the law of commutativity is 

used. Hence if 
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a(i) = p(i) * a(l) * a(2) 

and a(j) = p(j) * a(2) * a(l) 

then the result is 

.... (P(i) + P(j)) * a(l) * a(2).... 

E.g. S=3 *a +b+2 *a 
result = 5 * a + b 

S= 3* a* b+ c+ b* a 

result = 4 * a * b + c 

2) %real %simplify INTOCL 

This command has the same effect as (1) except that 

real arithmetic is used for all rational numbers. 

3) %odistrib INTOCL 

This command applies the distributive law to all its 

operands in the following manner. Let S be an operand 

of the command. Then if 
S = (a(1) + a(2) + ... a(n))*(b(1) + ...... b(m))*c 

result = a(1)*b(1)*c + a(2)*b(l)*c + .. a(n)*b(1)*c 

+ .................. a(1)*b(2)*c + .... a(n)*b(2)*c 

+ ...... a(n)*b(m)*c. 

The ass, b's, and c are algebraic expressions not 

involving the operators '+' and '-'. The resulting 

expesssion is simplified. S may be extended to contain 

any number of cps, and any number of bracketed 

expressions of the form given by the ass and b's. Any 

+' operator may be replaced by '-'. If the operand is 

a sum of terms of the form described above, each one of 

these terms has the rule applied to it, before the 
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whole expression is simplified. 

Examples 

S = 3 * (a + b) 

result = 3 * a + 3 * b 

S=3*(a-2+b) *(b-a+4) 
result = 3*a*b 6*b + 3*b ** 2 - 3*a ** 2 + 6*a 

- 3*a*b + 6*a - 24 + 12*b 

which simplifies to 

6 *b+3 *b **2 -3 *a ** 2 +12 *a -24, 
S =a * (b + c) +b * (a - c) - c * (b + a) 

result = a*b + a*c + b*a - b*c - c*b - c*a 

= 2 * a * b - 2* b* c 

The command is also applied to any sub-expressions 

with the same structure. 

E.g. S=a*(b*(c+2)+d) 
result = a* b* c+ a* b* 2+ a* d 

4) %expand INTOCL 

This applies the multinomial expansion to any parts of 

its operand that are of the form 

S = (a(1) + a(2) + ... a(n)) ** p 

where p is integer or rational valued. 

Thus for positive integer p 

result = a(1) ** p + ... C(p,r) * a(1) ** (p - r) * 

ev((a(2) + .., a(n)) ** r) + 

ev((a(2) + a(n)) ** p) 

where ev(A) is the result of applying '%expand' to A, 

and 
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C(p,r) = p! / (rI * (p-r)!). 

If p is a negative integer, or rational, we must 

expand a term of the form 

(1 + b) ** p. 

Hence the general form is put into the form 

(1/(a(1)**p) * (1 + (a(2) + ... a(n))/a(l))**p (1) 

The expansion in this case is infinite, and in AML, 

unless otherwise stated, (by adding a rider '%to 

EXPR %terms"), only the first five terms are 

considered. 

Hence putting 

b = (a(2) + ... a(n))/a(1) 

we obtain 

(1/(a(1)**p)) * (1 + f(p,l)*b + f(p,2)*b**2 + ..... 
f(p,5)*b**5) (2) 

as the expansion of (1), where 

f(p,r) = (p * (p - 1) * ... (p - r + 1))/rI 

The result of %expand is given by applying %distrib to 

(2). 

Examples 

S = (a + b) ** 3 

result = a**3 + 3*a**2*b + 3*a*b**2 + b**3. 

S=(a+b+c) ** 4 

result = a**4 + 4*a**3*b + 4*a**3*c + 6*a**2*b**2 

+ 12*a**2*b*c + 6*a**2*c**2 + 4*a*b**3 

+ 12*a*b**2*c + 12*a*b*c**2 + 4*a*c**3 
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+ b**4 + 4*b**3*c + 6*b**2*c**2 

+ 4*b * c**3 + c**4. 

Multinomial expansions are treated as binomial 

expansions, with the 2nd to n-th terms bracketed 

together. Thus (a+b+c) is treated as (a+(b+c)). Hence 

the way in which the above example is evaluated is as 

follows. 

(a + b + c)**4 = (a + (b + c))**4 

which is 

a**4 + 4*a**3*(b+c) + 6*a**2*(b+c)**2 + 

4*a*(b + c)**3 + (b+c)**4 

Expand is applied again to (b+c)**2, (b+c)**3, and 

(b+c)**4, and then the terms are expanded out. 

Example 

1;1 (1 + x) ** (-1) 

%expand 1:1 %into 1:2 %to 6 %terms 

1:2 1 - x + x**2 - x**3 + x**4 - x**5 + x**6 

In some cases one may not require the whole 

expansion, but only a particular term. In this case the 

command is of the form 

%expand INTOCL %for EXPR loth %term 

EXPR must be integer valued at the time of execution. 

Let its value be n. Then each part of the operand that 
(e&14 V-ko) 

is of the form S, given above,Tis replaced by the n-th 

term of the expansion in the result. The term is 

ommitted altogether if p is a positive integer less 

than n, since in this case there is no n-th term. 
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Example 

1:1 (a + b) ** 2 + (1 + a) ** 1/2 

%expand 1:1 %into 2:1 %for 4 %th %term 

2:1 1/16 * a 

1:2 (a+b)**4 + (a+c)**5 

%expand 1:2 %into 2:2 %for 4%th %term 

2:2 4*a*b**3 + 10*a**2*c**3 

1:3 (a+b+c)**4 

%expand 1:3 %into 2:3 %for 37.rd %term 

2:3 6*a**2*b**2 + 12*a**2*b*c + 6*a**2*c**2 

In the last example (a+b+c) is treated as (a+(b+c)), 

and the third term of this binomial expression is 

found. (b+c)**2 is then evaluated. 

5) %addsum INTOCL 

This command searches its argument for any terms of 

the form 

power(A(r), x, r, L, U) 

where A(r) is any function of r. This is a recognised 

function representing the summation of 

A(r) * x ** r 

for values of r between L and U. including those 

values. 

If U=INF, the summation is from L to infinity. 

Similarly if L=-INF, it is from -infinity to U, and 

power(A(r), x, r, -INF, INF) 

represents the summation from -infinity to +infinity. 

The term may be multiplied by any factor not involving 
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x or r, and if this is the case, the factor is absorbed 

into A(r) before any addition takes place. Thus 

p * power(a(r), x, r, L, U) 

is regarded as 

power(p * a(r), x, r, L. U) 

If there is more than one such term in the operand, and 

if the bounds overlap, then the terms are added. 

Thus if L1 < L2 < U1 < U2 then 

power(a(r), x, r, Li, Ui) + 

power(b(r), x, r, L2, U2) 

power(a(r), x, r, Li, L2-i) + 

power(a(r)+b(r), X, r, L2, U1) + 

power(b(r), x, r, U1+1, U2) 

If the dummy variables (r) of two power functions are 

different, then the second name is replaced by the 

first in the addition, provided the latter does not 

appear in the first parameter of the second function. 

If it does, the second name will replace the first. 
Example 

power(r+i, x, r, i,INF) + 

power(p+3, x, p, 100, INF) _ 

power(r+i, x, r, 1, 99) + 

powerr+4, x, r, 100, INF) 

However, if both conditions occur, for example in the 

case 

power(r*s,x,r,1,10)+power(s**r,x,s,5,20), 

then a message is typed at the console, requesting the 
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user to change the summation variable in one of the 

functions. 

The bounds of the summation, L and U, must be integer 

valued. %addsum' also searches for the recognised 

function 'sigma', of the form 

sigma(EXPR(r),r,L,U) 

which represents the summation of the term EXPR(r) for 

r=L,1,U. The rules described for 'power' are also 

applicable to the summation of instances of 'sigma'. 

6) %diff LABEL EXPR LIST %wrt NAME %into LABEL EXPR LIST 

This gives as a result, the derivative with respect 

to NAME, of each operand given by the first LABEL 

EXPR LIST. The rules of differentiation that are 

applied are given below, where S is the operand and R 

the result of differentiating with respect to x. f'(x) 
is the derivative of f(x) with respect to x, and is 

evaluated if possible. 

a) 

b) 

S =a 

R = U 

S=x 

R = 1 

c) 

d) 

S=a * f(x) **n 
R = a * n * f(x) **'(n 

S = a ** f(x) 

- 1) * f'(x) 

e) 

R a ** f(x) * log(a) * f'(x) 

S = log(f(x)) 

R = f'(x) / f(x) 
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f) 

g) 

h) 

i) 

S = exp(f(x)) 

R = f'(x) * exp(f(x)) 

S = sin(f(x)) 

R = f'(x) * cos(f(x)) 

S = cos(f(x)) 

R = -f'(x) * sin(f(x)) 

S = tan(f(x)) 

R = f'(x) * (sec(f(x))) ** 2 

j) S = cot(f(x)) 

k) 

R = -f'(x) * (cosec(f(x))) ** 2 

S sec(f(x)) 

R = f'(x) * tan(f(x)) * sec(f(x)) 

1) S cosec(f(x)) 

R = -f(x) * cot(f(x)) * cosec(f(x)) 

m) S = f(x) * g(x) 

R = f'(x) * g(x) + f(x) * g'(x) 
n) S = f(x) / g(x) 

R = (g(x) * f'(x) - f(x) * g'(x)) / g(x) ** 

o) S = power(f(r), x, r, L, U) 

R = power((r+i) * f(r+i), x, r, L-1, U-1) 

Examples 

S = 4 * a * x ** 3 

result = 12 * a * x ** 2 

S=x**3 * (a+3 *x) **2 
result = 3 * x ** 2 * (a + 3 * x) ** 2 + 

6 * x * * 3 * (a + 3 * x) 

S = power(r ** 2, x, r, 0, 100) 

2 
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result = power((r + 1) ** 3, x, r, -1, 99) 

7) %subs FORCL INTOCL 

The FORCL has two forms 

EX/LB %for EX/LB 

EX/NM/LB 

where EX/LB represents an expression or a label 

expression, and EX/NM/LB represents an equation, a name 

or a label expression. Thus the alternatives are 

%subs P %for Q %in R (i) 

%subs Q = P %in R (ii) 

%subs N %in R (iii) 

In the first two cases, each instance of Q in R is 

replaced by P. In the third, N is the name of a scalar 

variable or an array element. The value of N replaces 

its name in R. 

Examples 

a = s+ t + u * s+ t 

%subs p + r %for s+ t %in a 

result = p + r + u * s+ t 

Notice that %subs takes notice of the precedence of 

operators, and so the second occurrence of "s + t" 

cannot be replaced. 

a= s * t* u* v 

%subs s * t =q+r%ina 
result = (q + r) * u * v 

a=s+v+u* (s+t) 
s = p * q 
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%subs s %in a 

result = p * q + v + u * (p * q + t) 

If N is one of the reserved words PI or EXP, it it 

replaced by its numerical value, 3.141593 or 2.718281. 

8) %print %results LABEL EXPR LIST (a) 

%print %results (b) 

%print %no %results (c) 

Generally the results given by any algebraic 

command are printed out at the terminal as the commands 

are obeyed. If '%print Ono %results' is given as a 

command, this facility is suppressed for any commands 

executed after it. The printing may be 'turned one 

again by the command '%print %results'. 

It is possible that the results given by some 

commands are needed while others are intermediate 

results which should be suppressed. By placing the two 

classes in different blocks, this effect can be 

achieved, since '%print %results LABEL EXPR LIST' 

causes the results which are to be put into the blocks 

listed to be printed, while any others are suppressed. 

The effect of this command continues until it is 

changed by (b) or (c). A further command of the form 

(a) adds the values in the LABEL EXPR LIST to the 

values previously given, but does not delete any. 

Example 

1:1 (a + b) * (c + a) 

1:2 (3 + a) * (a - 1) 
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1:3 (3 + a + c) * (a - 1 + b) 

%print %results 3 

1:4 %distrib 1:i %into 2:i 

1:4:1 %simplify 2:i %into 3:i 

%do 1:4 %for i = 1,1,3 

3:1 a * c + b * c + a ** 2 + a * b 

3:2 -3 + 2 * a+ a ** 2 

3:3 -3 + 2*a + a **2 - c + 3*b + c*a + a*b + c*b 

Here we have suppressed the printout of block 2, which 

receives the results of '%distrib'. 

5.14 COMMAND LISTS 

A number of commands may be given in the same 

statement. E.g. 

%simplify 1:1,:3, %expand 2:1 

If a command A is not the first of a COMMAND LIST, and is 

algebraic it may have as its operands the results given by 

the algebraic command B which precedes it. This is specified 

by ommitting the operand list of the command A. Hence the 

statement is of the form 

B INTOCL, A %into LABEL EXPR LIST. 

If command A is a general command and not the first of a 

command list, then it may use the same set of operands as 

the general command B that precedes it. Hence the statement 

in this case is of the form 

B LABEL EXPR LIST, A 

E.g. %simplify 1:1,:3 %into 2:1,:2, %expand %into 3:1,:2 
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%write 2:1,3:7, %do. 

In 5.2 we discussed the use of condition loops with the 

command O%doo. We may now generalise those remarks, and 

allow a condition loop to be placed after any list of 

commands, to give a statement of the form 

COMMAND LIST CONDITION LOOP 

All the commands of the list are executed before the 

condition is checked, and the commands are re-executed if 
required. 

For example, 

%do 1:1, :2 %for i = 1,1,3 

causes blocks 1:1 and 1:2 to be executed three times. 

1:1 i = i + 1 

:2 

2:1 a* 3* b+ 5* a* b 

:2 6 * a - 3 * a 

i _ 0 

%do 1:1, gsimplify 2:i %into 3:i %until i=10 

At the head of the block 1:1, i is increased, the rest 

of the block is executed, and then the contents of 2:i have 

the command %simplify applied to them. Next the CONDITION is 

tested, and the list is re-executed until it is satisfied, 

thus applying the %simplify command to blocks 2:1, 2:2, 

2:10. 
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4:1 

:7 j= j+1 
j1 
%write 3:1,%do %for i = 1,1,5 

%do 4:1 %while A(j) >= 0 

The contents of blocks 3:1 to 3:5 are written at the 

terminal and then executed. Next block 4:1 is executed 

provided that A(j) >= 0. J is increased in block 4:1, so the 

elements of array A will be processed in ascending order 

until a negative quantity is reached. 

5.15 Patterns 

when one is dealing with algebraic formulae, it is 

often the structure of the formula that one is interested 

in, and so it was decided to supply pattern matching 

facilities in AML. These take the form of conditions, known 

as pattern conditions. There are two forms: 

A %matches PATTERN (a) 

A %contains PATTERN (b), 

where A is of the form NAME LIST? and defines a variable or 

array element. (a) can be defined as follows 

1) If PATTERN is a name or constant, then A must be that 

same name or constant for the condition to be 

satisfied. 

2) If PATTERN is the key word 

a) %integer, %real, or %rational 

b) %numeric 
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c) %algebraic 

d) %any 

e) %factor 

f) %term 

then A must be 

a) a constant of the correct type 

b) a numeric constant 

c) an algebraic constant or function 

d) any expression. 

e) an operand or an expression whose main operator is 

f) an operand, or an expression whose main operator is 

or **. 

3) If PATTERN is of the form 

Q op R 

where op is any operator, then A must be of the form 

G op H 

where G matches 0 and H matches R, and op is the same 

operator as in PATTERN. 

4) If PATTERN is of the form P(Q1,Q2,...Qn) and P is 

%name' or is a name, then A must be of the form 

F(Gl,G2,...Gn) where F matches P and Gi matches Qi for 

i= 1, 2, ...n. 

(b) is said to be satisfied if there is a 

sub-expression B of A such that 

B %matches PATTERN. 

Using these two conditions it is possible to set up tests 
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for looking at the structure of a formula. 

Example 

a = b + c - d 

%if a %matches %any - %any %then %do 1 

This tests whether the value of 'a' is an expression that 

has a minus sign. 

The precedence of operators is taken into account 

during pattern matching. Hence 

a * b - c %matches %any - %any is true 

a * b - c %matches %any * %any is not true 

a * b - c %contains %any * %any is true. 

5.15.1 Extractors 

Once it has been determined that a formula matches a 

particular pattern, it may be useful to pick out the parts 

of the formula that correspond to certain parts of the 

pattern. This can be done by using an EXTRACTOR which takes 

the form 

NAME 

and prefixes the part of the pattern that is to be 

considered. 

For example, 

1:1 a %integer + %any 

:2 b_(sin(%integer) + %any) + %any 

:3 f(c_oany) + %any 

When the match has been established a pointer is set up from 

the extractor name to the part of the formula that it 
identifies. Thus 
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d = 6 + p * q 

%if d %matches 1:1 ... 

sets a" pointing to 6. 

Similarly 

m = sin(30) + 2 + p * r 

%if m %matches 1:2 ... 

sets 'b' pointing to sin(30) + 2. 

and 

n(1)=f(x+y) +p * t 

%if n(1) %matches 1:3 

sets 'c' to x + Y. 

Extractors may be used to change an algebraic 

expression that is the value of a variable. Once the link 

has been established, the change is made by a statement of 

the form 

NAME <- EXPR (A). 

NAME must be an extractor name that is linked to an 

algebraic expression. Then the part of the expression that 

is linked is replaced by EXPR. 

E.go a <- 2 * r 

changes d to 

Similarly 

2 * r + p * q 

b<-5 

give 

c<-z**2 

m = 5 + p * r 

n(1)=f(z**2)+p*t 
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Extractors may also be used with `%contains'. If there 

is more than one instance of the pattern occurring in the 

formula, the left most one is used in establishing the link. 

E.g. 

z= a* b* c* d 

%if z %contains %any * q_%algebraic %then ... 
is satisfied, and q points to b. 

5.16 Selectors 

When one is handling long algebraic formulae, it is 

often desirable to pick out part of an expression to examine 

it more closely. This may be done using patterns and 

extractors. The SELECTORS supply another method. 

If an expression (bracketed) forms an operand of an 

expression, then it may be prefixed by a SELECTOR. Then the 

selector will pick out part of the bracketed expression, and 

this part will be used in the evaluation of the outer 

expression. 

Example 

6 + (SELECTOR 1:2) + c (A) 

will take the required part of statement 1:2, and use this 

to evaluate (A). The simplest SELECTORS are 

%rhs and %lhs (1) 

Thus for 

1:2 x+y=z-3, 
if SELECTOR = %rhs, (A) becomes 

6 + z - 3 + c 

when evaluated. 
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If SELECTOR = %lhs, (A) becomes 

6 +x + y + c. 

SELECTOR may also have the form 

DESCRIPTION %of (2) 

where 

DESCRIPTION = N %th PATTERN or PATTERN. 

PATTERN is described in 5.15, and N is an integer valued 

expression. 

Thus for 

1:2 x+3 +y - 7, 

and SELECTOR = 2 %th %integer, 

(A) becomes 

-1 + c when evaluated. 

If the second form of DESCRIPTION is used, the first such 

PATTERN of the expression is used. SELECTOR may use itself 
recursively, in the form 

DESCRIPTION %of SELECTOR (3). 

Examples 

4 %th %integer %of %rhs 1:3 

(m + 1) %th %opd %of 2 %th %term %of 2:1 

The search for selectors works backwards, so that these 

examples would have the meaning one would naturally 

attribute to them. So in the second example, the second term 

of 2:1 is found, and then the (m+l)-th operand of that is 

found. 
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VI Implementing AML - The Storage Tree 

There are two basic ways of processing a program 

written in a high level language, to enable a computer to 

obey it. The first is a two step process. A compiler 

translates the program into machine code, and then this 

machine code is loaded and obeyed. The second way is to use 

an interpreter which discovers the meaning of a statement, 

obeys it, and then proceeds to the next. Most batch systems 

use compilers because they are generally more efficient than 

interpreters. However when a system is designed to be used 

in desk calculator mode, an interpreter is more usual. The 

advantage of a compiler lies in the fact that the 

statements, although they are obeyed several times, need 

only be translated once. In desk calculator mode, where the 

statements are lost after execution, this advantage no 

longer exists. 

Since the unlabelled statements of AML are used in desk 

calculator mode, an interpreter is used for them. For the 

labelled statements, three choices are available 

1) The statement could be translated into a series of 

machine code instructions, and these could be stored. 

2) Some intermediate stage, such as an analysis record could 

be stored. 

3) The statement could be stored unaltered, and interpreted 

in the same way as an unlabelled statement when it is 

accessed. 
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If a statement is accessed many times, the advantage of 

repeating as little of the translation process as possible 

is obvious. However another consideration makes this line of 

attack impossible. In any translation process, the first 
thing to do is to decide what kind of statement is being 

handled. But AML differs from most languages in that a 

statement need not be an executable statement. Hence until 

the statement is accessed, the form it is expected to take 

is not known. This situation could be overcome (although in 

a very time consuming manner) if each statement that could 

possibly form part of an executable statement had a distinct 

syntax. This is not so. There may be two or more syntax 

definitions that a statement may satisfy, and until the 

statement is accessed it is impossible to know which one is 

required. In other words, it is not context free. For 

example the statement 

1:1 a+b*c 

could be recognised as an expression or as a pattern. 

Therefore until the statement is accessed, the phrase name 

it must be matched against is not known. For this reason the 

third method must be chosen. It has the additional advantage 

that the same process is applied to both labelled and 

unlabelled statements. 

6.1 The Storage Tree 

The next problem to be considered is the method of 

storing the labelled statements. The block structure of the 

language obviously suggests a tree. Let us consider the 
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statements 

1:1 a 

1:1:1:3 b 

2:1 c 

2:3 d 

4:2 e 

4:1:1 

1:2:3 g 

3:1:2 h 

A tree structure which would store these statements is 

given by Fig. 1 

.1 

a.l 

d.3 
1 .1 

1 4 
h.2 / 

Fig. 1 

These can equivalently be represented by the nested list 
structure given in Fig 2. 



1 1 1 1 

1 1 .l .1-->-e.2 

1 1 1 1 

1 I h.2 f.1 
1 1 

1 c.1-->-d.3 

a.l-->--.2 
I 1 

.1 g.3 
1 

b.3 

Fig. 2 
To represent a node (e.g. .1) of the list, we require 

three values. The first, NO, contains the number of the 

node. I.e. the number 1 for the node '*.1g. The second, 

BELOW, points to the node below it, and the third, AFTER, 

points to the node after it. 

Fig. 3 reproduces Fig. 2, but in it each of the nodes 

has been given a name. Notice that capital letters name the 

node; small letters are used for the statements at certain 

nodes. 
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J K L M 

1 I ! I 

1 N P Q 
1 1 .1 .1---)--e.2 

! 1 

R S 
1 ! h.2 f.1 
I 1 

T U 

C.1 --- >--d.3 
1 

V W 

a.1--->---.2 
1 1 

X y 
.1 g.3 
1 

Z 

b.3 

Fig. 3 
Let us consider the node at J. This has the value 1, 

and so NO(J)=1. The node below J is V. so BELOW(J)=V. 

Similarly the cell after J is K, so AFTER(J)=K. The node T 

does not have a node occurring below it, and so in this case 

BELOW(T)=O. If a node has no node after it, the situation is 

more complicated. Consider the node at Z. Now NO(Z)=3, but 

the label actually represents the label 1:1:1:3. To find 

label 1:1:1:3 in the tree is straightforward. First label 1 

is found at J. V=BELOW(J) gives 1:1, X=BELOW(V) gives 1:1:1, 

and Z=BELOW(X) gives 1:1:1:3. However, to find out what 

label Z represents is not possible at the moment. To enable 

the required back tracking to take place, AFTER(Z) is set to 

-X, AFTER(X) is set to -V, etc. In general the value of 

AFTER for any cell that comes at the end of a list is -1 

multiplied by the position from which the list hangs. To 
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take another example, AFTER(U)=-K. U does not hang directly 

from K, but it comes after T, which is below K. Fig. 4 gives 

the representation of the complete tree, illustrating the 

contents of the three divisions. STATE contains the 

statement at the node, if there is one. 

NO B A S 

! 1VK 1->1 2 T L !->! 3 N M !->! 4P 1 11 11 11 11 
I 1 

!->! 1 S Q 1->12 0 -M e! 
! ! ! 

!1 R -L 
! ! 
1 1 

! ! 
! ! 
! ! 
! ! 
! ! 

12 0 -N h! !10 -P fl 
I ! !_ ! 

! 10Uc!->130 -K d! 
! I ! ! ! 

1 1 X W a!->12 Y -J 1 11 11 
! ! 

!1Z-V 1 130 -Wg! 
1 1 11 
_! 
13 0 -X b! 

!_ I 

Fig. 4 

where B stands for BELOW 

A stands for AFTER 

S stands for STATE 

The internal representation of this structured list is 

formed by three arrays, NO, BELOW, and AFTER. NO is a byte 

integer array, since the value of a particular component of 

a label cannot exceed 255. BELOW and AFTER contain pointers 
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to other nodes of the tree, and so are short integer arrays. 

The size of the arrays is stored in an own integer, so that 

it can be easily altered. At present the arbitarily chosen 

value of 300 is used for the size of the arrays. 

Notice that in the diagram AFTER(M) is undefined. This 

is because the tree has not yet been given any fixed values. 

NO, AFTER and BELOW can be regarded as cells of a list. The 

k-th cell of the list is composed of NO(k), BELOW(k) and 

AFTER(k). These cells are added to the tree whenever a new 

label is given. The integer asl is a pointer to the next 

free cell of the list, and is initially 2. The whole tree is 

hung from cell 1, which has dummy values in NO and AFTER. 

So, in Fig. 4, AFTER(M) would be -1. pointing back to the 

head of the tree. 

6.2 Storing the Statement 

The method described above has set up a tree 

representing the structure of labelled statements of the 

program. Using the free list new labels can easily be 

inserted into the structure. Also the statement stored at a 

particular label may be associated with the number of the 

cell representing that label. Since statements are to be 

stored exactly as they are presented, a byte integer array 

may be used to hold it; each byte holding one character of 

the statement. The easiest and quickest way of storing the 

statements is to use a two-dimensional array of the same 

length as the free list of cells described above. 
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Example 

If the statement 

1:2 i-3 

was presented, the structure would be as follows. 

NO BELOW AFTER STATE 

2 1 1 1 1 1 1 1 1 

1 2 1 1 1 1 1 

1 1 1 3 1-1 1 3 1 1 1 1 1 

! 4 1 i 1= 1 3 1 I 

1 1 1 0 1 4 1->-l 2 1 0 1-2 1 5 1 1 1 1 1 

Fig. 5 

Now it must be possible to allow for long algebraic 

expressions of about 300 or 400 characters, but the majority 

of statements will be much shorter, probably of less that 20 

characters. (See Appendix B) It will be seen therefore that 

this method uses a large amount of space, much of which will 

not be used. 

This program was first developed on the English 

Electric KDF9, with a core store of 16 K of 48 bit words. 

It soon became apparent that space was at a premium, and so 

the ability to access a statement directly had to be 

sacrificed, in order that it could be stored more compactly. 

To save space, all the statements presented to the 

system are stored in one byte integer array called ALG. An 

array of pointers is used to access the statements. Thus the 

statement associated with the cell k is stored in the array 

from ALG(i) to ALG(j), where i and j can be obtained from 
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the value of k. The array ALG is used for storing different 

kinds of information; in fact any string of information 

whose individual elements can be stored in a byte is stored 

in ALL The structure that is set up to deal with this will 

be described in Chapter 9. 

6.3 The Internal Representation of a Statement 

Before a statement is stored in ALG, two alterations 

are made to it, both designed to save space. There is a 

large number of key words in AML, some of them quite long. 

Each of these can be associated with a number, and this 

number, referred to as the key number, replaces the key word 

in ALG. Key numbers may lie in the range 129 to 254. In fact 

there are 63 key words in AML, thus giving an actual range 

of 129 - 192. The ISO representation of a character has a 

value less that 128, and so key numbers can be stored in a 

byte integer, without being confused with characters. 

Names are also replaced by a number in ALL Each time a 

name is presented to AML, a dictionary is consulted, and the 

name is inserted if it is not already there. Thus each name 

has a number associated with it, which is its position in 

the dictionary. 256 names, numbered between 0 and 255 may be 

entered into the dictionary. In order to avoid confusion 

between the dictionary number of a name and the ISO 

representation of a character, the former is preceded by the 

character '%' which can not occur anywhere else in this 

representation of the statement. (Since key words are not 

stored in their external form.) This means that if a name 
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consists of a single character an extra space will be used. 

However it was felt that the average length of a name would 

be greater than two, and so an overall saving would be made. 

Example 

The statement 

%result = alpha + beta 

is stored as 

153 
. .% 1 .+ 

% 
2 

where 153 is the key number of '%result', and 1 and 2 

are the dictionary numbers of alpha and beta respectively. 

6.4 The Dictionary 

Hash coding is used to insert a name in the dictionary. 

This means that although 256 names may be used, the 

efficiency of the look up will drop if more than 80% of the 

positions (i.e. about 200 names) are used. 

The formula for,the hash coding is fairly standard: the 

first four characters of the name are treated as an integer, 

and the remainder on division by 251 (the highest prime 

below 255) is taken as the hash code. If the name has less 

than four characters, the extra positions to the right of 

the characters are filled with zeros. 

The dictionary consists of two parts: a byte integer 

array NAME, in which the actual names are stored, and a 

short integer array ALPHA which is accessed by the hash 

coding. NAME is of size 1000, thus assuming an average 

length of five characters for 200 names. ALPHA is of course 

in the range 0-255. 
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When a name is presented to AML, its hash code, h, is 

calculated, and the position in ALPHA given by h is 

examined. If it is empty, the name has not been used before. 

Therefore it is copied into NAME at the first empty 

location, preceded by its length, and ALPHA(h) is set 

pointing to the the entry in NAME containing the length. If 

ALPHA(h) is full, the name pointed to is matched against the 

name presented. If they are the same, the process stops. If 
not, ALPHA(h+l) is examined (and the value of the hash code 

of the name is now h+l). This process continues until an 

empty ALPHA is found, or until the name is recognised. if 
the dictionary is practically full, this will result in a 

cyclic search of ALPHA. The program is faulted if there is 

no more space in ALPHA for an unrecognised name. 



VII Implementing AML - Analysing a Statement 

The interpreter runs in a continuous loop, stopping 

only when it encounters the command '%finish', which 

indicates that the program is ended. The steps of the loop 

are 

1) Read in next statement. 

2) Go to (6) if it is unlabelled. 

3) Find position of the label in the Storage Tree. 

4) Store the statement in ALG, associating it with the 

position found by (3). 

5) Go back to (1). 

6) Obey statement. 

7) Go back to (1). 

Steps (3) to (5) have been discussed in Chapter 6. The 

first decision to be made about step (6) was whether or not 

to apply a syntax analyser to the statement. An attempt was 

made to process the statement as it stood, but was found to 

be inpracticable, as so many tests were required to 

establish whether or not a statement was acceptable. Thus 

step (6) is divided into two parts: 

a) Get analysis record of the statement. 

b) Process analysis record. 

The syntax has been decided during the design of the 

language, and it remains to formalise it, and to obtain a 

form which could suitably be stored in the interpreter. 

This syntax is given in Appendix A. Once the statements of 

the language have been defined, it is necessary to consider 
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three things. 

1) The writing of the formal syntax of AML, so that a 

potential user could easily refer to it. 
2) The production of a representation of the syntax suitable 

for storing in the machine. 

3) The writing of a syntax analyser routine to produce an 

analysis record for a given statement. 

The syntax of both IMP and AML consist of a list of 

PHRASE NAMES, each of which is given a definition. A phrase 

name is defined by a list of ALTERNATIVES, each of which has 

a number of ITEMS. An item may be either a LITERAL, or the 

name of another phrase name. 

Example 

(CONDITION) = (SC)*'%AND`(ANDCL)1 

(SC)`°,DR`(C*CL) 1 (SC) 

Here the phrase name (CONDITION) is defined by three 

alternatives. The first two each have three items, and the 

last has one. Each of the first two alternatives has a 

phrase name as its first item, a literal as its second, and 

a phrase name as its third. This means that a (CONDITION) 

may be either 

1) An instance of the phrase name (SC), followed by 

2) 

the word %and*, followed by an instance of the 

phrase name (ANDCL). 

An instance of the phrase name (SC), followed by 

the word '%oor', followed by an instance of the 

phrase name (ORCL). 
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3) An instance of the phrase name (SC). 

7.1 A Comparison of the IMP and AML Syntax Analysers 

The syntax analyser of IMP is highly recursive, and 

requires a certain amount of back tracking. The following is 

an algorithmic description of it, comparing text stored in 

the array T between m and n against a phrase name 'phr'. 

The call of the analyser is a function which gives the 

result 1 if T is an instance of phr, and 0 otherwise. The 

declaration of this function is 

%integerfn analyse(%integerarrayname T,%integer m,n,phr). 

1) Get the first alternative. 

2) Get the first item of this alternative. 

3) If the item is not a literal, go to (6). Match the 

literal against the next character in the text. Go 

to (5) if they do not match. 

4) Result = 1 (success) if this was the last item. 

Result = 0 (failure) if the end of the text has 

been reached. Get the next item. Go to (3). 

5) Result = .l if this was the last alternative. Get 

the next alternative. Go to (2). 

6) The item is a phrase name. Call Anal for it. Go to 

(4) if it gives a result It and to (5) for a result 

0. 

This describes a version slightly different from that 

actually used, in order to demonstrate the method clearly. 

Let us consider what happens when the text 'x>l' is tested 

against the phrase name (CONDITION). 
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1) The first item of the first alternative 

considered, i.e. (SC). 

is 

2) Analyse is called for (SC), and the result is 1. 

3) This item was not the last, so we go on to process 

the next item. However since the end of the text 

has been reached, this alternative will not do. 

4) The first item of the second alternative is 

considered. Again it is (SC) which gives a result 1 

for analyse. However there is no text to match 

..%or', so this alternative fails for the same 

reason as the first. 

5) The third alternative is considered. The first item 

is (SC) which gives a result 1 for analyse. Since 

this is also the last item, the result 1 is 

returned. 

In the course of doing this recognition, analyse has 

been called three times for the phrase name (SC). This can 

be improved by changing the definition of (CONDITION) to 

(CONDITION) = (SC)(RESTOF COND) 

(RESTOF COND) = (SC)`%and'(ANDCL)1 

'%or' (ORCL) l (SC ) 

The syntax of IMP is arranged to minimise back 

tracking. In order to take as little time as possible, the 

most common alternatives of a particular phrase name are put 

first. Unfortunately this does not always reduce the work 

done. For example consider the phrase name (SS) (source 

statement) in IMP. Its most common alternative is a (UI) 
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(unconditional instruction) which has twelve alternatives. 

This means that any (SS) which is not a (UI) must be tested 

against all twelve alternatives of (UI) before the next 

alternative of (SS) is examined. Consequently a fair amount 

of testing must be done before an alternative even halfway 

down the list is recognised. 

AML approaches the problem from a different angle. Of 

the two kinds of items that occur, a literal is much simpler 

to test. Hence the analyser first looks for any literal 

expected in an alternative, and if these match, then the 

phrase names are tested. Let us reconsider the definition of 

the phrase name (CONDITION). The definition is the same in 

AML as in IMP, i.e. 

(CONDITION) = (SC) '%and' (ANDCL)i 

(SC) **%or** (ORCL)I(SC) 

If the text 'x>1' is tested against this phrase name, the 

steps taken are as follows. 

1) Find the first literal of the first alternative of 

(CONDITION). This is '%Oand'. 

2) 'x>1' does not contain '%and', therefore move to 

the second alternative. 

3) The first literal of this alternative is O%oro. 

.0 

x>1O does not contain this literal, so move to the 

next alternative. 

4) This alternative does not contain any literals, so 

consider the first phrase name,(SC), which is 

tested against 'x>1'. 
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5) The result obtained is 1, and there is no other 

item in the alternative. Therefore 'x>1' has been 

recognised as the third alternative of 

(CONDITION). 

Using this method, the test of (SC) against 'x>l' is 

only done once. In general if alternatives containing 

literals are listed first in the definition of a phrase 

name, the quick test for literals is sufficient to dismiss 

many cases, and the recursive call on Analyse is not needed. 

Thus the method of approach is as follows. 

1) Get the first alternative of the definition. 

2) Search it for a literal. 

3) Match the characters of the text against this 

literal L. Go to (6) if there is no such L in the 

text. 

4) If there are items before L. or if no literal was 

found in SYN, call Analyse for each item of the 

alternative. Go to (6) if any of these calls fails. 

5) Result is 1 (success) if there was no literal, or 

if the literal was the last item of the 

alternative. Otherwise search the remainder of the 

alternative for the next literal L, and go to (3). 

6) Result is 4 if this was the last alternative. Get 

the next alternative, and go to (2). 

More code is needed in the more sophisticated analyser, 

and so saving time, as so often happens, requires an 

increase in space. Appendix C gives some figures measuring 
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the difference in performance of the two methods. 

7.2 Lists and Null Expressions 

In describing any syntax, it is frequently necessary to 

describe a list of some entity, for example a list of names, 

a list of array bounds, or a list of formal parameters. The 

general form of the description is always the same. Let 

(NLIST) define a list of instances the phrase name (N). 

Then the definition of MIST) is 

(NLIST) = (N) ',' (NLIST) I (N) 

Because this form is so common, it was decided to adopt the 

convention that a '*' occurring after any phrase name 

indicates that a list of that phrase name is allowed, so 

that (N)* = (NLIST). For example, an array declaration is 

defined as 

A%array' (ARDEFN)* 

that is, the literal '%array' followed by a list of 

(ARDEFN)s. 

In several places there are also items which may or may 

not be present. In other words they are allowed in the 

alternative, but their absence does not cause the 

alternative to be rejected. To indicate this property these 

items, which may be literals or phrase names, are followed 

by a '?'. For example, the assignment statement is defined 

as 

%real'?(NAME)(LIST)?"='(EXPR). 

Examples of assignment that fit this definition are 

x _ 1 
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%real y = 1 

p(3) = z 

%real q(a) = x 

A list of phrase names may also be followed by a 

question mark. 

For example, 

.. 
%do' (LB)*? (i) 

then 

%do 1:1 

%do 1:1,2:3,4:5:1 

%do 

are all examples of W. 
7.3 Built in Phrases 

The discussion so far describes and justifies the 

syntax given in Appendix A. Also a rough outline has been 

given for the approach to part (3) of the tasks that have 

been set. Before considering part (2), a brief discussion on 

built in phrases is needed. 

A phrase is said to be 'built in' if the syntax 

analyser is not applied to is in the usual way, but instead 

special steps are taken to recognise it. For an example, let 

us consider the phrase (NAME). A (NAME) in IMP or AML is 

defined as a letter followed by a string of digits or 

letters. This informal statement defines the phrase to the 

user. However to define it following the formal rules of 

syntax is quite tedious. 

(NAME) = (LETTER)(RESTNME)*? 
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(RESTNME) = (LETTER) I (DIGIT) 

(LETTER) = VIVI 
(DIGIT) = "O'C1"I ... 

. . . y 
.I.z. 

.9. 

Moreover there is a much quicker way of deciding whether a 

piece of text is a letter than to apply the formal 

definition. If t is an integer in IMP, then the condition 
.a.<_t<_.z. 

is true if t represents a letter, and false otherwise. 

Hence it is possible to make (NAME) a built in phrase, and 

write some code using the test described above to decide 

whether the text being considered is a (NAME). This is what 

happens in IMP. In AML the situation is different. The input 

to the analyser is not the source text, but the modified 

statement that was described earlier. Hence to establish 

whether the text is a name, it only necessary to check that 

it is of the form '%'n, where n is any number. 

There are eight built in phrases in AML; the reasons 

for choosing these particular phrases to be built in are 

given later. 

7.4 The Stored Form of the Syntax. 

The form of the syntax which can be stored in AML is 

also derived from IMP. A short array, SYN, is used to hold 

the information. Let the phrase P be defined as 

(P) = I1 12 13 1 I4 15 16 1 17 I8 I9 

Fig. 1 describes the entries in the array for this 

definition. 
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1k 111 1I2 1I3 1 m 1I4 1I5 1I6 1 n 1I7 1I8 1I9 1 0 1 

1 1 1 ! 1 1 

---------->----- ---------->---- 

Fig. 1 

-------->------ 

The description of P begins at j. SYN(j) points to k, the 

location after the last item of the first alternative. K 

points to the end of the second alternative, m, and m points 

to the end of the third alternative, n. Since this is the 

last alternative, SYN(n)=Q. 

Now let us consider the items. These can either be 

literals or phrase names. For the former the ISO value of 

the character is stored, and for the latter a pointer to the 

beginning of its description. However we must recall the 

alterations that were made to the statement as it was read 

in. Key words are replaced by their key numbers, which are 

in the range 129 to 255. Hence literals, which may be ISO 

characters or key numbers, lie in the range 10 to 255. To 

distinguish between pointers to phrases and literals, it is 

therefore necessary to make the pointers have values outside 

this range. The pointers all refer to locations in SYN, so 

the array was chosen to have bounds from 256 upwards. 

Two minor points remain. *' and '?' must also be 

represented in SYN, but cannot have their ISO code values. 

So -1 was chosen to represent '*', -2 for '?', and -3 for 

the combination '*?'. Secondly, built in phrases are not 

described in the syntax, and so cannot be represented by 
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pointers to SYN. Since 10 is the smallest number that 

represents a character, the numbers one to eight are used to 

represent the built in phrases. 

Example, 

The alternative of (ACTIVEST) that defines a routine 

declaration is 
11 

%olocal'? (RT) (NAME) (FPP)? -%at' (LB) 

This is represented in SYN as 

11301-1 14331 1 14381-1 11361 5 1 

where 

130 is the key number of '%local' 

-1 represents 

433 is the position in SYN of the definition of (RT) 

1 represents the built in phrase (NAME) 

438 points to the definition of (FPP) 

-1 represents '?' 
136 is the key number of '%at' 

5 represents the built in phrase (LB). 

7.5 The Routine Analyse 

Each statement that is read in to the system is 

processed by the routine called Analyse. Using the 

information contained in SYN, it processes the text held in 

the array AR, between positions m and n. If it recognises 

the text, it puts the analysis record of AR in PAR, and 

returns with result 1. Otherwise the result is zero. "Ptr' 
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gives the position in PAR at which the analysis record ends. 

10 

phr' is the number of the phrase name that is to be matched 

against AR. Thus from the main body of the program, the 

routine is called with phr set to the phrase number of 

(ACTIVEST). However phr may take the value attributed to any 

accessible phrase name. The analysing itself is done by the 

function Anal which is local to Analyse. Its parameters a, 

it, and ptr, correspond in meaning and type to the parameters 

of the same name in Analyse. The integer parameter i points 

to the beginning of the description of the syntax in SYN, 

except for built in phrases, when i is the phrase number. 

We will discuss the general case first. Built in phrases and 

the handling of '*' and '?o will be described later. 

To make the process easier to follow, we will examine 

how Anal deals with a particular statement. The example 

chosen is 

%do 5:3 %unless i = 7 

which is to be tested against (ACTIVEST). On entering 

Analyse, j is set to LINE(i), which points to the beginning 

of the phrase name in SYN. The variable p (global to Anal) 

is set to m, and anal(j,m,n,ptr) is called. 

In Anal, SYN(i) contains a pointer to the place where 

the second alternative begins, and so the locations between 

i and SYN(i) must be examined. 



i SYN(i) 
1 ! 

! 1 ! 1 ! ! 

! ! ----------- > ---------- 

Fig. 2. 

Thus Anal cycles through the locations i+1 to SYN(i)-1 to 

determine whether any of the entries here are literals. 

(Values for literals are between 10 (newline) and 255.) Let 

us suppose that SYN(j) contains a literal. Now the routine 

must cycle from m to n to see if AR contains that same 

literal. If it does not, this alternative does not match 

AR. Hence i is set to SYN(i), and the process is repeated. 

If SYN(i)=O, however, no more alternatives are available, 

and so the result is zero. 

Returning to our example, suppose the first alternative 

of (ACTIVEST) is 

(UNCONDST) '%if' (CONDITION) 

This is represented in SYN as 

256 
i 

12601 Q 11291 R I ! 

Fig. 3. 

where Q points to the description of (UNCONDST), and R 

points to the description of (CONDITION). At SYN(258) we 

find the number 129, which is the key number of '%if'. This 

does not occur in the statement we are processing so we pass 
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on to the next alternative. 

If the literals do match the beginning of statement 

should be processed. (Assuming that the key word is not at 

the beginning.) Let the literal in AR(k) be the same as that 

in SYN(j). Then anal(syn(i+l),m,k-1,rl) is called, where rl 

is a pointer to the array PAR. (A different variable from 

ptr is used in case some part of the statement is not 

recognised.) If Anal returns the result zero, we move on to 

the next alternative. Otherwise p will point to the last 

element of AR that was recognised. In the example, let the 

second alternative of (ACTIVIST) be 

(UNCONDST) '%unless' (CONDITION). 

The representation in SYN is 

12641 Q 11301 R I 

! ! ! 

-->--- ------->-------- 
260 

Fig. 4 
The statement we are examining contains the literal 

I- 
%unlesso, and so the first part of the statement, i.e. 

%do 5:3 

is examined. Hence anal(Q,m,k-l,rl) is called, and returns a 

result one, since 
, 
%do 5:3" is recognised as an 

(UNCONDST). P points to k. In the example we have only one 

entry between i and j. In general, however, Anal is called 

for each cell between them, provided that in each case the 

result from the previous call was 1. M is set to p before 
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each call. 

After the last call, p must point to k, since there can 

be no unrecognised part before the literal. Then m is reset 

to the position after the literal, i points to j+1, and we 

return to the beginning of the process. 

If the cells between i and SYN(i) have no literals, 

Anal must be called for each entry of the alternative. Thus 

in the example, anal(R,k+l,n,rl) will be called. When all 
the cells have been used, p is set to the position after the 

last recognised cell of AR. There is no need for the whole 

statement to be recognised at this stage since another call 

of Anal may deal with the end of it. However the whole 

statement may not be recognised before all the necessary 

calls of Anal have been made. When control eventually 

returns to Analyse, the result of that function is 1 

provided that the result of Anal is 1, and that p=n+l. 

It is possible to have more than one (ACTIVEST) in one 

statement, provided that they are separated by semi-colons. 

Hence if a statement has been recognised as an (ACTIVEST) 

and if p<n+l, with AR(p)=';', Anal is called again for 

(ACTIVEST), for the rest of AR. Then when each (ACTIVEST) 

has been identified successfully, PAR(1) will contain the 

number of (ACTIVEST)s there are in the statement. This is 

permitted only for the phrase name (ACTIVEST), and for no 

others. 
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7.6 The Analysis Record 

So far the discussion has shown how Analyse determines 

whether a statement belongs to the syntax of AML, without 

any reference to the analysis record that is set up. This is 

contained in the array PAR, and the final result is of the 

form given by Fig. 5. 

! L ! A ! I I 111 ------- - - - - - 
AR1 ARn 

Fig. 5 

where L is the length of the record, and A is the number of 

the alternative, and AR1 ... ARn are the analysis records of 

the phrase names of the alternative. 

When Anal is first entered from Analyse, the name type 

parameter ptr has been set to 2. This is the pointer to 

PAR. If there is only one alternative of the phrase name, A 

is ommitted. In this case rl=ptr+1, otherwise rl:ptr+2. 

Hence when Anal is called with ri as the name type 

parameter, another pointer to PAR is set up. 

PAR ! ! ! ! ! ! ! ! 

lst call I ! 1 

of anal ---> ptr rl I 

2nd call ---> ptr r1 

Fig. 6 

As an example, let us consider the alternative 

(IU)(CONDITION) `%then'. (ELSECL) 
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of (ACTIVEST). This will be matched against the statement 

%if i = 0 %then %do 3 

The literal #%then's match, and so Anal is called for 

(IU), whose definition is 

%if' 1 '%unless'. 

At this stage the pointers to PAR are in the position given 

by Fig. 6. 

The literal '%if's are matched, and since this ends an 

alternative of (IU), Anal returns with result 1. Before it 
does so, however, PAR must be filled in. The position 

PAR(ptr) is filled with the length of the analysis record of 

the phrase (i.e. ri -(ptr + 1). The position PAR(ptr+l) 

holds the number of the alternative that was recognised. 

Ptr is set to rl Iu*, and the function returns. These values 

are filled in every time a successful match is made. 

Fig. 7 gives the description of PAR after this match. 

PAR 1 1 1 1 1 1 1 1 1 

(L) (A) 1 

lot call ptr rl 
Fig. 7 

Now Anal is called for (CONDITION), which is handled in 

the same way. Fig. 8 describes PAR after the successful 

recognition of (CONDITION). 



1<-----LC------>1 
1 1 

PAR I I 1 1 1 1 1 LC 1 3 1 1 1 1 1 1 1 

1 1 1 1 

l 1<-AR of SC->I I 
ptr ri 

Fig. 8 

The definition of (CONDITION) is 

(SC) '%and' (ANDCL) I (SC) "%or' (ORCL) I (SC) 

and 'i = u, is recognised as an (SC). Hence the alternative 

number is 3. LC is the length of the analysis record of 

(CONDITION). 

Finally the (ELSECL) is recognised, and when this has 

been done, the whole alternative has been matched. Hence 

PAR(ptr) and PAR(ptr+1) are filled in, and the function 

gives the result 1 to Analyse. 

1<---------------------L-------------------->1 

P A R 1 L 1 7 1 1 1 1 I LC 1 3 1 1 1 I L EI 1 1 1 1 

1 1 1 

1<-------- LC---- >1<---- LE--->1 

Fig. 9 

Fig. 9 shows the final contents of PAR. The alternative we 

were considering is the 7th of (ACTIVEST). 

7.7 Processing the Symbols * and ?. 

So far we have made no reference to the negative 

numbers that occur in SYN, to indicate the possibilities of 

lists or empty expressions. Checks are made in two places. 

1) If a literal is found in an alternative, and is 
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followed by a -1, the negative number is skipped if 

the literal matched with the phrase being examined. 

If the literal does not occur in the phrase, 

however, 0 is entered in the array PAR and the 

processing continues with the same alternative. 

2) Let us suppose that SYN(i) has the value 

Anal has just been called for j 
j, and 

Then if 
SYN(i+l) is negative the following process takes 

place. 

a) If SYN(i+l)=-l, no action is taken if the 

result of Anal was 1. If it was zero, the 

value 0 is entered in PAR, and the process 

continues with j set to SYN(i+2). 

b) If SYN(i+l)=-2, and the result of Anal was 1, 

we must consider the possibility of a list. 
Hence if AR(p)=',' then m is set to p, and 

Anal is called again for j. This process is 

repeated until either AR(p)#',' or the result 

of Anal is 0. Space has been reserved in 

PAR for the number of occurrences of the 

phrase, and this number is inserted before 

the analysis record of the first occurrence. 

Fig. 10 shows the analysis set up by a list 
of p instances of the phrase name N. 



I Lip I I I I 

1 ! - - - - - 1 ! 
!<-- AR1--->l 1<--- Rp--->l 

where L = length of analysis record 

p = number of N's 

AR1 ... ARp are the analysis records of the N's 

Fig. 10 

c) If SYN(i+1)=-3, then the value 0 is entered 

in PAR when the result of Anal is zero. 

Otherwise we proceed as for (b). 

7.8 Built in Phrases 

The syntax given in Appendix A is not complete. Eight 

phrase names are not defined, because an ad hoc method of 

analysing them was thought better than a rigorous syntax 

description and analysis. For these eight, LINE(n)=0, 

(n=1,...8). A jump to the appropriate switch in Anal gives 

the method for dealing with these phrase names. 

1) NAME 

Names are read into the dictionary by Read or 

print, and replaced by the special sign '%', 

followed by a number which gives the position of 

the name in the dictionary. Hence to analyse a 

name, Anal merely checks for the '%', and copies 

the number following it into the analysis record. 

Example 

(OPD) = '('(SELECTOR)?(EXPR)')' I (cONST) I 
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(NAME)(PLIST?) I (LB)? 

if 
0 
p' is to be recognised as an operand, the 

analysis record is given by Fig 11. 

1 3 1 3 1 Hpl 4 1 

l 
(L) (A) 

Fig. 11 

where Hp is the hash code of p. 

2) CONST 

The internal form of a constant is described 

in detail later. Anal changes the string of digits, 

with the symbols '.' and '@' into the internal 

form. At this stage, the only constants recognised 

are integers and reals. (Rationale and long reals 

are created when an expression is evaluated.) The 

string of characters that represents the number is 

changed into that number. If it is real, it is 

stored in an integer location by the IMP statement 

I = INTEGER(X). 

Then the number, preceded by a code number 

indicating its type is copied into five bytes of 

PAR. 

Thus the analysis record for '15' as an 

operand is given by Fig. 12. 
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code 

1 6 1 2 1 1 1 0 1 0 1 0 115 1 

(L) (A) 

Fig. 12 

3) EXPR 

The usual syntactic definition 

expression as 

(EXPR) = (OPD)(OP)(EXPR) I (OPD) 

of an 

is highly unsatisfactory when evaluating 

expressions, as the structure obtained is 

completely unlike that which the expression implies 

arithmetically. It was therefore decided to 

maintain a 'flat' structure in the analysis of 

expressions. The method of analysing an expression 

can be described by a short flow diagram, Fig. 13. 



* is there a * I insert 0 1 

* preliminary minus ? *--->--1 in AR 1 

* * yes 1 1 

1 1 

! no 1 

I insert '1 l 1 move up 1 

I in AR I I pointer I 
! 1 1 ! 

1 1 

! ------------<-----------1 

1 initialise I 
I count I 
I I 

I call Anal I 
--->---1 for opd.0 

1 

1 1 1 

1 1 

! * is * 
next character * 

-<--* an operator ? * 
yes * * 

* * 

! no 

1 Pill AR 1 

Fig. 13. 

The analysis record for the expression 'a*b' is 

given by Fig. 14. 

C G 

1 ! 
1 2 1 1 1 3 1 3 181 1 0 1 1 1 3 1 3 1 3 185 1 0 1 

1 1 1 1 1 1 1 1 

A B D H E F 1<------b------>1 

Fig. 14 
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where 

A gives the number of operands 

B is 1 if the expression is preceded by a plus 

(possibly implied) and is 0 if the expression is 

preceded by a minus. 

C is the length of the first operand 

D is the alternative of the first operand 

E is the length of the operator 

F is the alternative of the operator 

G is the length of the list following the name 

H is the hash code number of 'a'. 

4) PATTEXPR 

This would be described syntactically as 

(PATTEXPR) = (PATT)(OP)(PATTEXPR)I(PATT) 

Hence the same arguments are used as against a 

rigorous syntax of (EXPR), and the method of 

analysing this phrase name is exactly that 

described in (3). 

5) PRIMES 

It is far simpler to count the number of 

primes occurring in a (PLIST) than to define 

(PRIMES) rigorously. Primes are used to denote 

differentiation, as in f'(x). 
The analysis record of this as a (BASIC OPD) 

is given by Fig. 15. 
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IL+5131DfIL+2111L1 I 

I 

1 1 1 1 ! 

1 1 I 1<-AR of list->I 
A B C 

Fig. 15 

where 

A is the alternative of the operand 

B is the position of f in the dictionary 

C gives the number of primes 

6) LB 

This is another case similar to (3). 

rigorous definition of (LB) would be 

(LB) = (':')?(LEXPR) ':' (LB) I (':')?(LEXPR). 

The 

The analysis record obtained for ': 5 : 7, is given 

by Fig. 16. 

length 1st length 2nd 
alt alt 

1 1 

122 1 2 1 0 1 5 1 1 1 0 0 0 5 1 5 1 1 1 0 0 0 7 1 

1 1 1 1 1 1 1 

L A B I<----5---->I 1<----7---->! 

Fig. 16 

where 

L is the length of LB 

A gives the number of LEXPRs in LB 

B is set to 1 for a full label, and 0 for an 

abbreviated label 
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7) Lists 

By either method of analysing syntax, lists 

can cause an unnecessary amount of back tracking. 

For instance, consider the list 

(a,(b+c),(d+(e+f)),g) 

Once a left hand bracket has been recognised, the 

first right hand bracket encountered is assumed to 

be its partner. Therefore 

a,(b+c 

would be tested as members of a list. This would 

fail, since '(b+c' would be faulted. Next 

a,(b+c),(d+(e+f) 

would be tested, and this would also fail. It can 

be seen that a great deal of time will be wasted by 

this method. To avoid this, AML counts the brackets 

it encounters for the built-in phrase (LIST), and 

only when the correct matching bracket is found 

will the elements of the list be processed. The 

algorithm for counting brackets is: 

1) Count = 0. 

2) Read character. 

3) If it is add 1 to count. 

4) If it is subtract 1 from count. Result 

is zero if count is negative. Required 

bracket has been found if count=0. 

5) Go to (1) unless text is ended. 

6) Result is zero, unless count is zero. 
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8) (TEXT) 

The characters between quotes are stored in 
ALG. Hence the analysis record is merely a record 

of the position at which the text is held. (See 

Chapter 9 for details). Double quotes inside the 

text that are intended to represent a single quote 

are also copied into ALG; the alteration to the 

text is done when printing occurs. 



VIII Implementing AML - Organisation of Store 

The steps given for executing an unlabelled statement 

were two-fold: 

a) Find the analysis record of the statement 

b) Obey it. 

Part (b) is dealt with by a routine called Exec, which 

assumes that it is examining the analysis record of an 

(ACTIVEST). Hence the first thing it does is to discover 

which alternative of the (ACTIVEST) it is processing, and 

branch to the piece of program which deals with that 

alternative. 

The alternatives of an (ACTIVEST) can be grouped as 

follows: 

1) '%local' and '%empty' statements. 

2) Conditional instructions. 

3) Array and routine declarations. 

4) (UNCONDST). 

The conditional instructions take three forms: 

(UNCONDST) `%if" (CONDITION) 

(UNCONDST) .%ounless" (CONDITION) 

(IU)(CONDITION) '%then' (ELSECL) 

For each of these, the condition is tested, and if the 

required condition is returned (i.e. TRUE for '%if* and 

FALSE for 'Unless'), the (UNCONDST) is obeyed. 

(UNCONDST) is also dealt with by Exec, again making a 

jump to the appropriate piece of program. Hence a rather 
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sketchy algorithm can be given for the routine Exec as 

described so far. 

1) Jump to the piece of program dealing with the 

alternative being processed. 

. . . . . . . . . . . . . . . . .. . . . .. . . . . . 

2) Conditional statements - work out the condition. 

If the required one is given, go to (4). 

3) Return if the (UNCONDST) is not to be executed. 

. . . ................. . . ...... . 
4) Uncondst - jump to the piece of program dealing 

with the current alternative of (UNCONDST). 

The (UNCONDST) which will be discussed first is the 

assignment statement, in its simplest form, i.e. 

(NAME) '=' (EXPR) 

which assigns an expression to a scalar variable. 

Since there are no declarations for scalar variables, 

this may be the first time that the NAME in question has 

been mentioned. Also the (EXPR) being assigned to it may be 

of any type. There are three things to be considered here. 

1) What information is there already available? 

2) What information must be stored? 

3) How can this be done? 

1) When the statement was first read in, the NAME was 

placed in a dictionary, and was replaced in the 

statement by a unique number, which is the hash 

code of the name. This number is used to represent 

the name throughout the implementing program, and 
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at this stage is all the information available. 

2) The information that must be stored is of course, 

the value of the expression. Since no information 

about the type is attached to the name, a type must 

also be given to this value. The possibilities are: 

integer 

rational 

real 

long real 

algebraic 

The discussion has assumed that the name has not 

been previously assigned a value. If this is not 

the case, we have two possibilities 

a) The old value should be overwritten. 

b) The name has been declared "%local', so the old 

value must be saved before the new value can be 

stored. 

3) Bearing these considerations in mind, we can 

discuss the way in which the information is to be 

stored. Since each name is associated with a unique 

number between 0 and 255, an array called VAL whose 

bounds are also 0-255 is used. Hence if h is the 

hash code of the NAME, VAL(h) will give information 

about the contents of NAME. However the amount of 

information to be stored depends on the kind of 

value that NAME has, and so it was decided to use 

another array, INFO, to hold the information, while 
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VAL points to the place in INFO where it is held. 

Fig. 1 shows this situation. 

DIC VAL INFO 

! ! ! ! l........! 
h->-1 NAME I 

l--------->-------- 
! ! ! 
! ! ! 

h is the position 

of NAME in DIC 

VAL(h) points to the 

position in INFO where 

the information is held. 

Fig. 1 

8.1 How INFO is Organised. 

INFO was chosen to be a short integer array; an integer 

array results in a fair amount of waste space, while a byte 

integer array would involve an unnecessary amount of 

shifting to get values in and out. It is in fact used to 

describe all names; arrays, routines and parameters, as well 

as scalar variables. Its bounds are 1 to 5000. The variable 

iptr is used to point to the next available location of 

INFO. Whenever there is not enough space left after iptr to 

store the information describing the NAME being considered, 

a garbage collection routine is called. This will be 

described in Chapter 9. It is possible that a block of 

information in INFO may no longer be required. This happens 

for three reasons. 
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1) The information describes a value type parameter 

to a routine that is being ended. 

2) The information describes a variable or array 

that is local to a routine that is ended. 

3) The instruction '%empty' requires the 

information to be removed. 

The blocks of information that are no longer needed are 

chained together, with a variable called free pointing to 

the beginning of the first block. The garbage collection 

routine, when it is called, moves these free blocks to the 

end of INFO, thus making them available for re-use. Fig. 2 

shows the alteration. 

Before 

free iptr 
1 1 

1 1 1 ! ! 1 1 1 

I 1 1 1 

--------->--------- --------->----- 

After 

iptr 
1 

! ! 1 1 ! 1 

Fig. 2. 

8.2 Scalar Variables 

Now let us examine the kind of information that must be 

stored in INFO. For a scalar variable, the values that may 

be stored are 

integer - takes up one machine word 
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real - takes up one machine word 

rational - takes up two machine words 

long real - takes up two machine words 

algebraic - takes up an unknown number 

of bytes. 

It was decided that five locations would be reserved for a 

scalar, no matter what type of expression was assigned to 

it. This means that space is wasted in some cases. However 

this method was thought preferable to that of assigning the 

exact amount required in a particular case, and so possibly 

having to re-allot space later, 

The five locations are organised as follows: 

1) integer 1 1 1 1 l 1 ! 

1 1-----1 1-----! 
code value empty 

2) real 1 2 1 1 l 1 1 

1 1-----1 1-----1 
code value empty 

(put into an integer 
location using the mapping 
function 'integer') 

3) rational 
1 3 1 1 1 1 1 

1 1-----1 1-----1 
code numer- denomo 

ator inator 
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4) long real 

5) algebraic 

1 4 1 1 ! 1 ! 

! ------------- 
code value (put into 2 integer 

locations using the mapping 
function 'integer') 

1 5 1 1 ! ! ! 

1 ! 1-----1 
code I empty 

pointer to access the 
algebraic expression 
which is stored in ALG 

It will be seen that ALG is used in another context; it 
holds the algebraic expressions that form the value of some 

variable. 

The method used for assigning a value to a variable is 

given here. This is correct only for variables that are 

global in the program. 

Let H be the hash code of the name. Then if 

VAL(H) is zero, no value has previously given to 

this name. Therefore the next five locations of 

INFO after iptr are used. VAL(H) is set to point to 

the first of these. If there are not five locations 

available, the garbage collection routine must be 

called first. If VAL(H) is non-zero, the value 

being assigned will overwrite the current value. 

If the old value is an algebraic expression, it 
must be erased from ALG by replacing the first 

entry by 255 (See Chapter 9). The new value is put 

into INFO according to the method described above. 
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If the new value is algebraic, it must be copied 

into ALG, and pointers set to the beginning and end 

of the expression. Again, see Chapter 9 for a full 
description. 

The algorithm for extracting the value of a variable is 

very similar, and so will be given here. 

1) Let H is the hash code of the name. 

2) If VAL(H) is zero, no value has been assigned to 

this name, so it is an algebraic constant. 

3) The location of INFO that VAL points to 

type of the value assigned to the name. 

taken next depend on this number. 

gives the 

The steps 

4) If it is 1, the value is an integer, and its value 

is given by the equation 
IC 

j=INFO(k+l)<< 1INFO(k+2) 

where k=VAL(H) 

5) If it is 2, the value is a rational, whose 

numerator is given by 
IC 

I NFO(k+1) <41 INFO(k+2) 

and denominator by 
K. 

INFO(k+3)«IkIINFO(k+4) 

6) If it is 3, the value is real, and is given by 
114 

i=INFO(k+1)«$IINFO(k+2) 

x--real(i) 

7) If it is 4, the value is a long real and is 

obtained in a manner similar to that of (6). 

8) If it is 5, the value is algebraic. Let 
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p=INFD(k+l). This will give the position of the 

expression in ALG. (See Chapter 9.) 

8.3 Arrays 

Now let us consider the assigning of a value to an 

array element. Any expression may be assigned to an array 

element, so five locations of INFO are required for each 

element. However there is not a pointer in VAL available for 

each element, so the locations are saved when the array is 

declared, and the routine handling the assignment must 

discover which of these locations it is concerned with. 

Suppose that an array A is declared with bounds L and 

U, i.e. 

%array A(L:U) 

and that an element A(i) is to have a value stored in it. 
Then the five locations that hold the value of A(i) begin at 

INFO(A(L)+(i-L)*5). 

The value of i must be calculated at the time of the 

assignment, but the value of L and the position of A(L) are 

determined by the declaration. Moreover if two arrays are 

declared in one statement, e.g. 

%array A,B(L:U), 

the value of L is common to both, although the positions of 

A(L) and B(L) are of course different. 

For a one-dimensional array only the value L is needed. 

However for multi-dimensional arrays the situation is more 

complicated. Let us consider the two-dimensional array 
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%array C(1:5,1:4) 

For this, 20 sets of five locations must be saved on 

INFO. This is essentially storing a two-dimensional array as 

a single dimensioned array. Let us consider the more general 

case, where C is declared as 

%array C(Ll:Ui,L2:U2) 

and the element C(i,j) is required. The first position on 

INFO of C(i,j) is given by 

C(Ll,L2)+((i-Ll)*(U2-L2+1)+j-L2)*5 

In this case, i and j must be calculated at the time of the 

assignment, but the values Li, L2 and U2 are known when the 

declaration is made. Moreover these values are required for 

all arrays in the statement declared to have the same 

bounds. Hence they can be stored in one place, and accessed 

by all the arrays concerned. To calculate the position of 

C(i,j), only Li, L2 and U2 are needed. However, to check 

that i and j lie within the bounds of C, U1 must be recorded 

as well. Therefore for an n-dimensional array the bounds be 

stored are 

Lip U1, L2, U2, .... Ln, Un. 

These values are said to form the Dope Vector of the 

array, and are also stored in INFO. It is necessary to have 

a code number for an array, to distinguish it from a scalar. 

This code number is chosen to be 6. Hence when an array is 

declared, the space saved for it on INFO is as given in 

Fig. 3. 
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1---------- total length - L----------1 

1 6 1 1 L 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

code pointer 1st 2nd last 

to Dope element element element 
Vector 

Fig. 3 

The length L is used when removing an array description from 

INFO. 

The Dope Vector for a two-dimensional array would be 

I N 1 2 1 Li I U1 I L2 I U2 I 

1___lrl ! 1 1 1 

N is the number of arrays using this dope Vector. It is 

decreases by one every time an array description is removed, 

and when the last array description has been deleted, the 

Dope Vector is also removed. The second entry is the number 

of dimensions of the array. 

The algorithm following is for the general form of an 

array declaration, excluding the word '%local'. In other 

words, for 

%array (ARDEFN)* 

where (ARDEFN) = (NAME)*`(`(BOUND PR)*')L*. 

1) Consider the first bound pair of (ARDEFN). 

2) The Pope Vector is constructed, as described in (3) 

to (8). 

3) Let N be the number of names preceding the list of 

bounds, and D the number of dimensions. 2*D+2 
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spaces are saved on INFO, Dv be;ng the first of 

these. N and D are stored in the first two 

locations. Let L=1. 

4) Consider the first set of bounds. 

5) The lower and upper bounds, J and K, are evaluated, 

checking that J<K. Set L=L*(K-J+1). 

6) J and K are stored in the next two locations of 

INFO. 

7) (5) and (6) are repeated if there is another set of 

bounds. 

Steps (8) to (11) process the names of the arrays. 

8) Consider the first name of (ARDEFN). 

9) Save 5*L+3 locations on INFO. 

10) If H is the hash code of the name, then VAL(H) is 

set pointing to the first of these locations. 

11) The code number, 6, is stored in the first 
location, the position, Dv, of the Dope Vector in 

the second, and the value 5*L in the third. The 

remaining locations will be used to hold the values 

of the individual elements. 

12) Steps (9) - (11) are repeated if there are any more 

names. 

13) Go to (2) if there are any more (ARDEFN)s. 

Now let us consider the assignment of a value to an 

array element. This process consists of two parts. 

a) Find the position in INFO which is to be used for 

the element in question. 
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b) Fill these five locations with the information 

which describes the value. 

The second part of this process is identical to that 

used for scalar variables, and so will not be described 

here. 

If an array A has n dimensions, given by 

L1:U1, L2:U2, ... Ln:Un, 

then the position of an element A(Il,I2,...In) is given by 

the formula 

k + 3 + Sn*5 

where k is the first position on INFO of the description of 

A, and Sn is given by 

Si = I1 - L1 

Sj = Sj-1*(Uj - Lj +1) + Ij - Lj, j=2,3,...n 

The steps taken in AML to find this position are 

1) Let m point to the description of A. 

2) Let d point to the beginning of the Dope Vector 

(INFO(m+1)) 

3) Check that the number of dimensions coincide. 

4) Set k=O and s=O. Do (5) - (8) for j=1,1,n 

5) Calculate the value I if the next subscript. 

6) Check that it lies between Lj and Uj. 

7) If j=1, set t=1, otherwise t = Uj-Lj+l 

8) Set s = s*t + I - Li, k = k+s. 

9) The required position is m+k*5+3, which points 

the first of the five bytes reserved for 

element. 

to 

the 
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The algorithm for finding the position of an array 

element to read its value is, of course exactly the same. 

Two points must be made. First, if the subscripts of the 

array do not all evaluate to integers, the array element is 

treated as an algebraic constant. Secondly, even if the 

subscripts do have integer values, there may be nothing 

stored in the element. In this case there is a zero in the 

position of INPD that VAL points to. The element is treated 

as an algebraic constant. 

8.4 Routines and Functions 

The declarations of routines and functions are treated 

in exactly the same way, except that the code numbers are 

different. For a routine the code number is 8, and for a 

function it is 7. Therefore discussion will be confined to 

routines, and the first to be considered will be routines 

without parameters, for example 

%routine alpha %at 1:1. 

The information that must be stored for this routine is 

1) the code number. 

2) the position in the Storage Tree at which the 

body of the routine is held. 

3) the number of parameters, in this case, zero. 

Hence three locations are reserved on INPD, and 

VAL(H) is set pointing to the first of these (where H is the 

hash code of alpha). The code number, 8, is stored in the 

first of these locations. The position, S, of the label in 
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the Storage Tree is calculated, and put in the second 

location, and zero is put in the third location. Fig. 4 

describes this situation. 

DIC VAL INFO 

! ! 1 ! i .... l 8 1 S 1 0 1.. 

! ! ! ! 1 

! 1 1 1 ! 
H->-l ALPHA I H->-lI----- >----------- 

l ! 1___l 
1 ! ! l 
! ! ! 1 

Fig. 4. 
When the routine is called, since there are no 

parameters, the block at S is executed immediately. When 

this has been done, control is passed to the statement to be 

executed after the routine call. 

8.4.1 Parameters. 

If the routine has parameters, more space is required 

to store information about them. At this stage two items of 

information are available: 

1) the name of the formal parameter 

2) its type. 

Therefore two extra locations are saved for each 

parameter. The first of these contains the code number for 

the type, and the second stores the hash code of the name. 

The code numbers for formal parameters are given below. 

9 %value parameter 

10 %name parameter 

11 %array parameter 
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12 %fn parameter 

13 %routine parameter 

14 %label parameter 

If the routine beta is declared as 

%routine beta(%value n,%name r) %at 2:1, 

then Fig. 5 describes the configuration that is set up, 

where T is the position of 2:1 in the Storage Tree. 

DIC VAL INID 

1 1 1 1 8 1 T 1 2 1 9 1 J 1 101 K 1 

1 1 1 1 

1 1 1 l 
I I BETA I 1--->---- 

i ! 1 

J I N 1 I 111 
K I R I I 

1 11 
1 1 1 

Fig. 5 

8.4.2 Calling a Routine - Value Type Parameters. 

Let us consider a routine that has one value type 

parameter. The routine is declared as 

%routine gamma(%value v) %at 3:1 

and the call could be 

gamma(3) 

Before the body of the routine is obeyed, the 

interpreter must 

a) Save any value attached to v. 

b) Create a new location, also called v. 

c) Evaluate the actual parameter, and put that value, 
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in this case 3, in the new v. 

d) When the routine is finished, the interpreter must 

restore the old value of v. 

DOTE : 

The AML implementation of value type 

parameters follows that of IMP. The parameter can 

be regarded as an initialised local variable; the 

programmer is at liberty to change its contents 

inside the routine. Unless he does, the value which 

is passed in at the time of the routine call is 

used every time the formal parameter is named. 

Evidently a push-down stack must be used. The routines 

may be used recursively, and it is possible for several 

values of v to be already stored when this call is made. 

This is true whether gamma is called from itself or from 

another routine. Initially, however, the discussion will be 

concerned with a routine called from the main program. The 

push-down stack consists of cells taken from from a free 

list whose two components are called CAR and CDR. This list 
is constructed by declaring CAR and CDR as arrays. The first 
free cell is given by a pointer called psl. 

The method used for AML for implementing routines 

differs from the standard method of using a stack and 

Dijkstra Display, that is associated with block structured 

languages like IMP and ALGOL. It must be remembered that 

blocks in AML are not the same as the blocks in the above 

mentioned languages. The difference can be shown in a 
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diagram, as seen in Figs. 6 and 7. 

IMP 

Main block->1 

I 1 

I 1 1 1 

Inner blocks --- >--I 
1 1 1 1 1 1 

1 1 1 ! 1 1 

1 1 1 1 

1 1 1 1 1 1 

1 --->-------1 1 1 

1 1 1 1 1 

1 1 1 1 1 1 1 

------------>-----1 1 1 1 

1 1 1___-1 1 1 

1 1 1 1 

1 1 1 1 

1 1 

1 1 

Fig. 6 

AML 

Main Level 

I I I 

1 

1 

1 

1 

1 1 1 1 1 1 

1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1------>1 1 1 1 1 1 

1 1__1 1 1 1---a----------1 1 

1 1 1 1 1 1 1 1 

1 1->---1 1 1 1 1 1 

1 1 1 1<-------------1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 

I 1 1 1 

1 1 

I 1 1 

Main Level 

Fig. 7 

The arrows show some of the possible paths of control. 
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Hence there is no textual level which can be used as 

the basis of stack organisation, as in IMP. 

A cell is removed from the free list by the statements 

k=psl ; psl=psl+l 

Then the cell k is available for use. To set up an actual 

%value parameter when a routine is called, a cell k is 

removed from the free list. If I is the hash code of the 

formal parameter, the contents of VAL(I) are copied into 

CDR(k). Then VAL(I) is set to point to K. Five new locations 

are reserved on INFO, and CAR(K) is set pointing to the 

first of these. Then the actual parameter, is evaluated, the 

result being put in the new locations of INFO. 

If T is the position of 3:1 in the Storage Tree, Fig. 8 

shows the situation after the statements 

%routine gamma(%value v) %at 3:1 

..... ...... ... . 
V--5 

gamma(3) 

have been executed. 



INFO 

1 81 T1 11 91 11...1 11 Of 51 01 01...! 11 Of 31 Of 01 

1 l 1 

---->----- 1 1 

1 1 ! 
DIC VAL ! 1 1 

! 1 l 
J !gamma! 1-> CAR CDR I ! 

I 1_1 ___T_ l l 
I l v 

! !! 1.,j __1 ! 
1 1 1 1 1 

I I l ---------------> ----------- 

Fig. 8 
INFO has bounds from 1 to 5000, and so CAR and CDR are 

numbered upwards from 5001. This ensures that it is easy to 

distinguish between a pointer to INFO and a pointer to a 

CAR-CDR cell when VAL is examined. 

At the end of a routine, the value in CDR is replaced 

in VAL(I), the cells in INFO that CAR points to are emptied, 

and the CAR-CDR cell is returned to the free list. (See 

Chapter 9 for details.) 

This method of setting up %value type parameters means 

that the description of the handling of assignment 

statements, given earlier, must be modified. The statement 

NAME = EXPR 

may possibly occur inside a routine that has a formal %value 

parameter called NAME. In this case, VAL does not point 

directly to INFO. So the method of finding the position in 

INFO in which the value of EXPR is placed, must be changed. 

1) Set K=VAL(I ). 

2) If K is zero, then get five new locations, as before. 
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3) If K<5001, the K points directly to INFO. 

4) If K>5000, K points to a CAR-CDR cell. Set J=CDR(K). 

5) If J>5000, J also points to a CAR-CDR cell. Therefore 

set K=J and go to (4). 

6) Otherwise, K=CAR(K) points to INFO. 

As an illustration of a more complicated situation, let 

us consider this piece of program 

%routine gamma(%value v) %at 3:1 

v=5 

3:1 ............ 

:1:5 gamma(7) 

.............. . 

gamma(3) 

This illustrates a recursive call on gamma. Gamma(3) is 

called from the main level of the program, and gamma(7) is 

called from inside the routine gamma, which is found at 

block 3:1. Fig. 8 describes the situation when the call 

gamma(3)' is made. Fig. 9 describes the situation when the 

statement labelled 3:1:5 is executed. 



INFO 

1 81 Tl 11 91 11..1 1 0 5 0 01..1 1 0 3 0 01..1 1 0 7 0 01 
1 wl _1_L____ 

1 1 

------>------ -----<------ 

J 

I 

DIC VAL I 

1 l 
igammal I->- I 
I 1_1 CAR CDR CAR CDR I 

1 ! 1 I 

I ! v ! 1->1 ! !->! ! !-> 

1 ! ! 1 

1 1 ! 1 

I 
1 

I 

I 
I 

-- - --- -- -- -- -> ------------------- 

Fig. 9 

8.4.3 %Name Type Parameters 

The emphasis is different for a %name parameter. It is 

not the value of the actual parameter that is required, but 

the position of it. No extra locations are saved on INFO; 

instead the CAR of the push-down cell is set pointing to the 

description of the actual parameter, which must, of course, 

be a name. If the actual parameter has not been mentioned 

before (i.e. it is an algebraic constant at this point), 

then space is saved for it on INFO, but this is not lost 

when the routine is ended. Let us consider an example. 

%routine delta(%name n) %at 4:1 

n=5 ; g=1 

delta(g) 

When delta is called, the interpreter must do two 

things. 

1) Save the old value of n. 
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2) Set the new n pointing to the locations of g. 

As before, a cell, k, is extracted from the free list, 
and the old contents of VAL(j) are stored in CDR(k). ( If j 
is the hash code of the formal parameter n.) CAR(k) is set 

pointing to INFO, to the position describing the actual 

parameter g. Fig. 10 shows this situation. 

INFO 

1 81 TI 11101 J1...1 11 01 5$ 01 01...1 11 01 11 01 01 

1 1 1 

1 1 1 

DIC VAL I I I 

I I I 
I !delta! I->-- I I 

! I 1 CAR CDR 1 I 111 I I 

J 1 n 1 1-1 1 1-> 1 

! I___! 1.-_! __1 I 
1 ! ! ! I 
! ! ! -------->----------------I 
! 1r1 1 

M 1 g I 1----------->---------------- 11-1 
Fig. 10 

Then if an instruction inside the routine refers to the 

formal parameter n, the operation required will take place 

on the actual parameter g. For instance, 

4:1:4 n=2 

will result in the value 2 being stored in g. When the 

routine is ended, the CAR-CDR cell is removed, but the 

locations of INFO must not be removed. To indicate this, the 

value in CAR for a name type parameter is stored as a 

negative number, the modulus of which points to INFO. Then 

the routine which removes the cells can tell that the 
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locations of INFO are not to be emptied. 

8.4.4 Array Parameters 

Since an array parameter refers to a number of 

locations, it acts like a %name parameter, and in fact as 

regards the setting up of the parameter description, they 

are treated exactly alike. An example which illustrates the 

call of an array parameter is 

%routine theta(%array a) %at 5:1 

%array b(1:10 ) 

......... . 

5:1 a(l) = 5 

theta(b) 

Fig. 11 shows the situation after 5:1 has been 

executed. I points to the position of 5:1 in the Storage 

Tree. 



INIO(p) 
1 

--------<-l---- <--b(1)--> 

1 81 11 11111 M1 11 11 11101 61 1501 1 0 5 0 01 

1 ! 1 

1---<--- 1--Dope---! 

DIC VAL 1 

J !theta! I->- 111 

Vector 

! ! ! CAR CDR 

M I a lkl---->--1-p 1 0 1 

! ! ! 1 

1 1_i -------->-----1 
N I b I 1----------------->------ 111 

Fig. 11 

The checking for dimensions and array bounds is done by 

the statements of theta, as described for statements at the 

Main level. 

8.4.5 Routine and fn Parameters 

These are treated in the same way as %name parameters; 

a negative number is placed in CAR, the modulus of which 

points to the routine or function description. 

8.4.6 Label Parameters 

This is a special kind of value parameter. The position 

in the Storage Tree given by the actual parameter is found. 

Two locations are saved on INFO. The first contains the code 

number 14, and the second, the position in the Storage Tree 
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that has been calculated. CAR points to these locations. 

Since CAR is positive, these locations will be removed when 

the routine is left. 

8.4.7 %Local Variables 

Local variables declared inside a routine must look 

like %value parameters, except that there is no value 

assigned to them initially. The declaration is, for example, 

%local a,b,c 

and the algorithm for making variables local is as 

follows: 

1) Fault the program if it is not executing a routine. 

2) Consider the first name. 

3) Take a cell, k, off the free list. 
4) Copy the value of VAL into CDR(k) and put the value 

of k into VAL. 

5) Go back to (3) if there are any more names. 

No locations are reserved on INFO at this stage, since 

the local value of a variable may be an algebraic constant 

(and initially all the names are). Thus the value in CAR for 

a local variable is used in the same way as the value in 

VAL is for a global variable. Fig. 12 shows the situation 

after the statements 

a=5 

%routine alpha %at 1:1 

1:1 %local a 

.............. . 
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alpha 

have been executed. 

DIC VAL INFO 

! 1 l 1 8 1 5 1 0 1...1 1 1 0 1 5 1 0 1 0 1 

1 1 1 1 1 

1 l 1 1 1 

I alpha I 1---->--- CAR CDR I 

1 1 1 1 

1 a 11---->------1 0 1 1->-- 

Fig. 12 



IX Implementing AML - Garbage Collection 

This chapter deals with all tidying up operations that 

are used in AML, and also describes how ALG is organised. 

It has three sections; 

1) Chaining free locations. 

2) Garbage collection for INFO. 

3) Organisation of ALG. 

9.1 Chaining Free Locations: 

This must be done on three occasions: when an '%empty' 

declaration is obeyed, at the end of a routine, and when a 

fault occurs inside a routine. 

a) The statement 

%empty (NAME)* 

sets the NAMEs in the list (they must all be global), back 

to the state of being algebraic constants: This is done by 

removing the pointer from VAL, freeing everything that hangs 

from it, and setting the contents of VAL to zero.° A routine 

called Chainloc (see below) does this, so to execute the 

%empty declaration, Chainloc is called for each NAME of the 

list. 
b) At the end of a routine. Routines may be called from 

each other up to a maximum of 15 levels. Hence when a 

routine is ended, it is important to release only those 

cells describing parameters of the routine that is ended, 

and not those declared earlier. Let us take an example.° 
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%routine beta(%value x,y,z) %at 2:1 

%routine gamma(%value v,w) %at 3:1 

2:1:5 gamma(4,6) 

:....:........ 

beta(3, 5, 8) 

Gamma(4,6) is called from within beta. Hence when the system 

leaves gamma, the CAR-CDR cells describing this call of 

gamma must be returned to the free list, but those which 

describe the parameters of beta are still required. Thus an 

array of pointers to the CAR-CDR stack is used. This array, 

called RTN, is used in the following manner: The current 

level of the dynamic calls of routines is held in a variable 

called level. RTN(level) points to the first of the 

CAR-CDR cells that is used for this call of a routine. 

Level is increased every time a routine is entered, and 

decreased when it is left: Fig 1. shows the connection 

between RTN and the CAR-CDR cells. 
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RTN CAR CDR 

!-- 
! ! ! ! ! ! 

level-! 

! ! ! !_! ! l 
cells for 

! ! ! ! ! 
_._._ 

! ! 
beta 

! ! ! ! ! !-- 
! ! --->--! !!-- 
! ! ! ! ! 1--- cells for lYl! ! gamma 

! ! !-- 
psl---->-! !l-- 

! ! ! ! 

! ! ! 1--- free cells 
! ! ! ! 

! ! !-- 

Fig. 1 
Thus, when the routine is ended, Chainloc is called for 

each cell between RTN(level) and pal that points to a value 

type parameter: Then pal is reset to RTN(level), and level 

is decreased by 1. 

(RTN is a byte integer array, so that in fact it is 

RTN(level)+5000 that gives the position on the CAR-CDR stack 

of the first cell used in the description for the parameters 

of the current routine.) 

c) All faults in AML are trapped by calling the routine 

Flt, which does the following 

1) Prints the error message. 

2) Deliberately causes an overflow, which is trapped 

by an IMP %FAULT statement, thus returning control 

to the outer most level.- 

If a fault occurs inside a routine, this means that 

control does not go through the normal end of routine 

process. Hence in order to restore all variables to their 
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global state, a routine called Routine end is entered after 

a fault trap, while the level is greater than 0. 

(Since the control word %WHILE is not available in 

IMP as implemented on the 4-75, the code to do this is 

4: %IF LEVEL>0 %THENSTART 

ROUTINE END; ->4 

%FINISH.) 

d) Chainloc. 

This routine sets up the free locations of INFO, ready 

for the garbage collection routine to consolidate them when 

it is called: Since any value may be stored on INFO, it is 

not possible to use a particular number to represent a free 

location of INFO. Instead, a pointer, free, is used and the 

free locations are chained together in the following manner: 

At least two locations will be freed at one time; more 

often there will be a higher number. For each set of free 

locations, the first points to the next set of free 

locations, and the second gives the number of free locations 

in its set. The chaining is kept in order, i.e no set may 

point to locations in front of itself. Free points to the 

first of the empty blocks, and the first location of the 

last block is set to zero., Initally free is set to 0, and, if 
free is 0 when the garbage collection routine is called, 

there are no free cells available in INFO. Fig, 2 shows the 

situation when the locations marked A are about to be freed. 

The nearest block of locations in the chained list, that 

occurs in front of A, is marked 3.- This points to the next 
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set in the chain, at f, which is behind A. Therefore A is 

inserted in the chain between j and f. 

j i 
1 ! 

<----L1---- <-----A---> <----L2----> <----L3----> 1 ! 
I f! L11..! 1 1 1 k! L21..! 1 0 1 L3!..! 

! ! ! 1 

Fig. 2 

When Chainloc has been executed, the pointers are changed, 

as in Fig. 3. 

j i 
1 ! 

<----L1----> <----La--- <----L2----> <----L3---- 
1 ! 

Ti I L11..1 I f l Lal..1 I k l L2!..! 1 0 1 L31..! 

! 1 ! 1 ! 1 

Fig. 3 
Chainloc has two things to do. It discovers how many 

locations are to be freed, and then it adjusts the pointers 

in the manner described above. If there are any locations in 

ALG referred to by the locations being released, the first 
of these must be set to 255. Also if an array is removed and 

if it is the last to use a particular Dope Vector, then the 

locations of the Dope Vector are also emptied. 

Let 'first' point to the beginning of the block of 

locations which are to be added to the chain of unwanted 

cells of INFO. Then INFO(first) will determine how many 

locations are in the block. The rules for finding this 
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number, which will be put in 'length, are as follows. 

1) If INFU(first) lies between 0 and 6, these cells 

were used to describe a scalar variable. Therefore 

length = 5. Moreover, if INFO(first) is 5, the 

locations of ALG accessed by this description must 

be released. (See later for a description of how 

this is done.) 

2) If INFO(first) = 6, the cells were used to describe 

an array. Fig. 4 shows how an array and its Dope 

Vector are stored in INFO, 

Dope Vector first 
1 

I bi n! L1 Ui ... Ln Un! 1 61 1 Al 1 ! ! ! 1... 111 
1 1 1st element 
------------------ -<---- -------------- -- 

Fig. 4. 

where b is the number of arrays using the Dope Vector. 

n is the number of dimensions. 

L1, U1,...Ln, Un are the bounds taken up of the 

array 

and A is the length taken up by the elements of the 

array. 

(See Chapter 8 for a detailed description.) 

INFO(first) points to the Dope Vector of the array. If 
b is 1, then the Dope Vector must also be put in the chain 

of free cells. For this, it can be seen from the diagram 

that length = 2*n+2. If b is greater than 1, other arrays 

which are still in use will access the Dope Vector. 
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Therefore b is reduced by 1, since this array no longer uses 

it, but the Dope Vector is not removed. 

For the array itself, length is set to A+3, since A 

gives the number of locations used by the elements of the 

array. 

3) If INFO(first)=7 or INFO(first) = 8, a routine or 

function is to be removed. Fig. 5 shows the description in 

INFO of a routine. 

first 
_1 
1 8 1 S 1 n 1 T11 H11.....1 Tnl Hnl 

1----1--1--1--1--1 1 

Fig. 5 

where S is the position in the Storage Tree of the block of 

statements that define the routine. 

n is the number of parameters. 

Ti defines the type of the i-th parameter. 

Hi gives the hash code of the i-th parameter. 

Hence length = 2*n+3. 

Once length has been set, the cells at 'first' can be 

added to the chained list. Chaining down the list from free, 

the last set of cells in front of first must be found. Let j 
point to these. Then INIl3(j) points to the next set of cells 

in the list, which will be behind those of first. (See Fig. 

3.) These are found at f. Thus the alterations to be made 

are 

INFO(first) = INFO(j) 

INFO(j) = first 
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INFO(first+l) = length 

Terminal cases, where first occurs before free, or 

after the last entry of the chained list must also be dealt 

with. The differences between these and the general case are 

too trivial to be discussed here. 

9.2 Garbage Collection for INFO 

INFO is a short integer array whose bounds are 1 to 

5000. The variable iptr is used to point to the next 

available location of INFO. Whenever it is found that iptr 

is about to overflow the end of INFO, the garbage collection 

routine is called. This must do two things; first it must 

move up all the values that are still required, thus leaving 

all the empty locations at the end of INFO once more. 

Secondly it must alter all pointers to INFO. Fig. 6 shows 

INFO as it is just before the garbage collection routine is 

called, and also the situation after it has finished. 

before 

free iptr 
I I 
<--Ll--> <--L2--> <--L3--> <--L4--> I 
1 1 

1 1 1 i ...1 2 1 i ...1 3 1 k ...1 4 1 0 ...1 5 1 1 

1 1 1 1 1 1 

----->----- ----->---- ------>---- 



after 

iptr 
1 

1 1 1 2 1 3 1 4 1 5 1 1 

Fig. 6 

It will be noticed that 

a) The locations before free, marked 1, will not be 

moved 

b) The locations marked 2 will be moved a distance Li 

c) The locations marked 3 will be moved a distance 

Li+L2. 

d) The process continues until finally the locations 

marked 5 will be moved a distance L1+L2+L3+L4. 

Also 

a) If there is a pointer to a locations in set 2, it 
must be decreased by the value Li. 

b) Similarly, a pointer to a location in set 3 must be 

decreased by a value L1+L2. Etc. 

The routine Garbage collect fills two local arrays, 

POSN and ADD as follows. POSN(p) contains the beginning of 

the p-th block of free cells. ADD(p) contains the total 

length that the locations before the p-th block are to be 

moved up. Hence, referring to Fig. 6, POSN(1)=free, 

ADD(1)=O, POSN(2)=i, and ADD(2)= L1. The locations are moved 

at the same time as the values of POSN and ADD are filled 

in. Here is the algorithm, 
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1) Set p=1, length=O, q=free. 

2) Set POSN(p)=free, ADD(p)=length. Increase length by 

the value of INFO(free+l) 

3) Increase p; set free=INFO(free) to get the next 

block of empty locations. 

4) If free= O, the last empty block has been processed. 

Go to (6). 

5) Q points to the next location of INFO that can be 

filled. The values that are to be moved are in 

q+length to free-i. Copy these into INFO, beginning 

at q. (Fig. 7 illustrates this.) Reset q to point 

to the location after the last value copied in. Go 

to (2). 

6) The last block (5) must be moved up. Set 

POSN(p)=iptr and ADD(p) to length. Then copy the 

values between q+length and iptr-1 into the 

locations beginning at q. 

7) Reduce iptr by the value of length. 

free iptr 
<----5----> <---4---> <-2- ! 

1 1` 
1/1/1/1/1 141 1 131 1/1/1/!/10151 1 1 1/1/1 

1 1 11 1 

1-------1-->-----11----->------ 
1 1 

q q+length 
length=4 
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free 
<---4---> 

iptr 
<-2-> 1 

-1 
I 1 1 1 131 1/l/1/l/10151 1 1 1/1/1 

l _11 1 _1 _1 _l _l _l 1 _1! _1 l _1_l _1 _1 _1 _1 _1 _1 _1 1 _l _l 1 _1 
1 1 1 l 
1 

q 

-www-wlww>--www 

q+length 
length=7 

free iptr 
1 <-2-> 1 

1! 1! 1 1 10151 1 1 1/1/1 
!_l_1_l_1_l_11_1_1_1_1_l_1_l_l_1_1_1_1_1_11_l_1_1_l1 

1 l 
l 1 

q q+length 
length=12 

l/1/1/1/1/1/1/1/1/1/1/1/1/1/1/l l 1 l l 1 1 1 1 l l l l l 
1_1_!!_l_1_1_1_1_1_l_11 1_l_l 1_1_l 1_1_1_1_1_1_1_1_1_1 

iptr 
Fig. 7 

There remains the second part of the garbage 

collection, i.e. the resetting of the pointers. Pointers to 

INFO are held in four arrays: VAL, CAR, CDR, and PARAM. 

(PARAM is used in setting up parameters. It is necessary 

solely for the purpose of altering pointers in the event of 

a garbage collection during the processing of an actual 

parameter.) 

The routine Empty, local to garbage collect, is called 

for each of these arrays. Here is the algorithm for 'empty'. 

1) Examine the first element, a, of the array. 

2) Set m=1 

3) If a<POSN(m), reduce the pointer by the value 

ADD(m) and go to (5). 

4) Go to (3) if there is another entry in POSH. 
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5) Go to (2) if there is another element, a, in the 

array. 

9.3 The Organisation of ALG 

The garbage collection for INFO relies on the fact that 

only four known arrays, all quite small, can contain 

pointers to INFO. Therefore the adjustment of these pointers 

at the end of the garbage collection is not too lengthy. 

The situation with ALG is different. So far ALG has been 

used in two different places: for storing labelled 

statements, and for storing the value of a variable if it is 

an algebraic expression. This latter use is sufficient to 

make the method of searching for all pointers to ALG 

impractical, since searching INFO would involve looking at 

5000 entries. 

Another use of ALG makes it impossible. The routines 

used for obeying algebraic commands require a large amount 

of local space. In order to optimise the use of this space, 

the technique of claiming space from ALO is used, rather 

than declaring local arrays. This ensures that the space can 

be claimed at run time, and then only if necessary. Since 

all the algebraic routines are mutually recursive, this can 

save a good deal of space. Because of this use of ALG, 

garbage collection for ALG is required quite frequently, 

whereas the garbage collection routine for INFO is not used 

very often. 

To access ALG, two pointer cells are used, ARNI and 

ARNJ. Together they are said to form a set of ARN cells. 
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ARNI points to the beginning of the expression (or 

statement) stored in ALG, and ARNJ points4to the end. Once 

an ARN cell has been claimed for a particular use, it cannot 

be freed until the garbage collection for ALG (a routine 

called Alg Collect) is called. 

If space is needed on ALG, the function Get(lth) must 

be called, where lth is the amount of space needed. The 

algorithm for Get is as follows. 

1) Look at ARNI(arnp) (where arnp is the pointer to 

ARN ells) th 

2) 

e c 

If this is zero,this cell is free. Aptr points to 

the next free position in ALG. Call Alg collect if 
lth+aptr>5000. Then set ARNI(arnp) to aptr, 

ARNJ(arnp) to aptr+lth-1. Set aptr = aptr + lth, 

and arnp = arnp + 1. The result is the number of 

the ARN cell just filled. (Alg Collect faults the 

program if ALG is full.) 
3) If ARNI(arnp)#O, increase arnp by 1. If this is 

greater than 500 (the size of the ARN list), set 

arnp to 1. Go to (1) unless all the ARN cells have 

been examined this time. Fault the program 

Thus a cyclic search is made for a free ARN cell. Once 

this has been found, its position, k, can be stored if 
necessary, and the required statement or expression is 

copied into ALG, beginning at ARNI(k). 

The three processes that use ALG store k in the 

following ways. 
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1) For a labelled statement, another array, STATE is 

used to store k. Thus if the position of the 

statement in the Storage Tree is j, the STATE(j) 

has the value k. 

2) For an algebraic expression stored as the value of 

a variable, INFO(j+1) = k, where j points to the 

beginning of the description of the variable. 

3) For space claimed to be used locally by an 

algebraic routine, the IMP statement I==ARNI(K) is 

used. I is declared to be a %SHORTINTEGERNAME 

variable. Then setting I= ARNI(K) has the same 

effect as using a name type parameter; whatever 

alteration is made to I in the routine is in fact 

done to ARNI(K). This means that if ARNI(K) is 

altered by the garbage collection, since I accessed 

the position of ARNI(K), rather than merely having 

its value, I will still point to the correct 

position in ALG. 

If some expression in ALG can now be destroyed, the 

first entry in it (i.e. that which ARNI points to) is set to 

255. No other alteration is made until Alg collect is 

called, and in particular, the ARN cell is not freed. Fig 8 

shows a typical situation before a garbage collection takes 

place for ALL 



1 10 15 27 38 44 

1 1 1255! 1 ! 1255! ! ! 12551 1 

1 1 1 ! ! 1 

1 7 1 ARNI 1 2! 110 ! 1 4! 1 3 1 1 1 1 

1.,.,__1 CELLS 1.,__1 11 11 11 1 ! 
! ! ! ! ! 1 old 

1 I alg I I I 1 value 

state I ! routine I I I INFO 

! 1 -------- I ! ,,,,,_! 1 

! I->- I i =_ -->-- ! ! 5 ! 1 2 1 

1 1 - > - - - 1 1 ! ! ! 
11 old value 3 =_ - - > - - 

I I old value 

Fig. 8. 

The situation after garbage collection will be 

1 6 17 

_1 1 ! 
1 ! 1 ! ! 1 

_!___1 !_! !^! 
! 1 1 

1 7 1 1 101 1 3 1 

!_,__! 1`1 1_! 
! 1 ! 

! 1 1 INFO 
STATE I alg routine 1 ! 

! ----------- ! ! 5 ! 

! !->- i== -->----- ! ! 

Fig. 9 

ARNI(1) = 0 

ARNI(2) = 0 

ARNI(4) = 0 

It will be noticed that in the diagram of the state 

before garbage collection, the ARN cells are not in order. 

Initially, of course, the first ARN cell will be claimed, 
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and will point to the beginning of ALG; the next will be the 

second which will point to the next block of elements, as in 

Fig 10. 

1 1 1 

! 1 ! 
1 1 1 

1 1 1 1 2 1 1 3 1 11 1____! 1i _1 

Fig 10 

However, once a garbage collection has been made, this order 

will not necessarily be found the next time Alg Collect is 

called. Therefore the order cannot be assumed. 

The examination of ALO must begin at its lowest end. 

Therefore, returning to Fig 8, the position in ARNI(7) must 

be examined first, then ARNI(2), then ARNI(6), etc.. 

Hence Alg collect first finds the order in which the 

ARN cells are to be examined. A local array, PNT, is used. 

Cycling through the ARN cells, a new cell of PNT is set 

pointing to the ARN cell, provided ARNI is not zero, thus 

giving the situation shown in Fig. 11. 



ARN 

1 1 
1------->--1-I 44 1 

2 11------- >--2-1 10 1 

11 1 1 

3 1 1------->--3 -1 38 1 

1 1 1 1 

4 1 1------>---4-1 27 1 

! 1 ! 1 _,_ 
5 1 1->- 5 1 0 1 

! 1 1 ! ~ 1 

6 !--l->- 6 1 0 l 1 LJ 1 1 ! 1 

1 --->-7-i 1 1 

1 1 1 

1 8 1 0 1 

1 1 1 

1 9 1 0 1 

1 ! 1 

----10-1 15 1 

1 1 

Fig. 11 

A sort routine is used, to let the pointers of PNT give 

the ordering of the contents of ARNI, as shown in Fig. 12. 
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PNT ARNI 

1 1 1-->- ->1-1 44 1 

1 1 1 1 1 1 

2 1 l---1->--1-2-1 10 1 

1 1 1 1 1 1 

3 1 1-- 1 ->1-3-1 38 1 

1 1 1 1 1 1 1 1 

4 1-1-1- 1-1-4-1 1 27 1 

1 1 1 1 1 1 1 ` 1 

5 1-1-1->- 1 5 1 1 0 1 

1 1 1 1 1 1 1 

6 I-1-1-- -- 6 1 1 0 1 

1 ___1 1 1 1 1 

I --->---7-1 1 1 

1 1 1 

1 8 1 0 1 

1 1 1 

1 9 1 0 1 

1 1 1 

----->--10-1 15 1 

1 1 

Fig. 12 

Now, cycling for i=1,1,p, where p is the number of 

entries of PNT, the following algorithm is obeyed. (Lth is 

initially zero.) 

1) Set J=PNT(I), K=ARNI(J), L=ARNJ(J). 

2) Go to (4) unless ALG(K)=255. 

3) Add (L-K+1) to Lth. Set ARNI(J) to zero. Finished. 

4) Set ARNI(J) to K-Lth, ARNJ(J) to L-Lth. Copy ALG(K) to 

ALG(L) into ALG(K-Lth) to ALG(L-Lth). Finished. 

Once this has been done p times, aptr is reduced by the 

value Lth. This completes the garbage collection for ALL 



X Implementing AML - Polish Notation and Expressions. 

The analysis record of an expression, although an 

improvement over the recursive definition that is used in 

IMP, is not suitable for processing algebraic expressions. 

The applications of an algebraic command to an expression 

requires that the expression should be broken up into 

different parts, and these parts are then reassembled in a 

different order. The precedence of operators in these 

operations is of course, very important. After some attempt 

at processing expressions in an infix form, it was found 

that a variety of prefix Polish notation was most useful. 

(A discussion of the reasons for choosing this notation is 

given in Chapter 12.) 

The five arithmetic operators are 

**, /, *, - and +. 

Of these, ** and / are definitely binary. However, * and +, 

being commutative and associative, can be regarded as n-ary 

operators. Thus 

x**y 

is written in Polish notation as 

Exy (E = exponentiate) 

and 

x*y*z 

is written as 

*(x, y, Z) 
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There must be a way of delimiting the operands of an 

n-ary operator. Brackets are a useful notation for 

describing Polish expressions. However, in the internal 

representation the sign '*' is followed by two bytes which 

together give the total length of the list of operands. 

This enables the interpreter to find the end of an 

expression easily. 

10.1 Polish Notation 

Three types of elementary operands may occur in the 

Polish representation of an expression. They are a constant, 

a name, and a name followed by a list. The first is 

represented by either five or nine elements of a byte array. 

Integers and real numbers require four bytes for their 

value, and one for the code. Rationals and long reals 

require eight bytes for their value, and one for the code. 

The first element will hold the code, which is a number 

between 1 and 4. A name is represented by two byte array 

elements, the first containing the number 5, and the second 

the hash code of the name required. 

The third type of operand is represented by the number 

6 followed by the hash code of the name. The next two bytes 

contain the number of bytes needed for the description of 

the list. Two bytes are needed as this list may be greater 

than 255 in length. The following element gives the number 

of primes that follow the name, and the rest of the 

description consists of the subscripts given as expressions 

in Polish notation. For example, if the hash code of 'a' is 
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20, and that of V is 21, the Polish representation of 

'a(b,3)" is 

1 6 1 201 0 1& .I 121 5 1 211 1 1 0 1 0 1 0 1 3 1 

Fig. 1 

Expressions are built up by prefixing a number of elementary 

operands by an operator. If we define an expression to be an 

elementary operand, we can build up expressions of any 

complexity. There are two binary operators '/' (divide) and 

.. E' (exponentiate). . 
E 

, 
was chosen to represent 

exponentiation in the internal representation since the two 

more usual forms are not suitable. Up-arrow is not available 

in the character set of some equipment, and '**' takes up 

two locations. Thus the expressions a/b and 'a**b' are 

represented in Polish notation as 

1'/'l 5 1 201 5 1 211 

and 

1 E 1 5 1 201 5 1 211 

Fig. 2 
The operators 

. * . and +" may have any number of 

operas, and two bytes following the operator contain the 

length of the operands pertaining to this operator. Thus 

.. 
a+b+co and Oa*b*3' are represented as 



1+ l 0 1 6 1 5 1 201 5 1 211 5 1 221 

where 22 is the dictionary number of 'c'. 

and 1* 1 0 1 131 5 1 201 5 1 211 1 1 0 1 0 1 0 1 3 1 

Fig. 3 
The minus operator "-' is used as a unary operator 

only. Negative numbers are stored as themselves, and not as 

followed by a positive number. For example, the binary 

form of -3 is 

1111 1111 1111 1111 1111 1111 1111 1101 

and stored in a byte array, it becomes 

255 255 255 253 

Hence the representations of -3, -a, a-3 are 

1 1 12551255125512531 

! -'*l 5 1 201 

and li#il 0 1 111 5-1- 201 112551255125512531 

Fig. 4 

Now we shall give some more examples of general expressions. 

1) 'a+b*c' 

1+ 11 1 9 1 5 120i'10 1 4 1 5 1 211 5 1 221 
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2) "a*(b+c)" 

I10 1 9 1 5 1 201'+'l j 1 4 1 5 1 211 5 1 221 

3) a-b' 

+"1 0 1 5 1 5 1 201'-'I 5 1 211 

4) a+b/c' 

1 +i1 0 1 7 1 5 1 20i715 1 211 5 1 221 

5) a**b/c' 

1-/-1-E-1 5 1 201 5 1 211 5 1 221 

Fig. 5 

10.2 The Routine Evalexpr 

This routine takes the analysis record of an expression 

and transforms it into Polish notation. Its function divides 

into two distinct steps. 

1) Find the current value of each operand. 

2) Form the expression in Polish notation, performing 

numerical calculation wherever possible. 

As mentioned earlier, this routine works on all 
expressions, numerical and algebraic. It is the need to 

check for possible numerical calculations, and also to order 

algebraic expressions that makes it fairly complicated. The 

first part of the routine, i.e. finding the current value of 
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an operand, is the simpler of the two, and so will be 

discussed first. 
The operands that may occur in an expression are 

i) (LABEL EXPR) 

ii) (CONST) 

iii) (NAME) (LIST)? 

iv) 
J. 

((SELECTOR)? (EXt$))' 

The algorithm for this part of the program is 

1) Find out which alternative of (OPD) is being 

processed. 

2) If it is a (LABEL EXPR) (i), evaluate the label, 

get the statement at that label, analyse it, and 

call Evalexpr to put this into Polish notation. 

Put the result into the array Z. 

3) If it is a (CONST) (ii), copy it into the array Y. 

4) If it is alternative (iii), check to see if 
(NAME) is an algebraic constant. If so, go to (5). 

If it is the name of an array, go to (6). If it is 

a function, go to (7). Copy the value of (NAME) 

into Y if it is numeric, and into Z if it is 

algebraic. 

5) If there is a list, call Evalexpr for each of its 

elements. Copy (NAME) and the processed elements 

into Z. 

6) Calculate the position in the array, and find the 

value stored there. If it numeric, copy it into Y; 

otherwise copy it into Z. 
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7) Evaluate the function. Put the result into Y if 

numeric, and Z otherwise. 

8) If the alternative is (iv), evaluate the expression 

using Selectq. This is a routine which performs the 

selection (if any) on the expression, and will be 

discussed in chapter 13. Put the result in Y or Z 

as necessary. 

Hence at the end of this process, the array Z will hold 

the value of the operand, if it algebraic, and the array Y 

will have the value if it is numeric. 

An expression that has n operands will cause a cycle to 

be executed n times. Inside the cycle, the value of the 

operand is obtained by the method described above. Let this 

value be A. Then the operator opt preceding A, and the 

operator, op, following it are used to determine what action 

is taken for A. Three arrays are used to store the operands. 

They are: 

1) R, which holds terms that are added together, and 

therefore ultimately has the final result. 

2) S which holds terms that are multiplied together. 

3) T which holds terms connected by 'E' or '/'. 

Initially R, S and T are all empty. 

For the first operand, opt is taken to be '+', and for 

the last operand, op='+'. Each operand may be dealt with in 

one of several ways, depending on the circumstances that 

govern its use. These are mainly 

i) The values of op and op1 
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ii) Whether A is numeric, and whether there is another 

operand that is also numeric and which can be 

combined with A. 

The various possibilities are listed here, taking the 

simplest cases first. 
1) opl=+ and op=+ 

Example (i) a+b 

The final result for this will be +(a,b). 

Example (ii) 3+4 

The final result for this will be 7. 

The term A that is being considered must be 

put in R. If A is numeric, and if the last term, 

B, in R is numeric, the total B+A replaces B in R. 

Otherwise A is copied to the end of R. In 

pseudo-IMP this can be written 

A=B+A %if R->R.C %and num(B) %and num(A). 

R=R.A 

(where R->C.B means B is the last term of R, C is 

the rest, and C may be empty. Num(B) is a boolean 

test giving the result TRUE if B is numeric.) 

2) opt=* and op=* 

Example (i) a*b*c 

which gives the result *(a,b,c). 

Example (ii) 3*4*c 

which gives the result *(12,c) 

A is put in S, in the same way that it was 

put in R in (1), i.e. 
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A=B*A %if S->S.B %and num(B) %and num(A) 

s=S.A 

3) opl=+ and op=* 

Example a+b*c. 

which gives a result +(a,*(b,c)). 

S must be empty at this stage, so S=A. 

4) opt=* and op=+ 

Example b*c+d 

which gives a result +(*(b,c),d) 

A is put in S, as in (2). Then S is treated 

as an operand to be put in R. 

A=B*A %if S->S.B %and num(B) and num(A) 

S=S.B ; *(S) 

S=S+B %if R->R.B %and num(B) %and num(S) 

R=R.S ; S= 
(where *(S) means insert a '*' in front of S if S 

has more than one term. 

i.e. S=a,b gives S=*(a,b) 

but Sa is unaltered.) 

5) op= - 

If op=-, A is treated as if op=+. Then before 

the next operand is processed, op is set to + (so 

that opl will be + for the next operand) and the 

variable 'minus' is set to 1. Whenever minus=l, (1) 

is modified to 

%if R->R.B %and num(B) %and num(A) %then AM" A 

%else A=*(-1,A) 
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R=R.A 

The cases listed above cover all the cases of 

expressions not involving / or E. When these operators are 

used, a number of different cases arise. These will be 

listed below in increasing complexity. For any particular 

case, all cases above it are assumed false. 

The first case is simple: 

6) opt = + or * and op = E or / 
In this case, T is empty, so 

T=op.A ; op2=opl 

Cases (7) to (16) assume that both op and opt are E or /. 
7) opt=/ and op=E 

Since op has a higher precedence than opt, A 

must be copied into T. 

T=T..0 E'*.A 

8) op=/ and -num(A) 

Example b*a/3 

which gives the result /Eba3 

Considering the operand 'a', T is changed 

from 

Eb to /Eba. 

or, in general, T='/'.T.A 

9) op='E', -num(A) and T#'/'.8 (i.e. the first entry 

in T is not '/'.) 
Since case (7) is not true, this also means 

that opt=E. 

Example b**a**c 
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which gives the result EEbac 

Considering the operand 'a O, T is changed 

from 

Eb to EEba 

or, in general, T='E'.T.A 

10) num(A) and T=opp.B and num(B). (T consists 

operator followed by a numerical value.) 

of an 

The possibility that opp=*/' and op='E' has 

been elimated by (7). Therefore the calculation 

'B.opp.A' can be performed. This is put back in T, 

preceded by op. 

i.e. A=B**A if opp='E' 

A=B/A if 
opp=, /' 

T=op.A 

11) opt='/' or T#'/'.B 

The tests listed above have eliminated quite 

a few cases. 

a) If opt=/, we can deduce 

i) op=/ (from 7) 

ii) num(A) (from 8) 

iii) -(T=/.B and num(B)) (from 10) 

An example that satisfies these conditions is 

c**d/3/b 

which gives the result //Ecdb3 

Considering '3', T is changed from 

/Ecd to //Ecd3. 

b) If T#/.B, we deduce 
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i) num(A) (from 8 and 9) 

so ii) T= E'.b and -num(b) (from 10) 

An example satisfying this is 

c**3**b 

which gives the result EEc3b. 

Considering '3', T is changed from 

Ec to EEc3. Taking the general case for both (a) 

and (b), 

T=op.T.A. 

The cases left after test (11) are 

i) opl=E, op=E 

ii) opt=E, op=/, A numeric 

iii) T=/.B 

These can be deduced in the following way. 

a) opt = E (from 11) 

b) T = /.B (from 11) 

c) If op=/, then num(A) (from 8) 

The situation where opl =E, but T=/.B arises from a 

case like the following. 

T = a/c**d**e 

Processing each element in turn, 

a gives /a 

b gives /aEc 

d gives /aEEcd 

It is the processing of d that is to be considered just 

now. The position in which the new ,E' is to be inserted is 

determined by the extraneous E already there. There may in 
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fact be other exponential signs there (e.g. T=/EabEc), but 

only one will not be linked to two operands. Let us split T 

to be 

T = /X.E.Y 

12) -num(A) 

The example given above satisfies this. From 

(i), op must be E. 

Therefore T Z /.X.EE.Y.A 

13) num(Y) and op=E 

Example a/3**2**e 

which gives /aE9e 

Considering '2'. T changes from 

/aE3 to /aE9. 

In general, A=Y**A; T=/.X.E.A 

14) num(Y) and num(X) and op=/ 

Example 7/3**2/e 

which reduces to /3e 

Considering W, T changes from 

/27E3 to /3. 

In general, A = Y**A 

A=X/A 

T A 

15) num(Y) and op=/ 

Example a/3**2/e 

An (14), but -num(X) 

A=Y**A 

T=//X.A 
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16) opt=/ and -num(Y) 

No reduction possible. Do (12) if op='E', and 

(13) if op=/. 

The remaining examples deal with the case where op = + 

or *, and opl = / or E. 

17) -num(A) 

A = T.A 

18) T = opp.B and num(B) 

A = B**A if opp=E 

A = B/A if opp=/ 

19) op=/ or T#/.B (See 11) 

A = T.A 

In the remaining cases, let T = /.X.E.Y 

20) num(Y) and -num(X) 

A = y**A 

A = T.A 

21) num(Y) and num(X) 

A=Y**A 

A = X/A 

22) -num(Y) 

A = T.A 

After T has been examined and emptied, the result is 

put in A, to be treated as an operand. Opt is set to opt 

(the operator occurring before T), and tests (1) to (5) are 

applied. Finally, when all the operands have been examined, 

the required expression is given by +(R). (Where +(A) is 

defined in the same way as *(A).) 
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The cases listed above exclude the logical operators. 

However, these fit into the description very easily, as 

follows. 

1) >> and << - treated as ** 

2) & - treated as * 

3) 1 and 11 - treated as + 

It was felt that including them in the description 

would serve no useful purpose; the rules would be less easy 

to follow, and no significant changes are made for them. 

The program is faulted if logical operators are not applied 

to integers. Hence they will be eliminated from expressions 

by Evalexpr. The algebraic routines do not recognise logical 

operators. 

10.3 Evaluating Label Expressions. 

An integer function called Getlabel processes the label 

expressions, returning the position found in the Storage 

Tree as its result. Getlabel also processes the label of a 

labelled statement. A parameter ins is used as a flag, and 

may take three values: 

0 Fault the program if the label required is 

not in the Storage Tree. 

1 Insert a cell for the label if it is not 

already there. 

2 The label of a stored statement (rather than 

a label expression) is being processed. 

If there are n components of the label, the following 

is done n times. 
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1) Evaluate the component. If ins = 2, this is a 

matter of copying the value of the next entry in 

PL into a variable nm. Otherwise the type of the 

component must be considered. 

a) A constant - Check that it is an integer, and 

put it in nm. 

b) An expression - Call Eval-to-int, which 

applies Evalexpr and checks that the result 

is an integer. 

c) A name - This may be a variable which holds 

an integer, or, inside a routine, the name of 

a label parameter. In the latter case there 

may only be one component. The value of the 

label parameter is returned as the result. 

Otherwise the name is checked for an integer, 

and its value is put in nm. 

2) Find the position of the component. 

A variable, ptr, is passed as a name type 

parameter to the routine. If the label is a full 
label, initially ptr is 1. Otherwise ptr names the 

cell below which the required position will be 

found. Fig. 6 illustrates this, for the second 

label expression of the statement 

%do 3:1, :3 



head 

1 0 1 2 1 0 1 

! 1 1 1 

ptr 

1 2 1 3 1 4 1->-l 3 1 5 1-1 1 1-l __-1--1 1 -1 __,_1 _,__i 
1 1 

1 _l 
1 5 1 0 1-2 1 ! 1 1 0 1 6 1->-1 3 1 0 1-4 1 

Fig. 6 

Since the abbreviated label ':3' means 3:3, the 

pointer points to cell representing the label 3. 

After the first component has been processed, ptr 

is set to point to this position for subsequent 

components. For example, in the processing of 3:1, 

ptr = 1 initially, but for the second component, 

ptr will have the position shown in the diagram. 

The steps taken to find the position of nm are as 

follows. 

i) Set j=BELDW(ptr). 

ii) If jam, there are no cells below ptr. 

Therefore fault the program if ins = 0. 

Otherwise insert a cell, k, below ptr. if 
this is the last component, the result is k. 

Otherwise set ptr = k and proceed to the next 

component. 

iii) Set k = 0, and do (iv) while !3(j)<nm and 

j>0. 

iv) K = j; j:.AFTER(j). This tracks along the 
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cells until it finds one whose entry in NO is 

not less than am, or until it reaches the end 

of the list (when j is negative). 

v) If (iv) stopped because NO(j)>=nm, check for 

equality. If NO(j) = nm, the required cell 

has been found. Hence this is the result if 
the last component is being processed. 

Otherwise set ptr = j, and proceed to the 

next component. 

vi) If NO(j)>nm, the cell is not there. Fault the 

program if ins = 0. Otherwise insert a cell 

between k and j (hence the reason for 

preserving k). This new cell is the required 

cell. Either give it as the result, or set 

ptr to it, as described in (ii) and (v). 

vii) If (iv) stopped because j<;J, no cell matching 

nm has been found. Hence proceed as in (vi). 

This completes the description of the routine 

Getlabel. 

10.4 Conditions 

Three kinds of conditions are available in AML: 

1) Simple conditions (which include bracketed conditions). 

2) %and-conditions 

3) %or-conditions. 

Here is the algorithm for dealing with a general 

condition. 

1) Consider the first simple condition. 
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2) Evaluate it, setting j to 1 if it is TRUE, and to 0 

if it is FALSE. 

3) Return if there is no other simple condition 

following. 

4) Return if jam, and the condition being processed is 

an %and-condition. 

5) Return if j=1 and the condition is an 

%or-condition. 

6) Get the next simple condition and go to (2). 

The evaluation of the simple conditions not involving 

Patterns is straight forward. The two conditions 

(EXPR) %matches (PATTERN) 

(EXPR) %contains, (PATTERN) 

will be discussed in the Chapter on patterns. (Chapter 13). 

The remaining alternatives are 

1) -(-(CONDITION)-)- 

2) (EXPR)'//'(EXPR) 

3) (EXPR) (COMP) (EXPR) (RESTCOMP) ? 

where (RESTCOMP) = (COMP) (EXPR) 

6) (LB). 

Here is the algorithm for the routine processing these 

alternatives. 

1) Get the alternative. 

2) If it is the lst, call the routine Condition 

recursively. 

3) If it is the 2nd, evaluate both the expressions. 

Fault the program if they are not both integers, m 
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and n. Set j=1 if fracpt(m/n)=0, and j=O otherwise. 

4) If it is the 3rd, evaluate the first two 

expressions into P and Q. If (COUP) is '_' or '#', 

P and Q may be algebraic. Compare them element by 

element, setting j to the correct value. 

5) For (COMP) not or '#', P and Q must be numeric. 

Fault the program if they are not. If (COMP) is '<' 

or '<_', test P<Q, otherwise test Q<P. This is done 

by the integerfn Lessq(a,b) which finds the type of 

a and b, converts them both to reals, and returns 

the result 1 if a<b, and 0 otherwise. Set j to 

Lessq if there is no (RESTCOMP). 

6) Set the (RESTCOMP) pointer to zero. Copy Q into P, 

and evaluate the last (EXPR) into Q. Fault the 

program if the comparators are incompatible. Go to 

(5). 

7) If the alternative is the 6th, evaluate the label 

expression. Analyse the statement there as a 

condition. Then call Condition for the result. 



XI Implementing AML - the Commands. 

The commands of AML are also processed by Exec. The 

syntax of a command statement, which is an (UNCONDST) is 

(COMMAND)*(UNTILCL)?. 

Hence a number of commands may be processed in one 

statement, and may be governed by an (UNTILCL). The syntax 

of the latter is 

%until (CONDITION) I 

%while (CONDITION) ! 

%for (NAME) _ (EXPR) , (EXPR) , (EXPR). 

Examples of command statements are 

%do 1 

%do 1:1 %while i<O 

%simplify A(i) %for i=1,1,10 

%distrib A(i),%simplify B(i) %until i>5 

The process for obeying a command statement is as 

follows 

1) See if there is an (UNTILCL). Skip to (6) if there 

is none. 

2) Let a be the alternative of the (UNTILCL); a--1 for 

%until, a=2 for %while, and a=3 for %for. 

3) If a=1, no test should be made until after the 

commands have been obeyed. 

4) If a=2, the commands are only obeyed if the 

(CONDITION) is true. Therefore call Condition to 

test it. If it is false, the process is finished. 
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5) If a=3, the %for loop conditions must be set up. 

The three expressions are evaluated into p, q, and 

r. They must all be integer valued. Then NAME is 

given the value p. 

6) The list of commands is examined and processed. 

This is described in detail below. 

7) The processing of the statement is finished if 
there is no (UNTILCL). 

8) If a=1, the (CONDITION) is tested. Go to (6) if it 

is FALSE. Otherwise the process is finished. 

9) If a=2, the (CONDITION) is tested. Go to (6) if it 

is TRUE. The process is finished otherwise. 

10) For a=3, the process is finished if NAME>r and q>O, 

or NAME<r and q<0. (A more general condition than 

NAME=r.) Otherwise add q to NAME and go to (6). 

Commands can be divided into two kinds: general and 

algebraic. The general commands will be discussed first. 
They are 

1) %do (LB)* 

2) %write (LB)* 

3) %erase LB)* 

4) %label (LB)* %as (LB)* 

5) %print %results (LB)* 

6) %print %no? %results 

7) %read (NAMELIST)* %from %file (EXPR) 

8) %eval (NAMELIST)* 
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11.1 %do, %write, %erase, %label 

The first four are processed together; the last four 

are examined individually. This arrangement is made because 

the (LB)*s of the first four commands can be evaluated 

before the commands are obeyed, and stored in an array local 

to Exec. Obviously it is advantageous to have one piece of 

program to do this. For the %do command it is imperative 

that the evaluation of the label expressions is done first, 
since the statements that %do activates may change the 

variables used in (LB)*. For the other three commands, it is 

immaterial whether the, label expressions are evaluated 

first, or as required. Here is the algorithm for obeying the 

first four commands. 

1) Get the first label expression. 

2) Evaluate it, storing the position obtained in the 

array PREV. 

3) Go to (2) if there is another label expression. 

4) Jump to the switch label appropriate to the current 

command. 

5) %do: Call the routine Execute for each entry in 

PREV. Execute calls Exec for each statement stored 

in the sub tree given by its parameter. If '%exit' 

or '%return' is executed (legitimately) before all 
entries in PREY have been used, do not execute the 

remainder. 

6) write: Call the routine Printtxt for each member 

of PREV. Print txt prints all statements occuring 
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in the sub tree given by its parameter. 

7) %erase: For each entry in PREY, remove all 
statements stored in the sub tree it defines. This 

is done by storing an empty statement at the 

relevant label. 

8) %label: do (9) to (18) for each member of PREV. 

9) Lot the member of PREY be I. 

10) Evaluate the next label expression of the second 

(LB)* into J. Fault the program if there is none. 

Set K=I. 

11) Copy the statement at I into position J of the 

Storage Tree. Go to (14) if I has no statement 

below it. 

12) Set I=BELOW(I). 

13) If there is not a cell below J whose l&J is the same 

as M)(I), insert one, call this cell J and go to 

(11). 

14) If I=K, this is the original label, so the copying 

is complete. Go to (17). 

15) Set I=AFTER(I). Go to (16) if I<J. If there is not 

a cell after J whose NO is equal to NO(I), insert 

one, calling it J. Go to (11). 

16) Set I=111, thus tracking back up the tree. Go to 

(14). 

17) Go to (9) if there is another entry in PREY. 

18) Fault the program if there are any label 

expressions left in the second (LB)*. 
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Steps (9)-(18) of this algorithm give a variation of 

the technique that is used for all processes involving 

blocks of statements. %Do, %write and %erase use similar 

algorithms. Fig. 2 describes the situation when the 

statement 

%label 1:2,4 %as 2:3,3:1 

has been executed, with the Storage tree initially as in 

Fig. 1. 

1->--! 1 21 ! 
11,_,_1`! 

1 i! 31 71------->------! 41 81-11 

1 1 

1 21 41 61->1 31 01-21 1 11 01 91->12 1 01-71 

1 ! 

1 11 01 51->1 21 01-31 1 31 41-91 
11 11 

1:2 a=1 

1:2:1 b=3 

1:2:2 c=5 

4:1 d=2 

4:2:3 e=7 

Fig. 1 



1 1 21 1 

1_111 
1 

111 31 111->121121 151->131161 7 1->141 81 -11 

l 1 l l 
1 l 1_, l 
1 1 111171-151 Iii 01 9 1->121101 -71 

1 1 1 1 

l l l 
1 131 31-111 ill 01 181->I21191-161 131 01 -91 

1 1 l 
1 l 1 

I Ill 01 141->121 01-121 131 01-181 

I 
121 41 6 1->131 01 -21 

1 

I 
111 01 5 1->131 01 -31 

Fig. 2 

1:2 a=1 2:3 a=l 

1:2:1 b=3 2:3:1 b=3 

1:2:1 c=5 2:3:2 c=5 

4:1 d=2 3:1:1 d=2 

4:2:3 e=7 3:1:2:3 9=7 

11.2 %print %results (LB)* 

%print %no? %results 

The purpose of these commands is to supress unwanted 

printing of the results of algebraic commands. Hence the 

information must be stored in a global array called PR. it 
and a variable ppr are used to hold the information, which 

is organised as follows. 
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The default condition is that all results are printed 

out. This is indicated by setting ppr to zero. %Print %no 

%results suppresses all printing, and this is indicated by 

ppr having the value -1. 

%Print %results (LB)* requires that results are only 

printed for the arguments that are given in (LB)*. This 

statement is processed by evaluating each member of the list 
and storing the position in the Storage Tree that is 

obtained in PR. Ppr is set pointing to the last entry in 

PR. %Print %results sets ppr back to zero, thus enabling all 
printing. 

11.3 %read (NAMELIST)* %from %file (EXPR). 

This command is used to read data from a file. When 

AML is called certain files may have been given stream 

numbers under the EMAS system. Hence (EXPR) is evaluated, 

(it must give an integer), and this number specifies which 

file the data is to be taken from. The IMP routine 

Selectinput is called, with this number as its parameter, 

thus causing the input to be taken from the correct file. 
In order to discuss the process from here, it is 

necessary to describe briefly the organisation of stream 

files in IMP. Once Selectinput has been called, any read 

instruction will take its data from the file selected. The 

input in the file is regarded as being in card images; a 

newline ending the card. Data can be read in single numbers, 

but when the file is closed (by selecting another file, for 

example), and then re-opened, the input will be read from 
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the next card image. So it is possible that some information 

may be lost. For example, if the data in file 1 is 

2 3 4 5 6 7 

8 9 10 

Then the IMP program 

SELECT INPUT(1) 

READ(I);READ(J) 

SELECT INPUT(O) 

......... . 

SELECTINPUT(1) 

READ(K) 

will result in I having the value 2, J having the value 3, 

and K the value S. The numbers 4, 5, 6, and 7 will be lost. 

It was felt that this restriction should not be passed 

on to AML. Hence any numbers at the end of a card image that 

are not used by a ,read command should be saved, and held 

ready for use if another %read command should be executed 

for that file. Only the first 72 characters on a card are 

read by an IMP program. Since the contents of a file are 

treated as card images, any character after the 72nd in a 

line will be ignored. This restriction is carried through to 

AML. Hence, for each file there may be up to 72 characters 

outstanding when a %read command is finished. It was decided 

to allow up to six input files to an AML program, apart from 

the console, which is always regarded as file 0. Thus a 

maximum of 432 characters must be stored. They are put in a 

byte array called FILE. Whenever the read command is 
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executed, a check must be made to see if any characters have 

been stored in FILE for the particular file selected. If so, 

the value is read from there; otherwise it is read directly 

from the file. 
Data to the %read command may be numbers or algebraic 

expressions. They are separated from each other by a space. 

The actual reading is done by the routine Readsym. This has 

an .own byte array L which holds the position in FILE from 

which the next character is to be taken. This is described 

in Fig. 3. 

L FILE 

1 1 3 1 1 3 1 1 a 1 1 a 1* 1 b! 
2 1 j 1 1 1 ! 1 1 1 1 1 

3 1 1 1 1 2 1 7 1 1 1 1 1 1 1 

4 1 0 1 1 1 1 1~1 _ 1 1 1 

5 1 6 1 l a l ! p 1 g 1 1 1 1 1 

6 1 0 1 1 1 1 1 1 1 1 1 

Fig. 3 

In this diagram, files 2, 4, and 6 have no characters stored 

for them. The next character to be read from file 1 is in 

FILE(1,3); the next character to be read from file 3 is in 

FILE(3,1) and the next for file 5 is in FILE(5,6). 

Here is the algorithm for Readsym, which has a name 

type parameter t. 
1) Do (3) if FILE is non-empty for this input stream. 

2) Readsymbol(t) and return. 
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3) Set t=FILE(j,L(j)), where j is the number of the 

input stream. 

4) If t=newline, set L(j) to 1; otherwise increment 

L(j). 

5) Print t. (To let the user see what has been read 

in). Return. 

The same routine is used for reading data as for 

reading statements. However a value type parameter, r, is 

set to 0 for reading statements, and to 1 for reading data. 

The differences these values of r cause are: 

R_.J 

a) Suppress reading from FILE in readsym. 

b) Exit when newline is encountered. 

R=1 

a) Supress search for label. 

b) Exit when a space or newline is encountered. 

In both cases, the input is put into the array AR. 

There follows the algorithm for the command %read. 

1) Evaluate (EXPR) into I. 

2) Select input (I). 

3) Get the first name, N, which is the name of a 

scalar or of an array element. 

4) Call the read routine with r=1, putting the result 

in the array Z. 

5) Analyse z as an expression, applying Evalexpr to 

the result. 

6) Copy the expression into N. 
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T) Go to (4) if there is another member of 

(NAMELIST)*. 

8) Go to (10) if the last symbol was a newline. Set 

L=1. 

9) Read symbol(t), and put t in FILE(I,L). Increment 

L. Go to (9) unless t was a newline. 

10) Call Select-input for the file that was being used 

before. 

The last step requires some explanation. The routine 

Getfile enables users to read statements from a file. It may 

be that one of these statements is a %read command, and 

therefore when it is finished, statements should still be 

read in from this file, and not from the teletype. The 

integer slct is used to list these file numbers. Since files 

are numbered from 0 to 6, three bits are used for each 

number. Therefore ten file numbers can be stored in the 

integer slct. When a new file is used, its number i is 

calculated and stored in slct by the IMP statement 

SLOT = SLCT<<3II. 

Then when the old file number is to be restored, this value 

is removed. The statements to do this are 

SLCT = SLCT>>3 ; I REIV)VES LATEST VALUE 

I=SLCT&7 ; I LAST VALUE 

SELECT INPUT(I) 

Initially, of course, slot is zero. 
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11.4 %eval (NAMELIST) 

Each argument of %eval is the name of either a variable 

or an element of an array, which must have an algebraic 

expression as its value. The routine Eval is called, and 

this examines each operand of the expression in turn. The 

algorithm for testing each operand is as follows. 

1) If the operand is numeric, copy it into the array 

R which holds the result. 

2) If the operand has the same name as the argument 

(e.g. as A = A + B), copy the name into R. 

3) If the operand is a scalar (i.e. if there is no 

(LIST)), set k = VAL(h), where h is the hash code 

of the operand. 

4) If k = 0, the name is an algebraic constant. 

Therefore copy it into R. Otherwise copy the value 

of NAME into R. 

5) If the operand is of the form NAME (LIST), call 

Eval for each element of the list. If NAME is an 

array, get the value (if any) of the element that 

is referenced. 

6) If the name is a function, call it, using the 

evaluated list as parameters, and put the result in 

R. 

7) Otherwise copy NAME into R, followed by the 

evaluated list. 
Hence R, which is constructed with the same operators 

as the original expresssion, will hold the result of 
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evaluating the argument A of %eval. This expression is 

stored as the new value of A. 



XII Implementing AML -The Algebraic Commands 

The facilities whose implementation has been described 

so far are those which have a parallel in IMP. Differences 

occur because of the interactive nature of AML, and the 

reasons for these differences have been given. The rest of 

this description will be concerned with the Algebraic 

manipulation part of the language, and here there is no 

precedent that can be closely followed. In Chapter 10 a 

description of Polish expressions was given. Before 

proceeding further it is necessary to justify the choice of 

representation and to discuss alternative ways of 

representing algebraic expressions. 

Experience with Formula Algol led to the belief that 

formulae should not be stored as binary trees. The 

expression 'i + j + k' is stored in Formula Algol as 

the pattern ANY + p:(ANY + ANY) is stored as 

/ 
any 

p h any a y 

This means that the expression 

i + j + k == ANY +p : (ANY + ANY) 

is said to be FALSE, in contradiction to what one would 

expect. 
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Further consideration of the subject led to the belief 

that in general the operators + and *, being associative and 

commutative, are regarded as applying to each of their 

operands in equal strength. One does not think of (i+j)+k, 

or yet i+(j+k), but knowing that these two expressions are 

equivalent, we regard all three operands as having equal 

status. 

Again, a binary representation of expressions makes 

recognising equality more complicated. (a+a)+b would easily 

collapse to 2*a+b, but (a+b)+b requires a different 

approach. All manipulation of algebraic expressions depends 

on the ability to recognise the equality of two expressions. 

With the operators + and * this is a considerable problem. 

The two expressions 

a*b*c + p*q*r + x*y*z 

q*r*p + x*z*y + c*a*b 

are equal; but a fair amount of testing of various 

combinations is necessary before this can be discovered. 

Algebraic manipulation by its nature is highly 

recursive. It seems that a method which reduces this 

recursion to a minimum is necessary. Binary trees do not do 

this. 

Having decided against a binary representation, what 

remains? An attempt was made to process the expressions in 

the infix form that the programmer uses, but this was found 

to be impractical. There seemed too many tests to be made at 

several different stages, and bracketed expressions 
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presented a problem. Therefore the form described earlier 

was decided on: + and * were to be regarded as n-ary 

operators; the other three were binary. This was changed 

later since the occasions when '-' was unary became 

difficult to handle. It was decided to regard it as unary 

all the time, treating x-y as x+(-y). A similar change was 

made for /, treating 1/y as y**(-1) in several routines. 

The advantage in having to test for three operators instead 

of five is considerable. 

Having decided on the general form, it was necessary to 

decide how the expression should be stored. The implementing 

program is a considerable size, and therefore consideration 

was given to saving space as opposed to time. The English 

Electric KDF9 and the IBM360/50 were both used in testing 

the program, and on both space became a problem. The program 

currently runs on the ICL4-75 under the Edinburgh 

Multi-Access System, and this does not have the restrictions 

of the other machines. However the response of AML when 

being used interactively is reasonably good. (For simple 

manipulations it is comparable with that of the on-line 

editor), and at the moment the system causes more delays 

than AML. Therefore it was decided not to alter the present 

form of the interpreter. For large jobs, the interpreter 

will obviously be too slow, and it is envisaged that a 

compiler may be written for a subset of AML at some latex 

date. 
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This concern with space lead to the adoption of a 

linear representation rather than using lists or trees. 

This meant that most of the adjusting of expressions is done 

by copying, rather than by adjusting pointers, but as has 

been said, the penalty does not seem too severe. 

There is another reason for this representation. IMP 

has a type of variable called %string, which seemed ideal 

for manipulation algebraic expressions. An expression could 

be stored by an assignment statement,e.g. 

S +(a,b,*(c,d))- 

Strings could be copied from one variable to another by 

assignments of the form S=T. In addition the concatenation 

operator could be used to put one expression on the end of 

another, e.g. S=S.T. Unfortunately strings could not be used 

in the final program. The maximum length permitted for a 

string is 255 characters, and this is not enough for general 

expressions used in AML. However strings were used in the 

initial development of the algebraic routines, since the 

programs written with them were much easier to follow. Then 

when the transformation was made to arrays, the basic 

structure developed with strings was, of course, preserved. 

Thus the algebraic expressions are to be in Polish form 

and held in byte arrays. There remains the problem of the 

representation of the basic operands. They could be stored 

in the form that the user sees them, but this does not 

convey enough information about their kind. Secondly they 

could be stored in the form of their analysis record. 
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However this is too long, and some of the information it 
gives is redundant at this point. Therefore a compromise 

notation between the two was chosen, and this was described 

earlier. This is as concise as it can be while retaining the 

information which will allow it to be processed easily. 

12.1 Processing the (INTOCL). 

The algebraic commands of AML are 

1) %simplify (INTOCL)? 

2) %distrib (INTOCL)? 

3) %expand (INTOCL)? (TERM)? 

4) %subs (FORCL) %in (INTOCL)? 

5) %diff (INTOCL)? 

6) %addsum (INTOCL)? 

(INTOCL) is a list of names, label expressions and 

formulae, possibily followed by %into and a label expression 

list. So for all algebraic commands, the (INTOCL) must be 

examined first. This is done by a routine called Fillrslt. 
Considering lists of length 1, there are six possible 

forms of (INTOCL). 

1) NAME 

2) NAME %into LABEL EXPR 

3) LABEL EXPR 

4) LABEL EXPR %into LABEL EXPR 

5) FORMULA 

6) FORMULA %into LABEL EXPR. 
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The results of applying the algebraic command to these 

different types of arguments is as follows. 

1) Puts the result back in NAME. 

2) Puts the result in the statement given by LABEL 

EXPR. NAME is unchanged. 

3) Prints out the result, if required, and then loses 

it. The expression in LABEL EXPR is unchanged. 

4) Puts the result in the second LABEL EXPR. The 

original argument stays in the first LABEL EXPR. 

5) Prints out the result, and then loses it. 
6) Puts the result in the LABEL EXPR. 

In addition to these cases, the (INTOCL) may be 

ommitted. This is only permissible if the command is not the 

first of a command list. In this case the result of the 

previous command is used as the argument. 

Since the lists are in general of greater length than 

one, and since a label expression may refer to a block 

rather than a single statement, the command may have several 

arguments. Fillrslt copies these arguments into the array 

ALG. Thus this is another instance of a use of ALO. The 

array FORM holds the pointer to the ARN cell. 

For a command statement, every argument is copied into 

ALG, with the array FORM giving the required ARN cell. When 

all the arguments have been stored, the command is applied 

to each in turn. If no (INTOCL) is present, the arguments 

already stored are used. This means that the results of the 

command must replace the original argument in each case. 
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Also, up to this point the contents of the original NAME or 

LABEL EXPR have not been altered. 

Here is the algorithm for processing the arguments of 

an algebraic command. 

1) Go to (7) if there is no (INTOCL). 

2) Fill ALG with the arguments, using FORM to 

reference them. 

3) Get the first argument. 

4) Apply the command. 

5) Copy the result into ALG, resetting ARNI and 

ARNJ. 

6) If there is another argument, go to (4). Otherwise 

stop. 

7) Fault the program if FORM has no entries. Go to 

(3). 

Associated with the arguments is an array called 

RSLT. This contains a value showing where the result is to 

be stored. If the number is positive, it gives the position 

in the Storage Tree; if it is negative, its modulus is a 

pointer to INFO. Hence in the first case, the result is 

stored as a labelled statement, while in the second it is 

the value of a variable. If the entry in RSLT is 0, the 

result is not to be stored. 

Thus for each argument of the command, Fig. 1 shows the 

various situations that may arise. 
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1) e.g. %simplify a 

RSLT 

1 1 -P(a) ! I 
! ! 1 

ARN 1 ARNI1 I ARNJI 
1 1 I I 

I I 

! ! 
ALG I I value of a! I 11 1-1 

where P(a) is the position in INFO of the description of a. 

2) e.g. %simplify 1:1 

RSLT 

2 1 0 1 1 

! ! 1 

ARN 1 -ARE-1 I ARNJI 

! ! 1 1 

1 1 

ALG I !statement at 1:11 1 

I 1 I I 

3) e.g. %,simplify 1:1 %,into 1:2 

RSLT 

3 1 S(2:1) 1 I 

1 11 
1 

1 

ARN I ARNII I ARNJI 

1 ! ! 1 

1 1 

ALO I !statement at 1:1 1 1 11 1 1 

where S(2:1) is the position in the Storage Tree of 2:1. 

Fig. 1 
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The following is the algorithm for the routine 

Fillrslt which enters the arguments into ALO, 

1) If there is an '%into', set p pointing to the 

(LB)* after it. Otherwise per. Check that the lists 

are the same length. 

2) Get the first member of the (NAMES) list. 

3) If p=0 set q=j, otherwise evaluate the label 

expression at p into q. 

4) If the alternative is NAME, find its position in 

INFO, and get its value. Call Get to set up ALG, 

storing the result in FORM. Copy the expression 

into ALG. If q=O set RSLT=-j, otherwise set 

RSLT=q. 

5) If the alternative is LB, evaluate its position, k, 

in the Storage Tree. If there is a statement at k, 

copy it into ALG. If there is a subtree below k, 

copy all its statements into ALG, incrementing the 

pointer to RSLT and FORM before each statement. If 
q#0, make sure there is a corresponding cell in the 

subtree below q, inserting one if necessary. (As 

for the %label command). Set RSLT to this position. 

Otherwise RSLT=O. 

6) For alternative 3, evaluate the first expression 

into ALG. If (FORMULA) was an equation, evaluate 

the second expression into ALO, setting the ARN 

cell pointing to the beginning of the first 

expression and the end of the second. Set 
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RSLT=q. 

7) Go to (3) if there are any more (NAMES). 

The application of a command is done by the routine 

Manip. This routine decides which command is to be applied, 

and calls the appropriate routine. When the command has been 

applied, it puts the result in ALG, destroying the old 

value, and resetting the ARN cell that FORM points to. 

The algebraic commands must each be described 

separately. A number of routines, each of which is highly 

dependent on the others is used. A list of these routines is 

given with a simple description of their function, and then 

each one will be described in more detail. 

1) COMPARE Compares two expressions to see if they are 

algebraically equal. 

2) ADDEVAL Takes a list of terms separated by *+". 

is a unary operator more binding than +) and 

performs any permissible addition. A flag may be 

set, requesting that the individual terms be 

simplified before being considered. 

3) MULTEVAL Takes a list of terms separated by * signs 

(a/b having been translated into a*b**-1), and 

performs any permissible multiplication. 

4) EXPN Takes an expression and splits it into base 

and exponent, changing a**b**c to a and b*c. 

5) COLLECT Describes the AML routine Collect. 

6) DIFF Differentiate 

7) DIST Apply the distributive law 
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8) EXPD The routine for the command %expand 

9) DIV TO MULT Changes all division, x/y, to 

exponentiation, x*y**-1. 

The descriptions of these routines are not accurate. 

They discuss the algebraic expressions that are handled as 

if they were strings. In fact, all the expressions are 

stored in the array ALG, and are described by a base and two 

relative pointers. The base pointer is a %SHORT %INTEGER 

NAME that is set pointing to an ARK cell. The relative 

pointers give the distance of the beginning and end of the 

expression from the base. 

Example 

Suppose one of the routine descriptions refers to the 

expression P. Then Fig. 2 shows the actual method of storing 

P. 

<---------- pl--------- > 

! 1 

ALG I 
! 1 1 1 1 

1<--------------------p2----------> 
1 

Pr=ARNI(?) 

Fig. 2. 

The shaded part of ALG is the part actually under 

consideration. 

P = P.X 

alters Fig. 2 to Fig. 3, where X was defined in the same way 

as P. 
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<---------p1--------> <---new----> 

! !/////////////1**********1 ! ALG I 

1<-------------------------p2------------ ----> 
1 

P=-ARNI(?) 

Fig. 3 

The part labelled NEW is a copy of the expression X. 

12.2 The Routines 

1) Skip. 

This integer function obtains the next term of the 

expression in P. The word 'term' in future will mean the 

part of the expression that Skip yields. This function will 
be described in more detail than the others. 

Every expression that is used in the routines used for 

algebraic manipulation is stored in a byte array in Polish 

form. For descriptive purposes this is shown in a bracketed 

form, for example, 

*(x,y,z) 

for 

x*y*z. 

Chapter 10 has described how these expressions are 

built up. Internally the representation of x*y*z would be 

1 421 01 61 512071 512081 512091 

where 207, 208, 209 are the hash codes of x, y and z; 42 is 

the ISO code for *, and 0 and 6 together give the length of 
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the expression that * is applied to. 

Skip has two parameters; P the base pointer of the 

expression, and an integer p1 which points to the first 

member of P that is to be considered. The result of Skip is 

a pointer to the end of the term that is found. Let a be the 

first member of P. Then the result for Skip is given by the 

following: 

1) If a=* or +, the next two entries of P give the 

length of the term. So the result is pl+2+L where 

L is the length of the term. 

2) If a=/ or E, the position required is the end of 

the second operand of a. P1 is advanced by 1, and 

Skip is called. This gives the end of the first 
operand. Then Skip is called again to give the end 

of the second operand. 

3) If a=6, then the term is a name with a list, e.g. 

1 612071 01 01 41 51208! 512091 

for x(y,z). 

The second entry after p1 gives the number of 

primes, and the third and fourth give the length of 

the subscript list. Hence the result is pl+L+4, 

where L is the length. 

5) If a=5 the term is a name without a list. Hence the 

result is p1+1. 

6) If a=3 or 4, the term is a rational or long real, 
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which take up nine bytes. So the result is p1+8. 

7) Finally if a=1 or 2, the term is an integer or 

real, so the result is p1+4. 

Skip has been described in more detail than the rest of 

the routines will be. Now that the actual organisation of 

the algebraic expressions has been described, the routines 

that handle them will be described in a fairly general 

manner, using such terms as next term of Xcopy X to 

Y', etc.. 

2) Compare(P,Q). 

This performs a most fundamental task, as it decides 

whether or not two expressions are equal. The most general 

form it has to test can be exemplified by the two 

expressions 

a*b+c*d 

d*c+b*a 

which it must recognise as being equal. Compare is an 

integer function which gives the result 1 if the expressions 

are equal, and Q otherwise. The two expressions would be 

presented to Compare in Polish form, i.e. as 

+(*(a,b),*(c,d)) 

+(*(d,c),*(b,a)) 

Compare is simply recursive. It assumes that it may 

receive three kinds of expressions.i.e. 

1) Those beginning with * or + 

2) Those beginning with / or E. 
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3) Those consisting of a single operand. 

In the first two cases, the result is 0 if the two operators 

are not equal. 

Case 3. 

If the single operand is a name or constant, then the 

two expressions can be compared exactly. The result is 1 if 

they are identical, and 0 otherwise. 

If they both consist of the same name followed by a 

list, then each element of the list must be equal to its 

partner. For example 

a(x+y,z) 

and a(y+x,z) 

are equal, but 

a(x+y,z) 

and a(z,x+y) 

are not. 

The number of entries in each list must be the same. 

Compare is called for each set of pairs, and the result is 1 

only if all the pairs are equal. 

Case 2. 

Since the two operators are non-commutative, the first 
operands of the expression must be equal, and so must the 

second two. Compare is called for each pair of operands. 

Case 1 

This time, since + and * are n-ary operations, each 

operand in one expression must be checked against every 

operand of the other. Let use consider an example using *, 
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e.g. comparing 

P = *(a,b,c) 

and Q V *(c,a,b). 

This is done in the following way. 

1) Let S be the first term of P. 

2) Let T be the first term of Q. 

3) Compare S and T, and go to (6) if they are equal. 

4) If T was the last term of Q, nothing has been found 

to equal S. Therefore the result is c. 

5) Get the next term, T, of Q and go to (3). 

6) Since S and T are equal, we now want to compare the 

remaining terms of P and Q. In the example, 'a,b,c' 

is compared with 'c,a,b'. Once the ass have been 

matched, 'b,c' is compared with 'c,b'. If Q=T and 

S is the last term of P, the result is 1, since all 
terms have been matched. If Q=T, but P contains a 

term after S, the result is 0. Otherwise, resolve 

Q -> Q1.(T).Q2, and then set Q=Q1.Q2, thus 

eliminating T. Get the next term, S, of P, and go 

to (2). The result is also zero if there is not 

another term of P. 

3) Addeval(P,R,mult) 

An expression in Polish notation is given as the 

parameter P. The routine examines each term of the 

expression, to add together those which differ by a 

constant. For example, 
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+(*(2,a,b,c),*(3,b,c,a)) 

will give the result 

*(5,a,b,c) 

Constants are also added together, in an array called 

FACT. The routine calls a local function called Split P. 

This has as parameters arrays F and K. The next term of P is 

removed. If it is a number it is added to FACT, and .the 

result is zero. Otherwise the constant in the term is put 

into K, and the rest of the term is put in F. The result is 

one. For instance, in the example given above, the first 
term was *(2,a,b,c). Split P divides this so that the 2 goes 

in K and a,b,c goes in F, returning the result 1. 

Having said this, the algorithm for addeval can be 

given. 

1) Set FACTO 

2) Call Split P to get the first term of P, putting 

the constant in CONST, and the rest in F. 

3) Go to (8) if Split P gave the result 0. 

4) Go to (8) if there are no more terms in P. 

5) Call Split P again, putting the result in C and X. 

Go to (7) if Split P is J. 

6) If Compare (X,F)=1, the constants that multiply 

them may be added together. The result of this is 

put back in CONST. Otherwise the term C*X is saved 

in Q. 

7) Go back to (5) for the next term of P, if there is 

one. 
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8) The value CONST*F is put in R, unless CONST=O. 

9) Q has all the terms that did not agree with F. 

Therefore if Q is non-empty, copy it into P, and go 

to (2). 

10) The result is FACT + R. 

Example 

+(*(3,a,b),*(2,b,a),b,a,b,2,*(3,c),5,*(4,c)) 

becomes 

I.e. 

+(7,*(5,a,b),*(2,b),a,*(7,c)) 

3*a*b + 2*b*a + b + a + b + 2 + 3*c + 5 + 7*c 

becomes 7 + 5*a*b + 2*b + a + 7*c. 

Additional tests, not described here, must be made for 

negative terms. If the parameter mult is set to 1, the term 

found by Split P has Multeval applied to it, before being 

split into 

constant * rest, 

and being copied into F and K. After each term of P has been 

processed once, mult is set to zero, to prevent unnecessary 

applications of Multeval. 

4) Expn(P,pl,ptrl,ptr2,R) 

This is an integer function which evaluates the 

exponent of a term. For example, EEEabcd is evaluated to 

a to the power *(b,c,d). 

The function works on the Polish expression which is held in 

P, beginning at the position pl. The base is unaltered by 

this function; it is merely found, and the pointers ptrl and 

ptr2 are set to the beginning and end of it. The exponent is 
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copied into R. If the expression evaluates to a numeral, 

this is put in R and the result of the function is 0. 

Otherwise the result is 1. On exit, pl points to the first 
position in P after the exponent. 

Here is the algorithm for the function. 

1) Count the number of E's, putting the answer in i. 
2) Set ptrl and ptr2 to the beginning and end of the 

base. Set pl pointing immediately after the base. 

3) If ice, set R empty and go to (8). 

4) Do (5) i times. 

5) Get the next term of P, calling Addeval if it 

begins with +, and copy the result into Q. 

6) Call Div-to-mult and Multeval for Q, putting the 

result in R. 

7) Result=1 unless R is numeric. 

8) Go to (10) unless the base is numeric. 

9) Let B be the base. If ice, R=B, otherwise 

R=B**R. Result=0. 

10) If R=u, set R=1. Result is 0. 

11) Set R empty if R=1. Result=l. 

5) Multeval(P,R) 

This routine has in its parameter P a Polish expression 

of terms multiplied together. If any terms have the same 

base, the exponents are added, e.g. 

*(Ea2,b,Eac,Eb3) 

becomes *(Ea+(2,c),Eb4). 
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The result is put into X. 

Expn is applied repeatedly to P, thus obtaining 

pointers to the base of each term. The exponent is held in 
kscd 

R. In fact the same R isAeach time, pointers being used to 

delimit the exponents. When all of P has been processed, we 

have the following situation. 

All bases are held in P, with pointers to the beginning 

and end of each base. All exponents are held in R, with 

pointers to the beginning and end of the exponents. Let 

P(i) be the i-th base of the expression, and R(i) be the 

i-th exponent. 

If any of the terms was found to be numeric, it is used 

to multiply the constant factor 'fact', which initially is 

one. N holds the number of terms of the form P(i)**R(i) that 

were found in P. If n is 0 when P has been processed, the 

result is given by fact. The algorithm following describes 

the case for n>O. 

1) Set i=1. 

2) Go to (11) if P(i) (Already dealt with, see 

(8).) 

3) If R(i) is empty, set Y=1; otherwise set Y=R(i). 

4) Go to (10) if i=n (I.e. 

P). 

P(i) is the last term of 

5) Set j=i+l. 

6) Go to (9) if P(j)=O'. 

7) Compare P(i) and P(j). Go to (9) if the result is 

0. 
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8) Copy R(j) into Y (or copy 1 if R(j) is empty). Set 

P(j) to indicate that the term has been used. 

9) Increase j by 1. Go to (6) unless j>n. 

10) Call Addeval for Y. If the result is 1, copy P(i) 

into X. Otherwise copy P(i)**Y into X, provided Y 

is not zero. 

11) Increment i. Go to (2) unless i>n. 

12) Copy fact in front of X. Result is in X. 

8) Dist(P,X) 

This routine applies the distributive law to the 

expression in P, putting the result in X. Examples of the 

transformation required are 

*(+(a,b),c) -> +(*(a,c),*(b,c)) 

E*(a,b)c -> *(Eac,Ebc) 

*(+(a,b),c,E*(P,q)-1,Er-1,E*(s,t)-1) -> 

*(+(*(a,c,Er-1),*(b,c,Er-1)), 

E+(*(P,s),*(q,s),*(P,t),*(q,t))-1) 

(I.e. (a+b)*c*(p+q)**-1*r**-1*(s+t)**-l = 

a*c*r**-l+b*c*r**-1*(p*s+q*s+p*t+q*t)**-1 ) 

Div-to-mult is assumed to have been applied to P before 

it is passed to Dist. 

First let use consider an expression with no 

exponential expressions of the form E*(a,b)c, and with no 

denominator. For example, let us consider the expression 

*(a,+(b,c,d),e,+(f,g),h,+(j,k)) 

This is broken down in the following manner 
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1) a,e and h, i.e. the terms that do not have + in 

them, are copied into R. 

2) The sub expressions containing + are broken up into 

terms, so that P(i,j) is the j-th term of the i-th 
subexpression of P. The following table illustrates 

this. 

P(1,1) = b 

P(1,2) = c 

P(1,3) = d 

END(1) = 3 

P(2,1) = f 

P(2,2) = g 

END(2) = 2 

P(3,1) = j 

P(3,2) = k 

END(3) = 2 

m = 3 

This table is used by a recursive routine local to 

Dist, called Fi11X(i,j). The algorithm for it is as follows. 

1) Set r2=rl, pointing to the next free space in R. 

2) Call Dist to put P(i,j) into R. 

3) If i=m do (4); otherwise call Fi11X(i+1,1). 

4) Call Multeval to copy R into X. 

5) Set rl=r2, going back to the position we started 

with. 

6) Call Fi11X(i,j+l) unless j=END(i). 

7) Set rl=r2. Return. 
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R1 is a pointer global to Fi11X. R2 is local. 

Fi11X(1,1) will perform the required distribution. Let use 

examine the working of FillX, using the example given above. 

Initially R='a,e,h' and X is empty 

I Call Fi11X(1,1) 

2) This copies P(1,1) into R, so that 

R = 
1P a,e,h,b- 

3) i#m, so 

II Call Fi11X(2,1) 

2) This sets R = 'a,e,h,b,f- 

3) i#m, so 

III Call Fi11X(3,1) 

2) R = 'a,e,h,b,f,j' 

3) i=m so copy R to X, i.e. 

4) X . '*(a,e,h,b,f,j)O 

5) Reset r1, so R = 'a,e,h,b,f' 

6) j#END(i), so 

IV Call Fi11X(3,2) 

2) R = 'a,e,h,b,k' 

3) i=m so copy R to X, i.e. 

4) X ='*(a,e,h,b,f,j),*(a,e,h,b,f,k)" 

5) Reset rl, so R = 'a,e,h,b,f 

7) j=END(i), so return to 

III, step (6) 

7) j=END(i), so return to 

II, step (3) 

5) Reset rl, so R = 'a,e,h,b' 
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6) j#END(i), so 

V Call Fi11X(2,2) 

2) R = 'a,e,h,b,g' 

3) i#m, so call Fi11X(3,1) 

This adds two more terms to X, as before, but 

with g instead of f. So X is 

*(a,e,h,b,f,j),*(a,e,h,b,f,k),*(a,e,h,b,g,j), 
*(a,e,h,b,g,k)' 

5) Set rl=r2, so R ='a,e,h,b' 

6) j=END(i), so return to 

II, step (6) 

7) Return to 

I, step (3) 

5) Reset ri, so R = 'a,e,h' 

6) j#END(i), so 

VI Call Fi11X(1,2) 

2) R = Ia,e,h,c' 

3) i#m, so call Fi11X(2,1) 

This adds four more terms to X, as before, but with 

c instead of b. So X is now 

*(a,e,h,b,f,j),*(a,e,h,b,f,k),*(a,o,h,b,g,j), 
*(a,e,h,b,g,k),*(a,e,h,c,f,j),*(a,e,h,c,f,k), 

*(a,e,h,c,g,j),*(a,e,h,c,g,k)' 

5) Set rl=r2, so R ='a,e,h,c- 

6) j#END(i), so 

VII Call Fi11X(1,3) 

2) R = 'a,e,h,do 
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3) i#m so call Fi11X(2,l) 

This adds four more terms, with d replacing b this 

time. So X is 

'*(a,e,h,b,f,j),*(a,e,h,b,f,k),*(a,e,h,b,g,j), 

*(a,e,h,b,g,k),*(a,e,h,c,f,j),*(a,e,h,c,f,k), , 

*(a,e,h,c,g,j),*(a,e,h,c,g,k),*(a,e,h,d,f,j), 
*(a,e,h,d,f,k),*(a,e,h,d,g,j),*(a,e,h,d,g,k)# 

5) Set rl=r2, so R= 'a,e,h' 

6) j=END(i), so return to 

V, step (6) 

7) return to 

I, step (6) 

7) Return to Dist. 

Now let us suppose that Dist is applied to an 

expression which only contains products raised to a power, 

for example 

P = EEE*(a,b,c)x y z 

In this case, Expn is applied to P, putting the exponents 

into Q. Then if the base begins with a '*', each of its 
terms is raised to the power given by Q. Otherwise E1bQ is 

copied into R, where 1b is the base. (This cannot be 

numeric, see Expn.) 

We may now consider Dist applied to a general 

expression P. It divides P into three parts: 

(i) terms involving + which are not raised to a power 

(ii) terms involving + raised to the power -1. 
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(iii) terms not involving +, or ones which are raised to 

a power other that -1. 

P is assumed to be a series of terms multiplied 

together. Diet processes the expression P by the following 

steps 

1) Let X be the first term of P 

2) Go to (5) unless X is of the form 

+(A1,A2.... An). 

3) Split up X, setting G(i,j)=Aj, where i is the 

number of terms of this form that have so far been 

found in P. 

4) If X is not the last term of P, get the next term, 

call it X and go to (2). Otherwise go to (8). 

5) Call Expn(X,Q), which leaves the base of the term 

in Xb, and puts the exponent, if any, in Q. 

6) Go to (7) unless Q=-1 and Xb is of the form 

+(Bl,B2,...Bn). Split up Xb, setting H(k,j)=Bj, 

where k is the number of terms of this form found 

so far in P. Go to (4). 

7) Copy the term into R, raising each term of Xb to 

the power Q, if Xb begins with a *. Go to (4). 

8) If i=0, Multeval R into X. Otherwise call 

Fi11X(1,1) for G. 

9) If k>O call Fi11X for H, putting **-1 after the 

result. 

10) Return. 
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9) Diff(F,R,dx) 

This routine differentiates the expression in F with 

respect to the algebraic constant whose hash code is in dx. 

The result is put in R. 

The routine uses a local integer function Hasdx(Y) 

which examines an operand and determines whether it contains 

the name given by dx. Its results can be tabulated as 

follows. 

1) If the operand is a constant or a name other than 

dx, the derivative is zero. Hasdx returns the 

result 0. 

2) If the operand is dx, the derivative is one. Hasdx 

returns the result 1. 

3) If the operand is the name dx followed by a list, 

this is treated as dx, so the result is 1. 

4) If the operand is a name other than dx, followed by 

a list, there are two alternatives 

i) The name may be a trigonometric name that 

has a recognised derivative. In this case the 

derivative is copied into the array Y. 

ii) If the name is not recognised, a prime is 

added after the original name (So that f(x) 

becomes f"(x), f"(x) becomes f"(x), etc.). 

The arguments of the name are differentiated using 

Diff. The derivatives are copied into Y. If the 

derivative of the argument is 1, the result 

returned by Hasdx is 2; otherwise it is 3. 
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5) If the operand is an expression, it is 

differentiated into Y and Hasdx returns the value 

4. 

If the expression presented to Duff is a sum of terms 

in dx, each term can be considered individually, since 

(f+g), = f' + g'. 

However if the expression contains a product of terms in dx, 

the result is more complicated. 

(f*g)' = f'*g + g'*f. 
Hence for each term that is differentiated, both the 

derivative an the original term must be kept, in case the 

term is part of a product. If the expression is a product of 

three terms, the same rule as above can be applied. E.g. 

(f*g*h), _ (f*g)*h 

(f*g)*h 

which is f'*g*h +g'*f*h + f*g*h'. 

The algorithm for dealing with products in Diff 

1) Get the first term. Set Z and X empty. 

2) Put the term in F, and its derivative in Y. 

3) Copy Y into X if Y is non-empty. 

4) Go to (9) if Z is non-empty. 

is 

5) Go to (7) if this is not the last factor of the 

product. 

6) If X is empty, the P=1, else P-X. Finished. 

7) If X is empty, then Z=1, else Z=X. 

8) Copy F to the end of G. Get next term. Go to (2). 

9) Set Z=F*Z+X*G. Go to (8) if there is another 

factor. Copy Z into P. 
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Let us consider this algorithm using the product f*g*h. 

1) Z = 
00 

X = 
'0 

2) F=f, Y=f' 
3) X = f 
7) Z=f` 
8) G = f 
2) F=g, Y=g' 
3) X = 

to 

9) Z = g*f' + g'*f, X = g'*f 

8) Gf*g 
2) F=h, Y = h 

3) X=h 
9) Z = h*g*fo + h*go*f + f*g*ho 

R = h*g*f' + h*g'*f + f*g*h' 

The individual terms of a product may contain an 

exponential sign (/ is replaced by **-l) which must be 

tested for. The two possible cases are 

f(x)**c 

and c**f(x) 

which give derivatives 

c*f(x)**(c-l)*f'*(x) 

and f'*(x)*c**f(x)*log(c). 

F(x)**g(x) is faulted. In addition, there may be constant 

terms, which must be saved in case they are needed in a 

product. 

The expression F is differentiated with respect to x by 

the following algorithm. 
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1) F is assumed to be a number of terms added 

together. Let P be the first of these. 

2) P is therefore a number of terms multiplied 

together. Let Q be the first of these. 

3) Go to (6) unless Q is of the form Y.S.T. 

4) Apply Hasdx to S and T, to see whether either of 

them is dependent on x. Fault the program if they 

are both functions of x. 

5) If S=S(x), let Y have the derivative of S. Set 

G=T*S**(T-1). Otherwise, if T=T(x), let Y have the 

derivative of T. Set G=Q*log(S). 

6) If Q is not of the form Y.S.T, apply Hasdx to Q. 

Let Y have the derivative of Q if Q=Q(x). Go to 

(12) if Q is independent of x. (whether or not it 
begins with 'E'). 

7) Set G=G*Y. (Assuming that G is 1 if Q is not 

.E'.S.T.) 

8) If Q is the only term of P to be dependent on x, 

the derivative of P is Pr*G, where Pr represents 

all terms of P other than Q. In particular, if Q is 

the last term of P, and if Z is empty (see below), 

this is so. Set R=R+Pr*G. R holds the result, and 

is initially set to zero. This gives the result if 
P is the last term of F. Otherwise, let P be the 

next term of F and go to (2). 

9) Assume for a moment that Q is the first term of P 

to be dependent on x. However, Q is not the last 

XII-30 



term of P. In this case we must save the value of 

G, and the value of Q, in case there is another 

term dependent on x. Set Z=G and V=Q. 

10) If Q is not the first term of P dependent on x, Z 

will be non-empty. Therefore we have a product of 

terms: 

Q whose derivative is G 

and V whose derivative is Z. 

The derivative of the product is therefore 

Q*Z+V*G 

and the product itself is Q *V. 

If Q is not the last term of P, we wish to 

save these values, in case there is another term to 

be considered. Therefore Z=Q*Z+V*G and VsQ *V. Then 

the next term, Q, of P is considered by returning 

to step (3). 

11) If Q was the last term of P, the derivative of P is 

Pr*Z, where Pr contains all the terms of P that are 

independent of x. Therefore set R=R+Pr*Z, and 

process the next term, P, of F, by returning to 

step (2). 

12) The only case left to consider is that where Q is 

independent of x. If Q is the last term of P, and 

if Z is empty, the derivative of P is zero, 

Therefore process the next term, P, of F 

immediately. 

13) Q is saved in Pr. If it is the last term of P. 
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Pr*Z is added to R, and the next term of F is 

processed. Otherwise the next term of P is 

processed. 

10) Div-to-mult(P,S) 

This takes an expression P which may have division 

signs in it, and returns the expression S, in which all 
division signs have been converted. 

Consider, as an example, the expression 

*(///ab+(c,/de)f,Eg/bc,/a/b/cd) 

which is the Polish notation for 

a/b / (b/c) a 
---- / f*g * ------- 

c+d/e / b/(c/d) 

This is changed to 

-1 -1 -1 -1 -1 -1 -1 
ab * (c+de ) *f * g**(bc ) * ab cd 

Div-to-mult processes the expressions as follows 

1) Count the number of / signs at the beginning of the 

expression. 

2) Let P be the first term after the Is. 

3) Go to (5) unless the number of Is is zero. 

4) If P begins with +, *, or E, call Div-to-mult for 

each of its terms, 

Otherwise copy P to R. 

putting the result in R, 

5) Return if P is the last term of S. Otherwise 

discard P, and go to (1). 
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6) If there were n / signs, do (7) to (9) n times. 

7) Get the next term, and call Div-to-mult for it, 
putting the result in Q. Q is therefore a series of 

terms multiplied together. 

8) Let T be the first term of Q. 

9) If T is of the form X**-1, put X in R. Otherwise 

put T**-l in R. Go to (7) if T is the last term of 

Q. Otherwise let T be the next term, and go to (8). 

10) Go to (5). 

11) Expd(G,R,n,m) 

The expression G**n is to be expanded, putting the 

result in R. If m is zero, all terms are to be found. 

Otherwise the m-th term is required. N must be an integer or 

rational number. Terms is a global integer which indicates 

the number of terms required. Normally it is 5, but it may 

be reset by the programmer. The algorithm for Expd is as 

follows. 

1) Set fact=n. Go to (3) unless n=1. 

2) If m=O or 1, set R_=G. Otherwise R--O, Return. 

3) G is a series of terms added together. Set 

G1=first term of G. G2=rest of G. 

4) Go to (6) unless G1=1. Go to (2) if G2 is empty. 

Copy G2 to P. Set Q and F empty. 

5) Set R=l if m<2. Go to (9) if n is a positive 

integer. Set i=terms. Go to (11). 

6) Set Q=G1**n. Go to (7) unless G2 is empty. Call 
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Dist(Q,R) and then return. 

7) Go to (10) unless n is a positive integer. Set 

P=G2, F=gl. 

8) If m<2 call list(Q,R). Empty Q. 
9) If n>terms then i=terms also i=n. 

10) Set R=1 unless m>2. Set P G1**-l. F is empty. Set 

i=terms. 

11) Return if m=1. 

12) Do (13) to (17) for k=1,1,i. 

13) Go to (17) unless m=0 or k=m-1. 

14) Set A=F**(i-k). 

15) Call Expd(P,A,k,O). Set A=fact*A. 

16) Call Dist(A,R). Go to (18) unless mat. 

17) Set fact=(n-k)/(k+l)*fact. 

18) Return if Q is empty. Dist Q*R into R and return. 

12) Subst(P,Q,R,A) 

This routine substitutes the expression in P for each 

occurrence of Q that is found in R, putting the result in 

A. The actual substitution is done by a local integerfn 

Sub(R,A). In fact, Subst merely sets up some local variables 

which must be global to the recursive function Sub. Sub is a 

function which returns the value 1 if some substitution was 

done, and 0 otherwise. It has two parameters, R and A, since 

P and Q will remain the same for all calls of Sub. 

Seven cases may arise in this routine, and they are 

listed below. Sub tests for these cases in the order they 
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are given. 

1) Q=R. 

In this case, P is copied into A, and the result of 

Sub is 1. 

2) Q and R begin with the some operator, which is + or 

For example, 

Q=+(gl,g2,...qn) 

and 

R=+(rl,r2,...rm) 

The routine tests for the case where for some i, 
Ri+k = Qk, for k=1,2,...n 

E.g. 

R=+(a,b,c,d,e) 

and 

Q=+(c,d). 

This test is done by two local routines. The first, 

Firatmatch searches down R, until it comes to an 

Rk which is equal to Qi. This equality is found by 

a local integer function, Eq(R,Q) which gives the 

value 1 if they are equal, and 0 if they are not. 

If Firstmatch is sucesaful, the second function, 

Compare-rest is called. This moves down Q and R, 

from Q1 and Rk, testing that the successive pairs 

are equal. (Q must have at least two terms to 

justify the use of the operator.) If Eq fails for 

one of the pairs, or if there are less than n-1 
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Rj's after Rk, Compare-rest fails. It succeeds if 
it manages to match all the Q,s to terms of R. In 

this case, Rk,Rk+1,...Rk+n is replaced by P. 

Before discussing this case further, however, we 

must consider the case when Firstmatch is 

unsucessful. It is still possible to perform some 

substitution, for it is possible that the whole of 

Q is contained in one of the Rj's. For example, 

Q=+(a,b) 

and R=+(*(c,+(a,b)),d). 

Hence Sub(Rj,A) is called for each term, Rj of R. 

This process must also be carried out for the terms 

up to Ri, if Firstmatch is a success. Hence the 

steps taken are 

i) Call Firstmatch, letting i point to the term 

that matched Qi. If there is no such term, 

set i=m+1. 

ii) Call Sub(Rj,A) for j=1,1,i-1 

iii) Process is finished if i=m+1. 

iv) Call Comparerest. 

v) If this is successful, copy P to the end of 

A. If i+n-1-m, the process is finished. 

Otherwise consider Ri+n as R1 and go back to 

M. 

vi) If Comparerest fails, it is possible that a 

match can still be found. For example, 

R=+(a,a,b,c) 
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Q=+(a, b) 

will fail for the first a, but succeed for 

the second. Therefore call Sub(Ri,A) and 

return to (i), treating Ri+1 as R1. 

3) R begins with * or +, but Q has a different 

operator, if any. 

Sub is called for each term of R. 

4) R is the AML function 'power', e.g. 

R = power(E,X,V,I,J). 

which means the sum for R I,I+1,... J of 

E*X**V 

where E may be a function of V. 

It is this situation which causes the complications 

in Subst. First Sub(E,T) is called. If this returns 

a value 1. T replaces E in R. the resulting 

expression is copied into A, and the process is 

finished. If the value 0 is returned, we consider 

another possibility. Suppose for example, that 

Q =3*a 

and R = power(r*a,x,r,0,10). 

Then the result obtained is 

A,= y*x**3+power(r*a,x,r,0,2)+power(r*a,x,r,3,10), 

assuming that P y. The method of doing this is as 

follows. The variable sigflag, which is global to 

Sub is set to 1. The arrays MF and NF, also global 

to Sub, are given the values I and J. Now we can 

discuss the function Eq. 
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If sigflag=O, the result is 1 only if Q and 

R are identical. If sigflag is 1, however, another 

possibility is allowed. The result is 1 if R is the 

variable V, and Q is a number lying between MF and 

NF. If this is so, Q is copied into the array 

NO, and if a subsequent value of Q is found, 

satisfying these conditions, it must be equal to 

NO. This ensures that for example, 

Q = 3*a+3*a**2 

will be accepted for 

R = power(r*a+r*a**2,x,r,0,10), 

but 

Q= 2*a43*a**2 

will not. Once sigflag has been set to 1, thus 

allowing this additional form of .equality', 

Sub(E,T) is called again. if it still gives the 

result 0, then R is copied into A, and the result 

of Sub(R,A) is 0. Otherwise A is constructed in the 

following manner. 

T is set to T*X**V, and Subst(NO,V,T,A) is called, 

so that the number found replaces all instances of 

V in the expression. Then 

power(E,X,V,MF,NO-1) + power(E,X,V,NO+1,NF) 

is added to the end of A. 



13) Addinf(S,G) 

This routine searches S for any instances of the AML 

function 'power'. If it finds more than one, it attempts to 

add them. Thus for example, if 
S = power(a,x,r,1,10) + power(b,x,r,5,20) 

the result, G, is 

power(a,x,r,1,4) + power(b,x,r,11,20) 

+ power(a+b,x,r,5,10) 

To illustrate the procedure of Addinf, we shall 

consider a more complicated example of S, i.e. 

power(a,x,r,1,50) +power(b,x,r,10,30) 

+ power(c,x,r,10,70) + power(d,x,r,70,INF) 

Any terms of S that are not the function power are 

copied straight into G. The remaining terms are split into 

parts as illustrated by the table in Fig. 4. 

1 

A 

a 

X 

x 

R 

r 

M 

1 

N 

50 

2 b x r 10 30 

3 c x r 10 70 

4 d x r 70 INF 

Fig. 4 
The following is an algorithm for the routine Addinf. 

1) Set k = 1, i = no of entries in the table. 

2) Set r = i. 
3) Do (4) for J=k+1 to r in steps of 1. 

4) Compare the entry j in the table with the entry k, 

putting any new function found at the end of the 
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table, increasing i if there is a new function, and 

altering the existing entries at j and k. 

5) Increase k by 1, Go to (2) if k<i. 

This process could apparently go on indefinitely, but 

because of the nature of the process, the possibility of 

getting a new term decreases. This will be discussed further 

when the process has been examined in detail. Step (4) must 

now be broken down. It is concerned with examining entry j 
and entry k, and providing a new result if there is one. 

This is done in the following way. 

1) No action is taken unless X(j) = X(k), since the 

functions cannot be added if the power series 

variables are different. 

2) If R(j)#R(k), this makes no difference, since the 

choice of summation variables is arbitary. R(j) 

replaces R(k) in A(k). 

3) For the moment we may ignore the expesssion, and 

consider only the bounds. Addition can only take 

place if 
N(j)>=M(k) and N(k)>=M(j) (i) 

This can be seen by considering them as intervals 

on the real line. Let us fix the pair 

(M(j),N(j)). 

-------- (--------- 7------- -- 

M(j) N(j) 

We already have the relations 

M(j)<N(j) and M(k)<N(k) 
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Suppose now that N(j)<M(k). This fixes the relation 

of the four variables, i.e. 

M(j)<N(j)<M(k)<N(k), 

and so we have two non-intersecting intervals, 

which cannot be combined. 

M(j) N(j) M(k) N(k) 

Similarly, if M(j)<N(k), we have the two intervals 

arranged as follows 

M(k) N(k) M(j) N(j) 

4) If condition (i) is satisfied, there will be a new 

term. Hence A(j) and A(k) are added.The result is 

put in the next entry of A in the table, and i is 

increased. Ai points to this new entry. 

5) The remaining calculation is concerned with filling 
in the bounds for the new term, and adjusting those 

of j and k. (X(j) and R(j) are copied into X(ai) 

and R(ai)) 

6) Two flags, lm and In are set so that 

In = 2 if NO = N(k) 

In = 1 if N(j) < N(k) 

In = 0 if N(j) > N(k), 

and similarly for lm. First consider the case where 

lm=2 and In=2, i.e. 

N(j) = N(k) and M(j) = M(k). 

Here we require the bounds of ai to be the same as 

those of j and k, and the entries j and k are no 
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longer needed. Hence N(ai) is set to N(j), and 

M(ai) is set to M(j). A(j) and A(k) are not to 0 to 

indicate that the terms are no longer required. 

The remaining cases have a symmetry about them. In 

order not to lose this, a routine called Test is 

used. Fig. 5 tabulates the values of im and In, the 

result required, and the call of Test. 

lm in NJ NJ Mk Nk Mai Nai Test 
- - -- -- -- -- --- --- ---- 

1 2 1 - - Nj+l Nk NJ NJ (2,j,k) 

2 2 0 Nk+l NJ - - NJ Nk (2,k,j) 

3 1 2 NJ Mk-1 - - Mk NJ (3,j,k) 

4 1 1 NJ Mk-1 Nj+1 Nk Mk NJ (0,j,k) 

5 1 0 - - Mk Mj-1 NJ NJ (1,j,k) 

Nj+1 Nk 

6 0 2 - - Mk Mj-1 NJ NJ (3,k,j) 

7 0 1 NJ Mk-1 - - Mk Nk (l,k,j) 
& 

Nk+l Nk 

8 0 0 Nk+1 NJ Mk Mj-1 NJ Nk (0,k,j) 

Fig. 5 

It will be noticed that on two occasions an extra 

instance of the entry of either j or k must be 

made. An example of the situation in line 5 is 

power(a,x,r,5,10) + power(b,x,r,1,20) 

which gives the result 

power(a+b,x,r,5,10) + power(b,x,r,1,4) 

+ power(b,x,r,11,20) 

The algorithm for Test will be given. To avoid 
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confusion, different formal parameters for Test 

have been chosen: 

Test(v,p,q) 

1) Set Y=M(p), M(ai)=Y. 

2) Go to (10) if v=l. 

3) Set C=N(q),N(ai)=Q. 

4) Go to (8) if v=2. 

5) Set N(p)=Y-1. 

6) Go to (8) if vim. 

7) Empty A(q). Return. 

8) M(q)=c+1. 

9) Empty A(p) unless v=.k. Return. 

10) Copy new instance of p into table (entry i). 
Set N(i)_N(p), C=N(q), N(ai)=c. 

11) Set M(i)=c+1. Go to (5). 

In addition, every time an entry in the table is 

altered, a test is made to see if M=N for that 

entry. If this so, the function 

power(a(r),x,r,m,m) 

is replaced by 

a(m)*x**m. 

This expression is copied into G, and the entry in 

the table is erased. Finally the entries are 

reconstructed into "power" functions, and copied 

into G. 
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The Termination of Addinf 

Let there be n entries in the table initially. Set k=1, 

p=n, and J=2. Assume that j and k overlap. The the two 

overlapping entries are replaced by (at most) three discrete 

entries. 

Increase j by 1, and again assume that they overlap. 

These are replaced by three discrete entries. Thus, after 

performing the cycle once, we have at most (n-1) additions. 

None of these entries overlap with the first, and the rest 

may be divided into discrete pairs. This means that when k 

is set to 2, and the cycle is repeated, there is at least 

one entry which does not overlap k. Hence if we set 

m=2(n-1), the maximum number of additions possible is m-2. 

Thus each time the cycle is re-started, the maximum 

number of additions to the table is decreased by one, which 

means that ultimately the number of possible additions is 

zero, and so the process will stop. 



XIII Implementing AML - Patterns 

Two of the conditions allowed in AML use patterns. 

They are 

(NAME)(LIST)? '%matches' (PATTEXPR) 

(NAME)(LIST)? 
'%contains, 

(PATTEXPR) 

Since patterns may contain extractors which point to 

particular parts of a expression, the expression being 

examined must be stored. Therefore the location of an 

expression is given in the condition. A name, and not the 

label of a statement must be used because of the internal 

representation; the statement at a label is held in infix 

form, but the value of a variable is held in Polish form. 

The restrictions are not necessary if there are no 

extractors in the pattern, but it was felt to be less 

confusing if only one form is permitted for all pattern 

matching. 

Let us consider an example. 

x = y + z + q 

1:1 a <- p*r 

:2 write(x) 

%do 1 %if x matches ajalgebraic A%any. 

The value of x is held in Polish notation in ALG. i.e. 

+(y, Z,q) 

This expression is obtained from the ARN cell that 

INm(i+l) points to, where i=VAL(j), and j is the hash code 

of x. Fig. 1 shows the situation. 
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INFO 

i 1 5 1 1 1 

! 1 1 1 1 

1 1 

1 _1 
VAL ! I I ARNI 

1 1,__-,1 
j ! i 1---->--- 1 

1 1 1 

! 1 ! 

! ! ! !+(y,z,q)l 
! 1 ! ! ! ! 

AM 

Fig. 1 

The position INFO(i+2) is used to point to the first 

extractor, a. If k is the hash code of a, and m=VAL(k), the 

five locations INFO(m) to INFO(m+4) are used as follows. 

INFO(m) Set to 15 to indicate an extractor. 

INFO(m+l) point to the beginning and end of the 

& part of the expresssion that a accesses. 

INFO(m+2) They are set relative to the beginning of 

the expression. Hence, in this example, x 

is stored in ALG as 

!+ 1 0 1 6 1 5 1 Hy1 5! Hz1 5 1 Hq1 1 1 0 1 0 1 0 1 3 1 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

where Hy, Hz and Hq are the hash codes of y, z and q 

respectively. 

INFO(m+l) is 3 

INFO(m+2) is 4. 

INFO(m+3) contains the operator #+#, and also the 

hash code of b. The use of '+' will be 
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discussed later. For the extractor b, 

INFO(p+3) contains .1 as well as '*+", 

since b is the last extractor pointing to 

x. (P being the position in INFO where 

b's description begins.) 

INFO(m+4) points back to the position of x's 

description in INFO. 

Fig. 2 shows the situation at this stage. 

1 1 51 1 k 1...115 1 31 41+&plj 1...115 1 9113 1+&O!j I 

1 1 1 1 

! l ! l 
1 1 l ARNI I ----->---------- 

1 !_1 1 ! 
VAL 1 I I l 

l 1 1 ! 
j1 it-> -------- >--1----- 1--------- 
11 1 1 1 

k1 ml-------- >-------- l 1 

! l 1 ! 

nt p1------->--------------- ! 
1 1 ALG l 

! ! +(y,z,q) 1 

Fig. 2 

The arrow in statement 1:1 means that p*r should 

replace the value that a points to in x. An '=' sign, e.g. 

a=p*r, would remove the pointers to x, and treat a as an 

ordinary variable. However, with the left arrow, three 

things are necessary. 

1) The expression "p*r" must replace y in x, and the new 

expression must be stored in ALG. 

2) The pointers of a must be changed. 
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3) The pointers of the other extractors that reference x 

must be changed. 

A routine called Replace is used to substitute p*r for 

y. This creates a new version of x, and resets the values of 

INFO(m+1) and INFO(m+2), using name type parameters. This 

new version is put in ALG, deleting the old version, and 

resetting the ARN cell. Now the pointers of the other 

extractors for the expression must be changed. This is done 

by using the pointer to the first extractor that is in 

INFO(i+2), and then the pointer to INFO(m+3), etc., to 

access the remainder. If any of the extractors point to a 

part of x after the altered one, as b does, the value 

length, given by Replace, is added to INFD(p+l) and 

INFO(p+2). Length, which may be positive or negative, is the 

difference in length between the old and new values of a. X 

is now. 

1 +1 01 141 *1 01 41 51 Hp1 51 Hrl 51 Hq1 11 cl 01 01 31 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

So length = 3. 

Fig. 3 shows the situation after the alterations have 

been made. 



1 15 1 1 k 1...115 1 31 91+&plj 1...115 112 116 1+&Olj I 

1 1 1 ! 
1 1 

1 1 1 ARNI I ------------- 
1 1 1 1 1 

VAL 1 I I 1 

! I I 1 

jt i!-> ----->------1-----1------------ 
1 1 1 1 1 

k! ml--_------>-------- 1 

1__1 1 1 

nl p1----------->------------ ! 

1 -1 ALG 1 

! +(*(p,r),q,3) I 

! 1 _..__ 

Fig. 3 
This example has not shown the use of the operator in 

IN1O(m+3). However, suppose that instead of 

a <- p*r, 

the instruction was 

a <- p+r. 

Then x should be changed to 

+(p,r,q,3) 

and not 

+(+(p,r),q,3). 

The operator in INFO(m+3) is used to decide whether the 

leading operator in the new expression may be ommitted. 

I.e., since INFO(m+3) contains +, +(p,r) is changed to p,r 

before being substituted. 



13.1 Patterns in Polish Form 

The process used for patterns conditions is as follows. 

1) Call Evalexpr to find the expression, F that is 

being examined. 

2) Call the routine Topatt to put the pattern P into a 

Polish from. 

3) Set j=Contains(F,P) or j = Matchq(F,P), depending 

on whether the condtion is %contains or %matches. 

4) Process the next simple condition (as described in 

Chapter 9) if j=O or end=1. 

5) Fill in extractors, and then go to next simple 

condition. 

End is a global variable pointing to the arrays EXTR, 

PTR1, PTR2, and OPR which hold information about extractors. 

The information is obtained by the recursive functions 

Contains and Matchq, but cannot be filled in until it is 

certain that the condition is true. The information they 

hold is as follows. 

EXTR holds the hash code of the extractor. 

PTR1 holds the first position that the extractor 

points to. (to go in INFO(m+1).) 

PTR2 holds the last position that the extractor 

points to. (to go in INFO(m+2)) 

OPR holds the operator that is to go in 

INFO(m+3). 

Topatt is a routine which turns the infix form of the 

Pattern into a Polish form. It is like Evalexpr, but much 
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simpler, since it does not have any calculation to check 

for. There are of course more possible basic operands for a 

pattern than there are for an expression. The following is a 

list of the operands, together with the code number that is 

used in the Polish form of a pattern. 

%opd 7 

%onumeric 8 

%integer 9 

%rational 10 

%real 11 

%algebraic 12 

%any 13 

In addition, the operands of an expression, i.e. 

numeric and algebraic constants may be used. A NAME may have 

a list of patterns after it, which would be matched against 

the list of expressions occurring after the name in an 

expression. 

If there is no extractor preceding an operand, the 

value 7 is put in front of the code. Otherwise, the value 5, 

and the hash code of the extractor precede the code number. 

Each pattern is preceded by 7, unless it has an extractor 

applying to the whole pattern. The following are some 

examples of patterns and their Polish form. 

1) %integer + %real 

1 7 1+! 0 1 4 1 7 1 9 1 7 111 1 
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2) a %integer + 5 

1 7 1+ 1 0 1 9 1 5 1 811 9 1 7 1 1 1 0 1 0 1 0 1 5 1 

3) a_(%any + %integer)*sin(%real) 

1+1*1 01171 51811+1 01 41 71131 71 91 71 61401 01 31 51821111 

where 81 is the hash code of a 

82 is the hash code of c 

40 is the hash code of sin. 

The alternatives 

1) %any 

2) %opd 

3) %numeri c 

4) %integer 

5) %rational 

of the operands of a (PATTEXPR) are 

6) %real 

7) %algebraic 

8) (PATTEXPR) 

9) CONST 

10) NAME(PT LIST)? 

The details of Topatt are too like Evalexpr 

giving. 

to be worth 

13.2 Matchq(F,P,op) 

Having put both the pattern and the expression into 

Polish notation, we are in a position to test the condition. 

The function Matchq, which tests the condition 

EXPR 0%matches' PATTERN ? 

will be described first. It is an integer function whose 

results are given as follows. 
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0 if the condition is false. 

1 if the condition is true, and the last operand of 

PATTERN was not %any. 

2 if the last operand of PATTERN was %any, but had no 

extractor preceding it. 
2+ if the last operand, %any, had an extractor. The 

result is two greater than the position in the 

array EXTR that describes this extractor. 

The results are given in this way to allow %any to be 

applied to two or more consecutive operands. For example, 

consider the pattern 

%algebraic + %any + %integer 

matched against 

a+b+c+3 
Matchq is used recursively, and in this example it would be 

called for each of the operands. Thus 

Matchq(a,1algebraic) (i) 
is called first, and this gives an answer of 1. Then 

Matchq(b,%any) (ii) 
is called. This is also sucessful. However 

Matchq(c,%integer) (iii) 
is not. If (ii) gave the answer 1, there would be no way of 

telling that %any could in fact be applied to b+c as well as 

to b itself. 

If %any were preceded by an extractor, e, it is 

necessary to know where in the arrays EXTR, PTR1 and PTR2 

the representation of e is found. Only then can the correct 
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value of e (b+c) be entered, as it is found after the call 

(ii) has been made. 

The steps Matchq takes in processing the pattern 

P = %algebraic +e:%any + %integer 

and the expression 

F= a + b + c+ 3 

will be described first, and then the general description of 

Matchq will be given. Since the operator of both F and P is 

+, Matchq is called for each operand. 

1) Let Q = 1st term of P (%algebraic) 

G = 1st term of f (a) 

2) Matchq(G,Q) = 1. 

3) Let Q = next term of P (e:%any) 

G = next term of F (b) 

4) Matchq(G,Q) = 2 + end, where end is the position of 

e in EXTR. Save this in I. 

5) Set Q = %integer, G = c. 

6) Matchq(G,Q) = 0. However, since I#0, G can be 

incorporated in %any. Set PTR2(I-2) to point to the 

end of c. Put the next term of F, (3), into G. 

7) Matchq(G,Q) = 1, so the result of the original call 

is one. 

Matchq takes three parameters, the expression F, the 

pattern, P, and an operator op, which is zero when Matchq is 

called from Condition. For the general case, let us first 
consider instances of F and P that have no operators. 
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1) P = %any, or P = e %any 

If P has an extractor, its name it copied into 

EXTR(end). PTR1(end) points to the beginning of F, 

but PTR2(end) is left empty. End is increased by 1, 

and the result is end+l. (So giving a a position 

two greater than EXTR.) If there is no extractor, 

the result is 2. 

2) F = NAME or NAME(LIST). 

a) P = %opd or %algebraic, eJ opd or 

ebalgebraic. 

If there is an extractor, its hash code 

is put in EXTR(end). PTR1(end) points to the 

beginning of F, and PTR2(end) points to the 

end of F. The result is 1 whether or not 

there is an extractor. 

b) P = NAME or NAME(PATTLIST), or 

e_NAME or a NAME(PATTLIST). 

The result is J unless the names are the 

same. The result is 1 if both P and F have no 

list, and J unless they both have a list. 
Then if 
F = NAME(F1,F2,...Fn), and 

P = NAME(P1,P2.... Pm), 

the result is 0 unless m=n and 

Matohq(Fi,Pi) = 1 for i=1,2,..n. 

If these conditions are satisfied, the 

extractor, if any, is dealt with as described 
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in (a), and the result is 1. 

c) Result is 0 for any other P. 

3) F = CONST. 

a) P = %opd or %numeric, ejopd or e_%numeric. 

As for (2a). 

b) P = %integer, %rational or %real, a %integer, 

*_%rational, or e_%real. 

The code number of F is found. If it is 

suitable for P, proceed as for (2a). 

Otherwise result = ). The following defines 

'suitable for P'. 

code(F) = 1 (integer) is suitable for all 
three types. 

oode(F) = 2 (real) is suitable only for 

%real. 

code(F) = 3 (rational) is suitable only 

for %rational. 

c) Result is 0 for any other P. 

This completes the discussion for P and F without 

operators. (Note that P = %any gives the same result if F 

has operators.) 

If P and F have the same leading operator, the terms 

can be matched against each other, taking note of the case 

where a term of P is %any, as discussed in the earlier 

example. 

The steps taken in this case are 

1) Let I - 0. 
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2) Set G = 1st term of F, and Q = lst term of P. 

3) J = Matchq(G,F) 

4) Go to (7) if J#1. 

5) If I>1, the previous term was %any. Therefore this 

must be 'sealed off'. Set PTR2(I-2) to the end of 

the previous G, if I>2. Set I = 0. 

6) Get the next terms G and Q of F and P, and go to 

(3). Result is 1 if there are no more terms in F or 

P. Result is 0 if one is ended, but not the other. 

7) Go to (10) if J> (i.e. Q was %any). 

8) Result = 0) if I = J, since this means that the 

previous term was not %any. 

9) Result is 0 if this is the last term of F. If not, 

get the next term, G, and go to (3). 

10) Seal off' I if it is not zero. Set I = J. Go to 

(6). 

If P and F have different main operators, the result is 

0 if op = 0. However if the main operator of P is equal to 

op, and F does not have an operator, F will be matched 

against the first term of P. This is to cope with situations 

like 

P = %integer + a_(%algebraic + %real) 

F = 1 + b + 0.7. 

where the extractor creates a sub-expression in P which is 

matched against two or more terms in the expression F. This 

can be seen by considering their Polish forms. 

F = +(l,b,0.7) 
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but 

P = +(%integer,a ±(algebraic,%real)) 

In this case, steps are taken to match b against %algebraic, 

after Matchq(b,a_+(%algebraic,%real))) has failed. 

13.3 Contains(F,P) 

The second function, Contains, tests the condition 

EXPR "contains" PATTERN ? 

It has two parameters, F containing the expression, and P 

containing the pattern. The results it gives are the same as 

those for Matchq. A broad outline of the general strategy 

will be given. 

1) If the leading operators of F and P are different, 

each term of F must be examined to see if it 

contains P. This is done by calling Contains 

recursively. 

2) If the leading operators are the same, the first 

term, Q of P is obtained. Then the terms of F are 

examined until one is found that matches Q. Let us 

call it G. Obviously the result is 0 if no such 

term exists. In order for this term to be the first 

of the required subexpression, if there are n terms 

in P, there must be at least n-1 terms in F after 

G, and these must be such that 

Match(Pi,Gi)=1, i=2,3,...n 

where P2,... Pn 

are the second to n-th terms of P, 
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and G1,... Gn 

are the n-1 terms of F that come immediately after 

G. If this is true, the result of Contains is 1. 

If not, there may be another term of F beyond G 

which satisfies the conditions. Hence, beginning at 

G1, the search for a term matching Q is resumed. 

3) (1) and (2) discussed cases where P and F have + 

and * as their leading operator The case where 

P=E.P1P2 or P=/P1P2 is simple. If any subexpression 

of F is of the form E.F1F2 (/F1F2) with 

Matchq(F1,P1)=1 and Matchq(F2,P2)=1, then the 

result is 1. Otherwise the result is 0. 

4) If P has no operand, each basic operand of F must 

be matched against P. This is done in the following 

manner. 

Suppose the most general case of F, which is a 

series of terms added together.I.e. 

F = +(F1,F2,...Fn) 

Then for each Fi, again suppose the most general 

case 

Fi = *(G1,G2.... Gm) 

Each Gj, (j=1,2,...m) can have one of three forms 

i) Gj=E.K1K2 (/K1K2). In this case P is matched 

against both K's. 

ii) Gj has no operator. Then P is matched against 

Gj. 

iii) Gj = +(Kl,...Kp), i.e. Gj is a subexpression. 
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In this case Contains(Gj,P) is called 

recursively. 

The details of associating an extractor with part of 

F, and of dealing with the case P=%any are very similar to 

Matchq, and so are not given here. 

13.4 Selectq(R,Z) 

This routine was mentioned in Chapter 10. Its 

description has been delayed until the pattern matching 

mechanism was described. R contains the operand of an 

expression; in fact it contains the 4th alternative of the 

operand, which is 

'('(SELECTOR)?(EX LB)')' 

where 

(SELECTOR) _ '%rhs'l'%lhs'I 

(DESCRIPTOR)'%f'(SELECTOR)? 

(DESCRIPTOR) _ (EXPR)'%th'(PLB)1(PLB) 

(PLB) _ (BASICPATT)l(LB) 

(EX LB) _ (LEXPR)':'(LB)I(1ORMUTA) 

Examples of (SELECTOR)s are 

%rhs 

4%th %integer %of 

%algebraic %of 5%th (%anye%algebraic) 

sin(%any) %of 

5%th 1:1 %of (where 1:1 contains a pattern.) 

If '(EXPR) %th' is omkitted, the first instance is 

taken. (EXLB) may be an expression, an equation, or a label 
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expression which gives a statement containing an 

expression or equation. 

Extractors are not allowed in patterns that are used 

with selectors. If the are found, they will not be 

connected. The algorithm for Selectq is 

1) Set p=length of (SELECTOR). 

2) Get the alternative of (EX LB). Go to (9) unless it 
is a label expression. 

3) Get the position g of the label expression in the 

Storage Tree. 

4) If p=1, the selector is %lhs or %rhs, so an 

equation is required. Otherwise an expression 

ssar c 

is 

y. ne e 

5) Analyse the statement at g as a equation or 

expression as required, putting the result in Q. 

6) Go to (8) unless p=l. 

7) If the selector is %rhs, get the expression on the 

right side of the sign and apply Evalexpr to 

it, putting the result in Z. Otherwise do the same 

for the left hand side. Return. 

8) Evalexpr Q into Z. Go to (12). 

9) If p#1, go to (11). 

10) Check that R is an equation. Call Evalexpr to put 

the appropriate side into Z. Return. 

11) Evalexpr R into Z. 

12) Return if p=O (no selector). 

13) If the selector is of the form 
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(EXPR) %th (PLB), 

call Eval-to-int for (EXPR), putting the result in 

J. Otherwise set J=1. 

14) Call Topatt for the pattern, putting the result in 

Q. Set Q=extr_Q, where extr is a dummy extractor 

used to find the part of the expression that is 

matched. 

15) Save end in endtmp. 

16) 11o (17) to (19) J times. 

17) Fault the program if Contains(Z,Q)=0. 
18) PTR2(endtmp) will point to the end of the part of 

Z that has been matched. If this is not the J-th 

time, remove the part of Z up to and including the 

position PTR2(endtmp) gives. If it is the J-th 

time, remove all but the part contained between 

PTR1(endtmp) and PTR2(endtmp). 

19) Reset end to be endtmp. 

20) Return if selector is of the form 

(DESCRIPTOR) **%of. 

(with no selector after it.) Go to (13). 

Let us consider an example. Let J 30 P = %integer, and 

Z=+(a,3,b,4,5,c). 

When the cycle is executed the first time, Contains set 

PTR.2(endtmp) pointing to 3. Hence Z becomes 

4,b,5,c. 

For the second execution of the cycle, PTR2(endtmp) points 

to 4, so Z becomes 
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b, 5, co 

Finally, for the 3rd time (i.e. the J-th time), 

PTR1(endtmp) and PTR2(endtmp) point to 5, which is therefore 

put into Z, to be returned as the result. 



XIV Conclusion 

AML was an attempt to write an Algebraic Language which 

incorporated the design features described in Chapter 2. 

Its outward appearance was planned in 1967, and has not been 

radically altered. The internal form has gone through many 

changes, mainly due to the inexperience of the author when 

she began this project. 

Between 1966 and 1969 relatively little was published 

in the field of Algebraic Manipulation; or rather what was 

published did little more than amplify previous documents. 

The last year or so, however, has seen the introduction of 

several new languages. 

These recent languages, taken together, satisfy the 

criteria laid down in Chapter 2. Some of the ideas they 

incorporate are more advanced than those that were designed 

for AML. The semantic pattern matching facilities of 

Macsyma are an example of this. However, they are in the 

main the result of many man-years' work, and are based on 

the experience of the earlier work described in the first 

part of Chapter 3. 

The problems which users of algebraic languages wish to 

solve tend to be large. Most systems have run into 

limitations of time or space with some of the problems they 

have tried to solve. There appear to be two ways of 

approaching the problem of writing Algebraic Languages. On 

the one hand, someone with a background in some other field 
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finds a problem which seems likely to be soluble on a 

computer. From this a language is written which will solve 

problems of a class that contains the original problem. 

Polynomial Manipulators give an example of this type of 

approach. However it seems inevitable that a problem is 

found which the original language cannot cope with. This 

results in a series of extensions which give an untidy, and 

possibly inefficient language. 

The advantages of Polynomial Manipulators are 

sufficient to make these extremely useful for problems that 

require large algebraic expressions. In the first place, the 

rigid format means that only coefficients and exponents of 

variables need be stored. This method relies on the fact 

that polynomials have a Canonical form, so that the problem 

of equality reduces to a test for an identical match. 

W.S.Brown, [30] pages 195-211 and G.E.Collins, [301 pages 

212-222 have studied methods for finding the greatest common 

divisor of two polynomials. Caviness [31] has proved that 

Rational Functions and also the class of radical expressions 

with the exponential function and restricted composition 

(i.e. exp(x) is in the class, but exp(exp(x)) is not.) have 

canonical forms. 

CAMAL, ALTRAN and MATHLAB all manipulate Rational 

Functions, where a Rational Function is expressed as the 

quotient of two polynomials. 

The second approach is to start off with a blueprint 

for a language that will suit everybody. Unfortunately this 
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may well mean that no problems of significant size can be 

solved. 

Richardson [321 has shown that for the class of 

expressions generated by 

a) The rational numbers, PI and log2, 

b) The variable x, 

c) The operations of addition, multiplication and 

composition, 

and 

d) The functions sin, exp, and the absolute value 

function, 

the predicate E = 0 is recursively undecidable. This 

means that no Canonical form can be found for expressions in 

this class. Hence the simplification algorithms of the 

various languages differ, since the interpretation the word 

Asimplify' has a different meaning to different people. The 

representation of an expression has no well defined form 

either. 

Most of the sucessful languages for general expressions 

are written in LISP:- REDUCE, SCRATCHPAD, and MACSYMA. 

Because the same implementing language is used, the writers 

of the more recent languages have been able to borrow 

heavily from the older work, and what is emerging is a 

system of languages from which the user can pick out the 

facilities most useful to him. 

Every language has this problem of generalisation. It 

seems impossible to have available all the tools required by 
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all classes of user. Hence the tendency has been to 

endeavour to supply the user with means by which he can 

extend the language himself. There does not seem to be a 

language that has solved the problem completely; most give a 

facility for incorporating new routines written in the host 

language. However this does not seem satisfactory for the 

ordinary user. 

Formula Algol's answer was to provide pattern matching 

and let the user do the rest. This is carrying things to an 

extreme, as the average user does not want to waste time 

defining the many different forms of the Distributive Law, 

to take one example. However I think that the initial idea 

is the right one. One approach would be the following: 

1) Have a highly efficient pattern matching facility 

which is also understandable by the general user. 

2) Using this, write a library of the basic algebraic 

functions; the user can add to these if necessary. 

large library is to be built up, then it is 

obvious that n interpreter should not be used on the 

routines stored t e. Ideally they should be in machine 

code. Since the idea i to write them in an algebraic 

language, this means that a c iler must be written for 

that language. I visualise that b an interpreter and a 

compiler would be available, thus giving e user the option 

of compiling the parts of his program that he 'd not wish 

to alter. This could be done by a statement of the 

%compile 1:1 %into Cl. 
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This system requires that the structure of AML is 

revised considerably. For efficiency, library routines 

should be compiled rather than interpreted. However to write 

a compiler for AML as it stands would not be possible, 

because the labelling system allows one to write 

self-modifying programs. 

The structure of AML is also unsatisfactory for 

several other reasons. The self - modifying aspect of the 

language, i.e. the fact that a labelled statement can be 

used as both data and program is like the facility offered 

in assembly coding, and requires the user to organise his 

statements very carefully. This can be confusing, 

particularly in large programs. 

The labelling system provides the user with a virtual 

memory that can be finely divided. Apart from this feature 

the virtual memory is like the address space of a computer 

devoid of indirection, indexing and re-location. The user 

who wishes to use recursion or mutual recursion has to 

create his own stack and pointer mechanism. Routines that 

are used together must use mutually exclusive sets of 

addresses. Code is not relocatable in this virtual memory. 

The first property creates an onerous task for the user, the 

second and third present problems for the construction of 

libary facilities. 

The flow of control through an AML program is likely 

to be very complicated. This is another fault of assembly 

languages that high level languages are intended to 
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overcome. The fact that an algebraic formula can be regarded 

as a labelled statement or as the value of an variable is 

also undesirable. It gives an assymetry that is unpleasing, 

confusing, and which creates problems in the implementation 

For all these reasons, the basic structure of AML 

should be re-examined and reorganised. 



1 labels of blocks of compiled code would begin with a C 

and th ock would be accessed by %do, e.g. 

do C1, 

or by a routine decla tion. 

%routine alp t 

Conventions would have to be a blished for handling 

parameters. 

Library tines would automatically be compiled, and 

the user would be able eclare a routine to be a library 

routine. From then on he would ha t routine in his own 

private library. 

The idea put forward at the beginning of this thesis, 

i.e. that simplification should not take place unless 

requested should, I think, be adhered to. However it becomes 

very annoying to have to write 

a = (b + c)*c 

%distrib a, %simplify a 

for each assignment, when there are a number of assignments 

that the user wants in simplified form. Therefore, instead 

of (or as well as) the commands there should be flags that 

can be set. Initially all would be off. However if the user 

were to put on, for example, the 'simplify' flag, then any 

assignment would cause the expression on the right to be 

simplified before being stored. 

Moving from the external appearance to the internal 

form, it is obvious that arrays are not flexible enough to 

be used for algebraic expressions. Therefore an improvement 
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would be to have a free list, and use elements of this to 

build up the algebraic formulae. The basic structure, i.e. 

the Polish notation described earlier would be kept. The 

list would consist of two cells; a byte to hold the actual 

character, and a short integer to point to the next cell 

required. This of course would be three times as long as the 

present structure. However it may be possible to have 

pointers to common subexpressions and to economise by 

reducing the number of copying operations required. 

Another saving, in this case of time, could be made by 

using canonical forms of expressions where possible. Since 

the internal form uses hash coding, this would be quite easy 

to set up. The advantage of canonical forms is that every 

comparison required is merely a test for exact equality. 

However it is often confusing to the user if his expressions 

are given back in a different order; particularly if the new 

order is as arbitary as that imposed by hash coding. Two 

methods could be used to overcome this: the initial order 

could be remembered, and the expression output in something 

close to this. Also the user could be allowed to specify the 

order he requires, as done in REDUCE. There are, however, 

severe problems with syntactic pattern matching if 
Canonical Forms are used. Again MACSYMA's semantic patterns 

seem to provide the answer. 

Given this reorganisation, it seems that AML will 

satisfy most of the demands that are made on an Algebraic 

Language. The examples in Appendix E show how most of the 
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facilities that appear to be missing can be written in quite 

short routines. 

Other facilities that should be incorporated in AML and 

are not easily obtained with the language as it is, are the 

capablity of defining new operators, and the provision for 

classes of objects that satisfy a particular property. 

This thesis describes the design and implementation of 

an algebraic language. It can be seen from the conclusion 

that the result, although workable, is not completely 

satisfactory. However the problem was an exacting one, and 

only be exploring it in this depth could solutions be found. 

Many wrong turnings were taken before the language as it 
stands was developed, and it is only since it has been 

available on EMAS (from February of this year) that its true 

nature could be seen. AML has not given a complete answer to 

the problem, but hopefully it has made a significant step in 

that direction. 



Appendix A - The Syntax of AML 

The Built in Phrases 

<name> 

<const> 

<expr> 

<pattexpr> 

<lb> 

<primes> 

<list> 

<text> 

The Syntax 

<activest> _ '%continue'l 

%local'<name>*l 
10 

%emptyO<name>*t 

10 

%local'?'%array'<ardefn>*1 

<uncondst>'%if'<condition>l 

<uncondsW%unless'<condition>1 

<iu><condition>'%then'<elsecl>t 
.. 
%local?<rt><name><fpp>?'%at'<label>1 

<uncondst> 

<uncondst> = "%return't 

.. 

%finish't 

A%exit-l 

%stop, 1 

.. 
%result='<expr>! 

%print'<text>t 



<name>'<-'<expr>l 

<formula> 

<iu> 

<elsecl> 

<untilcl> 

%lo '?' ' ng 9'oreal ?<name><list>? _ <expr>l 

<name><list>?l 

<command>*<untilcl>? 

<expr>'='<expr>l<expr> 

= V%if'1'%unless 

= <uncondst>'%else'<uncondst>l<uncondst> 

_ '%until'<condition>l 

%while'<condition>1 

%for'<name>'='<expr>','<expr>','<expr> 

<opd> = <lb>I<const>I<name><plist>? 

<exlb> = <lb>1<formula> 

<plist> = <primes><list> 

<selector> _ %rhs'l'%lhs'l 

<descript>'%of'<selector>? 

<descript> = <expr>'%th'<plb>l<plb> 

<plb> = <lb>l<basic patt> 

<ardefn> = <name>*'('<boundpr>*')' 

<boundpr> <expr>':'<expr> 

<rt> '%routine'l'%function' 

<fpp> '('<fp>*')' 

<fp> <fpdelim><name>* 

<fpdelim> 0 
%value'1'%name'10%array'1 

'%fn'l'%routine't'%label' 

<condition> <sc>'%and'<andsc>l<sc>'%or'<orsc>l<sc> 

<andsc> <sc>'%and'<andsc>l<sc> 

<orsc> s <sc>'%or'<orsc>l<sc> 



<SC> 

<rest cexpr> 

<comp> 

<command> 

<term> 

<forcl> 

<namelist> 

<equation> 

<patt> 

<basicpatt> 

'('<condition>')'1<expr>'//'<expr>1 

<name><list>?'%matches'<patlb>1 

<name><list>?'%contains'<patlb>1 

<expr><comp><expr><rest cexpr>?l<label> 

<comp><expr> 

= '<='I >=.I <'I >'1'#'1'=' 

_ %do'<label>*?l 

%writo'<label>*?l 

%erase'<label>*?l 

'%label'<label>*?'%as'<label>*l 

%copy'<namelist>*'%into'<label>*l 

dread'<namelist>*'%from %file'<expr>l 

%print' '%no'? '%results'<names>*?1 

%eval'<namelist>*l 
10 

%long'?'%real'?'%simplify'<intocl>?1 

%distrib'<intocl>?l 

'%expand'<intocl>?<term>?1 

%subs' <forcl>'%in' <intocl>? l 

%diff'<n>?<intocl>?l 

%addsum'<intocl>? 

%for <expr> %th %term 1 %to <expr> terms 

_ <expr>*'%for'<expr>*I<namelist>*<equation>* 

<name><list>? 

<expr>'='<expr>l<lb> 

<name>'_'<basicpatt>1<basicpatt> 

°%integer'l'%real'l'%rational'I 

'%algebraic'l'%opd'l'%numeric'l'%any'l 



'%factor' ! '%term' l ' (' <pattexpr> ) ' ! 
<const>!<pname><ptlist>? 

<pname> = '%name'!<name>'_ %name'!<name> 

<intocl> = <names>*<wrt>?'%into'<label>*! 

<names>*<wrt>? 

<names> = <lb>!<formula> 

<patlb> = <lb>I<pattexpr> 

<wrt> = '%wrt'<expr> 

<lexpr> = '('<expr>')'!<const>!<name><list>? 

<op> . . . . . . . . . . . ** 1 / ! * 1 - I 
.+.! 

& 
!.!.!.1! 

I << ! >> 

<n> = '('<expr>')' 

<ptlist> = <primes>'('<pattexpr>*')' 

<label> = <lb>I<const> 



Appendix B - Average Length of Lines in Sample AML Programs 

1) No. of characters = 523 

No. of statements = 32 

Average no. of characters/statement = 16 

2) No. of characters = 351 

No. of statements = 21 

Average no. of characters/statement = 16 

3) No. of characters = 487 

No. of statements = 30 

Average no. of characters/statement = 16 

4) No. of characters = 606 

No. of statements = 33 

Average no. of characters/statement = 18 

5) No. of characters = 926 

No. of statements = 46 

Average no. of characters/statement = 20 

6) No. of characters = 399 

No. of statements = 26 

Average no. of characters/statement = 15 



7) No. of characters = 392 

No. of statements = 20 

Average no. of characters/statement = 19 

8) No. of characters = 1194 

No. of statements = 50 

Average no. of characters/statement = 23 

9) No. of characters = 118 

No. of statements = 11 

Average no. of characters/statement = 10 

10) No. of characters = 111 

No. of statements = 8 

Average no. of characters/statement = 13 

11) No. of characters = 79 

No. of statements = 8 

Average no. of characters/statement 

12) No. of characters = 127 

No. of statements 

Average no. of characters/statement 

= 9 

13) No. of characters = 547 

No. of statements = 29 

Average no. of characters/statement 

= 9 

= 14 

= 19 



14) No. of characters = 199 

No. of statements = 10 

Average no. of characters/statement = 19 

15) No. of characters = 265 

No. of statements = 23 

Average no. of characters/statement = 11 

16) No. of characters = 683 

No. of statements = 30 

Average no. of characters/statement = 22 

17) No. of characters = 300 

No. of statements = 18 

Average no. of characters/statement = 16 

18) No. of characters = 158 

No. of statements = 11 

Average no. of characters/statement = 14 

19) No. of characters = 338 

No. of statements = 18 

Average no. of characters/statement = 18 

20) No. of characters 

No. of statements 

= 116 

= 5 

Average no. of characters/statement = 23 



APPENDIX C - COMPARISON OF IMP C AML 
SYNTAX ANALYSERS 

STATEMENT 

%LOCAL %ARRAY A(1:10) 

TIME FUR IMP TO ANALYSE IT 0.086520000000 

TIME FOR AML TO ANALYSE IT 0.039990000000 

STATEMENT 

%DO 1 

TIME FOR IMP TO ANALYSE IT 0.139990000000 

TIME POR AML TO ANALYSE IT 0.079990000000 

STATEMENT 

ADD 1:1:1 FOR I=1,1,10 

TIME FOR IMP TO ANALYSE IT 

TIME FOR AML TO ANALYSE IT 

0.459970000000 

0.279980000000 

STATEMENT 

RTN(A,3,C,D) 

TIME FOR IMP TO ANALYSE IT 1.919870000000 

TIME FOR AML TO ANALYSE IT 0.239980000000 



STATEMENT 

IF I=1 3THEN ADO 1 ?ELSE P=Q 

TIME FOR IMP TO ANALYSE IT C.63995000000D 

TIME FOR AML TO ANALYSE IT 0.179990000000 

STATEMENT 

I=P+Q*R(1, 2)+(X+Z)*0 

TIME FOR IMP TO ANALYSE IT 0.739950000000 

TIME FOR AML TO ANALYSE IT 0.279980 OO0OD 

STATEMENT 

%ARRAY A,B,C(1:10,2:20),D,E(1:20) 

TIME FOR IMP TO ANALYSE IT 0.199980000000 

TIME FOR AML TO ANALYSE IT 0.159990000000 



Appendix D 

The following are the built in functions and routines of 

AML. 

1) Routine space, spaces(n) 

Output 1 space, n spaces. 

2) Routine newline, newlines(n) 

Output 1 newline, n newlines. 

3) Routine write(a), write(a,m), write(a,m,n) 

If a is an algebraic expression, output it. N and m 

are ignored. 

If a is an integer, output it, taking up m+l 

positions (the extra place is for the sign). If m 

is not given, take m to be 6. N is ignored. 

If a is a rational, output it, taking m+l positions 

for the numerator, and n+1 positions for the 

denominator. Default is m=6, n=6. 

If a is a real or long real, output it in fixed 

point form, taking m+l positions before the decimal 

point, and n positions after it. Default is m=6, 

n=6. 

3) Routine getfile(f), getfile(f,i) 
Read in the file whose position in the input stream 

is given by the integer f. This file is expected to 

contain labelled and unlabelled statements of 

AML. Store the labelled statements, and execute the 



unlabelled ones, exactly as if coming from the 

teletype. Print the statements at the console, 

unless ice. 

4) Function sin(x) 

If x is an algebraic expression, this gives the 

symbolic function sin(x). Otherwise it evaluates 

sin(x) to a real number. 

5) Functions coa(x), tan(x), cotan(x), sec(x), 

cosec(x), exp(x), log(x) 

As for (5). 

6) Functions intpt(x),fracpt(x) 

As for (4) if x is an algebraic expression. For x 

numeric, 

Intpt(x) gives the integer part of x, [x]. 

Fracpt(x) gives the real number x-[x]. 

7) Functions power(a,x,r,i,j), sigma(a,r,i,j) 

Symbolic notations for summation series. 

a is an algebraic expression (possibily 

dependent on r) 

x is an algebraic constant 

r is an algebraic constant 

i is an integer 

j is an integer 

power represents 

j 

a*x**r 

r=i 



sigma represents 

J 

Ta 
r=i 

8) inf - a reserved name standing for infinity («0) 

9) pi - a reserved word standing forl7(=3.141593) 

10) exp - a reserved name standing for e(=2.718281). 

See also (5). 

11) %routine collect(%value a,b,%name c,d) 

This routine splits the expression a into the form 

a -> b*c + d (i) 
It has been found that a routine which returns the 

two parts c and d is more useful than a command 

which merely rearranges the expression into the 

form given by (i). Obviously the coefficient of b 

in the expression a is given by c. The value of b 

may be any expression. 

Examples 

(i) a = p*x*q + y*q*p + z + x*r*s + y*s*r 

+ p*q*(f + g) + r*f*s + s*r*g 

b = p*q + r*s 

Gives c = x + y + f + g 

d = z 

(ii) a = (p + q)*x*y + z*p + r*s*(z+y) + q*z 

b=p+q+r*s 
Gives 

c=x*y+z 



Gives 

Gives 

c = 1 

d = r 

(v) a = power(r**2,x,r,0,10) + p*x**3 

b = x**3 

Gives 

c = p+9 

d = power(r**2,x,r,Q,2) + 

power(r**2,x,r,4,10) 



Appendix E - Examples 

1) The routine CHECK3 replaces sub expressions of the form 

sin(3a) 

and cos(3a) 

by the equivalent expressions 

3sin(a)-4sin(a)**3 

-3cos(a)+4cos(a)**3 

in the expression passed to it as a parameter. 
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1 EXAMPLE 1 

%routine check3(%name p) oat 1:1 

1:1 %local a,b 

:1:1 %do 1:2 %if p %contains a sin(3*b__ any) 

1:2 a<-3*sin(b)-4*sin(b)**3 

1:1:2 %do 1:3 %if p %contains a_cos(3*b,,%any) 

1:3 a<- -3*cos(b)+4*cos(b)**3 

1:1:3 %simplify p 

:4 %return 

q=sin(3*x)+sin(x)+cos(3*x)-3*cos(%)**3 

check3(q) 

4*sin(x) - 4*sin(x)**3 - 3*cos(x) + coa(x)**3 

%finish 



2) A function for evaluating determinants. 
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! example 2 

%print %no %results 

%array r(1:4,1:4) 

%function det(%aarray r, %value i) %at 1:1 

1:1 %do 2:1 %if i=2 

1:1:1 %local %array s(1:i - 1,1:i - 1) 

1:1:2 %local p,j,k,l,m,n 

1:1:3 p- 
1:1:4 %do 2:2 %for j=1,1,i 

1:1:5 %distrib p, %simplify 

1:1:6 %result =p 

1:7 %do 1:8 %for i=1,1,k 

1:7:1 q=det(r,k) 

1:7:2 %print 'q=';write(q);newline 

1:8 %do 1:9 %for j=1,1,k 

1:9 %read r(i,j) %from %file 1 

2:1 p=r(1,1)*r(2,2) - r(1,2)*r(2,1) 

2:1:5 %simplify p 

2:1:6 %result =p 

2:2 nom) 

2:2:1 %do 2:3 %for k=2,1,i 



2:2:2 p=p + ( - 1)**(j - 1)*r(j,1)*det(s,i - 1) 

2:3 m=1;n=n + 1 

2:3:1 %do 2:4 %for 1=1,1,i 

2:4 %do 2:5 %unless 1=j 

2:5 s(m,n)=r(1,k) 

2:5:1 m=m + 1 

k = 3; %do 1:7 

da db do 

dd de df 

dg dh di 

q=da*de*di - da*df*dh - dd*db*di + dd*dc*dh + dg*db*df - dg*dc*de 

%finish 



3) The first seven Legendre Polynomials, using the relation 

Pn(x) = (1/n)*(2n-1)xPn-1 - (n-l)Pn-2(x) 

PO(x) = 1, P1(x) = X. 

This example is given in [261 and [12]. 
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example 3 

%print %no %results 

%oarray p(,):10) 

p(0)=l;p(1)=x 

1:1 p(n)=l/n*((2*n-1)*x*p(n-1)-(n-1)*p(n-2)) 

:1:1 %distrib p(n),%simplify 

:2 write(p(n)) 

%do 1:1 %for n=2,1,7 

- 1/2 + 3/2*x**2 

- 1/3 - 1/6*x + 5/2*x**3 

- 5/8 - 7/12*x + 5/6*x**2 + 35/8*x**4 

- 7/15 - 151/120*x - 21/20*x**2 + 7/2*x**3 + 63/8*x**5 

- 11/16 - 161/120*x - 129/80*x**2 - 77/40*x**3 + 161/16*x**4 

+ 231/16*x**6 

- 19/35 - 1319/560*x - 407/120*x**2 + 3/560*x**3 - 143/40*x**4 

+ 407/16*x**5 + 429/16*x**7 

%finish 



4) The function SIGEVAL turns all power series functions of 

the form 

Apower(A(r),x,r,m,n)A 

into the sum of terms that the function represents. If m or 

n are infinite (-INF or INF), finite approximations are 

taken from the integers i and j. 
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1 example 4 

%print %no %results 

10 %function h(%value n,r) %at 1:1 

1:1 %,local k,res 

1:1:1 %result =n %if r=0 

1:1:2 res=n 

1:1:3 %do 1:1:5 %for k=1,1,r - 1 

1:1:4 %result =res 

1:1:5 res=res*(n - k) 

%function sigeval(%value s,i,j) %at 2:1 

2:1 %local a,b,c,d,e,p,q,t,k 

2:1:1 %result =s %unless s %contains p power(a_ %any b_ %algebraic ,: 

c_ %algebraic d_ %numeric e_ %numeric ) 

2:1:2 q=0 

2:1:2:2 d=i %if d= - inf 

2:1:2:3 e=j %if e=inf 

2:1:2:4 %result=s %unless d %matches %integer %and e %matches %integer 



2:1:3 %do 2:1:6 %for k=d,1,e 

2:1:3:5 %do 10 

2:1:3:6 %eval q 

2:1:4 %simplify q;p< - q 

2:1:5 %result =s 

2:1:6 t 
2:1:6:1 %subs k %for a %in t 
2:1:6:2 q =q + t*b**k 

3:1 s=power(h(n,r)*a**r,x,r,0,p) 

4:1 %do 3:1 

4:2 t=sigeval(s,0,0);write(t);newline 

n=1/2;a=2;p=5 

%do 4 

1/2 - 1/2*x - x*2 + 3*x*3 - 15*x*4 + 105*x*5 

%finish 



5) The f and g series of Celestial Mechanics. The 

calculation of these values has become almost a standard 

test for Algebraic Systems. Fi and Gi are sequences of 

polynomials in the time dependent variables mu, s and e. 

They satisfy the relations 

Fi = F'i-1 =muGi-1 

Gi = Fi-1 - G#i-1. 

R and GO are 1, and mu, s and e are connected by the 

equations 

muo _ -3*mu*s 

s, = e - 2*s**2 

e0 _ -s*(mu +2*e) 

Examples of this calculation are given in [26] and [12]. 

The original calculation is described in [28]. (The 

ALGEBRAIC STACK overflows during the calculation of the 5th 

f and g.) 
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1 example 5 

%array f,g(0:1Q) 

%opri nt %no %resul t s 

xl=-s*(mu+2*e) 

x2=e-2+s**2 

x3=-3*mu*s 

f(0)=1;g(0)=1 



:2 0 

:3 0 

6:1 0 

:2 0 

:3 0 

10:1 f(i) = -mu*g(i-1)+xl*5:1+x2*5:2+x3*5:3 

:2 g(i) = f(i-1)+x1*6:1+x2*6:2+x3*6:3 

:3 %distrib f(i),g(i),%simplify 

:3:4 %print f(';write(i,1) 

:5 %print ) =';write(f(i));newline 

:6 %print g(';write(i,1) 

:7 %print ') =';write(g(i));newlines(2) 

10:4 %do 14 %for j=1,1,3 

12:1 e 

2 mu 

:3 s 

14 %diff 1:1 %wrt 12:j %into 5:j 

14:1 %diff 3:1 %wrt 12:j %into 6:j 

%do 10 %for i=1,1,4 
f( 1)= - mu 

g( 1)= 1 

f( 2)=2 - mu - e - 9**2 

g( 2)= - mu 

f( 3)=2 + mu**2 + s*mu + 2*s*e - e - s**2 + 6*mu*s**2 



g( 3)=4 - mu - 2*e - 2*s**2 

f( 4)= - 7*mu - mu**2 + 4*mu*e - 4*mu*s**2 + 4*s*mu + 2*s**2*e 

+ 3*s*e - 2*s - 12*s**2 + s**3 + 6*s**4 - 3*mu**2*s - 6*mu*s*e 

- 36*mu**2*s**2 

g( 4)=4 + mu**2 + 3*s*mu + 6*a*e - We - 2*s**2 + 18*mu*s**2 

%finish 



6) The routine 'solve' expects a polynomial of degree two in 

f. It finds the roots of the quadratic equation f(x)=O, 

where x is given by the second parameter. The results are 

returned in the %name type parameters s1 and s2. 
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I example 6 

%routine solve(%value f,x,%name sl,s2) 

24:1 %local a,b,c,d 

:2 collect(f,x,b,d) 

:3 collect(d,x**2,a,c) 

:4 d=(b**2-4*a*c)**(1/2) 

:5 s1=(-b+d)/(2*a) 

:6 s2=(-b-d)/(2*a) 

:7 %return 

g=2*x**2+7*x+3 

2:1 solve(g,x,P,q) 

:2 %print 

:3 %print 

%do 2 

p= -1/ 2 

q= -3 

p =';write(p);newline 

'q = ';write(q);newline 

%at 24 



g a*x**2+3*a*x-6 

%do 2 

p=( - 3*a + ((3*a)**2 - 4*a* 6)**1/2)/(2*a) 

q=( - 3*a - ((3*a)**2 - 4*a* - 6)**1/2)/(2*a) 

%print %no %results 

%expand p,q,%distrib,%simplify 

write(p);newline 

3/2 - 1/2*a** - 1 + 1/2*a** - 1*((3*a)**2 - 4*a* - 6)**1/2 

write(q);newline 

3/2 - a** - 1 + 1/2*a** - 1*((3*a)**2 - 4*a* - 6)**1/2 

%finish 



7) A routine to truncate a polynomial in x to powers of i 
and less. A contains the polynomial. 
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1 example 7 

%print %no %results 

%routine truncate(%name a,%value i) %at 20 

20:1 %local b,p,q,r,t 

:2 %do 20:10 %until b=0 

:1:5 b=a;a=O 

20:10:2 q=0 

:3 p=b %unless b %matches pJany+gJ°oany 

:4 contains(p,r,20:20) 

:5 %if r#0 %then %do 20:11 %else a=a+p 

:6 b=q 

20:20 x**s3integer 

20:11:1 a=a+p %unless s>i 

20:4 %simplify a 

:5 %return 

%routine contains(%name a, r,%label 1) %at 23 

23:2 %local p, q, z 

:3 p=l ; r=a ; q=1 

:4 r=0 %unless r %contains z-1 

:5 %return %if r=0 

:6 z<-1;%simplify r;%return %if a %contains 1 

y=x**9+x**7+x**5+x**3+x+1 



truncate(y,5) 

write(y) 

1 + x**5 + x**3 + x 

%finish 



8) A routine to find the coefficient of a given power of x, 

in a expression that involves the AML function 'power'. 

ICSCO13 J.OFFICER RCC SHELVES 07/12/71 20.57.58 

AML UPDATED 25/11/71 

I example 8 

%print %no %results 

%function power coeff(%value z,x,c) %at 22 

22:2 %local f,s,r,i,j,d,b,p,q,t 

:3 contains(z,p,22:20) 

:4 %result O %if p=o 

:5 contains(p,q,22:21) 

:6 %result=0 %if q=j 

:7 b=c-d;%simplify b 

:8 %result=0 %unless b %matches %integer 

:9 %result=0 %unless i<b<j 

:10 f=t*q;%subs b %for s %in f,%simplify 

:11 %result=f 

:20 power(t_%any,x,sJ algebraic,i%numeric,j %numeric) 

:21 x**d_%any 

%routine contains(%name a, r,%label 1) %at 23 

23:2 %local p,q,z 

:3 p=1;r a;q=1 

:4 r=O %unless r %contains z_3 

:5 %return %if r=.3 

:6 z<-l;%simplify r;%return %if a %contains 1 

a=power(r**2,x,r,1,10)*x**(i-3) 



y=poaercoeff(a,x,i+i) 

write(y) 

16 

%finish 



9) This example finds the first five terms of the expansion 

of exp(sin(y)). The same example is given in [25). 
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! example 9 

%print %no %results 

siny = y; fact = 1; expy = J 

1:2 %if 4//(n - 1) %then i=1 %else i= - 1 

1:2:1 fact=fact*(n - 1)*n 

1:2:2 sing=siny + i*y**n/fact 

1:3 fact=fact*n 

1:3:1 %real z=siny**n/fact 

1:3:2 %expand z, %simplify 

1:3:3 expy=expy + z 

1:4 collect(q,y**i,p,r) 

1:4:1 expy=expy + p*y**i 

1:4:2 q=p 

3 %do 1:2 %for n=3,2,7 

3:1:1:2 %expand siny, %simplify 

3:1:1:7 write(siny);newline 

3:1:5 fact=1; %do 1:3 %for n=1,1,5 

3:2 %simplify expy 

3:3 collect(expy,y,P,q) 

3:4 %do 1:4 %for i=2,1,5 

3:5 expy=r + expy 

%do 3 



y + 1/6*y**3 + 1/120*y**5 - 1/5040*y**7 

%print `result =';write(expy) 

result= y + 1/6*y**3 + 1/120*y**5 - 1/5040*y**7 + 0.500000*(y**2 

+ 2*y*0.166666*y**3 + 2*y*0.8333*y**5 + 2*y* - 47.953109*y**7 

+ 0.27777*y**6 + 0.2777*y**8 + 0.3*y**10 - 3208.316894*y**12 

+ 0.0*y**14) 

,finish 



10) A function to multiply two power series P and Q. P must 

range from 0 to some positive integer, and Q must have the 

same range. The array C holds the coefficients of the 

result. 
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1 example 10 

%print %no %results 

%function powermult(%value p,q,%array c) %at 1:1 

1:1:5 %result =p*q %unless 1:1:20 %and 1:1:21 

1:1:5:5 %result =p*q %unless y=x %and m=n 

1:1:6 %do 1:2 %if s=r 

1:1:7 %do 1:3 %for i 0,1, n 

1:1:8 %result =power(c(r),x,r,0,n) 

1:1:20 p %matches power(a %any,x %algebraic,r_Ulgebraic,0,n_%integer) 

1:1:21 q %matches power(b %any,yJalgebraic,sJ algebraic,0,m %numeric) 

1:2 %empty s; %subs s %for r %in b 

1:3 t=0 

1:3:1 %do 1:4 %for j=0,1,i 

1:3:2 %distrib t,%simplify;c(i)=t 

1:4 v=a*b 

1:4:1 %subs j,i - j %for r,s %in v 

1:4:2 t=t + v 

%array c(0:20) 

p=power(3*r+a,x,r,0,5) 

q=power(k*s**2,x,s,0,5) 



t=powermult(p,q,c) 

%print 't =`;write(t);newline 

t --O + (3*0 + a)*k*6**2 + (3*1 + a)*k*5**2 + (3*2 + a)*k*4**2 

2:1 %print 'c(;write(i,1);%print') _' 

:2 write(c(i));newline 

%print 'coefficients:';newline 

coefficients: 

%do 2 %for i=1,1,5 
c( 0)= 0 

c( 1)=k*a 

c( 2)=5*k*a + 3*k 

c( 3)=14*k*a + 18*k 

c( 4)=30*k*a + 60*k 

c( 5)=55*k*a + 150 *k 

%finish 
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